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Abstract. We analyse the validity of several common program trans-
formations in multi-threaded Java, as defined by the Memory Model
section of the Java Language Specification. The main design goal of the
Java Memory Model (JMM) was to allow as many optimisations as pos-
sible. However, we find that commonly used optimisations, such as com-
mon subexpression elimination, can introduce new behaviours and so are
invalid for Java. In this paper, we describe several kinds of transforma-
tions and explain the problems with a number of counterexamples. More
positively, we also examine some valid transformations, and prove their
validity. Our study contributes to the understanding of the JMM, and
has the practical impact of revealing some cases where the Sun Hotspot
JVM does not comply with the Java Memory Model.

1 Introduction

Although programmers generally assume an interleaved semantics, the Java Lan-
guage Specification defines more relaxed semantics, which is called the Java
Memory Model [11,18]. The reasons for having a weaker semantics become ap-
parent from the following example:

Initially, x = y = 0
x = 1 if (x==1) {
if (y==1) x = 0
print x y = 1

}

The question is: can this program ever print 1? In the interleaved semantics, the
answer is no, because if the program prints at all then all the instructions of the
second thread must be executed between the statements x=1 and if (y==1) of
the first thread. Hence, if the program prints, the write x=1 must be overwritten
by the assignment x=0, and the program prints 0.

In reality, a modern optimising compiler, such as Sun HotSpot JVM or GCJ,
will replace print x by print 1, because the read of x can reuse the value pre-
viously written to x. After this optimisation, the program can print 1, which was
not a possible behaviour of the original program. One could argue that compil-
ers should only perform optimisations that are safe for multi-threaded as well as
single-threaded programs; however, most modern processors would perform op-
timisations like this. Preventing the hardware from optimising memory accesses
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comes at much higher cost than a missed optimisation in a compiler—typical
memory barrier instructions consume hundreds of cycles and should be avoided
if they are not necessary.

Instead of guaranteeing sequential consistency for all programs, the Java Lan-
guage Specification defines a semantics that guarantees sequential consistency
(interleaved semantics) for data race free programs, while giving some basic
security guarantees for programs with data races. The authors of the Java Mem-
ory Model claim that the JMM is flexible enough to validate commonly used
hardware and compiler optimisations. They give a theorem in [18], which states
that reordering of certain combinations of statements is a valid transformation.
However, Cenciarelli et al. [9] discovered a counterexample, which shows that
reordering of independent memory accesses is invalid in the JMM.

This raises several questions: What common transformations are valid in the
JMM? Can we fix the memory model so that more or all these transformations
become valid? We have made initial steps to address this question—in earlier
work we suggested a subtle variation of the JMM definition and conjectured that
their version allows reordering of independent statements.

Contribution. In this paper, we analyse several commonly used local optimisa-
tions and classify them by their validity in the Java Memory Model. We prove
that removal of redundant reads after writes and writes after writes are valid
transformations in the JMM. With the alternative definition suggested in [5]
we also establish validity of reordering of independent statements. On the other
hand, we demonstrate that some other cases of reordering, which [18] claims
to be valid, are not generally valid transformations. For example, swapping a
normal memory access with a consequent lock can introduce new behaviours,
and thus is not a valid transformation. Another example of an invalid transfor-
mation is reusing a value of a read for a subsequent read, or an introduction of
an irrelevant read. With this analysis, we establish that the JMM is still flawed,
because these transformations are performed by hardware and compilers. Even
Sun’s Hotspot JVM [19] performs transformations that are not compliant with
the JMM.

1.1 Introduction to the JMM

We illustrate the key properties of the JMM on three canonical examples (from
[18]), given in Fig. 1. The programs show statements in parallel threads, oper-
ating on thread-local registers (r1, r2, . . . ) and shared memory locations (x, y,
. . . ). We assume no aliasing, different location names denote different locations.

In an interleaved semantics, program A could not result in r1 = r2 = 1,
because one of the statements r1=x, r2=y must be executed first, thus either
r1 or r2 must be 0. However, current hardware can, and often does, execute
instructions out of order. Imagine a scenario where the read r1=x is too slow
because of cache management. The processor can realise that the next statement
y=1 is independent of the read, and instead of waiting for the read it performs
the write. The second thread then might execute both of its instructions, seeing
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initially x = y = 0
r1 = x r2 = y
y = 1 x = 1

initially x = y = 0
lock m1 lock m2
r1=x r2=y
unlock m1 unlock m2
lock m2 lock m1
y=1 x=1
unlock m2 unlock m1

initially x = y = 0
r1 = x r2 = y
y = r1 x = r2

A. (allowed) B. (prohibited) C. (prohibited)

Is it possible to get r1 = r2 = 1 at the end of an execution?

Fig. 1. Examples of legal and illegal executions

the write y=1 (so r2 = 1). Finally, the postponed read of x can see the value
1 written by the second thread, resulting in r1 = r2 = 1. Similar non-intuitive
behaviours could result from simple compiler optimisations, as illustrated in the
introduction.

However, there are limits on the optimisations allowed—if the programmer
synchronises properly, e.g., by guarding each access to a field by a synchronised
section on a designated monitor, then the program should only have sequentially
consistent behaviours. This is why the behaviour r1 = r2 = 1 must be prohibited
in program B of Fig. 1. This guarantee for data race free programs is called DRF
guarantee.

Even if a program contains data races, there must be some security guarantees.
Program C in Fig. 1 illustrates an unwanted “out-of-thin-air” behaviour—if a
value does not occur anywhere in the program, it should not be read in any
execution of the program. The out-of-thin-air behaviours could cause security
leaks, because references to objects from possibly confidential parts of program
could suddenly appear as a result of a self-justifying data race.

2 Transformations and Traces

In this section we give an overview of the classes of program transformations
that we have considered. Most common compiler transformations, such as com-
mon subexpression elimination, dead code elimination, and various types of loop
optimisations can be expressed as a composition of our basic transformations.
Similarly to [18], we will consider a transformation valid if it does not introduce
any new behaviours. A valid transformation may reduce the possible behaviours.
In Table 1 we classify the transformations by their validity under sequential con-
sistency (column ‘SC’), in the current Java Memory Model (column ‘JMM’), and
in the memory model modification suggested in [5] (column ‘JMM-Alt’). Note
that the JMM is in fact stricter than sequential consistency in terms of closure
under some transformations, even though the JMM is more relaxed in the sense
that any sequentially consistent execution is a JMM execution.
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In the following subsections we describe the transformations and explain them
through examples. The proofs and counterexamples for (in)validity in the JMM
will follow in Sect. 4, after we have explained the mechanics of the JMM in
Sect. 3.

