

Lecture Notes in Computer Science 5133
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Philippe Audebaud
Christine Paulin-Mohring (Eds.)

Mathematics of
Program Construction

9th International Conference, MPC 2008
Marseille, France, July 15-18, 2008
Proceedings

13

Volume Editors

Philippe Audebaud
Ecole Normale Supérieure (ENS) de Lyon
Laboratoire de l’Informatique du Parallélisme (LIP)
46 allée d’Italie, 69364 Lyon CEDEX 07, France
E-mail: Philippe.Audebaud@ens-lyon.fr

Christine Paulin-Mohring
INRIA Saclay - Île-de-France, ProVal
91893 Orsay CEDEX, France
and
LRI, Université Paris Sud, CNRS
Bât. 490, 91405 Orsay CEDEX, France
E-mail: christine.paulin@lri.fr

Library of Congress Control Number: 2008930417

CR Subject Classification (1998): F.3, F.4, D.2, F.1, D.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-70593-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70593-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12324385 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of MPC 2008, the 9th International Confer-
ence on the Mathematics of Program Construction. This series of conferences aims
to promote the development of mathematical principles and techniques that are
demonstrably useful in the process of constructing computer programs, whether
implemented in hardware or software. The focus is on techniques that combine
precision with conciseness, enabling programs to be constructed by formal cal-
culation. Within this theme, the scope of the series is very diverse, including pro-
gramming methodology, program specification and transformation, programming
paradigms, programming calculi, and programming language semantics.

The quality of the papers submitted to the conference was in general very
high, and the number of submissions was comparable to that for the previous
conference. Each paper was refereed by at least four, and often more, committee
members.

This volume contains 18 papers selected for presentation by the Program
Committee from 41 submissions, 1 invited paper which was reviewed as well,
and the abstracts for two invited talks.

The conference took place in Marseille-Luminy, France. The previous eight
conferences were held in 1989 in Twente, The Netherlands; in 1992 in Oxford,
UK; in 1995 in Kloster Irsee, Germany; in 1998 in Marstrand near Göteborg,
Sweden; in 2000 in Ponte de Lima, Portugal; in 2002 in Dagstuhl, Germany; in
2004, in Stirling, UK; and in 2006 in Kuressaare, Estonia. The proceedings of
these conferences were published as LNCS 375, 669, 947, 1422, 1837, 2386, 3125
and 4014, respectively.

We are grateful to the members of the Program Committee and their referees
for their care and diligence in reviewing the submitted papers.

The review process and compilation of the proceedings were greatly helped
by Andrei Voronkov’s EasyChair system that we can only recommend to every
Program Chair.

May 2008 Christine Paulin-Mohring
Philippe Audebaud

Organization

Program Chairs

Philippe Audebaud (Ecole Normale Supérieure Lyon, France)
Christine Paulin-Mohring (INRIA-Université Paris-Sud, France)

Program Committee

Ralph-Johan Back (Abo Akademi University, Finland)
Eerke Boiten (University of Kent, UK)
Venanzio Capretta (University of Nijmegen, The Netherlands)
Sharon Curtis (Oxford Brookes University, UK)
Jules Desharnais (Université Laval, Québec, Canada)
Peter Dybjer (Chalmers University of Technology, Sweden)
Jeremy Gibbons (University of Oxford, UK)
Lindsay Groves (Victoria University of Wellington, New Zealand)
Ian Hayes (University of Queensland, Australia)
Eric Hehner (University of Toronto, Canada)
Johan Jeuring (Utrecht University, The Netherlands)
Dexter Kozen (Cornell University, USA)
Christian Lengauer (Universität Passau, Germany)
Lambert Meertens (University of Utrecht, The Netherlands)
Bernhard Möller (Universität Augsburg, Germany)
Carroll Morgan (University of New South Wales, Australia)
Shin-Cheng Mu (Academia Sinica, Taiwan)
Jose Nuno Oliveira (Universidade do Minho, Portugal)
Tim Sheard (Portland State University, USA)
Tarmo Uustalu (Institute of Cybernetics Tallin, Estonia)

External Reviewers

Andreas Abel
Ki Yung Ahn
Jose Bacelar Almeida
Thorsten Altenkirch
Sven Apel
Mats Aspnäs
Luis Barbosa
Bruno Barras
Luc Bougé
Edwin Brady

Robert Colvin
Alcino Cunha
Jean-Lou De Carufel
Catherine Dubois
Roger Duke
Jean-Christophe Filliâtre
Johan Glimming
Stéphane Glondu
Roland Glück
Armin Groesslinger

Peter Hancock
Ichiro Hasuo
Christoph Herrmann
Thomas Hildebrandt
Stefan Holdermans
Peter Höfner
Patrik Jansson
Yasuo Kawahara
Sean Leather
Michael Leuschel

VIII Organization

Chuan-Kai Lin
Nathan Linger
Andres Loeh
José Pedro Magalhães
Adam Megacz
Larissa Meinicke
Bruno Oliveira

Randy Pollack
Viorel Preoteasa
Alexey Rodriguez
Ando Saabas
Jorge Sousa Pinto
Barney Stratford
Wouter Swierstra

Varmo Vene
Meng Wang
Jan Westerholm
Kirsten Winter
Martin Ziegler

Local Organization

Philippe Audebaud, Christine Paulin-Mohring and Marie-Renée Donnadieu (Uni-
versité de la Méditerranée Luminy, France).

Host Institution

The conference was hosted by the Centre International de Recherches en
Mathématiques Luminy (CIRM), at Luminy, near Marseille, France.

We would like to thanks INRIA and CIRM for their financial support to the
conference.

We are grateful to the CIRM management team, LRI staff, and the INRIA
Service communication et colloques (especially Emmanuelle Perrot) for their
help in the organization of the conference.

Table of Contents

Exploiting Unique Fixed Points (Invited Talk) . 1
Ralf Hinze

Scrap Your Type Applications (Invited Talk) . 2
Barry Jay and Simon Peyton Jones

Programming with Effects in Coq (Invited Talk) . 28
Greg Morrisett

Verifying a Semantic βη-Conversion Test for Martin-Löf Type
Theory . 29

Andreas Abel, Thierry Coquand, and Peter Dybjer

The Capacity-C Torch Problem . 57
Roland Backhouse

Recounting the Rationals: Twice! . 79
Roland Backhouse and João F. Ferreira

Zippy Tabulations of Recursive Functions . 92
Richard S. Bird

Unfolding Abstract Datatypes . 110
Jeremy Gibbons

Circulations, Fuzzy Relations and Semirings . 134
Roland Glück and Bernhard Möller

Asynchronous Exceptions as an Effect . 153
William L. Harrison, Gerard Allwein, Andy Gill, and Adam Procter

The Böhm–Jacopini Theorem Is False, Propositionally 177
Dexter Kozen and Wei-Lung Dustin Tseng

The Expression Lemma . 193
Ralf Lämmel and Ondrej Rypacek

Nested Datatypes with Generalized Mendler Iteration: Map Fusion and
the Example of the Representation of Untyped Lambda Calculus with
Explicit Flattening . 220

Ralph Matthes

Probabilistic Choice in Refinement Algebra . 243
Larissa Meinicke and Ian J. Hayes

X Table of Contents

Algebra of Programming Using Dependent Types . 268
Shin-Cheng Mu, Hsiang-Shang Ko, and Patrik Jansson

Safe Modification of Pointer Programs in Refinement Calculus 284
Susumu Nishimura

A Hoare Logic for Call-by-Value Functional Programs 305
Yann Régis-Gianas and François Pottier

Synthesis of Optimal Control Policies for Some Infinite-State Transition
Systems . 336

Michel Sintzoff

Modal Semirings Revisited . 360
Jules Desharnais and Georg Struth

Asymptotic Improvement of Computations over Free Monads 388
Janis Voigtländer

Symmetric and Synchronous Communication in Peer-to-Peer
Networks . 404

Andreas Witzel

Author Index . 423

Exploiting Unique Fixed Points�

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

ralf.hinze@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/ralf.hinze/

Abstract. Functional programmers happily use equational reasoning
and induction to prove properties of recursive programs. To show prop-
erties of corecursive programs they employ coinduction, per perhaps less
enthusiastically. Coinduction is often considered as a rather low-level
proof method, especially, as it seems to depart rather radically from
equational reasoning. In this talk we introduce an alternative proof tech-
nique based on unique fixed points. To make the idea concrete, consider
the simplest example of a coinductive type: the type of streams, where
a stream is an infinite sequence of elements. In a lazy functional lan-
guage, such as Haskell, streams are easy to define and many textbooks
on Haskell reproduce the folklore examples of Fibonacci or Hamming
numbers defined by recursion equations over streams. One has to be a
bit careful in formulating a recursion equation basically avoiding that
the sequence defined swallows its own tail. However, if this care is exer-
cised, the equation even possesses a unique solution, a fact that is not
very widely appreciated. Uniqueness can be exploited to prove that two
streams are equal: if they satisfy the same recursion equation, then they
are! We will use this proof technique to infer some intriguing facts about
particular streams and to develop the basics of finite calculus. Quite
attractively, the resulting proofs have a strong equational flavour. In a
nutshell, the proof method brings equational reasoning to the coworld.
Of course, it is by no means restricted to streams and can be used equally
well to prove properties of infinite trees or the observational equivalence
of instances of an abstract datatype.

� Invited Lecture.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.comlab.ox.ac.uk/ralf.hinze/

Scrap Your Type Applications

Barry Jay1 and Simon Peyton Jones2

1 University of Technology, Sydney
2 Microsoft Research Cambridge

Abstract. System F is ubiquitous in logic, theorem proving, language
meta-theory, compiler intermediate languages, and elsewhere. Along with
its type abstractions come type applications, but these often appear
redundant. This redundancy is both distracting and costly for type-
directed compilers.

We introduce System IF, for implicit System F, in which many type
applications can be made implicit. It supports decidable type checking
and strong normalisation. Experiments with Haskell suggest that it could
be used to reduce the amount of intermediate code in compilers that
employ System F.

System IF constitutes a first foray into a new area in the design space
of typed lambda calculi, that is interesting in its own right and may
prove useful in practice.

1 Introduction

The polymorphic lambda calculus or System F is ubiquitous in many areas
of computer science such as logic, e.g. (Girard et al. 1989; Girard 1990), pro-
gramming, e.g. (Reynolds 1974), theorem-proving, e.g. (Coq), and intermediate
languages for compilers, e.g. (Peyton Jones 2003; Harper and Morrisett 1995).
System F is, however, tiresomely verbose. For example, suppose the first projec-
tion from a pair is given by fst : ∀a.∀b.(a, b)→ a. Then the first projection of
the pair (3,True) is given by

fst Int Bool (3,True)

where the two type arguments, Int and Bool, are required to instantiate the type
variables a and b. To a naive observer, the type arguments seem redundant. After
all, if we were to write simply

fst (3,True)

then it is clear how to instantiate a and b! And indeed many source languages
omit type arguments, relying on type inference to fill them in. However our in-
terest is in typed calculi with the power of System F, for which type inference
known to be undecidable (Wells 1994). More precisely, we address the follow-
ing question: can we omit type arguments in a polymorphic calculus with the
full expressive power of System F, without losing decidable type checking? Our
contributions are as follows:

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 2–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Scrap Your Type Applications 3

– We present a new, explicitly-typed lambda calculus, System IF (short for
“implicit System F”) that is precisely as expressive as System F, but allows
many type application to be be scrapped (Section 3). However, it requires
four new reduction rules.

– System IF enjoys the same desirable properties as System F; in particular,
type checking is decidable, and reduction is type preserving, confluent, and
strongly normalising (Section 3.4). Furthermore, IF shares System F’s prop-
erty that every term has a unique type (Section 2.2), which is particularly
useful when the calculus is used as intermediate language for a compiler
(Section 4.1).

– Every System F term is also an System IF term; and conversely there is
translation from System IF to System F that preserves typing, type erasure,
term equality and inequality (Section 3.3). Reduction itself is not preserved
since one reduction rule is reversed during translation.

– We regard System IF as of interest in its own right, but it potentially has
some practical importance because compilers for higher-order, typed lan-
guages often use an explicitly-typed intermediate language based on Sys-
tem F (Peyton Jones et al. 1993; Tarditi et al. 1996; Shao 1997), and there
is evidence that cost of processing types is a significant problem in prac-
tice (Shao et al. 1998; Petersen 2005). To get some idea of whether System IF
is useful in this context, we adapted the Glasgow Haskell Compiler (GHC),
a state-of-the-art compiler for Haskell, to use System IF as its intermediate
language (Section 4). The results are mixed: 80% of all type applications can
be removed, reducing the total size of the code by 12%, but the “bottom
line” of compiler execution time is not improved (Section 4).

Our work complements other approaches that reduce the burden of type infor-
mation in intermediate languages (Section 5), but it is distinctively different: to
the best of our knowledge no previous such work specifically considers how to
eliminate type applications.

Although the emphasis in this paper is on intermediate languages, the ideas
may be of broader significance. In programming, for example, quantified function
types allow for the possibility of combining cases whose types quantify different
numbers of type variables. In each case the instantiation of type variables will
be determined by the argument, not by the programmer, in a form of dynamic
dispatch for type variables (Jay 2006).

2 System F

This section recalls System F and discusses its redundant type applications.

2.1 The System

The syntax, notation, type system and dynamic semantics for System F are
given for easy reference in Figure 1. They should be familiar, but they serve to
establish our notational conventions.

4 B. Jay and S. Peyton Jones

Syntax
a, b, c ::= 〈type variables〉

f, g, x, y, z ::= 〈term variables〉

σ, τ, φ, ψ ::= a | σ→σ | ∀a.σ
r, s, t, u ::= xσ | t t | t σ | λxσ.t | Λa.t

Γ ::= xσ1
1 , . . . , xσn

n (n ≥ 0)
Δ ::= a1, . . . , an (n ≥ 0, ai distinct)

Notation
∀Δ.σ ≡ ∀a1. . . . ∀an.σ
ΛΔ.t ≡ Λa1. . . . Λan.t
t Δ ≡ t a1 . . . an

t (θ Δ) ≡ t (θa1) . . . (θan) for θ a type substitution
FTV(σ) ≡ the free type variables of σ

Type system

(fvar)
Γ, xσ � xσ : σ

(fapp)

Γ � r : σ→φ
Γ � u : σ

Γ � r u : φ
(fabs)

Γ, xσ � s : φ x 	∈ dom(Γ)

Γ � λxσ.s : σ→φ

(tapp)
Γ � t : ∀a.σ

Γ � t ψ : {ψ/a}σ
(tabs)

Γ � s : σ a 	∈ FTV(Γ)

Γ � Λa.s : ∀a.σ

Dynamic semantics
(β1) (λxσ.s) u −→ {u/x}s
(β2) (Λa.s) ψ −→ {ψ/a}s

Fig. 1. Definition of System F

The standard definitions apply for: the free type variables FTV(σ) of a type σ;
the free type variables FTV(t) of a term t; the free term variables ftv(t) of t; type
and term substitutions; and the α-equivalence relations for re-naming bound type
and term variables. The notation {σ1/a1, . . . , σn/an} is the substitution mapping
ai to σi, and {σ1/a1, . . . , σn/an}φ is the result of applying that substitution to
the type φ. (And similarly for terms.) A type environment Γ is a partial function
of finite domain, from term variables to types. The notation xσ1

1 , . . . , xσn
n may

be used to denote the function that maps xi to σi. The domain of Γ is denoted
dom(Γ).

The symbol Δ stands for a sequence of distinct type variables a1, . . . , an,
and we may write ∀Δ.σ to abbreviate ∀a1. . . . ∀an.σ. Similar syntactic sugar
abbreviates type abstractions ΛΔ.t and type applications t Δ and even t (θΔ)
for a type substitution θ.

Scrap Your Type Applications 5

The dynamic semantics is expressed using the reduction rules (β1) and (β2)
which generate a rewriting relation in the usual way.

In our examples, we often use type constants Int and Bool, along with corre-
sponding term constants 0, 1, . . . , True, False, (+), (&&), and so on. We also
assume a pair type (σ, φ), and a list type List σ; with term constructors

Pair : ∀a, b.a→b→(a, b)
Nil : ∀a.List a

Cons : ∀a.a→List a→List a.

Formally, these are just notations for their Church encodings, but no harm comes
from considering them as extensions of the language.

2.2 Uniqueness of Types

In Girard’s original notation, each term variable is annotated with its type, at its
occurrences as well as its binding site, but there are no type environments. Later
treatments commonly include a type environment which enforces the invariant
that every free occurrence of a term variable has the same type, an approach
we follow in Figure 1. The type environment allows the type annotation to be
dropped from term-variable occurrences, but we nevertheless retain them as
a source of type information which will prove useful in the new system. For
example, we write

(λxInt. negateInt→Int xInt).

This notation looks somewhat verbose, in conflict with the goals of the paper,
and indeed in our informal examples we often omit type attribution on variable
occurrences. However, in practice there is no overhead to this apparent redun-
dancy, as we discuss in Section 4.1, and it has an important practical benefit:
every term has a unique type.

Theorem 1 (Uniqueness of types). If Γ � t : σ and Γ ′ � t : σ′ then σ = σ′.

We can therefore write, without ambiguity, t : σ or tσ to mean that there is some
Γ such that Γ � t : σ.

This unique-type property is extremely convenient for a compiler that uses
System F as an intermediate language. Why? Because every term has a unique
type independent of the context in which the term appears. More concretely,
the compiler may straightforwardly compute the type of any given term with a
single, bottom-up traversal of the term, applying the appropriate rule of Figure 1
at each node of the term. System IF is carefully designed to retain this property.

2.3 Redundant Type Applications

Although System F’s definition is beautifully concise, its terms are rather ver-
bose. This subsection will demonstrate this through some examples, as a moti-
vation for the new systems that will follow.

Our particular focus is on type applications, the term form (t σ). Human
beings dislike writing type applications in source programs, because it is usually

6 B. Jay and S. Peyton Jones

obvious what they should be, and they are burdensome to write. Rather, in
programming languages such as ML and Haskell a type inference system, such
as Hindley-Milner, fills them in.

Why are the missing type applications “obvious”? Because the types of the
arguments of an application typically determine the appropriate type arguments.
The introduction gave one example, but here is another. Suppose we are given
terms map : ∀a, b.(a→ b)→ List a→ List b and treble : Int→ Int. Then an
application of map might look like this:

map Int Int treble

It is obvious that the type of treble immediately fixes both type arguments of
map to be Int, so no information is lost by writing simply (map treble).

The type arguments in System F can occasionally become onerous even to
a computer. We encountered this in practice when implementing derivable type
classes (Hinze and Peyton Jones 2000) in the Glasgow Haskell Compiler (GHC).
The implementation transforms an N-ary data constructor into a nested tuple.
For example, the Haskell term (C e1 e2 e3 e4 e5) is transformed to a nested tuple,
whose System F representation looks like this (where ei : σi):

Pair σ1 (σ2, (σ3, (σ4, σ5))) e1

(Pair σ2 (σ3, (σ4, σ5)) e2

(Pair σ3 (σ4, σ5) e3 (Pair σ4 σ5 e4 e5))).

Note the quadratic blow-up in the size of the term, because the type argument
at each level of the nest repeats all the types already mentioned in its arguments.
We are not the first to notice this problem, and we discuss in Section 5.2 ways
of exploiting sharing to reduce the size of the term or of its representation. But
it is more direct to simply omit the repeated types than to compress them!
Furthermore, omitting them is entirely possible in this example: no information
is lost by writing just

Pair e1 (Pair e2 (Pair e3 (Pair e4 e5))).

Omitting obviously-redundant type applications in System F can therefore lead
to an asymptotic reduction in the size of the term. When the calculus is used as
an intermediate language in a compiler, reducing the size of terms may lead to
improvements in compilation time.

This abbreviated form is, of course, exactly what an ML programmer would
write, relying on type inference to fill in missing type arguments. So the reader
might wonder: why not simply omit type applications and use type inference to
reconstruct them when necessary? We discuss this question in Section 5, but the
short answer is this: type inference is undecidable for System F (Wells 1994).
The trouble is that System F is far too expressive for type inference to work.
In particular, in System F type arguments may be quantified types. For example,
one might write:

Pair (∀a.a→a) Int (Λa.λxa. x) 4

Scrap Your Type Applications 7

That is, System F is impredicative. Very few source languages are impredicative,
but System F certainly is. Furthermore, a compiler that uses System F as its
typed intermediate language may well exploit that expressiveness. For example,
when desugaring mutually recursive bindings, GHC builds tuples whose compo-
nents are polymporhic values, which in turn requires the tuple to be instantiated
at those polytypes.

3 System IF

Thus motivated, we introduce System IF, short for “implicit System F”, whose
definition is given for reference in Figure 2. The key idea is this:

System IF is just like System F, except that many type applications
may be omitted.

In fact, System F is embedded in System IF: they have exactly the same types,
the same term syntax, and every well-typed term in System F is a well-typed
term in System IF.

But System IF has additional well-typed terms that System F lacks. In par-
ticular, a term of the form r ψ1 . . . ψn u in System F may be replaced by an
equivalent term r u of System IF provided that the types ψ1, . . . , ψn can be
recovered from the types of r and u. Of course, scrapping such type applications
has knock-on effects on the type system and dynamic semantics.

Syntax as for System F

Notation as for System F plus

{ψ/[Δ] σ} ≡ the most general substitution θ (if any)
such that dom(θ) ⊆ Δ and θσ = ψ

Δ\σ ≡ Δ\FTV(σ)

Type system as for System F, but replacing (fapp) by

(ifapp)
Γ � r : ∀Δ.σ→φ Γ � u : ψ

Γ � r u : ∀(Δ\σ).{ψ/[Δ] σ}φ
FTV(ψ) ∩ (Δ\σ) = ∅

Dynamic semantics as for System F, plus

(ξ1) r∀a,Δ.σ→φ ψ u −→ r u if a ∈ FTV(σ)\Δ

(ξ2) r∀a,Δ.σ→φ ψ u −→ r u ψ if a 	∈ FTV(σ)\Δ

(μ1) (Λa.t∀Δ.σ→φ) uψ −→ {ψ/[a, Δ]σ}t u if a ∈ FTV(σ)\Δ
and FTV(t) ∩ Δ = ∅

(μ2) (Λa.t∀Δ.σ→φ) uψ −→ Λa.(t u) if a 	∈ FTV(u) ∪ (FTV(σ)\Δ)

Fig. 2. Definition of System IF

8 B. Jay and S. Peyton Jones

3.1 Type System of IF

In System F, a term r of type ∀a.σ can only be applied to a type, but in System IF
it may also be applied to a term. The single new typing rule, (ifapp), specifies how
such term applications are typed in System IF. The idea is this: if r : ∀Δ.σ→φ
and u : ψ, then use ψ to instantiate all those type variables ai ∈ Δ that appear
free in σ.

For example, suppose r : ∀a, b.(a → Int → b) → φ and u : Int → Int →
Bool. Then if we see the application (r u) it is plain that we must instantiate
a to Int and b to Bool; and that no other instantiation will do. To derive this
instantiation:

we match (a→Int→b) against (Int→Int→Bool)
to find a substitution for {a, b}
namely {Int/a, Bool/b}.

(The notation {ψ/a, τ/b} stands for a substitution, as explained in Section 2.1.)
More formally, we define a match of σ against ψ relative to a sequence of type
variables Δ, written {ψ/[Δ]σ}, to be a substitution θ whose domain is within Δ
such that θσ = φ. Such a match is most general if any other such match factors
through it.

The rules for matching are straightforward, rather like those for unification,
the only novelty being the treatment of quantified types. For example, to match
∀d.(∀b.b→b)→d against ∀c.a→c, relative to a, first use α-conversion to identify
c with d and then bind a to ∀b.b → b. Note, however, that matching cannot
employ such bound variables in either the range or domain of the substitution.
For example, {∀c.c → a /[a] ∀c.c → c} fails, since one cannot substitute c for a
under the quantifier ∀c; and similarly {∀c.c → c /[c] ∀c.Int→ c} fails, since we
cannot substitute for c under the quantifier.

These observations motivate the following definition: a type substitution υ
avoids a type variable a if a is not in the domain or the range of υ.

Theorem 2. If there is a match of type σ against a type ψ relative to a sequence
of type variables Δ, then there is a most general such match. Further, there is
at most one most general match, which is denoted {ψ/[Δ]σ}.

Proof. Now the most general match is defined as follows:

{ψ/[Δ]a} = {ψ/a} if a ∈ Δ
{a/[Δ]a} = {} if a �∈ Δ

{ψ1→ψ2/[Δ]σ1→σ2} = let υ1 = {ψ1/[Δ]σ1} in
let υ2 = {υ1ψ1/[Δ]υ1σ1} in
υ2 ◦ υ1

{∀a.ψ/[Δ]∀a.σ} = {ψ/[Δ]σ} if this avoids a
{ψ/[Δ]σ} = undefined otherwise.

The proof details are by straightforward induction. �	

Scrap Your Type Applications 9

Now let us return to the typing of an application (r u). What if the argument
type of r does not mention all r’s quantified type variables? For example, suppose
r : ∀a, b.(Int→a)→φ and u : Int→Bool. Then in the application (r u) it is clear
that we must instantiate a to Bool, but we learn nothing about the instantiation
of b. In terms of matching, the match {Int→ Bool/[a, b]Int→ a} = {Bool/a}
does not act on b. That is, (r u) is still polymorphic in b, which fact can be
expressed by giving (r u) the type ∀b.{Bool/a}φ. Rather than allow b to become
free, the solution is to bind it again in the result type.

Generalising from this example gives the following typing rule for applications,
which is shown in Figure 2 and replaces (fapp) in Figure 1:

(ifapp)
Γ � r : ∀Δ.σ→φ Γ � u : ψ
Γ � r u : ∀(Δ\σ).{ψ/[Δ]σ}φ

FTV(ψ) ∩ (Δ\σ) = ∅

Here Δ\σ is the sub-sequence of Δ consisting of those variables not free in σ;
these are the quantified variables that are not fixed by u. Note that (ifapp) only
applies if the match exists, which is not always the case; for example there is no
match of Int against Bool.

To illustrate (ifapp) in action, suppose x : Int and y : Bool. Then here are
some terms and their types:

Pair Int Bool : Int→Bool→(Int, Bool) (1)
Pair Int Bool x : Bool→(Int, Bool) (2)

Pair x : ∀b.b→(Int, b) (3)
Pair x Bool : Bool→(Int, Bool) (4)

Pair x Bool y : (Int, Bool) (5)
Pair x y : (Int, Bool) (6)

The first two examples are well-typed System F as well as System IF, with the
expected types; you do not have to drop type applications in System IF! Example
(3) is more interesting; here the value argument x instantiates one, but only one,
of the type variables in Pair’s type, leaving a term quantified in just one type
variable. Incidentally, it would have made no difference if the type of Pair had
been quantified in the other order (∀b, a.a→ b→ (a, b)): example (3) would still
have the same type. Examples (4–6) illustrate that the polymorphic function
(Pair x) can be applied to a type (examples (4,5)) or to a term (example (6)).

Like F, System IF is robust to program transformation. For example, suppose
f : ∀Δ.σ1 →σ2 →φ, and g : ∀Δ.σ2 →σ1 →φ, so that their types differ only the
order of the two arguments. Then if (f t1 t2) is well-typed, so is (g t2 t1). This
property relies on the ability of (ifapp) to re-abstract the variables not bound
by the match. In particular, suppose f : ∀a.a → Int → a, g : ∀a.Int → a →
a. Now consider the application (f True 3). The partial application (f True)
will instantiate a to Bool, yielding a result of type Int→ Bool which is then
applied to 3. Now consider the arguments in the other order, in (g 3 True).
The partial application (g 3) yields a match that does not bind a, so the result
is re-abstracted over a to give ∀a.a→ a. This function can be applied to True
straightforwardly.

10 B. Jay and S. Peyton Jones

3.2 Dynamic Semantics of System IF

Since (ifapp) admits more terms than (fapp), we need more reductions, too.
In particular, it is necessary to reduce terms of the form (Λa.s) u, where a
type-lambda abstraction is applied to a term. A minimum requirement is that
reduction should support the following generalisation of (β1) to handle the type
abstractions:

(β1′) (ΛΔ.λxσ .t) uψ −→ Λ(Δ\σ). {u/x}{ψ/[Δ]σ}t
if FTV(ψ) ∩ (Δ\σ) = ∅.

This reduction matches (ifapp) closely. First it finds the match {ψ/[Δ]σ} that
describes how to instantiate the type variables Δ (or rather, those that appear
free in σ). Then it applies this substitution to t, and re-abstracts over the re-
maining type variables of Δ. The side condition, which can always be made to
hold by α-conversion, simply ensures that the new abstraction does not capture
any variables in u.

Notationally, this reduction makes use of Theorem 1, extended to System IF,
which says that every term has a unique type. In the left-hand side of the re-
duction we write this type as a superscript on the term, thus uψ, although that
is not part of the syntax of System IF. We could instead re-state the reduction
in a way that is more faithful to the operational reality like this:

(β1′) (ΛΔ.λxσ .t) u −→ Λ(Δ\σ). {u/x}{ψ/[Δ]σ}t
if FTV(ψ) ∩ (Δ\σ) = ∅
and ∃Γ. Γ � u : ψ.

Now the left-hand side can be matched purely structurally, while ψ is fixed by
the new condition on the right-hand side. In operational terms, there is an easy
algorithm to find ψ given a (well-typed) term u.

Although it is essential that the left-hand side of (β1′) reduces to its right
hand side, it is rather unsatisfactory as a one-step reduction rule. From a prac-
tical perspective, it eliminates a string of lambdas all at once, and may require
reduction under a big lambda to bring the left-hand side to the required form.
From a theoretical perspective, it will prove to be a consequence of other rules
to be introduced now.

The whole point of System IF is that one can omit many type applications,
but this is not intended to express or create new meanings: when (r u) and (r ψ u)
have the same meaning they should have the same normal form. For example,
with the rules we have so far, these two terms would be distinct normal forms:

(λx∀a.a→a. x Bool True) and (λx∀a.a→a. x True).

Their equality is achieved by adding reduction rules (ξ1) and (ξ2) (they also
appear in Figure 2):

(ξ1) r∀a,Δ.σ→φ ψ u −→ r u if a ∈ FTV(σ)\Δ
(ξ2) r∀a,Δ.σ→φ ψ u −→ r u ψ if a �∈ FTV(σ)\Δ

Scrap Your Type Applications 11

The first eliminates a type application altogether when the immediately following
term argument fixes the instantiation of the polymorphic function – that is, when
a is mentioned in σ1. For example, if Leaf : ∀a.a→Tree a then

Leaf ψ uψ −→ Leaf uψ.

By itself, this rule is not enough, as can be seen in Pair ψ τ s t since the type
of s does not determine the value of τ which is instead given by t. This situation
is handled by rule (ξ2).

These two reductions may also be regarded as optimisation rules, that can
be applied statically to remove redundant type applications from an System IF
program. For example:

Pair ψ τ s t −→ Pair ψ s τ t by (ξ2)
−→ Pair s τ t by (ξ1)
−→ Pair s t by (ξ1)

as desired. Here is another example. Suppose Inl : ∀a, b.a → a + b, and Inr :
∀a.∀b.b→a + b. Then

Inl Int Bool 3 −→ Inl Int 3 Bool by (ξ2)
−→ Inl 3 Bool by (ξ1)

Inr Int Bool True −→ Inr Int True by (ξ1)
−→ Inr True Int by (ξ2)

In these two examples, notice that one type application necessarily remains,
because the argument of Inl and Inr only fixes one of the type parameters. (At
least, it necessarily remains if Inr is regarded as a constant; if it is replaced by
its Church encoding then further reductions can take place.) Exactly the same
thing happens with the Nil of the list type.

Note that (ξ1) and (ξ2) overlap with the rule (β2) since a term of the form
(Λa.t) ψ u can sometimes be reduced to both {ψ/a}t u (by β2) and (Λa.t) u
(by ξ1). Now, if t is λ-abstraction λx.s then both sides reduce to {u/x}{ψ/a}s
by (β1′). However, if t and u are variables then (Λa.t) u is irreducible by the
existing rules so that confluence would fail. That is, (β1′) is just too coarse.

The solution is to add rules that act on terms of the form (Λa.t) u namely:

(μ1) (Λa.t∀Δ.σ→φ) uψ −→ {ψ/[a,Δ]σ}t u if a ∈ FTV(σ)\Δ
and FTV(t) ∩Δ = ∅

(μ2) (Λa.t∀Δ.σ→φ) uψ −→ Λa.(t u) if a �∈ FTV(u) ∪ FTV(σ)\Δ

Rule (μ1) is akin to (β2), in that it substitutes for the type variable a in the body t.
Unlike System F, however, the type to substitute is not explicit; instead, it is found
by matching the type ψ of the value argument u against the argument type σ of t.
This match yields the substitution {ψ/[a,Δ]σ}, which will certainly bind a, but

1 Technically we need a ∈ FTV(σ)\Δ, since nothing prevents a appearing in Δ.

12 B. Jay and S. Peyton Jones

also may (and perhaps must) bind variables in Δ. The side condition FTV(t)∩Δ =
∅, which can always be made true by α-conversion, ensures that the substitution
does not accidentally instantiate an unrelated free type variable of t.

The rule (μ2) is more straightforward. It simply commutes the abstraction and
application when they do not interfere. Note that the side condition a �∈ FTV(u)
can be made true by α-conversion. Now (β1′) is a consequence of (β1) and (μ1)
and (μ2) so the full set of reduction rules is given by the β-rules of System F
plus the four new rules in Figure 2.

3.3 Translation to System F

This subsection formalises the close relationship between System IF and Sys-
tem F.

Theorem 3. The embedding of System F into System IF preserves typing, type
erasure and reduction.

Note that some normal forms of System F are reducible in System IF. For
example, it may happen that a normal form x ψ u of System F reduces to x u
by (ξ1).

[[xσ]] = xσ

[[r∀Δ.σ→φ uψ]] = Λ(Δ\σ).[[r]] {ψ/[Δ]σ}Δ [[u]]
[[λxσ.s]] = λxσ.[[s]]

[[r ψ]] = [[r]] ψ
[[Λa.s]] = Λa.[[s]]

Fig. 3. Translation from System IF to System F

This natural embedding is complemented by a translation in the opposite
direction, from System IF into System F, that makes the implicit type appli-
cations explicit. The translation is shown in Figure 3. Although it is fairly well
behaved, it does not preserve the reduction rule (ξ2). Rather, the left-hand and
right-hand sides of (ξ2) translate repectively to

Λa.Λ(Δ\σ).[[r]] ψ Δ′ [[u]] and (Λa.Λ(Δ\σ).[[r]] a Δ′ [[u]]) ψ

for some Δ′. Here, the right-hand side reduces to the left-hand side by (β2). In
this case the permutation of the arguments has caused the direction of reduction
to be reversed. However, although the translation does not preserve reduction,
it does preserve equality, the symmetrical relation generated by the rules.

The same type erasure mechanism used for System F can be applied to terms
of System IF to yield pure λ-terms.

Theorem 4. There is a translation [[−]] from terms of System IF to those of
System F that preserves typing, type erasure and equality of terms. Further, if t
is a term in System F then [[t]] is t itself.

Scrap Your Type Applications 13

Proof. That the translation in Figure 3 preserves type derivations follows by
induction on the structure of the derivation. That it preserves type erasure is
immediate. The preservation of terms in System F follows by induction on the
structure of the term. The only non-trivial case concerns an application r u but
then the type of r cannot bind any type variables so that the translation becomes

[[rσ→φ uσ]] = [[r]] [[u]].

Now consider equality. It is enough to show that when both sides of each re-
duction rule are translated then they are either equal, or have a common reduct.
The rule (β1) is preserved since [[(λxσ .s) u]] = (λxσ .[[s]]) [[u]] −→ {[[u]]/x}[[s]]} =
[[{u/x}s]] where the last equation is a trivial lemma. A similar argument applies
to (β2). Both sides of the rule (ξ1) have the same translation. The argument for
(ξ2) is already given. The translation of (μ1) is given by the (β2) reduction

Λ(Δ\σ).(Λa.[[t]]) θa θΔ [[u]] −→ {θa/a}(Λ(Δ\σ).[[t]] θΔ [[u]])

where θ is {ψ/[a,Δ]σ}. The translation of (μ2) is given by the (β2) reduction

Λa.Λ(Δ\σ).(Λa.[[t]]) a θΔ [[u]] −→ Λa.Λ(Δ\σ).[[t]] θΔ [[u]]

where θ is {ψ/[a,Δ]σ} which is also {ψ/[Δ]σ} since a �∈ FTV(σ).
This completes the proof that the translation preserves the equality generated

by rewriting. �	

3.4 Properties of System IF

System IF is a little more complicated than System F, but they share many of
the same good properties, including being strongly normalising and confluent.
Notably, it shares the unique-type property described in Section 2.2, as can be
seen by inspection of the typing rules.

Lemma 1 (Substitution Lemma).

1. If there is a derivation of t : σ and θ is a type substitution then there is a
derivation of θt : θσ.

2. If s : φ is a term and xσ is a variable that may be free in s and u : σ is a
term then there is a derivation of {u/x}s : φ.

Proof. The proofs are by straightforward induction on the structure of
the terms. �	

Theorem 5. Reduction in System IF preserves typing.

Proof. The proof is by induction on the structure of the reduction. Without loss
of generality, the reduction is a rule. If it is either (β1) or (β2) then apply the
Substitution Lemma.

If the rule is (ξ1) with u : τ then r ψ : {ψ/a}(∀Δ.σ → φ) and so r ψ u :
∀(Δ\σ).{τ/[Δ]{ψ/a}σ}{ψ/a}φ while

r u : ∀(a,Δ\σ).{τ/[a,Δ]σ}φ.

14 B. Jay and S. Peyton Jones

Now a ∈ FTV(σ) implies that {τ/[a,Δ]σ} = {τ/[Δ]{ψ/a}σ} ◦ {ψ/a} (where ◦
denotes composition of substitutions). This yields the result.

If the rule is (ξ2) with u : τ then r ψ : {ψ/a}(∀Δ.σ → φ) whose type is
also ∀Δ.σ → {ψ/a}φ) since a is not free in σ. Hence r ψ u has type ∀(Δ\
σ).{τ/[Δ]σ}{ψ/a}φ which is the type ∀(Δ\σ).{ψ/a}{τ/[Δ]σ}φ of r u ψ.

If the rule is (μ1) then the left-hand side has type ∀(Δ\σ).υφ where υ =
{ψ/[a,Δ]σ}. Also, the right-hand side has type

∀(Δ\σ).{ψ/[Δ]{υa/a}σ}{υa/a}φ

which is the same since υ = {ψ/[Δ]{υa/a}σ} ◦ {υa/a}.
If the rule is (μ2) then the left-hand side has type ∀a.∀(Δ\σ).υφ where υ =

{ψ/[a,Δ]σ} is also {ψ/[Δ]σ} since a is not free in σ. Hence, the type is that of
the right-hand side, too. �	

Theorem 6. Type erasure maps (β1) to β-reduction of the pure λ-calculus and
maps all other rules to equations.

Proof. The proof is immediate. �	

Theorem 7. Reduction in System IF is strongly normalising.

Proof. Observe that if t is a term in System F then its type erasure is strongly
normalising in the pure λ-calculus, since any reduction of the erasure is the im-
age of some non-empty reduction sequence in System F. Since the translation
from System IF to System F preserves the type erasure and (β1) this property
extends to all of System IF. Thus any reduction sequence in System IF con-
tains finitely many instances of (β1). Hence, to prove strong normalisation, it
suffices to consider reduction sequences without any uses of (β1). The remaining
reduction rules all reduce the rank ρ of the terms, as defined by

ρ(xσ) = 0
ρ(r u) = 2ρ(r) + ρu
ρ(r U) = ρ(r) + 1
ρ(Λa.s) = 2ρ(s) + 1.

For example, ρ(r ψ u) = 2(ρ(r) + 1) + ρ(u) > 2ρ(r) + ρ(u) + 1 = ρ(r u ψ) and
ρ((Λa.s) u) = 2(ρ(s)+1)+ρ(u) > 2ρ(s)+ρ(u)+1 = ρ(Λa.s u). The other three
reduction rules are easily checked. �	

Theorem 8. Reduction in System IF is Church-Rosser.

Proof. Since reduction is strongly normalising, it is enough to prove that every
critical pair can be resolved. Those which are already present in System F are
resolved using its Church-Rosser property. The new reduction rules cannot over-
lap with (β1) for typing reasons. Nor can they overlap with each other. Hence
the only remaining critical pairs involve (β2) and (ξ1) or (ξ2).

For (ξ1), a term of the form (Λa.s) ψ1 uψ rewrites to both {ψ1/a}s u and
(Λa.s) u. The latter term further reduces by (μ1) to θs u where θ is the re-
striction of {ψ/[a,Δ]σ} to a. Now this must map a to ψ1 since a is free in

Scrap Your Type Applications 15

σ and {ψ/[Δ]{ψ1/a}σ} exists (from the typing of the original term). Hence
{ψ1/[a,Δ]σ}s u is exactly {ψ/a}s u.

For (ξ2) a term of the form (Λa.s) ψ1 u rewrites to both {ψ1/a}s u and
(Λa.s) u ψ1. The latter term further reduces to (Λa.s u) ψ1 and thence to the
former term. �	

3.5 Extension to Higher Kinds

The side conditions for the novel reduction rules constrain the appearance of
bound type variables in quantified types, and the matching process inspects
their syntactic structure. Type safety requires that these properties be stable
under substitution.

In System IF, like System F, this is automatically true. But what if one were
to add functions at the type level, as is the case in Fω, for example? Then, b
is free in the type (a b), but if we were to substitute λx.Int for a, then (a b)
would reduce to Int in which b is no longer free. Similarly, computing the match
{List Int/[b](a b)}, as defined in Figure 2, would yield the substitution {Int/b};
but if we were to substitute λx.x for a, the match would become {List Int/[b]b},
which yields quite a different result.

None of these problems arise, however, in the fragment of Fω that is used
by Haskell (Peyton Jones 2003). Haskell permits higher-kinded constants (intro-
duced by data type declarations), but has no type-level lambda, and hence no
reductions at the type level. In this setting, simple first-order matching suffices
despite the use of higher kinds. For example, adding List as a constant of kind
�→� (with no reduction rules) causes no difficulty; indeed, this same property
is crucial for type inference in the Haskell source language.

In short, System IF as presented above can readily be extended with type
constants and type variables of higher kind, to serve as an intermediate language
for Haskell. The syntax of types would then become

S, T ::= 〈type constructors〉
σ, τ, φ, ψ ::= a | σ→σ | ∀a.σ | T | σ φ

(note no lambda), together with kinding rules to ensure that types are well-
kinded. We leave for future work the question of whether and how IF can be
further extended to accommodate full type-level lambda.

3.6 Eta-Rules

In pure λ-calculus, the (η)-equality

λx.r x = r

reflects the intuition that everything is a function. It is of interest here for two
reasons. One is to tighten the connection between System IF and System F.
The other is to support its use in compiler optimisations.

16 B. Jay and S. Peyton Jones

Traditionally, (η) it has been expressed as a contraction (reducing λx.r x
to r), which is appropriate in practice. Note, however, that for many purposes
it is better thought of as an expansion (Jay and Ghani 1995; Ghani 1997). In
System F the η-contraction rules are

(η1) λx.r x −→ r if x �∈ ftv(r)
(η2) Λa.r a −→ r if a �∈ FTV(r).

In System IF, the rule (η1) must be made more general, to reflect the implicit
action on type variables. Given a term r : ∀Δ.σ→φ and a variable x : σ then r x
will instantiate the type variables in Δ ∩ FTV(σ) while leaving the rest bound.
Hence r x (Δ\σ) : φ and so

λxσ .r x (Δ\σ) : σ→φ

has the same type as r Δ. In this way, the rules become:

(η1′) λxσ .r∀Δ.σ→φ x (Δ\σ) −→ r Δ if x �∈ ftv(r)
(η2) Λa.r a −→ r if a �∈ FTV(r).

Of course, if the redex of (η1′) is well-typed in System F then Δ is empty and
the standard rule emerges. When these η-contractions are added, the resulting
systems are called System Fη and System IFη respectively.

The rule (η1′) is unlike all previous rules considered, in that it is not stable
under substitution for type variables in Δ. If θ is a type substitution then the
reduction relation defined by the rules must be broadened to include

λxθσ.r∀Δ.σ→φ x θ(Δ\σ) −→ r (θΔ) if x �∈ ftv(r).

To apply the rule in this form, it suffices to discover θ by type matching of σ
against the given type of x etc.

The good properties established in the last two sub-sections continue to hold
in the presence of the η-rules.

Theorem 9. The translation [[−]] from terms of System IF to those of System F
maps (η2) to (η2) and maps (η1′) to a sequence of reductions using (η2) followed
by (η1). Further, for each term t in System IFη, its translation [[t]] reduces to t
in System IFη.

Proof. The translation of the redex of (η1′) is

λxσ .(Λ(Δ\σ).[[r]] Δ x) (Δ\σ)

which reduces by (η2) to λx.[[r]] Δ x and then to [[r]] Δ by (η1). The translation
of (η2) is (η2).

The proof that [[t]] −→ t is by induction on the structure of t. The only non-
trivial case is an application r u. To its translation apply the ξ-rules to get a
term of the form Λ(Δ\σ).[[r]] [[u]] (Δ\σ) which reduces by (η2) to [[r]] [[u]]. In
turn, this reduces to r u by induction.

Scrap Your Type Applications 17

Theorem 10. Reduction in System IFη is strongly normalising.

Proof. The proof is as for System IF, but now relying on the translation to
System Fη.

Theorem 11. Reduction in System IFη is Church-Rosser.

Proof. It suffices to check the new critical pairs that arise from interaction with
the η-rules. The critical pair involving (β2) and (η2) is resolved as in F. The other
critical pairs are of (η1′) with (β1), (ξ1), (xi2), (μ1) and (μ2). Let us consider
them in turn, in relation to the rule (η1′).

If r is λx.s then Δ is empty and λx.(λx.s) x reduces by (η1′) and (β1) to
λx.s.

If r is t a for some t : ∀a.∀Δ.σ → φ then λx.t a x (Δ\σ) reduces to t a Δ
by (η1′). The result of applying either (ξ1) or (ξ2) to the original term can be
further reduced by (η1′) to t a Δ. More generally, if r is some t ψ then the
applications of (η1′) must have the substitution of ψ for a applied to them.

If r is Λa.s then (η1′) reduces this to (Λa.s) a (Δ\σ). This in turn reduces to
s (Δ\σ). If a ∈ FTV(σ)\Δ then this is also the result of applying first (μ1) and
then (η1′). If a �∈ FTV(σ)\Δ then this is also the result of applying first (μ2)
and then (β2) and (η1′).

4 Practical Implications

Apart from its interest as a calculus in its own right, we were interested in ap-
plying System IF in a real compiler. We therefore modified the Glasgow Haskell
Compiler (GHC), a state-of-the-art compiler for Haskell, to use System IF as its
intermediate language. This process turned out (as hoped) to be largely straight-
forward: the changes were highly localised, and only a few hundred lines of code
in a 100,000-line compiler had to be modified in a non-trivial way.

GHC already uses a mild extension of System F as its intermediate language:
at the type level it admits generalised algebraic data types (GADTs) and higher-
kinded type variables; while in terms it allows recursive let bindings, data
constructors (and applications thereof), and case expressions to decompose con-
structor applications. We extended System IF in an exactly analogous way, a
process which presented no difficulties, although we do not formalise it here.

While GHC maintains full type information throughout its optimisation
phases, it performs type erasure just before code generation, so types have no influ-
ence at run-time. The effect of using System IF instead of F is therefore confined
to compile time.

4.1 Variable Bindings and Occurrences

In practical terms, the reader may wonder about the space implications of at-
taching a type to every variable occurrence, rather than attaching the variable’s
type only to its binding (Section 2.1). In fact, GHC already does exactly this,

18 B. Jay and S. Peyton Jones

reducing the additional space costs (compared to annotating only the binding
sites) to zero by sharing. The data type that GHC uses to represent terms looks
like this:

data CoreExpr = Var Id | Lam Id CoreExpr | ...
data Id = MkId Name Type

An Id is a pair of a Name (roughly, a string), and its Type, so it represents
the formal notation xσ. An Id is used both at the binding site of the variable
(constructor Lam) and at its occurrences (Var). GHC is careful to ensure that
every occurrence shares the same Id node that is used at the binding site; in
effect, all the occurrences point to the binder. This invariant is maintained by
optimisation passes, and by operations such as substitution.

As a consequence, like System F itself, every term in GHC’s intermediate
language has a unique type, independent of its context (Section 2.2). That is,
we can (and GHC does) provide a function exprType that extracts the type of
any term:

exprType :: CoreExpr -> Type

Notice that exprType does not require an environment; it can synthesise the
type of a term by inspecting the term alone, in a single, bottom-up traversal
of the term. (Here, we assume that the term is well-typed; exprType is not a
type-checking algorithm.) This function exprType makes concrete the idea that
every term has a unique type (Section 2.1), and it is extremely valuable inside
GHC, which is why maintaining the unique-type property was a key requirement
of our design.

4.2 Optimisation and Transformation

One might wonder whether, in changing from System F to IF, we had to rewrite
every transformation or optimisation in the compiler. Happily, we did not. Al-
most all transformations now rewrite IF to IF without change, and certainly
without introducing and re-eliminating the omitted type applications.

The non-trivial changes were as follows:

– The new typing rule (ifapp) amounts to extending the exprType function,
and Core Lint. The latter is a type checker for GHC’s intermediate language,
used only as a consistency check, to ensure that the optimised program is still
well typed. If the optimisations are correct, the check will always succeed,
but it is extremely effective at finding bugs in optimisations.
It turned out to be worth implementing the type-matching function (Sec-
tion 3.1) twice. For Core Lint the full matching algorithm is required, but
exprType operates under the assumption that the term is well typed. In the
latter case several short-cuts are available: there is no need to check that
matching binds a variable consistently at all its occurrences, kind-checks
(usually necessary in GHC’s higher-kinded setting) can be omitted, and
matching can stop as soon as all the quantified variables have been bound.

Scrap Your Type Applications 19

– The new reduction rules (ξ1), (ξ2), (μ1), (μ2), (η1′) all appear as new optimis-
ing transformations. GHC’s optimiser goes to considerable lengths to ensure
that transformations “cascade” well, so that many transformations can be
appplied successively in a single, efficient pass over the program. Adding the
new rules while retaining this property was trickier than we expected.

– Eta-reduction, one of GHC’s existing transformations, becomes somewhat
more complicated (Section 3.6).

– There is one place that that we do reconstruct the omitted type arguments,
namely when simplifying a case that scrutinises a constructor application,
where the constructor captures existential variables. For example, consider
the following data type:

data T where { MkT :: forall a. a -> (a->Int) -> T }

Now suppose we want to simplify the term

case (MkT ’c’ ord) of
MkT a (x:a) (f:a->Int) -> ...

(Here ord has type Char->Int.) Then we must figure out that the existential
type variable a, bound by the pattern, should be instantiated to Char, which
in turn means that we must re-discover the omitted type argument of the
MkT constructor.

Module GHC Core System IF Reduction(%)
Size Type Size Type Size Type

apps apps apps

Data.Tuple 169,641 10,274 131,349 0 23% 100%
Data.Generics.Instances 36,038 1,774 32,488 578 10% 67%

Data.Array.Base 32,068 2,498 26,468 397 17% 84%
Data.Sequence 29,468 2,124 24,532 354 17% 83%

Data.Map 21,217 1,566 17,958 334 15% 79%
Data.Array.Diff 16,286 895 14,067 73 14% 92%

GHC.Float 16,100 414 15,353 50 5% 88%
Data.IntMap 14,614 1,025 12,363 209 15% 80%
System.Time 14,499 914 12,934 338 11% 63%

GHC.Read 14,210 959 11,110 141 22% 85%
GHC.Real 14,094 355 13,400 54 5% 85%

GHC.IOBase 13,698 711 11,494 212 16% 70%
GHC.Handle 13,504 902 11,938 192 12% 79%

GHC.Arr 13,455 837 11,490 49 15% 94%
Data.ByteString 12,732 1,104 10,632 230 16% 79%
Foreign.C.Types 12,633 359 11,987 48 5% 87%

. . . and 114 other modules . . .

TOTAL 792,295 46,735 676,615 7,257 15% 84%
TOTAL (omitting Data.Tuple) 622,654 36,461 545,266 7,257 12% 80%

Fig. 4. Effect of using System IF

20 B. Jay and S. Peyton Jones

4.3 Code Size

We compiled all 130 modules of the base library packages, consisting of some
110,000 lines of code. Each module was compiled to GHC’s Core language, which
is a variant of System F. We wrote a special pass to eliminate redundant type
applications by applying rules (ξ1) and (ξ2) exhaustively, and measured the
size of the program before and after this transformation. This “size” counts the
number of nodes in the syntax tree of the program including the sizes of types,
except the types at variable occurrences since they are always shared. Apart
from the sharing of a variable’s binding and its occurrences we do not assume
any other sharing of types (see Section 5.2). We also counted the number of type
applications before and after the transformation.

The results are shown in Figure 4, for the largest 16 modules, although the
total is taken over all 130 modules. The total size of all these modules taken
together was reduced by around 15%, eliminating nearly 84% of all type appli-
cations. These figures are slightly skewed by one module, Data.Tuple, which
consists entirely of code to manipulate tuples of various sizes, and which is both
very large and very uncharacteristic (all of its type applications are removed).
Hence, the table also gives the totals excluding that module; the figures are still
very promising, with 80% of type applications removed.

Manual inspection shows that the remaining type applications consist almost
exclusively of

– Data constructors where the arguments do not fully specify the result type
(such as Nil).

– Calls to Haskell’s error function, whose type is

error : ∀a.String→a

There are a handful of other places where type applications are retained. For
example, given map and reverse with their usual types, and xs : List Int, then
in the term

(map (reverse Int) xs)

the type application (reverse Int) cannot be eliminated by our rules. In prac-
tice, however, data constructors and error calls dominate, and that is fair enough,
because the type applications really are necessary if every term is to have unique,
synthesisable type.

4.4 Compilation Time

The proof of the pudding is in the eating. System IF has smaller terms, but its
reduction rules are more complicated, and computing the type of a term involves
matching prior to instantiation. Furthermore, although fewer types appear ex-
plicitly in terms, some of these omitted types might in practice be constructed
on-the-fly during compilation, so it is not clear whether the space saving will
translate into a time saving.

Scrap Your Type Applications 21

We hoped to see a consistent improvement in the execution time of the com-
piler, but the results so far are disappointing. We measured the total number of
bytes allocated by the compiler (a repeatable proxy for compiler run-time) when
compiling the same 130 modules as Section 4.3. Overall, allocation decreased by
a mere 0.1%. The largest reduction was 4%, and the largest increase was 12%,
but 120 of the 130 modules showed a change of less than 1%. Presumably, the
reduction in work that arises from smaller types is balanced by the additional
overheads of System IF.

On this evidence, the additional complexity introduced by the new reduction
rules does not pay its way. Nevertheless, these are matters that are dominated
by nitty-gritty representation details, and the balance might well be different in
another compiler.

5 Related Work

5.1 Type Inference

In source languages with type inference, such as ML or Haskell, programmers
never write type applications — instead, the type inference system infers them.
The classic example of such a system is the Hindley-Milner type system (Milner
1978), which has been hugely influential; but there are many other type inference
systems that allow a richer class of programs than Hindley-Milner. For exam-
ple, Pierce and Turner’s Local Type Inference combines type information from
arguments to choose the type instantiation for a function, in the context of a
language with subtyping (Pierce and Turner 1998). Their paper also introduced
the idea of bidirectional type inference, which Peyton Jones et al subsequently
applied in the context of Haskell to improve type inference for higher-rank types
(Peyton Jones et al. 2007).

Stretching the envelope even further, Le Botlan and Rémy’s MLF language
supports impredicative polymorphism, in which a polymorphic function can be
called at a polytype (Le Botlan and Rémy 2003). Pfenning goes further still,
describing the problem of partial type inference for full Fω, including lambda
at the type level (Pfenning 1988). Type abstractions (Λa.t) are retained, but
type annotations may be omitted from term abstractions (thus λx.t rather than
λxσ.t), and type applications may be abbreviated to mere placeholders (thus
t [] instead of t σ). However, type inference in this system requires higher-order
unification, and it lacks the unique-type property. Even more general use of such
placeholders can be found in dependent type systems, which may be used to
compress the size of proof-carrying code (Necula and Lee 1998) or to support
dependently-typed programming languages (Norell 2007).

Such inference engines are invariably designed for source languages, and are
less well suited for use as a calculus, or as a compiler intermediate language.

– Most type inference systems are less expressive than System F. For example,
in Hindley-Milner, function arguments always have a monomorphic type; in
many other systems types must be of limited rank, and the system is usually
predicative.

22 B. Jay and S. Peyton Jones

This lack of expressiveness matters, because the compiler may use a richer
type system internally than is directly exposed to the programmer. Exam-
ples include closure conversion (Minamide et al. 1996), and the dictionary-
passing translation for type classes (Wadler and Blott 1989).

– Type inference can be regarded as a constraint-solving problem, where the
constraints are gathered non-locally from the program text, and the solver
may be somewhat costly to run. In contrast, in a compiler intermediate
language one needs to answer the question “what is the type of this sub-
term?”, and to do so cheaply, and using locally-available information. For
this purpose, the unique-type property of Section 2.2 is extremely helpful,
but it is rare indeed for a system based on type inference to possess it.

– The restrictions that allow type inference are never fully robust to pro-
gram transformation, and (in every case except the least expressive, Hindley-
Milner) require ad hoc type annotations. For example, even if t is well-typed
in a particular environment, (λf.t) f may not be, because, say, f ’s type may
not be a monotype. Compilers perform inlining and abstraction all the time.
Another way to make the same point is this: type inference systems usually
treat a fixed source program text; they are never thought of as a calculus
equipped with a type-preserving reduction semantics.

In short, type inference systems focus on programmers, whereas our focus is on
compiler writers and logicians. Nevertheless, to the extent that one might regard
System F as a language for programmers, we believe that IF should serve the
same role as well or better.

5.2 Reducing the Cost of Types

A handful of papers address the question of the overheads of type information
in type-preserving compilers. The most popular approach is to exploit common
sub-structure by sharing common types or parts of types. These techniques come
in two varieties: ones that implicitly share the representation of terms, and ones
that express sharing explicitly in the syntax of terms.

For example, Petersen (Petersen 2005, Section 9.6) and Murphy (Murphy 2002)
describe several approaches to type compression in the TILT compiler. Most of
these are representation techniques, such as hash-consing and de-Bruijn represen-
tation, that can be used to implement type operations more efficiently. Shao et al
devote a whole paper to the same subject, in the context of their FLINT compiler
(Shao et al. 1998). Their techniques are exclusively of the implementation variety:
hash-consing, memoisation, and advanced lambda encoding.

Working at the representation level is tricky, and seems to be sensitive to
the context. For example Murphy reports a slow-down from using hash-consing,
whereas Shao et al report a significant speed-up, and Petersen found that with-
out hash-consing type-checking even a small program exhausted the memory
on a 1Gbyte machine. (These differences are almost certainly due to the other
techniques deployed at the same time, as we mention shortly.) Another reason
that representation-level sharing is tricky is that it is not enough for two types to

Scrap Your Type Applications 23

share memory; the sharing must also be observable. Consider, say, substitution.
Unless sharing is observable, the substitution will happen once for each identical
copy, and the results will be laboriously re-hash-consed together. Memory may
be saved, but time is not.

A complementary approach, and the one that we discuss in this paper, is to
change the intermediate language itself to represent programs more efficiently.
For example, TILT has a lettype construct which provides for explicit sharing
in type expressions. For example, using lettype we could write the nested Pair
example from Section 2.3 like this:

lettypea1 = σ1; . . . ; a5 = σ5

b1 = (a1, a2)
b2 = (a3, a4)
b3 = (b2, a5)

in Pairb1 b3
(Pair a1 a2 e1 e2)
(Pair b2 a5 (Pair a3 a4 e3 e4) e5).

Such an approach carries its own costs, notably that type equivalence is modulo
the environment of lettype bindings, but since TILT has a very rich notion of
type equivalence anyway including full β-reduction in types, the extra pain is
minimal. The gain appears to be substantial: FLINT does not have lettype,
and Murphy suggests that this may be the reason that FLINT gets a bigger
relative gain from hash-consing — lettype has already embodied that gain in
TILT by construction.

Another example of changing the intermediate language to reduce type informa-
tion is Chilpala et al ’s work on strict bidirectional type checking (Chilpala et al.
2005). Their main goal is to drop the type annotation from a binder, for exam-
ple writing λx.t instead of λxσ.t. It is possible to do this when the occurrence(s)
of x completely fix its type. The paper only describes a simply-typed language,
whereas our focus is exclusively on the type applications that arise in a polymor-
phic language. Furthermore, our approach relies on every term having a unique
type, whereas theirs relies on inferring the unique types of the free variables of a
term, starting from the type of the term itself. It remains to be seen whether the
two can be combined, or which is more fruitful in practice.

Our focus is exclusively on reducing the cost of compile-time type manip-
ulation. Other related work focuses on the cost of run-time type manipula-
tion, for systems that (unlike GHC) do run-time type passing (Tolmach 1994;
Saha and Shao 1998).

5.3 Pattern Calculus

The approach to type quantification developed in this paper was discovered while
trying to type pattern-matching functions (Jay and Kesner 2006) in which each
case may have a different (but compatible) polymorphic type (Jay 2006). For
example, consider a function toString : ∀a.a→String which is to have special

24 B. Jay and S. Peyton Jones

cases for integers, floats, pairs, lists, etc. A natural approach is to define special
cases for each type setting, as follows:

toStringInt : Int→String
toStringFloat : Float→String
toStringPair : ∀b, c.(b, c)→String
toStringList : ∀a.List a→String

and then try to combine them into a single function. Then the application
toString (List a) could reduce to toStringList a and toString (b, c) could
reduce to toStringPair b c etc. in a form of typecase. However, this makes
types central to reduction so that they cannot be erased. By making type appli-
cations implicit, it is possible to let the choice of special case be determined by
the structure of the function argument instead of the type, as in

toString 3 −→ toStringInt 3
toString 4.4 −→ toStringFloat 4.4

toString (Pair x y) −→ toStringPair (Pair x y)
toString Nil −→ toStringList Nil.

The proper development of this approach is beyond the scope of this paper; the
point here is that implicit type quantification is the natural underpinning for
this approach. Note, too, that there are natural parallels with object-orientation,
where the object determines how to specialise the methods it invokes.

6 Further Work

The focus of this paper is on removing redundant type applications but type ap-
plications are not the only source of redundant type information. For example,
as (Chilpala et al. 2005) point out, non-recursive let expressions are both com-
mon (especially in A-normalised code) and highly redundant; in the expression
(let xσ=r in t) the type annotation on x is redundant since it can be synthesised
from r. A similar point can be made for case expressions; for example, consider
the expression

λxσ. case x of (pφ, qψ)-> t

Here, the type annotations on p and q are redundant, since they can be synthe-
sised from the type of x.

One approach is to follow (Chilpala et al. 2005) by dropping these readily-
synthesisable types at the language level. But nothing is gained from dropping
type annotations on binders unless we also drop the annotations on occurrences,
and that in turn loses the highly-desirable property that every term has a synthe-
sisable type. An alternative, and perhaps more promising, approach is to work
at the representation level, by regarding the type on such a binder simply as
a cached or memoised call to exprType. In this way, if the type of the right-
hand side of a non-recursive let binding was very large, the chances are that

Scrap Your Type Applications 25

much sub-structure of that large type would be shared with variables free in that
term. We have no data to back up these speculations, but it would be interesting
to try.

So far we have assumed that the back end of the compiler performs type
erasure, so that there is no run-time type passing. However, suppose one wants
run-time type passing, to support typecase or reflection. It is immediately ob-
vious how to compile System F to machine code, and still support run-time type
passing — just make all type arguments into value arguments — but matters
are not so obvious for System IF. This is an area for future work.

System IF contains a mixture of implicit and explicit type applications. This
is extremely useful for backwards compatibility with System F but the resulting
calculus is hardly minimal. Hence, there are a number of other possibilities for
handling type applications. In particular, one can insist that all such are implicit,
in a calculus of quantified function types (Jay 2006) whose types are given by

σ ::= a | [Δ]σ→σ

where the well-formed quantified function types [Δ]σ → φ play the same role
as the type ∀Δ.σ → φ in System F but come with a guarantee that all type
applications can be made implicit.

7 Conclusions

The formal beauty of System F together with the practical success of the Hindley-
Milner type system have combined to set a high standard for anyone attempting to
improve in either direction. For studying the concept of parametric polymorphism
System F appears ideal, despite its redundancies. For avoiding types, the Hindley-
Milner system is spectacularly successful. The key observation of this paper is that
one can eliminate much of the redundant type information in System F without
sacrificing any expressive power or basic properties. The price of this approach is
the need to add some redundancy to the reduction rules, so that there are several
ways to reduce a type application.

System IF should be of interest as a calculus in its own right. On the practical
side, we hoped that System IF would allow us to reduce the size of program
terms in a type-preserving compiler, and thereby reduce compilation time. In the
particular context of the Glasgow Haskell Compiler we successfully demonstrated
the former, but not the latter. The balance of costs and benefits might, however,
be different in other settings.

As indicated in the related work, there is a rich design space of highly-
expressive calculi in which some type information is implicit or abbreviated.
Among these, System IF appears to be the only one that shares System F’s
desirable unique-type property. Whether it is possible to elide yet more type
information without losing this property remains an open question.

26 B. Jay and S. Peyton Jones

Acknowledgements

We thank Bob Harper, Jeremy Gibbons, Thomas Given-Wilson, Shin-Cheng
Mu, Tony Nguyen, Leaf Petersen, Didier Rémy, and the anonymous referees of
an earlier submission, for their helpful feedback on drafts of the paper.

References

Chilpala, A., Petersen, L., Harper, R.: Strict bidirectional type checking. In: ACM SIG-
PLAN International Workshop on Types in Language Design and Implementation
(TLDI 2005), Long Beach. ACM Press, New York (2005)

Coq. Coq (2007), http://pauillac.inria.fr/coq/

Ghani, N.: Eta-expansions in dependent type theory – the calculus of constructions.
In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 164–180.
Springer, Heidelberg (1997)

Girard, J.-Y.: The System F of variable types: fifteen years later. In: Huet, G. (ed.)
Logical Foundations of Functional Programming. Addison-Wesley, Reading (1990)

Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge (1989)

Harper, R., Morrisett, G.: Compiling polymorphism using intensional type analysis.
In: Conference Record of POPL 1995: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Francisco, California, pp. 130–141
(January 1995)

Hinze, R., Jones, S.P.: Derivable type classes. In: Hutton, G. (ed.) Proceedings of
the 2000 Haskell Workshop, Montreal (September 2000); Nottingham University
Department of Computer Science Technical Report NOTTCS-TR-00-1

Jay, B., Kesner, D.: Pure Pattern Calculus. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS
2006. LNCS, vol. 3924, pp. 100–114. Springer, Heidelberg (2006),
www-staff.it.uts.edu.au/∼cbj/Publications/purepatterns.pdf

Jay, C.B.: Typing first-class patterns. In: Higher-Order Rewriting, electronic proceed-
ings (2006), http://hor.pps.jussieu.fr/06/proc/jay1.pdf

Jay, C.B., Ghani, N.: The virtues of eta-expansion. J. of Functional Programming 5(2),
135–154 (1995); Also appeared as tech. report ECS-LFCS-92-243

Le Botlan, D., Rémy, D.: MLF: raising ML to the power of System F. In: ACM SIG-
PLAN International Conference on Functional Programming (ICFP 2003), Uppsala,
Sweden, pp. 27–38. ACM Press, New York (2003)

Milner, R.: A theory of type polymorphism in programming. JCSS 13(3) (December
1978)

Minamide, Y., Morrisett, G., Harper, R.: Typed closure conversion. In: 23rd ACM
Symposium on Principles of Programming Languages (POPL 1996), St Petersburg
Beach, Florida, pp. 271–283. ACM Press, New York (1996)

Murphy, T.: The wizard of TILT: efficent, convenient, and abstract type representa-
tions. Technical Report CMU-CS-02-120, Carnegie Mellon University (2002),
http://reports-archive.adm.cs.cmu.edu/anon/2002/CMU-CS-02-120.pdf

Necula, G.C., Lee, P.: Efficient representation and validation of proofs. In: Logic in
Computer Science, pp. 93–104 (1998),
citeseer.ist.psu.edu/article/necula98efficient.html

http://pauillac.inria.fr/coq/
www-staff.it.uts.edu.au/~cbj/Publications/purepatterns.pdf
http://hor.pps.jussieu.fr/06/proc/jay1.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2002/CMU-CS-02-120.pdf
citeseer.ist.psu.edu/article/necula98efficient.html

Scrap Your Type Applications 27

Norell, U.: Towards a practical programming language based on dependent type theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University
of Technology, Göteborg, Sweden (2007),
http://www.cs.chalmers.se/∼ulfn/papers/thesis.pdf

Petersen, L.: Certifying Compilation for Standard ML in a Type Analysis Framework.
PhD thesis, Carnegie Mellon University (2005),
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-135.pdf

Jones, S.P.: Haskell 98 language and libraries: the revised report. Cambridge University
Press, Cambridge (2003)

Jones, S.P., Hall, C., Hammond, K., Partain, W., Wadler, P.: The Glasgow Haskell
Compiler: a technical overview. In: Proceedings of Joint Framework for Information
Technology Technical Conference, Keele, DTI/SERC, pp. 249–257 (March 1993),
http://research.microsoft.com/∼simonpj/Papers/grasp-jfit.ps.Z

Jones, S.P., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for
arbitrary-rank types. Journal of Functional Programming 17, 1–82 (2007)

Pfenning, F.: Partial polymorphic type inference and higher-order unification. In: LFP
1988: Proceedings of the 1988 ACM conference on LISP and functional programming,
pp. 153–163. ACM, New York (1988)

Pierce, B.C., Turner, D.N.: Local type inference. In: 25th ACM Symposium on Princi-
ples of Programming Languages (POPL 1998), San Diego, pp. 252–265. ACM, New
York (1998)

Reynolds, J.: Towards a theory of type structure. In: Robinet, B. (ed.) Programming
Symposium 1974. LNCS, vol. 19. Springer, Heidelberg (1974)

Saha, B., Shao, Z.: Optimal type lifting. In: Types in Compilation, pp. 156–177 (1998),
http://citeseer.ist.psu.edu/article/saha98optimal.html

Shao, Z.: An overview of the FLINT/ML compiler. In: Proc. 1997 ACM SIGPLAN
Workshop on Types in Compilation (TIC 1997), Amsterdam, The Netherlands (June
1997)

Shao, Z., League, C., Monnier, S.: Implementing typed intermediate languages. In:
ACM SIGPLAN International Conference on Functional Programming (ICFP 1998),
ACM SIGPLAN Notices, Baltimore, vol. 34(1), pp. 106–119. ACM Press, New York
(1998)

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., Lee, P.: TIL: A type-
directed optimizing compiler for ML. In: ACM Conference on Programming Lan-
guages Design and Implementation (PLDI 1996), pp. 181–192. ACM, Philadelphia
(1996)

Tolmach, A.: Tag-free garbage collection using explicit type parameters. In: ACM Sym-
posium on Lisp and Functional Programming, pp. 1–11. ACM, Orlando (1994)

Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proc 16th
ACM Symposium on Principles of Programming Languages, Austin, Texas. ACM
Press, New York (1989)

Wells, J.B.: Typability and type checking in the second-order λ-calculus are equiva-
lent and undecidable. In: Proceedings, Ninth Annual IEEE Symposium on Logic in
Computer Science. IEEE Computer Society Press, Los Alamitos (1994)

http://www.cs.chalmers.se/~ulfn/papers/thesis.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2005/CMU-CS-05-135.pdf
http://research.microsoft.com/~simonpj/Papers/grasp-jfit.ps.Z
http://citeseer.ist.psu.edu/article/saha98optimal.html

Programming with Effects in Coq�

Greg Morrisett

School of Engineering and Applied Sciences
Harvard University

greg@eecs.harvard.edu

Abstract. Next-generation programming languages will move beyond
simple type systems to include support for formal specifications and
mechanically- checked proofs of adherence to those requirements. Al-
ready, in the imperative world, languages such as ESC/Java and Spec#
integrate Hoare- style pre- and post-conditions into the underlying type
system. However, we argue that neither the program logics used in these
systems, nor the decision procedures used to discharge verification condi-
tions, are sufficient for establishing deep properties of modular software.

In contrast, the Coq proof development environment provides a pow-
erful program logic (CiC) coupled with an extensible, interactive envi-
ronment that can combine deep insights from humans with automation
to discharge deep proof obligations. Unfortunately, the language at the
core of Coq is limited to purely functional programming.

In the Ynot project, we are attempting to address this problem by
extending Coq with a new type constructor (the Hoare-triple type),
and a few carefully chosen axioms that can be used to build imperative
programs in a style quite close to Haskell. I will report on our progress
thus far, both in using Ynot to construct modular, extensible libraries
for imperative programs, as well as our new compiler infrastructure for
generating efficient code from Ynot programs.

� Invited Lecture.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, p. 28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verifying a Semantic βη-Conversion Test for

Martin-Löf Type Theory

Andreas Abel1, Thierry Coquand2, and Peter Dybjer2,�

1 Department of Computer Science, Ludwig-Maximilians-University, Munich
abel@tcs.ifi.lmu.de

2 Department of Computer Science, Chalmers University of Technology
{coquand,peterd}@cs.chalmers.se

Abstract. Type-checking algorithms for dependent type theories often
rely on the interpretation of terms in some semantic domain of values
when checking equalities. Here we analyze a version of Coquand’s algo-
rithm for checking the βη-equality of such semantic values in a theory
with a predicative universe hierarchy and large elimination rules. Al-
though this algorithm does not rely on normalization by evaluation ex-
plicitly, we show that similar ideas can be employed for its verification.
In particular, our proof uses the new notions of contextual reification and
strong semantic equality.

The algorithm is part of a bi-directional type checking algorithm which
checks whether a normal term has a certain semantic type, a technique
used in the proof assistants Agda and Epigram. We work with an abstract
notion of semantic domain in order to accommodate a variety of possible
implementation techniques, such as normal forms, weak head normal
forms, closures, and compiled code. Our aim is to get closer than previous
work to verifying the type-checking algorithms which are actually used
in practice.

1 Introduction

Proof assistants based on dependent type theory have now been around for
about 25 years. The most prominent representative, Coq [INR07], has become
a mature system. It can now be used for larger scale program development
and verification, as Leroy’s ongoing implementation of a verified compiler shows
[Ler06]. Functional programmers have also become more and more interested in
using dependent types to ensure program and data structure invariants. New
functional languages with dependent types such as Agda 2 [Nor07] and Epigram
2 [CAM07] enjoy increasing popularity.

Although many questions about properties of dependent type theories have
been settled in the 1990s, some problems are still waiting for a satisfactory
solution. One example is the treatment of equality in implementations of proof
� Research partially supported by the EU coordination action TYPES (510996) and

the project TLCA of Vetenskapsr̊adet.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 29–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 A. Abel, T. Coquand, and P. Dybjer

assistants. When we check that a dependently typed program is well-typed,
we may need to test whether two types are definitionally equal (convertible).
Although it is of course impossible for a system to recognize all semantically
equal types, a user will feel more comfortable if it can recognize as many as
possible. Whenever it fails the user has to resort to proving manually that the
types are equal. This has the additional drawback of introducing proof-objects
for these equalities. In recent years there has therefore been a move from β-
equality (computational equality) to the stronger βη-equality (computational
and extensional equality).

Recently, algorithms for testing βη-equality have been formulated and verified
by the authors both for an untyped notion of conversion [AAD07] and for typed
equality judgements [ACD07]. These algorithms use the technique of normaliza-
tion by evaluation (NbE). However, the algorithms used by proof assistants such
as Agda and Epigram [CAM07], use Coquand’s βη-conversion test for semantic
”values”, and do not employ the NbE-technique of the above-mentioned papers.
Moreover, there is a gap between algorithms on paper and their actual imple-
mentation. Proofs on paper are often informal about the treatment of variable
names, and they tend to represent values as pieces of abstract syntax. Besides
Pollack’s [Pol94], Coquand’s algorithm [Coq96] is a notable exception: values are
represented as closures, and the algorithm explicitly deals with α-equivalence by
replacing variables by numbers (de Bruijn levels).

We here continue the work of the second author and verify an implementation
of the βη-conversion test close to the one used in practice. In particular:

– Equality is checked incrementally, and not by full normalization followed by
a test for syntactical identity.

– The representation of values is abstract. We only require that they form a
syntactical applicative structure. In this way, several possible implementa-
tions, such as normal forms, closures, and abstract machine code, are covered
by our verification.

– The verification approach is extensible: Although we only spell out the proofs
for a core of type theory with predicative universes, our development extends
to richer languages. We can for example include a unit type, Σ types, proof
irrelevance, and inductive types with large eliminations.

Overview. In Sec. 2 we present an abstract type and equality checking algorithm,
which only assumes that the domain of values forms a syntactical applicative
structure. In Sec. 3 inference rules for typing and type equality are given for a
version of Martin-Löf type theory with explicit substitutions. An outline of the
verification is given in Sec. 4 together with a definition of contextual reification,
our main tool for verification. Using contextual reification, an alternative equal-
ity test can be formulated, which is shown complete in Sec. 5, by construction of
a Kripke model, and proven sound in Sec. 6 via a Kripke logical relation. Com-
pleteness of the original algorithm then follows easily in Sec. 7. For soundness,

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 31

we have to introduce a Kripke logical relation and the concept of strong semantic
equality in Sec. 8. In Sec. 9 we discuss the problem of termination of the equality
algorithm, which remains open. More proof details can be found in the accom-
panying technical report [ACD08].

2 Semantic Type and Equality Checking

We consider dependently typed programs p to be given as lists of the form

x0 : V0 = v0

...
xn−1 : Vn−1 = vn−1

where xi is a identifier, Vi its type, and vi the definition of xi for i < n.
(Typically xi will be a function identifier and vi the function definition.) The
identifiers are not defined simultaneously (which would correspond to mutual
recursion), but one-after-another. Hence, Vi and vi may only refer to previ-
ously defined identifiers xj for j < i. A program is type correct if each Vi
is a well-formed type and each vi is a term of type Vi. To establish this, the
type and definition of the previously defined identifiers may be used. It is rea-
sonable to assume and easy to check that the global identifiers xi are all dis-
tinct; global declarations should not be shadowed. However, local shadowing
is allowed; the identifiers xi may be reused in some of the vj or Vj . Our type
checking algorithm handles shadowing correctly without any informal use of
α-conversion.

Dependent types need to be evaluated during type checking. Thus it is com-
mon to store them in evaluated form. Without going into further details now,
let vρ (V ρ) denote the evaluation of term v (type V) in environment ρ. The
environment maps already checked identifiers to their values. A typing context
Δ maps already checked identifiers to their types (in evaluated form). Checking
a program starts in an empty environment ρ0 and an empty typing context Δ0.
For i = 0, . . . , n− 1, we execute the following steps:

1. Check that Vi is a well-formed type in the current context Δi.
2. Evaluate Vi in the current environment: Xi = Viρi.
3. Check that vi is of type Xi in the current context. This test is written

Δi � vi δid ⇑ Xi, where δid is the identity map on names.
4. Evaluate vi and extend the current environment by binding xi to the result:

ρi+1 = (ρi, xi = viρi).
5. Extend the current context: Δi+1 = Δ,xi :Xi.

The details of type checking depend on the language. We here show how to
verify an algorithm for a core language with dependent function types and pred-
icative universes. In the accompanying technical report [ACD08] we consider also

32 A. Abel, T. Coquand, and P. Dybjer

natural numbers with primitive recursion. However, the algorithms and proofs
in this work directly extend to dependent tuples (Σ and unit type).

2.1 Syntax

Expressions r, s, t are formed from variables x and constants c by application r s
and function abstraction λxt. The types Vi and terms vi of a program p ≡ (xi :
Vi = vi)i must be in normal form.

Var � x, y, z ::= . . . , x1, x2, . . . variables
Const � c ::= Fun | Seti constants (i ∈ N)
Exp � r, s, t ::= c | x | λxt | r s expressions
Nf � v, w, V,W ::= u | λxv | FunV λxW | Seti β-normal expressions
Ne � u ::= x | u v neutral expressions

The set Var of variable identifiers contains, among others, the special variables
x1, x2, . . . which are called de Bruijn levels. To aid the reader, we use the let-
ters A,B,C, V,W for expressions which are to be understood as types and
r, s, t, u, v, w for terms. Dependent function types, usually written Πx : A.B,
are written FunAλxB. When B does not depend on x we have a non-dependent
function type and write A → B.

An expression like FunAλxB is parsed as (FunA) (λxB); application is left-
associative. To save on parentheses, we introduce the notation λx. t where the
dot opens a parenthesis which closes as far to the right as syntactically possible.
For instance λx. r s is short for λx (r s), whereas λxr s means (λxr) s.

The hello world program of dependent types, the polymorphic identity, be-
comes in our notation

id : Fun Set0 λA.A → A = λAλa a.

The predicative universes Seti are types of types. A well-formed type V : Seti
lives in universe i and above. A universe Seti lives in higher universes Setj , j > i.

2.2 Values

In implementations of dependently typed languages, different representations
of values have been chosen: Twelf [PS99] uses de Bruijn terms with explicit
substitutions; Agda 2 [Nor07] de Bruijn terms in normal form; and Epigram
2 [CAM07] higher-order abstract syntax. Furthermore, the second author has
suggested to use closures [Coq96]. In this article, we abstract over several possible
representations, by considering a syntactical applicative structure with atoms.

Applicative structure with atoms. This is an applicative structure (D, ·) which
includes all variables and constants as atoms (Var ∪ Const ⊆ D). Elements of D
are denoted by d, e, f,X, Y, Z,E, F and called values or objects. Neutral values

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 33

are given inductively by e, E ::= x | e · d. Neutral application is injective: If
e · d = e′ · d′, then e = e′ and d = d′. Neutral values are distinct, for instance,
x ·d �= y ·d′. We will sometimes write application as juxtaposition, especially in
neutral and constructed values.

The constants Seti are constructors of arity 0 and Fun is a constructor of
arity 2. Constructors are injective, thus, FunX F = FunX ′ F ′ implies X = X ′

and F = F ′. Constructed values, i. e., of the form cd, are distinguished from
each other and from neutral values. It is decidable whether an object is neutral,
constructed, or neither. If an object is neutral, we can extract the head variable
and the arguments, and similar for constructed objects.

Syntactical applicative structure with atoms. We enrich the applicative structure
with an evaluation operation tρ ∈ D for expressions t ∈ Exp in an environment
ρ : Var ⇀ D. Let ρid denote the identity environment. The following axioms must
hold for evaluation.

eval-c cρ = c
eval-var xρ = ρ(x)
eval-fun-e (r s)ρ = rρ · sρ
app-fun (λxt)ρ · d = t(ρ, x=d)

An applicative structure which satisfies these equations is called a syntactical
applicative structure (D, · ,). Barendregt [Bar84, 5.3.1.] adds a sanity con-
dition that the evaluation of an expression may only depend on the valuations
of its free variables, but we will not require it. All syntactical λ-models [BL84]
[Bar84, 5.3.2.(ii)] are instances of syntactical applicative structures, yet they
must additionally fulfill weak extensionality (ξ).

An instance: closures. There are applicative structures which are neither λ-
models nor combinatory algebras, for example the representation of values by
closures. Values are given by the grammar

D � d ::= [λxt]ρ | e
e ::= c | x | e d

where [λxt]ρ is a closure such that ρ provides a value for each free variable in
λxt. Evaluation does not proceed under binders; it is given by the above axioms
plus:

eval-fun-i (λxt)ρ = [λxt]ρ
app-ne e · d = e d

Closures are a standard tool for building interpreters for λ-calculi; the second au-
thor has used them to implement a type checker [Coq96]. While for the soundness
proof he requires weak extensionality in D, we will not; instead, extensionality
of functions in Type Theory is proven via a Kripke model (Section 5).

34 A. Abel, T. Coquand, and P. Dybjer

2.3 Type Checking

In this section, we present a bidirectional type-checking algorithm [PT98] which
checks a normal term against a type and infers the type of a normal expression.
In the dependently typed setting, where types may contain computations, the
principled approach is to keep types in evaluated form. During the course of
type-checking we will have to evaluate terms (see rule inf-fun-e below). To
avoid non-termination, it is crucial to only evaluate terms which have already
been type checked.

We are ready to present the semantic type checking algorithm, where “se-
mantic” refers to the fact that types are values in D and not type expressions.
As usual we describe it using inference rules. These can be read as the clauses
of logic programs and we specify the modes (input and output). Note that the
modes are not part of the mathematical definition of the inductive judgements—
they only describe how the judgements should be executed. Since the rules are
deterministic, they also describe a functional implementation of type checking,
which can be obtained mechanically from the rules.

In the following definitions δ ranges over special environments, renamings,
which are finite maps from variables to de Bruijn levels. As before, tδ denotes
the evaluation of t in environment δ.

Semantic (typing) contexts are given by the grammar Δ ::= � | Δ,x :X , where
x �∈ dom(Δ). If (x :X) ∈ Δ then Δ(x) = X . We write xΔ for the first de Bruijn
level which is not used in Δ, xΔ+1 for the next one, etc.

Type checking algorithm. We define bidirectional type checking of normal terms
and well-formedness checking of normal types by the following three judgements.
Herein, Δ ∈ SemCxt, u ∈ Ne, v, V ∈ Nf, δ ∈ Var ⇀ Var, X ∈ D and i ∈ N.

Δ � u δ ⇓ X the type of neutral u is inferred as X
Δ � v δ ⇑ X normal v checks against type X
Δ � V δ ⇑ Set� i V is a well-formed type of inferred level i.

In all judgements we maintain the invariant that Δ assigns types to the free
variables in X and Δ ◦ δ to the free variables in u, v, V .

Type inference. Δ � u δ ⇓ X . (Inputs: Δ,u, δ. Output: type X of u or fail.)

inf-var
Δ � x δ ⇓ Δ(xδ)

inf-fun-e
Δ � u δ ⇓ FunXF Δ � v δ ⇑ X

Δ � (u v) δ ⇓ F · vδ

The type of a variable x under renaming δ is just looked up in the context. When
computing the type of an application u v from the type FunXF of the function
part we need to apply F to the evaluated argument part vδ (dependent function
application). At this point, it is crucial that we have type-checked v already,
otherwise the application F · vδ could diverge.

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 35

Type checking. Δ � v δ ⇑ X . (Inputs: Δ, v, δ,X . Output: succeed or fail.)

chk-fun-i
Δ, xΔ :X � v (δ, x=xΔ) ⇑ F · xΔ

Δ � (λxv) δ ⇑ FunXF

chk-set
Δ � V δ ⇑ Set� i

Δ � V δ ⇑ Setj
i ≤ j

chk-inf
Δ � u δ ⇓ X Δ � X = X ′ ⇑ Set� i

Δ � u δ ⇑ X ′

When checking an abstraction λxv against a dependent function type value
FunXF , we rename x to the next free de Bruijn level xΔ and check the abstrac-
tion body v against F · xΔ in the extended context which binds the abstracted
variable to the domain X . To check a neutral term u against X ′, we infer the
type X of u and compare X and X ′. The implementation and verification of this
comparison will occupy our attention for the remainder of this article.

Type well-formedness. Δ � V δ ⇑ Set � i. (Inputs: Δ,V, δ. Output: universe
level i of V or fail.)

chk-inf-f
Δ � V δ ⇓ Seti

Δ � V δ ⇑ Set� i
chk-set-f

Δ � Seti δ ⇑ Set� i + 1

chk-fun-f
Δ � V δ ⇑ Set� i Δ, xΔ :V δ � W (δ, y=xΔ) ⇑ Set� j

Δ � (FunV λyW) δ ⇑ Set� max(i, j)

This judgement checks that V is a well-formed type and additionally infers the
lowest universe level i this type lives in. The type Seti is well-formed and lives
in level i + 1. A neutral type is well-formed if its type is computed as Seti for
some i. A function type is well-formed if both domain and codomain are, and it
lives in any level both components live in.

Comparison to [Coq96]. The second author has presented a similar type checking
algorithm before [Coq96] for unstratified universes Set : Set. The main difference
is that in rule chk-inf he uses an untyped β-conversion check X ∼ X ′ instead
of typed βη-conversion Δ � X = X ′ ⇑ Set � i which we will describe in the
following section. A minor difference is that in Δ � v δ ⇑ X he uses Δ to assign
types to the free variables of term v whereas we use Δ ◦ δ. Consequently, the
free variables of X would live in context Δ ◦ δ−1 in his case, however, this is
problematic in principle since δ may not be invertible, e. g., in case of shadowing.
Since he uses untyped conversion, this is irrelevant, because he never needs to
look at the types of free variables in X . In our case, it is crucial.

2.4 Checking Equality

Checking the type of a neutral expression against X ′ while its type has been
inferred as X requires testing the types X and X ′ for equality. Since types

36 A. Abel, T. Coquand, and P. Dybjer

depend on objects, we will also have to compare objects. The principal method
to check η-equality is a type-directed algorithm. In the following we present such
a type-directed algorithm for comparing values.

Analogously to type checking, we define three inductive judgements. Herein,
d, d′, e, e′, X,X ′ ∈ D, Δ ∈ SemCxt, and i ∈ N.

Δ � e = e′ ⇓ X neutral e and e′ are equal, inferring type X
Δ � d = d′ ⇑ X d and d′ are equal, checked at type X
Δ � X = X ′ ⇑ Set� i X and X ′ are equal types, inferring universe level i

Inference mode. Δ � e = e′ ⇓ X (inputs: Δ,e,e′, output: X or fail). In inference
mode, neutral values e, e′ are checked for equality, and their type is inferred.

aq-var
Δ � x = x ⇓ Δ(x)

aq-fun
Δ � e = e′ ⇓ FunXF Δ � d = d′ ⇑ X

Δ � e d = e′ d′ ⇓ F · d

A variable is only equal to itself; its type is read from the context. A neutral
application e d is only equal to another neutral application e′ d′ and the function
parts must be equal, as well as the argument parts. The type of e must be a
function type FunXF , whose domain X is used to check d and d′ for equality.

The type of the application e d is computed as F ·d. We could equally well have
chosen to return F · d′. That both choices amount to the same follows from the
correctness of the equality check; yet we cannot rely on it before we have estab-
lished correctness. This will be an issue in the correctness proof (Sec. 5); Harper
and Pfenning [HP05] have avoided these complications by using simply-typed
skeletons to direct the equality algorithm. Their method relies on dependency
erasure which works for LF but not for type theories with large eliminations.

Checking mode. Δ � d = d′ ⇑ X (inputs: Δ, d, d′, X , output: succeed or fail).

aq-ne-f
Δ � e = e′ ⇓ E1 Δ � E1 = E2 ⇓ Seti

Δ � e = e′ ⇑ E2

aq-ext
Δ, xΔ :X � f · xΔ = f ′ · xΔ ⇑ F · xΔ

Δ � f = f ′ ⇑ FunXF

aq-ty
Δ � X = X ′ ⇑ Set� i

Δ � X = X ′ ⇑ Setj
i ≤ j

Neutral values e, e′ can only be of neutral type Ei, they are passed to inference
mode. The check Δ � E1 = E2 ⇓ Seti should actually not be necessary, be-
cause we already now that e and e′ are well-typed, and types are only present
to guide the equality algorithm. However, currently we do not know how to show

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 37

soundness without it. Such redundant checks are present in other works as well
[HP05, p. 77].

Two values f, f ′ of functional type are equal if applying them to a fresh
variable xΔ makes them equal. This is extensional equality, provided we can
substitute arbitrary values for the variable. Had we formulated the algorithm on
terms instead of values, this would be a standard substitution theorem. However,
in our case it is more difficult. We deal with this issue in Sec. 8.

Values X,X ′ of type Setj must be types, we check their equality in the type
mode. The inferred universe i must be at most j, otherwise X,X ′ are not well-
typed.

Type mode. Δ � X = X ′ ⇑ Set� i (inputs: Δ,X,X ′, output: i or fail).

aq-ty-ne
Δ � E = E′ ⇓ Seti

Δ � E = E′ ⇑ Set� i

aq-ty-set
Δ � Seti = Seti ⇑ Set� i + 1

aq-ty-fun
Δ � X = X ′ ⇑ Set� i Δ, xΔ :X � F · xΔ = F ′ · xΔ ⇑ Set� j

Δ � FunXF = FunX ′F ′ ⇑ Set� max(i, j)

A neutral type E can only be equal to another neutral type E′, we delegate
the test to the inference mode. A universe Seti is only equal to itself. Function
types FunXF and FunX ′F ′ are equal if their domains and codomains coincide.
For checking the codomains we introduce the fresh variable xΔ of type X into
the context. Again arbitrarily; we could have chosen X ′ instead. This is another
source of asymmetry which complicates the correctness proof; for LF, it can be
avoided by considering simply-typed contexts [HP05].

This algorithm is called semantic since it compares values. It is part of the
core of Agda and Epigram 2. Since it is of practical relevance, it is a worth-while
effort to verify it. Correctness of type checking is then a consequence of the
correctness of algorithmic equality.

3 Specification: Typing with Explicit Substitutions

We want to prove that our algorithmic equality is correct, so we should say in
which sense and provide a specification. There are different ways to present type
theory. We choose a formulation with explicit substitutions [ML92] because the
typing and equality rules can then be validated directed in any (Kripke) PER
model over any syntactical applicative structure (see Thm. 1). Altenkirch and
Chapman [AC08] exploit this fact for their closure-based definition of values. A
formulation with non-explicit (deep) substitution directly validates the inference
rules only for PER models over syntactical applicative structures with extra
properties, e. g., λ-algebras [AC07], or combinatory algebras [ACD07].

38 A. Abel, T. Coquand, and P. Dybjer

Well-formed contexts Γ �.

cxt-empty � � cxt-ext
Γ � A

Γ, x :A �

Well-typed terms Γ � t : A.

const
Γ � Σ � c : A

Γ � c : A
hyp

Γ � (x :A) ∈ Γ

Γ � x : A

conv
Γ � t : A Γ � A = A′

Γ � t : A′ sub
Γ � A : Seti

Γ � A : Setj
i ≤ j

fun-f
Γ � A : Seti Γ, x :A � B : Seti

Γ � Fun A λxB : Seti

fun-i
Γ, x :A � t : B

Γ � λxt : Fun A λxB
fun-e

Γ � r : Fun A λxB Γ � s : A

Γ � r s : B(σid, x=s)

esubst-f
Γ � σ : Γ ′ Γ ′ � t : A

Γ � tσ : Aσ

Well-formed substitutions Γ � σ : Γ ′.

subst-ext
Γ � σ : Γ ′ Γ ′ � A Γ � s : Aσ

Γ � (σ, x=s) : (Γ ′, x :A)

subst-id
Γ �

Γ � σid : Γ
subst-comp

Γ2 � σ : Γ3 Γ1 � τ : Γ2

Γ1 � σ ◦ τ : Γ3

subst-weak
Γ � σ : Γ ′, x :A, Γ ′′

Γ � σ : Γ ′, Γ ′′

Fig. 1. Rules for contexts, types, and terms

We extend the expression syntax by explicit substitutions and introduce syn-
tactical typing contexts:

Exp � r, s, t ::= · · · | tσ expressions
Subst � σ, τ ::= (σ, x= t) | σid | σ ◦ τ substitutions
Cxt � Γ ::= � | Γ, x :A typing contexts

We identify expressions up to α-conversion and adopt the convention that in
contexts Γ all variables must be distinct. Hence, we can view Γ as a map from
variables to types with finite domain dom(Γ) and let Γ (x) = A iff (x :A) ∈ Γ .
In context extensions Γ, x : A we assume x �∈ dom(Γ). As usual FV(t) is the
set of free variables of t. We let FV(t1, . . . , tn) = FV(t1) ∪ · · · ∪ FV(tn) and
FV(Γ) =

⋃
x∈dom(Γ) FV(Γ (x)).

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 39

Equality Γ � t = t′ : A. Equivalence, hypotheses, conversion.

eq-refl
Γ � t : A

Γ � t = t : A
eq-sym

Γ � t = t′ : A

Γ � t′ = t : A

eq-trans
Γ � t = t′ : A Γ � t′ = t′′ : A

Γ � t = t′′ : A

eq-const
Γ � Σ � c : A

Γ � c = c : A
eq-hyp

Γ � (x :A) ∈ Γ

Γ � x = x : A

eq-conv
Γ � t = t′ : A Γ � A = A′

Γ � t = t′ : A′ eq-sub
Γ � A = A′ : Seti

Γ � A = A′ : Setj
i ≤ j

Dependent functions.

eq-fun-f
Γ � A = A′ : Seti Γ, x :A � B = B′ : Seti

Γ � Fun A λxB = Fun A′ λxB′ : Seti

eq-fun-i
Γ, x :A � t = t′ : B

Γ � λxt = λxt′ : Fun A λxB

eq-fun-e
Γ � r = r′ : Fun A λxB Γ � s = s′ : A

Γ � r s = r′ s′ : B(σid, x=s)

eq-fun-β
Γ, x :A � t : B Γ � s : A

Γ � (λxt) s = t(σid, x=s) : B(σid, x=s)

eq-fun-η
Γ � t : Fun A λxB

Γ � (λx. t x) = t : Fun A λxB
x 	∈ dom(Γ)

Fig. 2. Equality rules

We have extended the language by explicit substitutions so we need to ex-
tend the notion of syntactical applicative structure, to ensure substitutions are
evaluated reasonably:

eval-subst-id σidρ = ρ
eval-subst-comp (σ ◦ σ′)ρ = σ(σ′ρ)
eval-subst-ext (σ, x=s)ρ = (σρ, x=sρ)
eval-esubst (tσ)ρ = t(σρ)

Herein, σρ is defined by x(σρ) = (xσ)ρ.

Judgements. Our type theory with explicit substitutions has the following forms
of judgement:

40 A. Abel, T. Coquand, and P. Dybjer

Γ � Γ is a well-formed context
Γ � A A is a well-formed type in Γ
Γ � t : A t has type A in Γ
Γ � σ : Γ ′ σ is a well-formed substitution in Γ
Γ � A = A′ A and A′ are equal types in Γ
Γ � t = t′ : A t and t′ are equal terms of type A in Γ
Γ � σ = σ′ : Γ ′ σ and σ′ are equal substitutions in Γ

Equivalence rules and weakening.

eq-subst-refl
Γ � σ : Γ ′

Γ � σ = σ : Γ ′ eq-subst-sym
Γ � σ = σ′ : Γ ′

Γ � σ′ = σ : Γ ′

eq-subst-trans
Γ1 � σ = σ′ : Γ2 Γ2 � σ′ = σ′′ : Γ3

Γ1 � σ = σ′′ : Γ3

eq-subst-weak
Γ � σ = σ′ : Γ ′, x :A, Γ ′′

Γ � σ = σ′ : Γ ′, Γ ′′

Rules of the category of contexts and substitutions.

eq-subst-id-l
Γ � σ : Γ ′

Γ � σid ◦ σ = σ : Γ ′ eq-subst-id-r
Γ � σ : Γ ′

Γ � σ ◦ σid = σ : Γ ′

eq-subst-assoc
Γ3 � σ : Γ4 Γ2 � σ′ : Γ3 Γ1 � σ′′ : Γ2

Γ1 � (σ ◦ σ′) ◦ σ′′ = σ ◦ (σ′ ◦ σ′′) : Γ4

Rules for the empty substitution and substitution extension.

eq-subst-empty-η
Γ � σ : � Γ � σ′ : �

Γ � σ = σ′ : �

eq-subst-ext-β
Γ2 � σ : Γ3 Γ3 � A Γ2 � s : Aσ Γ1 � τ : Γ2

Γ1 � (σ, x=s) ◦ τ = (σ ◦ τ, x=sτ) : Γ3, x :A

eq-subst-ext-η
Γ, x :A �

Γ, x :A � (σid, x=x) = σid : Γ, x :A

eq-subst-ext-weak
Γ � σ : Γ ′ Γ ′, x :A � Γ � t : Aσ

Γ � (σ, x= t) = σ : Γ ′

Congruence rules.

eq-subst-ext
Γ � σ = σ′ : Γ ′ Γ ′ � A Γ � s = s′ : Aσ

Γ � (σ, x=s) = (σ′, x=s′) : (Γ ′, x :A)

eq-subst-comp
Γ2 � σ = σ′ : Γ3 Γ1 � τ = τ ′ : Γ2

Γ1 � σ ◦ τ = σ′ ◦ τ ′ : Γ3

Fig. 3. Equality rules for substitutions Γ � σ = σ′ : Δ

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 41

eq-esubst-f
Γ � σ = σ′ : Δ Δ � t = t′ : A

Γ � tσ = t′σ′ : Aσ

eq-esubst-id
Γ � t : A

Γ � tσid = t : A

eq-esubst-comp
Γ � τ : Γ ′ Γ ′ � σ : Γ ′′ Γ ′′ � t : A

Γ � t(σ ◦ τ) = (tσ)τ : A(σ ◦ τ)

eq-esubst-c
Γ � σ : Γ ′ Σ � c : A

Γ � cσ = c : A

eq-esubst-var
Γ � σ : Γ ′ Γ ′, x :A � Γ � t : Aσ

Γ � x(σ, x= t) = t : Aσ

eq-esubst-fun-f
Γ � σ : Γ ′ Γ ′ � A : Seti Γ ′, x :A � B : Seti

Γ � (Fun A λxB)σ = Fun (Aσ) (λxB)σ : Seti
x 	∈ dom(Γ)

eq-esubst-fun-i
Γ � σ : Γ ′ Γ ′, x :A � t : B

Γ � (λxt)σ = λx. t(σ, x=x) : (Fun A λxB)σ
x 	∈ dom(Γ)

eq-esubst-fun-e
Γ � σ : Γ ′ Γ ′ � r : Fun A λxB Γ ′ � s : A

Γ � (r s)σ = rσ sσ : B(σ, x=sσ)

Fig. 4. Equality rules for explicit substitutions

For an arbitrary judgement, we write Γ � J , where J is a collection of syn-
tactic entities (terms, contexts, substitutions) to the right of � in a judge-
ment. FV(J) is the union of the free variable sets of all entities in J . Ex-
ceptions are FV(σ : Δ), which is defined as

⋃
x∈dom(Δ) FV(Δ(x), σ(x)), and

FV(σ = σ′ : Δ) =
⋃
x∈dom(Δ) FV(Δ(x), σ(x), σ′(x)).

The judgements on types can be defined in terms of the judgement on terms.

Γ � A ⇐⇒ Γ � A : Seti for some i
Γ � A = A′ ⇐⇒ Γ � A = A′ : Seti for some i

The inference rules for the other judgements are given in figures 1, 2, 3, and
4. They are inspired by categorical presentations of type theory, in particular,
categories with families [Dyb96], which have been inspired by Martin-Löf’s sub-
stitution calculus [ML92]. Rule const relies on an auxiliary judgement Σ � c : A
meaning constant c can be assigned type A. Its only rule is:

set-f
Σ � Seti : Seti+1

42 A. Abel, T. Coquand, and P. Dybjer

In extensions of the core theory, the signature Σ provides the types of construc-
tors of inductive types like the natural numbers.

The judgements enjoy some standard properties, like weakening, inversion of
typing, and well-formedness of contexts, types and terms (syntactic validity).

4 Verification Plan and Contextual Reification

A standard method to show completeness of the algorithmic equality would be
the following [HP05].

1. Define a Kripke logical relation Δ � d = d′ : X on a semantic context Δ
and values d, d′ by induction on the type X . We will call this relation Kripke
model. For base types X , let the relation coincide with algorithmic equality
Δ � d = d′ ⇑ X , for function types do the usual functional construction:
Δ � f = f ′ : FunXF iff Δ′ � d = d′ : X implies Δ′ � f · d = f ′ · d′ : F · d
for all d, d′ and all extensions Δ′ of Δ.

2. Show that if two values are related in the model, then the algorithm relates
them as well. Following Schürmann and Sarnat [SS08] we call this the escape
lemma, since it allows to “get out of the logical relation”.

3. Finally show validity of the inference rules w. r. t. the model, i.e., if two terms
t, t′ are equal of type A, then for each well-formed environment ρ, we have
tρ = t′ρ : Aρ in the model, which implies that the algorithm accepts t, t′ as
equal.

In particular, the relation Δ � = : X needs to be a partial equivalence, in
order to validate symmetry and transitivity rules. But due to the asymmetric
nature of algorithmic equality (rules aq-fun and aq-ty-fun), this can only be
shown if we have soundness, which at this point we cannot obtain.

Normalization-by-evaluation (NbE) [ML75, BS91, Coq94, Dan99] to the res-
cue! There already are equality algorithms for dependent types with large elim-
inations which are based on semantics [AAD07, ACD07]. Two semantic values
are considered equal if they reify to the same expression. Reification at a type
X converts a value to a term, η-expanding it on the fly according to type X . It
turns out that we can verify the algorithmic equality by relating it to NbE.

We will verify algorithmic equality according to this plan:

1. Define normalization-by-evaluation for our setting. This amounts to defining
contextual reification Δ � d ↘ v ⇑ X which converts value d of type X in
context Δ to normal form v.

2. Show completeness of NbE (Sec. 5), meaning that if one takes two judgmen-
tally equal terms t, t′, evaluates and reifies them, one arrives at the same
normal form v (Cor. 1). To this end, we construct a Kripke model based on
reification, meaning that two values are equal at base type if they reify to
the same normal form.

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 43

3. Show soundness of NbE (Sec. 6), meaning that if we take a term t, evaluate
and reify it, we arrive at a normal form v judgmentally equal to t (Cor. 2).
The main tool is a Kripke logical relation between well-typed terms t and
semantic objects d, which for base types states that d reifies to a normal
form v which is judgmentally equal to t.

4. Show completeness of the algorithmic equality (Sec. 7). This is a corollary
of completeness of NbE, since we will see that if two values reify to the same
normal form, then the algorithm will accept them as equal (Lemma 7).

5. Show soundness of the algorithm (Sec. 8). The direct approach, showing
that two algorithmically equal values reify to the same normal form, fails
due to the asymmetry of the algorithm. We introduce the concept of strong
semantic typing and equality (a super Kripke model, so to say) and prove
that the algorithm is sound for strong semantic equality. By establishing
that the inference rules are valid in the super Kripke model (Cor. 4), and
that equality in the super Kripke model entails equality in the Kripke model,
we finally show that well-typed terms whose values are algorithmically equal
reify to the same normal form, thus, are judgmentally equal (Thm. 3).

What remains open is termination of algorithmic equality.

4.1 Contextual Reification

Reification [BS91] converts a semantic value to a syntactic term, η-expanding it
on the fly. It is defined by recursion on the type of the value. In previous NbE
approaches [BS91, ACD07] the semantics of base types has been defined as a set
of η-long neutral terms, thus, reification at base type is simply the identity. In
our approach, the semantics of base types is a set of neutral values, which are not
η-expanded and need to be reified recursively. This can only happen if reification
has access to the types of the free variables of a neutral value. For example, to
reify x d d′ at base type we need to retrieve the type FunX F of x, recursively
reify d at type X , compute F ·d = FunX ′ F ′ and recursively reify d′ at type X ′.
For this task, we introduce a new form of reification which is parameterized by
a semantic typing context Δ, hence the name contextual reification.

We simultaneously define three inductive judgements by the rules to follow.
Herein, Δ ∈ SemCxt, d, e,X ∈ D, u ∈ Ne, v, V ∈ Nf and i ∈ N.

Δ � e ↘ u ⇓ X neutral value e reifies to u, inferring its type X
Δ � d ↘ v ⇑ X value d reifies to normal form v at type X
Δ � X ↘ V ⇑ Set� i type value X reifies to V , inferring its level i.

Inference mode. Δ � e ↘ u ⇓ X (inputs: Δ, e, outputs: u,X or fail).

reify-var
Δ � x ↘ x ⇓ Δ(x)

reify-fun-e
Δ � e ↘ u ⇓ FunXF Δ � d ↘ v ⇑ X

Δ � e d ↘ u v ⇓ F · d

44 A. Abel, T. Coquand, and P. Dybjer

Variables reify to themselves and neutral applications to neutral applications.
The type information flows out of the context Δ and is used in reify-fun-e to
reify d of type X in checking mode.

Checking mode. Δ � d ↘ v ⇑ X (inputs: Δ, d,X , output: v or fail).

reify-ne
Δ � e ↘ u ⇓ E1 Δ � E1 ↘ u′ ⇓ Seti Δ � E2 ↘ u′ ⇓ Seti

Δ � e ↘ u ⇑ E2

reify-ext
Δ,x :X � f · x ↘ v ⇑ F · x
Δ � f ↘ λxv ⇑ FunXF

reify-ty
Δ � X ↘ V ⇑ Set� i

Δ � X ↘ V ⇑ Setj
i ≤ j

Any value f of functional type is reified by applying it to a fresh variable x. Note
that this can trigger further evaluation, e. g., in the λ-model where functional
values are just weak head normal forms or closures. The result of reifying a
functional value is always a λ-abstraction, which means that reification returns
η-long forms.

At neutral type E2, objects e need to be neutral and are reified in inference
mode. The inferred type E1 needs to be equal to E2—this is checked by reifying
both types, expecting the same normal form.

Type mode. Δ � X ↘ V ⇑ Set� i (inputs: Δ,X , outputs: V, i or fail).

reify-ty-ne
Δ � e ↘ u ⇓ Seti

Δ � e ↘ u ⇑ Set� i

reify-ty-set
Δ � Seti ↘ Seti ⇑ Set� i + 1

reify-ty-fun
Δ � X ↘ V ⇑ Set� i Δ, x :X � F · x ↘ W ⇑ Set� j

Δ � FunXF ↘ FunV λxW ⇑ Set� max(i, j)

Function type values reify to function type expressions in long normal form,
universes to universes and neutral type values to neutral type expressions.

We write Δ � e, e′ ↘ u ⇓ X for Δ � e ↘ u ⇓ X and Δ � e′ ↘ u ⇓ X .
This gives a basic equality on neutral objects (which is used in rule reify-ne,
for instance).

We say Δ′ extends Δ, written Δ′ ≤ Δ, if Δ′(x) = Δ(x) for all x ∈ dom(Δ).
(The direction of ≤ is as in subtyping.) Reification is closed under weakening of
contexts, i.e., reifying in an extended context produces an α-equivalent normal
form. Reification provides us with a normalization function: given a closed term
t : A, the normal form v is obtained by � � tρid ↘ v ⇑ Aρid.

5 Kripke Model and Completeness of NbE

Dependent types complicate the definition of a logical relation, because one
cannot use structural induction on the type expression. Instead one needs to

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 45

simultaneously define the “good” type values X by induction and their denota-
tion, a relation on objects, by recursion [Dyb00]. We spell out this construction
for our Kripke model in sections 5.1–5.3. In Section 5.4 we prove that it models
our inference rules.

5.1 An Induction Measure

If X ⊆ D and F(d) ⊆ D for each d ∈ X , then the dependent function space

Π X F = {f | ∀d ∈ X . f · d ∈ F(d)}

is another subset of D. For i = 0, 1, . . . we define the sets Ti ⊆ D × P(D)
inductively as follows:

(E,D) ∈ Ti (Setj , |Tj |) ∈ Ti
j < i

(X,X) ∈ Ti ∀d ∈ X . (F · d,F(d)) ∈ Ti
(FunXF, Π X F) ∈ Ti

Herein, |Ti| = {X | ∃X . (X,X) ∈ Ti}. We define the relation : ⊆ D × D by

d : X ⇐⇒ ∃X , i. (X,X) ∈ Ti and d ∈ X

As a special case, X : Seti ⇐⇒ X ∈ |Ti|. We will use the derivation of
membership in Ti as induction measure, quoted as “induction on X : Seti”.

5.2 Construction of the Kripke Model

It is tempting to define Δ � d = d′ : X for base types directly as “Δ � d ↘
v ⇑ X and Δ � d′ ↘ v ⇑ X for some v”. However, then the proof of the escape
lemma will fail, because during reification of function types, their domains flow
into the context. Reifying two function types will soon take place in different
contexts. We need to be more general and relate semantic objects at a priori
different types in a priori different contexts. Thus, in the following we define a
relation Δ � d : X � Δ′ � d′ : X ′ for the purpose of proving the escape lemma,
and we obtain Δ � d = d′ : X as a special case in Sec. 5.3.

By lexicographic induction on i and X ′ : Seti we define the relations:

� : � � X ′ : Seti
� : � � : X ′

– Case E′ : Seti.

Δ � X : Z � Δ′ � E′ : Seti
⇐⇒ X = E neutral and Z = Seti and

Δ � E ↘ U ⇓ Setj and Δ′ � E′ ↘ U ⇓ Setj′ for some U and j, j′≤ i

Δ � d : X � Δ′ � d′ : E′

⇐⇒ X = E neutral and Δ � d ↘ u ⇓ Ê and Δ′ � d′ ↘ u ⇓ Ê′ and
Δ � E, Ê ↘ U ⇓ Setj and Δ′ � E′, Ê′ ↘ U ⇓ Setj′

for some E, Ê, Ê′, u, U, and j, j′ ≤ i

46 A. Abel, T. Coquand, and P. Dybjer

– Case Setj : Seti for j < i.

Δ � X : Z � Δ′ � Setj : Seti ⇐⇒ X = Setj and Z = Seti
Δ � d : X � Δ′ � d′ : Setj has already been defined

– Case FunX ′ F ′ : Seti where X ′ : Seti and F ′ · d : Seti for all d : X ′.

Δ � Y : Z � Δ′ � FunX ′F ′ : Seti
⇐⇒ Y = FunXF for some X,F and Z = Seti and

Δ � X : Seti � Δ′ � X ′ : Seti and
for all Δ̂ ≤ Δ, Δ̂′ ≤ Δ′, d, d′, Δ̂ � d : X � Δ̂′ � d′ : X ′

implies Δ̂ � F · d : Seti � Δ̂′ � F ′ · d′ : Seti

Δ � f : Y � Δ′ � f : FunX ′F ′

⇐⇒ Y = FunXF for some X,F and
for all Δ̂ ≤ Δ, Δ̂′ ≤ Δ′, d, d′, Δ̂ � d : X � Δ̂′ � d′ : X ′

implies Δ̂ � f · d : F · d � Δ̂′ � f ′ · d′ : F ′ · d′

Lemma 1. � is symmetric and transitive.

Lemma 2 (Type conversion). Let X ′ : Seti. If Δ � d : X � Δ′ � d′ : X ′

and Δ′ � X ′ : Seti � Δ′ � X ′′ : Seti then Δ � d : X � Δ′ � d′ : X ′′.

Proof. By induction on X ′ : Seti.

Lemma 3 (Into and out of the model / escape lemma). Let X ′ : Seti.
Then

1. (In:) If Δ � e ↘ u ⇓ X and Δ′ � e′ ↘ u ⇓ X ′ then Δ � e : X � Δ′ � e′ :
X ′.

2. (Out:) If Δ � d : X � Δ′ � d′ : X ′ then Δ � d ↘ v ⇑ X and Δ′ � d′ ↘
v ⇑ X ′ for some v.

3. (Out-Type:) If Δ � X : Seti � Δ′ � X ′ : Seti Δ � X ↘ V ⇑ Set � j and
Δ′ � X ′ ↘ V ⇑ Set� j′ for some V and j, j′ ≤ i.

Proof. Simultaneously by induction on X ′ : Seti.

5.3 The Kripke Model

We now define

Δ � d = d′ : X ⇐⇒ Δ � d : X � Δ � d′ : X.

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 47

We can view the relation Δ � d = d′ : X as inductively generated by the
following rules:

Δ � Seti = Seti : Setj
i < j

Δ � E ↘ u ⇓ Seti Δ � E′ ↘ u ⇓ Seti
Δ � E = E′ : Setj

i ≤ j

Δ � e ↘ u ⇓ E1 Δ � e′ ↘ u ⇓ E2 Δ � E0, E1, E2 ↘ u′ ⇓ Seti
Δ � e = e′ : E0

Δ � X = X ′ : Seti
Δ′ � F · d = F ′ · d′ : Seti for all Δ′ ≤ Δ and Δ′ � d = d′ : X

Δ � FunXF = FunX ′F ′ : Seti

Δ′ � f · d = f ′ · d′ : F · d for all Δ′ ≤ Δ and Δ′ � d = d′ : X
Δ � f = f ′ : FunXF

We let Δ � X = X ′ iff there exists an i such that Δ � X = X ′ : Seti. We write
Δ � d : X for Δ � d = d : X .

5.4 Validity of Syntactic Typing

Now we can show that all the rules for our typing and equality judgements are
valid in the model. As a byproduct, we get completeness of NbE.

Let

Δ � ρ = ρ′ : Γ ⇐⇒ ∀x ∈ dom(Γ). Δ � ρ(x) = ρ′(x) : Γ (x)ρ

Define Γ � J , meaning that Γ � J is valid in the Kripke model, as follows:

� � :⇐⇒ true
Γ, x :A � :⇐⇒ Γ � A

Γ � A :⇐⇒ either A = Seti and Γ � or Γ � A : Seti for some i

Γ � t : A :⇐⇒ Γ � t = t : A
Γ � t = t′ : A :⇐⇒ Γ � A and ∀Δ � ρ = ρ′ : Γ. Δ � tρ = t′ρ′ : Aρ

Γ � σ : Γ ′ :⇐⇒ Γ � σ = σ : Γ ′

Γ � σ = σ′ : Γ ′ :⇐⇒ Γ � and Γ ′ � and ∀Δ � ρ = ρ′ : Γ. Δ � σρ = σ′ρ′ : Γ ′

Theorem 1 (Soundness of the inference rules). If Γ � J then Γ � J .

Proof. By induction on Γ � J . (Tedious, but easy.)

Lemma 4. Γρid � ρid = ρid : Γ .

Proof. For each x ∈ dom(Γ), we have Γρid � xρid = xρid : Γ (x)ρid.

Corollary 1 (Completeness of NbE). If Γ � t = t′ : A then Γρid � tρid ↘
v ⇑ Aρid and Γρid � t′ρid ↘ v ⇑ Aρid for some v.

48 A. Abel, T. Coquand, and P. Dybjer

6 Kripke Logical Relation and Soundness of NbE

In the previous section we have defined a logical relation Δ � d : X � Δ′ �
d′ : X ′ between two semantic objects in their typing environments. Now we will
define a logical relation between a well-typed expression Γ � t : A and a value
d in its typing environment Δ � X . The relation shall imply that d at type
X reifies in Δ to a normal form v which is judgmentally equal to t at type A
in context Γ (Lemma 5). The construction is similar to [ACD07] but has Δ as
additional parameter.

We write Γ ′ ≤ Γ if Γ ′ is a well-formed extension of Γ . By induction on
X : Seti we define the relation

Γ � t : C R© Δ � d : X

between well-typed terms Γ � t : C and semantic objects Δ � d : X .

Γ � r : C R© Δ � f : FunXF ⇐⇒
Γ � C = FunAλxB : Seti for some A,B and
Γ � A : Seti R© Δ � X : Seti and
Γ ′ � r s : B(σid, x=s) R© Δ′ � f d : F d for all Γ ′ ≤ Γ,Δ′ ≤ Δ

and Γ ′ � s : A R© Δ′ � d : X

Γ � r : C R© Δ � FunXF : Seti ⇐⇒
Γ � C = Seti : Seti+1

Γ � r = FunAλxB : Seti for some A,B and
Γ � A : Seti R© Δ � X : Seti and
Γ ′ � B(σid, x=s) : Seti R© Δ′ � F d : Seti for all Γ ′ ≤ Γ,Δ′ ≤ Δ

and Γ � s : A R© Δ � d : X

Γ � r : C R© Δ � d : X ⇐⇒ Δ � d ↘ v ⇑ X and Γ � r = v : C
for X neutral or X = Seti and d �= FunY F

The logical relation is closed under weakening of contexts (both the syntactic,
Γ , and the semantic one, Δ) and under judgmental and Kripke model equality,
meaning one can always trade expressions and values for equals without violating
the relation.

Lemma 5 (Into and out of the logical relation / escape lemma). Let
Γ � C : Seti R© Δ � X : Seti.

1. (In:) If Γ � u : C and Δ � e ↘ u ⇓ X then Γ � u : C R© Δ � e : X.
2. (Out:) If Γ � r : C R© Δ � d : X then Δ � d ↘ v ⇑ X for some v with

Γ � r = v : C.
3. (Out-type:) Δ � X ↘ V ⇑ Set� j for j ≤ i and Γ � C = V : Seti.

Proof. By induction on X : Seti.

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 49

Fundamental theorem. We relate substitutions Γ ′ � σ : Γ to environments
Δ � ρ : Γ by the following definition:

Γ ′ � σ R© Δ � ρ :: Γ ⇐⇒ for all x ∈ dom(Γ),
Γ ′ � xσ : Γ (x)σ R© Δ � ρ(x) : Γ (x)ρ

By induction on the length of Γ , we define the propositions Γ � J as follows:

� ⇐⇒ true
Γ, x :A � ⇐⇒ Γ � A

Γ � A ⇐⇒ either A = Seti and Γ � or Γ � A : Seti for some i

Γ � t : A ⇐⇒ Γ � t = t : A
Γ � t = t′ : A ⇐⇒ Γ � and

Γ ′ � tσ : Aσ R© Δ � t′ρ : Aρ for all Γ ′ � σ R© Δ � ρ :: Γ.

Γ � τ : Γ0 ⇐⇒ Γ � τ = τ : Γ0

Γ � τ = τ ′ : Γ0 ⇐⇒ Γ � and Γ0 � and
Γ ′ � τ ◦ σ R© Δ � τ ′ρ :: Γ0 for all Γ ′ � σ R© Δ � ρ :: Γ.

Theorem 2 (Fundamental theorem of logical relations). If Γ � J then
Γ � J .

Proof. By induction on Γ � J .

Lemma 6. Γ � σid R© (Γρid) � ρid :: Γ .

Proof. We have to show Γ � x : Γ (x) R© Γρid � x : Γ (x)ρid for all x ∈ dom(Γ).
This holds by Lemma 5 since Γρid � x ↘ x ⇓ (Γρid)(x).

Corollary 2 (Soundness of NbE). If Γ � t : A then there is some v such
that Γρid � tρid ↘ v ⇑ Aρid and Γ � t = v : A.

