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Abstract. Exception handling mechanisms are intended to support the devel-
opment of robust software. However, the implementation of such mechanisms 
with aspect-oriented (AO) programming might lead to error-prone scenarios. As 
aspects extend or replace existing functionality at specific join points in the 
code execution, aspects’ behavior may bring new exceptions, which can flow 
through the program execution in unexpected ways. This paper presents a sys-
tematic study that assesses the error proneness of AOP mechanisms on excep-
tion flows of evolving programs. The analysis was based on the object-oriented 
and the aspect-oriented versions of three medium-sized systems from different 
application domains. Our findings show that exception handling code in AO 
systems is error-prone, since all versions analyzed presented an increase in the 
number of uncaught exceptions and exceptions caught by the wrong handler. 
The causes of such problems are characterized and presented as a catalogue of 
bug patterns.  

Keywords: Exception handling, aspect-oriented programs, static analysis, em-
pirical study, uncaught exceptions, obsolete handler, unintended handler. 

1   Introduction  

Exception handling mechanisms aim at improving software modularity and system 
robustness by promoting explicit separation between normal and error handling code. 
It allows the system to detect errors and respond to them correspondingly, through the 
execution of recovery code encapsulated into handlers. The importance of exception 
handling mechanisms is attested by the fact they are realized in many mainstream 
programming languages, such as Java, C++ and C#. 

The goal of Aspect-Oriented Programming (AOP) [41] is to modularize concerns 
that crosscut the primary decomposition of a system (e.g., functions, classes, compo-
nents) through a new abstraction called aspect. Aspects use specific constructs to 
perform invasive modifications of programs [1], and include additional behavior at 
specific points in the code. AOP is being exploited to improve the modularity of  
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exception handling and other equally-important crosscutting concerns, such as trans-
action management [31], distribution [31], and certain design patterns [13, 15]. Ac-
cording to some studies [5, 6, 7, 9, 20, 31], AOP has succeeded in improving the 
modular treatment of several exception handling scenarios. However, it is recognized 
that flexible programming mechanisms (e.g., inheritance and polymorphism [24]) 
might have negative effects on exception handling. Hence, while the invasiveness of 
aspect composition mechanisms may bring a realm of possibilities to software design, 
often allowing for more stable crosscutting designs [14, 25, 9], they might be useless 
for practical purposes if they make the exception handling code error prone. Aspec-
tual refinements of base behavior can either improve abnormal behavior robustness or 
adversely contribute to typical problems of poorly designed error handling code, such 
as exception subsumption [29] and unintended handler action [24, 29].  

Unfortunately, there is no systematic evaluation of the positive and negative effects 
of AOP on the robustness of exception handling code. Existing research in the litera-
ture has been limited to analyze the impact of aspects on the normal control flow [8, 
18, 19, 27]. In addition, most of the empirical studies of AOP do not go beyond the 
discussion of modularity gains and pitfalls obtained when aspects are applied to ex-
ception handling [5, 6, 7] and other crosscutting concerns [9, 14, 26, 31]. For instance, 
these studies do not account for the consequences bearing with new exceptions and 
handlers that come along with the aspects’ added functionality.  

This paper reports a first systematic study that quantitatively assesses the error 
proneness of aspect composition mechanisms on exception flows of programs. The 
evaluation was based on an exception flow analysis tool (developed in this work) and 
code inspection of exception behaviors in Java and AspectJ [33] implementations of 
two industrial software systems – Health Watcher [14, 31] and Mobile Photo [9] – 
and one open-source project – JHotDraw [16]1. For the first two systems more than 
one release was examined. Overall, this corresponds to 10 system releases, 41.1 
KLOC of Java source code of which around 4.1 KLOC are dedicated to exception 
handling, and 39 KLOC lines of AspectJ source code, of which around 3.2 KLOC are 
dedicated to exception handling. These systems are representatives of different appli-
cation domains and exhibit heterogeneous exception handling strategies. Some nega-
tive outcomes were consistently detected through the analyzed releases using AOP, 
such as: 

• higher evidence of uncaught exceptions [17] when aspect advices act as ex-
ception handlers, thereby leading to unpredictable system crashes [34]; and 

• a multitude of exception subsumptions [29], some of them leading to  unin-
tended handlers [24], .i.e, exceptions that are thrown by aspects and unex-
pectedly caught by existing handlers in the base code;  

The causes of such increases were investigated, and are presented in the form of a 
bug pattern catalogue related to the exception handling code. During this study we 
implemented an exception flow analysis tool for Java and AspectJ programs, which 
was very useful when finding and characterizing these bugs. The contributions of this 
study are as follows: 

                                                           
1 The source code of all systems used in this study is available on the website http://www. 

inf.puc-rio.br/~roberta/aop_exceptions. 
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• It performs the first systematic analysis which aims at investigating how as-
pects affect the exception flows of programs. 

• It introduces a set of bug-patterns related to the exception handling code of 
AO programs that were characterized based on the data empirically collected. 

• It presents an exception flow analysis tool for Java and AspectJ programs, 
which was developed to support the analysis.  

The contributions of this work allow for: (i) developers of robust aspect-oriented 
applications to make more informed decisions in the presence of evolving exception 
flows, and (ii) designers of AOP languages and static analysis tools to consider push-
ing the boundaries of existing mechanisms to make AOP more robust and resilient to 
changes. The remainder of this paper is organized as follows. Section 2 describes 
basic concepts associated with exception handling in AO programs. Section 3 defines 
the hypotheses and configuration of our exploratory study, the target applications and 
the evaluation procedures. Section 4 reports our analysis of the empirical data col-
lected in this study. Section 5 presents a bug catalogue for exception handling code in 
AO systems based on the bug patterns that actually happened in each investigated 
system, and Section 6 provides further discussions and lessons learned. Section 7 
describes the related work. Finally, Section 8 presents our conclusions and directions 
for future work. Due to space limitations, throughout this article we assume that the 
reader is familiar with AOP terminology (i.e., aspect, join point, pointcut, and advice) 
and the syntax of AspectJ’s main constructs. 

2   Characterizing the Exception Handling Mechanism in AO 
     Programs 

In order to support the reasoning about exception flows in AO programs we present 
the main concepts of an exception-handling mechanism and correlate each element 
with the constructs available in most AO languages. An exception handling mecha-
nism is comprised of four main concepts: the exception, the exception signaler, the 
exception handler, and the exception model that defines how signalers and handlers 
are bound [12]. 

Exception Raising. An exception is raised by an element - method or method-like 
construct, e.g., advice - when an abnormal state is detected. In most languages an 
exception is usually assumed as an error, and represents an abnormal computation 
state. Whenever an exception is raised inside an element that cannot handle it, it is 
signaled to the element’s caller. The exception signaler is the element that detects the 
abnormal state and raises the exception. Thus, in AO programs the signaler can be 
either a method or an advice. In Figure 1, the advice a1 detects an abnormal condition 
and raises the exception EX. Since this advice intercepts the method mA, the excep-
tion EX comes with the additional behavior included into the affected method. 

Exception Handling. The exception handler is the code invoked in response to a 
raised exception. It can be attached to protected regions (e.g. methods, classes and 
blocks of code) or specific exceptions [16]. Handlers are responsible for performing 
the recovery actions necessary to bring the system back to a normal state and, when-
ever this is not possible, to log the exception and abort the system in an expectedly 
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safe way. In AO programs, a handler can be defined in either a method or an advice. 
Specific types of advice (e.g., around and after [6]) have the ability to handle the 
exceptions thrown by the methods they advise. 

