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Abstract. Shared mutable objects pose grave challenges in reasoning, especially
for data abstraction and modularity. This paper presents a novel logic for error-
avoiding partial correctness of programs featuring shared mutable objects. Using
a first order assertion language, the logic provides heap-local reasoning about mu-
tation and separation, via ghost fields and variables of type ‘region’ (finite sets of
object references). A new form of modifies clause specifies write, read, and allo-
cation effects using region expressions; this supports effect masking and a frame
rule that allows a command to read state on which the framed predicate depends.
Soundness is proved using a standard program semantics. The logic facilitates
heap-local reasoning about object invariants: disciplines such as ownership are
expressible but not hard-wired in the logic.

1 Introduction

The potential for interference between supposedly independent program phrases or
components due to shared mutable objects is the bane of formal reasoning and static
analysis of software. This paper charts new territory, combining two simple and well
known ideas —regions and ghost state— in a new way. We formulate a logic that needs
only classical, first-order assertions, though inductively defined predicates are compati-
ble. The key novelty is “modifies” specifications expressed in terms of state-dependent
region expressions. Together with judicious static analysis of the “footprints” of formu-
las, this makes it possible to achieve the kinds of modularity associated with ownership
methodologies and separation logic, in a flexible way that is compatible with widely
used specification languages and tools.

Various notions of regions have been used in static analysis to abstract sets of ob-
jects of interest [28]. Separation logic [23] owes its success in specifying and verifying
pointer algorithms at least in part to its ability to manifest the “footprint” or region
of heap relevant to a particular predicate (and thereby the footprint of a command).
At a coarser level, ownership systems and separation logic ideas have been critical to
advances in data abstraction [11,2], especially for object invariants [18,5].

In this paper, instead of abstracting from regions and expressing separation via logi-
cal connectives or ownership types, we make regions explicit in a way similar to work
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of Amtoft et al [1]. Most importantly, we follow Kassios [14] in using regions to directly
represent footprints. We augment a Java-like language with type rgn ranging over fi-
nite sets of (allocated) references. Following Kassios, we instrument programs with
assignments to ghost variables and fields, so assertions can refer explicitly to regions.
Whereas Kassios works in the setting of a relational refinement theory and higher order
logic, we develop a Hoare logic using first class regions in the “modifies” clause, often
the most useful part of a program specification. Asserting the disjointness of regions
helps delimit effects and facilitate heap-local reasoning.

It is no surprise that it is possible to reason in terms close to the semantic model [8].
If one’s aim is to prove functional correctness of, say, a garbage collector then at the
very least, the specification involves reachability, inductive definitions, quantification
over paths, etc. But to specify and prove weaker properties, e.g., that an application
program does not stray beyond its intended resources, what we achieve is promising.
Without the need for inductive predicates or quantification over predicates to hide all
but their footprint, we reason directly in terms of footprints. In particular we get “frame
rules” that account for modular reasoning about representation invariants.

Notions like ownership [11] support encapsulation of state on which a single object’s
invariant depends. A precursor to our work is the use of ghost state to encode ownership
[16,22] in a way that allows transfer of objects between clients and abstractions (as in
low level memory management and higher level OO design patterns like connection
pools and layered I/O abstractions). Unlike ownership type systems or programming
disciplines, and unlike static analyses using regions, we avoid commitment to a fixed
use of regions. On the contrary, regions as ghost state can encode such disciplines but
can also combine them in uniform or ad hoc ways.

A benefit of treating regions as ghost state is that it can be done using first-order
specification languages based on classical logic with modest use of set theory. Thus it
fits with mostly-automated tools based on verification condition generation and it fits
with conventional means of program structuring such as scope-based encapsulation. In
this foundational study we expose the issues and formalize the ideas in terms of a simple
object-based language and Hoare-style proof system which we prove sound using a
standard program semantics. There is a major difficulty: “modifies” specifications using
region expressions dependent on mutable state are susceptible to a kind of interference:
The effect of a command can alter the meaning of the effect specification of another
command! This issue has appeared before, in Kassios’ dissertation and in the work of
Leino and Nelson [17]; we explicitly focus on modifies specifications and offer a novel
and flexible solution.

Our first contribution is the logic: its rules and subsidiary judgements together with
proof of soundness. Various subtleties made it difficult to correctly design the details of
our logic, but we find most of the rules and soundness proofs to be elegant.

Our second contribution is to show how the logic serves as a basis for encapsulat-
ing object invariants and invariants for clusters of objects (peers, friends and beyond).
Remarkably, our approach can be formalized by a second order frame rule like that
of separation logic. Soundness of the second order frame rule in separation logic is
challenging [23,7]. Our version is an admissible rule, but the technical result is the sub-
ject of another paper [21]. In this paper, we propose an approach to developing sound
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and flexible disciplines for modular reasoning about invariants, inspired by the work of
Kassios, the Boogie team, and many others.

Outline. Sec. 2 sketches an example to illustrate features of the logic. Sec. 3 formalizes
an illustrative, object-based programming language and Sec. 4 presents the assertion
language. Sec. 5 formalizes effects using regions and Sec. 6 gives a static analysis for
the separation of a formula from a write effect. Sec. 7 defines correctness statements
and gives the proof rules and soundness theorem. Sec. 8 wraps up the running example
and Sec. 9 applies the logic to modular reasoning about invariants. Sec. 10 discusses
related work. More examples and proofs are in the online appendix [3].

2 A Small Example

We give a step-by-step correctness proof of a command acting on variable x of type
Node. A Node has three fields: item of type int and left ,rt of type Node. The com-
mand sets the item field of x ’s left node to zero. The precondition is P ∧Q and the
postcondition is Q where

P =̂ x �= null∧ x .left ∈ r1 ∧ x .rt ∈ r2 ∧ r1 # r2 ∧ closed
closed =̂ r1•left ⊆ r1 ∧ r1•rt ⊆ r1 ∧ r2•left ⊆ r2 ∧ r2•rt ⊆ r2

Q =̂ ∀x :Node ∈ r2 | x .item > 0

The specification uses two region variables, r1 and r2. Precondition P expresses that x
is non-null and the object denoted by x .left is in r1 (and x .rt is in r2). Furthermore,
regions r1,r2 are disjoint which in our syntax is denoted by r1 # r2. Regions are finite
sets of object references, of any type. Since null is not a reference, x .left ∈ r1 implies
x .left �= null. Formula closed says that both r1 and r2 are closed under both left and
rt : If o ∈ r1 and o.left �= null then o.left ∈ r1, etc.

In general, for region expressions G,G ′ and field name f , the formula G •f ⊆ G ′
says that the f -image of region G is contained in G ′. For reasons discussed later, “G •f ”
is not a region expression.

In summary, the precondition P states that the left “subtree” of x is in r1 and the
right “subtree” of x is in r2. (But these “subtrees” need not be trees, nor even dags.)

The formula Q plays the role of an invariant. It says that for any node o in r2, o’s item
field is positive. Finally, since the command writes to the item field, we will show that
its write effect is at most the item field of objects residing in r1, denoted by wrr1•item.
The complete correctness statement is

{P ∧Q } var y :Node in y := x .left ;y.item := 0 end {Q } [wrr1•item] (1)

One can prove a stronger postcondition but this is enough for expository purposes.
We now turn to the proof. Here is a specification for the first assignment:

{x �= null} y := x .left {y = x .left } [wry]

This is a small specification in that it only mentions entities that are relevant to the
assignment. Since y := x .left only writes y , and since neither P nor Q mention y , their
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truth value is not changed by the assignment. So we conjoin P ∧Q to both pre- and
post-condition:

{P ∧Q } y := x .left {y = x .left ∧P ∧Q } [wry]

This step is an instance of the Frame rule (Fig. 9), cf. [23]. We will be more precise later,
but for now we say that x ,r1,r2,〈x 〉•left ,r1•left ,r2•left ,〈x 〉•rt ,r1•rt ,r2•rt constitute a
“frame” of P because modifications to the frame may affect the truth value of P , but
no other modifications can. Notice that y , the variable modified by the command, is not
in the frame. Similarly, r2,r2•item constitute the frame of Q . Again, y is absent. This
separation between the write effect of the command and the frames licenses conjoining
P ∧Q to the pre- and postconditions above.