7 Completeness of Algorithmic Equality

In this section, we conclude the completeness of the equality algorithm from the
completeness of NbE. In particular, if two values reify to the same normal form,
they are algorithmically equal. Some care has to be paid to the case of functional
values. It could be that f reifies to λxv since f · x reifies to v and f ′ reifies to
λx′v′ =α λxv since f ′ · x′ reifies to v′. Now we want to conclude that f and f ′

are algorithmically equal, which requires f ·xΔ equal to f ′ ·xΔ. But the induction
hypothesis is not applicable since x, x′, xΔ might be different variables, hence,
f ·x and f ·xΔ are different objects. If our values are actually normal expressions,
we could use plain old α-conversion and rename the variables. However, we are
dealing with values in an arbitrary syntactical applicative structure D!

We restrict the class of possible models to those that admit renaming of free
variables. This is a sensible restriction since values should be parametric in the
names of their free variables—case distinction on the name of a identifier is not
a desirable program behavior.

50 A. Abel, T. Coquand, and P. Dybjer

Renamings. Let π be a bijective map from variables to variables. We assume a
renaming operations dπ on values d ∈ D with the following properties:

ren-c cπ = c
ren-var xπ = π(x)
ren-app (f · d)π = fπ · dπ
ren-eval (tρ)π = t(ρπ)

Renaming can be defined for many syntactical applicative structures D: term
models, explicit substitutions, closures, even Scott models which evaluate an
abstraction (λxt)ρ to an actual function h : D → D with h(d) = t(ρ, x = d).
Setting (hπ)(d) = (h(dπ−1))π we have (h(d))π = (hπ)(dπ) [Pit06].

We define renaming of contexts π(Δ) by

ren-cxt-empty π(�) = �
ren-cxt-ext π(Δ,x :X) = π(Δ), π(x) :Xπ

Remark 1. This is not to be confused with the operation Δπ which is com-
position defined by (Δπ)(x) = Δ(x)π. We have π(Δ)(xπ) = Δ(x)π. Thus,
π(Δ) = π−1Δπ is a conjugation.

Lemma 7 (Completeness of algorithmic equality w. r. t. reification).
Let Δ = x1 :X1, . . . xn :Xn be a semantic context and π a permutation of names
assigning the ith de Bruijn level to variable xi (π(xi) = xi for i = 1..n).

1. If Δ � e ↘ u ⇓ X and Δ′ � e′ ↘ u ⇓ X ′ then π(Δ) � eπ = e′π ⇓ Xπ.
2. If Δ � d ↘ v ⇑ X and Δ′ � d′ ↘ v ⇑ X ′ then π(Δ) � dπ = d′π ⇑ Xπ.
3. If Δ � X ↘ V ⇑ Set � i and Δ′ � X ′ ↘ V ⇑ Set � i′ then π(Δ) � Xπ =

X ′π ⇑ Set� max(i, i′).

Proof. Simultaneously by induction on the first derivation.

A name permutation π can be viewed as an environment, taking a variable x to
π(x). This explains the notation tπ, and π(Γ) which satisfies π(Γ)(xπ) = Γ (x)π.
Let π(x1:A1,...xn:An)(xi) = xi for i = 1..n.

Corollary 3 (Completeness of algorithmic equality). If Γ � t = t′ : A
then πΓ (Γ) � tπΓ = t′πΓ ⇑ AπΓ .

Proof. We have Γρid � tρid, t
′ρid ↘ ⇑ Aρid by Cor. 1, thus, the corollary follows

from Lemma 7 with ρidπΓ = πΓ .

8 Strong Semantic Typing and Soundness of Algorithmic
Equality

In this section, we tackle the second problem: soundness of the equality algo-
rithm. We show that if two values are algorithmically equal, then they reify to
the same normal form. Rule aq-fun gives us a hard time:

aq-fun
Δ � e = e′ ⇓ FunXF Δ � d = d′ ⇑ X

Δ � e d = e′ d′ ⇓ F · d

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 51

Using the induction hypothesis, we can show Δ � e′ d′ ↘ u v ⇓ F · d′ but we
need F · d! The fact that d and d′ reify to the same normal form does not help
us here, we need a stronger induction hypothesis.

Again, soundness of an algorithmic equality on syntax is usually trivial: one
simply shows that each algorithmic rule is an instance of an inference rule. When
trying to apply this intuition to our semantic typing and equality, the Kripke
model, one realizes that it lacks a substitution principle: Judgements remain
valid when substituting a term of the right type for a variable. In the following
we will equip our semantics with a substitution principle by brute force! We
define strong semantic judgements (a super Kripke model) to hold if the weak
semantic judgements (Kripke model) hold for all well-typed valuations of free
variables (cf. hypothetical judgements [CPT05]). As precondition, we need a
model in which we can reevaluate values in a new environment.

Reevaluation. For the following, impose more conditions on the model D. It
must be equipped with a reevaluation function dθ of value d in environment θ,
satisfying the following laws:

reeval-id d ρid = d
reeval-c cθ = c
reeval-var xθ = θ(x)
reeval-fun-e (f · d)θ = fθ · dθ
reeval-esubst (tρ)θ = t(ρθ)

Reevaluation is easy to define on the syntactical applicative structure of closures;
simply add ([λxt]ρ)θ = [λxt](ρθ) and (e d)θ = eθ · dθ to the above laws.

For Scott models, it is a bit more problematic. If f ∈ D → D, we can set
(fθ)(d) = (f(x))((θ, x=d) for a fresh variable x. Freshness can be defined if we
construct D as a nominal set [Shi05]. However, not all continuous functions f
will fulfill reeval-fun-e: for (f(d))θ = (f(x))(θ, x = dθ) to hold f must treat
variables parametrically. For example, the function f(d) = d if d not a variable
and f(x) = Set0 for x a variable is not parametric and, thus, not compatible
with reevaluation. The formulation of suitable parametricity conditions and the
proof of parametricity for all values in the Kripke model remains open.

8.1 Super Kripke Model

Let Θ range over semantic contexts and let

Δ � ρ = ρ′ : Θ ⇐⇒ ∀x ∈ dom(Θ). Δ � xρ = xρ′ : Θ(x)ρ

We write Δ � ρ : Θ iff Δ � ρ = ρ : Θ. We define strong semantic equality by

Θ |= d = d′ : X ⇐⇒ ∀Δ � ρ = ρ′ : Θ. Δ � dρ = d′ρ′ : Xρ

Let Θ |= X = X ′ iff Θ |= X = X ′ : Seti for some i. We write Θ |= X for
Θ |= X = X and Θ |= d : X for Θ |= d = d : X , and say d is semantically
strongly typed of type X in context Θ.

Since Δ � ρid = ρid : Δ, strong semantic equality Δ |= d = d′ : X implies
weak semantic equality Δ � d = d′ : X .

52 A. Abel, T. Coquand, and P. Dybjer

Lemma 8 (Admissible rules). The following implications, written as rules,
hold for strong semantic equality.

Θ |= x = x : Θ(x)
x ∈ dom(Θ)

Θ |= f = f ′ : FunXF Θ |= d = d′ : X
Θ |= f · d = f ′ · d′ : F · d

Θ |= FunXF Θ |= f : FunXF Θ |= f ′ : FunXF
Θ, x :X |= f · x = f ′ · x : F · x

Θ |= f = f ′ : FunXF

Θ |= FunXF, FunX ′F ′ : Seti
Θ |= X = X ′ : Seti Θ, x :X |= F · x = F ′ · x : Seti

Θ |= FunXF = FunX ′F ′ : Seti

Θ |= d = d′ : X Θ |= X = X ′

Θ |= d = d′ : X ′

Proof. The soundness of the application rule relies on distributivity of valuation
over application, (f · d)ρ = fρ · dρ.

Semantic context equality |= Θ = Θ′ is given inductively by

|= � = �
|= Θ = Θ′ Θ |= X = X ′ : Seti

|= Θ, x :X = Θ′, x :X ′ x �∈ dom(Θ)

We write |= Θ for |= Θ = Θ.

Lemma 9 (Soundness of algorithmic equality). Let |= Δ.

1. If Δ � e = e′ ⇓ X then Δ |= X and Δ |= e = e′ : X.
2. If Δ � d = d′ ⇑ X and Δ |= X and Δ |= d, d′ : X then Δ |= d = d′ : X.
3. If Δ � X = X ′ ⇑ Set� i and Δ |= X,X ′ : Seti then Δ � X = X ′ : Seti.

Proof. Simultaneously by induction on the derivation of algorithmic equality
using the admissible rules.

8.2 Strong Validity of Syntactic Typing

In the following, we establish that our inference rules are also valid in the super
Kripke model. However, no new inductive proof is needed. We have already
shown that the rules are valid in the weak semantics (Kripke model) under all
weakly typed environments. This is actually equivalent to being valid in the
strong semantics (super Kripke model) under all strongly typed environments.

We define strongly typed environments by

Δ |= ρ = ρ′ : Γ ⇐⇒ ∀x ∈ dom(Γ). Δ |= ρ(x) = ρ′(x) : Γ (x)ρ.

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 53

Lemma 10 (Composing strongly and weakly typed environments). If
Θ |= ρ = ρ′ : Γ and Δ � θ = θ′ : Θ then Δ � ρθ = ρ′θ′ : Γ .

Define Γ ||= J , meaning that Γ � J is valid in the super Kripke model, as
follows:

� ||= :⇐⇒ true
Γ, x :A ||= :⇐⇒ Γ ||= A

Γ ||= A :⇐⇒ either A = Seti and Γ ||= or Γ ||= A : Seti for some i

Γ ||= t : A :⇐⇒ Γ ||= t = t : A
Γ ||= t = t′ : A :⇐⇒ Γ ||= A and ∀Δ |= ρ = ρ′ : Γ. Δ |= tρ = t′ρ′ : Aρ

Γ ||= σ : Γ0 :⇐⇒ Γ ||= σ = σ : Γ0

Γ ||= σ = σ′ : Γ0 :⇐⇒ Γ ||= and Γ0 ||= and
∀Δ |= ρ = ρ′ : Γ. Δ |= σρ = σ′ρ′ : Γ0

Lemma 11 (Validity: weak implies strong). If Γ � J then Γ ||= J .

Proof. The hypothesis is ∀Δ � ρ = ρ′ : Γ. Δ � tρ = t′ρ′ : Aρ. Assume Θ |=
ρ = ρ′ : Γ and Δ � θ = θ′ : Θ and show Δ � tρθ = t′ρ′θ′ : Aρθ. By Lemma 10
Δ � ρθ = ρ′θ′ : Γ , hence our goal follows by assumption.

Corollary 4. If Γ � J then Γ ||= J .

Lemma 12. Γρid |= ρid = ρid : Γ .

Corollary 5. If Γ � t : A then Γρid |= tρid : Aρid.

Putting things together:

Theorem 3 (Soundness of algorithmic equality). If Γ � t, t′ : A and
Γρid � tρid = t′ρid ⇑ Aρid then Γ � t = t′ : A.

Proof. We have Γ � t : A R© Γρid � tρid : Aρid and Γ � t′ : A R© Γρid � t′ρid :
Aρid. Also |= Γρid, Γρid |= Aρid, Γρid |= tρid : Aρid, and Γρid |= t′ρid : Aρid. By
semantic soundness of the algorithm, Γρid |= tρid = t′ρid : Aρid which implies
Γρid � tρid = t′ρid : Aρid, hence Γ � t : A R© Γρid � t′ρid : Aρid. This entails
Γ � t = t′ : A.

9 On Termination

What remains to show is termination of the algorithmic equality: Given two
terms of the same type, the algorithm terminates on their values. We have al-
ready seen that the values of well-typed terms are reifiable, hence the NbE-
algorithm, which compares the results of reification, is terminating. We would
like to extend this result to algorithmic equality, which performs reification in-
crementally. One would expect a statement similar to Lemma 7:

If Δ � d ↘ ⇑ X and Δ � d′ ↘ ⇑ X then the query Δ � d = d′ ⇑ X
terminates.

54 A. Abel, T. Coquand, and P. Dybjer

Generalizing this statement to the mutually defined notions of reification and
algorithmic equality (⇓ and ⇑ Set), we see that the proof fails since during
reification of d′, context and type diverge from Δ and X . (Similar considerations
lead us to the definition of � in Section 5.2.)

The skeleton of the algorithmic derivation is already determined by the deriva-
tion of Δ � d ↘ ⇑ X . Yet we have to show that the application f ′ · xΔ is
terminating in aq-ext. Somehow we have to exploit that d′ originates from a
well-typed term, thus, Δ � d′ : X and even Δ |= d : X both hold. But it is
unclear how to make use of these facts in a termination proof.

10 Conclusion and Related Work

We have presented a bidirectional incremental βη-equality algorithm for a depen-
dent type theory with predicative universes and verified it using NbE-techniques.
The algorithm is formulated with respect to an abstract representation of values
which supports several implementations. In Sec. 8 we had to exclude the repre-
sentation via higher order abstract syntax, which was used in an early version
of Agdalight, a predecessor of Agda 2. In the future we want to explore how to
generalize our proof so that we also cover this implementation technique. Fur-
thermore, we want to close the gap and prove termination of the algorithm as
well as soundness and completeness of type checking.

Some complications in the verification vanish if we restrict to a concrete, term-
like implementation of values, for instance, closures [Coq96, AC08]. Closures are
a special case of explicit substitutions, hence, soundness of algorithmic equality
is trivial: each algorithmic rule can be replaced by a sequence of declarative
rules. Termination also becomes apparent: algorithmic equality works only on
well-typed terms, which are normalizing.

Related work. The current proof uses similar techniques to those in our previous
work on NbE [ACD07]. However, there are several differences, in order to deal
with contextual reification we here need a Kripke model instead of a plain PER
model.

Goguen [Gog94] proves decidability of UTT using typed operational seman-
tics. He treats η, universes, and even inductive types and a impredicative universe
of propositions. Showing soundness and completeness of his syntactic Kripke
model he establishes subject reduction, confluence, and strong normalization,
which imply decidability. However, he is not concerned about particular algo-
rithms. Since his approach is based on η-reduction instead of η-expansion, it is
not clear whether it scales to a unit type with extensional equality.

Harper and Pfenning [HP05] present an incremental bidirectional βη-equality
algorithm for LF using erasure of dependencies; this does not extend to large
eliminations. Chapman, Altenkirch, and McBride [CAM07] share their algorithm
with us. They describe an implementation, but no verification.

Grégoire and Leroy [GL02] have implemented an incremental β-conversion
test for the Calculus of Inductive Constructions based on “normalization by ex-
ecution”. Values are computed by compiling (open!) expression to Caml byte

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory 55

code. The result of executing the code is then read back to a β-normal expres-
sion. The soundness of this efficient form of evaluation has been formally verified
in Coq. We expect that our and their work can be combined to obtain an ef-
ficient βη-conversion test. To this end, one needs to instantiate the syntactical
applicative structure D to machine code and define contextual reification of code,
similar to Grégoire and Leroy’s read back function.

Acknowledgments. Thanks to the anonymous referees who gave insightful com-
ments and pointed to the problem of termination.

References

[AAD07] Abel, A., Aehlig, K., Dybjer, P.: Normalization by evaluation for Martin-Löf
type theory with one universe. In: Fiore, M. (ed.) Proc. of the 23rd Conf. on
the Mathematical Foundations of Programming Semantics (MFPS XXIII).
Electr. Notes in Theor. Comp. Sci, vol. 173, pp. 17–39. Elsevier, Amsterdam
(2007)

[AC07] Abel, A., Coquand, T.: Untyped algorithmic equality for Martin-Löf’s logical
framework with surjective pairs. Fundam. Inform. 77(4), 345–395 (2005);
TLCA 2005 special issue

[AC08] Altenkirch, T., Chapman, J.: Big step normalisation. Draft, available on the
authors’ homepages (2008)

[ACD07] Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-
Löf Type Theory with typed equality judgements. In: Proc. of the 22nd
IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 3–12. IEEE
Computer Soc. Press, Los Alamitos (2007)

[ACD08] Abel, A., Coquand, T., Dybjer, P.: A semantic βη-equality algorithm for
Martin-Löf Type Theory (extended version). Technical report, Ludwig-
Maximilians-University Munich (2008),
http://www.tcs.ifi.lmu.de/∼abel/semEqTR.pdf

[Bar84] Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North
Holland, Amsterdam (1984)

[BL84] Bruce, K.B., Longo, G.: On combinatory algebras and their expansions.
Theor. Comput. Sci. 31, 31–40 (1984)

[BS91] Berger, U., Schwichtenberg, H.: An inverse to the evaluation functional for
typed λ-calculus. In: Proceedings of the 6th Annual IEEE Symposium on
Logic in Computer Science, Amsterdam, pp. 203–211 (July 1991)

[CAM07] Chapman, J., Altenkirch, T., McBride, C.: Epigram reloaded: a standalone
typechecker for ETT. In: van Eekelen, M.C.J.D. (ed.) Revised Selected Pa-
pers from the 6th Symp. on Trends in Functional Programming, TFP 2005,
Trends in Functional Programming, Intellect, vol. 6, pp. 79–94 (2007)

[Coq94] Coquand, C.: From semantics to rules: A machine assisted analysis. In:
Meinke, K., Börger, E., Gurevich, Y. (eds.) Proc. of the 7th Wksh. on
Computer Science Logic, CSL 1993. LNCS, vol. 832, pp. 91–105. Springer,
Heidelberg (1994)

[Coq96] Coquand, T.: An algorithm for type-checking dependent types. In: Mathe-
matics of Program Construction. Selected Papers from the Third Interna-
tional Conference on the Mathematics of Program Construction, Kloster
Irsee, Germany, July 17–21, 1995. Science of Computer Programming,
vol. 26, pp. 167–177. Elsevier Science, Amsterdam (1996)

http://www.tcs.ifi.lmu.de/~abel/semEqTR.pdf

56 A. Abel, T. Coquand, and P. Dybjer

[CPT05] Coquand, T., Pollack, R., Takeyama, M.: A logical framework with depen-
dently typed records. Fundam. Inform. 65(1-2), 113–134 (2005)

[Dan99] Danvy, O.: Type-directed partial evaluation. In: Hatcliff, J., Mogensen,
T.Æ., Thiemann, P. (eds.) Partial Evaluation – Practice and Theory, DIKU
1998 International Summer School, Copenhagen, Denmark, June 29 - July
10, 1998. LNCS, vol. 1706, pp. 367–411. Springer, Heidelberg (1999)

[Dyb96] Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) TYPES
1995. LNCS, vol. 1158, pp. 120–134. Springer, Heidelberg (1996)

[Dyb00] Dybjer, P.: A general formulation of simultaneous inductive-recursive defi-
nitions in type theory. The Journal of Symbolic Logic 65(2), 525–549 (2000)

[GL02] Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In:
Proc. of the 7th ACM SIGPLAN Int. Conf. on Functional Programming
(ICFP 2002). SIGPLAN Notices, vol. 37, pp. 235–246. ACM Press, New
York (2002)

[Gog94] H. Goguen.: A Typed Operational Semantics for Type Theory. PhD thesis,
University of Edinburgh. Available as LFCS Report ECS-LFCS-94-304 (Au-
gust 1994)

[HP05] Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type
theory. ACM Transactions on Computational Logic 6(1), 61–101 (2005)

[INR07] INRIA. The Coq Proof Assistant, Version 8.1. INRIA (2007),
http://coq.inria.fr/

[Ler06] Leroy, X.: Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.)
Proc. of the 33rd ACM Symp. on Principles of Programming Languages,
POPL 2006, pp. 42–54. ACM Press, New York (2006)

[ML75] Martin-Löf, P.: About models for intuitionistic type theories and the notion
of definitional equality. In: Kanger, S. (ed.) Proceedings of the 3rd Scandi-
navian Logic Symposium, pp. 81–109 (1975)

[ML92] P. Martin-Löf.: Substitution calculus. Lecture in Göteborg (November 1992)
(unpublished)

[Nor07] Norell, U.: Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, SE-41296 Göteborg, Sweden (September
2007)

[Pit06] Pitts, A.M.: Alpha-structural recursion and induction. Journal of the
ACM 53, 459–506 (2006)

[Pol94] Pollack, R.: Closure under alpha-conversion. In: Barendregt, H., Nipkow,
T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 313–332. Springer, Heidelberg
(1994)

[PS99] Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical
Framework for Deductive Systems. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

[PT98] Pierce, B.C., Turner, D.N.: Local type inference. In: POPL 98: The 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Diego, California (1998)

[Shi05] Shinwell, M.: The Fresh Approach: Functional Programming with Names
and Binders. PhD thesis, University of Cambridge (2005)

[SS08] Schürmann, C., Sarnat, J.: Structural logical relations. In: Pfenning, F. (ed.)
Proc. of the 23nd IEEE Symp. on Logic in Computer Science (LICS 2008)
(2008)

http://coq.inria.fr/

The Capacity-C Torch Problem

Roland Backhouse

School of Computer Science University of Nottingham, Nottingham NG8 1BB,
England

rcb@cs.nott.ac.uk

Abstract. The torch problem (also known as the bridge problem or the
flashlight problem) is about getting a number of people across a bridge
as quickly as possible under certain constraints. Although a very sim-
ply stated problem, the solution is surprisingly non-trivial. The case in
which there are just four people and the capacity of the bridge is two
is a well-known puzzle, widely publicised on the internet. We consider
the general problem where the number of people, their individual cross-
ing times and the capacity of the bridge are all input parameters. We
present an algorithm that determines the shortest total crossing time;
the number of primitive computations executed by the algorithm (i.e.
the worst-case time complexity of the algorithm) is proportional to the
square of the number of people.

Keywords: algorithm derivation, shortest path, dynamic programming,
algorithmic problem solving.

The (capacity-C) torch problem is as follows.

N people wish to cross a bridge. It is dark, and it is necessary to use a
torch when crossing the bridge, but they only have one torch between
them. The bridge is narrow and at most C people can be on it at any
one time. The people are numbered from 1 thru N. Person i takes time
t.i to cross the bridge; when a group of people cross together they must
all proceed at the speed of the slowest.

Construct an algorithm that will get all N people across in the short-
est time. Provide a clear justification that the algorithm does indeed find
the shortest time.

The torch problem is an abstraction from a problem involving four people
wishing to cross a bridge of capacity two and with specific concrete times. In
this form, the problem is believed to have first appeared in 1981. Rote [3] gives
a comprehensive bibliography.

The main interest in the torch problem is that what is “obvious” or “intuitive”
is often wrong. For example, the “obvious” solution of letting the fastest person
repeatedly accompany C−1 people across the bridge is wrong. (If N =4, C =2
and the travel times are 1, 1, 2 and 2, this solution takes time 7 whereas the

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 57–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 R. Backhouse

shortest crossing time is 61.) Also, the “obvious” property that the shortest time
is achieved when the number of crossings is minimised is incorrect. (If N =5,
C =3 and the travel times are 1, 1, 4, 4 and 4, the shortest time is 8, which is
achieved using 5 crossings. The shortest time using 3 crossings is 9.) It is not
difficult to determine an upper bound on the crossing time, even in the general
case. Nor is it difficult to provide counterexamples to incorrect solutions. The
difficulty is to establish an irrefutable lower bound on the crossing time. A proper
solution to the problem poses a severe test of our standards of proof.

In our solution, we assume that the people are ordered so that t.i< t.j if i< j.
If the given times are such that t.i= t.j for some i and j, where i< j, we can
always consider pairs (t.i , i), where i ranges over people, ordered lexicographi-
cally. Renaming the crossing “times” to be such pairs, we obtain a total ordering
on times with the desired property2. We also assume that N is at least C+1.
(When N is at most C, it is obvious that exactly one crossing gives the optimal
solution. When N is at least C+1, more than one crossing is required.)

For brevity, some of the more straightforward proofs at the beginning of the
paper. A full version of the paper, which includes the details of all proofs, is
available from the author’s website.

1 Outline Strategy

An outline of our solution is as follows.
We call a sequence of crossings that gets everyone across in accordance with

the rules a putative sequence. We will say that one putative sequence subsumes
another putative sequence if the time taken by the first is at most the time
taken for the second. Note that the subsumes relation is reflexive (every puta-
tive sequence subsumes itself) and transitive (if putative sequence a subsumes
putative sequence b and putative sequence b subsumes putative sequence c then
putative sequence a subsumes putative sequence c). An optimal sequence is a
putative sequence that subsumes all putative sequences. A putative sequence is
suboptimal if it is not optimal. The problem is to find an optimal sequence.

Recall that, when crossing the bridge, the torch must always be carried. This
means that crossings, both of groups of people and of each individual person,
alternate between “forward”and “return” trips, where a forward trip is a crossing
in the desired direction, and a return trip is a crossing in the opposite direction.

A regular forward trip means a crossing in the desired direction made by at
least two people, and a regular return trip means a trip in the opposite direction
made by exactly one person. A regular sequence is a putative sequence that
consists entirely of regular forward and return trips.

1 Our examples are chosen so that it is easy for the reader to discover the fastest
crossing time. Of course, the examples in puzzle books are deliberately chosen to
make it difficult.

2 Strictly, we also need to extend addition to pairs. Defining (t, i)+(u, j) to be
(t+u , i↓j) guarantees the appropriate algebraic structure, in particular distribu-
tivity of addition over minimum [2].

The Capacity-C Torch Problem 59

The first step (lemma 1) is to show that every optimal putative sequence is
regular. The significance of this is threefold. First, it means that the search space
for an optimal solution is finite. (This is because a forward trip followed by a
return trip reduces the number of people at the start; hence there are at most
N−1 forward trips in any regular sequence.) Second, the time taken by a regular
putative sequence can be evaluated knowing only which forward trips are made.
(Knowing the bag of forward trips, it is easy to determine how many times each
person makes a return trip. This is because each person makes one fewer return
trips than forward trips. In this way, the time taken for the return trips can
be calculated.) Finally, and most importantly, knowing just the bag of forward
trips in a regular putative sequence is sufficient to reconstruct a regular putative
sequence. This is proved in theorem 1. Since all such sequences take the same
total time, we can replace the problem of finding an optimal sequence of forward
and return trips by the problem of finding an optimal bag of forward trips.

Finding an optimal bag of forward trips begins by establishing a number of
lemmas with the goal of reducing the size of the search space. Subsequently, we
can formulate the problem as, essentially, a shortest-path problem on an acyclic
graph. More precisely, we present a collection of equations each of which corre-
sponds to a component of an algorithm for non-deterministically constructing a
bag of forward trips. By calculating the (unique) solution to these equations, we
can resolve the non-determinacy in the construction and so obtain an optimal
bag of forward trips. Then theorem 1 is applied to obtain a regular sequence
that optimises the total travel time. The number of terms in the collection of
equations is quadratic in the number of people and cubic in the capacity of the
bridge, from which we can deduce the worst-case solution time.

2 Terminology

Let us suppose a putative sequence is given. By extracting just the forward trips
in the sequence and ignoring the order in which they are made, we obtain a bag
(multiset) of non-empty sets. We use F to denote such a bag. Note that a bag is
a set with multiplicities. By a slight abuse of notation, we write T∈F and call
T an element of F if T is an element of the set underlying bag F ; we also write
#FT for the multiplicity of T in the bag F . The bag is completely defined by
listing its elements together with their multiplicities.

Since everyone must cross at some time, the bag F satisfies the property that

〈∀i : 1≤ i≤N : 〈∃T : T∈F : i∈T 〉〉 . (1)

Also, since each forward trip is non-empty and the capacity of the bridge is C,

〈∀T : T∈F : 1≤|T |≤C〉 . (2)

From the bag F , we can determine the number of times each individual makes
a forward trip. This is given by the function f which is defined by

fF .i = 〈ΣT : i∈T :#FT 〉 . (3)

60 R. Backhouse

The number of times that each person returns is given by the function r; since
each person makes one more forward trip than return trip, we have

rF .i = fF .i−1. (4)

We distinguish two types of person:

(a) Someone who never makes a return trip is called a settler.

settlerF .i ≡ rF .i = 0.

(b) Someone who does make a return trip is called a nomad.

nomadF .i ≡ rF .i > 0.

(Note that settlerF .i �≡nomadF .i.) We further subdivide the settlers into “pure”
and “mixed” settlers.

(a) A pure settler is a settler who crosses with (only) other settlers.

pureF .i ≡ 〈∀T : T∈F ∧ i∈T : 〈∀j : j∈T : settlerF .j〉〉 .
(b) A mixed settler is a settler who crosses with at least one nomad.

mixedF .i ≡ settlerF .i ∧ 〈∃T ,j : T∈F ∧ i∈T ∧ j∈T : nomadF .j〉 .
Correspondingly, we divide the forward trips into “pure”, “mixed” and “no-
madic”.

(a) A pure trip is a forward trip in which everyone involved is a settler.

pureF .T ≡ 〈∀j : j∈T : settlerF .j〉 .
(b) A mixed trip is a forward trip involving both settlers and nomads.

mixedF .T ≡ 〈∃i,j : i∈T ∧ j∈T : settlerF .i∧nomadF .j〉 .
(c) A nomadic trip is a forward trip in which everyone involved is a nomad.

nomadicF .T ≡ 〈∀i : i∈T :nomadF .i〉 .
A full trip is a forward trip in which C people cross. That is, the trip has no

spare capacity.

full.T ≡ |T |=C.

The leader of a trip is the slowest person in the trip3:

lead.T = 〈⇑i : i∈T : i〉 .
Mixed and pure trips have multiplicity 1 in the bag F , and each settler is an el-
ement of exactly one element of F . It is therefore possible to define a function
from settlers to people which identifies the slowest person in the trip made by the
settler. Let us call this function bossF . Then the defining property of bossF is

〈∀ i,T : settlerF .i∧T∈F ∧ i∈T : lead.T = bossF .i〉 .
For nomads, the function bossF is undefined.
3 The symbols ⇑ and ⇓ denote the maximum and minimum quantifiers, respectively;

the symbols ↑ and ↓ denote the binary maximum and minimum operators.

The Capacity-C Torch Problem 61

3 Regular Sequences

Recall that a “regular” sequence is a sequence in which each forward trip in-
volves at least two people and each return trip involves exactly one person. The
following lemma restricts attention to just the regular sequences. The proof is
omitted.

Lemma 1. Every putative sequence containing irregular trips is suboptimal. �	

3.1 Scheduling Forward Trips

In view of lemma 1, we now consider bags of forward trips that correspond to
regular putative sequences. Suppose F is such a bag. Then, with the function r
defined by (4), the total time taken by the sequence is

〈ΣT : T∈F : 〈⇑i : i∈T : t.i〉 ×#FT 〉 + 〈Σi :: t.i× rF .i〉 . (5)

(Forward trip T takes time 〈⇑i : i∈T : t.i〉 and has multiplicity #FT , and person
i makes rF .i return trips each of which takes time t.i because the sequence is
regular.) Note that the total time is independent of the order in which the trips
are scheduled.

Also, since the number of forward trips is |F | and each return trip is under-
taken by exactly one person,

|F | = 〈Σi :: rF .i〉 +1. (6)

In a regular sequence, each forward trip involves at least 2 and at most C people,
thus sharpening property (2):

〈∀T : T∈F : 2≤|T |≤C〉 . (7)

Finally, as before, each person must cross at least once:

〈∀i : 1≤ i≤N : 1≤ fF .i〉 . (8)

Crucially, given a bag of sets, F , such that properties (6), (7) and (8) hold of
F , it is always possible to construct a regular putative sequence S such that the
bag of forward trips in S is F . To establish this theorem, we first prove several
properties relating the number of pure trips, the number of nomads and the
number of non-pure trips in F .

To this end, we define the functions n (“number of nomads”), nc (“nomad
count”), rc (“return count”), sc (“settler count”), np (“the number of non-pure
trips”) and pc (“pure-trip count”) as follows. In the definitions, G is an arbitrary
bag of sets, and T ranges over elements of G. The multiplicity of T in G is denoted
by #GT .

nG = 〈Σi :nomadG.i : 1〉 (9)
ncG.T = 〈Σi : nomadG.i∧ i∈T : 1〉 (10)

rcG = 〈Σi :: rG.i〉 (11)
scG.T = 〈Σi : settlerG.i∧ i∈T : 1〉 (12)
npG = 〈ΣT :¬(pureG.T) :#GT 〉 (13)
pcG = 〈ΣT :pureG.T : 1〉 (14)

62 R. Backhouse

(Note that pure trips always have a multiplicity of 1.)
The following lemma and its corollary identify some straightforward relations

between the various counts. Note that lemma 2 is true of all bags, whereas
corollary 1 exploits a relation between the size of the bag and its return count.

Lemma 2. Suppose G is a bag of sets. Then

nG=0 ≡ rcG=0, (15)

nG ≤ rcG, (16)

rcG = 〈ΣT :: ncG.T ×#GT 〉 − nG, (17)

npG �=1. (18)
�	

Corollary 1. If G is a bag of sets such that |G| = rcG+1 then

nG=0 ≡ |G|=1. (19)

nG=1 ⇒ 〈∀T ::¬(pureG.T)〉 . (20)
�	

In general, the implication in (20) cannot be strengthened to equivales. For
example, the bag G equal to {{1,3} ,{1,2,4} ,{2,5}} satisfies the property that
|G| = rcG+1 and every trip in G is non-pure. However, the set of nomads in
G is {1,2}. That is, nG �=1. The converse implication does hold for the bag of
forward trips corresponding to an optimal putative sequence.

Theorem 1. Suppose F is a bag of sets satisfying (6), (7) and (8). Then there
is a regular putative sequence of which the bag of forward trips equals F .4

Proof. Consider the algorithm below. It constructs a sequence S of forward and
return trips. On termination, the bag of forward trips defined by S (denoted by
ForwardBag.S in the algorithm) equals F .

The symbol ε denotes the empty sequence and S ++ S′ denotes a sequence ob-
tained by appending a sequence S′ to the end of S. The sequence S′ begins with
the trip T and has total length 2×ncG.T . The trip T is followed in S′ by a sequence
of alternating return and forward trips, beginning and ending with a return trip.
The return trips are made by the ncG.T nomads in T , the order being arbitrary;
the forward trips are all pure, their choice is also arbitrary. The choice of T at
each iteration (indicated by the “[]T ” quantification5) is a non-pure trip with the
property that ncG.T ≤pcG+1. Note that whether or not a trip is pure is evalu-
ated with respect to the bag G and not the bag F . The guard on the choice of T
guarantees that S′ can be constructed from the elements of G. The removal of one
occurrence of T and the pure trips in S′ from the bag G results in the bag denoted
by G�S′. The symbol “∪̇” in the invariant denotes bag union.
4 Thanks to Arjan Mooij for providing the key insight in the proof of this theorem.
5 Choice quantifiers are used frequently in this paper. Formally, 〈[]k :R : S〉 introduces a

local variable k with scope delimited by the angle brackets; k is non-deterministically
initialised to a value satisfying R, following which statement S is executed. The type
of k is implicit. Here, T is a trip.

The Capacity-C Torch Problem 63

The invariant is truthified by the initialisation because F satisfies (6). It
is also maintained by the loop body because |G| is decreased by ncG.T and,
simultaneously, rG.i is decreased by 1 for ncG.T instances of i; also, the forward
trips added to the sequence S are precisely the trips removed from the bag G.

On termination of the loop, we claim that G has size 1; the sequence S is
concluded by the one trip remaining in G.

S,G := ε,F ;

{ Invariant: |G| = rcG+1 ∧ F = G ∪̇ForwardBag.S }
do 〈[]T

: T∈G ∧ ¬(pureG.T) ∧ ncG.T ≤pcG+1

: { See text above for the definition of S′ }
S,G := S ++ S′ ,G�S′

〉
od

{ |G|=1 } ;

〈[]T : G= {T } : S := S ++ [T]〉
{ F = ForwardBag.S }

The key to the correctness of this algorithm is the claim that the assertion
“|G|=1” is implied by the condition for terminating the loop:

〈∀T : T∈G∧¬(pureG.T) : ¬(ncG.T ≤pcG+1)〉 .

The contrapositive of this claim is that, when |G| �= 1, there is a non-pure
trip available to extend the sequence S. We prove this as follows. Assume that
|G| �= 1. Then, by (19), 〈∃T : T∈G : ¬(pureG.T)〉. So,

〈∃T : T∈G∧¬(pureG.T) : ncG.T ≤pcG+1〉
= { property of minimum }

〈⇓T : T∈G∧¬(pureG.T) : ncG.T 〉 ≤ pcG+1

⇐ { pigeon-hole principle (the minimum of a non-empty

bag of integers is at most the average),

(13) and integer inequalities }
〈ΣT : ¬(pureG.T) : ncG.T ×#GT 〉 < npG× (pcG+2)

= { (17) }
rcG+nG < npG× (pcG+2)

⇐ { (16) }
2× rcG < npG× (pcG+2)

64 R. Backhouse

= { by range splitting, |G| = pcG+npG ;

also, by invariant, |G|= rcG+1 }
2× (pcG+npG−1) < npG× (pcG+2)

⇐ { arithmetic }
2 ≤ npG

= { (18) }
0 �= npG

= { (19) and assumption: |G| �= 1 }
true. �	

4 The Optimisation Problem

The optimisation problem we now focus on is to determine a bag of sets F such
that properties (6), (7) and (8) hold of F which minimises the total travel time
as given by (5). A bag, F , with the properties (6), (7) and (8) will be called a
regular bag.

In our analysis, we refer to the subterm 〈ΣT : T∈F : 〈⇑i : i∈T : t.i〉〉 in (5)
as F ’s forward time, and 〈Σi :: t.i× rF .i〉 as F ’s return time. We also refer to
the subterm 〈⇑i : i∈T : t.i〉 as T ’s trip time and t.i× rF .i as person i’s return
time. It is important to note that we also use this terminology for bags of trips,
F , that are not necessarily regular.

We continue to use the notion of “subsumption” but now applied to (regular)
bags rather than sequences. So regular bag F subsumes regular bag G if F ’s total
travel time is at most that of G. A bag is optimal if it is regular and subsumes
all other bags, and is suboptimal if it is regular but not optimal.

Our solution is based on the following theorem.

Theorem 2. A bag of trips, F , that does not satisfy the following properties is
suboptimal.

(a) For each T in F , the nomads in T are persons 1 thru ncF .T . That is,

〈∀i,T : T∈F ∧ i∈T : nomadF .i ≡ 1≤ i≤ncF .T 〉 .

(b) The function bossF is monotonically increasing. That is, for all settlers i
and j,

bossF .i≤ bossF .j ⇐ i≤ j.

(c) All pure trips in F are full. There is at most one non-full mixed trip in F
and, if there is one, it is the fastest mixed trip and it has nF nomads.

(d) For all non-nomadic trips, the function nc is a decreasing function of the
leader of the trip. That is, for all non-nomadic trips T and U in F ,

ncF .T ≥ncF .U ⇐ lead.T ≤ lead.U. �	

The Capacity-C Torch Problem 65

In words, 2(a) expresses the property that, in an optimal bag, the nomads are the
fastest, and always make forward trips in a contiguous group which includes per-
son 1. 2(b) expresses the property that the trips divide the settlers into contiguous
groups. 2(d) has the corollary that the pure settlers are the slowest. So, in sum-
mary, theorem 2 establishes the “intuitively obvious” property that the search for
an optimal solution can be restricted to bags of trips in which, in order of increas-
ing travel times, the groups of people are: the nomads, the settlers in a non-full
mixed trip, the mixed settlers in full trips and the pure settlers.

To prove theorem 2 we use proof-by-contradiction. We prove a property P
by contradiction by showing that every regular bag, F , that does not satisfy P
can be transformed to a regular bag, F ′, that does satisfy P and has a strictly
smaller total travel time. To establish a succession of properties, P and Q say,
we first prove P and then assume P when proving Q.

Note that non-nomadic trips have multiplicity 1 in F . Thus, for non-nomadic
trips T , there is no confusion between the trip T and the individual occurrences
of T in F . On the other hand, nomadic trips may have multiplicity greater than
1 in F . For such trips, we are careful to make clear whether the transformation
is applied to all occurrences of the trip or just one.

4.1 Choosing Nomads

We begin by proving part (a) of theorem 2. We first establish that the nomads
are persons 1 thru n, for some n.

Lemma 3. Every regular bag of forward trips is subsumed by a regular bag in
which all settlers are slower than all nomads.

Proof. Suppose that, within regular bag F , p is the fastest settler and q is the
slowest nomad. Suppose p is faster than q.

Interchange p and q everywhere in F . We get a regular bag, F ′. The return
time is clearly reduced by at least t.q− t.p.

The times for the forward trips in F involving q are not increased in F ′

(because t.p< t.q). The time for the one forward trip in F involving p is increased
in F ′ by an amount that is at most t.q− t.p. This is verified by considering two
cases. The first case is when q is an element of p’s forward trip. In this case,
swapping p and q has no effect on the trip, and the increase in time taken is 0.
In the second case, q is not an element of p’s forward trip. In this case, it suffices
to observe that, for any x (representing the maximum time taken by the other
participants in p’s forward trip),

t.p↑x + (t.q− t.p)

= { distributivity of sum over max, arithmetic }
t.q ↑ (x+(t.q− t.p))

≥ { t.p≤ t.q, monotonicity of max }
t.q ↑x.

66 R. Backhouse

Finally, the times for all other forward trips are unchanged.
The net effect is that the total time taken does not increase. That is, F ′

subsumes F . Also, the total forward-trip time of the settlers is strictly increased.
Thus, repeating the process of swapping the fastest settler with the slowest
nomad whilst the former is faster than the latter is guaranteed to terminate
with a bag that subsumes the given bag and in which all settlers are slower than
all nomads. �	

Lemma 4. Every regular bag of forward trips is subsumed by a bag, F , that
satisfies 2(a).

Proof. Suppose a regular bag F of forward trips is given. By lemma 3, F is
subsumed by a bag G in which the nomads are persons 1 thru nG. (Bags F and
G may be the same, but that is not significant.)

For each trip T in G, consider the set of nomads in T . Specifically, define
nom.T to be

T ∩ {i |nomadG.i}.

Recall that ncG.T is the number of nomads in set T . That is, ncG.T = |nom.T |.
Replace T in the bag G by

(T ∩ {i | settlerG.i}) ∪ {i | 1≤ i≤ncG.T }.

This replaces G by a bag F ′. To see that F ′ is regular, we observe that the
replacement of T increases the number of forward trips by person i only when
i≤ncG.T . But ncG.T ≤nG; so, settlers in G are also settlers in F ′. Hence, the
size of the bag T is unchanged by the replacement. That is, property (7) is an
invariant of the replacement. The number of forward trips made by nomads i in
G such that ncG.T < i≤nG decreases by at most 1. So, such nomads may not be
nomads in F ′. However, the number of forward trips each makes remains strictly
positive (since a nomad makes at least 2 forward trips, by definition), and each
decrease in the number of forward trips made by such a nomad is compensated
by an increase in the number of forward trips made by some nomad i, where
1≤ i≤ncG.T . That is, properties (8) and (6) are invariant under the replacement.
Finally, the replacement decreases the total trip time because the times of the
return trips are decreased, and the times of the forward trips are not increased.
That is, F ′ subsumes G; by the transitivity of the subsumes relation, F ′ also
subsumes F . �	

Corollary 2. Every regular bag is subsumed by a bag, F , in which the number
of nomads, nF , is at most C.

Proof. Every regular bag is subsumed by a bag, F , satisfying 2(a), and

nF ≤C

= { 2(a) }
〈⇑T :T∈F :ncF .T 〉 ≤ C

The Capacity-C Torch Problem 67

= { definition of maximum (⇑) }
〈∀T : T∈F : ncF .T ≤C〉

= { definition of ncF , (7) }
true. �	

4.2 Permuting Settlers

In this section, we prove part (b) of theorem 2. We begin, however, with a similar
lemma which is used later in the proof of part (d).

Lemma 5. Suppose bag F satisfies 2(a). Then either the settler count in each
trip is a monotonic function of the leader of the trip (i.e.

scF .T ≤ scF .U ⇐ lead.T ≤ lead.U)

or F is suboptimal.

Proof. Take trips T and U in F such that scF .T >scF .U and lead.T ≤ lead.U .
It follows that T �=U . Because scF .T >0 and F satisfies 2(a), lead.T is a settler.
Now, because lead.T ≤ lead.U and F satisfies 2(a), it follows that lead.U is
also a settler. But settlers are elements of exactly one trip. We conclude that
scF .T >scF .U >0, both T and U have multiplicity 1 in F , and lead.T < lead.U .

Rearrange the settlers in T and U so that scF .T and scF .U are unchanged
(thus guaranteeing a regular bag) and the slowest settlers are in T and the fastest
settlers are in U . Using primes to denote the new values of T and U , we have

t.(lead.T ′) + t.(lead.U ′)

= { lead.U is the slowest settler, so lead.T ′ = lead.U }
t.(lead.U) + t.(lead.U ′)

< { scF .U ′ = scF .U <scF .T and U ′ contains the fastest settlers;

so lead.U ′ <lead.T }
t.(lead.U) + t.(lead.T).

Other trips are unchanged, so the effect is to strictly decrease the total travel
time. �

Lemma 6. A bag F that does not satisfy 2(b) is suboptimal.

Proof. Take any two settlers i and j such that bossF .i> bossF .j and i≤ j. It
follows that i �= j and they must be in different trips, T and U say. Swap bossF .j
(the slowest person in trip U) with the fastest settler in trip T . Then, using
primes to denote the new trips,

t.(lead.T ′) + t.(lead.U ′)

= { i< j≤ bossF .j < bossF .i ; so i �= bossF .i

68 R. Backhouse

hence lead.T ′ = lead.T = bossF .i }
t.(lead.T) + t.(lead.U ′)

< { lead.U = bossF .j,

bossF .j has been replaced by k where k≤ i< j≤ bossF .j }
t.(lead.T) + t.(lead.U).

Other trips are unchanged, so the effect is to strictly decrease the total travel
time. �	

4.3 Filling Non-nomadic Trips

Part (c) of theorem 2 is about filling non-nomadic trips as far as possible with no-
mads. The proof is split into several lemmas. The proofs themselves are omitted
because they add no new techniques.

Lemma 7. A bag F that satisfies 2(a) but has a non-full pure trip is
suboptimal. �	

Lemma 8. A bag F that satisfies 2(a) but has a non-full mixed trip that is not
the fastest mixed trip is suboptimal. �	

Lemma 9. Suppose bag F satisfies 2(a). Suppose F has a non-full mixed trip
that is the fastest mixed trip but all mixed trips in F have fewer than nF nomads.
Then F is suboptimal. �	

Lemma 10. Suppose bag F satisfies 2(a). Suppose there is a mixed trip, T say,
with nF nomads and a non-full mixed trip, U say, with n nomads where n<nF .
Suppose U is the fastest mixed trip. Then F is suboptimal. �	

Corollary 3. A bag F that satisfies 2(a) but does not satisfy theorem 2(c) is
suboptimal. A bag F that satisfies 2(a) but does not satisfy theorem 2(d) is
suboptimal. �	

5 Constructing an Optimal Bag of Forward Trips

In this section, we use theorem 2 to give a lower bound on the time taken to
cross. In the process of calculating the lower bound, an optimal bag of forward
trips can be constructed. Then, using the construction given in section 4, an
optimal putative sequence can be constructed from the bag.

Our algorithm for constructing an optimal bag constructs in stages an “or-
dered” bag of sets where “ordered” is defined below.

Definition 1 (Ordered). We say that a bag of sets, F , is ordered if

〈∀T :T∈F : 2≤|T |≤C〉 (21)

and it satisfies the four properties stated in theorem 2. �	

The Capacity-C Torch Problem 69

The algorithm constructs a bag of trips, F , starting with the slowest trips. The
measure of progress is a pair (m, p) ordered lexicographically, where m is a
measure of the number of people not yet included in a trip and p measures
the “excess” of pure trips over return trips. Formally, we exploit the following
theorem.

Theorem 3. A bag of sets, F , is optimal if it is ordered and

〈∀i : 1≤ i≤N : 1≤ fF .i〉 , (22)

and

pcF = 〈Σi : 2≤ i≤nF : rF .i〉 . (23)

Proof. Comparing the definition of regular bags (properties (6), (7) and (8)) with
the definition of ordered bags, we see that (21) and (7) are identical, as are (22)
and (8). Thus, any ordered bag is a solution if it also satisfies (6). We now show
that (6) and (23) are equivalent when the bag F satisfies the properties stated
in theorem 2. That is, we prove that

|F | = 〈Σi :: rF .i〉 +1 ≡ pcF = 〈Σi : 2≤ i≤nF : rF .i〉 .

We have:

|F |
= { definition of |F |, range splitting }

pcF + npF

= { by 2(a), 1∈T ≡¬(pureF .T), definition of fF .1 }
pcF + fF .1 .

Hence,

pcF = 〈Σi : 2≤ i≤nF : rF .i〉
= { above, arithmetic }

|F | − fF .1 = 〈Σi : 2≤ i≤nF : rF .i〉
= { fF .1 − 1 = rF .1, arithmetic }

|F | = 〈Σi : 1≤ i≤nF : rF .i〉 +1

= { by 2(a), rF .i �=0 ≡ 1≤ i≤nF }
|F | = 〈Σi :: rF .i〉 +1. �	

Henceforth, we call pcF − 〈Σi : 2≤ i≤nF : rF .i〉 the excess of the bag F . Theorem
3 states that an optimal bag is obtained by constructing an ordered bag in which
everyone makes a trip (property (22)) and the number of pure trips equals the
number of return trips made by nomads other than person 1 (property (23)).

70 R. Backhouse

Theorem 3 offers no way of determining the number of pure trips in an optimal
bag except by considering all the different possibilities. The basic structure of
our solution is thus to evaluate the minimum over all p of the total travel time
of a regular, ordered bag of forward trips in which the number of pure trips
is p. So, the problem becomes one of determining a lower bound on the travel
time incurred by a bag of mixed and nomadic forward trips with an “excess” p.
This problem is solved by identifying a collection of (acyclic) equations on the
travel times; by determining the (unique) solution of the equations we obtain the
desired lower bound on the total travel time; simultaneously, the bag of forward
trips can be constructed in the standard way.

For convenience, we define rt by

rt.n = 〈Σi : 1≤ i≤n : t.i〉 . (24)

In the equations below, occurrences of the function rt record the return time
for a given number of nomads; occurrences of the function t record the forward
time of some trip.

5.1 Outline Algorithm

The basic structure of our solution is to design a non-deterministic algorithm
that constructs regular, ordered bags. The algorithm is designed so that every
such bag is constructed by some resolution of the non-determinism.

An outline of the algorithm is shown below.

{ 2≤C <N }
〈[]p

: 0≤p≤
⌊
N−2
C

⌋
: AddPureT rips

{ |F |=p= pcF } ;

〈[]n,n′

: n=n′ =0

: 〈[]m
: m = N −p×C

: AddFullMixedT rips

{ 2≤m≤C } ;

IncludeRest

{ 〈∀i : 1≤ i≤N : 1≤ fF .i〉 } ;

if 0=p → skip

� 0<p → FinaliseNumberOfNomads

The Capacity-C Torch Problem 71

fi

〉 ;

AddNomadicT rips

〉
〉
{ (ordered.F ∧ 〈∀i : 1≤ i≤N : 1≤ fF .i〉)

∧ pcF = 〈Σi : 2≤ i≤nF : rF .i〉 }

The algorithm constructs a bag, F , of trips. At all stages, F is ordered. The
algorithm begins by introducing a variable p which is non-deterministically ini-

tialised to a natural number at most
⌊
N−2
C

⌋
. The step AddPureT rips initialises

the variable F to a bag of p pure trips. Informally, p is the excess of the bag F .
(This isn’t quite true as explained below.) Subsequent stages reduce p to zero.

Next, variables n and n′ are introduced, both with initial value zero; an in-
variant of n is that persons 1 thru n are nomads in F . The value of n′ is always
at least n. Persons n+1 thru n′ have a forward count of one (and so are settlers);
these persons will, however, eventually become nomads in F .

The variable m is introduced next. An invariant of m is that persons n′+1
thru m are the ones with a forward count of zero in F ; since all pure trips are full,
the initial value of m is thus N −p×C. The step AddFullMixedT rips adds full
mixed trips to F while C is less than m. Then IncludeRest adds one additional
trip to F in order to guarantee that every person is included in at least one trip.
This additional trip may be full or non-full.

The final step is to add nomadic trips to F in order to reduce the excess p to
0, if this is not already the case. The number of nomads in these trips is at least
n′↑2 and at most m↓(p+1).

The total travel time is simply the minimum over all possible choices of the
travel times of the constructed bags. The calculation of the optimal travel time
is equivalent to a shortest-path problem. Formally, each non-deterministic choice
is interpreted as a minimum and the addition of a set to F adds the return-trip
time of the nomads in the added trip (where the predicate nomad is evaluated
once the trip is added) and the forward-trip time to the total trip time. We
exploit the fact that addition distributes over minimum —the formal equivalent
of the “principle of optimality” of dynamic programming— in order to obtain a
polynomial-time algorithm.

Let us now give the details of the individual steps.

5.2 Adding Pure Trips

The first step (after the non-deterministic initialisation of p) is AddPureT rips
which initialises F to a set of p pure trips. In order to guarantee that the nomad
count ncF is a decreasing function of the leader, bossF is increasing, and all pure
trips are full, the assignment to F is simply

72 R. Backhouse

F := 〈∪k : 1≤k≤p : {{i | N −k×C < i ≤ N − (k−1)×C}}〉 .

All trips added to F are full, and the leader of the kth trip is person N−(k−1)×C.
On completion of this assignment, F is ordered and |F |=p= pcF .
The forward-trip time for the pure trips is constant. It is given by the function

PT :

PT .p = 〈Σi : 0≤ i<p : t.(N−C×i)〉 . (25)

Thus

TOT =
〈
⇓p : 0≤p≤

⌊
N−2
C

⌋
: PT .p + NP.p

〉
. (26)

The value of the function NP is determined by the mixed and nomadic trips
added to F in the later stages.

(Formally, (26) is a consequence of the fact that addition distributes over
minimum. In other words, the time for the pure trips can be “factored out” of
the calculation of the total travel time.)

5.3 Adding Full Mixed Trips

In the second stage, variables n, n′ and m are initialised to 0, 0 and N −p×C,
respectively, and a set of full mixed trips is added to F as follows.

{ Invariant: ordered.F

∧ 0 ≤ n ≤ n′ ≤ C−1 ∧ n′↑1<m

∧ 〈∀i : 1≤ i≤n : 1≤ rF .i〉
∧ 〈∀i : n<i≤n′ ∨ m<i≤N : 1= fF .i〉
∧ pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

∧ d.m.n.n′ ≤ p }
do C <m →

〈[]i
: n′↑1 ≤ i ≤ C−1 ∧ d.(m−C+i).n′.i ≤ p−n′↑1+1

: F := F ∪{{j |1≤ j≤ i}∪{j |m−C+i< j≤m}} ;

m,n , n′ , p := m−C+i , n′ , i , p−n′↑1+1

〉
od

The second, third and fourth clauses of the invariant of this loop express
precisely the functions of m, n and n′. Refer back to section 5.1 for an informal
account of their function.

The Capacity-C Torch Problem 73

The clause

pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

in the invariant expresses precisely the relation between p and the pure count of
F . Note that when 0=n all trips in F are pure; when, in addition, n<n′ there
is one trip in F which includes persons 1 thru n′. At a later stage, this trip will
become a mixed trip and, so, is not counted in p. The term [0=n<n′] evaluates
to 1 if 0=n<n′ and to 0 otherwise. The inclusion of this term compensates for
not counting the trip in the excess p.

The clause

d.m.n.n′ ≤ p

requires some explanation. Its function is to guarantee that the non-deterministic
choices do not abort; equivalently, the value of p is always at least zero. Specifi-
cally,

d.m.n.n′ = (
⌈

m−C

C−n′↑1

⌉
+1)× (n′↑1−1). (27)

In order to guarantee 2(d) —the number of nomads in non-nomadic trips is a
decreasing function of the leader of the trip— , the value of n′ is increasing; each
mixed trip that is added to F has at least n′↑1 nomads and at most C−n′↑1
settlers. Thus, in this stage, at least

⌈
m−C

C−n′↑1

⌉
additional trips are added to

F , each of which causes p to be reduced by at least n′↑1−1. The third stage is
executed when m≤C; this stage guarantees that all people make at least one
trip by adding to F a single trip consisting of persons 1 thru m. This also causes
p to be reduced by at least n′↑1−1. Thus d.m.n.n′ is a lower bound on the
amount that p will be reduced by the later addition of trips to F .

We leave the verification of the invariant to the reader.
From the algorithm, we can determine the minimum total travel time for the

mixed trips. We have, for all p such that 0≤p≤
⌊
N−2
C

⌋
,

NP.p = MX.(N −p×C).0.0.p.

For the moment, we define MX.m.n.n′.p only for the case that C <m. Specifi-
cally, for all n and n′ such that 0 ≤ n ≤ n′ ≤ C−1, all m such that C <m, and
all p such that d.m.n.n′ ≤ p, we have

MX.m.n.n′.p = 〈⇓i
: n′↑1 ≤ i ≤ C−1 ∧ d.(m−C+i).n′.i ≤ p−n′↑1+1

: MX.(m−C+i).n′.i.(p−n′↑1+1)

〉 + t.m + rt.n′.

The justification of this equation is that, for a given choice of i, a trip is added to
F with leader m. The forward time for the trip is thus t.m. The trip adds 1 to the

74 R. Backhouse

forward count of each person from 1 thru i; after the addition of the trip, persons
1 thru n′ are the nomads in F and the addition of the trip to F adds rt.n′ to F ’s
return-trip time. As before, the distributivity of addition over minimum is used
to “factor out” the contribution of each trip to the total travel time.

5.4 Completing the Mixed Trips

The third stage, IncludeRest, ensures that everyone makes at least one forward
trip. The assignment is simply

F ,n , p := F ∪{{j |1≤ j≤m}} , n′ , p−n′↑1+1

From the invariant of the second stage, we determine that the assignment is
executed when n′↑1<m≤C; this guarantees that the added trip is regular. Also,
from the invariant, d.m.n.n′ ≤ p. That is, n′↑1−1 ≤ p. After the assignment,
it is thus that case that 0≤p. In more detail, the postcondition established by
the assignment is

ordered.F

∧ 〈∀i : 1≤ i≤N : 1≤ fF .i〉
∧ pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

∧ (0<p ∨ 0<n).

The final conjunct is a consequence of the assumption C <N . At the conclusion
of the second stage, F is non-empty; so, |F | is at least 2 after the above as-
signment. By inspection of the assignments in the two stages, we conclude that
either 0<p or 0<n′. The conjunct follows because n is assigned the value of n′.

The trip that is added to F may be full (when m=C) or non-full (when
m<C); it may also be (or become) a mixed trip or it may be a nomadic trip.
Immediately following the assignment, the statement

if 0=p → skip

� 0<p → 〈[]i
: n′↑2 ≤ i ≤ m↓(p+1)

: n′ := i

〉
fi

is executed. This chooses the final value of the number of nomads. (The choice
of i cannot abort because, as remarked above, n′↑1<m≤C; as a consequence,
if 0<p then n′↑2 ≤ m↓(p+1).)

The addition of this trip extends our definition of the function MX. Antic-
ipating the fact that when 0=p no further trip is added to F , we have: for all
m, n and n′ such that m≤C,

MX.m.n.n′.(n′↑1−1) = t.m+ rt.n′.

The Capacity-C Torch Problem 75

Also, for all m, n and n′ such that 2≤m≤C, and all p such that 0<p,

MX.m.n.n′.(p+n′↑1−1)

= 〈⇓i : n′↑2≤ i≤m↓(p+1) : NT.n′.i.p〉 + t.m+ rt.n′.

The function NT gives the time taken by the nomadic trips. See below.

5.5 Adding Nomadic Trips

The final stage in the construction of F is the possible addition of a number of
nomadic trips. When this stage is executed, we have the following properties of
F , n, n′ and p:

0≤n≤n′≤C ∧ (0=p ∨ 2≤n′≤p+1)

∧ ordered.F

∧ pcF = 〈Σi : 2≤ i≤n : rF .i〉 +p+ [0=n<n′]

∧ 〈∀i : 1≤ i≤n : 1≤ rF .i〉 ∧ 〈∀i : n<i≤N : 1= fF .i〉

The goal is to add nomadic trips to F in such a way that F remains ordered,
the number of nomads in F becomes n′ (if it is not n′ already) and p is reduced
to zero.

We present a non-deterministic algorithm to achieve this task. The algorithm
is designed so that every bag that satisfies the specification corresponds to one
way of resolving the non-determinism.

The algorithm begins by ensuring that F has n′ nomads, and then repeatedly
adds nomadic trips to F whilst 0<p. By choosing the trips in order of decreasing
size, 2(a) is guaranteed without loss of choice. The symbl “∪̇” denotes bag union.
(It is only at this point in the construction that trips in F may have multiplicity
greater than 1.)

{ Precondition given above }
if 0=p → skip

� 0<p ∧ n<n′ → F , p , n := F ∪ {{j |1≤ j≤n′}} , p−n′+1 , n′

fi

{ 〈∀i : 1≤ i≤n′ : 1≤ rF .i〉 ∧ 〈∀i : n′ <i≤N : 1= fF .i〉 } ;

do 0<p→ 〈[]i
: 2≤ i≤ (p+1)↓n
: F , p , n := F ∪̇ {{j |1≤ j≤ i}} , p−i+1 , i

〉
od

{ ordered.F ∧ nF =n′ ∧ pcF = 〈Σi : 2≤ i≤nF : rF .i〉 }

76 R. Backhouse

Now we determine the additional travel time incurred by adding these trips to
F . Letting NT.n.n′.p denote the additional time, we have:

NT.n.n′.0 = 0.

Also, for all p, n and n′ such that 0<p, 0≤n<n′ and 2≤n′≤ (p+1)↓C,

NT.n.n′.p = t.n′ + rt.n + TNT.n′.(p−n↑1+1).

Finally, for all p and n such that 0<p, and 0≤n,

NT.n.n.p = TNT.n.p.

The function TNT is given by:

TNT.n.0 = 0,

and, for all p such that 0<p and all n such that 2≤n≤ (p+2)↓C,

TNT.n.p = 〈⇓i : 2≤ i≤ (p+1)↓n : t.i + rt.i + TNT.i.(p−i+1)〉 .

5.6 Solving the Equations

Finding the total travel time incurred by an optimal bag of forward trips is
achieved by determining the greatest solution to the above equations. This can be
done in worst-case time O(N2×C3) by first tabulatingPT and TNT , then NT fol-
lowed by MX, and finally TOT. Each set of equations is evaluated by imposing an
appropriate lexicographic ordering on the parameters; for example, MX.m.n.n′.p
is evaluated in lexicographic order on p, m, C−n′ and C−n. (As remarked earlier,
the process is equivalent to solving a shortest-path problem, so other shortest-path
algorithms could be used. These are likely to be more effective in practice; but they
may have poorer worst-case complexities.) An optimal bag (rather than just the
travel time) can be determined in the standard way by recording the terms that
realise the minimum when evaluating any such quantification.

6 Conclusion

That the torch problem can be solved at the level of generality in this paper in
time quadratic in the number of people appears to be new. The case of 4 people
and a bridge capacity of 2 is very widely discussed on the internet (although
its origin appears to be unknown). The case of N people and a bridge capacity
of 2 has been solved by Rote [3]. (The reader is referred to Rote’s paper for
other publications and web links.) I believe that the capacity-C problem has
been attempted, but presumably never solved (in polynomial time), because I
was told before embarking on it that it was believed to be “hard” [Tom Verhoeff,
private communication]. The problem is indeed difficult, but it is not “hard” in

The Capacity-C Torch Problem 77

any technical sense of the word (as, for example, in “NP-hard”). As we have
shown, the problem can be solved in time quadratic in the number of people.

I was motivated to tackle the problem because I use the capacity-2 problem
in a course on algorithmic problem solving [1] to entry-level Computer Science
students at the University of Nottingham. The capacity-2 problem is interest-
ing because it demonstrates that “obvious” solutions may be incorrect; also,
obtaining a correct solution demands particular attention to the avoidance of
unnecessary detail. (Like the capacity-C problem, the solution is obtained by
focusing on just the forward trips.) Initially, I thought that the capacity-C prob-
lem would not be much more difficult than the capacity-2 problem. It turned
out to be far harder to solve than I anticipated.

Of course, the solution presented here specialises in the case that the capacity
is 2. In this case, the solution is essentially the same as that presented by Rote. (In
the case that the capacity is 2, all the complications concerning the possibility of
non-full bags disappear; for this reason, the construction simplifies considerably.)
Rote describes the solution in terms of “multigraphs” rather than bags. For
capacity 2, the difference is superficial. Each edge of a “multigraph” connects
two people and, hence, is just a set of two people. However, Rote’s “multigraphs”
do not appear to generalise to capacity N , whereas the use of bags does.

For capacity 2, the solution can be determined in logarithmic time. For full
details see [1, chapter 8]. Rote describes the more obvious “greedy”, linear-time
algorithm.

The current solution leaves much to be desired. The underlying calculations
have not been done to the level of rigour and detail that I would nowadays de-
mand. The fact that the capacity-2 problem can be solved by a greedy algorithm
suggests that there is much scope for improving the worst-case complexity of the
solution presented here. The reason I suspect that improvements can be made is
that the “edges” in the underlying path problem connect vertices labelled with
a four-tuple one of whose components is p but the “length” of an edge does not
depend on p. This suggests that, at the very least, a linear-time algorithm should
be possible.

Acknowledgements. Thanks go to a number of people who have helped me at
various stages.

I thank Diethard Michaelis for stressing the importance of regularity and for
his suggestions on naming (which I have adopted). Thanks also for his reading
and commenting on drafts and for his efforts to improve on notation (which I
have yet to do anything about!).

Thanks to Arjan Mooij for helping me prove that any regular bag of forward
trips can be transformed to a putative sequence. Section 3.1 is essentially due
to him — but the responsibility for errors is mine. Thanks also to João Ferreira
and Arjan Mooij for suggesting improvements to some calculations.

Finally, thanks to Tom Verhoeff and Günter Rote for providing me with bib-
liographic information on the problem.

78 R. Backhouse

References

1. Backhouse, R.: Algorithmic problem solving. Lecture notes, School of Computer
Science, University of Nottingham. Updated at least annually and widely available
on the internet, but see author’s website for latest version

2. Backhouse, R.: Regular algebra applied to language problems. Journal of Logic and
Algebraic Programming (66), 71–111 (2006)

3. Rote, G.: Crossing the bridge at night. Bulletin of the European Association for
Theoretical Computer Science 78, 241–246 (2002)

Recounting the Rationals: Twice!

Roland Backhouse and João F. Ferreira�

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, England
{rcb,jff}@cs.nott.ac.uk

Abstract. We derive an algorithm that enables the rationals to be ef-
ficiently enumerated in two different ways. One way is known and is
credited to Moshe Newman; it corresponds to a deforestation of the so-
called Calkin-Wilf tree of rationals. The second is new and corresponds
to a deforestation of the Stern-Brocot tree of rationals. We show that
both enumerations stem from the same simple algorithm. In this way,
we construct a Stern-Brocot enumeration algorithm with the same time
and space complexity as Newman’s algorithm.

Keywords: Calkin-Wilf tree, Stern-Brocot tree, algorithm derivation,
enumeration algorithm, rational numbers.

Recently, there has been a spate of interest in the construction of bijections
between the natural numbers and the (positive) rationals (see [4,6,2] and [1,
pages 94–97]). Gibbons et al [4] describe as “startling” the observation that the
rationals can be efficiently enumerated1 by “deforesting” the Calkin-Wilf [2] tree
of rationals. However, they claim that it is “not at all obvious” how to “deforest”
the Stern-Brocot tree of rationals. (For information on the Stern-Brocot tree, see
[5, pages 116–118].)

In this paper, we derive an efficient algorithm for enumerating the ratio-
nals both in Calkin-Wilf and Stern-Brocot order. The algorithm is based on
a bijection between the rationals and invertible 2×2 matrices. The key to the
algorithm’s derivation is the reformulation of Euclid’s algorithm in terms of ma-
trices. The enumeration is efficient in the sense that it has the same time and
space complexity as the algorithm credited to Moshe Newman in [6], albeit with
a constant-fold increase in the number of variables and number of arithmetic
operations needed at each iteration.

Section 1 reviews Euclid’s algorithm, whilst section 2 discusses the enumer-
ation algorithms. Section 3 discusses the method used to derive the algorithm.
The appendix documents a Haskell implementation of the algorithm.
� Funded by Fundação para a Ciência e a Tecnologia (Portugal) under grant

SFRH/BD/24269/2005.
1 By an efficient enumeration we mean a method of generating each rational without

duplication with constant cost per rational in terms of arbitrary-precision simple
arithmetic operations.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 79–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 R. Backhouse and J.F. Ferreira

1 Euclid’s Algorithm

A positive rational in so-called “lowest form” is an ordered pair of positive, co-
prime integers. Every rational mn has unique lowest-form representation

m/(m�n)
n/(m�n)

.

(We use “"” to denote “greatest common divisor”. We prefer to use an infix no-
tation whenever —as in this case— the operator is symmetric and associative.
As we see below, the exploitation of symmetry and associativity is extremely
important to effective reasoning.)

Because computing the lowest-form representation involves computing great-
est common divisors, it seems sensible to investigate Euclid’s algorithm to see
whether it gives insight into how to enumerate the rationals. Indeed it does.

Below we present Euclid’s algorithm as it might be presented in a modern
textbook. (We use Dijkstra’s Guarded Command Language [3] to express the
algorithm because it allows us to fully express the symmetry between m and n.
The “do-od” statement is executed repeatedly. Termination occurs when both of
the two guards y<x and x<y are false (i.e. when x and y are equal). When y<x
evaluates to true, the assignment x := x− y is executed, and then the do-od
is executed again. Similarly, when x<y the assignment y := y − x is executed
before repeated execution of the do-od statement.)

{ 0<m ∧ 0<n }
x,y := m,n ;

{ Invariant: 0<x ∧ 0<y ∧ x"y = m"n

Bound function: x + y }
do y<x→ x := x− y

� x<y → y := y − x

od

{ x = y = x"y = m"n }

The algorithm below is a somewhat unusual, but very effective, way of rewrit-
ing Euclid’s algorithm when the goal is to establish the theorem that the greatest
common divisor of two numbers is a linear combination of the numbers.

The algorithm is expressed in matrix terms. The input to the algorithm is a
vector (m n) of strictly positive integers. The vector (x y) is initialised to (m n)
and, on termination, its value is the vector (m"n m"n). In addition to com-
puting the greatest common divisor, it also computes a matrix C. An invariant
of the algorithm is that the vector (x y) equals (m n)×C. In words, (x y) is a
“linear combination” of (mn). Specifically, I, A and B are 2×2 matrices; I is
the identity matrix

(
1
0

0
1

)
, A is the matrix

(
1
−1

0
1

)
and B is the matrix

(
1
0

−1
1

)
.

The assignment (x y) := (x y)×A is equivalent to x,y := x− y ,y, as can be
easily checked.

Recounting the Rationals: Twice! 81

{ 0<m ∧ 0<n }
(x y) ,C := (m n) ,I ;

{ Invariant: (x y) = (m n)×C }
do y<x → (x y) ,C := (x y)×A ,C×A

� x<y → (x y) ,C := (x y)×B ,C×B

od

{ (x y) = (m"n m"n) = (m n)×C }

The verification of the supplied invariant is a simple consequence of the as-
sociativity of matrix multiplication. It is this form of the algorithm that is the
starting point for our enumeration of the rationals.

2 Enumerating the Rationals

Beginning with an arbitrary pair of positive integers m and n, the above algo-
rithm calculates an invertible matrix C such that

(m"n m"n) = (m n)×C.

It follows that
(1 1)×C−1 = (m/(m�n)

n/(m�n)). (1)

Because the algorithm is deterministic, positive integers m and n uniquely define
the matrix C. That is, there is a function from pairs of positive integers to finite
products of the matrices A and B.

Also, because the matrices A and B are constant and invertible, C−1 is a
finite product of the matrices A−1 and B−1 and (1) uniquely defines a rational
m
n . We may therefore conclude that there is a bijection between the rationals
and the finite products of the matrices A−1 and B−1 provided that we can show
that all such products are different.

The finite products of matrices A−1 and B−1 form a binary tree with root
the identity matrix (the empty product). Renaming A−1 as L and B−1 as R,
the tree can be displayed with “L” indicating a left branch and “R” indicating
a right branch. Fig. 1 displays the first few levels of the tree.

That all matrices in the tree are different is proved by showing that the tree is
a binary search tree (as formalised shortly). The key element of the proof2 is that
the determinants of A and B are both equal to 1 and, hence, the determinant
of any finite product of Ls and Rs is also 1.

2 The proof is an adaptation of the proof in [5, page 117] that the rationals in the
Stern-Brocot tree are all different. Our use of determinants corresponds to their use
of “the fundamental fact” (4.31). Note that the definitions of L and R are swapped
around in [5]).

82 R. Backhouse and J.F. Ferreira

(
1
0

0
1

)

(
1
1

0
1

) (
1
0

1
1

)
L R

(
1
2

0
1

) (
1
1

1
2

) (
2
1

1
1

) (
1
0

2
1

)
L R L R

Fig. 1. Tree of Products of L and R

Formally, we define the relation ≺ on matrices that are finite products of Ls
and Rs by (a

b

c

d

)
≺
(

a′

b′
c′

d′

)
≡ a + c

b + d
<

a′ + c′

b′ + d′
.

(Note that the denominator in these fractions is strictly positive; this fact is
easily proved by induction.) We prove that, for all such matrices X, Y and Z,

X×L×Y ≺ X ≺ X×R×Z . (2)

It immediately follows that there are no duplicates in the tree of matrices be-
cause the relation ≺ is clearly transitive and a subset of the inequality relation.
(Property (2) formalises precisely what we mean by the tree of matrices forming
a binary search tree: the entries are properly ordered by the relation ≺, with ma-
trices in the left branch being “less than” the root matrix which is “less than”
matrices in the right branch.)

In order to show that
X×L×Y ≺X, (3)

suppose X=
(
a
b
c
d

)
and Y=

(
a′

b′
c′

d′

)
. Then, since L=

(
1
1

0
1

)
, (3) is easily calcu-

lated to be

(a + c)×a′ + (c×b′) + (a + c)×c′ + (c×d′)
(b + d)×a′ + (d×b′) + (b + d)×c′ + (d×d′)

<
a + c

b + d
.

That this is true is also a simple, albeit longer, calculation (which exploits the
monotonicity properties of multiplication and addition); as observed earlier, the
key property is that the determinant of X is 1, i.e. a×d− b×c = 1. The proof
that X≺X×R×Z is similar.

Of course, we can also express Euclid’s algorithm in terms of transpose matri-
ces. Instead of writing assignments to the vector (x y), we can write assignments
to its transpose

(
x
y

)
. Noting that A and B are each other’s transposition, the

assignment
(x y) ,C := (x y)×A ,C×A

Recounting the Rationals: Twice! 83

in the body of Euclid’s algorithm becomes(
x

y

)
, C := B×

(
x

y

)
, B×C .

Similarly, the assignment

(x y) ,C := (x y)×B ,C×B

becomes (
x

y

)
, C := A×

(
x

y

)
, A×C .

On termination, the matrix C computed by the revised algorithm will of course
be different; the pair

(
m/(m�n)
n/(m�n)

)
is recovered from it by the identity

C−1×
(

1
1

)
=
(
m/(m�n)

n/(m�n)

)
.

In this way, we get a second bijection between the rationals and the finite prod-
ucts of the matrices A−1 and B−1. This is the basis for our second method of
enumerating the rationals.

In summary, we have:

Theorem 1. Define the matrices L and R by

L =
(

1
1

0
1

)
and R =

(
1
0

1
1

)
.

Then the following algorithm computes a bijection between the (positive) ratio-
nals and the finite products of L and R. Specifically, the bijection is given by the
function that maps the rational mn to the matrix D constructed by the algorithm
together with the function from a finite product, D, of Ls and Rs to (1 1)×D.
(The comments added to the algorithm supply the information needed to verify
this assertion.)

{ 0<m ∧ 0<n }
(x y) ,D := (m n) ,I ;

{ Invariant: (m n) = (x y)×D }
do y<x → (x y) ,D := (x y)×L−1 , L×D

� x<y → (x y) ,D := (x y)×R−1 ,R×D

od

{ (x y) = (m"n m"n) ∧ (m/(m�n)
n/(m�n)) = (1 1)×D }

Similarly, by applying the rules of matrix transposition to all expressions in
the above, Euclid’s algorithm constructs a second bijection between the rationals
and finite products of the matrices L and R. Specifically, the bijection is given
by the function that maps the rational m

n to the matrix D constructed by the
revised algorithm together with the function from finite products, D, of Ls and
Rs to D×

(
1
1

)
. �	

84 R. Backhouse and J.F. Ferreira

1
1

1
2

2
1

1
3

3
2

2
3

3
1

1
4

4
3

3
5

5
2

2
5

5
3

3
4

4
1

Fig. 2. Calkin-Wilf Tree of Rationals

1
1

1
2

2
1

1
3

2
3

3
2

3
1

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

Fig. 3. Stern-Brocot Tree of Rationals

2.1 Enumerating Products of L and R

The problem of enumerating the rationals has been transformed to the prob-
lem of enumerating all finite products of the matrices L and R. As observed
earlier, the matrices are naturally visualised as a tree —recall fig. 1— with left
branching corresponding to multiplying (on the right) by L and right branching
to multiplying (on the right) by R.

By premultiplying each matrix in the tree by (1 1), we get a tree of rationals.
(Premultiplying by (1 1) is accomplished by adding the elements in each column.)
This tree is called the Calkin-Wilf tree [4,1,2]. The first four levels of the tree
are shown in fig. 2. In this figure, the vector (x y) has been displayed as y

x . (Note
the order of x and y. This is to aid comparison with existing literature.)

By postmultiplying each matrix in the tree by
(

1
1

)
, we also get a tree of

rationals. (Postmultiplying by
(

1
1

)
is accomplished by adding the elements in

each row.) This tree is called the Stern-Brocot tree [5, pages 116–118]. See fig. 3.
In this figure, the vector

(
x
y

)
has been displayed as x

y .
Of course, if we can find an efficient way of enumerating the matrices in

fig. 1, we immediately get an enumeration of the rationals as displayed in the
Calkin-Wilf tree and as displayed in the Stern-Brocot tree — as each matrix is
enumerated, simply premultiply by (1 1) or postmultiply by

(
1
1

)
. Formally, the

matrices are enumerated by enumerating all strings of Ls and Rs in lexicographic
order, beginning with the empty string; each string is mapped to a matrix by
the homomorphism that maps “L” to L, “R” to R, and string concatenation

Recounting the Rationals: Twice! 85

to matrix product. It is easy to enumerate all such strings; as we see shortly,
converting strings to matrices is also not difficult, for the simple reason that L
and R are invertible.

The enumeration proceeds level-by-level. Beginning with the unit matrix (level
0), the matrices on each level are enumerated from left to right. There are 2k

matrices on level k, the first of which is Lk. The problem is to determine for a
given matrix, which is the matrix “adjacent” to it. That is, given a matrix D,
which is a finite product of L and R, and is different from Rk for all k, what is
the matrix that is to the immediate right of D in fig. 1?

Consider the lexicographic ordering on strings of Ls and Rs of the same length.
The string immediately following a string s (that is not the last) is found by
identifying the rightmost L in s. Supposing s is the string tLRj, where Rj is a
string of j Rs, its successor is tRLj.

It’s now easy to see how to transform the matrix identified by s to its successor
matrix. Simply postmultiply by R−j×L−1×R×Lj . This is because, for all T
and j,

(T×L×Rj)×(R−j×L−1×R×Lj) = T×R×Lj .

Also, it is easy to calculate R−j×L−1×R×Lj . Specifically,

R−j×L−1×R×Lj =
(

2j + 1
−1

1
0

)
.

(We omit the details. Briefly, by induction, Lj equals
(

1
j

0
1

)
. Also, R is the

transpose of L.)
The final task is to determine, given a matrix D, which is a finite product

of Ls and Rs, and is different from Rk for all k, the unique value j such that
D = T×L×Rj for some T. This can be determined by examining Euclid’s al-
gorithm once more.

The matrix form of Euclid’s algorithm discussed in theorem 1 computes a
matrix D given a pair of positive numbers m and n; it maintains the invariant

(m n) = (x y)×D.

D is initially the identity matrix and x and y are initialised to m and n, respec-
tively; immediately following the initialisation process, D is repeatedly premul-
tiplied by R so long as x is less than y. Simultaneously, y is reduced by x. The
number of times that D is premultiplied by R is thus the greatest number j such
that j×m is less than n, which is

⌊
n − 1
m

⌋
. Now suppose the input values m and

n are coprime. Then, on termination of the algorithm, (1 1)×D equals (m n).
That is, if

D =
(

D00

D10

D01

D11

)
,

then, ⌊
n− 1
m

⌋
=
⌊
D01 + D11 − 1

D00 + D10

⌋
.

86 R. Backhouse and J.F. Ferreira

It remains to decide how to keep track of the levels in the tree. For this purpose,
it is not necessary to maintain a counter. It suffices to observe that D is a power
of R exactly when the rationals in the Calkin-Wilf, or Stern-Brocot, tree are
integers, and this integer is the number of the next level in the tree (where
the root is on level 0). So, it is easy to test whether the last matrix on the
current level has been reached. Equally, the first matrix on the next level is
easily calculated. For reasons we discuss in the next section, we choose to test
whether the rational in the Calkin-Wilf tree is an integer; that is, we evaluate
the boolean D00 + D10 = 1. In this way, we get the following (non-terminating)
program which computes the successive values of D.

D := I ;

do D00 + D10 = 1 → D :=
(

1
D01 + D11

0
1

)
� D00 + D10 �= 1 → j :=

⌊
D01 + D11 − 1

D00 + D10

⌋
; D := D×

(
2j + 1
−1

1
0

)
od

A minor simplification of this algorithm is that the “− 1” in the assignment to
j can be omitted. This is because

⌊
n − 1
m

⌋
and

⌊
n
m

⌋
are equal when m and n are

coprime and m is different from 1. We return to this shortly.

2.2 The Enumerations

As remarked earlier, we immediately get an enumeration of the rationals as
displayed in the Calkin-Wilf tree and as displayed in the Stern-Brocot tree — as
each matrix is enumerated, simply premultiply by (1 1) or postmultiply by

(
1
1

)
,

respectively.
In the case of enumerating the Calkin-Wilf tree, several optimisations are

possible. First, it is immediate from our derivation that the value assigned to
the local variable j is a function of (1 1)×D. In turn, the matrix

(
2j + 1
−1

1
0

)
is

also a function of (1 1)×D. Let us name the function J , so that the assignment
becomes

D := D× J.((1 1)×D).

Then, the Calkin-Wilf enumeration iteratively evaluates

(1 1)×(D× J.((1 1)×D)).

Matrix multiplication is associative; so this is

((1 1)×D)× J.((1 1)×D),

which is also a function of (1 1)×D. Moreover —in anticipation of the current
discussion— we have been careful to ensure that the test for a change in the level in

Recounting the Rationals: Twice! 87

the tree is also a function of (1 1)×D. Combined together, this means that, in order
to enumerate the rationals in Calkin-Wilf order, it is not necessary to compute D
at each iteration, but only (1 1)×D. Naming the two components of this vector m
and n, and simplifying the matrix multiplications, we get3

m,n := 1,1 ;

do m=1 → m,n := n + 1 ,m

� m �=1 → m,n := (2
⌊
n − 1
m

⌋
+ 1)×m− n , m

od

At this point, a further simplification is also possible. We remarked earlier that⌊
n − 1
m

⌋
equals

⌊
n
m

⌋
when m and n are coprime and m is different from 1. By

good fortune, it is also the case that (2
⌊
n
m

⌋
+ 1)×m− n simplifies to n + 1

when m is equal to 1. That is, the elimination of “− 1” in the evaluation of the
floor function leads to the elimination of the entire case analysis! This is the
algorithm attributed to Newman in [6].

m,n := 1,1 ;

do m,n := (2
⌊ n

m

⌋
+ 1)×m− n , m

od

3 Discussion

This paper was motivated by reading two publications, [5, pages 116–118] and
[4]. Gibbons, Lester and Bird [4] show how to enumerate the elements of the
Calkin-Wilf tree, but claim that “it is not at all obvious how to do this for the
Stern-Brocot tree”. Specifically, they say:

However, there is an even better compensation for the loss of the ordering
property in moving from the Stern-Brocot to the Calkin-Wilf tree: it be-
comes possible to deforest the tree altogether, and generate the rationals
directly, maintaining no additional state beyond the ‘current’ rational.
This startling observation is due to Moshe Newman (Newman, 2003). In
contrast, it is not at all obvious how to do this for the Stern-Brocot tree;
the best we can do seems to be to deforest the tree as far as its levels,
but this still entails additional state of increasing size.

In this paper, we have shown that it is possible to enumerate the rationals in
Stern-Brocot order without incurring “additional state of increasing size”. More
importantly, we have presented one enumeration algorithm with two specialisa-
tions, one being the Calkin-Wilf enumeration they present, and the other being
the Stern-Brocot enumeration that they described as being “not at all obvious”.
3 Recall that, to comply with existing literature, the enumerated rational is n

m
and not

m
n

.

88 R. Backhouse and J.F. Ferreira

The optimisation of Calkin-Wilf enumeration which leads to Newman’s al-
gorithm is not possible for Stern-Brocot enumeration. Nevertheless, the com-
plexity of Stern-Brocot enumeration is the same as the complexity of Newman’s
algorithm, both in time and space. The only disadvantage of Stern-Brocot enu-
meration is that four variables are needed in place of two; the advantage is the
(well-known) advantage of the Stern-Brocot tree over the Calkin-Wilf tree —
the rationals on a given level are in ascending order.

Gibbons, Lester and Bird’s goal seems to have been to show how the func-
tional programming language Haskell implements the various constructions –
the construction of the tree structures and Newman’s algorithm. In doing so,
they repeat the existing mathematical presentations of the algorithms as given
in [2,5,6]. The ingredients for an efficient enumeration of the Stern-Brocot tree
are all present in these publications, but the recipe is missing!

The fact that expressing the rationals in “lowest form” is essential to the
avoidance of duplication in any enumeration immediately suggests the relevance
of Euclid’s algorithm. The key to our exposition is that Euclid’s algorithm can be
expressed in terms of matrix multiplications, where —significantly— the under-
lying matrices are invertible. Transposition and inversion of the matrices capture
the symmetry properties in a precise, calculational framework. As a result, the
bijection between the rationals and the tree elements is immediate and we do
not need to give separate, inductive proofs for both tree structures. Also, the
determination of the next element in an enumeration of the tree elements has
been reduced to one unifying construction.

Acknowledgements. Thanks go to Jeremy Gibbons for his comments on earlier
drafts of this paper, and for help with TEX commands. Thanks also to our col-
leagues in the Nottingham Tuesday Morning Club for helping iron out omissions
and ambiguities.

This paper was submitted in April 2007 to the American Mathematical
Monthly; it was rejected in November 2007 on the grounds that it was not of
sufficient interest to readers of the Monthly. One (of two referees) did, however,
recommend publication. The referee made the following general comment.

Each of the two trees of rationals—the Stern-Brocot tree and the Calkin-
Wilf tree—has some history. Since this paper now gives the definitive link
between these trees, I encourage the authors, perhaps in their Discussion
section, to also give the definitive histories of these trees, something in
the same spirit as the Remarks at the end of the Calkin and Wilf paper.

We thank the referee for the detailed comments; unfortunately, we have not been
able to obtain copies of the original papers by Stern and Brocot —we would have
had difficulty reading the German and French in any case— and are not in a
position to fulfill the referee’s request. It would, indeed, be interesting for a
mathematical historian to pursue this suggestion.

Recounting the Rationals: Twice! 89

References

1. Aigner, M., Ziegler, G.: Proofs From The Book, 3rd edn. Springer, Heidelberg (2004)
2. Calkin, N., Wilf, H.S.: Recounting the rationals. The American Mathematical

Monthly 107(4), 360–363 (2000)
3. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-

grams. Communications of the ACM 18(8), 453–457 (1975)
4. Gibbons, J., Lester, D., Bird, R.: Enumerating the rationals. Journal of Functional

Programming 16(3), 281–291 (2006)
5. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a Foundation for

Computer Science, 2nd edn. Addison-Wesley Publishing Company, Reading (1994)
6. Knuth, D.E., Rupert, C.P., Smith, A., Stong, R.: Recounting the rationals, contin-

ued. American Mathematical Monthly 110(7), 642–643 (2003)

A Appendix: Haskell Implementation

This appendix contains an encoding of the enumeration algorithms in Haskell.
The file from which this printed version was compiled is a so-called “lhs2TEX”
file4 which can be used directly as input to a Haskell compiler; this safeguards
against typographical errors in the printed paper.

The implementation encodes a matrix as a list of columns.

type Entry = Integer
type Column = [Entry]
type Matrix = [Column]

We define a type of non-empty trees, with associated map, fold and unfold
functions.

data Tree a = Node (a,Tree a,Tree a)
mapt f (Node (a, l , r)) = Node (f a,mapt f l ,mapt f r)
foldt f (Node (a, l , r)) = f (a, foldt f l , foldt f r)
unfoldt f x = let (a, y, z) = f x

in Node (a, unfoldt f y, unfoldt f z)

With matrices matId , matL and matR defined to be the identity matrix, the
matrix L and the matrix R, respectively, the tree of matrices is generated as
follows.

mTree :: Tree Matrix
mTree = unfoldt level matId

where level m = (m,m × matL,m × matR)

The Calkin-Wilf tree can be obtained by pre-multiplying the matrices by the
vector (1 1).

4 The lhs2TEX system has been implemented by Ralf Hinze and Andres Löh.

90 R. Backhouse and J.F. Ferreira

cwTree :: Tree Rational
cwTree = mapt (mkCWRat ◦ ([[1], [1]]×)) mTree

mkCWRat :: Matrix → Rational
mkCWRat [[m], [n]] = n/m

Similarly, the Stern-Brocot tree can be obtained by post-multiplying the ma-
trices by the transpose of the vector (1 1) , i.e.,

(
1
1

)
.

sbTree :: Tree Rational
sbTree = mapt (mkSBRat ◦ (×[[1, 1]])) mTree

mkSBRat :: Matrix → Rational
mkSBRat [[m,n]] = m/n

We enumerate the matrices using the iterate function, computing each matrix
from the previous one.

nextM :: Matrix → Matrix
nextM [[1, 0], [n, 1]] = [[1,n + 1], [0, 1]]
nextM [c0 , c1] = let j = $((sum c1) − 1)/(sum c0)%

k = 2×j + 1
ck = map (k×) c0

in [zipWith (−) ck c1 , c0]

mats :: [Matrix]
mats = iterate nextM matId

The (non-optimised) implementation of the Calkin-Wilf enumeration is then
a matter of premultiplying by (1 1).

cwEnum :: [Rational]
cwEnum = map mkCW mats

where mkCW = mkCWRat ◦ ([[1], [1]]×)

The Stern-Brocot enumeration can be defined in a similar way, but instead of
premultiplying, we postmultiply by

(
1
1

)
:

sbEnum :: [Rational]
sbEnum = map mkSB mats

where mkSB = mkSBRat ◦ (×[[1, 1]])

Incorporating the optimisations discussed above, the Calkin-Wilf enumeration
is transformed to the algorithm attributed to Newman.

Recounting the Rationals: Twice! 91

cwnEnum :: [Rational]
cwnEnum = iterate nextCW 1/1

nextCW :: Rational → Rational
nextCW r = let (n,m) = (numerator r , denominator r)

j = $n/m%
in m/((2×j + 1)×m − n)

Zippy Tabulations of Recursive Functions

Richard S. Bird

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

bird@comlab.ox.ac.uk

zippy: (adjective) 1. bright,
fresh or lively. 2. speedy

Oxford Compact Dictionary

Abstract. This paper is devoted to the statement and proof of a the-
orem showing how recursive definitions whose associated call graphs
satisfy certain shape conditions can be converted systematically into ef-
ficient bottom-up tabulation schemes. The increase in efficiency can be
dramatic, typically transforming an exponential time algorithm into one
that takes only quadratic time. The proof of the theorem relies heavily on
the theory of zips developed by Roland Backhouse and Paul Hoogendijk.

1 Introduction

From one point of view all recursive functions look alike: if the input is simple the
function value is computed directly; if the input is not simple, it is decomposed
into simpler instances on which the function is computed recursively, and the
various results are then combined to give the final value. In a divide and conquer
algorithm, such as mergesort, the recursive instances do not overlap so the top-
down computation is efficient. By contrast, in a dynamic programming algorithm
the recursive instances do overlap, and the top-down computation is potentially
very inefficient because the same subproblem may be solved many times.

The two main methods for improving matters are memoization and tabu-
lation. In memoization the top-down structure of the computation is preserved
but computed results are remembered and stored in a memo table for subse-
quent retrieval. In tabulation the computation switches to a bottom-up scheme
in which the simple problems are solved first and then solutions to larger prob-
lems are placed in a table level by level.

The problem with tabulation is that the programmer has to think carefully
about the structure of the table being built and the best way to store the entries
to make them easily accessible for the next level. This is particularly true of
the pure functional programmer who eschews arrays and relies on lists and trees
instead. Wouldn’t it be pleasant if the bottom-up tabulation algorithm could be
derived automatically, or at least systematically from the top-down recursion?

The wish is not grantable in general. For example, [8] shows that choosing
a good table design for a given decomposition is an NP-hard problem. How-
ever, it turns out that for one particular class of recursive functions, namely

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 92–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Zippy Tabulations of Recursive Functions 93

those involving decompositions which satisfy a rather severe shape constraint,
a bottom-up tabulation scheme can indeed be derived automatically. The proof
that everything works is the main contribution of the present paper. The proof is
interesting because it depends heavily on the theory of zips developed by Back-
house and Hoogendijk, see [1,2,6,7]. Our main theorem can also be viewed as an
extension and formalisation of some of bottom-up schemes described in [3].

2 Top-Down Computation

Let us begin by assembling the ingredients for describing a generic top-down
recursion. The first thing to say is that although we use mostly Haskell notation
to describe recursive functions, we do not assume a lazy semantics. Indeed for
the theorem and proof to come our setting is a relational semantics based on
allegories with certain properties, see [4]. But the allegorical undergrowth need
not impede our progress.

The first assumption is that the input is an element of some instance of a
polymorphic data type La with no empty structures. For concreteness think of
La as being nonempty lists of elements of type a, and the input as an element of
L Integer , a list of integers. For technical reasons, explained later on, we disallow
data types that contain empty elements. We use single capital letters for the
names of polymorphic types, and the same letter for the map function over the
data type. So if f :: a → b, then L f :: La → L b. In a word, L is a functor.

The next ingredient is a total function sg :: La → Bool that determines
whether the input is sufficiently simple for the result to be returned directly.
The identifier sg connotes ‘singleton’, which is often the base case of a recursion
though other interpretations are possible.

The companion to sg is a partial function ex :: La → a, total on arguments
that satisfy sg, that extracts the singleton element. Both sg and ex are polymor-
phic, which means they satisfy the properties that sg ·L f = sg and ex ·L f = f ·ex
for any total function f . In two words, sg and ex are natural transformations.
In general, a polymorphic function α :: F a → G a satisfies α · F f = G f · α
for any total function f . In particular, ex :: La → I a, where I is the identity
functor, and sg :: La → K a, where K a = Bool is the constant functor that
returns Bool . Moreover, K f is the identity function on Bool . We will exploit
these naturality assumptions later on.

Next is a partial function dc :: La → F (La) which is total over non-singleton
structures. In words, dc returns an F -structure of L-structures. The identifier dc
connotes ‘decompositions’. The function dc is, by assumption, another natural
transformation so we have F (L f) · dc = dc · L f for any total function f .

Everything is now in place for describing a top-down computation:

td :: (a → b) → (F b → b) → La → b
td f g = (sg → f · ex , g · F (td f g) · dc)

The expression on the right is a McCarthy conditional (p → f , g). Applied to
x the conditional returns f x if p x and g x otherwise. The computation of td

94 R.S. Bird

reads: if the input is a singleton, extract the element and apply f ; otherwise
decompose the input into further instances using dc, apply td f g recursively to
each of these instances and collect the sub-results into one result by applying g.

Before going on to formulate a bottom-up tabulation scheme let us first con-
sider some instructive examples of top-down computations.

3 Examples

Bear in mind that the main restriction on td is that the function dc should be
polymorphic. That rules out quicksort as an example because dc has to inspect
the elements in the argument list. There are many examples of recursive top-
down computations with polymorphic decomposition functions, and we will look
only at examples where the function dc :: La → F (La) is layered in the sense
that dc produces an F -structure of L-structures in which all the L-structures
have the same shape. This restriction turns out to be central in the results to
come.

First, consider mergesort restricted to power lists. By definition a power list
is a list whose length is a power of two. Here La is the type of power lists and
F = P , where P a = (a, a) so P is the data type of pairs. The function sg is a
test for singletons and ex extracts a singleton value. The definition of dc is

dc xs = (take n xs , drop n xs) where n = length xs div 2

Applied to a power list, dc returns a pair of power lists of the same length, so
is layered. The function td wrap merge sorts a power list of elements from any
ordered type, where wrap x = [x] and merge merges a pair of ordered power lists.
The call graph associated with dc is a perfect binary tree. The subproblems do
not overlap and there is no sharing of subtrees.

Second, consider a recursion based on the decomposition function

dc :: La → P (La)
dc = fork (init , tail)

where init and tail respectively drop the last and first elements of a list of length
at least two. Here L is the data type of nonempty lists and P is again the data
type of pairs. The useful function fork is defined by

fork :: (a → b, a → c) → a → (b, c)
fork (f , g) x = (f x , g x)

The functions sg and ex are as for mergesort. The function dc returns a pair
of lists of the same length, so is layered. The call graph of dc is pictured for
an input list of length 5 in Figure 1. Observe that this graph is also a perfect
binary tree except that subtrees are shared. A tree with shared nodes was called
a nexus in [3] and we will henceforth adopt this terminology. Evaluating td f g
takes exponential time assuming f and g take constant time.

Zippy Tabulations of Recursive Functions 95

abcde

abcd bcde

abc bcd cde

ab bc cd de

a b c d e

Fig. 1. A nexus

Third, consider a problem about matrices . Each (n+1) × (n+1) matrix has
four n × n corner matrices. For example, the matrix⎛⎜⎜⎝

a b c d
e f g h
i j k l
m n o p

⎞⎟⎟⎠
has four corner matrices⎛⎝a b c

e f g
i j k

⎞⎠ ⎛⎝b c d
f g h
j k l

⎞⎠ ⎛⎝ e f g
i j k
m n o

⎞⎠ ⎛⎝ f g h
j k l
n o p

⎞⎠
Imagine a function defined on a matrix by splitting the matrix into its four
corners, recursively computing the value of the function on these corners, and
constructing a further value out of the four results. If the matrix is a singleton,
then the value is computed directly. The type of a matrix is a list of lists, so
La = [[a]]. We can also take F a = [a], though a special type of quadruples would
serve equally well. We omit the definition of dc but it is clearly layered. The
associated nexus is a perfect quaternary tree with sharing and the computation
of td f g takes 4n steps on a n ×n matrix, assuming f and g take constant time.

Finally, here is a problem in which the function dc is not polymorphic but
can be converted into one that is. The value comb (n, r) is the number of com-
binations of n objects taken r at a time. As a total function we can define

comb :: P Integer → Integer
comb (n, r) | n < r ∨ r < 0 = 0

| n = r ∨ r = 0 = 1
| n > r ∧ r > 0 = comb (n−1, r) + comb (n−1, r−1)

We set comb (n, r) = 0 if n and r do not satisfy 0 ≤ r ≤ n. The associated
decomposition, singleton test and extraction functions are not polymorphic but
can be made so with a change of representation. Suppose (n, r) is represented by

96 R.S. Bird

a binary string of length n+1 containing a single 1 at position r if 0 ≤ r ≤ n, and
all 0s otherwise. With this representation dc = fork (init , tail) because if xs rep-
resents (n, r), then init xs represents (n−1, r) and tail xs represents (n−1, r−1).
Even better, at the expense of a little extra computation the functions sg and
ex can be defined as for mergesort because a string of 0s has only singleton 0s
below it, and the sum of such singletons is 0. In other words, we can base the
computation of comb on the nexus of Figure 1 and define

comb = td id (uncurry (+)) · rep

where rep :: P Int → L Int installs the representation. This version is somewhat
less efficient than the direct definition because of the unnecessary computations
of 0, but both still take exponential time. And tabulation can reduce this to
quadratic time as we will now see.

4 Bottom-Up Tabulation

Look again at Figure 1. The idea behind bottom-up tabulation is simply to
replace each label x of a node n with td f g x . This is achieved by applying g to
appropriate combinations of the labels of the nodes below n. The nexus takes
the form of a labelled tree

data N a = Leaf a | Node a (F (N a))

A node of a nexus consists of a label of type a and an F -structure of nexuses,
where F is the same data type that appears in the type of dc.

The bottom-up algorithm takes the form

bu :: (a → b) → (F b → b) → La → b
bu f g = label · ex · until sg (L (node g) · cd) · L (leaf f)

where the standard function until can be defined by

until :: (a → Bool) → (a → a) → a → a
until p f = (p → id , until p f · f)

The computation of bu f g begins with some L-structure of values. The first step
is to apply L (leaf f) and the result is an L-structure of nexuses, all of which are
leaves; this gives the first level of the table. Then the function L (node g) · cd is
applied repeatedly until the result is a singleton L-structure. From this singleton
a single nexus is extracted and its label is returned as the final result of the
computation.

Here are the types and definitions of the ingredient functions. The function
leaf is defined by

leaf :: (a → b) → a → N b
leaf f = Leaf · f

Zippy Tabulations of Recursive Functions 97

The companion function node is defined by

node :: (F b → b) → F (N b) → N b
node g = uncurry Node · fork (g · F label , id)

The function label extracts the label of a nexus:

label :: N b → b
label (Leaf x) = x
label (Node (x , fns)) = x

Finally, the remaining function cd has type cd :: La → L (F a). In particular, if
g :: F B → B for some type B , then L (node g) · cd :: L (N B) → L (N B). The
functions dc :: La → F (La) and cd :: La → L (F a) have dual types so we give
them dual names.

One obvious definition of cd , though by no means the only one, is suggested
by its type. The definition is

cd = zip(F ,L) · dc

where zip(F ,L) :: F (La) → L (F a) zips an F -structure of L-structures into an
L-structure of F -structures. Zips are, in general, partial operations: zip(F ,L)
is well-defined only when applied to an F -structure of L-structures in which
all the L-structures have the same shape. For example, the transpose function
zip(L,L) on matrices, i.e. elements of L (La) where La = [a], is well-defined
only if the matrix is a nonempty list of nonempty lists all of the same length.
The restriction to nonempty lists is required because matrix transpose on an
empty matrix is essentially a nondeterministic operation, returning an arbitrary
list of empty lists (in Haskell this problem is resolved by having transpose return
an infinite list of empty lists). When F and L contain no empty structures, both
zip(F ,L) and zip(L,F) are partial functions. This explains our restriction to data
types without empty elements. Zips are required to have additional properties,
described in Section 6.

Recall that dc is layered if dc returns an F -structure of L-structures all of the
same shape; in such a case the domain of zip(F ,L) · dc is that of dc.

Theorem 1. bu f g = td f g provided that dc is layered and cd is any function
satisfying the following three conditions:

sg · cd = sg · zip(F ,L) · dc
ex · cd = F ex · dc
dc · cd = F cd · dc

The second condition of Theorem 1 is required to hold only if cd returns a result
that satisfies sg, so ex ·cd is well-defined. Similarly, the third condition is required
to hold only if cd returns a result not satisfying sg, so dc · cd is well-defined.

Corollary 1. With cd = zip(F ,L) · dc we have bu f g = td f g provided that dc
is layered and also satisfies the symmetry condition

F dc · dc = zip(F ,F) · F dc · dc

98 R.S. Bird

Section 6 is devoted to the proofs of Theorem 1 and Corollary 1. First we revisit
the examples in Section 3 to see what the symmetry condition entails.

5 Examples Revisited

Consider again the function dc arising in mergesort over power lists; as we have
seen, dc is layered. Define cd :: La → L (P a) by

cd = zip(P ,L) · fork (even, odd)

where even applied to a power list returns the elements in even position; similarly
for odd . The function zip(P ,L) zips a pair of power lists into a power list of pairs.
For example,

cd [0 .. 7] = [(0, 1), (2, 3), (4, 5), (6, 7)]

The three conditions of Theorem 1 are easy to check and we omit details. As
a result the function bu wrap merge defines an iterative version of mergesort.
There is no asymptotic increase in time efficiency because there is no sharing of
subtrees.

Next, consider the function dc = fork (init , tail). Here we aim for an appli-
cation of Corollary 1, so we take cd = zip(P ,L) · dc. To appreciate that dc is
symmetric, observe that the result of applying P dc · dc to the string “abcde” is

((“abc”, “bcd”), (“bcd”, “cde”))

Now, the definition of zip(P ,P), the zip function for pairs of pairs, is

zip(P ,P) :: P (P a) → P (P a)
zip(P ,P) ((x , y), (u, v)) = ((x , u), (y, v))

Applying zip(P ,P) to the above pair of pairs leaves it unchanged. So dc is indeed
symmetric and Corollary 1 is applicable. The bottom-up algorithm bu f g takes
quadratic time assuming f and g take constant time.

The matrix example is similar. The function dc returns a list of matrices all
of the same shape, and also satisfies the symmetry condition

zip(L,L) · Ldc · dc = Ldc · dc

where zip(L,L) is matrix transpose. For example, applying Ldc · dc to the 4× 4
matrix of Section 3 gives the symmetric matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
a b
e f

) (
b c
f g

) (
e f
i j

) (
f g
j k

)
(

b c
f g

) (
c d
g h

) (
f g
j k

) (
g h
k l

)
(

e f
i j

) (
f g
j k

) (
i j
m n

) (
j k
n o

)
(

f g
j k

) (
g h
k l

) (
j k
n o

) (
k l
o p

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Zippy Tabulations of Recursive Functions 99

Indeed the term symmetric was chosen in analogy with the idea of a symmetric
matrix. It can now be appreciated that the condition that dc be layered means
that the associated nexus is structured into levels with connections only between
one level and the next, and the symmetry condition in the case F a = [a] means
that all nodes have the same number, n say, of children, and adjacent nodes at
one level are connected to adjacent n tuples of nodes at the next level. So the
symmetry condition is quite severe.

6 Proofs

Let us first assume Theorem 1 and show how Corollary 1 follows. The proof of
Corollary 1 depends on various properties of zips, first formulated by Backhouse
and Hoogendijk and recorded in a sequence of papers [1,2,6,7]. These properties
are described in a calculus of relations rather than functions because of the need
to reason about partial and nondeterministic operations.

In particular, as we said earlier, zip(F ,G) :: F (G a) → G (F a) is a partial
operation which is only well-defined on F -structures of G-structures all of the
same shape. In such a case the result is a G-structure of F -structures all of
the same shape. As well as being partial, zips can also be nondeterministic.
For example, take F a = Int . In this case zip(F ,G) takes an integer n to an
arbitrary G-structure of copies of n and so is a nondeterministic operation. A
similar example is matrix transpose when the empty matrix is allowed. But if we
exclude empty F -structures, an assumption captured by the restriction F 0 = 0
where 0 is the empty relation, then zip(F ,G) is a deterministic operation, though
still partial.

We will need four properties of zips. The first is that zip(F ,G) is a natural
transformation from FG to GF . The second property is that zip(F , I) is the
identity function on F . The third property is the law of composition:

zip(F ,GH) = G (zip(F ,H)) · zip(F ,G)

Finally, zips enjoy a higher-order naturality property. Restricted to data types F
that do not contain empty elements, this property states that if f :: G a → H a
is a polymorphic function, then

f · zip(F ,G) = zip(F ,H) · F f · zip(F ,G) �

Here zip(F ,G) � is a coreflexive relation, a sub-relation of the identity function,
which holds only elements in the domain of zip(F ,G). Coreflexive relations are
also known as partial skips. In particular, dc is a layered function just in the
case that dc = zip(F ,L) � · dc. It is proved in [6] that zips with these properties
can be defined for all the data types one normally encounters in functional
programming.

Setting cd = zip(F ,L)·dc we can now verify the three conditions of Theorem 1.
The first condition is immediate from the definition of cd . The second condition,

100 R.S. Bird

namely ex · cd = F ex · dc, is proved as follows:

ex · cd
= {given definition of cd}

ex · zip(F ,L) · dc
= {higher-order naturality of zips and ex :: La → I a}

zip(F , I) · F ex · zip(F ,L) � · dc
= {identity property of zips and assumption that dc is layered}

F ex · dc

Finally, to show that dc · cd = F cd · dc we reason:

dc · zip(F ,L) · dc
= {higher-order naturality of zips and dc :: La → F (La)}

zip(F ,FL) · F dc · zip(F ,L) � · dc
= {since dc is layered}

zip(F ,FL) · F dc · dc
= {composition property of zips}

F zip(F ,L) · zip(F ,F) · F dc · dc
= {assumption that dc is symmetric}

F zip(F ,L) · F dc · dc
= {functor composition}

F (zip(F ,L) · dc) · dc

This completes the proof of Corollary 1.

6.1 Proof of Theorem 1

Now we turn to the proof of Theorem 1. Proofs, like computations, can be top
down or bottom up. We will proceed top down, collecting claims for subsequent
subproofs. A number of steps involve the two basic laws of McCarthy condition-
als, namely

(p → f , g) · h = (p · h → f · h, g · h)
h · (p → f , g) = (p → h · f , h · g)

Use of these laws is signalled with the hint ‘conditionals’. Observe that by ap-
plying the first law of conditionals twice, we have that

(p → f , g) · h = (p → f ′, g ′) · h

whenever f · h = f ′ · h and g · h = g ′ · h. Finally, frequent use is made of the
functor law F (f · g) = F f · F g without explicit mention.

Zippy Tabulations of Recursive Functions 101

The proof of Theorem 1 is by induction. We show that bun = tdn for all n,
where bu0 and td0 are each the empty relation (i.e., the everywhere undefined
function) and

bun+1 = label · ex · unn+1 · L (leaf f)
unn+1 = (sg → id , unn · L (node g) · cd)
tdn+1 = (sg → f · ex , g · F tdn · dc)

The function un abbreviates until sg (L (node g)·cd). The base case is immediate
and the induction step is:

bun+1

= {definition}
label · ex · (sg → id , unn · L (node g) · cd) · L (leaf f)

= {conditionals and sg · L (leaf f) = sg}
(sg → label · ex · L (leaf f), label · ex · unn · L (node g) · cd · L (leaf f))

= {claim: see (1) below}
(sg → label · ex · L (leaf f), label · node g · F (ex · unn) · dc · L (leaf f))

= {since label · ex · L (leaf f) = ex · L f and
label · node g = g · F label}

(sg → ex · L f , g · F (label · ex · unn) · dc · L (leaf f))
= {naturality of ex and dc}

(sg → f · ex , g · F (label · ex · unn · L (leaf f)) · dc)
= {definition of bun}

(sg → f · ex , g · F bun · dc)
= {induction and definition of tdn+1}

tdn+1

The identities
label · ex · L (leaf f) = ex · L f
label · node g = g · F label

are easy to prove from the definitions of leaf and node. The claim is that

ex · unn · L (node g) · cd = node g · F (ex · unn) · dc (1)

The proof of (1) is again by induction. The base case follows from the assumption
that F 0 = 0. For the induction step we argue:

ex · unn+1 · L(node g) · cd
= {definition of unn+1 and conditionals}

(sg → ex , ex · unn · L (node g) · cd) · L (node g) · cd
= {induction}

(sg → ex ,node g · F (ex · unn) · dc) · L (node g) · cd

102 R.S. Bird

= {conditionals}
(sg · L (node g) · cd → ex · L (node g) · cd ,

node g · F (ex · unn) · dc · L (node g) · cd)

= {naturality of sg, ex and dc}
(sg · cd → node g · ex · cd ,

node g · F (ex · unn · L (node g)) · dc · cd)

= {the three assumptions of Theorem 1}
(sg · zip(F ,L) · dc → node g · F ex · dc,

node g · F (ex · unn · L (node g) · cd) · dc)

= {conditionals}
node g · F ex · (sg · zip(F ,L) → id ,F (unn · L (node g) · cd)) · dc

= {claim: see (2) below}
node g · F ex · F (sg → id , unn · L (node g) · cd) · dc

= {definition of unn+1}
node g · F (ex · unn+1) · dc

The final claim is that for any partial functions h, k :: LA → B

(sg · zip(F ,L) → F h,F k) = F (sg → h, k) · zip(F ,L) � (2)

Intuitively, (2) holds because sg is polymorphic and so depends only on the
shape of its argument L-structure. Thus sg · zip(F ,L) applied to an F -structure
of L-structures all of the same shape returns True if sg returns True on all
the elements of F , and False if sg returns False on all the elements. However,
the formal proof of (2) seems surprisingly difficult and depends on a number of
additional concepts related to zips that we don’t have the space to go into. So
we will omit the proof.

7 Non-layered Decompositions

In practice, most dynamic programming problems do not have layered decom-
positions. For example, consider an optimal bracketing problem such as chain
matrix multiplication (see Chapter 16 of [5]). The decomposition function dc
for this problem has type dc :: La → L (P (La)) where L is the data type of
nonempty lists. For example,

dc “abcd” = [(“a”, “bcd”), (“ab”, “cd”), (“abc”, “d”)]

We can define dc by

dc = zip(P ,L) · cross (inits , tails) · fork (init , tail)

where inits and tails return the nonempty initial and tail segments of a list
respectively, and cross is defined by

cross :: (a → c, b → d) → (a, b) → (c, d)
cross (f , g) (x , y) = (f x , g y)

Zippy Tabulations of Recursive Functions 103

Although dc is neither layered nor symmetric, the function fork (init , tail) has
both these properties and we can base a tabulation scheme on this function
instead.

More generally, suppose dc :: La → F (La) satisfies the conditions of Corol-
lary 1, and dcg :: La → G (La) is defined by dcg = extendL · dc, where
extendL :: F (La) → G (La). For example, for optimal bracketing we have
G a = L (P a) and

extendL = zip(P ,L) · cross (inits , tails)

The generalised top-down algorithm gtd reads:

gtd :: (a → b) → (G b → b) → La → b
gtd f g = (sg → f · ex , g · G (gtd f g) · extendL · dc)

The generalised bottom-up tabulation algorithm gbu is defined by

gbu :: (a → b) → (G b → b) → La → b
gbu f g = label · ex · until sg (L (node g) · cd) · L (leaf f)

where the definition of node is changed to read

node :: (G b → b) → F (N b) → N b
node g = uncurry Node · fork (g · G label · extendN , id)

The new function extendN has type extendN :: F (N b) → G (N b). To describe
the necessary relationship between extendL and extendN we need a function
with type La → N b. The following function does the job:

nexus :: (a → b) → (G b → b) → La → N b
nexus f g = (sg → leaf f · ex ,node g · F (nexus f g) · dc)

Equivalently, nexus f g = td (leaf f) (node g), where td is as defined in Section 2.
The function nexus f g builds a nexus except that subtrees are not shared.

Theorem 2. Suppose cd and dc satisfy the conditions of Theorem 1. Then
gtd f g = gbu f g provided

extendN · F (nexus f g) = G (nexus f g) · extendL

Proof. First observe that (1) of Section 6 involved no properties of node g so it
remains valid. Using (1) we can prove that

gbu f g = label · nexus f g (3)

The proof of (3) is by induction. The induction step reads:

gbun+1 f g
= {definition of gbu}

104 R.S. Bird

label · ex · (sg → id , unn · step g) · L (leaf f)
= {conditionals and sg · L (leaf f) = sg}

label · (sg → ex · L (leaf f), ex · unn · step g · L (leaf f))
= {(1)}

label · (sg → ex · L (leaf f),node g · F (ex · unn) · dc · L (leaf f))
= {naturality of ex and dc}

label · (sg → leaf f · ex ,node g · F (ex · unn · L (leaf f)) · dc)
= {induction}

label · (sg → leaf f · ex ,node g · F (nexusn f g) · dc)
= {definition of nexus}

label · nexusn+1 f g

Now to complete the proof that gtd f g = gbu f g we have to show that

gtd f g = label · nexus f g (4)

The proof of (4) is again by induction. The induction step is

gtdn+1 f g
= {definition}

(sg → f · ex , g · G (gtdn f g) · extendL · dc)
= {(3)}

(sg → f · ex , g · G (label · nexusn f g) · extendL · dc)
= {assumption}

(sg → f · ex , g · G label · extendN · F (nexusn f g) · dc)
= {since g · G label · extendN = label · node g}

(sg → f · ex , label · node g · F (nexusn f g) · dc)
= {since f · ex = label · leaf f · ex}

(sg → label · leaf f · ex , label · node g · F (nexusn f g) · dc)
= {conditionals and induction}

label · nexusn+1 f g

For example, consider the optimal bracketing problem again, in which F = P
and G a = L (P a). Suppose we define extendN by

extendN :: P (N a) → L (P (N a))
extendN = zip(P ,L) · cross (lspine, rspine)

where
lspine :: N a → L (N a)
lspine (Leaf x) = [Leaf x]
lspine (Node (x , (�, r))) = lspine � ++ [Node (x , (�, r))]

Zippy Tabulations of Recursive Functions 105

and
rspine :: N a → L (N a)
rspine (Leaf x) = [Leaf x]
rspine (Node (x , (�, r))) = [Node (x , (�, r))] ++ rspine r

It is easy to show that

lspine · nexus f g = L (nexus f g) · inits
rspine · nexus f g = L (nexus f g) · tails

Now we can reason

extendN · P (nexus f g)
= {definition of extendN }

zip(P ,L) · cross (lspine, rspine) · P (nexus f g)
= {property of cross}

zip(P ,L) · cross (lspine · nexus f g, rspine · nexus f g)
= {above}

zip(P ,L) · cross (L (nexus f g) · inits ,L (nexus f g) · tails)
= {property of cross}

zip(P ,L) · PL (nexus f g) · cross (inits , tails)
= {naturality of zip(P ,L)}

LP (nexus f g) · zip(L,P) · cross (inits , tails)
= {definition of extendL}

LP (nexus f g) · extendL

Hence Theorem 2 is applicable.

8 Non-symmetric Decompositions

For some problems the decomposition function is layered but not symmetric. For
instance, consider the function dc that returns the immediate subsequences of a
list. For example,

dc “abcde” = [“abcd”, “abce”, “abde”, “acde”, “bcde”]

Applied to a list of length n the function dc returns n lists each of length n−1
obtained by dropping a single element. The nexus associated with dc is essentially
a Boolean lattice, see Figure 2. The nexus is layered but the connectivity varies
from level to level. One way of constructing a Boolean lattice was given in [3],
but the construction was not shown formally to meet the requirements of the
associated tabulation scheme. Instead, it is possible to justify an alternative
construction by appeal to Theorem 1 and we will just sketch the details.

106 R.S. Bird

abcde

abcd abce abde acde bcde

abc abd acd bcd abe ace bce ade bde cde

ab ac bc ad bd cd ae be ce de

a b c d e

Fig. 2. A Boolean lattice

Firstly, we have dc :: La → F (La), where F = L and L is the data type of
nonempty lists. One definition of dc is

dc [x , y] = [[x], [y]]
dc (x : xs) = [[x] ++ ys | ys ← dc xs] ++ [xs]

An equivalent definition, though not legal Haskell, is

dc [x , y] = [[x], [y]]
dc (xs ++ [x]) = [xs] ++ [ys ++ [x] | ys ← dc xs]

To satisfy Theorem 1 we have to invent an appropriate definition of cd meeting
the three conditions. The essential trick is to group the elements at each level in
a particular way in order to prepare for the next level. For example,

a b c d e
ab (ac bc) (ad bd cd) (ae be ce de)
abc (abd (acd bcd)) ((abe (ace bce)) (ade bde cde))
abcd (abce (abde (acde bcde)))
abcde

The first level is a list of singletons, the second level consists of groups containing,
in order, 1, 2, 3 and 4 members, the third level has groups of 1, 3 and 6 elements,
and the fourth level has groups of 1 and 4 elements. These numbers are the di-
agonals of Pascal’s triangle. An element ab represents the pair [a, b] and abc
represents the triple [ab, ac, bc], and so on. The group structure can be captured
by representing lists as binary trees satisfying a shape constraint, essentially
that of binomial trees. For example, the middle two lines above are pictured as
binomial trees in Figure 3. Reading upwards, the left spine of the first tree has
subtrees of sizes 1, 2, 3 and 4, and the left spine of the second tree has subtrees

Zippy Tabulations of Recursive Functions 107

�

�

�

�

ab

� �de

� �ce

� �be

�ae
� �cd

� �bd

�ad
� �bc
�ac

� � � �cde

� �bde

�ade

� � �bce

�ace

�

abe

� � � �bcd

�acd�

abd
�

abc

Fig. 3. Two binomial trees

of sizes 1, 3 and 6, in which the second subtree has subtrees of sizes 1, 2 and 3,
and the third has subtree of sizes 1 and 2.

Given the data type declaration

data B a = Tip a | Bin (B a) (B a)

the conversion function cvtLB :: La → B a for converting a list into a binary
tree is defined by

cvtLB = foldl1 Bin · map Tip

This function builds a binary tree all of whose right subtrees are tips, representing
the first level of the nexus. With this binary tree representation of lists the
function sg translates into a test for whether its argument is a tip, and ex
extracts the tip value. The formal definition of cd is now given by

cd :: B a → B (La)
cd (Bin (Tip a) (Tip b)) = Tip [a, b]
cd (Bin u (Tip b)) = Bin (cd u) (B (: [b]) u)
cd (Bin (Tip a) v) = Tip (a : as) where Tip as = cd v
cd (Bin u v) = Bin (cd u) (zipBWith (:) u (cd v))

The function zipBWith :: (a → b → c) → B a → B b → B c is analogous to the
function zipWith on lists. For example, applying cd to the first tree of figure 3
yields the second tree.

We now claim that td f g = bu f g · cvtLB . In order to justify the claim we
have to invent a definition of dc′ :: B a → L (B a) with two properties: firstly,
td f g = td ′ f g · cvtLB where td ′ is the same as td except that dc is replaced by

108 R.S. Bird

dc′; and, secondly, dc′ and cd satisfy the conditions of Theorem 1. The necessary
definition of dc′ turns out to be

dc′ :: B a → L (B a)
dc′ (Bin (Tip a) (Tip b)) = [Tip a,Tip b]
dc′ (Bin u (Tip b)) = [u] ++ [Bin v (Tip b) | v ← dc′ u]
dc′ (Bin (Tip a) v) = Tip a : dc′ v
dc′ (Bin u v) = [u] ++ zipWith Bin (dc′ u) (dc′ v)

The first two clauses are obvious translations of the second list-based definition
of dc given above. More precisely, we have

dc′ · cvtLB = F cvtLB · dc

This equation is sufficient to prove td f g = td ′ f g ·cvtLB . The second two clauses
deal with binary trees of higher rank and are needed for the three conditions of
Theorem 1. But the proofs are long and involved, so they are omitted.

