

Lecture Notes in Computer Science 5142
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jan Vitek (Ed.)

22nd European Conference
Paphos, Cyprus, July 7-11, 2008
Proceedings

Volume Editor

Jan Vitek
Purdue University
Department of Computer Sciences
West Lafayette, IN 47907, USA
E-mail: jv@cs.purdue.edu

Library of Congress Control Number: 2008930413

CR Subject Classification (1998): D.1, D.2, D.3, F.3, C.2, K.4, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-70591-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70591-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12436811 06/3180 5 4 3 2 1 0

Preface

It is a pleasure to present the proceedings of the 22nd European Conference
on Object-Oriented Programming (ECOOP 2008) held in Paphos, Cyprus. The
conference continues to serve a broad object-oriented community with a techni-
cal program spanning theory and practice and a healthy mix of industrial and
academic participants. This year a strong workshop and tutorial program com-
plemented the main technical track. We had 13 workshops and 8 tutorials, as well
as the co-located Dynamic Language Symposium (DLS). Finally, the program
was rounded out with a keynote by Rachid Guerraoui and a banquet speech
by James Noble. As in previous years, two Dahl-Nygaard awards were selected
by AITO, and for the first time, the ECOOP Program Committee gave a best
paper award.

The proceedings include 27 papers selected from 138 submissions. The papers
were reviewed in a single-blind process with three to five reviews per paper. Pre-
liminary versions of the reviews were made available to the authors a week before
the PC meeting to allow for short (500 words or less) author responses. The re-
sponses were discussed at the PC meeting and were instrumental in reaching
decisions. The PC discussions followed Oscar Nierstrasz’ Champion pattern. PC
papers had five reviews and were held at a higher standard.

ECOOP owes is success to the efforts of many. I would like to thank the
authors for their submissions; the Program Committee members and their sub-
reviewers for the thoroughness of their reviews—on average 2.500 words per
paper (but going all the way to 5.863 words!); our General Chair George A. Pa-
padopoulos; the AITO executive board; Richard van de Stadt for his invaluable
help with CyberChairPRO, and Susan Eisenbach and Sophia Drossopoulou for
hosting the PC meeting at Imperial College.

May 2008 Jan Vitek

Organization

ECOOP 2008 was organized by the Department of Computer Science of the
University of Cyprus, under the auspices of AITO (Association Internationale
pour les Technologies Objets), and in cooperation with ACM SIGPLAN and
SIGSOFT.

Executive Committee

Conference Chair

George A. Papadopoulos (University of Cyprus, Cyprus)

Program Chair

Jan Vitek (Purdue University, USA)

Organizing Committee

Workshop Chairs

Patrick Eugster (Purdue University, USA)
Costas Pattichis (University of Cyprus, Cyprus)

Tutorial Chair

James Noble (Victoria University, New Zealand)

Publicity Chair

Dave Clarke (CWI, The Netherlands)

PhD Symposium Chair

Mark Hills (UIUC, USA)

Exhibition Chair

Andreas Andreou (University of Cyprus, Cyprus)

Demonstration and Poster Chair

Anna Phillipou (University of Cyprus, Cyprus)

VIII Organization

Student Volunteer Chair

Tobias Wrigstad (Stockholm University, Sweden)

Panel Chair

Tony Hosking (Purdue University, USA)

Workshops Review Committee

Benoit Garbinato (University of Lausanne, Switzerland)
Peter Müller (Microsoft Research, USA)
Friedrich Steimann (Fernuniversität Hagen, Germany)

Sponsoring Organizations

Gold

Silver

Program Committee

Elisa Baniassad (Chinese University of Hong Kong)
Gavin Bierman (Microsoft Research, UK)
Alex Buckley (Sun Microsystems, USA)
William Cook (University of Texas at Austin, USA)
Susan Eisenbach (Imperial College, UK)
Manuel Fahndrich (Microsoft Research, USA)
Pascal Felber (University of Neuchatel, Switzerland)
Robby Findler (University of Chicago, USA)
Kathleen Fisher (ATT Research, USA)
Jeff Foster (University of Maryland, College Park, USA)
Michael Haupt (Hasso Plattner Institute, Germany)
Matthias Hauswirth (University of Lugano, Switzerland)
Görel Hedin (Lund University, Sweden)
Richard Jones (University of Kent, UK)
Doug Lea (State University of New York at Oswego, USA)
Ondrej Lhotak (University of Waterloo, Canada)
Todd Millstein (University of California Los Angeles, USA)
James Noble (Victoria University, New Zealand)
Nathaniel Nystrom (IBM Research, USA)
Manuel Oriol (ETH Zurich, Switzerland)
Erez Petrank (Technion and Microsoft Research, Israel)
Frantisek Plasil (Charles University, Czech Republic)