Handler Binding. In many languages, the search for the handler to deal with a raised 
exception occurs along the dynamic invocation chain. This is claimed to increase 
software reusability, since the invoker of an operation can handle it in a wider context 
[16, 24]. In AO programs the handler of one exception can be present: (i) in one of the 
methods in the dynamic call chain of the signaler; or (ii) in an aspect that advises any 
of the methods in the signaler’s call chain. Figure 1 depicts one scenario in which one 
advice (a1) signals the EX exception, and the other advice (a2) is responsible for 
handling EX, i.e. a2 intercepts one of the methods in the dynamic call chain and han-
dles this exception. 
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Fig. 1. Exception propagation 

An exception path is a path in a program call graph that links the signaler and the 
handler of an exception. Notice that if there is no a handler for a specific exception, 
the exception path starts from the signaler and finishes at the program entrance point. 
In Figure 1, the exception path of EX is <a1→mA→mB→mC→a2>. Therefore, the 
exception flow comprises three main moments: the exception signaling, the exception 
flow through the elements of a system, and the moment in which the exception is 
handled or leaves the bounds of the system without being handled, thus becoming an 
uncaught exception. 

Exception Interfaces [24]: The caller of a method needs to know which exceptions 
may cross the boundary of the called one. In this way, the caller will be able to pre-
pare the code beforehand for the exceptional conditions that may happen during sys-
tem execution. For this reason, some languages provide constructs to associate to a 
method’s signature a list of exceptions that this method may throw. Besides providing 
information for the callers of such method, this information can be checked at com-
pile time to verify whether handlers were defined for each specified exception. This 
list of exceptions is defined by Miller and Tripathi [24] as a method’s exception inter-
face. Ideally, the exception interface should provide complete and precise information 
for the method user. However, they are most often neither complete nor precise [4], 
because languages such as Java provide mechanisms to bypass this mechanism. This 
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is achieved by throwing a specific kind of exception, called unchecked exception, 
which does not require any declaration on the method signature. For convenience, in 
this paper we split this concept of exception interface into two categories:  

(i) the explicit exception interfaces, which are part of the method (or method-like 
construct) signature and explicitly declare the list of exceptions; and  

(ii) the complete (de facto) exception interfaces, which capture all the exceptions 
signaled by a method, including the implicit (unchecked) ones not specified in 
the method signatures. 

In the rest of this paper, unless it is explicitly mentioned, we use the expression 
“exception interface” to refer to a complete (de facto) exception interface. Although 
both the normal interface (i.e. method signature) and the exception interface of a 
method can evolve along a software life cycle, the impact of such a change on the 
system varies significantly. When a method signature varies, it affects the system 
locally, i.e. only the method callers are directly affected. On the other hand, the re-
moval or inclusion of new exceptions in an exception interface may impact the system 
as a whole, since the exception handlers can be anywhere in the code. As depicted in 
Figure 1, an aspect can add behavior to a method without changing the normal inter-
face of that method. However, the additional behavior may raise new kinds of excep-
tions, hence impacting the exceptional interfaces.  

Exception Types and Exception Subsumption. Object-oriented languages usu-
ally support the classification of exceptions into exception-type hierarchies. The ex-
ception interface is therefore composed by the exception types that can be thrown by a 
method. Each handler is associated with an exception type, which specifies its han-
dling capabilities - which exceptions it can handle. The representation of exceptions 
in type hierarchies allows type subsumption [29] to occur: when an object of a sub-
type can be assigned to a variable declared to be of its supertype, the subtype is said 
to be subsumed in the supertype. When an exception is signaled, it can be subsumed 
into the type associated to a handler, if the exception type associated to the handler 
(i.e., the hander type) is a supertype of the exception type being caught. 

3   Evaluation Procedures 

This section describes our study configuration in terms of its goals and hypotheses, 
the criteria used for the target systems selection (Section 3.1), methodology employed 
to conduct the exceptional code analyses (Section 3.2), and the actual execution of our 
study (Section 3.3). The goal of this case study is to evaluate the impact of AOP on 
exception flows of AspectJ programs, comparing them with their Java counterparts. 
The investigation relies on determining, in multiple Java and AspectJ versions, which 
exception-handling bug patterns (Section 5) are typically introduced in their original 
and subsequent releases. The analyzed error-prone scenarios vary from uncaught to 
unintended handler actions. 

The OO and AO versions of three applications have been compared in order to 
observe the positive and negative effects caused by aspects on their exception 
flows. Specific procedures were undertaken in order to distinguish AOP liabilities 
for exception handling implementation from well-known intrinsic impairments of 
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OO mechanisms on exception handling [24]. These procedures were important to 
detect whether and which AO mechanisms are likely to lead to unexpected and 
error-prone scenarios involving exception handling. As a result, the null hypothesis 
(H0) for this study states that there is no difference in robustness of exception han-
dling code in Java and AspectJ versions of the same system. The alternative hy-
pothesis (H1) is that the impact of aspects on exception flows of programs can lead 
to more program flaws associated with exception flow. 

3.1   Target Systems 

One major decision that had to be made for our investigation was the selection of the 
target applications. We have selected three medium-sized systems to which there was a 
Java version and an AspectJ version available. Each of them is a representative of dif-
ferent application domains and heterogeneous realistic ways of incorporating exception 
handling into software systems being developed incrementally. The target systems 
were: Health Watcher [14, 31] (HW), Mobile Photo [9] (MP) and JHotDraw [16, 21] 
(JHD). The HW system [14, 31] is a Web-based application that allows citizens to regis-
ter complaints regarding health issues in public institutions. MP is a software product 
line that manipulates photo, music and video on mobile devices. JHotdraw framework 
[16] is an open-source project that encompasses a two-dimensional graphics framework 
for structured drawing editors. It comprises a Java swing and an applet interface. In our 
 

Table 1. Target Systems description 

System Description and Crosscutting Concerns
Version 1 : concurrency control, persistence (partially) and exception handling (partially).

Version 9 : concurrency control, transaction management, design patterns (Observer,
Factory and Command), persistence (partially) and exception handling (partially).

Version 4 : exception handling and some functional requirements comprising photo
manipulation, such as to sort a list of photos, to choose the favorites, and to copy photo.

Version 6: exception handling and some functional requirements comprising the
manipulation of different kinds of media (i.e., photos and audio files), such as: to sort a list
of medias, to choose the favorites, and to copy a media and sending SMS).

AJHotDraw (HD) Version 1 : persistence concern, design policies contract enforcement and undo command. 

Health Watcher (HW)

Mobile Photo (MP)

 

Table 2. Code characteristics per system 

Number of: OO AO OO AO OO AO OO AO OO AO
Lines of code 6080 5742 8825 7838 2540 3098 1571 1859 21027 21123
Lines of code for exception handling 1167 854 1889 1242 474 424 356 296 320 341
Classes 88 90 132 129 46 49 30 29 288 279
Aspects 0 11 0 24 0 14 0 10 0 31
try blocks 131 118 233 173 49 40 36 24 60 61
catch blocks 285 177 481 266 69 60 52 38 67 72
throw clauses 227 182 334 229 21 18 20 17 52 56
try blocks inside classes 131 108 233 161 49 21 36 9 60 61
catch blocks inside classes 285 164 481 252 69 28 52 16 67 72
throw clauses inside classes 227 176 334 219 21 4 20 4 52 51
try blocks inside aspects n/a 10 n/a 12 n/a 19 n/a 15 n/a 0
catch blocks inside aspects n/a 13 n/a 14 n/a 32 n/a 22 n/a 0
throw clauses inside aspects n/a 6 n/a 10 n/a 14 n/a 13 n/a 5
after advices n/a 4 n/a 22 n/a 30 n/a 15 n/a 15
around advices n/a 5 n/a 6 n/a 21 n/a 17 n/a 18
before advice n/a 3 n/a 4 n/a 5 n/a 2 n/a 15

HotDrawHealth Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6
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study, we focused on the Java Swing version of the JHotdraw. Moreover, such systems 
exhibit a number of crosscutting concerns in addition to exception handling. Table l lists 
the crosscutting concerns that were implemented as aspects in the AO versions of each 
system.  