Recall that x .left ∈ r1 implies x .left �= null which together with y = x .left implies
that y �= null and y ∈ r1. The last assertion implies a weaker one: 〈y〉 ⊆ r1, where 〈y〉
denotes the singleton region iff y is non-null, and otherwise the empty region. Thus by
the standard rule of Consequence we get

{P ∧Q } y := x .left {P ∧y �= null∧〈y〉 ⊆ r1 ∧Q } [wry] (2)

Here is a small specification for y.item := 0:

{y �= null} y.item := 0 {y.item = 0} [wr〈y〉•item]

The write effect, wr〈y〉•item, records the fact that the item field of the singleton region,
〈y〉, may have changed. Now we would like to conjoin Q to pre/post of the above spec-
ification, so it could be sequenced with (2). However, doing so appears to be unsound,
since Q reads item whereas the command writes item. We shall refine the above spec-
ification to obtain a stronger precondition, which will imply that Q is separated from
the write. First, we use the Frame rule to conjoin P ∧〈y〉 ⊆ r1, whose frame is clearly
separated from 〈y〉•item because a write to y.item leaves y , r1, and r2 unchanged and
item is not in the frame of P . This yields

{y �= null∧P ∧〈y〉 ⊆ r1 } y.item := 0 {y.item = 0∧P ∧〈y〉 ⊆ r1 } [wr〈y〉•item]

Now, to apply the Frame rule to Q we need that r2•item is separated from the write
of 〈y〉•item. It suffices to show that 〈y〉 is a region disjoint from r2. This follows from
〈y〉 ⊆ r1 and the fact that P ⇒ r1 # r2. So Frame yields

{y �= null∧P ∧〈y〉 ⊆ r1 ∧Q } y .item := 0 {y .item = 0∧P ∧〈y〉 ⊆ r1 ∧Q } [wr 〈y〉•item ]

whence by the rule of Consequence we obtain

{y �= null∧P ∧〈y〉 ⊆ r1 ∧Q } y.item := 0 {Q } [wr〈y〉•item] (3)

Now we are ready to sequence (2) followed by (3). But what should the effects be?
Simply unioning the effects wry and wr〈y〉•item is unsound because effects are inter-
preted in the pre-state: the y in wry •item does not have the same meaning as in the
pre-state of the sequence, because y is modified by the first command. So the write to
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x ,y ,r ∈ VarName f ,g ∈ FieldName K ∈DeclaredClassNames

T ::= int | K | rgn
E ::= x | c | null | E ⊕E where c is in Z and ⊕ is in {=,+,−,∗,>, . . .}
G ::= x | x .f | 〈E 〉 | emp | alloc | G ⊗G where ⊗ is in {∪,∩,−}
F ::= E | G
C ::= x := F | x := new K | x := x .f | x .f := F

| if x then C else C | while x do C | C ;C | var x :T in C end

Fig. 1. Programming language. We confuse category names with typical elements (e.g., T ).

the item field must be recorded by some other expression. Precondition 〈y〉 ⊆ r1 of (3)
implies that wr〈y〉•item is a sub-effect of wrr1•item, so by weakening we obtain

{y �= null∧P ∧〈y〉 ⊆ r1 ∧Q } y.item := 0 {Q } [wrr1•item]

Now we can apply the rule of sequential composition to obtain

{P ∧Q } y := x .left ;y.item := 0 {Q } [wry,wrr1•item]

The rule for local blocks lets us remove the effect wry and conclude the proof of (1).

3 Programming Language

This section presents an illustrative language for which we formalize the programming
logic. A program consists of a command C in the context of some class declarations.
The grammar for commands etc. is in Fig. 1. A class declaration class K {T f } intro-
duces a type name K ; values of this type are null and references to mutable objects with
typed fields f :T . Here and throughout, identifiers with an overline range over lists. As
in Java, an assignment x := y.f implicitly dereferences the value in y and reads field f
in the heap. Equality test, written =, is for reference equality.

In addition to int and reference types, there is type rgn with values ranging over
finite sets of references (excluding null). Region expressions include set operations like
subtraction (−). Region expressions cannot influence control flow or the value of non-
region fields/variables, so they can only serve as ghosts for reasoning.

Ordinary expressions (E in Fig. 1) do not depend on the heap: y.f is not an expres-
sion but rather part of the primitive command x := y.f for reading a field. There is
also a primitive formula for reading a field (see Fig. 3). This restriction serves, as in
separation logic, to simplify rules for reasoning about assignments. We also gain some
simplification in the framing rules to come (Fig. 7). Region expressions (G in Fig. 1) do
include a form that reads a single step into the heap, namely x .g when g has type rgn
(in which case x .g.f is not well formed). The form x .g is essential for our purposes, but
allowing multi-step heap dependence would cause complications, e.g., in the framing
rules. This is why the form “G •f ” which appears in effects and assertions is not a region
expression. Of course syntax sugars can be added for practical purposes, with derived
rules.
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There is an ambient class table comprising a well formed collection of class decla-
rations. We write fields(K ) for the field declarations f :T of class K . The judgement
Γ � F :T says that region or ordinary expression F has type T in context Γ that as-
signs types to variable names. Similarly, Γ � C says C is a well formed command.
For programs we assume the standard rules that prevent “field not defined” errors. For
brevity we omit a boolean type. The guard for an if- or while-command has type int;
the semantics interprets any non-zero value as true.

We omit most of the rules since they are straightforward, but note that int is sepa-
rated from reference types: there is no pointer arithmetic. The typing rules make some
distinctions between region expressions G and those of other type. The rule for single-
ton region 〈E 〉 enforces that E is of reference type. Field dereferencing in expressions

is allowed only for fields of type rgn, as per:
(g :rgn) ∈ fields(K )
Γ ,x :K � x .g :rgn

. Recall that metavari-

able K ranges over class names; only classes have fields. Here and throughout the paper,
rules are only permitted to be instantiated when the consequent as well as the antecedent

are well formed. For example, the rule for context extension is
Γ � F :T ′

Γ ,x :T � F :T ′ and it

cannot be used with x that is in dom(Γ ), because the comma in Γ ,x :T denotes the
union of disjoint partial functions.

The concrete syntax x := y.f has an ambiguity that is resolved by typing: If f :rgn
then it is read as x := F with F ≡ y.f —and in case y is null, the value is the empty
region, for convenience in reasoning. If f is any other type, it is read as a primitive
command —and of course there is a runtime error if y is null.

Semantics. We use a straightforward denotational semantics where commands denote
deterministic state transformers, which fits well with pre/post specifications. The details
are adapted and simplified from a machine-checked semantics of CoreJML encoded in
PVS and including hooks to add types like rgn and operations on ghost state [15].

We are given a set, Ref, of reference values and a distinguished value, null, not in
Ref or Z or 2Ref . The values denoted by a reference type K include null as well as all
references that have been allocated for objects of type K , and the values of type rgn are
finite sets of allocated references (of any type).

A state for context Γ has the form (r ,h,s) where: r is a ref context, i.e., a partial
function mapping the allocated references to their types; h is a heap that maps each allo-
cated reference to its object state (i.e., map from field names to values); and s is a store
that maps each variable x in Γ to its value. Throughout the paper, states are assumed
to be well typed and have no dangling references. The semantics is parameterized on
the allocator, i.e., a deterministic function of the state that yields fresh references but is
otherwise arbitrary.

Following separation logic and program verifiers like ESC/Java, correctness judge-
ments specify error-free partial correctness. So we use a denotational semantics in
which [[Γ � C ]]σ , for Γ -state σ , is either � (fault), ⊥ (divergence), or a Γ -state σ ′ (nor-
mal termination). The only faults are null dereference, since we consider programs that
satisfy usual Java-style typing rules and therefore there are no dangling references (and
we assume the arithmetic operators are error-avoiding, to avoid complications about
definedness). The compound commands like sequence and loops are strict in � as well
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[[y ]]σ = σ(y) [[G1∪G2]]σ = [[G1]]σ∪[[G2]]σ
[[x .g ]]σ = σ(x .g) if σ(x) �= null, else ∅ [[G1∩G2]]σ = [[G1]]σ∩[[G2]]σ
[[〈E 〉]]σ = { [[E ]]σ } if [[E ]]σ �= null, else ∅ [[G1 −G2]]σ = [[G1]]σ − [[G2]]σ
[[alloc]]σ = alloc(σ) [[emp]]σ = ∅

Fig. 2. Semantics of region expressions (eliding Γ � . . . :rgn). Here y and g have type rgn.

as in ⊥. The semantics of loops is given by fixpoint as usual, where we order outcomes
by ⊥ ≤ � and ⊥ ≤ σ for any state σ (but distinct states are incomparable and not
comparable with �).

We use the following abbreviations, for state σ = (r ,h,s)
σ(x ) for s(x ) —variable lookup
σ(x .f ) for h(s(x ))(f ) —field of object referenced by variable x
σ(o.f ) for h(o)(f ) —field of reference value o
alloc(σ) for dom(r) —set of all allocated references
type(o,σ) for r(o) —type of an allocated reference
update(σ ,x ,v) for (r ,h,s ′), where s ′ overrides s to map x to v
extend(σ ,x ,v) for (r ,h,s ′), where s ′ extends s to map x to value v , for x �∈ dom(s)
update(σ ,o.f ,v) for (r ,h ′,s), where h ′ overrides h to map field f of o to v .