Table 1. Validity of transformations in the JMM

Transformation SC JMM JMM-Alt
Trace-preserving transformations � � �
Reordering normal memory accesses × × �
Redundant read after read elimination � × ×
Redundant read after write elimination � � �
Irrelevant read elimination � � �
Irrelevant read introduction � × ×
Redundant write before write elimination � � �
Redundant write after read elimination � × ×
Roach-motel reordering ×(�for locks) × ×
External action reordering × × ×

2.1 Traces

To describe some of the thread-local transformations we introduce the notion of
memory traces, which also constitute the connection between the JMM and the
sequential part of the Java language1. The memory traces are finite sequences
of memory operations, which can be of the following kinds:

– volatile read Rdv(v, i),
– volatile write Wrv(v, i),
– normal read Rd(x, i),
– normal write Wr(x, i),
– external action Ex(i),

– lock L(m),
– unlock U(m),
– thread start St,
– thread finish Fin,

where x is a non-volatile memory location, v is a volatile memory location, i is a
value, and m is a synchronisation monitor. In the spirit of the JMM, we consider
an external action to be an output of a value. The meaning of a sequential
program is then a prefix-closed set of the memory traces that can be performed
by the program.

For example, assuming that v is a volatile memory location, x and y non-
volatile locations, m a monitor, and r a thread-local register, the meaning of the
program

v:=1; lock m; r:=x; y:=r; unlock m; print(r)

is the prefix closure of the set

1 The JMM calls this connection intra-thread consistency.
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{[St, Wrv(v, 1), L(m), Rd(x, i), Wr(y, i), U(m), Ex(i), Fin] | i is a value}.

All our transformations can be generalised as transformations on memory
traces, and we will show this later in this paper when proving validity of some
transformations (Subsect. 4.2 and App. B).

2.2 Transformations

In the following paragraphs we describe the transformations that we have con-
sidered in our analysis. Our transformations are local, i.e., they should be valid
in any context.
Trace-preserving Transformations. Because the meaning of a program in the
JMM is just the set of its traces, any transformation that does not change the
set of traces must trivially be valid. E.g., if both branches of a conditional—
whose guard does not examine memory—contain the same code, it is valid to
eliminate the conditional, as illustrated by the transformation

if (r1==1)
{x=1;y=1}

else {x=1;y=1}
� x=1

y=1

Reordering. Reordering of independent statements is an important transforma-
tion that swaps two consecutive non-synchronisation memory accesses. It is often
performed in hardware [13,12,24], or in a compiler’s loop optimiser [15,10]. The
following program transformation shows a reordering of two independent writes.

x=1
y=1

−→ y=1
x=1

Although Manson et al. claim this transformation to be valid in the JMM
[18, Theorem 1], Cenciarelli et al. [9] found a counterexample to this. In earlier
work [5], we suggested a simple fix and conjectured that it makes reordering
of independent memory accesses valid. We state and prove this claim precisely
in Subsect. 4.2 and App. B. Demonstrating a successful repair for this crucial
property is one of the main contributions of this paper.

Redundant (Duplicated) Read Elimination. Elimination of a redundant read is a
transformation that replaces a read immediately preceded by a read or a write
to the same variable by the value of that read/write. This transformation is
often performed as a part of common subexpression elimination optimisations
in compilers. For example, the two examples of transformations below reuse the
value of x stored in register r1 instead of re-reading x:

r1 = x
r2 = x
if (r1==r2)

y = 1

−→

r1 = x
r2 = r1
if (r1==r2)
y = 1

x = r1
r2 = x
if (r1==r2)
y = 1

−→

x = r1
r2 = r1
if (r1==r2)

y = 1
(read after read) (read after write)

Later we will show that redundant read elimination is valid in the JMM for
a read after a write, but invalid for a read after a read.
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Irrelevant Read Elimination. A read statement can also be removed if the value
of the read is not used. For example, r1=x;r1=1 can be replaced by r1=1, because
the register r1 is overwritten by the value 1 immediately after reading shared
variable x, and thus the value read is irrelevant for the continuation for the
program. An example of this transformation is dead code elimination because of
dead variables. It is valid in the JMM.

Irrelevant Read Introduction. Irrelevant read introduction is the inverse transfor-
mation to the irrelevant read elimination. It might seem that this transformation
is not an optimisation, but modern processor hardware often introduces irrele-
vant reads speculatively. For example, the first transformation in

if (r1==1) {
r2=x
y=r2

}

→

if (r1==1) {
r2=x
y=r2

} else r2=x

�
r2=x
if (r1==1)

y=r2

introduces irrelevant read of x in the else branch of the conditional (assuming
that r2 is not used in the rest of the program). In terms of traces, this is equiv-
alent to reading x speculatively, as demonstrated by the program on the right.
In Subsect. 4.1, we show that this is an invalid transformation in the JMM.

Redundant Write Elimination. This transformation eliminates a write in two
cases: (i) if it follows a read of the same value, or (ii) if it precedes another write
to the same variable. For example, in the first transformation in

r = x
if (r == 1)
x = 1

−→ r = x
x = 1
x = 3

−→ x = 3

(write after read) (write before write)

the write x=1 can be eliminated, because in all traces where the write occurs,
it always follows a read of x with value 1. The other transformation shows the
elimination of a previous overwritten write. This transformation is often included
in peephole optimisations [4]. Similarly to the read elimination, it is valid in the
JMM before a write, but invalid after a read.

Roach-motel Semantics. Intuitively, increasing synchronisation should limit a
program’s behaviours. In the limit, if a program is fully synchronised, i.e., data
race free, the DRF guarantee promises only sequentially consistent behaviours.
One way of increasing synchronisation is moving normal memory accesses into
synchronised blocks, as in

x=1
lock m
y=1

unlock m

−→

lock m
x=1
y=1

unlock m
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Although compilers do not perform this transformation explicitly, it may be per-
formed by underlying hardware if a synchronisation action uses only one memory
fence to prevent the code inside a synchronised section from being reordered to
outside of the section. Manson et al. [18, Theorem 1] claim that this transforma-
tion is valid. We show a counterexample to this in Subsect. 4.1, so unfortunately
it is invalid in general.

Reordering with external actions. As well as reordering memory operations with
one another, one may consider richer reorderings, for example, reordering mem-
ory operations with external operations. This seems more likely to alter the
behaviour of a program, but it is valid for data race free programs under se-
quential consistency. For example, the exchange of printing a constant with a
memory write: x=1;print 1 −→ print 1;x=1. Theorem 1 of [18] incorrectly
states that this transformation is valid in the JMM.

3 JMM Operationally

To reason about the Java Memory Model, we introduce an intuitive operational
interpretation, based on some observations about the construction of the formal
definition2. This re-interpretation will allow us to explain key counterexamples
in a direct way in the next section. The formal definition of the memory model
is used to argue about validity; our adjusted definition is given in detail App. A
(the original is given in [11]).