Heterogeneous, Non-Trivial Policies for Exception Handling. The target systems 
were also selected because they met a number of relevant additional criteria for our 
intended evaluation (Section 3). First, they are non-trivial software projects and par-
ticularly rich in the ways exception handling is related to other crosscutting and non-
crosscutting concerns. For instance, we could find most of the typical categories of 
exception handlers in terms of their structure as documented in [7], including nested 
exception handlers and context-affecting handlers. Second, the behavior of exception 
handlers also significantly varied in terms of their purpose [4], ranging from error 
logging to application-specific recovery actions (e.g., rollback). Third, each of these 
systems contains a considerable amount of code dedicated to exception handling 
within both aspects and classes as detailed in Table 2.  

Presence of Different Aspects in Incrementally-Developed Programs. Finally, AOP was 
applied in different ways through the system releases: (i) aspects were used to extract 
non-exception-handling concerns in JHotDraw, and all exception handlers are defined in 
the base code, (ii) aspects were used to modularize various crosscutting concerns in the 
Mobile Photo product line, including exception handling apart from the original release, 
and (iii) aspects were used to partially implement error handling in Health Watcher, 
where other behaviors were also aspectized. Good AOP practices were applied to struc-
ture such systems as stated in [9, 14, 31, 21]. Similar to Java releases, all the AspectJ 
releases were implemented and changed by developers with around three years of experi-
ence in AO design and programming. In fact, HW and MP systems have been used in the 
context of other empirical studies focusing on the assessment and comparison of their 
Java and AspectJ implementations in terms of modularity and stability [9, 14]. Align-
ments of Java and AspectJ versions have been undertaken in order to guarantee that both 
were implementing the same normal and exceptional functionalities.  

3.2   Static Analysis of Exception Flow 

The analysis of the exception flow can easily become unfeasible if done manually [28, 
29]. In order to discover which exceptions can be thrown by a method, due to the use of 
unchecked exceptions, the developer needs to recursively analyze each method that can 
be called from such method. Moreover, when libraries are used, the developer needs to 
rely on their documentation, which is most often neither precise nor complete [4].   

Current exception flow analysis tools [10, 11, 28] do not support AOP constructs. 
Even the tools which operate on Java bytecode level [11] cannot be used in a straight-
forward fashion. They do not interpret the aspect-related code included on the byte-
code after the weaving process of AspectJ. Hence, we developed a static analysis tool 
to derive exception flow graphs for AspectJ programs and support our investigation 
on determining flaws associated with exception flows. This tool is based on the Soot 
framework for bytecode analysis and transformation [32] and is composed of two 
main modules: the Exception Path Finder and the Exception Path Miner. Both  
components are described next, and more detailed information can be found at the 
companion website [3]. 
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Exception Path Finder. This component uses Spark, one of the call graph builders 
provided by Soot. Spark is a field-sensitive, flow-insensitive and context-insensitive 
points-to analysis [32], also used by other static analysis tools [10, 11]. The Exception 
Path Finder generates the exception paths for all checked and unchecked exceptions, 
explicitly thrown by the application or implicitly thrown (e.g., via library method) by 
aspects and classes. It associates each exception path with information regarding its 
treatment. For instance, whether the exception was uncaught, caught by subsumption 
or caught by the same exception type. In this study we are assuming that only one 
exception is thrown at a time – the same assumption considered in [10, 11].   

Exception Path Miner. This component classifies each exception path according to its 
signaler (i.e., class method, aspect advice, intertype or declare soft constructs) and 
handler. Such classification helps the developer to discover the new dependencies that 
arise between aspects and classes on exceptional scenarios. For instance, an exception 
can be thrown by an aspectual module and captured by a class or vice-versa. These 
different dependencies represent seeds to manual inspections whose goal is to evalu-
ate the error proneness of the abnormal code in AO systems.  

3.2.1   Inspection of Exception Handlers  
The classification of the handler action for each exception path was based on a com-
plementary manual inspection. It consisted of examining the code of each handler 
associated with exception paths found by the exception flow analysis tool (Section 
3.2.1). Such manual inspections were also targeted at: discovering the causes for un-
caught exceptions and exception subsumptions. It enabled us to systematically dis-
cover bug hazards associated with Java and AspectJ modules on the exception han-
dling code. A bug hazard [2] is a circumstance that increases the chance of a bug to be 
present in the software. For instance, type coercion in C++ is a bug hazard because it 
depends on complex rules and declarations that may not be visible when working on a 
class. Each handler action was classified according to one of the categories presented 
in Table 3. 

Table 3. Categories of handler actions and corresponding descriptions 

Category Description
swallowing The handler is empty.
logging Some information related to the exceptional scenario is logged. 
customised message A message describing the failure is presented to the user.
show exception message The exception message attribute (exception.getMessage()) is presented to the user.
application specific action An specific action is performed (e.g., rollback).
incorrect user message A message that is not related to the failure that happened is presented to the user.
new exception A new exception is created and thrown.

wrap
The original exception or any information associated to it is used to construct a new
exception which is thrown. 

convert to soft
The exception is converted into a SoftException. This action is specific to AspectJ
programs and happens when the delcare soft construct is used.

framework default action
To avoid uncaught exceptions some application frameworks such as java.swing, define
catch classes that handle any exception that was not caught by the application and
performs a default action (e.g. kill the thread which threw the exception.). 

uncaught No handler caught the exception.  
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3.3   Study Operation 

This study was undertaken from March 2007 to November 2007. During this period 
target systems were selected and the static analysis tool was implemented and exe-
cuted for each target system. It was followed by the manual inspection of every ex-
ception path. The Exception Path Finder was used to generate the exception flow 
graph for every exception occurrence. Then the Exception Path Miner classified each 
exception path according to its signaler and handler (see Table 4). We discarded a few 
unchecked exceptions2 that can be thrown by JVM in almost every program statement 
execution (e.g., IllegalMonitorStateException) and are not normally handled in-
side the system. The same filter was adopted by Cabral and Marques [4] in an empiri-
cal study of exception handling code in object-oriented systems. This filtering was 
performed on the static analysis. Then we manually inspected each one of the 2.901 
exception paths presented in Table 4. The goal of this inspection was threefold: (i) to 
discover what caused uncaught exceptions and exception subsumptions; (ii) to specify 
the handler action of each exception path, and (iii) to determine the bug hazards asso-
ciated with AspectJ constructs on certain exception handling scenarios. 

4   Analysis of Exception Flows and Handler Actions  

This section presents the results for each of the study stages. First, it presents evalua-
tion of the data collected via the exception flow analysis tool (Section 4.1). The fol-
lowing discussion focuses on the information collected during the manual inspections 
of each exception path (Section 4.2). Our goal in providing such a fine-grained data 
analysis is to enable a detailed understanding of how aspects typically affected posi-
tively or negatively the robustness of exception handling in each target system and its 
different releases.  

4.1   Empirical Data  

Table 4 presents the number of exception paths identified by the exception flow 
analysis tool (Section 3.2.1). It presents the tally of exception paths per target system 
structured according to a “Signaler-Handler” relation. The element responsible for 
signaling the exception can be either a class or an aspect. When the exception is sig-
naled by an aspect, it is signaled by one of its internal operations: an advice, a method 
defined as intertype declaration, or a declare soft construct3. An exception occur-
rence can be caught in two basic ways. It can be caught by a specialized handler when 
the catch argument has the same type of the caught exception type. Alternatively, it 

                                                           
2 The discarded exceptions were the exceptions thrown by bytecode operations (NullPointerEx-

ception, IllegalMonitorStateException, ArrayIndexOutOfBoundsException, ArrayStoreExcep-
tion, NegativeArray SizeException, ClassCastException, ArithmeticException) and excep-
tions specific to the AspectJ (NoAspectBoundException). Since such exceptions may be 
thrown by almost every operation, including those could generate too much information 
which could compromise the usability of the exception analysis. 

3 Declare soft is an AspectJ specific construct. It is associated to a pointcut and wraps any 
exception thrown on specific join points in a SoftException, and re-throws it. 
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can be caught by subsumption when the catch argument is a supertype of the excep-
tion being caught. It is also possible that the exception is not handled by the applica-
tion and remains uncaught. This happens when there is no system’s handler defined 
for the exception type in the exception flow. 