Here metavariables x ,y,z range over variable names, whereas we use o,p,q for
elements of Ref. We write fields(o,σ) for fields(type(o,σ)). Less obviously, we write
f ∈ refields(o,σ) to say that f is of some reference type, i.e., there is K such that
(f :K ) ∈ fields(o,σ).

Semantics for expressions and commands are routine and omitted. Note that [[E ]]σ
depends on the store but not the heap and is always a value (of appropriate type), never
� or ⊥. As one would expect, x .f := E faults if x is null, and the same for x := y.f
—except in case f has type rgn. As mentioned earlier, that case is actually parsed as
x := G and uses the semantics of region expressions given in Fig. 2.

4 Assertion Language

Fig. 3 gives the grammar for assertions. Quantification is over int and reference types
only, and in the latter case a bounding region is required as in (∀x :K ∈ alloc | P)
where the quantification is over all allocated objects as is usual [25,9] and important for
certain global invariants. There are also atomic formulas for inclusion and disjointness
of regions. The formula G1•f ⊆ G2 says that for every object in G1, if it has field f
with non-null value then that value is in G2. The formula x .f = E says that x is non-
null and the value of its f field is E . The semantics is two-valued and classical. So
false can be defined as 1 = 0, ∨ and ∃ by DeMorgan, etc. Another syntax sugar is
E ∈ G =̂ E �= null∧ 〈E 〉 ⊆ G . Officially, we cannot write “x .f ∈ G” because x .f
is not an expression (unless f :rgn, but then ∈ does not make sense). But it is safe to
abbreviate x .f ∈G =̂ x .f �= null∧〈x 〉•f ⊆G . Another convenient feature is the ability
to refer to all fields, as in G •any ⊆G; we use it in examples but omit the formalization.
Finally, we abbreviate x isK for type(K ,〈x 〉).
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P ::= E = E | x .f = F | G ⊆ G | G #G | type(K ,G)
| G•f ⊆ G | G•f #G | (∀x : int | P) | (∀x :K ∈G | P) | P ∧P | ¬P

σ |= x .f = F iff σ(x) �= null and σ(x .f ) = [[F ]]σ
σ |= G1 #G2 iff [[G1]]σ ∩ [[G2]]σ = ∅

σ |= G1•f ⊆ G2 iff σ(o.f ) = null or σ(o.f ) ∈ [[G2]]σ
for all o ∈ [[G1]]σ with f ∈ refields(o,σ)

σ |= G1•f #G2 iff σ(o.f ) /∈ [[G2]]σ for all o ∈ [[G1]]σ with f ∈ refields(o,σ)
σ |= type(K ,G) iff type(o,σ) ≤K for all o ∈ [[G]]σ
σ |=Γ ∀x : int | P iff extend(σ ,x ,v) |=Γ ,x :int P for all v ∈ Z

σ |=Γ ∀x :K∈G | P iff extend(σ ,x ,o) |=Γ ,x :K P for all o in [[G]]σ with type(o,σ) ≤ K

Fig. 3. Formulas: grammar and selected semantics. The boolean connectives are standard.

The well-formedness judgement Γ � P has straightforward rules, but note:

Γ � G :rgn Γ � G ′ :rgn (f :K ) ∈ fields(K ′)
Γ � G•f ⊆G ′

Γ ,x :K � P Γ � G :rgn

Γ � ∀x :K ∈G | P
The first rule (like that for Γ � G •f # G ′) ensures that f is of class type. The second

disallows quantification over regions and demands that the bound variable x not appear
in the bound, G , of the quantification where G is a region expression. This facilitates
framing.

To streamline the treatment of local variables and quantifiers, we assume a hygiene
condition: no identifier should occur both bound and free in any context, nor bound
more than once.

The semantics of a well-formed formula Γ � P is given as a satisfaction relation,
written σ |=Γ P and defined for all Γ -states σ . The definition is in Fig. 3. In most cases
we elide Γ since it is unchanged throughout. A formula in context Γ is called valid iff
it is true in all states.

Example. The recursive predicate List(o,r) defined below expresses that o points to
null -terminated list and that the region r is exactly the set of all nodes of the list. Our
running example involves a subject together with its list of observers. Thus variable o
and field nxt have type Observer .

List(o :Observer , r :rgn) =̂ (〈o〉•nxt = emp ⇒ r = 〈o〉) ∧
(〈o〉•nxt �= emp ⇒ o ∈ r ∧List(o.nxt ,r −〈o〉)

Note that in the case that o is null, 〈o〉 is empty and so is 〈o〉•nxt . If o is non-null but
its nxt field is null, then 〈o〉•nxt is empty and 〈o〉 is the singleton set {o}.

We do not formalize recursively defined predicates. There is no difficulty with List
since its occurrences on the right side are in monotonic positions (with respect to the
subset ordering on state-sets); such recursions have least fixpoints in the complete lattice
of state-sets. (A small complication is that List has parameters.) Note that “o.nxt” is not
in the syntax for expressions; we write List(o.nxt ,r −〈o〉) to abbreviate the formula
o.nxt ∈ r ∧∀p :Observer ∈ r | p = o.nxt ⇒ List(p,r −〈o〉).
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class Subject{ class Observer{
Observer obs; int val ; rgn O ; Subject sub; int cache;

Observer nxt ;
Subject(){

self.obs := null; self.val := 0; self.O := emp;} Observer(Subject s){
self.sub := s; s.register(self);}

void register(Observer o){
self.add(o); o.notify();} void notify(){

self.cache := self.sub.get();}
void update(int n){

self.val := n; Observer o := self.obs; int val(){return self.cache;}
while (o! = null){o.notify(); o := o.nxt ;}} }

int get(){return self.val ;}
void add(Observer o){

self.O := self.O∪〈o〉;
o.nxt := self.obs; self.obs := o;

}

Fig. 4. Subject/Observer implementation

5 Effects

The “frames” described in Sec. 2 are formalized as read effects. For commands, we fo-
cus in this paper on write effects. But the full logic includes read effects for commands;
these are useful for reasoning about method calls in assertions as well as for program
transformations. An effect set is a comma-separated list ε of effects, ε , with grammar

ε ::= rdx | rdG •f | wrx | wrG •f | rdalloc | wralloc | frG

The idea is that rdx allows variable x to be read, rdG •f allows read of the f field
of objects in G , wrx allows update of variable x , wrG •f allows update of the f field
of objects in G . The region expression alloc is like a variable that holds the set of all
allocated references and is automatically updated by the allocator, so wralloc allows
allocation and rdalloc allows dependence on the set of allocated objects. Finally, frG
says that all elements of G in the final state are freshly allocated.

Freshness is used to mask updates to fresh objects in sequences. For example, con-
sider the sequence x := new Node;x .rt := 0 in using class Node from Sec. 2, By itself,
the field update has effect wr〈x 〉•rt . But in the pre-state of the sequence, 〈x 〉 cannot
possibly contain the updated object. Indeed, no pre-existing object is updated. In the
proof rules, the effect of x := new Node includes fr〈x 〉 which by the sequence rule (in
Fig. 8) annihilates the write effect.

Before delving into the technicalities of effects, we give, in Fig. 4, code that we will
use as a running example, Subject/Observer . Fig. 5 gives the specifications. Note that
notify is called on an observer from within the update method but this results in a
callback to the Subject ’s get method via self.sub.get().
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Method Pre-condition Post-condition

Subject() true SubObs(self,0)
register(o) o �= null∧SubObs(self,val)∧o �∈O SubObs(self,val)∧o ∈O
update(n) SubObs(self,val) SubObs(self,n)
get Sub(self,val) Sub(self,val)∧ res = val
add(o) o �= null∧Sub(self,val)∧o �∈O Sub(self,val)∧o ∈O

Observer(s) SubObs(s,s.val) SubObs(s,s.val)∧ self ∈ s.O
notify Sub(sub,sub.val) Sub(sub,sub.val)

∧Obs(self,sub,cache) ∧Obs(self,sub,sub.val)
val SubObs(sub,sub.val)∧ self ∈ sub.O SubObs(sub,sub.val)∧ res = sub.val

Method Effects

Subject()
register(o) wrself.O •nxt ,〈self〉•O ,〈o〉•nxt ,〈o〉•cache,〈self〉•obs
update(n) wr 〈self〉•val ,self.O •cache
get
add(o) wrself.O •nxt ,〈self〉•O ,〈o〉•nxt ,〈self〉•obs
Observer(s) wrs.O •nxt ,〈s〉•O ,〈s〉•obs
notify wr 〈self〉•cache
val

Fig. 5. Specifications for Subject/Observer example based on Parkinson [24]

For the specifications of the methods of Fig. 4, the predicates SubObs , Sub, Obs are
used (following Parkinson [24]). The predicate List used in Sub is defined in Sec. 4.