9 Summary

Let us recap. Theorem 1 captures the essential relationship between top-down
and bottom-up computations for layered decomposition functions. In the re-
stricted case of a symmetric decomposition function we can appeal to Corol-
lary 1. When the decomposition function is not layered, but can be viewed as an
extension of one that is, we can appeal to Theorem 2. Finally, in order to apply
Theorem 1 some invention is required, both to find an alternative data type for
representing L and the appropriate decomposition and composition functions.
It remains future work to see whether the invention can be placed on a more
systematic footing.

Acknowledgements

A special debt of gratitude is owed to Roland Backhouse for joint collaboration
on the (omitted) proof of (2), which will be recorded elsewhere. Thanks are
also due to Ralf Hinze and Shin-Chen Mu for many discussions on the subject
of tabulations way back in 2003 when the ideas were first being formulated.
Ralf Hinze also very kindly gave of his time to draw Figures 1 and 2 using
Functional MetaPost. Finally, acknowledgement is owed to all the referees for
their constructive remarks, and to one in particular for suggesting that it would
be interesting to see whether the combinatorial function comb could be treated
within the framework, and my pleasure in discovering that it could.

References

1. Backhouse, R.C., Doornbos, H., Hoogendijk, P.: A Class of Commuting Re-
lators. In: STOP workshop, Ameland, The Netherlands (September 1992),
http://www.cs.nott.ac.uk/∼rcb/MPC/papers/zips.ps.gz

http://www.cs.nott.ac.uk/~rcb/MPC/papers/zips.ps.gz

Zippy Tabulations of Recursive Functions 109

2. Backhouse, R.C., Hoogendijk, P.: Generic Properties of Datatypes. In: Backhouse,
R., Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 97–132. Springer,
Heidelberg (2003)

3. Bird, R.S., Hinze, R.: Trouble shared is trouble halved. In: ACM SIGPLAN Haskell
Workshop, Uppsala, Sweden, pp. 1–6 (August 2003)

4. Bird, R.S., de Moor, O.: The Algebra of Programming. Prentice Hall International
Series in Computer Science (1997)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Algorithms. MIT Press, Cambridge
Mass (1997)

6. Hoogendijk, P.: A Generic Theory of Data Types Ph.D Thesis, Eindhoven Technical
University (1997)

7. Hoogendijk, P., Backhouse, R.C.: When do datatypes commute? In: Moggi, E.,
Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 242–260. Springer, Heidelberg
(1997)

8. Steffen, P., Giegerich, R.: Table design in dynamic programming. Information and
Computation 204(9) (September 2006)

Unfolding Abstract Datatypes

Jeremy Gibbons

Computing Laboratory, University of Oxford
http://www.comlab.ox.ac.uk/jeremy.gibbons/

Abstract. We argue that abstract datatypes — with public interfaces
hiding private implementations — represent a form of codata rather than
ordinary data, and hence that proof methods for corecursive programs
are the appropriate techniques to use for reasoning with them. In par-
ticular, we show that the universal properties of unfold operators are
perfectly suited for the task. We illustrate with the solution to a prob-
lem in the recent literature.

1 Introduction

Dijkstra [10] argued that the single most important contribution computing sci-
ence has made to the world is the emphasis on designing abstractions in order
to manage complexity. Abstract datatypes [30] — with public interfaces hiding
private implementations — have a pivotal role to play in that contribution.
Nevertheless, the use of abstract datatypes is not as common among functional
programmers (particularly those using languages like Haskell, which does not
have first-class modules) as one might expect from history’s lesson. One reason
for this phenomenon might be the seductive attractions of pattern matching over
algebraic datatypes [55], which seem to rely on making visible the representa-
tion of data and hence breaking the encapsulation; we return to this point in
Section 5. But another reason for the underuse of abstract datatypes, we feel, is
that they are not subject to the familiar proof methods of equational reasoning
and induction to which functional programming so readily lends itself [2].

The essential reason why standard proof techniques are inapplicable to ab-
stract datatypes is that they are a form of codata rather than a form of data,
with an emphasis on observation rather than construction, process rather than
value, and the indefinite rather than the finite. In this paper, we argue that
the appropriate proof methods for reasoning about abstract datatypes are those
associated with corecursive programs [15]. In particular, building on established
work on final coalgebra semantics for object-oriented programs, we show that
the universal properties of unfold operators [16] fit the bill very nicely.

Our use here of unfold operators, and hence of possibly-infinite data struc-
tures, pushes us towards lazy rather than eager functional programming. That
works out nicely, because it is the lazy functional programmer who tends to
place greater emphasis on equational reasoning. On the other hand, aficionados
of ML at least have a powerful module facility at their disposal, and so might be
expected to make greater use of abstract datatypes than do adherents of Haskell.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 110–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.comlab.ox.ac.uk/jeremy.gibbons/

Unfolding Abstract Datatypes 111

We illustrate our case with the solution to a problem of reasoning with abstract
datatypes from the recent literature, concerning the elimination of redundant
conversions to and from lists in a stream-based reimplementation of the Haskell
standard list library [9].

The remainder of this paper is structured as follows. Section 2 explains the
modelling of abstract datatypes using existential type quantification, and Sec-
tion 3 discusses the corecursive proof methods appropriate for reasoning about
such constructions. Section 4 presents the case study on Coutts et al.’s stream
fusion. Section 5 concludes and discusses related work.

2 Abstract Types Have Existential Type

Abstract datatypes are “a kind of data abstraction where a type’s internal form
is hidden behind a set of access functions; values of the type are created and
inspected only by calls to the access functions” [22]. Hiding of the internal form
is achieved by existential quantification over the representation type: an abstract
data structure consists of operations operating on an internal state, whose type
is hidden from everything except those operations. Mitchell and Plotkin [32]
expressed this view in the slogan “abstract types have existential type”.

2.1 An Example: Complex Numbers

For example, consider (a simplification of) the Haskell datatype Complex :

data Complex = MkComplex Double Double

This introduces a constructor MkComplex :: Double → Double → Complex .
The outcome is not an abstract datatype, because the representation as a pair
of Doubles (as Cartesian coordinates, as it happens) is visible. Instead, it is a
concrete datatype. This provides other advantages — such as pattern matching —
but loses the benefit of information hiding. For example, to determine whether
a complex number is real, we can use the following function:

isReal :: Complex → Bool
isReal (MkComplex x y) = (y 0.0)

But if we decide to change the representation to polar coordinates, all such
definitions will need modification.

An abstract datatype of complex numbers should hide the representation, as
follows [43].

data Complex = ∃s . C (s → (Double,Double) → s) -- create
(s → Complex → s) -- add
(s → Double) -- real
(s → Double) -- imaginary
s -- self

112 J. Gibbons

As above, this introduces a new constructor C ; this takes four functions and an
internal representation or ‘self’, and yields a Complex . Here, the self is of type s ,
for some s ; the four functions each take an argument of type s . Note that the
type variable s does not appear on the left-hand side of the datatype declaration,
so it has to be quantified somehow. A universal quantification would be inap-
propriate, because the representation is of some type, not any type; existential
quantification is what is required. (In common extensions to Standard Haskell
supporting existential quantification, somewhat perversely, it is written with the
keyword forall [39] — the justification being that a datatype declaration such
as

data D = ∃s . MkD (s , s → Integer)

introduces a constructor MkD :: (∃s . (s , s → Integer)) → D , and this type is
isomorphic to ∀s . ((s , s → Integer) → D) because D is independent of s — but
in this paper we will pretty-print that keyword as ‘∃’.)

Packaged up with the internal representation of a complex number are four
functions: for creating a new complex number, adding on a second complex num-
ber (obtaining an updated representation), and extracting the real and imaginary
components. These can be given more user-friendly names:

new :: Complex → Double → Double → Complex
new (C n a r i s) x y = C n a r i (n s (x , y))
add :: Complex → Complex → Complex
add (C n a r i s) c = C n a r i (a s c)
rea, ima :: Complex → Double
rea (C n a r i s) = r s
ima (C n a r i s) = i s

Crucially, nothing other than these four functions can access the internal repre-
sentation; that is guaranteed by the quantification over the type variable s . In
particular, there is no way to extract the representation itself. So of course, the
set of operations made available has to be considered carefully; in contrast to
concrete datatypes, which support pattern matching and hence easy extension
with new functions, adding a new operation to an abstract datatype inexpressible
in terms of existing functions requires a change to the datatype definition [8].

The abstract datatype specifies a signature, but not an implementation. Here
is one implementation, in the expected Cartesian coordinates:

zeroC :: Complex
zeroC = C (λ(x , y) → λz → z)

(λ(x , y) → λc → (x + rea c, y + ima c))
(λ(x , y) → x)
(λ(x , y) → y)
(0.0, 0.0)

Notice the type s → Complex → s for the addition function, allowing complex
numbers of different representations to be added. Consequently, the implemen-

Unfolding Abstract Datatypes 113

tation of add has privileged access to the representation of the first argument
(through the fields x and y), but only public access to the second argument
(through the operations rea and ima). This inefficiency is a well-known problem
with binary methods in object orientation [4]. Mitchell and Plotkin’s approach
[32] differs, providing privileged access to the representations of both arguments
of add but therefore requiring both arguments to have the same representation;
their alternative is more efficient, but less flexible. The difference is essentially a
matter of whether the scope of the existential quantification is narrowed down
to specific objects, or widened out to the whole program.

Note also the rather odd type Complex → Double → Double → Complex for
new , requiring an existing complex number before a new one can be created.
Of course, the implementation of an abstract data structure has to come from
somewhere; the function new creates a new structure using the operations and
data representation of an existing structure, simply assigning a new state. This
is more analogous to cloning in prototype-based languages [54] than it is to
construction de novo in more traditional object-oriented programming.

2.2 An Alternative Implementation

Here is an alternative implementation of complex numbers, using polar coordi-
nates.

data Polar = P{mag :: Double, phase :: Double }
zeroP :: Complex
zeroP = C (λp → λz → c2p z)

(λp → λc → let (x , y) = p2c p in c2p (x + rea c, y + ima c))
(λp → fst (p2c p))
(λp → snd (p2c p))
(P{mag = 0.0, phase = 0.0})

p2c p = (mag p × cos (phase p),mag p × sin (phase p))
c2p (x , y) = P{mag = sqrt (x×x + y×y), phase = atan2 y x }

(A wiser definition of c2p would scale the two coordinates before multiplying,
to avoid overflows; but the naive version above is clearer.) Note that although
zeroC and zeroP have different representations, the existential quantification
allows them to be of the same type.

Now, the reality check for complex numbers becomes:

isReal :: Complex → Bool
isReal z = (ima z 0)

We can no longer use pattern matching on the representation; but this definition
works just as well for a polar — or indeed, any other — representation as for
Cartesian.

114 J. Gibbons

2.3 An Explicit Signature for Complex Numbers

The type declaration Complex is rather complicated, on account of the number of
operations provided. Moreover, those operations all have a common domain, the
hidden representation type; so they can be coalesced into one function returning
a tuple. We will adopt a convention of separating out the description of the
signature (that is, the number and types of the operations) from the existential
quantification, writing the following mutually recursive definitions instead.

data ComplexF s = CF{ new :: (Double,Double) → s ,
add :: Complex → s ,
rea :: Double,
ima :: Double }

data Complex = ∃s . C (s → ComplexF s) s

Here is the Cartesian implementation of zero:

zeroC :: Complex
zeroC = C fc (0.0, 0.0) where

fc :: (Double,Double) → ComplexF (Double,Double)
fc = (λ(x , y) → CF{ new = λz → z ,

add = λc → (x + rea c, y + ima c),
rea = x ,
ima = y })

Note that the function fc is analogous to a class in object-oriented terms: it de-
termines the data representation, and provides implementations of the methods
on that representation. We can provide user-friendly wrappers rea, ima, add ,new
as before. Similarly for the polar implementation zeroP :

zeroP :: Complex
zeroP = C fp (P{mag = 0.0, phase = 0.0}) where

fp :: Polar → ComplexF Polar
fp = (λp → CF{ new = λz → c2p z ,

add = λc → let (x , y) = p2c p in
c2p (x + rea c, y + ima c),

rea = fst (p2c p),
ima = snd (p2c p)})

2.4 Abstract Datatype Genericity

Of course, there is nothing special about the particular datatype of complex
numbers; the approach generalises very nicely. This leads to datatype-generic
abstract datatypes, parametrised by the signature [14]. The signature should be
a strictly positive functor : it should be functorial in the state type (in order
to allow the definition of the unfold for the final coalgebra semantics), and no
occurrences of the type parameter may appear to the left of an arrow (to maintain

Unfolding Abstract Datatypes 115

the encapsulation of the hidden state). The abstract datatype itself packages up
some hidden state with the operations, of type specified by the signature.

data Functor f ⇒ ADT f = ∃s . D (s → f s) s

(The Haskell type class context ‘Functor f ’ entails an operation fmap of type
(a → b) → (f a → f b).) Instantiating the signature parameter to ComplexF
yields complex numbers:

type Complex = ADT ComplexF
zeroCG , zeroPG :: Complex
zeroCG = D fc (0.0, 0.0)
zeroPG = D fp (P{mag = 0.0, phase = 0.0})

(Note that ComplexF and Complex are mutually recursive, so this redefinition
of Complex entails also a redefinition of ComplexF .)

3 Data and Codata

Abstract datatypes are inhabited by codata, as opposed to the ordinary data
inhabiting the more familiar algebraic datatypes. In general, codata is manipu-
lated through destructors instead of constructors. Kieburtz [27] identifies some
fundamental respects in which codata differs from data:

– Codata structures have hidden representations, accessible only via operations
specifically provided for this purpose; whereas the representations of data
structures are visible, for example through pattern matching.

– Consequently, standard datatype-generic operations such as pretty-printing
and comparison, automatically defined or easily derived from the structure
of an arbitrary datatype, are generally not applicable to codatatypes.

– Codata is typically infinite, since it may provide operations that yield other
instances of the same type, as with the new and add operations in the
complex number example in Section 2 (but records with field extractors
are an exception to this rule). Data is usually finite (although with lazy
evaluation, infinite recursive algebraic data structures can be constructed;
we see an example shortly).

As it happens, codatatypes are generally greatest fixpoints of recursive type
equations, whereas datatypes are least fixpoints. In some settings (such as that of
continuous functions between complete partial orders, as embodied in Haskell for
example), least and greatest type fixpoints coincide; but in many settings (such
as total functions between sets, as used in Cockett’s Charity [7] and Turner’s
Total Functional Programming [52,53]) the two are distinguished.

3.1 Greatest Fixpoint Types as Codata

Given a suitable operation F on types (technically, a covariant functor; but for
simplicity, think of some combination of sums and products), the least fixpoint

116 J. Gibbons

μ(F) of F is the smallest type X such that F (X) ≈ X . This corresponds to the
algebraic datatype declaration

data Mu f = In{out :: f (Mu f)}

when read in terms of total functions between sets (rather than continuous func-
tions between complete partial orders), capturing just the total and finite data
structures of a given shape. The constructor In ::f (Mu f) → Mu f and destructor
out :: Mu f → f (Mu f) are the witnesses to the isomorphism.

There is a well-known technique called Church encoding [3,19] for representing
such least fixpoint or initial recursive datatypes in the polymorphic lambda
calculus, without having to introduce new language constructs like data and
pattern matching. The encoding is as a higher-order functional type:

μ(F) = ∀X . (F (X) → X) → X

(Technically, strong initiality, conferring also a corresponding proof principle,
requires additional assumptions, such as parametricity or “theorems for free” in
the underlying category [46,57].)

For example, integer lists have shape determined by L (X) = 1 + Integer ×
X , where 1 denotes the unit type with a single element, Integer the type of
integers, + disjoint union, and × Cartesian product. Integer lists therefore have
the Church encoding μ(L) = ∀X . (L (X) → X) → X . Note that, using standard
type isomorphisms, we have L (X) → X ≈ X × (Integer × X → X), so an
equivalent definition is μ(L) = ∀X . (X × (Integer × X → X)) → X . Moreover,
similar type isomorphisms yield a type ∀a. [a] → ∀b. (b, (a, b) → b) → b for
the function foldr from the Haskell standard library [40]. In other words, when
specialised to a = Integer , foldr computes the Church encoding of a list of
integers.

What is rather less well known is that this encoding dualises, allowing the
representation also of greatest fixpoint or final recursive types [58,62]:

ν(F) = ∃X . (X → F (X)) × X

(Again, parametricity is required in order to deduce strong finality, conferring
the corresponding proof principle). For example, the type of finite and infi-
nite integer lists, the greatest fixpoint ν(L) of the functor L, is encoded as
∃X . (X → 1 + Integer × X) × X . Moreover, standard type isomorphisms yield
a type ∀a. (∃b. (b → Maybe (a, b), b)) → [a] for the function unfoldr from the
Haskell standard library [40]. In other words, when specialised to a = Integer ,
unfoldr computes a co-list of integers from its co-Church encoding.

In summary, whereas least fixpoint types correspond to universal type quan-
tifications, greatest fixpoint types correspond to existential quantifications.

3.2 Proof Methods for Codata

So, zeroCG and zeroPG are both elements of a greatest fixpoint type. We might
expect them to be ‘equal’ in some sense, since they both represent ‘the same’

Unfolding Abstract Datatypes 117

complex number. But in what sense could they be equal? They have different
representations, so straightforward structural comparisons are inappropriate.

The generally accepted approach to take to equality on codata, such as be-
tween instances of abstract datatypes, is observational equivalence, or “equality
as far as we can see” [24]. Two instances of an abstract datatype are clearly dif-
ferent if there is an experiment — that is, a sequence of operations provided by
the signature — yielding distinguishable concrete outputs (which might without
loss of generality be as primitive as bits, but we take here to include types like
Integer and Double); and conversely, if no such experiment exists, we consider
the two instances to be equal.

That informal characterisation of observational equivalence can be formalised
in two ways, which turn out to be equivalent: via bisimulation and coinduction
[21,25,36] or via universal properties of final coalgebras [23,26,45,59]. In this con-
text, bisimulation amounts to the same thing as logical relations and relational
parametricity [31,44]. Bisimulation and universal properties are compared in a
recent survey paper [15]. That survey applies the techniques to proving equality
of concrete datatypes, specifically streams, for which structural comparisons are
also available. It therefore takes the structural comparison as the definition of
equality, and proves that the other notions coincide with it. Since the present
paper concentrates on abstract datatypes, structural comparison is unavailable;
but these two notions of observational equivalence still agree with each other.

3.3 Final Coalgebras

Here, we take the final coalgebra approach. The single experimental steps avail-
able on an abstract data structure of type ADT f are captured, with their re-
quired inputs and specified outputs, by the signature functor f . The tree of all
possible experiments is obtained by repeatedly applying these operations.

data Tree f = T{unT :: f (Tree f)}
tree :: Functor f ⇒ ADT f → Tree f
tree (D h s) = unfold h s where

unfold :: Functor f ⇒ (a → f a) → a → Tree f
unfold f x = T (fmap (unfold f) (f x))

As we noted above, because some experimental steps may yield new abstract
data structures, observation trees will typically be infinite; accordingly, Tree f
is the greatest fixpoint of f . Nevertheless, we consider Tree to be a type of data
rather than of codata: it is amenable to pattern matching and to structural
datatype-generic operations such as pretty-printing and comparison. Although
in Haskell Mu f and Tree f coincide semantically, we use different datatypes to
reinforce the distinction between least and greatest fixpoints.

Now, the claim that the abstract data structures zeroCG and zeroPG are ob-
servationally equivalent reduces to a more amenable statement that the concrete
data structures tree zeroCG and tree zeroPG are structurally equal : an experi-
ment distinguishing zeroCG and zeroPG corresponds to a difference between the

118 J. Gibbons

two trees, and the absence of such an experiment implies the equality of those
trees. The claim is still not effectively decidable, because the trees are both in-
finitely deep and infinitely wide; but at least it is now open to proof via familiar
equational reasoning at the meta-level.

3.4 Proving Equivalence

Observational equivalence of the complex numbers zeroCG and zeroPG follows
from structural equality of their observation trees tree zeroCG and tree zeroPG ,
which can be demonstrated using the universal property of unfold :

h = unfold f ⇐⇒ unT · h = fmap h · f

We have

tree zeroCG = tree zeroPG ⇐⇒ unfold fc (0.0, 0.0)=unfold fp (P 0.0 0.0)

But it isn’t immediately obvious how to apply the universal property here: this is
not an equation between two functions of the form unfold h, but rather between
two trees of the form unfold h s . How can we move forward?

Fortunately, this is a somewhat special case, because there is a simulation rela-
tionship between the two instances. Specifically, we can abstract from the initial
state (0.0, 0.0) of the Cartesian implementation, since (0.0, 0.0)=p2c (P 0.0 0.0),
obtaining the proof obligation unfold fc · p2c = unfold fp. This equation can
be proved using the fusion law of unfold , a simple corollary of the universal
property:

unfold f · g = unfold f ′ ⇐= f · g = fmap g · f ′

All that remains is to establish the premise, fc · p2c = fmap p2c · fp — that
is, that p2c is the abstraction function relating fc and fp. The only property of
complex numbers required in the proof is that p2c · c2p = id . The calculation
can be found in an appendix (Section A).

We chose here to abstract from the initial state of the Cartesian implemen-
tation of the abstract datatype, effectively expressing that implementation in
terms of the polar representation. This particular proof of equivalence is doubly
special, because the simulation also works the other way around: we could have
abstracted the initial state P 0.0 0.0 of the polar implementation instead. (The
only complication in doing so is that c2p · p2c is not quite the identity function;
however, it is the identity on the reachable states — those with non-negative
magnitude, phase between 0 and 2π, and zero phase if zero magnitude.)

In general, given two implementations of an abstract datatype, neither will
simulate the other; instead, each introduces extensions inexpressible by the other.
In that case, each can be shown observationally equivalent to a third implemen-
tation that can simulate both. We will see an example in Section 4.8.

Unfolding Abstract Datatypes 119

4 Stream Fusion

Coutts et al. [9] present an elegant technique for obtaining better fusion of list
functions, by reimplementing the Standard Haskell list library [40] to use in-
ternally an abstract datatype (of ‘streams’) rather than the familiar algebraic
datatype of lists; we summarise work in Sections 4.1–4.4 and 4.7 below. However,
they don’t prove that their reimplementation is sound; we present such a proof
in the remainder of this section.

4.1 An Abstract Datatype of Streams

A simplistic version of Coutts et al.’s approach uses a curried version of Haskell’s
Maybe datatype on pairs as the signature of the stream abstract datatype:

data Maybe2 a b = Nothing2 | Just2 a b
type Stream a = ADT (Maybe2 a)

Thus, a stream has two components, qualified by some existentially bound state
type s : an internal state of type s , and a body that when applied to such a
state yields either a head and a new state, or nothing. (In other words, the
greatest-fixpoint or co-Church encoding is being used.) For example, here is one
implementation of the string "abc":

abc = D h 0 where
h i = case i of

0 → Just2 ’a’ 1
1 → Just2 ’b’ 2
2 → Just2 ’c’ 3
3 → Nothing2

The approach can be seen as an implementation of the Iterator design pattern
from object-oriented programming [13]. The full story of the approach permits
a third outcome of the stream body, to deal with nested recursions; we return
to this point in Section 4.7 below.

4.2 Stream Operations

The list library is redefined in terms of streams. For example, the map function
on lists is reimplemented as follows:

mapS f (D h s) = D h′ s where
h′ s = case h s of Nothing2 → Nothing2

Just2 x s ′ → Just2 (f x) s ′

This function is a rather special case, because the internal representation of the
stream mapS f xs is the same as that of xs . In general, internal representations
change; for example, the zip function is:

120 J. Gibbons

zipS :: Stream a → Stream b → Stream (a, b)
zipS (D h s) (D j t) = D k (s , t) where

k (s , t) = case (h s , j t) of
(Just2 x s ′, Just2 y t ′) → Just2 (x , y) (s ′, t ′)

→ Nothing2

The internal representation (s , t) of the result is of a different type to the repre-
sentations s and t of the two arguments.

4.3 A List Interface

The standard library is reimplemented using streams, but the interface presented
to the programmer still uses the familiar algebraic datatype of lists; therefore,
conversion functions stream :: [a] → Stream a and unstream :: Stream a → [a]
are needed.

stream :: [a] → Stream a
stream xs = D uncons xs where

uncons :: [a] → Maybe2 a [a]
uncons xs = if null xs then Nothing2 else Just2 (head xs) (tail xs)

unstream :: Stream a → [a]
unstream (D h s) = unfoldr h s where

unfoldr :: (b → Maybe2 a b) → b → [a]
unfoldr f y = case f y of Nothing2 → []; Just2 x y ′ → x : unfoldr f y ′

For example, the familiar map on lists is retrieved by

map f = unstream · mapS f · stream

(In fact, unstream is essentially a specialisation of tree.)

4.4 Eliminating Conversions

The crucial point in Coutts et al.’s work is the elimination of redundant con-
versions in the composition of list operations, such as in the composition of two
maps:

unstream · mapS f · stream · unstream · mapS g · stream

Here, the double conversion stream · unstream from streams to lists and back
again is redundant. If it could be eliminated, the two occurrences of mapS would
become adjacent; and because the definition of mapS is non-recursive, standard
compiler optimisations — specifically, a case-of-case optimisation — can rela-
tively easily fuse their bodies. The actual elimination of stream · unstream itself
is easy, using the Glasgow Haskell Compiler’s programmer-definable rewrite rules
[42].

In fact, stream ·unstream is not quite the identity: stream (unstream ⊥) equals
D uncons ⊥ rather than ⊥. In practice, this difference does not cause a problem

Unfolding Abstract Datatypes 121

if (a) the Stream datatype is not exported from the library, and (b) the library
itself does not construct bottom values of type Stream; so their implementation
is carefully arranged to satisfy these conditions.

Coutts et al. do claim (implicitly) that stream (unstream (D h s)) = D h s ,
but provide no proof of this claim; they say that “it is not entirely trivial to
define a useful equivalence relation on streams [. . .] due to the fact that a single
list can be modeled by infinitely many streams” [9, p320].

4.5 Destroying Streams

In fact, there is a simple proof of the stream ·unstream identity: it is an instance
of the destroy/unfoldr rule [48], the dual of the better-known foldr/build rule
[18]. The function destroy is defined as follows:

destroy :: (∀b. (b → Maybe2 a b) → b → c) → [a] → c
destroy g = g uncons

so that stream xs = destroy D xs . Then the destroy/unfoldr rule states that

destroy g (unfoldr f s) = g f s

The proof of this rule is a straightforward application of Reynolds’ parametricity
[47]: the free theorem [57] of the type of the argument g of destroy is

ψ · f = fmap f · φ =⇒ g ψ · f = g φ

Letting ψ = uncons and f = unfoldr φ gives the destroy/unfoldr rule.
We note in passing that whereas foldr/build fusion has turned out to be a little

disappointing in its applicability [33], destroy/unfoldr fusion seems to have a
much wider scope. For example, it is straightforward to apply the latter technique
to zip-like functions and functions with accumulating parameters [48], avoiding
the need for augment -like generalisations [17]. This additional promise lends
weight to our advocacy for greater appreciation of corecursive programming [16].

It is quite natural, so to speak, that equivalence proofs for abstract datatypes
boil down to applications of parametricity. Intuitively, parametricity results cap-
ture “the only thing you can do, for type reasons”. For example, for the abstract
data structure D h s , the type of the representation s is hidden, and so “the
only thing you can do, for type reasons”, is to apply h to s . Indeed, Reynolds
[46] originally called his result the “representation theorem”, and motivated it
by appeal to independence from a choice of representation: “We expect that the
meaning of [. . .] a program will remain unchanged if the [definition of an abstract
datatype] is altered by changing the representation of the type and redefining
its primitive operations in a consistent manner” [46].

4.6 Unfolding Observations

Another way of looking at Coutts et al.’s problem is to remember that streams
are an abstract datatype, and so structural equivalence is the wrong tool to use;
observational equivalence is what is needed.

122 J. Gibbons

In this case, since we have by definition that

stream (unstream (D h s)) = D uncons (unfoldr h s)

it suffices to show observational equivalence of D h s and D uncons (unfoldr h s).
(Notice that these two streams will generally have different representations. The
latter necessarily uses a list for the state, whereas the former may have an
arbitrary state type.)

As we argued in Section 3.3, observational equivalence of abstract data struc-
tures is just structural equivalence of their unfoldings to the final coalgebra. For
datatype Stream a, the signature is the functor Maybe2 a, whose final coalgebra
is possibly infinite lists of as, and the operation to build such a list is the familiar
but underappreciated unfoldr [16]. So we have to prove

unfoldr uncons (unfoldr h s) = unfoldr h s

This follows easily from the universal property

h = unfoldr f ⇐⇒ uncons · h = fmap h · f

of unfoldr . This alternative proof using the universal property of unfold is im-
portant: as we shall see in Section 4.8, it seems to generalise better than the
parametricity-based proof underlying destroy/unfoldr .

4.7 Streams That Skip

The simple version above of Coutts et al.’s story uses a representation of streams
providing a single observation, yielding either no information (for an empty
stream) or a head and the state for a tail (for a non-empty stream). In fact, the
complete story is more sophisticated, allowing a third outcome: a new state, but
no head.

data Step a s = Done | Yield a s | Skip s
type SStream a = ADT (Step a)

The extra outcome is needed to support operations such as filtering, which do
not produce an element at every step — when the filter discards an element from
an underlying stream, or that stream skips itself, then the outer stream skips
instead of yielding:

filterS :: (a → Bool) → SStream a → SStream a
filterS p (D h s) = D (try h p) s where

try h p s = case h s of
Done → Done
Skip s ′ → Skip s ′

Yield x s ′ → if p x then Yield x s ′ else Skip s ′

Unfolding Abstract Datatypes 123

Without the possibility of skipping, the body of the stream would have to be
recursive, thereby complicating fusion optimisations.

The conversions from lists is very similar to the simple case:

sstream :: [a] → SStream a
sstream xs = D unconsS xs where

unconsS :: [a] → Step a [a]
unconsS [] = Done
unconsS (x : xs) = Yield x xs

The conversion back to lists is more involved, because of the need to handle
skips:

unsstream :: SStream a → [a]
unsstream (D h s) = unfoldr (force h) s where

force :: (s → Step a s) → (s → Maybe2 a s)
force h s = case h s of

Done → Nothing2

Yield x s ′ → Just2 x s ′

Skip s ′ → force h s ′

Note that the body force of the unfold here is recursive, so it would be difficult
for standard compiler optimisations to fuse a following function. That is not a
big problem, because unsstream is intended to be used only when leaving the
improved implementation of the list library, when fusion is not expected anyway.
Moreover, note that unsstream may be unproductive, although for example even
filterS (const False) is always productive: that particular lump in the carpet has
been shuffled under the furniture, but no library reimplementation can eliminate
it altogether.

4.8 Reasoning with Skips

The presence of skips has interesting consequences for proofs. We should no
longer take pure observational equivalence as the appropriate notion of equality
on skipping streams, because we ought to treat some observationally distinguish-
able skipping streams as effectively equivalent. Coutts et al. say that “equivalence
on streams should be defined modulo Skip values [. . .] semantics should not be
affected by the presence or absence of Skip values” [9, p320].

For example, consider the stream version of the standard list function concat :

concatS :: SStream (SStream a) → SStream a
concatS (D hs ss) = D hc (Nothing , ss) where

hc (Nothing , ss) = case hs ss of
Done → Done
Skip ss ′ → Skip (Nothing , ss ′)
Yield s ss ′ → Skip (Just s , ss ′)

124 J. Gibbons

hc (Just (D ha sa), ss) = case ha sa of
Done → Skip (Nothing , ss)
Skip sa′ → Skip (Just (D ha sa′), ss)
Yield y sa′ → Yield y (Just (D ha sa′), ss)

In order to maintain a non-recursive body, this uses a rather complex internal
state consisting of an optional SStream a and the internal state of a remaining
SStream (SStream a); only if the former is present and yielding does the whole
yield. We might expect the following property — one of the monad laws for
streams — to hold:

concatS · wrapS = id

where wrapS wraps an element up as a singleton stream:

wrapS :: a → SStream a
wrapS x = D fetch (Just x) where

fetch :: Maybe a → Step a (Maybe a)
fetch (Just x) = Yield x Nothing
fetch Nothing = Done

The two sides of the property are not even observationally equivalent, because
the left-hand side concatS · wrapS introduces quite a few extra Skips.

In fact, the appropriate notion of “equivalence modulo Skips” is obtained
precisely by taking structural equality on their unfoldings to lists:

unsstream · concatS · wrapS = unsstream · id

The proof of this latter property is a fairly straightforward (albeit somewhat
tedious) application of the universal property of unfoldr ; it is relegated to an
appendix (Section B).

The alternative proof technique in terms of the universal property of unfoldr
is important, because the destroy/unfoldr rule used in Section 4.5 does not seem
to generalise nicely to skipping streams. The analogous development would be
to introduce a function

destroyS :: (∀b. (b → Step a b) → b → c) → [a] → c
destroyS g = g unconsS

so that sstream xs = destroyS D xs . The free theorem of the type of the argu-
ment g of destroyS is

ψ · f = fmap f · φ =⇒ g ψ · f = g φ

but it isn’t clear how to instantiate this equation to obtain the desired result;
indeed, ‘equivalence modulo Skips’ feels more ad hoc than parametric.

Unfolding Abstract Datatypes 125

5 Conclusions

5.1 Related Work

Data abstraction has long been recognised as a crucial tool in managing the
complexity of software systems [30,37]. Pattern matching on algebraic datatypes
is also widely appreciated as an extremely convenient technique [55]. But as
Wadler’s proposal [56] noted twenty years ago, it is difficult to marry the two
together: data abstraction depends on hiding a data representation that pattern
matching relies on revealing. There have been numerous other proposals for
combining data abstraction with pattern matching over the years [5,6,34,35,51],
and indeed a recent flurry of activity in the area [11,41,49,61].

One could look at final coalgebra semantics as a disciplined way of thinking
about pattern matching over abstract datatypes. Rather than trying to force
these two somewhat conflicting ideas together, one could instead define a view
of codata (supporting abstraction) as data (supporting pattern matching), using
the function tree from Section 3.3. In case a full transformation from ‘completely
codata’ to ‘completely data’ is inappropriate, simply apply the body of the ab-
stract datatype once:

unpack :: Functor f ⇒ ADT f → f (ADT f)
unpack (D h s) = fmap (D h) (h s)

This yields a piece of data (the outermost type constructor f) with codata as
components (the inner occurrences of ADT f). This construction justifies a num-
ber of earlier attempts to treat algebraic datatypes abstractly [12,38,50,60].

The idea of using final coalgebras as the semantics of abstract datatypes has a
long history. Wand [59] writes that “an abstract data type is a final object in the
category of its representations”, and Kamin [26] that “only externally observable
behavior matters [. . .] the final data type is the most abstract realization of any
given data abstraction.” Considering how close the relationship between abstract
datatypes and object-oriented classes is, it is surprising that it seems to have
taken over a decade for the idea to arise that final coalgebras provide a semantics
for classes too [23,45]. For a good historical review of coinduction for behavioural
satisfaction, see [20].

5.2 Summary

We have presented an approach to reasoning about abstract datatypes in a
functional language, based on the (well-known) model of abstraction through
existential quantification over the hidden representation type [28,29,32], and
the (somewhat less well-known and appreciated) reasoning principles for codata
through universal properties of final coalgebras [15,16]. We have illustrated this
approach by considering a problem arising from Coutts et al.’s work [9] on stream
fusion. In a nutshell, we advocate the following steps for reasoning about abstract
datatypes:

126 J. Gibbons

– express the signature as a (strictly positive) functor f ;
– enforce the abstraction via existential quantification:

data Functor f ⇒ ADT f = ∃s . D (s → f s) s

– capture observations as concrete data:

data Tree f = T{unT :: f (Tree f)}

– transform abstract data to concrete data:

tree :: Functor f ⇒ ADT f → Tree f
tree (D h s) = unfold h s where

unfold :: Functor f ⇒ (a → f a) → a → Tree f
unfold f x = T (fmap (unfold f) (f x))

– exploit the universal property of unfold for reasoning:

h = unfold f ⇐⇒ unT · h = fmap h · f

– view data as a mixture of concrete and abstract:

unpack :: Functor f ⇒ ADT f → f (ADT f)

Acknowledgements

Particular thanks are due to Duncan Coutts, whose talk about his paper [9]
with Roman Leshchinskiy and Don Stewart posed the question that inspired
this work. Richard Bird’s paper [1] was also an influence, not least on the title.
I would also like to thank the Algebra of Programming group at Oxford and
Pablo Nogueira, for helpful contributions and discussions, and the anonymous
reviewers, whose comments have led to significant improvements.

References

1. Bird, R.: Unfolding pointer algorithms. Journal of Functional Programming 11(3),
347–358 (2001)

2. Bird, R.S.: Introduction to Functional Programming Using Haskell. Prentice-Hall,
Englewood Cliffs (1998)

3. Böhm, C., Berarducci, A.: Automatic synthesis of typed λ-programs on term alge-
bras. Theoretical Computer Science 39, 135–154 (1985)

4. Bruce, K., Cardelli, L., Castagna, G.: The Hopkins Object Group, Gary T. Leav-
ens, and Benjamin Pierce. On binary methods. Theory and Practice of Object
Systems 1(3), 221–242 (1995)

Unfolding Abstract Datatypes 127

5. Burton, F.W., Cameron, R.D.: Pattern matching with abstract data types. Journal
of Functional Programming 3(2), 171–190 (1993)

6. Burton, W., Meijer, E., Sansom, P., Thompson, S., Wadler, P.: Views: An extension
to Haskell pattern matching (October 1996),
http://www.haskell.org/development/views.html

7. Cockett, R., Fukushima, T.: About Charity. Department of Computer Science,
University of Calgary (May 1992)

8. Cook, W.R.: Object-oriented programming versus abstract data types. In: de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1990. LNCS, vol. 489,
pp. 151–178. Springer, Heidelberg (1991)

9. Coutts, D., Leshchinskiy, R., Stewart, D.: Stream fusion: From lists to streams
to nothing at all. In: International Conference on Functional Programming, pp.
315–326 (2007)

10. Dijkstra, E.W.: The humble programmer. Communications of the ACM 15(10),
859–866 (1972),
http://www.cs.utexas.edu/∼EWD/transcriptions/EWD03xx/EWD340.html

11. Emir, B., Odersky, M., Williams, J.: Matching Objects with Patterns. In: Ernst,
E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 273–298. Springer, Heidelberg (2007)

12. Erwig, M.: Categorical Programming with Abstract Data Types. In: Haeberer,
A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 406–421. Springer, Heidelberg
(1998)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

14. Gibbons, J.: Datatype-generic programming. In: Backhouse, R., Gibbons, J., Hinze,
R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719. Springer, Heidelberg (2007)

15. Gibbons, J., Hutton, G.: Proof methods for corecursive programs. Fundamenta
Informaticae 66(4), 353–366 (2005)

16. Gibbons, J., Jones, G.: The under-appreciated unfold. In: International Conference
on Functional Programming, Baltimore, Maryland, pp. 273–279 (September 1998)

17. Gill, A.: Cheap Deforestation for Non-strict Functional Languages. PhD thesis,
Glasgow (1998)

18. Gill, A., Launchbury, J., Jones, S.P.: A short cut to deforestation. In: Functional
Programming Languages and Computer Architecture (1993)

19. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Tracts in Theoretical Com-
puter Science, vol. 7. Cambridge University Press, Cambridge (1989),
http://www.monad.me.uk/stable/Proofs+Types.html

20. Goguen, J., Malcolm, G.: Hidden coinduction: Behavioural correctness proofs for
objects. Mathematical Structures in Computer Science 9, 287–319 (1999)

21. Gordon, A.D.: A tutorial on co-induction and functional programming. In: Glasgow
Workshop on Functional Programming (1994)

22. Howe, D.: Free on-line dictionary of computing (1993), http://foldoc.org
23. Jacobs, B.: Objects and classes, coalgebraically. In: Freitag, B., Jones, C.B.,

Lengauer, C., Schek, H.-J. (eds.) Object-Orientation with Parallelism and Per-
sistence, pp. 83–103. Kluwer, Dordrecht (1996)

24. Jacobs, B.: Coalgebras in specification and verification for object-oriented lan-
guages. Newsletter of the Dutch Association for Theoretical Computer Science
(NVTI) 3, 15–27 (1999)

25. Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of
the European Association for Theoretical Computer Science (62), 222–259 (1997)

http://www.haskell.org/development/views.html
http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html
http://www.monad.me.uk/stable/Proofs+Types.html
http://foldoc.org

128 J. Gibbons

26. Kamin, S.: Final data types and their specification. ACM Transactions on Pro-
gramming Languages and Systems 5(1), 97–123 (1983)

27. R.B. Kieburtz.: Codata and comonads in Haskell. Oregon Graduate Institute (un-
published manuscript, 1999)

28. Läufer, K., Odersky, M.: An extension of ML with first-class abstract types. In:
SIGPLAN Workshop on ML and its Applications (June 1992)

29. Läufer, K., Odersky, M.: Polymorphic type inference and abstract data types. ACM
Transactions on Programming Languages and Systems 16(5), 1411–1430 (1994)

30. Liskov, B., Zilles, S.: Programming with abstract data types. In: ACM SIGPLAN
Symposium on Very High Level Languages, pp. 50–59. ACM Press, New York
(1974)

31. Mitchell, J.C.: On the equivalence of data representations. In: Artificial Intelligence
and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
pp. 305–329. Academic Press Professional, Inc., San Diego (1991)

32. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transac-
tions on Programming Languages and Systems 10(3), 470–502 (1988)

33. Németh, L.: Catamorphism Based Program Transformations for Non-Strict Func-
tional Languages. PhD thesis, Department of Computing Science, University of
Glasgow (2000)

34. Okasaki, C.: Views for Standard ML. In: SIGPLAN Workshop in ML, pp. 14–23
(1998)

35. Gostanza, P.P., Peña, R., Núñez, M.: A new look at pattern matching in abstract
data types. In: International Conference on Functional Programming, pp. 110–121.
ACM Press, New York (1996)

36. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

37. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

38. Paterson, R.: Haskell hierarchical libraries: Data.Sequence (accessed, 2007),
http://www.haskell.org/ghc/docs/latest/html/libraries/base/

Data-Sequence.html

39. Jones, S.P.: Explicit quantification in Haskell (1998),
http://research.microsoft.com/∼simonpj/Haskell/quantification.html

40. Jones, S.P.: The Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, Cambridge (2003)

41. Jones, S.P.: View patterns: Lightweight views for Haskell (January 2007),
http://hackage.haskell.org/trac/ghc/wiki/ViewPatternsArchive

42. Jones, S.P., Tolmach, A., Hoare, T.: Playing by the rules: Rewriting as a practical
optimisation technique in GHC. In: Hinze, R. (ed.) Haskell Workshop (2001)

43. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
44. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,

Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidel-
berg (1993)

45. Reichel, H.: An approach to object semantics based on terminal co-algebras. Math-
ematical Structures in Computer Science 5, 129–152 (1995)

46. Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Program-
ming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974)

47. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Information
Processing, vol. 83, pp. 513–523. Elsevier, Amsterdam (1983)

http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Sequence.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Sequence.html
http://research.microsoft.com/~simonpj/Haskell/quantification.html
http://hackage.haskell.org/trac/ghc/wiki/ViewPatternsArchive

Unfolding Abstract Datatypes 129

48. Svenningsson, J.: Shortcut fusion for accumulating parameters and zip-like func-
tions. In: International Conference on Functional Programming (2002)

49. Syme, D., Neverov, G., Margetson, J.: Extensible pattern matching via a
lightweight language extension. In: International Conference on Functional Pro-
gramming, pp. 29–40 (2007)

50. Thompson, S.: Higher-order + polymorphic = reusable. Technical Report 224,
University of Kent at Canterbury (May 1997),
http://www.cs.kent.ac.uk/pubs/1997/224/

51. Tullsen, M.: First Class Patterns. In: Pontelli, E., Santos Costa, V. (eds.) PADL
2000. LNCS, vol. 1753, pp. 1–15. Springer, Heidelberg (2000)

52. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-
meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022. Springer, Heidelberg (1995)

53. Turner, D.A.: Total functional programming. Journal of Universal Computer Sci-
ence 10(7), 751–768 (2004)

54. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Object-Oriented Pro-
gramming: Systems, Languages and Applications, pp. 227–242 (1987)

55. Wadler, P.: A critique of Abelson and Sussman: Why calculating is better than
scheming. SIGPLAN Notices 22(3), 8 (1987)

56. Wadler, P.: Views: A way for mattern matching to cohabit with data abstraction.
In: Principles of Programming Languages, pp. 307–313. ACM Press, New York
(1987)

57. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, pp. 347–359. ACM, New York (1989)

58. Wadler, P.: Recursive types for free! (July 1990) (unpublished manuscript),
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/

free-rectypes.txt

59. Wand, M.: Final algebra semantics and data type extensions. Journal of Computer
and System Sciences 19, 27–44 (1979)

60. Wang, D.C., Murphy VII, T.: Programming with recursion schemes. Agere Sys-
tems/Carnegie Mellon University (unpublished manuscript, 2002)

61. Wang, M., Gibbons, J.: Translucent abstraction: Algebraic datatypes with safe
views (April 2008) (submitted)

62. Wraith, G.: A note on categorical datatypes. In: Pitt, D.H., Rydeheard, D.E.,
Dyjber, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer Science.
LNCS, vol. 389. Springer, Heidelberg (1989)

A Appendix: Equivalence of Complex Numbers

Section 3.4 shows how to prove observational equivalence of different imple-
mentations of complex numbers, using the fusion property of unfold . Here, we
discharge the proof obligation

fc · p2c = fmap p2c · fp

using the (idealised, since not quite valid in approximate floating point numbers)
equation relating polar and Cartesian representations

p2c · c2p = id

http://www.cs.kent.ac.uk/pubs/1997/224/
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt

130 J. Gibbons

and the definitions

fc (x , y) = CF{ new = λz → z ,
add = λc → (x + re c, y + im c),
rea = x ,
ima = y })

fp p = CF{ new = λz → c2p z ,
add = λc → let (x , y) = p2c p in

c2p (x + re c, y + im c),
rea = fst (p2c p),
ima = snd (p2c p)})

Note also that the appropriate definition of fmap on ComplexF is

fmap f c = CF{ new = λz → f (new c z),
add = λc′ → f (add c c′),
rea = rea c,
ima = ima c}

We calculate:

fmap p2c (fp p)
= {- fp -}

fmap p2c (CF{ new = λz → c2p z ,
add = λc → let (x , y) = p2c p in

c2p (x + re c, y + im c),
rea = fst (p2c p),
ima = snd (p2c p)})

= {- fmap on ComplexF -}
CF{ new = λz → p2c (c2p z),

add = λc → let (x , y) = p2c p in
p2c (c2p (x + re c, y + im c)),

rea = fst (p2c p),
ima = snd (p2c p)}

= {- p2c · c2p = id -}
CF{ new = λz → z ,

add = λc → let (x , y) = p2c p in
(x + re c, y + im c),

rea = fst (p2c p),
ima = snd (p2c p)}

= {- lift out the let binding -}
let (x , y) = p2c p in
CF{ new = λz → z ,

add = λc → (x + re c, y + im c),
rea = x ,
ima = y }

= {- fc -}

Unfolding Abstract Datatypes 131

let (x , y) = p2c p in fc (x , y)
= {- application -}

fc (p2c p)

which completes the proof.

B Appendix: Equivalence of Skipping Streams

Section 4.8 makes a claim about the observational equivalence modulo Skips of
the skipping streams concatS (wrapS s) and s , where

concatS :: SStream (SStream a) → SStream a
concatS (D hs ss) = D hc (Nothing , ss) where

hc (Nothing , ss) = case hs ss of
Done → Done
Skip ss ′ → Skip (Nothing , ss ′)
Yield s ss ′ → Skip (Just s , ss ′)

hc (Just (D ha sa), ss) = case ha sa of
Done → Skip (Nothing , ss)
Skip sa′ → Skip (Just (D ha sa′), ss)
Yield y sa′ → Yield y (Just (D ha sa′), ss)

wrapS :: a → SStream a
wrapS x = D fetch (Just x) where

fetch (Just x) = Yield x Nothing
fetch Nothing = Done

The claim boils down to the following equation between functions on lists,

unsstream · concatS · wrapS = unsstream

where

unsstream :: SStream a → [a]
unsstream (D h s) = unfoldr (force h) s where

force h s = case h s of Done → Nothing2

Yield x s ′ → Just2 x s ′

Skip s ′ → force h s ′

Consider for example the skipping stream s = D h 0 where

h n = [Skip 1,Yield ’a’ 2,Skip 3,Yield ’b’ 4,Skip 5,Done] !! n

(The operation ‘!!’ denotes list indexing.) Unwinding this stream proceeds through
each of the above states in turn, yielding in total the list of characters [’a’, ’b’].
The stream concatS (wrapS s), on the other hand, exhibits the following
behaviour:

132 J. Gibbons

state output

(Nothing , Just (D h 0)) Skip
(Just (D h 0),Nothing) Skip
(Just (D h 1),Nothing) Yield ’a’
(Just (D h 2),Nothing) Skip
(Just (D h 3),Nothing) Yield ’b’
(Just (D h 4),Nothing) Skip
(Just (D h 5),Nothing) Skip
(Nothing ,Nothing) Done

Each row of the table presents a state and the output from that state, omitting
the successor state if present. For example,

hc (Just (D h 1),Nothing) = Yield ’a’ (Just (D h 2),Nothing)

Evidently the closest match between these states and those of the original
stream s are those whose first component is a Just. We therefore proceed to
show that

unsstream (concatS (wrapS s))
= {- definitions -}

unfoldr (force (hc fetch)) (Nothing , Just (D h n))
= {- expanding: f x = f y =⇒ unfoldr f x = unfoldr f y -}

unfoldr (force (hc fetch)) (Just (S h n),Nothing)
= {- unfoldr fusion -}

unfoldr (force h) n
= {- definitions -}

unsstream (D h n)

For the ‘expansion’ step, it is easy to verify that

fetch (Just (D h n)) = Yield (D h n) Nothing

and so

hc fetch (Nothing , Just (D h n)) = Skip (Just (D h n),Nothing)

and so

force (hc fetch) (Nothing , Just (D h n))
=

force (hc fetch) (Just (D h n),Nothing)

as required.
For the ‘fusion’ step, we define

inject n = (Just (D h n),Nothing)

so that the obligation is to prove

unfoldr (force (fc fetch)) · inject = unfoldr (force h)

Unfolding Abstract Datatypes 133

This can be done using the fusion rule for unfoldr :

unfoldr f · g = unfoldr f ′ ⇐= f · g = fmap (prod id g) · f ′

which reduces the obligation to showing that

force (hc fetch) · inject = fmap (prod id inject) · force h

This last step has to be done using fixpoint induction, because force is not
defined using a structured form of recursion. We simplify both sides to the point
at which they make a recursive call to force; the surrounding contexts turn out
to be equal, and so fixpoint induction shows that the least fixpoints are equal.
On the left-hand side, we have:

force (hc fetch) (inject n)
= {- inject -}

force (hc fetch) (Just (D h n),Nothing)
= {- force, hc, fetch -}
case h n of

Done → Nothing2

Skip m → force (hc fetch) (Just (D h m),Nothing)
Yield x m → Just2 x (Just (D h m),Nothing)

= {- inject -}
case h n of

Done → Nothing2

Skip m → force (hc fetch) (inject m)
Yield x m → Just2 x (inject m)

On the right, we have:

fmap (prod id inject) (force h n)
= {- force -}

fmap (prod id inject) (case h n of
Done → Nothing2

Skip m → force h m
Yield x m → Just2 x m)

= {- fmap, prod -}
case h n of

Done → Nothing2

Skip m → fmap (prod id inject) (force h m)
Yield x m → Just2 x (inject m)

This completes the proof.

Circulations, Fuzzy Relations and Semirings

Roland Glück and Bernhard Möller

Institut für Informatik, Universität Augsburg,
Universitätsstr. 14, D-86135 Augsburg, Germany
{glueck,moeller}@informatik.uni-augsburg.de

http://www.informatik.uni-augsburg.de/en/chairs/dbis/

pmi/staff/{glueck,moeller}

Abstract. Circulations are similar to flows in capacity-constrained net-
works, with the difference that they also observe lower bounds and, unlike
flows, are not directed from a source to a sink. We give a new description
of circulations in networks using a technique introduced by Kawahara;
he applied the same methods to network flows. We show the power and
flexibility of his approach in a new application, refining it at the same
time by introducing the concept of test relations. Furthermore we will
give algebraic formulations of a generic algorithm for computing a flow
in a network with lower bounds and a sufficient and necessary criterion
for the existence of a circulation.

1 Introduction

Networks with and without lower bounds as well as flows and circulations in
them have a wide range of applications. They are used for transport problems,
for modelling financial and economic situations and are also used in graph theory.
Common proofs of Hall’s theorem and of the Egervary-König-Theorem ([Jun],
Chapter 7) use networks, too. Also problems concerning matchings in bipartite
graphs and disjoint path problems can often be solved using networks. So there
are a lot of algorithms for and theorems about them.

Usually networks are described as graphs with weighted edges. In the approach
we are using they are modelled as so-called fuzzy relations, a natural generalisa-
tion of traditional relations. This idea was introduced in [Kaw]. The advantage
of this approach is that a lot of proofs can be done in an algebraic manner by
simple calculation. This opens the door for automated reasoning about networks
and related topics in graph theory.

We take up Kawahara’s approach in a new application. At the same time we
refine it by introducing the concept of fuzzy test relations, inspired by the theory
of tests in semirings [KozT, MB], which leads to a substantial notational and
conceptual simplification. This will be beneficial for automated proofs in this
problem domain.

In Section two we present the basics of fuzzy relations and other tools we
will use. Section three gives an overview over recent algebraic work concerning
flows in networks. Finally, from Section four on we present our new ideas about
circulations in networks with lower bounds.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 134–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Circulations, Fuzzy Relations and Semirings 135

2 Fuzzy Relations

2.1 Definition and Basic Operations

Definition 2.1 (Fuzzy Relation). A fuzzy relation α between sets X and Y ,
written α : X ↔ Y , is a mapping from X × Y into the interval [0, 1]. The set of
all fuzzy relations between X and Y is denoted by Rel(X, Y). A fuzzy relation
between a set X and itself is called a fuzzy endorelation on X .

A fuzzy endorelation α on a set X can be viewed as representing a weighted
directed graph with node set X , where for x, y ∈ X the value α(x, y) is the weight
of edge (x, y). An edge weight α(x, y) = 0 means that x and y are considered
not to be connected by a direct edge. The notion of a fuzzy relation can be
generalised to allow elements of an arbitrary lattice as edge weights. However,
the above special case has a number of advantages in our setting; they will be
discussed as we go along.

Definition 2.2 (Special Relations). Given sets X and Y , there are three
particular fuzzy relations with

0XY :X ↔ Y , 0(x, y) = 0 ,
∇XY :X ↔ Y , ∇(x, y) = 1

idX :X ↔ X , idX(x, y) =
{

1 if x = y
0 otherwise

for all x, y, called the empty, universal and identity fuzzy relation, resp. When
X and Y are clear from the context the indices will be omitted.

In the graph view, 0 represents the totally disconnected graph while ∇ is the
fully connected graph in which all edges have maximal weight. Finally, id is a
graph in which every node carries a loop of maximal weight and there are no
other edges.

Definition 2.3 (Boolean Fuzzy Relation). A fuzzy relation is called Boolean
if its range is contained in the set {0, 1}.

A Boolean fuzzy relation α : X ↔ Y corresponds in a natural way to a standard
relation α̃ ⊆ X × Y given by

x α̃ y ⇔ α(x, y) = 1 .

To motivate the following definitions we will now explain how fuzzy relations
can be used to model flows and circulations.

A network is an edge-labeled directed graph with at most one edge between
any two nodes, in which the edge labels are non-negative real numbers modelling
transport capacities between the nodes. If there is an upper bound c �= 0 for the
capacities (which holds, in particular, for finite networks) we can normalise them
to the interval [0, 1] by dividing them by c. Now the network can immediately

136 R. Glück and B. Möller

be represented by a fuzzy relation α, which takes value d
c if there is an edge with

weight d from x to y and zero otherwise.
It is well known how to use standard relations for describing certain aspects

of graphs. We want to extend these techniques to networks and their describing
fuzzy relations.

To this end we first introduce some operations on the interval [0, 1]. For a, b ∈
[0, 1] we define

• a ∨ b = max{a, b}
• a ∧ b = min{a, b}
• a � b = max{0, a− b}
• a ⊕ b = min{1, a + b}
Consistent with these definitions we define the operators

∨
x∈X x and

∧
x∈X x

for arbitrary subsets X ⊆ [0, 1] by
∨

x∈X x = supX and
∧

x∈X x = inf X .

Definition 2.4 (Basic Operations). For fuzzy relations α, β : X ↔ Y the
join α 	 β, the meet α � β, the truncating difference α � β and the truncating
sum α⊕β : X ↔ Y are the pointwise extensions of the operators defined above:

• ∀x ∈ X ∀y ∈ Y : (α 	 β)(x, y) = α(x, y) ∨ β(x, y)
• ∀x ∈ X ∀y ∈ Y : (α � β)(x, y) = α(x, y) ∧ β(x, y)
• ∀x ∈ X ∀y ∈ Y : (α � β)(x, y) = α(x, y) � β(x, y)
• ∀x ∈ X ∀y ∈ Y : (α ⊕ β)(x, y) = α(x, y) ⊕ β(x, y)

Two fuzzy relations α, β : X ↔ Y are said to be disjoint if α� β = 0. Adapting
the usual notation A ∪̇B for the union of disjoint sets A and B, we abbreviate
the union of two disjoint fuzzy relations α and β by α 	̇β. Moreover, we write
α - β if α(x, y) ≤ β(x, y) holds for all (x, y) ∈ X × Y .

Analogously to above we extend 	 to sets of fuzzy relations, writing
⊔

i∈I αi.
It is easy to see that meet, join and truncating sum are commutative and

associative. Moreover, join distributes over meet and vice versa.
The behaviour of the truncating sum is more complex. Due to the trunca-

tion the common laws of addition and subtraction are not transferable. With
additional assumptions similar rules are valid. For example β - α implies
(α � β) ⊕ β = α. In Section 2.3 we will state similar properties concerning the
connection between the above operations and the cardinality of fuzzy relations.

Definition 2.5 (Scalar Multiplication). For real numbers k ∈ [0, 1] and a
fuzzy relation α : X ↔ Y the scalar multiplication k · α, also written kα, is
defined by (kα)(x, y) = k · α(x, y) for all (x, y) ∈ X × Y .

Scalar multiplication distributes over 	, �, � and ⊕.

Definition 2.6 (Converse). For a fuzzy relation α : X ↔ Y the converse
α� : Y ↔ X is defined by

∀x ∈ X ∀y ∈ Y : α�(y, x) = α(x, y).

Converse commutes with scalar multiplication, i.e., (kα)� = k(α�), and distrib-
utes over 	,�,� and ⊕. In the graph view this operation reverses all edges while
preserving their weights.

Circulations, Fuzzy Relations and Semirings 137

2.2 Composition, Powers and Star

Definition 2.7 (Composition). We define the composition αβ : X ↔ Z of
two fuzzy relations α : X ↔ Y and β : Y ↔ Z by

αβ(x, z) =
∨

y∈Y (α(x, y) ∧ β(y, z)).

This is a straightforward generalisation of the composition of standard relations.
It correctly describes the capacity behaviour along network paths: If there are
edges from x to y and from y to z with capacities α(x, y) and β(y, z) then at
most α(x, y)∧β(y, z) can be transported from x to z along the concatenation of
these two edges. Hence αβ describes the supremum of transport capacity over
all two-edge paths from x to z.

Since the supremum of a bounded subset of the real numbers always exists
and is unique, the composition of two fuzzy relations is well defined even if one
of the sets X, Y, Z is infinite.

A standard relation R ⊆ X×Y is called univalent if it relates every element of
X to at most one element of Y . This is expressed algebraically by the condition
R�R ⊆ idY . The dual notion of injectivity is characterised by RR� ⊆ idX . As a
generalisation we call a fuzzy relation univalent if α�α - idY holds. If α satisfies
the property αα� - idX it is called injective.

The composition of fuzzy relations distributes over join, i.e., α(β	γ) = αβ	αγ
and (α 	 β)γ = αγ 	 βγ. In general composition does not distribute over meet;
in this case only (α � β)γ - αγ � βγ and analogously α(β � γ) - αβ �αγ hold.
However, for univalent α the equality α(β �γ) = αβ �αγ and for injective γ the
equality (α � β)γ = αγ � βγ hold.

Composition commutes with scalar multiplication, i.e., k(αβ) = (kα)β =
α(kβ). Finally, composition is contravariant w.r.t. converse, i.e., (αβ)� = β�α�.

Definition 2.8 (Powers and Star). The n-th power αn of a fuzzy endorelation
α : X ↔ X is defined inductively by α0 = idX and αn+1 = ααn for n ∈ N0.
The reflexive and transitive closure α∗ of a fuzzy endorelation is defined by
α∗ =

⊔
n∈N0

αn.

An elementary argument shows the equality α∗ =
⊔

0≤n<|X| α
n for every fuzzy

endorelation α on a finite set X .

2.3 Cardinality of Fuzzy Relations

For a standard relation R ⊆ X × Y its cardinality |R| is the number of pairs in
R; it coincides with the sum

∑
(x,y)∈X×Y α(x, y) where α is the Boolean fuzzy

relation corresponding to R, i.e., α(x, y) = 1 ⇔ (x, y) ∈ R. This is generalised
in the following definition due to [Kaw].

Definition 2.9 (Cardinality). The cardinality |α| of a fuzzy relation α : X ↔
Y is defined by |α| =

∑
(x,y)∈X×Y α(x, y).

138 R. Glück and B. Möller

The cardinality will allow an elegant description of total weights of subnetworks.
E.g., the cardinality of the relation consisting of all outgoing edges of a node
describes the sum of the weights of all edges leaving that node. This is used,
e.g., in Definition 3.2 of flows.

Obvious properties of the cardinality are:

• |α| ≥ 0
• |α| = 0 ⇔ α = 0
• |α| = |α�|
• Cardinality is an isotone function, i.e., α - β implies |α| ≤ |β|.

The cardinality of a fuzzy relation could become infinite if one of the partic-
ipating sets is infinite; in this paper we won’t deal with such cases. If both X
and Y are finite sets the cardinality of a fuzzy relation α : X ↔ Y is always a
nonnegative real number bounded by |X | · |Y |.

A fuzzy relation α : X ↔ Y is called normalised if |α| ≤ 1. This implies
|β| ≤ 1 for all fuzzy relations β with β - α. We will make use of normalised
fuzzy relations when we want to label edges with the cardinality of a fuzzy
relation.

A connection between meet and cardinality is the equation

|α 	 β| = |α| + |β| − |α � β| (1)

for arbitrary fuzzy relations α, β : X ↔ Y . In particular, it states |α 	 β| =
|α| + |β| for disjoint fuzzy relations α and β.

For fuzzy relations α, β, γ with β - α and γ - α � β the equality |γ| + |β| =
|γ ⊕ β| holds. If β - α then |α � β| = |α| � |β|.

2.4 Test Relations

Definition 2.10 (Test Relation). A Boolean subrelation of idX is called a
test relation on X.

A test relation τ corresponds in a natural way to the subset {x : τ(x, x) = 1}
of X ; conversely, every subset T of X can be represented by the test relation τ
with τ(x, x) = 1 ⇔ x ∈ T .

Hence the test relations form a Boolean subalgebra of Rel(X, X) with τ 	 σ
being the join and τ � σ = τσ being the meet.

Consider a general fuzzy relation α and a test relation τ . Then, by isotony of
multiplication, τα - id α = α. So τα is a part of α; it omits all edges of α that
do not start in a node in τ . This models enforcing the precondition τ . Similarly,
ατ removes all edges of α that do not end in a node in τ ; it enforces τ as a
postcondition.

Combining this with the cardinality operator we can express the input or
output capacity of a set of nodes characterised by τ compactly as |ατ | and |τα|,
respectively.

Circulations, Fuzzy Relations and Semirings 139

The following property will be used several times:

Lemma 2.11. Assume τ, σ, α, β, γ : X ↔ X such that τ, σ are test relations
with τσ = 0 and γ - τα and γ - σβ.

(a) γ = 0.
(b) |τα 	 σβ| = |τα| + |σβ|.

Proof. Part (a) follows from the general theory of semirings (see Lemma A.4 in
the Appendix). Part (b) holds by Equation (1), since by Part (a) τα�σβ =0. �	

Part (a) means that edge sets with disjoint sets of starting nodes are disjoint as
well (remember that the composition of test relations is their conjunction).

To avoid excessive notation, in the remainder we will write τ both for a subset
τ ⊆ X and its characterising test relation. The complement of τ relative to
X/idX is denoted by τc.

Moreover, lower case latin letters will be used to denote elements x ∈ X
and the corresponding test relations characterising the singleton sets {x}. These
relations are also called point relations.

Every test relation can be written as the join of suitable point relations, i.e.,
U =

⊔
u∈U u where the join ranges over point relations u. In the finite case this

can be used to show properties of test relations via structural induction.
Using point relations we can also describe single graph edges. Given points x, y

and a weight k ∈ [0, 1], the fuzzy relation k(x∇y) describes a graph connecting
just x and y with edge weight k: the test relations x and y reduce the universal
relation ∇ to the relation consisting only of the edge from x to y with weight 1,
and the weighting is done by scaling with the factor k.

3 Flows in Networks

Flows in networks were already treated in an algebraic manner in [Kaw] and
[Glü]. We give a brief summary of the ideas from there relevant to the present
paper. For the sake of well-definedness of cardinality let from now on all node
sets be finite.

3.1 Networks and Flows

Definition 3.1 (Networks). For a set X of nodes, a fuzzy endorelation α : X ↔
X is also called a pseudo-network. Forx, y ∈ X we callα(x, y) the capacity of (x, y).
If additionally α�α� = 0 then N is called a network. An s-t-(pseudo-)network is a
triple N = (α : X ↔ X, s, t) consisting of a (pseudo-)network α and two distinct
elements of X , namely s (the source) and t (the sink) of N .

Contrary to [Kaw] we admit input edges for the source and output edges for the
sink, i.e., we give up the requirements αs = 0 and tα = 0, to obtain a more
general concept.

140 R. Glück and B. Möller

Our definition of a pseudo-network corresponds to that of a network as given
for example in [Jun], Chapter 6, or [AMO], Chapter 1, or [GTT], except that
there the capacities can have arbitrary values in R+.

Our network requirement that excludes antiparallel edges between two nodes
by the condition α�α� = 0XX may look too strong. But if we are given a fuzzy
relation α : X ↔ X not fulfilling this condition we can construct a network N̂ =
(α̂ : X̂ ↔ X̂, s, t) as follows: for all pairs (x, y) ∈ X×Y with α(x, y)�α�(x, y) �= 0
we introduce two additional nodes x′ and y′ and set α̂(x, y) = α̂(y, x) = α̂(x′, y′)
= α̂(y′, x′) = 0, α̂(x, x′) = α̂(x′, y) = α(x, y), α̂(y, y′) = α̂(y′, x) = α(y, x) and
α̂(x′, x) = α̂(y, x′) = α̂(y′, y) = α̂(x, y′) = 0.

This strategy turns a pair of antiparallel edges into a bypassing device:

x y

α(x, y)

α(y, x)

x y

x′

y′

α(
x,

y)
α(x, y)

α(y, x) α(
y,

x)

Fig. 1. Bypassing device

In a quite natural way the definition of a network flow (cf. again the standards
[Jun] and [AMO]) is translated into the language of fuzzy relations:

Definition 3.2 (Flow). A flow ϕ in a pseudo-network α : X ↔ X is a fuzzy
endorelation ϕ : X ↔ X such that ϕ - α and |τϕ| = |ϕτ | for all test relations
τ : X ↔ X on X . A flow ϕ in an s-t-(pseudo-)network (α : X ↔ X, s, t) is a
fuzzy endorelation on X with ϕ - α and |τϕ| = |ϕτ | for all test relations τ with
τ - X\{s, t}.

The first part of this definition is the capacity constraint : the flow along an edge
can be at most as high as allowed by the capacity of that edge. The second part
corresponds to the flow conservation, commonly written as∑

v∈V ϕ(v, u) =
∑

v∈V ϕ(u, v) ∀u ∈ X \ {s, t}, (∗)

see, e.g., [Jun], p.147 (with a slightly different notation). Our version of flow con-
servation seems to be stronger than (∗), but the equivalence of the two formula-
tions can be shown by induction over the size of the tests (cf. [Glü], Section 6.2).
There is always at least the trivial flow 0 in any network N = (α : X ↔ X, s, t).

Because of flow conservation, in bypassing devices as in Fig. 1 there is a
one-to-one correspondence between flows in the original pseudo-network and the
modified network.

Circulations, Fuzzy Relations and Semirings 141

3.2 The Max-Flow Min-Cut Theorem

A flow can be seen as a possibility of transporting a certain amount from s to t.
So a flow is the more valuable the more it transports from s to t. This motivates
the next definition:

Definition 3.3 (Value of a Flow). The value of a flow ϕ in a network N =
(α : X ↔ X, s, t) is defined as val(ϕ) = |sϕ| − |ϕs|.
The value measures how much s “generates” in addition to its own input |ϕs|.
In Prop. 6.1 of [Glü] it has been shown (in a slightly different notation) that the
equality val(ϕ) = |sϕ| − |ϕs| = |ϕt| − |tϕ| holds. Note that the value of a flow
can even be a negative number as shown in the following example:

Example 3.4.

s t
0.2/0.5

In this network α consists of the single edge (t, s) with capacity 0.5, and the
depicted flow ϕ is given by ϕ(t, s) = 0.2. So we have val(ϕ) = |sϕ| − |ϕs| =
0 − 0.2 = −0.2. However, our main aim will be to send flow from s to t. �	
Definition 3.5 (Residual Network). For a flow ϕ on an s-t-network N =
(α : X ↔ X, s, t) we define the residual network Nα of N with respect to α as
the pseudo-network Nα = (ϕα : X ↔ X, s, t) with ϕα = (α � ϕ) 	 ϕ�.

That means, a flow ϕ over an edge (x, y) with capacity α(x, y) causes two edges
in the residual network: one edge (x, y) with capacity α(x, y)−ϕ(x, y) (note that
ϕ - α) and one edge (y, x) in the opposite direction with capacity ϕ(x, y). The
intuitive meaning is that one can send along the edge (x, y) an additional flow
amount of at most α(x, y) − ϕ(x, y) and the flow along the edge (x, y) can be
decreased by an amount of at most ϕ(x, y), which corresponds to increasing the
flow over the reverse edge (y, x) by exactly the same amount. In this context the
requirement α � α� = 0 is indispensable.

An important concept for reasoning about flows is that of a cut.

Definition 3.6 (Cut). A cut in an s-t-network N = (α : X ↔ X, s, t) is a
test relation τ on X with the property s - τ - tc. Thus a cut corresponds to
a subset of X containing s but not t, a definition consistent with the usual one.
The capacity c(τ) of a cut τ is given by c(τ) = |τατc|. It describes the maximal
flow amount which can be sent out from nodes in τ to nodes in τc. A cut τ is
saturated by a flow ϕ if val(ϕ) = c(τ).

Intuitively it is obvious that the value of all flows can not exceed the capacity of
a cut, because a cut forms a border between the source and the sink. This basic
fact is proved both in [Kaw] and [Glü].

Given a network N = (α : X ↔ X, s, t), our main aim is to determine a flow
of maximal value, i.e., a flow ϕ with the property val(ϕ) ≥ val(ψ) for all flows
ψ on N . An important criterion for the maximality of a flow is the so-called
Max-Flow Min-Cut Theorem:

142 R. Glück and B. Möller

Theorem 3.7 (Max-Flow Min-Cut Theorem). Let N = (α : X ↔ X, s, t)
be network and ϕ a flow on N . Then the following properties are equivalent:
(a) ϕ is maximal.
(b) t � sϕ∗

α = 0, or equivalently |sϕ∗
αt| = 0.

(c) There exists a cut τ that is saturated by ϕ.

Intuitively part (b) means that it is impossible to send flow from s to t in the
residual network of a maximal flow. Part (c) states that the value of a maximal
flow equals the capacity of a certain cut. Because the value of a flow is never
larger than the capacity of a cut, this cut must be minimal (hence the name
Max-Flow Min-Cut Theorem). Such a cut τ is saturated by a maximal flow ϕ;
in this case τατc = τϕτc holds. This means that every edge of α leading from τ
into its complement τc carries the maximally possible amount of flow.

4 Networks with Lower Bounds

4.1 Definitions and Background

Definition 4.1 (Networks With Lower Bounds). A pseudo-network with
lower bounds over a node set X is a pair N = (α : X ↔ X, β : X ↔ X) with
β - α, where α and β are called the upper and lower bound. If additionally
α � α� = 0 then N is called a network with lower bounds.

Our definition of a (pseudo-)network with lower bounds corresponds to the com-
mon one in an analogous way as that of an s-t-(pseudo-)network. The network
condition implies α � β� = 0, α� � β = 0 and β � β� = 0 (note that in the
semiring of fuzzy endorelations on X the zero 0 is meet-irreducible).

We represent networks with lower bounds in a graphical way analogous to
the common one for graphs. We associate the elements of the basic underlying
set with the nodes of a graph and label its edges with [β, α] where β and α
denote the lower and upper capacity bound of the edge, resp. Edges (x, y) with
α(x, y) = 0 (and hence β(x, y) = 0) are omitted in the depiction.

Example 4.2.

a

b

c

d

[0.
1,

0.4
] [0.1, 0.3]

[0
.2

,0
.5]

[0,
0.3

][0.2, 0.5]

Circulations, Fuzzy Relations and Semirings 143

In this example we have X = {a, b, c, d}. For the upper bound we have, e.g.,
α(b, d) = 0.5 or α(b, c) = 0.3 and for the lower bound β(a, b) = 0.1 or β(d, a) =
0.2. For pairs (x, y) ∈ X × Y without arcs in the depiction we have α(x, y) =
β(x, y) = 0, so for example α(a, c) = β(a, c) = 0 or α(a, d) = β(a, d) = 0. �	

4.2 Circulations in Networks with Lower Bounds

Definition 4.3 (Circulation). A fuzzy relation γ in a pseudo-network N =
(α : X ↔ X, β : X ↔ X) with lower bounds is called a circulation if it is a flow
in the network α and satisfies the additional capacity constraint β - γ.

A circulation in a network with lower bounds need not always exist. A simple
counterexample is given here:

Example 4.4.

a b
[0.3, 0.5]

Every fuzzy endorelation γ on X fulfilling the capacity constraint and flow
conservation needs to satisfy 0.3 ≤ |γb| ≤ 0.5 and |bγ| = 0 and hence cannot
satisfy the requirement |γb| = |bγ|.

Contrary to this, our network with lower bounds from Example 4.2 admits a
circulation as one can see here:

a

b

c

d

0.4
/[0

.1,
0.4

] 0.2/[0.1, 0.3]0
.2

/[0
.2

,0
.5]

0.2
/[0

, 0
.3]

0.4/[0.2, 0.5]

An edge (x, y) carries the information γ(x, y)/[β(x, y), α(x, y)]. �	

4.3 Extending Pseudo-networks

In the next section we will need to add nodes to a network. To this end we
introduce some notation.

144 R. Glück and B. Möller

Definition 4.5 (Embedding). For a fuzzy endorelation α : X ↔ X on X and
a superset X̂ of X , the embedding /α0 of α into X̂ is /α0 : X̂ ↔ X̂, given by
/α0(x, y) = α(x, y) for all (x, y) ∈ X × X and /α0(x, y) = 0 otherwise.

This means that the nodes in X̂\X are added as isolated nodes to the graph
described by α.

The embedding of fuzzy relations distributes over join, meet, truncating
sum, truncating difference and composition, i.e., /α ◦ β0 = /α0 ◦ /β0 for ◦ ∈
{	,�,⊕,�, ·}. In particular we have /α0 = /id0/α0 = /α0/id0. Embedding also
commutes with converse, i.e., /α�0 = /α0�. Moreover, it is order-preserving:α - β
implies /α0 - /β0. The embedding /τ0 of a test relation τ on X is a test relation
on X̂. Finally, embedding preserves cardinality: |/α0| = |α|.

The dual operation to embedding is projection:

Definition 4.6 (Projection). For a fuzzy endorelation α : X̂ ↔ X̂ its projec-
tion $α% : X ↔ X to a subset X ⊆ X̂ is given by $α%(x, y) = α(x, y) for all
x, y ∈ X .

Projection has algebraic properties similar to the ones of embedding. It is order
preserving and commutes with converse and distributes over join, meet, trun-
cating sum and truncating difference, but in general not over composition. The
projection $τ̂% of a test relation τ̂ on X̂ is a test relation on X . Finally, projection
partially preserves cardinality: for σ, τ ⊆ X one has |$σα̂τ%| = |σα̂τ |.

4.4 Existence of Circulations

Let N = (α : X ↔ X, β : X ↔ X) be a network with lower bounds with a
normalised fuzzy relation α as upper bound (recall that this means |α| ≤ 1).
This can be achieved by a suitable scaling of the upper bound. Note that if α is
normalised then β is, too. Because of xβ - β for an arbitrary point relation x
we have |xβ| ≤ 1 and analogously |βx| ≤ 1.

Now our intention is to develop in an algebraic way an algorithm that de-
termines whether a network with lower bounds admits a circulation and, if so,
computes one. This will be done using a maximal flow in an s-t-network derived
from the original network. The construction we will use is well known in the lit-
erature, cf. [Jun], Section 10.2. The advantage of our approach is that we avoid
big indexed sums by calculating with test relations and cardinalities.

To this end we define the s-t-pseudo-network N̂ = (α̂ : X̂ ↔ X̂, s, t) as follows:
we choose two new nodes s, t �∈ X and set X̂ = X∪̇{s}∪̇{t}. For the associated
point relations s and t on X̂ this means s� t = 0 and (s	 t)�x = 0 for all point
relations x - X .

As abbreviations for ∇X̂X̂ ,0X̂X̂ and ∇XX ,0XX we use ∇̂, 0̂ and ∇,0, resp.
With this notation the equalities $∇̂% = ∇ and $0̂% = 0 hold.

We define the capacity constraint α̂ of N̂ by α̂ = α̂1	 α̂2	 α̂3 with three fuzzy
endorelations α̂1, α̂2 and α̂3 on X̂ . First, α̂1 =

⊔
x∈X |βx|s∇̂/x0. Intuitively this

means that we have an edge from s to every point x of X having as capacity
the sum of the lower bounds of all edges entering x. α̂3 is defined in a similar

Circulations, Fuzzy Relations and Semirings 145

manner, namely as α̂3 =
⊔

x∈X |xβ|/x0∇̂t. This introduces an edge from every
point x of X to t having as capacity the sum of the lower bounds of all edges
leaving x. Finally, α̂2 is defined as α̂2 = /α � β0. This means that every edge
in N becomes an edge in N̂ having as capacity the difference between its upper
and lower bounds (remember that β - α). The relation α̂ is well defined because
all terms of the form |xβ| and |βx| are guaranteed not to be larger than one.

Example 4.7. If we apply this construction to the network with lower bounds
shown in Example 4.2 we obtain the following network:

s a

b

c

d

t

0.3
0.2

0
.3

0.3
0.3

0.2

0.1

0.2

0.1

0.3

0.2

0.1

The edge from c to t has not been forgotten, but we have α̂(c, t) = 0 and
according to our conventions we omit the arc corresponding to this pair. �	

Lemma 4.8. N̂ is an s-t-network.

Proof. We have to show α̂ � α̂� = 0̂. As a preparation we calculate

α̂ � α̂�

= {[definition and rules for converse]}
(α̂1 	 α̂2 	 α̂3) � (α̂�

1 	 α̂�
2 	 α̂�

3)
= {[distributivity]}⊔3

i=1

⊔3
j=1(α̂i � α̂�

j) .

If we succeed in showing that all meets inside the two big joins become 0̂ we are
done.

For the case i = j = 1 we have

α̂�
1

= {[converse distributes over join]}⊔
x
X |βx|/x0�∇̂�s�

= {[universal and test relations are their own converses]}⊔
x
X |βx|/x0∇̂s

= {[rules for embedding]}⊔
x
X |βx|/id0/x0∇̂s .

146 R. Glück and B. Möller

Hence

α̂1 � α̂�
1

= {[distributivity]}⊔
x,y∈X |βx|s∇̂/x0 � |βy|/id0/y0∇̂s

≤ {[isotony of meet and join]}⊔
x,y∈X s∇̂/x0 � /id0/y0∇̂s

= {[by s/id0 = 0̂ and Lemma 2.11(a)]}⊔
x,y∈X 0̂

= {[lattice algebra]}
0̂ .

In the case i = 3 and j = 1 we have to consider α̂3�α̂�
1. Calculations similar to

those above lead to α̂3 � α̂�
1 =

⊔
x,y∈X |xβ|/x0∇̂t� |βy|/y0∇̂s. Because of st = 0̂

we obtain again 0̂ by Lemma 2.11(a).
The other cases, except i = j = 2, can be treated in a similar manner (note

that α̂2 = /id0α̂2 = α̂2/id0). For i = j = 2 we calculate α̂2�α̂�
2 = /α�β0�/α�β0�

- /α0�/α0� = /α�α�0, and this equals 0̂ by the requirement that N be a network
with lower bounds. �	

Lemma 4.9. A maximal flow on N̂ with value |β| saturates the cuts s and tc.

Proof. First we show that the capacities of the cuts s and tc in N̂ both equal
|β|. We have

c(s)
= {[definition of capacity]}

|sα̂sc|
= {[definition of α̂]}

|s(α̂1 	 α̂2 	 α̂3)sc|
= {[analogously to previous proof]}

|sα̂1|
= {[definition of α̂1]}

|s
⊔

x∈X |βx|s∇̂/x0|
= {[idempotence of test multiplication, distributivity and

disjointness of the x-indices in the big join]}
Σx∈X | |βx|s∇̂/x0 |

= {[by |s∇̂/x0| = 1]}
Σx∈X |βx|.

Rewriting the join in the opposite direction we obtain Σx∈X |βx| = |
⊔̇

x∈Xβx|
= |βidX | = |β|.

In the same manner one can show c(tc) = |β|. According to the assertions of
the Max-Flow Min-Cut Theorem a maximal flow with value |β| has to saturate
both cuts. �	

Circulations, Fuzzy Relations and Semirings 147

Theorem 4.10. There is a circulation on N iff the value of a maximal flow on
N̂ is exactly |β|.

Proof. (⇐) Let ϕ̂ be a flow on N̂ with value val(ϕ̂) = |β|. Then we define a
fuzzy relation γ : X ↔ X by γ = $ϕ̂% ⊕ β. Because ϕ̂ is a flow on N̂ it has to
respect the capacity constraint, which implies γ - $α̂% = α̂�β and hence γ - α̂.
β - γ is clear because of the definition of γ. If we succeed in showing that γ
satisfies flow conservation on N we are done.

Consider an arbitrary test relation τ : X ↔ X . Because of the flow properties
of ϕ̂ we have

|/τ0ϕ̂| = |ϕ̂/τ0| .

We introduce a test relation X on X̂ by X = /idX0 = (s 	 t)c. Note that
idX̂ = X 	 s 	 t.

Now we reason as follows:

|/τ0ϕ̂| = |ϕ̂/τ0|
⇔ {[identity]}

|/τ0ϕ̂ idX̂ | = |idX̂ ϕ̂/τ0|
⇔ {[above remark]}

|/τ0ϕ̂(X 	 s 	 t)| = |(X 	 s 	 t)ϕ̂/τ0|
⇔ {[X , s, t disjoint and Lemma 2.11(b)]}

|/τ0ϕ̂X |+ |/τ0ϕ̂s| + |/τ0ϕ̂t| = |Xϕ̂/τ0| + |sϕ̂/τ0| + |tϕ̂/τ0|
⇒ {[α̂s = 0̂ ∧ ϕ̂ - α̂ ⇒ ϕ̂s = 0̂, analogously tϕ̂ = 0̂]}

|/τ0ϕ̂X |+ |/τ0ϕ̂t| = |Xϕ̂/τ0| + |sϕ̂/τ0|
⇒ {[ϕ̂ maximal with value |β|, Lemma 4.9]}

|/τ0ϕ̂X |+ |/τ0α̂t| = |Xϕ̂/τ0| + |sα̂/τ0|
⇒ {[definition of α̂]}

|/τ0ϕ̂X |+ |τβ| = |Xϕ̂/τ0| + |βτ |
⇒ {[definition of X]}

|τ$ϕ̂%| + |τβ| = |$ϕ̂%τ | + |βτ |
⇒ {[$ϕ̂% - $α̂% = α � β, rules of cardinality]}

|τ($ϕ̂% ⊕ β)| = |($ϕ̂% ⊕ β)τ | .

(⇒) Let γ be a circulation on N . Then we construct a fuzzy relation ϕ̂ : X̂ ↔ X̂
by ϕ̂ = sα̂	/γ�β0	 α̂t. Because γ satisfies the capacity constraint and because
of the construction of ϕ̂ the capacity constraint on N̂ is satisfied by ϕ̂. The value
of the thus constructed flow is |sα̂| = |β|, and it is maximal because it saturates
the cut s. Flow conservation can be shown similarly as above. �	

4.5 Algorithmic Aspects

We wouldn’t be computer scientists if we didn’t give an algorithm for computing
a circulation in a network with lower bounds. The construction from the proof
of Theorem 4.10 can immediately be used to construct from an algorithm for the

148 R. Glück and B. Möller

computation of a maximal flow in an s-t-network an algorithm for determining
a circulation in a network with lower bounds:

(1) Determine the s-t-network N̂ as described above.
(2) Determine a maximal flow ϕ on N̂ .
(3) If val(ϕ) �= β then no circulation in N is possible; otherwise return γ as

described above.

An algorithm for computing a maximal flow in an s-t-network based on fuzzy
relations has been derived in [Kaw].

Now we try out the above algorithm on our running example. E.g. by Kawa-
hara’s method one can find the following flow on the induced s-t-network:

s a

b

c

d

t

0.2
/0

.3 0/0.2

0/0.3

0.1
/0

.30.1/0.3

0.2/0.2

0.1/
0.1

0.2/0.2

0.1/0.1

0.3/0.3

0.2/
0.2

0.1/0.1

This flow is indeed maximal, because it saturates the cut s. Applying our algo-
rithm we obtain the following circulation:

a

b

c

d

0.3
/[0

.1,
0.4

] 0.1/[0.1, 0.3]0.2/[0.2,0.5]

0.1
/[0

, 0
.3]

0.3/[0.2, 0.5]

This circulation is different from the one already shown in the second picture of
Example 4.4.

Circulations, Fuzzy Relations and Semirings 149

4.6 Another Existence Criterion

We will now derive a more elegant criterion for the existence of a flow in a
network with lower bounds. We notice that there is a bijective mapping between
tests on N and cuts on N̂ : for a test relation τ on N we choose the cut s 	 /τ0
as corresponding cut on N̂ ; the converse direction is obvious.

For the capacity of such a cut s 	 /τ0 we can calculate as follows (note that
by construction sc = X 	 t, tc = s	X , Xc = s	 t and /τ0c = /τc0 	 s	 t hold):

c(s 	 /τ0)
= {[definition of capacity]}

|(s 	 /τ0)α̂(s 	 /τ0)c|
= {[above remark]}

|(s 	 /τ0)α̂(/τc0 	 t)|
= {[distributivity of composition over join]}

|sα̂/τc0 	 /τ0α̂/τc0 	 sα̂t 	 /τ0α̂t

= {[disjointness and Lemma 2.11(b)]}
|sα̂/τc0| + |/τ0α̂/τc0| + |sα̂t| + |/τ0α̂t|

= {[sα̂t = 0̂ by construction]}
|sα̂/τc0| + |/τ0α̂/τc0| + |/τ0α̂t|

= {[definition of α̂]}
|βτc| + |τβ| + |τ(α � β)τc|

= {[distributivity of test multiplication over �]}
|βτc| + |τβ| + |τατc � τβτc|

= {[properties of cardinality, τβτc - τατc]}
|βτc| + |τβ| + |τατc| − |τβτc|

= {[for all ξ there are the decompositions ξ = τξ 	̇ τcξ = ξτ 	̇ ξτc]}
|τβτc| + |τcβτc| + |τβτ | + |τβτc| + |τατc| − |τβτc|

= {[arithmetic and rearrangement]}
|τατc| + |τβτ | + |τβτc| + |τcβτc|

= {[β = τβτ 	̇ τβτc 	̇ τcβτ 	̇ τcβτc]}
|τατc| − |τcβτ | + |β| .

By the previous theorem N admits a circulation iff the value of a maximal flow
on N̂ equals |β|, so according to the Max-Flow Min-Cut Theorem |τατc|−|τcβτ |
has to be ≥ 0 for all test relations τ on N iff N admits a circulation. So we have
proved the following theorem:

Theorem 4.11. A network with lower bounds N = (α : X ↔ X, β : X ↔ X)
admits a circulation iff the condition |τατc| ≥ |τcβτ | holds for all test relations
τ on X.

This theorem is not very suitable for application in practice (the number of test
relations is growing exponentially in the number of nodes!), but it can serve well
in the theoretical investigation of networks with lower bounds.

150 R. Glück and B. Möller

5 Conclusion and Future Work

We have applied Kawahara’s methods developed for flows in networks success-
fully to circulations in networks with lower bounds. As shown in [GlüI], it is not
difficult to do the same for circulations in networks with additional imports as
described in [Jun], Chapter 7. There a node can receive an additional amount
of flow by the environment or flow can disappear from a node to the outside.

In all cases the basic mathematical tools are fuzzy relations and their cardi-
nality. As we detail in the Appendix, these form a semiring (and even a Kleene
algebra) with tests. Since automated reasoning about Kleene algebras is on the
rise (cf. [HS]), we expect the first automatically proved theorems in this area
soon.

Another challenge in this area will be the description of min-cost flows (cf.
[Jun], Chapter 10) with fuzzy relational methods. This will be a little bit more
difficult, because in the problem of a min-cost flow the amount of flow is mul-
tiplied by a cost function on the edge it crosses. For this purpose we have first
to define an operation for the edgewise multiplication of fuzzy relations and to
explore its algebraic laws and its behavior in connection with the cardinality.

Acknowledgment. We are grateful to Peter Höfner, Yasuo Kawahara, Walter
Vogler and the anonymous referees for helpful comments and suggestions.

References

[AMO] Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood
Cliffs (1993)

[Glü] Glück, R.: Network Flows, Semirings and Fuzzy Relations. Institut für In-
formatik, Universität Augsburg, Tech. Rep, -01 (2008),
http://www.opus-bayern.de/uni-augsburg/volltexte/2008/726/

[GlüI] Glück, R.: Import Networks, Fuzzy Relations and Semirings. In: Bergham-
mer, R., Möller, B., Struth, G. (eds.) Relations and Kleene Algebra in
Computer Science — PhD Programme Proceedings, RelMiCS10/AKA5,
Frauenwörth, Germany, April 7 – April 11, 2008. Institut für Informatik,
Universität Augsburg, Technical Report 2008-04, pp. 58–62 (2008)

[GTT] Goldberg, A., Tardos, E., Tarjan, R.: Network Flow Algorithms. In: Korte,
B., Lovasz, L., Prömel, H., Schrijver, A. (eds.) Algorithms and Combina-
torics. Paths, Rows, and VLSI-Layout, vol. 9, pp. 101–164. Springer, Hei-
delberg (1990)

[HS] Höfner, P., Struth, G.: Automated Reasoning in Kleene Algebra. In: Pfen-
ning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer,
Heidelberg (2007)

[Jun] Jungnickel, D.: Graphs, Networks and Algorithms, 2nd edn. Springer, Hei-
delberg (2005)

[Kaw] Kawahara, Y.: On the Cardinality of Relations. In: Schmidt, R.A. (ed.)
RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg
(2006)

[KozKA] Kozen, D.: A completeness theorem for Kleene algebras and the algebra of
regular events. Inf. Comput. 110(2), 366–390 (1994)

http://www.opus-bayern.de/uni-augsburg/volltexte/2008/726/

Circulations, Fuzzy Relations and Semirings 151

[KozT] Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming
Languages and Systems 19(3), 427–443 (1997)

[MB] Manes, E., Benson, D.: The Inverse Semigroup of a Sum-Ordered Semiring.
Semigroup Forum 31, 129–152 (1985)

A Appendix: Semirings and Kleene Algebras

In this section we embed fuzzy relations into the more general mathematical
framework of semirings and Kleene algebras. This allows re-use of many results
from there and also automatic proofs of some relevant properties.

A.1 Introduction

Definition A.1 (Semiring). A semiring is a quintuple (M, +, ·, 0, 1) fulfilling
the following properties:

• (M, +, 0) is a commutative monoid.
• (M, ·, 1) is a monoid.
• 0 is an annihilator with respect to · , i.e.,

∀m ∈ M : m · 0 = 0 · m = 0

• · distributes over +, i.e.,

∀a, b, c ∈ M : a · (b + c) = (a · b) + (a · c), (a + b) · c = (a · c) + (b · c)

We call + and · addition and multiplication, resp.

Elements of a semiring can, e.g., be considered as modelling some sort of tran-
sition relation, such as the transition from one graph node to another along an
edge. An element x + y corresponds to a choice between x and y, while x · y
corresponds to the sequential composition of x and y in that order.

As one can see the fuzzy endorelations over a set X form a semiring with join
as addition, composition as multiplication, 0XX as zero and idX as one. Other
examples for semirings are (N, +, ·, 0, 1) or (P(X),∪,∩, ∅, X) for an arbitrary
fixed set X .

Definition A.2 (Idempotent semiring). If x+x = x holds for all elements x
of a semiring the semiring is called idempotent. On such an idempotent semiring
a partial order - is defined by x - y ⇔ x + y = y.

The order x - y means that the choices offered by x are contained in the ones
offered by y. The operations · and + are --isotone in both arguments; moreover
0 is the least element w.r.t. -.

The fuzzy relations over a set X form an idempotent semiring and the ordering
introduced in Definition 2.4 coincides with the semiring-theoretical one.

152 R. Glück and B. Möller

A.2 Tests in Semirings

An important special subset of elements in an idempotent semiring are the so-
called tests.

Definition A.3 (Test). An element p of an idempotent semiring with natural
order - is called a test if there is an element ¬p, called the complement of p,
with the properties p + ¬p = 1 and p · ¬p = 0 = ¬p · p.

This definition is basically due to [MB]; a slightly more liberal definition of tests
is given in [KozT]. The definition implies that p - 1 holds for all tests p and
that the complement of an element is unique.

Tests are the algebraic counterparts of assertions in programs or predicates
characterising subsets of nodes in graphs. Addition and multiplication of tests
correspond to their disjunction and conjunction, resp., while ¬ corresponds to
logical negation. The definition implies that 0 and 1 are tests; they correspond
to the everywhere false and to the everywhere true predicate, resp.

Consider a general semiring element x and a test p. Then, by isotony of
multiplication, px - 1x = x. So px is a part of x; it omits all transitions of x
that do not start in a point satisfying p. This models enforcing the precondition
p. Similarly, xp removes all transitions of x that do not end in a point satisfying
p; it enforces p as a postcondition.

This implies the following important property of tests:

Lemma A.4. Let p, q be tests and a, b arbitrary elements in a semiring such
that pq = 0. If z - pa and z - qb then z = 0.

This means that elements with disjoint sets of starting points (remember that
the product of tests is their conjunction) are disjoint as well.

The tests in the semiring Rel(X, X) are precisely the test relations from De-
finition 2.10.

A.3 Kleene Algebras

Now we add the concept of finite iteration.

Definition A.5 (Kleene Algebra). A Kleene algebra [KozKA] is a structure
(S, +, 0, ·, 1,∗) such that the reduct (S, +, 0, ·, 1) is a semiring and the finite
iteration operator ∗ satisfies the unfold and induction axioms

1 + xx∗ ≤ x∗ , 1 + x∗x ≤ x∗

and the star induction axioms

y + xz ≤ z ⇒ x∗y ≤ z , y + zx ≤ z ⇒ yx∗ ≤ z .

The semiring Rel(X, X) forms a Kleene algebra under the operation ∗ defined
in Section 2.2.

Asynchronous Exceptions as an Effect�

William L. Harrison1, Gerard Allwein2, Andy Gill3, and Adam Procter1

1 Dept. of Computer Science, University of Missouri, Columbia, Missouri, U.S.A
2 Naval Research Laboratory, Code 5543, Washington, DC 20375, U.S.A

3 Galois, Inc., Beaverton OR 97005, U.S.A

Abstract. Asynchronous interrupts abound in computing systems, yet
they remain a thorny concept for both programming and verification
practice. The ubiquity of interrupts underscores the importance of de-
veloping programming models to aid the development and verification of
interrupt-driven programs. The research reported here recognizes asyn-
chronous interrupts as a computational effect and encapsulates them as
a building block in modular monadic semantics. The resulting modular
semantic model can serve as both a guide for functional programming
with interrupts and as a formal basis for reasoning about interrupt-driven
computation as well.

1 Introduction

The asynchronous interrupt, according to Dijkstra [4], was a great invention:

. . .but also a Box of Pandora. Because the exact moments of the inter-
rupts were unpredictable and outside our control, the interrupt mechanism
turned the computer into a nondeterministic machine with a nonrepro-
ducible behavior, and could we control such a beast?

The construction and verification of programs in the presence of asynchronous
exceptions is notoriously difficult. Certainly, one cause of this difficulty is that
a setting with interrupts is necessarily concurrent, there being, at a minimum,
distinct interrupting and interrupted entities. But, more fundamentally, the no-
tion of computation for asynchronous interrupt is inherently non-deterministic
and controlling the non-determinism “beast” remains a challenge.

What do we mean by an asynchronous interrupt? It is a form of exception
thrown by the environment external to a thread. A synchronous exception, by
contrast, arises from an event internal to a thread’s execution; for example,
they can originate from run-time errors (e.g., division-by-zero or pattern match
failure) and OS system calls. Asynchronous exceptions arise from events external
to a thread and may occur at any point between the atomic actions that comprise
the thread. Examples of asynchronous exceptions are hardware signals arising
non-deterministically from I/O devices as well as the language feature of the
same name in Concurrent Haskell [17]. The terms interrupt and asynchronous
exception are used interchangeably throughout this article.
� This research was supported in part by the Gilliom Cyber Security Gift Fund.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 153–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 W.L. Harrison et al.

Is there an modular model that can serve as both a guide for programming
with exceptions and a formal semantics for reasoning about them as well? In
the past, language semanticists and functional programmers have both turned
to monads and monadic semantics when confronted with non-functional effects
(e.g., state, exceptions, etc.). This paper argues that one way to understand
asynchronous exceptions is as a computational effect encapsulated by a monadic
construction. This paper explores precisely this path by decomposing the asyn-
chronous exception effect into monadic components. Surprisingly enough, al-
though all of the monadic components applied here are well-known [19,22], this
work is apparently the first to put them together to model interrupts.

This paper argues that monadic semantics [19] (and, particularly, modular
monadic semantics (MMS) [16]) is an appropriate foundation for a modular
model of asynchronous exceptions. With the monadic model of asynchronous
exceptions (MMAE), one may have one’s cake and eat it, too: formal specifi-
cations in monadic style are easily rendered as executable functional programs.
The contributions of this paper are:
– A semantic building block for asynchronous behaviors (Section 3). This

building block follows the same lines as other, well-known building blocks
in MMS: by a straightforward extension of the underlying monad, we may
define a set of operators that, in turn, may be used to define asynchronous
interrupts. In the lingo of MMS, asynchronicity becomes a “building block”
that may be added to other monadic specifications.

– A denotational framework for modeling a member of the infamous “Awk-
ward Squad” [23]. These are behaviors considered difficult to accommodate
within a pure, functional setting. This framework is applied in Section 4 and
proved equivalent to a recently published natural semantics of asynchronous
exceptions.

– An extension of published formal models of OS kernels with asynchronous
behavior (Section 5). We apply the interrupts building block to monadic ker-
nels [9], thereby extending the expressiveness of these models of concurrent
systems.

As we use it, the term interrupt should not be limited to the hardware mechanism
by which a CPU communicates with the external world. Hardware interrupts are
a special form of asynchronous exception; they can arise at any time and result
in a temporary transfer of control to an interrupt service routine. Asynchronous
exceptions do not, in general, involve such a temporary control transfer. The
case study we present concerns a hardware interrupt mechanism, although the
model we use applies equally well for asynchronous exceptions in general. In
particular, the current model has been applied in another significant case study
in the semantic specification of the typed interrupt calculus of Palsberg [2,21].
This specification will be published in a sequel.

1.1 Summary of the MMAE

This section summarizes two applications of the monadic model of asynchronous
exceptions (MMAE)—one in denotational semantics and the other in functional

Asynchronous Exceptions as an Effect 155

programming—and will provide the reader with helpful intuitions about the
MMAE. Asynchronous exceptions according to this model are really a composite
effect, combining non-determinism, concurrency, and some notion of interactiv-
ity. Each of these effects corresponds to well-known monads, and the MMAE
encapsulates them all within a single monad. Haskell renderings of all the exam-
ples in this paper are available online [8].

Non-determinism is inherent in asynchronous exceptions. The reason is sim-
ple: when (or if) a computation is interrupted is not determined by the com-
putation itself and so exceptions are, therefore, by definition non-deterministic
with respect to the computation. That a notion of concurrency is necessary is
less obvious. Computation here is assumed to be “interruptible” only at certain
identified points within its execution. These breakpoints (implicitly) divide the
computation up into un-interruptible units or atoms. This is tantamount to a
theory of concurrency. Finally, a notion of interactivity is required for obvious
reasons: the “interruptee” and “interrupter” interact according to some regime.

In Section 4, we consider Hutton and Wright’s language of arithmetic ex-
pressions with synchronous and asynchronous exceptions [13]. This language is

throw

throw

throw(Val 1)

(Val 2)

Add

return 3

start

defined in detail there, but, for the time being, consider the sim-
ple arithmetic expression, (Add (V al 1) (V al 2)). In Hutton and
Wright’s operational semantics, there are four possible evalu-
ations of this expression, assuming that exceptions are “on”.
These evaluations may be described as a tree (see inset) in
which each breakpoint “•” represents a place at which the arith-
metic computation may be interrupted. The evaluation which
returns 3 proceeds along the leftmost path. An asynchronous
exception may occur at any of the breakpoints, correspond-
ing to the three evaluations ending in throw . In the MMAE, the semantics of
(Add (Val 1) (Val 2)) and its interaction with exceptions is represented in closed
form as a single term in a monadic algebra of effects:

merge {merge {merge {η 3, throw}, throw}, throw} (1)

The intuitive meaning of this term is clear from it correspondence to the inset
tree: the merge operator combines two “possible histories”, rather like a branch
constructor in a tree data type; the throw “leaf” is the result of an asynchronous
exception; the monadic unit “(η 3)” leaf computation returns the final value.

Figure 1 gives an example application of the MMAE. Recent research has
demonstrated how kernels with a broad range of OS behaviors (e.g., message-
passing, synchronization, forking, etc.) may be formulated in terms of resumption
monads [9] and generalized with monad transformers. The application presented
in Section 5 describes how such kernels may be extended to include asynchronous
exception behaviors as well. This extension manifests itself in Figure 1 in the
creation of the monads K and R underlying the kernel specification. For the kernel
without the interrupt-driven port (Figure 1, middle), the monad transformers
constructing K and R (i.e., StateT and ResT) are applied to the identity monad,
Id; in the kernel with the interrupt-driven port (Figure 1, middle), they are

156 W.L. Harrison et al.

msgQ

kernel

receive

broadcast

serial to

parallel

port

“External

World”

on/off

producer consumer No Port

K = StateT Sys (StateT Sto Id)
R = ResT K

Haskell> producer_consumer
broadcasting 1001
broadcasting 1002

receiving 1001
broadcasting 1003

receiving 1002 ...

With Port & Interrupts on

K = StateT Sys (StateT Sto N)
R = ResT K

Haskell> producer_consumer
broadcasting 1001

new datagram: 179
broadcasting 1002

receiving 179
new datagram: 204 ...

Fig. 1. Kernels with interrupt-driven input port.The kernel design (left) sup-
ports an interrupt-driven serial-to-parallel input port and synchronous message-passing
primitives. The FIFO message queue, msgQ, stores messages in flight between threads.
The input port receives bits non-deterministically from the external world, buffers
them, and enqueues a one byte message on msgQ when possible. The baseline kernel
(middle) has no such input port; the modified asynchronous kernel (right) extends the
baseline kernel with non-determinism, thereby supporting the interrupt-driven port.
When a producer-consumer application is run on both kernels, the datagrams received
through the port are manifest. See text for further description.

applied instead to the non-determinism monad, N. The addition of asynchronous
behaviors requires little more than this refinement of the monad underlying the
kernel specification. What precisely all this means and why is the subject of this
paper.

2 Background on Monads and Monad Transformers

This section outlines the backgroundmaterial necessary to understand the present
work. We must assume of necessity that the reader is familiar with monads. Read-
ers requiring more background should consult the related work (especially, Liang
et al. [16]); other readers may skip this section. Section 2.1 contains an overview
of the non-determinism monad.

A structure (M, η, �) is a monad if, and only if, M is a type constructor (functor)
with associated operations bind (� : M a → (a → M b) → M b) and unit (η : a →
M a) obeying the well-known “monad laws” [15].

(left-unit)

(right-unit)

(assoc)

(η v) � k = k v
x � η = x
x � (λ v .(k v � h)) = (x � k) � h

Two such monads are the identity and state monads:

Ida = a
ηIdv = v
x�Idf = fx

S a = s → a× s
ηSv = λσ.(v, σ)
ϕ�Sf = λσ0.let (v, σ1) = ϕσ0 in fvσ1

Asynchronous Exceptions as an Effect 157

Here, s is a fixed type argument, which can be replaced by any type which
is to be “threaded” through the computation. What makes monads interesting
is not their bind and unit (these are merely computational glue) but, rather,
the operations one can define in terms of the extra computational “stuff” they
encapsulate. For example, one may define read and write operations, gS and uS,
to manipulate the underlying state s :

gS : Ss
gS = λσ.(σ, σ)

uS : (s → s) → S()
uSf = λσ.((), fσ)

The morphisms, gS and uS, are pronounced get and update, respectively. Ad-
ditional operations on a monad (e.g., uS on S) are referred to as non-proper
morphisms to distinguish them from the monadic bind and unit.

Given two monads, M and M′, it is natural to ask if their composition, M◦M′,
is also a monad, but it is well-known that monads generally do not compose
in this simple manner [6]. However, monad transformers do provide a form of
monad composition [6,16,18]. When applied to a monad M, a monad transformer
T creates a new monad M′. The monad (StateT s Id) is identical to the state
monad S. The state monad transformer, (StateT s), is shown below.

Sa = StateT sM a = s → M(a× s)
ηS x = λσ. ηM(x, σ)
x �S f = λσ0. (xσ0) �M (λ(a, σ1).f a σ1)

uf = λσ. ηM((), f σ)
g = λσ. ηM(σ, σ)
liftS x = λσ. x �M λy. ηM(y, σ)

In a composed or layered monad, M′ = TM, any non-proper morphisms on M
must be redefined or lifted to monad M′. Lifting of non-proper morphisms is
frequently performed in terms of a lift operator (e.g., liftS above).

2.1 Non-determinism as a Monad

Semantically, non-deterministic programs (i.e., those with more than one possi-
ble value) may be viewed as returning sets of values rather than just one value
[1,27]. Consider, for example, the amb operator of McCarthy (1963). Given two
arguments, it returns either one or the other; for example, the value of 1 amb 2
is either 1 or 2. The amb operator is angelic: in the case of the non-termination
of one of its arguments, amb returns the terminating argument. For the pur-
poses of this exposition, however, we ignore this technicality. According to this
view, the meaning of (1 amb 2) is simply the set {1, 2} and the meaning of
(let x = (1 amb 2) ; y = (1 amb 2) in x + y) is {2, 3, 4}. The computational the-
ory of non-determinism employed here is based on a monadic form of the pow-
erdomain construction [26,28]. Encoding non-determinism as sets of values is
expressed monadically via the finite powerset monad:

η : a → Pfin(a)
η x = { x }

� : Pfin(a) → (a → Pfin(b)) → Pfin(b)
S � f =

⋃
(f S)

158 W.L. Harrison et al.

where f S = { f x | x ∈ S } and Pfin(−) is set of finite subsets drawn from its
argument. In the finite set monad, the meaning of (e amb e ′) is the union of the
meanings of e and e ′.

That lists are similar structures to sets is familiar to any functional program-
mer; a classic exercise in introductory functional programming courses represents
sets as lists and set operations as functions on lists (in particular, casting set
union (∪) as list append (++)). Some authors [6,15,31] have made use of the
“sets as lists” pun to implement non-deterministic programs within functional
programming languages via the list monad; this approach seems to have origi-
nated with Hughes and O’Donnell [12]. The list monad (written “[]” in Haskell)
is defined by the instance declaration:

instance Monad [] where
return x = [x]
(x : xs) >>= f = f x ++ (xs >>= f)
[] >>= f = []

This straightforward implementation suffices for our purposes, but it is known
to contain an inaccuracy when the lists involved are infinite [30]. Specifically,
because l++k = l if the list l is infinite, append (++) loses information that set
union (∪) would not.

The non-determinism monad has a morphism, merge, that combines a finite
number of non-deterministic computations, each producing a finite set of values,
into a single computation returning their union. For the finite powerset monad,
it is union (∪), while with the list implementation, merge is concatenation:

merge[] :: [[a]]→[a]
merge[] = concat

Note that the finiteness of the argument of merge is assumed and is not reflected
in its type.

3 A Monadic Model for Asynchronous Exceptions

This section presents a monadic model for asynchronous exceptions (MMAE).
The MMAE is an algebra of effects with monads and associated operators ex-
pressing notions of non-determinism, concurrency and interactivity. Section 3.1
first defines this algebra of effects and, then, Section 3.2 presents a number of
theorems specifying the interactions between the algebraic operators. The con-
vention that operators associated with a monad are referred to as effects is
followed throughout this paper.

3.1 Monadic Algebra of Effects

This section presents the effect algebra underlying the semantics in Section 4.
In Section 5, this algebra will be extended and generalized. The left hand col-
umn in Definition 1 below specifies the functor parts of three monads using a

Asynchronous Exceptions as an Effect 159

category-theoretic notation while the right hand column presents them as data
type declarations in the Haskell language. The intention in doing so is to appeal
to the widest audience. One should note, however, that the Haskell representa-
tions are really approximate (e.g., lists in Haskell may be infinite).

Definition 1 (Functors for monads N,E,R)

Non-deter.

Exceptions
Concur.

N A = Pfin(A)

E A = N(A + Error)
R A = fixX. A + E X

type N a = [a]
data Err a = Ok a | Error
type E a = N(Err a)
data R a = Done a | Pause (E (R a))

Technical note: In the categorical definition of R (left column, bottom), the
binder fixX can be taken to indicate either the least or greatest fixed point
solution to the corresponding recursive domain equation. For the semantics in
Section 4, either will suffice as there will be no need to represent infinite com-
putations. In Section 5, it will represent the greatest fixed point.

The monad R supports a model of concurrency in which computations have
a thread-like form. An R “thread” is a sequencing of E-operations having either
the form (Done v) or (Pause ϕ) for ϕ : E(R a). The intuition is that, if a thread
is finished executing, then it is (Done v) for v : a, signifying that there are no
further E-operations to perform and its final value is v . If the thread is not
finished, it performs the E-operation, ϕ, the computed value of which is its own
thread continuation (i.e., an R-computation). For further development of the
resumption-monadic model of concurrency, please refer to the references [9,22].

There is a codebase with Haskell implementations of the monadic construc-
tions presented in this paper [8]. Each of the operator definitions below is followed
by Haskell examples demonstrating the operators. For consistency, Haskell con-
crete syntax is eschewed in favor of the mathematical syntax of this paper. So,
for example, Haskell lists representing sets are written with set brackets “{“ and
“}” rather than with Haskell list constructors “[” and “]” and any other Haskell
syntactic details inessential to the presentation are struck altogether.

Definition 2 specifies the unit (η) and bind (�) operators for the N, E and
R monads. Discussion motivating the definitions of �N and ηN can be found in
Section 2.1.

Definition 2 (η,� for monads N,E,R). The unit (η) and bind (�) operations
have type ηm : a → m a and (�m) : m a → (a → m b) → m b for monads
m = N, E, R and are defined by the following equations:

ηNx = {x}
{ϕ1, . . . , ϕn} �N f

=
⋃

(f ϕi)

ηE = ηN ◦ Ok
ϕ �E f =

ϕ�Nλv.
case v of

(Ok x) → f x
Error → ηNError

ηR = Done
(Done v) �R f = f v
(Pause ϕ) �R f =

Pause(ϕ�E λκ.ηE(κ �R f))

160 W.L. Harrison et al.

Below are Haskell examples demonstrating the unit and bind operators of the N
and E monads. Binding N-computation {1, 2, 3} to the function (λv.ηN(v + 1))
with �N has the effect of incrementing each element. Binding E-computation
{Ok 1,Ok 2,Error} to the function (λv.ηE(v + 1)) with �E performs a similar
“mapping” to the previous case: each (Ok x) element is incremented while the
Error is unchanged.

Haskell> ηN 9
{ 9 }

Haskell> ηE 9
{ Ok 9 }

Haskell> {1, 2, 3} �N (λv . ηN(v + 1))
{2, 3, 4}

Haskell> {Ok 1,Ok 2,Error} �E (λv . ηE(v + 1))
{Ok 2,Ok 3,Error}

The step operator takes an E-computation and produces an R-computation;
it is an example of a lifting [16] from E to R. The lifted computation, step x ,
is atomic in the sense that there are no intermediate Pause breakpoints and is,
in that sense, indivisible. The run operator projects computations from R to E.
An R-computation may be thought of intuitively as an E-computation with a
number (possibly infinite) of inserted Pause breakpoints; run removes each of
those breakpoints.

Definition 3 (Operators relating E and R)

step : E a → R a
stepx = Pause(x �E (ηE ◦Done))

run : R a → E a
run(Pauseϕ) = ϕ �E run
run (Done v) = ηE v

The Haskell session below shows an example of how the run operator “unrolls” an
R-computation. In fact, applying run to the lifting of an E-computation makes
no change to that computation. This suggests that run is an inverse of step,
which is, in fact, the case (see Theorem 5 below).

Haskell> run (step {Ok 1,Ok 2,Error})
{Ok 1,Ok 2,Error}

The merge operators on N, E and R are given in Definition 4. As discussed
in Section 2.1 above, mergeN is a non-proper morphism in the non-determinism
monad. Its definition is lifted to the E and R monads below:

Definition 4 (Merge operators)

mergeN : N(N a) → N a
mergeN X = ∪(x∈X) x
mergeE : N(E a) → E a

Asynchronous Exceptions as an Effect 161

mergeE = mergeN

mergeR : N(R a) → R a
mergeR{ϕ1, . . . , ϕn} = Pause(mergeE{ηE ϕ1, . . . , ηE ϕn})

The effect of merging some finite number of computations in N or E together is
to collect the sets of their outcomes into a single outcome set. Merging in R has a
similar effect, but, rather than collecting outcomes, mergeR{ϕ1, . . . , ϕn} creates
a single R-computation that branches out with n “sub-computations”.

Haskell> mergeN {{1, 2}, {4}}
{1, 2, 4}

Haskell> mergeE {{Ok 1,Ok 2,Error}, {Ok 4, Error}}
{Ok 1,Ok 2,Ok 4,Error} — dupl. Error not shown

An equation like “ 〈raise exception〉 � f = 〈raise exception〉” will hold in any
exception monad like E. That is, a raised exception trumps any effects that follow.
The status operators for E and R catch an exception producing computation and
“defuse” it. So, if ϕ : E a produces an exception, then the value returned by
statusE(ϕ) : E (a + Error) will be Error itself.

The status operators may be used to discern when an exception has occurred
in its argument while isolating that exception’s effect. Below in Definition 6, an
operator catch is defined so that (catch ϕ γ) equals ϕ if ϕ does not throw an
exception, but equals γ otherwise. The status operator is used in the definition
of catch to test if its first argument throws an exception so that catch can, in
that event, return its second argument.

Definition 5 (Status)

statusE : E a → E(a + Error)
statusEϕ =

ϕ �N λv.
case v of

(Ok y) → ηE(Ok y)
Error → ηEError

statusR : R a → R (a + Error)
statusR (Pause ϕ) =

Pause (statusE ϕ�E λv.
case v of

(Ok x) → ηE(statusR x)
Error → ηE(Done Error))

statusR (Done v) = (Done (Ok v))

The following examples demonstrate how status interacts with computations
that throw exceptions. The throwE : E a operator raises an exception (it is de-
fined below in Definition 6). Note how (in the second example) it “trumps”
the remaining computation. The third example, (statusE throwE), shows how the
effect of the throwE exception is isolated. Instead of returning the exception
{ Error }, the (statusE throwE) computation returns the Error token as its value.
With a non-exception throwing computation (e.g., (ηE 9)), statusE returns the
value produced by its argument wrapped in an Ok .

162 W.L. Harrison et al.

Haskell> throwE

{ Error }
Haskell> throwE �E λv . ηE (v + 1)
{ Error }

Haskell> statusE throwE

{Ok Error}
Haskell> statusE (ηE 9)

{Ok (Ok 9)}
Definition 6 gives the specification for the exception-raising and -catching

operations, throw and catch, in E and R and the branching operation, fork ,
in the R monad. The fork operation is particularly important in the semantic
framework of the next section. If ϕ : R a, then (fork ϕ) : R a is a computation
that, roughly speaking, will do either whatever ϕ would do or be asynchronously
interrupted by exception throwR.

Definition 6 (Control flow operators)

throwE : E a
throwE = ηN Error
throwR : R a
throwR = step throwE

fork : R a → R a
fork ϕ = mergeR {ϕ, throwR}

For monad m = E,R,
catchm : m a → m a → m a
catchm ϕ γ = (statusm ϕ) �m λs .

case s of
(Ok v) → ηm v
Error → γ

The first two examples in the following Haskell transcript illustrate the behavior
of catchE and throwE. If the first argument to catchE raises an exception (as, obvi-
ously, throwE does), then the second argument is returned. If the first argument
to catch does not raise an exception, then its second argument is ignored. The
third and fourth examples illustrate the fork effect. The effect of fork (ηR 9) is
to create a single R-computation with two “branches” (both underlined below).
The first branch is just the argument to fork (recall that ηR = Done) and the
second branch is equal to (step throwE). This simple example exposes an im-
portant construction within the MMAE: an asynchronous exception thrown to
a computation is modeled as an alternative branch from the computation. The
fourth example shows the application of run to the previous example. The result
is to collect all possible outcomes from each branch. Following a tree data type
analogy, run is used to calculate the fringe .

Haskell> catchE throwE (ηE 9)
{Ok 9}

Haskell> catchE (ηE 9) throwE

{Ok 9}
Haskell> fork (ηR 9)

Pause ({ Ok (Done 9), Ok (Pause ({ Error }))})
Haskell> run (fork (ηR 9))

{Ok 9,Error}

Asynchronous Exceptions as an Effect 163

3.2 Interactions between Effects

This section presents a number of theorems characterizing the algebraic effects
developed in the previous section and their relationships to one another. These
theorems are used in the next section to prove an equivalence between the MMAE
semantics given there and recently published semantics for asynchronous excep-
tions [13].

Theorem 1 gives a distribution rule for � over merge. This distribution exposes
the tree-like structure of computations in R.

Theorem 1. For monads m = N, E, R, �m distributes over mergem:

mergem{ϕ1, . . . , ϕn} �m f = mergem{ϕ1 �m f, . . . , ϕn �m f}

Proof.

mergeN{ϕ1, . . . , ϕn} �N f
{def mergeN} = (∪ ϕi) �N f
{def �N} = f (∪ ϕi)

= ∪ (f ϕi)
{def mergeN} = mergeN {f ϕ1, . . . , f ϕn}
{def �N} = mergeN {ϕ1 �N f , . . . , ϕn �N f }

mergeE{ϕ1, . . . , ϕn} �E f

= mergeE {ϕ1, . . . , ϕn} �N f̂
where f̂ v = case v of

(Ok x) → ηN (f x)
Error → ηN Error

{def mergeE} = mergeN {ϕ1, . . . , ϕn} �N f̂
{prev. case} = mergeN {ϕ1 �N f̂ , . . . , ϕn �N f̂ }
{def �E} = mergeN {ϕ1 �E f , . . . , ϕn �E f }
{def mergeE} = mergeE {ϕ1 �E f , . . . , ϕn �E f }

mergeR {ϕ1, . . . , ϕn} �R f
{def mergeR} = Pause (mergeE {ηE ϕ1, . . . , ηE ϕn}) �R f
{def �R} = Pause (mergeE {ηE ϕ1, . . . , ηE ϕn} �E λκ. ηE (κ �R f))
{prev. case} = Pause (mergeE {ϕ′

1, . . . , ϕ
′
n})

where ϕ′
i = (ηE ϕi) �E λκ. ηE (κ �R f)

{left unit} = Pause (mergeE { ηE (ϕ1 �R f), . . . , ηE (ϕn �R f)})
{def mergeR} = mergeR {ϕ1 �R f , . . . , ϕn �R f } �	

Theorem 2 gives a distribution law for run over mergeR. This distribution law
is something like an inverse “lifting” as it projects resumption-based merged
computations into a single computation in E.

164 W.L. Harrison et al.

Theorem 2. run(mergeR{ϕ1, . . . , ϕn}) = mergeE{run ϕ1, . . . , run ϕn}

Proof.

run (mergeR {ϕ1, . . . , ϕn})
{def mergeR } = run (Pause (mergeE {ηE ϕ1, . . . , ηE ϕn}))
{def run } = (mergeE {ηE ϕ1, . . . , ηE ϕn}) �E run
{thm 1} = mergeE {(ηE ϕ1) �E run , . . . , (ηE ϕn) �E run}
{left unit} = mergeE {run ϕ1, . . . , run ϕn} �	

Theorem 3 shows how run distributes over �R to produce an E-computation.
Theorem 3 may be proved easily by induction on the number of Pause construc-
tors in its argument if that number is finite. If it is not, then the property is
trivially true, because, in that case, both sides of Theorem 3 are ⊥.

