

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 207–234, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Assessing the Impact of Aspects on Exception Flows:
An Exploratory Study

Roberta Coelho1,2, Awais Rashid2, Alessandro Garcia2, Fabiano Ferrari2,
Nélio Cacho2, Uirá Kulesza3,4, Arndt von Staa1, and Carlos Lucena1

1 Computer Science Department – Pontifical Catholic University of Rio de Janeiro, Brazil
2 Computing Department, Lancaster University, Lancaster, UK

3 CITI/DI/FCT - New University of Lisbon, Portugal
4 Recife Center for Advanced Studies and Systems, Brazil
{roberta, arndt,lucena}@inf.puc-rio.br,

{marash,garciaa, ferrari.f, n.cacho}@comp.lancs.ac.ak
 uira@di.fct.unl.pt

Abstract. Exception handling mechanisms are intended to support the devel-
opment of robust software. However, the implementation of such mechanisms
with aspect-oriented (AO) programming might lead to error-prone scenarios. As
aspects extend or replace existing functionality at specific join points in the
code execution, aspects’ behavior may bring new exceptions, which can flow
through the program execution in unexpected ways. This paper presents a sys-
tematic study that assesses the error proneness of AOP mechanisms on excep-
tion flows of evolving programs. The analysis was based on the object-oriented
and the aspect-oriented versions of three medium-sized systems from different
application domains. Our findings show that exception handling code in AO
systems is error-prone, since all versions analyzed presented an increase in the
number of uncaught exceptions and exceptions caught by the wrong handler.
The causes of such problems are characterized and presented as a catalogue of
bug patterns.

Keywords: Exception handling, aspect-oriented programs, static analysis, em-
pirical study, uncaught exceptions, obsolete handler, unintended handler.

1 Introduction

Exception handling mechanisms aim at improving software modularity and system
robustness by promoting explicit separation between normal and error handling code.
It allows the system to detect errors and respond to them correspondingly, through the
execution of recovery code encapsulated into handlers. The importance of exception
handling mechanisms is attested by the fact they are realized in many mainstream
programming languages, such as Java, C++ and C#.

The goal of Aspect-Oriented Programming (AOP) [41] is to modularize concerns
that crosscut the primary decomposition of a system (e.g., functions, classes, compo-
nents) through a new abstraction called aspect. Aspects use specific constructs to
perform invasive modifications of programs [1], and include additional behavior at
specific points in the code. AOP is being exploited to improve the modularity of

208 R. Coelho et al.

exception handling and other equally-important crosscutting concerns, such as trans-
action management [31], distribution [31], and certain design patterns [13, 15]. Ac-
cording to some studies [5, 6, 7, 9, 20, 31], AOP has succeeded in improving the
modular treatment of several exception handling scenarios. However, it is recognized
that flexible programming mechanisms (e.g., inheritance and polymorphism [24])
might have negative effects on exception handling. Hence, while the invasiveness of
aspect composition mechanisms may bring a realm of possibilities to software design,
often allowing for more stable crosscutting designs [14, 25, 9], they might be useless
for practical purposes if they make the exception handling code error prone. Aspec-
tual refinements of base behavior can either improve abnormal behavior robustness or
adversely contribute to typical problems of poorly designed error handling code, such
as exception subsumption [29] and unintended handler action [24, 29].

Unfortunately, there is no systematic evaluation of the positive and negative effects
of AOP on the robustness of exception handling code. Existing research in the litera-
ture has been limited to analyze the impact of aspects on the normal control flow [8,
18, 19, 27]. In addition, most of the empirical studies of AOP do not go beyond the
discussion of modularity gains and pitfalls obtained when aspects are applied to ex-
ception handling [5, 6, 7] and other crosscutting concerns [9, 14, 26, 31]. For instance,
these studies do not account for the consequences bearing with new exceptions and
handlers that come along with the aspects’ added functionality.

This paper reports a first systematic study that quantitatively assesses the error
proneness of aspect composition mechanisms on exception flows of programs. The
evaluation was based on an exception flow analysis tool (developed in this work) and
code inspection of exception behaviors in Java and AspectJ [33] implementations of
two industrial software systems – Health Watcher [14, 31] and Mobile Photo [9] –
and one open-source project – JHotDraw [16]1. For the first two systems more than
one release was examined. Overall, this corresponds to 10 system releases, 41.1
KLOC of Java source code of which around 4.1 KLOC are dedicated to exception
handling, and 39 KLOC lines of AspectJ source code, of which around 3.2 KLOC are
dedicated to exception handling. These systems are representatives of different appli-
cation domains and exhibit heterogeneous exception handling strategies. Some nega-
tive outcomes were consistently detected through the analyzed releases using AOP,
such as:

• higher evidence of uncaught exceptions [17] when aspect advices act as ex-
ception handlers, thereby leading to unpredictable system crashes [34]; and

• a multitude of exception subsumptions [29], some of them leading to unin-
tended handlers [24], .i.e, exceptions that are thrown by aspects and unex-
pectedly caught by existing handlers in the base code;

The causes of such increases were investigated, and are presented in the form of a
bug pattern catalogue related to the exception handling code. During this study we
implemented an exception flow analysis tool for Java and AspectJ programs, which
was very useful when finding and characterizing these bugs. The contributions of this
study are as follows:

1 The source code of all systems used in this study is available on the website http://www.

inf.puc-rio.br/~roberta/aop_exceptions.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 209

• It performs the first systematic analysis which aims at investigating how as-
pects affect the exception flows of programs.

• It introduces a set of bug-patterns related to the exception handling code of
AO programs that were characterized based on the data empirically collected.

• It presents an exception flow analysis tool for Java and AspectJ programs,
which was developed to support the analysis.

The contributions of this work allow for: (i) developers of robust aspect-oriented
applications to make more informed decisions in the presence of evolving exception
flows, and (ii) designers of AOP languages and static analysis tools to consider push-
ing the boundaries of existing mechanisms to make AOP more robust and resilient to
changes. The remainder of this paper is organized as follows. Section 2 describes
basic concepts associated with exception handling in AO programs. Section 3 defines
the hypotheses and configuration of our exploratory study, the target applications and
the evaluation procedures. Section 4 reports our analysis of the empirical data col-
lected in this study. Section 5 presents a bug catalogue for exception handling code in
AO systems based on the bug patterns that actually happened in each investigated
system, and Section 6 provides further discussions and lessons learned. Section 7
describes the related work. Finally, Section 8 presents our conclusions and directions
for future work. Due to space limitations, throughout this article we assume that the
reader is familiar with AOP terminology (i.e., aspect, join point, pointcut, and advice)
and the syntax of AspectJ’s main constructs.

2 Characterizing the Exception Handling Mechanism in AO
 Programs

In order to support the reasoning about exception flows in AO programs we present
the main concepts of an exception-handling mechanism and correlate each element
with the constructs available in most AO languages. An exception handling mecha-
nism is comprised of four main concepts: the exception, the exception signaler, the
exception handler, and the exception model that defines how signalers and handlers
are bound [12].

Exception Raising. An exception is raised by an element - method or method-like
construct, e.g., advice - when an abnormal state is detected. In most languages an
exception is usually assumed as an error, and represents an abnormal computation
state. Whenever an exception is raised inside an element that cannot handle it, it is
signaled to the element’s caller. The exception signaler is the element that detects the
abnormal state and raises the exception. Thus, in AO programs the signaler can be
either a method or an advice. In Figure 1, the advice a1 detects an abnormal condition
and raises the exception EX. Since this advice intercepts the method mA, the excep-
tion EX comes with the additional behavior included into the affected method.

Exception Handling. The exception handler is the code invoked in response to a
raised exception. It can be attached to protected regions (e.g. methods, classes and
blocks of code) or specific exceptions [16]. Handlers are responsible for performing
the recovery actions necessary to bring the system back to a normal state and, when-
ever this is not possible, to log the exception and abort the system in an expectedly

210 R. Coelho et al.

safe way. In AO programs, a handler can be defined in either a method or an advice.
Specific types of advice (e.g., around and after [6]) have the ability to handle the
exceptions thrown by the methods they advise.

Handler Binding. In many languages, the search for the handler to deal with a raised
exception occurs along the dynamic invocation chain. This is claimed to increase
software reusability, since the invoker of an operation can handle it in a wider context
[16, 24]. In AO programs the handler of one exception can be present: (i) in one of the
methods in the dynamic call chain of the signaler; or (ii) in an aspect that advises any
of the methods in the signaler’s call chain. Figure 1 depicts one scenario in which one
advice (a1) signals the EX exception, and the other advice (a2) is responsible for
handling EX, i.e. a2 intercepts one of the methods in the dynamic call chain and han-
dles this exception.

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler ECMethod mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler ECMethod mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler ECMethod mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Fig. 1. Exception propagation

An exception path is a path in a program call graph that links the signaler and the
handler of an exception. Notice that if there is no a handler for a specific exception,
the exception path starts from the signaler and finishes at the program entrance point.
In Figure 1, the exception path of EX is <a1→mA→mB→mC→a2>. Therefore, the
exception flow comprises three main moments: the exception signaling, the exception
flow through the elements of a system, and the moment in which the exception is
handled or leaves the bounds of the system without being handled, thus becoming an
uncaught exception.