SubObs(s ,v) =̂ Sub(s ,v)∧∀o :Observer ∈ s .O | Obs(o,s ,v)
Sub(s ,v) =̂ s .val = v ∧List(s .obs ,s .O)
Obs(o,s ,v) =̂ o.cache = v ∧o.sub = s

SubObs is an invariant for the entire aggregate structure comprising an instance of
Subject together with its Observers. SubObs holds when the subject’s invariant, Sub,
holds and for each observer in the subject’s list of observers, that observer’s invariant,
Obs , holds. The invariant Sub(s ,v) says that the current internal state of subject s
is v and all observers of s are in a list whose nodes lie in region s .O . The invariant
Obs(o,s ,v) says that o is an observer of subject s and that o’s view of s’s internal state
is v .

With the above definitions, the method specifications in Fig. 5 are self-explanatory
so we move on to explaining the effects. The effect for notify records that a call to it
will result in the writing of an observer’s cache. The effect for add records that O was
written to when an observer o was added to the existing list of observers of a subject.
The effect for register takes into account the effects of add and notify . The effect
for update records that the subject’s val field is updated and also takes into account
the effects accrued as a result of calling notify . The constructor for Subject has no
effects that need be recorded; we are only concerned with the write effects of pre-
existing objects. Similarly, note the absence of effects wr〈self〉•sub,wr〈self〉•nxt and
wr〈self〉•cache in the effects of the constructor for Observer .
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Technicalities. Effects must be well formed (wf) for the context Γ in which they occur:
rdx and wrx are wf if x ∈ dom(Γ ); rdG •f , wrG •f , and frG are wf if G is wf in Γ .
We say σ ′ extends σ provided alloc(σ)⊆ alloc(σ ′) and type(o,σ) = type(o,σ ′) for all
o ∈ alloc(σ). The semantics has the property that σ ′ extends σ whenever σ ′ = [[C ]]σ .

Definition 1 (allows transition). Let effect set ε be well formed in Γ and let σ ,σ ′ be
Γ -states. We say ε allows transition from σ to σ ′, written σ → σ ′ |= ε , iff σ ′ extends
σ and the following all hold:

(a) for every y in dom(Γ ) we have either σ(y) = σ ′(y) or wry is in ε
(b) for every o ∈ alloc(σ) and every f ∈ fields(o,σ), either σ(o.f ) = σ ′(o.f ) or there

is wrG •f in ε such that o ∈ [[G]]σ
(c) if alloc(σ ′) �= alloc(σ) then wralloc is in ε .
(d) for each frG in ε , [[G]]σ ′ ⊆ alloc(σ ′)− alloc(σ).

Definition 2 (agreement on read effects). Let ε be an effect set and σ ,σ ′ be states
such that σ ′ extends σ . Say that σ and σ ′ agree on ε , written σ ∼ε σ ′, provided the
following hold:

(a) for all rdx in ε , we have σ(x ) = σ ′(x )
(b) if rdalloc in ε then alloc(σ) = alloc(σ ′)
(c) for all rdG •f in ε , for all o ∈ [[G]]σ with f ∈ fields(o,σ), we have σ(o.f ) =

σ ′(o.f )

For Def. 2(c), note that because σ ′ extends σ , we have o ∈ alloc(σ ′) and type(o,σ) =
type(o,σ ′), hence f ∈ fields(o,σ ′). But it need not be the case that o ∈ [[G]]σ ′. Were we
to consider alloc as a variable, (b) would be subsumed by (a); but it is not an ordinary
variable.

Often, as discussed following Eqn. (3) in Sec. 2, we need to subsume an effect by a
weaker one when the effect refers to a local variable in a different context. An effect set
ε,ε , with ε added to ε , allows at least the effects allowed by ε . In the case of an effect
like wrG •f there is also the possibility of more liberal effect wrG ′•f in case G ⊆ G ′.
Since regions can be state-dependent, inclusions like the above are state-dependent, so
we use a judgement P � ε ≤ ε ′ to express that the writes/reads in a bigger effect are
more permissive. Subsumption for freshness effects is treated separately, since such
effects are interpreted in the post-state. Rules for sub-effecting are defined in Fig. 6.
Note that the relation is reflexive, since in the weakening rule � ε ≤ ε ,ε one may choose
ε to be some element of the set ε .

Lemma 1 (write sub-effect). Suppose P � ε1 ≤ ε2 and ε1 allows transition from σ to
σ ′. If σ |= P then ε2 allows transition from σ to σ ′.

Lemma 2 (read sub-effect). Suppose P � ε1 ≤ ε2 and σ and σ ′ agree on ε2. If σ |= P
then σ ,σ ′ agree on ε1.
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G1 ⊆ G2 � wrG1•f ≤ wrG2•f G1 ⊆G2 � rdG1•f ≤ rdG2•f true � ε ≤ ε,ε

true � wrG1•f ,wrG2•f ≶ wr(G1∪G2)•f true � rdG1•f ,rdG2•f ≶ rd(G1∪G2)•f

P � ε1 ≤ ε2 P � ε2 ≤ ε3

P � ε1 ≤ ε3

P ′ ⇒ P P � ε ≤ ε ′

P ′ � ε ≤ ε ′
P � ε1 ≤ ε2

P � ε1,ε ≤ ε2,ε

Fig. 6. Selected sub-effect rules. We write ≶ to abbreviate two inclusion rules.

6 Framing and Separators

This section defines a judgement, P � ε frm P ′, that says the truth or falsity of predi-
cate P ′ depends only on the state read according to ε , i.e., ε covers the footprint of P ′ in
P -states. This is one of the two critical ingredients in the Frame rule (Sec. 7). The other
is the notion of separator, which applies to the read effects of a formula and the write
effects of a command. Their separator is a conjunction of region disjointness formulas
sufficient to ensure that in any transition from state σ to σ ′ allowed by the write effects,
σ ,σ ′ agree on the read effects.

6.1 Framing

First, we define a syntax-directed analysis that computes a precise “footprint” of or-
dinary expressions, region expressions and primitive assertions. Intuitively, the foot-
print is all reads needed to evaluate a given expression or primitive assertion whereas
the frame of an assertion is an over-approximation of these requisite reads. We want
true � ftpt(P) frm P to hold for any primitive assertion P .

For any expression F , define the set of read effects of F , written ftpt(F ), as follows:
If F is an ordinary expression, E , define ftpt(E ) = {rdx | x ∈Vars(E )}. For a region
expression G , define ftpt(G) as:

ftpt(x ) = {rdx} ftpt(x .g) = {rdx ,rd〈x 〉•g}
ftpt(alloc) = {rdalloc} ftpt(emp) = ∅

ftpt(G1∪G2) = ftpt(G1)∪ftpt(G2) ftpt(G1∩G2) = ftpt(G1)∪ftpt(G2)
ftpt(G1 −G2) = ftpt(G1)∪ftpt(G2) ftpt(〈E 〉) = ftpt(E )

For primitive assertions P , define ftpt(P) as follows:

ftpt(E = E ′) = ftpt(E )∪ftpt(E ′)
ftpt(x .f = F ) = {rdx ,rd〈x 〉•f }∪ftpt(F )
ftpt(G1 ⊆ G2) = ftpt(G1 #G2) = ftpt(G1)∪ftpt(G2)
ftpt(G1•f ⊆ G2) = ftpt(G1•f #G2) = ftpt(G1)∪ftpt(G2)∪{rdG1•f }

Fig. 7 specifies the judgement P � ε frm P ′. The rule for framing a conjunction P1∧P2

with ε allows P1 to be used as hypothesis in showing that ε frames P2. This is sound
because in a state where P1 is false, the conjunction’s value is independent from the
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P is primitive

true � ftpt(P) frm P

P � ε1 frm P ′ P � ε1 ≤ ε2 Q ⇒ P

Q � ε2 frm P ′

P1 ⇔ P2 P � ε frm P1

P � ε frm P2

P � ε frm P1 P ∧P1 � ε frm P2

P � ε frm P1 ∧P2

P � ε,rdx frm P ′

P � ε frm ∀x : int | P ′
ftpt(G) ⊆ ε P ∧x ∈ G � ε,rdx ,rd 〈x〉•f frm P ′

P � ε,rdG•f frm ∀x :K ∈G | P ′

ftpt(G) ⊆ ε ftpt(G ′) ⊆ ε
P ⇒∀x ∈G | x .g ⊆ G ′ P ∧x ∈G � ε,rdx ,rd〈x〉•f ,rdx .g •g frm P ′

P � ε,rdG•f ,rdG ′•g frm ∀x :K ∈G | P ′

Fig. 7. Inductive definition of the frames judgement

value of P2. It is very helpful in subsuming local effects by more global effects. For
example, suppose ε = rdo,rdp,rd r ,rdr •nxt and we wish to establish that ε frames
the formula o ∈ r ∧p = o.nxt . It is clear that ε frames o ∈ r . But the frame of p = o.nxt
must include 〈o〉•nxt , and this is missing from ε . However, because of o ∈ r we have
rd〈o〉•nxt ≤ rdr •nxt using the second rule in Fig. 6. Note that ∧ is commutative —it
has standard semantics. The rule for ∧ can be use for either conjunct, owing to the rule
to its left which allows use of a valid P1 ⇔ P2.