Theorem 3. run(x �R f) = (run x) �E (run ◦ f)

Theorem 4 shows that the throw exception overrides any effects that follow it.
A consequence of this theorem is that, for any f, g : a → E b

throwE �E f = throwE = throwE �E g

Theorem 4. throwm �m f = throwm, for monad m = E, R.

Proof.

throwE �E f
{def throwE} = (ηN Error) �E f
{def �E} = (ηN Error) �Nλv .

case v of { (Ok x) → ηN (f x) ; Error → ηN Error }
{left unit} = case Error of { (Ok x) → ηN (f x) ; Error → ηN Error }

= ηN Error = throwE

throwR �R f
{def throwR} = (step throwE) �R f
{def step} = (Pause (throwE �E (ηE ◦ Done)) �R f
{def �R} = Pause (throwE �E λκ. (ηE (κ �R f)))
{prev. case} = Pause (throwE �E (ηE ◦ Done)) = step throwE = throwR �	

Theorem 5 states that the run operation is the inverse of step. A consequence
of this theorem is that run throwR = throwE.

Theorem 5. run (step ϕ) = ϕ

Proof.

run (stepϕ)
{def step} = run (Pause (ϕ �E (ηE ◦ Done))

Asynchronous Exceptions as an Effect 165

{def run} = (ϕ �E (ηE ◦ Done)) �E run
{assoc.} = ϕ �E λv . ηE(Done v) �E run
{left unit} = ϕ �E λv . run (Done v)
{def run} = ϕ �E λv . ηE v
{eta red} = ϕ �E ηE

{rt unit} = ϕ �	

4 The MMAE as a Semantic Framework

This section presents the semantics for the exception language of Hutton and
Wright [13] in terms of the MMAE. Hutton and Wright define a natural semantics
for a small language (called henceforth Expr) combining arithmetic expressions
and synchronous exceptions (e.g., Catch and Throw). The natural semantics of
this synchronous fragment of the language is just what one would expect. What
makes the language interesting is the presence of an asynchronous interrupt
and its manifestation within the semantics. The Expr language and its natural
semantics are found in Figure 2. A monadic semantics for Expr is given below
and then the equivalence of both semantics is formulated in Theorem 6.

This section presents the formulation of Hutton and Wright’s language within
the monadic framework of Section 3. The evaluation relation is annotated by a B
or U , indicating whether interrupts are blocked or unblocked, respectively. Ignor-
ing this flag for the moment, the first three rows in Figure 2 are a conventional,
natural semantics for a language combining arithmetic with synchronous excep-
tions. Note, for example, that the interaction of Add with Throw is specified by
three rules (Add1,Add2,Add3), the first for the case of exception-free arguments
and the second two for the cases when an argument evaluates to Throw . The
effect of (Block e) [(Unblock e)] is to turn off [on] asynchronous exceptions in the
evaluation of e.

Val n ⇓i
Val n

Val
Throw ⇓i

Throw
Throw

x ⇓i
Val n y ⇓i

Val m

Add x y ⇓i
Val (n+m)

Add1

x ⇓i
Throw

Add x y ⇓i
Throw

Add2
y ⇓i

Throw

Add x y ⇓i
Throw

Add3
y ⇓i

v

Seqn x y ⇓i
v

Seqn1

x ⇓i
Throw

Seqn x y ⇓i
Throw

Seqn2
x ⇓i

Val n

Catch x y ⇓i
Val n

Catch1
x ⇓i

Throw y ⇓i
v

Catch x y ⇓i
v

Catch2

x ⇓B
v

Block x ⇓i
v

Block
x ⇓U

v

Unblock x ⇓i
v

Unblock
x ⇓U

Throw
Int

Fig. 2. Hutton and Wright’s Expression Language, Expr, with Asynchronous Excep-
tions. The essence of asynchronous exceptions in this model is captured in the Int
rule.

166 W.L. Harrison et al.

Val 1 ⇓U
Val 1

Val
Val 2 ⇓U

Val 2
Val

Add (Val 1) (Val 2) ⇓U
Val 3

Add1
Add (Val 1) (Val 2) ⇓U

Throw
Int

Val 1 ⇓U
Throw

Int

Add (Val 1) (Val 2) ⇓U
Throw

Add2
Val 2 ⇓U

Throw
Int

Add (Val 1) (Val 2) ⇓U
Throw

Add3

Fig. 3. There are four possible evaluations of (Add (Val 1) (Val 2)) according to the
unblocked semantics (i.e., with U annotation) in Figure 2

To understand how Hutton and Wright’s semantics works and to compare
it with the monadic semantics given here, the expression (Add (Val 1) (Val 2))
will be used as a running example. The expression (Add (Val 1) (Val 2)) has four
possible evaluations when the interrupt flag is U (shown in Figure 3). The eval-
uation in the upper left is what one would expect. But the three other cases
involve asynchronous exceptions, evaluating instead to Throw via the Int rule
from Figure 2. The bottom row shows what happens when the first and sec-
ond arguments, respectively, evaluate to Throw and, in the upper right corner,
the evaluation is interrupted “before” any computation takes place. The Int
rule may be applied because the flag is U and consequently there are four pos-
sible evaluations. When the flag is B , the Int rule may not be applied, and
so exceptions are blocked. There is one and only one evaluation when the flag
is B :

Val 1 ⇓B
Val 1

Val
Val 2 ⇓B

Val 2
Val

Add (Val 1) (Val 2) ⇓B
Val 3

Add1

Figure 4 presents the semantics of Expr using the MMAE framework. The
semantics consists of two semantic functions, the “blocked” semantics B[[−]] and
the “unblocked” semantics U [[−]]. The blocked (unblocked) semantics provides
the meaning of an expression when interrupts are off (on) and corresponds to the
natural semantic relation ⇓B (⇓U). The first five semantic equations for B[[−]] are
a conventional monadic semantics for arithmetic, sequencing and synchronous
exceptions [22]. The definitions for Block and Unblock require comment, how-
ever. The meaning of (Block e) in the B[[−]] has no effect, because asynchronous
exceptions are already blocked. The meaning of (Unblock e), however, is U [[e]],
signifying thereby that asynchronous exceptions are unblocked in the evalua-
tion of e. The unblocked semantics is similar to the blocked, except that fork is
applied to each denoting computation. This has the effect of creating an asyn-
chronous exception at each application of fork . U [[Block e]] is defined as B[[e]] to
“turn off” asynchronous exceptions.

Example: Blocked Semantics. In the following example, the “blocked” de-
notation of Add (Val 1) (Val 2) is simplified with respect to the theorems of
Section 3.

Asynchronous Exceptions as an Effect 167

B[[Add (Val 1) (Val 2)]]
{def B[[−]]} = (step(ηE 1)) �R λv1.(step(ηE 2)) �R λv2.ηR(v1 + v2)
{def �R} = (step(ηE 1)) �R λv1.(Pause ((ηE 2) �E (ηE◦Done))) �R λv2.ηR(v1+v2)
{left unit} = (step(ηE 1)) �R λv1.(Pause (ηE (Done 2))) �R λv2.ηR(v1 + v2)
{def �R} = (step(ηE 1)) �R λv1.Pause (ηE ((Done 2) �R λv2.ηR(v1 + v2)))
{def �R} = (step(ηE 1)) �R λv1.(Pause (ηE (ηR(v1 + 2))))

= Pause (ηE (Pause (ηE (Done 3))))

The last line follows by a similar argument to the first five steps. This last R-
computation, Pause (ηE (Pause (ηE (Done 3)))), captures the operational content
of B[[Add (Val 1) (Val 2)]]. It is a single thread with two steps in succession, corre-
sponding to the evaluation of (Val 1) and (Val 2), followed by the return of the
computed value 3.

Example: Unblocked Semantics. The next example considers the same ex-
pression evaluated under the “unblocked” semantics, U [[−]]. As in the previous
example, the denotation is “normalized”, so to speak, according to the theorems
of Section 3. Before beginning the example of the unblocked semantics, we state
and prove a useful simplification in Lemma 1.

Lemma 1. step (ηE v) �R f = Pause (ηE (f v)).

Proof.

step (ηEv) �R f
{def step} =Pause ((ηE v) �E (ηE ◦ Done)) �R f
{left unit} =Pause (ηE (Done v)) �R f
{def �R} =Pause ((ηE (Done v)) �E λκ. ηE(κ �R f))
{left unit} =Pause (ηE ((Done v) �R f))
{def �R} =Pause (ηE (f v)) �	

Notational Convention. A notational convention is borrowed from Haskell.
The “null bind” of a monad m, (>>m), is defined as:

(>>m) : ma → mb → mb

ϕ >>m γ = ϕ�m λd.γ

where d is a dummy variable not occurring in γ. The effect of the computa-
tion, ϕ >>m γ, is to evaluate ϕ, ignore the value it produces, and then evaluate
γ.

The unblocked semantics for Add (Val 1) (Val 2) unfolds as follows:

U [[Add (Val 1) (Val 2)]]

168 W.L. Harrison et al.

B[[−]] : Expr → R Int
B[[Val i]] = step(ηEi)
B[[Add e1 e2]] = B[[e1]] �R λv1.

B[[e2]] �R λv2.
ηR(v1 + v2)

B[[Seqn e1 e2]] = B[[e1]] >>R B[[e2]]
B[[Throw]] = throwR

B[[Catch e1 e2]] = catchR (B[[e1]]) (B[[e2]])
B[[Block e]] = B[[e]]
B[[Unblock e]] = U [[e]]

U [[−]] : Expr → R Int
U [[Val i]] = fork(step(ηEi))

U [[Add e1 e2]] = fork

0
@
U [[e1]] �R λv1.
U [[e2]] �R λv2.

ηR(v1 + v2)

1
A

U [[Seqn e1 e2]] = fork(U [[e1]] >>R U [[e2]])
U [[Throw]] = fork throwR

U [[Catch e1 e2]] = fork(catchR (U [[e1]]) (U [[e2]]))
U [[Block e]] = fork B[[e]]
U [[Unblock e]] = fork U [[e]]

Fig. 4. Monadic Semantics for Hutton & Wright’s Language using MMAE Framework

= fork (fork (step(ηE 1)) �R λv1.fork (step(ηE 2)) �R λv2.ηR(v1 + v2))
{thm 1,def 6}

= fork (fork (step(ηE 1)) �R λv1.mergeR {(step(ηE 2)) �R f , throwR�R f })
where f = λv2.ηR(v1+v2)

{thm 4} = fork (fork (step(ηE 1)) �R λv1.mergeR {(step(ηE 2)) �R f , throwR })
{lem 1} = fork (fork (step(ηE 1)) �R λv1.mergeR {Pause (ηE (f 2)), throwR })
{thm 1,def 6}

= fork (mergeR { (step(ηE 1)) �R f ′, throwR �R f ′})
where f ′ = λv1.mergeR {Pause (ηE (f 2)), throwR}

{thm 4} = fork (mergeR { (step(ηE 1)) �R f ′, throwR })
{lem 1} = fork (mergeR { Pause (ηE (f ′ 1), throwR })
{def f,f’} = fork (mergeR { Pause (ηE (mergeR {Pause (ηE 3), throwR })), throwR })

{def fork} = mergeR

⎧⎪⎪⎨⎪⎪⎩
mergeR

⎧⎨⎩Pause (ηE (mergeR

{
Pause (ηE (ηR 3)),
throwR

}
)),

throwR

⎫⎬⎭ ,

throwR

⎫⎪⎪⎬⎪⎪⎭
The last term in the above evaluation is written in a manner that emphasizes

the underlying tree-like structure of denotations in R. The mergeR operators play
the rôle of a “tree branch” constructor with throwR and Pause (ηE (ηR 3)) as the
“leaves”. This term exposes the operational content of U [[Add (Val 1) (Val 2)]].
To wit, either an asynchronous exception occurs at Add or it doesn’t (left-most
mergeR); or, an asynchronous exception occurs at (Val 1) or it doesn’t (middle
mergeR); or, an asynchronous exception occurs at (Val 2) or it doesn’t (right-
most mergeR); or, it returns the integer 3. Indeed, this single algebraic term
captures all four evaluations from Figure 3. The term displayed in Example (1)
in Section 1.1 can be recovered by projecting U [[(Add (Val 1) (Val 2))]] to the E
monad via run:

run U [[(Add (Val 1) (Val 2))]]

Asynchronous Exceptions as an Effect 169

= run (mergeR { mergeR { ϕ, throwR }, throwR })
where ϕ = Pause(ηE(mergeR{Pause(ηE(ηR 3)), throwR}))

{thm 2} = mergeE { run (mergeR { ϕ, throwR }), run throwR }
{thms 2,5} = mergeE { mergeE { run ϕ, run throwR }, throwE }

By repeated applications of Theorems 2 and 5, the definition of run, and left
unit monad law, runϕ = mergeE{ηE3, throwE}. Continuing:

{thm 5} = mergeE { mergeE { mergeE { ηE 3, throwE } , throwE }, throwE }

Theorem 6 establishes an equivalence between Hutton and Wright’s natural
semantics (Figure 2) and the MMAE semantics in Figure 4. Due to the presence
of non-determinism in both semantic specifications, there is more than one pos-
sible outcome for any expression. The theorem states that, for any expression e,
a particular outcome (i.e., (Ok v) or Error) may occur in the set of all possible
outcomes for e (i.e., run (U [[e]]) or run (B[[e]])) if, and only if, the corresponding
term (respectively, (Val v) or Throw) can be reached via the natural semantics.
The proof of Theorem 6 is straightforward and long, so rather than including it
here, it has been made available online [8].

Theorem 6 (Semantic Equivalence). For any expression e:

(Ok v) ∈ run(U [[e]]) iff e ⇓U (V al v)
Error ∈ run(U [[e]]) iff e ⇓U Throw

(Ok v) ∈ run(B[[e]]) iff e ⇓B (V al v)
Error ∈ run(B[[e]]) iff e ⇓B Throw

5 The MMAE as a Programming Model

This section demonstrates the use of the MMAE in the functional programming
of applications with asynchronous behaviors. In particular, the extension of syn-
chronous concurrent kernels with asynchronous, interrupt-driven features is de-
scribed. The approach elaborated here develops along the same lines as modular
interpreters [16] and compilers [11]: an existing specification is extended with a
“building block” consisting of a monadic “module” and related operators. By
applying the interrupts building block to a kernel without interrupts (middle,
Figure 1), a kernel with interrupt-driven input is produced with virtually no
other changes.

Recent research has demonstrated how kernels with a broad range of OS be-
haviors (e.g., message-passing, synchronization, forking, etc.) may be formulated
in terms of resumption monads [9]. This section outlines the extension of such
resumption-monadic kernels with asynchronous behaviors. The presentation is
maintained at a high-level in order to expose the simplicity of the asynchronous
extension. Interested readers may refer to the code base [8] or to Harrison [9]
for the more details concerning kernel construction. The presentation here will
frequently appeal to the reader’s intuition in order to remain at a high-level.

The kernel and its enhanced functionality are described in Figure 1. The en-
hanced kernel is kept as simple as possible. It contains no mechanism for blocking
interrupts and there is only one interrupt service routine (ISR) connecting the
kernel to the input port. Such enhancements are, however, quite simple to make.

170 W.L. Harrison et al.

Both kernels (Figure 1, middle and right) support synchronous message-passing,
maintaining a message queue, msgQ, to hold messages “in-flight”. The extended
kernel (Figure 1, right) adds an interrupt-driven serial-to-parallel input port.
When a bit is ready at the port, an interrupt is thrown, causing the ISR to run.
This ISR inserts the new bit into its local bit queue, bitQ. If there are eight
bits in bitQ, then it assembles them into a byte and inserts this new datagram
into msgQ, thereby allowing user threads to receive messages through the port.
Pseudocode for the ISR is:

insertQ(port,bitQ);
if (length(bitQ) > 7) {

make_datagram(x);
insertQ(x,msgQ);

}

Here, port is the bit register in the port that holds the most recent input bit.
A resumption-monadic kernel is an R ()-valued function that takes as input

a list of ready threads. In other words, kernel 〈ready〉 : R (), where 〈ready〉 is a

a
0 a

1 …

Before

a
i

After

port=0;

ISR

port=1;

ISR

… … …

Haskell representation of the thread list. The
output of the kernel is, then, a (possibly infi-
nite) R-computation consisting of a sequence
of atomic actions ai executed in succession
as shown in the inset figure (top, Before).
These actions are drawn from user threads in
〈ready〉 that have been woven together into
a schedule by the kernel. The notion of com-
putation associated with R will also be changed as outlined in Section 5.1. The
key to “turning on” asynchronous interrupts is to view each break-point “•” in
the inset figure (top, Before) as a branching point. This branch contains three
possible histories (inset figure (bottom, After)): one history in which the sched-
uled atom ai executes, another where the ISR executes with the input bit 0,
and a third where the ISR executes with the input bit 1. The branching can
be achieved as in Section 4 with the use of an appropriate merge operator. The
operation of the enhanced kernel is a computation that elaborates a tree.

There are only two changes necessary to introduce asynchronous interrupts to
the synchronous kernel. The first is simply to refine the monad by incorporating
non-determinism and state for the port device into the monad R. The second
modification is to apply the appropriate resumption map to (kernel 〈ready〉).
Resumption maps arise from the structure of R in an analogous manner to the
way the familiar list function, map : (a → b) → [a] → [b], operates over lists.
The resumption map used here is discussed below in Section 5.2.

5.1 Monad Hierarchy

Two monads associated with the kernel are the kernel monad, K, and the concur-
rency monad R. K encapsulates the imperative aspects of the system. These are
kernel-level operations that update system data structures (Sys) and user-level

Asynchronous Exceptions as an Effect 171

operations that update the user-level storage (Sto). K is constructed with the
application of two state monad transformers to the identity monad, Id.

K = StateT Sys (StateT Sto Id)

The concurrency monad R is then built on top of K with an application of the
resumption monad transformer [22]:

R = ResT K
data ResT m a = Done a | Pause (m (ResT m a))

Note that this monad transformer provides an alternative means of defining the
R monad from Section 4: R = ResT E.

5.2 Resumption Maps

There is a close analogy between computations in R and lists and streams. A
non-trivial computation in R consists of a (possibly infinite) sequence of atomic
actions in K separated by Pause constructors. Definition 7 specifies a resumption
map that takes a function h and an R-computation γ and transforms γ one atom
at a time:

Definition 7 (Map on R)

mapR : (R a → K(R a)) → R a → R a
mapR h (Done v) = Done v
mapR h (Pause ϕ) = Pause (h (Pause ϕ) �K (ηK ◦ mapR h))

5.3 Adding Asynchronicity in Two Steps

Now, the stage is set to add asynchronicity to the synchronous kernel. The first
step provides additional computational resources to K and the second uses these
resources to “turn on” asynchronicity.

First Step: Adding Non-determinism and a Device to K. The first change
to the synchronous kernel is to add non-determinism and storage for the port
device to the K and R monads. This is accomplished by replacing Id with N in
the definition of K and with another application of the state monad transformer:

K = StateT Dev (StateT Sys (StateT Sto N))
Dev = [Bit] × Bit

The N is defined exactly as in Section 4. A device state is a pair, (bitQ, new),
consisting of a queue of bits, bitQ , and a single bit denoting the current input to
the port. The K monad has separate operators for reading and writing the Dev ,
Sys and Sto states along with a merge operation, mergeK : Pfin(K a) → K a, that
is defined in terms of mergeN. Note also that R is also affected by this refinement
of K, but that the text of its definition is not (i.e., it is still the case that
R = ResT K). Details may be found in the code base [8].

172 W.L. Harrison et al.

Second Step: Asynchronicity via Resumption Mapping. First, a resump-
tion mapping is defined that creates a branch with three possible histories.

branches : R a → K(R a)

branches (Pause ϕ) = mergeK

⎧⎨⎩
ϕ,
(port=0 ; ISR) >>K ϕ,
(port=1 ; ISR) >>K ϕ

⎫⎬⎭
(1)
(2)
(3)

Here, (port=0; ISR) represents a K-computation that performs the indicated ac-
tions. History (1) is one in which no interrupt occurs. In history (2), an interrupt
occurs when the input bit of the port is set to 0 and the ISR is then executed.
Finally, the interrupted thread, ϕ, is executed. History (3) is analogous to (2).

Flipping the Port Off and On. It is now a simple matter to turn the port
off and on. To operate the kernel with the port off, execute: kernel 〈ready〉. To
operate the kernel with the port on, execute: mapR branches (kernel 〈ready〉).
The two sample system runs from Figure 1 are repeated below. There are two
threads, a producer and a consumer. The producer thread broadcasts integer
messages starting at 1001 and incrementing successively with each broadcast.
The consumer thread consumes these messages. When either thread performs a
broadcast or receive, the instrumented kernel prints it out. Also, when the ISR
creates a new datagram, it also announces the fact.

Port off: kernel 〈ready〉
Haskell> producer_consumer
broadcasting 1001
broadcasting 1002

receiving 1001
broadcasting 1003

receiving 1002 ...

Port on: mapR branches (kernel 〈ready〉)
Haskell> producer_consumer
broadcasting 1001

new datagram: 179
broadcasting 1002

receiving 179
new datagram: 204 ...

6 Related Work

Implementations of threaded applications use monads to structure the threaded
code. The Haskell libraries for concurrency use IO level primitives to provide
a simple and robust user interface [23]. There have been other threading im-
plementations that use other monads, including [14], which uses a continuation
passing style monad, giving very high numbers of effectively concurrent threads.

There have been a number of efforts to model the concurrency provided by
the Haskell IO monad. One successful effort is reported by Swierstra and Al-
tenkirch [29], where they model the concurrency inside the Haskell IO monad
using a small stepping scheduler combined with the QuickCheck framework [3] to
provide random interleaving of pseudo-threads. In Dowse and Butterfield [5], an
operational model of shared state, input/output and deterministic concurrency
is provided. One fundamental difference between these models and our work is

Asynchronous Exceptions as an Effect 173

granularity. Both of these models assume each computation can not be inter-
rupted, and threads only are scheduled at the IO interaction points. Our model
allows interrupts to happen inside computation, capturing the pre-emptive im-
plementations of concurrency described in [17,24], and provided by the Glasgow
Haskell compiler.

The language modeled with MMAE in Section 4 was adopted from recent
research on the operational semantics of asynchronous interrupts [13]. That
research also identified an error within a published operational semantics for
interrupts in Haskell [17]. Morris and Tyrrell [20] offer a comprehensive math-
ematical theory of nondeterminacy, encompassing both its demonic and angelic
forms. Their approach adds operators for angelic and demonic choice to each type
in a specification or programming language. They present refinement calculus
axioms for demonic and angelic nondeterminacy and define a domain model to
demonstrate the soundness of these axioms. One open question is whether there
exists common ground between their work and the monadic approach presented
here. In particular, if the domain theoretic constructions underlying Morris and
Tyrrell’s semantics may be expressed usefully as monads.

7 Future Work and Conclusions

There has been considerable interest of late in using monads to structure system
software [7,14], model it formally [9], and to enforce and verify its security [10].
None of this previous research contains an model of asynchronous behavior and
the MMAE was developed as a means of rectifying this situation. The present
work is part of an ongoing effort to use monads as an organizing principle for
formally specifying kernels. Currently, the direct compilation of monadic kernel
designs to both stock and special purpose hardware is being investigated. This
research agenda considers these monadic specifications as a source language for
semantics-directed synthesis of high-assurance kernels. The ultimate goal of this
agenda is to produce high-confidence systems automatically.

What possible applications might our specification methodology have? We
have shown is that it is possible to take a MMS constructed executable specifi-
cation, add a non-deterministic monad giving an accurate monadic based seman-
tics for interrupts. Here we briefly sketch a possible way of using our semantics
in practical applications.

Non-determinism is used to model all possible outcomes. In an implemen-
tation, a lower-level model could replace the use of non-determinism with the
exception monad. The exception monad would be used to communicate an in-
terrupt in exactly the same way it would be used to communicate an exception.
The fork primitive in our semantics would be implemented in a lower-level model
using a simple poll of an interrupt flag. Specifically, in our kernel example, we
might use this MMS for K in the lower-level model.

K = StateT Dev (StateT Sys (StateT Sto Maybe))
— K = Dev + Sys + User + Exception

174 W.L. Harrison et al.

This gives us a basis for an efficient implementation from our monadic primi-
tives. We use the code locations that perform interrupt polling in the lower-level
model as safe-points. If an interrupt request is made of a specific thread, this
thread can be single-stepped to any safe-point, a common implementation tech-
nique for interruptible code.

Thus as an implementation path we have our high-level model using non-
determinism, a low-level model using exceptions to simulate interrupts, and a
possible implementation with precisely specified safely interruptible points that
can be implemented using direct hardware support. This chaining of specifi-
cations toward implementation is a long standing problem in building non-
deterministic systems, and this research provides an important step toward a
more formal methodology of software development of such systems.

The MMAE confronts one of the “impurities” of the infamous “Awkward
Squad” [23]: language features considered difficult to accommodate within a
pure, functional setting—concurrency, state, and input/output. Most of these
impurities have been handled individually via various monadic constructions
(consider the manifestly incomplete list [18,22,25]) with the exception of asyn-
chronous exceptions. The current approach combines these individual construc-
tions into a single layered monad—i.e., a monad created from monadic building
blocks known as monad transformers [6,15]. While it is not the intention of
the current work to model either the Haskell IO monad or Concurrent Haskell,
it is believed that the techniques and structures presented here provide some
important building blocks for such models.

References

1. de Bakker, J.W.: Mathematical Theory of Program Correctness. International Se-
ries in Computer Science. Prentice-Hall, Englewood Cliffs (1980)

2. Chatterjee, K., Ma, D., Majumdar, R., Zhao, T., Henzinger, T.A., Palsberg, J.:
Stack size analysis for interrupt-driven programs. Inf. Comput. 194(2), 144–174
(2004)

3. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: Proc. of International Conference on Functional Program-
ming (ICFP), ACM SIGPLAN (2000)

4. Dijkstra, E.W.: My recollections of operating system design. SIGOPS Oper. Syst.
Rev. 39(2), 4–40 (2005)

5. Dowse, M., Butterfield, A.: Modelling deterministic concurrent I/O. In: ICFP 2006:
Proceedings of the eleventh ACM SIGPLAN international conference on Functional
programming, pp. 148–159. ACM, New York (2006)

6. Espinosa, D.: Semantic Lego. PhD thesis, Columbia University (1995)
7. Hallgren, T., Jones, M.P., Leslie, R., Tolmach, A.: A principled approach to op-

erating system construction in Haskell. In: Proceedings of the Tenth ACM SIG-
PLAN International Conference on Functional Programming (ICFP05), pp. 116–
128. ACM Press, New York (2005)

8. Harrison, W.: The Asynchronous Exceptions As An Effect Codebase,
www.cs.missouri.edu/∼harrisonwl/AsynchronousExceptions

9. Harrison, W.: The Essence of Multitasking. In: Johnson, M., Vene, V. (eds.)
AMAST 2006. LNCS, vol. 4019, pp. 158–172. Springer, Heidelberg (2006)

www.cs.missouri.edu/~harrisonwl/AsynchronousExceptions

Asynchronous Exceptions as an Effect 175

10. Harrison, W., Hook, J.: Achieving information flow security through monadic con-
trol of effects. Invited submission to: Journal of Computer Security, 46 (accepted,
2008)

11. Harrison, W., Kamin, S.: Metacomputation-based compiler architecture. In: Back-
house, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 213–229. Springer,
Heidelberg (2000)

12. Hughes, J., O’Donnell, J.: Nondeterministic functional programming with sets. In:
Proceedings of the 1990 Banf Conference on Higher Order Reasoning (1990)

13. Hutton, G., Wright, J.: What is the Meaning of These Constant Interruptions?
Journal of Functional Programming 17(6), 777–792 (2007)

14. Li, P., Zdancewic, S.: Combining events and threads for scalable network services
implementation and evaluation of monadic, application-level concurrency prim-
itives. In: PLDI 2007: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pp. 189–199. ACM Press, New
York (2007)

15. Liang, S.: Modular Monadic Semantics and Compilation. PhD thesis, Yale Univer-
sity (1998)

16. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pp. 333–343. ACM Press, New York (1995)

17. Marlow, S., Peyton Jones, S., Moran, A., Reppy, J.: Asynchronous exceptions in
Haskell. In: Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 274–285 (2001)

18. Moggi, E.: An Abstract View of Programming Languages. Technical Report ECS-
LFCS-90-113, Department of Computer Science, Edinburgh University (1990)

19. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)

20. Morris, J.M., Tyrrell, M.: Terms with unbounded demonic and angelic nondeter-
minacy. Sci. Comput. Program. 65(2), 159–172 (2007)

21. Palsberg, J., Ma, D.: A Typed Interrupt Calculus. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 291–310. Springer, Heidelberg (2002)

22. Papaspyrou, N.S.: A Resumption Monad Transformer and its Applications in the
Semantics of Concurrency. In: Proceedings of the 3rd Panhellenic Logic Symposium
(2001); Expanded version available as a tech. report from the author by request

23. Peyton Jones, S.: Tackling the Awkward Squad: Monadic Input/Output, Concur-
rency, Exceptions, and Foreign-language Calls in Haskell. In: Engineering Theories
of Software Construction. NATO Science Series, vol. III 180, pp. 47–96. IOS Press,
Amsterdam (2000)

24. Peyton Jones, S., Reid, A., Hoare, C.A.R., Marlow, S., Henderson, F.: A semantics
for imprecise exceptions. In: Proceedings of the ACM SIGPLAN 1999 Conference
on Programming Language Design and Implementation, pp. 25–36 (May 1999)

25. Peyton Jones, S., Wadler, P.: Imperative functional programming. In: Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pp. 71–84. ACM Press, New York (1993)

26. Plotkin, G.D.: A Powerdomain Construction. SIAM Journal of Computation 5(3),
452–487 (1976)

27. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, Boston (1986)

28. Smyth, M.B.: Powerdomains. Journal of Computer and System Sciences 16(1),
23–36 (1978)

176 W.L. Harrison et al.

29. Swierstra, W., Altenkirch, T.: Beauty in the beast. In: Haskell 2007: Proceedings
of the ACM SIGPLAN workshop on Haskell workshop, pp. 25–36. ACM, New York
(2007)

30. Tolmach, A., Antoy, S.: A monadic semantics for core curry. In: Proceedings of the
12th International Workshop on Functional and (Constraint) Logic Programming
(June 2003)

31. Wadler, P.: The essence of functional programming. In: Proceedings of the 19th
Symposium on Principles of Programming Languages (POPL), pp. 1–14. ACM
Press, New York (1992)

The Böhm–Jacopini Theorem Is False,

Propositionally

Dexter Kozen and Wei-Lung Dustin Tseng

Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA
{kozen,wdtseng}@cs.cornell.edu

Abstract. The Böhm–Jacopini theorem (Böhm and Jacopini, 1966) is a
classical result of program schematology. It states that any deterministic
flowchart program is equivalent to a while program. The theorem is usu-
ally formulated at the first-order interpreted or first-order uninterpreted
(schematic) level, because the construction requires the introduction of
auxiliary variables. Ashcroft and Manna (1972) and Kosaraju (1973)
showed that this is unavoidable. As observed by a number of authors, a
slightly more powerful structured programming construct, namely loop
programs with multi-level breaks, is sufficient to represent all determin-
istic flowcharts without introducing auxiliary variables. Kosaraju (1973)
established a strict hierarchy determined by the maximum depthof nesting
allowed. In this paper we give a purely propositional account of these re-
sults.We reformulate the problems at the propositional level in terms of au-
tomata on guarded strings, the automata-theoretic counterpart to Kleene
algebra with tests. Whereas the classical approaches do not distinguish be-
tween first-order and propositional levels of abstraction, we find that the
purely propositional formulation allows a more streamlined mathematical
treatment, using algebraic and topological concepts such as bisimulation
and coinduction. Using these tools, we can give more mathematically rig-
orous formulations and simpler and more revealing proofs.

1 Introduction

Program schematology was one of the earliest topics in the mathematics of com-
puting. A central problem that has been well studied over the years is that of
transforming an unstructured flowgraph to structured form. A seminal result in
this area is the Böhm–Jacopini theorem [2], which states that any deterministic
flowchart program is equivalent to a while program. This classical theorem has
reappeared in many contexts and has been reproved by many different methods.
There are dozens of references on this topic; a few commonly cited ones are
[1,8,9,10,11].

The Böhm–Jacopini theorem is usually formulated at the first-order inter-
preted or first-order uninterpreted (schematic) level, as was most early work in
program schematology. The first-order formulation allows the introduction of

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 177–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

178 D. Kozen and W.-L.D. Tseng

auxiliary individual or Boolean variables to preserve information during the re-
structuring. This is an essential ingredient of the Böhm–Jacopini construction,
and they asked whether it was strictly necessary. This question was answered
affirmatively by Ashcroft and Manna [1] and Kosaraju [4].

Böhm and Jacopini’s question, and Ashcroft and Manna and Kosaraju’s solu-
tions, were phrased in terms of the necessity of introducing auxiliary variables.
This view is repeated in subsequent works, e.g. [8]. However, this is not really
the best way to phrase the question. What was really shown was that a purely
propositional formulation of the Böhm–Jacopini theorem is false: there is a de-
terministic propositional flowchart that is not equivalent to any propositional
while program. This result is implicit in [1,4], although it was not stated this
way.

As observed by a number of authors (e.g. [4,9]), a slightly more powerful struc-
tured programming construct, namely loops with multi-level breaks, is sufficient
to represent all deterministic flowcharts without introducing auxiliary variables.
Kosaraju [4] established a strict hierarchy based on the levels of the multi-level
breaks that are allowed. He showed that for any n ≥ 1, there exists a loop
program with break m for m ≤ n that is not equivalent to any loop program
with break m for m ≤ n − 1. Again, however, these results were formulated
and proved at the first-order interpreted level, despite the fact that they are
essentially propositional.

Inexpressibility proofs such as those of [1,4] that reason in terms of a particular
first-order interpretation may appear contrived, because any number of other
interpretations could serve the same purpose. One runs the risk of obscuring the
underlying principles at work by the details of the particular construction, which
are largely irrelevant. Moreover, the classical approach to program schematology
relies heavily on graphs and combinatorial graph restructuring operations, which
can be difficult to reason about formally.

Automata on guarded strings, the automata-theoretic counterpart of Kleene
algebra with tests (KAT), provide an opportunity to reset the theory of program
schemes on more rigorous algebraic foundations. We have found that a purely
propositional, automata-theoretic reformulation of some of the questions men-
tioned above allows a more streamlined treatment. Algebraic and topological
concepts such as bisimulation and coinduction, absent in earlier treatments, pre-
dominate here. We feel that the resulting proofs are simpler, more rigorous, and
more revealing of the underlying principles at work.

This paper is organized as follows. In Section 2, we briefly discuss the dif-
ferences between propositional and first-order formulations, and recall the basic
definitions regarding guarded strings and automata with tests. We introduce
a special restricted form of automata with tests, which we call strictly deter-
ministic, corresponding to deterministic flowchart schemes. We argue that every
deterministic flowchart scheme is semantically equivalent to a strictly determinis-
tic automaton. Also in Section 2, we define bisimulation for strictly deterministic
automata and mention several more or less standard results regarding bisimu-
lations. We also recall the definition of the structured programming constructs

The Böhm–Jacopini Theorem Is False, Propositionally 179

for while and loop programs and their semantics. Many proofs in this section are
quite routine and are omitted.

Using these tools, we then give a purely propositional account of three known
results: that the Böhm–Jacopini theorem is false at the propositional level, that
loop programs with multi-level breaks are sufficient to represent all deterministic
flowcharts, and that the Kosaraju hierarchy is strict. These results are proved
in Sections 3, 4, and 5, respectively. We conclude with some open problems in
Section 6.

2 Preliminaries

2.1 Propositional vs. First-Order Logic

The notions of functions on a domain and variables ranging over that domain are
inherent in first-order logic, but are not present in propositional logic. Whereas
we may consider a variable assignment x := t as a primitive action in first-
order program logic, a primitive action in propositional program logic is just a
symbol. Since previous constructions establishing the Böhm–Jacopini theorem
require the introduction of extra variables, they cannot be formalized at the
propositional level of abstraction.

In this paper, we model propositional deterministic flowcharts and structured
programs as strictly deterministic automata with tests, and we model program
executions as guarded strings (both defined below). If desired, our propositional
formulation can be extended with a first order interpretation. A subtle but im-
portant point is that all behaviors of a propositional program have a first-order
realization; that is, given any guarded string representing a possible execution
of a propositional program, there is a first-order interpretation that realizes that
execution.

2.2 Guarded Strings

Guarded strings were introduced in [3]. They model program executions proposi-
tionally. Let Σ be a finite set of action symbols and T a finite set of test symbols
disjoint from Σ. The symbols T generate a free Boolean algebra B; elements
of B are called tests. An atom is a minimal nonzero element of B. The set of
atoms is denoted At. The elements of At can be regarded either as conjunctions
of literals of T (elements of T or their negations) or as truth assignments to
T , thus |At| = 2|T |. We write p, q, p0, . . . for elements of Σ and α, β, α0, . . . for
elements of At. A guarded string is a finite alternating sequence of atoms and
actions, beginning and ending with an atom; that is, an element of (At ·Σ)∗ ·At.
In other words, guarded strings represent the join-irreducible elements of the free
KAT on generators Σ and T . Intuitively, a guarded string records the sequence
of primitive actions taken by a program and the tests that are true between any
two successive primitive actions.

We will also consider infinite guarded strings, which are members of (At ·Σ)ω,
but will always qualify with the adjective “infinite” when doing so.

180 D. Kozen and W.-L.D. Tseng

2.3 Automata with Tests

Automata with tests, also known as automata on guarded strings, were stud-
ied in [5]. They are the automata-theoretic counterpart to Kleene algebra with
tests (KAT). In the formalism of [5], they have two types of transitions, ac-
tion transitions and test transitions, and operate over guarded strings. An ordi-
nary automaton with null transitions is just an automaton with tests over the
two-element Boolean algebra. Many of the constructions of ordinary finite-state
automata, such as determinization and state minimization, extend readily to
automata with tests. In particular, there is a version of Kleene’s theorem show-
ing that these automata are equivalent in expressive power to expressions in the
language of KAT. See [5] for a more detailed introduction.

2.4 Strictly Deterministic Automata

For the purposes of this paper, we will only need to consider a limited class
of automata with tests corresponding to deterministic propositional flowchart
schemes. Since actions are uniquely determined, we may elide the action states
to obtain what we call a strictly deterministic automaton.

Intuitively, a strictly deterministic automaton operates by starting in its start
state and scanning a sequence of atoms, which we can view as provided by an
external agent. For each atom in succession, the automaton responds determin-
istically either by emitting an action symbol and moving to a new state, by
halting, or by failing, according to its transition function.

Formally, a strictly deterministic automaton over Σ and T is a tuple

M = (Q, δ, start),

where Q is a (possibly infinite) set of states, start ∈ Q is the start state, and δ is
a transition function

δ : Q× At → (Σ ×Q) + {halt, fail},

where + denotes disjoint (marked) union. The elements halt and fail are not
states, but universal constants used by an automaton to represent halting and
failing, respectively. The components Q, δ, and start may be adorned with the
subscript M where necessary to distinguish between automata. States are de-
noted by s, t, u, v,

A trace in M is a finite or infinite alternating sequence of states and atoms
specifying a path through M . Formally, a trace is a sequence σ in

(Q · At)∗ ·Q + (Q · At)ω

such that for every substring of σ of the form uαv, δ(u, α) = (p, v) for some
p ∈ Σ. The first state of σ is denoted firstσ and the last state (if it exists) is
denoted lastσ.

Given a state s and an infinite sequence of atoms σ, there is a unique finite or
infinite trace tr(s, σ) determined intuitively by starting in state s and running

The Böhm–Jacopini Theorem Is False, Propositionally 181

the automaton, making choices at each successive state according to the next
atom in the sequence σ as determined by the transition function δ. The trace is
finite iff M halts or fails along the way, even though σ is infinite. Formally, the
map

tr : Q× Atω → (Q · At)∗ · Q + (Q · At)ω

is defined coinductively as follows:

tr(s, α σ) def=

{
s · α · tr(t, σ) if δ(s, α) = (p, t)
s if δ(s, α) ∈ {halt, fail}.

This definition determines tr(s, σ) uniquely for all s ∈ Q and σ ∈ Atω.
A similar definition holds for guarded strings. Here we also allow infinite

guarded strings as well as finite ones. Given a starting state s and an infinite
sequence of atoms σ, there is at most one finite or infinite guarded string gs(s, σ)
obtained by running the automaton starting in state s. Formally, the partial map

gs : Q× Atω → (At ·Σ)∗ · At + (At · Σ)ω

is defined coinductively as follows:

gs(s, α σ) def=

⎧⎪⎨⎪⎩
α · p · gs(t, σ) if δ(s, α) = (p, t)
α if δ(s, α) = halt

undefined if δ(s, α) = fail.

As with traces, gs(s, σ) is uniquely determined for all s ∈ Q and σ ∈ Aω .
The set of (finite) guarded strings represented by the automaton M is

GS(M) def= {gs(startM , σ) | σ ∈ Atω} ∩ (At ·Σ)∗ · At.

Two automata are considered semantically equivalent if they represent the same
set of finite guarded strings.

The transition function δ determines a map

δ̂ : Q × At∗ → Q + {halt, fail}

defined inductively as follows:

δ̂(s, σ) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s, if σ = ε

δ̂(t, τ), if σ = ατ and δ(s, α) = (p, t)
halt, if σ = ατ and δ(s, α) = halt

fail, if σ = ατ and δ(s, α) = fail.

This is either the state that the machine is in after scanning σ starting in state
s, or halt or fail if the machine halts or fails while scanning σ starting in state s.

182 D. Kozen and W.-L.D. Tseng

2.5 Bisimulation

Let M and N be two strictly deterministic automata. A bisimulation between
M and N is a binary relation ≡ between QM and QN such that

(i) startM ≡ startN , and
(ii) if s ∈ QM , t ∈ QN , and s ≡ t, then for all α ∈ At,

(a) δM (s, α) = halt iff δN (t, α) = halt;
(b) δM (s, α) = fail iff δN (t, α) = fail; and
(c) if δM (s, α) = (p, s′) and δN (t, α) = (q, t′), then p = q and s′ ≡ t′.

M and N are said to be bisimilar if there exists a bisimulation between M and
N . An autobisimulation is a bisimulation between M and itself.

Bisimulations are closed under relational composition and arbitrary union,
and the identity relation on an automaton is an autobisimulation. Thus the re-
flexive transitive closure of an autobisimulation is again an autobisimulation.
Moreover, if two automata are bisimilar, then there is a unique maximum bisim-
ulation between them, namely the union of all bisimulations between them. We
provide three lemmas regarding bisimulation.

To show GS(M) = GS(N), it suffices to show that M and N are bisimilar:

Lemma 1. If M and N are bisimilar, then GS(M) = GS(N).

More interestingly, under certain mild conditions, the converse holds as well:

Lemma 2. Suppose GS(M) = GS(N), M does not contain a fail transition, and
halt is accessible from every state of M that is accessible from startM . Then M
and N are bisimilar.

Proof. For s ∈ QM and t ∈ QN , set

s ≡ t
def⇐⇒ ∀σ ∈ Atω gsM (s, σ) = gsN (t, σ).

We show that ≡ is a bisimulation. If s ≡ t, then for all α ∈ At and σ ∈ Atω,

δM (s, α) = halt ⇔ gsM (s, ασ) = α ⇔ gsN (t, ασ) = α ⇔ δN (t, α) = halt

and similarly for fail, and if δM (s, α) = (p, s′) and δN (t, α) = (q, t′), then

α · p · gsM (s′, σ) = gsM (s, ασ) = gsN (t, ασ) = α · q · gsN (t′, σ),

thus p = q and gsM (s′, σ) = gsN (t′, σ). As σ was arbitrary, s′ ≡ t′. This estab-
lishes property (ii) of bisimulation.

It remains to show property (i); that is, startM ≡ startN , or in other words,
gsM (startM , σ) = gsN (startN , σ) for all σ. By assumption, GS(M) = GS(N), so
if gsM (startM , σ) is finite, then so is gsN (startN , σ) and they are equal. Thus the
functions

gsM (startM ,−) : Atω → (At ·Σ)∗ · At + (At ·Σ)ω

gsN (startN ,−) : Atω → (At ·Σ)∗ · At + (At ·Σ)ω

The Böhm–Jacopini Theorem Is False, Propositionally 183

agree on the set {σ | gsM (startM , σ) is finite}. The accessibility condition in the
statement of the lemma implies that this set is dense in Atω under the usual
metric topology on ω-sequences1. Moreover, the two functions are continuous,
and continuous functions that agree on a dense set must agree everywhere. �	

Lemma 3. If M and N are bisimilar under ≡, then for any σ ∈ At∗, either
both δ̂M (startM , σ) and δ̂N(startN , σ) are states, both are halt, or both are fail;
and if they are states, then they are related by ≡.

2.6 Structured Programming Constructs

Deterministic while programs are formed inductively from sequential composition
(p ; q), conditional tests (if b then p else q), and while loops (while b do p), where
b is a test and p, q are programs. We also include instructions skip (do nothing)
and fail (looping or abnormal termination), although these constructs are redun-
dant, being semantically equivalent to while false do p and while true do skip, re-
spectively. We do not include a halt instruction; a program terminates normally
by falling off the end.

Every while program can be converted to an equivalent strictly deterministic
automaton. One first converts the program to a KAT term using the standard
translation

p ; q = pq if b then p else q = bp + bq while b do p = (bp)∗b,

then applies Kleene’s theorem for KAT to yield an automaton with test and
action states [5], which can be viewed as a deterministic flowchart F . One can
then define a strictly deterministic transition function δ on the states of F as
follows. For any state s and atom α, start at s and follow test transitions enabled
by α until encountering an action state or a halt state. If an action state is
encountered, let p be the label of the transition from that state and set δ(s, α) =
(p, t), where t is the target state of the transition. If a halt state is encountered,
set δ(s, α) = halt. If neither of these occur, that is, if the process traces a cycle
of enabled test transitions, set δ(s, α) = fail.

By restricting to the start state and the targets of action transitions, one
obtains a strictly deterministic automaton of the form of Section 2.4. An example
is shown in Fig. 1. In that figure, an edge from s to t labeled αp denotes the
transition δ(s, α) = (p, t). Note that the set of states of the strictly deterministic
automaton is a subset of the states of the original automaton. The conversion
of deterministic flowcharts to strictly deterministic automata does not change
the set of guarded strings accepted. Moreover, by Kleene’s theorem for KAT [5],
this is the same as the set of guarded strings represented by the equivalent KAT
expression.

In addition to the usual while program constructs, we consider the looping
construct loop with nonlocal breaks break n, n ≥ 1. After conversion to a de-
terministic flowchart, every loop instruction � has one entry point entry� and
1 The distance between two sequences is 2−n if they agree on their first n symbols but

differ on their n + 1st symbol.

184 D. Kozen and W.-L.D. Tseng

while b do {

while c do q;
p;

}

0

2

halt

1

3

b

b

c

c

p

q

0

halt

1

bcq
bcp

bc

bc
bcp

bcp bcq

bcq

Fig. 1. A while program and its corresponding deterministic flowchart and strictly
deterministic automaton

halt

b

b

c

c

p

Fig. 2. An example from [4]

one exit point exit�. Intuitively, the instruction break n transfers control to exit�,
where � is the nth loop in whose scope the break n instruction occurs, counting
from innermost to outermost. For while loops �, entry� = exit�.

One can give a rigorous compositional semantics and an equational axiom-
atization of loop and break n, but this topic deserves a careful and systematic
development that would be too much of a digression for the purposes of this
paper, so we defer it to a forthcoming paper [6].

Allowing Boolean combinations of primitive tests in while loops and condi-
tionals is quite natural and allows more flexibility than primitive tests alone.
For instance, Kosaraju [4, Theorem 2] presents the flowchart of Fig. 2 as an
example of a deterministic program that is not equivalent to any while program.
This is true under his definition, but for the uninteresting reason that only primi-
tive tests are allowed. Allowing Boolean combinations, the flowchart is equivalent
to while bc do p. The counterexample of Ashcroft and Manna [1] is much more
complicated, requiring 13 nodes. Both proofs are rather lengthy and reason in
terms of a particular first-order interpretation.

3 While Programs Are Not Sufficient

In this section we give a three-state strictly deterministic automaton M that
cannot be represented by any while program. The states are 0, 1, 2 with start

The Böhm–Jacopini Theorem Is False, Propositionally 185

halt

0

1 2

α1p01

α2p02c

α2p12

α0p10

d

α0p20

α1p21

e

Fig. 3. A strictly deterministic automaton not equivalent to any while program

state 0. The primitive actions are pst for s, t ∈ {0, 1, 2}, s �= t, and the primitive
tests are a, b, giving four atoms α0, . . . , α3. The transitions are δ(s, αt) = (pst, t)
for s, t ∈ {0, 1, 2}, s �= t, and δ(s, α3) = δ(s, αs) = halt. The automaton M is
illustrated in Fig. 3. For example, the edge from 0 to 2 labeled α2p02 represents
the transition δ(0, α2) = (p02, 2). The tests c, d, e represent α0 + α3, α1 + α3,
and α2 + α3, respectively. The edge labeled c represents the two transitions
δ(0, α0) = δ(0, α3) = halt.

The automaton M has no nontrivial autobisimulation, since δ(s, αt) �= δ(t, αt)
for s �= t.

Theorem 1. The strictly deterministic automaton M of Fig. 3 is not equivalent
to any while program.

Proof. Suppose for a contradiction that there exists a while program W equiv-
alent to M ; that is, such that GS(W) = GS(M). Then W has a representation
as a deterministic flowchart, and as a consequence of the construction of Section
2.6, as a strictly deterministic automaton S whose states are a subset of the
states of W . We can assume without loss of generality that all states of W are
accessible from startW under a string in {αi | 0 ≤ i ≤ 2}∗; inaccessible states
can be deleted with impunity. By Lemma 2, M and S are bisimilar.

For s ∈ QS , let bisim(s) ∈ QM be the unique state in M to which s is
bisimilar. The state bisim(s) is unique, otherwise by transitivity there would be
two bisimilar states of M , contradicting the fact that M is reduced. Also, since
startW ∈ QS, bisim(startW) exists and is equal to 0.

Let � = while c do r be a while loop in W of maximal depth, and let s0 =
entry� = exit�. Note that s0 is not necessarily in QS . Let s, t ∈ QS and α ∈ At

such that δ̂(s, α) = (pij , t), s is not in the body of �, and t is in the body of �.
It may be that s = s0, but not necessarily. The states s and t exist, otherwise
the body of � is inaccessible. By symmetry, we may assume without loss of
generality that i = 0 and j = 1. Thus bisim(s) = 0, bisim(t) = 1, α = α1, and
δ(s, α1) = δ(s0, α1) = (p01, t).

186 D. Kozen and W.-L.D. Tseng

Let σ be a maximum-length string of the form (α2α1)n or (α2α1)nα2 such
that the computation in W under σ starting from t does not meet s0. The string
σ exists, since � has no inner loops, so all sufficiently long computations will
loop back to s0. Let u = δ̂(t, σ). The string σ cannot be of the form (α2α1)nα2,
because then we would have bisim(u) = 2 and δ(u, α1) = δ(s0, α1) = (p21, w) for
some w, a contradiction. Thus σ is of the form (α2α1)n, and δ(s0, α2) = (p12, w)
for some w.

Suppose there is a state y in the body of � with bisim(y) ∈ {0, 2}. Consider
a maximum-length string of alternating α2 and α0 such that the computation
sequence under this string starting at y does not meet s0. The first atom of
the sequence is α2 if bisim(y) = 0 and α0 if bisim(y) = 2. As above, the last
state v of the sequence cannot be bisimilar to 0, because then we would have
δ(v, α2) = δ(s0, α2) = (p02, z) for some z, a contradiction. Thus we must have
δ(v, α0) = δ(s0, α0) = (p20, x) for some x.

Collecting information about � so far, we have

δ(s0, α0) = (p20, x), δ(s0, α1) = (p01, t), δ(s0, α2) = (p12, w).

But now if we start from t and follow a sufficiently long path of the form
(α0α2α1)∗, we will achieve a contradiction no matter what. Thus our assump-
tion that the body of � contains a state y with bisim(y) ∈ {0, 2} was fallacious.
The body of � contains only the state t ∈ QS with bisim(t) = 1, and x and
w are outside the body of �. The loop � is only entered under α1, after which
it performs the action p01 and immediately halts or exits the loop. Thus � is
equivalent to a conditional test.

By inductively replacing all maximally deeply nested while loops with equiv-
alent conditional tests in this way, we can eventually eliminate all while loops.
This is a contradiction. �	

Theorem 1 shows that the Böhm-Jacopini theorem is false propositionally. In Sec-
tion 5, a similar argument is used to prove the Kosaraju hierarchy theorem [4].

4 Loop Programs with Multi-level Breaks

As we saw in Section 3, while programs cannot express all programs represented
by strictly deterministic automata. On the other hand, if an automaton has
no cycles, then by duplicating states it can be converted to a tree, which is
equivalent to a program built from just the if-then-else construct.

Motivated by this idea, our construction will first construct an equivalent
tree-like automaton consisting of (downward-directed) tree transitions and (up-
ward-directed) back transitions, then convert the resulting tree-like automaton
to a loop program. This is done in three steps. The first step “unwinds” the
original automaton to an infinite tree. This is a fairly standard construction,
although we do it here with traces and bisimulations. The second step identifies

The Böhm–Jacopini Theorem Is False, Propositionally 187

states in the infinite tree with equivalent ancestors to obtain a finite tree-like
automaton. In both steps, there is a bisimulation that guarantees equivalence.
Finally, the tree-like automaton is converted to a loop program by using loop
and break n to effect the back transitions and halting.

The “unwinding” of an automaton M to an infinite tree is done formally as
follows. Let

U
def= (QU , δU , startU)

where

QU
def= {finite traces σ of M such that firstσ = startM},

δU (σ, α) def=

⎧⎪⎨⎪⎩
(p, σαt) if δM (lastσ, α) = (p, t)
halt if δM (lastσ, α) = halt

fail if δM (lastσ, α) = fail,

startU
def= startM .

Lemma 4. The relation {(σ, lastσ) | σ ∈ QU} is a bisimulation between U and
M . Thus by Lemma 1, GS(U) = GS(M).

A congruence on M is an equivalence relation ≡ that is an autobisimulation on
M . Property (ii) of bisimulations says that the action of δ is well defined on ≡-
congruence classes, thus we can form the quotient automaton M/≡ whose states
are the ≡-congruence classes. Denote the congruence class of state u by [u].

Lemma 5. The relation {(u, [u]) | u ∈ QM} is a bisimulation between M and
M/≡. Thus by Lemma 1, GS(M) = GS(M/≡).

We can now use this construction to form a tree-like automaton with finitely
many states equivalent to U . Here tree-like means that it has tree edges that
form a rooted tree, but also may contain back edges to ancestors.

Recall that the states of U are the finite traces of M starting with startM . For
σ, τ ∈ QU , set σ R τ iff

– all states of τ occur exactly once in τ except last τ , which occurs exactly
twice;

– σ is the unique proper prefix of τ such that lastσ = last τ .

Let ≡ be the smallest congruence containing R. That is, ≡ is the smallest binary
relation on QU such that

(i) ≡ contains R,
(ii) ≡ is an equivalence relation, and
(iii) if σ ≡ τ and δM (lastσ, α) = δM (last τ, α) = (p, v), then σαv ≡ ταv.

It can be shown inductively that lastσ = last τ whenever σ ≡ τ , so condition
(iii) makes sense. The quotient automaton U/ ≡ has finitely many states, at
most (|QM | − 1)! in fact, since each ≡-congruence class contains a unique trace

188 D. Kozen and W.-L.D. Tseng

[0]

[1] [2]

[2] [1]halt

α1p01 α2p02

c

α2p12

α0p10

d
α1p21

α0p20

e
α1p21

α0p20

e

α2p12

α0p10

d

Fig. 4. A tree-like automaton equivalent to the automaton of Fig. 3

with no repeated states beginning with startM . This trace is of minimal length
among all elements of its ≡-class. It can be obtained from any other element of
the class by repeatedly deleting the subtrace between the first recurring state
and its earlier occurrence.

We can view the states of U/ ≡ as arranged in a tree with root [startM],
tree edges to descendants, and back edges to ancestors. By Lemma 5, GS(U) =
GS(U/≡).

Now we can convert this automaton to a loop program as follows. Let C be
the set of traces of M with no repeated states beginning with startM . This is the
set of canonical representatives of the ≡-classes. Let α1, . . . , αm be the elements
of At. For each σ ∈ C, let Lσ be the following loop program:

loop {
if α1 then S1

else if α2 then S2

· · ·
else if αm then Sm

}

where

(i) if δM (lastσ, αi) = (p, t), then

Si =

⎧⎪⎨⎪⎩
p ; Lσαit if t does not occur in σ,

p if t = lastσ,

p ; break n if t occurs in σ but t �= lastσ,

where in the last case, n is the number of states occurring after t in σ;

The Böhm–Jacopini Theorem Is False, Propositionally 189

(ii) if δM (lastσ, αi) = halt, then Si = break n, where n is the number of states
in σ; and

(iii) if δM (lastσ, αi) = fail, then Si = loop skip.

The choice of n in the last case of (i) causes control to return to the top of Lτ ,
where τ is the unique prefix of σ such that last τ = t. This is tantamount to
taking the back edge from the node of the tree represented by σ to its ancestor
represented by τ . The choice of n in case (ii) causes the program to halt by
exiting the outermost loop Lstart.

Example 1. Fig. 4 shows a tree-like automaton equivalent to the automaton of
Fig. 3. (The central edges leading to halt are not considered part of the tree,
since halt is not a state of the automaton.) A corresponding loop program is
shown in Fig. 5. This is not exactly the program that would be produced by the
construction given above; we have removed the innermost loops to save space.

loop {
if a then break 1;

if b then {
p;
loop {

if a then break 2;

if b then { t; break 1; }
else {

s;
if a then break 2;

if b then { v; break 1; }
else w;

}
}

} else {
q;
loop {

if a then break 2;

if b then { v; break 1; }
else {

w;
if a then break 2;

if b then { t; break 1; }
else s;

}
}

}
}

Fig. 5. A loop program equivalent to the automaton of Fig. 4; we have removed the
innermost loops to save space

190 D. Kozen and W.-L.D. Tseng

5 The Loop Hierarchy

Now we give an alternative proof of the hierarchy result of Kosaraju [4], namely
that there is a strict hierarchy of loop programs determined by the depth of
nesting of loop instructions.

We construct an automaton Pn as follows. The states of Pn are all strings over
the alphabet {0, 1, . . . , n−1} with no repeated letters, including the empty string
ε. There are roughly n!e states. The atoms and actions are 0, 1, . . . , n − 1 and
E. The transition i appends i to the current string if it does not already occur,
or else truncates back to the prefix ending in i if it does occur. The transition E
erases the string. We also include an atom H such that δ(s,H) = halt for states
s of maximum length n and δ(s,H) = fail for the other states. This precludes
nontrivial autobisimulations.

An illustration of a depth-4 implementation of P7 is shown in Fig. 6. Each
box represents a loop instruction. Only four paths of the nested loop program
are shown; there are many others not shown. There is one top-level loop,

(
n
2

)
2!

second-level loops,
(
n
4

)
4! third-level loops within each second-level loop, etc.

At the entry point of each loop, there is a multiway branch depending on
the current atom. The resulting action is the same as the atom, and the new
state is the one whose last symbol is the action just performed (except for ε,
which is only obtained by E). Note that every prefix of every string occurs in
the same loop or an ancestor, therefore is accessible by a break instruction, and
every string obtained by appending one symbol is in the same loop or a child
loop.

For example, suppose the current state is 012. If we perform action 3, we
would enter the subloop below 012 containing 0123. If we perform action 4, we
would enter a parallel subloop not shown. If we perform action 1, we would loop
to the top of the current loop, execute the action 1, and enter state 01.

Theorem 2. The program Pn can be implemented in depth $n/2+1% and no less.

Proof. For the upper bound, Fig. 6 illustrates the pattern that achieves $n/2+1%.
For the lower bound, the proof is by induction on n. The idea is illustrated

in Fig. 6: note that all strings in the 01 subloop begin with 01, so it has the
same structure as the outer loop, but with two fewer letters. We actually prove
a stronger result, namely that the bound holds irrespective of which state is the
start state.

ε 0 1 2 3 4 5 6

01 012 013 014 015 016

0123 01234 01235 01236

012345 0123456 012346 0123465

02 021 023 024 025 026

0213 02134 02135 02136

021345 0213456 021346 0213465

Fig. 6. Automaton P7 implemented with a loop program of depth 4

The Böhm–Jacopini Theorem Is False, Propositionally 191

The basis for n = 0 and n = 1 is trivial, since there always must be at least
one loop. For n = 2, there are only three transitions but five states requiring
self-loops, so the depth must be at least two.

Now let n ≥ 3 and let W be any implementation of Pn. Let �0 be an outer
loop of W and s0 = entry�0 . There must be some pair i, j such that ij does not
appear as a prefix of any x for δ(s0, k) = (k, x). Say ij = 01 without loss of
generality.

Consider the subprogram �1 consisting of all states of W that are accessible
from 01 after deleting the transitions E and 0 (that is, setting them to fail). Since
all states of �1 have prefix 01, the entry point s0 of �0 is no longer accessible,
so the outer loop can be deleted. The represented automaton is isomorphic to
Pn−2. The transition 1 plays the role of E. By the induction hypothesis, it
must have depth at least $(n − 2)/2 + 1%, thus �0 must have depth at least
$(n− 2)/2 + 1% + 1 = $n/2 + 1%.

6 Conclusion and Open Problems

We have shown three results giving upper and lower bounds on the power of
various programming constructs to represent flowchart programs, modeled as
automata on guarded strings. On the one hand, the simple three-state automaton
in Section 3 cannot be represented by any while program. On the other hand, we
present a congruence in Section 4 that transforms any automaton into a tree-like
structure and show how a tree-like automaton can be turned into a loop program
with multi-level breaks. We also give an alternative proof of Kosaraju’s hierarchy
result for loop programs with multi-level breaks.

We did not give a formal proof of equivalence between the tree-like automaton
and its corresponding loop program with multi-level breaks constructed in Sec-
tion 4. However, it is possible to prove their equivalence formally. The break n
construct, and more generally the goto construct, although representing nonlocal
flow of control, can nevertheless be given a formal equational semantics in the
style of KAT. We have developed this semantics and an equational axiomatiza-
tion and have shown how to use it to give rigorous proofs of the correctness of
transformations like those of Section 4 [6].

One popular line of research has been to develop restructuring techniques
that minimize the amount of duplication of code [8,10]. The construction given
in Section 4 is as bad in this regard as it can possibly be: it transforms an
n-state automaton to an (n − 1)!-state tree-like automaton in the worst case.
Are there more efficient transformations at the propositional level? Or is this an
inescapable feature of the propositional formulation?

Acknowledgements

We would like to thank the reviewers for their helpful suggestions for improving
the presentation. This work was supported by NSF grant CCF-0635028 and a
NSF Graduate Research Fellowship.

192 D. Kozen and W.-L.D. Tseng

References

1. Ashcroft, E., Manna, Z.: The translation of goto programs into while programs. In:
Freiman, C.V., Griffith, J.E., Rosenfeld, J.L. (eds.) Proceedings of IFIP Congress
71, vol. 1, pp. 250–255. North-Holland, Amsterdam (1972)

2. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only
two formation rules. In: Communications of the ACM, pp. 366–371 (May 1966)

3. Kaplan, D.M.: Regular expressions and the equivalence of programs. J. Comput.
Syst. Sci. 3, 361–386 (1969)

4. Kosaraju, S.R.: Analysis of structured programs. In: Proc. 5th ACM Symp. Theory
of Computing (STOC 1973), pp. 240–252. ACM, New York (1973)

5. Kozen, D.: Automata on guarded strings and applications. Matématica Contem-
porânea 24, 117–139 (2003)

6. Kozen, D.: Nonlocal flow of control and Kleene algebra with tests. Technical Re-
port http://hdl.handle.net/1813/10595 Computing and Information Science, Cor-
nell University (April 2008); Proc. 23rd IEEE Symp. Logic in Computer Science
(LICS 2008) (to appear, June 2008)

7. Morris, P.H., Gray, R.A., Filman, R.E.: Goto removal based on regular expressions.
J. Software Maintenance: Research and Practice 9(1), 47–66 (1997)

8. Oulsnam, G.: Unraveling unstructured programs. The Computer Journal 25(3),
379–387 (1982)

9. Peterson, W., Kasami, T., Tokura, N.: On the capabilities of while, repeat, and
exit statements. Comm. Assoc. Comput. Mach. 16(8), 503–512 (1973)

10. Ramshaw, L.: Eliminating goto’s while preserving program structure. Journal of
the ACM 35(4), 893–920 (1988)

11. Williams, M., Ossher, H.: Conversion of unstructured flow diagrams into structured
form. The Computer Journal 21(2), 161–167 (1978)

The Expression Lemma�

Ralf Lämmel1 and Ondrej Rypacek2

1 The University of Koblenz-Landau, Germany
2 The University of Nottingham, UK

Abstract. Algebraic data types and catamorphisms (folds) play a central role
in functional programming as they allow programmers to define recursive data
structures and operations on them uniformly by structural recursion. Likewise,
in object-oriented (OO) programming, recursive hierarchies of object types with
virtual methods play a central role for the same reason. There is a semantical
correspondence between these two situations which we reveal and formalize cat-
egorically. To this end, we assume a coalgebraic model of OO programming with
functional objects. The development may be helpful in deriving refactorings that
turn sufficiently disciplined functional programs into OO programs of a desig-
nated shape and vice versa.

Keywords: expression lemma, expression problem, functional object, catamor-
phism, fold, the composite design pattern, program calculation, distributive law,
free monad, cofree comonad.

1 Introduction

There is a folk theorem that goes as follows. Given is a recursively defined data struc-
ture with variants d1, . . . , dq , and operations o1, . . . , or that are defined by structural
recursion on the data variants. There are two equivalent implementations. In the func-
tional style, we define recursive functions f1, . . . , fr such that each fi implements oi

and is defined by q equations, one equation for each dj . In the object-oriented (OO)
style, we define object types t1, . . . , tq such that each tj uses dj as its opaque state
type, and it implements a common interface consisting of methods m1, . . . , mr with
the types of f1, . . . , fr, except that the position of structural recursion is mapped to
“self” (say, “this”). The per-variant equations of the functional style correspond to the
per-variant method implementations of the OO style. Refer to Fig. 1 for a Haskell and
a Java program that are related in the described manner.

This folk theorem is related to the so-called expression problem [28], which focuses
on the extensibility trade-offs of the different programming styles, and aims at improved
language designs with the best possible extensibility for all possible scenarios. Such a
comparison of styles can definitely benefit from an understanding of the semantical cor-
respondence between the styles, which is indeed the overall contribution of the present
paper. We coin the term expression lemma to refer to the sketched functional/OO cor-
respondence. We do not discuss the expression problem any further in this paper, but

� See http://www.uni-koblenz.de/˜laemmel/expression/ (the paper’s web
site) for an extended version.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 193–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

194 R. Lämmel and O. Rypacek

−− Arithmetic expression forms
data Expr = Num Int |Add Expr Expr

−− Evaluate expressions
eval :: Expr → Int
eval (Num i) = i
eval (Add l r) = eval l + eval r

−− Modify literals modulo v
modn :: Expr → Int → Expr
modn (Num i) v = Num (i ‘mod‘ v)
modn (Add l r) v = Add (modn l v) (modn r v)

public abstract class Expr {
public abstract int eval ();
public abstract void modn(int v);

}

public class Num extends Expr {
private int value;
public Num(int value) { this.value = value; }
public int eval () { return value; }
public void modn(int v) { this.value = this.value % v; }

}

public class Add extends Expr {
private Expr left , right ;
public Add(Expr left, Expr right) { this . left = left ; this . right = right ; }
public int eval () { return left .eval () + right .eval (); }
public void modn(int v) { left .modn(v); right .modn(v); }

}

Fig. 1. A Haskell program and a Java program; the two programs define the same kind of struc-
turally recursive operations on the same kind of recursive data structure

we contend that the expression lemma backs up past and future work on the expression
problem. It is also assumed that the lemma contributes to the foundation that is needed
for future work on refactorings between the aforementioned styles, e.g., in the context
of making imperative OO programs more pure, more functional, or more parallelizable.

Contributions

The paper provides a technical formulation of the expression lemma, in fact, the first
such formulation, as far as we know. The formulation is based on comparing functional
programs (in particular, folds) with coalgebraically modeled OO programs. We provide
first ever, be it partial answers to the following questions:

– When is a functional program that is defined by recursive functions on an algebraic
data type semantically equivalent to an OO program that is defined by recursive
methods on object structures?

– What is the underlying common definition of the two programs?

The formal development is done categorically, and essentially relies on the established
concept of distributive laws of a functor over a functor and (co)monadic generalizations

The Expression Lemma 195

thereof. A class of pairs of functional and OO programs that are duals of each other is
thus revealed and formalized. This makes an important contribution to the formal under-
standing of the semantical equivalence of functional and OO programming. Nontrivial
facets of dualizable programs are identified — including facets for the freewheeling use
of term construction (say, object construction) and recursive function application (say,
method invocation).1

Road-Map

The paper is organized as follows. § 2 sketches (a simple version of) the expression
lemma and its proof. § 3 approaches the expression lemma categorically. § 4 interprets
the basic formal development, and suggests extensions to cover a larger class of dual-
izable programs. § 5 formalizes the proposed extensions. § 6 discusses related work. § 7
concludes the paper.

2 Informal Development

In order to clarify the correspondence between the functional and the OO style, we need
a setup that admits the comparison of both kinds of programs. In particular, we must
introduce a suitable formalism for objects. We adopt the coalgebraic view of functional
objects, where object interfaces are modeled as interface endofunctors, and implemen-
tations are modeled as coalgebras of these functors. We will explain the essential con-
cepts here, but refer to [14, 22] for a proper introduction to the subject, and to [21] for
a type-theoretical view. In the present section, we illustrate the coalgebraic model in
Haskell, while the next section adopts a more rigorous, categorical approach.

2.1 Interfaces and Coalgebras

The following type constructor models the interface of the base class Expr of Fig. 1:

type IExprF x = (Int , Int → x)

Here, x is the type parameter for the object type that implements the interface; the first
projection corresponds to the observer eval (and hence its type is Int); the second pro-
jection corresponds to the modifier modn (and hence its type is Int→x, i.e., the method
takes an Int and returns a new object of the same type x). We also need a type that
hides the precise object type — in particular, its state representation; this type would
effectively be used as a bound for all objects that implement the interface. To this end,
we may use the recursive closure of IExprF:

newtype IExpr = InIExpr { outIExpr :: IExprF IExpr }

Method calls boil down to the following convenience projections:

call eval = fst . outIExpr
call modn = snd . outIExpr

1 The paper comes with a source distribution that contains a superset of all illustrations in the
paper as well as a Haskell library that can be used to code dualizable programs. Refer to the
paper’s web site.

196 R. Lämmel and O. Rypacek

−− eval function for literals
numEval :: Int → Int
numEval = id

−− modn function for literals
numModn :: Int → Int
numModn = mod

−− eval function for additions
addEval :: (Int , Int) → Int
addEval = uncurry (+)

−− modn function for addition
addModn :: (Int→a,Int→a)→Int→(a,a)
addModn = uncurry (/\)

Fig. 2. Component functions of the motivating example

Implementations of the interface are coalgebras of the IExprF functor. Thus, the type
of IExprF implementations is the following:

type IExprCoalg x = x → IExprF x

Here are the straightforward implementations for the Expr hierarchy:

numCoalg :: IExprCoalg Int
numCoalg = numEval /\ numModn

addCoalg :: IExprCoalg (IExpr, IExpr)
addCoalg = (addEval . (call eval <∗> call eval)) /\

(addModn . (call modn <∗> call modn))

For clarity (and reuse), we have factored out the actual functionality per function and
data variant into helper functions numEval, addEval, numModn, and addModn; c.f.
Fig. 2.2 Note that the remaining polymorphism of addModn is essential to maintain
enough naturality needed for our construction.

The above types clarify that the implementation for literals uses int as the state
type, whereas the implementation for additions uses (IExpr, IExpr) as the state type.
Just as the original Java code invoked methods on the components stored in left and
right , the coalgebraic code applies the corresponding projections of the IExpr-typed
values call eval and call modn. It is important to keep in mind that IExpr-typed values
are effectively functional objects, i.e., they return a “modified (copy of) self”, when
mutations are to be modeled.

2.2 Object Construction by Unfolding

Given a coalgebra x −→ f x for some fixed f and x, we can unfold a value of type x
to the type of the fixed point of f . The corresponding well-known recursion scheme of
anamorphisms [19] is instantiated for IExpr as follows:

2 We use point-free (pointless) notation (also known as Backus’ functional forms) throughout
the paper to ease the categorical development. In particular, we use these folklore operations:
f <*> g maps the two argument functions over the components of a pair; f /\ g constructs
a pair by applying the two argument functions to the same input; f <|> g maps over a sum
with an argument function for each case; f \/ g performs case discrimination on a sum with
an argument function for each case. Refer to Fig. 3 for a summary of the operations.

The Expression Lemma 197

(<∗>) :: (a → b) → (c → d) → (a,c) → (b,d)
(f <∗> g) (x, y) = (f x, g y)

(/\) :: (a → b) → (a → c) → a → (b,c)
(f /\ g) x = (f x, g x)

(<|>) :: (a → b) → (c → d) → Either a c → Either b d
(f <|> g) (Left x) = Left (f x)
(f <|> g) (Right y) = Right (g y)

(\/) :: (a → c) → (b → c) → Either a b → c
(f \/ g) (Left x) = f x
(f \/ g) (Right y) = g y

Fig. 3. Folklore operations on sums and products

unfoldIExpr :: IExprCoalg x → x → IExpr
unfoldIExpr c = InIExpr . fmapIExprF (unfoldIExpr c) . c

where
fmapIExprF :: (x → y) → IExprF x → IExprF y
fmapIExprF f = id <∗> (.) f

That is, IExprF x is injected into IExpr by recursively unfolding all occurrences of x by
means of the functorial map operation, fmapIExprF. The type parameter x occurs in the
positions where “a modified (copy of) self” is returned. In OO terms, applications of
unfoldIExpr are to be viewed as constructor methods:

newNum :: Int → IExpr
newNum = unfoldIExpr numCoalg

newAdd :: (IExpr, IExpr) → IExpr
newAdd = unfoldIExpr addCoalg

This completes the transcription of the Java code of Fig. 1 to the coalgebraic setup.

2.3 Converting State Trees to Object Trees

In establishing a semantical correspondence between functional and OO programs, we
can exploit the following property: the functional style is based on recursion into terms
whose structure coincides with the states of the objects. Hence, let us try to convert
such trees of states of objects (state trees) into trees of objects (object trees). We will
then need to compare the semantics of the resulting objects with the semantics of the
functional program.

In the introduction, we defined the data type Expr as an algebraic data type; for the
sake of a more basic notation, we define it here as the fixed point of a “sum-of-products”
functor ExprF equipped with convenience injections num and add — reminiscent of the
algebraic data-type constructors of the richer notation. Thus:

type ExprF x = Either Int (x,x)
newtype Expr = InExpr { outExpr :: ExprF Expr }

198 R. Lämmel and O. Rypacek

num = InExpr . Left
add = InExpr . Right

The objects we construct have internal state either of type Int or of type (IExpr,IExpr).
The corresponding sum, Either Int (IExpr,IExpr), coincides with ExprF IExpr, i.e., the
mere state trees resemble the term structure in the functional program. We have de-
fined coalgebras numCoalg and addCoalg for each type of state. We can also define a
coalgebra for the union type ExprF IExpr:

eitherCoalg :: IExprCoalg (ExprF IExpr)
eitherCoalg = ((id <∗> (.) Left) \/ (id <∗> (.) Right)) .

(numCoalg <|> addCoalg)

The coalgebra eitherCoalg may be viewed as an implementation of an object type that
physically uses a sum of the earlier state types. Alternatively, we may view the coalge-
bra as an object factory (in the sense of the abstract factory design pattern [10]). That
is, we may use it as a means to construct objects of either type.

newEither :: ExprF IExpr → IExpr
newEither = unfoldIExpr eitherCoalg

It is important to understand the meaning of ExprF IExpr: the type describes states of
objects, where the state representation is only exposed at the top-level, but all deeper
objects are already opaque and properly annotated with behavior. While newEither fa-
cilitates one level of object construction, we ultimately seek the recursive closure of this
concept. That is, we seek to convert a pure state tree to a proper object tree. It turns out
that the fold operation for Expr immediately serves this purpose.

In general, the fold operation for a given sums-of-products functor is parametrized
by an algebra that associates each addend of the functor’s sum with a function that
combines recursively processed components and other components. For instance, the
algebra type for expressions is the following:

type ExprAlg x = ExprF x →x

Given an algebra f x −→ x for some fixed f and x, we can fold a value of the type
of the fixed point of f to a value of type x. The corresponding well-known recursion
scheme of catamorphisms is instantiated for Expr as follows:

foldExpr :: ExprAlg x → Expr → x
foldExpr a = a . fmapExprF (foldExpr a) . outExpr

where
fmapExprF :: (x → y) → ExprF x →ExprF y
fmapExprF f = id <|> (f <∗> f)

We should simplify the earlier type for newEither as follows:

newEither :: ExprAlg IExpr

Hence, we can fold over state trees to obtain object trees.

−− Fold the unfold
fu :: Expr → IExpr
fu = foldExpr newEither

The Expression Lemma 199

2.4 Implementing Interfaces by Folds over State Trees

It remains to compare the semantics of the constructed objects with the semantics of
the corresponding functional program. To this end, we also model the construction of
objects whose object type corresponds to an abstract data type (ADT) that exports the
functions of the functional program as its operations.

The initial definitions of the functions eval and modn used general recursion. Our
development relies on the fact that the functions are catamorphisms (subject to further
restrictions). Here are the new definitions; subject to certain preconditions, programs
that use general recursion can be automatically converted to programs that use the cata-
morphic scheme [11, 17]:

evalAlg :: ExprAlg Int
evalAlg = numEval \/ addEval

eval :: Expr → Int
eval = foldExpr evalAlg

modnAlg :: ExprAlg (Int → Expr)
modnAlg = ((.) num . numModn) \/ ((.) add . addModn)

modn :: Expr → Int → Expr
modn = foldExpr modnAlg

Just like objects combine behavior for all operations in their interfaces, we may want to
tuple the folds, such that all recursions are performed simultaneously. That is, the result
type of the paired fold is the product of the result types of the separated folds. Again
such pairing (tupling) is a well-understood technique [5, 9, 12, 19] that can also be used
in an automated transformation. Thus:

bothAlg :: ExprAlg (IExprF Expr)
bothAlg = (evalAlg <∗> modnAlg) . ((id <|> (fst <∗> fst)) /\

(id <|> (snd <∗> snd)))

both :: IExprCoalg Expr
both = foldExpr bothAlg

That is, both does both, eval and modn. Now we can construct objects whose behavior
is immediately defined in terms of both (hence, essentially, in terms of the original
functions eval and modn). To this end, it is sufficient to realize that both readily fits as a
coalgebra, as evident from its type:

Expr → (Int , Int → Expr) ≡ Expr → IExprF Expr ≡ IExprCoalg Expr

Thus, we can construct objects (ADTs, in fact) as follows:

−− Unfold the fold
uf :: Expr → IExpr
uf = unfoldIExpr both

That is, we have encapsulated the functional folds with an argument term such that the
resulting interface admits the applications of the functional folds to the term.

200 R. Lämmel and O. Rypacek

2.5 The Expression Lemma

Let us assume that we were able to prove the following identity:

foldExpr (unfoldIExpr eitherCoalg) = unfoldIExpr (foldExpr bothAlg)

We refer to the generic form of this identity as the expression lemma; c.f. § 3.4. Roughly,
the claim means that objects that were constructed from plain state trees, level by level,
behave the same as shallow objects that act as abstract data types with the functional
folds as operations. Hence, this would define a proper correspondence between anamor-
phically (and coalgebraically) phrased OO programs and catamorphically phrased func-
tional programs. § 3 formalizes this intuition and proves its validity.

The formal development will exploit a number of basic categorical tools, but a key
insight is that the defining coalgebra of the OO program (i.e., eitherCoalg) and the
defining algebra of the functional program (i.e., bothAlg) essentially involve the same
function (in fact, a natural transformation). To see this, consider the expanded types of
the (co)algebras in question:

eitherCoalg :: ExprF IExpr→ IExprF (ExprF IExpr)
bothAlg :: ExprF (IExprF Expr)→ IExprF Expr

The types differ in the sense that eitherCoalg uses the recursive closure IExpr in one po-
sition where bothAlg uses an application of the functor IExprF instead, and bothAlg uses
the recursive closure Expr in another position where eitherCoalg uses an application of
the functor ExprF instead. Assuming a natural transformation lambda, both functions
can be defined as follows:

eitherCoalg = lambda . fmapExprF outIExpr
bothAlg = fmapIExprF InExpr . lambda
lambda :: ExprF (IExprF x) → IExprF (ExprF x)
lambda = ???

Note that naturality of lambda is essential here. It turns out that we can define lambda in
a “disjunctive normal form” over the same ingredients that we also used in the original
definitions of eitherCoalg and bothAlg:

lambda = (numEval /\ ((.) Left . numModn)) \/ ((addEval . (fst <∗> fst)) /\
((.) Right . addModn . (snd <∗> snd)))

It is straightforward to see that eitherCoalg and bothAlg as redefined above equate to the
original definitions of eitherCoalg and bothAlg based on just trivial laws for sums and
products. We have thus factored out a common core, a distributive law, lambda, from
which both programs can be canonically defined.

3 The Basic Categorical Model

The intuitions of the previous section will now be formalized categorically. The used
categorical tools are established in the field of functional programming theory. The con-
tribution of the section lies in leveraging these known tools for the expression lemma.

The Expression Lemma 201

3.1 Interface Functors

Definition 1. An interface functor (or simply interface) is a polynomial endofunctor on
a category 3 C of the form

O × M with O =
∏
i∈I

ABi

i and M =
∏
j∈J

(Cj × Id)Dj

where
∏

denotes iterated product, all As , Bs , Cs and Ds are constant functors, Id is
the identity functor and all products and exponents are lifted to functors. I and J are
finite sets.

Note that here and in the rest of the text we use the exponential notation for the function
space as usual. Informally, O collects all “methods” that do not use the type of “self”
in their results, as it is the case for observers; M collects all “methods” that return a
“mutated (copy of) self” (c.f. the use of “Id”), and possibly additional data (c.f. the Cs).

Example 1. IExprF is an interface functor.

IExprF = Int × IdInt ∼= Int1 × (1 × Id)Int

3.2 F -(co)Algebras and Their Morphisms

Definition 2. Let F be an endofunctor on a category C, A, B objects in C.

– An F -algebra is an arrow F A −→ A. Here A is called the carrier of the algebra.
– For F -algebras ϕ : F A −→ A and ψ : F B −→ B, an F -algebra morphism

from ϕ to ψ is an arrow f : A −→ B of C such that the following holds:

f ◦ ϕ = ψ ◦ Ff (1)

– F -algebras and F -algebra morphisms form a category denoted CF . The initial
object in this category, if it exists, is the initial F -algebra. Explicitly, it is an F -
algebra, inF : F μF −→ μF , such that for any other F -algebra, ϕ : F A −→ A,
there exists a unique F -algebra morphism (|ϕ |)F from inF to ϕ. Equivalently:

h = (|ϕ |)F ⇔ h ◦ inF = ϕ ◦ Fh (2)

– The duals of the above notions are F -coalgebra, F -coalgebra morphism and the
terminal F -coalgebra. Explicitly, an F -coalgebra is an arrow ϕ : A −→ FA in C.
The category of F -coalgebras is denoted CF . The terminal F -coalgebra is denoted
outF : νF −→ FνF , and the unique terminal F -coalgebra morphism from ϕ is
denoted [(ϕ)]F : A −→ νF . These satisfy the following duals of (1) and (2).

ψ ◦ g = Fg ◦ ϕ (3)

h = [(ϕ)]F ⇔ outF ◦ h = Fh ◦ ϕ (4)

3 For simplicity, in this paper, we assume a category C with enough structure to support our
constructions. The category SET is always a safe choice.

202 R. Lämmel and O. Rypacek

Example 2. (Again, we relate to the Haskell declarations of § 2.) ExprF is an endo-
functor; μExprF corresponds to type Expr; evalAlg and modnAlg are ExprF-algebras.
The combinator (| |)ExprF corresponds to foldExpr. Likewise, IExprF is an endofunctor;
νIExprF corresponds to IExpr; numCoalg and addCoalg are IExprF-coalgebras. The
combinator [()]IExprF corresponds to unfoldIExpr.

3.3 Simple Distributive Laws

Our approach to proving the correspondence between OO and functional programs crit-
ically relies on distributive laws as a means to relate algebras and coalgebras. In the
present section, we only introduce the simplest form of distributive laws.

Definition 3. A distributive law of a functor F over a functor B is a natural transfor-
mation FB −→ BF .

Example 3. Trivial examples of distributive laws are algebras and coalgebras. That is,
any coalgebra X −→ BX is a distributive law where F in Def. 3 is fixed to be a
constant functor. Dually, any algebra FX −→ X is a distributive law where B in
Def. 3 is fixed to be a constant functor. This fact is convenient in composing algebras
and coalgebras (and distributive laws), as we will see shortly.

Example 4. Here are examples of nontrivial distributive laws:4

addModn : Id2 IdInt −→ IdInt Id2

lambda : ExprF IExprF −→ IExprF ExprF

Distributive laws can be combined in various ways, e.g., by ⊕ and ⊗ defined as follows:

Definition 4. Let λi : FiB −→ BFi, i ∈ {1, 2} be distributive laws.
Then we define a distributive law:

λ1 ⊕ λ2 : (F1 + F2)B −→ B(F1 + F2)
λ1 ⊕ λ2 ≡ (Bι1 �Bι2) ◦ (λ1 + λ2)

Here, f � g is the cotuple of f and g with injections ι1 and ι2, that is the unique arrow
such that (f � g) ◦ ι1 = f and (f � g) ◦ ι2 = g.

Definition 5. Let λi : FBi −→ BiF, i ∈ {1, 2} be distributive laws.
Then we define a distributive law:

λ1 ⊗ λ2 : F (B1 × B2) −→ (B1 × B2)F
λ1 ⊗ λ2 ≡ (λ1 × λ2) ◦ (Fπ1 � Fπ2)

Here, f � g is the tuple of f and g with projections π1 and π2, that is the unique arrow
such that π1 ◦ (f � g) = f and π2 ◦ (f � g) = g.

We assume the usual convention that ⊗ binds stronger than ⊕.

4 Note that we use just juxtaposition for functor composition. Confusion with application is not
an issue because application can be always considered as composition with a constant functor.
Also note that F 2 ∼= F × F in a bicartesian closed category.

The Expression Lemma 203

Example 5. As algebras and coalgebras are distributive laws, ⊕ and ⊗ readily spe-
cialize to combinators on algebras and coalgebras, as in bothAlg or eitherCoalg. A
nontrivial example of a combination of distributive laws is lambda:

lambda = numEval⊗ numModn ⊕ addEval ⊗ addModn (5)

The following lemma states a basic algebraic property of ⊕ and ⊗.

Lemma 1. Let λi,j : Fi,jBi,j −→ Bi,jFi,j , i, j ∈ {1, 2} be distributive laws. Then:

(λ1,1 ⊗ λ2,1) ⊕ (λ1,2 ⊗ λ2,2) = (λ1,1 ⊕ λ1,2) ⊗ (λ2,1 ⊕ λ2,2)

Proof. By elementary properties of tuples and cotuples, in particular, by the following
law (called the “abides law” in [19]):

(f � g)� (h � i) = (f �h) � (g� i) �	

Example 6. By the above lemma (compare with (5)):

lambda = (numEval ⊕ addEval) ⊗ (numModn ⊕ addModn) (6)

Examples 5 and 6 illustrate the duality between the functional and OO approaches to
program decomposition. In functional programming, different cases of the same func-
tion, each for a different component of the top-level disjoint union of an algebraic data
type, are cotupled by case distinction (c.f. occurrences of ⊕ in (6)). In contrast, in OO
programming, functions on the same data are tupled into object types (c.f. occurrences
of ⊗ in (5)).

3.4 The Simple Expression Lemma

We have shown that we may extract a natural transformation from the algebra of a
functional fold that can be reused in the coalgebra of an unfold for object construction. It
remains to be shown that the functional fold and the OO unfold are indeed semantically
equivalent in such a case.

Given a distributive law λ : FB −→ BF , one can define an arrow μF −→ νB by the
following derivation:

λνB ◦ FoutB : FνB −→ BFνB (7)

[(λνB ◦ FoutB)]B : FνB −→ νB (8)

(| [(λνB ◦ FoutB)]B |)F : μF −→ νB (9)

An example of (7) is eitherCoalg in § 2.5.
Dually, the following also defines an arrow μF −→ νB:

BinF ◦ λμF : FBμF −→ BμF (10)

(|BinF ◦ λμF |)F : μF −→ BμF (11)

[((|BinF ◦ λμF |)F)]B : μF −→ νB (12)

An example is bothAlg in § 2.5.

204 R. Lämmel and O. Rypacek

The following theorem shows that (12) is equal to (9) and thus, as discussed in § 2.5,
establishes a formal correspondence between anamorphically phrased OO programs
and catamorphically phrased functional programs.

Theorem 1 (“Simple expression lemma”). Let outB be the terminal B-coalgebra and
inF be the initial F -algebra. Let λ : FB −→ BF . Then

(| [(λνB ◦ FoutB)]B |)F = [((|BinF ◦ λμF |)F)]B

Proof. We show that the right-hand side, [((|BinF ◦ λμF |)F)]B , satisfies the universal
property of the left-hand side; c.f. (2):

[(λνB ◦FoutB)]B ◦F [((|BinF ◦ λμF |)F)]B = [((|BinF ◦λμF |)F)]B ◦ inF (13)

The calculation is straightforward by a two-fold application of the following rule, called
“AnaFusion” in [19]:

[(ϕ)]B ◦ f = [(ψ)]B ⇐ ϕ ◦ f = Bf ◦ ψ (14)

The premise of the rule is precisely the statement that f is a B-coalgebra morphism
to ϕ from ψ. The proof is immediate by compositionality of coalgebra morphisms and
uniqueness of the universal arrow. Using this rule we proceed as follows:

[(λ ◦ FoutB)]B ◦ F [((|BinF ◦ λ |)F)]B

= { By (14) and the following:

λ ◦ FoutB ◦ F [((|BinF ◦ λ |)F)]B

= { functor composition }

λ ◦ F (outB ◦ [((|BinF ◦ λ |)F)]B)

= { [(. . .)]B is a coalgebra morphism }

λ ◦ F (B[((|BinF ◦ λ |)F)]B ◦ (|BinF ◦ λ |)F)

= { λ is natural }

(BF [((|BinF ◦ λ |)F)]B) ◦ λ ◦ F (|BinF ◦ λ |)F }

[(λ ◦ F (|BinF ◦ λ |)F)]B

= { By (14) and the following fact:

(|BinF ◦ λ |)F ◦ inF

= { (| . . . |)F is a F -algebra morphism }

BinF ◦ λ ◦ F (|BinF ◦ λ |)F }

[((|BinF ◦ λ |)F)]B ◦ inF �	

The Expression Lemma 205

4 Classes of Dualizable Folds

The present section illustrates important classes of folds that are covered by the formal
development of this paper (including the elaboration to be expected from § 5). For each
class of folds, we introduce a variation on the plain fold operation so that the charac-
teristics of the class are better captured. The first argument of a varied fold operation is
not a fold algebra formally; it is rather used for composing a proper fold algebra, which
is to be passed to the plain fold operation.

4.1 Void Folds

Consider again the Java rendering of the modn function:5

public abstract void Expr.modn(int v); //Modify literals modulo v
public void Num.modn(int v) { this.value = this.value % v; }
public void Add.modn(int v) { left .modn(v); right .modn(v); }

That is, the modn method needs to mutate the value fields of all Num objects, but no
other changes are needed. Hence, the imperative OO style suggests to defer to a method
without a proper result type, i.e., a void method. In the reading of functional objects, a
void method has a result type that is equal to the type parameter of the interface functor.
There is a restricted fold operation that captures the idea of voidity in a functional setup:

type VExprArg x =
(Int → x → Int ,
(x → Expr, x → Expr) → x → (Expr, Expr))

vFoldExpr :: VExprArg x →Expr → x → Expr
vFoldExpr a = foldExpr (((.) num . fst a) \/ ((.) add . snd a))

The void fold operation takes a product — one type-preserving function for each data
variant. The type parameter x enables void folds with extra arguments. For instance,
the modn function can be phrased as a void fold with an argument of type Int :

modn :: Expr → Int → Expr
modn = vFoldExpr (numModn, addModn)

Rewriting a general fold to a void fold requires nothing more than factoring the general
fold algebra so that it follows the one that is composed in the vFoldExpr function above.
That is, for each constructor, its case preserves the constructor. A void fold must also
be sufficiently natural in order to be dualizable; c.f. the next subsection.

4.2 Natural Folds

Consider again the type of the fold algebra for the modn function as introduced in § 2.4:

modnAlg :: ExprAlg (Int → Expr)
≡ modnAlg :: ExprF (Int → Expr) → (Int → Expr)

5 We use a concise OO notation such that the hosting class of an instance method is simply
shown as a qualifier of the method name when giving its signature and implementation.

206 R. Lämmel and O. Rypacek

The type admits observation of the precise structure of intermediate results; c.f. the
occurrences of Expr. This capability would correspond to unlimited introspection in
OO programming (including “instance of” checks and casts). The formal development
requires that the algebra must be amenable to factoring as follows:

modnAlg = fmapIExprF InExpr . lambda
where
lambda :: ExprF (Int → x) → Int → ExprF x
lambda = ...

That is, the algebra is only allowed to observe one layer of functorial structure. In fact,
it is easy to see that the actual definition of modnAlg suffices with this restriction. We
may want to express that a fold is readily in a “natural form”. To this end, we may use
a varied fold operation whose argument type is accordingly parametric:6

type NExprArg x = forall y. ExprF (x → y) → x → ExprF y
nExpr :: NExprArg x →Expr →x → Expr
nExpr a = foldExpr ((.) InExpr . a)

It is clear that the type parameter x is used at the type Expr, but universal quantification
rules out any exploitation of this fact, thereby enabling the factoring that is required by
the formal development. For completeness’ sake, we also provide a voidity-enforcing
variation; it removes the liberty of replacing the outermost constructor:

type VnExprArg x = forall y. (Int→x→Int ,(x→y,x→y)→x→(y,y))
vnExpr :: VnExprArg x →Expr →x → Expr
vnExpr a = foldExpr ((.) InExpr . (((.) Left . fst a) \/ ((.) Right . snd a)))

The modn function is a void, natural fold:

modn :: Expr → Int → Expr
modn = vnExpr (numModn, addModn)

The distributive law of the formal development, i.e., λ : FB −→ BF , is more general
than the kind of natural F -folds that we illustrated above. That is, λ is not limited to
type-preserving F -folds, but it uses the extra functor B to define the result type of the
F -fold in terms of F . This extra functor is sufficient to cover “constant folds” (such as
eval), “paramorphic folds” [18] (i.e., folds that also observe the unprocessed, immediate
components) and “tupled folds” (i.e., folds that were composed from separated folds by
means of tupling). The source distribution of the paper illustrates all these aspects.

4.3 Free Monadic Folds

The type of the natural folds considered so far implies that intermediate results are to
be combined in exactly one layer of functorial structure, c.f. the use of ExprF in the
result-type position of NExprArg. The formal development will waive this restriction in
§ 5. Let us motivate the corresponding generalization.

The generalized scheme of composing intermediate results is to arbitrarily nest con-
structor applications, including the base case of returning one recursive result, as is.

6 We use a popular Haskell 98 extension for rank-2 polymorphism; c.f. forall.

The Expression Lemma 207

Consider the following function that returns the leftmost expression; its Add case does
not replace the outermost constructor; instead, the outermost constructor is dropped:

leftmost :: Expr → Expr
leftmost (Num i) = Num i
leftmost (Add l r) = leftmost l

The function cannot be phrased as a natural fold. We can use a plain fold, though:

leftmost = foldExpr (num \/ fst)

The following OO counterpart is suggestive:

public abstract Expr Expr.leftmost();
public Expr Num.leftmost() { return this; }
public Expr Add.leftmost() { return left . leftmost (); }

Consider the following function for “exponential cloning”; it combines intermediate
results in a nest of constructor applications (while the leftmost function dropped off a
constructor):

explode :: Expr → Expr
explode x@(Num i) = Add x x
explode (Add l r) = clone (Add (explode l) (explode r))

where clone x = Add x x

Again, the function cannot be phrased as a natural fold. We can use a plain fold:

explode :: Expr → Expr
explode = fFoldExpr ((clone . freeNum) \/ (clone . freeAdd . (var <∗> var)))

where clone = freeAdd . (id /\ id)

The following OO counterpart uses the “functional” constructors for the object types.

public abstract Expr Expr.explode();
public Expr Num.explode() { return new Add(new Num(value),new Num(value)); }
public Expr Add.explode() {

return new Add(
new Add(left.explode(), right .explode()),
new Add(left.explode(), right .explode ()));

}

We need a generalized form of natural F -folds where the result of each case may be
either of type x, or of type F x, or of any type Fn x for n ≥ 2. The corresponding
union of types is modeled by the free type of F , i.e., the type of free terms (variable
terms) over F . This type is also known as the free monad. For instance, the free type of
expressions is defined as follows:

newtype FreeExpr x = InFreeExpr { outFreeExpr :: Either x (ExprF (FreeExpr x)) }

We also assume the following convenience injections:

var = InFreeExpr . Left
term = InFreeExpr . Right
freeNum = term . Left
freeAdd = term . Right

208 R. Lämmel and O. Rypacek

Natural folds are generalized as follows:

type FExprArg x = forall x. ExprF x → FreeExpr x
fFoldExpr :: FExprArg x →Expr → Expr
fFoldExpr a = foldExpr (collapse . a)

where
collapse :: FreeExpr Expr →Expr
collapse = (id \/ (leaf \/ (fork . (collapse <∗> collapse)))) . outFreeExpr

(For simplicity, we only consider folds without extra arguments here.) That is, we com-
pose together a fold algebra that first constructs free-type terms from intermediate re-
sults, and then collapses the free-type layers by conversion to the recursive closure of
the functor at hand. Term construction over the free type is to be dualized to object
construction. The two motivating examples can be expressed as “free” natural folds:

leftmost = fFoldExpr (freeNum \/ (var . fst))
explode = fFoldExpr ((clone . freeNum) \/ (clone . freeAdd . (var <∗> var)))

where clone = freeAdd . (id /\ id)

4.4 Cofree Comonadic Folds

The type of the natural folds considered so far implies that the algebra has access to the
results of applying the recursive function to immediate components exactly once. The
formal development will waive this restriction in § 5. Let us motivate the corresponding
generalization.

In general, we may want to apply the recursive function any number of times to each
immediate component. We may think of such expressiveness as an iteration capability.
Here is a very simple example of a function that increments twice on the left, and once
on the right:

leftist :: Expr → Expr
leftist (Num i) = Num (i+1)
leftist (Add l r) = Add (leftist (leftist l)) (leftist r)

Such iteration is also quite reasonable in OO programming:

public abstract void Expr. leftist ();
public void Num.leftist () { value++; }
public void Add. leftist () { left . leftist (); left . leftist (); right . leftist (); }

The simple example only involves a single recursive function, and hence, arbitrary rep-
etitions of that function can be modeled as a stream (i.e., a coinductive list). A desig-
nated, streaming-enabled fold operation, sFoldExpr, deploys a stream type as the result
type. The argument of such a fold operation can select among different numbers of
repetitions in the following style:

leftist :: Expr → Expr
leftist = sFoldExpr ((+1) <|> ((head . tail . tail) <∗> (head . tail)))

Here, head maps to “0 applications”, head . tail maps to “1 application”, head . tail .
tail maps to “2 applications”. The streaming-enabled fold operation composes together
a fold algebra that produces a stream of results at each level of folding. To this end, we
need the coinductive unfold operation for streams:

The Expression Lemma 209

type StreamCoalg x y = y →(x,y)
unfoldStream :: StreamCoalg x y →y → [x]
unfoldStream c = uncurry (:) . (id <∗> unfoldStream c) . c

The streaming-enabled fold operation is defined as follows:

type SExprArg = forall x. ExprF [x] → ExprF x
sFoldExpr :: SExprArg →Expr →Expr
sFoldExpr a = head . tail . foldExpr a’

where
a’ :: ExprF [Expr] → [Expr]
a’ = unfoldStream (hd /\ tl)
hd = InExpr . (id <|> (head <∗> head))
tl = a . (id <|> (iterate tail <∗> iterate tail))

The argument type of the operation, SExprArg, can be interpreted as follows: given a
stream of repetitions for each immediate component, construct a term with a selected
number of repetitions for each immediate component position. In fact, the selection of
the favored number of repetitions is done by cutting of only the disfavored prefix of the
stream (as opposed to actual selection, which would also cut off the postfix). Thereby,
iteration is enabled; each step of iteration further progresses on the given stream.

If we look closely, we see that the argument a :: SExprArg is not provided with a
flat stream of repetitions but rather a stream of streams of remaining repetitions; c.f.
the use of the standard function, iterate , for coinductive iteration. The type SExprArg
protects the nesting status of the stream by universal quantification, thereby avoiding
that the stream of remaining repetitions is manipulated in an undue manner such as by
reshuffling. For comparison, an unprotective type would be the following:

forall x. ExprF [[x]] → ExprF [x]

When multiple (mutually recursive) functions are considered, then we must turn from a
stream of repetitions to infinite trees of repeated applications; each branch corresponds
to the choice of a particular mutation or observation. This tree structure would be mod-
eled by a functor, reminiscent of an interface functor, and the stream type is generalized
to the cofree comonad over a functor.

5 The Categorical Model Continued

We will now extend the theory of § 3 in order to cater for the examples of § 4. In par-
ticular our notion of a dualizable program, which used to be a simple natural trans-
formation of type FB −→ BF , will be extended to more elaborate distributive laws
between a monad and a comonad [2, 25]. This extra structure provides the power needed
to cover functional folds that iterate term construction or recursive function applica-
tion. We show that all concepts from § 3 lift appropriately to (co)monads. We also
provide means to construct the generalized distributive laws from more manageable
natural transformations, which are the key to programming with the theory and justify
the examples of § 4. We eventually generalize the final theorem of § 3 about the se-
mantical correspondence between functions and objects. The used categorical tools are

210 R. Lämmel and O. Rypacek

relatively straightforward and well known; [1] is an excellent reference for this section.
We only claim originality in their adoption to the semantical correspondence problem
of the expression lemma.

5.1 ((Co)free) (Co)monads

We begin with a reminder of the established definitions of (co)monads.

Definition 6. Let C be a category. A monad on C is a triple 〈T, μ, η〉, where T is an
endofunctor on C, η : IdC −→ T and μ : T 2 −→ T are natural transformations
satisfying the following identities:

μ ◦ μT = μ ◦ Tμ (15)

μ ◦ ηT = id = μ ◦ Tη (16)

A comonad is defined dually as a triple 〈D, δ, ε〉 where δ : D −→ D2 and ε : D −→
IdC satisfy the duals of (15) and (16):

δD ◦ δ = Dδ ◦ δ (17)

εD ◦ δ = id = Dε ◦ δ (18)

To match § 4.3 and § 4.4, we need (co)free (co)monads.

Definition 7. Let F be an endofunctor on C. Let F †
X be the functor F †

X = X + F Id.
The free monad of the functor F is a functor TF that is defined as follows:

TF X = μF †
X

TF f = (| inF †
Y
◦ (f + id) |)F †

X
, for f : X −→ Y

We make the following definitions:

ηX = inF †
X
◦ ι1 : X −→ TF X

τX = inF †
X
◦ ι2 : FTF X −→ TF X

μX = (| idTF X � τX |)F †
TX

Now, η and μ are natural transformations, 〈TF , μ, η〉 is a monad.

Example 7. We can think of the type TF X as of the type of non-ground terms generated
by signature F with variables from X ; c.f. the Haskell data type FreeExpr in § 4.3. Then,
η makes a variable into a term (c.f. var); τ constructs a term from a constructor in F
applied to terms (c.f. term), μ is substitution (c.f.collapse, which is actually μ0; the type
collapse : ExprF Expr → Expr reflects the fact that TF 0 ∼= μF).

Cofree comonads are defined dually.

The Expression Lemma 211

Definition 8. Let B be an endofunctor on C, let B‡
X be the functor B‡

X = X × BId.
The cofree comonad of the functor B is a functor DB that is defined as follows:

DB X = νB‡
X

DB f = [((f × id) ◦ outB‡
X

)]B‡
Y

εX = π1 ◦ outB‡
X

: DB X −→ X

ξX = π2 ◦ outB‡
x

: DBX −→ BDBX

δX = [(idDBX � ξX)]B‡
DX

Example 8. Let us consider a special case: DId X . We can think of this type as the
stream of values of type X ; c.f. the coinductive use of the Haskell’s list-type constructor
in § 4.4. This use corresponds to the following cofree comonad:

Stream X = νY.X × Y = DId X

Here ε is head, ξ is tail, δ is tails : stream X → stream (stream X): the function
turning a stream into the stream of its tails, i.e. iterate tail. Also note that DB1 ∼= νB.

A note on free and non-free monads and comonads In the present paper, we deal exclu-
sively with free constructions (monads and comonads); free constructions have straight-
forward interpretations as programs. However part of the development, and Theorem 5
in particular, hold in general, and there are interesting examples of non-free construc-
tions arising for instance as quotients with respect to collections of equations.

5.2 (Co)monadic (Co)algebras and Their Morphisms

The notions of folds (and algebras) and unfolds (and coalgebras) lift to monads and
comonads. This status will eventually allows us to introduce distributive laws of monads
over comonads. We begin at the level of algebras. An algebra of a monad is an algebra of
the underlying functor of the monad, which respects the unit and multiplication. Thus:

Definition 9. Let C be a category, let 〈T, η, μ〉 be a monad on C. An T -algebra is an
arrow α : TX −→ X in C such that the following equations hold:

idX = α ◦ ηX (19)

α ◦ μX = α ◦ Tα (20)

A T -algebra morphism between T -algebras α : TA −→ A and β : TB −→ B is an
arrow f : A −→ B in C such that

f ◦ α = β ◦ Tf

The category of T -algebras for a monad7 T is denoted CT .

7 We are overloading the notation here as a monad is also a functor. The convention is that when
T is a monad, CT is the category of algebras of the monad.

212 R. Lämmel and O. Rypacek

The notion of the category of D-coalgebras, CD , for a comonad D is exactly dual.
We record the following important folklore fact about the relation of (co)algebras of
a functor and (co)algebras of its free (co)monad; it allows us to compare the present
(co)monadic theory to the simple theory of § 3.

Theorem 2. Let F and B be endofunctors on C. Then the category CF of F -algebras
is isomorphic to the category CTF of algebras of the free monad. And dually: the cat-
egory CB of B-coalgebras is isomorphic to CDB , the category of coalgebras of the
cofree comonad DB .

Proof. We show the two constructions: from CF to CTF and back. To this end, let
ϕ : FX −→ X be an F -algebra, then ϕ∗ = (| idX �ϕ |)F †

X
is a TF -algebra. (Read ϕ

with superscript ∗ as “lift ϕ freely”.) In the other direction, given a TF -algebra α, the
arrow α∗ = α◦τX◦FηX is an F -algebra. (Read α with subscript ∗ as “unlift α freely”.)
We omit the check that the two directions are inverse and that ϕ∗ is indeed a TF -algebra.
The dual claim follows by duality: for ψ : X −→ BX , ψ∝ = [(idX � ψ)]B‡

X
;

β∝ = BεX ◦ ξX ◦ β.

Example 9. Consider the functor ExprF. Then TExprF X is the type of expressions with
(formal) variables from X . For evalAlg ≡ id� (curry (+)) : Int + Int2 −→ Int,
evalAlg∗ : TExprF Int −→ Int recursively evaluates an expression where the variables
are integers. For eval′ : TExprF Int −→ Int that evaluates (“free”) expressions, one can
reproduce the function evalAlg ≡ eval′∗ by applying eval′ to trivial expressions, pro-
vided that eval′ is sufficiently uniform (in the sense of equations (19) and (20)).

Example 10. Remember that DId
∼= Stream. For an Id-coalgebra k : X −→ X , k∝ =

iterate : X −→ Stream X . And obviously, from a function itf : X −→ streamX
producing a stream of iterated results of a function, one can reproduce the original
function itf∝ by taking the second element of the stream.

The theorem, its proof, and the examples illustrate the key operational intuition about
algebras of free monads: any algebra of a free monad works essentially in an iterative
fashion. It is equivalent to the iteration of a plain algebra, which processes (deep) terms
by induction on their structure. If we consider a TF -algebra α : TF X −→ X as a
function reducing a tree with leaves from X into a single X , α∗ is the corresponding
one-layer function which prescribes how each layer of the tree is collapsed given an
operator and a collection of collapsed subtrees. This intuition is essential for building
an intuition about generalized distributive laws, which are to come shortly, and the
programs induced by them.

We continue lifting concepts from § 3.

Lemma 2. Let 0 be the initial object in C. Then μ0 is the initial T -algebra in CT .
Dually, δ1 is the terminal D-coalgebra in CD.

Proof. Omitted.

We can now lift the definitions of folds and unfolds.

The Expression Lemma 213

Definition 10. Let α be a T -algebra. Then (|α |)T denotes the unique arrow in C from
the initial T -algebra to α. Dually, for a D-coalgebra β and [(β)]D .

h = (|α |)TF ⇔ h ◦ μ0 = α ◦ Fh, and α is a T -algebra (21)

h = [(β)]F ⇔ δ1 ◦ h = Fh ◦ β, and β is a D-coalgebra (22)

5.3 Distributive Laws of Monads over Comonads

Distributive laws of monads over comonads, due to J. Beck [2], are liftings of the plain
distributive laws of § 3, which had a straightforward computational interpretation, to
monads and comonads. Again, they are natural transformations on the functors, but
they respect the additional structure of the monad and comonad in question.

The following is standard, here taken from [25].

Definition 11. Let 〈T, η, μ〉 be a monad and 〈D, ε, δ〉 be a comonad in a category C. A
distributive law of T over D is a natural transformation

Λ : TD −→ DT

satisfying the following:

Λ ◦ ηD = Dη (23)

Λ ◦ μD = Dμ ◦ ΛT ◦ TΛ (24)

εT ◦ Λ = Tε (25)

δT ◦ Λ = DΛ ◦ ΛD ◦ Tδ (26)

In the following, we relate “programming” to distributive laws, where we further em-
phasize the view that programs are represented as natural transformations. First, we
show that natural transformations with uses of monads and comonads give rise to dis-
tributive laws of monads over comonads; see the following theorem. In this manner, we
go beyond the simple natural transformations and distributive laws of § 3, and hence we
can dualize more programs.

Theorem 3 (Plotkin and Turi, 1997). Let F and B be endofunctors. Natural transfor-
mations of type

F (Id × B) −→ BTF (27)

or
FDB −→ B(Id + F) (28)

give rise to distributive laws Λ : TF DB −→ DBTF .

Proof. See [25]. �	

The theorem originated in the context of categorical operational semantics [25]; see the
related work discussion in § 6. However, the theorem directly applies to our situation
of “programming with natural transformations”. In the Haskell-based illustrations of
§ 4, we encountered such natural transformations as arguments of the enhanced fold

214 R. Lämmel and O. Rypacek

operations. We did not exhaust the full generality of the typing scheme that is admitted
by the theorem, but we did have occurrences of a free monad and a cofree comonad.
Here we note that the general types of natural transformations in the above theorem
admit paramorphisms [18] (c.f. F (Id×B) in (27)) and their duals, apomorphisms [27]
(c.f. B(Id + F) in (28)).

Example 11. The type FExprArg in § 4.3 models natural transformations of type
FB −→ BTF for F ≡ ExprF and B ≡ Id. Likewise, The type SExprArg in § 4.4
models natural transformations of type FDB −→ BF , for F ≡ ExprF and B ≡ Id.

Natural transformations λ : FB −→ BF can be lifted so that Theorem 3 applies:

Bτ ◦ λTF ◦ FBη ◦ Fπ2 : F (Id × B) −→ BTF (29)

Bι2 ◦ BFε ◦ λDB ◦ Fξ : FDB −→ B(Id + F) (30)

The following fact is useful:

Lemma 3. Given a natural transformation λ : FB −→ BF , the distributive law
constructed by Theorem 3 from (29) is equal to the one constructed from (30).

Proof. Omitted. See the full report.

The following definition is therefore well-formed.

Definition 12. For a natural transformation λ : FB −→ BF , we denote by λ̄ the
distributive law TF DB −→ DBTF given by Theorem 3 either from (29) or (30).

5.4 Conservativeness of Free Distributive Laws

We can lift simple distributive laws of § 3 to distributive laws of monads over comonads.
It remains to establish that such a lifting of distributive laws is semantics-preserving.
The gory details follow.

In the simple development of § 3, we constructed algebras and coalgebras from dis-
tributive laws by simple projections and injections; c.f. equations (10) and (7). These
constructions are lifted as follows:

Lemma 4. For all X in C, the arrow

DμX ◦ ΛTX : TDTX −→ DTX (31)

is a T -algebra. Dually, the arrow

ΛDX ◦ TδX : TDX −→ DTDX (32)

is a D-coalgebra.

Proof. We must verify that the two T -algebra laws (19) and (20) hold. This can be done
by a simple calculation involving just naturality and definitions. �	

The Expression Lemma 215

Now (31) is a T -algebra, and thus by Lemma 2 and Def. 10 it induces an arrow:

(|Dμ0 ◦ ΛT0 |)T : T 0 −→ DT 0 (33)

Moreover, when T and D are free on F and B respectively, this is equivalent to

(|Dμ0 ◦ ΛT0 |)T : μF −→ DμF

which is by Theorem 2 isomorphic to a B-coalgebra

(|Dμ0 ◦ ΛT0 |)TF ∝ : μF −→ BμF (34)

Dually for (32):

[(ΛD1 ◦ Tδ1)]D : TD1 −→ D1 (35)

[(ΛD1 ◦ TδX)]DB ∗ : FνB −→ νB (36)

Compare with equations (11) and (8). This shows that any distributive law of a free
monad over a cofree comonad also gives rise to an algebra for a catamorphisms and a
coalgebra for object construction.

Example 12. The functions sFoldExpr in § 4.4, and fFoldExpr in § 4.3 are examples of
(34) where B in (34) is fixed to be the identity functor.

The following theorem establishes the essential property that the (co)monadic develop-
ment of the present section entails the development of § 3.

Theorem 4. Let F and B be endofunctors on a category C. Let λ : FB −→ BF be
a natural transformation. Then the following holds.

[(λνB ◦ FoutB)]B = [(λ̄DB1 ◦ TF δX)]DB ∗ : FνB −→ νB (37)

(|BinF ◦ λμF |)F = (|DBμ0 ◦ λ̄TF 0 |)TF ∝ : μF −→ BμF (38)

Proof. Omitted. See the full report.

5.5 The Generalized Expression Lemma

It remains to lift Theorem 1 (the “simple expression lemma”). As a preparation, we
need an analog of the fusion rule.

Lemma 5. For D-coalgebras α and β:

[(α)]D ◦ f = [(β)]D ⇐ α ◦ f = Df ◦ β (39)

Proof. Immediate by uniqueness of the terminal morphism, as before. �	

Theorem 5 (“Generalized expression lemma”). Let 〈T, η, μ〉 be a monad and
〈D, η, δ〉 be a comonad. Let Λ : TD −→ DT be a distributive law of the monad T
over D. Then the following holds:

(| [(ΛD1 ◦ Tδ1)]D |)T = [((|Dμ0 ◦ ΛT0 |)T)]D

216 R. Lämmel and O. Rypacek

Proof. The proof has exactly the same structure as that of Theorem 1 except that we
have to check at all relevant places that the algebras and coalgebras in question satisfy
the additional properties (19) and (20) or their duals, subject to straightforward appli-
cations of the monad laws, properties (23) - (26) of distributive laws, and by naturality.
We give an outline of the proof of the theorem while omitting the routine checks.

[(ΛD ◦ Tδ)]D ◦ T [((|Dμ ◦ ΛT |)T)]D

= { By (39) }

[(ΛD ◦ T (|Dμ ◦ ΛT |)T)]D

= { By (39) }

[((|Dμ ◦ ΛT |)T)]D ◦ μ

The conclusion follows by (21). �	

6 Related Work

Functional OO Programming
We are not aware of any similar treatment of the correspondence between functional
and OO programming. Initially, one would expect some previous work on functional
OO programming to be relevant here, such as Moby [8] (an ML-like language with a
class mechanism), C# 3.0/VB 9.0/LINQ [3] (the latest .NET languages that incorporate
higher-order list-processing functions and more type inference), F# (an ML/OCaml-
inspired language that is married with .NET objects), Scala [20] (a Java-derived lan-
guage with support for functional programming), ML-ART or OCaml [23] (ML with
OO-targeting type extensions) — just to mention a few. However, all such work has
not revealed the expression lemma. When functional OO efforts start from a functional
language, then the focus is normally on type-system extensions for subtyping, self, and
inheritance, while OO programs are essentially encoded as functional programs, with-
out though relating the encoding results to any “native” functional counterparts. Dually,
when functional OO efforts start from an OO language, then the focus is normally on
translations that eliminate functional idioms, without though relating the translation re-
sults to any “native” OO counterpart. (For instance, Scala essentially models a function
as a special kind of object.) Our approach specifically leverages the correspondence
between functional folds and OO designs based on an idealized composite pattern.

The Expression Problem
Previous work on the expression problem [28] has at best assumed the expression
lemma implicitly. The lemma may have been missing because the expression prob-
lem classically assumes only very little structure: essentially, there are supposed to be
multiple data variants as well as multiple operations on these variants. In contrast, the
proposed expression lemma requires more structure, i.e., it requires functional folds or
OO designs based on an idealized composite pattern, respectively.

The Expression Lemma 217

Programming vs. Semantics

We have demonstrated how distributive laws of a functor over a functor (both possibly
with additional structure) arise naturally from programming practice with disciplined
folds and an idealized composite pattern. By abstraction, we have ultimately arrived at
the same notion of adequacy that Turi and Plotkin originally coined for denotational and
operational semantics [24, 25]. There, our functional programming side of the picture
corresponds to denotational semantics and the OO programming side corresponds to
operational semantics. Our functional/OO programming correspondence corresponds
to adequacy of denotational and operational semantics. We have provided a simple,
alternative, calculational proof geared towards functional programming intuitions. Any
further correspondence, for instance of their operational rules, is not straightforward.
We hypothesize that an elaborated expression lemma may eventually incorporate addi-
tional structure that has no direct correspondence in Turi and Plotkin’s sense.

More on Distributive Laws

Distributive laws of a functor over a functor (both possibly with additional structure)
[2] have recently enjoyed renewed interest. We mention a few of the more relevant con-
tributions. In the context of bialgebraic semantics, Fiore, Plotkin and Turi have worked
on languages with binders in a presheaf category [7], and Bartek Klin has worked on
recursive constructs [16]. Both theoretical contributions may inspire a model of ob-
ject structures with cycles and sharing in our interpretation. Modular constructions on
distributive laws, including those we leveraged towards the end of § 3.3 have been in-
vestigated by Bart Jacobs [13]. More advanced modular constructions may be helpful in
the further exploration of the modularity of dualizable programs. Alberto Pardo, Tarmo
Uustalu, Varmo Vene, and collaborators have been using distributive laws for recur-
sion and corecursion schemes. For instance, in [26], a generalized coinduction scheme
is delivered where a distributive law specifies the pattern of mutual recursion between
several functions defined by coinduction. This work seems to be related to coalgebraic
OO programming where methods in an interface are (possibly) mutually recursive.

7 Concluding Remarks

We have revealed the expression lemma — a correspondence between OO and func-
tional programs, subject to the assumption that both kinds of programs share a certain
decomposition based on structural recursion. The decomposition requirement for func-
tional programs is equivalent to a class of natural folds. The decomposition requirement
for OO programs is equivalent to the concept of object structures with part-whole rela-
tionships and methods that are in alignment with an idealized composite design pattern.
The formal development for comparing functional and OO programs relies on a coal-
gebraic model of functional objects.

While our development already covers some non-trivial idioms in “dualizable” pro-
gramming, e.g., iteration of term construction and recursive function application, it still
leaves many open questions — in particular, if we wanted to leverage the duality for
real-world programs. Hence, one challenge is to generalize the expression lemma and

218 R. Lämmel and O. Rypacek

the associated constructions of distributive laws so that the class of dualizable pro-
grams is extended. For instance, histomorphisms [15, 26] are not just useful in devis-
ing efficient encodings for non-linearly recursive problems, they also generalize access
to intermediate results for non-immediate components — very much in the sense of
“dotting” into objects and invoking methods on non-immediate components. Another
challenge is to admit data structures with sharing and cycles. The use of sharing and
cycles is common in OO programming — even without the additional complication of
mutable objects. Yet another challenge is to complete the current understanding of the
functional/OO correspondence into effective bidirectional refactorings. For instance, in
the objects-to-functions direction, such a refactoring would involve non-trivial precon-
ditions on the shape of the OO code, e.g., preconditions to establish absence of sharing,
cycles, and mutations, where we may be able to leverage related OO type-system ex-
tensions, e.g., for immutability and ownership [4, 6].

Acknowledgments. Ondrej Rypacek would like to thank the CALCO-jnr 2007 referees for
feedback that could be leveraged for the present paper. This research has been funded by EPSRC
grant EP/D502632/1. The authors are grateful for the constructive and detailed reviews by the
MPC 2008 program committee.