Unlike interleaved semantics, the Java Memory Model has no explicit global
ordering of all actions by time consistent with each thread’s perception of time,
and has no global store. Instead, executions are described in terms of memory
related actions, partial orders on these actions, and a visibility function that
assigns a write action to each read action. We first explain the building blocks
of Java executions, then we show how Java builds legal executions out of simple
“well-behaved” executions.

JMM actions and orders. An action is a tuple consisting of a thread identifier,
an action kind, and a unique identifier. Action kinds were described in Sect. 2.1.

The volatile read/write and lock/unlock actions are called synchronisation
actions. An execution consists of a set of actions, a program order, a synchroni-
sation order, a write-seen function, and a value-written function. The program
order (≤po) is a total order on the actions of each thread, but it does not relate
actions of different threads. All synchronisation actions are totally ordered by
the synchronisation order (≤so). From these two orders we construct a happens-
before order of the execution: action a happens-before action b (a ≤hb b) if (1) a
synchronises-with b, i.e., a ≤so b, a is an unlock of m and b is a lock of m, or a
is a volatile write to v and b is a volatile read from v, or (2) a ≤po b, or (3) there
is an action c such that a ≤hb c ≤hb b. The happens-before order determines an

2 Jeremy Manson made essentially the same observations in his description of his
model checker for the JMM [17].
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upper bound on the visibility of writes—a read happening before a write should
never see that write, and a read r should not see a write w if there is another
write happening “in-between”, i.e., if w ≤hb w′ ≤hb r and w �= w′, then r cannot
see w.3

We say that an execution is sequentially consistent if there is a total order
consistent with the program order, such that each read sees the most recent
write to the same variable in that order. A pair of memory accesses to the same
variable is called a data race if at least one of the accesses is a write and they are
not ordered by the happens-before order. A program is correctly synchronised
(or data-race-free) if no sequentially consistent execution contains a data race.

A thorny issue is initialisation of variables. The JMM says

The write of the default value (zero, false, or null) to each variable
synchronises-with to the first action in every thread [11]

However, normal writes are not synchronisation actions and synchronises-with
only relates synchronisation actions, so normal writes cannot synchronise-with
any action. For this paper, we will assume that all default writes are executed in
a special initialisation thread and the thread is finished before all other threads
start.

Committing semantics. The basic building blocks are well-behaved executions,
in which reads are only allowed to see writes that happen before them. In
other words, in these executions reads cannot see writes through data races,
and threads can only communicate through synchronisation. For example, pro-
grams A and C in Fig. 1 have just one such execution—the one, where r1 = r2 =
0. On the other hand, the behaviours of program B are exactly the behaviours
that could be observed by the interleaved semantics, i.e. r1 = r2 = 0, or r1 = 1
and r2 = 0, or r1 = 0 and r2 = 1. In fact, if a program is correctly synchronised
then its execution is well-behaved if and only if it is sequentially consistent [18,
Lemma 2]. This does not hold for incorrectly synchronised programs (e.g., see
the first counterexample in Subsect. 4.1).

The Java Memory Model starts from a well-behaved execution and commits
one or more read-write data races from the well-behaved execution. After com-
mitting the actions involved in the data races it “restarts” the execution, but
this time it must execute the committed actions. This means that each read
in the execution must be either committed and see the value through the race,
or it must see the write that happens-before it. Similarly, all committed writes
must be executed in the restarted execution and must write the same value.
The JMM can repeat the process, i.e., it may choose some non-committed reads
involved in a data race, commit the writes involved in these data races if they
are not committed already, commit the chosen reads, and restart the execu-
tion. The executions constructed using this procedure are called legal execu-
tions.

3 For details, see Defs. 2, 4 and 7 in App. A.
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The JMM imposes several requirements on the committing sequence:

1. All subsequent (restarted) executions must preserve happens-before ordering
of all the committed actions. Cenciarelli et al. [9] observed that this require-
ment makes reordering of independent statements invalid. In our earlier work
[5], we suggested that the happens-before ordering should be preserved only
between a read and the write it sees. We showed there that this revision still
satisfies the DRF guarantee; in this paper we further establish that validity
of reordering is indeed rescued in this version.

2. If some synchronisation happens-before the committed data race(s), the syn-
chronisation must be preserved in all subsequent executions4.

3. All external actions that happen-before any committed action must be com-
mitted, as well.

This committing semantics imposes a causality order on races—the outcome of
a race must be explained in terms of previously committed races. This prevents
causality loops, where the outcome of a race depends on the outcome of the
very same race, e.g., the outcome r1 = 1 in program C in Fig. 1. The DRF
guarantee is a simple consequence of this procedure. If there are no data races in
the program, there is nothing to commit, and we can only generate well-behaved
executions, which are sequentially consistent for data race free programs.

In fact, the JMM, as defined in [11], actually commits all actions in an exe-
cution, but committing a read that sees a write that happens-before it does not
create any opportunities for committing new races, because reads can see writes
that happen-before them in a well-behaved execution. This is why we need to
consider only read-write races and not write-write races. Similarly, committing
synchronisation actions does not create any committing opportunities and can
be always performed in the last step. Therefore, the central issue is committing
read-write data races, and we explain our examples using this observation.

Example. An example should help make the operational interpretation clearer.
First, we demonstrate the committing semantics on program A in Fig. 1. In the
well-behaved execution of this program, illustrated by the first diagram in Fig. 2,
the reads of x and y can only see the default writes of 0, because there is no
synchronisation. This results in r1 = r2 = 0.

W (x,0); W (y,0)

������
�����

�

R(x, 0)
��

R(y, 0)
��

W (y,1) W (x,1)

W (x, 0); W (y, 0)

�����
��

�����
��

R(x, 0)
��

[R(y, 1)]
��

[W (y, 1)] W (x,1)

W (x,0); W (y,0)

�����
��

�����
��

[R(x, 1)]
��

[R(y, 1)]
��

[W (y, 1)] [W (x, 1)]

Fig. 2. Justifying executions of program A from Fig. 1

There are two data races in this execution (depicted by the dotted lines, the
solid lines represent the happens-before order)—one on x and one on y. We can
4 For a formal definition, see rule 8 in the list that follows Def. 8.
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commit either one of the races or both of them. Suppose we commit the race
on y. In the second diagram we show the only restarted execution that uses this
data race; the committed actions are in brackets and the committed read sees
the value of (the write in) the data race. The non-committed read sees the write
that happens-before it, i.e., the default write. This execution gives the result
r1 = 0 and r2 = 1. The JMM can again decide to commit a data race from
the execution. There is only one such data race. Committing the data race on x
gives the last diagram, and results in r1 = r2 = 1.