To frame a quantification ∀x :K ∈ G | P ′ in context P , observe that because P ′
might refer to x , we are likely to need rdx ,rd〈x 〉•f and x .g •g (i.e., the read effects
of the pivot field x .g) to frame P ′. The frame of the quantification cannot mention x .
However, read effects rd〈x 〉•f may be subsumed by rdG •f because x ∈ G . Similarly
if we are able to establish that for all x the pivot expressions x .g are all bounded by
the region G ′, the effect x .g •g can be subsumed by G ′•g . The first rule in Fig. 7 for
quantification of a reference variable (x :K ) applies when there are no pivot regions,
the second when P ′ uses only a single pivot region, x .g . The generalization to multiple
pivots is straightforward but notationally messy.

For our running examples one can derive the following:

true � rdo,r ,r •nxt frm List(o,r)
true � rdo,s ,v ,〈o〉•cache,〈o〉•sub frm Obs(o,s ,v)

true � rds ,v ,〈s〉•val ,〈s〉•obs ,〈s〉•O ,s .O •nxt frm Sub(s ,v)
true � rds ,v ,〈s〉•val ,〈s〉•obs ,〈s〉•O ,s .O •nxt ,s .O •cache,s .O •sub frm SubObs(s ,v)

Lemma 3 (footprint agreement). For any states, σ ,σ ′, for any expression F , suppose
that σ ,σ ′ agree on ftpt(F ). Then [[F ]]σ = [[F ]]σ ′.

Lemma 4 (frame agreement). For any σ ,σ ′, any predicates P , P ′, and any set of
effects ε , suppose P � ε frm P ′ and σ |= P and σ ∼ε σ ′. Then σ |= P ′ iff σ ′ |= P ′.

Proof. By induction on a derivation of P � ε frm P ′. We consider the case for con-
junction. Suppose P |= ε frm P1∧P2 because P |= ε frm P1 and P ∧P1 |= ε frm P2.
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Assume that σ ,σ ′ agree on ε and σ |= P . By induction on judgement of P1 we obtain
σ |= P1 iff σ ′ |= P1. Case σ |= P1: Then σ |= P ∧P1. Hence by induction on judge-
ment of P2 we obtain σ |= P2 iff σ ′ |= P2. Thus σ |= P1 ∧P2 and σ ′ |= P1 ∧P2. Case
σ �|= P1: Then σ ′ �|= P1. Hence, in either case, σ |= P1 ∧P2 iff σ ′ |= P1 ∧P2. ��

6.2 Separators

Given effect sets εr and εw , we define the separator formula εr �εw to be a conjunction
of certain disjointnesses. In a state where εr � εw holds, nothing that the read effects in
εr allow to be read can be written according to the write effects in εw . Note that εw

(resp. εr ) may contain read (resp. write) effects but these do not influence the separator.

Definition 3 (separator). Define separator εr � εw by recursion on the effect sets:

rdG1•f � wrG2•g = if f ≡ g then G1 #G2 else true
rdy � wrx = if x ≡ y then false else true
rdalloc � wralloc = false
ε � ε ′ = true otherwise (for all other single effects)
(ε,ε) � ε1 = (ε � ε1)∧ (ε � ε1)
ε � (ε ′,ε) = (ε � ε ′)∧ (ε � ε)

In Sec. 2, to get Eqn. (3) we needed to use a separator. We can now restate that condition
as 〈y〉 ⊆ r1∧r1 #r2 ⇒ rdr2•item � wr〈y〉•item. By definition of �, it is immediate that
the consequent is equal to r2 # 〈y〉 so the implication is valid.

Lemma 5 (separator agreement). Consider any effect sets ε1 and ε2. Suppose σ →
σ ′ |= ε2 and σ |= ε1 � ε2. Then σ ∼ε1 σ ′.

On separating conjunction. In separation logic, P1 ∗P2 says that P1 and P2 are both
true and their truth is supported by disjoint regions of the heap. We can approximate
the intuitionistic version that allows there to be objects outside the footprint of P1 and
P2. Suppose ε1 frm P1 and ε2 frm P2. Obtain ε ′

2 from ε2 by discarding reads of
variables and replacing each region read rdG •f by wrG •f . Then the separation logic
formula P1 ∗P2 amounts to P1 ∧P2 ∧ (ε1 � ε ′2).

There is a significant difference, however. The semantics of ∗ is that there exists a
partition of the heap, and there may be more than one partition in case P1 and P2 do
not have unique semantic footprints. Our use of explicit footprints and ghost variables
can be seen as skolemizing the existential implicit in ∗, since ε1 � ε ′

2 typically refers to
regions involving ghost variables assigned in the (instrumented) program. For example,
define P(r) =̂ ∀x :Node ∈ r | x .item ≤ 0 and Q(r) =̂ ∀x :Node ∈ r | x .item ≥ 0. Let
R =̂ P(r)∧Q(alloc−r). Then we have both {R } x := new K ;x .n := 0 {R } [wrx ,r ]
and {R } x := new K ;x .n := 0;r := r∪〈x 〉 {R } [wrx ,r ]. But the reasoner must choose
between these two commands. Issues with nondeterminacy could arise if we allowed
bound region variables, e.g.,∃r |P(r)∧Q(alloc−r). Such matters are discussed further
in [21].
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6.3 Immunity

Recall from Sec. 2 the sequence y := x .left ;y.item := 0. The individual effects, write
of y and write of 〈y〉•item, cannot just be unioned to give the effect of the sequence,
because write effects are interpreted in the pre-states (Def. 1(b)). The y in wr〈y〉•item is
not the same y as in the pre-state of the entire composition. The proof rule for sequential
composition in Fig 8 must therefore ensure that the effect of the field update is immune
from (or does not interfere with) the effect of the assignment. In this particular case we
saw that the effect wr〈y〉•item can be subsumed by a bigger effect, wrr1•item. The
footprint of the region r1 in the write effect is separate from the footprint of y and this
permits the combined write effects to be wry,wrr1•item.

Definition 4 (P/ε-immune). Region expression G is said to be P/ε-immune pro-
vided P ⇒ ftpt(G) � ε is valid. Effect set ε2 is P/ε1-immune provided that for all
G, f such that wrG •f occurs in ε2, it is the case that G is P/ε1-immune. ��

For example, alloc is P/ε-immune provided wralloc is not in ε . Also, wrx
is true/wrx -immune (vacuously), but wr〈x 〉•f is not true/wrx -immune because
ftpt(〈x 〉) � wrx = false by Def. 3.

The key property of immunity is that if {P } C1 {P1 } [ε1] and {P1 } C2 {P ′ } [ε2]
are valid, and ε2 is P/ε1-immune, then ε1,ε2 is a valid effect for the sequence C1;C2.
This is part of the proof of soundness for the [Seq] rule, see Thm. 1.

Lemma 6. Let G be P/ε-immune. Then [[G]]σ = [[G]]σ ′ for any σ ,σ ′ such that σ →
σ ′ |= ε and σ |= P .

Proof. Since G is P/ε-immune, P ⇒ ftpt(G) � ε . So by σ |= P , we have σ |=
ftpt(G) � ε . Then from σ → σ ′ |= ε we have by Lemma 5 that σ ,σ ′ agree on ftpt(G).
Then by Lemma 3 we have [[G]]σ = [[G]]σ ′. ��

7 Program Correctness

A correctness statement takes the form {P } C {P ′ } [ε]. The intended meaning is that
from any initial state that satisfies P , C does not fault (terminate with error), and if it
terminates then the final state satisfies P ′. Moreover any allocation and update effects
are allowed by ε (Def. 1). The statement is well-formed in Γ provided that P , P ′, C ,
and ε are well-formed in Γ .

The notation �Γ is used for provability of statements that are well formed in Γ , so
the proof system derives judgements of the form �Γ {P } C {P ′ } [ε]. The semantics
is used to define valid correctness statements, for which we use notation |=Γ .

Definition 5 (validity). For state transformer ϕ of type Γ , define ϕ |=Γ {P }−{P ′ } [ε]
iff for all Γ -states σ ,σ ′ such that σ |= P we have ϕ(σ) �= � and if ϕ(σ) = σ ′ then
σ ′ |= P ′ and σ → σ ′ |= ε .