References

1. Awodey, S.: Category Theory. Clarendon Press (2006)
2. Beck, J.: Distributive laws. Lecture Notes in Mathematics 80, 119–140 (1969)
3. Bierman, G.M., Meijer, E., Torgersen, M.: Lost in translation: formalizing proposed exten-

sions to C#. In: OOPSLA 2007: Proceedings of the 22nd annual ACM SIGPLAN conference
on Object oriented programming systems and applications, pp. 479–498. ACM Press, New
York (2007)

4. Birka, A., Ernst, M.D.: A practical type system and language for reference immutability.
In: OOPSLA 2004: Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pp. 35–49. ACM Press, New
York (2004)

5. Chin, W.-N.: Towards an automated tupling strategy. In: PEPM 1993: Proceedings of the
1993 ACM SIGPLAN symposium on Partial evaluation and semantics-based program ma-
nipulation, pp. 119–132. ACM Press, New York (1993)

6. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection. In: OOP-
SLA 1998: Proceedings of the 13th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pp. 48–64. ACM Press, New York (1998)

7. Fiore, M., Plotkin, G., Turi, D.: Abstract Syntax and Variable Binding. In: LICS 1999: Pro-
ceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, pp. 193–202.
IEEE Press, Los Alamitos (1999)

8. Fisher, K., Reppy, J.: Object-oriented aspects of Moby. Technical report, University of
Chicago Computer Science Department Technical Report (TR-2003-10) (July 2003)

9. Fokkinga, M.M.: Tupling and Mutumorphisms. Appeared in: The Squigollist 1(4), 81–82
(1990)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

The Expression Lemma 219

11. Hu, Z., Iwasaki, H., Takeichi, M.: Deriving structural hylomorphisms from recursive defin-
itions. In: ICFP 1996: Proceedings of the first ACM SIGPLAN international conference on
Functional programming, pp. 73–82. ACM Press, New York (1996)

12. Hu, Z., Iwasaki, H., Takeichi, M., Takano, A.: Tupling calculation eliminates multiple data
traversals. In: ICFP 1997: Proceedings of the second ACM SIGPLAN international confer-
ence on Functional programming, pp. 164–175. ACM Press, New York (1997)

13. Jacobs, B.: Distributive laws for the coinductive solution of recursive equations. Information
and Computation 204(4), 561–587 (2006)

14. Jacobs, B.P.F.: Objects and classes, coalgebraically. In: Freitag, B., Jones, C.B., Lengauer, C.,
Schek, H.J. (eds.) Object-Orientation with Parallelism and Persistence, pp. 83–103. Kluwer
Academic Publishers, Dordrecht (1996)

15. Kabanov, J., Vene, V.: Recursion Schemes for Dynamic Programming. In: Uustalu, T. (ed.)
MPC 2006. LNCS, vol. 4014, pp. 235–252. Springer, Heidelberg (2006)

16. Klin, B.: Adding recursive constructs to bialgebraic semantics. Journal of Logic and Alge-
braic Programming 60-61, 259–286 (2004)

17. Launchbury, J., Sheard, T.: Warm fusion: deriving build-catas from recursive definitions. In:
FPCA 1995: Proceedings of the seventh international conference on Functional programming
languages and computer architecture, pp. 314–323. ACM Press, New York (1995)

18. Meertens, L.G.L.T.: Paramorphisms. Formal Aspects of Computing 4(5), 413–424 (1992)
19. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional Programming with Bananas, Lenses,

Envelopes and Barbed Wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 124–144.
Springer, Heidelberg (1991)

20. Odersky, M.: The Scala Language Specification, Version 2.6, DRAFT, Programming Meth-
ods Laboratory, EPFL, Switzerland (December 19, 2007)

21. Pierce, B.C., Turner, D.N.: Simple type-theoretic foundations for object-oriented program-
ming. Journal of Functional Programming 4(2), 207–247 (1994)

22. Reichel, H.: An approach to object semantics based on terminal co-algebras. Mathematical
Structures in Computer Science 5(2), 129–152 (1995)

23. Rémy, D.: Programming Objects with ML-ART: An extension to ML with Abstract and
Record Types. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 321–
346. Springer, Heidelberg (1994)

24. Turi, D.: Functorial Operational Semantics and its Denotational Dual. PhD thesis, Free Uni-
versity, Amsterdam (June 1996)

25. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proceedings 12th
Annual IEEE Symposium on Logic in Computer Science, LICS 1997, Warsaw, Poland, 29
June – 2 July 1997, pp. 280–291. IEEE Press, Los Alamitos (1997)

26. Uustalu, T., Vene, V., Pardo, A.: Recursion schemes from comonads. Nordic Journal of Com-
puting 8(3), 366–390 (2001)

27. Vene, V., Uustalu, T.: Functional programming with apomorphisms (corecursion). Proceed-
ings of the Estonian Academy of Sciences: Physics, Mathematics 47(3), 147–161 (1998)

28. Wadler, P.: The expression problem. Message to java-genericity electronic mail-
ing list (November 1998), http://www.daimi.au.dk/∼madst/tool/papers/
expression.txt

Nested Datatypes with Generalized Mendler

Iteration: Map Fusion and the Example of the
Representation of Untyped Lambda Calculus

with Explicit Flattening

Ralph Matthes

Institut de Recherche en Informatique de Toulouse (IRIT)
C. N.R. S. et Université Paul Sabatier (Toulouse III)
118 route de Narbonne, F-31062 Toulouse Cedex 9

Abstract. Nested datatypes are families of datatypes that are indexed
over all types such that the constructors may relate different family mem-
bers. Moreover, the argument types of the constructors refer to indices
given by expressions where the family name may occur. Especially in
this case of true nesting, there is no direct support by theorem provers
to guarantee termination of functions that traverse these data structures.

A joint article with A. Abel and T. Uustalu (TCS 333(1–2), pp. 3–
66, 2005) proposes iteration schemes that guarantee termination not by
structural requirements but just by polymorphic typing. They are generic
in the sense that no specific syntactic form of the underlying datatype
“functor” is required. In subsequent work (accepted for the Journal of
Functional Programming), the author introduced an induction principle
for the verification of programs obtained from Mendler-style iteration of
rank 2, which is one of those schemes, and justified it in the Calculus
of Inductive Constructions through an implementation in the theorem
prover Coq.

The new contribution is an extension of this work to generalized
Mendler iteration (introduced in Abel et al, cited above), leading to a
map fusion theorem for the obtained iterative functions. The results and
their implementation in Coq are used for a case study on a representa-
tion of untyped lambda calculus with explicit flattening. Substitution is
proven to fulfill two of the three monad laws, the third only for “hered-
itarily canonical” terms, but this is rectified by a relativisation of the
whole construction to those terms.

1 Introduction

Nested datatypes [1] are families of datatypes that are indexed over all types
and where different family members are related by the datatype constructors.
Let κ0 stand for the universe of (mono-)types that will be interpreted as sets
of computationally relevant objects. Then, let κ1 be the kind of type transfor-
mations, hence κ1 := κ0 → κ0. A typical example would be List of kind κ1,
where List A is the type of finite lists with elements from type A. But List

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 220–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Nested Datatypes with Generalized Mendler Iteration 221

is not a nested datatype since the recursive equation for List , i. e., List A =
1 + A× List A, does not relate lists with different indices. A simple example of
a nested datatype where an invariant is guaranteed through its definition are
the powerlists [2] (or perfectly balanced, binary leaf trees [3]), with recursive
equation PList A = A + PList(A× A), where the type PList A represents trees
of 2n elements of A with some n ≥ 0 (that is not fixed) since, throughout this
article, we will only consider the least solutions to these equations. The basic
example where variable binding is represented through a nested datatype is a
typeful de Bruijn representation of untyped lambda calculus, following ideas of
[4,5,6]. The lambda terms with free variables taken from A are given by Lam A,
with recursive equation Lam A = A+Lam A×Lam A+Lam(option A). The first
summand gives the variables, the second represents application of lambda terms
and the interesting third summand stands for lambda abstraction: An element
of Lam(option A) (where option A is the type that has exactly one more element
than A, namely None, while the injection of A into option A is called Some)
is seen as an element of Lam A through lambda abstraction of that designated
extra variable that need not occur freely in the body of the abstraction.

Programming with nested datatypes is possible in the functional programming
language Haskell, but this article is concerned with frameworks that guarantee
termination of all expressible programs, such as the Coq theorem prover [7]
that is based on the Calculus of Inductive Constructions (CIC), presented with
details in [8], which only recently (since version 8.1 of Coq) evolved towards a
direct support for many nested datatypes that occur in practice, e. g., PList and
Lam are fully supported with recursion and induction principles. Although Coq
is officially called the “Coq proof assistant”, it is already in itself1 a functional
programming language. This is certainly not surprising since it is based on an
extension of polymorphic lambda calculus (system Fω), although the default
type-theoretic system of Coq since version 8.0 is “pCIC”, namely the Predicative
Calculus of (Co)Inductive Constructions. System Fω is also the framework of the
article with Abel and Uustalu [10] that presents a variety of terminating iteration
principles on nested datatypes for a notion of nested datatypes that also allows
true nesting, which is not supported by the aforementioned recent extension of
CIC. A nested datatype will be called “truly nested” (non-linear [11]) if the
intuitive recursive equation for the inductive family has at least one summand
with a nested call to the family name, i. e., the family name appears somewhere
inside the type argument of a family name occurrence of that summand. Our
example throughout this article is lambda terms with explicit flattening [12],
with the recursive equation

LamE A = A + LamE A× LamE A + LamE (option A) + LamE (LamE A).

The last summand qualifies LamE as truly nested datatype: LamE A is the type
argument to LamE .

1 Not to speak of the program extraction facility of Coq that allows to obtain programs
in OCaml, Scheme and Haskell from Coq developments in an automatic way [9].

222 R. Matthes

Even without termination guarantees, the algebra of programming [13] shows
the benefits of programming recursive functions in a structured fashion, in par-
ticular with iterators: there are equational laws that allow a calculational way
of verification. Also for nested datatypes, laws have been important from the
beginning [1]. However, no reasoning principles, in particular no induction prin-
ciples, were studied in [10] on terminating iteration (and coiteration) principles.
Newer work by the author [14] integrates rank-2 Mendler iteration into CIC and
also justifies an induction principle for them. This is embodied in the system
LNMIt , the “logic for natural Mendler-style iteration”, defined in Section 3.1.
This system integrates termination guarantees and calculational verification in
one formalism and would also allow dependently-typed programming on top of
nested datatypes. Just to recall, termination is also of practical concern with de-
pendent types, namely that type-checking should be decidable: If types depend
on object terms, object terms have to be evaluated in order to verify types,
as expressed in the convertibility rule. Note, however, that this only concerns
evaluation within the definitional equality (i. e., convertibility), henceforth de-
noted by 2. Except from the above intuitive recursive equations, = will denote
propositional equality throughout: this is the equality type that requires proof
and that satisfies the Leibniz principle, i. e., that validity of propositions is not
affected by replacing terms by equal (w. r. t. =) terms.

The present article is concerned with an extension of LNMIt to a system
LNGMIt that has generalized Mendler-iteration GMIt , introduced in [10], in
addition to plain Mendler-iteration that is provided by LNMIt . Generalized
Mendler-iteration is a scheme encompassing generalized folds [11,3,15]. In par-
ticular, the efficient folds of [15] are demonstrated to be instances of GMIt in
[10], and the relation to the gfolds of [11] is discussed there. Perhaps surprisingly,
GMIt could be explained within Fω through MIt . In a sense, this all boils down
to the use of a syntactic form of right Kan extensions as the target constructor
Gκ1 of the polymorphic iterative functions of type ∀Aκ0 . μFA → GA, where
μF denotes the nested datatype [10, Section 4.3]. (These Kan extension ideas
are displayed in more detail using Haskell in [16], but only in a setting that
excludes truly nested datatypes although the type system of current Haskell
implementations has no problems with them.)

The main theorem of [14] is trivially carried over to the present setting, i. e.,
just by the Kan extension trick, the justification of LNMIt within CIC with im-
predicative universe Set =: κ0 and propositional proof irrelevance is carried over
to LNGMIt . Impredicativity of κ0 is needed here since syntactic Kan extensions
use impredicative means for κ0 in order to stay within κ1. However, LNMIt and
LNGMIt are formulated as extensions of pCIC with its predicative Set as κ0.

The functions that are defined by a direct application of GMIt are uniquely
determined (up to pointwise propositional equality) by their recursive equation,
under a reasonable extensionality assumption. It is shown when these functions
are themselves extensional and when they are “natural”, and what natural has
to mean for them.

Nested Datatypes with Generalized Mendler Iteration 223

By way of the example of lambda terms with explicit flattening—the truly
nested datatype LamE—the merits of the general theorems about LNGMIt will
be studied, mainly by a representation of parallel substitution on LamE using
GMIt and a proof of the monad laws for it. One of the laws fails in general,
but it can be established for the hereditarily canonical terms. Their inductive
definition (using the inductive definition mechanism of pCIC) refers to the notion
of free variables that is obtained from the scheme MIt . The whole development
for LamE can be interpreted within the hereditarily canonical terms, and for
those, parallel substitution is shown to be a monad.

All the concepts and results have been formalised in the Coq system, also
using module functors having as parameter a module type with the abstract
specification of LNGMIt , in order to separate the impredicative justification from
the predicative formulation and its general consequences that do not depend on
an implementation/justification. The Coq code is available [17] and is based on
[18].

The following section 2.1 introduces to the Mendler style of obtaining termi-
nating recursive programs and develops the notions of free variables and renam-
ing in the case study. It also discusses extensionality and naturality. Section 2.2
presents GMIt and defines a representation of substitution for the case study,
leading to a list of properties one would like to prove about it. In Section 3.1,
the already existing system LNMIt with the logic for MIt is properly defined,
while Section 3.2 defines the new extension LNGMIt as a logic for GMIt and
proves some general results. The question of naturality for functions that are
defined through GMIt is addressed in Section 4. General results about proving
naturality are presented, one of them is map fusion. Section 5 problematizes the
results obtained so far in the case study. Hereditary canonicity is the key notion
that allows to pursue that case study. Section 6 concludes.

Acknowledgements: To Andreas Abel for all the joint work in this field and
some of his LATEX macros and the figure I reused from earlier joint papers, and
to the referees for their helpful advice that I could only partially integrate in
view of the length of this article. In an early stage of the present results, I have
benefitted from support by the European Union FP6-2002-IST-C Coordination
Action 510996 “Types for Proofs and Programs”.

2 Mendler-Style Iteration

Mendler-style iteration schemes, originally proposed for positive inductive types
[19], come with a termination guarantee, and termination is not based on syn-
tactic criteria (that all recursive calls are done with “smaller” arguments) but
just on types (called “type-based termination” in [20]).

2.1 Plain Mendler-Style Iteration MIt

In order to fit the above intuitive definition of LamE into the setting of Mendler-
style iteration, the notion of rank-2 functor is needed. Their kind is defined as

224 R. Matthes

κ2 := κ1 → κ1. Any constructor F of kind κ2 qualifies as rank-2 functor for
the moment, and μF : κ1 denotes the generated family of datatypes. For our
example, set

LamEF := λXκ1λAκ0 . A + XA×XA + X(option A) + X(XA)

and LamE := μLamEF . In general, there is just one datatype constructor for
μF , namely in : F (μF) ⊆ μF , using X ⊆ Y := ∀Aκ0 . XA → Y A for any
X,Y : κ1 as abbreviation for the respective polymorphic function space. For
LamE , more clarity comes from the four derived datatype constructors

varE : ∀Aκ0 . A → LamE A,
appE : ∀Aκ0 .LamE A → LamE A → LamE A,
absE : ∀Aκ0 .LamE (option A) → LamE A,
flatE : ∀Aκ0 .LamE (LamE A) → LamE A,

where, for example, flatE is defined as λAκ0λeLamE(LamE A). in A (inr e), with
right injection inr (here, we assume that + associates to the left), and the other
datatype constructors are defined by the respective sequence of injections (see
[12] or [10, Example 8.1]).2 From the explanations of Lam in the introduction, it
is already clear that varE , appE and absE represent the construction of terms
from variable names, application and lambda abstraction in untyped lambda
calculus (their representation via a nested datatype has been introduced by
[5,6]).

A simple example can be given as follows: Consider the untyped lambda term
λz. z x1 with the only free variable x1. For future extensibility, think of the
allowed set of variable names as option A with type variable A. The designated
element None of option A shall be the name for variable x1. λz. z x1 is represented
by

absE (appE (varE None) (varE (Some None))),

with None and Some None of type option(option A), hence with the shift that
is characteristic of de Bruijn representation. Obviously, the representation is of
type ∀Aκ0 .LamE (option A), and it could have been done in a similar way with
Lam instead of LamE .

In [4], a lambda-calculus interpretation of monad multiplication of Lam is
given that has the type of flatE (with LamE replaced by Lam), but here, this
is just a formal (non-executed) form of an integration of the lambda terms that
constitute its free variable occurrences into the term itself. We call flatE ex-
plicit flattening. It does not do anything to the term but is another means of
constructing terms.

For an example, consider t := λy. y {λz. z x1} {x2}, where the braces shall
indicate that the term inside is considered as the name of a variable. If these
terms-as-variables were integrated into the term, i. e., if t were “flattened”, one
would obtain λy. y (λz. z x1)x2. This is a trivial operation in this example. In
2 In Haskell 98, one would define LamE through the types of its datatype constructors

whose names would be fixed already in the definition of LamE .

Nested Datatypes with Generalized Mendler Iteration 225

[14], it is recalled that parallel substitution can be decomposed into renaming,
followed by flattening. Under the assumption that substitution is a non-trivial
operation, flattening and renaming cannot both be considered trivial. Through
the explicit form of flattening, its contribution to the complexity of substitution
can be studied in detail.

We want to represent t as term of type ∀Aκ0 .LamE (option(optionA)), in
order to accommodate the two free variables x1, x2. We instantiate the repre-
sentation above for λz. z x1 by option A in place of A and get a representation
as term t1 : LamE (option(optionA)). x2 is represented by

t2 := varE (Some None) : LamE (option(optionA)).

Now, t shall be represented as the term

flatE (absE t3) : LamE (option(optionA)),

hence with t3 : LamE (option (LamE (option(optionA)))), defined as

t3 := appE
(
appE (varE None) (varE (Some t1))

)
(varE (Some t2)),

that stands for y {λz. z x1} {x2}. Finally, we can quantify over the type A.

Mendler iteration of rank 2 [10] can be described as follows: There is a constant

MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G → FX ⊆ G) → μF ⊆ G

and the iteration rule

MIt GsA (in At) 2 s (μF) (MIt Gs)At.

In a properly typed left-hand side, t has type F (μF)A and s is of type

∀Xκ1 . X ⊆ G → FX ⊆ G.

The term s is called the step term of the iteration since it provides the inductive
step that extends the function from the type transformation X that is to be
viewed as approximation to μF , to a function from FX to G.

Our first example of an iterative function on LamE is the function EFV :
LamE ⊆ List (EFV is a shorthand for LamEToFV) that gives the list of the
names of the free variables (with repetitions in case of multiple occurrences).
We want to have the following definitional equations that describe the recursive
behaviour (we mostly write type arguments as indices in the sequel):

EFVA (varEA a) 2 [a],
EFVA (appEA t1 t2) 2 EFVA t1 + EFVA t2,
EFVA (absEA r) 2 filterSomeA (EFVoption A r),
EFVA (flatEA e) 2 flatten(map EFVA (EFVLamE A e)).

Here, we denoted by [a] the singleton list that only has a as element and by + list
concatenation. Moreover, filterSome : ∀Aκ0 .List(option A) → List A removes

226 R. Matthes

all the occurrences of None from its argument and also removes the injection
Some from A to option A from the others. This is nothing but saying that the
extra element None of option A is the variable name that is considered bound
in absEA r, and that therefore all its occurrences have to be removed from the
list of free variables. The set of free variables of flatEA e is the union of the sets
of free variables of the free variables of e, which are still elements of LamE A.
This is expressed by the usual mapping function

map : ∀Aκ0∀Bκ0 . (A → B) → List A → List B

for lists and the operation flatten : ∀Aκ0 .List(List A) → List A that concate-
nates all the lists in its argument to a single list, and we did not mention the
types with which the type arguments of map and flatten are instantiated.3 We
now argue that there is such a function EFV , by showing that it is directly
definable as MIt List sEFV for some closed term

sEFV : ∀Xκ1 . X ⊆ List → LamEFX ⊆ List ,

and therefore, we have the termination guarantee (in [10], a definition of MIt
within Fω is given that respects the iteration rule even as reduction from left to
right, hence this is iteration as is the iteration over the Church numerals of which
this is still a generalization). Using an intuitive notion of pattern matching, we
define

sEFV := λXκ1λitX⊆ListλAκ0λtLamEF X A.match twith
| inl(inl(inl aA)) 3→ [a]
| inl(inl(inr (tXA1 , tXA2))) 3→ itA t1 + itA t2
| inl(inr rX(option A)) 3→ filterSome(itoption A r)
| inr eX(XA) 3→ flatten(map itA (itXA e)).

For EFV := MIt List sEFV , the required equational specification is obviously
satisfied (since the pattern-matching mechanism behaves properly with respect
to definitional equality 2).4

The visible reason why Mendler’s style can guarantee termination without
any syntactic descent (in which way can the mapping over EFVA be seen as
“smaller”?) is the following: the recursive calls come in the form of uses of it,
which does not have type LamEF ⊆ List but just X ⊆ List , and the type argu-
ments of the datatype constructors are replaced by variants that only mention
X instead of LamE . So, the definitions have to be uniform in that type trans-
formation variable X , but this is already sufficient to guarantee termination (for

3 It would have been cleaner to use just one function instead, namely the function
flat map : ∀Aκ0∀Bκ0 . (A → List B) → List A → List B, where flat mapA,B f � is
the concatenation of all the B-lists f a for the elements a of the A-list �. Note that
flatten is monad multiplication for the list monad and could also be made explicit
by a truly nested datatype.

4 In Haskell 98, our specification of EFV , together with its type, can be used as a
definition, but no termination guarantee is obtained.

Nested Datatypes with Generalized Mendler Iteration 227

the rank-1 case of inductive types, this has been discovered in [21] by syntactic
means and, independently, by the author with a semantic construction [22]).

A first interesting question about the results of EFVA t is how they behave
with respect to renaming of variables. First, define for any type transformation
X : κ1 the type of its map term as (from now, omit the kind κ0 from A and B)

monX := ∀A∀B. (A → B) → XA → XB.

Clearly, map : monList , but also renaming lamE will have a type of this form,
more precisely, lamE : monLamE , and lamE f t has to represent t after renam-
ing every free variable occurrence a in t by fa. It would be possible to define
lamE by help of GMIt introduced in the next section, but it will automatically
be available in the systems LNMIt and LNGMIt that will be described in Sec-
tion 3. Therefore, we content ourselves in displaying its recursive behaviour (we
omit the type arguments to lamE):

lamE f (varEA a) 2 varEB(fa),
lamE f (appEA t1 t2) 2 appEB (lamE f t1) (lamE f t2),
lamE f (absEA r) 2 absEB(lamE (option map f) r),
lamE f (flatEA e) 2 flatEB

(
lamE

(
λtLamE A. lamE (λxA. fx) t

)
e
)
.

Here, in the second clause, yet another map term occurs, namely the canonical
option map : mon option , so that lamE is called with type arguments option A
and option B. In the final clause, the outer call to lamE is with type arguments
LamE A and LamE B, while the inner one stays with A and B. The right-hand
side in the last case is unpleasantly η-expanded, and one would have liked to see
flatEB(lamE (lamE f) e) instead. However, these two terms are not definitionally
equal.

For any X : κ1 and map term m : monX , define the following proposition

ext m := ∀A∀B∀fA→B∀gA→B. (∀aA. fa = ga) → ∀rXA.mAB f r = mAB g r.

It expresses that m only depends on the extension of its functional argument,
which will be called extensionality of m in the sequel. In intensional type theory
such as CIC, it does not hold in general.5 In LNMIt and LNGMIt , the canonical
map term mapμF that comes with μF is extensional. Hence, lamE of our example
will be extensional, and the right-hand side in the last case is propositionally
equal to the simpler form considered above.

We can now state the “interesting question”, mentioned before: Can one prove

∀A∀B∀fA→B∀tLamE A.EFVB (lamE f t) = map f (EFVA t) ?

This is an instance of the question for polymorphic functions j of type X ⊆ Y
whether they behave propositionally as a natural transformation from (X,mX)

5 There are deep studies [23,24,25] on a reconciliation of intensional type theory with
extensionality for function spaces. However, we will stick with CIC.

228 R. Matthes

to (Y,mY), given map functions mX : monX and mY : monY . Here, the pair
(X,mX) is seen as a functor although no functor laws are required (for the
moment). The proposition that defines j to be such a natural transformation is

j ∈ N (mX, mY) := ∀A∀B∀fA→B∀tXA. jB (mX AB f t) = mY AB f (jA t).

The system LNMIt , described in Section 3.1, allows to answer the above ques-
tion by showing EFV ∈ N (lamE , map). This is in contrast to pure functional
programming, where, following [26], naturality is seen as free, namely as a spe-
cific instance of parametricity for parametric equality. In intensional type theory
such as our LNMIt and LNGMIt (see Section 3.2), naturality has to be proven
on a case by case basis.

By(plain)Mendler iterationMIt , onecanalsodefinea functioneval:LamE⊆Lam
that evaluates all the explicit flattenings and thus yields the representation of
a usual lambda term [14]. In [14], also eval is seen in LNMIt to be a natural
transformation.

2.2 Generalized Mendler-Style Iteration GMIt

We would like to define a representation of substitution on LamE . As for Lam ,
the most elegant solution is to define a parallel substitution

substE : ∀A∀B. (A → LamE B) → LamE A → LamE B,

where for a substitution rule f : A → LamE B, the term substEA,B f t : LamE B
is the result of substituting every variable a : A in the term representation
t : LamE A by the term f a : LamE B. The operation substE would then qualify
as Kleisli extension operation of a monad in Kleisli form (a. k. a., bind operation
in Haskell).

Evidently, the desired type of substE is not of the form LamE ⊆ G for any
G : κ1. However, it is equivalent (just move the universal quantification over B
across an implication) to LamE ⊆ RanLamE LamE , with

RanH G := λA∀B. (A → HB) → GB

for any H,G : κ1, which is a syntactic form of a right Kan extension of G
along H . This categorical notion has been introduced into the research on nested
datatypes in [5], while in [12], it was first used to justify termination of iteration
schemes, and in [10], it served as justification of generalized Mendler iteration,
to be defined next. Its motivation was better efficiency (it covers the efficient
folds of [15], see [10]), but visually, this is just hiding of the Kan extension
from the user. Technically, this also means a formulation that does not need
impredicativity of the universe κ0 because, only with impredicative κ0, we have
RanH G : κ1. Hence, we stay within pCIC.

The trick is to use the notion of relativized refined containment [10]: given
X,H,G : κ1, define the abbreviation

X ≤H G := ∀A∀B. (A → HB) → XA → GB.

Nested Datatypes with Generalized Mendler Iteration 229

Generalized Mendler iteration consists of a constant (the iterator)

GMIt : ∀Hκ1∀Gκ1 . (∀Xκ1 . X ≤H G → FX ≤H G) → μF ≤H G

and the generalized iteration rule

GMIt H GsAB f (in At) 2 s (μF) (GMIt H Gs)AB f t.

As mentioned before, GMIt can again be justified within Fω, hence ensuring
termination of the rewrite system underlying 2.

Coming back to substE , we note that its desired type is LamE ≤LamE LamE ,
and in fact, we can define substE := GMIt LamE LamE ssubstE with

ssubstE : ∀Xκ1 . X ≤LamE LamE → LamEF X ≤LamE LamE ,

given by (note that we start omitting the type parameters at many places)

λXκ1λitX≤LamELamEλAλBλfA→LamE BλtLamEF XA.match twith
| inl(inl(inl aA)) 3→ fa
| inl(inl(inr(tXA1 , tXA2))) 3→ appE (itA,B f t1) (itA,B f t2)
| inl(inr rX(option A)) 3→ absE (itoption A,option B (liftE f) r)
| inr eX(XA) 3→ flatE (itXA,LamE B(varELamE B ◦ (itA,B f)) e)).

Here, we used an analogue of lifting for Lam in [6],

liftE : ∀A∀B. (A → LamE B) → option A → LamE (option B),

definable by pattern-matching with properties

liftEA,B f None 2 varE option BNone,
liftEA,B f (Some a) 2 lamE Some (fa),

where renaming lamE is essential.
Note that varELamE B ◦ (itA,B f) has type XA → LamE (LamE B) (the infix

operator ◦ denotes composition of functions). From the point of view of clarity
of the definition, we would have much preferred flatE (lamE (itA,B f) e) to the
term in the last clause of the definition of ssubstE . It would only type-check after
instantiating X with LamE , hence generalized Mendler iteration cannot accept
this alternative. However, a system of sized nested datatypes [27] could assign
more informative types to lamE in order to solve this problem, but there do not
yet exist systematic means of program verification for them.

Our definition only satisfies

substE f (flatE e) 2 flatE (substE(varE ◦ (substE f)) e),

to be seen immediately from the generalized iteration rule (assuming again
proper 2-behaviour of pattern matching). Note that substE f (varE a) 2 fa
is already the verification of the first of the three monad laws for the purported
monad (LamE , varE , substE) in Kleisli form (where varE is the unit of the
monad).

The following will be provable about substE in the system LNGMIt , where
we mean the universal (and well-typed) closure of all statements:

230 R. Matthes

1. (∀aA. fa = ga) → substE f t = substE g t
2. (∀aA. a ∈ EFV t → fa = ga) → substE f t = substE g t
3. lamE g (substE f t) = substE ((lamE g) ◦ f) t
4. substE g (lamE f t) = substE (g ◦ f) t
5. substE g (substE f t) = substE ((substE g) ◦ f) t
6. EFV (substE f t) = flatten(map (EFV ◦ f) (EFV t))

The first is extensionality, the second refined extensionality, the third and fourth
are the two halves of naturality (number 4 appears to be an instance of map
fusion, as studied in [15]), the fifth is one of the other two monad laws, and the
last a means to express that EFV is a monad morphism from LamE (that does
not satisfy the last remaining monad law) to List . An easy consequence from it
is b ∈ EFV (substE f t) → ∃a. a ∈ EFV t ∧ b ∈ EFV (fa). This consequence and
the first five statements are all intuitively true for substitution, renaming and the
enumeration of free variables, and they were all known for Lam, hence without
explicit flattening. The point here is that also the truly nested datatype LamE
can be given a logic that allows such proofs within intensional type theory, hence
in a system with static termination guarantee, interactive program construction
(in implementations such as Coq) and no need to represent the programs in
a programming logic: the program’s behaviour with respect to 2 is directly
available.

3 Logic for Natural Generalized Mendler-Style Iteration

First, we recall LNMIt from [14], then we extend it by GMIt and its definitional
rules in order to obtain its extension LNGMIt .

3.1 LNMIt

In LNMIt , for a nested datatype μF , we require that F : κ2 preserves extensional
functors. In pCIC, we may form for X : κ1 the dependently-typed record EX
that contains a map term m : monX , a proof e of extensionality of m, i. e., of
ext m, and proofs f1, f2 of the first and second functor laws for (X,m), defined
by the propositions

fct1 m := ∀A∀xXA.mAA (λy.y)x = x,
fct2 m := ∀A∀B∀C ∀fA→B ∀gB→C ∀xXA.mAC (g ◦ f)x=mB C g (mAB f x).

Given a record ef of type EX , Coq’s notation for its field m is m ef , and likewise
for the other fields. We adopt this notation instead of the more common ef .m.
Preservation of extensional6 functors for F is required in the form of a term
of type ∀Xκ1 . E X → E(FX), and LNMIt is defined to be pCIC with κ0 :=
Set , extended by the constants and rules of Figure 1, adopted from [14]. In

6 While the functor laws are certainly an important ingredient of program verification,
the extensionality requirement is more an artifact of our intensional type theory, as
discussed in Section 2.1.

Nested Datatypes with Generalized Mendler Iteration 231

Parameters:
F : κ2

FpE : ∀Xκ1 . EX → E(FX)
Constants:

μF : κ1

mapμF : mon(μF)

In : ∀Xκ1 ∀ef EX∀jX⊆μF . j ∈ N (m ef , mapμF) → FX ⊆ μF
MIt : ∀Gκ1 . (∀Xκ1 . X ⊆ G → FX ⊆ G) → μF ⊆ G

μFInd : ∀P : ∀A.μFA → Prop.
�
∀Xκ1∀ef EX∀jX⊆μF ∀nj∈N (m ef , mapμF).

�
∀A∀xXA. PA(jA x)

�
→ ∀A∀tF XA. PA(In ef j n t)

�

→ ∀A∀rμF A. PA rRules:
mapμF f (In ef j n t) � In ef j n (m(FpE ef) f t)
MIt s (In ef j n t) � s (λA. (MIt s)A ◦ jA) t
λAλxμF A. (MIt s)A x � MIt s

Fig. 1. Specification of LNMIt as extension of pCIC

LNMIt , one can show the following theorem [14, Theorem 3] about canonical
elements: There are terms ef μF : EμF and InCan : F (μF) ⊆ μF (the canonical
datatype constructor that constructs canonical elements) such that the following
convertibilities hold:

m ef μF 2 mapμF ,
mapμF f (InCan t) 2 InCan(m (FpE ef μF) f t),

MIt s (InCan t) 2 s (MIt s) t.

(The proof of this theorem needs the induction rule μFInd in order to show that
mapμF is extensional and satisfies the functor laws. These proofs enter ef μF ,
and In can then be instantiated with X := μF , ef := ef μF and j the identity
on μF with its trivial proof of naturality, to yield the desired InCan .)

This will now be related to the presentation in Section 2.1: The datatype
constructor In is way more complicated than our previous in, but we get back
in in the form of InCan that only constructs the “canonical elements” of the
nested datatype μF . The map term mapμF for μF , which does renaming in our
example of LamE , as demonstrated in Section 2.1, is an integral part of the
system definition since it occurs in the type of In. This is a form of simultaneous
induction-recursion [28], where the inductive definition of μF is done simulta-
neously with the recursive definition of mapμF . The Mendler iterator MIt has
not been touched at all; there is just a more general iteration rule that also
covers non-canonical elements, but for the canonical elements, we get the same
behaviour, i. e., the same equation with respect to 2. The crucial part is the in-
duction principle μFInd , where Prop denotes the universe of propositions (all our
propositional equalities and their universal quantifications belong to it). With-
out access to the argument n that assumes naturality of j as a transformation

232 R. Matthes

from (X,m ef) to (μF,mapμF), one would not be able to prove naturality of
MIt s, i. e., of iteratively defined functions on the nested datatype μF . The
author is not aware of ways how to avoid non-canonical elements and never-
theless have an induction principle that allows to establish naturality of MIt s
[14, Theorem 1].

The system LNMIt can be defined within CIC with impredicative Set , ex-
tended by the principle of proof irrelevance, i. e., by ∀P : Prop ∀pP1 ∀pP2 . p1 = p2.
This is the main result of [14], and it is based on an impredicative construction
of simultaneous inductive-recursive definitions by Capretta [29] that could be
extended to work for this situation. It is also available in the form of a Coq
module [18] that allows to benefit from the evaluation of terms in Coq. For this,
it is crucial that convertibility in LNMIt implies convertibility in that implemen-
tation.

The “functor” LamEF is easily seen to fulfill the requirement of LNMIt to
preserve extensional functors (using [14, Lemma 1 and Lemma 2]). As mentioned
in Section 2.1, LNMIt allows to prove that EFV ∈ N (lamE , map), and this is
an instance of [14, Theorem 1].

3.2 LNGMIt

Let LNGMIt be the extension of LNMIt by the constant GMIt from section 2.2,

GMIt : ∀Hκ1∀Gκ1 . (∀Xκ1 . X ≤H G → FX ≤H G) → μF ≤H G,

and the following two rules:

GMItH,G s f (In ef j n t) 2 s (λAλBλfA→HB . (GMItH,G sAB f) ◦ jA) f t,
λAλBλfA→HBλxμFA.GMItH,G sAB f x 2 GMItH,G s.

Theorem [14, Theorem 3] about ef μF and InCan for LNMIt immediately
extends to LNGMIt and yields the following additional convertibility:

GMIt s f (InCan t) 2 s (GMIt s) f t,

which has this concise form only because of the η-rule for GMIt that was made
part of LNGMIt . Thus, we get back the original behaviour of GMIt described
in Section 2.2, but with the derived datatype constructor InCan instead of the
defining datatype constructor in.

Lemma 1. The system LNGMIt can be defined within LNMIt if the universe
κ0 of computationally relevant types is impredicative.

Proof. The proof is nothing but the observation that the embedding of GMItω

into MItω of [10, Section 4.3] extends for our situation of a rank-2 inductive
constructor μF to non-canonical elements, i. e., the full datatype constructor In
instead of only in , considered in that work: define for H,G : κ1 the terms

toGRan := λXκ1λhX≤HGλAλxXAλBλfA→HB . hAB f x,
fromGRan := λXκ1λhX⊆RanH GλAλBλfA→HBλxXA. hAxB f.

Nested Datatypes with Generalized Mendler Iteration 233

These terms establish the logical equivalence of X ≤H G and X ⊆ RanH G :

toGRan : ∀Xκ1 . X ≤H G → X ⊆ RanH G ,
fromGRan : ∀Xκ1 . X ⊆ RanH G → X ≤H G.

Define for a step term s : ∀Xκ1 . X ≤H G → FX ≤H G for GMItH,G the step
term s′ for MItRanH G as follows:

s′ := λXκ1λhX⊆RanH G . toGRanFX (sX (fromGRanX h)).

Then, we can define

GMItH,G s := fromGRanμF (MItRanH G s′)

and readily observe that the main definitional rule for GMIt in LNGMIt is in-
herited from that of MIt in LNMIt and that the other rule is immediate from the
definition.7 Impredicativity of κ0 is needed to have RanH G : κ1, as mentioned
in Section 2.2. �	

Corollary 1. The system LNGMIt can be defined within CIC with impredicative
Set, extended by the principle of propositional proof irrelevance, i. e., by ∀P :
Prop ∀pP1 ∀pP2 . p1 = p2.

Proof. Use the the previous lemma and the main theorem of [14] that states the
same property of LNMIt .

[14] is more detailed about how much proof irrelevance is needed for the proof.

Lemma 2 (Uniqueness of GMIt s). Assume H,G : κ1, s : ∀Xκ1 . X ≤H G →
FX ≤H G and h : μF ≤H G (the candidate for being GMIt s). Assume further
the following extensionality property of s (s only depends on the extension of its
first function argument, but in a way adapted to the parameter f):

∀Xκ1∀g, h : X ≤H G. (∀A∀B∀fA→HB∀xXA. g f x = h f x) →
∀A∀B∀fA→HB∀yFXA. s g f y = s h f y.

Assume finally that h satisfies the equation for GMIt s:

∀Xκ1∀ef EX∀jX⊆μF∀nj∈N (m ef ,mapμF)∀A∀B∀fA→HB∀tFXA.
hA,B f (In ef j n t) = s (λAλBλfA→HB . (hA,B f) ◦ jA) f t.

Then, ∀A∀B∀fA→HB∀rμF A. hA,B f r = GMIt s f r.

Proof. By the induction principle μFInd , as for [14, Theorem 2].

Given type constructors X,H,G, the type X ≤H G has an embedded function
space, so there is the natural question whether an inhabitant h of X ≤H G only

7 Strictly speaking, we have to define GMIt itself, but this can be done just by ab-
stracting over G, H and s that are only parameters of the construction.

234 R. Matthes

depends on the extension of this function parameter. This is expressed by the
proposition (gext stands for generalized extensionality)

gext h := ∀A∀B∀f, g : A → HB. (∀aA. fa = ga) → ∀rXA. hA,B f r = hA,B g r.

The earlier definition of ext is the special instance where X and G coincide and
where H is the identity type transformation Idκ0 := λA.A.

Given type constructors H,G and a term s : ∀Xκ1. X ≤H G → FX ≤H G,
we say that s preserves extensionality if ∀Xκ1∀hX≤HG. gext h → gext(s h) holds.

Lemma 3 (Extensionality of GMIt s). Assume type constructors H,G and a
term s : ∀Xκ1 . X ≤H G → FX ≤H G that preserves extensionality in the above
sense. Then GMIt s : μF ≤H G is extensional, i. e., gext(GMIt s) holds.

Proof. An easy application of μFInd .

Coming back to the representation substE of substitution on LamE from Sec-
tion 2.2, straightforward reasoning shows that ssubstE preserves extensionality,
hence Lemma 3 yields gext substE , which proves the first item in the list on
page 230. Its refinement, namely the second item in that list,

(∀aA. a ∈ EFV t → fa = ga) → substE f t = substE g t,

needs a direct proof by the induction principle μFInd , where the behaviour of
EFV on non-canonical elements plays an important role, but is nevertheless
elementary.

4 Naturality in LNGMIt

In order to establish an extension of the map fusion law of [15], a notion of
naturality for functionals h : X ≤H G has to be introduced. We first treat the
case where H is the identity Idκ0 . In this case, we omit the argument for H
from X ≤H G and only write X ≤ G. Assume a function h : X ⊆ G and map
terms mX : monX and mG : monG. Figure 2, which is strongly inspired by
[12, Figure 1], recalls naturality, i. e., h ∈ N (mX , mG) is displayed in the form
of a commuting diagram (where commutation means pointwise propositional
equality of the compositions) for any A, B and f : A → B. The diagonal marked
by h f in Figure 2 can then be defined by either (mG f)◦hA or hB ◦ (mX f), and
this yields a functional of type ∀A∀B. (A → B) → XA → GB, again called h in
[30, Exercise 5 on page 19]. Its type is more concisely expressed as X ≤ G. The
exercise in [30] (there expressed in pure category-theoretic terms) can be seen to
establish a naturality-like diagram of the functional h. Namely, also the diagram
in Figure 3 commutes for all A, B, C, f : A → B and g : B → C. Moreover, from
a functional h for which the second diagram commutes, one obtains in a unique
way a natural transformation h from X to G with hA being h idA. In category
theory, this is a simple exercise, but in our intensional setting, this allows to
define naturality for any X,G : κ1, mX : monX , mG : monG and h : X ≤ G.

Nested Datatypes with Generalized Mendler Iteration 235

A
f �� B X A

h A ��

h f

��

mX f

��

G A

mG f

��
X

h

⊆
�� G X B

h B �� G B

Fig. 2. Naturality of h : X ⊆ G

A
f �� B X A

h f ��

h(g◦f)

�������������������

mX f

��

G B

mG g

��

B
g �� C

X
h

≤
�� G X B

h g �� G C

Fig. 3. Naturality of h : X ≤ G

Definition 1 (Naturality of h : X ≤ G). Given X,G : κ1, mX : monX,
mG : monG and h : X ≤ G, the functional h is called natural with respect to
mX and mG if it satisfies the following two laws:

1. ∀A∀B∀C∀fA→B∀gB→C∀xXA.mG g (hA,B f x) = hA,C (g ◦ f)x
2. ∀A∀B∀C∀fA→B∀gB→C∀xXA. hB,C g (mX f x) = hA,C (g ◦ f)x

Mac Lane’s exercise [30] can readily be extended to the generality of X ≤H G,
with arbitrary H , and a function h : X ◦H ⊆ G, but with less pleasing diagrams.
We therefore content ourselves with an algebraic description of the parts we need
for LNGMIt .

Definition 2 (Naturality of h : X ≤H G). Given X,H,G : κ1 and h :
X ≤H G, define the two parts of naturality of h as follows: If mH : monH and
mG : monG, define the first part gnat1 mH mG h by

∀A∀B∀C∀fA→HB∀gB→C∀xXA.mG g (hA,B f x) = hA,C ((mH g) ◦ f)x .

If mX : monX, define the second part gnat2 mX h by

∀A∀B∀C∀fA→B∀gB→HC∀xXA. hB,C g (mX f x) = hA,C (g ◦ f)x .

Since Idκ0 has the map term λAλBλfA→BλxA. fx, Definition 1 is an instance
of Definition 2.

The backwards direction of Mac Lane’s exercise for our generalization is now
mostly covered by the following lemma.

236 R. Matthes

Lemma 4. Given X,H,G : κ1, mX : monX, mH : monH, mG : monG and
h : X ≤H G such that gnat1 mH mG h and gnat2 mX h hold, the function h⊆ :=
λAλxX(HA). hHA,A (λyHA. y)x : X ◦H ⊆ G is natural: h⊆ ∈ N (mX �mH , mG).
Here, mX � mH denotes the canonical map term for X ◦ H, obtained from mX

and mH .

Proof. Elementary.

Thus, finally, one can define and argue about functions of type (μF) ◦ H ⊆ G
through (GMIt s)⊆.

Lemma 5 (First part of naturality of GMIt s). Given H,G : κ1, map terms
mH : monH, mG : monG and a term s : ∀Xκ1. X ≤H G → FX ≤H G that
preserves extensionality. Assume further

∀Xκ1∀hX≤HG. E X → gext h → gnat1 mH mG h → gnat1 mH mG (s h).

Then, GMIt s satisfies the first part of naturality, i. e., gnat1 mH mG (GMIt s).

Proof. Induction with μFInd . The proof does not use the naturality of argument
j, provided by the context of the induction step. Preservation of extensionality
is used in order to apply Lemma 3 for the function representing the recursive
calls, because that function becomes the h of the main assumption on s.

As an instance of this lemma, one can prove the third item in the list on page 230
on properties of substE .

Theorem 1 (Second part of naturality of GMIt s—map fusion). Given
H,G : κ1 and a term s : ∀Xκ1 . X ≤H G → FX ≤H G that preserves extension-
ality. Assume further

∀Xκ1∀hX≤HG∀ef EX . gext h → gnat2 (m ef)h → gnat2 (m (FpE ef)) (s h) .

Then, GMIt s satisfies the second part of naturality, i. e., gnat2 mapμF (GMIt s).

Proof. Induction with μFInd . Again, we have to use Lemma 3 for the function

h := λAλBλfA→HB . (GMItH,G sAB f) ◦ jA

representing the recursive calls in the right-hand side of the rule for GMIt in the
definition of LNGMIt . Since we also have to provide a proof of gnat2 (m ef)h,
we crucially need naturality of j that comes with the induction principle.

Although the proof is quite simple (again, see the full proof in the Coq develop-
ment [17]), this is the main point of the complicated system LNGMIt with its
inductive-recursive nature: ensure naturality to be available for j inside the in-
ductive step of reasoning on μF . One might wonder whether this theorem could
be an instance of [14, Theorem 1], using the definition of GMIt in Lemma 1 for
impredicative κ0. This is not true, due to problems with extensionality: Proving
propositional equality between functions rarely works in intensional type theory
such as CIC, and the use of RanH G in the construction of Lemma 1 introduces
values of function type.

Nested Datatypes with Generalized Mendler Iteration 237

As an instance of this theorem, one can prove the fourth item in the list
on page 230 on properties of substE . The fifth item (the interchange law for
substitution that is one of the monad laws) can then be proven by the induction
principle μFInd , using extensionality and both parts of naturality (hence, the
items 1, 3 and 4 that are based on Lemma 3, Lemma 5 and Theorem 1) in the
case for the representation of lambda abstraction (recall that liftE is defined by
help of lamE).

5 Completion of the Case Study on Substitution

The last item on page 230 in the list of properties of substE can be proven by the
induction principle μFInd without any results about LamE , just with several
preparations about lists, also using naturality of EFV in the proof of the case
for the representation of lambda abstraction. Thus, that property list can be
considered as finished.

We are not yet fully satisfied: The last monad law is missing, namely

∀A∀tLamE A. substE varEA t = t.

Any proof attempt breaks due to the presence of non-canonical terms in LNGMIt .
We call any term of the form InCan t with t : F (μF)A a canonical term in μFA,
but since this notion is not recursively applied to the subterms, we cannot hope
to prove the above monad law for all the canonical terms in the family LamE
either.

The following is an ad hoc notion for our example. For the truly nested
datatype Bush of “bushes” with Bush A = 1 + A × Bush(Bush A), a similar
notion has been studied by the author in [14, Section 4.2], also introducing a
“canonization” function that transforms any bush into a hereditarily canonical
bush and that does not change hereditarily canonical bushes with respect to
propositional equality.

Definition 3 (Hereditarily canonical term). Define the notion of hered-
itarily canonical elements of the nested datatype LamE, the predicate can :
∀A.LamE A → Prop, inductively by the following four closure rules:

– ∀A∀aA. can (varE a)
– ∀A∀tLamE A

1 ∀tLamE A
2 . can t1 → can t2 → can(appE t1 t2)

– ∀A∀rLamE(option A). can r → can (absE r)
– ∀A∀eLamE(LamE A). can e → (∀tLamE A. t ∈ EFV e → can t) → can (flatE e)

This definition is strictly positive and, formally, infinitely branching. However,
there are always only finitely many t that satisfy t ∈ EFV e. System pCIC
does not need this latter information for having induction principles for can ,
and LNGMIt comprises pCIC, but this is not the part that is under study here.
Therefore, all proofs by induction on can are not considered to be of real interest
for this article. Except for the information which results are used in these proofs.

238 R. Matthes

Note once again the simultaneous inductive-recursive structure that is avoided
here: If only hereditarily canonical elements were to be considered from the
beginning, one would have to define their free variables simultaneously since the
last clause of the definition refers to them at a negative position.

5.1 Results for Hereditarily Canonical Terms

Using refined extensionality of substE (property number 2 in the list on page 230)
in the induction step for flatE e, induction on can provides the relativization of
the missing monad law to hereditarily canonical terms:

∀A∀tLamE A. can t → substE varEA t = t.

Renaming lamE preserves hereditary canonicity:

∀A∀B∀fA→B∀tLamE A. can t → can(lamE f t).

This is proven by induction on can , and the crucial flatE case needs the following
identification of free variables of lamE f t:

∀A∀B∀fA→B∀tLamE A∀bB. b ∈ EFV (lamE f t) → ∃aA. a ∈ EFV t ∧ b = fa,

which is nearly an immediate consequence of naturality of EFV .
Analogously, substE preserves hereditary canonicity:

∀A∀B∀fA→LamE B∀tLamE A.
(∀aA. a ∈ EFV t → can(fa)) → can t → can(substE f t).

Again, this is proven by induction on can , and again, the crucial case is with
flatE e, for which free variables of substE f t have to be identified, but this has
already been mentioned as a consequence of property number 6 in the list on
page 230.

As an immediate consequence of the last monad law, preservation of hereditary
canonicity by lamE and the second part of naturality of substE (item 4 of the
list, proven by map fusion), one can see lamE as a special instance of substE for
hereditarily canonical elements:

∀A∀B∀fA→B∀tLamE A. can t → lamE f t = substE (varEB ◦ f) t.

From this, evidently, we get the more perspicuous equation for substE f (flatE e),
discussed on page 229, but only for hereditarily canonical e and only with propo-
sitional equality:

∀A∀B∀fA→LamE B∀eLamE(LamE A). can e →
substE f (flatE e) = flatE (lamE (substE f) e).

5.2 Hereditarily Canonical Terms as a Nested Datatype

Define LamEC := λA. {t : LamE A | can t} : κ1. The set comprehension notation
stands for the inductively defined sig of Coq (definable within pCIC, hence

Nested Datatypes with Generalized Mendler Iteration 239

within LNGMIt) which is a strong sum in the sense that the first projection
π1 : LamEC ⊆ LamE yields the element t and the second projection the proof
of can t.

Thus, we encapsulate hereditary canonicity already in the family LamEC . We
will present LamEC as a truly nested datatype, but not one that comes as a μF
from LNGMIt .

It is quite trivial to define datatype constructors

varEC : ∀A.A → LamEC A,
appEC : ∀A.LamEC A → LamEC A → LamEC A,
absEC : ∀A.LamEC (option A) → LamEC A

from their analogues in LamE . For the construction of

flatEC : ∀A.LamEC (LamEC A) → LamEC A,

the problem is as follows: Assume e : LamEC (LamEC A). Then, its first projec-
tion, π1e, is of type LamE (LamEC A). Therefore, the first projection of flatEC e
has to be

t := flatE (lamE (π1)A (π1e)) : LamE A,

with the renaming with (π1)A : LamEC A → LamE A inside. Thanks to the
preservation of hereditary canonicity by lamE and the identification of the vari-
ables of renamed terms, canonicity of t can be established.

Since flatEC is doing something with its argument, we cannot think of LamEC
as being generated from the four datatype constructors. We see this more as a
semantical construction whose properties can be studied. However, there is still
the operational kernel available in the form of the definitional equality 2.

From preservation of hereditary canonicity by lamE and substE , one can easily
define lamEC : monLamEC and

substEC : ∀A∀B. (A → LamEC B) → LamEC A → LamEC B.

The list of free variables is obtained through ECFV : LamEC ⊆ List , defined
by composing EFV with π1, which is then also natural. Therefore, one can
immediately transfer the identification of free variables of lamE f t and substE f t
to lamEC and substEC .

In order to have “real” results, proof irrelevance has to be assumed for the
proofs of hereditary canonicity. From propositional proof irrelevance, as used in
Corollary 1, it immediately follows that π1 is injective:

∀A∀t1, t2 : LamEC A. π1 t1 = π1 t2 → t1 = t2 .

This is the only addition to LNGMIt that we adopt here. Then, all the properties
of the list in Section 2.2 can be transferred to substEC , the recursive description
(now only with propositional equality) of lamE can be carried over to lamEC
that makes LamEC an extensional functor, and also the results of Section 5.1
that were relativized to hereditarily canonical terms now hold unconditionally
for lamEC and substEC . Finally, a monad structure has been obtained. Once
again, all the proofs are to be found in the Coq scripts [17].

240 R. Matthes

6 Conclusions and Future Work

Recursive programming with Mendler-style iteration is able to cover intricate
nested datatypes with functions whose termination is far from being obvious.
But termination is not the only property of interest. A calculational style of
verification that is based on generic results such as naturality criteria is needed
on top of static analysis. The system LNGMIt and the earlier system LNMIt from
which it is derived are an attempt to combine the benefits from both paradigms:
the rich dependently-typed language secured by decidable type-checking and
termination guarantees on one side and the laws that are inspired from category
theory on the other side.

LNGMIt can prove naturality in many cases, with a notion of naturality that
encompasses map fusion. However, the system is heavily based on the unintuitive
non-canonical datatype constructor In which makes reasoning on paper some-
what laborious. This can be remedied by intensive use of computer aided proof
development. The ambient system for the development of the metatheory and
the case study is the Calculus of Inductive Constructions that is implemented
by the Coq system. Proving and programming can both be done interactively.
Therefore, LNGMIt , through its implementation in Coq, can effectively aid in
the construction of terminating programs on nested datatypes and to establish
their equational properties.

Certainly, the other laws in, e. g., [15] should be made available in our setting
as well. Clearly, not only (generalized) iteration should be available for pro-
grams on nested datatypes. The author experiments with primitive recursion in
Mendler style, but does not yet have termination guarantees [31].

An alternative to LNGMIt with its non-canonical elements could be a depend-
ently-typed approach from the very beginning. This could be done by indexing
the nested datatypes additionally over the natural numbers as with sized nested
datatypes [27] where the size corresponds to the number of iterations of the
datatype “functor” over the constantly empty family. But one could also try
to define functions directly for all powers of the nested datatype (suggested to
me by Nils Anders Danielsson) or even define all powers of it simultaneously
(suggested to me by Conor McBride). The author has presented preliminary
results at the TYPES 2004 meeting about yet another approach where the indices
are finite trees that branch according to the different arguments that appear in
the recursive equation for the nested datatype (based on ideas by Anton Setzer
and Peter Aczel).

References

1. Bird, R., Meertens, L.: Nested Datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,
vol. 1422, pp. 52–67. Springer, Heidelberg (1998)

2. Bird, R., Gibbons, J., Jones, G.: Program optimisation, naturally. In: Davies, J.,
Roscoe, B., Woodcock, J. (eds.) Millenial Perspectives in Computer Science, Pro-
ceedings of the 1999 Oxford-Microsoft Symp. in Honour of Professor Sir Anthony
Hoare, Palgrave (2000)

Nested Datatypes with Generalized Mendler Iteration 241

3. Hinze, R.: Efficient generalized folds. In: Jeuring, J. (ed.) Proceedings of the Second
Workshop on Generic Programming, WGP 2000, Ponte de Lima, Portugal (2000)

4. Bellegarde, F., Hook, J.: Substitution: A formal methods case study using monads
and transformations. Science of Computer Programming 23, 287–311 (1994)

5. Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. Journal of
Functional Programming 9(1), 77–91 (1999)

6. Altenkirch, T., Reus, B.: Monadic Presentations of Lambda Terms Using General-
ized Inductive Types. In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS,
vol. 1683, pp. 453–468. Springer, Heidelberg (1999)

7. Coq Development Team: The Coq Proof Assistant Reference Manual Version 8.1.
Project LogiCal, INRIA (2006), http://coq.inria.fr

8. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre
Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I
(1996)

9. Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

10. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1–2), 3–66 (2005)

11. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2), 200–222 (1999)

12. Abel, A., Matthes, R. (Co-)Iteration for Higher-Order Nested Datatypes. In: Geu-
vers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 1–20. Springer,
Heidelberg (2003)

13. Bird, R., de Moor, O.: Algebra of Programming. International Series in Computer
Science, vol. 100. Prentice-Hall, Englewood Cliffs (1997)

14. Matthes, R.: An induction principle for nested datatypes in intensional type theory.
Journal of Functional Programming (to appear, 2008)

15. Martin, C., Gibbons, J., Bayley, I.: Disciplined, efficient, generalised folds for nested
datatypes. Formal Aspects of Computing 16(1), 19–35 (2004)

16. Johann, P., Ghani, N.: Initial Algebra Semantics is enough! In: Ronchi Della Rocca,
S. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 207–222. Springer, Heidelberg (2007)

17. Matthes, R.: Coq development for Nested datatypes with generalized Mendler it-
eration: map fusion and the example of the representation of untyped lambda
calculus with explicit flattening (January 2008),
http://www.irit.fr/∼Ralph.Matthes/Coq/MapFusion/

18. Matthes, R.: Coq development for An induction principle for nested datatypes in
intensional type theory (January 2008),
http://www.irit.fr/∼Ralph.Matthes/Coq/InductionNested/

19. Mendler, N.P.: Recursive types and type constraints in second-order lambda calcu-
lus. In: Proceedings of the Second Annual IEEE Symposium on Logic in Computer
Science, Ithaca, pp. 30–36. IEEE Computer Society Press (1987)

20. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termi-
nation of recursive definitions. Mathematical Structures in Computer Science 14,
97–141 (2004)

21. Uustalu, T., Vene, V.: A cube of proof systems for the intuitionistic predicate
μ-, ν-logic. In: Haveraaen, M., Owe, O. (eds.) Selected Papers of the 8th Nordic
Workshop on Programming Theory (NWPT 1996). Research Reports, Department
of Informatics, University of Oslo, vol. 248, pp. 237–246 (May 1997)

http://coq.inria.fr
http://www.irit.fr/~Ralph.Matthes/Coq/MapFusion/
http://www.irit.fr/~Ralph.Matthes/Coq/InductionNested/

242 R. Matthes

22. Matthes, R.: Naive reduktionsfreie Normalisierung (translated to English: naive
reduction-free normalization). Slides of talk on December 19, 1996, given at the
Bern Munich meeting on proof theory and computer science in Munich, available
at the author’s homepage (December 1996)

23. Hofmann, M.: Extensional concepts in intensional type theory. PhD thesis, Uni-
versity of Edinburgh, Available as report ECS-LFCS-95-327 (1995)

24. Altenkirch, T.: Extensional equality in intensional type theory. In: 14th Annual
IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 412–420. IEEE
Computer Society, Los Alamitos (1999)

25. Oury, N.: Extensionality in the Calculus of Constructions. In: Hurd, J., Melham, T.
(eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 278–293. Springer, Heidelberg (2005)

26. Wadler, P.: Theorems for free? In: Proceedings of the fourth international confer-
ence on functional programming languages and computer architecture, Imperial
College, pp. 347–359. ACM Press, London (1989)

27. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Dok-
torarbeit (PhD thesis), LMU München (2006)

28. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. The Journal of Symbolic Logic 65(2), 525–549 (2000)

29. Capretta, V.: A polymorphic representation of induction-recursion. Note of 9 pages
available on the author’s web page (a second 15 pages version of May 2005 has been
seen by the present author) (March 2004)

30. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts
in Mathematics, vol. 5. Springer, Heidelberg (1998)

31. Matthes, R.: Recursion on nested datatypes in dependent type theory. In: Beck-
mann, A., Dimitracopoulos, C., Löwe, B. (eds.) Logic and Theory of Algorithms.
LNCS, vol. 5028. Springer, Heidelberg (to appear, 2008)

Probabilistic Choice in Refinement Algebra

Larissa Meinicke1 and Ian J. Hayes2,�

1 Department of Computer Science,
Åbo Akademi, Finland

2 School of Information Technology and Electrical Engineering,
The University of Queensland, Australia

larissa.meinicke@abo.fi, ianh@itee.uq.edu.au

Abstract. The term refinement algebra refers to a set of abstract alge-
bras, similar to Kleene algebra with tests, that are suitable for reason-
ing about programs in a total-correctness framework. Abstract algebraic
reasoning also works well when probabilistic programs are concerned,
and a general refinement algebra that is suitable for such programs has
been defined previously. That refinement algebra does not contain fea-
tures that are specific to probabilistic programs. For instance, it does
not include a probabilistic choice operator, or probabilistic assertions
and guards (tests), which may be used to represent correctness proper-
ties for probabilistic programs. In this paper we investigate how these
features may be included in a refinement algebra. That is, we propose a
new refinement algebra in which probabilistic choice, and probabilistic
guards and assertions may be expressed. Two operators for modelling
probabilistic enabledness and termination are also introduced.

1 Introduction

Abstract algebras, for example Kleene algebra with tests [5], have been shown to
be useful tools for reasoning about programs. They provide us with a convenient
way to describe similarities and dissimilarities between different program models,
and to verify transformation theorems in a model-independent way, which is
potentially simple to automate.

The term refinement algebra refers to a set of abstract algebras that are
suitable for reasoning about programs in a total-correctness framework. These
algebras are similar to Kleene algebra (the algebra of regular languages), and
its variations, which may be used for reasoning about the partial-correctness of
programs [5].

Perhaps the best known refinement algebra is the demonic refinement alge-
bra of von Wright [15,16]. The demonic refinement algebra is equipped with
operators which may be used to represent sequential composition, demonic non-
deterministic choice, and two kinds of iteration: weak iteration, which iterates its
� This research was supported by Australian Research Council (ARC) Discovery Grant

DP0558408, Analysing and generating fault-tolerant real-time systems. We would like
to thank Kim Solin for feedback on earlier drafts of this paper, and the anonymous
reviewers for their thoughtful and helpful comments.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 243–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 L. Meinicke and I.J. Hayes

argument any finite number of times, and a strong iteration, which may iterate
any finite or possibly infinite number of times. Like Kleene algebra, guards (or
tests) may be defined in this refinement algebra, as can assertions. These ele-
ments represent predicates at the level of programs. Among other things, they
may be used to define conditional statements, and to reason algebraically about
correctness properties. For example, if [g] represents a guard, where g is a predi-
cate with complement ¬g, then a conditional statement can be defined in terms
of guards and nondeterministic choice (�) by

if g then S else T fi � [g];S � [¬g];T. (1)

Also, the equivalence

[False] = [p];S; [¬g]

states that from an initial state in which predicate p holds, program S must
terminate and establish post-condition g [15]. Enabledness (domain) and ter-
mination operators have also been defined and explored in extensions to the
algebra [14].

The demonic refinement algebra is sound with respect to program models
like the conjunctive predicate transformers, in which only one choice operator
is expressible. However, it is not sound with respect to program models that
also allow for another form of choice, such as angelic, or discrete probabilistic
choice: for these models a weaker axiomatisation is required. In [16] von Wright
proposed a relaxation of demonic refinement algebra, the general refinement al-
gebra, for which the monotonic predicate transformers form a model. In further
work, Meinicke and Solin explored (and extended) this algebra and showed that
it was also sound with respect to two probabilistic program models: one in which
discrete probabilistic choice and demonic nondeterministic choice coexist, and
another in which discrete probabilistic, demonic and angelic nondeterministic
choice can be expressed [9]. As well as being a useful way to identify commonali-
ties between these different program models, the general refinement algebra was
shown to be capable of deriving a number of useful transformation theorems for
probabilistic – and angelic – programs.

Although it is possible to derive a number of useful transformation theorems
for probabilistic programs in the general refinement algebra, it doesn’t facilitate
reasoning about some properties which are specific to probabilistic programs.
For example, it contains neither a probabilistic choice operator, nor generalised
(probabilistic) guards and assertions, which may be used to represent correct-
ness properties for probabilistic programs. It is the purpose of this paper to
propose and investigate extensions to the general refinement algebra in which
discrete probabilistic choice, and probabilistic guards and assertions are treated
abstractly.

We take a novel approach in the definition of our new algebras. Instead of in-
troducing a probabilistic choice operator in the signature, we introduce a more
general plus operator (“+”), which we then use to define probabilistic choice.
Our algebra is equipped with both non-probabilistic and probabilistic guards

Probabilistic Choice in Refinement Algebra 245

and assertions, as well as probabilistic enabledness and termination operators.
Probabilistic assertions are used in conjunction with the plus operator to define
probabilistic choice, in much the same way that guards are used in conjunction
with nondeterministic choice to define conditional statements in the existing re-
finement algebras (see (1)). In the standard refinement calculus an assertion,
{p}, is defined in terms of a predicate p over the state space. Probabilistic as-
sertions generalise this so that p is a mapping from the state space to the closed
real interval [0..1]. Probabilistic choice is then defined using the plus operator as

S p⊕ T � {p};S + {1 − p};T.

This provides us with a simple notation for expressing multi-way probabilis-
tic choices. For example, a three-way probabilistic choice may be represented
symmetrically by { 1

3};S + { 1
3};T + { 1

3};U.
In Sect. 2, we outline the probabilistic program model we use to motivate our

refinement algebra extensions. Then we specify the general refinement algebra
(Sect. 3) and propose our new extensions for a probabilistic refinement algebra
(Sect. 4). In Sect. 5 we introduce both probabilistic and non-probabilistic asser-
tions and guards into the new algebras and we show how probabilistic choice
may be defined in terms of the new operator, “+”, and probabilistic assertions.
Algebraic properties of the probabilistic choice operator and probabilistic loops
are then described in Sect. 6, and in Sect. 7 we show how probabilistic guards and
assertions can be used to express correctness conditions. Sect. 8 then discusses
the probabilistic enabledness and termination operators, and some observations
about the algebras are made in Sect. 9.

2 Probabilistic Model

We use one-bounded expectation transformers [10,11] to represent probabilis-
tic programs using a weakest expectation semantics. Expectation transform-
ers [6,10,12] may be seen as a generalisation of predicate transformers [2,3] which
may be used to describe the semantics of non-probabilistic programs. We use
them here in favour of a relational model because, like predicate transformers,
they are more expressive, elegant and simple to reason with.

First we briefly define the one-bounded expectations and expectation trans-
formers, and then the semantics of the commands are defined. Last we describe
the healthiness conditions used to classify interesting subsets of the one-bounded
expectation transformers.

2.1 Expectations and Expectation Transformers

The set of expectations on a state space Σ, EΣ � Σ → R≥0, are a generali-
sation of the set of predicates on Σ, PΣ � Σ → {0, 1}; and the one-bounded
expectations, E1Σ � Σ → [0..1], are the set of expectations on Σ which are
bounded above by one. The operator used to order expectations, ≤, along with
some other basic operators we use throughout the paper are defined in Fig. 1.

246 L. Meinicke and I.J. Hayes

Let φ and ψ be of type EΣ; φ1 be of type E1Σ; p and q be of type PΣ; c be a
constant of type R≥0; and r be a probability in [0..1]. When applied to real numbers,
� is the minimum operator (meet), � is the maximum operator (join), and × denotes
multiplication. For a probability r ∈ [0..1], we often write ¬r to mean 1 − r.

φ ≤ ψ � (∀σ ∈ Σ • φ.σ ≤ ψ.σ) p ⇒ q � p ≤ q

φ � ψ � (λσ ∈ Σ • φ.σ � ψ.σ) p ∧ q � p � q

φ � ψ � (λσ ∈ Σ • φ.σ � ψ.σ) p ∨ q � p � q

φ× ψ � (λσ ∈ Σ • φ.σ × ψ.σ) True � (λσ ∈ Σ • 1)

φ + ψ � (λσ ∈ Σ • φ.σ + ψ.σ) False � (λσ ∈ Σ • 0)

¬φ1 � (λσ ∈ Σ • 1− φ1.σ)

c ∗ φ � (λσ ∈ Σ • c× φ.σ)

φ� c � (λσ ∈ Σ • (φ.σ − c) � 0)

φ r⊕ ψ � r ∗ φ + (1− r) ∗ ψ

Fig. 1. Expectation notation

Given a fixed state space Σ, a one-bounded expectation transformer on Σ
is simply a function from the set of one-bounded expectations on Σ to the
set of one-bounded expectations on Σ. Like predicate transformers, expectation
transformers are ordered with respect to the underlying order on expectations.
That is, for S, T : E1Σ → E1Σ, S - T � (∀φ ∈ E1Σ • S.φ ≤ T.φ).

2.2 Commands

In Fig. 2 we present the weakest-expectation semantics [6,12] of some basic op-
erators and commands. Informally, the weakest expectation of a command S to
achieve a post-expectation φ from an initial state σ, S.φ.σ, represents the least
mean value of φ (a random variable) that may be observed by executing S (an
experiment) from σ.

Let φ, ψ ∈ E1Σ; S, T : E1Σ → E1Σ; x be a variable in state space Σ and E be an
expression on Σ.

abort.φ � False (S � T).φ � S.φ � T.φ

magic.φ � True (S � T).φ � S.φ � T.φ

skip.φ � φ (S; T).φ � S.(T.φ)

{ψ}.φ � ψ × φ S∗.φ � (νX • S; X � skip).φ

[ψ].φ � (¬ψ) × True + ψ × φ Sω.φ � (μX • S; X � skip).φ

(x := E).φ � (λσ ∈ Σ • φ.(σ[x\E.σ])) S� .φ � (μX • S; X + skip).φ

(S + T).φ � (S.φ + T.φ) � True S‡.φ � (νX • S; X + skip).φ

(S ψ⊕ T).φ � ({ψ}; S + {¬ψ}; T).φ

Fig. 2. Weakest expectation semantics of commands

Probabilistic Choice in Refinement Algebra 247

The least mean value of any φ that may be observed by executing the least
program abort from some initial state σ is 0. Intuitively, this is because the
experiment abort may fail to terminate in any state, and so the least mean value
of the random variable φ – recorded after a large number of trials of abort –
is 0. The greatest program magic is not implementable1, and therefore has no
intuitive program interpretation: the least mean value of any φ which may be
observed by executing magic from σ is, miraculously, one. The program skip,
which does not modify the state in any way, simply produces a pre-expectation
which is the same as any given post-expectation.

Standard guards and assertions are generalised to probabilistic guards and
assertions in the model. Given a one-bounded expectation φ, probabilistic asser-
tion {φ} skips with probability φ.σ from some initial state σ, and aborts with
probability ¬(φ.σ). Similarly, probabilistic guard [φ] skips with probability φ.σ
from σ and performs magic with probability ¬(φ.σ). These commands are novel.
Together with a new binary operator, +, probabilistic assertions may be used to
define the discrete probabilistic choice operator ⊕. In our probabilistic algebras
we use this observation to define probabilistic choice abstract-algebraically with-
out explicitly referring to the real numbers, or real-valued functions. Real-valued
functions (where the real-values are bounded between zero and one) are embed-
ded in our carrier set as probabilistic assertions, in the same way that predicates
are embedded as assertions in the existing refinement algebras. These proba-
bilistic assertions are then used in conjunction with the plus operator, which is
included in the signature of the algebra, to represent probabilistic choice.

In addition to discrete probabilistic choice, demonic nondeterministic choice,
�, and angelic nondeterministic choice, 	, are defined, as are sequential compo-
sition “;”, and assignment.

The iterative constructs ∗, ω, � and ‡ are defined using greatest (ν) and least
(μ) fixpoints. They are discussed in detail later in the paper. By the Knaster-
Tarski Theorem, these statements are well defined since the one-bounded ex-
pectation transformers form a complete lattice with respect to their refinement
ordering, -.

The iteration operators are assigned highest precedence, followed by sequential
composition, “;”, and then with equal precedence plus, +, demonic, �, angelic, 	,
and probabilistic choice, ⊕. Ambiguity between the choice operators is resolved
by bracketing.

2.3 Healthiness Conditions

Like predicate transformers, the set of one-bounded expectation transformers is
very large and expressive (allowing for the expression of programs which may
have no obvious real-world interpretation), and so we find it necessary to define
useful subsets of the transformers using certain healthiness conditions [6].

In our earlier work (e.g., [7,9]) we were concerned with two main classes
of the one-bounded expectation transformers: the nondeterministic and the

1 Although it is useful for reasoning about implementable programs!

248 L. Meinicke and I.J. Hayes

Let S : E1Σ → E1Σ; β1, β2 ∈ E1Σ; p be a probability in [0..1]; c and c′ be constants
such that 0 ≤ c, c′ and c− c′ ≤ 1; and B and B′ be non-empty directed and codirected
sets respectively, of expectations of type E1Σ. A set Y is directed with respect to an
ordering ≤, iff (∀y1, y2 ∈ Y • (∃y3 ∈ Y • y1 ≤ y3 ∧ y2 ≤ y3); and it is codirected iff
(∀y1, y2 ∈ Y • (∃y3 ∈ Y • y3 ≤ y1 ∧ y3 ≤ y2).

β1 ≤ β2 ⇒ S.β1 ≤ S.β2 (monotonicity)

c ∗ S.β1 � c′ ≤ S.(c ∗ β1 � c′) (semi-sublinearity)

c ∗ S.β1 ≤ S.(c ∗ β1) (sub-scaling)

S.β1 � c′ ≤ S.(β1 � c′) (subtraction)

S.β1 p⊕ S.β2 = S.(β1 p⊕ β2) (⊕-distributivity)

S.β1 p⊕ S.β2 ≤ S.(β1 p⊕ β2) (⊕-subdistributivity)

S.β1 � S.β2 = S.(β1 � β2) (conjunctivity)

(S.(�β ∈ B • β) = (�β ∈ B • S.β)) (semi-continuity)

(S.(�β ∈ B′ • β) = (�β ∈ B′ • S.β)) (semi-cocontinuity)

Fig. 3. Healthiness conditions for one-bounded expectation transformers

dually nondeterministic expectation transformers. These sets are the probabilis-
tic analog of the (finitely) conjunctive and the monotonic predicate transformers,
respectively.

The nondeterministic one-bounded expectation transformers are those which
satisfy monotonicity, semi-sublinearity and ⊕-subdistributivity (Fig. 3) [10]. For
finite state spaces, the nondeterministic one-bounded expectation transformers
uniquely characterise a relational model for probabilistic programs, the Laming-
ton relational model [10]: a model which is capable of expressing programs that
may include discrete probabilistic choices and demonic nondeterministic choices.
The set of nondeterministic transformers contains the primitive commands in
Fig. 2 and is closed under the operators “;”, ⊕, �, ∗ and ω.

The dually nondeterministic one-bounded expectation transformers are those
which satisfy monotonicity and semi-sublinearity alone [7]. This set is capable of
representing probabilistic programs which may include both angelic and demonic
choices2, in addition to discrete probabilistic choice. The set is closed under all
the commands in Fig. 2, other than +, and the two iteration operators that are
defined using plus: � and ‡.

Neither the nondeterministic or dually nondeterministic transformers are closed
under the more exotic plus operator – although they are closed under probabilistic
choice – and so cannot be taken as carrier sets of an algebra for which the plus
operator is defined. Take for example nondeterministic expectation transformer
skip. We have that skip + skip does not satisfy semi-sublinearity:

2 Which is why it is referred to as dually nondeterministic.

Probabilistic Choice in Refinement Algebra 249

(skip + skip).(1 ∗ (λσ • 1
2) � 1

2)
= {expectation definitions}

(skip + skip).False
= {definition of plus}

skip.False + skip.False
= {definition of skip}

False
� (λσ • 1

2)
= {definition of skip and expectations}

(skip.(λσ • 1
2) + skip.(λσ • 1

2)) � 1
2

= {definition of plus}
1 ∗ (skip + skip).(λσ • 1

2) � 1
2 .

For this reason, we are mainly interested in the two slightly more general sets of
one-bounded expectation transformers that are closed under plus, and the iter-
ation constructs which contain this operator, � and ‡. These are the nondeter-
ministic+ and the dually nondeterministic+ one-bounded expectation transform-
ers, respectively. The nondeterministic+ transformers satisfy monotonicity, ⊕-
subdistributivity, and sub-scaling (which is actually implied by ⊕-subdistribut-
ivity), while the dually nondeterministic+ transformers satisfy monotonicity and
sub-scaling alone. We can see that the part of semi-sublinearity that is lost is a
property called subtraction.

Healthiness Conditions, Algebraically. The healthiness conditions used to
describe expectation transformers are usually expressed at the level of expecta-
tions (as they appear in Fig. 3), however, we observe that they may be equiva-
lently expressed in a point-free form, as algebraic properties.3 For example, the
following proposition holds.

Proposition 1. A one-bounded expectation transformer S is ⊕-distributive if
and only if for all constant one-bounded expectations c, and one-bounded trans-
formers R and T ,

S;R c⊕ S;T = S; (R c⊕ T). (2)

Note that c is required to be a constant expectation since S may modify the
state.

Aside: In order to prove that (2) holds for all one-bounded expectations R and
T , it is sufficient to verify that it holds for all nondeterministic one-bounded
expectation transformers R and T .

Proof. It is simple to verify that the healthiness condition implies the point-
free property (McIver and Morgan make this observation in [6]), so we verify
implication in the other direction.
3 In [13] Solin showed that monotonicity and conjunctivity may be characterised in a

point-free way for the predicate transformers.

250 L. Meinicke and I.J. Hayes

For any one-bounded expectation transformer S on state space Σ, the following give
the (algebraic) conditions for S to satisfy the corresponding healthiness properties.
The conditions must hold for all constant one-bounded expectations, c; one-bounded
expectation transformers, R and T ; and non-empty directed, and co-directed sets of
one-bounded expectation transformers, X and X ′.
Aside: In order to prove that the first five properties hold for all R and T it is sufficient
to verify that they hold for all nondeterministic one-bounded transformers R, T .

S; (R � T) ! S; R � S; T (monotonicity)

{c}; S ! S; {c} (sub-scaling)

S; R c⊕ S; T = S; (R c⊕ T) (⊕-distributivity)

S; R c⊕ S; T ! S; (R c⊕ T) (⊕-subdistributivity)

S; R � S; T = S; (R � T) (conjunctivity)

S; (�Ti ∈ X • Ti) = (�Ti ∈ X • S; Ti) (semi-continuity)

S; (�Ti ∈ X ′ • Ti) = (�Ti ∈ X ′ • S; Ti) (semi-cocontinuity)

Fig. 4. Equivalent algebraic formulation of healthiness conditions

Take any expectation transformer S, and constant probability function P
which has value p everywhere, and expectations φ and ψ. Let R and T be one-
bounded expectation transformers such that R.θ = φ and T.θ = ψ, for some
expectation θ. We have that if S satisfies (2), then

S.(φ p⊕ ψ)
= {definition of R, T and θ}

S.(R.θ p⊕ T.θ)
= {definition of probabilistic choice and sequential composition}

(S; (R P⊕ T)).θ
= {assumption (2) on S}

(S;R P⊕ S;T).θ
= {definition of probabilistic choice and sequential composition}

S.(R.θ) p⊕ S.(T.θ)
= {definition of R and T and θ}

S.φ p⊕ S.ψ.

To verify that the aside holds, observe that for any given φ and ψ, R, T and
θ can always be chosen such that R and T are nondeterministic transformers.
For example we have that

R � {(λσ ∈ Σ • 1 × (φ.σ ≥ ψ.σ ∧ φ.σ �= 0) + φ.σ
ψ.σ × (φ.σ < ψ.σ))}

T � {(λσ ∈ Σ • ψ.σ
φ.σ × (φ.σ ≥ ψ.σ ∧ φ.σ �= 0) + 1 × (φ.σ < ψ.σ))}

θ � (λσ ∈ Σ • φ.σ × (φ.σ ≥ ψ.σ ∧ φ.σ �= 0) + ψ.σ × (φ.σ < ψ.σ))

Probabilistic Choice in Refinement Algebra 251

satisfy the requirement that R.θ = φ and T.θ = ψ. For example, T.θ equals

(λσ ∈ Σ • ψ.σ
φ.σ × (φ.σ ≥ ψ.σ ∧ φ.σ �= 0) + 1 × (φ.σ < ψ.σ))×

(λσ ∈ Σ • φ.σ × (φ.σ ≥ ψ.σ ∧ φ.σ �= 0) + ψ.σ × (φ.σ < ψ.σ))
= (λσ ∈ Σ • ψ.σ

φ.σ × φ.σ × (φ.σ ≥ ψ.σ ∧ φ.σ �= 0) + 1 × ψ.σ × (φ.σ < ψ.σ))
= ψ

(Recall that probabilistic assertions are nondeterministic transformers.) �	

In Fig. 4 we list the equivalent algebraic form of some of the other healthiness
conditions.4 These may be verified in a similar way to Prop. 1. We will see how
these algebraic conditions play an important role in the abstract algebras.

3 General Refinement Algebra

In this section we provide a brief introduction to von Wright’s general refinement
algebra [16]. In the coming sections we then propose probabilistic extensions to
this algebra. Like the demonic refinement algebra [15], the general refinement
algebra has the following signature

(; ,�,∗ ,ω ,4,⊥, 1),

where, in a program interpretation, constants 4, ⊥, and 1 may be taken to
represent the greatest program, magic, the least program, abort and the pro-
gram which performs “no action”, skip; “;” may be taken to represent sequential
composition; � represents demonic nondeterministic choice; x∗ is the program
(νX • x;X � 1), which iterates its argument x any finite number of times; and
xω, (μX • x;X � 1), is a recursive statement which executes its argument any
finite or infinite number of times.5

Aptly named, the general refinement algebra is very general indeed, and cap-
tures an interesting set of similarities between a large number of different pro-
gram models (with a total-correctness semantics). For instance, it is sound with
respect to the set of monotonic predicate transformers (where the operators are
given their usual weakest-precondition semantics) [16], as well as both the sets
of nondeterministic and dually nondeterministic one-bounded expectation trans-
formers [9]. It is also sound with respect to the sets of nondeterministic+ and
dually nondeterministic+ expectation transformers.

The general refinement algebra is a generalisation of the demonic refinement
algebra (dRA). A discussion of the axiomatisation and the differences between

4 Note that we have not given subtraction a point-free representation, since this would
require the definition of a subtraction operator, (S � T).φ � (S.φ − T.φ) � False.
Given such a definition, we could then give the equivalent form as S � [¬c]; abort !
S; (skip � [¬c]; abort).

5 As noted by von Wright [15], the constant ⊥ could have been removed from the
signature, and defined syntactically as 1ω. We include it explicitly in the signature
to simplify the presentation.

252 L. Meinicke and I.J. Hayes

these two algebras can be found in [16]6 and [9]. As a notational shorthand,
we omit “;” and use juxtaposition to represent sequential composition when no
confusion can arise.

Definition 1. A general refinement algebra (gRA) is a structure over the sig-
nature (; ,�,∗ ,ω ,4,⊥, 1) satisfying the following axioms and rules

x � (y � z) = (x � y) � z, (3)
x � y = y � x, (4)
x � 4 = x, (5)
x � ⊥ = ⊥, (6)
x � x = x, (7)
x(yz) = (xy)z, (8)

1x = x = x1, (9)
4x = 4, (10)
⊥x = ⊥, (11)

x(y � z) - xy � xz, (12)
(x � y)z = xz � yz, (13)

x∗ = 1 � xx∗, (14)
x - yx � z ⇒ x - y∗z, (15)

xω = 1 � xxω and (16)
yx � z - x ⇒ yωz - x, (17)

where the order - is defined by x - y � x � y = x. �	

It is easy to prove that all the operators are monotonic in all their arguments
with respect to - and that - is a partial order [9].

For some program models satisfying semi-cocontinuity7, an extra weak itera-
tion induction axiom

x - x(y � 1) � z ⇒ x - zy∗, (18)

may be shown to be sound [9]. (For example, we do have that the nondetermin-
istic+ and dually nondeterministic+ expectation transformers on finite state
spaces satisfy this property.) We refer to a gRA extended with axiom (18) as a
continuous general refinement algebra (cont. gRA).

Healthiness Conditions. It can be seen that the healthiness condition, mono-
tonicity, is included in the axiomatisation of gRA (axiom (12)). Conjunctivity is
not included – it does not hold for probabilistic programs – but can be used to

6 Note that a typographical error appears in [16]: the distributivity axioms (12) and
(13) are mistakenly written as x(y � z) = xy � xz and (x � y)z ! xz � yz.

7 See Fig. 4.

Probabilistic Choice in Refinement Algebra 253

identify useful subsets of the carrier set. An element x is said to be conjunctive
if it satisfies

x(y � z) = xy � xz (19)

for all y and z in the carrier set [9,13].

4 Probabilistic Refinement Algebra

The probabilistic algebras we now define extend the signature of gRA with three
extra operators: +, � and ‡.

The binary operator + may be given a probabilistic program interpretation
as our + operator from Sect. 2. This (slightly exotic) operator shall be used to
define probabilistic choice. Unary operators � and ‡ are our weak and strong
plus iteration operators, respectively, where

x� � (μX • x;X + 1) and x‡ � (νX • x;X + 1)

in the model. These iteration operators are the “plus” equivalent of the angelic it-
eration operators included in Solin’s angelic and demonic refinement algebra [13]:
an extension of gRA in which angelic choice is axiomatised. They are new (as
are the probabilistic while-loops below).

Like the plus operator, the plus iteration operators have a useful interpretation
in the model when they are restricted to iterations of a particular form. For
any probabilistic assertion {φ} and expectation transformer S, we have that
({φ};S)�; {¬φ} and ({φ};S)‡; {¬φ} are probabilistic while-loops. For example,
using unfolding, we can see that program U � ({ 3

4};S)�; { 1
4}

U = ({ 3
4};S)�; { 1

4}
= (1 + { 3

4};S; ({ 3
4};S)�); { 1

4}
= { 1

4} + { 3
4};S; ({ 3

4};S)�; { 1
4}

= { 1
4} + { 3

4};S;U

is a loop which, on each iteration, has a probability of 1
4 of ceasing execution and

a probability of 3
4 of performing S and continuing execution. In the expectation

transformer model we have that infinite iterations of the loop body in x� are
associated with aborting behaviour, but infinite iterations of the loop body of
x‡ are associated with magical behaviour. For example, using induction we can
show ({True})�; {False} = abort and ({True})‡; {False} = magic.

First we introduce a very general extension to gRA, one which is sound with re-
spect to both the nondeterministic+ and dually nondeterministic+ one-bounded
expectation transformer models from Sect. 2. After this we extend the algebra
with assertions (probabilistic, constant and standard).

Definition 2. A general probabilistic refinement algebra (gpRA) is a structure
over the signature

(; ,�,+,∗ ,� ,ω ,‡ ,4,⊥, 1),

254 L. Meinicke and I.J. Hayes

such that (; ,�,∗ ,ω ,4,⊥, 1) is a gRA, and

x + (y + z) = (x + y) + z, (20)
x + y = y + x, (21)
x + 4 = 4 (22)
x + ⊥ = x (23)

x � (y + z) - (x � y) + (x � z) (24)
x + (y � z) = (x + y) � (x + z) (25)

(x + y)z = xz + yz, (26)
x� = 1 + xx�, (27)

yx + z - x ⇒ y�z - x, (28)
x‡ = 1 + xx‡ and (29)

x - yx + z ⇒ x - y‡z, (30)

hold. �	

As for the other operators from gRA, operators +, � and ‡ may easily be shown
to be monotonic in their arguments with respect to the refinement ordering -.
For example, since the operator + is commutative (21), to verify monotonicity
of + it is sufficient to show that

x + y - x + z
⇔ {refinement ordering}

(x + y) � (x + z) = x + y
⇔ {axiom (25)}

x + (y � z) = x + y
⇐ {refinement ordering}

y - z.

A comparison to the axiomatisation of angelic choice in the angelic and de-
monic refinement algebra (adRA) [14] reveals expected similarities: the plus op-
erator satisfies all of the axioms of angelic choice () other than:

x 	 x = x,

x(y 	 z) 5 xy 	 xz and
x � (y 	 z) 5 (x � y) 	 (x � z).

Operators � and ‡ also share the same axiomatisation as angelic iteration oper-
ators φ and † from adRA.

5 Probabilistic Refinement Algebra with Assertions

Guards (sometimes known as tests) and assertions have been defined in the re-
finement algebras (see for example [9,15]). In gpRA we not only define guards

Probabilistic Choice in Refinement Algebra 255

and assertions, but probabilistic guards and assertions, and also constant proba-
bilistic guards and assertions. We start by adding assertions; then for every prob-
abilistic assertion, a, we can define a corresponding guard a� by a� � 1 a⊕ 4,
which behaves like 1 with probability a and like 4 with probability ā.

Definition 3. A general probabilistic refinement algebra with assertions (gpRAa)
is a structure

(X,PA,CA,A, ,̄ ; ,�,+,∗ ,� ,ω ,‡ ,4,⊥, 1),

such that (X, ; ,�,+,∗ ,� ,ω ,‡ ,4,⊥, 1) is a gpRA, and the set of probabilistic
assertions, PA ⊆ X, satisfies the following properties. Every element a of PA
has a unique complement ā ∈ PA satisfying a + ā = 1. PA is closed under
nondeterministic choice, sequential composition, and probabilistic choice, where,
given any elements x, y ∈ X, a ∈ PA, a statement of the form

x a⊕ y � ax + āy

represents a probabilistic choice statement. Elements of PA commute over se-
quential composition, are conjunctive, and distribute over probabilistic choices.
That is, we require that for all a, b ∈ PA, and x, y ∈ X, ab = ba, a(x � y) =
ax � ay and a(x b⊕ y) = ax b⊕ ay. For all a, b ∈ PA, we also require
a4 = b4 ⇒ a = b, and a� � b� = (ā � b̄)�.

The set of constant assertions, {1,⊥} ⊆ CA ⊆ PA, is closed under nondeter-
ministic choice, sequential composition, complement, and constant probabilistic
choice, where a constant probabilistic choice, x c⊕ y is a probabilistic choice
where c ∈ CA. For each element c of CA, and x ∈ X, cx - xc (cf. sub-scaling).

The (standard) assertions {1,⊥} ⊆ A ⊆ PA are closed under nondeterministic
choice, sequential composition and complement. For any two assertions a and a′

in A we require aā = āa = ⊥ and aa′ = a � a′. �	

For every probabilistic assertion a ∈ PA, we define its corresponding probabilistic
guard a� to be 1 a⊕ 4, and we refer to the sets of probabilistic, constant, and
standard guards as PG, CG and G, respectively. The complement of a guard
g = a� is defined by g̃ � (ā)�, (i.e., g̃ = 1 ā⊕ 4).8

In the expectation transformer model, standard guards and assertions corre-
spond to the guards and assertions which are specified using predicates, while
probabilistic guards and assertions are the more general commands which are de-
fined using expectations. Similarly constant probabilistic assertions and guards
are those probabilistic guards and assertions, respectively, defined using constant
probability functions. The complement of a probabilistic assertion {φ}, is simply
{¬φ}, and {φ}� = [φ].

A number of useful properties of the three different sets of guards may be
derived from the definition of the algebra. In particular, the set of probabilistic
guards PG satisfies the following proposition.
8 We use different symbols to represent guard and assertion complement, since 1 is

both a guard and an assertion, but 1̄ = ⊥ 	= # = 1̃ unless we have a one-point
model.

256 L. Meinicke and I.J. Hayes

Proposition 2. PG is closed under probabilistic choice, nondeterministic choice,
complement, and sequential composition. Elements of PG commute over sequen-
tial composition, are conjunctive, and distribute over probabilistic choices. For all
g, p ∈ PG, g⊥ = p⊥ ⇒ g = p.

It may be shown that the set of constant guards, CG ⊆ PG, is closed under con-
stant probabilistic choice, nondeterministic choice, complement, and sequential
composition; and the set of standard guards, G ⊆ PG, forms a Boolean algebra.

Proposition 3. (G,�, ; , ˜ , 1,4) is a Boolean algebra.

Note that probabilistic assertion axiom a� � b� = (ā � b̄)� is useful (if not neces-
sary) for proving closure of the guard sets under nondeterministic choice.

Since the guards are conjunctive, and they form a Boolean algebra (as above),
they satisfy the guard axioms from gRA [9]. We also have that the set of assertions
satisfy the assertion axioms from gRA, although why this is the case may be less
immediately apparent. In gRA, assertions are defined in terms of guards, and not
the other way around: each guard g is defined to have a corresponding assertion
g◦ � g̃⊥�1. In our definition we can verify that this relationship between guards
and assertions holds. That is, for each guard g = a�, g◦ � g̃⊥ � 1 = a.

This observation means that it is possible to reuse basic assertion and guard
properties from earlier work. For example, the following proposition holds.

Proposition 4. For standard assertion a ∈ A,

aa� = a and (31)
aā� = a4. (32)

Note that we require probabilistic assertions to satisfy the property a4 = b4 ⇒
a = b. This property seems to be important, but not derivable from the other
constraints.9 In particular it is useful for deriving the enabledness and termi-
nation operator properties listed in Sect. 8. The following generalisation of this
property can be shown in the algebra:

a4 - b4
⇔ a4 � b4 = a4
⇔ (a � b)4 = a4
⇔ a � b = a
⇔ a - b.

Similarly, we can show that for probabilistic guards g and p,

g⊥ - p⊥ ⇔ g - p. (33)

Healthiness Conditions. The algebraic version of healthiness condition sub-
scaling is used in the definition of constant assertions: for every element x of

9 Interestingly, this property may be derived in gRA for standard assertions a and b
(Kim Solin, personal correspondence January 2008).

Probabilistic Choice in Refinement Algebra 257

the carrier set, we require x to satisfy sub-scaling, i.e., cx - xc, for all constant
assertions c.

The definition of constant probabilistic assertions makes it possible to express
healthiness conditions ⊕-distributivity and ⊕-subdistributivity in the algebra.

Definition 4. An element x of the carrier set is ⊕-distributive if, for all con-
stants c ∈ CA and elements y and z from the carrier set X, it satisfies

xy c⊕ xz = x(y c⊕ z). (34)

Definition 5. Similarly, x ∈ X is ⊕-subdistributive if

xy c⊕ xz - x(y c⊕ z), (35)

for all c ∈ CA and elements y, z ∈ X.

These definitions should be compared with those in Fig. 4.

A Strengthened Algebra. The healthiness condition ⊕-subdistributivity can
be used to define a stronger algebra, suitable for the nondeterministic+, but not
the dually nondeterministic+ one-bounded expectation transformer model.

We define a probabilistic refinement algebra with assertions (pRAa) to be a
gpRAa for which (35) also holds, for all constant assertions c ∈ CA and elements
x, y and z from the carrier set, X.

When extended with the additional axiom (18), both gpRAa and pRAa are
referred to as continuous.

6 Probabilistic Choice Statements and Loops

As in gRA [9], (standard) guards may be used to define conditional statements
and while-loops. For any guard g and elements x and y from the carrier set

if g then x else y fi � gx � g̃y (36)

represents a conditional choice between x and y, and

(gx)ω g̃

is a while-loop which iterates x until g ceases to hold.
Similarly, probabilistic assertions may be used to define probabilistic choices

and probabilistic iteration statements: probabilistic choice statements have al-
ready been introduced, and iterations of the form

(ax)�ā or (ax)‡ā

are referred to as probabilistic while-loops.
In [6] McIver and Morgan identify a number of properties satisfied by

probabilistic choice statements in a non-angelic expectation transformer model
(slightly different, but similar to the nondeterministic+ one-bounded expectation

258 L. Meinicke and I.J. Hayes

transformers). All but one of these properties,10 ⊕-subdistributivity (35), are
easily derivable in gpRAa: recall that ⊕-subdistributivity does not hold for an-
gelic probabilistic programs. Let a, b, c, d be probabilistic assertions, and x, y
and z be elements of the carrier set. We have that

x a⊕ x = x (37)
x a⊕ y = y ā⊕ x (38)
x 1⊕ y = x (39)

(a = cd ∧ āb = cd̄ ∧ āb̄ = c̄) ⇒ x a⊕ (y b⊕ z) = (x d⊕ y) c⊕ z (40)
(x a⊕ y)z = xz a⊕ yz (41)

(x � y) a⊕ z = (x a⊕ z) � (y a⊕ z) (42)

Note that for (40), if we write the left and right sides of the equality using “+”,
the equality becomes ax+ āby+ āb̄z = cdx+cd̄y+ c̄z, which holds trivially given
the assumptions.

It is of interest to note that probabilistic choices may be viewed as a gener-
alisation of conditional statements.11 In particular we have that, for standard
assertion a, and elements x and y

x a⊕ y = if a� then x else y fi.

This is shown by writing the conditional using its definition (36), and transform-
ing as follows,

a�x � ā�y
= {as a + ā = 1, 1 is unit (9)}

(a + ā)(a�x � ā�y)
= {right +-distributivity (26)}

a(a�x � ā�y) + ā(a�x � ā�y)
= {as assertions a and ā are conjunctive}

(aa�x � aā�y) + (āa�x � āā�y)
= {as aa� = a and aā� = a4 by (31) and (32)}

(ax � a4y) + (ā4x � āy)
= {4 is left-annihilating (10) and assertions are conjunctive}

a(x �4) + ā(4 � y)
= {4 is greatest element (5)}

ax + āy
= x a⊕ y.

From this we can see, for example, that under certain circumstances our prob-
abilistic while-loops reduce to their non-probabilistic equivalents: when a is a
standard assertion,

(ax)�ā = (a�x)ω ā� and (ax)‡ā = (a�x)∗ā�.
10 We have selected the independent properties from their work.
11 In earlier work [4] Hehner also made the observation that probabilistic choices can

be viewed as generalised conditional statements.

Probabilistic Choice in Refinement Algebra 259

We show the first of these. Using 	-induction, (ax)�ā - (a�x)ωā� provided

ax(a�x)ωā� + ā - (a�x)ω ā�,

which holds because

ax(a�x)ω ā� + ā
= {using the if-statement equivalent form above}

a�x(a�x)ω ā� � ā�

= (a�x(a�x)ω � 1)ā�

= (a�x)ωā�.

And the reverse direction holds by ω-induction provided

a�x(ax)�ā � ā� - (ax)�ā,

which holds because

a�x(ax)�ā � ā�

= {using the if-statement equivalent form above}
ax(ax)�ā + ā

= (ax(ax)� + 1)ā
= (ax)�ā.

Since demonic choices may be refined by probabilistic choices,

x � y
= {idempotence of probabilistic choice (37)}

(x � y) a⊕ (x � y)
- {monotonicity of plus, and hence probabilistic choice}

x a⊕ y,

it is easy to show that strong and weak iterations may be refined by probabilistic
while-loops in the following way,

xω - (ax)�ā and x∗ - (ax)‡ā,

where a is a probabilistic assertion and x is a member of the carrier set.
We show the first of these: xω - (ax)�ā; this holds by ω-induction provided

x(ax)�ā � 1 - (ax)�ā,

which holds because

x(ax)�ā � 1
- {as x � y - x a⊕ y for any x and y}

ax(ax)�ā + ā1
= (ax(ax)� + 1)ā
= (ax)�ā.

It is possible to derive other simple transformation rules for probabilistic
while-loops in gpRAa, in the same way it is simple to reason about while-loops
in gRA. For example, we have the following data refinement theorem for strong
probabilistic iteration.

260 L. Meinicke and I.J. Hayes

Proposition 5. For any constant probabilistic assertion c and elements x, y
and z from the carrier set, if z is ⊕-subdistributive and

xz - zy

then (cx)�c̄z - z(cy)�c̄.

Proof. The proposition may be shown to hold using the following argument.

(cx)�c̄z - z(cy)�c̄
⇐ {induction (28)}

cxz(cy)�c̄ + c̄z - z(cy)�c̄
⇐ {assumption xz - zy and unfolding (27)}

czy(cy)�c̄ + c̄z - z(cy(cy)� + 1)c̄
⇔ {right +-distributivity (26)}

czy(cy)�c̄ + c̄z - z(cy(cy)�c̄ + c̄)
⇔ {assumption z is ⊕-subdistributive (35)}

true. �	

The above proposition requires the commuting program z to be ⊕-subdistrib-
utive. In the more general case, where z does not satisfy ⊕-subdistributivity, the
theorem does not necessarily hold.

7 Correctness Assertions

In [15], von Wright observed that total-correctness assertions (Hoare triples) for
standard programs could be encoded in dRA (and hence gRA) as properties of
the form

4 = pxq̃ or equivalently p̃x - xq̃ or p̃⊥ - xq̃, (43)

where p and q are guards, and x is an element of the carrier set. A total-
correctness property of the form (43) can be taken to mean that from a state
in which p holds, x can certainly terminate and reach a state in which q holds
(i.e., for predicate transformer x = S, and predicates p′, q′ such that p = [p′] and
q = [q′], p′ ⇒ S.q′).

Since probabilistic guards and assertions are defined in our algebra, it is
possible to describe total-correctness assertions (involving expectations) for prob-
abilistic programs. For a one-bounded expectation transformer x = S, and prob-
abilistic guards p = [φ], q = [ψ], we have that φ ≤ S.ψ if and only if

p̃⊥ - xq̃. (44)

In the case that p and q are standard guards this property may be equivalently
rewritten as the other two properties in (43).

In [15], von Wright also observed that in dRA the following equivalent prop-
erties,

px = pxq and xq - px and p◦x = p◦xq◦ and p◦x - xq◦, (45)

Probabilistic Choice in Refinement Algebra 261

where p and q are guards, and x is an element from the carrier set, could be
used to express weak-correctness assertions. Informally, they specify that from
an initial state in which p holds, x must either abort, or reach a state in which q
holds. The equivalences in (45) may also easily be shown to hold in our algebras.
Although we are not aware of any generalisation of these properties to weak-
correctness assertions involving expectations (which are not predicates), we find
that they are also a useful way to express weak-correctness assertions (involving
predicates) for probabilistic programs.

For example, we show how they may be used in the following theorem, which
states that a ⊕-distributive element x may be shown to distribute over a prob-
abilistic choice involving a probabilistic assertion a, provided a can be written
as a disjoint sum of terms of the form aici, where ai is a standard assertion,
ci is a constant probabilistic assertion, and ai is (weakly) invariant over x:
aix = aixai.

Proposition 6. Given ⊕-distributive x and probabilistic assertion a, we have
that for any y and z,

axy + āxz = x(ay + āz)

if for some finite set of standard assertions {i ∈ I • ai}, and constant probabilistic
assertions {i ∈ I • ci},

1 = (
∑

i ∈ I • ai), (46)

a = (
∑

i ∈ I • aici) and (47)

aix = aixai, (48)

where (
∑

i ∈ I • ai) represents the finite sum over the elements of I of the term
ai. The conditions (46-47) describe that for each pairwise disjoint set of states
ai, a takes the constant value ci; and (48) requires x to preserve each of these
sets of states: from a state in which ai holds, either x must abort or terminate
in a state in which ai also holds.

Proof. First we show that aia = aici and aiā = aic̄i using (46) and (47). From
(46) we can deduce that the elements ai for i ∈ I are pairwise disjoint:

∀i, j • i �= j ⇒ aiaj - ai(
∑

j ∈ I − {i} • aj) = aiāi = ⊥.

And so using (47) we have that

aia = ai(
∑

j ∈ I • ajci) = (
∑

j ∈ I • aiajci) = aiaici = aici.

Since the negation of a may trivially be shown to be (
∑

i ∈ I • aic̄i), we also
have that aiā = aic̄i.

262 L. Meinicke and I.J. Hayes

Given the assumptions (46-48),

x(ay + āz)
= {1 is unit (9), assumption (46)}

(
∑

i ∈ I • ai)x(ay + āz)
= {right +-distributivity (26), x preserves ai (48)}

(
∑

i ∈ I • aixai(ay + āz))
= {distributivity of assertions, (46-47) implies aia = aici and aiā = aic̄i}

(
∑

i ∈ I • aix(aiciy + aic̄iz))
= {distributivity of assertions, x preserves ai (48)}

(
∑

i ∈ I • aix(ciy + c̄iz))
= {assumption x is ⊕-distributive}

(
∑

i ∈ I • ai(cixy + c̄ixz))
= {distributivity of assertions, assumptions (46-47)}

(
∑

i ∈ I • ai(axy + āxz))
= {right +-distributivity (26)}

(
∑

i ∈ I • ai)(axy + āxz)
= {1 is unit (9), assumption (46)}

(axy + āxz). �	

8 Termination and Enabledness

In [1], Desharnais, Möller and Struth observed that the addition of a domain (en-
abledness) operator to Kleene Algebra with tests considerably augments the ex-
pressiveness of the algebra. Inspired by these observations, Solin and von Wright
have extended the demonic refinement algebra with operators for determining
when elements are terminating or enabled [14]. Here we define the probabilistic
counterparts to these operators.

8.1 Termination

The termination operator τ is a unary operator that maps a carrier-set element
of a gpRAa to the unique probabilistic assertion which satisfies,

τx4 = x4. (49)

We will call a gpRAa with a termination operator a gpRAat. Given a program in-
terpretation, the termination operator describes, for each initial state, the prob-
ability with which a given program will terminate (i.e., not abort). We define
τS � {S.True} in the model.

Note that the introduction of the termination operator extends gpRAa with
the extra condition that for all elements x from the carrier set, there must exist an
assertion a such that a4 = x4. This extension specifies an important algebraic
property of our motivating program models: it describes the fact that magic
right-annihilates non-aborting program behaviour. This could not be expressed
without the aid of probabilistic assertions.

Probabilistic Choice in Refinement Algebra 263

The following useful properties of τ follow immediately from the definition,

τa = a (50)
τ(ax) - a (51)

τ(xτy) = τ(xy) (52)
τ(x � y) = τx � τy (53)

τ(x a⊕ y) = τx a⊕ τy (54)

where a is a probabilistic assertion and x and y are from the carrier set. If τx is
more specifically a (standard) assertion, then we also have that

x = (τx)x and (55)
τx = x4 � 1. (56)

Apart from the probabilistic choice property, (54), properties (49-56) are used
(with probabilistic assertions replaced by standard assertions) to define the ter-
mination operator in dRA [14]. (In that algebra, (50) is derivable.)

The proofs of properties (50-56) are trivial since assertions satisfy the useful
property a4 = b4 ⇔ a = b. For example, to show property (52), we have that,

τ(xτy) = τ(xy)
⇔ τ(xτy)4 = τ(xy)4
⇔ xτy4 = xy4
⇔ xy4 = xy4
⇔ True.

Also, uniqueness of τx trivially follows from a4 = b4 ⇔ a = b.

8.2 Enabledness

The enabledness operator is defined in a similar way to termination, but using
probabilistic guards, instead of probabilistic assertions.

The enabledness operator ε is a unary operator that maps a carrier-set element
of a gpRAa to the unique probabilistic guard which satisfies

εx⊥ = x⊥. (57)

We will call a gpRAa extended with an enabledness operator a gpRAae, and a
gpRAa with termination and enabledness operators gpRAaet.

In the model we define εS � [¬S.False], where from each initial state σ,
¬S.False.σ describes the probability with which S will not behave miraculously.

Like the termination operator, the enabledness operator carries with it an
implicit assumption about the carrier set: it requires the least element ⊥ to right-
annihilate non-miraculous behaviour. This describes an important property of
our motivating program model.

264 L. Meinicke and I.J. Hayes

From the enabledness definition follows a set of useful properties,

εg = g (58)
g - ε(gx) (59)

ε(xεy) = ε(xy) (60)
ε(x � y) = εx � εy (61)

ε(x a⊕ y) = εx a⊕ εy (62)

where g is a probabilistic guard, a is a probabilistic assertion, and x, y ∈ X.
When εx is a (standard) assertion, we also have,

x = (εx)x and (63)
εx = x⊥ + 1. (64)

As for termination, excluding probabilistic choice property (62), properties (57-
63) are used in the definition of the enabledness operator in dRA [14] (where g
is always taken to be a standard guard in that algebra). Properties (59-61,63)
are also the axioms of the domain operator in Kleene algebra with domain [1].
(Property (58) is derivable in these other algebras.)

Enabledness properties (59-62) and uniqueness of εx are no less trivial to verify
than the termination properties given the guard property g⊥ = p⊥ ⇔ g = p
holds (Prop. 2).

Note that using the enabledness operator, total-correctness property p̃⊥ - xq̃
(44) may be written as p̃ - ε(xq̃):

p̃⊥ - xq̃
⇔ p̃⊥ - xq̃⊥
⇔ {enabledness property (57)}

p̃⊥ - ε(xq̃)⊥
⇔ {guard property (33)}

p̃ - ε(xq̃).

Although the termination and enabledness axioms (49) and (57) hold in our
motivating program model, it is possible that they may not hold for additional
probabilistic program models, such as reactive (trace) models (e.g., [8]). For such
models, alternative definitions using some of the other properties we have listed
(e.g., (51-54) for termination, and (59-62) for enabledness) could be considered.

9 Observations

We have seen how many of the healthiness conditions of the one-bounded expec-
tation transformers have been instrumental in the definition of the probabilistic
refinement algebras. What of the continuity conditions or of subtraction?

As for the general refinement algebra (and the demonic refinement algebra)
the lack of infinite meet (�) and join () operators mean that it is not possible
to express the continuity conditions, which may be useful for reasoning about

Probabilistic Choice in Refinement Algebra 265

certain loop transformations. (For example, xy - zx ⇒ xyω - zωx is dependent
on a continuity condition on x [15]).

How does our inability to express subtraction, or to derive properties of the
one-bounded expectation transformers which assume this property, affect the
reasoning capabilities of the algebras? Let us consider how it affects the rela-
tionship between total and weak correctness assertions discussed in Sect. 7.

For the conjunctive predicate transformer x and guards p and q we have that
total-correctness implies weak-correctness, i.e.,

(4 = pxq̃) ⇒ (px = pxq) (65)

holds and may be verified in gRA given a conjunctivity assumption on x. For
the more general set of monotonic predicate transformers, this property fails to
hold, and cannot be verified in gRA [16].

For the nondeterministic one-bounded expectation transformers, the relation-
ship between total and weak correctness specified by property (65) also holds [9],
although it (predictably) does not hold for the more general set of dually nonde-
terministic one-bounded transformers. Despite this, (65) may not be shown to
hold in gpRAa (where q and p are standard guards), even when healthiness prop-
erty ⊕-subdistributivity is assumed (take for instance x = (s := 1) + (s := 2),
q = p = [s = 1]). This reveals an underlying dependence of (65) on the healthi-
ness condition subtraction.

This observation seems to suggest that the inclusion of a subtraction operator,
or further axioms, may be useful for reasoning algebraically (in a point-free way)
about probabilistic programs. We believe that a further investigation into these
possibilities may be worthwhile.

10 Conclusions

The general refinement algebra (gRA) lives up to its name in that it is general
enough to include models such as the monotonic predicate transformers [16]
(which can be used to represent standard programs) and the monotonic one-
bounded expectation transformers [9] (which can be used to represent probabilis-
tic programs). This allows gRA to be used to reason about properties common
to these models. However, its very generality means that there are some aspects
of probabilistic programs that cannot be expressed in gRA. To address this issue
a number of extensions of gRA have been investigated. In this paper we have
focussed on including properties of probabilistic choice, and probabilistic asser-
tions and guards. We have done so by presenting a sequence of extensions of
gRA:

– gpRA, which adds the “+” operator and associated iteration operators,
– gpRAa, which adds probabilistic assertions and guards (including constant

and standard subsets),
– pRAa , which restricts its elements to satisfy ⊕-subdistributivity,
– gpRAat, which adds a termination operator, τ ,

266 L. Meinicke and I.J. Hayes

– gpRAae, which adds an enabledness operator, ε, and
– gpRAaet, which combines the previous two algebras.

There are many subtly different ways in which probabilistic choice may be
introduced into the general refinement algebra. When introducing probabilistic
choice, we have taken the novel approach of decomposing it into the “+” operator
and probabilistic assertions. The “+” operator has simpler algebraic properties
than “⊕” — compare the axioms in Definition 2 with the properties of “⊕”
(37-42). However, the “+” operator is more exotic, as is demonstrated by the
program “skip + skip” in Sect. 2.3, which doesn’t satisfy semi-sublinearity.

As well as being able to express the properties of “⊕” (see Sect. 6), the addition
of probabilistic assertions and guards allows one to express other interesting
properties, like total-correctness assertions (Sect. 7) via

p̃⊥ - xq̃,

and probabilistic termination and enabledness operators.
In adding the termination and enabledness operators we have relied upon the

requirement that probabilistic assertions, a and b, and guards, g and p, must
satisfy

a4 = b4 ⇒ a = b, and
g⊥ = p⊥ ⇒ g = p.

This greatly simplifies the definitions of the termination and enabledness op-
erators, and allows the axioms used elsewhere [14] to be derived as properties.
This simplification has wider implications for the general refinement algebra with
termination and enabledness operators.

Throughout the paper we have demonstrated how algebraic expressions of
healthiness conditions for expectation transformers are used in the algebras. Of
the healthiness properties listed in Fig. 3, we are able to express monotonicity
and conjunctivity (which are expressible in gRA) as well as ⊕-distributivity, ⊕-
subdistributivity, and sub-scaling. Future work is to investigate adding a subtrac-
tion operator, which would allow the expression of the “subtraction” property in
Fig. 3 and hence also semi-sublinearity. Given the importance of the healthiness
properties in defining the subset of expectation transformers that correspond
to probabilistic programs, it seems justified to investigate an algebra in which
these properties can be expressed. The extensions in this paper have taken us an
important step in that direction, and in general we believe that we have made
a number of important observations that could be useful for any axiomatisation
of probabilistic choice in refinement algebra.

References

1. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans-
actions on Computational Logic 7(4), 798–833 (2006)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs
(1976)

Probabilistic Choice in Refinement Algebra 267

3. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Heidelberg (1990)

4. Hehner, E.C.R.: Probabilistic Predicative Programming. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 169–185. Springer, Heidelberg (2004)

5. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems 19(3), 427–443 (1997)

6. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Heidelberg (2005)

7. Meinicke, L., Hayes, I.J.: Algebraic reasoning for probabilistic action systems
and while-loops. DOI: 10.1007/s00236-008-0073-4. Accepted to Acta Informatica
(March 2008)

8. Meinicke, L., Solin, K.: Reactive probabilistic programs and refinement algebra.
In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and Kleene Algebra in
Computer Science. LNCS, vol. 4988, pp. 304–319. Springer, Heidelberg (2008)

9. Meinicke, L., Solin, K.: Refinement algebra for probabilistic programs. Electron.
Notes Theor. Comput. Sci. 201, 177–195 (2008)

10. Morgan, C., McIver, A.: Cost analysis of games using program logic. In: APSEC
2001: Proceedings of the Eighth Asia-Pacific on Software Engineering Conference,
p. 351. IEEE Computer Society, Washington (2001)

11. Morgan, C., McIver, A.: Cost analysis of games using program logic (2001),
http://www.cse.unsw.edu.au/∼carrollm/probs/bibliography.html

12. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Transactions on Programming Languages and Systems 18(3), 325–353 (1996)

13. Solin, K.: On Two Dually Nondeterministic Refinement Algebras. In: Schmidt,
R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 373–387. Springer, Heidel-
berg (2006)

14. Solin, K., von Wright, J.: Refinement Algebra with Operators for Enabledness
and Termination. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 397–415.
Springer, Heidelberg (2006)

15. von Wright, J.: From Kleene Algebra to Refinement Algebra. In: Boiten, E.A.,
Möller, B. (eds.) MPC 2002. LNCS, vol. 2386, pp. 233–262. Springer, Heidelberg
(2002)

16. von Wright, J.: Towards a refinement algebra. Science of Computer Program-
ming 51, 23–45 (2004)

http://www.cse.unsw.edu.au/~carrollm/probs/bibliography.html

Algebra of Programming Using Dependent

Types

Shin-Cheng Mu1, Hsiang-Shang Ko2, and Patrik Jansson3

1 Institute of Information Science, Academia Sinica, Taiwan
2 Department of Computer Science and Information Engineering

National Taiwan University, Taiwan
3 Department of Computer Science and Engineering

Chalmers University of Technology & University of Gothenburg, Sweden

Abstract. Dependent type theory is rich enough to express that a pro-
gram satisfies an input/output relational specification, but it could be
hard to construct the proof term. On the other hand, squiggolists know
very well how to show that one relation is included in another by alge-
braic reasoning. We demonstrate how to encode functional and relational
derivations in a dependently typed programming language. A program
is coupled with an algebraic derivation from a specification, whose cor-
rectness is guaranteed by the type system.

1 Introduction

Program derivation is the technique of successively applying formal rules to a
specification to obtain a program that is correct by construction. On the other
hand, modern programming languages deploy expressive type systems to guar-
antee compiler-verifiable properties. There has been a trend to explore the ex-
pressiveness of dependent types, which opens a whole new world of type-level
programming techniques. As Altenkirch et al. [1] put it, dependently typed pro-
grams are, “by their nature, proof carrying code.” This paper aims to illustrate
their comment by showing, in the dependently typed language Agda [17], that
programs can actually carry their derivations.

As a teaser, Fig. 1 shows a derivation of a sorting algorithm in progress. The
type of sort -der is a proposition that there exists a program of type [Val] → [Val]
that is contained in ordered? ◦ permute, a relation mapping a list to one of its
ordered permutations. The proof proceeds by derivation from the specification
towards the algorithm. The first step exploits monotonicity of ◦ and that permute
can be expressed as a fold. The second step makes use of relational fold fusion.
The shaded areas denote interaction points — fragments of (proof) code to be
completed. The programmer can query Agda for the expected type and the
context of the shaded expression. When the proof is completed, an algorithm
isort is obtained by extracting the witness of the proposition. It is an executable
program that is backed by the type system to meet the specification.

We have developed a library for functional and relational program deriva-
tion, with convenient notation for algebraic reasoning. Our work aims to be a

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 268–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algebra of Programming Using Dependent Types 269

sort-der : ∃ ([Val] → [Val]) (\f → ordered? ◦ permute $ fun f)
sort-der = exists (ordered? ◦ permute

$〈 (\vs →
-monotonic ordered? (permute-is-fold vs)) 〉
ordered? ◦ foldR combine nil

$〈 {foldR-fusion ordered? ins-step ins-base}0 〉
{ }1)

isort : [Val] → [Val]
isort = witness sort-der

Fig. 1. A derivation of a sorting algorithm in progress (see Sect. 4 for the details)

co-operation between the squiggolists and dependently-typed programmers that
may benefit both sides. On the one hand, a number of tools for program trans-
formation [11,22,24] have been developed but few of them have been put into
much use. Being able to express derivation within the programming language
encourages its use and serves as documentation. This paper is a case study of
using the Curry-Howard isomorphism which the squiggolists may appreciate:
specification of the program is expressed in their types, whose proofs (deriva-
tions) are given as programs and checked by the type system. On the other hand,
it is known among dependently-typed programmers that the expressiveness of
dependent types is far beyond proving that reverse preserves the length of its
input. We can reason about the full input/output specification, for example, that
fast -reverse is pointwise equal to the quadratic-time reverse, or that insertion
sort implements a relational specification of sort. The reason this is rarely done
is probably because it appears difficult to construct the proof terms. The method
we propose is to develop the proof by algebraic reasoning within Agda.

In Sect. 2 we give an introduction to the part of Agda we use. We present our
encoding of relations and their operations in Sect. 3, which prepares us to discuss
our primary example in Sect. 4 and conclude with related work in Sect. 5.

2 A Crash Course on Agda

By “Agda” we mean Agda version 2, a dependently typed programming lan-
guage evolved from the theorem prover having the same name. In this section
we give a crash course on Agda, focusing on the aspects we need. For a detailed
documentation, the reader is referred to Norell [17] and the Agda wiki [21].

Agda has a Haskell-like syntax extended with a number of additional features.
Dependent function types are written (x : A) → B where B may refer to the
identifier x , while non-dependent functions are written A → B . The identity
function, for example, can be defined by:

id : (A : Set) → A → A
id A a = a,

270 S.-C. Mu, H.-S. Ko, and P. Jansson

where Set is the kind of types. To apply id we should supply both the type and
the value parameters, e.g., id N 3 where N is the type of natural numbers. Depen-
dently typed programming would be very verbose if we always had to explicitly
mention all the parameters. In cases when some parameters are inferable from
the context, the programmer may leave them out, as in id 3.

For brevity, Agda supports implicit parameters. In the definition below:

id : {A : Set} → A → A
id a = a,

the parameter {A : Set} in curly brackets is implicit and need not be mentioned
when id is called, e.g., id 3. Agda tries to infer implicit parameters whenever
possible. In case the inference fails, they can be explicitly provided in curly
brackets: id {N} 3.

Named parameters in the type signature can be collected in a telescope. For
example, {x : A} → {y : A} → (z : B) → {w : C} → D can be abbreviated to
{x y : A}(z : B){w : C} → D .

As an example of a datatype definition, cons-lists can be defined by:

data [] (A : Set) : Set where
[] : [A]
:: : A → [A] → [A].

In Agda’s notation for dist-fix definitions, an underline denotes a location for a
parameter. The type constructor [] takes a type and yields a type. The param-
eter (A : Set), written on the left-hand side of the colon, scopes over the entire
definition and is an implicit parameter of the constructors :: and [].

2.1 First-Order Logic

In the Curry-Howard isomorphism, types are propositions and terms their proofs.
Being able to construct a term of a particular type is to provide a proof of
that proposition. Fig. 2 shows an encoding of first-order intuitionistic logic in
Agda. Falsity is represented by ⊥, a type with no constructors and therefore no
inhabitants. Truth, on the other hand, can be represented by the type 4, having
one unique term — a record with no fields. Disjunction is represented by disjoint
sum, while conjunction is denoted by product as usual: a proof of P 6 Q can
be deducted either from a proof of P or a proof of Q , while a proof of P × Q
consists of proofs of both.

An implication P → Q is represented as a function taking a proof of P to a
proof of Q . We do not introduce new notation for it. The quantifier ∀ is encoded
as a dependent function which, given any x : A, must produce a proof of P x .
Agda provides a short hand forall x → P x in place of (x : A) → P x when A
can be inferred. To prove the proposition ∃AP , where P is a predicate on terms
of type A, one has to provide a witness w : A and a proof of P w . Given a term
of type ∃AP , the two functions witness and proof extract the witness and the
proof, respectively.