Exception Interfaces [24]: The caller of a method needs to know which exceptions
may cross the boundary of the called one. In this way, the caller will be able to pre-
pare the code beforehand for the exceptional conditions that may happen during sys-
tem execution. For this reason, some languages provide constructs to associate to a
method’s signature a list of exceptions that this method may throw. Besides providing
information for the callers of such method, this information can be checked at com-
pile time to verify whether handlers were defined for each specified exception. This
list of exceptions is defined by Miller and Tripathi [24] as a method’s exception inter-
face. Ideally, the exception interface should provide complete and precise information
for the method user. However, they are most often neither complete nor precise [4],
because languages such as Java provide mechanisms to bypass this mechanism. This

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 211

is achieved by throwing a specific kind of exception, called unchecked exception,
which does not require any declaration on the method signature. For convenience, in
this paper we split this concept of exception interface into two categories:

(i) the explicit exception interfaces, which are part of the method (or method-like
construct) signature and explicitly declare the list of exceptions; and

(ii) the complete (de facto) exception interfaces, which capture all the exceptions
signaled by a method, including the implicit (unchecked) ones not specified in
the method signatures.

In the rest of this paper, unless it is explicitly mentioned, we use the expression
“exception interface” to refer to a complete (de facto) exception interface. Although
both the normal interface (i.e. method signature) and the exception interface of a
method can evolve along a software life cycle, the impact of such a change on the
system varies significantly. When a method signature varies, it affects the system
locally, i.e. only the method callers are directly affected. On the other hand, the re-
moval or inclusion of new exceptions in an exception interface may impact the system
as a whole, since the exception handlers can be anywhere in the code. As depicted in
Figure 1, an aspect can add behavior to a method without changing the normal inter-
face of that method. However, the additional behavior may raise new kinds of excep-
tions, hence impacting the exceptional interfaces.

Exception Types and Exception Subsumption. Object-oriented languages usu-
ally support the classification of exceptions into exception-type hierarchies. The ex-
ception interface is therefore composed by the exception types that can be thrown by a
method. Each handler is associated with an exception type, which specifies its han-
dling capabilities - which exceptions it can handle. The representation of exceptions
in type hierarchies allows type subsumption [29] to occur: when an object of a sub-
type can be assigned to a variable declared to be of its supertype, the subtype is said
to be subsumed in the supertype. When an exception is signaled, it can be subsumed
into the type associated to a handler, if the exception type associated to the handler
(i.e., the hander type) is a supertype of the exception type being caught.

3 Evaluation Procedures

This section describes our study configuration in terms of its goals and hypotheses,
the criteria used for the target systems selection (Section 3.1), methodology employed
to conduct the exceptional code analyses (Section 3.2), and the actual execution of our
study (Section 3.3). The goal of this case study is to evaluate the impact of AOP on
exception flows of AspectJ programs, comparing them with their Java counterparts.
The investigation relies on determining, in multiple Java and AspectJ versions, which
exception-handling bug patterns (Section 5) are typically introduced in their original
and subsequent releases. The analyzed error-prone scenarios vary from uncaught to
unintended handler actions.

The OO and AO versions of three applications have been compared in order to
observe the positive and negative effects caused by aspects on their exception
flows. Specific procedures were undertaken in order to distinguish AOP liabilities
for exception handling implementation from well-known intrinsic impairments of

212 R. Coelho et al.

OO mechanisms on exception handling [24]. These procedures were important to
detect whether and which AO mechanisms are likely to lead to unexpected and
error-prone scenarios involving exception handling. As a result, the null hypothesis
(H0) for this study states that there is no difference in robustness of exception han-
dling code in Java and AspectJ versions of the same system. The alternative hy-
pothesis (H1) is that the impact of aspects on exception flows of programs can lead
to more program flaws associated with exception flow.

3.1 Target Systems

One major decision that had to be made for our investigation was the selection of the
target applications. We have selected three medium-sized systems to which there was a
Java version and an AspectJ version available. Each of them is a representative of dif-
ferent application domains and heterogeneous realistic ways of incorporating exception
handling into software systems being developed incrementally. The target systems
were: Health Watcher [14, 31] (HW), Mobile Photo [9] (MP) and JHotDraw [16, 21]
(JHD). The HW system [14, 31] is a Web-based application that allows citizens to regis-
ter complaints regarding health issues in public institutions. MP is a software product
line that manipulates photo, music and video on mobile devices. JHotdraw framework
[16] is an open-source project that encompasses a two-dimensional graphics framework
for structured drawing editors. It comprises a Java swing and an applet interface. In our

Table 1. Target Systems description

System Description and Crosscutting Concerns
Version 1 : concurrency control, persistence (partially) and exception handling (partially).

Version 9 : concurrency control, transaction management, design patterns (Observer,
Factory and Command), persistence (partially) and exception handling (partially).

Version 4 : exception handling and some functional requirements comprising photo
manipulation, such as to sort a list of photos, to choose the favorites, and to copy photo.

Version 6: exception handling and some functional requirements comprising the
manipulation of different kinds of media (i.e., photos and audio files), such as: to sort a list
of medias, to choose the favorites, and to copy a media and sending SMS).

AJHotDraw (HD) Version 1 : persistence concern, design policies contract enforcement and undo command.

Health Watcher (HW)

Mobile Photo (MP)

Table 2. Code characteristics per system

Number of: OO AO OO AO OO AO OO AO OO AO
Lines of code 6080 5742 8825 7838 2540 3098 1571 1859 21027 21123
Lines of code for exception handling 1167 854 1889 1242 474 424 356 296 320 341
Classes 88 90 132 129 46 49 30 29 288 279
Aspects 0 11 0 24 0 14 0 10 0 31
try blocks 131 118 233 173 49 40 36 24 60 61
catch blocks 285 177 481 266 69 60 52 38 67 72
throw clauses 227 182 334 229 21 18 20 17 52 56
try blocks inside classes 131 108 233 161 49 21 36 9 60 61
catch blocks inside classes 285 164 481 252 69 28 52 16 67 72
throw clauses inside classes 227 176 334 219 21 4 20 4 52 51
try blocks inside aspects n/a 10 n/a 12 n/a 19 n/a 15 n/a 0
catch blocks inside aspects n/a 13 n/a 14 n/a 32 n/a 22 n/a 0
throw clauses inside aspects n/a 6 n/a 10 n/a 14 n/a 13 n/a 5
after advices n/a 4 n/a 22 n/a 30 n/a 15 n/a 15
around advices n/a 5 n/a 6 n/a 21 n/a 17 n/a 18
before advice n/a 3 n/a 4 n/a 5 n/a 2 n/a 15

HotDrawHealth Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 213

study, we focused on the Java Swing version of the JHotdraw. Moreover, such systems
exhibit a number of crosscutting concerns in addition to exception handling. Table l lists
the crosscutting concerns that were implemented as aspects in the AO versions of each
system.

Heterogeneous, Non-Trivial Policies for Exception Handling. The target systems
were also selected because they met a number of relevant additional criteria for our
intended evaluation (Section 3). First, they are non-trivial software projects and par-
ticularly rich in the ways exception handling is related to other crosscutting and non-
crosscutting concerns. For instance, we could find most of the typical categories of
exception handlers in terms of their structure as documented in [7], including nested
exception handlers and context-affecting handlers. Second, the behavior of exception
handlers also significantly varied in terms of their purpose [4], ranging from error
logging to application-specific recovery actions (e.g., rollback). Third, each of these
systems contains a considerable amount of code dedicated to exception handling
within both aspects and classes as detailed in Table 2.

Presence of Different Aspects in Incrementally-Developed Programs. Finally, AOP was
applied in different ways through the system releases: (i) aspects were used to extract
non-exception-handling concerns in JHotDraw, and all exception handlers are defined in
the base code, (ii) aspects were used to modularize various crosscutting concerns in the
Mobile Photo product line, including exception handling apart from the original release,
and (iii) aspects were used to partially implement error handling in Health Watcher,
where other behaviors were also aspectized. Good AOP practices were applied to struc-
ture such systems as stated in [9, 14, 31, 21]. Similar to Java releases, all the AspectJ
releases were implemented and changed by developers with around three years of experi-
ence in AO design and programming. In fact, HW and MP systems have been used in the
context of other empirical studies focusing on the assessment and comparison of their
Java and AspectJ implementations in terms of modularity and stability [9, 14]. Align-
ments of Java and AspectJ versions have been undertaken in order to guarantee that both
were implementing the same normal and exceptional functionalities.

3.2 Static Analysis of Exception Flow

The analysis of the exception flow can easily become unfeasible if done manually [28,
29]. In order to discover which exceptions can be thrown by a method, due to the use of
unchecked exceptions, the developer needs to recursively analyze each method that can
be called from such method. Moreover, when libraries are used, the developer needs to
rely on their documentation, which is most often neither precise nor complete [4].