4 Validity of Transformations

This sections contains the technical explanations of validity and invalidity of the
transformations. All invalidity arguments will be carried in the finite version5 of
the Java Memory Model as described in [11], but the same arguments apply to
the alternative weaker memory model JMM-Alt. On the other hand, the validity
argument will refer to the more permissive JMM-Alt. It is straightforward to
simplify the argument to prove the valid transformations of the original JMM.

4.1 Invalid Transformations

In this subsection we show and explain our counterexamples for the invalid trans-
formations. The examples follow the same pattern—at first we list a programwhere
a certain behaviour is not possible in the JMM, and then we show that after the
transformation the behaviour becomes possible (in the JMM). This shows that
the transformation in question is invalid, because any run of the transformed pro-
gram should be indistinguishable from some run of the original program. In the
Java Memory Model, the behaviour of a program is essentially the set of external
actions, such as printing, performed by the program6. In our examples, we will
consider final contents of registers being part of the program’s behaviour, because
we could observe them by printing them at the end of each thread.

Redundant Write After Read Elimination

initially x = 0
lock m1 lock m2 lock m1
x=2 x=1 lock m2

unlock m1 unlock m2 r1=x
����

r2=x
unlock m2

unlock m1

5 We use the finite version, because the infinite JMM is inconsistent [5].
6 The definition in [18] is slightly more complex because of non-terminating executions

and ordering, see Def. 10 for details. Our examples are always terminating.
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First note that no well-behaved execution of this program contains a read-
write data race, so all legal executions of this program are well-behaved. More-
over, in all executions the read r2=x must see the write x=r1, because it over-
writes any other write. As the write x=r1 always writes the value that is read
by r1=x, we have that r1 = r2.

On the other hand, if a compiler removes the redundant write x=r1, the reads
r1=x and r2=x can see different values in a well-behaved execution, e.g., we
might get the outcome r1 = 1 and r2 = 2.

Redundant Read After Read Elimination. The counterexample for the
elimination of a read after a read uses a trick with switching the branches of an
if statement—in the first well-behaved execution we take one branch, and then
we commit a data race so that we can take the other branch after we restart.
Let us examine the program below.

x = y = 0
r1=x r2=y
y=r1 if (r2==1) {

����

x=r3
} else x=1

The question is whether we can observe the result r2 = 1. This result is not
possible in this program, but it becomes possible after rewriting r3=y to r3=r2.

First we show that this is not possible with the original program: With the
initially empty commit set we can get just one well-behaved execution—the one,
where r1 = r2 = 0. In this well-behaved execution, we have two data races:
(i) between the actions preformed by y=r1 and r2=y with value 0, (ii) between
the actions performed by r1=x and x=1 with value 1. If we commit (i), we are
stuck with r2 = 0, because all subsequent restarted executions must perform
the committed read of y with the value 0. If we commit (ii) and restart, we get
an execution, where r1 = 1, so we can now commit the data race between y=r1
and r2=y with value 1. After we restart the execution, suppose we were to read
r1 = r2 = 1. Then r3=y must read a value that happens-before it; the only such
value is the default value 0, but then x=r3 must write 0, which contradicts the
commitment to perform the write of 1 to x.

On the other hand, if JVM transforms the read r3=y into r3=r2, we can
obtain the result r2 = 1 by committing the data race between r1=x and x=1,
restarting, committing the data race between y=r1 and r2=y, and restarting
again. As opposed to the original program, now we can keep the commitment to
write 1 to x, because r3 = r2 = 1 in the transformed program.

Roach Motel Semantics. We demonstrate the invalidity of roach motel se-
mantics on the program:
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initially x = y = z = 0
lock m lock m ���� r3= y
x=2 x=1 ��	
 � z=r3

unlock m unlock m r2=z
if (r1==2)

y=1
else

y=r2
unlock m

This program cannot result in r1 = r2 = r3 = 1 in the JMM: In all well-behaved
executions of this program, we have r1 = r2 = r3 = 0, and four data races—two
on x with values 1 and 2, then on y and z with value 0. If we commit the data
race on y (resp. z, resp. x with value 2) we would be stuck with r3 = 0 (resp.
r2 = 0, resp. r1 = 2), so we can only commit a race on x. However, if we commit
the race with x=1 and restart, we are only left with races on z and y with value
0. Committing any of these races would result in r2 and r3 being 0.

However, after swapping r1=x and lock m the program offers more freedom to
well-behaved executions, e.g., the read r1=x can see value 2 (without committing
any action on x!), and we can commit the data race on y with value 1 (see
execution A from Fig. 3). After restarting, we can commit data race on z with
value 1. After another restart, we change the synchronisation order so that the
write x=1 overwrites the write x=2, and the read r1=x sees value 1 (see execution
B from Fig. 3). In this execution, we have r1 = r2 = r3 = 1.

W (x, 0); W (y, 0);W (z, 0)

�������������

������������

L(m)
��

L(m)
��

R(y, 0)
��

W (x, 2)
��

L(m)
��

R(x, 2)
��

W (z, 0)

U(m)

��

W (x,1)
��

R(z, 0)
��

U(m) W (y,1)
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A. B.

Fig. 3. Justifying and final executions for the roach motel semantics counterexample

Note that this committing sequence respects the rule that all the subsequent
restarted executions must preserve synchronisation that was used to justify the
previous data races, because our committing sequence only introduces new syn-
chronisation that in effect overwrites the write x=2 with the write x=1. This prob-
lem seems to be hard to solve in a committing semantics based on well-behaved
executions, because more synchronisation gives more freedom to well-behaved
executions and allows more actions to be committed.
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Irrelevant Read Introduction. The counterexample for irrelevant read in-
troduction uses the trick with switching branches again. The program

x = y = z = 0
r1 = z x = 1
if (r1==0) { r2 = y
r3 = x z = r2
if (r3==1) y = 1

} else {
��� � �

r4 = 1
y = r1

}

cannot result in r1 = r2 = 1: its only well-formed execution has data races on x
with value 1 and z with value 0. We cannot commit the data race on z, because
then r1 would remain 0. If we commit the data race on x and restart, we have
a new data race between y=1 and r2=y. After committing it and restarting, we
can try to commit the data race on z with value 1. However, after this commit
and restart, we cannot fulfil the commitment to perform the data race on x.

On the other hand, if we introduce the irrelevant read r4=x by uncommenting
the commented-out line, we can keep the commitment to perform the committed
read on x, and the program can result in r1 = r2 = 1. This seems to be another
deep problem with committing semantics—even introducing a benign irrelevant
read may validate some committing sequence that was previously invalid.