Table 4. Classification of exception paths per target system 

OO AO OO AO OO AO OO AO OO AO

    Uncaught 5 9 9 0 0 0 0 0 124 112

    Specialized Handler 196 132 277 119 53 26 63 13 64 5
    Subsumption 43 26 47 21 13 0 9 0 316 143

    Specialized Handler n/a 8 n/a 8 n/a 7 n/a 2 n/a 0
    Subsumption n/a 4 n/a 40 n/a 0 n/a 0 n/a 0

    Uncaught n/a 2 n/a 27 n/a 5 n/a 16 n/a 0

    Specialized Handler n/a 0 n/a 0 n/a 2 n/a 0 n/a 0
    Subsumption n/a 3 n/a 2 n/a 1 n/a 3 n/a 84

    Specialized Handler n/a 21 n/a 60 n/a 18 n/a 8 n/a 0
    Subsumption n/a 98 n/a 181 n/a 0 n/a 2 n/a 0

    Uncaught n/a 32 n/a 1 n/a 42 n/a 40 n/a 0

    Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
    Subsumption n/a 46 n/a 47 n/a 1 n/a 1 n/a 36

    Specialized Handler n/a 0 n/a 63 n/a 0 n/a 0 n/a 0
    Subsumption n/a 0 n/a 20 n/a 0 n/a 0 n/a 0

    Uncaught n/a 0 n/a 0 n/a 0 n/a 0 n/a 24

    Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
    Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 121

    Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
    Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 0

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

 Construct: Advice 

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

Construct: Declare Soft

 Construct: Intertype 

Signaler: Class

Signaler: Aspect

Handler on Class

Handler on Aspect

 

The next subsections analyze the exception paths presented in Table 4 in detail. 
First, Section 4.1.1 contrasts the occurrence of subsumptions and uncaught exceptions 
in Java and AspectJ versions of each target system. Section 4.1.2 determines the rela-
tion between certain aspect elements (as exception signalers) and higher or lower 
incidences of uncaught exceptions and subsumptions. Section 4.1.3 focuses the analy-
sis on how exceptions thrown by aspects are typically treated in the target systems.  

4.1.1   The Impact of Aspects on How Exceptions Are Handled 
A recurring question to AO software programmers is whether it is harmful to aspec-
tize certain behaviors in existing OO decompositions in the presence of exceptional 
conditions. Hence, our first analysis focused on observing how aspects affected the 
robustness of the original exception handling policies of the Java versions. Figure 2 
illustrates the total number of exception paths on which exceptions (i) remained un-
caught exceptions, (ii) were caught by subsumption, or (iii) by specialized handlers in 
each of the target systems.  
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Fig. 2. Uncaught exceptions, subsumptions, and specialized handlers per system 

Figure 2 shows a significant increase in the overall number of exception paths. 
Also significant is the increase in uncaught exceptions and subsumptions for the AO 
versions of all the three systems. This increase is a sign that the robustness of excep-
tion handling policies in AspectJ releases was affected and sometimes degraded when 
compared to their Java equivalents. Of course, the absolute number of exception paths 
is expected to vary due to design modifications, such as aspectual refactorings.  
However, the number of uncaught exceptions and subsumptions ideally should be 
equivalent between the Java and AspectJ implementations of a same system, since 
experimental procedures were undertaken to assure that both versions implemented 
the same functionalities (Section 3).  

Figure 3 shows the percentage of occurrence for each category of handler action. 
We can observe that the relative number of uncaught exceptions also increased in 
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every system, and so did the relative number of subsumptions. In some target systems, 
this increase was significant. In the Mobile Photo V6, for example, the number of 
uncaught exceptions represent 67.5% of the exceptions signaled on the system. In the 
Health Watcher V9, the percentage of exceptions caught by subsumption increased 
from 14.1% in OO version to 50.1% in the AO version. This significant increase am-
plifies the risk of unpredictable system crashes in AspectJ systems, caused by either 
uncaught exceptions or inappropriate exception handling via subsumptions. Corre-
spondingly, there was a decrease in the percentage of exceptions handled by special-
ized handlers in all AO implementations. When the handler knows exactly which 
exception is caught, it can take an appropriate recovery action or show a more precise 
message to the user. However, this was not the typical case in the AO implementa-
tions of the investigated systems.  

4.1.2   The Blame for Uncaught Exceptions and Subsumptions 
After discovering that the number of uncaught exceptions and subsumptions has sig-
nificantly increased in the AO implementations (Section 4.1.1), we continued our 
analysis, looking for the main causes of such discrepancies between AO and OO 
versions. The intuition here is that most of these exceptions were signaled by the 
aspects in the three target systems. Figure 4 presents charts that confirm this intuition; 
they show the participation of the exceptions signaled by aspects in the entire number 
of uncaught exceptions and subsumptions per system.  
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Fig. 4. Participation of aspect-signalized exceptions on the whole number of subsumption, 
uncaught and specifically-handled exceptions per system 

In both AO versions of Health Watcher and Mobile Photo, the aspects were re-
sponsible for signaling most of the uncaught exceptions and those ones caught by 
subsumption. In Mobile Photo V4 and V6, for example, aspects were responsible for 
100% of the uncaught exceptions found in this system. This means that no base class 
in this system signaled an exception that became uncaught. In the AO version of 
JHotDraw, the aspects were responsible for signaling only 17.6% of the uncaught 
exceptions, and the aspects participation on the number of exceptions caught by sub-
sumption was high (62.8%). This is explained by the fact that the exception policy of 
the HotDraw OO was already based on exception subsumption (see Figure 2), thus 
the exceptions signaled by aspects were handled in the same way. 
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4.1.3   Are All Exceptions Signaled by Aspects Becoming Uncaught or Caught by  
           Subsumption? 
Figure 5 gives a more detailed view of what is happening with all exceptions signaled 
by aspects. We can observe that not all exceptions signaled from aspects become 
uncaught or are caught by subsumption. In HealthWatcher AO V9, for example, only 
7% of the exceptions signaled by aspects became uncaught, but they represented 
100% of the uncaught exceptions reported to this system (see Figure 3). On the other 
hand, in the AO versions of the MobilePhoto, the percentage of exceptions signaled 
by aspects that became uncaught is high (68.1% and 80%). As discussed in the next 
section, this system was the one that had the exception handling concern aspectized. 
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Fig. 5. Handler type of exceptions thrown by aspects 

In Figure 5, the exceptions caught by subsumption on handlers coded inside 
classes characterize a potential fault. They may represent scenarios in which the ex-
ception signaled by an aspect is mistakenly handled by an existing handler in the base 
code. Another interesting thing to notice in Figure 5 is the increase in the percentage 
number of exceptions signaled by aspects and handled by specialized handlers from 
versions 1 to 9 of Health Watcher AO. It illustrates that exceptions signaled by an 
aspect can be adequately handled.  

4.2   Detailed Inspection 

In order to obtain a more fine-grained view of how exceptions were handled in AO 
and OO versions of the same system, we manually inspected all the 2,901 exception 
paths presented in Table 2. Each exception path was classified according to the action 
taken on its handler – following the classification presented in Section 3.2.2. Table 5 
illustrates the number of each type of handler action per target system and the ratio 
(%) between the number of the handler action in the AO version and the correspond-
ing value in the OO version of the same system. The ratio is expressed as the quotient 
of former divided by the latter. 

As mentioned before, the total number of exception paths mostly increased in AO 
versions. During the manual inspections we discovered there were two causes for that: 
(i) if one exception is not caught inside a specific method (e.g., due to a fault on an 
aspect that acts as handler) this exception will continue to flow on the call chain, 
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generating new exception paths; and (ii) specific design modifications bring new 
elements to the call graph and consequently lead to more exception paths. Figure 6 
illustrates the handler actions per target system. Overall, it confirms the findings of 
previous sections based on the tool outputs: the aspects used to implement the cross-
cutting functionalities tend to violate the exception policies previously adopted in 
each system. Subsequent subsections elaborate further on the data in Figure 6 and 
explain the causes behind AspectJ inferiority. 