Current exception flow analysis tools [10, 11, 28] do not support AOP constructs.
Even the tools which operate on Java bytecode level [11] cannot be used in a straight-
forward fashion. They do not interpret the aspect-related code included on the byte-
code after the weaving process of AspectJ. Hence, we developed a static analysis tool
to derive exception flow graphs for AspectJ programs and support our investigation
on determining flaws associated with exception flows. This tool is based on the Soot
framework for bytecode analysis and transformation [32] and is composed of two
main modules: the Exception Path Finder and the Exception Path Miner. Both
components are described next, and more detailed information can be found at the
companion website [3].

214 R. Coelho et al.

Exception Path Finder. This component uses Spark, one of the call graph builders
provided by Soot. Spark is a field-sensitive, flow-insensitive and context-insensitive
points-to analysis [32], also used by other static analysis tools [10, 11]. The Exception
Path Finder generates the exception paths for all checked and unchecked exceptions,
explicitly thrown by the application or implicitly thrown (e.g., via library method) by
aspects and classes. It associates each exception path with information regarding its
treatment. For instance, whether the exception was uncaught, caught by subsumption
or caught by the same exception type. In this study we are assuming that only one
exception is thrown at a time – the same assumption considered in [10, 11].

Exception Path Miner. This component classifies each exception path according to its
signaler (i.e., class method, aspect advice, intertype or declare soft constructs) and
handler. Such classification helps the developer to discover the new dependencies that
arise between aspects and classes on exceptional scenarios. For instance, an exception
can be thrown by an aspectual module and captured by a class or vice-versa. These
different dependencies represent seeds to manual inspections whose goal is to evalu-
ate the error proneness of the abnormal code in AO systems.

3.2.1 Inspection of Exception Handlers
The classification of the handler action for each exception path was based on a com-
plementary manual inspection. It consisted of examining the code of each handler
associated with exception paths found by the exception flow analysis tool (Section
3.2.1). Such manual inspections were also targeted at: discovering the causes for un-
caught exceptions and exception subsumptions. It enabled us to systematically dis-
cover bug hazards associated with Java and AspectJ modules on the exception han-
dling code. A bug hazard [2] is a circumstance that increases the chance of a bug to be
present in the software. For instance, type coercion in C++ is a bug hazard because it
depends on complex rules and declarations that may not be visible when working on a
class. Each handler action was classified according to one of the categories presented
in Table 3.

Table 3. Categories of handler actions and corresponding descriptions

Category Description
swallowing The handler is empty.
logging Some information related to the exceptional scenario is logged.
customised message A message describing the failure is presented to the user.
show exception message The exception message attribute (exception.getMessage()) is presented to the user.
application specific action An specific action is performed (e.g., rollback).
incorrect user message A message that is not related to the failure that happened is presented to the user.
new exception A new exception is created and thrown.

wrap
The original exception or any information associated to it is used to construct a new
exception which is thrown.

convert to soft
The exception is converted into a SoftException. This action is specific to AspectJ
programs and happens when the delcare soft construct is used.

framework default action
To avoid uncaught exceptions some application frameworks such as java.swing, define
catch classes that handle any exception that was not caught by the application and
performs a default action (e.g. kill the thread which threw the exception.).

uncaught No handler caught the exception.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 215

3.3 Study Operation

This study was undertaken from March 2007 to November 2007. During this period
target systems were selected and the static analysis tool was implemented and exe-
cuted for each target system. It was followed by the manual inspection of every ex-
ception path. The Exception Path Finder was used to generate the exception flow
graph for every exception occurrence. Then the Exception Path Miner classified each
exception path according to its signaler and handler (see Table 4). We discarded a few
unchecked exceptions2 that can be thrown by JVM in almost every program statement
execution (e.g., IllegalMonitorStateException) and are not normally handled in-
side the system. The same filter was adopted by Cabral and Marques [4] in an empiri-
cal study of exception handling code in object-oriented systems. This filtering was
performed on the static analysis. Then we manually inspected each one of the 2.901
exception paths presented in Table 4. The goal of this inspection was threefold: (i) to
discover what caused uncaught exceptions and exception subsumptions; (ii) to specify
the handler action of each exception path, and (iii) to determine the bug hazards asso-
ciated with AspectJ constructs on certain exception handling scenarios.

4 Analysis of Exception Flows and Handler Actions

This section presents the results for each of the study stages. First, it presents evalua-
tion of the data collected via the exception flow analysis tool (Section 4.1). The fol-
lowing discussion focuses on the information collected during the manual inspections
of each exception path (Section 4.2). Our goal in providing such a fine-grained data
analysis is to enable a detailed understanding of how aspects typically affected posi-
tively or negatively the robustness of exception handling in each target system and its
different releases.

4.1 Empirical Data

Table 4 presents the number of exception paths identified by the exception flow
analysis tool (Section 3.2.1). It presents the tally of exception paths per target system
structured according to a “Signaler-Handler” relation. The element responsible for
signaling the exception can be either a class or an aspect. When the exception is sig-
naled by an aspect, it is signaled by one of its internal operations: an advice, a method
defined as intertype declaration, or a declare soft construct3. An exception occur-
rence can be caught in two basic ways. It can be caught by a specialized handler when
the catch argument has the same type of the caught exception type. Alternatively, it

2 The discarded exceptions were the exceptions thrown by bytecode operations (NullPointerEx-

ception, IllegalMonitorStateException, ArrayIndexOutOfBoundsException, ArrayStoreExcep-
tion, NegativeArray SizeException, ClassCastException, ArithmeticException) and excep-
tions specific to the AspectJ (NoAspectBoundException). Since such exceptions may be
thrown by almost every operation, including those could generate too much information
which could compromise the usability of the exception analysis.

3 Declare soft is an AspectJ specific construct. It is associated to a pointcut and wraps any
exception thrown on specific join points in a SoftException, and re-throws it.

216 R. Coelho et al.

can be caught by subsumption when the catch argument is a supertype of the excep-
tion being caught. It is also possible that the exception is not handled by the applica-
tion and remains uncaught. This happens when there is no system’s handler defined
for the exception type in the exception flow.

Table 4. Classification of exception paths per target system

OO AO OO AO OO AO OO AO OO AO

 Uncaught 5 9 9 0 0 0 0 0 124 112

 Specialized Handler 196 132 277 119 53 26 63 13 64 5
 Subsumption 43 26 47 21 13 0 9 0 316 143

 Specialized Handler n/a 8 n/a 8 n/a 7 n/a 2 n/a 0
 Subsumption n/a 4 n/a 40 n/a 0 n/a 0 n/a 0

 Uncaught n/a 2 n/a 27 n/a 5 n/a 16 n/a 0

 Specialized Handler n/a 0 n/a 0 n/a 2 n/a 0 n/a 0
 Subsumption n/a 3 n/a 2 n/a 1 n/a 3 n/a 84

 Specialized Handler n/a 21 n/a 60 n/a 18 n/a 8 n/a 0
 Subsumption n/a 98 n/a 181 n/a 0 n/a 2 n/a 0

 Uncaught n/a 32 n/a 1 n/a 42 n/a 40 n/a 0

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 46 n/a 47 n/a 1 n/a 1 n/a 36

 Specialized Handler n/a 0 n/a 63 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 20 n/a 0 n/a 0 n/a 0

 Uncaught n/a 0 n/a 0 n/a 0 n/a 0 n/a 24

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 121

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 0

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

 Construct: Advice

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

Construct: Declare Soft

 Construct: Intertype

Signaler: Class

Signaler: Aspect

Handler on Class

Handler on Aspect

The next subsections analyze the exception paths presented in Table 4 in detail.
First, Section 4.1.1 contrasts the occurrence of subsumptions and uncaught exceptions
in Java and AspectJ versions of each target system. Section 4.1.2 determines the rela-
tion between certain aspect elements (as exception signalers) and higher or lower
incidences of uncaught exceptions and subsumptions. Section 4.1.3 focuses the analy-
sis on how exceptions thrown by aspects are typically treated in the target systems.

4.1.1 The Impact of Aspects on How Exceptions Are Handled
A recurring question to AO software programmers is whether it is harmful to aspec-
tize certain behaviors in existing OO decompositions in the presence of exceptional
conditions. Hence, our first analysis focused on observing how aspects affected the
robustness of the original exception handling policies of the Java versions. Figure 2
illustrates the total number of exception paths on which exceptions (i) remained un-
caught exceptions, (ii) were caught by subsumption, or (iii) by specialized handlers in
each of the target systems.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 217

Fig. 2. Uncaught exceptions, subsumptions, and specialized handlers per system

Figure 2 shows a significant increase in the overall number of exception paths.
Also significant is the increase in uncaught exceptions and subsumptions for the AO
versions of all the three systems. This increase is a sign that the robustness of excep-
tion handling policies in AspectJ releases was affected and sometimes degraded when
compared to their Java equivalents. Of course, the absolute number of exception paths
is expected to vary due to design modifications, such as aspectual refactorings.
However, the number of uncaught exceptions and subsumptions ideally should be
equivalent between the Java and AspectJ implementations of a same system, since
experimental procedures were undertaken to assure that both versions implemented
the same functionalities (Section 3).