Reordering with External Actions. The program

x = y = 0
r1=y r2=x
if (r1==1) y=r2

x=1
else {����� ���; ���}

cannot result in r1 = r2 = 1 in the JMM, because to have r2 = 1 we must
commit the data race on x and, by the rule for committing external actions, also
the external printing action. To get r1 = 1 we must also commit the race on
y, but then we are not able to keep the commitment to perform the committed
printing action.

However, if we swap print "!" with x=1 in the else-branch, the rule for
external actions does not apply, and we can commit the race on x, and then the
race on y, resulting in r1 = r2 = 1.

4.2 Valid Transformations

In this subsection we outline the proof of the validity of irrelevant read elimina-
tion, read after write elimination, write after write elimination, and reordering of
independent non-volatile memory accesses in the weaker memory model (JMM-
Alt). Using the same method one could also prove that the first three of these
transformations are valid in the standard JMM [11].
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The validity of a transformation says that any behaviour of the transformed
program is a behaviour of the original program. We prove the validity very
directly—we take an execution of the transformed program that exhibits the be-
haviour in question, then we apply an ‘inverse’ transformation to the execution,
and finally we show that the untransformed execution has the same behaviour as
the one of the transformed program. Since the details of the proof are somewhat
technical, we show a careful proof in App. B. In this section we only explain
informally the main ideas, i.e., the construction of the inverse transformation,
and the relationship between the transformations on programs and the memory
traces. Note that our proof technique does not consider non-termination being
a behaviour; we only prove safety of transformations. We leave the preservation
of termination for future work.

The main idea of the proof is that we describe transformations using their
‘inverse’ transformations. We will say that P ′ is a transformation of P if for any
trace t′ ∈ P ′ there is an untransformation in P . By the untransformation we
mean a trace t of P together with an injective function f that describes a valid
reordering of the actions of t′. Moreover, each action of t that is not in rng(f)
must be either (i) a redundant read after write, i.e., it must be a read of the same
value as the last write to the same variable in the trace, and there cannot be any
synchronisation or read from the same variable in between, or (ii) a redundant
write before write, i.e., the write must precede another write to the same variable
such that there is no read from the same location or synchronisation in between,
or (iii) an irrelevant read, i.e., the value of the read cannot affect validity of the
trace t in P . For formal details, see Def. 11. By induction on the operational
execution of sequential programs, we can show that the program transforma-
tions on the syntax level implies the existence of an untransformed trace and an
untransformation function for each trace of the transformed program.

For example, the programon the left in Fig. 4 canbe transformed to the program
on the right of the arrow, because for each trace of the transformed program there
is its untransformation. For example, for the trace t′ (on the right of Fig. 4) of the
transformedprogramthere is a trace t of the original program, anda function f that
determines the reordering of the actions. Moreover, Wr(x, 2) is a redundant write
before write, Rd(x, 2) is a redundant read after write, and Rd(y, ∗) is an irrelevant
read, i.e., t is a valid trace of P if we replace ∗ by any value.

Having this definition, the proof is technical, but straightforward—given an ex-
ecution of the transformed program we construct an execution of the original pro-
gram by untransforming the traces of all its threads, while preserving the synchro-
nisation order (see the details in App. B). This is possible because the definition of
program transformation preserves ordering of synchronisation actions, thus guar-
anteeing consistency of the program order with the synchronisation order.

We also observe that the untransformed execution is legal: if we take the
committing sequence of data races and justifying executions, and untransform
the justifying executions, we get a legal committing sequence for the untrans-
formed program (Lemma 3). We conclude that any behaviour of the transformed
program is a behaviour of the original program (Theorem 1).
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r1=z
x=2
r2=x
z=r2
r3=y
x=3
y=r1

→

r1=z
y=r1
z=2
x=3

(Program) (Trace)

Fig. 4. Transformation of a program as a transformation on traces

5 Practical Impact

The flaw in the memory model is important in theory, but it is conceivable that it
might not be manifested in practical implementations, because JVMs compile to
stricter memory models than the JMM. It is natural to ask whether some widely
used JVM actually implements optimisations that lead to forbidden behaviours.
In fact, this is indeed the case! We have experimented with the Sun Hotspot
JVM [19] to discover this. For example, the first program in Fig. 5 cannot print
1 under the JMM (for details, see the counterexample for redundant read after
read elimination in Subsect. 4.1). A typical optimising compiler may reuse the
value of y in r2 and transform x=(r2==1)?y:1 → x=(r2==1)?r2:1, which is
equivalent to the second program from Fig. 5. Then it may reorder the write
to x with read of y, yielding the last program in Fig. 5. Observe that this
transformed program can print 1 using the interleaving x=1, r1=x, y=r1, r2:=y,
print r2. After minor modifications to the program, Sun Hotspot JVMs will
perform these transformations, so it does not comply with the JMM7.

x = y = 0
r1=x r2=y
y=r1 �������������

print r2

−→

x = y = 0
r1=x ����

y=r1 ���

print r2

−→

x = y = 0
r1=x x=1
y=r1 ����

print r2

Fig. 5. Hotspot JVM’s transformations violating the JMM

The program in Fig. 5 is not data-race-free. Should we worry about behav-
iours of correctly synchronised programs after optimisations? We conjecture that
any composition of the transformations from this paper applied to a correctly
synchronised program can only yield a program that does not have any new
behaviours. This means that Java implementations might be in fact correct,
i.e., satisfy the DRF guarantee, and it is only the JMM specification that needs
fixing.
7 Tested on Java HotSpot(TM) Tiered VM (build 1.7.0-ea-fastdebug-b16-fastdebug,

mixed mode), Linux x86. Further details are in a short technical report [25].
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6 Conclusion

We have examined the most common software and hardware local program trans-
formations and classified them by their validity in the Java Memory Model, and
its variation suggested by [5]. For each class of transformations we give either a
proof of its validity or a counterexample. Despite the JMM’s main design goal
to enable common optimisations, we show that the JMM does not allow several
commonly used optimisations although some of these transformations are valid
under the natural strict memory model–sequential consistency. This is a serious
flaw in the Java Memory Model, which does not seem to have an easy fix, as
discussed in the explanations of the counterexamples (Subsect. 4.1).