Table 5. Classification of exception paths according to their handler action 

Handler Action OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, %

swallowing 5 7 140.0 5 7 140.0 0 0 -- 0 0 -- 3 3 100.0
logging 7 1 14.3 12 10 83.3 14 6 42.9 41 13 31.7 4 11 275.0
customised message 12 43 358.3 20 73 365.0 13 4 30.8 0 0 -- 0 0 --
show exception message 43 32 74.4 39 100 256.4 0 0 -- 7 1 14.3 291 285 97.9
application specific action 115 121 105.2 169 160 94.7 3 5 166.7 0 0 -- 8 0 0.0

incorrect user message 17 53 311.8 16 43 268.8 0 0 -- 0 0 -- 0 0 --

new exception 3 3 100.0 3 3 100.0 0 3 -- 1 2 200.0 0 0 --

wrap 37 38 102.7 60 65 108.3 36 0 -- 23 0 0.0 0 0 --
convert to soft 0 40 -- 0 100 -- 0 37 -- 0 13 -- 0 8 --

framework default action 0 0 -- 0 0 -- 0 0 -- 0 0 -- 74 82 110.8
uncaught 5 43 860.0 9 28 311.1 0 47 -- 0 56 -- 124 136 109.7
TOTAL 244 381 156.1 333 589 176.9 66 102 154.5 72 85 118.1 504 525 104.2

Mobile Photo V4 Mobile Photo V6Health Watcher V1 Health Watcher V9 HotDraw
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Fig. 6. The handler actions in the exception paths of each target system 

4.2.1   Health Watcher 
In the AO versions of Health Watcher, there was an increase in the number of excep-
tion paths classified as incorrect user message (see Table 5), in relation to the 
corresponding OO versions. It means that there were exception paths in such systems 
in which a message not related to the exception that really happened was presented to 
the user. This characterizes the problem known as Unintended Handler Action, when 
an exception is handled by mistake by an existing handler. The causes of such failures 
were diverse: (i) mistakes on the pointcut expressions of exception handling aspects 
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in both versions; (ii) in version 9, an aspect defined to handle exceptions intercepted a 
point in the code in which the exception was already caught; (iii) aspects signaled 
exceptions and no handler was defined for such exceptions in both versions; and (iv) 
the wrong use of the declare soft statement. Each of these causes entails a bug 
pattern in AspectJ that will be discussed in Section 5. In the version 1, all softened 
exceptions became uncaught (categories convert to soft and uncaught respec-
tively), because the declare soft statement was not used correctly (see Handler 
Mismatch in Section 5.3). In version 9, the misuse of the declare soft statement was 
fixed but some exceptions remained uncaught or unintended, handled by a catch 
block on the base code that presented an incorrect user message.  

4.2.2   Mobile Photo 
In all AO versions of Mobile Photo there was a significant increase in the number of 
uncaught exceptions. This application defined many exception handler aspects. Due 
to mistakes on pointcut expressions and a limitation on the use of declare soft many 
exceptions became uncaught. Differently from the exception handling policy defined 
in the Health Watcher system, in Mobile Photo there were no “catch all” clauses on 
the View layer to prevent exceptions - not handled by the handler defined for it - from 
becoming uncaught. 

4.2.3   HotDraw 
The target system that presented the lesser impact on the exception policy was the 
JHotDraw system. The reason is twofold. First, the exception policy in OO version 
was poorly defined, which is visible thanks to the expressive number of uncaught 
exceptions and subsumptions (Figure 2). Second, the AO version of the JHotDraw 
system was built upon a well defined set of refactoring steps [21], and most of the 
aspects of AJHotDraw were composed by intertype declarations. These refactorings 
moved specific methods from classes to aspects, such as the methods related to persis-
tence and undo concerns. The catch statements for exceptions thrown by the refac-
tored methods were not affected in the AO version, i.e. they remained in the same 
places on the base code. This explains why most of the exceptions signaled by aspects 
were caught by base code classes (Figure 5). However, even this system presented 
potential faults in the exception handling code (Section 5). 

5   Characterizing Exception-Handling Bug Patterns in AspectJ 

Bug patterns [2] are recurring correlations between signaled errors and underlying 
bugs in a program. They are related to design anti-patterns, but bug patterns are typi-
cal sources of faults at source code level. The manual inspection of the exception 
handling code related to the exception paths reported by the tool allowed us to iden-
tify several exception-handling bug patterns. These patterns can be classified into 
three categories. First, the use of aspects as handlers led to some scenarios in which 
the catch clauses were moved to aspects, the so-called exception handling aspects. 
However, these aspects did not catch the exceptions they were intended to handle. 
Second, the application of aspects as signalers often implied aspects signaling excep-
tions for which no handler was defined. Such exceptions flew through the system and 
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became uncaught exceptions or were caught by an existing handler in the code (usu-
ally by subsumption). Third, the use of declare soft construct was often problem-
atic: due to its complex semantics, almost all developers performed similar mistakes 
when using this construct in almost all the analyzed software releases. 

In some cases, we observed that the use of declare soft in combination with after 
throwing advice generated a bytecode in which the after throwing advice were not 
included, what represents a bug in the AspectJ weaver. Table 6 summarizes the bug 
pattern distribution in relation to the analyzed systems. The next sections describe the 
bug patterns shown in this table. For each of them, we provide a description, but due 
to space constraints, only some examples based on code snippets are provided; code 
examples for all the bug patterns can be found on the companion website [3]. 

Table 6. Distribution of the bug patterns per system 

 

HotDraw AO
Bug patterns V1 V9 V4 V6 V1

   Inactive Aspect handler
   Late Binding Aspect Handler
   Obsolete Handler in the Base Code

   Solo Signaler Aspect
   Unstable Exception Interfaces

   Handler Mismatch.
   Solo Declare Soft Statement. 
   Unchecked Exception Cause
   The Precedence Dilemma

Mobile Photo AO

Aspects as Handlers 

Aspects as Signalers 

Exception Softening 

Health Watcher AO

 

5.1   Advice as Exception Handlers  

The role of aspects as handlers can be classified into two: (1) the aspect can handle its 
own internal exceptions; and (2) and it can handle external exceptions thrown by 
other aspects or classes. Aspects can be used to modularize the handlers of external 
exceptions relative to other crosscutting concerns implemented as aspects. The latter 
occurred in both Health Watcher and Mobile Photo systems. It can also be used to 
modularize part of exception handling from the base code (as in Mobile Photo). Such 
exception handling aspects are implemented using around and after throwing 
advice. The first two bug patterns presented next are related to aspects that act as 
external exception handlers, the last one is related to aspects implementing internal 
handlers.  

Inactive Aspect Handler. This kind of fault happens when an Aspect Handler does 
not handle the exception that it was intended to handle. The cause is a faulty pointcut 
expression. Such a fault prevents the handler from advising the join point in which an 
exception should be handled. This exception either becomes uncaught (Section 5.2) or 
is mistakenly caught by an existing handler (unintended handler action discussed in 
Section 5.2). Instances of this bug pattern were detected in Health Watcher and Mo-
bile Photo systems as exception handling was not aspectized in HotDraw. The typical 
reasons for this bug pattern are the fragility of the pointcut language, usually based on 
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naming conventions, and the number of different and very specific join points to be 
intercepted by the handler aspects. 

Late Binding Aspect Handler. This bug pattern occurred in Health Watcher V9. The 
concurrency control was implemented within an aspect, which throws the Transac-
tionException exception. A specific handler aspect – called EHAspect - was de-
fined to handle this exception and although the pointcut expression was correctly 
specified, the handler intercepted a point in which the exception was already caught 
beforehand by a “catch all clause” on the base code. This problem is difficult to diag-
nose because the current IDEs will indicate to the developer of the EHAspect that the 
join points in the code (where the exception should be caught) are correctly inter-
cepted. This explains why this fault remained until version V9 of the HW system. 
Moreover, even if there is no “catch all” clause between signaler and aspect handler 
during development, such a clause can be added in a maintenance task. If the handler 
was defined in the base code and it was a checked exception, the compiler would 
warn the developer that the handler was inactive. Figure 7 (a) presents a schematic 
view of this problem. In this figure, the advice a1 adds a new functionality to method 
mA. This additional functionality comes along with a new exception EX, which flows 
through the advised method call chain until it is handled. Another advice was defined 
to handle the exception (advice a2), which intercepts a point on the base code were 
the exception EX should be handled (method mC). We can observe from this sche-
matic view that the exception EX was caught by a catch clause defined on method mB 
and, as a consequence, EX could not reach the point in the code where it should be 
handled by advice a2.  