Figure 3 shows the percentage of occurrence for each category of handler action.
We can observe that the relative number of uncaught exceptions also increased in

80.3%

41.5%

83.2%

44.7%

80.3%

48.4%

87.5%

25.3%
12.7%

17.6%

46.9%

14.1%

50.1%

12.5%

7.2%

73.1%

1.0%

62.7%
2.1%

19.7%

2.0% 2.7%
5.2%

11.7%

49.5%

67.5%

24.6% 25.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

OO AO OO AO OO AO OO AO OO AO

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

 Same Exception Subsumption Uncaught

Fig. 3. Percentage of uncaught exceptions, subsumptions, and specialized handlers

Health Watcher V1

196
153

43
1735

43

0

100

200

300

400

500

600

OO AO

ex

ce
p

ti
o

n
 p

at
h

s

Same Exception Subsumption Uncaught

Health Watcher V9

277 242

47

271

28

9

OO AO

Mobile Photo V4

53
46

13

2

47

0

20

40

60

80

100

OO AO

Mobile Photo V6

63

21

9

6

56

OO AO

Hot Draw

64

316

5

384

136
124

0

100

200

300

400

500

600

OO AO

218 R. Coelho et al.

every system, and so did the relative number of subsumptions. In some target systems,
this increase was significant. In the Mobile Photo V6, for example, the number of
uncaught exceptions represent 67.5% of the exceptions signaled on the system. In the
Health Watcher V9, the percentage of exceptions caught by subsumption increased
from 14.1% in OO version to 50.1% in the AO version. This significant increase am-
plifies the risk of unpredictable system crashes in AspectJ systems, caused by either
uncaught exceptions or inappropriate exception handling via subsumptions. Corre-
spondingly, there was a decrease in the percentage of exceptions handled by special-
ized handlers in all AO implementations. When the handler knows exactly which
exception is caught, it can take an appropriate recovery action or show a more precise
message to the user. However, this was not the typical case in the AO implementa-
tions of the investigated systems.

4.1.2 The Blame for Uncaught Exceptions and Subsumptions
After discovering that the number of uncaught exceptions and subsumptions has sig-
nificantly increased in the AO implementations (Section 4.1.1), we continued our
analysis, looking for the main causes of such discrepancies between AO and OO
versions. The intuition here is that most of these exceptions were signaled by the
aspects in the three target systems. Figure 4 presents charts that confirm this intuition;
they show the participation of the exceptions signaled by aspects in the entire number
of uncaught exceptions and subsumptions per system.

79,1%

13,7%

85,0%

0%

20%

40%

60%

80%

100%

Uncaught Sub

100%

50,8%

92,3%

Uncaught Same Sub

100%

43,5%

100%

Uncaught Same Sub

100%

38,1%

100%

Uncaught Same Sub

17,6 %

0,0 %

62,8 %

Uncaught Sub

Health Watcher AO V1 Health Watcher AO V9 Mobile Photo AO V4 Mobile Photo AO V6 HotDraw AO

Same Same

Fig. 4. Participation of aspect-signalized exceptions on the whole number of subsumption,
uncaught and specifically-handled exceptions per system

In both AO versions of Health Watcher and Mobile Photo, the aspects were re-
sponsible for signaling most of the uncaught exceptions and those ones caught by
subsumption. In Mobile Photo V4 and V6, for example, aspects were responsible for
100% of the uncaught exceptions found in this system. This means that no base class
in this system signaled an exception that became uncaught. In the AO version of
JHotDraw, the aspects were responsible for signaling only 17.6% of the uncaught
exceptions, and the aspects participation on the number of exceptions caught by sub-
sumption was high (62.8%). This is explained by the fact that the exception policy of
the HotDraw OO was already based on exception subsumption (see Figure 2), thus
the exceptions signaled by aspects were handled in the same way.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 219

4.1.3 Are All Exceptions Signaled by Aspects Becoming Uncaught or Caught by
 Subsumption?
Figure 5 gives a more detailed view of what is happening with all exceptions signaled
by aspects. We can observe that not all exceptions signaled from aspects become
uncaught or are caught by subsumption. In HealthWatcher AO V9, for example, only
7% of the exceptions signaled by aspects became uncaught, but they represented
100% of the uncaught exceptions reported to this system (see Figure 3). On the other
hand, in the AO versions of the MobilePhoto, the percentage of exceptions signaled
by aspects that became uncaught is high (68.1% and 80%). As discussed in the next
section, this system was the one that had the exception handling concern aspectized.

16,8%
7,0%

68,1%
80,0%

9,1%

2,9%

10,4% 30,7%

26,1% 11,4%

24,3%
12,2%

2,9%
5,7%

90,9%

48,5% 50,1%

2,9%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Health Watcher
AO V1

Health Watcher
AO V9

Mobile Photo
AO V4

Mobile Photo
AO V6

HotDraw AO

Handler on Aspect (Subsumption)

Handler on Class (Subsumption)

Handler on Aspect (Specialized)

Handler on Class (Specialized)

Uncaught

Fig. 5. Handler type of exceptions thrown by aspects

In Figure 5, the exceptions caught by subsumption on handlers coded inside
classes characterize a potential fault. They may represent scenarios in which the ex-
ception signaled by an aspect is mistakenly handled by an existing handler in the base
code. Another interesting thing to notice in Figure 5 is the increase in the percentage
number of exceptions signaled by aspects and handled by specialized handlers from
versions 1 to 9 of Health Watcher AO. It illustrates that exceptions signaled by an
aspect can be adequately handled.

4.2 Detailed Inspection

In order to obtain a more fine-grained view of how exceptions were handled in AO
and OO versions of the same system, we manually inspected all the 2,901 exception
paths presented in Table 2. Each exception path was classified according to the action
taken on its handler – following the classification presented in Section 3.2.2. Table 5
illustrates the number of each type of handler action per target system and the ratio
(%) between the number of the handler action in the AO version and the correspond-
ing value in the OO version of the same system. The ratio is expressed as the quotient
of former divided by the latter.

As mentioned before, the total number of exception paths mostly increased in AO
versions. During the manual inspections we discovered there were two causes for that:
(i) if one exception is not caught inside a specific method (e.g., due to a fault on an
aspect that acts as handler) this exception will continue to flow on the call chain,

220 R. Coelho et al.

generating new exception paths; and (ii) specific design modifications bring new
elements to the call graph and consequently lead to more exception paths. Figure 6
illustrates the handler actions per target system. Overall, it confirms the findings of
previous sections based on the tool outputs: the aspects used to implement the cross-
cutting functionalities tend to violate the exception policies previously adopted in
each system. Subsequent subsections elaborate further on the data in Figure 6 and
explain the causes behind AspectJ inferiority.

Table 5. Classification of exception paths according to their handler action

Handler Action OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, %

swallowing 5 7 140.0 5 7 140.0 0 0 -- 0 0 -- 3 3 100.0
logging 7 1 14.3 12 10 83.3 14 6 42.9 41 13 31.7 4 11 275.0
customised message 12 43 358.3 20 73 365.0 13 4 30.8 0 0 -- 0 0 --
show exception message 43 32 74.4 39 100 256.4 0 0 -- 7 1 14.3 291 285 97.9
application specific action 115 121 105.2 169 160 94.7 3 5 166.7 0 0 -- 8 0 0.0

incorrect user message 17 53 311.8 16 43 268.8 0 0 -- 0 0 -- 0 0 --

new exception 3 3 100.0 3 3 100.0 0 3 -- 1 2 200.0 0 0 --

wrap 37 38 102.7 60 65 108.3 36 0 -- 23 0 0.0 0 0 --
convert to soft 0 40 -- 0 100 -- 0 37 -- 0 13 -- 0 8 --

framework default action 0 0 -- 0 0 -- 0 0 -- 0 0 -- 74 82 110.8
uncaught 5 43 860.0 9 28 311.1 0 47 -- 0 56 -- 124 136 109.7
TOTAL 244 381 156.1 333 589 176.9 66 102 154.5 72 85 118.1 504 525 104.2

Mobile Photo V4 Mobile Photo V6Health Watcher V1 Health Watcher V9 HotDraw

0

100

200

300

400

500

600

OO AO OO AO

Health Watcher V1 Health Watcher V9

swallowing logging customised message show exception message

application specific action incorrect user message new exception wrap
convert to soft framework default action uncaught

0

20

40

60

80

100

120

OO AO OO AO

Mobile Photo V4 Mobile Photo V6

0

100

200

300

400

500

600

OO AO

HotDraw

ex

ce
pt

io
n

pa
th

s

Fig. 6. The handler actions in the exception paths of each target system

4.2.1 Health Watcher
In the AO versions of Health Watcher, there was an increase in the number of excep-
tion paths classified as incorrect user message (see Table 5), in relation to the
corresponding OO versions. It means that there were exception paths in such systems
in which a message not related to the exception that really happened was presented to
the user. This characterizes the problem known as Unintended Handler Action, when
an exception is handled by mistake by an existing handler. The causes of such failures
were diverse: (i) mistakes on the pointcut expressions of exception handling aspects

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 221

in both versions; (ii) in version 9, an aspect defined to handle exceptions intercepted a
point in the code in which the exception was already caught; (iii) aspects signaled
exceptions and no handler was defined for such exceptions in both versions; and (iv)
the wrong use of the declare soft statement. Each of these causes entails a bug
pattern in AspectJ that will be discussed in Section 5. In the version 1, all softened
exceptions became uncaught (categories convert to soft and uncaught respec-
tively), because the declare soft statement was not used correctly (see Handler
Mismatch in Section 5.3). In version 9, the misuse of the declare soft statement was
fixed but some exceptions remained uncaught or unintended, handled by a catch
block on the base code that presented an incorrect user message.