Let {P }C {P ′ } [ε] be well-formed in Γ . The correctness statement is valid, written
|=Γ {P } C {P ′ } [ε], if and only if [[Γ � C ]] |=Γ {P } − {P ′ } [ε]. ��
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ALLOC
fields(K ) = f :T

� { true } x := new K {x isK ∧x .f = default(T )} [wrx ,wralloc, fr 〈x〉]

FIELDACC
z �≡ x

� {y �= null∧ z = y } x := y .f {x = z .f } [wrx ]

FIELDUPD � {x �= null∧y = F } x .f := F {x .f = y } [wr 〈x〉•f ]

SEQ

� {P } C1 {P1 } [ε1, frG]
� {P1 } C2 {P ′ } [ε2,wrG •f ] ε1 is fr -free ε2 is P/ε1-immune
G is P1/(ε2,wrG •f )-immune P1 ⇒ G i ⊆ G for every wrG i •f i

� {P } C1 ;C2 {P ′ } [ε1,ε2, frG]

VAR
�Γ ,x :T {P ∧x = default(T )} C {P ′ } [wrx ,ε ]

�Γ {P } var x :T in C end {P ′ } [ε]

Fig. 8. Selected correctness rules and axioms for commands

FRAME
� {P } C {P ′ } [εC ] P � εQ frm Q P ⇒ εQ � εC

� {P ∧Q } C {P ′ ∧Q } [εC ]

SUB EFF
� {P } C {P ′ } [ε ] P � ε ≤ ε ′

� {P } C {P ′ } [ε ′]
CONTEXT

�Γ {P } C {P ′ } [ε]

�Γ ,x :T {P } C {P ′ } [ε]

NO UPDATE
� {P } C {P ′ } [wr〈x〉•f ,ε] rdx � ε rdy � ε P ∨P ′ ⇒ x .f = y

� {P } C {P ′ } [ε]

Fig. 9. Selected structural rules. Rules of Consequence, Conjunction, etc. are as usual.

Fig. 8 gives selected syntax-directed proof rules and axioms. In axiom [FieldUpd], one
step of dereferencing is allowed since F in the rule can be of the form x .f in the case that
f :rgn. But if we allowed command x .f := y.f .g , the rule would yield postcondition
x .f = y.f .g which is unsound due to possible sharing.

Fig. 9 gives selected structural rules. Rule [No Update] illustrates how assertional
reasoning can be used to eliminate effects.

Theorem 1. If � {P } C {P ′ } [ε] then |= {P } C {P ′ } [ε], for any C ,P ,P ′,ε .

Proof. By induction on the derivation of � {P } C {P ′ } [ε]. This boils down to show-
ing soundness for each rule. For brevity we focus on the case of normal termination.
Recall that σ ,σ ′,σ1 range over proper states (non-�).

Case [Frame]: To prove |= {P ∧Q } C {P ′ ∧Q } [εC ], suppose σ |= P ∧Q and
[[C ]]σ = σ ′. Then σ |= P . From � {P } C {P ′ } [ε] we get |= {P } C {P ′ } [ε ] by
induction, hence σ ′ |= P ′ and σ → σ ′ |= εC . Using σ |= P and P ⇒ εQ � εC , we
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get σ |= εQ � εC . Now by Lemma 5 we can conclude that σ ,σ ′ agree on εQ . So we
have P � εQ frm Q and σ ,σ ′ agree on εQ and σ |= P . Thus from Lemma 4 we can
conclude that σ |= Q iff σ ′ |= Q . But σ |= Q because σ |= P ∧Q . Hence σ ′ |= Q and
so σ ′ |= P ′ ∧Q .

Case [Seq]: Let σ be any Γ -state such that σ |= P . Suppose [[C1]]σ = σ1 and
[[C2]]σ1 = σ ′. By validity of the antecedent correctness statements we get σ1 |= P1

and σ ′ |= P ′; moreover σ → σ1 |= ε1, frG and σ1 → σ ′ |= ε2,wrG •f . To prove σ →
σ ′ |= ε1,ε2, frG , we argue by cases on the parts of Def. 1.

Part (a): Consider any x such that σ(x ) �= σ ′(x ). If σ1(x ) �= σ ′(x ) then wrx is
in ε2, by σ1 |= P1 and σ1 → σ ′ |= ε2,wrG •f (from above). If σ1(x ) = σ ′(x ) then
σ(x ) �= σ1(x ) so then wrx is in ε1, by σ |= P and σ → σ1 |= ε1, frG (from above).
Part (b): Consider any p ∈ alloc(σ) and f such that σ(p.f ) �= σ ′(p.f ).

– Case σ1(p.f ) �= σ ′(p.f ): Owing to σ1 |= P1 and σ1 → σ ′ |= ε2,wrG •f , we have
one of two cases:
• There is wrG ′•f ∈ ε2 such that p ∈ [[G ′]]σ1. By antecedent of [Seq], ε2 is

P/ε1-immune, so G ′ is P/ε1-immune. Thus by Lemma 6, p ∈ [[G ′]]σ . Thus
this update is allowed in virtue of wrG ′•f .

• There is i such that p ∈ [[G i ]]σ1 and f i is f . Since σ1 |= P1, antecedent P1 ⇒
G i ⊆G of [Seq] yields p ∈ [[G]]σ1. And since we have σ → σ1 |= ε1, frG , we
have that [[G]]σ1 ⊆ alloc(σ ′)−alloc(σ), which contradicts the assumption that
p ∈ alloc(σ) —so this case cannot happen.

– Case σ1(p.f ) = σ ′(p.f ): Then σ(p.f ) �= σ1(p.f ), so by σ → σ1 |= ε1, frG there
is some wrG ′•f ∈ ε1 with p ∈ [[G ′]]σ .

Part (c): Consider any p ∈ alloc(σ ′) such that p /∈ alloc(σ). Case p ∈ alloc(σ1): then
wralloc is in ε1. Case p /∈ alloc(σ1): then wralloc is in ε2.

Part (d): For any frG ′ in ε2, we have [[G ′]]σ ′ ⊆ alloc(σ ′)− alloc(σ1) from σ1 → σ ′ |=
ε2,wrG •f . Since σ1 extends σ (by semantics), we thus have [[G ′]]σ ′ ⊆ alloc(σ ′)−
alloc(σ). Finally, since ε1 is fr -free it remains to justify the final effect frG: Using the
antecedent that G is P1/(ε2,wrG •f )-immune, and σ1 |= P1, we have by Lemma 6 and
σ1 → σ ′ |= ε2,wrG •f that [[G]]σ1 = [[G]]σ ′. By σ |= P and σ → σ1 |= ε1, frG we
have [[G]]σ1 ⊆ alloc(σ1)− alloc(σ) and hence since σ ′ extends σ1 we have [[G]]σ1 ⊆
alloc(σ ′)−alloc(σ). Using [[G]]σ1 = [[G]]σ ′ we get [[G]]σ ′ ⊆ alloc(σ ′)−alloc(σ). ��

Substitution and ghost elimination rules. In order to connect initial and final states, we
often use variables that occur in pre- and post-conditions but not the program. Substi-
tution for such variables is sound, but it takes a bit of work to formulate that they do
not occur in the program. This is made straightforward by the inclusion of read effects
in command specifications. Then we can formulate the substitution rule as follows. We
use Reynolds’ notation for substitution in formulas, writing P/x→F for substitution
of F for x in P .

� {P } C {P ′ } [ε ] (P/x→F ) ⇒ ftpt(F ) � (ε/x→F ) rdx /∈ ε wrx /∈ ε
� {P/x→F } C {P ′/x→F } [ε/x→F ]

In accord with our convention on well formed rule instantiations, the result of substi-
tution must be well formed here, e.g., (x .g ⊆ r)/x→null is not. The proof uses routine
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techniques but it requires the semantics of read effects of commands which we omit
from this paper for brevity. There is also an auxiliary elimination rule (cf. Owicki-
Gries), needed since local variables of type rgn are used as ghosts for reasoning.

8 Examples

We conclude the Subject/Observer example by verifying a simple client program us-
ing the specifications in Fig. 5. Method call and constructor rules are omitted from
the technical formalization but are straightforward and we use them here. Here is the
client program: o := new Observer(s); s .update(n); i := o.val(); . Here is its spec-
ification: requires SubObs(s ,s .val), ensures i = n , effects ε1,ε2,wr i where: ε1 =
wralloc,o,s .O •nxt ,〈s〉•O ,〈s〉•obs , fr 〈o〉, and ε2 = wr〈s〉•val ,s .O •cache. Our first
step uses the (omitted) rule for allocation with constructor call. Informally, the rule
says that we can use constructor’s pre/postconditions by adapting them to the call-
ing context. The effects are those of the constructor with self replaced by LHS of the
assignment.

{SubObs(s ,s .val)} o := new Observer(s) {SubObs(s ,s .val)∧o ∈ s .O } [ε1] (4)

The method call rule yields {SubObs(s ,s .val)} s .update(n) {SubObs(s ,n)} [ε2].
Now we can apply Frame to conjoin o ∈ s .O since true � rdo,s ,〈s〉•O frm o ∈ s .O
and true ⇒ (rdo,s ,〈s〉•O) � (wr 〈s〉•val ,s .O •cache).