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA 

Advice XAdvice x

Method h 

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scope

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA 

Advice XAdvice x

Method h 

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scope

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA 

Advice XAdvice x

Method h 

...

E2

(b)

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA 

Advice XAdvice x

Method h 

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scopemethod call protected region Exception propagation

Legend :
crosscuts scope

 

Fig. 7. Schematic view of Bug Patterns - (a) Late Binding Handler, and (b) Unstable Exception 
Interfaces 

Obsolete (or Outdated) Handler in the Base Code. When an aspect handles or sof-
tens (Section 3.4.3) an exception previously thrown by an application method, the 
handler associated with this exception on the base code will become obsolete. The 
reason is that the exception handled by it can no longer be signaled. In this study, four 
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exceptions handled by aspects generated obsolete handlers. Notice that an obsolete 
handler may lead to the consequences presented by Miller and Tripathi [24]. 

5.2   Aspects as Exception Signalers  

During the manual inspections we found potential faults that can occur when aspects 
signal exceptions. They are detailed below. 

Solo Signaler Aspect. Solo Signalers are the aspects that signal an exception and no 
handler is bound to it. Such an aspect may lead to the same failures caused by the 
Inactive Aspect Handler defined in the previous section: an uncaught exception or an 
Unintended Handler Action. The Unintended Handler Action [24] is usually charac-
terized by the exception signaled by an aspect being handled by subsumption via 
classes.  

Unstable Exception Interface. In this study we observed that aspects had the ability 
of destabilizing the exception interface of the advised methods. Every time a static or 
dynamic scope is used and the advice may signal an exception, the exception interface 
of the method will vary according to the scope in which a method is called. As a con-
sequence, the same method could raise a different set of exceptions, even when the 
method arguments were the same, depending on the static (e.g., which class called it) 
or dynamic (information on the execution stack) scopes. The next code snippet, ex-
tracted from the AJHotDraw implementation, exemplifies an unstable exception inter-
face. 

    pointcut commandExecuteCheckView(AbstractCommand command): this(command) 

  && execution(void AbstractCommand+.execute()) 
  && !within(*..DrawApplication.*) && !within(*..CTXWindowMenu.*) 
   && !within(*..WindowMenu.*) && !within(*..JavaDrawApp.*); 
 
  before(AbstractCommand command) : commandExecuteCheckView(command) { 

if (command.view() == null) { 
  throw new JHotDrawRuntimeException("execute should NOT be  
                 getting called when view() == null"); 

} 
  } 

In this example, the execute()method will throw a JHotDrawRuntimeException if 
it is called from a method that is not defined on the classes specified on the pointcut 
expression (DrawApplication, CTXWindowMenu, WindowMenu and JavaDrawApp). 
As a consequence, the same method will have different behaviors depending on the 
scope it is called. When the exceptions that can be thrown from a method vary ac-
cording to the scope it is executed, we say that such method contains an unstable 
exception interface.  

Figure 7 (b) presents a schematic view of this problem. In this figure, the advice x 
adds a new functionality to method mA only when such method is called from method 
mC (i.e., the pointcut expression contains a dynamic scope delimiter). Therefore, this 
additional functionality, and the new exception E2 that comes with it, will not be part 
of method mA when it is called from another method such as method h. As a conse-
quence, when the method mA is called from method mC it may throw E2 exception – 
and a handler should be defined for it. On the other hand, if it is called from method h, 
it will not throw the exception E2 (even if the method arguments are the same as the 
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one passed on the previous scope) since advice x does not affect the method mA in 
this scope. 

5.3   Softening Exceptions  

In AspectJ an advice can only throw a checked exception if all intercepted methods 
can signal it (i.e. declaring it on their throws clause). In other words, concerning 
checked exceptions, an advice should follow a rule similar to the “Exception Confor-
mance” rule [28] applied during inheritance, when methods are overridden. As a re-
sult an advice can only throw a checked exception if it is thrown by every intercepted 
method. To bypass this restriction, AspectJ offers the declare soft statement, 
which converts (wraps) a given checked exception (in a specific scope) into a special-
ized unchecked exception, named SoftException. The syntax is:  declare soft 
: <someException> : <scope>. The scope is specified by a pointcut that se-
lects the join points in which the someException exception will be wrapped. As-
pectJ is the only AO language that provides a declare soft construct. As detailed in 
Section 6.4, in Spring AOP and JBoss AOP, advices are allowed to throw any kind of 
exception, either checked or unchecked. It is possible because their weavers convert 
the exception interface of every advised method to allow every kind of exception to 
flow from it – including a Throwable in its throws clause. This section presents 
some bug patterns and also potential error-prone scenarios on the exception handling 
code when the declare soft statement is used. 

Solo Declare Soft Statement. According to the AspectJ documentation [33], every 
time an exception is softened by an aspect, the developer should implement another 
aspect that will be responsible for handling the softened exception. However, this 
solution is very fragile. It is up to the programmer to define a new aspect to handle the 
exception that was softened, and no message is shown at compile time to warn the 
programmer in case s/he forgets to define this aspect handler. In Health Watcher and 
Mobile Photo, exceptions were softened and no handler was defined for them. This 
led to uncaught exceptions and unintended handler actions - exceptions caught by 
subsumption on the base code.  

Unchecked Exception Cause. When a checked exception is softened, it is wrapped in 
a SoftException object.  As mentioned before, in Java-like languages the type of 
an exception is used to make the binding between an exception and its handler. Thus, 
when wrapping an exception, we are also wrapping useful information in order to 
provide a fine-grained action for each exception. To overcome this limitation, at every 
point that needs to handle a softened exception, one should catch the SoftExcep-
tion and unwrap it (through its getCause() method) in order to compare its cause 
with every possible exception that may potentially be thrown inside the handler’s 
context. Such “wrapping” solution is documented as one of the exception handling 
anti-patterns [22]. 

Handler Mismatch. Some exceptions were softened in one of the Health Watcher 
versions. However, handlers were defined for the exceptions’ primitive types (i.e. 
types before being wrapped in a SoftException). This Handler Mismatch implies 
that almost all exceptions signaled by aspect implementations became uncaught or 
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were caught by unintended handlers. The code snippet bellow, extracted from Health 
Watcher, illustrates this problem. The HWTransactionManagement aspect softens 
the exception, and the HWTransactionExceptionHandler aspect tries to capture 
the primitive exception (i.e., a TransactionException exception). This bug pat-
tern illustrates an emergent property of a particular combination of aspects woven into 
the base program.  

 
public aspect HWTransactionManagement { 
    ... 
    declare soft: TransactionException:  
                  call(void IPersistenceMechanism.beginTransaction())…; 
} 
 
public aspect HWTransactionExceptionHandler { 
     void around(HttpServletResponse response) :  
          execution(* HWServlet+.doGet(HttpServletRequest,  
       HttpServletResponse)) && args(.., response) { 
   try {  proceed(response); }  
        catch (TransactionException e) { ... } 
    } 

   } 
 

The Precedence Dilemma. This problem occurs when an after throwing advice is 
used in combination with the declare soft statement for a specific pointcut. Only 
the code related to the declare soft is included in the bytecode. Since both con-
structions work by converting one exception into another, the weaver cannot decide 
which one should happen first and as a consequence includes on the bytecode only the 
code relative to the declare soft statement. This bug in the language implementa-
tion generates a SoftException exception that will not be adequately caught.  