4.2.2 Mobile Photo
In all AO versions of Mobile Photo there was a significant increase in the number of
uncaught exceptions. This application defined many exception handler aspects. Due
to mistakes on pointcut expressions and a limitation on the use of declare soft many
exceptions became uncaught. Differently from the exception handling policy defined
in the Health Watcher system, in Mobile Photo there were no “catch all” clauses on
the View layer to prevent exceptions - not handled by the handler defined for it - from
becoming uncaught.

4.2.3 HotDraw
The target system that presented the lesser impact on the exception policy was the
JHotDraw system. The reason is twofold. First, the exception policy in OO version
was poorly defined, which is visible thanks to the expressive number of uncaught
exceptions and subsumptions (Figure 2). Second, the AO version of the JHotDraw
system was built upon a well defined set of refactoring steps [21], and most of the
aspects of AJHotDraw were composed by intertype declarations. These refactorings
moved specific methods from classes to aspects, such as the methods related to persis-
tence and undo concerns. The catch statements for exceptions thrown by the refac-
tored methods were not affected in the AO version, i.e. they remained in the same
places on the base code. This explains why most of the exceptions signaled by aspects
were caught by base code classes (Figure 5). However, even this system presented
potential faults in the exception handling code (Section 5).

5 Characterizing Exception-Handling Bug Patterns in AspectJ

Bug patterns [2] are recurring correlations between signaled errors and underlying
bugs in a program. They are related to design anti-patterns, but bug patterns are typi-
cal sources of faults at source code level. The manual inspection of the exception
handling code related to the exception paths reported by the tool allowed us to iden-
tify several exception-handling bug patterns. These patterns can be classified into
three categories. First, the use of aspects as handlers led to some scenarios in which
the catch clauses were moved to aspects, the so-called exception handling aspects.
However, these aspects did not catch the exceptions they were intended to handle.
Second, the application of aspects as signalers often implied aspects signaling excep-
tions for which no handler was defined. Such exceptions flew through the system and

222 R. Coelho et al.

became uncaught exceptions or were caught by an existing handler in the code (usu-
ally by subsumption). Third, the use of declare soft construct was often problem-
atic: due to its complex semantics, almost all developers performed similar mistakes
when using this construct in almost all the analyzed software releases.

In some cases, we observed that the use of declare soft in combination with after
throwing advice generated a bytecode in which the after throwing advice were not
included, what represents a bug in the AspectJ weaver. Table 6 summarizes the bug
pattern distribution in relation to the analyzed systems. The next sections describe the
bug patterns shown in this table. For each of them, we provide a description, but due
to space constraints, only some examples based on code snippets are provided; code
examples for all the bug patterns can be found on the companion website [3].

Table 6. Distribution of the bug patterns per system

HotDraw AO
Bug patterns V1 V9 V4 V6 V1

 Inactive Aspect handler
 Late Binding Aspect Handler
 Obsolete Handler in the Base Code

 Solo Signaler Aspect
 Unstable Exception Interfaces

 Handler Mismatch.
 Solo Declare Soft Statement.
 Unchecked Exception Cause
 The Precedence Dilemma

Mobile Photo AO

Aspects as Handlers

Aspects as Signalers

Exception Softening

Health Watcher AO

5.1 Advice as Exception Handlers

The role of aspects as handlers can be classified into two: (1) the aspect can handle its
own internal exceptions; and (2) and it can handle external exceptions thrown by
other aspects or classes. Aspects can be used to modularize the handlers of external
exceptions relative to other crosscutting concerns implemented as aspects. The latter
occurred in both Health Watcher and Mobile Photo systems. It can also be used to
modularize part of exception handling from the base code (as in Mobile Photo). Such
exception handling aspects are implemented using around and after throwing
advice. The first two bug patterns presented next are related to aspects that act as
external exception handlers, the last one is related to aspects implementing internal
handlers.

Inactive Aspect Handler. This kind of fault happens when an Aspect Handler does
not handle the exception that it was intended to handle. The cause is a faulty pointcut
expression. Such a fault prevents the handler from advising the join point in which an
exception should be handled. This exception either becomes uncaught (Section 5.2) or
is mistakenly caught by an existing handler (unintended handler action discussed in
Section 5.2). Instances of this bug pattern were detected in Health Watcher and Mo-
bile Photo systems as exception handling was not aspectized in HotDraw. The typical
reasons for this bug pattern are the fragility of the pointcut language, usually based on

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 223

naming conventions, and the number of different and very specific join points to be
intercepted by the handler aspects.

Late Binding Aspect Handler. This bug pattern occurred in Health Watcher V9. The
concurrency control was implemented within an aspect, which throws the Transac-
tionException exception. A specific handler aspect – called EHAspect - was de-
fined to handle this exception and although the pointcut expression was correctly
specified, the handler intercepted a point in which the exception was already caught
beforehand by a “catch all clause” on the base code. This problem is difficult to diag-
nose because the current IDEs will indicate to the developer of the EHAspect that the
join points in the code (where the exception should be caught) are correctly inter-
cepted. This explains why this fault remained until version V9 of the HW system.
Moreover, even if there is no “catch all” clause between signaler and aspect handler
during development, such a clause can be added in a maintenance task. If the handler
was defined in the base code and it was a checked exception, the compiler would
warn the developer that the handler was inactive. Figure 7 (a) presents a schematic
view of this problem. In this figure, the advice a1 adds a new functionality to method
mA. This additional functionality comes along with a new exception EX, which flows
through the advised method call chain until it is handled. Another advice was defined
to handle the exception (advice a2), which intercepts a point on the base code were
the exception EX should be handled (method mC). We can observe from this sche-
matic view that the exception EX was caught by a catch clause defined on method mB
and, as a consequence, EX could not reach the point in the code where it should be
handled by advice a2.

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scope

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scope

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scopemethod call protected region Exception propagation

Legend :
crosscuts scope

Fig. 7. Schematic view of Bug Patterns - (a) Late Binding Handler, and (b) Unstable Exception
Interfaces

Obsolete (or Outdated) Handler in the Base Code. When an aspect handles or sof-
tens (Section 3.4.3) an exception previously thrown by an application method, the
handler associated with this exception on the base code will become obsolete. The
reason is that the exception handled by it can no longer be signaled. In this study, four

224 R. Coelho et al.

exceptions handled by aspects generated obsolete handlers. Notice that an obsolete
handler may lead to the consequences presented by Miller and Tripathi [24].

5.2 Aspects as Exception Signalers

During the manual inspections we found potential faults that can occur when aspects
signal exceptions. They are detailed below.

Solo Signaler Aspect. Solo Signalers are the aspects that signal an exception and no
handler is bound to it. Such an aspect may lead to the same failures caused by the
Inactive Aspect Handler defined in the previous section: an uncaught exception or an
Unintended Handler Action. The Unintended Handler Action [24] is usually charac-
terized by the exception signaled by an aspect being handled by subsumption via
classes.

Unstable Exception Interface. In this study we observed that aspects had the ability
of destabilizing the exception interface of the advised methods. Every time a static or
dynamic scope is used and the advice may signal an exception, the exception interface
of the method will vary according to the scope in which a method is called. As a con-
sequence, the same method could raise a different set of exceptions, even when the
method arguments were the same, depending on the static (e.g., which class called it)
or dynamic (information on the execution stack) scopes. The next code snippet, ex-
tracted from the AJHotDraw implementation, exemplifies an unstable exception inter-
face.

 pointcut commandExecuteCheckView(AbstractCommand command): this(command)

 && execution(void AbstractCommand+.execute())
 && !within(*..DrawApplication.*) && !within(*..CTXWindowMenu.*)
 && !within(*..WindowMenu.*) && !within(*..JavaDrawApp.*);

 before(AbstractCommand command) : commandExecuteCheckView(command) {

if (command.view() == null) {
 throw new JHotDrawRuntimeException("execute should NOT be
 getting called when view() == null");

}
 }

In this example, the execute()method will throw a JHotDrawRuntimeException if
it is called from a method that is not defined on the classes specified on the pointcut
expression (DrawApplication, CTXWindowMenu, WindowMenu and JavaDrawApp).
As a consequence, the same method will have different behaviors depending on the
scope it is called. When the exceptions that can be thrown from a method vary ac-
cording to the scope it is executed, we say that such method contains an unstable
exception interface.

Figure 7 (b) presents a schematic view of this problem. In this figure, the advice x
adds a new functionality to method mA only when such method is called from method
mC (i.e., the pointcut expression contains a dynamic scope delimiter). Therefore, this
additional functionality, and the new exception E2 that comes with it, will not be part
of method mA when it is called from another method such as method h. As a conse-
quence, when the method mA is called from method mC it may throw E2 exception –
and a handler should be defined for it. On the other hand, if it is called from method h,
it will not throw the exception E2 (even if the method arguments are the same as the

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 225

one passed on the previous scope) since advice x does not affect the method mA in
this scope.