Related Work. The computer architecture community has studied the problem
of weak memory models (MM) for a long time, for a detailed survey see [3,2].
However, the problems of MMs in programming languages seems to be more
complex [20]. Most of the work has focused on alternative definitions of memory
models and proving the guarantee of sequential consistency for data race free
programs [16,1,9,23]. E.g., Cenciarelli et al. [9] describe a subset of the JMM
using the theory of configuration structures. However, they do not attempt to
prove validity of compiler transformations or compliance with any hardware
memory model. Saraswat et al. [23] use denotations of commands as functions on
partial stores and transformations on them to describe a memory model for their
X10 language. Although their work is based on transformations of denotations, it
is hard to map their transformations to program transformations in a Java-like
language because they use a language with restricted control-flow constructs.
Moreover, both [9] and [23] use languages that do not have any general loops,
and we do not see any easy way of adding them. To our knowledge, the only
work dealing with a program transformation in a weak memory model is the
POPL paper about the JMM [18]. Our paper shows a corrected version of their
proof, together with counterexamples for cases that seem to be hard to fix.
Brookes [8] studied program transformations in interleaved semantics using a
trace semantics, but his technique uses traces of global states, which makes it
hard to use with weak memory models.

There is some previous work that points out defects in the current JMM.
While looking for an alternative description based on event structures, Cencia-
relli et al. [9] observed that reordering of independent statements is an invalid
transformation. In our own previous work we found several minor flaws [5].

Future Work. Our main objective is to analyse the effects of the above trans-
formations on programs. We conjecture that for data race free programs these
transformations cannot introduce new behaviours, and for programs with data
races they satisfy some form of out-of-thin-air guarantees. To analyse the trans-
formations we intend to continue using the trace semantics, and employ ideas
from the trace semantics literature on shared memory and concurrency [7,22,14].
We believe that the JMM ought to be revised to admit all the transformations
considered in this paper.
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A JMM Definitions

The following definitions are mostly from [11,18]; however, we have weakened
the definition of execution legality as suggested in [5]. We use letters θ for thread
names, m for synchronisation monitor names, and v for variables (i.e., memory
locations, in examples, x, y, v etc.). The abstract type V will denote values.

The starting point is the notion of action.

Definition 1. An action is a memory-related operation; it is modelled by an
abstract type A with the following properties: (1) Each action belongs to one
thread, we will denote it by T (a). (2) An action is one of the following action
kinds:

– volatile read of v,
– volatile write to v,
– normal read from v,

– normal write to v,
– lock on m,
– unlock on m,

– thread start,
– thread finish,
– external action.

We denote the action kind of a by K(a), the action kinds will be abbreviated to
Rdv(v), Wrv(v), Rd(v), Wr(v), L(m), U(m), St, Fin, Ex. An action kind also
includes the associated variable or monitor. The volatile read, volatile write, lock,
unlock, start, finish actions are called synchronisation actions.

The JMM also defines thread spawn and join action kinds. We omit these for
simplicity.

http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://developers.sun.com/solaris/articles/sparcv9.html
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Definition 2. An execution E is a tuple E = 〈A, P, ≤po, ≤so, W, V 〉, where
A ⊆ A is a set of actions; P is a program, represented as a thread-indexed set of
memory traces; the partial order ≤po⊆ A × A is the program order, which is a
union of total orders on actions of each thread; ≤so⊆ A×A is the synchronisation
order, which is a total order on all synchronisation actions in A; V :: A ⇒ V is
a value-written function that assigns a value to each write from A; W :: A ⇒ A
is a write-seen function that assigns a write to each read action from A, the
W (r) denotes the write seen by r, i.e. the value read by r is V (W (r)).

Definition 3. In an execution with synchronisation order ≤so, an action a
synchronises-with an action b (written a <sw b) if a ≤so b and a and b sat-
isfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4. The happens-before order of an execution is the transitive closure
of the composition of its synchronises-with order and its program order, i.e.
≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. We consider single-thread
programs as sets of sequences of pairs of an action kind and a value, which we
call traces. A multi-thread program is a set of single-thread programs indexed
by thread identifiers.

Definition 5. Given an execution E = 〈A, P, ≤po, ≤so, W, V 〉, the action trace
of thread θ in E, denoted TrE(θ), is the list of actions of thread θ in the order
≤po. The trace of thread θ in E, written TrE(θ) is the list of action kinds and
corresponding values obtained from the action trace (i.e., V (W (a)) if a is a read,
V (a) otherwise).

By writing t ≤ t′ we mean that t is a prefix of t′, set(t) is the set of elements of
the list t, ι(t, a) is an index i such that ti = a, or 0 if a /∈ set(t). For an action
kind-value pair p = 〈k, v〉 we will use the notation πK(p) for the action kind k
and πV (p) for the value v. We say that a sequence s of action kind-value pairs
is sequentially valid with respect to a program P if t ∈ P . A sequentially valid
trace t is finished for P if there is no sequentially valid trace t′ > t. The operator
++ stands for trace concatenation.

To establish reasonable properties of concurrent programs we assume reason-
able properties of the underlying sequential language:

Definition 6. We say that program P is well-formed if sequential validity of
trace t in P implies:

1. any trace t′ ≤ t is sequentially valid (prefix closedness),
2. if the last action of t is a read with value v, then the trace obtained from t

by replacing the value in the last action by v′ is also sequentially valid in P
(final read value independence),
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3. |t| > 0 implies πK(()t0) = St (start action first),
4. πK(()ti) = Fin implies i = |t| − 1 (finish action last).
5. θ = θinit implies ∀i. 1 ≤ i < |t| − 1 → ∃v. πK(()ti) = Wr(v) ∨ πK(()ti) =

Wrv(v) and πK(()t|t|−1) = Fin (initialisation thread only contains writes).

The well-formedness of programs should not be hard to establish for any rea-
sonable sequential language.

The next definition places some sensible restriction on executions.

Definition 7. We say that an execution 〈A, P, ≤po, ≤so, W, V 〉 is well-formed
if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads θ

different from the thread of l, the number of locks in θ before l in ≤so is the
same as the number of unlocks in θ before l in ≤so.

7. Program order is intra-thread consistent: for each thread θ, the trace of θ in
E is sequentially valid for Pθ.

8. ≤so is consistent with W : for every volatile read r of a variable v we have
W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.

9. ≤hb is consistent with W : for all reads r of v it holds that r �≤hb W (r) and
there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then W (r) = w.

10. The initialisation thread θinit finishes before any other thread starts, i.e.,
∀a, b ∈ A. K(a) = Fin ∧ T (a) = θinit ∧ K(b) = St ∧ T (b) �= θinit → a ≤so b.

The following definition of legal execution constitutes the core of the Java Mem-
ory Model. In our work, we use a weakened version of the memory model that
we suggested in [5] and which permits more transformations than the original
version. In Tbl. 1, we label this version by ‘JMM-Alt’.