Algebra of Programming Using Dependent Types 271

data⊥ : Set where

record# : Set where

data % (P Q : Set) : Set where
inj1 : P → P %Q
inj2 : Q → P %Q

data × (P Q : Set) : Set where
, : P → Q → P ×Q

data ∃ (A : Set) (P : A → Set) : Set
where
exists : (w : A) → P w → ∃AP

witness : {A : Set}{P : A → Set} →
∃AP → A

witness (exists w p) = w

proof : {A : Set}{P : A → Set} →
(x : ∃AP) → P (witness x)

proof (exists w p) = p

Fig. 2. An encoding of first-order intuitionistic logic in Agda

2.2 Identity Type

A term of type x ≡ y is a proof that the values x and y are equal. The datatype
≡ is defined by:

data ≡ {A : Set}(x : A) : A → Set where
≡-refl : x ≡ x .

Agda has relaxed lexical rules allowing Unicode characters in identifiers. There-
fore, ≡-refl (without space) is a valid name. Since the only constructor ≡-refl is
of type x ≡ x , being able to type-check a term with type x ≡ y means that the
type checker is able to deduce that x and y are indeed equal1.

For the rest of the paper, we will exploit Unicode characters to give telling
names to constructors, arguments, and lemmas. For example, if a variable is a
proof of y ≡ z , we may name it y≡z (without space).

The type ≡ is reflexive by definition. It is also symmetric and transitive,
meaning that given a term of type x ≡ y, one can construct a term of type
y ≡ x , and that given x ≡ y and y ≡ z , one can construct x ≡ z :

≡-sym : {A : Set}{x y : A} → x ≡ y → y ≡ x
≡-sym ≡-refl = ≡-refl ,

≡-trans : {A : Set}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
≡-trans ≡-refl y≡z = y≡z .

The type of the first explicit parameter in the type signature of ≡-sym is x ≡ y,
while the constructor ≡-refl in the pattern has type x ≡ x . When the type
checker tries to unify them, x is unified with y. Therefore, when we need to
return a term of type y ≡ x on the right-hand side, we can simply return ≡-refl .
The situation with ≡-trans is similar. Firstly, x is unified with y, therefore the
parameter y≡z , having type y ≡ z , can also be seen as having type x ≡ z and

1 Agda assume uniqueness of identity proofs (but not proof irrelevance).

272 S.-C. Mu, H.-S. Ko, and P. Jansson

infixr 2 ∼〈 〉
infix 2 ∼�

∼〈 〉 : {A : Set}(x : A){y z : A} → x ∼ y → y ∼ z → x ∼ z
x ∼〈 x∼y 〉 y∼z = ∼-trans x∼y y∼z

∼� : {A : Set}(x : A) → x ∼ x
x ∼� = ∼-refl

Fig. 3. Combinators for preorder reasoning

be returned. In general, pattern matching and inductive families (such as ≡)
is a very powerful combination.

The interactive feature of Agda2 is helpful for constructing the proof terms.
One may, for example, leave out the right-hand side as an interaction point.
Agda would prompt the programmer with the expected type of the term to fill in,
which also corresponds to the remaining proof obligations. The list of variables
in the current context and their types after unification are also available to the
programmer.

The lemma ≡-subst states that Leibniz equality holds: if x ≡ y, they are
interchangeable in all contexts. Given a context f and a proof that x ≡ y, the
congruence lemma ≡-cong returns a proof that f x ≡ f y.

≡-subst : {A : Set}(P : A → Set){x y : A} → x ≡ y → P x → P y
≡-subst P ≡-refl Px = Px ,

≡-cong : {AB : Set}(f : A → B){x y : A} → x ≡ y → f x ≡ f y
≡-cong f ≡-refl = ≡-refl .

2.3 Preorder Reasoning

To prove a proposition e1 ≡ e2 is to construct a term having that type. One can
do so by the operators defined in the previous section. It can be very tedious,
however, when the expressions involved get complicated. Luckily, for any binary
relation ∼ that is reflexive and transitive (that is, for which one can construct
terms ∼-refl and ∼-trans having the types as described in the previous section),
we can induce a set of combinators, shown in Fig. 3, which allows one to construct
a term of type e1 ∼ en in algebraic style. These combinators are implemented
in Agda by Norell [17] and improved by Danielsson in the Standard Library of
Agda [21]. Augustsson [3] has proposed a similar syntax for equality reasoning,
with automatic inference of congruences.

To understand the definitions, notice that ∼〈 〉 , a dist-fix function taking
three explicit parameters, associates to the right. Therefore, the algebraic proof:

2 Agda has an Emacs mode and a command line interpreter interface.

Algebra of Programming Using Dependent Types 273

e1

∼〈 reason1 〉
...

en−1

∼〈 reasonn−1 〉
en

∼�

should be bracketed as e1 ∼〈reason1〉 . . . (en−1 ∼〈reasonn−1〉 (en∼�)). Each oc-
currence of ∼〈 〉 takes three arguments: ei on the left, reasoni (a proof that
ei ∼ ei+1) in the angle brackets, and a proof of ei+1 ∼ en on the right-hand
side, and produces a proof of ei ∼ en using ∼-trans . As the base case, ∼� takes
the value en and returns a term of type en ∼ en .

2.4 Functional Derivation

The ingredients we have prepared so far already allow us to perform some func-
tional program derivation. For brevity, however, we introduce an equivalence
relation on functions:

·= : {AB : Set} → (A → B) → (A → B) → Set
f ·= g = forall a → f a ≡ g a.

Since ·= can be shown to be reflexive and transitive, it also induces a set of pre-
order reasoning operators. Fig. 4 shows a proof of the foldr fusion theorem. The
steps using ≡-refl are simple equivalences which Agda can prove by expanding
the definitions. The inductive hypothesis ih is established by a recursive call.

foldr-fusion : {AB C : Set} → (h : B → C) → {f : A → B → B} →
{g : A → C → C} → {z : B} → (push : forall a → h · f a

·
= g a · h) →

h · foldr f z
·
= foldr g (h z)

foldr-fusion h {f } {g} {z} [] = ≡-refl
foldr-fusion h {f } {g} {z} push (a :: as) =

let ih = foldr-fusion h push as in
h (foldr f z (a :: as))

≡〈 ≡-refl 〉
h (f a (foldr f z as))

≡〈 push a (foldr f z as) 〉
g a (h (foldr f z as))

≡〈 ≡-cong (g a) ih 〉
g a (foldr g (h z) as)

≡〈 ≡-refl 〉
foldr g (h z) (a :: as)

≡�

Fig. 4. Proving the fusion theorem for foldr

274 S.-C. Mu, H.-S. Ko, and P. Jansson

scanr -der : {AB : Set} → (f : A → B → B) → (e : B) →
∃ ([A] → List+ B) (\prog → map+ (foldr f e) · tails ·

= prog)
scanr -der f e = exists (map+ (foldr f e) · tails

·
=〈 foldr-fusion (map+ (foldr f e)) (push-map-til f) 〉

foldr (sc f) [e]+

·
=�)

where sc : {AB : Set} → (A → B → B) → A → List+ B → List+ B
sc f a [b]+ = f a b ::+[b]+

sc f a (b ::+bs) = f a b ::+ b ::+bs
push-map-til : {A B : Set} → (f : A → B → B) → {e : B} → (a : A) →

map+ (foldr f e) · til a ·
= sc f a · map+ (foldr f e)

push-map-til f a [xs]+ = ≡-refl
push-map-til f a (xs ::+xss) = ≡-refl

Fig. 5. Derivation of scanr . The constructors ::+ and []+ build non-empty lists,
while tails = foldr til [[]]+, where til a [xs]+ = (a::xs)::+[xs]+; til a (xs ::+xss) =
(a::xs) ::+xs ::+xss.

Agda ensures that proofs by induction are well-founded. Fig. 5 derives scanr
from its specification map+ (foldr f e) · tails , where map+ is the map function de-
fined for List+, the type of non-empty lists. The foldr -fusion theorem is used to
transform the specification to a fold. The derived program can be extracted by
scanr = witness scanr -der , while scanr -pf = proof scanr -der is a proof that can
be used elsewhere. Notice that the first argument to exists is left implicit. Agda
is able to infer the witness because it is syntactically presented in the derivation.

We have reproduced a complete derivation for the maximum segment sum
problem. The derivation proceeds in the standard manner [6], transforming the
specification to max ·map (foldr ⊗ 0)·tails for some ⊗ , and exploiting scanr -pf
to convert it to a scanr . The main derivation is about 220 lines long, plus 400
lines of library code proving properties about lists and 100 lines for properties
about integers. The code is available online [16].

The interactive interface of Agda proved to be very useful. One could progress
the derivation line by line, leaving out the unfinished part as an interaction point.
One may also type in the desired next step but leave the “reason” part blank,
and let Agda derive the type of the lemma needed.

3 Relational Derivation

During the 90’s there was a trend in the program derivation community to move
from functions to relations. For completeness, we give a quick introduction to
relations in this section. The reader is referred to Backhouse et al. [4] and Back-
house and Hoogendijk [5] for a more rigorous treatment. Bird and de Moor [8]
present program derivation from a more abstract, category-theoretical point of
view, with many illustrative examples of program derivation.

Algebra of Programming Using Dependent Types 275

A relation R to B from A, denoted by R : B ← A, is usually understood
as a subset of the set of pairs A × B .3 A function f is seen as a special case
where (a, b) ∈ f and (a, b′) ∈ f implies b = b′. The use of relations allows
non-determinism in the specification. Derivation proceeds by inclusion as well as
equality: in each step, the specification may be refined to a more deterministic
subset, often all the way until we reach a function.

The composition of two relations R : C ← B and S : B ← A is defined by:
R ◦ S = {(a, c) | ∃b : (a, b) ∈ S ∧ (b, c) ∈ R}. Given a relation R : B ← A,
its power transpose ΛR is a function from A to PB (subsets of B): ΛR a = {b |
(a, b) ∈ R}, while the relation ∈ : A ← PA maps a set to one of its arbitrary
members.

The fold remains an important construct in the relational setting. While foldr
takes a step function of type A → B → B and a base case of type B , its
relational counterpart, which we denote by foldR, takes an uncurried relation
R : B ← (A×B), while the base cases, being non-deterministic, are recorded in
a set s : PB .4 The relational fold can be defined in terms of functional fold:

foldR R s : B ← [A]
foldR R s = ∈ ◦ foldr Λ(R ◦ (id × ∈)) s .

We will see in the next few sections how these concepts can be modelled in Agda.

3.1 Modelling Relations

A possibly infinite subset (of A) could be represented by its membership function
of type PA = A → Bool . With dependent types, we can also represent the
membership judgement at type level:

P : Set → Set1
PA = A → Set .

A set s : PA is a function mapping a : A to a type, which encodes a logic
formula determining its membership. Agda maintains a hierarchy of universes,
where Set denotes the universe of types, Set1 denotes the universe of Set and
all types declared as being in Set1, etc. Since s : PA is a function yielding a Set ,
PA is in the universe Set1. The function singleton creates singleton sets:

singleton : {A : Set} → A → PA
singleton a = \a′ → a ≡ a′.

Set union and inclusion, for example, are naturally encoded by disjunction and
implication:

∪ : {A : Set} → PA → PA → PA
r ∪ s = \ a → r a 6 s a,

⊆ : {A : Set} → PA → PA → Set
r ⊆ s = forall a → r a → s a.

3 Notations used in the beginning of this section, for example ×, ∈, and set compre-
hension, refer to their usual set-theoretical definitions. We will talk about how they
can be represented in Agda in the next few subsections.

4 Isomorphically, the base case can be represented by a relation B ←#.

276 S.-C. Mu, H.-S. Ko, and P. Jansson

A term of type r ⊆ s is a function which, given an a and a proof that a is in r ,
produces a proof that a is in s .

A relation B ←A, seen as a set of pairs, could be represented as P(A×B) =
(A × B) → Set . However, we find the following “curried” representation more
convenient:

← : Set → Set → Set1
B ← A = A → B → Set .

One of the advantages is that relations and set-valued functions are unified. The
Λ operator, for example, is simply the identity function at the term-level:

Λ : {AB : Set} → (B ← A) → (A → PB)
ΛR = R.

A function can be converted to a relation:

fun : {AB : Set} → (A → B) → (B ← A)
fun f a b = f a ≡ b.

The identity relation, for example, is denoted idR : {A : Set} → (A ← A) and
defined by idR = fun id .

Relational composition could be defined by R◦S = ∃B (\b → (S a b×R b c)).
For reasons that will be clear in the next section, we split the definition into two
parts, shown in Fig. 6. The operator
 applies a relation R : B ← A to a set
PA, yielding another set PB . Composition ◦ is then defined using
 .

Complication arises when we try to represent ∈. Recall that ∈ maps PA to A.
However, the second argument to ← must be in Set , while PA is in Set1! At
present, we have no choice but to declare another type of arrows that accepts
Set1-sorted inputs:

←1 : Set → Set1 → Set1
B ←1 PA = PA → B → Set .

It means we need several alternatives of relational composition that differ only
in their types. Fig. 6 shows ◦1 and 1◦ for example. Such inconvenience may
be resolved if Agda introduces universe polymorphism, a feature on the wish-list
at the time of writing. Also summarised in Fig. 6 are ˘ for relational converse,
and ×1 , a higher-kinded variation of the product functor.

3.2 Inclusion and Monotonicity

A relation S can be refined to R if every possible outcome of R is a legitimate
outcome of S . We represent the refinement relation by:

- : {AB : Set} → (B ← A) → (B ← A) → Set
R - S = forall a → R a ⊆ S a,

which expands to forall a → forall b → R a b → S a b. Conversely, R 5 S = S -
R. Both - and 5 can be shown to be reflexive and transitive. Therefore, we can
use them for preorder reasoning.

Algebra of Programming Using Dependent Types 277

˘ : {AB : Set} → (A← B) → (B ← A)
R˘ = \ a b → R b a

 : {AB : Set} → (B ← A) → PA → PB
R
 s = \ b → ∃A (\a → (s a × R a b))

∈ : {A : Set} → (A←1 PA)
∈ = \pa a → pa a

◦ : {A B C : Set} → (C ← B) → (B ← A) → (C ← A)
(R ◦ S) a = R
 (S a)

◦1 : {A : Set1}{B C : Set} → (C ← B) → (B ←1 A) → (C ← A)
(R ◦1 S) a = R
 (S a)

1◦ : {AB C : Set} → (C ←1 PB) → (B ← A) → (C ← A)
(R 1◦S) a = R (S a)

×1 : {AB : Set}{PC : Set1}{D : Set} →
(B ← A) → (D ←1 PC) → ((B ×D) ←1 (A×1 PC))

(R ×1 S) (a,1 pc) (b, d) = R a b × S pc d

Fig. 6. Some operators on ← and ←1 relations, including composition, membership
and product. In this paper, ×1 is overloaded for the type of pairs whose right com-
ponent is in Set1 (,1 being the data constructor), and its functor action on relations
(defined in this figure).

In hand-written derivation, the monotonicity of ◦ (that is, S - T implies
R ◦ S - R ◦ T) is often used without being explicitly stated. In our Agda
encoding where there are many versions of composition, it appears that we need
one monotonicity lemma for each of them. Luckily, since those alternatives of
composition are all defined in terms of
 , it is enough to model monotonicity
for
 only:

-monotonic : {AB : Set} → (R : B ← A) → {s t : PA} →
s ⊆ t → R
 s ⊆ R
 t

-monotonic R s⊆t b (exists a1 (a1∈s , bRa1)) =
exists a1 (s⊆t a1 a1∈s , bRa1).

To refine R ◦ S ◦ T to R ◦ U ◦ T given U - S , for example, we may use
(\x →
-monotonic R (U-S (T
 x))) as the reason. It is instructive to study
the definition of
-monotonic. After taking R and s⊆t (a proof of s ⊆ t), the
function
-monotonic shall return a proof of R
 s ⊆ R
 t . The proof, given a
value b and a proof that some a1 in s is mapped to b through R, shall produce
a proof that there exists some value in t that is also mapped to b. The obvious
choice of such a value is a1. Notice how we apply s⊆t to a1 and a1∈s to produce
a proof that a1 is also in t .

Another lemma often used without being said is that we can introduce idR

anywhere we need. It can be proved using ≡-subst :

278 S.-C. Mu, H.-S. Ko, and P. Jansson

id -intro : {AB : Set}{R : B ← A} → R 5 R ◦ idR

id -intro { }{ }{R} a b (exists a′ (a≡a′, bRa′)) =
≡-subst (\a → R a b) (≡-sym a≡a′) bRa′.

3.3 Relational Fold

Having defined all the necessary components, we can now define relational fold
in terms of functional fold:

foldR : {AB : Set} → (B ← (A × B)) → PB → (B ← [A])
foldR R s = foldr (R ◦1 (idR×1 ∈)) s .

On the top of the list of properties that we wish to have proved is, of course,
fold fusion for relational folds:

foldR-fusion : {AB C : Set} → (R : C ← B) → {S : B ← (A × B)} →
{T : C ← (A × C)}{u : PB}{v : PC} →

R ◦ S 5 T ◦ (idR × R) → R
 u ⊇ v →
R ◦ foldR S u 5 foldR T v .

The proof proceeds by converting both sides to functional folds. It is omitted
here for brevity but is available online [16]. To use fold fusion, however, there has
to be a fold to start with. Luckily, this is hardly a problem, given the following
lemma showing that idR, when instantiated to lists, is a fold:

idR5foldR : {A : Set} → idR {[A]} 5 foldR cons nil ,

where cons = fun (uncurry ::) and nil = singleton []. Let us try to construct
its proof term. The inclusion idR {[A]} 5 foldR cons nil expands to:

forall xs ys → foldR cons nil xs ys → xs ≡ ys .

The proof term of idR5foldR should be a function which takes xs , ys , and a
proof that foldR cons nil maps xs to ys , and returns a proof of xs ≡ ys . When
xs is [], foldR cons nil [] ys simplifies to [] ≡ ys , and we can simply return the
proof:

idR5foldR [] ys []≡ys = []≡ys .

Consider the case a :: xs . The proposition foldR cons nil (a :: xs) ys expands to
∃ (V ×[V])P , where P (a′, as) = ((a ≡ a′)×(foldR cons nil xs as))×(cons (a, as)
ys). Given a :: xs , ys , and a proof of ∃ (V × [V])P , we should construct a proof
that a :: xs ≡ ys . We can do so by equational reasoning:

idR5foldR (a :: xs) ys (exists (a′, as) ((a≡a′, foldRxsas), a′::as≡ys)) =
a :: xs

≡〈 a≡a′ 〈::〉 (idR5foldR xs as foldRxsas) 〉
a′ :: as

≡〈 a′::as≡ys 〉
ys

≡�,

where 〈::〉 is ≡-cong applied twice, substituting a for a′ and xs for as .

Algebra of Programming Using Dependent Types 279

4 Example: Deriving Insertion Sort

We are finally in a position to present our main example: a derivation of insertion
sort, adopted from Bird [7].

4.1 Specifying Sort

We first specify what a sorted list is, assuming a datatype Val and a binary
ordering ≤ : Val → Val → Set that form a decidable total order. To begin
with, let lbound be the set of all pairs (a, xs) such that a is a lower bound of xs :

lbound : P(Val × [Val])
lbound (a, []) = 4
lbound (a, b :: xs) = (a ≤ b) × lbound (a, xs).

A coreflexive is a sub-relation of idR. The following operator ? converts a set
to a coreflexive, letting the input go through iff it is in the set:

? : {A : Set} → PA → (A ← A)
(p ?) a b = (a ≡ b) × p a.

The coreflexive ordered?, which lets a list go through iff it is sorted, can then be
defined as a fold:

ordered? : [Val] ← [Val]
ordered? = foldR (cons ◦ lbound ?)nil .

We postulate a datatype Bag, representing bags of values. Bags are formed
by two constructors: �� : Bag and ::b : Val → Bag → Bag. For the derivation
to work, we demand that the result of ::b be distinguishable from the empty
bag, and that ::b be commutative:5

::b -nonempty : forall {a w} → (�� ≡ a ::b w) → ⊥
::b -commute : (a b : Val) → (w : Bag) → a ::b (b ::b w) ≡ b ::b (a ::b w).

The function bagify, defined below, converts a list to a bag by a fold:

bagify : [Val] → Bag
bagify = foldr ::b ��.

To map a list to one of its arbitrary permutations, we simply convert it to a bag,
and convert the bag back to a list! To sort a list is to find one of its permutations
that is sorted:

permute : [Val] ← [Val]
permute = (fun bagify)˘ ◦ fun bagify,

sort : [Val] ← [Val]
sort = ordered? ◦ permute.

Thus completes the specification, from which we shall derive an algorithm that
actually sorts a list.
5 We can put more constraints on bags, such as that ::b discards no elements. But the

two properties are enough to guarantee that isort is included in ordered? ◦ permute.

280 S.-C. Mu, H.-S. Ko, and P. Jansson

4.2 The Derivation

The derivation begins with observing that permute can be turned into a fold.
We first introduce an idR by id -intro, followed by the lemma idR5foldR, and
fold fusion:

perm-der : ∃1 ([Val] ← [Val]) (\perm → permute 5 perm)
perm-der = exists1 (permute

5〈 id -intro 〉
permute ◦ idR

5〈 (\xs →
-monotonic permute (idR5foldR xs)) 〉
permute ◦ foldR cons nil

5〈 foldR-fusion permute perm-step perm-base 〉
foldR combine nil

5�),

where ∃1 is a Set1 variant of ∃, with extraction functions witness1 and proof1.
The relation combine can be defined as follows:

combine : [Val] ← (Val × [Val])
combine (a, xs) = cons (a, xs) ∪ combine ′ (a, xs),
combine ′ : [Val] ← (Val × [Val])
combine ′ (a, []) = \ys → ⊥
combine ′ (a, b :: xs) = (\zs → cons (b, zs))
 combine (a, xs).

Given (a, xs), it inserts a into an arbitrary position of xs . For the foldR-fusion
to work, we have to provide two proofs:

perm-step : permute ◦ cons 5 combine ◦ (idR × permute)
perm-base : permute
 nil ⊇ nil .

But the real work is done in proving that shuffling the input list does not change
the result of bagify:

bagify-homo : (a : Val) → (xs ys : [Val]) →
combine (a, xs) ys → bagify (a :: xs) ≡ bagify ys .

It is when proving this lemma that we need ::b -commute.
After the reasoning above, we have at our hands:

perm : [Val] ← [Val]
perm = witness1 perm-der ,

permute-is-fold : permute 5 perm
permute-is-fold = proof1 perm-der .

Therefore, perm = foldR combine nil , while permute-is-fold is a proof that perm
refines permute.

Algebra of Programming Using Dependent Types 281

Now that permute can be refined to a fold, a natural step to try is to fuse
ordered? into the fold. We derive:

sort -der : ∃ ([Val] → [Val]) (\f → ordered? ◦ permute 5 fun f)
sort -der = exists

(ordered? ◦ permute
5〈 (\xs →
-monotonic ordered? (permute-is-fold xs)) 〉

ordered? ◦ perm
5〈 5-refl 〉

ordered? ◦ foldR combine nil
5〈 foldR-fusion ordered? ins-step ins-base 〉

foldR (fun (uncurry insert))nil
5〈 foldR-to-foldr insert [] 〉

fun (foldr insert [])
5�).

The function insert follows the usual definition:

insert : Val → [Val] → [Val]
insert a [] = a :: []
insert a (b :: xs)with a ≤?b
. . . | yes a≤b = a :: b :: xs
. . . | no a �≤b = b :: insert a xs ,

where a ≤?b determines whether a ≤ b, whose result is case-matched by the
with notation. The fusion conditions are:

ins-step : ordered? ◦ combine 5 fun (uncurry insert) ◦ (idR × ordered?)
ins-base : ordered?
 nil ⊇ nil .

Finally, foldR-to-foldr is a small lemma allowing us to convert a relational fold
to a functional fold, provided that its arguments have been refined to a function
and a singleton set already:

foldR-to-foldr : {AB : Set} → (f : A → B → B) → (e : B) →
foldR (fun (uncurry f)) (singleton e) 5 fun (foldr f e).

We have thus derived isort = witness sort -der = foldr insert [], while at the
same time proved that it meets the specification ordered? ◦ permute. The details
of the proofs are available online [16]. The library code defining sets, relations,
folds, and their properties, amounts to about 800 lines. The main derivation of
isort is not long. Proving the fusion condition ins-step and its related properties
turned out to take some hard work and eventually adds up to about 700 lines
of code. The interactive mode was of great help — the proof would have been
difficult to construct by hand.

5 Conclusion and Related Work

We have shown how to encode relational program derivation in a dependently
typed language. Derivation is carried out in the host language, the correctness

282 S.-C. Mu, H.-S. Ko, and P. Jansson

being guaranteed by the type system. It also demonstrates that dependent types
are expressive enough to demand that a program satisfies an input/output rela-
tion. An interesting way to construct the corresponding proof term, which would
be difficult to build otherwise, is derivation.

McKinna and Burstall’s paper on “Deliverables” [15] is an early example of
machine checked program + proof construction (using Pollack’s LEGO). In their
terminology sort -der would be a deliverable — an element of a dependent Σ-type
pairing up a function and a proof of correctness. In the Coq tradition Program
Extraction has been used already from Paulin-Mohring’s early paper [18] to
the impressive four-colour theorem development (including the development of
a verified compiler). Our contribution is more modest — we aim at formally
checked but still readable Algebra-of-Programming style derivations.

The concept of Inductive Families [12], especially the identity type (≡), is
central to the Agda system and to our derivations. A recent development of
relations in dependent type theory was carried out by Gonzaĺıa [13, Ch. 5]. The
advances in Agda’s notation and support for hidden arguments between that
derivation and our work is striking.

There has been a trend in recent years to bridge the gap between dependent
types and practical programming. Projects along this line include Cayenne [2],
Coq [10], Dependent ML [23], Agda [17], Ωmega [19], Epigram [14], and the
GADT extension [9] to Haskell. It is believed that dependent types have an
important role in the next generation of programming languages [20].

Acknowledgements. We are grateful to Nils Anders Danielsson for pointing out
typos and giving valuable suggestions regarding the presentation.

References

1. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter. Draft
(2005)

2. Augustsson, L.: Cayenne – a language with dependent types. In: ICFP 1998, pp.
239–250 (1998)

3. Augustsson, L.: Equality proofs in Cayenne. Chalmers Univ. of Tech. (1999)

4. Backhouse, R.C., et al.: Relational catamorphisms. In: IFIP TC2/WG2.1 Working
Conference on Constructing Programs, pp. 287–318. Elsevier, Amsterdam (1991)

5. Backhouse, R.C., Hoogendijk, P.F.: Elements of a relational theory of datatypes. In:
Möller, B., Schuman, S., Partsch, H. (eds.) Formal Program Development. LNCS,
vol. 755, pp. 7–42. Springer, Heidelberg (1993)

6. Bird, R.S.: Algebraic identities for program calculation. Computer Journal 32(2),
122–126 (1989)

7. Bird, R.S.: Functional algorithm design. Science of Computer Programming 26,
15–31 (1996)

8. Bird, R.S., de Moor, O.: Algebra of Programming. International Series in Computer
Science. Prentice-Hall, Englewood Cliffs (1997)

9. Cheney, J., Hinze, R.: First-class phantom types. Technical Report TR2003-1901,
Cornell University (2003)

Algebra of Programming Using Dependent Types 283

10. The Coq Development Team, LogiCal Project. The Coq Proof Assistant Reference
Manual (2006)

11. de Moor, O., Sittampalam, G.: Higher-order matching for program transformation.
Theoretical Computer Science 269(1-2), 135–162 (2001)

12. Dybjer, P.: Inductive families. Formal Aspects of Computing, 440–465 (1994)
13. Gonzaĺıa, C.: Relations in Dependent Type Theory. PhD thesis, Chalmers Univ.

of Tech. (2006)
14. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-

ming 14(1), 69–111 (2004)
15. McKinna, J., Burstall, R.M.: Deliverables: A categorial approach to program de-

velopment in type theory. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS
1993. LNCS, vol. 711, pp. 32–67. Springer, Heidelberg (1993)

16. Mu, S.-C., Ko, H.-S., Jansson, P.: AoPA: Algebra of programming in Agda,
http://www.iis.sinica.edu.tw/∼scm/2008/aopa/

17. Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Chalmers Univ. of Tech. (2007)

18. Paulin-Mohring, C.: Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In: POPL 1989, Austin. ACM Press, New York (1989)

19. Sheard, T.: Programming in Ωmega. The 2nd Central European Functional Pro-
gramming School (June 2007)

20. Sweeney, T.: The next mainstream programming language: a game developer’s
perspective. In: POPL 2006 (January 2006) (invited talk)

21. The Agda Team. The Agda Wiki (2007),
http://www.cs.chalmers.se/∼ulfn/Agda/

22. Verhoeven, R., Backhouse, R.C.: Towards tool support for program verification
and construction. In: World Congress on Formal Methods, pp. 1128–1146 (1999)

23. Xi, H.: Dependent ML: an approach to practical programming with dependent
types. Journal of Functional Programming 17(2), 215–286 (2007)

24. Yokoyama, T., Hu, Z., Takeichi, M.: Yicho - a system for programming program
calculations. In: The 3rd Asian Workshop on Programming Languages and Systems
(APLAS 2002), pp. 366–382 (2002)

http://www.iis.sinica.edu.tw/~scm/2008/aopa/
http://www.cs.chalmers.se/~ulfn/Agda/

Safe Modification of Pointer Programs in Refinement
Calculus

Susumu Nishimura

Dept. of Mathematics, Graduate School of Science, Kyoto University
Sakyo-ku, Kyoto 606-8502, Japan

susumu@math.kyoto-u.ac.jp

Abstract. This paper discusses stepwise refinement of pointer programs in the
framework of refinement calculus. We augment the underlying logic with for-
mulas of separation logic and then introduce a pair of new predicate transform-
ers, called separating assertion and separating assumption. The new predicate
transformers are derived from separating conjunction and separating implication,
which are fundamental logical connectives in separation logic. They represent
primitive forms of heap allocation/deallocation operators and the basic pointer
statements can be specified by means of them. We derive several refinement laws
that are useful for stepwise refinement and demonstrate the use of the laws in the
context of correctness preserving transformations that are intended for improved
memory usage.

The formal development is carried out in the framework of higher-order logic
and is based on Back and Preoteasa’s axiomatization of state space and its exten-
sion to the heap storage [BP05, Pre06]. All the results have been implemented
and verified in the theorem prover PVS.

1 Introduction

Pointers are a powerful tool that provides clean and efficient solutions to certain pro-
gramming tasks. However, pointers are also notoriously hard to handle because of the
problems caused by their effectful nature, e.g., pointer aliasing and dangling pointers.
Thus correct implementation of pointers is a challenging issue in any stage of program
development.

This paper studies safe modifications of pointer programs in the framework of re-
finement calculus: we want to safely modify a pointer program to another one in a way
that the modification is guaranteed to preserve the correctness. For the moment we in-
formally presume that a program T being a correct modification of a program S means
that T executes gracefully in any program context that S does so. In other words, T can
safely replace any occurrence of S in a program.

Modifying a pointer program correctly is often a delicate task that requires great
care. (Throughout, we are particularly interested in correct transformations of pointer
programs that are intended for improved memory usage and therefore we deal with
mostly such examples of program transformations. The results of this paper are not
limited to this particular variety of applications but they can be adopted to wider pur-
poses, e.g., deriving programs from specifications.) Consider the following program S0

that successively executes two pointer statements.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 284–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Safe Modification of Pointer Programs in Refinement Calculus 285

S0 = x := alloc(12); free(p)

The first statement x := alloc(12) allocates an arbitrary fresh heap address, updates the
value stored at that address to 12, and assigns variable x the fresh address; the second
statement free(p) performs deallocation that reclaims the address p.

One might be tempted to rewrite this program into the following program U , in order
to improve memory efficiency.

U = [p] := 12;x := p

The mutation statement [p] := 12 updates the value stored at the address p to 12; the
subsequent assignment x := p assigns p to the variable x. This modified program is
intended to reuse the address p for the subsequent execution, instead of discarding it
away and allocating a fresh address.

This rewrite is not correct, however. The former program S0 assigns x a fresh address
different from p (because the address p is already allocated at the moment of fresh
allocation), while the latter program U sets p to x. This means that, the two programs
will show different behaviors, if they are put in a larger context of a program that tests
on the equality between p and x.

In contrast, it is safe to rewrite the following program S1 into program U .

S1 = free(p);x := alloc(12)

Note that this modification is indeed safe but the two programs are not exactly equal.
Program U always assigns p to x, while program S1 assigns either p or an arbitrary
fresh address. This means that U can safely replace S1 (since a graceful execution of
S1 in a context implies a graceful execution of U , which has a lesser variety of variable
assignments, in the same context), but not vice versa.

The example above indicates that correct modifications of pointer programs can be
a very delicate matter: even slight changes may unexpectedly disrupt the safety of pro-
grams. This implies that the correctness of a pointer program of reasonable size would
be desperately intricate to be established by an informal argument.

Seeking for a rigorous way to derive safe modifications of pointer programs, we
augment the framework of refinement calculus [BvW98, Mor94] so that it can handle
pointer statements. Refinement calculus deals with concrete programs as well as ab-
stract specifications universally as predicate transformers. Predicate transformers are
ordered by refinement relation S - T , which is defined by “S(ϕ) implies T (ϕ) for ev-
ery postcondition ϕ”. In other words, S - T iff Hoare triple assertion {ϕ}T{ψ} holds
whenever {ϕ}S{ψ} holds for any pair of precondition ϕ and postcondition ψ.1 Thus
S - T implies that T can safely replace S. As for the above example, S1 -U holds, but
S0 -U does not.

To deal with pointer programs in refinement calculus, we make use of formulas of
separation logic [ORY01, Rey02] to qualify the properties of (a formalized) heap stor-
age. Then we can verify safety of program modifications by proving propositions ex-
pressed in separation logic formulas.

1 The triple {ϕ}S{ψ} asserts the total correctness of program, i.e., when executed in any state
satisfying precondition ϕ, program S terminates and establishes postcondition ψ.

286 S. Nishimura

Developing a formal proof of the refinement of an entire program, however, can be
a task of unmanageable size and complexity. Therefore a modular style development,
called stepwise refinement, is effective in practice: we successively apply refinement
laws to subcomponents of the program until we obtain the desired result.

In order to manage modifications of pointer programs in the paradigm of stepwise
refinement, we identify two predicate transformers, called separating assertion and sep-
arating assumption, as fundamental units. They represent primitive forms of heap oper-
ations that work in complementary ways: separating assertion, written

{
ϕ
}∗

, works as
a generic deallocation statement that reclaims a portion of the heap storage as specified
by ϕ; separating assumption, written

[
ϕ
]∗

, works as a generic allocation statement that
allocates a subheap as specified by ϕ.

The merits of formulating pointer programs using these two predicate transformers
are twofold.

– Separating assertion and separating assumption enjoy several simple but useful re-
finement laws. They were inspired from predicate transformers called assertion
and assumption, which are useful for handling context information in the stepwise
refinement process [Bac88, Mor94, LvW97, BvW98, Gro00]. Assertions and as-
sumptions are defined in terms of conjunction ∩ and implication ⇒ in classical
logic, while separating assertions and separating assumptions are defined in terms
of logical operators of separating counterpart, namely, separating conjunction ∗ and
separating implication ∗ in separation logic. Both counterparts share certain logi-
cal properties. In particular, the adjunctive relationship of the classical counterpart:

ϕ∩ψ entails γ iff ϕ entails ψ ⇒ γ

is paralleled by that of the separating counterpart [Rey02]:

ϕ∗ψ entails γ iff ϕ entails ψ ∗ γ.

Due to the similarities in logical properties, both counterparts of predicate trans-
formers enjoy similar sets of refinement laws. With these laws, separating assertions
and assumptions can be used to handle context information about pointer programs
together with assertions and assumptions.

– Basic pointer statements that are in common use in programming can be defined
as composition of more primitive predicate transformers such as separating as-
sertions and separating assumptions. This compound representation is useful for
proving refinement laws about pointer statements, because finer logical granularity
implies greater opportunities of stepwise refinement and lesser size and complexity
of proof.

We have implemented and verified the results in this paper in the theorem prover
PVS [SRSC01]. In the present paper, however, we will show the proofs for interest-
ing cases only. Most of the remaining cases are an easy exercise, except for a few
non-trivial cases whose proofs are too lengthy to write down on papers. Interested read-
ers can take a look at the proof script that is available from the author’s homepage
http://www.math.kyoto-u.ac.jp/∼susumu/mpc08pvs/ .

http://www.math.kyoto-u.ac.jp/~susumu/mpc08pvs/

Safe Modification of Pointer Programs in Refinement Calculus 287

Related work. Extensions of refinement calculus by pointer manipulations and separa-
tion logic have been studied by a few researchers. Back, Fan, and Preoteasa [BFP03]
extended refinement calculus with pointer statements by providing a model that allows
explicit reference to the heap storage. Preoteasa [Pre06] presented, based on Back and
Preoteasa’s axiomatization of states [BP05], another extension of refinement calculus
that employs separation logic formulas as a means to expressing heap properties.

The formalization in the present paper basically follows Preoteasa’s but we add two
substantial extensions to it. First, we introduce separating implication and give a formal
semantics for it. Separating implication is a principal logical operation for describing
the axiomatic semantics of heap allocation in separation logic, while Preoteasa gives
the semantics in a different way without using it. Second, we introduce the new predi-
cate transformers, separating assertions and separating assumptions, and define pointer
statements by means of them.

The present paper provides a set of refinement laws for handling separating asser-
tions and separating assumptions and applies them to derivations of pointer programs,
in much the same way as is done for their classical counterpart [Bac88, Mor94, LvW97,
BvW98, Gro00]. In contrast, Preoteasa’s work aims at establishing the correctness of
Hoare rules and the frame rule of separation logic; he did not give refinement laws ex-
plicitly. The refinement laws and examples in the present paper shall be successfully
proved in his formalization. However, we believe that the present formalization enables
a finer stepwise refinement process, as we have argued earlier. The most crucial con-
sequence of the present work is that we identify separating assertions and separating
assumptions as fundamental units of pointer programs and provide a set of refinement
laws that are useful for stepwise refinement of pointer programs.

Outline. The rest of the paper is organized as follows. Section 2 gives a formal defini-
tion of refinement calculus and its extension with separation logic formulas. Section 3
introduces predicate transformers that represent primitive operations on the heap stor-
age and defines basic pointer statements in terms of them. Section 4 lists refinement
laws for these transformers. In Section 5, we examine and discuss how pointer state-
ments interact with each other, and in Section 6 we show a transformation process for a
larger pointer program. Finally Section 7 concludes the paper.

2 Refinement Calculus and Its Formalization

This section summarizes refinement calculus and its formalization in the higher-order
logic, following the formalization techniques in [BvW98, BP05]. We then extend refine-
ment calculus with separation logic formulas, in order to deal with pointer statements.
This extension is formalized by a variant of the technique proposed in [Pre06].

We will use the following notations. Let A, B be types (sets) in the higher-order
logic. We write either a ∈ A or a : A to mean that a is a member of A. We write
Pfin(A) for the finite powerset of A, and A\B for the set difference. A function of type
A → B is often written in λ-notation λx : A.M, where M is a term that denotes a value
of type B. The type annotations in λ-notation are often left implicit. A predicate over
A is a function A→bool, where bool denotes the type of boolean values {true, false}.

288 S. Nishimura

The type of predicates forms a complete boolean lattice. Given predicates ϕ, ψ over A,
we write ϕ∪ψ, ϕ∩ψ, ϕ ⊆ ψ, and ¬ϕ to denote predicate union, intersection, inclusion,
and complement, respectively. The logical interpretations of ∪, ∩, ⊆, ¬ are disjunction,
conjunction, entailment, and negation, resp., and we also write implication ϕ ⇒ ψ to
abbreviate ¬ϕ∪ψ. A relation R between types A and B is a subset of the product A×B.
For a relation R ⊆ A×B, we define its inverse relation by R−1 = {(y,x) | (x,y) ∈ R}.
For a function f : A→B, we write graph(f) for the graph of f , i.e., {(x, f (x))|x ∈ A}.

2.1 Axiomatization of States

Let Value be the type representing the set of all values. Value includes the set of loca-
tions Location and the set of constants Constant. We assume Constant at least contains
boolean values and nil. For every location x, we write T(x) to denote the type of values
assignable to x.

In order to formalize a state model that has a heap storage, Preoteasa [Pre06] defined
Location to be the disjoint union of sets:

Location � Variable6Address6{alloc},

where Variable is the infinite set of variables, Address is the infinite set of addresses
(of the heap storage), and alloc is a distinguished location denoting the finite set of
allocation addresses. We assume that variables and addresses can be assigned arbitrary
values and thus the types of locations are given by T(x) = Value for any x ∈ Variable∪
Address and T(alloc) = Pfin(Address).

Let State be the type of states. It is intended that a state is a pair of a mapping
from locations to values and a LIFO queue (often called stack) that is used for sav-
ing/restoring values. Following Back and Preoteasa [BP05], we do not stick to a
concrete definition of a state space but rather specify it by a set of state manipulation
functions and its axiomatization.

We have three functions for state manipulation.

Lookup val(x) : State→T(x) (x ∈ Location)
Update set(x) : T(x)→State→State (x ∈ Location)
Restore del(x) : State→State (x ∈ Location)

Figure 1 gives the axioms2 that characterize the intended meaning of these functions:
val(x)(σ) returns the value that is assigned to the location x in the state σ. set(x)(v)(σ)
returns a new state obtained by updating the value of the location x to v in the state
σ. del(x)(σ) returns a new state obtained by “popping” the top most stack value and
restoring the value to the location x in the state σ. The operation for saving values to the
stack will be defined as the relational inverse of del.

In what follows, two states σ,σ′ ∈ State are called val-equivalent if val(x)(σ) =
val(x)(σ′) holds for any location x ∈ Location [BP05]. We notice that σ = σ′ implies

2 Back and Preoteasa used these axioms to formalize local variable declarations and recursive
procedure calls [BP05]. The present paper does not deal with recursive procedure calls but
they should be incorporated without much difficulty.

Safe Modification of Pointer Programs in Refinement Calculus 289

val(x)(set(x)(v)(σ)) = v (2.1)

x �= y ⇒ val(y)(set(x)(v)(σ)) = val(y)(σ) (2.2)

set(x)(v)(set(x)(u)(σ)) = set(x)(v)(σ) (2.3)

x �= y ⇒ set(x)(v)(set(y)(u)(σ)) = set(y)(u)(set(x)(v)(σ)) (2.4)

set(x)(val(x)(σ))(σ) = σ (2.5)

∀σ.∃σ′.σ = del(x)(σ′) (2.6)

x �= y ⇒ val(y)(del(x)(σ)) = val(y)(σ) (2.7)

del(x)(set(x)(v)(σ)) = del(x)(σ) (2.8)

x �= y ⇒ del(x)(set(y)(u)(σ)) = set(y)(u)(del(x)(σ)) (2.9)

Fig. 1. Axioms for states [BP05]

σ and σ′ are val-equivalent but the converse does not hold in general, because two val-
equivalent states may hold different values in the stack.

2.2 Expressions and Predicates over States

An expression over State is a function State→A, written Exp(A), where A is the type
of the value of the expression.

We remark that the bare variable x just denotes the location of the variable and that an
expression that refers to the value of x is denoted by val(x). For example, an assignment
statement x:=y is expressed as x := val(y) in our notation.

Let e be an expression of type Exp(A), x be a location, and e′ be an expression of type
Exp(T(x)). We define substitution of location x in e by e′, written e[e′/x], as follows.

e[e′/x] � λσ.e(set(x)(e′(σ))(σ))

An expression e is called x-independent if e(set(x)(v)(σ)) = e(σ) holds for any state
σ and any value v of type T(x). For notational convention, we write FV(e) to denote
the set of “free” locations in e, i.e., FV(e)� {x ∈ Location | e is not x-independent}.

An expression e is called finitely-dependent if FV(e) is finite. An expression e is
called val-determined, if e(σ) = e(σ′) for any val-equivalent states σ,σ′. An expression
e is called pure if its value does not depend on the state of the heap, i.e., it holds that

e(set(alloc)(h)(σ)) = e(σ) and e(set(a)(v)(σ)) = e(σ)

for any σ ∈ State, h ∈ Pfin(Address), a ∈ Address, and v ∈ Value.
We call an expression e is nonalloc-independent [Pre06] if it holds that

e(set(a)(v)(σ)) = e(σ)

for any σ ∈ State, a ∈ Address\ val(alloc)(σ), and v ∈ Value. Apparently pure expres-
sions are a subclass of nonalloc-independent expressions.

A predicate (over state) is an expression of boolean type, namely an expression of
type Exp(bool).

290 S. Nishimura

2.3 Separation Logic Formulas

We denote by Exp the subtype of Exp(Value) that consists of expressions which are
pure, finitely-dependent, and val-determined. In what follows we assume that every
program expression e is a member of Exp. The usual (syntactically constructed) expres-
sions that contain no access to the heap storage have type Exp.

Let us use the following shorthand notations.

add alloc(a)(σ) � set(alloc)({a}∪ val(alloc)(σ))(σ)

diff alloc(h)(σ) � set(alloc)(val(alloc)(σ)\ h)(σ)

We introduce a partial order relation 9 over states that denotes one state is an ex-
tension of the other. The formal definition is by induction on the size of allocation set:
σ 9 σ′ iff val(alloc)(σ) ⊆ val(alloc)(σ′) and either

– σ = σ′ (hence val(alloc)(σ) = val(alloc)(σ′)) or
– set(a)(val(a)(σ′))(add alloc(a)(σ)) 9 σ′ holds for any a ∈ val(alloc)(σ′) \

val(alloc)(σ).

This is intended that σ′ allocates an equal or larger set of addresses than σ does and that
σ′ may assign different values for the extended set of addresses, i.e., val(alloc)(σ′) \
val(alloc)(σ). There are no other differences between σ and σ′: they have the same
assignment of values to variables and the same values saved in the stack. A similar but
more abstract notion of this partial ordering can be found in [COY07].

For expressions e,e′ ∈ Exp and predicates ϕ,ψ ∈ Exp(bool), we define the semantics
of separation logic formulas as follows.

emp � λσ.(val(alloc)(σ) = /0)

e 3→ e′ � λσ.
(
val(alloc)(σ) = {e(σ)} and val(e(σ))(σ) = e′(σ)

)
ϕ∗ψ � λσ.

(
∃h.
(
h ⊆ val(alloc)(σ) and

ϕ(set(alloc)(h)(σ)) and ψ(diff alloc(h)(σ))
))

ϕ ∗ ψ � λσ.
(
∀σ′. [σ 9 σ′ and ϕ(diff alloc(val(alloc)(σ))(σ′))] implies ψ(σ′)

)
The intended semantics is explained as below.

emp (empty heap). The heap allocates nothing.
e 3→ e′ (single allocation). The heap allocates the value e′ at the address e (and nothing

else).
ϕ∗ψ (separating conjunction). The heap can be split into two separate heap domains

(that is, the allocation set val(alloc)(σ) is divided into two disjoint address sets, h
and val(alloc)(σ) \ h for some h) so that ϕ holds for one subheap and ψ holds for
the other.

ϕ ∗ ψ (separating implication). ψ holds for any extension σ′ of the current heap σ
such that ϕ holds for the extended heap domain. That is, no matter how the current
allocation set val(alloc)(σ) is extended with an additional address set, say h, that
satisfies ϕ and is disjoint from val(alloc)(σ), ψ holds for the extended allocation set

Safe Modification of Pointer Programs in Refinement Calculus 291

h∪ val(alloc)(σ). The partial order σ 9 σ′ indicates that the additional address set
is the difference val(alloc)(σ′)\val(alloc)(σ) and that arbitrary values are stored at
the extended heap addresses.

For notational convenience, we also make use of the following abbreviations.

– We write e 3→− to mean that e 3→ v holds for some value v. The notation e 3→−
represents a heap that allocates a single address e but the stored value does not
matter.

– e ↪→ e′ abbreviates e 3→ e′ ∗ true; similarly, e ↪→− abbreviates e 3→−∗ true. They
represent a heap that allocates the address e and possibly other addresses.

We can also formally specify some specific classes of separation logic formulas that
advocate stronger logical properties. For example, we specify the class of precise pred-
icates [OYR04] as those predicates ϕ satisfying:

σ 9 σ0 and ϕ(σ) and σ′ 9 σ0 and ϕ(σ′) implies val(alloc)(σ) = val(alloc)(σ′) ,

for any states σ, σ′, and σ0.3 Informally, a predicate ϕ is precise if, for any state σ0,
there exists at most one restriction to a subheap that satisfies ϕ: that is, there exists at
most one subset h of the allocation set val(alloc)(σ0) such that, for any σ satisfying ϕ,
σ9σ0 implies val(alloc)(σ) = h. We can formally show that, when ϕ and ψ are precise,
so are emp, e 3→ e′, e 3→−, ϕ∗ψ, and ϕ∩ψ.

2.4 Predicate Transformers

We define pointer manipulating programs as predicate transformers that operate on the
type of predicates:

Pred � {ϕ ∈ Exp(bool) | ϕ is nonalloc-independent}.

We restrict the type of predicates to those nonalloc-independent ones, since execution
of programs should not be affected by the values of heap addresses that are not allo-
cated. (Any attempt to access the heap storage at a non-allocated address immediately
causes an error, e.g., segmentation fault.) The type Pred is closed under logical opera-
tors including those of separation logic.

Proposition 2.1. Let x ∈ Variable, e,e′ ∈ Exp, ϕ,ψ ∈ Pred. Then the following predi-
cates are all members of Pred.

ϕ∪ψ ϕ∩ψ ¬ψ ϕ ⇒ ψ (∀x)ϕ (∃x)ϕ emp e 3→ e′ ϕ∗ψ ϕ ∗ ψ

where (∀x) and (∃x) are quantifications over Pred:

(∀x)ϕ � λσ.(∀v ∈ Value.ϕ(set(x)(v)(σ)))

(∃x)ϕ � λσ.(∃v ∈ Value.ϕ(set(x)(v)(σ))) .

3 This definition is slightly more general than the usual definition in separation logic: “for any
state σ, there is at most one address set h such that h is a subset of the current allocation
set and the restriction of σ to h satisfies ϕ.” The two definitions are indeed equivalent if we
restrict the set of predicates to the class of nonalloc-independent ones, which we will consider
in Section 2.4.

292 S. Nishimura

We define the type MTran of predicate transformers that are monotonic w.r.t. predicate
inclusion, i.e.,

MTran � {S ∈ Pred→Pred | ∀ϕ,ψ.
(
ϕ ⊆ ψ implies S(ϕ) ⊆ S(ψ)

)
}.

We write S;T for the sequential composition of monotonic predicate transformers
S,T ∈ MTran and define it simply by function composition, i.e., S;T � S ◦ T . The type
MTran is closed under sequential composition.

The refinement relation - over MTran is defined as pointwise extension of ⊆, i.e.,

S - T iff ∀ϕ ∈ Pred.S(ϕ) ⊆ T (ϕ) .

We say S is refined to T , if S - T holds. The equality S = T holds iff both S - T and
T - S hold.

We also define operations 	 and � over MTran as pointwise extensions of ∪ and ∩:

(S	T)(ϕ) � S(ϕ)∪T(ϕ) (S�T)(ϕ) � S(ϕ)∩T(ϕ) .

Proposition 2.2 ([BvW98]). MTran forms a complete lattice with -, �, and 	 being
the partial order, meet, and join, respectively. The least element of MTran is abort�
λϕ.false and the greatest element is magic� λϕ.true.

The least element abort represents a program whose execution may not terminate
normally (because of non-termination or errors). The greatest element magic is a mirac-
ulous (unimplementable) program that can establish arbitrary postcondition for any pre-
condition.

A predicate transformer S ∈ MTran is called conjunctive if it holds that S(
�
{ϕ |

ϕ ∈ Γ}) =
�
{S(ϕ) | ϕ ∈ Γ} for any nonempty subset Γ of Pred; dually, S is called

disjunctive if it holds that S(
�{ϕ | ϕ ∈ Γ}) =

�{S(ϕ) | ϕ ∈ Γ}. We also call S ∈MTran
terminating if S;magic = magic; Dually we call S feasible if S;abort = abort.

3 Statements as Predicate Transformers

We introduce several predicate transformers of type MTran. In what follows, let us write
x,y, · · · for variables, e,e′, · · · for expressions of type Exp, and ϕ,ψ, · · · for predicates of
type Pred. We also write B for pure predicates.

3.1 Basic Program Statements

The idle statement skip and the assignment statement x := e are defined as follows.

skip � λϕ.ϕ x := e � λϕ.(ϕ[e/x])

Back and Preoteasa [BP05] defined statements for saving/restoring the value of vari-
able. Let

[
R
]
� λϕ.λσ.(∀σ′.σ R σ′ implies ϕ(σ′)) be the relational demonic update for

arbitrary relation R ⊆ State× State. The definition of the save statement Add(x) and
the restore statement Del(x) is given as below.

Safe Modification of Pointer Programs in Refinement Calculus 293

Add(x) �
[
graph(del(x))−1] Del(x) �

[
graph(del(x))

]
Using the save/restore statements in pair, we can put a predicate transformer S into a

scope of a local variable x by
Add(x);S;Del(x) .

Note that, since Add(x) is the inverse of Del(x), it saves the current value of x onto
the stack and assigns an arbitrary value to x; the saved value is restored on exit by
Del(x). This indicates that the local scope might be alternatively interpreted by means
of universal quantification as Morgan [Mor94] did, i.e.,(

Add(x);S;Del(x)
)
(ϕ) = ∀x.(S(ϕ)) ,

where the local variable x is assumed not to occur free in ϕ. In the present formalization,
this is not provable for arbitrary S but it actually holds when S represents a “normal”
program where any Add and Del always appear in pair and the value saved in the stack
is never accessed until the program execution leaves the corresponding local scope.
Throughout the paper, we consider such normal programs only and thus the above al-
ternative interpretation of local scoping is valid, although we have to justify it for each
concrete instance of S in a formal development.

3.2 Abstract Statements

The logical quantifications (∀x) and (∃x) can be as well regarded as predicate trans-
formers and we call them demonic assignment and angelic assignment [BvW98], re-
spectively. Both non-deterministically assign a value to the variable, but the angelic
assignment chooses a value that establishes the postcondition, if possible.

We can also define predicate transformers that are related to logical conjunction and
implication as follows.{

ψ
}
� λϕ.(ψ∩ϕ)

[
ψ
]
� λϕ.(ψ ⇒ ϕ)

The predicate transformers
{

ψ
}

is called assertion and
[
ψ
]

is called assumption. They
work as primitive forms of conditional statements: if ψ is satisfied, both of them act like
skip; otherwise,

{
ψ
}

acts like abort, while
[
ψ
]

acts like magic.
Some programming constructs can be defined in terms of the above abstract predicate

transformers. The conditional statement can be expressed using �:

if B then S else T fi �
([

B
]
;S
)
�
([
¬B
]
;T
)
.

Let F be a monotonic function from MTran to MTran. By proposition 2.2 and
Knaster-Tarski theorem, F has least fixpoint, written µ.F . This allows us to define re-
cursive program constructs as least fixpoints in MTran. We give below the least fixpoint
definition of the while loop.

while B do S od � µ.(λU.if B then S;Uelse skip fi)

294 S. Nishimura

3.3 Pointer Statements

Let us consider four basic pointer statements: lookup x := [e], mutation [e] := e′, allo-
cation x := alloc(e), and deallocation free(e). (The lookup statement x := [e] updates
the variable x to the value stored at the address e of the heap. The other statements have
been explained in Introduction.)

The weakest preconditions for these basic pointer statements can be expressed in
terms of separation logic formulas [Rey02]. Accordingly they can be recognized as
predicate transformers of the following forms:

x := [e] = λϕ.∃y.(e ↪→ y∩ϕ[y/x]) (3.1)

[e] := e′ = λϕ.(e 3→−)∗ (e 3→ e′ ∗ ϕ) (3.2)

x := alloc(e) = λϕ.∀y.(y 3→ e ∗ ϕ[y/x]) (3.3)

free(e) = λϕ.(e 3→−∗ϕ) (3.4)

where x and y are distinct and y �∈ FV(e)∪FV(ϕ).
Here we can observe that these predicate transformers calculate a compound formula

that combines logical connectives such as ∗ and ∗. This suggests that the definitions
above could be expressed by combining simpler predicate transformers, each of which
corresponds to a single logical connective.

Let us define a pair of new predicate transformers as follows.{
ψ
}∗ � λϕ.(ψ∗ϕ)

[
ψ
]∗ � λϕ.(ψ ∗ ϕ)

These are a separating counterpart of assertion and assumption in Section 3.2 and
therefore called separating assertion and separating assumption, respectively. They
represent the complementary pair of operations over the heap storage, namely, heap
deallocation and allocation. Separating assertion

{
ψ
}∗ reclaims a part of the current

heap as mentioned by ψ; if no subheap establishes ψ, it acts like abort. Separating as-
sumption

{
ψ
}∗

extends the heap with a set of fresh allocations as mentioned by ψ; if
no fresh allocation that satisfies ψ is available, it acts like magic.

Combining separating assertion, separating assumption, local variable scoping, etc.,
we give alternative definitions of pointer statements as below:

x := [e] � Add(y);(∃y);
{

e ↪→ val(y)
}

;x := val(y);Del(y) (3.5)

[e] := e′ �
{

e 3→−
}∗

;
[
e 3→ e′

]∗
(3.6)

x := alloc(e) � Add(y);
[
val(y) 3→ e

]∗
;x := val(y);Del(y) (3.7)

free(e) �
{

e 3→−
}∗

(3.8)

where x and y are distinct and y �∈ FV(e).
We justify these compound definitions as follows. By a simple calculation we have

that the compound definition
{

e 3→−
}∗

;
[
e 3→ e′

]∗
of the mutation statement is equiva-

lent to the predicate transformer that maps a postcondition ϕ to (e 3→−)∗ (e 3→ e′ ∗ ϕ);
as for the allocation, by the discussion in Section 3.1, we have that

[
val(y) 3→ e

]∗
;

Safe Modification of Pointer Programs in Refinement Calculus 295

x := val(y) maps ϕ to ∀y.(val(y) 3→ e ∗ ϕ[y/x]), where the universal quantification is
introduced by the local variable scoping. Here the local variable scoping is needed for
another reason: it guarantees that y is a fresh variable (as required by the side condi-
tion for the definition (3.3)). The local variable y can be recognized as fresh because a
possible occurrence of y in ϕ, though being syntactically identical, denotes a different
entity: the former denotes the value local to the scope, while the latter denotes the value
outside the scope. Similar arguments apply to the lookup and deallocation statements.

The definition of lookup statement (3.5) implicitly contains separating assertion and
separating assumption: from the fact that e ↪→ e′ ∩ϕ is equivalent to e 3→ e′ ∗ (e 3→ e′ ∗
ϕ) for any ϕ [Rey02], we have{

e ↪→ e′
}

=
{

e 3→ e′
}∗

;
[
e 3→ e′

]∗
. (3.9)

Thus the definition is alternatively expressed as follows.

x := [e] � Add(y);(∃y);
{

e 3→ val(y)
}∗;
[
e 3→ val(y)

]∗;x := val(y);Del(y) (3.10)

4 Refinement Laws

We will show refinement laws for predicate transformers defined in the previous sec-
tion. We denote predicate transformers in MTran by S,T,U, · · · , program expressions
in Exp by e,e′, · · · , and predicates in Pred by P,Q, · · · . We also assume that program
expressions and predicates are val-determined and finitely-dependent, unless otherwise
stated. Any usual (syntactically constructed) expressions and predicates satisfy these
properties.

The compound statements, which combine the basic statements given in the previous
section by sequential composition ; , meet �, join 	, and the least fixpoint operator, are
conventionally called programs. The next proposition indicates that a refinement of any
substatement of a program gives a refinement of the entire program. (In the subsequent
development, we will exploit this fact without explicitly mentioning it.)

Proposition 4.1 (monotonicity[BvW98]). The sequential composition, meet, and join
of predicate transformers preserve monotonicity. That is, for any S,T,S′,T ′ such that
S - S′ and T - T ′ it holds that S;T - S′;T ′, S� T - S′ � T ′, and S	 T - S′ 	 T ′.
Furthermore, the least fixpoint operator preserves monotonicity, in the sense that µ.F
is monotonic if F is a monotonic function that preserves monotonicity.

We list below several simple refinement laws.

S;skip = skip;S = S (4.1)

(S�T);U = (S;U)� (T ;U) (4.2)

S;(T �U) - (S;T)� (S;U) (4.3)

(S	T);U = (S;U)	 (T ;U) (4.4)

(S;T)	 (S;U) - S;(T 	U) (4.5)

4.1 Laws for Local Variable Scoping

The next law indicates that one can freely introduce or eliminate an empty local variable
scope.

296 S. Nishimura

Proposition 4.2. [BP05]
Add(x);Del(x) = skip (4.6)

In the course of program refinement, we often need to enlarge or shrink the scope of
local variables. The next proposition shows that this is possible, provided that there is
no collision in variable names.

Proposition 4.3. It holds that S;Add(x) = Add(x);S and S;Del(x) = Del(x);S, in ei-
ther of the following cases.

– S is either abort, magic,
{

P
}

,
[
P
]
,
[
P
]∗

, y := e, y := [e], [e] := e′, y := alloc(e), or
free(e), where x and y are distinct and x �∈ FV(e)∪FV(e′)∪FV(P).

– S is a separating assertion
{

P
}∗

, where P is precise and x �∈ FV(P).

On exit from a local scope Add(x);S;Del(x), the original value of the variable x is
restored and hence any assignment to x in the local scope is overridden (the state axiom
(2.8)). Thus we can prove the following refinement laws.

x := e;Del(x) = Del(x) (4.7) x := e;Del(y);Del(x) = Del(y);Del(x) (4.8)

If x and y are distinct and x �∈ FV(e′), it follows from the state axioms (2.3) and (2.9)
that

x := val(y);Del(y);x := e′ = Del(y);x := e′ . (4.9)

4.2 Laws for Assertions and Assumptions and Their Separating Counterpart

We list below some of the refinement laws of assertions and assumptions and contrast
them with the laws of the separating counterpart.

Proposition 4.4{
P
}
-
{

Q
}

if P ⊆ Q (4.10){
P
}

;
{

Q
}

=
{

Q
}

;
{

P
}

=
{

P∩Q
}

(4.11){
P
}∗ - {Q

}∗
if P ⊆ Q (4.12){

P
}∗

;
{

Q
}∗={Q

}∗
;
{

P
}∗={P∗Q

}∗
(4.13)

[
P
]
-
[
Q
]

if Q ⊆ P (4.14)[
P
]
;
[
Q
]
=
[
Q
]
;
[
P
]
=
[
P∩Q

]
(4.15)[

P
]∗ - [Q]∗ if Q ⊆ P (4.16)[

P
]∗

;
[
Q
]∗=[Q]∗;[P]∗=[P∗Q

]∗
(4.17)

These laws show that assertion (assumption, resp.) is monotonic (antimonotonic, resp.)
w.r.t. predicate inclusion and also assertions and assumptions are commutative for se-
quential composition; similarly for the separating counterpart.

Some of the laws for the interaction between assertions and assumptions and the
corresponding laws for the separating counterpart are given below.

Proposition 4.5

skip -
[
P
]
;
{

Q
}

if P ⊆ Q (4.18){
P
}

;S - T iff S -
[
P
]
;T (4.19){

P
}∗

;
[
Q
]∗ - skip if P ⊆ Q (4.20){

P
}∗

;S - T iff S -
[
P
]∗

;T (4.21)

{
P
}

;
[
Q
]
- skip if P ⊆ Q (4.22){

P
}

;
[
Q
]
-
[
Q
]
;
{

P
}

(4.23)

skip -
[
P
]∗

;
{

Q
}∗

if P ⊆ Q (4.24){
P
}∗

;
[
Q
]∗ - [Q]∗;

{
P
}∗

(4.25)

Safe Modification of Pointer Programs in Refinement Calculus 297

We can observe that the refinement laws for both counterparts run completely in paral-
lel. This is because both counterparts satisfy some significant logical properties such as
monotonicity, commutativity, and the adjunctive relationship in parallel. For example,
given the proof for the law (4.25):{

P
}∗

;
[
Q
]∗ - [Q]∗;

{
P
}∗

iff P∗ (Q ∗ ϕ) ⊆ Q ∗ (P∗ϕ) for any ϕ
iff Q∗P∗ (Q ∗ ϕ) ⊆ P∗ϕ for any ϕ (adjunction)

iff P∗Q∗ (Q ∗ ϕ) ⊆ P∗ϕ for any ϕ (commutativity)

if Q∗ (Q ∗ ϕ) ⊆ ϕ for any ϕ (monotonicity)

iff Q ∗ ϕ ⊆ Q ∗ ϕ for any ϕ (adjunction)

iff True ,

we instantly obtain the proof for the other counterpart (4.23) simply by replacing the
symbols

{
−
}∗

,
[
−
]∗

, and ∗ by
{
−
}

,
[
−
]
, and ∩, respectively.4

We can also show that some stronger refinement laws hold for the separating coun-
terpart, provided that the predicate P belongs to a particular class of predicates.

Proposition 4.6. The followings hold for any pure predicate P.{
P
}
-
{

P
}∗

(4.26)[
P
]∗ - [P] (4.27)

{
Q
}∗

;
{

P
}

=
{

P
}

;
{

Q
}∗ =

{
Q∩P

}∗
(4.28){

Q
}∗

;
[
P
]
-
[
P
]
;
{

Q
}∗

(4.29)

Proposition 4.7. The followings hold for any precise predicate P.{
P
}∗

;
{

Q
}

=
{

P∗Q
}

;
{

P
}∗

(4.30)
{

Q
}

;
[
P
]∗ - [P]∗;

{
Q∗P

}
(4.31)

4.3 Commutativity Laws for Statements

The next proposition gives several commutativity laws for pairs of statements that have
no collision in variable names.

Proposition 4.8. The following refinement laws hold, if x and y are distinct, x �∈ FV(e′)
∪FV(P), and y �∈ FV(e).

x := e;
{

P
}

=
{

P
}

;x := e (4.32)

x := e;
[
P
]

=
[
P
]
;x := e (4.33)

x := e;
{

P
}∗ =

{
P
}∗;x := e (4.34)

x := e;
[
P
]∗ =

[
P
]∗

;x := e (4.35)

x := e;y := e′ = y := e′;x := e (4.36)

(∃x);y := e′ = y := e′;(∃x) (4.37)

(∃x);
{

P
}

=
{

P
}

;(∃x) (4.38)

(∃x);
[
P
]∗ - [P]∗;(∃x) (4.39)

When two sequentially composed statements have a collision in variable names, we
may use refinement laws that exchange the execution order subject to modifications of
the original statements. We list below a few such laws for assignment statements.

4 Note that not every refinement law in one counterpart has a corresponding law in the other. For
instance,

{
P
}

;S - S holds for arbitrary P but
{

P
}∗

;S - S does not.

298 S. Nishimura

Proposition 4.9.

x := e;
{

P
}

=
{

P[e/x]
}

;x := e (4.40)

x := e;
[
P
]

=
[
P[e/x]

]
;x := e (4.41)

x := e;
{

P
}∗ =

{
P[e/x]

}∗
;x := e (4.42)

x := e;
[
P
]∗ =

[
P[e/x]

]∗
;x := e (4.43)

5 Refinement of Pointer Statements

Now we are ready to discuss refinement laws for pointer statements. First we show
that pointer statements commute with assignment, provided that there is no collision in
variable names.

Lemma 5.1. The following refinement laws hold, if x and y are distinct, x �∈ FV(e′),
and y �∈ FV(e).

x := e;y := [e′] = y := [e′];x := e (5.1)

x := e; [y] := e′ = [y] := e′;x := e (5.2)

x := e;y := alloc(e′) = y := alloc(e′);x := e (5.3)

x := e; free(e′) = free(e′);x := e (5.4)

Proof. These refinement laws follow from the definition of the pointer statements and
the commutativity laws in proposition 4.3 and 4.8. �	

The next lemma shows that any pointer statement that attempts to access the heap stor-
age via a dangling pointer is equal to abort.

Lemma 5.2.{
¬e ↪→−

}
;x := [e] =

{
¬e ↪→−

}
; [e] := e′ =

{
¬e ↪→−

}
; free(e) = abort

Proof. We first show the proof for the deallocation statement. By the definition, we
have

{
¬e ↪→−

}
; free(e) =

{
¬e ↪→−

}
;
{

e 3→−
}∗

. This is equivalent to abort, since for
any postcondition ϕ, (¬e ↪→−)∩ (e 3→−∗ϕ) implies (¬e ↪→−)∩ (e ↪→−), which is
unsatisfiable. The proof for the mutation statement is similar.

For the lookup statement, we have
{
¬e ↪→−

}
;x := [e] = Add(y);(∃y);

{
¬e ↪→−

}
;{

e ↪→ val(y)
}

;x := val(y);Del(y) by proposition 4.3 and law (4.38). This is equivalent
to abort, because so is the subcomponent

{
¬e ↪→−

}
;
{

e ↪→ val(y)
}

. �	

The things get more complicated and delicate when we deal with interaction between
pointer statements, as we have seen in Introduction. In what follows, we demonstrate
that some refinement laws for such delicate interactions can be verified by means of
stepwise refinement.

We first show the following refinement law that we have argued in Introduction.

Proposition 5.1. If y �∈ FV(e), then it holds that

free(e);y := alloc(e′) - [e] := e′;y := e . (5.5)

Safe Modification of Pointer Programs in Refinement Calculus 299

Proof. By the definition of allocation and deallocation statements and proposition 4.3,
the lhs is equal to:

Add(z);
{

e 3→−
}∗

;
[
val(z) 3→ e′

]∗
;y := val(z);Del(z)

for some fresh variable z. As we have observed in Section 3, the scope of local variable z
constitutes a universal quantification over z and hence (by instantiating z to e) the above
compound statement can be refined to5{

e 3→−
}∗

;
[
e 3→ e′

]∗
;y := e ,

which is equal to the rhs of (5.5). �	
Let us examine another refinement law, whose proof is more involved.

Proposition 5.2. If x and y are distinct, x �∈ FV(e′), and y �∈ FV(e), then it holds that

x := [e];y := alloc(e′) = y := alloc(e′);x := [e] . (5.6)

Proof. We prove this by showing that both sides of the equation refine each other.
The following derivation steps prove that the rhs is a refinement of the lhs. (Through-

out, we put references to the laws, propositions, etc. that justify the derivation, on the
left of each derivation step within a pair of angle brackets. A symbol like ♠ refers to a
subsidiary law that will be justified later on.)

x := [e];y := alloc(e′)

〈Def.&Prop. 4.3〉 = Add(z);x := [e];
[
val(z) 3→ e′

]∗;y := val(z);Del(z)

〈♠〉 - Add(z);
[
val(z) 3→ e′

]∗
;x := [e];y := val(z);Del(z)

〈(5.1), Prop. 4.3〉 = y := alloc(e′);x := [e]

In the derivation step ♠, we applied the following law.

x := [e];
[
val(y) 3→ e′

]∗ -[val(y) 3→ e′
]∗

;x := [e]

This subsidiary law is derived as follows. By the definition of lookup statement, propo-
sition 4.3, and the refinement laws (4.35), (4.39), this is equivalent to showing:

Add(z);(∃z);
{

e ↪→ val(z)
}

;
[
val(y) 3→ e′

]∗
;x := val(z);Del(z)

- Add(z);(∃z);
[
val(y) 3→ e′

]∗
;
{

e ↪→ val(z)
}

;x := val(z);Del(z) .

Hence it is enough to show that
{

e ↪→ val(z)
}

;
[
val(y) 3→ e′

]∗ - [val(y) 3→ e′
]∗

;
{

e ↪→
val(z)

}
. This is derived by the following stepwise refinement.{

e ↪→ val(z)
}

;
[
val(y) 3→ e′

]∗
〈(3.9)〉 =

{
e 3→ val(z)

}∗
;
[
e 3→ val(z)

]∗
;
[
val(y) 3→ e′

]∗
〈(4.17)〉 -

{
e 3→ val(z)

}∗;
[
val(y) 3→ e′

]∗;
[
e 3→ val(z)

]∗
〈(4.25)〉 -

[
val(y) 3→ e′

]∗
;
{

e 3→ val(z)
}∗

;
[
e 3→ val(z)

]∗
〈(3.9)〉 =

[
val(y) 3→ e′

]∗
;
{

e ↪→ val(z)
}

5 In the formal proof, we need to boil down the compound statements into single predicate
transformers and prove that they are equal up to extensionality, appealing to the state axioms
given in Figure 1. The proof procedure is cumbersome but a routine.

300 S. Nishimura

To show the converse refinement, since it holds that S = (
{

P
}

;S)	 (
{
¬P
}

;S), it is
enough to show the following two cases:{

¬e ↪→−
}

;y := alloc(e′);x := [e] - x := [e];y := alloc(e′) and{
e ↪→−

}
;y := alloc(e′);x := [e] - x := [e];y := alloc(e′) .

For the first case, by the definition of allocation statement, Proposition 4.3, laws
(4.31), (4.32), and lemma 5.2, we have

{
¬e ↪→−

}
;y := alloc(e′);x := [e] - Add(z);[

val(z) 3→ e′ ∗ ¬e ↪→−
]∗

;abort. This is equivalent to the least element abort, since
Add(z);

[
val(z) 3→ e′ ∗ ¬e ↪→−

]∗
is feasible. The feasibility follows from the fact that

val(z) 3→ e′ ∗¬e ↪→− can be satisfied by assigning z a non-allocated heap address other
than the one denoted by e.

To establish the other case, we derive as follows.{
e ↪→−

}
;y := alloc(e′);x := [e]

〈Prop. 4.3, (5.1)〉 = Add(z);
{

e ↪→−
}

;
[
val(z) 3→ e′

]∗
;x := [e];y := z;Del(z)

〈♣〉 - Add(z);x := [e];
[
val(z) 3→ e′

]∗
;y := z;Del(z)

〈Prop. 4.3〉 - x := [e];y := alloc(e′).

To justify the derivation step ♣, we need a subsidiary law:{
e ↪→−

}
;
[
val(z) 3→ e′

]∗
;x := [e] - x := [e];

[
val(z) 3→ e′

]∗
.

By a similar calculation as above, we can see that this is established by showing{
e ↪→−

}
;
[
val(z) 3→ e′

]∗
;(∃w);

{
e ↪→ w

}
- (∃w);

{
e ↪→ w

}
;
[
val(z) 3→ e′

]∗
.

This refinement law holds, since

e ↪→−∩ (val(z) 3→ e′ ∗ (∃w)(e ↪→ w∩ϕ)) ⇒ (∃w)(e ↪→ w∩ (val(z) 3→ e′ ∗ ϕ))

is a valid separation logic formula for any (postcondition) ϕ. �	

6 Example: Recycling Heap beyond Loop Boundaries

We apply our refinement laws to a larger program. Let us consider the following pro-
gram.

S0 �
Add(j); while i �= nil do

j := val(i); i := [val(i)];o := alloc(val(o)); free(val(j))
od; Del(j)

In the program, variables i and o are initially assigned a pointer to a chain of pointers
terminated by the constant nil (Fig. 2-(0)). Every single iteration of the loop body is
intended to update the pointer structure in the following steps. First the value of i is
saved in j and then the pointer i is dereferenced to follow the link one step forward

Safe Modification of Pointer Programs in Refinement Calculus 301

nil

nil

i

o

nil

nil

i

o

j
nil

nil

i

o

j

nil

nil

o

j i(0) (1)

(2)(3)

Fig. 2. Updating pointer structure by a single iteration of program S0. (Dotted lines represent
reclaimed data and shaded box represent a freshly allocated heap cell.)

(Fig. 2-(1)). Next, a fresh address is allocated to extend the chain of o by one (Fig. 2-
(2)). Finally the address that has been saved in j is reclaimed (Fig. 2-(3)). Repeating
this iteration until i reaches to nil, the program “appends” the two chains of pointers;
the variable o is updated to refer to the resulting chain of pointers, whose length is the
sum of the lengths of the initial chains.

One might be tempted to improve memory usage by rewriting the substatement o :=
alloc(val(o)); free(val(j)) into [val(j)] := val(o);o := val(j), which is intended to reuse
the address val(j) in place of a freshly allocated one, instead of deallocating it. However,
this is not a safe rewrite, as we have observed in Introduction.

We will show another safe way to improving memory usage. Refining the deallo-
cation statement free(val(j)) together with its subsequent allocation statement o :=
alloc(val(o)) beyond the loop boundary, we can obtain the following program T0 as a
refinement of S0.

T0 �

Add(j); j := alloc(nil);
while i �= nil do

[val(j)] := val(o);o := val(j); j := val(i); i := [val(i)]
od;

free(val(j)); Del(j)

To show this formally, we need some lemmas regarding the loop construct.

Lemma 6.1.

(a) If x and y are distinct, x,y �∈ FV(B), and y �∈ FV(e), we have

Del(x);while B do y := e;S od;Del(y)
- y := val(x);Del(x);while B do y := e;S od;Del(y) .

(6.1)

(b) If S is disjunctive, and the refinement relations S;
[
B
]
-
[
B
]
;S, S;

[
¬B
]
-
[
¬B
]
;S,

and S;T - T ′ hold, we have

S;while B do T ;S od - while B do T ′ od;S . (6.2)

302 S. Nishimura

The first law (6.1) holds, since the effect of assignment y := val(x) in the rhs is either
(i) canceled by the subsequent Del(y) if the loop condition B is never established or
(ii) overridden by the assignment y := e in the first iteration of the loop body. The second
law (6.2) holds because S;(T ;S)n (n≥ 0) is refined to (S;T)n;S, which is further refined
to T ′n;S. We can formally prove these properties by exploiting the fixpoint property of
the loop statement and also applying transfinite induction over ordinals [BvW98]. See
Appendix for the detail of the proof.

Let us write S′0 for the loop statement in S0. We derive the refinement relation S0 - T0

as follows.

S0 = Add(j);S′0;Del(j)
〈(4.6)〉 - Add(j);Add(k);Del(k);S′0;Del(j)

〈Lemma 6.1(a)〉 - Add(j);Add(k); j := val(k);Del(k);S′0;Del(j)

〈(4.24)〉 - Add(j);Add(k);
[
val(k) 3→ nil

]∗;
{
val(k) 3→ nil

}∗; j := val(k);

Del(k);S′0;Del(j)

〈(4.12)〉 - Add(j);Add(k);
[
val(k) 3→ nil

]∗;
{
val(k) 3→−

}∗; j := val(k);

Del(k);S′0;Del(j)

〈(4.42), Prop. 4.3〉 = Add(j);Add(k);
[
val(k) 3→ nil

]∗; j := val(k);

Del(k);
{
val(j) 3→−

}∗
;S′0;Del(j)

〈Defs.〉 - Add(j); j := alloc(nil); free(val(j));S′0;Del(j)
〈Lemma 6.1(b)〉 - T0

To justify the last step of derivation, we need to check if the premises of lemma 6.1(b)
hold. The disjunctivity of free(val(j)) follows from the fact that separating conjunction
distributes over disjunction [Rey02]. The first and second prerequisite refinement rela-
tions hold by law (4.29); The remaining prerequisite refinement relation is verified as
follows.

free(val(j)); j := val(i); i := [val(i)];o := alloc(val(o))
〈(5.6)〉 = free(val(j)); j := val(i);o := alloc(val(o)); i := [val(i)]
〈(5.3)〉 = free(val(j));o := alloc(val(o)); j := val(i); i := [val(i)]
〈(5.5)〉 - [val(j)] := val(o);o := val(j) j := val(i); i := [val(i)]

7 Conclusion and Future Work

We have introduced two new predicate transformers, called separating assertion and
separating assumption, into refinement calculus as primitive forms of deallocating and
allocating the heap storage. These primitives are defined by means of separating con-
junction and separating implication that are fundamental adjunctive logical operators in
separation logic. We have shown that they satisfy several refinement laws that are useful
for developing safe modification of pointer programs.

Safe Modification of Pointer Programs in Refinement Calculus 303

There are a few topics that will merit further investigations. The refinement laws
and program modifications discussed in this paper are mostly due to simple logical
facts and stepwise refinement, but a cumbersome proof task is required in the proof of
Proposition 5.1 to show that a particular instance of local variable scoping constitutes
a universal quantification. We would be able to simplify this proof step by identifying
a class of predicate transformers for which a general refinement law on local variable
scoping holds. Another future work would be to take into account of the local reasoning
principle (so called frame rule) of separation logic [ORY01, YO02] and to investigate
refinement laws that hold under a richer separation context on the heap storage.

Acknowledgment. I thank anonymous reviewers for their helpful comments.

References

[Bac88] Back, R.-J.: A calculus of refinements for program derivations. Acta Informat-
ica 25(6), 593–624 (1988)

[BFP03] Back, R.-J., Fan, X., Preoteasa, V.: Reasoning about pointers in refinement calculus.
In: 10th Asia-Pacific Software Engineering Conference (APSEC 2003), pp. 425–434
(2003)

[BP05] Back, R.-J., Preoteasa, V.: An algebraic treatment of procedure refinement to support
mechanical verification. Formal Aspects of Computing 17(1), 69–90 (2005)

[BvW98] Back, R.-J., von Wright, J.: Graduate Texts in Computer Science. In: Refinement
Calculus: A Systematic Introduction, Springer, Heidelberg (1998)

[COY07] Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 366–
378. IEEE Computer Society, Los Alamitos (2007)

[Gro00] Groves, L.J.: Evolutionary Software Development in the Refinement Calculus. PhD
thesis, Victoria University of Wellington (2000)

[LvW97] Laibinis, L., von Wright, J.:Context handling in the refinement calculus framework.
Technical Report 118, TUCS Technical Report (1997)

[Mor94] Morgan, C.: Programming from specifications, 2nd edn. Prentice-Hall International
Series in Computer Science. Prentice-Hall International, Englewood Cliffs (1994)

[ORY01] O’Hearn, P., Reynolds, J.C., Yang, H.: Local Reasoning about Programs that Al-
ter Data Structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

[OYR04] O’Hearn, P., Yang, H., Reynolds, J.C.: Separation and information hiding. In: Pro-
ceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages, pp. 268–280. ACM Press, New York (2004)

[Pre06] Preoteasa, V.: Mechanical Verification of Recursive Procedures Manipulating Point-
ers Using Separation Logic. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 508–523. Springer, Heidelberg (2006)

[Rey02] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 55–74. IEEE
Computer Society, Los Alamitos (2002)

[SRSC01] Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language Reference.
Computer Science Laboratory, SRI International (November 2001),
http://pvs.csl.sri.com/

[YO02] Yang, H., O’Hearn, P.: A Semantic Basis for Local Reasoning. In: Nielsen, M., En-
gberg, U. (eds.) ETAPS 2002 and FOSSACS 2002. LNCS, vol. 2303, pp. 402–416.
Springer, Heidelberg (2002)

http://pvs.csl.sri.com/

304 S. Nishimura

Appendix

Proof of lemma 6.1(a). Let us define F (U) �
[
¬B
]
�
[
B
]
;y := e;S;U . The lemma

is shown by the following derivation.

Del(x);µ.F ;Del(y) = Del(x);
([
¬B
]
�
[
B
]
;y := e;S;µ.F

)
;Del(y)

〈(4.3),(4.2)〉 - Del(x);
[
¬B
]
;Del(y) � Del(x);

[
B
]
;y := e;S;µ.F ;Del(y)

〈Prop. 4.3〉 -
[
¬B
]
;Del(x);Del(y) �

[
B
]
;Del(x);y := e;S;µ.F ;Del(y)

〈(4.8), (4.9)〉 =
[
¬B
]
;y := x;Del(x);Del(y) �[

B
]
;y := x;Del(x);y := e;S;µ.F ;Del(y)

〈(4.33), Prop. 4.3〉 = y := x;Del(x);
[
¬B
]
;Del(y) �

y := x;Del(x);
[
B
]
;y := e;S;µ.F ;Del(y)

〈conjunctivity&(4.2)〉 = y := x;Del(x);
([
¬B
]
�
[
B
]
;y := e;S;µ.F

)
;Del(y)

= y := x;Del(x);µ.F ;Del(y) �	

Proof of lemma 6.1(b). Defining F (U) �
[
¬B
]
�
[
B
]
;T ;S;U and G(U) �

[
¬B
]
�[

B
]
;T ′;U , we will show that S;F α(abort) - µ.G ;S holds for any ordinal α by transfi-

nite induction. For the case that α is a non-limit ordinal, we derive as follows.

S;F α+1(abort) = S;
([
¬B
]
�
[
B
]
;T ;S;F α(abort)

)
〈(4.3)〉 - S;

[
¬B
]
� S;

[
B
]
;T ;S;F α(abort)

〈premises〉 -
[
¬B
]
;S �

[
B
]
;T ′;S;F α(abort)

〈induction〉 -
[
¬B
]
;S �

[
B
]
;T ′;µ.G ;S

〈(4.2)〉 =
([
¬B
]
�
[
B
]
;T ′;µ.G

)
;S

= µ.G ;S

The case for α being a limit ordinal follows as below.

S;F α(abort) = S;
(�

β<α
F β(abort)

)
〈S: disjunctive〉 =

�

β<α

(
S;F β(abort)

)
〈induction〉 -

�

β<α

(
µ.G ;S

)
= µ.G ;S

�	

A Hoare Logic for Call-by-Value Functional

Programs

Yann Régis-Gianas1 and François Pottier2

1 INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893
LRI, Université Paris-Sud, CNRS, Orsay, F-91405

2 INRIA Paris - Rocquencourt, Gallium - Domaine de Voluceau - F-78153

Abstract. We present a Hoare logic for a call-by-value programming
language equipped with recursive, higher-order functions, algebraic data
types, and a polymorphic type system in the style of Hindley and Milner.
It is the theoretical basis for a tool that extracts proof obligations out
of programs annotated with logical assertions. These proof obligations,
expressed in a typed, higher-order logic, are discharged using off-the-
shelf automated or interactive theorem provers. Although the technical
apparatus that we exploit is by now standard, its application to call-
by-value functional programming languages appears to be new, and (we
claim) deserves attention. As a sample application, we check the partial
correctness of a balanced binary search tree implementation.

1 Introduction

Hoare logic [1, 2, 3] is a discipline for annotating programs with logical formulae,
known as assertions, and for extracting logical formulae, known as proof obli-
gations, out of such annotated programs. The validity of the proof obligations,
which can be verified either manually or mechanically, entails the correctness
of the annotated program. That is, it guarantees that the assertions are correct
static predictions of the program’s dynamic behavior.

Hoare logic was originally designed for a “while language”, that is, a simple
imperative programming language, equipped with an iteration construct and a
fixed number of global, mutable variables. Recursive, higher-order procedures
were the subject of much attention in the late 1970’s and early 1980’s [4, 5, 6,
7, 8]. More recently, heap-allocated, mutable data structures, as well as object-
oriented features, have been deeply investigated. This has led to the development
of practical specification languages and tools targeting, for instance, Java [9, 10,
11], C [12] and C# [13].

We would like to put forth the thesis that this traditional focus on imperative
programming languages has been, to some extent, detrimental: it has consumed
a great amount of energy, while comparatively little effort was being devoted
to the key features that will be required in order for the methodology to scale
up, such as modularity and abstraction. We would also like to raise a question:
since functional programs are significantly easier to check for correctness, why
hasn’t this activity become routine in the functional programming community,
forty years after Floyd and Hoare’s seminal papers?

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 305–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

306 Y. Régis-Gianas and F. Pottier

On the cost of imperative programming. There are several reasons why functional
programming can be considered superior to imperative programming [14]. One
of them is that functional programs are easier to reason about. In other words,
there is a cost to reasoning about state.

In a typical modern imperative programming language, all heap-allocated
data is mutable. As a result, instead of reasoning in terms of high-level entities
such as, say, pairs, lists, trees, etc., programmers are forced to reason in terms of
a view of the heap as a graph. More concretely, they must write down and prove
formulae that involve mappings of memory addresses to memory blocks [12, 15].

The possibility of aliasing means that, whenever some memory block is writ-
ten, the memory that is accessible through every type-compatible pointer is
potentially affected. This makes it difficult to reason about the effects of a sin-
gle write operation, and creates the problem of representation exposure [16, 17].
In order to address this issue, researchers have developed linear types and
regions [18], ownership types [19], and separation logic [20], among other
approaches.

Our research agenda. We do not claim that the above issues are not worth in-
vestigating: on the contrary, they are quite fascinating. However, it is a pity
that we do not, today, have mature tools for checking the correctness of func-
tional programs. This explains why, in this paper, we study a Hoare logic for
(call-by-value) functional programs without state.

The programs that we are interested in checking rely heavily on (possibly
higher-order) functions, algebraic data structures, and type polymorphism. We
claim that it is quite easy to extract succinct and natural proof obligations out of
such programs, provided, of course, that they are annotated with specifications.

There are two benefits to be reaped by not reasoning about state. As far as
the user is concerned, this leads to simpler specifications and proof obligations.
As far as the implementor is concerned, this saves a large part of the “implemen-
tation budget”, which can then be spent on features such as type polymorphism,
type abstraction, and modularity. The importance of these features cannot be
overstated: in the end, the key to success is the ability to develop and check
program components independently.

Contribution. In this paper, we present the design of a typed, polymorphic,
higher-order programming language, where programs can be annotated with
assertions expressed in a typed, polymorphic, higher-order logic. We define a
procedure for extracting proof obligations out of programs, and show that it
is sound. A publicly available prototype tool [21] has been developed, which
works in conjunction with the interactive theorem prover Coq [22], with the
automated first-order theorem prover Alt-Ergo [23], or with both at once. This
tool has been used to check the partial correctness of several non-trivial data
structure implementations, including balanced binary search trees and purely
functional double-ended queues [24]. We hope to publish detailed accounts of
these implementations in the future.

A Hoare Logic for Call-by-Value Functional Programs 307

Highlights of our approach. Here are some of the key technical features of our
approach.

We focus on partial correctness. We do not require programs to terminate,
and do not generate proof obligations to ensure termination. It is up to the user
to determine which properties of the code are of sufficient interest to deserve
proof, and to insert assertions where desired. At one extreme, a program that
contains no assertions leads to no proof obligations. There is no cost to be paid
up front for using our methodology.

Our preconditions are prescriptive: it is impossible to call a function unless
its precondition F1 holds. A descriptive interpretation of preconditions can be
simulated by using the precondition true and the postcondition F1 ⇒ F2. This
allows unconditional invocation, and states that the function’s result must satisfy
F2 if its argument satisfies F1.

Values, programs, types, and logical formulae are distinct syntactic categories.
Proofs do not necessarily appear within programs: proof obligations are dele-
gated to an external theorem prover, which may or may not require or produce
explicit proof terms.

We do not embed values, programs, or formulae within types. Thus, our types
are first-order terms: they include type variables, parameterized algebraic data
types, and function types, just as in ML. As a result, type inference in the style
of Milner [25] is possible, and implemented in our tool [21]. Type inference does
not generate any proof obligations. We do not have dependent types, such as
lists indexed with an integer length [26], but simulate them as follows. Instead
of declaring that x has type list n, we declare that x has type list , and assert the
logical formula length(x) = n, where the function length is inductively defined
at the logical level.

Formulae can refer to values, but not to expressions. This is important, be-
cause values are pure, whereas expressions are potentially impure. Although our
logic cannot explicitly reason about state, it is nevertheless soundly applicable
to programs that involve non-termination, non-determinism, input/output, or
mutable state. (Reading an input stream, or dereferencing a pointer to mutable
storage, can be viewed as non-deterministic operations.) In that case, it allows
establishing properties that do not depend on the behavior of any impure op-
eration. This means, for instance, that we can prove the partial correctness of
a functional program even if it has been instrumented with possibly impure
debugging, profiling, or logging instructions.

In our programming language, functions, which are potentially impure, are
values, so they can appear within formulae. But what does it mean for a formula
to refer to a computational function f of type, say, τ1

.−→ τ2? Our answer
is to view f , at the logical level, as a pair of predicates, which represent f ’s
precondition and postcondition. In other words, when used within a formula, f
has type (roughly) (τ1 → prop)× (τ1 → τ2 → prop). The two pair projections,
written pre and post, can be used to refer to the pair components. That is,
pre(f) and post(f) offer lightweight notations for referring to f ’s precondition
and postcondition. When f is a known (let-bound) function, this mechanism can

308 Y. Régis-Gianas and F. Pottier

be viewed merely as offering abbreviations for known formulae. However, when
f is unknown (λ- or ∀-bound), it becomes key to writing natural specifications
for higher-order functions (§7.5).

In summary, although the technical apparatus that we exploit is by now
standard, we believe that it is worth drawing attention to the combination of
power and simplicity offered by our technical choices. If extended with a suitable
module system, and equipped with a compilation path down to, say, Objective
Caml [27], our tool could be used to construct correct purely functional program
components, possibly for use within larger, partly imperative programs.

Outline of the paper. The paper is laid out as follows. First, we briefly introduce
a higher-order logic, in which assertions and proof obligations are expressed (§2).
Then, we present the syntax and call-by-value semantics of a core functional pro-
gramming language whose expressions carry explicit assertions (§3). We describe
the type system, as well as the procedure for extracting proof obligations out
of programs (§4). We present a few extensions of the language (§5) and dis-
cuss how proof obligations are transformed for submission to external theorem
provers (§6). Last, we present a few excerpts of our balanced binary search tree
implementation (§7) and review related work (§8).

2 The Underlying Logic

2.1 Syntax

We rely on a mostly standard higher-order logic [28] whose types and terms
appear in Figure 1. Types θ include type variables α, parameterized inductive
types, function types, product types, and the type prop of logical propositions.
In the following, the syntax of terms is extended with standard syntactic sugar
for falsity, disjunction, implication, equivalence, existential quantification, etc.

The typing rules appear in Figure 2. In general, we write t for terms of ar-
bitrary type. We write F for formulae, that is, terms of type prop, and P for
predicates, that is, terms of type θ → prop. The binary operator #, used in
several definitions, expresses the fact that two objects have no common free
names.

Our logic is not simply-typed. Because our computational language (§3) is
polymorphic, and because we wish to lift every computational value up to the
logical level, we need polymorphism at the logical level as well. For this reason,
we have logical type schemes ς ::= ∀ᾱ. θ, where ᾱ is a vector of distinct type
variables. Every occurrence of a variable x is explicitly applied to a type vector θ̄,
which states how the type scheme associated with x is instantiated. For this rea-
son also, we introduce universal quantification over type variables, and use facts
of the form ∀ᾱ.F . Facts are not formulae: they do not appear in Figure 1. Facts
appear only within computational-level type environments Γ (§3.1, Figure 3).
The extension of higher-order logic with this very simple form of explicit quan-
tification over types is embedded within the Calculus of Inductive Constructions
(§2.2).

A Hoare Logic for Call-by-Value Functional Programs 309

Logical Types
θ ::= α Variable

| d θ̄ Data
| θ → θ Function
| θ × θ Product
| prop Proposition

ς ::= ∀ᾱ. θ Scheme

Logical Type Environments
Δ ::= ∅ Nil

| Δ, (x : ς) Variable
| Δ, ᾱ Type Variables

Logical Terms
t, F, P ::= x θ̄ Variable

| D θ̄ (t, . . . , t) Data
| λ(x : θ).t Abstraction
| t(t) Application
| (t, t) Product
| π1 Projection (also written pre)
| π2 Projection (also written post)
| true Truth
| t = t Equality
| t ∧ t Conjunction
| ¬ t Negation
| ∀(x : θ).t Universal Quantification

Fig. 1. The logic (syntax)

The logic offers parameterized inductive types. We assume that each inductive
type constructor d carries a fixed integer arity, and that every application d θ̄ is
arity-consistent. We further assume that d comes with a finite number of data
constructors D, each of which is assigned a type scheme of the form:

∀ᾱ. θ1 × . . .× θn → d ᾱ

We impose a positivity condition [29], which is informally summed up as follows:
in the above type scheme, the type constructor d (or any type constructor whose
definition is mutually recursive with the definition of d) must not appear under
the left-hand side of an arrow within θ1, . . . , θn.

Although there is an introduction form for inductive types, namely the ap-
plication of a data constructor D, no elimination form is provided here. We can
get away with this omission because the process of extracting proof obligations,
which is the focus of the present paper, requires no such forms. Of course, when it
comes to discharging proof obligations, that is, proving theorems, then inductive
definitions and proofs become necessary.

310 Y. Régis-Gianas and F. Pottier

(Δ, (x : ς))(x) = ς
(Δ, (x1 : ς))(x2) = Δ(x2) if x1 # x2

(Δ, ᾱ)(x) = Δ(x) if ᾱ # Δ(x)

Δ(x) = ∀ᾱ. θ

Δ � x θ̄ : [ᾱ '→ θ̄]θ

D : ∀ᾱ. θ1 × . . . × θn → d ᾱ
∀i Δ � ti : [ᾱ '→ θ̄]θi

Δ � D θ̄ (t1, . . . , tn) : d θ̄

Δ, (x : θ1) � t : θ2

Δ � λ(x : θ1).t : θ1 → θ2

Δ � t1 : θ1 → θ2

Δ � t2 : θ1

Δ � t1(t2) : θ2

∀i Δ � ti : θi

Δ � (t1, t2) : θ1 × θ2

Δ � t : θ1 × θ2

Δ � πi(t) : θi Δ � true : prop

∀i Δ � ti : θ

Δ � t1 = t2 : prop

∀i Δ � ti : prop

Δ � t1 ∧ t2 : prop

Δ � t : prop

Δ � ¬ t : prop

Δ, (x : θ) � t : prop

Δ � ∀(x : θ).t : prop

Δ, ᾱ � t : prop

Δ � ∀ᾱ.t : prop

Fig. 2. The logic (type system)

2.2 Interpretation

Our higher-order logic is embedded within the Calculus of Inductive Construc-
tions [29, 30], abbreviated to CiC in the sequel. Indeed, each type of our logic
can be translated into a term of CiC whose type is Type0. This guarantees that
the translation of polymorphic quantification only introduces type variables of
type Type0 in CiC. Each construct of our logic is directly mapped to its coun-
terpart in CiC. This interpretation guarantees that our logic is consistent and
validates a number of laws that are used in establishing the soundness of our
system (§4.8).

3 The Computational Language

3.1 Syntax

The syntax of our programming language appears in Figure 3. It is equipped with
an ML-style type system [25], so types τ and type schemes σ are distinguished.
Types include type variables, parameterized algebraic data types, and function
types. We write .−→ for the computational function type constructor, so as to
distinguish it from the logical function type constructor, written → (Figure 1).

We impose a syntactic separation between values and expressions, and require
both operands of the function application operator, as well as case scrutinees,
to be values. This imposes a style, reminiscent of A-normal form [31], where the
result of every intermediate computation is named via a let construct. Of course,
such a style is quite user-unfriendly, so, in practice, we offer an unrestricted

A Hoare Logic for Call-by-Value Functional Programs 311

Computational Types
τ ::= α Variable

| d τ̄ Data
| τ

.−→ τ Function
σ ::= ∀ᾱ. τ Scheme

Computational Type Environments
Γ ::= ∅ Nil

| Γ, (x : σ) Variable
| Γ, ᾱ Type Variables
| Γ,∀ᾱ.F Assumption

Values
v ::= x τ̄ Variable

| D τ̄ (v, . . . , v) Data
| fun f(x : τ/F) : (x : τ/F) = e Recursive Function

Patterns
p ::= x τ̄ Variable

| D τ̄ (p, . . . , p) Data

Expressions
e ::= v Value

| v(v) Function Application
| let (x ᾱ : τ/F) = e in e Local Binding
| case v of c Pattern Matching

Cases
c ::= ∅ Nil

| (p '→ e) � c Cons

Fig. 3. The computation language (syntax)

surface language, and automatically translate it down to the kernel language
described here.

The language supports type inference in the style of Hindley and Milner.
However, in this paper, we are not concerned with type inference, so we work
with explicitly-typed programs. This is visible (i) in the syntax of values and
patterns, where variables and data constructors are annotated with vectors of
types that indicate how polymorphic type schemes are instantiated, (ii) at fun
and let constructs, where bound variables are annotated with types, and (iii) at
let constructs, where a vector of type variables ᾱ can be explicitly bound.

A function definition takes the general form:

fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e

The symbol / should be read “where”. Every function is recursive, so that f
is bound within e. The formal parameter x1 is bound within the precondition

312 Y. Régis-Gianas and F. Pottier

F1, within the postcondition F2, and within e. The variable x2, which stands
for the result of the function, is bound within the postcondition F2. We require
every function to be annotated with an explicit precondition and postcondition
(if missing, true is assumed).

A local variable definition takes the general form:

let (x ᾱ : τ/F) = e1 in e2

The local variable x is bound within F and within e2. The type variables ᾱ are
bound within τ , F , and e1. The proposition F serves as a postcondition for e1.
If it is missing, a default postcondition is assumed, whose definition is deferred
to §3.3.

A case analysis takes the general form:

case v of c

Here, c is a possibly empty sequence of cases (i.e., branches). Each branch is of
the form (p 3→ e), where the variables that appear in the pattern p are bound
within e. Patterns must be linear, that is, a pattern cannot bind a variable twice.

3.2 Lifting Computational Entities to the Logical Level

In a Hoare logic, formulae refer to values. That is, if x is bound, at the computa-
tional level, by a fun, let, or case construct, then it is possible for a formula F ,
embedded in the code within the scope of x, to refer to x. This raises two ques-
tions: first, if x has computational type τ , what is its logical type, to be used
when typechecking F? Second, if, for the purposes of evaluation, x is substituted
with a computational value v, what is the corresponding logical value, to be used
when interpreting F?

The problem of lifting types and values to the logical level is trivial in a
first-order language. Indeed, the type algebra only contains basic types which
are translated to type constants (int is mapped to int). Besides, computational
values are essentially first-order terms, interpreted as data in the logic. Yet, in
an higher-order language, functions are first-class values. What should be the
logical reflection of their code ?

We answer these questions by lifting both computational types and compu-
tational values up to the logical level (Figure 4). That is, to each computational
type τ , we associate a logical type /τ0, and to each computational value v, we
associate a logical term /v0, with the intended property that if v has compu-
tational type τ , then /v0 has logical type /τ0. Patterns are lifted too. Because
patterns form a subset of values, no extra definitions are needed.

As announced (§1), computational functions are reflected, at the logical level,
as pairs of a precondition and postcondition. This is made explicit in the lifting
of computational function types:

/τ1
.−→ τ20 = (/τ10 → prop) × (/τ10 → /τ20 → prop)

A Hoare Logic for Call-by-Value Functional Programs 313

Types
(α) = α

(d τ̄) = d (τ̄)
(τ1

.−→ τ2) = ((τ1) → prop) × ((τ1) → (τ2) → prop)

Type schemes
(∀ᾱ. τ) = ∀ᾱ. (τ)

Type environments
(∅) = ∅

(Γ, (x : σ)) = (Γ), (x : (σ))
(Γ, ᾱ) = (Γ), ᾱ

(Γ, ∀ᾱ.F) = (Γ)

Values
(x τ̄) = x (τ̄)

(D τ̄ (v1, . . . , vn)) = D (τ̄) ((v1), . . . , (vn))
(fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e) = (λ(x1 : (τ1)).F1, λ(x1 : (τ1)).λ(x2 : (τ2)).F2)

Fig. 4. Lifting computational types and values to the logical level

The first component of the pair, which represents the function’s precondition,
is abstracted over the function’s argument, while the second component, which
represents the postcondition, is abstracted over both argument and result.

As a result of this definition, if f is bound, at the computational level, to a
function of type τ1

.−→ τ2, then a formula embedded within the code, in the
scope of f , views f as a pair of predicates, and can refer to pre(f) and post(f).
(Recall that, as per Figure 1, pre and post are sugar for the projections π1

and π2.) Note that f does not denote a logical function. Within a formula, an
application f(t) does not make sense: it is ill-typed.

Values of computational function type (that is, λ-abstractions) are lifted up to
the logical level in a way that is consistent with this definition. A function’s pre-
condition and postcondition alone determine how it is lifted: its code is ignored.
(The conformance of a function’s body to its declared pre- and postcondition is
checked, of course, via a proof obligation: see rule Fun in Figure 6.) This reflects
a philosophy in which the only way of reasoning about the behavior of a function
value is via its specification: code never appears within formulae.

In order to lift algebraic data types, we lift every algebraic data type definition
into an isomorphic inductive type definition. So, for every computational-level
algebraic data type constructor d, there must be a logical-level inductive type
constructor, also written d, of identical arity. For every computational-level data
constructor

D : ∀ᾱ. τ1 × . . . × τn → d ᾱ,

there must be a logical-level data constructor

D : ∀ᾱ. /τ10 × . . . × /τn0 → d ᾱ.

314 Y. Régis-Gianas and F. Pottier

Due to the manner in which computational function types are lifted, the pos-
itivity condition (§2) requires the type constructor d to not appear under any
side of a computational arrow within τ1, . . . , τn. This can be a limitation (§9).

3.3 Inferring Strongest Postconditions

In order to simplify the definition of the procedure that extracts proof obliga-
tions, we have required every let construct to carry an explicit postcondition for
its left-hand sub-expression (§3.1). In practice, however, annotating every let
construct would be quite unpleasant, so it is desirable to construct a reasonable
postcondition when the user does not provide one.

Ideally, the formula that we should construct in such a situation is the strongest
postcondition of the left-hand sub-expression.Our logic is, in fact, sufficiently pow-
erful to express strongest postconditions for every construct in our programming
language. For instance, the strongest postcondition for a value v is λx.(x = /v0).
The strongest postcondition for a function application v1(v2) is post(/v10)(/v20).
We could go on and explain how to construct strongest postconditions for let and
case constructs. However, in these two cases, they would be complex formulae,
involving existential quantification and disjunction.

Eventually, the postconditions carried by let constructs become part of proof
obligations, where they appear as hypotheses. For this reason, we do not want
them to be too complex: we wish to produce simple, comprehensible proof obli-
gations.

Our answer to this issue is to construct strongest postconditions for values and
function applications, as suggested above, but not for let and case constructs:
instead, we rely on the user-provided postcondition, if there is one, or use the
trivial postcondition true, otherwise.

In practice, when is it necessary for the user to provide an explicit annotation?
The left-hand side of a let construct can be one of four expression forms: a value,
a function application, a let form, or a case form. In the first two cases, we do
use a strongest postcondition. The third case can be made to never happen, up
to a conversion to A-normal form [31]. Only the last case remains. In summary,
the only case where our simple-minded approach may call for an explicit, user-
provided annotation is that of a let construct whose left-hand sub-expression is
a case construct.

3.4 Notions of Substitution

Neither types nor formulae influence execution, but do appear in the syntax of
values and expressions, in order to allow stating subject reduction and proving
the soundness of our Hoare logic. So, the operational semantics reduces expres-
sions that contain explicit types and formulae. To ensure that these annotations
remain consistent as expressions are transformed, we must define a few slightly
non-standard notions of substitution.

A single type variable α can appear within logical types as well as within
computational types. Similarly, a single variable x can appear within formulae as

A Hoare Logic for Call-by-Value Functional Programs 315

well as within expressions. For this reason, we write [α 3→ τ] for the substitution
that replaces every free occurrence of α at the computational level with τ and
every free occurrence of α at the logical level with /τ0. Similarly, we write [x 3→ v]
for the substitution that replaces every free occurrence of x at the computational
level with v and every free occurrence of x at the logical level with /v0.

We have annotated let constructs with explicit type abstractions and occur-
rences of variables with explicit type applications. As a result, contracting a
let-redex requires contracting type-level β-redexes as well. In order to do so,
we write [x 3→ Λᾱ.v] for a substitution that replaces every variable occurrence
of the form x τ̄ with [ᾱ 3→ τ̄]v. Again, this replacement is performed at both
computational and logical levels, up to a lifting operation in the latter case.

Last, the notation [x 3→ v], which denotes a substitution of a value for a
variable, is extended to the notation [p 3→ v], which, when p does not match v,
is undefined, and, when p does match v, denotes a simultaneous substitution of
values for variables, as follows. The formal definition is:

[D τ̄ (p1, . . . , pn) 3→ D τ̄ (v1, . . . , vn)]

stands for
[p1 3→ v1] ∪ . . . ∪ [pn 3→ vn]

Because patterns are linear, this is a union of substitutions whose domains are
pairwise disjoint.

3.5 Operational Semantics

A standard small-step, call-by-value operational semantics appears in Figure 5.
There are three kinds of redexes (β, let, and case) and one evaluation context
(the left-hand side of a let construct). An expression is stuck if it is irreducible
and not a value. It is easy to check that an expression is stuck if and only if
it contains, within an evaluation context, a sub-expression of the form v1(v2),
where v1 is not a syntactic function, or of the form case v of ∅.

v1(v2) → [x '→ v2][f '→ v1]e
if v1 is fun f(x : τ/F) : (. . .) = e

let (x ᾱ : τ/F) = v in e → [x '→ Λᾱ.v]e

case v of (p '→ e) � c → [p '→ v]e
if [p '→ v] is defined

case v of (p '→ e) � c → case v of c
if [p '→ v] is undefined

let (x ᾱ : τ/F) = e1 in e2 → let (x ᾱ : τ/F) = e′1 in e2

if e1 → e′1

Fig. 5. Operational semantics

316 Y. Régis-Gianas and F. Pottier

4 The Type System and Proof System

We now equip the computational language with an ML-style type system and
with a proof system (a Hoare logic), which can be viewed as an algorithm for
extracting proof obligations out of well-typed programs. For the sake of succinct-
ness, both are described using a single set of judgements, which assert at once
that a program is well-typed and is annotated with consistent formulae.

In practice, our tool [21] first checks that the program is well-typed, and,
at the same time, infers any omitted type annotations. Then, a set of proof
obligations, expressed in our typed higher-order logic, is extracted. The fact
that the program (including embedded formulae) is well-typed guarantees that
the proof obligations are in turn well-typed.

4.1 Environments

The syntax of type environments Γ appears in Figure 3. As is standard, type
environments bind variables and type variables. Environments also contain as-
sumptions, that is, formulae that become hypotheses when proof obligations are
emitted. An environment of the form Γ, ∀ᾱ.F is well-formed when ∀ᾱ.F has type
prop under /Γ 0.

4.2 Proof Obligations

A proof obligation is a judgement of the form Γ |= F , where F has type prop
under /Γ 0. The semantics of the judgment is the validity of the interpretation
of F in CiC under the interpretation of the environment Γ , which is decided via
an external theorem prover.

4.3 Judgements

The proof system is defined via three judgements, which state properties about
values, patterns, and expressions, respectively:

Values Γ � v : τ (Figure 6)
Patterns Γ � p : τ (Figure 7)
Expressions Γ � e : τ {P} (Figure 8)

4.4 Values

The judgement Γ � v : τ (Figure 6) states that, under the type environment Γ ,
the value v has type τ . No precondition or postcondition appear in the judge-
ment. Indeed, because values require no computation, they never have a precon-
dition. Furthermore, because all values can be lifted up to the logical level, they
don’t need an explicit postcondition: the strongest possible postcondition of a
value v is simply equality with /v0.

A Hoare Logic for Call-by-Value Functional Programs 317

(Γ, (x : σ))(x) = σ
(Γ, (x1 : σ))(x2) = Γ (x2) if x1 # x2

(Γ, ᾱ)(x) = Γ (x) if ᾱ # Γ (x)
(Γ,∀ᾱ.F)(x) = Γ (x)

Var
Γ (x) = ∀ᾱ. τ

Γ � x τ̄ : [ᾱ '→ τ̄]τ

Data
D : ∀ᾱ. τ1 × . . .× τn → d ᾱ
∀i Γ � vi : [ᾱ '→ τ̄]τi

Γ � D τ̄ (v1, . . . , vn) : d τ̄

Fun
f # F1, F2

(Γ, (x1 : τ1)) � F1 : prop (Γ, (x1 : τ1), (x2 : τ2)) � F2 : prop
Γ, (f : τ1

.−→ τ2), f = (fun f . . .), (x1 : τ1), F1 � e : τ2 {λ(x2 : (τ2)).F2}
Γ � fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e : τ1

.−→ τ2

Fig. 6. The computation language (proof system: values)

Rules Var and Data are straightforward. Rule Fun is more complex. Two
premises require the precondition F1 and postcondition F2 to be well-formed
formulae, under appropriate environments. The last premise checks that the
function’s body conforms to the function’s specification. In order to do so, the
type environment is extended with bindings for f and x1. It is also extended
with the hypothesis

f = /fun f . . .0,

which by definition of lifting (Figure 4) is synonymous for

f = (λ(x1 : /τ10).F1, λ(x1 : /τ10).λ(x2 : /τ20).F2).

This hypothesis gives meaning to occurrences of pre(f) and post(f) within the
body of the function, allowing recursive calls to f to be checked. Last, the envi-
ronment is also extended with the precondition F1, which means that, within the
body of the function, the precondition is assumed to hold. Under this extended
environment, the body of the function is required to produce a value that meets
the postcondition λ(x2 : /τ20).F2.

It is not difficult to see that Γ � v : τ implies /Γ 0 � /v0 : /τ0. This property
is required for the typing rules to construct only well-formed formulae.

4.5 Patterns

The judgement Γ � p : τ (Figure 7) states that a value of type τ can safely be
matched against the pattern p, giving rise to (exactly) the bindings described
by Γ . As in ML, these bindings are monomorphic (see Pat-Var). Because pat-
terns are linear, the type environments Γ1, . . . , Γn in Pat-Data have disjoint
domains.

318 Y. Régis-Gianas and F. Pottier

Pat-Var
(x : τ) � x : τ

Pat-Data
D : ∀ᾱ. τ1 × . . .× τn → d ᾱ
∀i Γi � pi : [ᾱ '→ τ̄]τi

Γ1, . . . , Γn � D τ̄ (p1, . . . , pn) : d τ̄

Fig. 7. The computation language (proof system: patterns)

4.6 Expressions

The judgement Γ � e : τ {P} (Figure 8) states that, under the type environment
Γ , the expression e has type τ and (if it terminates) produces a value whose
logical reflection satisfies the predicate P . In such a judgement, P has type
/τ0 → prop under /Γ 0.

Rule Value directly reflects this intended meaning: the judgement Γ � v :
τ {P} holds if and only if v has type τ under Γ and its logical reflection /v0
provably satisfies P under the hypotheses found in Γ . The premise Γ |= P (/v0)
is a proof obligation.

Rule App requires the function v1 and its actual argument v2 to have matching
computational types. Furthermore, it emits two proof obligations, stating that
(i) the actual argument must satisfy the function’s precondition, and (ii) the
function’s postcondition must imply the desired postcondition P . In the last
premise, we write P ′ ⇒ P , where P ′ and P have type /τ20 → prop, for ∀(x :
/τ20).(P ′(x) ⇒ P (x)), where x is fresh for P ′ and P .

Rule Let checks that e1 has type τ1 and that e1 complies with the postcondi-
tion F . Then, the rule performs type generalization, in the style of Milner [25], so

Value
Γ � v : τ

Γ |= P ((v))
Γ � v : τ {P}

App
Γ � v1 : τ1

.−→ τ2 Γ � v2 : τ1

Γ |= pre((v1))((v2))
Γ |= post((v1))((v2)) ⇒ P

Γ � v1(v2) : τ2 {P}

Let
x # P

(Γ, ᾱ, (x : τ1)) � F : prop
Γ, ᾱ � e1 : τ1 {λ(x : (τ1)).F}

Γ, (x : ∀ᾱ. τ1),∀ᾱ.[x '→ x ᾱ]F � e2 : τ2 {P}
Γ � let (x ᾱ : τ1/F) = e1 in e2 : τ2 {P}

Case-Nil
Γ � v : τ Γ |= false

Γ � case v of ∅ : τ ′ {P}

Case-Cons
Γ � v : τ Γ ′ � p : τ p # v, P

Γ, Γ ′, (v) = (p) � e : τ ′ {P}
Γ, (∀Γ ′.(v) 	= (p)) � case v of c : τ ′ {P}

Γ � case v of (p '→ e) � c : τ ′ {P}

Fig. 8. The computation language (proof system: expressions)

A Hoare Logic for Call-by-Value Functional Programs 319

that e2 is checked under the assignment (x : ∀ᾱ. τ1). The hypothesis F is changed
into ∀ᾱ.[x 3→ x ᾱ]F , so as to reflect the fact that x now has polymorphic type.

In the operational semantics, a let construct behaves just like a β-redex. This
suggests that it could perhaps be treated as syntactic sugar, obviating the need
for the Let rule. However, this is not possible, for two reasons. One is that
let allows type generalization, as explained above, whereas a β-redex does not.
The other is that an appropriate postcondition for the function λx.e2 cannot
be determined prior to extracting proof obligations: indeed, it has to be λx.P ,
where P is computed only at extraction time.

Rule Case-Nil emits the proof obligation Γ |= false, which requires the
conjunction of hypotheses found within Γ to be inconsistent. This ensures that
a case construct with zero branches is never executed.

Rule Case-Cons requires the value v and the pattern p to have a common
type τ . The environment Γ ′ collects the variables bound by p, together with
their types. Under the hypothesis that a certain instance of p matches v, which
is expressed by extending Γ with Γ ′ and with the hypothesis /v0 = /p0, the
branch e must have the desired type τ ′ and meet the desired postcondition P .
Furthermore, under the hypothesis that no instance of p matches v, which is
written ∀Γ ′./v0 �= /p0, the remaining branches must have type τ ′ and meet the
postcondition P . (Our use of /p0 exploits the fact that patterns form a subset
of values, a welcome but unessential property.)

When checking a case construct with n branches, the (k + 1)-th branch is
checked under the assumption that none of the patterns p1, . . . , pk match the
value v. In particular, for k = n, the conjunction of all hypotheses of the form
(∀Γ ′

i ./v0 �= /pi0) is required to be inconsistent. This ensures that control cannot
fall off the end of a case construct, or, in other words, that the case analyses are
exhaustive. Today’s ML and Haskell compilers implement a sound approximation
to this check, using a purely syntactic criterion. We also implement this syntactic
criterion: when it succeeds, emitting a proof obligation is unnecessary.

4.7 Algorithmic Reading

The judgement Γ � e : τ {P} defines an algorithm for generating proof obliga-
tions. All four parameters of the judgement, namely Γ , e, τ , and P , are inputs of
the algorithm, which attempts to build a derivation of the judgement by starting
at the root of the expression e and working its way down into the sub-expressions
of e. As the algorithm descends, entering fun, let, and case constructs, the en-
vironment Γ grows, accumulating new bindings and assumptions. At the same
time, the postcondition P is propagated down, in a very straightforward pro-
cess. At let constructs, this propagation process relies on the (default or user-
provided, see §3.3) annotation in order to determine which postcondition must
be propagated into the left-hand sub-expression. The output of the algorithm
consists of the proof obligations, of the form Γ |= F , carried by the leaves of the
derivation (see Value, App, and Case-Nil).

320 Y. Régis-Gianas and F. Pottier

4.8 Soundness

The soundness of our type system and proof system is established in a standard,
syntactic manner. The proofs appear in the first author’s dissertation [32]. It
states that the types and logical assertions carried by a program are a sound
approximation of its dynamic semantics.

Lemma 1 (Environment Weakening). Γ1, F, Γ2 � e : τ {P} and Γ1 |= F
imply Γ1, Γ2 � e : τ {P}.

Lemma 2 (Postcondition Weakening). Γ � e : τ {P1} and Γ |= P1 ⇒ P2

imply Γ � e : τ {P2}.

Lemma 3 (Type Substitution). Let φ stand for [ᾱ 3→ τ̄]. Then, Γ1, ᾱ, Γ2 �
e : τ {P} and ᾱ # dom(Γ2) imply

Γ1, φ(Γ2) � φ(e) : φ(τ2) {φ(P)}

Lemma 4 (Value Substitution). Let ρ stand for [x 3→ Λᾱ.v]. Then, Γ1, (x :
∀ᾱ. τ1), Γ2 � e : τ2 {P} and Γ1, ᾱ � v : τ1 and x �∈ dom(Γ2) imply

Γ1, ρ(Γ2) � ρ(e) : τ2 {ρ(P)}

Lemma 5 (Pattern Matching). Let ∅ � v : τ and Γ ′ � p : τ and p # v.
Then, [p 3→ v] is defined if and only if the formula ∃Γ ′./v0 = /p0 is valid.

Theorem 6 (Subject Reduction). Γ � e : τ {P} and e → e′ imply Γ � e′ :
τ {P}.

Theorem 7 (Progress). ∅ � e : τ {P} implies that e is either reducible or a
value v such that P (/v0) is valid.

5 A Few Extensions

Extra assertions. The following construct allows inserting an assertion at an
arbitrary point in the code:

assertF in e

This construct requires F to hold: a proof obligation is emitted. It has no
computational content: dynamically, it behaves like e. It is syntactic sugar for
let (x : unit/F) = () in e, where x is fresh. It is particularly useful when our tool
is used in conjunction with an automated theorem prover: if the theorem prover
fails to discharge a proof obligation, the user can use assert to cut the proof
into smaller, easier steps (if the proof obligation is in fact valid) or to find out
what is wrong with the specification (if the proof obligation is in fact invalid).

The construct absurd, which statically requires false to hold, marks a piece of
code as inaccessible. It is syntactic sugar for a case construct with zero branches.

A Hoare Logic for Call-by-Value Functional Programs 321

Ghost variables and ghost parameters. It is sometimes desirable to explicitly
introduce a ghost variable, that is, a name for a witness to an existentially quan-
tified hypothesis. For this purpose, we suggest writing

let logic x : θ/F in e

This construct binds x within F and e. It requires the assertion ∃(x : θ).F
to hold, and introduces F as a new hypothesis into the context. Assertions
embedded within e can refer to x, and their proofs can exploit the hypothesis F .
However, occurrences of x at the computational level within e are forbidden,
since “let logic” has no computational content.

Similarly, it is sometimes desirable to abstract a function with respect to a
ghost parameter x, like this:

fun f [x : θ](x1 : τ1/F1) : (x2 : τ2/F2) = e

The brackets bind a ghost parameter x within F1, F2, and e. (Again, occurrences
of x at the computational level within e are forbidden.) Note that θ can be an
arbitrary logical type, so this extension allows explicitly abstracting a function
with respect to a proposition or predicate, if desired (see §7.5). Ghost variables
and ghost parameters can in principle be viewed as syntactic sugar and trans-
lated away [33]. In a realistic implementation, however, they should be primitive
notions.