5.3 Softening Exceptions

In AspectJ an advice can only throw a checked exception if all intercepted methods
can signal it (i.e. declaring it on their throws clause). In other words, concerning
checked exceptions, an advice should follow a rule similar to the “Exception Confor-
mance” rule [28] applied during inheritance, when methods are overridden. As a re-
sult an advice can only throw a checked exception if it is thrown by every intercepted
method. To bypass this restriction, AspectJ offers the declare soft statement,
which converts (wraps) a given checked exception (in a specific scope) into a special-
ized unchecked exception, named SoftException. The syntax is: declare soft
: <someException> : <scope>. The scope is specified by a pointcut that se-
lects the join points in which the someException exception will be wrapped. As-
pectJ is the only AO language that provides a declare soft construct. As detailed in
Section 6.4, in Spring AOP and JBoss AOP, advices are allowed to throw any kind of
exception, either checked or unchecked. It is possible because their weavers convert
the exception interface of every advised method to allow every kind of exception to
flow from it – including a Throwable in its throws clause. This section presents
some bug patterns and also potential error-prone scenarios on the exception handling
code when the declare soft statement is used.

Solo Declare Soft Statement. According to the AspectJ documentation [33], every
time an exception is softened by an aspect, the developer should implement another
aspect that will be responsible for handling the softened exception. However, this
solution is very fragile. It is up to the programmer to define a new aspect to handle the
exception that was softened, and no message is shown at compile time to warn the
programmer in case s/he forgets to define this aspect handler. In Health Watcher and
Mobile Photo, exceptions were softened and no handler was defined for them. This
led to uncaught exceptions and unintended handler actions - exceptions caught by
subsumption on the base code.

Unchecked Exception Cause. When a checked exception is softened, it is wrapped in
a SoftException object. As mentioned before, in Java-like languages the type of
an exception is used to make the binding between an exception and its handler. Thus,
when wrapping an exception, we are also wrapping useful information in order to
provide a fine-grained action for each exception. To overcome this limitation, at every
point that needs to handle a softened exception, one should catch the SoftExcep-
tion and unwrap it (through its getCause() method) in order to compare its cause
with every possible exception that may potentially be thrown inside the handler’s
context. Such “wrapping” solution is documented as one of the exception handling
anti-patterns [22].

Handler Mismatch. Some exceptions were softened in one of the Health Watcher
versions. However, handlers were defined for the exceptions’ primitive types (i.e.
types before being wrapped in a SoftException). This Handler Mismatch implies
that almost all exceptions signaled by aspect implementations became uncaught or

226 R. Coelho et al.

were caught by unintended handlers. The code snippet bellow, extracted from Health
Watcher, illustrates this problem. The HWTransactionManagement aspect softens
the exception, and the HWTransactionExceptionHandler aspect tries to capture
the primitive exception (i.e., a TransactionException exception). This bug pat-
tern illustrates an emergent property of a particular combination of aspects woven into
the base program.

public aspect HWTransactionManagement {
 ...
 declare soft: TransactionException:
 call(void IPersistenceMechanism.beginTransaction())…;
}

public aspect HWTransactionExceptionHandler {
 void around(HttpServletResponse response) :
 execution(* HWServlet+.doGet(HttpServletRequest,
 HttpServletResponse)) && args(.., response) {
 try { proceed(response); }
 catch (TransactionException e) { ... }
 }

 }

The Precedence Dilemma. This problem occurs when an after throwing advice is
used in combination with the declare soft statement for a specific pointcut. Only
the code related to the declare soft is included in the bytecode. Since both con-
structions work by converting one exception into another, the weaver cannot decide
which one should happen first and as a consequence includes on the bytecode only the
code relative to the declare soft statement. This bug in the language implementa-
tion generates a SoftException exception that will not be adequately caught.

6 Discussions and Study Constraints

This section provides further discussion of issues and lessons learned while perform-
ing this exploratory study.

6.1 Exception Handling vs. AOP Properties

The goal of exception handling mechanisms is to make programs more reliable and
robust. However, we could observe that some properties of AOP may conflict with
characteristics of exception mechanisms. In this study we observed that quantification
and obliviousness properties pose specific pitfalls to the design of exception handling
code. We explain and discuss these pitfalls in the following.

Quantification Property. Aspects have the ability to perform invasive modifications
at specific join points in the program execution where a property holds – an ability
also known as the quantification property [35]. AspectJ supports quantification via
pointcuts and advice. Pointcuts are in general specified in terms of two kinds of point-
cut designators: call and execution. They intercept the call and execution of meth-
ods, respectively. On exception-aware systems, such designators may cause different
impact in the exceptional interfaces of methods. While the execution pointcut affects
the exceptional interface of the advised methods themselves, the call advice affects
the exceptional interface of the advised method’s caller. Such impact can also be

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 227

influenced by static and dynamic scopes associated with the pointcuts. Static scopes
such as within and withincode delimit the classes or packages on which the aspects
will inject a new behavior. Yet, dynamic scope constructs (i.e., cflow and cflowbe-
low) allow aspects to affect (or not) a specific point in the code depending on the
information available on the runtime execution stack.

The main consequence of the quantification property on exception-aware AO sys-
tems was that the exception interfaces of methods can vary depending on where the
method was called, even when the method arguments were the same. Therefore, the
same method of a class could raise a different set of exceptions depending on which
object called it or on some information on the execution stack (in case of cflow and
cflowbelow, for example). These unstable exception interfaces cannot happen in OO
programs since the set of exceptions thrown by a method cannot vary according to the
scope where it is executed – provided that the arguments are the same. We observed
in our study that in scenarios in which methods presented such unstable exceptional
interfaces, the exceptions signaled on specific scopes by the advised method often
became uncaught or were erroneously handled by an existing handler on the base
code (Unintended Handler Action bug pattern discussed in Section 5). A possible
reason is that it is more difficult for the method’s user to prepare the base code to
handle the exceptions that will be thrown depending on the dynamic or static scope it
is executed.

Obliviousness property. The obliviousness property [35], which was believed to be a
fundamental property for aspect-oriented programming, states that programmers of
the base code do not need to be aware of the aspects which will affect it. It means that
programmers do not need to prepare the base code to be affected by the aspects [35].
However, since there are no mechanisms to protect the base code from the exceptions
that will flow from aspects, a new exception signaled by the aspect may flow through
the system, if no handler is defined for it. This exception may become uncaught and
terminate the system in an unpredictable way. Even in cases when a handler aspect is
defined for each aspect that can throw an exception (as implemented in the AO ver-
sions of Health Watcher), there is no guarantee that the exception thrown by an aspect
will be handled by the handler aspect defined to it. Such exceptions may be prema-
turely caught by a handler on the base code, as illustrated on the bug pattern Late
Binding Aspect Handler (Section 5.1). Moreover, AspectJ and other existing AO
languages allow the invasive modifications caused by aspects to happen dynamically.
Although this mechanism opens a new realm of possibilities in software development,
it hinders the task of preparing the base code of the exceptions that can be thrown
from aspects. During system execution, it is difficult to anticipate whether any unin-
tended handler action or uncaught exception will be caused by the aspects.

6.2 Representativeness

We have investigated other AOP technologies such as: CaesarJ [23], JBoss AOP and
Spring AOP. Basically, they follow the same join point model as AspectJ, which
allows an aspect to add or modify behavior on join points, potentially adding new
exceptions. Table 7 summarizes our analysis regarding exception throwing and han-
dling mechanisms available in such technologies, which was mainly based on avail-
able documentation.

228 R. Coelho et al.

Table 7. EH constructs in different AO programming languages

checked unchecked
handler-

like
after

throwing
after-all-

like
around call execution

within-
like

withincode-
like

cflow-
like

cflowbelow-
like

AspectJ yes partially yes yes yes yes yes yes yes yes yes yes yes
CaesarJ no partially yes yes yes yes yes yes yes yes yes yes yes
JBoss AOP no yes yes no yes yes yes yes yes yes yes yes yes
Spring AOP no yes yes no yes yes yes no yes yes no no no

pointcut scope
static dynamicdeclare

soft

advice can signal advice types that act as external handlers
moments of

actuation

According to Table 7, only AspectJ provides a syntactic element to explicitly sof-
ten checked exceptions (2nd column). Thus, the bug patterns related to this construct
(Section 5.3) are peculiar to AspectJ. Depending on the nature of exceptions that may
be thrown by advice, all languages allow advice to throw runtime exceptions (4th
column). In AspectJ and CaesarJ, an advice can only throw a checked exception if
“every” intercepted method can throw it (declaring it on its throws clause) (3rd col-
umn). In CaesarJ, only around advice signature may throw checked exceptions. In
Spring AOP and JBoss AOP languages, advice may throw checked exceptions, no
matter the exceptions that can be signaled by the advised methods4. All languages
allow the definition of pointcut scopes (11th to 14th columns), and allow the advice to
intercept a method at both calls and executions (9th and 10th columns), consequently
facilitating the occurrence of unstable exceptional interfaces. Therefore all bug pat-
terns associated with Advice as Signalers (Section 5.2) may occur on systems devel-
oped in such languages. Finally, all languages allow the definition of aspects that may
handle exceptions thrown by another aspect of the base code (5th to 7th columns). As a
consequence, all bug patterns associated with Advice as Handlers (Section 5.1) can
also be found on systems developed in these languages.