Definition 8. A well-formed execution 〈A, P, ≤po, ≤so, W, V 〉 with happens be-
fore order ≤hb is legal if there is a finite sequence of sets of actions Ci and
well-formed executions Ei = 〈Ai, P, ≤poi , ≤soi , Wi, Vi〉 with happens-before ≤hbi

and synchronises-with <swi such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A,
and for each i > 0 the following rules are satisfied:

1. Ci ⊆ Ai.
2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r �≤hbi

W (r),
3. Vi|Ci = V |Ci .
4. Wi|Ci−1 = W |Ci−1 .
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5. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.
7. If y ∈ Ci is an external action and x ≤hb y then x ∈ Ci.

The original definition of legality from [11,18] differs in rules 2 and 6, and adds
rule 8:

2. ≤hbi |Ci =≤hb |Ci .
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1 and Wi(r) ∈ Ci−1.
8. If x <sswi y ≤hbi z and z ∈ Ci − Ci−1, then x <swj y for all j ≥ i, where

<sswi is the transitive reduction of ≤hbi without any ≤poi edges, and the
transitive reduction of ≤hbi is a minimum relation such that its transitive
closure is ≤hbi .

The reasons for weakening the rules are invalidity of reordering of independent
statements, broken JMM causality tests 17–20 [21], and redundancy. For details,
see [5,6].

For reasoning about validity of reordering, we define observable behaviours of
executions and programs. Intuitively, a program P has an observable behaviour
B if B is a subset of external actions of some execution of P , and B is downward
closed on happens-before order (restricted to external actions). The JMM cap-
tures non-termination as a behaviour in the definition of allowable behaviours.

Definition 9. An execution 〈A, P, ≤po, ≤so, W, V 〉 with happens-before order
≤hb has a set of observable behaviours O if for all x ∈ O we have y ≤hb x
or y ≤so x implies y ∈ O or T (y) = θinit. Moreover, there is no x ∈ O such that
T (x) = θinit.

The allowable behaviours may contain a special external hang action if the ex-
ecution does not terminate. We will use the notation Ext(A)) for all external
actions of set A, i.e., Ext(A) = {a | K(a) = Ex}.

Definition 10. A finite set of actions B is an allowable behaviour of a program
P if either

– There is a legal execution E of P with a set of observable behaviours O such
that B = Ext(O), or B = Ext(O) ∪ {hang} and E is hung.

– There is a set O such that B = Ext(O) ∪ {hang}, and for all n ≥ |O| there
must be a legal execution E of P with set of actions A, and a set of actions
O′ such that (i) O and O′ are observable behaviours of E, (ii) O ⊆ O′ ⊆ A,
(iii) n ≤ |O′|, and (iv) Ext(O′) = Ext(O).

B Proof

We prove validity of irrelevant read elimination, elimination of redundant write
before write, elimination of redundant read after write, and reordering of non-
volatile memory accesses to different variables.
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The plan of the proof is straightforward—for any behaviour B of a trans-
formed program P ′ we need to show that the original program P had the same
behaviour. Given a legal execution E′ of P ′ with behaviour B we build a le-
gal execution of P with (almost) the same behaviour. Using this construction,
we will prove that transformations do not introduce new allowable behaviours
(Def. 10), except hanging. The issues with hanging are tricky—its definition does
not correspond with the committing semantics.

Effects of Transformations on Traces. First, we define the notion of trans-
formed program loosely enough so that redundant read/write elimination, irrel-
evant read elimination and reordering fit our definition. The idea is that for any
trace of the transformed program there should be a trace of the original program
that is just reordered with the redundant and irrelevant operations added.

To describe the effects of irrelevant read elimination formally we define wild-
card traces that may contain star ∗ symbols instead of some values. For example,
sequence [〈Wr(x), 2〉, 〈Rd(y), ∗〉, 〈Rd(x), 3〉] is a wildcard trace. If t̂ is a wildcard
trace, then [[t̂]] stands for a family of all (normal) traces with the ∗ symbols
replaced by some values.

Given a wildcard trace t̂, we say its ith component t̂i = 〈a, v〉 is

– irrelevant read if a is a read and v is the wildcard symbol ∗,
– redundant read if a is a read of some x and the most recent access of x is a

write of the same value, and there is no synchronisation or external action
in between; formally, there must be j < i such that t̂j = 〈Wr(x), v〉 and for
each k such that j < k < i it must be that t̂k = 〈Wr(y), v′〉 or t̂k = 〈Rd(y), v′

for some y �= x and some v′,
– redundant write if a is a write to some x and one of these two cases holds:

(i) the write is overwritten by a subsequent write to the same variable and
there are no synchronisation or external actions, and no read of x in between,
or (ii) t̂i is the last access of the variable in the trace and there are no
synchronisation or external actions in the rest of the trace.

Definition 11. We will say that P ′ is a transformed program from P if for any
trace t′ in P ′ there is a wildcard trace t̂ and a function f :: {0, . . . , |t′| − 1} →
{0, . . . , |t̂| − 1} such that:

1. all traces in [[t̂]] are sequentially valid in P .
2. if t′ is finished in P ′ then all traces in [[t̂]] are finished in P ,
3. function f is injective,
4. the action kind-value pair t′i is equal to t̂f(i),
5. for 0 ≤ i ≤ j < |t′| we have that f(i) ≤ f(j) if any of the following reordering

restrictions holds:
(a) t′i or t′j is a synchronisation or external actions, or
(b) t′i and t′j are conflicting memory accesses, i.e., accesses to the same

variables such that at least one is a write,
6. if there is an index j < |t̂| such that f(i) �= j for any i, then t̂j must be a

redundant read, a redundant write, or an irrelevant read.
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A multi-thread program P ′ is a transformed program of P if all single-thread
programs of P ′ are transformed programs of single-thread programs of P with
the same index. For space reasons we omit the link between the concrete syn-
tax and the meaning in terms of traces. It is straightforward to establish by
induction on derivation in operational semantics that if we obtain a program
P ′ from a program P by a memory trace preserving transformation, or by an
elimination of a redundant read after write, or by an elimination of a redundant
write before write, or by an elimination of an irrelevant read, or by reordering
of independent non-volatile memory accesses, then the set of traces of P ′ is a
transformed program from the set of traces of P . The only non-trivial part is
proving that reordering of independent non-volatile memory accesses on source
level corresponds to a trace transformation if the trace of the transformed pro-
gram ends in between the reordered statements. In this case we can consider the
missing part of the statement as being eliminated (either as a redundant write
or an irrelevant read), and finish the proof.

Transforming Executions. Let P ′ be a program transformed from P , and
E′ = 〈A′, P ′, ≤′

po, ≤′
so, W

′, V ′〉 be a legal execution of P ′. Our goal is to construct
a legal execution E of P with the following properties with the same observable
behaviours.

The main idea of the construction is to take the memory trace of each thread
in E′ and use Def. 11 to obtain a trace of P , and mapping of actions and program
order of E′ to actions and program order of our newly constructed execution.
We will also need to restore actions that were eliminated by the transformation
and construct the visibility functions W and V for the reconstructed actions.