{SubObs(s ,s .val)∧o ∈ s .O } s .update(n) {SubObs(s ,n)∧o ∈ s .O } [ε2] (5)

Next, we have by the method call rule, and [Conseq]

{SubObs(o.sub,o.sub.val)∧o ∈ o.sub.O } i := o.val() { i = o.sub.val } [wr i ]

Let Q =̂ o.sub = s ∧ s .val = n . Framing the above with Q we obtain

{SubObs(o.sub,o.sub.val)∧o ∈ o.sub.O ∧Q } i := o.val() { i = o.sub.val ∧Q } [wr i ]

First, i = o.sub.val ∧Q implies i = n . Next, we can show that the postcondition of
(5) implies SubObs(o.sub,o.sub.val)∧ o ∈ o.sub.O ∧Q by unfolding the definition
of SubObs using o ∈ o.sub.O . Thus we get by [Conseq]

{SubObs(s ,n)∧o ∈ s .O } i := o.val() { i = n } [wr i ] (6)

Now using [Seq] on (4), (5), (6) we obtain the desired correctness judgement at the
beginning of the section.

For examples that use separation without any inductive predicates, we have veri-
fied the standard list copy and in-situ reversal algorithms with respect to the following
specifications. For reversal : requires x ∈ r ∧ r •nxt = r , ensures res ∈ r ∧ r •nxt = r ,
effect wrr •nxt . That is, r remains closed, the result is in r , and there is no alloca-
tion. Our specification for copy says the copy is disjoint from the original: requires
x ∈ r1 ∧ r1•nxt = r1, ensures res ∈ r2 ∧ r2•nxt = r2 ∧ r1 # r2, effect wrr2, alloc.
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9 Framing Module Invariants

The previous section focused on framing in the small: using effect specifications to
reason about commands in terms of specifications of their constituent commands. This
section addresses framing at a higher level, in particular, reasoning about invariants for
encapsulated state [13]. The idea is that the implementation of an abstract data type
can maintain an invariant that pertains to its encapsulated data representation, without
exposing the invariant to clients (or subclasses). This creates a mismatch between the
client’s view of a method call, say {P/self→x } x .m() {P ′/self→x } [. . .], using the
specification P ,P ′ of m, and the proof obligation for the implementation Cm of m:
{P ∧ Inv(self)} Cm {P ′ ∧ Inv(self)} [. . .].

Sec. 9.1 considers ownership confinement, the idea that a client-visible object that
represents, say, a Collection can encapsulate its internal representation as a region dis-
joint from the reps of other collections and from clients. If the invariant is framed by the
owned reps, and disjointness is maintained as a confinement invariant, and client effects
are disjoint from the reps, then the mismatched proof obligations [13] are sound.

We treat confinement as an explicit invariant that pertains to all instances of some
class (or subclasses, though we refrain from emphasizing that dimension). We treat the
object invariant in terms of a single invariant that pertains to all instances. This treatment
allows an encapsulation discipline to be expressed on a per-module basis, rather than
being globally imposed on all code. Moreover, it allows the mismatch to be formalized
as a second order frame rule like that of separation logic [23], with a confinement in-
variant and client effect bound carried through the part of a proof in which an invariant
is hidden. The rule is admissible [21], which amounts to saying that the mismatch can
always be fixed by augmenting the proof with explicit uses of our ordinary Frame rule.

Sec. 9.2 returns to the Subject/Observer example, again in terms of a global invari-
ant that describes disjointness of encapsulated islands, albeit not based on hierarchical
ownership.

9.1 Ownership and Object Invariants

The following classes illustrate a scenario like a set represented by a linked list that may
contain duplicate elements.

class Coll {rgn rep; Node lst ; int size;} class Node {T item; int len; Node nxt ;}
The size of a collection is part of its external interface. For the sake of an example, we
choose an object invariant that relates size to the internal representation:

CollI (c) =̂ c �= null ∧c isColl ∧c.lst ∈ c.rep∧c.rep•nxt ⊆ c.rep∧c.lst .len ≥ c.size

Recall that c.lst ∈ c.rep abbreviates c.lst �= null∧〈c〉•lst ⊆ c.rep. Field rep serves to
delimit the encapsulated representation or owned objects. The following can be derived:

true � rdc,〈c〉•(rep, lst ,size),c.rep•(len,nxt) frm CollI (c) (7)

Let d :Collection , to consider a call d .m() that relies on invariant CollI (d).
Methodologies based on ownership can be described as a way to ensure that a
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client command, say {P } C {P ′ } [ε ], can be lifted by the Frame rule to {P ∧
CollI (d)} C {P ′ ∧CollI (d)} [ε ] because the frame of CollI (d) is necessarily sepa-
rate from the client effect. If specifications for all parts of the client code are thus lifted,
they match the hidden precondition CollI (d).

An object invariant is intended to apply separately to each instance of the class. It
is easy to say it applies to each instance: ∀c :Coll ∈ alloc | CollI (c). To illustrate the
flexibility of our logic, let us instead suppose there is a global region variable CollS
that holds some or all instances of Coll . (In practice this would be a static field of class
Coll .) The “component” of interest to clients is the pool of objects in CollS . We want
each of these collections to satisfy its invariant: ∀c ∈ CollS | CollI (c). To frame this
formula, suppose global variable CollR holds the union of the reps of CollS , i.e.

CollC0 =̂ ∀c ∈ CollS | c.rep ⊆ CollR

This serves to derive, from (7), a frame for ∀c ∈CollS | CollI (c), to wit

CollC0 � rdCollS ,CollR,CollS •(rep, lst ,size),CollR•len frm ∀c ∈CollS |CollI (c)

Formula CollC0 says that the module’s internal representation objects are in CollR. We
can express the “package confinement” condition that clients don’t reach reps:

CollC1 =̂ (alloc− (CollS∪CollR))•any #CollR

If package confinement holds at call sites, then we can use the Frame rule to lift client
code to get it to match with

{P ∧∀c ∈ CollS | CollI (c)} d .m() {P ′ ∧∀c ∈ CollS | CollI (c)} [. . .] (8)

(Doing this once and for all is the point of the second order frame rule [21].)
The precondition of (8) is certainly strong enough to verify the implementation of

m, since it implies CollI (d). The postcondition appears very strong. But recall that an
object invariant is supposed to apply “separately” to each instance. Besides separating
clients from representations, with CollC1, we can also use an “island confinement”
condition to say that distinct collections have disjoint reps:

CollC2 =̂ ∀c,c′ :Coll ∈CollS | c = c′ ∨ c.rep # c′.rep

Confinement conditions like CollC0, CollC1, and CollC2 can be enforced by owner-
ship type systems and other pointer analyses.1 Such enforcement mechanisms typically
ensure that confinement holds in all reachable states.2

1 For example, if we represent an ownership hierarchy using a ghost field owner , and impose
the dominator property of Ownership Types, then CollC2 will be an easy consequence. If
instead we allow some references, for read-only use as in Universe Types, then a weaker
confinement condition holds; but the story can still play out, as we distinguish between read
and write effects of commands.

2 Making these conditions explicit in program annotations might be a high cost, compared
with getting them as global invariants “for free” from a separate static analysis. On the other
hand, making them explicit would be one way to show soundness of the result of a particular
analysis, and also provide a means to work around restrictions due to approximations made
by static analysis. For now we set that issue aside and simply assume they are all-states
invariants.
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Let us return to the problem of establishing the postcondition of (8) in the imple-
mentation of method m. To focus on self, we can rewrite ∀c ∈ CollS | CollI (c) as
PC ∧CollI (self) where

PC =̂ ∀c ∈ CollS −〈self〉 | CollI (c)

In light of the frame we found for ∀c ∈ CollS | CollI (c), we can frame PC as

CollC0 � rdself,CollS ,CollR,(CollS −〈self〉)•(rep, lst ,size),CollR•len frm PC

Further, we can remove self.rep•len from the effect rdCollR•len owing to the island
confinement CollC2.

In short, we should verify the implementation with respect to just CollI (self). Owing
to confinement, the footprint of the implementation is disjoint from the frame of ∀c ∈
CollS −〈self〉 | CollI (c), so the frame rule will yield ∀c ∈ CollS | CollI (c).

Making confinement an all-states invariant is sufficient but not necessary. The con-
finement conditions are necessary at those points where the frame rule is used to lift a
local correctness property, like preserving CollI (self), to a stronger property like pre-
serving ∀c ∈CollS |CollI (c). Confinement may also be exploited for reasoning within
the implementation, e.g., at outgoing method calls —more on that below.

In summary, we suggest that method implementations maintain module invariants,
which may include module-wide conditions for resource management etc, together with
object invariants in global form, like ∀c ∈CollS | CollI (c).