6.3 Study Constraints

The main benefit of an exploratory study such as this one is that it allows the effect of
a new programming method to be assessed in realistic situations [42]. One may argue
that evaluating the AO and OO versions in a sample of 10 releases for three different
systems is a limiting factor. The needed characteristics for the target systems (i.e.,
medium-sized systems to which there was a Java version and an AspectJ version
available) and study based on manual code inspections (a very time-consuming task)
restricted the number of subjects evaluated in the study. Given such restrictions, we
feel that our set is representative as it includes significant, varied policies and aspecti-
zation processes for exception handling (Section 3.1). Another factor that might influ-
ence the study results against aspectual decompositions could be the developers’
expertise on AOP and AspectJ. However, as mentioned before (Section 3.1) all the
target systems developers had significant experience in AOP and AspectJ constructs.
Moreover, the fact that the AO version of each target system was developed after the
OO version, could also impact in the study results, acting in favor or against AO
solutions. However, most AO systems developed so far are derived from an OO

4 It is possible because the exception interface of every advised method is modified to allow

any kind of exception to flow from it (throws Throwable defines the exception interface
of the intercepted methods).

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 229

version, to which AO refactorings [21] are typically applied. Therefore, the threats to
validity in this study are not much different than the ones imposed on the other em-
pirical studies with similar goals [6, 9, 13, 14].

6.4 Additional Lessons Learned

AO Refactoring Strategies in Exception-Aware Systems. Many AO systems nowa-
days are generated from an OO version in which some crosscutting concerns are de-
tected and AO Refactoring techniques are used to convert some crosscutting concerns
into aspects. Such AO Refactoring techniques should account for the consequences of
aspects on the exception flow of programs. The catalogue of bug patterns presented in
this study can be used by such techniques to prevent some avoidable bugs when refac-
toring a system.

Software Maintainability. Since it is very hard to define at the beginning of a project
which exceptions should be dealt with inside the system [30], the exception handling
code is often modified along the system development and maintenance tasks. As a
consequence, some bugs avoided during AO refactoring, such as the Late Binding
Aspect Handler (Section 5.1), may be included during a maintenance task - breaking
an existing exception handling policy. The exception handling policy comprises a set
of design rules that defines the system elements responsible for signaling, handling
and re-throwing the exceptions; and the system dependability relies on the confor-
mance to such rules. Reasoning about the excep-tional control path, looking for po-
tential-faults on the exception handling code, can quickly become unfeasible if carried
out manually [28]. Thus, developers need tools to support them in (i) understanding
the impact of aspect weaving on the existing exception handling policy, and (ii) find-
ing bugs on the exceptional handling code along maintenance tasks.

Finding Bugs on Exception Handling Code of AO Programs. Testing exception
handling code is inherently difficult [36] due to the huge number of possible excep-
tional conditions to simulate in a system and the difficulty associated to the simulation
of most scenarios. Hence, a valuable strategy for finding faults on the exception han-
dling code can be to statically look for them [36]. The exception flow analysis tool
developed in our work can detect some failures (e.g., uncaught exceptions), and sup-
port the manual inspections whose goal is to find out the cause of the failure (e.g., bug
diagnosing5). Our tool could be extended in order to automatically detect some of the
bug patterns described in this work. A similar strategy was adopted by Bruntink et al
[36] to find faults on idiom-based exception handling code.

New Interactions between Aspects and Classes. The works presented so far on the
interactions between aspects and classes focus on the normal control flow and on
information extracted from data-flow analysis. In this study we could observe that
new kinds of interaction, between aspects and classes, emerged from the exceptional
scenarios (e.g., one class catches one exception thrown by an aspect). Such Signaler-
Handler relationships between the elements of an AO system can be used as a

5 The Bug fixing is a less complex problem after the bug was effectively diagnosed.

230 R. Coelho et al.

coupling metric that exists between these elements on exceptional scenarios. We are
currently refining the categorization of the Signaler-Handler relationships derived
from this study.

7 Related Work

Since the effects of AO composition mechanisms on the flow of exceptions on a sys-
tem are still not well understood, we conducted an empirical study in order to dis-
cover these effects and their extent in AO systems. In this section, we present works
we believe are directly related to our own, distributed in four categories: (i) static
analysis tools; (ii) AOP and exception handling; (iii) experimental studies on excep-
tion handling code; and (iv) AO fault models and bug patterns.

Static Analysis Tools: Robillard and Murphy [29] developed a tool called Jex that
analyzes the flow of exceptions in Java Programs. Based on java source code this tool
performs dataflow analysis in order to find the propagation paths of checked and
unchecked exception types. Jo et al. [17] present a set-based static analysis of Java
programs that estimates their exception flows. This analysis is used to detect too gen-
eral or unnecessary exception specifications and handlers. Fu et al. [10] developed a
static analysis tool, built upon Soot framework for bytecode analysis, and Spark a call
graph builder provided by Soot that generates a call graph of a higher precision com-
pared to the works mentioned previously. This static analysis tool generates the ex-
ception paths to every exception thrown on the system. Fu et al. [11] extended their
tool in order to compute chains. An exception chain is a combination of semantically-
related exception paths. Our tool is similar to the previous one [10], but it works on
top of AspectJ code.

AOP and Exception Handling: Lippert and Lopes [20] applied aspect constructs on a
large OO framework, called JWAM, to modularize the exception handling code. In
their experiment, they obtained a large reduction in the amount of exception handling
code present in the application – from 11% of the total code in the OO version to
2.9% in the AO version. Castor Filho et al. [6, 7] performed a similar study but their
work reports that the reuse of exception handlers is not straightforward as advocated
beforehand by Lippert and Lopes [20]. Instead, it depends on a set of factors such as:
the type of exceptions being handled; what the handler does; the amount of contextual
information needed; what the method raising the exception returns; and what the
throws clause actually specifies. Our study differs from its predecessors since it does
not aim at aspectizing exception handling constructs. Actually, we aim at providing a
better understanding on how programmers write exception handling code in AspectJ,
and identifying possible flaws in the usage of aspects in the presence of exceptional
scenarios.

Experimental Studies on Exception Handling Code: Bruno and Cabral [4] per-
formed a quantitative study in which they examined source code samples of 32 differ-
ent applications, both for Java and .NET. The goal of their study was to identify how
exceptions were handled in different categories of systems. They examined the excep-
tion handlers and the respective actions taken on them. As a result of this analysis,
they observed that the action handlers were very simple (e.g., logging and present a

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 231

message to the user). However, Bruno and Cabral did not consider the exception paths
of each system. As a consequence, they did not take into account the number of un-
caught exceptions, and the number of exceptions treated by each handler. In our
work, we performed an empirical study of how AOP constructs may influence on the
way the exceptions are treated on the system.

AO Fault Models and Bug Patterns: Alexander et al. [37] proposed a candidate fault
model that includes a set of fault types mostly related to AspectJ features. However,
none of them is related to the exceptional scenarios. This fault model was later ex-
tended by Cecatto et al. [38], who characterized faults related to “incorrect changes in
exceptional control flow.” These faults may occur when an aspect signals an excep-
tion which can triggers the execution of a catch statement, either in the aspect itself or
in the base program. They also argue that signaled exceptions, when declared as soft,
may imply the execution of different branches in the aspectized code. Bækken [39]
presents a fine-grained fault model for pointcuts and advice in AspectJ programs.
Although Bækken does not describe faults related to exceptional scenarios, he discuss
how control and data flows are influenced by exception throwing in order to establish
necessary and collectively sufficient conditions for a fault to produce a failure. Ferrari
et al. [43] summarized all the previously identified fault types and included three new
ones, which were all grouped according to the AO features they are related to. In
addition, Ferrari et al. proposed a set of mutation operators to model instances of most
of identified fault types, including some related to exception handling code. However,
none of these authors detail the consequences of possible faults nor assessed the fault
density in the context of real systems. Regarding bug patterns in AO programs, Zhang
and Zhao [40] presented a set of general bug patterns for AO programs based on the
AspectJ language. The authors stated that a bug pattern is a “recurring relationship
between potential bugs and explicit errors in a program.” However, the authors did
not conduct any observational study that could provide evidences of presence of the
proposed bug patterns. The bug patterns we present in this paper are specifically re-
lated to exception handling code in AO software and are based on recurring faults
found throughout a fine-grained analysis of a set of AO applications.