Given an execution E′ = 〈A′, P ′, ≤′
po, ≤′

so, W
′, V ′〉 we construct untrans-

formed execution E of P : for each thread θ �= θinit let TrE′(θ) be the trace
of θ in E′. By the definition of transformed program (Def. 11), there must be
a wildcard trace of P , let’s denote it by t̂θ and corresponding transformation
function fθ.

For the initialisation thread θinit we define

t̂θinit = [〈St, 0〉]++TrE′(θinit)|W ++InitE++[〈Fin, 0〉],

where TrE′(θinit)|W is the trace of the initialisation thread of E′ restricted
to (possibly volatile) write actions, and InitE is any sequence of initialisation
writes for all variables that appear in any component of t̂θ (θ �= θinit), but
are not initialised in E′. We set fθinit(i) = i if 0 ≤ i < |TrE′(θinit)| − 1, and
fθinit(|TrE′(θinit)| − 1) = |t̂θinit | − 1.

From the traces t̂θ we build action traces tθ of the same length. For 0 ≤ i < |t̂θ|,
we set the i-th component of tθ to be

– f−1
θ (i)-th element of TrE′(θ) if f−1

θ (i) exists, or
– fresh action a such that K(a) = t̂θi and T (a) = θ, if there is no j such that

i = fθ(j).

We use the action traces tθ to construct our untransformed execution E =
〈A, P, ≤po, ≤so, W, V 〉:
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1. A = {tθi | 0 ≤ i < |t̂θ|},
2. order ≤po is the order induced by the traces tθ, i.e.

≤po= {(a, b) | T (a) = T (b) ∧ ι(tT (a), a) ≤ ι(tT (a), b)}

3. order ≤so is equal to ≤′
so,

4. the write-seen function W (a) is
– W ′(a) if a ∈ A′,
– most recent write8 to x in ≤hb if a /∈ A′ and a is a read from x,
– a otherwise, i.e., if a is not a read,

5. V (a) is the corresponding value in the wildcard trace t̂θ, i.e., V (a) =
πV (t̂T (a)

ι(tT (a),a)).

Lemma 1. Let P ′ be a transformation of P , E′ be a well-formed execution of
P ′ with happens-before order ≤′

hb and E be the untransformed execution of P
with happens-before order ≤hb. Let x and y be two actions from E′ such that any
of them is synchronisation action, or they are conflicting memory accesses9, or
T (x) �= T (y). Then x ≤hb y if and only if x ≤′

hb y.

Proof. Observe that by point 3 of Def. 11 we have x ≤po y iff x ≤′
po y for all x

and y from E′ such that x or y is a synchronisation or external action, or x and y
are conflicting memory accesses. By induction on the transitive closure definition
of ≤hb we get that for any z ≤hb y either z ≤po y or there is a synchronisation
action s such that z ≤po s ≤′

hb y. With the observation above we conclude that
x ≤hb y implies x ≤′

hb y if x is in E′ and x or y is a synchronisation action, or
x and y are conflicting memory accesses, or T (a) �= T (b). On the other hand,
we prove that z ≤′

hb x implies that either z ≤′
po x or there is a synchronisation

action s such that z ≤′
po s ≤hb x by induction on the definition of ≤′

hb. This
implies the other direction of the equivalence.

Lemma 2. Let P ′ be a transformation of P , E′ be a well-formed execution of P ′

and E be the untransformed execution of P . Then E is a well-formed execution
of P .

Proof. Properties 1–8 and 10 of well-formedness (Def. 7) are satisfied directly by
our construction. We prove property 9, the hb-consistency, i.e., that for all reads
in E, r �≤hb W (r) and there is no write w to the same variable as W (r) such
that W (r) <hb w ≤hb r. There are two cases: (i) for r being an irrelevant read
or a redundant read the hb-consistency is satisfied trivially by construction, (ii)
for r ∈ E′, we get the result using hb-consistency of E′ and Lemma 1.

Lemma 3. Let P ′ be a transformation of P , E′ be a legal execution of P ′ and
E be the untransformed execution of P . Then E is a legal execution of P .

8 Note that the initialisation writes in thread θinit happen-before any read action, so
a most recent write always exists.

9 I.e. a read and a write to the same variable, or two writes to the same variable.
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Proof. Let {Ci}n
i=0 be a sequence of committing sets and {E′

i}n
i=0 the corre-

sponding justifying executions for E′. Let Ei be the untransformed executions
of E′

i. Let’s define Cn+1 as the set of actions of E and En+1 = E. Then it is
straightforward to show that the committing sequence {Ci}n+1

i=0 with justifying
executions {Ei}n+1

i=0 satisfies the conditions (1), (3), (4) and (6) of Def. 8. To
establish rules (2), (5) and (7) we use Lemma 1 and legality of E′.

In the following we will write C≤so,≤po(X) to denote ≤so and ≤po downward
closure of X without the initialisation actions, i.e.

C≤so,≤po(X) = {y | ∃x ∈ X. y ≤po∪so x ∧ T (y) �= θinit},

where ≤po∪so= (≤po ∪ ≤so)+. We will often use CE(X) for C≤so,≤hb
(X), where

E has synchronisation order ≤so and happens-before order ≤hb. The set CE(X)
is an observable behaviour of execution E with actions A for any X ⊆ A.

Lemma 4. Let P ′ be a transformation of P , E′ be a legal execution of P ′

with observable behaviour O′, and E be the untransformed execution of P . Then
Ext(CE(O′)) = Ext(O′).

Proof. The direction ⊇ is trivial, because Ext(−) is monotone and CE(O′) ⊇ O′.
On the other hand, if an external action x ≤po∪so y ∈ O′, then for any

z ≤po∪so y there is s such that z ≤po s ≤′
po∪so y by induction on the transitive

definition of ≤po∪so. By Lemma 1 we get x ≤′
po∪so y, thus x ∈ O′.

The main theorem says that transforming a program using Def. 11 cannot in-
troduce any new behaviour, except hanging.

Theorem 1. Let P ′ be a program transformed from P . If B is an allowable
behaviour of P ′ then B \ {hang} is an allowable behaviour of P .

Proof. By Def. 10, there must an execution E′ of P ′ with observable behaviour
O′ such that B = Ext(O′) or B = Ext(O′) ∪ {hang}.

Let’s take an untransformation E of E′ and let O = CE(O′). Using Lemma 4,
we have Ext(O) = Ext(O′). Since O is an observable behaviour of E and E is a
legal execution of P (Lemma 3), the set B \ {hang} = Ext(O) is an allowable
behaviour of P .
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