On reentrant callbacks. Through cyclic references, it is possible for some module op-
eration to invoke a method that leads to a re-entrant callback. That is, an invocation on
some object o at a point when another operation is already in progress and which may
thus have temporarily falsified the invariant. In some cases, re-entrant callback can be
shown to be impossible simply in virtue of the graph of which method implementations
invoke which (disambiguated) methods. Another technique is the “visible state seman-
tics” [18] in which invariants are required to hold on every method call boundary; so
in particular the module operation is required to re-establish the object invariant before
making any call. In some cases, pointer analysis can determine the absence of cyclic
references by which a chain of calls can lead back to an instance. Using the Frame
requires separation and thus prevents hiding invariants in cases where the effects of
callbacks are not disjoint from the invariants’ footprints.

Sometimes reentrant callbacks are desirable, of course. The Subject/Observer code
is an example where the relevant methods belong together in a module and therefore
hiding the invariant is not an issue. In cases where hiding is important, such as other
Subject/Observer scenarios where the Observer cannot be expected to be responsible for
the Subject’s invariants, a typical solution is to designate the intended callback methods
as not assuming the hidden invariant.

Hierarchical ownership. Coll relies on Node operations. If Node is in a different mod-
ule, it may rely on invariants that are hidden from Coll . For example, if Coll requires
that the actual number of values in the list is at most lst .len , then Node takes care of
that when a new item is inserted. On the other hand, that will make self .lst .len out of
sync with self .size; restoring that is Coll ’s responsibility.
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Our idea is that a module, say the module for Node, has some confinement policy
and its clients are checked for conformance. The code of Node can thereby rely on
its object invariant. This can be hidden from Coll , which is a client of Node. In turn,
by encapsulating its list nodes, possibly by a different discipline, Coll ensures that
operations on nodes of c.reps only happen when methods of Coll have control.

9.2 Beyond Ownership to Cluster Invariants

In this section let us say an abstract component is one or more interface objects that
serve to represent some data abstraction, together with their representation objects
which are meant for internal use. For example, a collection together with its iterators
are an abstract component that provides a set with stateful enumerations. Ownership is
suited to situations where there is a single interface object. Perhaps the most obvious
way to express an invariant for this example is as a predicate that involves an instance
of Coll together with all its associated Iterators . A number of techniques have been
proposed to treat such a “cluster invariant” as one or more object invariants whose de-
pendencies are constrained but not by ownership [22]. There are several reasons to try
to reduce cluster invariants to object invariants. On the other hand, notions like peer de-
pendencies and friendship are very limited in applicability. It is worthwhile to develop
disciplines tailored to design patterns in wide use, such as Subject/Observer and Itera-
tor. But it is also desirable to have a setting in which ad hoc reasoning patterns can be
devised for very specific situations, yet still achieving modular and economic reasoning
based on encapsulated invariants.

The client of a cluster with multiple interface objects has the potential to interfere
with the invariant via those multiple handles, and thus the specifications of operations
on particular interface objects —like adding to the collection, or advancing one of its
iterators— must surely expose a holistic view of the cluster. In the paper [24] from
which we borrow the Subject/Observer example, Parkinson uses a cluster invariant
SubObs that appears in preconditions of methods of both Subject and Observer.

First, we imagine Subject and Observer are together in a module, with methods
register and add given module scope while others are public. The module-scope meth-
ods are verified in the same context and without need to hide the invariant; it can simply
be made explicit in their specifications. Now we factor apart the Sub predicate into a
condition, SubX , suited to public (external) specifications, and another, SubH , suited
to be a hidden invariant. (In a more realistic example, val would be a model field.)

SubX (s ,v) =̂ s .val = v SubH (s ,v) =̂ List(s .obs ,s .O)
SubObsX (s ,v) =̂ SubX (s ,v)∧∀o :Observer ∈ s .O | Obs(o,s ,v)
SubObsH (s ,v) =̂ SubH (s ,v)∧SubX (s ,v)

Whereas the X-versions of the invariant are left in the method specifications, the H-
versions are used only for verification of the implementations of the methods of Subject
and Observer. Specifically, a global invariant like this is used:

SOI =̂ (∀s :Subject ∈ alloc | SubObsH (s ,s .val))
∧ (∀o :Observer ∈ alloc | o.sub �= null ⇒ o ∈ o.sub.O)
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Given precondition SOI for a method of Observer , the verifier can instantiate the sec-
ond conjunct with self for o, and the first conjunct with self.sub for s , to obtain the
invariant for its cluster. Confinement invariants can be used to separate clusters so that
the Observer method is responsible for restoring the invariant, SubObsH , for its cluster
but then restores SOI for all others simply by framing. In particular, the separation of
clusters would look similar to CollC2, though in this case the islands are not as isolated
from clients since both Subjects and Observers are accessible.

10 Discussion

The genesis of this work is our ongoing work on secure information flow analysis, com-
bining verification and type checking [4]. We are developing a relational logic that lets
us specify fine grained declassification policies. Amtoft et al [1] achieve precise, mod-
ular reasoning about information flow using regions. In order to extend their work to
declassification policies, which may depend on complex program state conditions, we
needed to enrich the assertion language, which led to dropping their abstract interpreta-
tion of heap locations in favor of explicit regions.

State of the art verifiers use intricate reasoning about the heap, often based on vari-
ants of ownership régimes. Our approach is inspired by the Boogie methodology [5,16],
which is explicitly based on all-states invariants that use ghost fields to express an en-
capsulation régime (though not focused on confinement). Boogie also combines in-
stance invariants into a global condition akin to our example ∀c :Coll ∈ alloc |CollI (c).

Another inspiration is the work of Kassios [14], showing how explicit use of ghost
state can be effective without global imposition of a fixed programming discipline. Kas-
sios uses a ghost field to hold the footprint of an object’s invariant, a means to specify
the footprint, and a means to specify that a procedure touches only that footprint. Kas-
sios works directly with the semantics of “frames” as a second order predicate, quan-
tifying over all global program states. By contrast, we work out a first order assertion-
based logic. But there are similarities, e.g., Metatheorem 5.4.1 in his thesis is related to
our notion of immunity, as is the swinging pivots restriction of Leino and Nelson [17,
Sec. 8.3].

Smans et al [26] investigate Kassios’ approach to framing in the setting of pre / post
/ modifies specifications, focusing on reasoning with pure method calls in assertions.
Like us they use explicit regions in modifies specifications, expressed as pure methods.
Their approach has been implemented in a prototype verifier and applied to examples
like observer and iterator.

Smith [27] uses regions denoted by ownership contexts to formulate a simple, type
based frame rule that resembles ours.

Recent work on ownership has addressed the need for clusters without a single dom-
inating owner. Cameron et al [10] give a good survey of ownership systems. They adapt
Ownership Types to a system of “boxes” (clusters) that describes rather than restricts
program structure. Thus it does not ensure encapsulation, but they provide and prove
sound an effect system for disjointness of boxes. Müller and Rudich [19] extend Uni-
verse Types, which provides encapsulation and has been adopted by JML for invariants,
to solve the difficult problem of ownership transfer. Drossopoulou et al [12] provide a
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general theory to account for a variety of invariant disciplines, focusing on visible state
semantics. Ownership type systems cater for hierarchical ownership, with the benefit of
uniformity and a fixed semantics of when invariants hold. We propose the use of second
order framing with module-specific disciplines, in hopes of more flexible deployment
of these and even earlier and simpler ownership systems.

The influence of separation logic on our work is clear. The separating conjunction
hides the heap and expresses separation in the heap implicitly. Becauses footprints are
shadows of predicates, specifications require full functional descriptions using induc-
tive definitions, or else quantification over predicates. Parkinson’s position paper [24]
clearly articulates the case for specifications at the level of object clusters. In higher
order separation logics [7] and Hoare type theory [20], one can quantify predicates to
get multi-instance abstractions at the cost of intricate semantics and sometimes the loss
of the [Conj] rule. Various works articulate the view that the second order frame rule
pertains to static, single-instance modules, e.g., this motivated Parkinson’s technique
for hiding invariants by opaque naming, which can be understood as second order exis-
tentials [6].

Now we turn to future work. The Boogie discipline can be viewed as a proof outline
logic; it would be interesting to show that the invariants specified in the discipline hold
in that logic by using reasoning similar to the one developed in this paper. More gen-
erally, the logic may be of use in connecting and even unifying various disciplines for
ownership and beyond. To that end we are investigating better means to abstract from
field names than the crude “any” used here in examples. Another question is whether
effects can be made conditional, or even subsumed in two-state postconditions, while
retaining effective generation of framing conditions as in Sec. 6.

The proof rules of our logic are formulated in a way that shows how reasoning works.
An automated verifier will likely not apply such rules directly but will rather transform
the code and generate verification conditions. Experiments with the logic are underway,
by translating into BoogiePL, and the third author is investigating decision procedures
for quantifier-free assertions. Another avenue to explore is use of the logic as translation
target from higher level static analyses; instead of metatheory to justify that analysis and
its use, it just creates verification conditions (c.f. runtime verification).
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