6 Interfacing with External Theorem Provers

The overall verification process, implemented in our prototype tool, is composed
of three main steps. First, type inference translates an implicitly typed source
code into an explicitly typed internal language, very similar to the language
formalized in §3. Second, the rules of the proof system defined in §4 are applied,
producing a set of proof obligations. Third, these proof obligations are turned
into goals of the two external provers Coq [22] and Alt-Ergo [23]. We describe
this last step in the following.

6.1 Coq

Our typed, higher-order logic is easily embedded within the Calculus of Induc-
tive Constructions, which underlies Coq. As a result, exporting proof obliga-
tions to Coq is a simple matter of pretty-printing. Implicit type instantiations
are handled by Coq’s system of implicit arguments. We could have made type
instantiations explicit but this would have worsened readability.

Coq is an interactive theorem prover. In order to discharge a proof obligation,
the user writes a proof script. An open problem is how to maintain these scripts
as the source code of the program evolves. The location in the code where a proof
obligation arises might change. The statement of a proof obligation might change
as well. Perhaps a solution would be to allow only explicitly-stated, explicitly-
named, lemmas to be proved interactively, and to rely solely on an automated
theorem prover for discharging anonymous proof obligations, possibly by appeal
to an explicit lemma.

322 Y. Régis-Gianas and F. Pottier

6.2 Alt-Ergo

Alt-Ergo [23] is a fully automated theorem prover for a typed, polymorphic,
first-order logic. Its design is partly inspired by Simplify [34]. However, Alt-
Ergo’s logic is typed and polymorphic, whereas Simplify’s is untyped. This makes
Alt-Ergo superior, from our point of view, to Simplify. Indeed, provided our
proof obligations lie in the first-order fragment of our logic, they can be directly
exported towards Alt-Ergo. If, on the other hand, we wished to use Simplify,
we would have to encode our typed, polymorphic logic into Simplify’s untyped
logic. Such encodings have been studied [35], but are complex and costly. Of
course, the trivial encoding that erases all types is unsound.

In addition to first-order logic, Alt-Ergo has native support for linear arith-
metic and for the theory of constructors (that is, function symbols f such that
f(x) = f(y) implies x = y). The latter is useful for reasoning efficiently about
algebraic data structures.

In the general case, our proof obligations are most naturally expressed in a
higher-order logic, as shown in this paper. However, higher-order logic can be
encoded into first-order logic. A standard encoding introduces “apply” predicates
that help simulate β-conversion [36].

Perhaps surprisingly, in our case, this encoding can be made to look fairly
natural. The symbols pre and post, which so far have stood for the pair pro-
jections, can be turned into predicates and simulate not only projection, but
also application. Furthermore, we can make pre a binary predicate and post a
ternary predicate, avoiding curried function applications. That is, instead of the
higher-order formula:

f = (λ(x1 : /τ10).F1, λ(x1 : /τ10).λ(x2 : /τ20).F2),

we can write:

∀(x1 : /τ10).(pre(f, x1) ⇔ F1)
∧ ∀(x1 : /τ10).∀(x2 : /τ20).(post(f, x1, x2) ⇔ F2)

The pair and the three λ-abstractions have been η-expanded, and the projection
and application symbols have been fused into applications of pre and post.
Provided F1 and F2 are first-order formulae, this is a first-order formula.

Under this encoding, the definition of the lifting operation on computational
types is modified so that the computational function type constructor is no
longer interpreted:

/τ1 .−→ τ20 = /τ10 .−→ /τ20
That is, we make .−→ an uninterpreted binary type constructor at the logical
level, so that the lifting of types becomes the identity. Thus, in the above formula,
f has logical type τ1

.−→ τ2. The type schemes assigned to pre and post are as
follows:

pre : ∀α1α2. (α1
.−→ α2) × α1 → prop

post : ∀α1α2. (α1
.−→ α2) × α1 × α2 → prop

A Hoare Logic for Call-by-Value Functional Programs 323

These declarations are admissible by Alt-Ergo. We believe that it should be
possible to go a long way with first-order logic alone, even when the program
exploits higher-order functions. However, at present, more practical experience
is needed in order to support this conjecture.

7 Application: Finite Sets as Binary Search Trees

As an initial benchmark for our tool [21], we have transcribed Objective Caml’s
library implementation of finite sets, represented as balanced binary search trees,
into our programming language. The code is presented in the concrete syntax of
our prototype implementation.

7.1 Parameters

In the following, we fix a type “elt” of elements. We assume that an algebraic
data type “bool”, whose data constructors are “true” and “false”, is available.
We assume that an equality check over elements, written “=”, is given. It is a
function of computational type elt × elt .−→ bool, whose specification could be
written as follows:

post(=, x1, x2, b) ⇔ (b = true ⇔ x1 = x2)

Similarly, we assume that an ordering relation, written “<”, of logical type
elt → elt → prop, is given, together with an ordering check, also written “<”,
of computational type elt× elt .−→ bool, such that the latter decides the former.

We assume that a type of sets of elements, written “set”, is available at the
logical level, together with the standard operations (empty set, singleton set,
union, membership, etc.) and a number of axioms or theorems that describe the
properties of these operations.

In a full-scale programming language, our balanced binary search tree imple-
mentation would be a functor, parameterized over the types “elt” and “set”, as
well as as their operations and axioms.

7.2 Definitions

Figure 9 contains the definition of the algebraic data type “tree”, of the logical-
level inductive function “elements”, and of the inductive predicate “bst”. (The
concrete syntax is provisional.) A binary tree is either empty or a binary node,
carrying a root element, left and right sub-trees, and a cached measure of the
tree’s height. Our binary search trees are intended to implement a finite set abs-
traction. The logical function “elements” maps a binary tree to the finite set
that it represents. It is defined by induction over the algebraic data type “tree”.
The property of being a binary search tree is defined by the inductive predicate
“bst”.

In the definition of “bst”, the types of the universally quantified variables “x”,
“l”, “r”, “h”, “y” are inferred. The types of the function “elements” and of the

324 Y. Régis-Gianas and F. Pottier

type tree =
Empty : tree
Node : (int × tree × elt × tree) → tree

fixpoint elements : tree → set =
Empty → empty
Node (h, l, x, r) → elements (l) ∪ singleton (x) ∪ elements (r)

inductive bst : tree → prop =
bst (Empty)
∀ (h, l, x, r).

bst (l) and bst (r) and sup (x, elements (l)) and inf (x, elements (r))
⇒ bst (Node (h, l, x, r))

Fig. 9. Definitions for binary search trees

predicate “bst” could also be inferred, if desired. In practice, type annotations
can always be omitted, except where polymorphic recursion is required.

The definition of “bst” constrains neither the shape of the tree nor the cached
height information. This is done by another inductive predicate, named “avl”
(not shown). In contrast with the “dependent types” [26, 37, 38] and “general-
ized algebraic data types” [39] schools, we favor a programming style in which
invariants are not necessarily hardwired into data structures at definition time.

7.3 Membership in a Binary Search Tree

Figure 10 shows a function, “member”, that checks whether an element “x” is
a member of a tree “t”. The precondition “bst(t)” requires “t” to be a binary
search tree, but does not require it to be balanced, since this is not necessary for
correctness. If one wished to (informally) ensure a logarithmic complexity bound,
one could strengthen the precondition by adding the requirement “avl(t)”. This
illustrates how a single data structure can be equipped with multiple invariants,
not all of which are necessarily enforced at all times. The postcondition states
that the Boolean result tells whether “x” is a member of the set implemented

let rec mem bst (t, x) where bst (t)
returns b where ((b = true) ⇔ (x ∈ elements (t)))
= match t with

Empty → false
Node (h, l, y, r) →
if (x = y) then true
else if (x < y) then mem bst (l, x)
else mem bst (r, x)

end

Fig. 10. Membership in a binary search tree

A Hoare Logic for Call-by-Value Functional Programs 325

by the tree “t”. No type annotations are needed in this definition. All types are
inferred.

7.4 First-Order Iteration

We now define and specify first-order, persistent iterators [40] over binary search
trees. Their expressive power surpasses that of “fold” (§7.5), yet their specifica-
tion is simpler.

The implementation appears in Figure 11. An iterator is represented as a list
of trees, which can be thought of as a stack in a depth-first traversal of some
larger tree. (The definition of the type “list”, whose constructors are “Nil” and
“Cons”, is omitted.)

To an iterator “i”, there corresponds a set of elements, which we write
“remaining(i)”. Its inductive definition is simply the union of the sets of ele-
ments of the trees in the list.

An iterator is well-formed only if the trees that it contains have disjoint sets
of elements. This is expressed by the inductive predicate “ok”.

type iterator = list (tree)

fixpoint remaining : iterator → set =
Nil → empty
Cons (t, ts) → elements (t) ∪ remaining (ts)

inductive ok : iterator → prop =
ok (Nil)
∀ (t, ts).
(elements (t) ∩ remaining (ts)) ≡ empty and bst (t) and ok (ts)
⇒ ok (Cons (t, ts))

let iterator (t) where bst (t)
returns i where (ok (i) and remaining (i) ≡ elements (t)) =

Cons (t, Nil)

let rec next (i) where ok (i)
returns oix
where ((oix = None ⇒ remaining (i) ≡ empty)

and (∀ (i’, x). oix = Some ((i’, x))
⇒ (remaining (i) ≡ (singleton (x) ∪ remaining (i’))

and not (x ∈ remaining (i’)) and ok (i’))))
= match i with

Nil → None
Cons (Empty, ts) → next (ts)
Cons (Node (h, l, x, r), ts) → Some ((Cons (l, Cons (r, ts)), x))

end

Fig. 11. Iterators over binary search trees

326 Y. Régis-Gianas and F. Pottier

let eval cardinal (t) where bst (t)
returns n where (n = cardinal (elements (t))) =

let rec count (i, n)
where ok (i) and n + cardinal (remaining (i)) = cardinal (elements (t))
returns n’ where (n’ = cardinal (elements (t)))
= match next (i) with

None → n
Some ((i’, x)) → count (i’, n + 1)

end
in

count (iterator (t), 0)

Fig. 12. A sample client of the iterator abstraction

predicate hereditary (inv, s, f) =
∀ (x, s’, accu’).

((s’ ∪ singleton (x)) ⊆ s and not (x ∈ s’) and inv (accu’, s’ ∪ singleton (x))) ⇒
(pre (f) (accu’, x) and (∀ accu”. (post (f) (accu’, x) (accu”) ⇒ inv (accu”, s’))))

lemma hereditary subset : ∀ (s, s’, inv, f).
(s’ ⊆ s and hereditary (inv, s, f)) ⇒ hereditary (inv, s’, f)

let rec fold [s, inv] (accu, t, f)
where bst (t) and elements (t) ⊆ s and inv (accu, s) and hereditary (inv, s, f)
returns accu’ where inv (accu’, s \ elements (t))
= match t with

Empty → accu
Node (, l, x, r) →
let accu l = fold [s, inv] (accu, l, f) in
let accu x = f (accu l, x) in

fold [s \ (elements (l) ∪ singleton (x)), inv] (accu x, r, f)
end

Fig. 13. Higher-order iteration over binary search trees

The function “iterator” creates an iterator “i” out of a tree “t”, and satis-
fies the postcondition “ok(i) ∧ elements(t) ≡ remaining(i)”, where ≡ stands for
extensional equality of sets (which may, or may not, coincide with definitional
equality). This initial iterator is simply the singleton list [t].

The function “,”, when applied to an iterator “i”, returns either nothing or a
pair of a new iterator “i’” and an element “x”. The postcondition describes how
these values are related. (The definition of the type “option”, whose constructors
are “None” and “Some”, is omitted.)

Figure 12 shows how iterators are used. Here, the client is a function that
counts the number of elements in a tree. It does not depend on the internals of
the tree data structure: it only depends on the specification of iterators, which

A Hoare Logic for Call-by-Value Functional Programs 327

let incr (x, z) returns y where (y = x + 1) = x + 1

predicate cardinal inv (t) =
fun (accu, s) → (accu + cardinal (s) = cardinal (elements(t)))

lemma is hereditary cardinal inv :
∀ t. hereditary (cardinal inv (t), elements (t), incr)

let eval cardinal (t) where bst (t)
returns x where (x = cardinal (elements (t)))
= fold [elements (t), cardinal inv (t)] (0, t, incr)

Fig. 14. A sample client of the fold operator

is expressed in terms of abstract (logical-level) sets. So, this client code could be
placed in another module, without access to the definition of trees.

The “eval cardinal” function performs a loop, expressed as an internal recur-
sive function, with an integer accumulator n. It corresponds directly to a foreach
construct in Java or C#. The precondition of this internal function represents
the loop invariant: the number of elements counted so far, plus the number of
elements remaining to be seen, equals the total number of elements of the set.
The postcondition is simply the precondition, specialized to the case where no
elements remain.

The precondition of “count” must also state that “i” is an “ok” iterator, even
though it does not have to know about the definition of “ok”. This is somewhat
undesirable. In the future, we will want to allow defining a dependent sum type
of the form “i : iterator where ok(i)”, and exporting it as an abstract type.

The definition of “eval cardinal” is syntactically somewhat heavy, as it is
expressed in our core language. In a full-scale programming language, a more
palatable syntax for loops could be introduced, and desugared into recursive
functions and iterators. A single formula, the loop invariant, would have to be
written down, instead of two formulae in this low-level version of the code.

7.5 Higher-Order Iteration

We now present a specification of the classic “fold” higher-order function over
sets implemented as binary search trees. The specification is rather more complex
than that of first-order iterators, for at least two reasons. First, the specification
must mention the client’s state (the accumulator) and invariant. Second, because
the code is not tail-recursive, some information is implicitly encoded within the
stack, and a ghost parameter is used to make it explicit in the specification.

The function “fold” is parameterized over two ghost variables, namely the
client invariant “inv” and a set “s” of remaining elements. In the case of first-
order iterators, the former was unnecessary because the client retains control
over the desired invariant, and the latter was unnecessary because the set of
remaining elements was directly expressed as “remaining(i)”. Here, the set of

328 Y. Régis-Gianas and F. Pottier

remaining elements is implicit in the stack, so a ghost variable must be used in
order to refer to it.

The precondition of “fold” expresses the following requirements. First, “t”
must a binary search tree. Second, the elements of “t” must form a subset of “s”.
This reflects that, in general, “t” is a sub-tree of a larger tree over which iteration
is taking place. Third, the invariant must initially hold. Last, the invariant must
be hereditary: that is, at any time, if an element “x” is picked among the
remaining elements, the invariant guarantees that it is legal to apply “f” to the
current accumulator and to “x”, and guarantees that the new accumulator thus
obtained will still satisfy the invariant.

This definition is certainly somewhat overwhelming. It shows, at the same
time, that it is possible to specify and exploit higher-order functions in our
framework, and that there is a cost in complexity to be paid for doing so. More
experience is needed before we can tell how easily higher-order functions can be
defined and used in practice.

7.6 Quantitative Results

The binary search tree library contains 22 functions. The development is com-
posed of 108 lemmas, 603 lines of specification and 247 lines of code. The factor
of 3 in size between specification and code does not necessarily mean that spec-
ifications must be heavy: in a realistic system, a large part of the specification
would be imported from a standard library. 749 proof obligations are generated
and are proven automatically by Alt-Ergo [23]. Only one lemma, stating that the
height of a tree is nonnegative, requires an induction in Coq [22]; the other lem-
mas are proven automatically by Alt-Ergo. About 80% of the proofs require less
than 5 seconds to be proven by Alt-Ergo. Yet, about 10% of the proofs require
from 10 to 30 minutes. A forthcoming extension of Alt-Ergo with support for
reasoning modulo associativity and commutativity of some set operations (such
as set union) would perhaps improve these results.

8 Related Work

The roots of our work lie in Hoare logic [1, 2]. Extensions of Hoare logic with
support for recursive, higher-order procedures were heavily studied in the late
1970’s and early 1980’s [4, 5, 6, 7, 8]. In particular, the issue of completeness
received a lot of attention after Clarke [4] proved that there can be no sound
and complete Hoare logic for a programming language equipped with recursive,
higher-order procedures and global variables. Clarke’s result, however, is based
upon the assumption that formulae and proof obligations are expressed in a first-
order logic. Damm and Josko [6] point out that, by moving to higher-order logic,
it is possible to work around Clarke’s negative result. In this paper, we follow
Damm and Josko and allow specifications to be expressed in higher-order logic.
The intuitive justification for this approach is that, if functions can abstract over
functions, then specifications must abstract over specifications.

A Hoare Logic for Call-by-Value Functional Programs 329

Our work has been strongly inspired by several existing, practical tools for
checking imperative programs [10, 11, 12, 13, 41, 42]. This paper is an attempt
to exploit the strengths of these works while steering away from imperative
programming and placing renewed emphasis on polymorphism and modularity.

Our method for generating proof obligations is particularly straightforward:
it appears in its entirety in Figure 8. In comparison with the method used in
ESC/Java [43], we avoid a translation to “passive form” because we have no
assignments to begin with. We avoid the exponential explosion that could follow
from the interplay between sequences and alternatives by requiring sequences
(that is, let constructs) to carry user-provided postconditions (§3.3).

Our system is not sound with respect to a call-by-name dynamic semantics.
There are at least two reasons for this fact. First, some divergent expressions
admit false as a valid postcondition. If such an expression e1 is made the first
component of a sequence, as in “letx/false = e1 in e2”, then second compo-
nent e2 is checked under the assumption false. As a result, all of the the proof
obligations found within e2 are vacuously satisfied. This is sound under call-by-
value evaluation, because e2 is never executed. It is unsound under call-by-name
evaluation, because e2 is executed immediately (after binding x to a suspension).
The second reason is that, in a call-by-name semantics, every type is inhabited
by a bottom value, and some types are inhabited by infinite values. This is not
reflected in the way we lift computational values and types up to the logical
level.

Scott’s logic of computable functions [44] interprets λ-terms in a denotational
model, where equality implies, or coincides with, observational equivalence. It
comes with a set of sound deduction rules, and allows explicit reasoning about
divergence and equality of computations. It admits call-by-value and call-by-
name variants. It was implemented as early as 1972 by Milner [45]. More recent
implementations [46, 47, 48] embed Scott’s LCF within some form of higher-
order logic. In a somewhat similar vein, Longley and Pollack [49] embed the
functional core of Standard ML, via a fully abstract denotational semantics,
into higher-order logic.

Our approach is less elaborate: by focusing on partial correctness, by adopting
a call-by-value semantics, and by lifting only values, as opposed to expressions,
up to the logical level, we are able to ignore non-termination issues entirely, and
to work with value spaces that do not have bottom elements or definedness order-
ings. By contrast, tools or approaches that focus on lazy functional programs,
such as Programatica [50, 51] or the Cover translator [52], require reasoning
about non-termination, resulting in proof obligations that can become cluttered
with definedness side conditions. The simplicity of our approach comes at a cost:
our system can neither establish termination of an expression nor reason about
observational equality of expressions.

Honda and Yoshida [53] define a Hoare logic for call-by-value higher-order
functions, to which our system seems rather analogous. A technical difference
is that Honda and Yoshida allow expressions (including, in particular, function
applications) to appear within formulae, and interpret equality as observational

330 Y. Régis-Gianas and F. Pottier

equality; whereas we only lift values to the logical level, and interpret equality
as equality of values. Honda and Yoshida’s system does not seem to have been
implemented.

Smith [54, §4.4.1] defines a type theory with partial objects, where the type Ā
contains the possibly non-terminating computations that yield a result of type A.
Smith notes that the fixed point axiom, which has type (A → A) → A, is sound
only at admissible types. As an example of a non-admissible type, he offers a
type D whose definition can be read: “D is the type of the partial functions g
of naturals to naturals such that g diverges for at least one input”. It is easy
to construct a function of type D → D whose least fixed point is in fact a
total function: this shows that D is not admissible. A reviewer of an earlier
version of the present paper noted that “g diverges for at least one input” seems
expressible, in our system, as ∃x.∀y.¬post(g)(x)(y), and wondered if Smith’s
example could be adapted to show that our system is unsound. One should
note, first, that although this formula indeed represents a sufficient condition
for g to diverge for at least one input, it is not a necessary condition. Indeed, the
predicate post(g) denotes the programmer-provided postcondition of g; it does
not denote the actual semantics of g. Second, when the programmer supplies an
explicit definition of the predicate post(g) (which he must do), this definition
cannot refer to g itself. As a result, there is no way that the postcondition
associated with g can be the self-referent “g diverges for at least one input”.

ESC/Haskell [55] allows annotating Haskell programs with preconditions and
postconditions that are also expressed in Haskell. A special-purpose theorem
prover, based on symbolic evaluation of Haskell terms, is developed.

The theorem prover Coq [22] can be used as a programming language, in
which programs are both developed and proved correct. The Compcert certified
compiler [56] offers an example of a large program developed in this style. How-
ever, there is some agreement that Coq is not (yet) a convenient programming
language: for instance, it only allows writing pure, terminating functions.

The programming language Russell [38] extends Coq with facilities for defining
programs annotated with assertions, in the style of Hoare logic. There are many
similarities between Russell and our work. One important technical difference is
that we separate the typechecking process, which is performed first and remains
traditional, and the process of extracting proof obligations, which runs as a
second phase, whereas, in Russell, as in Coq, typechecking and proving are one
and the same activity. In particular, Russell encourages the use of indexed types,
like list n, so that typechecking can give rise to proof obligations: for instance,
supplying an actual argument of type list m to a function that expects a formal
parameter of type list n generates the proof obligation m = n. Another difference
is that Russell terms are elaborated into Coq terms, whereas we adopt a less
foundational approach and are happy to trust an external theorem prover.

Hoare Type Theory [33, 57] is somewhat similar to our system, insofar as it
offers decidable basic typechecking and decidable generation of proof obligations.
It also shares our use of higher-order logic and our emphasis on polymorphism
and abstraction. It is much more ambitious than our proposal, in that it attempts

A Hoare Logic for Call-by-Value Functional Programs 331

to deal not only with algebraic data types and higher-order functions, but also
with heap-allocated, mutable state. As a result, its design and metatheory are
considerably more involved.

Some authors [33, 55, 58, 59] allow code to appear in specifications. This
is motivated partly by a desire to make formulae executable, so as to allow
assertions to be checked at runtime, and partly by fear that, otherwise, a single
functionality might have to be implemented twice: once at the computational
level, once at the logical level. Our technical and philosophical choice is different:
we consider all code as potentially impure, and do not allow code to appear
within specifications. We do not check assertions at runtime: if the programmer
wishes to insert a runtime check, she must do so explicitly. Furthermore, we
believe that, in practice, opportunities for code sharing between computational
and logical levels are rare: the oft-cited case of lists is one of only a few situations
where implementation and specification coincide.

Indexed types [26, 60] and refinement types [61] rely on so-called indices. In-
dices are elements of some mathematical domain, such as an arbitrary finite
set, or the set of all natural numbers. Types are enriched with constraints over
indices, allowing invariants, preconditions, and postconditions to be expressed.
The syntax of constraints is carefully restricted so as to ensure that constraint en-
tailment is decidable. This allows proof obligations to be automatically checked.
Generalized algebraic data types [39] are also an instance of this idea, where
indices are types, that is, first-order terms. The appeal of this approach resides
in the high degree of automation that it allows. On the other hand, this comes
at the price of a restriction to a decidable logic. In fact, our decision of using a
highly expressive, hence undecidable, logic was motivated by our earlier study
of generalized algebraic data types [62, 63].

Going beyond indexed types, several programming languages offer full de-
pendent types [37, 64, 65, 66]. By exploiting the Curry-Howard isomorphism,
they allow code and proofs to be expressed and combined within a single lan-
guage. This allows programs to appear more self-contained, but means that a
fragment of the programming language must be a consistent logic, and requires
mechanisms to assist the user in building proofs. Our design, which relies on an
off-the-shelf theorem prover, is more modular.

9 Conclusion

We have presented a simple methodology for extracting proof obligations out of
call-by-value functional programs. Our proposed future work includes:

– extending our prototype implementation [21] and equipping it with a com-
pilation path down to Objective Caml;

– relaxing our positivity condition (§3.2), which restricts the use of functions
within data structures, preventing, for instance, the standard definition of
infinite streams;

– internalizing type equality, that is, introducing equations between types into
the syntax of formulae, together with suitable conversion rules for exploiting

332 Y. Régis-Gianas and F. Pottier

such equations; indeed, we, and other authors [33], have noticed that such
an extension would subsume generalized algebraic data types [39];

– studying the issues raised by modularity and mutable state.

Acknowledgement. The authors wish to thank the anonymous reviewers of a
previous version of this paper for contradicting a false claim and offering useful
comments and suggestions. Thanks are also due to Sylvain Conchon and Evelyne
Contejean for their great work on Alt-Ergo [23] that helped us demonstrate our
approach practically.

References

1. Floyd, R.W.: Assigning meanings to programs. In: Mathematical Aspects of Com-
puter Science. Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32.
American Mathematical Society (1967)

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

3. Cousot, P.: Methods and logics for proving programs. In: Formal Models and Se-
mantics. Handbook of Theoretical Computer Science, vol. B, pp. 841–993. Elsevier
Science, Amsterdam (1990)

4. Clarke, E.: Programming language constructs for which it is impossible to obtain
good Hoare axiom systems. Journal of the ACM 26(1), 129–147 (1979)

5. Apt, K.R.: Ten years of Hoare’s logic: A survey—part I. ACM Transactions on
Programming Languages and Systems 3(4), 431–483 (1981)

6. Damm, W., Josko, B.: A sound and relatively∗ complete axiomatization of Clarke’s
language L4. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS,
vol. 164, pp. 161–175. Springer, Heidelberg (1984)

7. German, S., Clarke, E., Halpern, J.: Reasoning about procedures as parameters. In:
Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 206–220.
Springer, Heidelberg (1984)

8. Goerdt, A.: A Hoare calculus for functions defined by recursion on higher types. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 106–117. Springer,
Heidelberg (1985)

9. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M.,
Poll, E.: An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer 7(3), 212–232 (2005)

10. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: ACM Conference on Programming Language
Design and Implementation (PLDI), pp. 234–245 (2002)

11. Marché, C., Paulin-Mohring, C., Urbain, X.: The Krakatoa tool for certification
of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic
Programming 58(1–2), 89–106 (2004)

12. Filliâtre, J.C., Marché, C.: Multi-prover Verification of C Programs. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 15–29. Springer,
Heidelberg (2004)

13. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# Programming System: An
Overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

A Hoare Logic for Call-by-Value Functional Programs 333

14. Hughes, J.: Why functional programming matters. Computer Journal 32(2), 98–
107 (1989)

15. Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. Information
and Computation 199(1–2), 200–227 (2005)

16. Detlefs, D.L., Leino, K.R.M., Nelson, G.: Wrestling with rep exposure. Research
Report 156, SRC (July 1998)

17. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans-
actions on Programming Languages and Systems 24(5), 491–553 (2002)

18. Fähndrich, M., DeLine, R.: Adoption and focus: practical linear types for imper-
ative programming. In: ACM Conference on Programming Language Design and
Implementation (PLDI), pp. 13–24 (June 2002)

19. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pp. 48–64 (October 1998)

20. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
IEEE Symposium on Logic in Computer Science (LICS), pp. 55–74 (2002)

21. Régis-Gianas, Y.: A Hoare logic for call-by-value functional programs: Prototype
tool (January 2008), http://pangolin-programming-language.googlecode.com

22. The Coq development team: The Coq Proof Assistant (2006)
23. Conchon, S., Contejean, E.: The Alt-Ergo automatic theorem prover (2006),

http://alt-ergo.lri.fr/

24. Kaplan, H., Tarjan, R.E.: Purely functional, real-time deques with catenation.
Journal of the ACM 46(5), 577–603 (1999)

25. Milner, R.: A theory of type polymorphism in programming. Journal of Computer
and System Sciences 17(3), 348–375 (1978)

26. Xi, H.: Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon
University (December 1998)

27. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml
system (October 2005)

28. Andrews, P.B.: An introduction to mathematical logic and type theory: to truth
through proof. Academic Press, London (1986)

29. Paulin-Mohring, C.: Inductive definitions in the system Coq: rules and properties.
Research Report RR1992-49, ENS Lyon (1992)

30. Werner, B.: Une Théorie des Constructions Inductives. PhD thesis, Université Paris
7 (1994)

31. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: ACM Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 237–247 (1993)

32. Régis-Gianas, Y.: Des types aux assertions logiques: preuve automatique ou as-
sistée de propriétés sur les programmes fonctionnels. PhD thesis, Université Paris
7 (November 2007)

33. Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract Predicates and
Mutable ADTs in Hoare Type Theory. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 189–204. Springer, Heidelberg (2007)

34. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. Journal of the ACM 52(3), 365–473 (2005)

35. Lescuyer, S.: Codage de la logique du premier ordre polymorphe multi-sortée dans
la logique sans sortes. Master’s thesis, Master Parisien de Recherche en Informa-
tique (2006)

36. Kerber, M.: How to prove higher order theorems in first order logic. In: Interna-
tional Joint Conferences on Artificial Intelligence, pp. 137–142 (1991)

http://pangolin-programming-language.googlecode.com
http://alt-ergo.lri.fr/

334 Y. Régis-Gianas and F. Pottier

37. Altenkirch, T., McBride, C., McKinna, J.: Why dependent types matter (unpub-
lished) (April 2005)

38. Sozeau, M.: Subset coercions in Coq. In: TYPES (2006)

39. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: ACM
Symposium on Principles of Programming Languages (POPL), pp. 224–235 (Jan-
uary 2003)

40. Filliâtre, J.C.: Backtracking iterators. In: ACM Workshop on ML (September 2006)

41. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking.
Research Report 159, Compaq SRC (December 1998)

42. Filliâtre, J.C.: Why: a multi-language multi-prover verification tool. Research Re-
port 1366, LRI, Université Paris Sud (March 2003)

43. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact veri-
fication conditions. In: ACM Symposium on Principles of Programming Languages
(POPL), pp. 193–205 (2001)

44. Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science 121(1–2), 411–440 (1993)

45. Milner, R.: Implementation and applications of Scott’s logic for computable func-
tions. In: Proceedings of the ACM conference on proving assertions about pro-
grams, pp. 1–6 (January 1972)

46. Agerholm, S.: A HOL basis for reasoning about functional programs. Technical
Report RS-94-44, BRICS (December 1994)

47. Bartels, F., von Henke, F., Pfeifer, H., Rueß, H.: Mechanizing domain theory. Ulmer
Informatik-Berichte 96-10, Universität Ulm, Fakultät für Informatik (1996)

48. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
Journal of Functional Programming 9, 191–223 (1999)

49. Longley, J., Pollack, R.: Reasoning About CBV Functional Programs in Is-
abelle/HOL. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004.
LNCS, vol. 3223, pp. 201–216. Springer, Heidelberg (2004)

50. Kieburtz, R.B.: P -logic: Property verification for Haskell programs. Draft (August
2002)

51. Hallgren, T., Hook, J., Jones, M.P., Kieburtz, R.: An overview of the Programatica
toolset. In: High Confidence Software and Systems Conference (HCSS) (2004)

52. Abel, A., Benke, M., Bove, A., Hughes, J., Norell, U.: Verifying Haskell programs
using constructive type theory. In: Haskell workshop, pp. 62–73 (September 2005)

53. Honda, K., Yoshida, N.: A compositional logic for polymorphic higher-order func-
tions. In: International ACM Conference on Principles and Practice of Declarative
Programming (PPDP), pp. 191–202 (August 2004)

54. Smith, S.F.: Partial Objects in Type Theory. PhD thesis, Cornell University (Jan-
uary 1989)

55. Xu, D.N.: Extended static checking for Haskell. In: Haskell workshop, pp. 48–59.
ACM Press, New York (2006)

56. Leroy, X.: Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In: ACM Symposium on Principles of Programming
Languages (POPL), pp. 42–54 (January 2006)

57. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare
type theory. In: ACM International Conference on Functional Programming
(ICFP), pp. 62–73 (September 2006)

58. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: Useful abstrac-
tions in specifications. In: Formal Techniques for Java-like Programs (2004)

A Hoare Logic for Call-by-Value Functional Programs 335

59. Gronski, J., Knowles, K., Tomb, A., Freund, S.N., Flanagan, C.: Sage: Hy-
brid checking for flexible specifications. In: Scheme and Functional Programming
(September 2006)

60. Zenger, C.: Indexed types. Theoretical Computer Science 187(1–2), 147–165 (1997)
61. Davies, R.: Practical refinement-type checking. Technical Report CMU-CS-05-110,

School of Computer Science, Carnegie Mellon University (May 2005)
62. Pottier, F., Régis-Gianas, Y.: Towards efficient, typed LR parsers. In: ACM Work-

shop on ML. Electronic Notes in Theoretical Computer Science, vol. 148(2), pp.
155–180 (March 2006)

63. Pottier, F., Régis-Gianas, Y.: Stratified type inference for generalized algebraic
data types. In: ACM Symposium on Principles of Programming Languages (POPL)
(January 2006)

64. Chen, C., Xi, H.: Combining programming with theorem proving. In: ACM Inter-
national Conference on Functional Programming (ICFP) (September 2005)

65. Sheard, T.: Putting Curry-Howard to work. In: Haskell workshop (2005)
66. Westbrook, E., Stump, A., Wehrman, I.: A language-based approach to functionally

correct imperative programming. In: ACM International Conference on Functional
Programming (ICFP), pp. 268–279 (2005)

Synthesis of Optimal Control Policies for Some

Infinite-State Transition Systems

Michel Sintzoff

Department of Computing Science and Engineering
Université catholique de Louvain
michel.sintzoff@uclouvain.be

Abstract. We develop a symbolic, logic-based technique for construct-
ing optimal control policies in some transition systems where state spaces
are large or infinite. These systems are presented as iterations of finite
sets of guarded assignments which have costs. The optimality objective
is to minimize the total costs of system executions reaching the set char-
acterized by a given target predicate. Guards are predicates and control
policies are expressed by tuples of guards. The optimal control policy re-
fines the control policy of the given system. It is generated from the target
predicate by an iteration based on backwards induction. This iterative
procedure amounts to a variant of the symbolic algorithm generating the
reachability precondition; the latter characterizes the states from which
some system execution reaches the target set. The main difference is the
introduction of greedy and cost-dependent iteration steps.

1 Introduction

Context. This paper concerns optimality in (discrete) transition systems, a.k.a.
discrete-time dynamical systems. Such systems can be analyzed and synthesized
using state-based algorithms if the state spaces are finite. When state spaces are
infinite or large, symbolic algorithms may prove useful and are available in vari-
ous cases. In particular, symbolic algorithms may generate reachability precon-
ditions for transition systems [10], and optimal policies for variants of transition
systems [7][8][9]. As to the optimal control of systems with no stochastic or con-
tinuous transitions, only state-based algorithms are known [6][23]. A symbolic
generator of optimal policies for some of these systems is presented.

Approach. An algorithm over states is “state-based”, or enumerative, if it han-
dles states one by one. It is “symbolic”, or set-based, if states are treated in
finitely many, relatively large clusters. To design symbolic algorithms, we ex-
press transition systems by guarded-assignment programs [13]. Each assignment
expresses a possibly infinite set of state transitions, which have one same given
cost. Optimality means that all executions reach the target set at minimum total
costs. Guards are predicates characterizing applicability domains of assignments,
and control policies are expressed by tuples of guards. The proposed symbolic
algorithm generates the optimal control policy. It simply amounts to a set-based
form of the state-based greedy algorithm generating shortest paths [12].

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 336–359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Synthesis of Optimal Control Policies 337

Contents of the paper. Section 2 introduces action programs. Section 3 recalls the
state-based method of optimal control. The symbolic algorithm is developed in
Sect. 4. It is put together and its complexity is analyzed in Sect. 5. Section 6 is a
comparison with related work. Section 7 presents concluding remarks. Appendix
A provides additional proofs. Appendix B contains an index of notations and an
index of identifiers.

Writing Conventions. Easy proofs are sketched or understood. Bibliographical
references are not complete. Universal quantifiers and domains of variables may
be omitted if the context is clear. The following notations are adopted:

B is a tuple (B0, · · · , Bn) of predicates, and
∨

B
.=
∨n
i=0 Bi .

#Y is the cardinal of Y , IN is the set of naturals, and IN∞
.= IN ∪ {#IN} .

Y → Z (resp. Y ↪→ Z) is the set of total (resp. partial) maps from Y to Z .
[a, b] .= {n | n ∈ N∞ ∧ a ≤ n ≤ b}, and Y[a,b]

.= {y | y ∈ Y ∧ a ≤ y ≤ b} .
Dom(f) is the definition domain of a map f .
Rng(f) is the range of f, namely the image of Dom(f) by f .
P (supM) .= supm∈M{P (m)} where (P (m))m∈M is an ascending chain.
Ex
u results from substituting u for x in E, and u satisfies P (x) iff (P (x))xu .

P (x) �≡ false is a satisfiability expression standing for ∃x :P (x) .

2 Action Programs, Transition Graphs and Reachability

An elementary, classical framework suffices for the results presented here.
Action programs are guarded-command programs where commands are as-

signments [3][13]. They determine transition graphs. A reachability precondition
characterizes the states from which a target set is reachable using such a graph.

2.1 Action Programs and Control Policies

Action Programs. An action program S is a term do A od expressing the
iteration of a set of N guarded assignments where N is any nonzero natural.
The sub-term A has the form A0 [] · · · []AN−1 where each action Ai is a labelled
guarded-assignment with a cost wi. Namely, Ai is

Bi(x) i→ x := fi(x) <wi> . (1)

The variable x ranges over a set X , the state space of S. Each label i belongs
to a finite alphabet I and labels one action. We use I = [0, N − 1] and write
A = []i∈IAi. The action map is fi ∈ X ↪→ X . The (action control) guard Bi is
a predicate characterizing a subset of Dom(fi). The action cost wi is a strictly
positive integer. The maximum action cost is Mw = maxi∈I{wi}.

A target predicate Q is a distinguished predicate over X and characterizes the
target set. An (optimality) problem is a pair (S,Q), where X is understood.

338 M. Sintzoff

Comments. If X = Z0×· · ·×Zm, an action Ai may use simultaneous assignments
on the form zl := fl,i(z0, · · · , zm) where zl ranges over Zl (l ∈ [0,m]).

Action programs may be nondeterministic since Bi ∧ Bj �≡ false is possible.
Actually, they amount to recurrence inclusions such as x(n+1) ∈

⋃
i∈I {f(x(n), i) |

i ∈ γ(x(n))} [23]. The control set is I. The transition map f ∈ X×I ↪→ X satisfies
f(x, i) = fi(x). The cost of f(x, i) is wi. The stationary, or memoryless, control
(multi)function γ ∈ X → 2I satisfies (i∈ γ(x)) ≡ Bi(x). It is thus represented
by the tuple B = (B0, · · · , BN−1). Clearly, (γ(x) �= ∅) ≡ (

∨
B)(x).

Since action programs represent discrete-time systems, they may be obtained
from specifications or programs; in fact, the nucleus of the B-method is built
on guarded generalized assignments [1]. Of course, action programs may also
abstract or approximate dense-time systems [2][25].

Control Policies. A (symbolic control-)policy C (over a set X) is a non-empty
tuple of predicates (over X). Let Im be an alphabet of m symbols, for any
natural m > 0. An m-ary policy C is a tuple (C0, · · · , Cm−1) and denotes the
map c ∈ Im → 2X such that

∧
i∈Im

(x∈c(i) ≡ Ci(x)).
Let C and C ′ be two m-ary policies. They are equal iff

∧
i∈Im

(Ci ≡ C′
i).

Moreover, C refines C′ (or C ′ is weaker than C) iff
∧
i∈Im

(Ci ⇒ C′
i). So, if C′

is equal to C then C′ is weaker than C. A policy C is a weakest one in a set P
of policies iff each policy in P which is weaker than C is equal to C. It is the
unique weakest policy iff any weakest one is equal to it.

Let S be an action program after (1). The (inherent) policy of S is the tuple
B of action guards Bi in S. A (refined) policy for S is a policy which refines
the inherent policy of S. Given a refined policy C for S, the action program S
controlled by C is the result of replacing B by C in S and is denoted by S↓C.

Formally, S↓C .= do []i∈I Ci(x) i→ x := fi(x) <wi> od .
A policy may ensure reachability, optimality or termination (Sect. 3, Sect. 6).

An algorithm which generates policies ensuring such a property is a (policy)
generator (for this property).

To sum up, control policies are first-class citizens. They may be constructed or
refined. Weakest policies are often preferable: in general, if a control refinement
introduces unnecessary determinism, it unduly restricts further refinements.

Running Example. We illustrate the main developments using one same ex-
ample. The latter is highly simplified, but not trivial, and is defined as follows:

S = do x �= 0 0→ x := 4x <26> [] x ≥ 0 1→ x := x+1 <13> od

X = IR, Q(x) ≡ 8 ≤ x ≤ 10 .
(2)

The inherent policy B is (x �= 0, x ≥ 0). Given the comments above, S serves
as syntactic sugar for x(n+1) ∈ {4x(n) | 0 ∈ γ(x(n))} ∪ {x(n) + 1 | 1 ∈ γ(x(n)))}
where I = {0, 1} and ((0 ∈ γ(x)), (1 ∈ γ(x)) = B.

The constants in (2) are chosen so as to allow for lightweight technical ex-
planations. The alphabet {0, 1} may be replaced by {PowerUp, Steady}. The

Synthesis of Optimal Control Policies 339

example could be made substantial by enriching the state space, adding actions,
and using pertinent action-maps.

A policy is optimal iff each execution that it allows does reach the target set
and has a minimum total cost for a given initial state. A unique weakest optimal
policy C for (2) exists and is constructed by a symbolic generator (Sect. 4.3).
The optimally controlled program is then

S↓C = do (0.5 ≤ x ≤ 0.625) ∨ (1.5 < x ≤ 2.5) 0→ x := 4x <26>

[] (0 ≤ x ≤ 0.5) ∨ (0.625 < x ≤ 1.5)
∨ (2.5 < x < 8) 1→ x := x + 1 <13> od .

2.2 Graphs, Paths and Their Costs

Graphs and Paths. Let S be an action program after (1). The transition graph
GS is the labelled, weighted graph (X, I,ES , wS) where the set ES ⊆ X× I×X
of edges is

⋃
x∈X,i∈I{(x, i, fi(x)) | Bi(x)} and the weight function wS ∈ I → X

is defined by ∀i ∈ I : wS(i) = wi.
If desired, the target set may become a source set by inverting the graph GS ,

i.e. by substituting (x′, i, x) for each edge (x, i, x′) in ES .
An(S-)path p is an alternating sequence of states and compatible labels which

contains at least one state and may be infinite; namely, p = x where x ∈ X or
p = (x0, i1, x1, · · · , xk−1, ik, xk, · · ·), viz. p = x0i1x1 · · ·xk−1ikxk · · · , where each
tuple (xk−1, ik, xk) is an edge in ES .

A path is a path from x ∈ X iff its first state is x. A path reaches a set
Y ⊂ X iff it is finite and its last state belongs to Y . A path reaches a predicate
P characterizing Y iff it reaches Y . A path is total, viz. maximal, iff either it is
infinite or it reaches ¬

∨
B. So, a finite path is not total iff it can be extended

into a strictly longer path.
The set of (S-)paths is denoted by Paths.S. The set of paths from x is de-

noted by Paths.S.x. The set of paths from x which reach P is denoted by
Paths.S.x.P . The set of total paths in Paths.S.x (resp. Paths.S.x.P) is de-
noted by TotalPaths.S.x (resp. TotalPaths.S.x.P).

Note. Let Inv be a predicate satisfied by all x and x′ such that ∃i ∈ I : (x, i, x′) ∈
ES . Any guard Bi may be replaced by a guard B′

i satisfying Inv ∧B′
i ≡ Bi [13].

For brevity, this simplification is not taken into account.

Path Costs. Let s.s′ denote the concatenation of sequences s and s′. The (chop
path-) concatenation of the paths p = s.x and p′ = x.s′ is p � p′ .= s.x.s′. Thus,
one same state x ends p and begins p′, and it is not repeated in p � p′.

The function cost ∈ Paths.S → IN∞ yields the sum of the costs of the actions
used in a path. Likewise, nbedg ∈ Paths.S → IN∞ yields the number of edge
occurrences in a path. Namely, for x, x′ ∈ X and i ∈ I,

cost(x) = 0, cost((x, i, x′) � p) = wi + cost(p)
nbedg(x) = 0, nbedg((x, i, x′) � p) = 1 + nbedg(p) .

340 M. Sintzoff

Since
∧
i∈I(1 ≤ wi ≤ Mw) (Sect. 2.1),

∀p ∈ Paths.S : nbedg(p) ≤ cost(p) ≤ nbedg(p) ×Mw . (3)

2.3 Reachability Precondition

Given an action program S and a target predicate Q, the reachability precon-
dition pre.S.Q is defined by (pre.S.Q)(x) ≡ (Paths.S.x.Q �= ∅). So, a state x
satisfies pre.S.Q iff some S-path from x reaches Q. The reachability precondition
can be derived iteratively [10][11]: for x ∈ X and i ∈ I,

(pre.S.P)(x) ≡
∨
n∈IN((pre.A)n.P)(x) (4)

(pre.A.P)(x) ≡
∨
i∈I(pre.Ai.P)(x), (pre.Ai.P)(x) ≡ Bi(x) ∧ P x

fi(x)
(5)

where P (x) is a predicate over X , (pre.A)n+1.P ≡ (pre.A)n.(pre.A.P) and
(pre.A)0.P ≡ P . Thus, pre.S.Q characterizes a transitive backwards closure.
Moreover, it is the least fixpoint of λw : (Q ∨ pre.A.w). Hence,

pre.A.(pre.S.Q) ⇒ pre.S.Q . (6)

For any refined policy C for S, Paths.(S↓C)⊆Paths.S. Hence, pre.(S↓C).P ⇒
pre.S.P . In short, a policy refinement determines a program refinement [1][3].

Notation. We sometimes write S̆Q for pre.S.Q.

3 State-Based Synthesis of Optimal Policies

A few basic results about optimal control are summarized in terms of the above
framework [5][6][21][23].

Let (S,Q) be an optimality problem (Sect. 2.1) and let B be the inherent
policy of S. Recall that

∨
B stands for

∨n
i=0 Bi.

Optimality Precondition. The (state-to-)value function V ∈ X ↪→ IN, a.k.a.
cost-to-go map, yields minimum path-costs: for all x satisfying pre.S.Q,

V (x) = min{cost(p) | p ∈ Paths.S.x.Q} . (7)

An (optimal) value is a path cost in Rng(V).
For any x ∈ X , an S-path from x is optimal iff it reaches Q, has a cost

equal to V (x), and is total. Each optimal path from x must be total lest it be
extended into a non-optimal path p′, viz. V (x) < cost(p′) : clearly, any optimal
system must exclude such a path p′. The set of optimal S-paths from x is thus
OptimPaths.S.x.Q

.= {p | (p ∈ TotalPaths.S.x.Q) ∧ (cost(p) = V (x))}.
The optimality precondition optim.S.Q is satisfied by x iff some S-path from

x reaches Q and each total S-path from x reaches Q at a minimum total cost.
So, (optim.S.Q)(x) ≡ (pre.S.Q)(x) ∧ (TotalPaths.S.x = OptimPaths.S.x.Q).

The action program S is optimal (or ensures optimality) with respect to Q iff
Q ∨

∨
B ≡ optim.S.Q. The latter condition is equivalent to

∨
B ⇒ optim.S.Q.

Indeed, Q ⇒ optim.S.Q is immediate while Q ∨
∨

B ⇐ optim.S.Q follows from
Q ∨

∨
B ⇐ pre.S.Q and pre.S.Q ⇐ optim.S.Q.

Synthesis of Optimal Control Policies 341

Optimal Control. An optimal policy for (S,Q) is a refined policy C′ for S
such that Q ∨

∨
C ′ ≡ optim.(S↓C′).Q, viz. S↓C ′ ensures optimality.

The weakest optimal policy C for (S,Q) is the refined policy for S such that

∀x ∈ X : (pre.S.Q)(x) ⇒ (TotalPaths.(S↓C).x = OptimPaths.S.x.Q) . (8)

So, a total S-path is rejected by C iff it is not optimal. If an optimal policy C′ is
not equal to C, it satisfies (8) where inclusion replaces equality, viz. C ′ actually
rejects some optimal S-paths. Hence, C is weaker than C ′ and is unique. If the
value function V can be computed then C is easily constructed as follows.

A preliminary property results from (6) and (7); recall that S̆Q ≡ pre.S.Q :

∀j ∈ I, ∀x ∈ X : (pre.Aj .S̆Q)(x) ⇒ (V (x) ≤ wj + V (fj(x))) . (9)

The weakest optimal policy C is then determined by

∀i∈I, x ∈ X : Ci(x) ≡ (pre.Ai.S̆Q)(x) ∧ (V (x) − V (fi(x)) = wi) . (10)

In fact, the equality V (x) = minj∈I{wj + V (fj(x)) | (pre.Aj .S̆Q)(x)} formalizes
the principle of optimality and is implied by (9) and (10). So, a state x satisfies
the optimal guard Ci iff the choice of action Ai is optimal for x.

Since C is the weakest optimal policy and (V (x) > 0) ⇒ ¬(V (x) = 0),

Q ∨
∨

C ≡ pre.S.Q ,
∨

C ⇒ ¬Q . (11)

If C is equal to the inherent policy of S then S is optimal with respect to Q.

Convention. An optimal policy for action programs is the weakest one unless
otherwise stated.

State-Based Generator. Assume the state space in (S,Q) is finite. A state-
based generator for optimality is obtained by the sequential composition of the
computation of the value function (7) and the unfolding of the equivalences (10).

The complexity of this generator is polynomial in #X : shortest paths are
produced by efficient algorithms [5][12][14], and they determine V .

4 Development of a Symbolic Generator for Optimality

Our intention is to start from a simple state-based generator, and we choose
the greedy algorithm for shortest paths [12]. Each iteration step in the latter
generates one state, if any, not yet generated and having the last computed value;
otherwise, it computes the next higher value. It is easy, at least in principle, to
transform this state-based algorithm into a symbolic one: each symbolic iteration
step computes the next higher value and generates predicates (called “guard
strata”) characterizing states which have this value and satisfy an optimal guard.
Clearly, the number of values should be finite. Values are ranked by naturals
called levels. At level 0, the value is zero and the basis predicate is the target
predicate. The step at a level n > 0 constructs one guard stratum for each
optimal guard, by a greedy computation which guarantees optimality.

Let (S,Q) be an optimality problem. For the running example, see Sect. 4.3.

342 M. Sintzoff

4.1 Stratification of Optimal Guards

Let C = (C0, · · · , CN−1) be the (weakest) optimal policy for (S,Q). Each guard
Ci is decomposed into the guard strata F

(m)
i , one for each value level m. Namely,

Ci ≡
∨
m∈XL

F
(m)
i where XL is the set of levels. Thus, each guard Ci is the limit

of the growing sub-guards C
(n)
i ≡

∨
m∈[0,n] F

(m)
i , for n ∈ XL.

Levels of Values and of States. If Rng(V) is finite then the set XL of
(value) levels is [0,#Rng(V)−1]. Otherwise, it is IN. The level-to-value bijection
VL ∈ XL → Rng(V) arranges values in increasing order: for n ∈ XL\{0},

VL(0) = 0, VL(n) = min
x:(pre.S.Q)(x)

{V (x) | V (x) > VL(n − 1)} . (12)

The value at level m is VL(m). The level of a value v ∈ Rng(V) is V −1
L (v). The

level of a state x satisfying pre.S.Q is the level of its value, i.e. V −1
L (V (x)). So,

the (state-to-)level function L ∈ X ↪→ XL is given by L = V −1
L ◦ V . Clearly,

V = VL ◦ L, V (x) ≥ L(x), V (x) > V (x′) ≡ L(x) > L(x′) (13)

where x and x′ satisfy pre.S.Q.
The optimality radius ρ ∈ IN∞ is the number of nonzero values:

ρ = supXL = supDom(VL) = supRng(L) . (14)

The finiteness of this number is crucial (Sect. 6.1). Of course, ρ ≤ #X .
Optimality is bounded iff the optimality radius is finite.

Stratification. The sub-policy C(n) = (C(n)
0 , · · · , C(n)

N−1) approximates C from
below, by restricting it to the states having a level at most n. So, each sub-guard
C

(n)
i characterizes a level set: for all n ∈ XL, i ∈ I, and x ∈ X,

C
(n)
i (x) ≡ Ci(x) ∧ (L(x) ≤ n) . (15)

The policy strata F (n) = (F (n)
0 , · · · , F

(n)
N−1) stratify the optimal policy C. So,

the guard strata F
(n)
i stratify the optimal guard Ci. Namely, each F

(n)
i restricts

Ci to the states having the level n; it is thus the fringe (or front) of C
(n)
i :

F
(n)
i (x) ≡ Ci(x) ∧ (L(x) = n) . (16)

Likewise, the auxiliary sub-domains D(n) and domain strata H(n) respectively
approximate and stratify the reachability precondition:

D(n)(x) ≡ (pre.S.Q)(x) ∧ (L(x) ≤ n) (17)
H(n)(x) ≡ (pre.S.Q)(x) ∧ (L(x) = n) . (18)

So, the domain strata H(n) characterize equivalence classes where V is constant.

Synthesis of Optimal Control Policies 343

4.2 Transformations into Computation Formulas

A computation formula is a formula which can be evaluated effectively. It yields
a number, a Boolean value, or a term which formalizes a predicate introduced
in Sect. 4.1. A key formula serves to generate guard strata.

Computation Formulas for Sub-Guards and Sub-Domains. Given (6)
and (14), if Rng(V) is finite then a computation formula for ρ is provided by

ρ = max
n∈IN

{n + 1 | ¬D(n) ∧ pre.A.D(n) �≡ false} . (19)

The computation formulas for F
(0)
i , Ci and for C

(m)
i , H(m), D(m) (m ∈ [0, ρ]) are

given by the following equivalences, where i ∈ I and n ∈ [1, ρ] :

F
(0)
i ≡ false, C

(0)
i ≡ F

(0)
i , C

(n)
i ≡ C

(n−1)
i ∨ F

(n)
i , Ci ≡ C

(ρ)
i (20)

H(0) ≡ Q, D(0) ≡ H(0), H(n) ≡
∨
i∈I F

(n)
i (21)

D(n) ≡ D(n−1) ∨H(n) . (22)

The computation formula for Ci follows from (14) and (15). The one for H(n)

results from (11), (16), and (18). The other proofs are obvious.

Greedy Computation Formula for Guard Strata. The formula for com-
puting guard strata implements the greedy principle as follows.

In (16), we unfold Ci using (10) and replace the state-based map V by
the level-based bijection VL. Actually, given (13) and (18), V (x) − V (fi(x)) =
VL(n) − VL(m) if L(x) = n and L(fi(x)) = m or if H(n)(x) and H(m)(fi(x)).

This can be formalized using level-based guards besti ∈ XL → Bool and maps
gi ∈ XL ↪→ XL, defined as follows: for i ∈ I and n ∈ [1, ρ],

besti(n) ≡ (VL(n) − wi ∈ Rng(VL)) (23)
besti(n) ⇒ (VL(n) − wi = VL(gi(n))) . (24)

So, if besti(n) is true, the solution for m of the equation VL(n) − VL(m) = wi
exists and is equal to gi(n). Two properties are derived (Appendix A): for i ∈ I,
n ∈ [1, ρ], and x ∈ X ,

(Greediness) ¬D(n−1) ∧ besti(n) ∧ pre.Ai.H
(gi(n)) ⇒ H(n) (25)

(Abstraction) Ci(x) ⇒ (besti ◦ L)(x) ∧ ((L ◦ fi)(x) = (gi ◦ L)(x)) . (26)

In (25), conjunctions are evaluated from left to right. Property (26) asserts that,
for all states x satisfying Ci, the state-to-level homomorphism L abstracts the
action map fi into the level-based map gi [19].

We then obtain the key formula: for i ∈ I and n ∈ [1, n],

F
(n)
i ≡ ¬D(n−1) ∧ besti(n) ∧ pre.Ai.H

(gi(n)) . (27)

344 M. Sintzoff

Proof.

F
(n)
i (x)

≡ Ci(x) ∧ (L(x) = n) [(16)]
≡ Ci(x) ∧ (pre.S.Q)(x) ∧ besti(n)

∧ (L(fi(x)) = gi(n)) ∧ (L(x) = n) [(11), (26)]
≡ Bi(x) ∧ (pre.S.Q)(fi(x)) ∧ (pre.S.Q)(x) ∧ besti(n)

∧ (L(fi(x)) = gi(n)) ∧ (L(x) = n) [(5), (10), (13), (24)]
≡ Bi(x) ∧H(gi(n))(fi(x)) ∧H(n)(x) ∧ besti(n) [(18) twice]
≡ pre.Ai.(H(gi(n))(x)) ∧H(n)(x) ∧ besti(n) [(5)]
≡ ¬D(n−1)(x) ∧ besti(n) ∧ pre.Ai.(H(gi(n))(x)) [(17), (18), (25)]

�	
A computation step using (27) is asynchronous since usually gi(n) �= gj(n).

Level-based actions ALi = (besti(n) i→ n := gi(n) < wi >) could make up a
system SL abstracting S. Accordingly, n, besti, gi, and (27) could respectively
be written xL, C

L
i , fLi , and F

(xL)
i ≡ ¬D(xL−1) ∧ pre.ALi .(pre.Ai.H

(xL)) where
F

(xL)
i (x) could become Fi(xL, x) and likewise for the other iterates.

Sub-Computation Formulas. For i ∈ I and n ∈ [1, ρ],

VL(n) = min
i ∈ I

m∈ [0, n−1]

{wi+VL(m) | ¬D(n−1) ∧ pre.Ai.H
(m) �≡ false} (28)

besti(n) ≡
∨

m∈[0,n−1]

VL(n) − wi = VL(m) (29)

gi(n) = min
m∈[0,n−1]

{m | VL(n) − wi = VL(m)} if besti(n) . (30)

The proof of (28) is found in Appendix A. The proofs of (29) and (30) are easy.
The iterates VL(m) and H(m) in (28) may be recorded in vectors of length ρ.
The operator min in (30) serves to compute V −1

L (VL(n) − wi).

Implicit Computations. The terms formalizing the predicates from Sect. 4.1
are treated as syntactical expressions. They may be simplified into equivalent
ones. Satisfiability expressions, variables such as F

(n)
i in (20), integer-valued

expressions as in (28), and applications of besti, gi, and pre are all evaluated.

4.3 Running Example (Continued)

Recall the example (2). For the first three levels, the formulas in Sect. 4.2 yield

VL(0) = 0
F (0) = (false, false), C(0) = (false, false)
H(0) ≡ 8 ≤ x ≤ 10, D(0) ≡ 8 ≤ x ≤ 10
VL(1) = 13
F (1) = (false, (7 ≤ x < 8)), C(1) = (false, (7 ≤ x < 8))
H(1) ≡ 7 ≤ x < 8, D(1) ≡ 7 ≤ x ≤ 10

Synthesis of Optimal Control Policies 345

VL(2) = 26
F (2) = ((2 ≤ x ≤ 2.5), (6 ≤ x < 7)), C(2) = ((2 ≤ x ≤ 2.5), (6 ≤ x < 8))
H(2) ≡ (2 ≤ x ≤ 2.5) ∨ (6 ≤ x < 7), D(2) ≡ (2 ≤ x ≤ 2.5) ∨ (6 ≤ x ≤ 10) .

Of course, F (n) = (F (n)
0 , F

(n)
1) and C(n) = (C(n)

0 , C
(n)
1). The value at level 1, for

instance, is computed easily:

VL(1) = mini∈{0,1}{wi + VL(0) | ¬D(0) ∧ pre.Ai.H
(0) �≡ false} [(28)]

= min{ {26 | ∃x ∈ IR : 2 ≤ x ≤ 2.5} [(5); Logic and
∪ {13 | ∃x ∈ IR : 7 ≤ x < 8 } } Arithmetic]

= 13 . [Arithmetic]

For n = 2, the guard stratum in C0 is obtained as follows. The solution for m
of VL(m) = VL(2) − w0 = 26 − 26 exists and is zero (29, 30). So, g0(2) = 0 and

F
(2)
0 (x) ≡ ¬D(1)(x) ∧ best0(2) ∧ (pre.A0.H

(g0(2)))(x) [(27)]
≡ ¬D(1)(x) ∧ (pre.A0.H

(0))(x) [g0(2) = 0]
≡ ¬(7 ≤ x ≤ 10) ∧ (x �= 0) ∧ (8 ≤ 4x ≤ 10) [(5)]
≡ 2 ≤ x ≤ 2.5 . [Logic, Arithmetic]

The optimality radius ρ, or maximum value-level, is 6. The maximum value
VL(6) is 78. The weakest optimal policy C is the pair (C0, C1) where

C0(x) ≡ C
(6)
0 (x) ≡ (0.5 ≤ x ≤ 0.625) ∨ (1.5 < x ≤ 2.5)

C1(x) ≡ C
(6)
1 (x) ≡ (0 ≤ x ≤ 0.5) ∨ (0.625 < x ≤ 1.5) ∨ (2.5 < x < 8) .

(31)

5 Symbolic Synthesis of Optimal Policies

5.1 Symbolic Generator for Optimality

Schema. Assume that the reachability radius ρ is finite (14) and that the
satisfiability expressions in (28) can be evaluated. The optimal policy can then
be constructed by a finite iteration where the computation formulas (Sect. 4.2)
are used:

C(0) := (false, · · · , false), since VL(0) = 0 given (12)

C(n) := (C(n)
0 , · · · , C(n)

N−1), for n ∈ [1, ρ]

C := C(ρ) .

The proofs in Sect. 4.2 entail the correctness of the schema.

Resulting Generator. It is obtained by unfolding the above schema. The
sub-policy C(n) is the tuple (C(n)

0 , · · · , C(n)
N−1) for n ∈ [0, ρ].

Input: An optimality problem (S,Q) is given (Sect. 2.1).
Precondition: Optimality is bounded (Sect. 4.1) and the satisfiability

expressions in (28) are decidable.
Postcondition: The result C is the weakest optimal policy (Sect. 3).
Invariant: Each equivalence from (15) to (18) is invariant.

346 M. Sintzoff

Algorithm OptimPol
.=

begin n := 0; for i ∈ I : (F (0)
i := false; C

(0)
i := F

(0)
i); (32)

VL(0) := 0; H(0) := Q; D(0) := H(0); (33)

while ¬D(n) ∧ pre.A.D(n) �≡ false do n := n + 1; (34)

VL(n) := min
i ∈ I

m∈ [0, n−1]

{
wi+VL(m) |
¬D(n−1) ∧ pre.Ai.H

(m) �≡ false

}
; (35)

for i ∈ I : (F
(n)
i := ¬D(n−1) ∧ besti(n) ∧ pre.Ai.H

(gi(n)); (36)

C
(n)
i := C

(n−1)
i ∨ F

(n)
i) ; (37)

H(n) :=
∨
i∈I

F
(n)
i ; D(n) := D(n−1) ∨H(n) od ; (38)

ρ := n; C := C(ρ) end . (39)

Correctness. The correctness of OptimPol follows from that of the above schema
and from a sequential ordering of computations thanks to which the construction
of each iterate precedes its use.

Comments. The set of terms generated by OptimPol is finite since ρ is finite.
The satisfiability expression in (34) is equivalent to the finite disjunction∨
i∈I,m∈[0,n](¬D(n)∧pre.Ai.H

(m) �≡ false) of satisfiability expressions from (28).
So, it need not be mentioned in the precondition of the algorithm.

The conjuncts in the latter precondition can be established as follows. For one,
optimality is bounded in particular families of problems (44). For another, the
satisfiability expressions are decidable in restricted formal theories. Of course,
OptimPol may fail to terminate if its precondition is not guaranteed.

Notation. The term OptimPol(S,Q) refers to OptimPol with input (S,Q).

5.2 Complexity

Clearly, the complexity of the algorithm OptimPol is polynomial with respect
to the number of optimal values, the number of actions, and the complexity of
evaluating the satisfiability expression in (35), i.e. in (28).

The following notations are used to express complexity. Given an algorithm
A, its complexity is denoted by T (A) while TSAT(A) denotes the complexity of
evaluating the satisfiability expressions in A. In addition, f ∈ Poly(g) stands
for ∃k ∈ IN : f ∈ O(gk). Thus,

T (OptimPol) ∈ Poly(ρ + N + TSAT(OptimPol)) . (40)

Therefore, the symbolic generator OptimPol is less efficient than the state-
based one (Sect. 3) for all problems (S,Q) on a finite state space X such that

Synthesis of Optimal Control Policies 347

N + TSAT(OptimPol(S,Q)) �∈ Poly(#X). For instance, if the evaluation of a
satisfiability expression is NP -hard then OptimPol may well be less efficient
than the state-based generator. If appropriate, the finite transition graph GS

can be extended with the set of edges {(x,N, xq) | Q(x)} where xq is a distin-
guished new state; the target set then reduces to the singleton {xq}.

There are two classes of problems (S,Q) for which OptimPol appears useful:

Class I. The set X is infinite and the precondition of OptimPol is satisfied by
(S,Q). The state-based generator is not intended for this class.

Class II. The set X is finite and T (OptimPol(S,Q)) ∈ Poly(log#X). Then
OptimPol is exponentially more efficient than the state-based generator.

5.3 Running Example (Continued)

Illustration of Class I above. Since the example in (2) satisfies the precondition
of OptimPol (Sect. 4.3), it belongs to Class I. The optimal policy C (31) is
slightly nondeterministic, given C0 ∧ C1 ≡ (x = 0.5). There are two optimal
paths from 0.5, namely (0.5, 0, 2, 0, 8) and (0.5, 1, 1.5, 1, 2.5, 0, 10). Their cost is
52 = VL(4). The reachability precondition pre.S.Q is 0 ≤ x ≤ 10. The potential
complexity of the decomposition of ¬Q ∧ pre.S.Q into C0 and C1 (11, 31) may
be glimpsed from this highly simplified illustration.

In the case of S and Q in (2), T (OptimPol(S,Q)) is low since the predicates
D(n−1) and H(m) (35) are little disjunctions of simple intervals (Sect. 4.3).

Illustration of Class II above. Let us approximate the state space X = IR in
(2) by a set Xm ⊆ Q[−50,+50] such that T (OptimPol(S,Q)) ∈ Poly(log#Xm)
and {2m × x | x ∈ Xm} = ZZ[− 2m×50,+2m×50−1] for a natural m ≥ 10. Thus,
#Xm = 2m × 100 and 0.625 ∈ Xm. The choice of m is not indifferent because
the optimal policy (31) is not preserved if m = 1 for instance.

Let (Sm, Qm) be (S,Q) where Xm replaces X . Since Xm is a sufficiently pre-
cise approximation of X , OptimPol(Sm, Qm) faithfully mimics OptimPol(S,Q).
In particular, ρ in OptimPol(Sm, Qm) equals ρ in OptimPol(S,Q), and each it-
erate in OptimPol(Sm, Qm) is the corresponding one in OptimPol(S,Q) where
Xm replaces X . Hence, T (OptimPol(Sm, Qm)) ∈ Poly(T (OptimPol(S,Q))).
Hence, T (OptimPol(Sm, Qm)) ∈ Poly(log#Xm) by definition of Xm. Hence,
the problem (Sm, Qm) belongs to Class II. In this case, for any m′ > m,
(Sm′ , Qm′) also belongs to Class II: T (OptimPol(Sm′ , Qm′) ∈ Poly(log #Xm′).

Obviously, log #Xm grows polynomially as #Xm grows exponentially. Con-
sider e.g. m′ = mh + m where h ∈ IN. The approximation is then more pre-
cise by mh orders of magnitude, viz. #Xm′ = 2m

h × #Xm. As a consequence,
log #Xm′ = mh + log #Xm ∈ Poly(log#Xm) and T (OptimPol(Sm′, Qm′)) ∈
Poly(T (OptimPol(Sm, Qm))).

Likewise, Class II may be illustrated by a finite-state action program which
approximates a continuous system with sufficient precision.

348 M. Sintzoff

Very Small Target Sets. Let ε be a very small and strictly positive real number.
If Q(x) becomes 8 ≤ x ≤ 8+2×ε and the operation x+1 in A1 becomes x+ε then
the optimality radius ρ is a finite but large integer, there are very many guard
strata, and the resulting optimal policy is far more involved. In such a case, the
stratification of guards is quite refined and any faithful finite approximation of
the state space IR is extremely precise; compare with the illustration of Case
II above. The reachability precondition pre.S.Q, on the other hand, remains
0 ≤ x ≤ 10; it characterizes the interval IR[0,10].

If Q(x) ≡ (x = 8), viz. ε is replaced by 0, then ρ is infinite, OptimPol is
inapplicable, and pre.S.Q characterizes a denumerable infinite subset of IR[0,10].

Nonlinear Action-Maps. Action maps may be nonlinear [25]. If the operation
4x in A0 becomes x2, for instance, then OptimPol remains applicable and the
reachability precondition does not change. Clearly, the evaluation of satisfiability
expressions usually becomes harder as the action maps become more intricate.

5.4 Additional Derivations

This brief, subsidiary Section is included for completeness.

Symbolic Expression of the Value Function. Let x be a state satisfying
pre.S.Q. Its value V (x) equals VL(n) for the level n such that x satisfies H(n).
Thus, whenever the precondition of OptimPol holds (Sect. 5.1), the value func-
tion V can be computed using the finite set Vσ =

⋃
n∈XL

{(VL(n), H(n))} :

V (x) = min
(v,P)∈Vσ

{v | P (x)} .

The auxiliary set Vσ can be constructed using a simple variant of OptimPol :
the steps producing C(0), C(n), and C are respectively replaced by

V (0)
σ := {(0, H(0))}, V (n)

σ := V (n−1)
σ ∪ {(VL(n), H(n))}, Vσ := V (ρ)

σ .

Comments. The value V (x), if any, is the length of the shortest (or the cost of the
cheapest) S-path from x which reaches Q. Thanks to the above symbolic form,
it is possible to compute shortest-paths lengths in the case of infinite graphs
and target sets which are defined by action programs and target predicates
satisfying the precondition of OptimPol; the latter is compared in Sect. 6.1 with
the precondition of a related symbolic algorithm.

The auxiliary set Vσ could be generated first, and the optimal policy could
then be derived using (10). Here, on the contrary, control policies are synthesized
in one go because they are treated as first-class citizens.

Iterative Deduction of the Optimality Precondition. The optimality
precondition optim.S.Q can be deduced iteratively, as it is the case for the
reachability precondition (Sect. 2.3) and the termination one (Sect. 6.2) [13].

Synthesis of Optimal Control Policies 349

The following iteration yields optim.S.Q ≡ W (ρ); the predicates K(m) serve to
stratify W (ρ) : for n ∈ [1, ρ],

K(0) ≡ Q, K(n) ≡ ¬W (n−1) ∧ (
∨

B) ∧
∧
i∈I

(Bi ⇒ besti(n) ∧ pre.Ai.K
(gi(n)))

W (0) ≡ Q, W (n) ≡ W (n−1) ∨K(n) .

The cardinal ρ and the values besti(n) and gi(n) are obtained as in OptimPol.

6 Related Work

The symbolic algorithm OptimPol is compared with related ones which generate
the following results: reachability preconditions for discrete-time systems (Sect.
6.1); restricted termination policies for discrete-time systems (Sect. 6.2); optimal
policies for Markov decision processes and for hybrid systems (Sect. 6.3).

Let S be an action program, let B be its inherent policy, and let Q be a target
predicate.

6.1 Symbolic Synthesis of Reachability Preconditions

Symbolic Algorithm. A classical algorithm constructs the reachability pre-
condition pre.S.Q (Sect. 2.3):

Algorithm ReachPre
.=

begin n := 0; D(0) := Q;
while ¬D(n) ∧ pre.A.D(n) �≡ false do n := n + 1;

D(n) := D(n−1) ∨ ¬D(n−1) ∧ pre.A.D(n−1) od ;

ρR := n; D := D(ρR) end .

So, pre.S.Q ≡ D(ρR). The reachability radius ρR ∈ IN∞ is the least cardinal such
that ∀x ∈ X : (pre.S.Q)(x) ⇒ (∃p ∈ Paths.S.x.Q : nbedg(p) ≤ ρR).

For any state x satisfying pre.S.Q, its reachability level is given by

LR(x) = min{nbedg(p) | p ∈ Paths.S.x.Q} . (41)

Clearly, the reachability radius is the number of nonzero reachability levels:

ρR = supRng(LR) . (42)

Reachability is bounded iff ρR is finite. Given (41) and (7), the map LR is akin
to V . Therefore, it satisfies (9) mutatis mutandis:

∀j ∈ I, ∀x ∈ X : (pre.Aj .S̆Q)(x) ⇒ (LR(x) ≤ 1 + LR(fj(x))) . (43)

Precondition of Algorithm ReachPre : Reachability is bounded and the satisfi-
ability expression in ReachPre is decidable.

350 M. Sintzoff

Symbolic Generator for Reachability. Given Sect. 2.3, Q is reachable by S
(or S ensures reachability) iff Q ∨

∨
B ≡ pre.S.Q.

A reachability policy for S and Q is a refined policy C for S such that Q
is reachable by S↓C. Once the reachability precondition has been generated, a
reachability policy can be constructed readily. More precisely, a unique weak-
est reachability policy R exists and is given by the guards Ri ≡ pre.Ai.S̆Q.
A symbolic generator ReachPol for reachability is thus easily obtained from
ReachDom.

For the running example (2), R = (0 < x ≤ 2.5, 0 ≤ x ≤ 9).

Unbounded Reachability. Reachability is not bounded only if the state space
is infinite. For a significant family of problems over infinite state-spaces, struc-
tural properties ensure bounded reachability [16]. Still, bounded reachability is
a severe restriction. Assume for instance that x ≤ 40 replaces the guard x ≥ 0
of action A1 in (2); the target predicate 8 ≤ x ≤ 10 is then reachable from any
negative number and reachability is not bounded.

In case of unbounded reachability, the action program S can be approximated
by SK such that ∀x ∈ X : (∀p ∈ Paths.SK .x.Q : nbedg(p) ≤ K) for some
K ∈ IN : it suffices to add a counter y ∈ [0,K], incremented in each action.

If reachability is unbounded and S has a sufficiently simple structure, the
reachability precondition may be obtained by specific decision procedures [17].

Reachability vs. Optimality. The algorithm ReachPre is a symbolic form
of the state-based algorithm which generates paths having a minimum number
of edges [24]. It constructs a precondition determining a qualitative property,
namely reachability. The algorithm OptimPol is a symbolic form of the greedy
state-based algorithm which generates paths with shortest lengths (Sect. 4) [12].
It constructs a policy ensuring a quantitative property, namely optimality.

So, the computation of iterates in ReachPre ignores costs and is synchronous,
whereas the computation of guard strata in OptimPol depends on costs and
is asynchronous. As a consequence, each sub-domain D(n) in ReachPre is in
general larger than the sub-domain D(n) in OptimPol. Yet, the respective limits
D(ρR) and D(ρ) both are equivalent to the reachability precondition pre.S.Q. In
short, the sub-domains grow faster in ReachPre than in OptimPol.

What is more, the radiuses ρR and ρ are related as follows (Appendix A):

ρR ≤ ρ ≤ ρR ×Mw . (44)

Hence, bounded optimality is equivalent to bounded reachability.

Respective Preconditions. Given (44), the precondition of ReachPre (above)
and that of OptimPol (Sect. 5.1) both require bounded reachability and de-
cidable satisfiability. Actually, the precondition of OptimPol holds if (i) that
of ReachPre holds and (ii) the decidability of the satisfiability expression in
ReachPre implies the decidability of the one in (28).

Condition (ii) is often verified. Nevertheless, the sub-domains D(n) in the
algorithm ReachPre usually have a simpler structure than those in OptimPol.

Synthesis of Optimal Control Policies 351

Respective Complexities. Let us eliminate ρ from (40) using (44). This yields
T (OptimPol) ∈ Poly(ρR + Mw + N + TSAT(OptimPol)). As to ReachPre, note
that N ∈ Poly(TSAT(ReachPre)) since N is the number of actions in A (5). So,
T (ReachPre) ∈ Poly(ρR + TSAT(ReachPre)). Hence,

Mw + TSAT(OptimPol) ∈ Poly(ρR + TSAT(ReachPre))
⇒ T (OptimPol) ∈ Poly(T (ReachPre)) .

The premiss may of course be falsified, e.g. by w0 = 2ρR and w1 = 1.

Comments. Given the close relationships above, efficient implementation tech-
niques used for ReachPre [10] should be reused for OptimPol.

The applicability domain of OptimPol appears to be a relatively large part of
that of ReachPre. The present work does not aim at enlarging the applicability
domain of ReachPre, which is admittedly limited.

6.2 Symbolic Synthesis of Fast-Termination Policies

Termination Precondition. The (good-)termination precondition wp.S.Q,
a.k.a. weakest precondition, can be defined by (wp.S.Q)(x) ≡ (pre.S.Q)(x) ∧
(TotalPaths.S.x = TotalPaths.S.x.Q). So, a state x satisfies wp.S.Q iff some
S-path from x reaches Q and each total S-path from x reaches Q. The termina-
tion precondition can be derived iteratively [13].

The preconditions pre.S.Q,wp.S.Q, and optim.S.Q characterize three proper-
ties of increasing strength: reachability, i.e. the possibility of reaching the target
set; good termination, i.e. the certainty of reaching the target set; optimality,
i.e. the certainty of reaching the target set at a minimum cost. Firstly, it is clear
that pre.S.Q ⇐ wp.S.Q. Secondly, wp.S.Q ⇐ optim.S.Q is proved as follows:
for any state x, (TotalPaths.S.x = OptimPaths.S.x.Q) ⇐ (optim.S.Q)(x) and
OptimPaths.S.x.Q ⊆ TotalPaths.S.x.Q ⊆ TotalPaths.S.x (Sect. 2.3, Sect. 3);
hence, (TotalPaths.S.x = TotalPaths.S.x.Q) ⇐ (optim.S.Q)(x).

The action program S terminates in Q iff Q ∨
∨

B ≡ wp.S.Q.

Termination Control. A (good-)termination policy for S and Q is a refined
policy C for S such that S↓C terminates in Q.

A fast-termination policy for (S,Q) is a termination policy C for (S,Q) such
that ∀x ∈ X : (∀p ∈ Paths.(S↓C).x.Q : nbedg(p) = LR(x)); cf. (41). A unique
weakest fast-termination policy exists (see below). It is not always a weakest
termination policy because it minimizes the number of edges in paths whereas
termination requires no minimization, by definition.

A termination policy can be derived from a termination function [1][3][13][15].
A termination function for S and Q is a map t ∈ X ↪→ IN such that, for any
state x, (x ∈ Dom(t)) ≡ (pre.S.Q)(x) and (t(x) = 0) ≡ (Q ∧ ¬

∨
B)(x); the

state space X may be infinite. The t-based termination policy T [t] is the tuple
of guards T

[t]
i (x) ≡ (pre.Ai.S̆Q)(x) ∧ (t(x) − t(fi(x)) ≥ 1). If it is equal to the

inherent policy of S then S terminates on Q.

352 M. Sintzoff

Let C be a termination policy. The graph GS↓C is an acyclic subgraph of
the graph GS . Since this acyclic subgraph is not necessarily maximal, C is not
always a weakest termination policy. For a finite state space, the construction of
a weakest termination policy boils down to that of a maximal acyclic subgraph.
As matters stand, no general algorithm TerminPol is known for constructing
weakest termination policies when state spaces are infinite.

More often than not, the graph GS contains different maximal acyclic sub-
graphs, in which case no unique weakest termination policy exists.

Symbolic Generator for Fast Termination. A symbolic generator con-
structs fast-termination policies T [22], used to prevent starvation in concurrent
programs. It can be obtained by dissecting the algorithm ReachPre as follows.

Firstly, the sub-domains D(n) are decomposed into domain strata H(m). So,
for n ∈ [1, ρ], D(n) ≡ D(n−1) ∨ H(n) and H(n) ≡ ¬D(n−1) ∧ pre.A.H(n−1).
Secondly, the domain strata H(n) themselves are decomposed into guard strata
F

(n)
i , for i ∈ I. So, H(n) ≡

∨
i∈I F

(n)
i and F

(n)
i ≡ ¬D(n−1) ∧ pre.Ai.H

(n−1).
Thirdly, the fast-termination guards Ti are decomposed into guard strata F

(m)
i .

So, T
(n)
i ≡ T

(n−1)
i ∨ F

(n)
i . The resulting generator is equivalent to that in [22]:

Algorithm FastT erminPol
.=

begin n := 0;

for i ∈ I : (F (0)
i := false;T (0)

i := F
(0)
i);H(0) := Q;D(0) := H(0);

while ¬D(n) ∧ pre.A.H(n) �≡ false do n := n + 1;

for i ∈I : (F
(n)
i := ¬D(n−1) ∧ pre.Ai.H

(n−1);

T
(n)
i := T

(n−1)
i ∨ F

(n)
i) ;

H(n) :=
∨
i∈I

F
(n)
i ; D(n) := D(n−1) ∨H(n) od ;

ρR := n; T := T (ρR) end .

The algorithm FastT erminPol is structurally similar to ReachPre. So, it has
the same precondition, does not depend on costs, and uses synchronous steps
only. Moreover, the fast-termination policy T is the unique weakest one.

Termination vs. Optimality. Optimality has already been compared with
reachability (Sect. 6.1). It is now compared with good termination.

Termination Control vs. Optimal Control. It seems that termination control is
more tractable than optimal control because good termination is implied by
optimality: it often appears easier to invent an adequate termination function
than to invent the uniquely defined value-function. The weakest optimal policy
itself is a termination policy, although not a weakest one in general.

Synthesis of Optimal Control Policies 353

Moreover, the value function V per se may serve as a termination function.
The resulting V -based termination policy T [V] is weaker than the V -based weak-
est optimal policy since (V (x) − V (fi(x)) ≥ 1) ⇐ (V (x) − V (fi(x)) = wi); see
(10). Still, T [V] in general is not a weakest termination policy because the value
function V may determine a partial order in X which is too restrictive.

FastT erminPol vs. OptimPol. The generator FastT erminPol is equivalent to
the generator OptimPol if all actions have the same cost, viz. the same priority.
The asynchronous term H(gi(n)) in (36) then becomes the synchronous term
H(n−1) in FastT erminPol. Actually, L = LR and ρ = ρR if the action costs are
equal. Therefore, the bijection VL is not needed in the generator FastT erminPol
and the equal action costs could all be 1.

Running Example (Continued). Let us replace w1 = 26 by w1 = 13 = w0

in (2). Then the optimal policy generated by OptimPol is equal to the fast-
termination policy T generated by FastT erminPol. Namely,

T0(x) ≡ (0.125 ≤ x ≤ 0.15625)∨ (0.25 ≤ x ≤ 0.375)
∨ (0.4375 ≤ x ≤ 0.625) ∨ (1.5 < x ≤ 2.5)

T1(x) ≡ (0 ≤ x < 0.5) ∨ (0.625 < x ≤ 1.5) ∨ (2.5 < x < 8) .

The optimal policy C in (31) differs from T , and is even simpler. For our little
running example, a unique weakest termination policy exists and is equal to the
weakest reachability policy (0 < x ≤ 2.5, 0 ≤ x ≤ 9) (Sect. 6.1).

Path- or State-Completeness of Control Policies. Let ψ stand for any
of the following properties: reachability, termination, or optimality. A policy
C for S is path-complete with respect to ψ iff Paths.(S↓C) contains each S-
path guaranteeing ψ. The weakest reachability policy is path-complete since it
allows all paths which reach the target predicate. The weakest optimal policy
also is path-complete: it permits all optimal paths. As observed above, a weakest
termination policy in general is not path-complete.

A policy C is state-complete iff Q ∨ C ≡ pre.S.Q; see (11). A state-complete
termination policy is not always a weakest one; take, as an example, the above
policy T qua termination policy.

6.3 Symbolic Generators for Optimality in Related Systems

Markov Decision Processes. A symbolic dynamic-programming generator
yields policies which maximize expected total discounted rewards in MDPs [7].
It generates value functions symbolically, using the situation calculus, and then
extracts optimal policies; a similar approach is outlined in Sect. 5.4. As in that
paper, our aim is to tackle huge state-spaces and our approach is based on value-
dependent equivalence classes (18). Here, however, a basic framework is chosen
on purpose: transitions are not stochastic, no discount factor is used, and the
greedy principle is applied instead of dynamic programming.

The design space of symbolic generators is discussed in Sect. 7.

354 M. Sintzoff

Hybrid Systems. In the case of continuous or hybrid systems, which are
not considered here, state spaces are rarely finite and thus generators must
be symbolic. A symbolic algorithm [8] generates optimal strategies for timed
game-automata, in a subset of linear hybrid systems, as follows: first, a cost-
independent iteration yields candidate strategies; second, cost-dependent poly-
hedra are constructed; third, a selective search among these polyhedra yields
optimal, deterministic strategies. A thorough implementation is provided. More-
over, optimal policies can be generated for a rich class of nonlinear differential
equations, provided every discrete transition resets each state to a constant [9].

Further comments are found in Sect. 7.

7 Concluding Remarks

Admissible Problems. The family of optimality problems accepted by the
proposed technique is characterized by bounded reachability and decidable sat-
isfiability (Sect. 6.1), and also by the following restrictions (Sect. 2).

Each label identifies a unique action and each assignment is deterministic.
Hence, nondeterminism is bounded by the number of actions. Action costs are
nonzero natural numbers. Rational costs may be mapped to naturals by a change
of scale. Strictly positive real numbers may be used, but then (44) may be
falsified; they also may be approximated by rationals. Path costs are defined by
a linear function (Sect. 2.2), unlike costs in quadratic-programming control.

Interactive Dynamics. The interaction between controllable and uncontrol-
lable dynamics may be seen as an interplay between the reachability precondition
and the termination one [3]. In fact, the reachability precondition presupposes
that nondeterminism is controllable, viz. optimistic or angelic, whereas the ter-
mination precondition presupposes that nondeterminism is uncontrollable, viz.
pessimistic or demonic. Thanks to this logical duality, discrete-time games with
two players are readily formalized using interaction programs [3][20]. An interac-
tion program expresses the iteration of the sequential composition of two action
sets A and A′, which respectively correspond to the controllable proponent and
the uncontrollable opponent. So, the action set A is replaced in S by (A;A′), the
predicate pre.A.P is replaced in (5) by pre.A.(wp.A′.P), the guards in A′ may
not be refined, and the value function is defined using the min-max pattern [4].
The present work could thus be adapted to the symbolic generation of optimal
strategies in certain games.

Methodical Design of Symbolic Generators. Symbolic generators for opti-
mality, different from OptimPol, might be inspired by related ones for optimality
([7][8][9]). This specific question needs more study. Furthermore, a systematiza-
tion of known generators for optimality ([7][8][9] or here) may help in the generic
design of symbolic generators for multiple properties, such as termination (Sect.
6.2) and minimization of quadratic or expected total costs [6], taken in the con-
text of discrete-time systems. We discuss this topic in some detail.

Synthesis of Optimal Control Policies 355

The stages in Sect. 4 are the choice of a state-based generator for optimal-
ity, the definition of an adequate abstract structure given this generator, and
the design of a symbolic generator given the state-based one and the abstract
structure; likewise in [7]. This development is easily generalized on paper: the
property of optimality and the greedy state-based generator are replaced by a
property ψ and a state-based generator ψ Pol for ψ. It is less easy to invent an
abstract structure and to construct a symbolic generator in a particular instance.
To carry out this task for multiple properties raises even more difficulties.

An alternative endeavour may be imagined to tackle this issue. First, a typical
class of admissible control problems should be identified. One should then design
an algorithm AC transforming concrete transition systems into abstract finite-
state “symbolic systems”; see below. Let ψ Pol be a state-based generator for
a property ψ. It does generate an abstract policy from the symbolic system
obtained by applying AC to a given transition system. It remains thus to design
a complementary algorithm CA transforming this abstract policy into a concrete
one which ensures ψ in the given transition system. If this endeavour succeeds,
the sequential algorithm (AC ; ψ Pol; CA) would be a symbolic generator for ψ.
So, state-based generators –lock, stock and barrel– would be reused symbolically
without more ado, and the present paper would be made redundant.

Symbolic Abstraction. The ideas of abstraction and simulation have been
widely used to shed light on the structure of dynamics [2][3][9][10][18][19][25]. In
our view, but we may be mistaken, they could also provide an illuminating guide
towards a unified approach to the design of symbolic generators. The symbolic
dynamical systems above, for instance, could result from a partitioning of con-
crete state-spaces into equivalence classes determined by formal languages on the
alphabet of labels: namely, each concrete state belongs to the equivalence class
determined by the set of words abstracting all the simple paths which begin with
that state. So, as in future covers [18], states and transitions in symbolic systems
would correspond to formal languages and shift maps. A symbolic system would
have a finite state-space if it abstracts a transition system where the lengths
of simple paths are bounded. Symbolic systems might also abstract continuous
systems the dynamics of which can be abstracted symbolically.

Conclusion. A symbolic algorithm constructing optimal control policies for a
family of transition systems is presented. Its overall structure is akin to that of
the classical symbolic algorithm generating reachability preconditions: simply,
synchronous iteration steps used in the latter algorithm are changed into asyn-
chronous, greedy ones ensuring optimality. So, the applicability domain of the
proposed symbolic generator for optimality is not much smaller than that of the
symbolic method which establishes reachability.

Acknowledgments. We gratefully acknowledge helpful suggestions by J.-F.
Raskin, F. Cassez, referees, and participants to meetings of IFIP WG 2.1 (Al-
gorithmic Languages and Calculi) and WG 2.3 (Programming Methodology).

356 M. Sintzoff

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
Univ. Press, Cambridge (to be published, 2008)

2. Akin, E.: The General Topology of Dynamical Systems. Amer. Math. Soc., Provi-
dence (1998)

3. Back, R.-J., von Wright, J.: Refinement Calculus. Springer, New York (1998)
4. Başa, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. SIAM,

Philadelphia (1999)
5. Bellman, R.: Dynamic Programming. Princeton Univ. Press, Princeton (1957)
6. Bertsekas, D.: Dynamic Programming and Optimal Control. Athena Scientific,

Belmont (2000)
7. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order

MDPs. In: Proc. 7th Int. Joint Conf. Artificial Intelligence, pp. 690–697. M. Kauf-
mann, San Francisco (2001)

8. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.: Synthesis of optimal strategies using
HyTech. Electronic Notes Theor. Computer Sci. 119, 11–31 (2005)

9. Bouyer, P., Brihaye, T., Chevalier, M.: Weighted O-Minimal Hybrid Systems Are
More Decidable Than Weighted Timed Automata! In: Artemov, S.N., Nerode, A.
(eds.) LFCS 2007. LNCS, vol. 4514, pp. 69–83. Springer, Heidelberg (2007)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

11. de Bakker, J.W., de Roever, W.P.: A calculus for recursive program schemes. In:
Nivat, M. (ed.) Proc. 1st Int. Conf. Automata, Languages and Programming, pp.
167–196. North-Holland, Amsterdam (1973)

12. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

14. Floyd, R.: Algorithm 97 (Shortest path). Commun. ACM 5, 345 (1962)
15. Floyd, R.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Proc. Symp.

Appl. Mathematics, vol. 19, pp. 19–31. Amer. Math. Soc., Providence (1967)
16. Henzinger, T.A., Majumdar, R., Raskin, J.-F.: A classification of symbolic transi-

tion systems. ACM Trans. Computational Logic 6, 1–32 (2005)
17. Kupferman, O., Vardi, M.Y.: An Automata-theoretic Approach to Reasoning about

Infinite-state Systems. In: Proc. 12th Int. Conf. Computer Aided Verification,
LNCS, vol. 1855, pp. 36–52. Springer, Berlin (2006)

18. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge Univ. Press, Cambridge (1995)

19. Schmidt, D.A.: Structure-Preserving Binary Relations for Program Abstraction.
In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Com-
putation. LNCS, vol. 2566, pp. 245–265. Springer, Heidelberg (2002)

20. Sintzoff, M.: Iterative Synthesis of Control Guards Ensuring Invariance and In-
evitability in Discrete-decision Games. In: Owe, O., Krogdahl, S., Lyche, T. (eds.)
From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 272–301.
Springer, Heidelberg (2004)

21. Sontag, E.D.: Mathematical Control Theory. Springer, New-York (1990)
22. van Lamsweerde, A., Sintzoff, M.: Formal derivation of strongly concurrent pro-

grams. Acta Informatica 12, 1–31 (1979)
23. Vinter, R.: Optimal Control. Birkhäuser, Boston (2000)
24. Warshall, S.: A theorem on boolean matrices. J. ACM 9, 11–12 (1962)

Synthesis of Optimal Control Policies 357

25. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer, New York (1990)

Appendix A : Additional Proofs

Everywhere, x ∈ X, i ∈ I,m ∈ IN, and n ∈ [1, ρ]. Recall that S̆Q ≡ pre.S.Q.

Proof of (25)

¬D(n−1)(x) ∧ besti(n) ∧ pre.Ai.(H(gi(n))(x))
≡ ¬D(n−1)(x) ∧ besti(n) ∧Bi(x)

∧ S̆Q(fi(x)) ∧ L(fi(x)) = gi(n) [(5), (18)]
⇒ ¬D(n−1)(x) ∧ S̆Q(x)∧V (x)≤wi+V (fi(x))

∧ V (fi(x))=VL(gi(n)) ∧ wi+VL(gi(n)) = VL(n) [(9), (13), (24)]
⇒ ¬D(n−1)(x) ∧ S̆Q(x) ∧ V (x) ≤ VL(n) [Elim.wi+V (fi(x))]
⇒ ¬D(n−1)(x) ∧D(n)(x) [(13), (17)]
⇒ H(n)(x) [(17), (18)]

�	

Proof of (26)

(26.a) Ci(x) ⇒ VL(L(x))−wi = VL(L(fi(x))) [(10), (13)]
⇒ besti(L(x)) [(23)]

(26.b) Ci(x) ⇒ (VL(L(fi(x))) = VL(L(x))−wi)∧ besti(L(x)) [(10), (26.a)]
⇒ VL(L(fi(x))) = VL(L(x))−wi = VL(gi(L(x))) [(24)]
⇒ VL(L(fi(x))) = VL(gi(L(x))) [transitive =]
⇒ L(fi(x)) = gi(L(x)) [bijective VL]

�	
Proof of (28)

VL(n)
= minx{V (x) | S̆Q(x) ∧ V (x) > VL(n − 1)} [(12)]

= minx,i{V (x) | S̆Q(x) ∧ Ci(x) ∧ V (x) > VL(n− 1)} [(11),¬Q(x)]

= minx,i{V (x) | S̆Q(x)∧Bi(x)∧ S̆Q(fi(x)) ∧(V (x)=wi+VL(L(fi(x))))
∧ V (x) > VL(n − 1) ∧ L(fi(x)) < n} [(10); Prop. min]

= minx,i,m{V (x) | S̆Q(x) ∧Bi(x) ∧ S̆Q(fi(x)) ∧ (V (x) = wi+VL(m))

∧ ¬D(n−1)(x) ∧ (m=L(fi(x))) ∧m<n} [Intro.m; (17)]

= mini,m:m<n{wi + VL(m) | ∃x : ¬D(n−1)(x) ∧Bi(x) ∧H(m)(fi(x))}
[Elim. V (x), Elim. S̆Q(x) by (6); (18)]

= mini,m:m<n{wi+VL(m) | ∃x : ¬D(n−1)(x)∧(pre.Ai.H(m))(x)} [(5)]

= mini,m:m<n{wi+VL(m) | ¬D(n−1)∧pre.Ai.H
(m) �≡ false} [Satisfiability]

�	

358 M. Sintzoff

Proof of (44)

Let supx stand for supx:S̆Q(x).

∀x : S̆Q(x) ⇒ LR(x) ≤ L(x) ≤ LR(x) ×Mw [(a),(b) below]
⇒ supx{LR(x)} ≤ supx{L(x)} ≤ supx{LR(x)}×Mw [Props. sup]
⇒ ρR ≤ ρ ≤ ρR ×Mw . [(14), (42)]

(a) Proof of ∀x : S̆Q(x) ⇒ L(x) ≥ LR(x). Consider any x satisfying S̆Q and
some p = (xn, in−1, xn−1, · · · , x1, i0, x0) ∈ OptimPaths.S.x.Q. So, xn = x and
Q(x0). Let us prove ∀k ∈ [0, n] : L(xk) ≥ LR(xk) by induction on k :
– (k = 0) L(x0) = LR(x0) = 0 [Q(x0), (13), (41)].
– (k > 0) The hypothesis is L(xk−1) ≥ LR(xk−1), for any k ∈ [1, n]. The thesis
L(xk) ≥ LR(xk) is proved by modus ponens: we have V (xk) = wk−1+V (xk−1) ≥
1 + V (xk−1) because p is optimal and wk−1 ≥ 1, and we prove the following
implication:

V (xk) ≥ 1 + V (xk−1) ≡ L(xk) ≥ 1 + L(xk−1) [(13)]
⇒ L(xk) ≥ 1 + LR(xk−1) [Induction hyp.]
⇒ L(xk) ≥ LR(xk) . [(43)]

Hence L(xn) ≥ LR(xn), for k = n. Hence L(x) ≥ LR(x), since xn = x.

(b) Proof of ∀x : S̆Q(x) ⇒ L(x) ≤ LR(x) × Mw. Consider any x satisfying S̆Q.
Let Px,Q stand for Paths.S.x.Q.

∀p ∈ Px,Q : cost(p) ≤ nbedg(p) ×Mw [(3)]
⇒ minp∈Px,Q{cost(p)} ≤ minp∈Px,Q{nbedg(p)}×Mw [Props. min]
⇒ V (x) ≤ LR(x) ×Mw [(7), (41)]
⇒ L(x) ≤ LR(x) ×Mw . [(13)]

�	

Appendix B : Indexes

Notations. The references to the end of Sect. 1 are understood:

<wi> action cost, Sect. 2.1 Y ↪→Z partial functions
Bi

i→ ... action labelling, Sect. 2.1 Rng(f) range of a function
do...od action program, Sect. 2.1 P �≡ false satisfiability expression
#Y cardinal of a set P (supM) supremum of a chain
Ai[]Aj choice of actions, Sect. 2.1 Ex

e substitution
S↓C controlled by, Sect. 2.1 Y →Z total functions
Dom(f) definition domain B tuple of predicates
IN∞ naturals and infinity

∨
B union of predicates

[m,n] interval

Synthesis of Optimal Control Policies 359

Selected Identifiers. We write “§” for “Section”:

Action, §2.1 (To) Reach, §2.2
action cost, §2.1 reachability level, before (41)

reachability precondition, §2.3
besti (level-based guard), (23) reachability policy, §6.1
Bounded optimality, after (14) reachability radius, (42)
bounded reachabillity, after (42) reachable, §6.1

ReachPre (algorithm), §6.1
Computation formula, §4.2 (to) refine (a policy), §2.1
control policy, §2.1 ρ (optimality radius), (14)
cost (of a path), before (3) ρR (reachability radius), (42)

Domain stratum, (18) S̆Q (for pre.S.Q), end of §2.3
Equal policies, §2.1 Satisfiability expression, §1
FastT erminPol (algorithm), §6.2 (to) satisfy (a predicate), §1

state space, §2.1
gi (level-based map), (24) sub-domain, (17)
GS (transition graph), §2.2 sub-guard, (15)
Generator (of a policy), §2.1 sub-policy, §4.1
guard, §2.1
guard stratum, (16) Target predicate, §2.1

target set, §2.1
Inherent policy, §2.1 termination precondition, §6.2

termination function, §6.2
L (map to value levels), §4.1 termination policy, §6.2
LR (map to reachability levels), (41) total path, §2.2
Label, §2.1 TotalPaths, §2.2
level, §4.1,§6.1 transition graph, §2.2

T (OptimPol) (complexity), (40)
Mw (maximum action cost), §2.1 T (ReachPre) (complexity), §6.1
nbedg (number of edges), before (3)

Unique weakest policy, §2.1
optim.S.Q (optimality precond.), §3
Optimal policy, before (8) V (value function), (7)
optimality precondition, §3 VL (value-to-level bijection), (12)
optimality radius, (14) (Optimal) Value, after (7)
OptimPol (algorithm), §5.1
OptimPaths (optimal paths), §3 Weaker policy, §2.1

weakest policy, §2.1
Paths, §2.2 wp.S.Q (termin. precond.) §6.2
Policy, §2.1
Poly (polynomiality), before (40) X (set of states), after (1)
pre.S.Q (reachability precond.) §2.3 XL (set of value levels), §4.1
precondition (of algorithm), §5.1,§6.1
(optimality) problem, §2.1

Modal Semirings Revisited

Jules Desharnais1 and Georg Struth2

1 Département d’informatique et de génie logiciel, Pavillon Adrien-Pouliot,
1065, avenue de la Médecine, Université Laval, Québec, QC, Canada G1V 0A6

Jules.Desharnais@ift.ulaval.ca
2 Department of Computer Science

University of Sheffield, S1 4DP, United Kingdom
g.struth@dcs.shef.ac.uk

Abstract. A new axiomatisation for domain and codomain on semirings
and Kleene algebras is proposed. It is simpler, more general and more
flexible than a predecessor, and it is particularly suitable for program
analysis and construction via automated deduction. Different algebras
of domain elements for distributive lattices, (co-)Heyting algebras and
Boolean algebras arise by adapting this axiomatisation. Modal operators
over all these domain algebras can then easily be defined. The calculus
of the previous axiomatisation arises as a special case. An application in
terms of a fully automated proof of a modal correspondence result for
Löb’s formula is also presented.

1 Introduction

Kleene algebras are foundational structures in computing with applications rang-
ing from program semantics, construction and refinement to rewriting and con-
currency control. Most current variants are close relatives of Kozen’s elegant
axiomatisation [15,16], and share some important features. They focus on the
essential operations for modelling programs and similar discrete systems. They
support abstract and concise reasoning about such systems within first-order
equational logic. They have rich model classes that include relations, languages,
paths in graphs, program traces and predicate transformers. And they enable a
new kind of automated program analysis and construction that is supported by
automated theorem provers (ATP systems) [11,12,23].

To connect the algebraic approach with traditional logics of programs such
as dynamic, temporal or Hoare logics, modal operators have been added to
semirings and Kleene algebras by axiomatising a notion of domain [8]. In this
approach—henceforth referred to as the DMS approach—the domain function
d maps elements of an idempotent semiring S, which can be assumed to model
the actions of some system, to elements of a certain Boolean subalgebra B of
S, which models the state space of the system. This two-sorted approach seems
very natural since domain elements d(x) represent precisely those states in B
at which the action x ∈ S is enabled. The resulting modal semirings and modal
Kleene algebras have widely been applied since [5,7,11,20,22]. But despite its
evident merits, the DMS approach shows some deficiencies.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 360–387, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modal Semirings Revisited 361

First, the domain algebra B in the range of d cannot be freely chosen: the
DMS axioms imply that B must be the maximal Boolean subalgebra embedded
into S in a certain way [8]. So the axioms determine B rather inelegantly and
indirectly. Second, experiments show that the performance of ATP systems can
suffer from the intricacies of the two-sorted setting [11] and inhibit verification
tasks. But are these deficiencies unavoidable?

This paper proposes a new one-sorted approach to domain semirings and
Kleene algebras with domain that overcomes the difficulties mentioned.

– We provide a new one-sorted equational axiomatisation of domain for ar-
bitrary semirings. It induces distributive lattices as domain algebras and
supports the definition of modal operators on these lattices.

– We extend domain semirings by an antidomain function that induces a
Boolean domain algebra. We then reduce this axiomatisation to three simple
equations plus the semiring axioms. We also show that all DMS theorems
can be recovered in this simpler setting.

– The flexibility of the approach is further demonstrated by extending domain
semirings to Heyting and co-Heyting algebras with modal operators.

– Finally, the improved applicability of the approach follows from proof ex-
periments that include an automated modal correspondence proof for Löb’s
formula, which has an immediate impact for automated termination analysis
in a first-order setting.

By these results, the new approach is simpler, more general and more flexible
that the DMS approach without sacrificing the underlying intuitions. Its most
important benefit may, however, be its superior suitability for automated pro-
gram analysis and program construction with ATP systems.

ATP systems were also crucial for the technical development, for analysing de-
pendencies, redundancies and reducibilities of axiom systems and for developing
the basic calculi. ATP technology allowed us to greatly accelerate the otherwise
tedious and time-consuming search for proofs and counterexamples and to focus
entirely on concepts. We used the following tools:

– Waldmeister [3], which is currently the most powerful system for unit equa-
tional logic and which outputs equational proofs;

– Prover9 [2], which is currently the most powerful ATP for full first-order
reasoning with Kleene algebras (but does not produce readable proofs);

– Mace4 [2], which generates finite (counter)models from first-order axioms.

All calculational proofs and counterexample searches in this paper have been
automated with these tools on a standard PC. The input templates in the ap-
pendices should allow the interested reader to reproduce them quickly and easily.
Unfortunately, the granularity of Waldmeister proofs is too fine for publication.
So we include comprehensive proofs of our main theorems in the paper.

The remainder of this text is organised as follows. Section 2 to Section 5 in-
troduce domain semirings which induce distributive lattices as domain algebras
and develop their basic calculus. Section 6 provides conditions that relate the do-
main algebras with Boolean algebras. Section 7 sets up the link between domain

362 J. Desharnais and G. Struth

semirings, Kleene algebras with domain and distributive lattices with opera-
tors. Section 8 to Section 10 introduce antidomain operations that turn domain
algebras into Boolean algebras. In Section 11, the domain algebras of domain
semirings are extended to (co-)Heyting algebras. Section 12 presents an appli-
cation of the new axiomatisation in automated termination analysis. Section 13
presents a conclusion. Additional material is collected in four appendices.

2 Domain Semirings

Semirings are essentially rings without subtraction. Formally, a semiring is a
structure (S,+, ·, 0, 1) such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a
monoid, multiplication distributes over addition from the left and right and 0 is
a left and right zero of multiplication. As usual in algebra, variants without 0
and 1 can easily be defined, but they are less interesting for our purpose.

The explicit semiring axioms (as ATP input) can be found in the Appendices A
and B. We stipulate that multiplication binds more strongly than addition and
we omit the multiplication symbol.

A standard semiring duality is opposition. It is obtained by swapping the order
of multiplication (or by reading expressions from right to left). The opposite So

of a semiring S is again a semiring and Soo = S.
A semiring S is idempotent if 1 + 1 = 1 or, equivalently, if x + x = x holds

for all x ∈ S. For idempotent semirings, the relation ≤ defined, for all x, y ∈ S,
by x ≤ y ⇔ x + y = x is a partial order; (S,≤) is a semilattice with addition
corresponding to join and with least element 0. Addition and multiplication are
isotone with respect to that order.

Idempotent semirings have many computationally meaningful models. We re-
fer to two standard models to motivate our approach:

– Relation semirings are idempotent semirings formed by binary relations un-
der union, relational product, the empty relation and the unit relation.

– Trace semirings are idempotent semirings formed by sets of traces of a pro-
gram or transition system under union, complex products based on trace
products, the empty set of traces and the set of states from which traces
are built. As usual, traces are words over a state alphabet and an action
alphabet in which the first and the last letter are state symbols and in which
state and action symbols alternate. The trace product is a partial operation
that “glues together” traces at their first and last states if these states are
equal and that is undefined if they differ.

Language and path semirings arise as special cases of trace semirings.
We axiomatise a domain function on arbitrary semirings. It can be motivated

in several ways. First, trace and relation semirings can be taken as starting points
and some natural properties of domain can be selected. Alternatively, the DMS
axioms, included at the end of this section, can be translated into the one-sorted
setting. In addition, the notion axiomatised can be tested on the algebra of
domain elements that is induced. We first present the axioms and then motivate
them from all these points of view.

Modal Semirings Revisited 363

A domain semiring is a semiring S extended by the domain operation d : S →
S which, for all x, y ∈ S, satisfies the following axioms:

x + d(x)x = d(x)x, (D1)
d(xy) = d(xd(y)), (D2)

d(x) + 1 = 1, (D3)
d(0) = 0, (D4)

d(x + y) = d(x) + d(y). (D5)

The following fact can easily be shown by an ATP system, and we present the
proof generated by Waldmeister as an example in Appendix C.

Proposition 2.1. Domain semirings are idempotent.

Hence every domain semiring can be ordered.
Let us discuss the particular choice of axioms. The axioms (D1) and (D2)

correspond to the DMS axioms (6) and (8) below. The axioms (D3), (D4) and
(D5) follow from the DMS axioms, but, as we will see below, not from (D1) and
(D2). DMS axiom (7) is particular to the two-sorted setting and cannot directly
be expressed here. This will further be discussed below.

By Proposition 2.1, axiom (D1) can be rewritten as x ≤ d(x)x. We say more
generally that an element y of an idempotent semiring is a left preserver of an
element x if x ≤ yx. So d(x) is a left preserver of x and we call this axiom the
preservation axiom. Intuitively, d(x) should even be the least left preserver of x.
Lemma 4.1(xi) below shows that this is indeed the case. Axiom (D2) says that
only the domain of y contributes to the domain of xy; as previously we call it
the locality axiom. Axiom (D3) can be rewritten as d(x) ≤ 1; it says that all
domain elements are below 1 and we call it the subidentity axiom. By axiom
(D4) and axiom (D5), the domain function is strict and additive, and we name
these axioms accordingly.

The image of the domain operation d on a domain semiring S is denoted by
d(S) and elements of d(S) are called a domain elements (with respect to S and
d). We will consistently use the letters p, q, r to denote domain elements.

The following fixpoint lemma characterises domain elements within the lan-
guage of domain semirings.

Proposition 2.2. An element of a domain semiring is a domain element if and
only if it is a fixpoint of the domain operation.

Proof. Let S be a semiring with a mapping d that satisfies (D2). We show that
x ∈ d(S) if and only if x = d(x). First, every x ∈ d(S) is the image of some y ∈ S,
that is, x = d(y). Therefore, d(x) = d(d(y)) = d(1d(y)) = d(1y) = d(y) = x by
(D2). Second, x = d(x) trivially implies that x ∈ d(S). �	

Trace and relation semirings with their standard domain operations are models
of domain semirings, as can easily be shown. If x is a binary relation, that is, a
set of pairs on some given set, then d(x) = {(a, a) : (a, b) ∈ x}; if x is a set of
traces, then d(x) = {p : p = first(τ) and τ ∈ x}, as expected.

364 J. Desharnais and G. Struth

An even simpler exercise consists in axiomatising codomain semirings as the
opposites of domain semirings: A codomain semiring is a semiring S extended
by the codomain operation do : S → S that, for all x, y ∈ S, satisfies

x + xdo(x) = xdo(x), (1)
do(xy) = do(do(x)y), (2)

do(x) + 1 = 1, (3)
do(0) = 0, (4)

do(x + y) = do(x) + do(y). (5)

By duality, the opposites of all statements about domain semirings hold in
codomain semirings. Therefore only the interaction of domain and codomain
deserves further investigation.

At the end of this section, we present the original DMS axioms. They are not
needed to understand the further development of this paper, but they illustrate
the gain in simplicity obtained.

Let S be an idempotent semiring and let B be the maximal Boolean algebra
embedded in S such that 0 becomes the minimal element of B and 1 its maximal
element. S is a DMS domain semiring if it can be extended by a domain function
d : S → B that, for all x, y ∈ S and p ∈ B, satisfies the axioms

x ≤ d(x)x, (6)
d(px) ≤ p, (7)

d(xd(y)) ≤ d(xy). (8)

It has been shown that (6) and (7) are equivalent to the least left preserver
axiom

x ≤ px ⇔ d(x) ≤ p. (9)

3 Irredundancy and Irreducibility of Domain Axioms

In this section we show that the domain axioms of domain semirings are irre-
dundant, that is, no domain axiom is entailed by the semiring axioms and the
remaining domain axioms. In fact we show that they are even irredundant with
respect to the axioms of idempotent semirings. We also show irreducibility of the
axioms in the sense that (D2) and (D5) cannot further be weakened to inequal-
ities, that is, both inequalities that determine these axioms are irredundant.

Formally, a first-order formula φ is irredundant with respect to a set of first-
order formulas Γ if some model of Γ is not a model of φ. We say that a set Γ
is irredundant if each φ ∈ Γ is irredundant with respect to Γ − {φ}. Obviously,
discarding an irredundant formula from an axiom set changes the theory while
discarding a redundant formula does not. In general, there is no guarantee that
irredundancy of an axiom set can be established through (small) finite models
alone, but, in practice, Mace4 proves very helpful.

Modal Semirings Revisited 365

Proposition 3.1. The domain axioms of domain semirings are irredundant.

Proof. We used Mace4 to find models that satisfy the semiring axioms plus all
combinations of four domain axioms except the fifth one.

We first show irredundancy of (D1). Consider the Boolean semiring with
elements 0 and 1 and with addition and multiplication defined by the tables
below. Let also domain be defined as in the following table.

d 0 1
0 0

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Then (D2)-(D5) hold, but not (D1), since 0 · 1 = 0 �= 1 = 1 + 0 · 1.
Irredundancy of (D2) follows by setting x = y = 2 in the model

d 0 1 2
0 1 1

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

Irredundancy of (D3) follows by setting x = 1 in the model

d 0 1 2
0 2 2

+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

Irredundancy of (D4) can be established in the model.

d 0 1
1 1

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Irredundancy of (D5) follows by setting x = 1 and y = 2 in the model

d 0 1 2 3
0 1 3 3

+ 0 1 2 3
0 0 1 2 3
1 1 1 2 1
2 2 2 2 2
3 3 1 2 3

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 2 2
3 0 3 2 3

�	

It usually takes far less time to generate such models with Mace4 than to un-
derstand them.

The next lemma shows that the additivity axiom is irreducible.

Lemma 3.2. Some non-additive function d on an idempotent semiring satisfies
(D1)-(D4) and either one of d(x) + d(y) ≤ d(x + y) or d(x + y) ≤ d(x) + d(y).

Proof. Mace4 presents a 6-element model for the first claim and a 5-element
model for the second claim. �	

366 J. Desharnais and G. Struth

Lemma 3.2 implies that isotonicity of domain does not entail its additivity,
whereas every additive function on a semilattice is isotone, whence domain has
this property (cf. Lemma 4.1(vii)). Mace4 also shows that isotonicity of domain
does not follow from the domain axioms (D1)-(D4) alone.

The last lemma of this section states that the locality axiom is irreducible.

Lemma 3.3. Some non-local function d on an idempotent semiring satisfies
(D1) and (D3)-(D4) and either one of d(xd(y)) ≤ d(xy) and d(xy) ≤ d(xd(y)).

Proof. Mace4 presents a 3-element model for the first and a 4-element model for
the second claim. �	

In the DMS axiomatisation, an additivity axiom is not needed and locality can
be weakened to d(xd(y)) ≤ d(xy).

4 Basic Domain Calculus

We now revisit the basic domain calculus of the DMS axiomatisation [8] in our
new setting. It turns out that most of the calculus is preserved. We will later
enrich the new axiomatisation to reconstruct precisely the DMS calculus in a
much simpler setting.

Lemma 4.1. Let S be a domain semiring. Let x, y ∈ S and let p ∈ d(S). Then

(i) d(x)x = x (domain is a left invariant),
(ii) d(p) = p (domain is a projection),
(iii) d(xy) ≤ d(x) (domain increases for prefixes),
(iv) x ≤ 1 ⇒ x ≤ d(x) (domain expands subidentities),
(v) d(x) = 0 ⇔ x = 0 (domain is very strict),
(vi) d(1) = 1 (domain is co-strict),
(vii) x ≤ y ⇒ d(x) ≤ d(y) (domain is isotone),
(viii) d(px) = pd(x) (domain elements can be exported),
(ix) d(x)d(x) = d(x) (domain elements are multiplicatively idempotent),
(x) d(x)d(y) = d(y)d(x) (domain elements commute),
(xi) x ≤ px ⇔ d(x) ≤ p (domain elements are least left-preservers),
(xii) xy = 0 ⇔ xd(y) = 0 (domain is weakly local).

All these properties have been proved by Waldmeister and Prover9. Variants
hold in the DMS calculus and they all hold on trace and relation semirings, too.

In relation and trace semirings, all subidentities are domain elements. In other
domain semirings, this need not be the case.

Lemma 4.2. Subidentities of domain semirings need not be domain elements.

Proof. Mace4 presents a 3-element model. �	

Lemma 4.1(viii) displays a variant of DMS axiom (7). There, additivity of domain
is redundant. Here, the situation is different.

Modal Semirings Revisited 367

Lemma 4.3. Some non-additive function d on an idempotent semiring satisfies
(D1)-(D4) and d(d(x)y) = d(x)d(y).

Proof. Mace4 presents a 4-element model. �	

The least left preserver property in Lemma 4.1(xi) requires p to be a domain
element. More generally, it can easily be shown that d(x) ≤ y implies x ≤ yx for
arbitrary semiring elements. However, the converse implication does not hold.

Lemma 4.4. On some domain semiring, x ≤ yx ⇒ d(x) ≤ y does not hold.

Proof. Mace4 presents a 3-element model in which y ≤ 1. �	

Finally, the weak locality property in Lemma 4.1(xii) is also very natural for trace
or relation semirings, where it models the pointwise behaviour of relational prod-
ucts and trace products. In the DMS axiomatisation, weak locality is equivalent
to locality and it is also equivalent to the fact that xy = 0 ⇔ do(x)d(y) = 0. For
domain semirings, the situation is slightly weaker.

Lemma 4.5. Some non-local function on an idempotent semiring satisfies (D1),
(D3)-(D5) and weak locality.

Proof. Mace4 presents a 4-element model. �	

Section 10 shows that equivalence holds for Boolean domain semirings.
In sum, the basic domain calculus of the DMS axiomatisation can, up to

equivalence of locality and weak locality, be reconstructed in the context of
domain semirings.

5 Domain Algebras

This section studies the domain algebra, that is, the algebra of domain elements,
which is induced by the domain axioms. By Proposition 2.2, domain elements are
fixpoints of the domain operation. This makes their structure easy to analyse.

It is well known that the set of subidentities of an idempotent semiring un-
der addition and multiplication forms an idempotent semiring. Using Proposi-
tion 2.2, we can sharpen this fact for domain semirings.

Lemma 5.1. Let S be a domain semiring. Then (d(S),+, ·, 0, 1) is an idempo-
tent semiring.

Proof. By Proposition 2.2, it suffices to show that 0, 1, p+q and pq are fixpoints
of d. The first and second property hold by axiom (D4) and Lemma 4.1(vi).
The third property follows from axiom (D5) and Proposition 2.2. The fourth
property follows from Lemma 4.1(viii) and again from Proposition 2.2. �	

All these proof tasks have been automated with Waldmeister and Prover9.

Lemma 5.2 ([4]). A semiring is a distributive lattice if x + 1 = 1 and xx = x
hold for all elements x.

368 J. Desharnais and G. Struth

Proposition 5.3. Let S be a domain semiring. Then the tuple (d(S),+, ·, 0, 1)
is a bounded distributive lattice.

Proof. Use Lemma 5.1, Lemma 5.2, Lemma 4.1(ix) and Axiom (D3). �	

We henceforth call d(S) the domain algebra of S. In contrast, the idempotent
semiring of subidentities need not form a distributive lattice. Mace4 presents a
4-element domain semiring with subidentities x and y in which xy = yx does
not hold; the multiplication table below is not symmetric for x = 2 and y = 3.

d 0 1 2 3
0 1 3 3

+ 0 1 2 3
0 0 1 2 3
1 1 1 1 1
2 2 1 2 3
3 3 1 3 3

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 0
3 0 3 2 3

In the DMS axiomatisation, the domain algebra is a Boolean subalgebra by
definition. For domain semirings, this needs no longer be the case.

Lemma 5.4. The domain lattices of domain semirings need not be Boolean.

Proof. Mace4 shows that it is not the case that for all x there exists a y such
that d(x) + d(y) = 1 and d(x)d(y) = 0. Consider x = 2 in the following domain
semiring:

d 0 1 2
0 1 2

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 2

�	

Are all domain lattices (co-)Heyting algebras? This cannot not be refuted by a
finite counterexample, since all finite distributive lattices are (co-)Heyting alge-
bras [13]. We leave it as an open question.

6 Domain Algebras and Boolean Algebras

We now present a sufficient condition that characterises certain domain elements
without even mentioning the domain operation. It links subidentities with do-
main elements and relates domain algebras with Boolean subalgebras of subiden-
tities. Our criterion uses a weak form of Boolean complementation.

Proposition 6.1. Let S be a domain semiring. Let x ∈ S and let there exist
some y ∈ S such that

x + y = 1 and yx = 0.

Then x is a domain element.

Modal Semirings Revisited 369

Proof. We first show that xd(x) = x and that yd(x) = 0. For the first iden-
tity, xd(x) ≤ x holds by (D3) and the converse inequality holds, since, by
Lemma 4.1(i), x = (x + y)x = xx + yx = xx = xd(x)x ≤ xd(x). The sec-
ond identity holds, since, by Lemma 4.1(i), (D1) and (D4),

yd(x) = d(yd(x))yd(x) = d(yx)yd(x) = 0yd(x) = 0.

Then d(x) = (x + y)d(x) = xd(x) + yd(x) = x + 0 = x. �	

An automated proof with Prover9 took less than one second. Waldmeister is not
appropriate since reasoning with hypotheses and mixed quantification is needed.

The condition yx = 0 is quite sensitive: it does not imply xy = 0, although y is
a subidentity because of x+ y = 1. Mace4 presents a 5-element counterexample.

Lemma 6.2. Some domain semiring S with x, y ∈ S satisfies x + y = 1 and
xy = 0, but not d(x) = x.

Proof. Mace4 presents the following counterexample, in which x = 2 and y = 3.

d 0 1 2 3 4
0 1 1 3 3

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 1 1 1
2 2 1 2 1 2
3 3 1 1 3 3
4 4 1 2 3 4

· 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 2 0 0
3 0 3 4 3 4
4 0 4 4 0 0

�	

It is, however, straightforward to further constrain the assumptions in order to
enforce that both x and y are domain elements.

Corollary 6.3. Let S be a domain semiring. Let x ∈ S and let there exist some
y ∈ S such that

x + y = 1, xy = 0 and yx = 0.

Then x and y are domain elements.

Proof. The proof is immediate from Proposition 6.1. �	

In particular, we say that an element x of an idempotent semiring S is comple-
mented if there exists some y ∈ S such that x + y = 1, xy = 0 and yx = 0. We
denote by BS the set of all complemented elements in S.

Lemma 6.4. Let S be an idempotent semiring. Then (BS ,+, ·, 0, 1) is a Boolean
algebra.