8 Concluding Remarks

This paper presented a quantitative study to evaluate the impact of aspects on the
exception control flow of programs. We selected a set of three systems that were
implemented in Java and AspectJ. For two of these systems two different releases
were investigated. After that, we compared all versions of the systems in terms of the
number of uncaught exceptions, exceptions caught by subsumption, and exceptions
caught with specialized handlers. In all the AspectJ versions, we observed an increase
in the number of uncaught exceptions and a decrease in the number of exceptions
caught with specialized handlers. Such increase was less significant in AJHotdraw
due to the fact that it was built through a well defined set of refactoring steps [21],
and most of the aspects are composed by intertype declarations. We performed sys-
tematic code inspection of each exception path to find out what caused such negative
discrepancies in AspectJ releases. The bug patterns identified came from three

232 R. Coelho et al.

sources: aspects acting as handlers, aspects as exception signalers, and misuses of the
declare soft construct. This paper also presents a catalogue of bug patterns that
characterizes a set of recurring program anomalies found on the exception handling
code of AspectJ programs. Our findings indicate that mechanisms of AO languages
negatively affect the robustness of exception-aware software systems. As a result,
there is a need for both improving the design of exception handling mechanisms in
AO programming languages and building static analysis tools and testing techniques
tailored to improve the reliability of the error handling code in AO programs. We are
currently working on an extension of AspectJ [5] to improve modularity and robust-
ness of exception handling. We are also currently evolving our exception flow analy-
sis tool to support automatic finding of the bug patterns catalogue in this paper.

Acknowledgements. This research was partially sponsored by: CAPES (grants No.
3548-06-6 and 653-07-1);FAPERJ (grant No. E-26/100.061/06);FAPESP (grant No.
05-55403-6);EC Grant AOSD-Europe-European Network of Excellence on AOSD
(IST-2-004349);EC Grant AMPLE - Aspect-Oriented, Model-Driven Product Line
Engineering (IST-33710);and LatinAOSD/CNPq-Prosul project.

References

1. Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Black, A.P. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005)

2. Allen, E.: Bug patterns in Java, 2nd edn. Apress (2002)
3. Assessing the Impact of Aspects on Exception Flows: An Empirical Study,

http://www.inf.puc-rio.br/~roberta/aop_exceptions
4. Cabral, B., Marques, P.: Exception Handling: A Field Study in Java and.NET. In: Ernst, E.

(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 151–175. Springer, Heidelberg (2007)
5. Cacho, N., Castor Filho, F., Garcia, A., Figueiredo, E.: EJFlow: Taming Exceptional Con-

trol Flows in Aspect-Oriented Programming. In: Proc. of AOSD 2008 (2008)
6. Castor Filho, F., Cacho, N., Figueiredo, E., Maranhão, R., Garcia, A., Rubira, C.: Excep-

tions and Aspects: The Devil is in the Details. In: 13th ACM SIGSOFT (2006)
7. Castor Filho, F., Garcia, A., Rubira, C.: Extracting Error Handling to Aspects: A Cook-

book. In: ICSM 2007 (2007)
8. Clifton, C., Leavens, G.T.: Observers and Assistants: A Proposal for Modular Aspect-

Oriented Reasoning. In: Workshop on Foundations of Aspect Languages (2002)
9. Figueiredo, E., et al.: Evolving Software Product Lines with Aspects: An Empirical Study

on Design Stability. In: Proc. of ICSE 2008 (2008)
10. Fu, C., Milanova, A., Ryder, B.G., Wonnacott, D.: Robustness Testing of Java Server Ap-

plications. IEEE Trans. Software Engineering 31(4), 292–311 (2005)
11. Fu, C., Ryder, B.G.: Exception-Chain Analysis: Revealing Exception Handling Architec-

ture in Java Server Applications. In: ICSE 2007, pp. 230–239. ACM Press, New York
(2007)

12. Garcia, A., et al.: A Comparative Study of Exception Handling Mechanisms for Building
Dependable Object-Oriented Software. Journal of Systems and Software 59(6), 197–222
(2001)

13. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C.J.P., von Staa, A.:
Modularizing Design Patterns with Aspects: A Quantitative Study. In: AOSD 2005, pp. 3–
14 (2005)

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 233

14. Greenwood, P., et al.: On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 176–200.
Springer, Heidelberg (2007)

15. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ. In:
OOPSLA 2002, pp. 161–173. ACM Press, New York (2002)

16. JHotDraw as Open-Source Project (accessed 19/12/2007), http://www.jhotdraw.
org/

17. Jo, J., Chang, B., Yi, K., Choe, K.: An Uncaught Exception Analysis for Java. Journal of
Systems and Software 72(1), 59–69 (2004)

18. Katz, S.: Aspect Categories and Classes of Temporal Properties. In: Rashid, A., Aksit, M.
(eds.) Transactions on Aspect-Oriented Software Development I. LNCS, vol. 3880, pp.
106–134. Springer, Heidelberg (2006)

19. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying Aspect Advice Modularly. In: FSE
2004, pp. 137–146. ACM Press, New York (2004)

20. Lippert, M., Lopes, C.: A Study on Exception Detection and Handling Using Aspect-
Oriented Programming. In: Proc. of ICSE 2000, pp. 418–427. ACM Press, New York
(2000)

21. Marin, M., Moonen, L., van Deursen, A.: An Integrated Crosscutting Concern Migration
Strategy and its Application to JHotDraw. In: SCAM 2007, pp. 101–110. IEEE Comp.
Soc, Los Alamitos (2007)

22. McCune, T.: Exception Handling Antipatterns (2006) (accessed 19/12/2007),
http://today.java.net/pub/a/today/006/04/06/exception-handling-antipatterns.html

23. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: AOSD 2003, pp. 90–99
(2003)

24. Miller, R., Tripathi, A.: Issues with Exception Handling in Object-Oriented Systems. In:
Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 85–103. Springer,
Heidelberg (1997)

25. Molesini, A., Garcia, A., Chavez, C., Batista, T.: On the Quantitative Analysis of Archi-
tecture Stability in Aspectual Decompositions. In: WICSA 2008 (2008)

26. Rashid, A., Chitchyan, R.: Persistence as an Aspect. In: AOSD 2003, pp. 120–129 (2003)
27. Rinard, M., Salcianu, A., Bugrara, S.: A Classification System and Analysis for Aspect-

Oriented Programs. In: FSE 2004, pp. 147–158. ACM Pres, New York (2004)
28. Robillard, M., Murphy, G.: Static Analysis to Support the Evolution of Exception Struc-

ture in Object-Oriented Systems. ACM Trans. Softw. Eng. Methodol. 12(2), 191–221
(2003)

29. Robillard, M., Murphy., G.: Analyzing Exception Flow in Java Programs. In: Nierstrasz,
O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp. 322–337.
Springer, Heidelberg (1999)

30. Robillard, M., Murphy., G.: Designing Robust Java Programs with Exceptions. In: Proc. of
FSE 2000, pp. 2–10. ACM Press, New York (2000)

31. Soares, S., Borba, P., Laureano, E.: Distribution and Persistence as Aspects. Software
Practice and Experience 36(7), 711–759 (2006)

32. The Soot Framework (accessed 19/12/2007) (2007), http://www.sable.mcgill.
ca/soot

33. The AspectJ Project (accessed 19/12/2007) (2007), http://www.eclipse.org/
aspectj/

34. van Dooren, M., Steegmans, E.: Combining the Robustness of Checked Exceptions with
the Flexibility of Unchecked Exceptions Using Anchored Exception Declarations. In:
Proc. of OOPSLA 2005, pp. 455–471. ACM Press, New York (2005)

234 R. Coelho et al.

35. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development. Ad-
dison-Wesley, Reading (2005)

36. Bruntink, M., Deursen, A., Tourwé, T.: Discovering faults in idiom-based exception han-
dling. In: ICSE 2006, pp. 242–251 (2006)

37. Alexander, R.T., Bieman, J.M., Andrews, A.A.: Towards the Systematic Testing of As-
pect-Oriented Programs. Report CS-04-105, Dept. of Computer Science, Colorado State
University, Fort Collins/Colorado - USA (2004)

38. Ceccato, M., Tonella, P., Ricca, F.: Is AOP Code Easier or Harder to Test than OOP
Code? In: Proc. of WTAOP 2005 (2005)

39. Bækken, J.S.: A Fault Model for Pointcuts and Advice in AspectJ Programs. Master’s the-
sis, School of Electrical Engineering and Computer Science, Washington State University,
Pullman/WA - USA (2006)

40. Zhang, S., Zhao, J.: On Identifying Bug Patterns in Aspect-Oriented Programs. In: Proc. of
COMPSAC 2007, pp. 431–438. IEEE Computer Society, Los Alamitos (2007)

41. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: ECOOP (1997)

42. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering - An Introduction. Kluwer Academic Publishers, Dordrecht
(2000)

43. Ferrari, F.C., Maldonado, J.C., Rashid, A.: Mutation Testing for Aspect-Oriented Pro-
grams. In: Proc. of ICST 2008. IEEE Computer Society Press, Los Alamitos (2008)

	Assessing the Impact of Aspects on Exception Flows: An Exploratory Study
	Introduction
	Characterizing the Exception Handling Mechanism in AO Programs
	Evaluation Procedures
	Target Systems
	Static Analysis of Exception Flow
	Study Operation

	Analysis of Exception Flows and Handler Actions
	Empirical Data
	Detailed Inspection

	Characterizing Exception-Handling Bug Patterns in AspectJ
	Advice as Exception Handlers
	Aspects as Exception Signalers
	Softening Exceptions

	Discussions and Study Constraints
	Exception Handling vs. AOP Properties
	Representativeness
	Study Constraints
	Additional Lessons Learned

	Related Work
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