6   Discussions and Study Constraints 

This section provides further discussion of issues and lessons learned while perform-
ing this exploratory study. 

6.1   Exception Handling vs. AOP Properties 

The goal of exception handling mechanisms is to make programs more reliable and 
robust. However, we could observe that some properties of AOP may conflict with 
characteristics of exception mechanisms. In this study we observed that quantification 
and obliviousness properties pose specific pitfalls to the design of exception handling 
code. We explain and discuss these pitfalls in the following. 

Quantification Property. Aspects have the ability to perform invasive modifications 
at specific join points in the program execution where a property holds – an ability 
also known as the quantification property [35].  AspectJ supports quantification via 
pointcuts and advice. Pointcuts are in general specified in terms of two kinds of point-
cut designators: call and execution. They intercept the call and execution of meth-
ods, respectively. On exception-aware systems, such designators may cause different 
impact in the exceptional interfaces of methods. While the execution pointcut affects 
the exceptional interface of the advised methods themselves, the call advice affects 
the exceptional interface of the advised method’s caller. Such impact can also be 
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influenced by static and dynamic scopes associated with the pointcuts. Static scopes 
such as within and withincode delimit the classes or packages on which the aspects 
will inject a new behavior. Yet, dynamic scope constructs (i.e., cflow and cflowbe-
low) allow aspects to affect (or not) a specific point in the code depending on the 
information available on the runtime execution stack.  

The main consequence of the quantification property on exception-aware AO sys-
tems was that the exception interfaces of methods can vary depending on where the 
method was called, even when the method arguments were the same. Therefore, the 
same method of a class could raise a different set of exceptions depending on which 
object called it or on some information on the execution stack (in case of cflow and 
cflowbelow, for example). These unstable exception interfaces cannot happen in OO 
programs since the set of exceptions thrown by a method cannot vary according to the 
scope where it is executed – provided that the arguments are the same. We observed 
in our study that in scenarios in which methods presented such unstable exceptional 
interfaces, the exceptions signaled on specific scopes by the advised method often 
became uncaught or were erroneously handled by an existing handler on the base 
code (Unintended Handler Action bug pattern discussed in Section 5). A possible 
reason is that it is more difficult for the method’s user to prepare the base code to 
handle the exceptions that will be thrown depending on the dynamic or static scope it 
is executed.  

Obliviousness property. The obliviousness property [35], which was believed to be a 
fundamental property for aspect-oriented programming, states that programmers of 
the base code do not need to be aware of the aspects which will affect it. It means that 
programmers do not need to prepare the base code to be affected by the aspects [35]. 
However, since there are no mechanisms to protect the base code from the exceptions 
that will flow from aspects, a new exception signaled by the aspect may flow through 
the system, if no handler is defined for it. This exception may become uncaught and 
terminate the system in an unpredictable way. Even in cases when a handler aspect is 
defined for each aspect that can throw an exception (as implemented in the AO ver-
sions of Health Watcher), there is no guarantee that the exception thrown by an aspect 
will be handled by the handler aspect defined to it. Such exceptions may be prema-
turely caught by a handler on the base code, as illustrated on the bug pattern Late 
Binding Aspect Handler (Section 5.1). Moreover, AspectJ and other existing AO 
languages allow the invasive modifications caused by aspects to happen dynamically. 
Although this mechanism opens a new realm of possibilities in software development, 
it hinders the task of preparing the base code of the exceptions that can be thrown 
from aspects. During system execution, it is difficult to anticipate whether any unin-
tended handler action or uncaught exception will be caused by the aspects. 

6.2   Representativeness 

We have investigated other AOP technologies such as: CaesarJ [23],  JBoss AOP and 
Spring AOP.  Basically, they follow the same join point model as AspectJ, which 
allows an aspect to add or modify behavior on join points, potentially adding new 
exceptions. Table 7 summarizes our analysis regarding exception throwing and han-
dling mechanisms available in such technologies, which was mainly based on avail-
able documentation. 
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Table 7. EH constructs in different AO programming languages 

checked unchecked
handler-

like
after 

throwing
after-all-

like
around call execution

within-
like

withincode-
like

cflow-
like

cflowbelow-
like

AspectJ yes partially yes yes yes yes yes yes yes yes yes yes yes
CaesarJ no partially yes yes yes yes yes yes yes yes yes yes yes
JBoss AOP no yes yes no yes yes yes yes yes yes yes yes yes
Spring AOP no yes yes no yes yes yes no yes yes no no no

pointcut scope
static dynamicdeclare 

soft

advice can signal advice types that act as external handlers
moments of 

actuation

 

According to Table 7, only AspectJ provides a syntactic element to explicitly sof-
ten checked exceptions (2nd column). Thus, the bug patterns related to this construct 
(Section 5.3) are peculiar to AspectJ. Depending on the nature of exceptions that may 
be thrown by advice, all languages allow advice to throw runtime exceptions (4th 
column). In AspectJ and CaesarJ, an advice can only throw a checked exception if 
“every” intercepted method can throw it (declaring it on its throws clause) (3rd col-
umn). In CaesarJ, only around advice signature may throw checked exceptions.  In 
Spring AOP and JBoss AOP languages, advice may throw checked exceptions, no 
matter the exceptions that can be signaled by the advised methods4. All languages 
allow the definition of pointcut scopes (11th to 14th columns), and allow the advice to 
intercept a method at both calls and executions (9th and 10th columns), consequently 
facilitating the occurrence of unstable exceptional interfaces. Therefore all bug pat-
terns associated with Advice as Signalers (Section 5.2) may occur on systems devel-
oped in such languages. Finally, all languages allow the definition of aspects that may 
handle exceptions thrown by another aspect of the base code (5th to 7th columns). As a 
consequence, all bug patterns associated with Advice as Handlers (Section 5.1) can 
also be found on systems developed in these languages. 

6.3   Study Constraints 

The main benefit of an exploratory study such as this one is that it allows the effect of 
a new programming method to be assessed in realistic situations [42]. One may argue 
that evaluating the AO and OO versions in a sample of 10 releases for three different 
systems is a limiting factor. The needed characteristics for the target systems (i.e., 
medium-sized systems to which there was a Java version and an AspectJ version 
available) and study based on manual code inspections (a very time-consuming task) 
restricted the number of subjects evaluated in the study. Given such restrictions, we 
feel that our set is representative as it includes significant, varied policies and aspecti-
zation processes for exception handling (Section 3.1). Another factor that might influ-
ence the study results against aspectual decompositions could be the developers’ 
expertise on AOP and AspectJ. However, as mentioned before (Section 3.1) all the 
target systems developers had significant experience in AOP and AspectJ constructs. 
Moreover, the fact that the AO version of each target system was developed after the 
OO version, could also impact in the study results, acting in favor or against AO 
solutions. However, most AO systems developed so far are derived from an OO  

                                                           
4 It is possible because the exception interface of every advised method is modified to allow 

any kind of exception to flow from it (throws Throwable defines the exception interface 
of the intercepted methods). 
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version, to which AO refactorings [21] are typically applied. Therefore, the threats to 
validity in this study are not much different than the ones imposed on the other em-
pirical studies with similar goals [6, 9, 13, 14]. 

6.4   Additional Lessons Learned  

AO Refactoring Strategies in Exception-Aware Systems. Many AO systems nowa-
days are generated from an OO version in which some crosscutting concerns are de-
tected and AO Refactoring techniques are used to convert some crosscutting concerns 
into aspects. Such AO Refactoring techniques should account for the consequences of 
aspects on the exception flow of programs. The catalogue of bug patterns presented in 
this study can be used by such techniques to prevent some avoidable bugs when refac-
toring a system.  