Proof. (i) All complemented elements x, y ∈ S satisfy xx = x and xy = yx as
Prover9 easily shows. Also, BS is closed under addition and multiplication. We
show that, if x′ and y′ are complements of x and y (not necessarily unique), then
x′y′ is a complement of x + y and x′ + y′ is a complement of xy. First,

370 J. Desharnais and G. Struth

x + y + x′y′ = x(y + y′) + y(x + x′) + x′y′

= xy + xy′ + yx + yx′ + x′y′

= xy + xy′ + x′y + x′y′

= (x + x′)(y + y′)
= 1.

Second, (x+y)x′y′ = xx′y′+yx′y′ = yy′x′ = 0. The remaining cases then follow
by duality.

Therefore, since x ≤ 1 and by Lemma 5.2, BS forms a distributive lattice. It
is complemented because of the assumptions. But Boolean algebras are comple-
mented distributive lattices. �	

Theorem 6.5. Let S be a domain semiring. Then d(S) contains the greatest
Boolean subalgebra of S bounded by 0 and 1.

Proof. By Corollary 6.3 and Lemma 6.4, BS ⊆ d(S). �	

Theorem 6.5 provides further interesting insights into the structure of domain
algebras. In relation semirings and trace semirings, for instance, where the entire
subalgebra of subidentities is a Boolean algebra, the domain algebra is fixed. It
is the full algebra of subidentities, as expected.

7 Semiring Modules and Modal Semirings

It is well known that modal operators can be defined via domain and codomain
operations [8]. Intuitively, the link is provided by the fact that Kripke frames are
relational structures and forward and backward diamond operators correspond
to relational preimage and image operations.

Here, more generally, we consider images and preimages with respect to semir-
ing elements and (co)domain elements, that is, we consider modal diamond op-
erators of sort S×d(S) → d(S), but we define them more generally as operators
of sort S×S → S and use the fixpoint condition for explicitly encoding the sort
of domain elements.

Let S be a domain semiring. For x ∈ S and p ∈ d(S), we define the preimage
of p under x as d(xp). The image of p ∈ do(S) under x can be defined on the
opposite semiring as do(px) as well. Both d(S) and do(S) form a distributive
lattice by Proposition 5.3 and its dual statement, but not necessarily the same
one, unless d(S) is a Boolean algebra and hence the greatest Boolean subalgebra
of S bounded by 0 and 1.

We introduce the standard modal notation and write 〈x〉p = d(xp), replacing
the preimage operation by a multimodal diamond operator that acts on the do-
main algebra. In order to justify that these diamonds are indeed modal operators
in the sense of the Boolean algebras with operators introduced by Jónsson and
Tarski [14], we must show that λp.〈x〉p is strict and additive. To link domain
semirings even more strongly with computational algebras and logics, we present
a more general result.

Modal Semirings Revisited 371

A semiring module [10] is a structure (S,L, :), such that S is an idempotent
semiring, L is a semilattice (with least upper bound operation + and least ele-
ment 0) and the scalar product : of sort S ×L → L satisfies, for all x, y ∈ S and
p, q ∈ L, the axioms

(x + y) : p = x : p + y : p,
x : (p + q) = x : p + x : q,

(xy) : p = x : (y : p),
1 : p = p,

x : 0 = 0.

Proposition 7.1. Let S be a domain semiring. Then (S, d(S), (λx, p.〈x〉p)) is
a semiring module.

Proof. It must be shown that d((x+y)d(z)) = d(xd(z))+d(yd(z)) and similarly
for the remaining four identities. This is routine work. �	

An automated proof with Waldmeister is straightforward. The second and the
fifth module axiom are additivity and strictness. So domain semirings indeed
induce distributive lattices with operators à la Jónsson and Tarski.

In order to emphasise the fact that domain semirings give rise to modal op-
erators, we also call these structures modal semirings.

To link the resulting modal algebras more strongly with logics of programs
such as dynamic, temporal and Hoare logics, and in order to prepare the appli-
cation in Section 12, a notion of iteration is needed.

A Kleene algebra is an idempotent semiring S extended by the star operation
∗ : S → S that satisfies the unfold and the induction axiom

1 + xx∗ = x∗ and y + xz ≤ z ⇒ x∗y ≤ z,

and their opposites [15]. A Kleene algebra with domain (also called modal Kleene
algebra) is a domain semiring that is also a Kleene algebra. A Kleene module [17]
is a semiring module (K,L, :) over a Kleene algebra K that also satisfies, for all
x ∈ K and p, q ∈ L, the induction axiom

p + x : q ≤ q ⇒ x∗ : p ≤ q.

Proposition 7.2. Let K be a Kleene algebra with domain. Then the structure
(K, d(K), (λx, p.〈x〉p)) is a Kleene module.

Proof. By Proposition 7.1, K is a semiring module. It remains to show that

d(y) + d(xd(z)) ≤ d(z) ⇒ d(x∗d(y)) ≤ d(z)

holds for all Kleene algebras with domain. This proof is again routine and can
be carried out along the lines of a similar proof with the DMS axioms [8]. �	

372 J. Desharnais and G. Struth

An automated proof of the induction law by Prover9 took about 41 minutes
and yielded a (resolution) proof with about 150 steps. Previous attempts to
automatically prove this law with the DMS axiomatisation within reasonable
time failed.

When L is a Boolean algebra, Kleene modules are essentially algebraic variants
of propositional dynamic logics and the operators of the temporal logics LTL and
CTL can of course be defined in this setting. In this sense, our Kleene algebras
with domain yield propositional dynamic logics defined over distributive lattices
of propositions. The absence of Boolean complementation certainly increases
both the efficiency of proof search and the range of applications.

It is easy to show, using Mace4, that the module axioms are too weak to imply
the domain axioms. To this end, of course, we must assume that the semilattice
L contains a greatest element 1 in order to define d(x) = x : 1. It is then
also easy to show that the module laws imply that d2(x) = d(x), that images of
domain are closed under addition, but not under multiplication and that domain
elements are not idempotent and do not commute with respect to multiplication.
So, in the finite case, the structure induced by the image of domain defined via
the scalar product is a complete semilattice, hence a lattice, in which meet and
multiplication need not coincide. In the infinite case, the domain algebra induced
is only a semilattice.

8 Boolean Domain Semirings

We now show how the domain algebra becomes a Boolean algebra when an
appropriate antidomain function is added that simulates the effect of Boolean
complementation.

A Boolean domain semiring is a domain semiring extended by a mapping
a : S → S that satisfies the axioms

d(x) + a(x) = 1, (10)
d(x)a(x) = 0. (11)

Lemma 8.1. Let S be a Boolean domain semiring. Then, for all x ∈ S,

(i) d(a(x)) = a(x), whence antidomain elements are domain elements;
(ii) a(x)d(x) = 0, whence a(x) is the Boolean complement of d(x);
(iii) a2(x) = d(x), whence domain can be defined from antidomain.

Proof. (i) We first show that a(x)d(a(x)) = a(x) and that d(x)d(a(x)) = 0.
For the first identity, a(x)d(a(x)) ≤ d(a(x)) holds since a(x) ≤ 1. The converse
inequality holds, since

a(x) = (d(x) + a(x))a(x) = a(x)a(x) = a(x)d(a(x))a(x) ≤ a(x)d(a(x)).

The second identity holds, since, by domain export and (11),

d(x)d(a(x)) = d(d(x)a(x)) = d(0) = 0.

Modal Semirings Revisited 373

Then d(a(x)) = (d(x) + a(x))d(a(x)) = d(x)d(a(x)) + a(x)d(a(x)) = a(x).
(ii) By (i), commutativity of domain elements and (11),

a(x)d(x) = d(a(x))d(x) = d(x)d(a(x)) = d(x)a(x) = 0.

(iii) By (10), (11) and (ii), a(x) is the Boolean complement of d(x), whence
it satisfies double negation. �	

An automated proof with Waldmeister required a few seconds, but the proof
produced by the tool is far too long to be displayed.

The following proposition then follows from the facts of Section 6.

Proposition 8.2. The domain algebra of a Boolean domain semiring is the
maximal Boolean subalgebra of the semiring of subidentities.

Proof. By Theorem 6.5 and Lemma 8.1, the maximal Boolean subalgebra of the
subalgebra of subidentities and the domain algebra of a Boolean domain semiring
must be the same. �	

The above axioms for Boolean domain semirings can still considerably be sim-
plified. First, a2 = d can be used for eliminating the domain function from the
signature and basing the axiomatisation solely on antidomain. Second, the left
annihilator property a(x)x = 0 of antidomain can be used instead of the left
preserver property a2(x)x = x. Experiments with Waldmeister and Mace4 led
us to the following theorem.

Theorem 8.3. A semiring S is a Boolean domain semiring if and only if it can
be extended by an antidomain operation a : S → S that satisfies the axioms

a(x)x = 0, (BD1)

a(xy) + a(xa2(y)) = a(xa2(y)), (BD2)

a2(x) + a(x) = 1. (BD3)

Again, the entire proof has been automated by Waldmeister and Prover9 and
we encourage our readers to verify it using the templates in Appendix A and
Appendix B. Again, also, the equational proof provided by Waldmeister is far
too long and poorly structured to be displayed. An alternative equational proof
can be found in Appendix D.

The first axiom is called annihilation axiom, the second one locality axiom
and the third one tertium non datur axiom.

Lemma 8.4. The axioms (BD1)-(BD3) are irredundant and irreducible.

Proof. Irredundancy of (BD1) can be verified on the Boolean semiring with the
following antidomain function for x = 1.

a 0 1
1 1

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

374 J. Desharnais and G. Struth

Irredundancy of (BD2) can be verified on the following 3-element semiring for
x = y = 2.

a 0 1 2
1 0 0

+ 0 1 2
0 0 1 2
1 1 1 1
2 2 1 2

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 0

Irredundancy of (BD3) can again be verified again on the Boolean semiring with
the antidomain function for x = 0.

a 0 1
0 0

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Irreducibility of the axioms is obvious. �	
The present axiomatisation is certainly much simpler and conceptually more
appealing than the DMS axiomatisation. Most significantly, the previous need to
explicitly specify and embed the Boolean algebra created a significant overhead
for ATP systems. Hence the new axiomatisation is certainly the better choice
for verification and program construction tasks.

9 Expressivity of Boolean Domain Semirings

We now verify that the new axiomatisation of Boolean domain semirings is pre-
cisely as expressive as the DMS axiomatisation. This allows us to reuse all theo-
rems that have previously been derived and proves that the new axiomatisation
is at least equally applicable.

Theorem 9.1. Every theorem of domain semirings in the DMS axiomatisation
is a theorem of Boolean domain semirings and vice versa.

Proof. Let S be a Boolean domain semiring. Then d(S) is a legitimate test
algebra for the DMS axiomatisation (in particular, it is the maximal Boolean
subalgebra of the algebra of subidentities by Proposition 6.5). Also, d is by
definition of type S → d(S). We have already verified that the DMS domain
axioms follow from the new ones via Lemma 4.1 and Theorem 8.3.

Let S be a domain semiring according to the DMS axioms and define, for
each x ∈ S, a(x) = d(x)′. It has already been shown that (BD1) holds [8]. (BD2)
holds by axiom (8). (BD3) holds by definition. �	
So the whole development of modal semirings, modal Kleene algebras and Kleene
modules that has previously been based on the two-sorted DMS approach can
easily be reconstructed and reused.

Here we only mention that Theorem 9.1 also provides some important in-
tuition about the antidomain operation. This is motivated by the fact that in
relation and trace semirings, the antidomain a(x) of an element x, which is the
complement of the domain of x, is a left annihilator of x, that is, a(x)x = 0.
More precisely, a(x) is the greatest subidentity with that property (0 being the
least one). Here, Theorem 9.1 immediately yields the following result.

Modal Semirings Revisited 375

Lemma 9.2. For every Boolean domain semiring,

(i) y ≤ a(x) ⇒ yx = 0, and
(ii) yx = 0 ⇒ y ≤ a(x) if y ≤ 1.

This can readily be checked with Prover9. It is also straightforward to show with
Mace4 that the assumption y ≤ 1 in (ii) cannot be relaxed.

Corollary 9.3. On Boolean domain semirings, antidomain elements are great-
est left annihilators in the set of subidentities.

10 Antidomain

In this section we further consider the notion of antidomain.
First, some natural properties of antidomain arise by implicitly complement-

ing the domain axioms (D1)-(D5). This yields the identities

a(x)x = 0, (12)
a(xy) = a(xd(y)), (13)
a(x) ≤ 1, (14)
a(0) = 1, (15)

a(x + y) = a(x)a(y). (16)

The following fact has been shown by Waldmeister.

Lemma 10.1. The identities (12)-(16) hold in every Boolean domain semiring.

However, Mace4 shows that the identities (12)-(16) and d(a(x)) = a(x) are
strictly weaker than the antidomain axioms.

Lemma 10.2.

(i) Some domain semiring satisfies (12)-(16), but not d(a(x)) = a(x).
(ii) Some domain semiring satisfies (12)-(16), d(a(x)) = a(x), but not (BD3).

(BD3) can, however, be proved if the double negation d(x) = a2(x) (which is
also not implied), is added to the assumptions in (ii).

This weaker notion of antidomain characterised by the identities (12)-(16)
suffices to prove some interesting properties which then hold a fortiori in Boolean
domain semirings. All of them have been checked with Waldmeister.

Lemma 10.3. Let S be a domain semiring. For all x, y ∈ S, the following
properties follow from (12)-(16).

(i) a(x) ≤ a(xy).
(ii) a(x) = a(d(x)).
(iii) a(x)d(x) = 0.
(iv) a(x) ≤ d(a(x)).
(v) a(x)a(x) = a(x).

376 J. Desharnais and G. Struth

(vi) a(x)a(y) = a(y)a(x).
(vii) a(x) + a(y) ≤ a(d(x)y).
(viii) a(1) = 0.
(ix) d(x) = a2(x) ⇒ d(x)a(x) = 0,
(x) x ≤ y ⇒ a(y) ≤ a(x) (antidomain is antitone).

It can further be shown that, in this setting, antidomain elements need not
be the Boolean complements of domain elements. Therefore, the interplay be-
tween domain and an antidomain operation axiomatised by (12)-(16) might be
interesting in its own right and deserves further investigation.

Second, we analyse the relationship between domain semirings with antido-
main defined via greatest left annihilation and Boolean domain semirings.

Lemma 10.4. Some domain semiring satisfies the greatest left annihilator law

y ≤ 1 ⇒ (yx = 0 ⇔ y ≤ a(x))

and d(a(x)) = a(x), but not d(x) = a2(x).

This can easily be shown by Mace4. The following fact has been shown with
Prover9.

Lemma 10.5. Every domain semiring that satisfies the greatest left annihilator
law, d(a(x)) = a(x) and d(x) = a2(x) is a Boolean domain semiring.

However, the resulting alternative axiomatisation of Boolean domain semirings
is not equational and less compact than our standard one.

11 Heyting Domain Semirings

This section further demonstrates the flexibility offered by the new axiomati-
sation of domain semirings by considering domain algebras that are Heyting
algebras. This can easily be enforced by adding the Galois connection

pq ≤ r ⇔ p ≤ q → r, (17)

where p, q, r ∈ d(S), to the axioms of a domain semiring S. As usual, q → r
is called the relative pseudocomplement of r with respect to q and the pseudo-
complement ¬p of p ∈ d(S) is defined as p → 0. Every lattice extended by an
operation of relative pseudocomplementation such all elements satisfy (17) is a
Heyting algebra by definition. Here, the arrow → is a partial function which is
only defined on d(S).

Now, since all finite distributive lattices are Heyting algebras, there is no
finite domain algebra that violates the closure condition d(p → q) = p → q for
p, q ∈ d(S). However, for the infinite case and for completeness we explicitly add
this condition.

A Heyting domain semiring is a domain semiring S extended by an endofunc-
tion → on domain elements that satisfies the Galois connection (17) and the
closure condition d(p → q) = p → q for all p, q ∈ S.

Unfortunately, the partiality of the arrow makes the encoding in Mace4 rather
delicate, since the tool requires that functions be totalised.

Modal Semirings Revisited 377

The following fact is an immediate consequence of standard properties of
relative pseudocomplements [13].

Proposition 11.1. A domain semiring S is a Heyting domain semiring if and
only if all p, q, r ∈ d(S) satisfy the following equations.

p → p = 1, (HD1)
p(p → q) = pq, (HD2)
q(p → q) = q, (HD3)
p → qr = (p → q)(p → r), (HD4)

d(p → q) = p → q. (HD5)

Again, by the results of Section 7, Heyting domain semirings give rise to modal
semirings and modal Kleene algebras defined as Heyting algebras with operators;
intuitionistic variants of dynamic logics and temporal logics can easily be defined
in this setting. This is, however, beyond the scope of this paper.

Alternatively to the development of this section, one might try to replace
q → r, which can be expanded to d(x) → d(y), by a(x) + d(y) in the Galois
connection (17) or the identities axiomatising relative pseudocomplementation in
Proposition 11.1. This would replace the arrow again by an antidomain function
that is implicitly defined through these laws.

So first, let us add, for all elements x, y and z of a domain semiring S, the
Galois connection

d(x)d(y) ≤ d(z) ⇔ d(x) ≤ a(y) + d(z) (18)

to the domain semiring axioms. We also need to add the closure condition
d(a(x)) = a(x), since otherwise, by Mace4, antidomain elements need not be
domain elements. However, these axioms are already too strong.

Proposition 11.2. Every domain semiring that satisfies (18) and d(a(x)) =
a(x) is a Boolean domain semiring.

This has been proved by Prover9; hence the approach based on (18) is no real
alternative.

Second, therefore, we replace arrows by addition and antidomain in the identi-
ties of Proposition 11.1. But again, if we do not add d(a(x)) = a(x), antidomain
elements might not be domain elements, and, if we do, these axioms are too
strong.

Lemma 11.3. Let S be a domain semiring extended by an antidomain function
a : S → S that, for all x, y, z ∈ S, satisfies the identities

a(x) + d(x) = 1,
d(x)(a(x) + d(y)) = d(x)d(y),
d(y)(a(x) + d(y)) = d(y),
a(x) + d(y)d(z) = (a(x) + d(y))(a(x) + d(z)).

hold. Then S is a Boolean domain semiring and d(a(x)) = a(x).

This has been verified with Prover9.

378 J. Desharnais and G. Struth

All results of this section can easily be dualised into facts that hold in co-
Heyting algebras.

12 Application: Termination Analysis

One of the most fundamental tasks in program analysis and construction is rea-
soning about termination and non-termination. Various supporting techniques
have already been developed and applied in the context of the DMS approach.
In particular, both the relational notion of well-foundedness and the modal no-
tion of termination expressed by Löb’s formula have been studied [7]. It has also
been shown that termination analysis through Kleene algebras can effectively
be automated [23], but the modal Kleene algebras based on the DMS axiomati-
sation so far present an unfortunate exception due to the general difficulties of
automating them [11,23].

This section presents the first fully automated correspondence proof for Löb’s
formula. Such modal correspondence theorems generally associate validity of
modal formulas with (relational) properties that hold on Kripke frames. Löb’s
formula, in particular, corresponds to the well-foundedness of transitive Kripke
frames. Our automation result establishes Löb’s formula and related expressions
as automatically verified laws that can safely be used for termination analysis.
Previous attempts to automate a manual proof based on the DMS axiomatisa-
tion [7] did not succeed [11].

It should be no surprise that a statement of comparable complexity cannot
be proved in one full sweep from the set of axioms. We therefore use hypothesis
learning [12]. We start with a basis of axioms from which some potentially dan-
gerous axioms have been discarded. Axioms like x + y = y + x or 1 + xx∗ = x∗,
for instance, easily make the search space explode and distract the prover. Also,
further potentially useful hypotheses often need to be given to the prover as
lemmas. For reasons of consistency, all additional hypotheses should have pre-
viously been verified. By Theorem 9.1, we can freely use the large database of
automatically verified theorems for the DMS axiomatisation [1]. At the begin-
ning of the hypothesis learning phase, the hypotheses given are often too weak
to entail the goal. Then, Mace4 can often find a counterexample indicating that
the hypotheses need further strengthening. So more axioms and lemmas need to
be added until Mace4 does not find a counterexample within reasonable time.
Then Prover9 can be called. If a proof fails within reasonable time limits, an-
other combination can be tried. This procedure is currently being implemented,
but for the result of this section, hypotheses have still manually been learned.
This is much simpler if, as in the present case, a manual proof is already known.

In its usual form, Löb’s formula is written as �(�p → p) → p. To represent
it algebraically, let K be a modal Kleene algebra and let d(K) be the Boolean
domain algebra of K. We first replace � by [x] and then dualise it to forward
diamonds via [x]p = (¬〈x〉¬p), where ¬ now denotes Boolean complementation.
Writing p− q = p · ¬q, Löb’s formula now becomes 〈x〉p ≤ 〈x〉(p − 〈x〉p).

Modal Semirings Revisited 379

In order to reason more concisely, we define Ωx(p) = p − 〈x〉p. In relation
Kleene algebras, it denotes that subset of p from which no further x-transitions
are possible, that is, the final elements of p with respect to x. Therefore, we say
that an element x of K is Löbian [7] if

〈x〉p ≤ 〈x〉Ωx(p) (19)

holds for all p ∈ d(K). Intuitively, x is Löbian if all x-transitions lead into sets
of x-maximal elements.

To set up the correspondence result, we also need to express well-foundedness
and transitivity. We say that x is well-founded [7] if

Ωx(p) = 0 ⇒ p = 0 (20)

holds for all p ∈ d(K). Hence only the empty set has no x-maximal elements. Fi-
nally, x is transitive if xx ≤ x and diamond transitive (d-transitive) if 〈x〉〈x〉p ≤
〈x〉p holds for all p ∈ d(K). Obviously, each transitive element is d-transitive,
but the converse need not hold [7].

It has previously been shown that the following two facts hold on a modal
Kleene algebra.

Theorem 12.1 ([7]). Every Löbian element is well-founded.

With our new axiomatisation, Prover9 could find a proof in a few seconds. The
next theorem establishes the converse direction, hence the correspondence result.
It is the main statement in this section.

Theorem 12.2. Every well-founded d-transitive element is Löbian.

To prove this theorem, the intermediate property 〈x〉p ≤ 〈x+〉Ωx(p), where
x+ = xx∗, has previously been introduced [7]. Here, we base the proof on a
simpler property. We say that an element x is pre-Löbian if

p ≤ 〈x∗〉Ωx(p). (21)

Intuitively, if x is pre-Löbian, then every finite iteration of x will lead to x-
maximal elements. It is obvious, but not important for the proof, that every
pre-Löbian element x satisfies 〈x〉p ≤ 〈x+〉Ωx(p).

We now compare pre-Löbian elements and well-founded elements.

Proposition 12.3. An element x is well-founded if and only if it is pre-Löbian.

Proof. Let x be pre-Löbian and assume that Ωx(p) = 0. Then

p ≤ 〈x∗〉Ωx(p) = 〈x∗〉0 = 0.

Let now x be well-founded. x is pre-Löbian if p − 〈x∗〉Ωx(p) = 0, whence, by
well-foundedness, it suffices to show that

p− 〈x∗〉Ωx(p) ≤ 〈x〉(p − 〈x∗〉Ωx(p)), (22)

380 J. Desharnais and G. Struth

since p− q = 0 ⇔ p ≤ q. In the calculation, we use the fact that

p −Ωx(p) = p− (p− 〈x〉p) = p〈x〉p ≤ 〈x〉p. (23)

We calculate

p− 〈x∗〉Ωx(p) = p− (Ωx(p) + 〈x+〉Ωx(p))

= (p−Ωx(p)) − 〈x+〉Ωx(p)

≤ 〈x〉p − 〈x+〉Ωx(p)
≤ 〈x〉(p − 〈x∗〉Ωx(p)).

The first step uses x∗ = 1 + x+ and 〈1〉p = p. The second step uses the fact
p − (q + r) = (p − q) − r from Boolean algebra. The third step uses (23). The
fourth step uses f(p)− f(q) ≤ f(p− q) which holds for all additive functions on
a Boolean algebra, and x+ = xx∗. �	

Prover9 could show in a few seconds that pre-Löbian elements are well-founded;
it could show in less than 20s that well-founded elements are pre-Löbian. This
last proof requires a substantial amount of hypothesis learning, which of course
makes the running times given less significant.

We can now prove the main theorem of this section, Theorem 12.2.

Proof. (of Theorem 12.2) Let x be well-founded. Then it is pre-Löbian by Propo-
sition 12.3 and satisfies 〈x〉p ≤ 〈x+〉Ωx(p) = 〈x〉Ωx(p), since 〈x〉 is isotone and
x is d-transitive. Whence x is Löbian. �	
For automating this proof, Prover9 could show almost instantaneously that d-
transitivity implies 〈x+〉p ≤ 〈x〉p, when given the additional hypothesis p +
〈x〉q ≤ q ⇒ 〈x∗〉p ≤ q, which holds in modal Kleene algebras by Proposition 7.2.
The converse direction, 〈x〉p ≤ 〈x+〉p, could be proved in less than one second,
assuming only isotonicity of domain as an additional hypothesis. The resulting
identity is needed in the second step of the proof. Theorem 12.2 could then been
proved automatically in about one second, using the fact that well-founded ele-
ments are pre-Löbian, d-transitive elements satisfy 〈x+〉p = 〈x〉p and isotonicity
of domain. To decrease running times, the Kleene star axioms were also dis-
carded. Proofs without hypothesis learning could possibly have been obtained
with more patience.

13 Conclusion

This paper introduced new axiomatisations of domain semirings and Kleene al-
gebras with domain. The approach is more general, simpler, more flexible and
better suited for automated reasoning than the previous DMS axiomatisation.
It is more general because the domain function is one-sorted. It is simpler be-
cause it drastically reduces the number and complexity of axioms needed. It
is more flexible because different kinds of domain algebras can easily be ob-
tained by different extensions of the basic set of axioms. Its superior suitability

Modal Semirings Revisited 381

for automated deduction has been demonstrated on a non-trivial example from
modal correspondence theory and many smaller proofs in the paper. These re-
sults contribute to a new approach to program verification and construction
which combines computational algebras with automated deduction and aims at
light-weight formal methods with heavy-weight automation.

The flexibility gained by the new axiomatisation opens further directions that
remain to be explored.

First, the structure and applications of the distributive lattices and Heyting
algebras with modal operators that arise in the setting of domain semirings and
Kleene algebras with domain should be studied. Distributive lattices and Heyting
algebras with operators have previously found applications in the area of many-
valued logics and description logics. A comprehensive survey can be found in
an article by Sofronie-Stokkermans [21]. Intuitionistic dynamic logics, which are
based on Heyting algebras, have been developed by Degen and Werner [6]. Intu-
itionistic variants of the linear temporal logic LTL with applications in program
verification, in particular for assume-guarantee reasoning and for properties that
relate finite and infinite behaviour, have been studied by Maier [18].

In program analysis, domain elements can model tests in control structures
such as conditionals and loops. The semiring semantics of the conditional
if p then x else y, for instance, is px + p′y. On Boolean domain algebras, tests
can only evaluate to true or to false. In more fine grained models, tests can also
diverge or abort, which violates tertium non datur. Heyting algebras and similar
lattices provide the appropriate semantics for these behaviours.

Second, the transfer of our results to weaker variants of semirings and Kleene
algebras is important. A successor paper [9] shows that our domain axiomatisa-
tions can be reused for demonic refinement algebras [24] and probabilistic Kleene
algebras [19] without any changes. Axiomatisations that are appropriate for mod-
elling enabledness conditions for game-based semantics or basic process algebras
require additional equations. The whole approach therefore encompasses a wide
range of models and applications.

Last but not least, further case studies about programs, processes and other
discrete systems need to be carried out to underpin the applicability of modal
semirings and modal Kleene algebras in automated program verification, pro-
gram construction and beyond.

Acknowledgement. We are most grateful to Peter Jipsen and Viorica Sofronie-
Stokkermans for interesting discussions and references.

References

1. http://www.dcs.shef.ac.uk/∼georg/ka

2. Prover9 and Mace4, http://www.cs.unm.edu/∼mccune/prover9

3. Waldmeister, http://www.waldmeister.org

4. Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. 25. American Mathe-
matical Society (reprint, 1984)

http://www.dcs.shef.ac.uk/~georg/ka
http://www.cs.unm.edu/~mccune/prover9
http://www.waldmeister.org

382 J. Desharnais and G. Struth

5. De Carufel, J.-L., Desharnais, J.: Demonic Algebra with Domain. In: Schmidt, R.A.
(ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 120–134. Springer, Heidelberg
(2006)

6. Degen, W., Werner, J.M.: Towards intuitionistic dynamic logic. In: Proceedings of
Studia Logica 2006. Logic and Logical Philosophy, vol. 15, pp. 305–324. Nicolaus
Copernicus University Press (2007)

7. Desharnais, J., Möller, B., Struth, G.: Termination in modal Kleene algebra. In:
Lévy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) IFIP TCS 2004, pp. 647–660. Kluwer,
Dordrecht (2004); Revised version: Algebraic Notions of Termination. Technical
Report 2006-23, Institut für Informatik, Universität Augsburg (2006)

8. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.
Computational Logic 7(4), 798–833 (2006)

9. Desharnais, J., Struth, G.: Enabledness conditions for action systems, probabilis-
tic systems, and processes. Technical Report CS-06-08, Department of Computer
Science, University of Sheffield (2008)

10. Ésik, Z., Kuich, W.: A Semiring-Semimodule Generalization of ω-Context-Free
Languages. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds.) Theory
is Forever. LNCS, vol. 3113, pp. 68–80. Springer, Heidelberg (2004)

11. Höfner, P., Struth, G.: Automated Reasoning in Kleene Algebra. In: Pfenning, F.
(ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg
(2007)

12. Höfner, P., Struth, G.: Can refinement be automated? ENTCS 201, 197–222 (2008)
13. Johnstone, P.J.: Stone Spaces. Cambridge University Press, Cambridge (1982)
14. Jónsson, B., Tarski, A.: Boolean algebras with operators, Part I. American Journal

of Mathematics 73, 891–939 (1951)
15. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular

events. Information and Computation 110(2), 366–390 (1994)
16. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),

427–443 (1997)
17. Leiß, H.: Kleene modules and linear languages. Journal of Logic and Algebraic

Programming 66(2), 185–194 (2006)
18. Maier, P.: Intuitionistic LTL and a New Characterization of Safety and Liveness.

In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 295–309.
Springer, Heidelberg (2004)

19. McIver, A.K., Cohen, E., Morgan, C.C.: Using Probabilistic Kleene Algebra
for Protocol Verification. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS,
vol. 4136, pp. 296–310. Springer, Heidelberg (2006)

20. Möller, B., Struth, G.: Algebras of modal operators and partial correctness. The-
oretical Computer Science 351(2), 221–239 (2006)

21. Sofronie-Stokkermans, V.: Automated theorem proving by resolution in non-
classical logics. Annals of Mathematics and Artificial Intelligence 49, 221–252
(2007)

22. Solin, K., von Wright, J.: Refinement Algebra with Operators for Enabledness
and Termination. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 397–415.
Springer, Heidelberg (2006)

23. Struth, G.: Reasoning automatically about termination and refinement. In:
S. Ranise, editor, 6th International Workshop on First-Order Theorem Proving,
Technical Report ULCS-07-018, Department of Computer Science, pp. 36–51. Uni-
versity of Liverpool (2007)

24. von Wright, J.: Towards a refinement algebra. Science of Computer Program-
ming 51(1-2), 23–45 (2004)

Modal Semirings Revisited 383

A Axioms for Prover9/Mace4

op(500, infix, "+"). % addition

op(490, infix, ";"). % multiplication

formulas(sos).

% semiring axioms

x+y=y+x. % additive monoid

x+0=x.

x+(y+z)=(x+y)+z.

x;1=x. % multiplicative monoid

1;x=x.

x;(y;z)=(x;y);z.

0;x=0. % annihilation

x;0=0.

x;(y+z)=x;y+x;z. % distributivity

(x+y);z=x;z+y;z.

%x+x=x. % idempotency

% domain axioms

x+d(x);x=d(x);x.

d(x;y)=d(x;d(y)).

d(x)+1=1.

d(0)=0.

d(x+y)=d(x)+d(y).

end_of_list.

formulas(goals).

%add lemma to be proved/refuted

end_of_list.

B Axioms for Waldmeister

NAME dsemiring

MODE PROOF

SORTS S

SIGNATURE +: S S -> S

0: -> S

*: S S -> S

1: -> S

d: S -> S

c1,c2,sk: -> S

384 J. Desharnais and G. Struth

ORDERING KBO

+=1, 0=1, *=1, 1=1, c1=1, c2=1, sk=1, d=1

* > + > d > 0 > 1 > c1 > c2 > sk

VARIABLES x,y,z: S

EQUATIONS % 1. semiring axioms

+(+(x,y),z) = +(x,+(y,z))

+(x,y) = +(y,x)

+(x,0) = x

((x,y),z) = *(x,*(y,z))

*(x,0) = 0

*(0,x) = 0

*(x,1) = x

*(1,x) = x

(x,+(y,z)) = +((x,y),*(x,z))

(+(x,y),z) = +((x,z),*(y,z))

% 2. domain axioms

+(x,*(d(x),x)) = *(d(x),x)

d(*(x,y)) = d(*(x,d(y)))

+(d(x),1) = 1

d(0) = 0

d(+(x,y)) = +(d(x),d(y))

CONCLUSION % Equations are implicitly existentially quantified.

% Universally quantified identities must be skolemised.

% add lemma to be proved

C Proof of Proposition 2.1 by Waldmeister

The following axioms imply the following theorem:

Axiom 1: +(x1, x2) = +(x2, x1)
Axiom 2: ∗(x1, 1) = x1
Axiom 3: +(x1, ∗(d(x1), x1)) = ∗(d(x1), x1)
Axiom 4: +(d(x1), 1) = 1
Theorem 1: +(1, 1) = 1

Modal Semirings Revisited 385

Proof:

Lemma 1: d(1) = +(1, d(1))

d(1)
= by Axiom 2 RL

∗(d(1), 1)
= by Axiom 3 RL

+(1, ∗(d(1), 1))
= by Axiom 2 LR

+(1, d(1))

Lemma 2: +(1, d(x1)) = 1

+(1, d(x1))
= by Axiom 1 RL

+(d(x1), 1)
= by Axiom 4 LR

1

Lemma 3: 1 = +(1, 1)

1
= by Lemma 2 RL

+(1, d(1))
= by Lemma 1 LR

+(1,+(1, d(1)))
= by Lemma 2 LR

+(1, 1)

Theorem 1: +(1, 1) = 1

+(1, 1)
= by Lemma 3 RL

1

D Proof of Theorem 8.3

Proving this theorem automatically with Prover9 or Waldmeister requires only a
few minutes. But the proof output of Prover9 is not intended to be readable for
humans and the output of Waldmeister for the more involved proofs is far too
detailed and badly structured to be revealing. We therefore provide alternative
proofs. We set d(x) = a2(x).

386 J. Desharnais and G. Struth

We first show that the axioms (BD1)-(BD3) hold in all domain semirings that
satisfy (10) and (11). For (BD1), we calculate

a(x)x ≤ a(x)d(x)x = 0x = 0,

using (D1) in the first and Lemma 8.1(ii) in the second step. For (BD2) we first
observe that

a(d(x)) = a(a(a(x))) = d(a(x)) = a(x)

by Lemma 8.1(iii) and (i). Then (BD2) follows immediately from (D2). Finally,
(BD3) is an immediate consequence of Lemma 8.1(iii).

The more difficult part is to show that (D1)-(D5), (10) and (11) follow from
(BD1)-(BD3). In particular the proofs of (D2) and (D5) are rather complex and
require the development of several auxiliary facts.

(D1), (10) and (11), however, are immediate. For the equational version

x = d(x)x (24)

of (D1), we use (BD1) and (BD3) to calculate

x = (a2(x) + a(x))x = a2(x)x + a(x)x = a2(x)x + 0 = a2(x)x.

(10) follows immediately from (BD3). (11) follows by a2(x)a(x) = 0 from (BD1).
We now note that a(1) = 0 follows immediately from (BD1) and, by (BD3)

this implies that a(0) = 1. Consequently, d(0) = 0, which is (D4), and d(1) = 1.
This implies that Boolean domain semirings are idempotent since, by (BD2),

1 + 1 = a(x0) + a(xd(0)) = a(xd(0)) = 1 and thus (D3) follows from (BD3).
Another consequence of idempotency and (BD3) is a(x) ≤ 1, a property we will
use freely from hereon.

It now remains to verify (D2) and (D5). We continue by proving some inter-
mediate lemmas. The first one is

a(x) = 1 ⇒ x = 0, (25)

which is direct by (BD1): a(x) = 1 ⇒ a(x)x = x ⇒ x = 0. The second one is

a(x)y = 0 ⇔ a(x) ≤ a(y). (26)

We prove the implication ⇒ in two steps. Firstly, by a(0) = 1, (BD2) and (25),

a(x)y = 0 ⇒ a(a(x)y) = 1 ⇒ a(a(x)d(y)) = 1 ⇒ a(x)d(y) = 0.

Secondly, using (BD3) and the last equality of the previous line, we get

a(x) = a(x)(a(y) + d(y)) = a(x)a(y) + a(x)d(y) = a(x)a(y) ≤ a(y).

The other implication ⇐ follows by isotonicity and (BD1): a(x)y ≤ a(y)y = 0.
We now have enough to prove (D2). By (BD1), a(x)xy = 0y = 0. Thus, by

(26), a(x) ≤ a(xy). Using this with x := xd(y) yields a(xd(y)) ≤ a(xd(y)y). By
(24), this is just a(xd(y)) ≤ a(xy), and combining it with (BD2) gives (D2).

Modal Semirings Revisited 387

Before proving (D5), we again need two intermediate results. The first one is
that antidomain is antitone, which implies that domain is isotone. By (BD1),
a(x + y)x ≤ a(x + y)(x + y) = 0, so that a(x + y) ≤ a(x) by (26). Since
x ≤ y ⇔ x + y = y, this is equivalent to antitonicity of a. The second result is

a(a(x)y) ≤ d(x) + a(y). (27)

We calculate

a(a(x)y) = a(a(x)y)d(y) + a(a(x)y)a(y)
≤ a(a(x)y)a(x)d(y) + a(a(x)y)d(x)d(y) + a(y)
≤ a(a(x)d(y))a(x)d(y) + d(x) + a(y)
= 0 + d(x) + a(y)
= d(x) + a(y).

The first and second steps use (BD3). The third uses (BD2) and the fourth
(BD1).

We can now prove (D5), that is, d(x + y) = d(x) + d(y). Since d(x) + d(y) ≤
d(x+ y) holds by isotonicity, we only need to prove d(x+ y) ≤ d(x)+ d(y). Note
that a(x)a(y)(x + y) = 0, because, by (BD1),

a(x)a(y)(x + y) = a(x)a(y)x + a(x)a(y)y ≤ a(x)x + a(y)y = 0.

But, by (26), (BD2) and again (26),

a(x)a(y)(x + y) = 0 ⇒ a(x) ≤ a(a(y)(x + y))
⇒ a(x) ≤ a(a(y)d(x + y))
⇒ a(x)a(y)d(x + y) = 0.

Hence, using (BD1) in the first step and a(x)a(y)d(x + y) = 0 in the third,

a(x)a(y) = a(x)a(y)(a(x + y) + d(x + y))
= a(x)a(y)a(x + y) + a(x)a(y)d(x + y)
= a(x)a(y)a(x + y)
≤ a(x + y).

This result with antitonicity of a and (27) finally yield the missing part of (D5):

d(x + y) ≤ a(a(x)a(y)) ≤ d(x) + d(y).

This tedious development nicely demonstrates the extraordinary power of
modern ATP systems, which are able to perform the same proof in a couple of
minutes and without any typographical errors.

Asymptotic Improvement of

Computations over Free Monads

Janis Voigtländer

Institut für Theoretische Informatik
Technische Universität Dresden

01062 Dresden, Germany
janis.voigtlaender@acm.org

Abstract. We present a low-effort program transformation to improve
the efficiency of computations over free monads in Haskell. The develop-
ment is calculational and carried out in a generic setting, thus applying
to a variety of datatypes. An important aspect of our approach is the
utilisation of type class mechanisms to make the transformation as trans-
parent as possible, requiring no restructuring of code at all. There is also
no extra support necessary from the compiler (apart from an up-to-date
type checker). Despite this simplicity of use, our technique is able to
achieve true asymptotic runtime improvements. We demonstrate this by
examples for which the complexity is reduced from quadratic to linear.

1 Introduction

Monads [1] have become everyday structures for Haskell programmers to work
with. Not only do monads allow to safely encapsulate impure features of the
programming language [2,3], but they are also used in pure code to separate
concerns and provide modular design [4,5]. But, as usual in software construc-
tion, modularity comes at a cost, typically with respect to program efficiency.
We propose a method to improve the efficiency of code over a large variety of
monads. A distinctive feature is that this method is non-intrusive: it preserves
the appearance of code, with the obvious software engineering benefits.

Since our approach is best introduced by considering a concrete example,
illustrating both the problem we address and our key ideas, that is exactly what
we do in the next section. Thereafter, Sect. 3 develops the approach formally,
embracing a generic programming style. Further example material is provided in
Sects. 4 and 5, where the latter emphasises comparison to related work, before
Sect. 6 concludes.

The code that we present throughout requires some extensions over the
Haskell 98 standard, in particular rank-2 polymorphism and multi-parameter
type constructor classes. It was tested against both GHC (version 6.6, flag
-fglasgow-exts) and Hugs (version of March 2005, flag -98), and is available
online at http://wwwtcs.inf.tu-dresden.de/∼voigt/Improve.lhs.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 388–403, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Asymptotic Improvement of Computations over Free Monads 389

2 A Specific Example

We first study a simple and somewhat artificial example of the kind of trans-
formation we want to achieve. This prepares the ground for the more generic
development in the next section, and more practical examples later on.

Consider the following datatype of binary, leaf-labelled trees:

data TREE α = LEAF α NODE (TREE α) (TREE α)

An important operation on such trees is substituting leaves by trees depending
on their labels, defined by structural induction as follows:

subst :: TREE α → (α → TREE β) → TREE β
subst (LEAF a) k = k a
subst (NODE t1 t2) k = NODE (subst t1 k) (subst t2 k)

Note that the type of labels might change during such a substitution.
It is well-known that trees with substitution form a monad. That is,

instance MONAD TREE where
return = LEAF

(>>=) = subst

defines an instance of the following type constructor class:

class MONAD μ where
return :: α → μ α
(>>=) :: μ α → (α → μ β) → μ β

where the following three laws hold:

(return a >>= k) = k a (1)
(m >>= return) = m (2)

((m >>= k) >>= h) = (m >>= (λa → k a >>= h)) (3)

An example use of the monad instance given above is the following program
generating trees like those in Fig. 1:

fullTree :: INT → TREE INT

fullTree 1 = LEAF 1
fullTree (n+1) =

do
i ← fullTree n
NODE (LEAF (n−i)) (LEAF (i+1))

Note that the second equation is equivalent to

fullTree (n+1) = fullTree n >>= λi → NODE (LEAF (n−i)) (LEAF (i+1))

and thus to

fullTree (n+1) = subst (fullTree n) (λi → NODE (LEAF (n−i)) (LEAF (i+1)))

390 J. Voigtländer

1 0 2 2 1 0 3 1 3 2 2 3 1 0 4

Fig. 1. fullTree 1, fullTree 2, fullTree 3, fullTree 4

This means that to create, for example, the tree fullTree 4, the following expres-
sion is eventually evaluated:

subst (subst (subst (LEAF 1) · · ·) · · ·) · · · (4)

The nested calls to subst mean that prefix fragments of the overall tree structure
will be traversed again and again.

In general, the asymptotic time complexity of computing fullTree n is of the
order 2n, which is no surprise as the size of the finally computed output is of
that order as well. But a more interesting effect occurs when that output is only
partially demanded, such as by the following function:

zigzag :: TREE INT → INT

zigzag = zig
where

zig (LEAF n) = n
zig (NODE t1 t2) = zag t1
zag (LEAF n) = n
zag (NODE t1 t2) = zig t2

Now the expression
zigzag (fullTree n) (5)

has quadratic runtime in n despite exploring only a single tree path of length
linear in n. To see where the quadratic runtime comes from, consider the fol-
lowing partial reduction sequence for zigzag (fullTree 4), starting from (4) and
having reordered a bit the lazy evaluation steps by first, and only, recording
those involving subst:

zigzag (subst (subst (subst (LEAF 1) · · ·) · · ·) · · ·)
⇒ zigzag (subst (subst (NODE (LEAF 0) (LEAF 2)) · · ·) · · ·)
⇒2 zigzag (subst (NODE (NODE (LEAF 2) (LEAF 1)) (subst (LEAF 2) · · ·)) · · ·)
⇒3 zigzag (NODE (NODE (subst (LEAF 2) · · ·) (NODE (LEAF 2) (LEAF 2))) · · ·)
⇒∗ · · ·

The challenge is to bring the overall runtime for (5) down to linear, but to do
so without changing the structure of the code for fullTree.

The situation here is similar to that in the well-known definition of näıve list
reversal, where left-associatively nested appends cause quadratic runtime. And
in fact there is a similar cure. We can create an alternative representation of
trees somewhat akin to the “novel representation of lists” of Hughes [6], also

Asymptotic Improvement of Computations over Free Monads 391

known as difference lists. Just as the latter abstract over the end of a list, we
abstract over the leaves of a tree as follows:

newtype CTREE α = CTREE (∀β . (α → TREE β) → TREE β)

The connection between ordinary trees and their alternative representation is
established by the following two functions:

rep :: TREE α → CTREE α
rep t = CTREE (subst t)

abs :: CTREE α → TREE α
abs (CTREE p) = p LEAF

We easily have abs ◦ rep = id. Moreover, the representation type forms itself a
monad as follows:

instance MONAD CTREE where
return a = CTREE (λh → h a)
CTREE p >>= k = CTREE (λh → p (λa → case k a of CTREE q → q h))

But to use it as a drop-in replacement for TREE in the definition of fullTree, the
type constructor CTREE need not only support the monad operations, but also
the actual construction of (representations of) non-leaf trees. To capture this
requirement, we introduce the following type constructor class:

class MONAD μ ⇒ TREELIKE μ where
node :: μ α → μ α → μ α

For ordinary trees, the instance definition is trivial:

instance TREELIKE TREE where
node = NODE

For the alternative representation, we have to take care to propagate the
abstracted-over leaf replacement function appropriately. This is achieved as
follows:

instance TREELIKE CTREE where
node (CTREE p1) (CTREE p2) = CTREE (λh → NODE (p1 h) (p2 h))

For convenience, we also define an abstract version of the LEAF constructor.

leaf :: TREELIKE μ ⇒ α → μ α
leaf = return

Now, we can easily give a variant of fullTree that is independent of the choice of
trees to work with.

fullTree′ :: TREELIKE μ ⇒ INT → μ INT

fullTree′ 1 = leaf 1
fullTree′ (n+1) =

do
i ← fullTree′ n
node (leaf (n−i)) (leaf (i+1))

392 J. Voigtländer

Note that the code structure is exactly as before. Moreover,

zigzag (fullTree′ n) (6)

still needs quadratic runtime. Indeed, GHC 6.6 with optimisation settings pro-
duces exactly the same compiled code for (5) and (6). Nothing magical has
happened yet: any overhead related to the type class abstraction in (6) is simply
optimised away. So there appears to be neither a gain from, nor a penalty for
switching from fullTree to fullTree′. Why the (however small) effort, then?

The point is that we can now switch to an asymptotically more efficient version
with almost zero effort. It is as simple as writing

zigzag (improve (fullTree′ n)) , (7)

where all the “magic” lies with the following function:

improve :: (∀μ. TREELIKE μ ⇒ μ α) → TREE α
improve m = abs m

In contrast to (5) and (6), evaluation of (7) has runtime only linear in n.
The rationale for the type of improve, as well as the correctness of the above

transformation in the sense that (7) always computes the same output as (6),
will be discussed in the next section, all for a more general setting than the
specific type of trees and the example considered here.

We end the current section by pointing out that (7) is compiled (again by
GHC 6.6) to code corresponding to

zigzag (fullTree′′ n LEAF) ,

where:

fullTree′′ :: INT → (INT → TREE β) → TREE β
fullTree′′ 1 h = h 1
fullTree′′ (n+1) h = fullTree′′ n (λi → NODE (h (n−i)) (h (i+1)))

This should make apparent why the runtime is now only of linear complexity.

3 The Generic Setting

To deal with a variety of different datatypes in one stroke, we use the by now
folklore approach of two-level types [7,8].

A functor is an instance of the following type constructor class:

class FUNCTOR φ where
fmap :: (α → β) → φ α → φ β

satisfying the following two laws:

fmap id t = t (8)
fmap f (fmap g t) = fmap (f ◦ g) t (9)

Asymptotic Improvement of Computations over Free Monads 393

Given such an instance, the corresponding free monad (capturing terms contain-
ing variables, along with a substitution operation) is defined as follows:

data FREE φ α = RETURN α WRAP (φ (FREE φ α))

instance FUNCTOR φ ⇒ MONAD (FREE φ) where
return = RETURN

RETURN a >>= k = k a
WRAP t >>= k = WRAP (fmap (>>= k) t)

Of course, we want to be sure that the laws (1)–(3) hold for the instance just
defined. While law (1) is obvious from the definitions, the other two require
fixpoint induction and laws (8) and (9).

As an example, consider the following functor:

data F β = N β β

instance FUNCTOR F where
fmap h (N x y) = N (h x) (h y)

Then FREE F corresponds to TREE from Sect. 2, and the monad instances agree.
Back to the generic setting. What was abstraction over leaves in the previous

section, now becomes abstraction over the return method of a monad. This
abstraction is actually possible for arbitrary, rather than only for free monads.
The straight-forward definitions are as follows:

newtype C μ α = C (∀β . (α → μ β) → μ β)

rep :: MONAD μ ⇒ μ α → C μ α
rep m = C (m >>=)

abs :: MONAD μ ⇒ C μ α → μ α
abs (C p) = p return

instance MONAD (C μ) where
return a = C (λh → h a)
C p >>= k = C (λh → p (λa → case k a of C q → q h))

Even though the monad laws do hold for the latter instance, we will not need
this fact later on. What we will need, however, is the abs ◦ rep = id property:

abs (rep m)
= by definition of rep

abs (C (m >>=))
= by definition of abs

m >>= return
= by law (2) for the instance MONAD μ

m

(10)

394 J. Voigtländer

We also need to establish connections between the methods of the instances
MONAD μ and MONAD (C μ). For return, we have:

rep (return a)
= by definition of rep

C (return a >>=)
= by definition of sectioning

C (λh → return a >>= h)
= by law (1) for the instance MONAD μ

C (λh → h a)
= by definition of return for the instance MONAD (C μ)

return a

(11)

Note that the occurrences of return in the first few lines refer to the instance
MONAD μ, whereas the return in the last line lives in the instance MONAD (C μ).
For the other method of the MONAD class, we get the following distribution-like
property:

rep (m >>= k)
= by definition of rep

C ((m >>= k) >>=)
= by definition of sectioning

C (λh → (m >>= k) >>= h)
= by law (3) for the instance MONAD μ

C (λh → m >>= (λa → k a >>= h))
= by case-of-known

C (λh → m >>= (λa → case C (k a >>=) of C q → q h))
= by definition of rep

C (λh → m >>= (λa → case rep (k a) of C q → q h))
= by definition of >>= for the instance MONAD (C μ)

C (m >>=) >>= (rep ◦ k)
= by definition of rep

rep m >>= (rep ◦ k)

(12)

Next, we need support for expressing the construction of non-return values in
both monads FREE φ and C (FREE φ). To this end, we introduce the following
multi-parameter type constructor class:

class (FUNCTOR φ, MONAD μ) ⇒ FREELIKE φ μ where
wrap :: φ (μ α) → μ α

As in Sect. 2, one instance definition is trivial:

instance FUNCTOR φ ⇒ FREELIKE φ (FREE φ) where
wrap = WRAP

The other one takes a bit more thinking, but will ultimately be justified by the
succeeding calculations.

Asymptotic Improvement of Computations over Free Monads 395

instance FREELIKE φ μ ⇒ FREELIKE φ (C μ) where
wrap t = C (λh → wrap (fmap (λ(C p) → p h) t))

Similarly as for the monad methods before, we would like to prove distribution of
rep over wrap, thus establishing a connection between instances FREELIKE φ μ and
FREELIKE φ (C μ). More specifically, we expect rep (wrap t) = wrap (fmap rep t).
However, a straightforward calculation from both sides gets stuck somewhere in
the middle as follows:

rep (wrap t)
= by definition of rep

C (wrap t >>=)
= by definition of sectioning

C (λh → wrap t >>= h)
= by ???

C (λh → wrap (fmap (>>= h) t))
= by definition of sectioning

C (λh → wrap (fmap (λm → m >>= h) t))
= by case-of-known

C (λh → wrap (fmap (λm → (λ(C p) → p h) (C (m >>=))) t))
= by definition of rep

C (λh → wrap (fmap (λm → (λ(C p) → p h) (rep m)) t))
= by law (9) for the instance FUNCTOR φ

C (λh → wrap (fmap (λ(C p) → p h) (fmap rep t)))
= by definition of wrap for the instance FREELIKE φ (C μ)

wrap (fmap rep t)

On reflection, this is not so surprising, since it was to be expected that at some
point we really need to consider the more specific FREE φ versus C (FREE φ)
rather than the more general (and thus less informative) μ versus C μ as done
for (10)–(12). Here now this point has come, and indeed we can reason for t of
type φ (FREE φ α) as follows:

rep (wrap t)
= as above

C (λh → wrap t >>= h)
= by definition of wrap for the instance FREELIKE φ (FREE φ)

C (λh → WRAP t >>= h)
= by definition of >>= for the instance MONAD (FREE φ)

C (λh → WRAP (fmap (>>= h) t))
= by definition of wrap for the instance FREELIKE φ (FREE φ)

C (λh → wrap (fmap (>>= h) t))
= as above

wrap (fmap rep t)

(13)

396 J. Voigtländer

Our “magic function” is again the same as abs up to typing:

improve :: FUNCTOR φ ⇒ (∀μ. FREELIKE φ μ ⇒ μ α) → FREE φ α
improve m = abs m

In fact, comparing their types should be instructive. Recall that

abs :: MONAD μ ⇒ C μ α → μ α .

This type is different from that of improve in two ways. The first, and less essen-
tial, one is that abs is typed with respect to an arbitrary monad μ, whereas ulti-
mately we want to consider the more specific case of monads of the form FREE φ.
Of course, by simple specialisation, abs admits the following type as well:

abs :: FUNCTOR φ ⇒ C (FREE φ) α → FREE φ α .

But, more essentially, the input type of improve is ∀μ. FREELIKE φ μ ⇒ μ α,
which puts stronger requirements on the argument m than just C (FREE φ) α
would do. And that is what finally enables us to establish the correctness of
adding improve at will wherever the type checker allows doing so. The reasoning,
in brief, is as follows:

improve m
= by definition of improve

abs m
= by (11)–(13)

abs (rep m)
= by (10)

m

To understand in more detail what is going on here, it is particularly helpful to
examine the type changes that m undergoes in the above calculation.

1. In the first line, m has the type ∀μ. FREELIKE φ μ ⇒ μ α (for some fixed
instance FUNCTOR φ and some fixed α), because that is what the type of
improve forces it to be.

2. In the second line, m has the type C (FREE φ) α, because that is what the
type of abs forces it to be, taking into account that the overall expres-
sion in each line must have the type FREE φ α. When going from left to
right in the definition of improve, the type of m is thus specialised from
∀μ. FREELIKE φ μ ⇒ μ α to C (FREE φ) α. This is possible, and done silently
(by the type checker), since an instance FREELIKE φ (C (FREE φ)) follows
from the existing instance declarations FUNCTOR φ ⇒ FREELIKE φ (FREE φ)
and FREELIKE φ μ ⇒ FREELIKE φ (C μ).

3. In the third line, m has the type FREE φ α, because that is what the types
of abs and rep force it to be. That type is an alternative specialisation of the
original type ∀μ. FREELIKE φ μ ⇒ μ α of m, possible due to the instance dec-
laration FUNCTOR φ ⇒ FREELIKE φ (FREE φ). The key observation about the
second versus third lines is that even though m has been type-specialised in
two different ways, the definition (or value) of m is still the same as in the first

Asymptotic Improvement of Computations over Free Monads 397

line. And since there it has the very general type ∀μ. FREELIKE φ μ ⇒ μ α,
we know that m cannot be built from any μ-related operations for any spe-
cific μ. Rather, its μ-structure must be made up from the overloaded oper-
ations return, >>=, and wrap only. And since rep distributes over all of these
by (11)–(13), we have

rep (m :: FREE φ α) = (m :: C (FREE φ) α)

A more formal proof would require techniques akin to those used for deriving
so-called free theorems [9,10].

4. In the fourth line, m still has the type FREE φ α.

The essence of all the above is that improve m can be used wherever a value
of type FREE φ α is expected, but that m itself must (also) have the more gen-
eral type ∀μ. FREELIKE φ μ ⇒ μ α, and that then improve m is equivalent to
just m, appropriately type-specialised. Or, put differently, wherever we have a
value of type FREE φ α which is constructed in a sufficiently abstract way (via
the overloaded operators return, >>=, and wrap) that it could also be given
the type ∀μ. FREELIKE φ μ ⇒ μ α, we can apply improve to that value without
changing program semantics. Yet another perspective is that improve is simply
a type conversion function that can replace an otherwise anyway, but silently,
performed type specialisation and has the nice side effect of potentially improv-
ing the asymptotic runtime of a program (when left-associatively arranged calls
to >>= cause quadratic overhead).

Having studied the generic setting, we can once more return to the specific
example from Sect. 2. As already mentioned, the functor F given earlier in the
current section yields FREE F corresponding to TREE. Moreover, in light of the
further general definitions from the current section, F and its functor instance
definition also give us all the remaining ingredients of our improvement approach
for binary, leaf-labelled trees. In particular, the type constructor C (FREE F)
corresponds to CTREE, and FREELIKE F takes the role of TREELIKE. There is no need
to provide any further definitions, since all the type constructor class instances
that are needed are automatically obtained from the mentioned single one, and
our generic definition of improve is similarly covering the earlier more specific
one. In the next sections we will benefit from this genericity repeatedly.

4 A More Realistic Example

Swierstra and Altenkirch [11] build a pure model of Haskell’s teletype IO, with
the aim of enabling equational reasoning and automated testing. The monad
they use for this corresponds to FREE F_IO for the following functor:

data F_IO β = GETCHAR (CHAR → β) PUTCHAR CHAR β

instance FUNCTOR F_IO where
fmap h (GETCHAR f) = GETCHAR (h ◦ f)
fmap h (PUTCHAR c x) = PUTCHAR c (h x)

398 J. Voigtländer

They then provide replacements of Haskell’s getChar/putChar functions that pro-
duce pure values of this modelling type rather than doing actual IO. We can do
so as well, catching up to List. 1 of [11].

getChar :: FREELIKE F_IO μ ⇒ μ CHAR

getChar = wrap (GETCHAR return)

putChar :: FREELIKE F_IO μ ⇒ CHAR → μ ()
putChar c = wrap (PUTCHAR c (return ()))

The only differences of note are the more general return types of our versions
of getChar and putChar. Just as the original function versions, our versions can
be used to specify any interaction. For example, we can express the following
computation:

revEcho :: FREELIKE F_IO μ ⇒ μ ()
revEcho =

do
c ← getChar
when (c /= ‘ ’) $

do
revEcho
putChar c

Run against the standard Haskell definitions of getChar and putChar (and obvi-
ously, then, with the different type signature revEcho :: IO ()), the above code
reads characters from the input until a space is encountered, after which the
sequence just read is written to the output in reverse order.

The point of Swierstra and Altenkirch’s approach is to run the very same
code against the pure model instead. Computing its (or similar functions’) be-
haviour is done by a semantics they provide in their List. 2 and which is virtually
replicated here (the only differences being two occurrences of WRAP):

data OUTPUT α = READ (OUTPUT α) PRINT CHAR (OUTPUT α) FINISH α

data STREAM α = CONS {hd :: α, tl :: STREAM α}

run :: FREE F_IO α → STREAM CHAR → OUTPUT α
run (RETURN a) cs = FINISH a
run (WRAP (GETCHAR f)) cs = READ (run (f (hd cs)) (tl cs))
run (WRAP (PUTCHAR c p)) cs = PRINT c (run p cs)

Simulating a run of revEcho on some input stream, or indeed using QuickCheck
[12] to analyse many such runs, takes the following form:

run revEcho stream .

It turns out that this requires runtime quadratic in the number of characters in
stream before the first occurrence of a space. This holds both with our definitions

Asymptotic Improvement of Computations over Free Monads 399

and with those of [11]. So these two sets of definitions are not only equivalent
with respect to the pure models and associated semantics they provide, but also
in terms of efficiency. The neat twist in our setting, however, is that we can
simply write

run (improve revEcho) stream (14)

to reduce the complexity from quadratic to linear. The manner in which the
quadraticity vanishes here is actually very similar to that observed for the “zigzag
after fullTree” example at the end of Sect. 2, so we refrain from giving the code
to which (14) is eventually compiled.

It is worth pointing out that the nicely general type of revEcho that makes all
this possible could be automatically inferred from the function body if it were
not for Haskell’s dreaded monomorphism restriction. In fact, in GHC 6.6 we have
the option of suppressing that restriction, in which case we need not provide the
signature revEcho :: FREELIKE F_IO μ ⇒ μ (), and thus need not even be aware
of whether we program against the pure teletype IO model in the incarnation
of [11], our “magically improvable” variant of it, or indeed the standard Haskell
IO monad.

5 Related Work

In this section we relate our work to two other strands of recent work that use
two-level types in connection with monadic datatypes.

5.1 Structuring Haskell IO by Combining Free Monads

We have already mentioned the work by Swierstra and Altenkirch [11] on build-
ing pure models of (parts of) the Haskell IO monad. Apart from teletype IO,
they also consider mutable state and concurrency. In both cases, the modelling
type is a free monad and thus amenable to our improvement method. In a recent
pearl [13, Sect. 7], Swierstra takes the modelling approach a step further. The
free monad structure is used to combine models for different aspects of Haskell
IO, and the models are not just used for reasoning and testing in a pure setting,
but also for actual effectful execution. The idea is that the types derived for
terms over the pure models are informative about just which kinds of effects
can occur during eventual execution. Clearly, there is an interpretative overhead
here, and somewhat startlingly this even affects the asymptotic complexity of
programs.

For example, for teletype IO the required execution function looks as follows,
referring to the original, effectful versions of getChar and putChar:

exec :: FREE F_IO α → IO α
exec (RETURN a) = return a
exec (WRAP (GETCHAR f)) = PRELUDE.getChar >>= (exec ◦ f)
exec (WRAP (PUTCHAR c p)) = PRELUDE.putChar c >> exec p

400 J. Voigtländer

Now, main = exec revEcho unfortunately has quadratic runtime behaviour, very
evident already via simple experiments with piping to the compiled version a
text file with a few thousand initial non-spaces. This is in stark contrast to run-
ning revEcho (with alternative type signature revEcho :: IO ()) directly against
the IO monad. Quite nicely, simply using main = exec (improve revEcho) recovers
the linear behaviour as well. So thanks to our improvement method for free mon-
ads, which is orthogonal to Swierstra’s “combination by coproducts” approach,
we can have it both: pure modelling with informative types and efficient execu-
tion without (too big) interpretative overhead. Of course, our improvement also
works for other cases of Swierstra’s approach, such as his calculator example in
Sect. 6. Up to compatibility with Agda’s dependent type system, it should also
apply to the models Swierstra and Altenkirch provide in [14] for computation
on (distributed) arrays, and should reap the same benefits there.

5.2 Short Cut Fusion for Monadic Computations

Ghani et al. [15,16] observe that the augment combinator known from work on
short cut fusion [17,18] has a monadic interpretation, and thus enables fusion for
programs on certain monadic datatypes. This strand of work is thus the one most
closely related to ours, since it also aims to improve the efficiency of monadic
computations. An immediate difference is that Ghani et al.’s transformation can
at best achieve a linear speedup, but no improvement of asymptotic complexity.
More specifically, their approach does not allow for elimination of data struc-
tures threaded through repeated layers of monadic binding inside a recursive
computation. Since the latter assertion seems somewhat in contradiction to the
authors’ description, let us elaborate on what we mean here.

First of all, the cases of successful fusion presented in [15,16] as examples all
have the very specific form of a single consumer encountering a single producer,
that is, eliminating exactly one layer of intermediate data structure. The authors
suggest that sequences of >>= arising from do-notation lead to a rippling effect
that enables several layers to be eliminated in a row, but we could not reproduce
this. In particular, Ghani and Johann [16, Sect. 5] suggest that this happens for
the following kind of monadic evaluator:

data EXPR = ADD EXPR EXPR ...

eval (ADD e1 e2) =
do

x ← eval e1

y ← eval e2

return (x+y)
...

But actually, the above right-hand side desugars to

eval e1 >>= (λx → eval e2 >>= (λy → return (x+y))) (15)

Asymptotic Improvement of Computations over Free Monads 401

rather than to an expression of the supposed form (m >>= k1) >>= k2. In fact,
not a single invocation of the monadic short cut fusion rule is possible inside (15).
In contrast, our improvement approach is quite effective for eval. If, for example,
we complete the above to

data EXPR = ... DIV EXPR EXPR LIT INT

...
eval (DIV e1 e2) =

do
y ← eval e2

if y = 0 then fail “division by zero” else
do

x ← eval e1

return (div x y)
eval (LIT i) = return i

and run it against the exception monad defined as follows:

data F_EXC β = FAIL STRING

instance FUNCTOR F_EXC where
fmap h (FAIL s) = FAIL s

fail s = wrap (FAIL s)

then we find that while improve does not necessarily always give asymptotic
improvements, it still reduces absolute runtimes here. Moreover, it turns out to
have a beneficial impact on memory requirements. In particular, for expressions
with deeply nested computations, such as

deep n = foldl ADD (DIV (LIT 1) (LIT 0)) (map LIT [2..n])

we find that improve (eval (deep n)) :: FREE F_EXC INT works fine for n that are
orders of magnitude bigger than ones for which eval (deep n) :: FREE F_EXC INT

already leads to a stack overflow. An intuitive explanation here is that improve
essentially transforms the computation into continuation-passing style.

Clearly, just as for eval above, the monadic short cut fusion method proposed
by Ghani et al. [15,16] does not help with any of the earlier examples in this
paper. Maybe it is possible to bring it to bear on such examples by inventing
a suitable worker/wrapper scheme in the spirit of that applied by Gill [17] and
Chitil [19] to achieve asymptotic improvements via short cut fusion. If that can
be achieved at all for monadic short cut fusion, which is somewhat doubtful
due to complications involving polymorphic recursion and higher-kinded types,
it would definitely require extensive restructuring of the code to be improved,
much in contrast to our near-transparent approach.

On the other hand, Ghani et al.’s work is ahead of ours in terms of the monads
it can handle. Their fusion rule is presented for a notion of inductive monads
that covers free monads as a special case. More specifically, free monads are

402 J. Voigtländer

inductive monads that arise as fixpoints of a bifunctor that, when applied to one
argument, gives the functor sum of the constant-valued functor returning that
fixed argument and some other arbitrary, but fixed, functor. In other words,
our FREE φ corresponds to MU (SUMFUNC φ) in the terminology of Ghani and
Johann [16, Ex. 14]. Most fusion success stories they report are actually for this
special kind of inductive monad and, as we have seen, all models of Swierstra
and Altenkirch live in the free monad subspace as well. But still, it would be
interesting to investigate a generalisation of our approach to inductive monads
other than the free ones, in particular to ones based on functor product instead
of functor sum above.

6 Conclusion

We have developed a program transformation that, in essence, makes monadic
substitution a constant-time operation and can have further benefits regard-
ing stack consumption. Using the abstraction mechanisms provided by Haskell’s
type system, we were able to formulate it in such a way that it does not interfere
with normal program construction. In particular, programmers need not a priori
decide to use the improved representation of free monads. Instead, they can pro-
gram against the ordinary representation with the only (and non-encumbering)
proviso that it be captured as one instance of an appropriate type constructor
class. This gives code that is identically structured and equally efficient to the
one they would write as usual. When utilisation of the improved representation
is desired (for example, because a quadratic overhead is observed), dropping it
in a posteriori is as simple as adding a single call to improve at the appropriate
place. This transparent switching between the equivalent representations also
means that any equational reasoning about the potentially to be improved code
can be based on the ordinary representation, which is, of course, beneficial for
applications like the ones of Swierstra and Altenkirch, discussed in Sect. 5.1.
(Or, formulated in terms of the example from Sect. 2: we can reason and think
about fullTree, as special case of fullTree′, even though actually fullTree′′ will be
run eventually.1)

The genericity that comes via two-level types is a boon for developing and
reasoning about our method, but not an indispensable ingredient. It is always
possible to obtain type constructors, classes, and improve-functions tailored to
a particular datatype (as in Sect. 2). This is done by bundling and unbundling
type isomorphisms as demonstrated by Ghani and Johann [16, App. A].

Acknowledgements. I would like to thank the anonymous reviewers for their
comments and suggestions.

1 An example of a property that is much simpler to prove for fullTree than for fullTree′′

is the fact that the output trees produced for input n will only ever contain integers
from the interval 0 to n. While this has a straightforward proof by induction for
fullTree n, proving it for fullTree′′ n LEAF requires a nontrivial generalisation effort to
find a good (i.e., general enough) induction hypothesis.

Asymptotic Improvement of Computations over Free Monads 403

References

1. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

2. Peyton Jones, S., Wadler, P.: Imperative functional programming. In: Principles of
Programming Languages, Proceedings, pp. 71–84. ACM Press, New York (1993)

3. Launchbury, J., Peyton Jones, S.: State in Haskell. Lisp and Symbolic Computa-
tion 8(4), 293–341 (1995)

4. Wadler, P.: The essence of functional programming. In: Principles of Programming
Languages, Proceedings, pp. 1–14. ACM Press, New York (1992) (invited talk)

5. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: Principles of Programming Languages, Proceedings, pp. 333–343. ACM Press,
New York (1995)

6. Hughes, R.: A novel representation of lists and its application to the function
“reverse”. Information Processing Letters 22(3), 141–144 (1986)

7. Jones, M.: Functional programming with overloading and higher-order polymor-
phism. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 97–136.
Springer, Heidelberg (1995)

8. Sheard, T., Pasalic, E.: Two-level types and parameterized modules. Journal of
Functional Programming 14(5), 547–587 (2004)

9. Reynolds, J.: Types, abstraction and parametric polymorphism. In: Information
Processing, Proceedings, pp. 513–523. Elsevier, Amsterdam (1983)

10. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, Proceedings, pp. 347–359. ACM Press, New York (1989)

11. Swierstra, W., Altenkirch, T.: Beauty in the beast — A functional semantics for
the awkward squad. In: Haskell Workshop, Proceedings, pp. 25–36. ACM Press,
New York (2007)

12. Claessen, K., Hughes, R.: QuickCheck: A lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming, Pro-
ceedings, pp. 268–279. ACM Press, New York (2000)

13. Swierstra, W.: Data types à la carte. Journal of Functional Programming (to ap-
pear)

14. Swierstra, W., Altenkirch, T.: Dependent types for distributed arrays. In: Trends
in Functional Programming, Draft Proceedings (2008)

15. Ghani, N., Johann, P., Uustalu, T., Vene, V.: Monadic augment and generalised
short cut fusion. In: International Conference on Functional Programming, Pro-
ceedings, pp. 294–305. ACM Press, New York (2005)

16. Ghani, N., Johann, P.: Monadic augment and generalised short cut fusion. Journal
of Functional Programming 17(6), 731–776 (2007)

17. Gill, A.: Cheap Deforestation for Non-strict Functional Languages. PhD thesis,
University of Glasgow (1996)

18. Johann, P.: A generalization of short-cut fusion and its correctness proof. Higher-
Order and Symbolic Computation 15(4), 273–300 (2002)

19. Chitil, O.: Type-Inference Based Deforestation of Functional Programs. PhD thesis,
RWTH Aachen (2000)

Symmetric and Synchronous Communication

in Peer-to-Peer Networks

Andreas Witzel1,2

1 University of Amsterdam, Plantage Muidergracht 24, 1018TV Amsterdam
2 CWI, Kruislaan 413, 1098SJ Amsterdam, The Netherlands

Abstract. Motivated by distributed implementations of game-theoreti-
cal algorithms, we study symmetric process systems and the problem of
attaining common knowledge between processes. We formalize our set-
ting by defining a notion of peer-to-peer networks1 and appropriate sym-
metry concepts in the context of Communicating Sequential Processes
(CSP) [1]. We then prove that CSP with input and output guards makes
common knowledge in symmetric peer-to-peer networks possible, but not
the restricted version which disallows output statements in guards and
is commonly implemented. Our results extend [2].

An extended version is available at http://arxiv.org/abs/0710.2284.

1 Introduction

1.1 Motivation

Our original motivation comes from the distributed implementation of game-
theoretical algorithms (see e.g. [3] for a discussion of the interface between game
theory and distributed computing). Two important issues in the domain of
game theory have always been knowledge, especially common knowledge, and
symmetry between the players, also called anonymity. We will describe these
issues and the connections to distributed computing in the following two para-
graphs, before we motivate our choice of process calculus and the overall goal of
the paper.

Common Knowledge and Synchronization. The concept of common knowledge
has been a topic of much research in distributed computing as well as in game
theory. When do processes or players “know” some fact, mutually know that
they know it, mutually know that they mutually know that they know it, and
so on ad infinitum? And how crucial is the difference between arbitrarily, but
finitely deep mutual knowledge and the limit case of real common knowledge?

In distributed computing, the classical example showing that the difference is
indeed essential is the scenario of Coordinated Attack [4]. The game-theoretical
incarnation of the underlying issue is the Electronic Mail Game [5,6].
1 Please note that we are not dealing with fashionable incarnations such as file-sharing

networks, but merely use this name for a mathematical notion of a network consisting
of directly connected peers “treated on an equal footing”, i.e. not having a client-
server structure or otherwise pre-determined roles.

P. Audebaud and C. Paulin-Mohring (Eds.): MPC 2008, LNCS 5133, pp. 404–421, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://arxiv.org/abs/0710.2284

Symmetric and Synchronous Communication in Peer-to-Peer Networks 405

The basic insight of these examples is that two agents that communicate
through an unreliable channel can never achieve common knowledge, and that
their behavior under finite mutual knowledge can be strikingly different.

These issues are analyzed in detail in [7], in particular in a separately pub-
lished part [8], including a variant where communication is reliable, but message
delivery takes an unknown amount of time. Even in that variant, it is shown
that only finite mutual knowledge can be attained.

However, in a synchronous communication act, sending and receiving of a
message is, by definition, performed simultaneously. In that way, the agents
obtain not only the pure factual information content of a message, but the sender
also knows that the receiver has received the message, the receiver knows that
the sender knows that, and so on ad infinitum. The communicated information
immediately becomes common knowledge.

Attaining common knowledge and achieving synchronization between pro-
cesses are thus closely related. Furthermore, synchronization is in itself an im-
portant subject, see e.g. [9].

Symmetry and Peer-to-peer Networks. In game theory, players are assumed to be
anonymous and treated on an equal footing, in the sense that their names do not
play a role and no single player is a priori distinguished from the others [10,11].

In distributed computing, too, this kind of symmetry between processes is
desirable to avoid a predetermined assignment of roles to processes and improve
fault tolerance, modularity, and load balancing [12].

We will consider symmetry on two levels. Firstly, the communication network
used by the processes should be symmetric to some extent in order not to dis-
criminate single processes a priori on a topological level; we will formalize this
requirement by defining peer-to-peer networks. Secondly, processes in symmetric
positions of the network should have equal possibilities of behavior; this we will
formalize in a semantic symmetry requirement on the possible computations.

Communicating Sequential Processes (CSP). Since we are interested in syn-
chronization and common knowledge, a process calculus which supports syn-
chronous communication through primitive statements clearly has some appeal.
We will focus on one of the prime examples of such calculi, namely CSP , intro-
duced in [1] and revised in [13,14], since it supports synchronous communication
through primitive statements. Furthermore, it has been implemented in various
programming languages, among the best-known of which is Occam [15]. We thus
have at our disposal a theoretical framework and programming tools which in
principle could give us synchronization and common knowledge “for free”.

However, symmetric situations are a reliable source of impossibility results
[16]. In particular, the restricted dialect CSPin which was, for implementation
issues [17], chosen to be the theoretical foundation of Occam is provably [2] less
expressive than the general form, called CSPi/o. CSPin has been used throughout
the history of Occam, up to and including its latest variant Occam-π [18]. This

406 A. Witzel

generally tends to be the case for implementations of CSP , one notable exception
being a very recent extension [19] of JCSP2 to CSPi/o.

Some of the resulting restrictions of CSPin can in practice be overcome by
using helper processes such as buffers [20]. Our goal therefore is to formalize
the concepts mentioned above, extend the notion of peer-to-peer networks by
allowing helper processes, and examine whether synchronization is feasible in
either of these two dialects of CSP . We will come to the result that, while the
problem can (straightforwardly) be solved in CSPi/o, it is impossible to do so in
CSPin. Our setting thus provides an argument in favor of the former’s rare and
admittedly more complicated implementations, such as JCSP.

1.2 Related Work

This paper builds upon [2], where a semantic characterization of symmetry for
CSP is given and fundamental possibility and impossibility results for the prob-
lem of electing a leader in networks of symmetric processes are proved for various
dialects of CSP . More recently, this has inspired a similar work on the more ex-
pressive π-calculus [21], but the possibility of adding helper processes is explicitly
excluded.

There has been research on how to circumvent problems resulting from the
restrictions of CSPin. However, solutions are typically concerned only with the
factual content of messages and do not preserve synchronicity and the common
knowledge creating effect of communication, for example by introducing buffer
processes [20].

The same focus on factual information holds for general research on synchro-
nizing processes with asynchronous communication. For example, in [9] one goal
is to ensure that a writing process knows that no other process is currently
writing; whether this is common knowledge, is not an issue.

The problem of Coordinated Attack has also been studied for models in
which processes run synchronously [16]; however, the interesting property of
CSP is that processes run asynchronously, which is more realistic in physically
distributed systems, and synchronize only at communication statements.

Since we focus on the communication mechanisms, the results will likely carry
over to other formalisms with synchronous communication facilities comparable
to those of CSP .

1.3 Overview of the Paper

In Section 2 we give a short description of CSP and the dialects that we are in-
terested in, define some basic concepts from graph theory, and recall the required
notions and results for symmetric electoral systems from [2].

In Section 3 we formally define the problem of pairwise synchronization that
we will examine, give a formalization of peer-to-peer networks which ensures a
certain kind of symmetry on the topological level, and describe in what ways

2 A JavaTM implementation and extension of CSP.

Symmetric and Synchronous Communication in Peer-to-Peer Networks 407

we want to allow them to be extended by helper processes. We adapt a concept
from [2] to capture symmetry on the semantic level.

Section 4 contains two positive results and the main negative result saying
that pairwise synchronization of peer-to-peer networks of symmetric processes is
not obtainable in CSPin, even if we allow extensions through buffers or similar
helper processes. Section 5 concludes.

2 Preliminaries

2.1 CSP

A CSP process consists of a sequential program which can use, besides the usual
local statements, two communication statements:

– P !message to send (output) the given message to process P ;
– P ? variable to receive (input) a message from P into the given local variable.

Communication is synchronous, i.e., send and receive instructions block until
their counterpart is available, at which point the message is transferred and
both participating processes continue execution. Note that the communication
partner P is statically defined in the program code.

There are two control structures (see Figure 1). Each guard is a Boolean
expression over local variables (which, if omitted, is taken to be true), optionally
followed by a communication statement. A guard is open if its Boolean expression
evaluates to true and its communication statement, if any, can currently be
performed. A guard is closed if its Boolean expression evaluates to false. Note
that a guard can thus be neither open nor closed.

[guard1 → command1

� guard2 → command2

. . .
� guardk → commandk]

(a) Non-deterministic selection

∗[guard1 → command1

� guard2 → command2

. . .
� guardk → commandk]

(b) Non-deterministic repetition

Fig. 1. Control structures in CSP

The selection statement fails and execution is aborted if all guards are closed.
Otherwise execution is suspended until there is at least one open guard. Then one
of the open guards is selected non-deterministically, the required communication
(if any) performed, and the associated command executed.

The repetition statement keeps waiting for, selecting, and executing open
guards and their associated commands until all guards are closed, and then
exits normally; i.e., program execution continues at the next statement.

We will sometimes use the following abbreviation to denote multiple branches
of a control structure (for some finite set X): �x∈X guardx → commandx

408 A. Witzel

Various dialects of CSP can be distinguished according to what kind of com-
munication statements are allowed to appear in guards. Specifically, in CSPin
only input statements are allowed, and in CSPi/o both input and output state-
ments are allowed (within the same control structure). For technical reasons,
CSPin has been suggested from the beginning [1] and is indeed commonly used
for implementations, as mentioned in Section 1.1.

Definition 1. A communication graph (or network) is a directed graph without
self-loops. A process system (or simply system) P with communication graph
G = (V ,E) is a set of component processes {Pv}v∈V such that for all v ,w ∈ V ,
if the program run by Pv (resp. Pw) contains an output command to Pw (resp.
input command from Pv) then (v ,w) ∈ E. In that case we say that G admits P.
We identify vertices v and associated processes Pv and use them interchangeably.

Example 1. Figure 2 shows a simple network G with the vertex names written
inside the vertices, and a CSPi/o program run by two processes which make up
a system P := {P0,P1}. Obviously, G admits P . The intended behavior is that
the processes send each other, in non-deterministic order, a message containing
their respective process name.

0 1

(a) Network G

recd := false
sent := false

∗[¬recd ∧ Pi+1 ? x → recd := true
� ¬sent ∧ Pi+1 ! i → sent := true]

(b) Program of process Pi

Fig. 2. Network and program run by P0 and P1 in Example 1. Addition of process
names here and in all further example programs is modulo 2.

Definition 2. A state of a system P is the collection of all component processes’
(local) variables together with their current execution positions. A computation
step is a transition from one state to another, involving either one component
process executing a local statement, or two component processes jointly execut-
ing a pair of matching (send and receive) communication statements. The valid
computation steps are determined by the state of the system.

A computation is a maximal sequence of valid computation steps, i.e. a se-
quence which is not a prefix of any other sequence of valid computation steps. A
computation

– is properly terminated if all component processes have completed their last
instruction,

– diverges if it is infinite, and
– is in deadlock if it is finite but not properly terminated.

2.2 Graph Theory

We state some fundamental notions concerning directed finite graphs, from here
on simply referred to as graphs.

Symmetric and Synchronous Communication in Peer-to-Peer Networks 409

Definition 3. Two vertices a, b ∈ V of a graph G = (V ,E) are strongly con-
nected if there are paths from a to b and from b to a; G is strongly connected
if all pairs of vertices are. Two vertices a, b ∈ V are directly connected if
(a, b) ∈ E or (b, a) ∈ E; G is directly connected if all pairs of vertices are.

Definition 4. An automorphism of a graph G = (V ,E) is a permutation σ
of V such that for all v ,w ∈ V , (v ,w) ∈ E implies (σ(v), σ(w)) ∈ E. The
automorphism group ΣG of a graph G is the set of all automorphisms of G.
The least p > 0 with σp = id is called the period of σ, where by id we denote the
identity function defined on the domain of whatever function it is compared to.

The orbit of v ∈ V under σ ∈ ΣG is Oσ
v := {σp(v) | p ≥ 0}. An automor-

phism σ is well-balanced if the orbits of all vertices have the same cardinality,
or alternatively, if for all p ≥ 0,

σp(v) = v for some v ∈ V implies σp = id .

We will usually consider the (possibly empty) set Σwb
G \ {id} of non-trivial well-

balanced automorphisms of a graph G, that is those with period greater than 1.
A subset W ⊆ V is called invariant under σ ∈ ΣG if σ(W) = W ; it is called

invariant under ΣG if it is invariant under all σ ∈ ΣG .

Example 2. Figure 3 shows two graphs G and H and well-balanced automor-
phisms σ ∈ ΣG with period 3 and τ ∈ ΣH with period 2. We have ΣH = {id, τ},
so {1, 3} and {2, 4} are invariant under ΣH .

12

3

(a) Graph G, σ ∈ ΣG

1

2

3

4

(b) Graph H , τ ∈ ΣH

Fig. 3. Two graphs with non-trivial well-balanced automorphisms, indicated by gray,
bent arrows

2.3 Symmetric Electoral Systems

We take over the semantic definition of symmetry from [2]. As discussed there,
syntactic notions of symmetry are difficult to formalize properly; requiring that
“all processes run the same program” does not do the job. We will skip the formal
details since we are not going to use them. The interested reader is referred to [2].

Definition 5 (adapted from [2, Definition 2.2.2]). A system P with com-
munication graph G = (V ,E) is symmetric if for each automorphism σ ∈ ΣG

and each computation C of P, there is a computation C ′ of P in which, for each
v ∈ V , process Pσ(v) performs the same steps as Pv in C , modulo changing
via σ the process names occurring in the computation (e.g. as communication
partners).

410 A. Witzel

The intuitive interpretation of this symmetry notion is as follows. Any two pro-
cesses which are not already distinguished by the communication graph G itself,
i.e. which are related by some automorphism, must have equal possibilities of
behavior. That is, whatever behavior one process exhibits in some particular
possible execution of the system (i.e., in some computation), the other process
must exhibit in some other possible execution of the system, localized to its po-
sition in the graph by appropriate process renaming. Taken back to the syntactic
level, this can be achieved by running the same program in both processes, which
must not make use of any externally given distinctive features like, for example,
an ordering of the process names.

Example 3. The system from Figure 2 is symmetric. It is easy to see that, if we
swap all names 0 and 1 in any computation of P , we still have a computation
of P . Note that programs are allowed to access the process names, and indeed
they do; however, they do not, for example, use their natural order to determine
which process sends first.

Example 4. On the other hand, the system Q = {Q0,Q1} where each Qi runs
the following program is not symmetric:

[i = 0 → Qi+1 ! i
� i = 1 → Qi+1 ? x]

We now recall a classical problem for networks of processes, and then restate the
impossibility result which our paper builds on.

Definition 6 (from [2, Definition 1.2.1]). A system P is an electoral system
if

(i) all computations of P are properly terminating and
(ii) each process of P has a local variable leader, and at the time of termina-

tion all these variables contain the same value, namely the name of some
process P ∈ P .

Theorem 1 (from [2, Theorem 3.3.2]). Suppose a network G admits some
well-balanced automorphism σ different from id. Then G admits no symmetric
electoral system in CSPin.

3 Setting the Stage

3.1 Pairwise Synchronization

Intuitively, if we look at synchronization as part of a larger system, a process is
able to synchronize with another process if it can execute an algorithm such that
a direct communication (of any message) between the two processes takes place.
This may be the starting point of some communication protocol to exchange
more information, or simply be taken as an event creating common knowledge
about the processes’ current progress of execution.

Symmetric and Synchronous Communication in Peer-to-Peer Networks 411

Communication in CSP always involves exactly two processes and facilities for
synchronous broadcast do not exist, thus synchronization is inherently pairwise
only. This special case is still interesting and has been subject to research, see
e.g. [22].

Focusing on the synchronization algorithm, we want to guarantee that it al-
lows all pairs of processes to synchronize. To this end, we require existence of
a system where in all computations, all pairs of processes synchronize. Most
probably, in a real system not all pairs of processes need to synchronize in all
executions. However, if one has an algorithm which in principle allows that, then
one could certainly design a system where they actually do; and, vice versa, if
one has a system which is guaranteed to synchronize all pairs of processes, then
one can obviously use its algorithms to synchronize any given pair. Therefore we
use the following formal notion.

Definition 7. A system P of processes (pairwise) synchronizes Q ⊆ P if all
computations of P are finite and properly terminating and contain, for each pair
Pa ,Pb ∈ Q, at least one direct communication from Pa to Pb or from Pb to Pa .

Example 5. The system from Figure 2 synchronizes {P0,P1}.

Note that the program considered so far is not a valid CSPin program, since there
an output statement appears within a guard. If we want to restrict ourselves to
CSPin (for example, to implement the program in Occam), we have to get rid
of that statement. Attempts to simply move it out of the guard fail since the
symmetric situation inevitably leads to a system which may deadlock.

To see this, consider the system P ′ = {P ′
0,P

′
1} running the following program:

recd := false
sent := false

∗[¬recd ∧ P ′
i+1 ? x → recd := true

� ¬sent → P ′
i+1 ! i ; sent := true]

There is no guarantee that not both processes enter the second clause of
the repetition at the same time and then block forever at the output statement,
waiting for each other to become ready for input. A standard workaround [20] for
such cases is to introduce buffer processes mediating between the main processes,
in our case resulting in the extended system R = {R0,R′

0,R1,R′
1}:

recd := false
sent := false

∗[¬recd ∧ R′
i+1 ? x → recd := true

� ¬sent → R′
i ! i ; sent := true]

(program of main process Ri)

Ri ? y
Ri+1 ! y

(program of buffer process R′
i)

While the actual data transmitted between the main processes remains the
same, this system obviously cannot synchronize {R0,R1}, since there is no direct
communication between them. This removes the synchronizing and common
knowledge creating effects of communication. Mutual knowledge can only be
achieved to a finite (if arbitrarily high) level, as discussed in Section 1.1.

412 A. Witzel

The obvious question now is: Is it possible to change the program or use buffer
or other helper processes in more complicated and smarter ways to negotiate
between the main processes and aid them in establishing direct communications?

To attack this question, in the following Section 3.2 we will formalize the kind
of communication networks we are interested in and define how they may be
extended in order to allow for helper processes without affecting the symmetry
inherent in the original network.

3.2 Peer-to-Peer Networks

The idea of peer-to-peer networks is to have nodes which can communicate
with each other directly and on an equal footing, i.e. there is no predetermined
client/server architecture or central authority coordinating the communication.
We first formalize the topological prerequisites for this, and then adapt the
semantic symmetry requirement to our setting.

Definition 8. A peer-to-peer network is a communication graph G = (V ,E)
with at least two vertices (also called nodes) such that

(i) G is strongly connected,
(ii) G is directly connected, and
(iii) we have Σwb

G \ {id} �= ∅.
In this definition, (i) says that each node has the possibility to contact (at least
indirectly) any other node, reflecting the fact that there are no predetermined
roles; (ii) ensures that all pairs of nodes have a direct connection at least in
one direction, without which pairwise synchronization by definition would be
impossible; and (iii) requires a kind of symmetry in the network. This last item
is implied by the more intuitive requirement that there be some σ ∈ ΣG with
only one orbit, i.e. an automorphism relating all nodes to each other and thus
making sure that they are topologically on an equal footing. The requirement
we use is less restrictive and suffices for our purposes.

Example 6. See Figure 3 for two examples of peer-to-peer networks.

We will consider extensions allowing for helper processes while preserving the
symmetry inherent in the network. We view the peers, i.e. the nodes of the
original network, as processors each running a main process, while the added
nodes can be thought of as helper processes running on the same processor as
their respective main process.

Definition 9. Let G = (V ,E) be a peer-to-peer network, then G ′ = (V ′,E ′)
is a symmetry-preserving extension of G iff there is a collection {Sv}v∈V parti-
tioning V ′ such that

(i) for all v ∈ V , we have v ∈ Sv ;
(ii) all v ∈ V , v ′ ∈ Sv \ {v} are strongly connected (possibly via nodes �∈ Sv);
(iii) for all v ,w ∈ V , E ′ ∩ (Sv × Sw) �= ∅ iff (v ,w) ∈ E;
(iv) there is, for each σ ∈ ΣG , an automorphism ισ ∈ ΣG′ extending σ such

that ισ(Sv) = Sσ(v) for all v ∈ V .

Symmetric and Synchronous Communication in Peer-to-Peer Networks 413

Remark 1. In general, the collection {Sv}v∈V may not be unique. When we refer
to it, we implicitly fix an arbitrary one.

Intuitively, these requirements are justified as follows:

(i) Each Sv can be seen as the collection of processes running on the processor
at vertex v , including its main process Pv .

(ii) The main process should be able to communicate (at least indirectly) in
both ways with each helper process.

(iii) While communication links within one processor can be created freely,
links between processes on different processors are only possible if there
is a physical connection, that is a connection in the original peer-to-peer
network; also, if there was a connection in the original network, then there
should be one in the extension in order to preserve the network structure.

(iv) Lastly, to preserve symmetry, each automorphism of the original network
must have an extension which maps all helper processes to the same pro-
cessor as their corresponding main process.

Example 7. See Figure 4 for an example of a symmetry-preserving extension.
Note that condition (iii) of Definition 9 is liberal enough to allow helper processes
to communicate directly with processes running on other processors, and indeed,
e.g. 2c has a link to 3. It also allows several communication links on one physical
connection, reflected by the fact that there are three links connecting S2 to S3.

We will need the following immediate fact later on.

Fact 1. As a direct consequence of Definitions 8 and 9, any symmetry-preserving
extension of a peer-to-peer network is strongly connected.

1 1a

1c
1b

1 1a

1c
1b

S1

2

2a

2c

2b

2

2a

2c

2b

S2
3

3a 3c

3b

3

3a 3c

3b

S3

(a) Symmetry-preserving extension of the
network from Figure 3(a)

1 1a

1c
1b

1 1a

1c
1b

S1

2

2a

2c

2b

2

2a

2c

2b

S2
3

3a 3c

3b

3

3a 3c

3b

S3

(b) Extended automorphism ισ as re-
quired by Definition 9

Fig. 4. A symmetry-preserving extension (illustrating Definition 9)

414 A. Witzel

3.3 G-Symmetry

Corresponding to the intuition of processors with main and helper processes, we
weaken Definition 5 such that only automorphisms are considered which keep the
set of main processes invariant and map helper processes to the same processor
as their main process. There are cases (as in Figure 8 later in this paper) where
the main processor otherwise would be required to run the same program as
some helper process.

Definition 10 (G-symmetry). A system P whose communication graph G ′

is a symmetry-preserving extension of some peer-to-peer network G = (V ,E)
is called G-symmetric if Definition 5 holds with respect to those automorphisms
σ ∈ ΣG′ satisfying, for all v ∈ V , (i) σ(V) = V and (ii) σ(Sv) = Sσ(v).

This is weaker than Definition 5, since there we require the condition to hold for
all automorphisms.

Example 8. To illustrate the impact of G-symmetry, Figure 5 shows a network
G and an extension where symmetry relates all processes which each other.
G-symmetry disregards the automorphism which causes this and considers only
those which keep the set of main processes invariant, i.e. the nodes of the original
network G, thus allowing them to behave differently from the helper processes.

1 2

(a) Network G

1

1a

1

1a
S1

2

2a

2

2a
S2

(b) Extension of G and an
automorphism mixing main
and helper processes

1

1a

1

1a
S1

2

2a

2

2a
S2

(c) Extension of G and the
only automorphism taken
into account by G-symmetry

Fig. 5. A network G and an extension which has an automorphism mixing main and
helper processes, disregarded by G-symmetry

4 Results

4.1 Positive Results

Theorem 2. Let G = (V ,E) be a peer-to-peer network. Then G admits a sym-
metric system pairwise synchronizing V in CSPi/o.

Proof. A system which at each vertex v ∈ V runs the program shown below
is symmetric and pairwise synchronizes V . Each process simply waits for each
other process in parallel to become ready to send or receive a dummy message,
and exits once a message has been exchanged with each other process.

Symmetric and Synchronous Communication in Peer-to-Peer Networks 415

for each w ∈ V do syncw := false
Win := {w ∈ V | (w , v) ∈ E}
Wout := {w ∈ V | (v , w) ∈ E}
∗[
�w∈Win ¬syncw ∧ Pw ? x → syncw := true
�w∈Wout ¬syncw ∧ Pw ! 0 → syncw := true
]

By dropping the topological symmetry requirement for peer-to-peer networks,
under certain conditions we get a positive result even for CSPin.

Theorem 3. Let G = (V ,E) be a network satisfying only the first two condi-
tions of Definition 8, i.e. G is strongly connected and directly connected. If G
admits a symmetric electoral system and there is some vertex v ∈ V such that
(v , a) ∈ E and (a, v) ∈ E for all a ∈ V , then G admits a symmetric system
pairwise synchronizing V in CSPin.

Proof (sketch). First, the electoral system is run to determine a temporary
leader v ′. When the election has terminated, v ′ chooses a coordinator v that
is directly and in both directions connected to all other vertices, and broadcasts
its name. Broadcasting can be done by choosing a spanning tree and transmit-
ting the broadcast information together with the definition of the tree along
the tree, as in the proof of [2, Theorem 2.3.1, Phase 2] (the strong connectivity
which is required there holds for G by assumption). After termination of this
phase, the other processes each send one message to v and then wait to receive
commands from v according to which they perform direct communications with
each other, while v receives one message from each other process and uses the
obtained order to send out the commands.

Example 9. See Figure 6 for an example of a network which admits a symmetric
system pairwise synchronizing all its vertices in CSPin. The fact that the network
admits a symmetric electoral system can be established as for [2, Fig. 4] (note
that the edges between the lower nodes are only in one direction).

This result could be generalized, e.g. by weakening the conditions on v and
taking care that the commands will reach the nodes at least indirectly. Since our
main focus is the negative result, we will not pursue this further.

12

3

45

Fig. 6. A network which by Theorem 3 admits a symmetric system pairwise synchro-
nizing all its vertices in CSPin.

416 A. Witzel

4.2 Negative Result

In the following we will establish the main result saying that, even if we extend a
peer-to-peer network G by helper processes (in a symmetry-preserving way), it
is not possible to obtain a network which admits a G-symmetric system pairwise
synchronizing the nodes of G in CSPin.

To this end, we derive a contradiction with Theorem 1 by proving the following
intermediate steps (let G denote a peer-to-peer network and G ′ a symmetry-
preserving extension):

– Lemma 1 If G ′ admits a G-symmetric system pairwise synchronizing the
nodes of G in CSPin, it admits a G-symmetric electoral system in CSPin.

– Lemma 2 G ′ has a non-trivial well-balanced automorphism taken into ac-
count by G-symmetry (i.e. satisfying the two conditions of Definition 10).

– Lemma 3 We can extend G ′ in such a way that there exists a non-trivial well-
balanced automorphism (derived from the previous result), G-symmetry is
reduced to symmetry, and admittance of an electoral system is preserved.

Lemma 1. If some symmetry-preserving extension of a peer-to-peer network
G = (V ,E) admits a G-symmetric system pairwise synchronizing V in CSPin,
then it admits a G-symmetric electoral system in CSPin.

Proof. The following steps describe the desired electoral system (using the fact
that under G-symmetry processes of nodes ∈ V may behave differently from
those of nodes �∈ V):

– All processes run the assumed G-symmetric pairwise synchronization pro-
gram, with the following modification for the processes in P := {Pv | v ∈ V }
(intuitively this can be seen as a kind of knockout tournament, similar to
the proof of [2, Theorem 4.1.2, Phase 1]):
• Each of these processes has a local variable winning initialized to true.
• After each communication statement with some other P ∈ P , insert a

second communication statement with P in the same direction:
∗ If it was a “send” statement, send the value of winning.
∗ If it was a “receive” statement, receive a Boolean value, and if the

received value is true, set winning to false.
Note that, since the program pairwise synchronizes V , each pair of processes
associated to vertices in V has had a direct communication at the end of
execution, and thus there is exactly one process in the whole system which
has a local variable winning containing true.

– After the synchronization program terminates the processes check their local
variable winning. The unique process that still has value true declares itself
the leader and broadcasts its name; all processes set their variable leader
accordingly. As in the proof of Theorem 3, broadcasting can be done using a
spanning tree. The required strong connectivity is guaranteed by Fact 1.

Lemma 2. For any symmetry-preserving extension G ′ = (V ′,E ′) of a peer-to-
peer network G = (V ,E), there is σ′ ∈ Σwb

G′ \ {id} such that σ′(V) = V and
σ′(Su) = Sσ′(u) for all u ∈ V .

Symmetric and Synchronous Communication in Peer-to-Peer Networks 417

Proof. Take an arbitrary σ ∈ Σwb
G \ {id} (exists by Definition 8) and let ι, to

save indices, denote the ισ required by Definition 9. If ι ∈ Σwb
G′ \ {id} we are

done; otherwise we construct a suitable σ′ (Example 10 illustrates this proof).
Let p denote the period of σ and pick an arbitrary v ∈ V . For simplicity, we

assume that σ has only one orbit; if it has several, the proof extends straight-
forwardly by picking one v from each orbit in parallel.

For all u ∈ Sv let pu := |O ι
u | and note that for all t ∈ O ι

u we have pt = pu ,
and pu ≥ p since ι maps each Sv to Sσ(v) and these sets are pairwise disjoint.
We define σ′ : V ′ → V ′ and then prove the claims.

σ′(u) :=

{
ιpu−p+1(u) if u ∈ Sv

ι(u) otherwise.

– σ′(V) = V , σ′ �= id: Follows from ι �V = σ and pv = p and thus σ′ �V = σ
(where f �X denotes the restriction of a function f to the domain X)

– σ′ ∈ ΣG′ : With (iv) from Definition 9 we obtain that, for u ∈ Sv , pu must
be a multiple of p, and σ′(O ι

u ∩ Sv) = ι(O ι
u ∩ Sv), thus σ′ is a permutation

of V ′ since ι is one. Furthermore, for t , u ∈ Sv , we have ιpt (pu−1)(t) = t and
ιpu(pt−1)(u) = u and therefore σ′ also inherits edge-preservation from ι by

(σ′(t), σ′(u)) = (ιpt−p+1(t), ιpu−p+1(u)) = (ιptpu−p+1(t), ιptpu−p+1(u)) .

– σ′(Su) = Sσ′(u), σ′ well-balanced: The above-mentioned fact that for all
u ∈ Sv we have σ′(O ι

u∩Sv) = ι(O ι
u∩Sv), together with (iv) from Definition 9

implies that also σ′(Su) = Sσ(u) for all u ∈ V . For all v ′ ∈ V ′, well-
balancedness of σ and disjointness of the Su imply that σ′q(v ′) �= v ′ for
0 < q < p. On the other hand, since each orbit of σ has size p and contains
exactly one element from Sv (namely v), we have that

σ′p(v ′) = ι(pu−p+1)+(p−1)(v ′) for some u ∈ O ι
v ′

= ιpu (v ′) = ιpv′ (v ′) = v ′ .

Example 10. In Figure 7(a), we have p = 2 (the period of σ = ισ �{1,2}), and
we pick vertex v = 2. For the elements of S2, we obtain p2 = p = 2 and
p2a = p2b = p2c = 6. Thus σ′ is defined as follows:

σ′(u) =

⎧⎪⎨⎪⎩
ι(u) if u = 2
ι5(u) if u ∈ S2 \ {2}
ι(u) if u ∈ S1 .

This σ′, depicted in Figure 7(b), satisfies the claims of Lemma 2.

Lemma 3. Any symmetry-preserving extension G ′ = (V ′,E ′) of a peer-to-peer
network G = (V ,E) can be extended to a network H such that

(i) Σwb
H \ {id} �= ∅, and

(ii) if G ′ admits a G-symmetric electoral system in CSPin,
then H admits a symmetric electoral system in CSPin.

418 A. Witzel

1

1a

1b

1c

2

2a

2b

2c

1

1a

1b

1c

S1

2

2a

2b

2c

S2

(a) ισ as required by Definition 9

1

1a

1b

1c

2

2a

2b

2c

1

1a

1b

1c

S1

2

2a

2b

2c

S2

(b) σ′ constructed from ισ as in Lemma 2

Fig. 7. An extended peer-to-peer network G ′ illustrating Lemma 2

1

1a

1

1a
S1

2

2a

2

2a
S2

1

1a

1

1a

S1

2

2a

2

2a

S2

Fig. 8. A network with an automorphism disregarded by G-symmetry, and the exten-
sion given in Lemma 3 invalidating automorphisms of this kind shown with the only
remaining automorphism

Proof. The idea is to add an “identifying structure” to all elements of V , which
forces all automorphisms to keep V invariant and map the Sv to each other
correspondingly (see Figure 8). Formally, let K = |V ′| and, denoting the inserted
vertices by i.,., for each v ∈ V let Iv :=

⋃K
k=1{iv ,k} and

Ev := {(v , iv ,1)} ∪
K−1⋃
k=1

{(iv ,k , iv ,k+1), (iv ,k+1, v)} ∪
⋃

w∈Sv

{(iv ,K ,w)} ,

and let H :=
(
V ′ ∪

⋃
v∈V Iv ,E ′ ∪

⋃
v∈V Ev

)
. Now we can prove the two claims.

(i) Let σ ∈ Σwb
G′ \ {id} with σ(V) = V and σ(Sv) = Sσ(v) for all v ∈ V (such

a σ exists by Lemma 2), then σ∪
⋃

v∈V

⋃K
k=1{iv ,k 3→ iσ(v),k} ∈ Σwb

H \{id}.
(ii) H is still a symmetry-preserving extension of G via (straightforward) ex-

tensions of the Sv . The discriminating construction has the effect that ΣH

consists only of extensions, as above, of those σ ∈ ΣG′ for which σ(V) = V
and σ(Sv) = Sσ(v) for all v ∈ V . Thus, any G-symmetric system with com-
munication graph H is a symmetric system with communication graph H .
Additionally, the set of all iv ,k is invariant under ΣH due to the distinctive
structure of the Iv , thus the associated processes are allowed to differ from

Symmetric and Synchronous Communication in Peer-to-Peer Networks 419

those of the remaining vertices. A symmetric electoral system in CSPin can
thus be obtained by running the original G-symmetric electoral system on
all members of G ′ and having each v ∈ V inform iv ,1 about the leader,
while all iv ,k simply wait for and transmit the leader information.

Theorem 4. There is no symmetry-preserving extension of any peer-to-peer
network G = (V ,E) that admits a G-symmetric system pairwise synchroniz-
ing V in CSPin.

Proof. Assume there is such a symmetry-preserving extension G ′. Then by
Lemma 1 it also admits a G-symmetric electoral system in CSPin. According
to Lemma 3, there is then a network H with Σwb

H \ {id} �= ∅ that admits a
symmetric electoral system in CSPin. This is a contradiction to Theorem 1.

5 Conclusions

We have provided a formal definition of peer-to-peer networks and adapted a
semantic notion of symmetry for process systems communicating via such net-
works. In this context, we have defined and investigated the existence of pairwise
synchronizing systems, which are directly useful because they achieve synchro-
nization, but also because they create common knowledge between processes.
Focusing on two dialects of the CSP calculus, we have proved the existence of
such systems in CSPi/o, as well as the impossibility of implementing them in
CSPin, even allowing additional helper processes like buffers. We have also men-
tioned a recent extension to JCSP to show that, while CSPin is less complex
and most commonly implemented, implementations of CSPi/o are feasible and
do exist.

A way to circumvent our impossibility result is to remove some requirements.
For example, we have sketched a construction for non-symmetric systems in
CSPin. In general, if we give up the symmetry requirement, CSPi/o can be im-
plemented in CSPin [2, p. 197].

Another way is to weaken the notion of common knowledge or approximate
it [8], which may suffice in settings where the impact decreases significantly as
the depth of mutual knowledge increases, see e.g. [23].

However, if one is interested in symmetric systems and exact common knowl-
edge, as in the game-theoretical settings described in Section 1.1, then our results
show that CSPi/o is a suitable formalism, while CSPin is insufficient. Already
in the introducing paper [1], the exclusion of output guards from CSP was rec-
ognized as reducing expressivity and being programmatically inconvenient, and
soon it was deemed technically not justified [17,24] and removed in later versions
of CSP [13, p. 227].

Some existing proposals for implementations of input and output guards and
synchronous communication could be criticized for simply shifting the problems
to a lower level, notably for not being symmetric themselves or for not even
being strictly synchronous in real systems due to temporal imprecision [8].

420 A. Witzel

However, it is often useful to abstract away from implementation issues on
the high level of a process calculus or a programming language (see e.g. [25, Sec-
tion 10]). For these reasons, we view our setting as an argument for implementing
CSPi/o rather than CSPin.

Acknowledgments

I would like to thank my supervisor Krzysztof Apt for his support, helpful com-
ments and suggestions, as well as four anonymous referees for their feedback
which helped to improve the paper.

This research was supported by a GLoRiClass fellowship funded by the Euro-
pean Commission (Early Stage Research Training Mono-Host Fellowship MEST-
CT-2005-020841).

References

1. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677
(1978)

2. Bougé, L.: On the existence of symmetric algorithms to find leaders in networks of
communicating sequential processes. Acta Informatica 25, 179–201 (1988)

3. Halpern, J.Y.: A computer scientist looks at game theory. Games and Economic
Behavior 45, 114–131 (2003)

4. Gray, J.: Notes on Data Base Operating Systems. LNCS, vol. 60, pp. 393–481.
Springer, Heidelberg (1978)

5. Rubinstein, A.: The electronic mail game: Strategic behavior under almost common
knowledge. The American Economic Review 79, 385–391 (1989)

6. Morris, S.: Coordination, communication, and common knowledge: A retrospective
on the electronic-mail game. Oxf Rev Econ Policy 18, 433–445 (2002)

7. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge. MIT
Press, Cambridge (1995)

8. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. Journal of the ACM 37, 549–587 (1990)

9. Schneider, F.B.: Synchronization in distributed programs. ACM Trans. Program.
Lang. Syst. 4, 125–148 (1982)

10. Osborne, M.J.: An Introduction to Game Theory. Oxford University Press, New
York (2003)

11. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,
Cambridge (1988)

12. Andrews, G.R.: Concurrent Programming: Principles and Practice. Addison-
Wesley, Reading (1991)

13. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

14. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach. John Wiley
and Sons, Chichester (1999)

15. INMOS Ltd. occam 2 Reference Manual. Prentice-Hall (1988)
16. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing.

Distributed Computing 16, 121–163 (2003)

Symmetric and Synchronous Communication in Peer-to-Peer Networks 421

17. Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized
input-output construct of csp. ACM Trans. Program. Lang. Syst. 5, 223–235 (1983)

18. Welch, P.: An occam-pi Quick Reference (1996–2007),
https://www.cs.kent.ac.uk/research/groups/sys/wiki/OccamPiReference

19. Welch, P., Brown, N., Moores, J., Chalmers, K., Sputh, B.: Integrating and ex-
tending JCSP. In: McEwan, A.A., Schneider, S., Ifill, W., Welch, P. (eds.) Com-
municating Process Architectures. IOS Press, Amsterdam (2007)

20. Jones, G.: On guards. In: Muntean, T. (ed.) Parallel Programming of Transputer
Based Machines (OUG-7), pp. 15–24. IOS Press, Amsterdam (1988)

21. Palamidessi, C.: Comparing the expressive power of the synchronous and asyn-
chronous pi-calculi. Mathematical Structures in Computer Science 13, 685–719
(2003)

22. Parikh, R., Krasucki, P.: Communication, consensus, and knowledge. Journal of
Economic Theory 52, 178–189 (1990)

23. Weinstein, J., Yildiz, M.: Impact of higher-order uncertainty. Games and Economic
Behavior 60, 200–212 (2007)

24. Bernstein, A.: Output guards and nondeterminism in Communicating Sequential
Processes. ACM Trans. Program. Lang. Syst. 2, 234–238 (1980)

25. Kurki-Suonio, R.: Towards programming with knowledge expressions. In: 13th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages
(POPL), pp. 140–149. ACM Press, St. Petersburg Beach (1986)

https://www.cs.kent.ac.uk/research/groups/sys/wiki/OccamPiReference

Author Index

Abel, Andreas 29
Allwein, Gerard 153

Backhouse, Roland 57, 79
Bird, Richard S. 92

Coquand, Thierry 29

Desharnais, Jules 360
Dybjer, Peter 29

Ferreira, João F. 79

Gibbons, Jeremy 110
Gill, Andy 153
Glück, Roland 134

Harrison, William L. 153
Hayes, Ian J. 243
Hinze, Ralf 1

Jansson, Patrik 268
Jay, Barry 2

Ko, Hsiang-Shang 268
Kozen, Dexter 177

Lämmel, Ralf 193

Matthes, Ralph 220
Meinicke, Larissa 243
Möller, Bernhard 134
Morrisett, Greg 28
Mu, Shin-Cheng 268

Nishimura, Susumu 284

Peyton Jones, Simon 2
Pottier, François 305
Procter, Adam 153

Régis-Gianas, Yann 305
Rypacek, Ondrej 193

Sintzoff, Michel 336
Struth, Georg 360

Tseng, Wei-Lung Dustin 177

Voigtländer, Janis 388

Witzel, Andreas 404

	Title Page
	Preface
	Organization
	Table of Contents
	Exploiting Unique Fixed Points
	Scrap Your Type Applications
	Introduction
	System F
	The System
	Uniqueness of Types
	Redundant Type Applications

	System IF
	Type System of IF
	Dynamic Semantics of System IF
	Translation to System F
	Properties of System IF
	Extension to Higher Kinds
	Eta-Rules

	Practical Implications
	Variable Bindings and Occurrences
	Optimisation and Transformation
	Code Size
	Compilation Time

	Related Work
	Type Inference
	Reducing the Cost of Types
	Pattern Calculus

	FurtherWork
	Conclusions
	References

	Programming with Effects in Coq
	Verifying a Semantic $\beta\eta$-Conversion Test for Martin-L$\"{o}$f Type Theory
	Introduction
	Semantic Type and Equality Checking
	Syntax
	Values
	Type Checking
	Checking Equality

	Specification: Typing with Explicit Substitutions
	Verification Plan and Contextual Reification
	Contextual Reification

	Kripke Model and Completeness of NbE
	An Induction Measure
	Construction of the Kripke Model
	The Kripke Model
	Validity of Syntactic Typing

	Kripke Logical Relation and Soundness of NbE
	Completeness of Algorithmic Equality
	Strong Semantic Typing and Soundness of Algorithmic Equality
	Super Kripke Model
	Strong Validity of Syntactic Typing

	OnTermination
	Conclusion and Related Work
	References

	The Capacity-C Torch Problem
	Outline Strategy
	Terminology
	Regular Sequences
	Scheduling Forward Trips

	The Optimisation Problem
	Choosing Nomads
	Permuting Settlers
	Filling Non-nomadic Trips

	Constructing an Optimal Bag of Forward Trips
	Outline Algorithm
	Adding Pure Trips
	Adding Full Mixed Trips
	Completing the Mixed Trips
	Adding Nomadic Trips
	Solving the Equations

	Conclusion
	References

	Recounting the Rationals: Twice!
	Euclid’s Algorithm
	Enumerating the Rationals
	Enumerating Products of L and R
	The Enumerations

	Discussion
	References

	Zippy Tabulations of Recursive Functions
	Introduction
	Top-Down Computation
	Examples
	Bottom-Up Tabulation
	Examples Revisited
	Proofs
	Proof of Theorem 1

	Non-layered Decompositions
	Non-symmetric Decompositions
	Summary
	References

	Unfolding Abstract Datatypes
	Introduction
	Abstract Types Have Existential Type
	An Example: Complex Numbers
	An Alternative Implementation
	An Explicit Signature for Complex Numbers
	Abstract Datatype Genericity

	Data and Codata
	Greatest Fixpoint Types as Codata
	Proof Methods for Codata
	Final Coalgebras
	Proving Equivalence

	StreamFusion
	An Abstract Datatype of Streams
	Stream Operations
	A List Interface
	Eliminating Conversions
	Destroying Streams
	Unfolding Observations
	Streams That Skip
	Reasoning with Skips

	Conclusions
	Related Work
	Summary

	References

	Circulations, Fuzzy Relations and Semirings
	Introduction
	Fuzzy Relations
	Definition and Basic Operations
	Composition, Powers and Star
	Cardinality of Fuzzy Relations
	Test Relations

	Flows in Networks
	Networks and Flows
	The Max-Flow Min-Cut Theorem

	Networks with Lower Bounds
	Definitions and Background
	Circulations in Networks with Lower Bounds
	Extending Pseudo-networks
	Existence of Circulations
	Algorithmic Aspects
	Another Existence Criterion

	Conclusion and Future Work
	References

	Asynchronous Exceptions as an Effect
	Introduction
	Summary of the MMAE

	Background on Monads and Monad Transformers
	Non-determinism as a Monad
	A Monadic Model for Asynchronous Exceptions
	Monadic Algebra of Effects
	Interactions between Effects

	The MMAE as a Semantic Framework
	The MMAE as a Programming Model
	Monad Hierarchy
	Resumption Maps
	Adding Asynchronicity in Two Steps

	Related Work
	Future Work and Conclusions
	References

	The B$\"{o}$hm–Jacopini Theorem Is False, Propositionally
	Introduction
	Preliminaries
	Propositional vs. First-Order Logic
	Guarded Strings
	Automata with Tests
	Strictly Deterministic Automata
	Bisimulation
	Structured Programming Constructs

	While Programs Are Not Sufficient
	Loop Programs with Multi-level Breaks
	TheLoopHierarchy
	Conclusion and Open Problems
	References

	The Expression Lemma
	Introduction
	Informal Development
	Interfaces and Coalgebras
	Object Construction by Unfolding
	Converting State Trees to Object Trees
	Implementing Interfaces by Folds over State Trees
	The Expression Lemma

	The Basic Categorical Model
	Interface Functors
	F-(co)Algebras and Their Morphisms
	Simple Distributive Laws
	The Simple Expression Lemma

	Classes of Dualizable Folds
	Void Folds
	Natural Folds
	FreeMonadic Folds
	Cofree Comonadic Folds

	The Categorical Model Continued
	((Co)free) (Co)monads
	(Co)monadic (Co)algebras and Their Morphisms
	Distributive Laws of Monads over Comonads
	Conservativeness of Free Distributive Laws
	The Generalized Expression Lemma

	Related Work
	Concluding Remarks
	References

	Nested Datatypes with Generalized Mendler Iteration: Map Fusion and the Example of the Representation of Untyped Lambda Calculus with Explicit Flattening
	Introduction
	Mendler-Style Iteration
	Plain Mendler-Style Iteration MIt
	Generalized Mendler-Style Iteration $GMIt$

	Logic for Natural Generalized Mendler-Style Iteration
	$LNMIt$
	$LNGMIt$

	Naturality in $LNGMIt$
	Completion of the Case Study on Substitution
	Results for Hereditarily Canonical Terms
	Hereditarily Canonical Terms as a Nested Datatype

	Conclusions and Future Work
	References

	Probabilistic Choice in Refinement Algebra
	Introduction
	Probabilistic Model
	Expectations and Expectation Transformers
	Commands
	Healthiness Conditions

	General Refinement Algebra
	Probabilistic Refinement Algebra
	Probabilistic Refinement Algebra with Assertions
	Probabilistic Choice Statements and Loops
	Correctness Assertions
	Termination and Enabledness
	Termination
	Enabledness

	Observations
	Conclusions
	References

	Algebra of Programming Using Dependent Types
	Introduction
	A Crash Course on Agda
	First-Order Logic
	Identity Type
	Preorder Reasoning
	Functional Derivation

	Relational Derivation
	Modelling Relations
	Inclusion and Monotonicity
	Relational Fold

	Example: Deriving Insertion Sort
	Specifying Sort
	The Derivation

	Conclusion and Related Work
	References

	Safe Modification of Pointer Programs in Refinement Calculus
	Introduction
	Refinement Calculus and Its Formalization
	Axiomatization of States
	Expressions and Predicates over States
	Separation Logic Formulas
	Predicate Transformers

	Statements as Predicate Transformers
	Basic Program Statements
	Abstract Statements
	Pointer Statements

	Refinement Laws
	Laws for Local Variable Scoping
	Laws for Assertions and Assumptions and Their Separating Counterpart
	Commutativity Laws for Statements

	Refinement of Pointer Statements
	Example: Recycling Heap beyond Loop Boundaries
	Conclusion and Future Work
	References

	A Hoare Logic for Call-by-Value Functional Programs
	Introduction
	The Underlying Logic
	Syntax
	Interpretation

	The Computational Language
	Syntax
	Lifting Computational Entities to the Logical Level
	Inferring Strongest Postconditions
	Notions of Substitution
	Operational Semantics

	The Type System and Proof System
	Environments
	Proof Obligations
	Judgements
	Values
	Patterns
	Expressions
	Algorithmic Reading
	Soundness

	AFewExtensions
	Interfacing with External Theorem Provers
	Coq
	Alt-Ergo

	Application: Finite Sets as Binary Search Trees
	Parameters
	Definitions
	Membership in a Binary Search Tree
	First-Order Iteration
	Higher-Order Iteration
	Quantitative Results

	Related Work
	Conclusion
	References

	Synthesis of Optimal Control Policies for Some Infinite-State Transition Systems
	Introduction
	Action Programs, Transition Graphs and Reachability
	Action Programs and Control Policies
	Graphs, Paths and Their Costs
	Reachability Precondition

	State-Based Synthesis of Optimal Policies
	Development of a Symbolic Generator for Optimality
	Stratification of Optimal Guards
	Transformations into Computation Formulas
	Running Example (Continued)

	Symbolic Synthesis of Optimal Policies
	Symbolic Generator for Optimality
	Complexity
	Running Example (Continued)
	Additional Derivations

	Related Work
	Symbolic Synthesis of Reachability Preconditions
	Symbolic Synthesis of Fast-Termination Policies
	Symbolic Generators for Optimality in Related Systems

	Concluding Remarks
	References

	Modal Semirings Revisited
	Introduction
	Domain Semirings
	Irredundancy and Irreducibility of Domain Axioms
	Basic Domain Calculus
	DomainAlgebras
	Domain Algebras and Boolean Algebras
	Semiring Modules and Modal Semirings
	Boolean Domain Semirings
	Expressivity of Boolean Domain Semirings
	Antidomain
	Heyting Domain Semirings
	Application: Termination Analysis
	Conclusion
	References

	Asymptotic Improvement of Computations over Free Monads
	Introduction
	A Specific Example
	The Generic Setting
	A More Realistic Example
	Related Work
	Structuring Haskell IO by Combining Free Monads
	Short Cut Fusion for Monadic Computations

	Conclusion
	References

	Symmetric and Synchronous Communication in Peer-to-Peer Networks
	Introduction
	Motivation
	Related Work
	Overview of the Paper

	Preliminaries
	CSP
	Graph Theory
	Symmetric Electoral Systems

	Setting the Stage
	Pairwise Synchronization
	Peer-to-Peer Networks
	G-Symmetry

	Results
	Positive Results
	Negative Result

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