Software Maintainability. Since it is very hard to define at the beginning of a project 
which exceptions should be dealt with inside the system [30], the exception handling 
code is often modified along the system development and maintenance tasks. As a 
consequence, some bugs avoided during AO refactoring, such as the Late Binding 
Aspect Handler (Section 5.1), may be included during a maintenance task - breaking 
an existing exception handling policy. The exception handling policy comprises a set 
of design rules that defines the system elements responsible for signaling, handling 
and re-throwing the exceptions; and the system dependability relies on the confor-
mance to such rules. Reasoning about the excep-tional control path, looking for po-
tential-faults on the exception handling code, can quickly become unfeasible if carried 
out manually [28]. Thus, developers need tools to support them in (i) understanding 
the impact of aspect weaving on the existing exception handling policy, and (ii) find-
ing bugs on the exceptional handling code along maintenance tasks.  
 
Finding Bugs on Exception Handling Code of AO Programs. Testing exception 
handling code is inherently difficult [36] due to the huge number of possible excep-
tional conditions to simulate in a system and the difficulty associated to the simulation 
of most scenarios.  Hence, a valuable strategy for finding faults on the exception han-
dling code can be to statically look for them [36]. The exception flow analysis tool 
developed in our work can detect some failures (e.g., uncaught exceptions), and sup-
port the manual inspections whose goal is to find out the cause of the failure (e.g., bug 
diagnosing5). Our tool could be extended in order to automatically detect some of the 
bug patterns described in this work. A similar strategy was adopted by Bruntink et al 
[36] to find faults on idiom-based exception handling code. 

New Interactions between Aspects and Classes. The works presented so far on the 
interactions between aspects and classes focus on the normal control flow and on 
information extracted from data-flow analysis. In this study we could observe that 
new kinds of interaction, between aspects and classes, emerged from the exceptional 
scenarios (e.g., one class catches one exception thrown by an aspect). Such Signaler-
Handler relationships between the elements of an AO system can be used as a 

                                                           
5 The Bug fixing is a less complex problem after the bug was effectively diagnosed. 
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coupling metric that exists between these elements on exceptional scenarios. We are 
currently refining the categorization of the Signaler-Handler relationships derived 
from this study. 

7   Related Work 

Since the effects of AO composition mechanisms on the flow of exceptions on a sys-
tem are still not well understood, we conducted an empirical study in order to dis-
cover these effects and their extent in AO systems. In this section, we present works 
we believe are directly related to our own, distributed in four categories: (i) static 
analysis tools; (ii) AOP and exception handling; (iii) experimental studies on excep-
tion handling code; and (iv) AO fault models and bug patterns.  

Static Analysis Tools: Robillard and Murphy [29] developed a tool called Jex that 
analyzes the flow of exceptions in Java Programs. Based on java source code this tool 
performs dataflow analysis in order to find the propagation paths of checked and 
unchecked exception types.  Jo et al. [17] present a set-based static analysis of Java 
programs that estimates their exception flows. This analysis is used to detect too gen-
eral or unnecessary exception specifications and handlers. Fu et al. [10] developed a 
static analysis tool, built upon Soot framework for bytecode analysis, and Spark a call 
graph builder provided by Soot that generates a call graph of a higher precision com-
pared to the works mentioned previously. This static analysis tool generates the ex-
ception paths to every exception thrown on the system. Fu et al. [11] extended their 
tool in order to compute chains. An exception chain is a combination of semantically-
related exception paths. Our tool is similar to the previous one [10], but it works on 
top of AspectJ code.  

AOP and Exception Handling: Lippert and Lopes [20] applied aspect constructs on a 
large OO framework, called JWAM, to modularize the exception handling code. In 
their experiment, they obtained a large reduction in the amount of exception handling 
code present in the application – from 11% of the total code in the OO version to 
2.9% in the AO version. Castor Filho et al. [6, 7] performed a similar study but their 
work reports that the reuse of exception handlers is not straightforward as advocated 
beforehand by Lippert and Lopes [20]. Instead, it depends on a set of factors such as: 
the type of exceptions being handled; what the handler does; the amount of contextual 
information needed; what the method raising the exception returns; and what the 
throws clause actually specifies. Our study differs from its predecessors since it does 
not aim at aspectizing exception handling constructs. Actually, we aim at providing a 
better understanding on how programmers write exception handling code in AspectJ, 
and identifying possible flaws in the usage of aspects in the presence of exceptional 
scenarios. 

Experimental Studies on Exception Handling Code: Bruno and Cabral [4] per-
formed a quantitative study in which they examined source code samples of 32 differ-
ent applications, both for Java and .NET. The goal of their study was to identify how 
exceptions were handled in different categories of systems. They examined the excep-
tion handlers and the respective actions taken on them. As a result of this analysis, 
they observed that the action handlers were very simple (e.g., logging and present a 
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message to the user). However, Bruno and Cabral did not consider the exception paths 
of each system. As a consequence, they did not take into account the number of un-
caught exceptions, and the number of exceptions treated by each handler. In our 
work, we performed an empirical study of how AOP constructs may influence on the 
way the exceptions are treated on the system. 

AO Fault Models and Bug Patterns: Alexander et al. [37] proposed a candidate fault 
model that includes a set of fault types mostly related to AspectJ features. However, 
none of them is related to the exceptional scenarios. This fault model was later ex-
tended by Cecatto et al. [38], who characterized faults related to “incorrect changes in 
exceptional control flow.” These faults may occur when an aspect signals an excep-
tion which can triggers the execution of a catch statement, either in the aspect itself or 
in the base program. They also argue that signaled exceptions, when declared as soft, 
may imply the execution of different branches in the aspectized code. Bækken [39] 
presents a fine-grained fault model for pointcuts and advice in AspectJ programs. 
Although Bækken does not describe faults related to exceptional scenarios, he discuss 
how control and data flows are influenced by exception throwing in order to establish 
necessary and collectively sufficient conditions for a fault to produce a failure. Ferrari 
et al. [43] summarized all the previously identified fault types and included three new 
ones, which were all grouped according to the AO features they are related to. In 
addition, Ferrari et al. proposed a set of mutation operators to model instances of most 
of identified fault types, including some related to exception handling code. However, 
none of these authors detail the consequences of possible faults nor assessed the fault 
density in the context of real systems. Regarding bug patterns in AO programs, Zhang 
and Zhao [40] presented a set of general bug patterns for AO programs based on the 
AspectJ language. The authors stated that a bug pattern is a “recurring relationship 
between potential bugs and explicit errors in a program.” However, the authors did 
not conduct any observational study that could provide evidences of presence of the 
proposed bug patterns. The bug patterns we present in this paper are specifically re-
lated to exception handling code in AO software and are based on recurring faults 
found throughout a fine-grained analysis of a set of AO applications. 

8   Concluding Remarks 

This paper presented a quantitative study to evaluate the impact of aspects on the 
exception control flow of programs. We selected a set of three systems that were 
implemented in Java and AspectJ. For two of these systems two different releases 
were investigated. After that, we compared all versions of the systems in terms of the 
number of uncaught exceptions, exceptions caught by subsumption, and exceptions 
caught with specialized handlers. In all the AspectJ versions, we observed an increase 
in the number of uncaught exceptions and a decrease in the number of exceptions 
caught with specialized handlers. Such increase was less significant in AJHotdraw 
due to the fact that it was built through a well defined set of refactoring steps [21], 
and most of the aspects are composed by intertype declarations. We performed sys-
tematic code inspection of each exception path to find out what caused such negative 
discrepancies in AspectJ releases. The bug patterns identified came from three 
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sources: aspects acting as handlers, aspects as exception signalers, and misuses of the 
declare soft construct. This paper also presents a catalogue of bug patterns that 
characterizes a set of recurring program anomalies found on the exception handling 
code of AspectJ programs. Our findings indicate that mechanisms of AO languages 
negatively affect the robustness of exception-aware software systems. As a result, 
there is a need for both improving the design of exception handling mechanisms in 
AO programming languages and building static analysis tools and testing techniques 
tailored to improve the reliability of the error handling code in AO programs. We are 
currently working on an extension of AspectJ [5] to improve modularity and robust-
ness of exception handling. We are also currently evolving our exception flow analy-
sis tool to support automatic finding of the bug patterns catalogue in this paper.  
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