Organization IX

Awais Rashid (Lancaster University, UK)
Michael I. Schwartzbach (University of Aarhus, Denmark)
Jeremy G. Siek (University of Colorado at Boulder, USA)
Mario Sudholt (EMN-INRIA, LINA, France)
Peter Theimann (Universität Freiburg, Germany)
Frank Tip (IBM Research, USA)
Eelco Visser (Delft University of Technology, The Netherlands)
Tobias Wrigstad (Stockholm University, Sweden)
Roel Wuyts (IMEC and K.U.Leuven, Belgium)

Referees

Jiri Adamek
Tristan Allwood
Jose Nelson Amaral
Malte Appeltauer
Pavel Avgustinov
Vlastimil Babka
Stephanie Balzer
Anindya Banerjee
Fred Barnes
Don Batory
Nelly Bencomo
Nick Benton
Annette Bieniusa
Steve Blackburn
Joshua Bloch
Bard Bloom
Noury Bouraqadi
John Boyland
Martin Bravenboer
Lubomir Bulej
Tomas Bures
Nicholas Cameron
Susanne Cech Previtali
Robert Chatley
Feng Chen
Juan Chen
Ilinca Ciupa
Dave Clarke
Charles Consel
Dave Cunningham
Maja D’Hondt
Martin Decky
Markus Degen

Benjamin Delaware
Dave Dice
Werner Dietl
Danny Dig
Remi Douence
Derek Dreyer
Sophia Drossopoulou
Stephane Ducasse
Torbjörn Ekman
Michael Engel
Erik Ernst
Matthias Felleisen
Fabiano Cutigi Ferrari
Sally Fincher
Matthew Flatt
Matthew Fluet
Cedric Fournet
Neal Gafter
Bas Graaf
Hervé Grall
Phil Greenwood
Dan Grossman
Khilan Gudka
Tim Harris
Jan Heering
Phillip Heidegger
Laurence Hellyer
Zef Hemel
Robert Hirschfeld
Martin Hirzel
Petr Hnetynka
Jippe Holwerda
Ali Ibrahim

X Organization

Pavel Jezek
Lingxiao Jiang
Milan Jovic
Jaakko Järvi
Thomas Kühne
Tomas Kalibera
Lennart Kats
Shmuel Katz
Andrew Kennedy
Ron Kersic
Raffi Khatchadourian
Joe Kiniry
David Kitchin
Jan Kofron
Robert Krahn
Shriram Krishnamurthi
Peter Kropf
George Kuan
Ralf Lämmel
Patrick Lam
Ghulam Lashari
Andreas Leitner
Alan Leung
Jens Lincke
Jed Liu
Yanhong A. Liu
Brad Lushman
Donna Malayeri
Michal Malohlava
Jeremy Manson
Simon Marlow
Antoine Marot
Jacob Matthews
John Matthews
Jean-Marc Menaud
Ana Milanova
Oege de Moor
Peter Mueller
Anders Møller
Nomair Naeem
Luis Daniel Benavides Navarro
Iulian Neamtiu
Srinivas Nedunuri
Joost Noppen
Jacques Noyé

Klaus Ostermann
Johan Östlund
Pavel Parizek
Matthew Parkinson
Igor Peshansky
Alexis Petrounias
Andrew Pitts
Polyvios Pratikakis
Xin Qi
Etienne Rivière
Tom Rothamel
Jean-Claude Royer
Joseph N. Ruskiewicz
Claudio Russo
Chris Ryder
Matthew Sackman
Chris Sadler
Bernd Schoeller
Carsten Schwender
Ondrej Sery
Jeremy Singer
Doug Smith
Christian Spielvoegel
Alexander Spoon
Mathieu Suen
Alex Summers
Nikhil Swamy
Francois Taiani
David Tarditi
Max Troy
Petr Tuma
Ian Utting
Viktor Vafeiadis
Arnout Vandecappelle
Mandana Vaziri
Clark Verbrugge
Sander Vermolen
Joost Visser
Stefan Wehr
Ian Wehrman
Nathan Weston
Jan Wloka
Eran Yahav
Dmitrijs Zaparanuks

Table of Contents

Keynote

The Return of Transactions . 1
Rachid Guerraoui

Session I

A Model for Java with Wildcards . 2
Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst

On Validity of Program Transformations in the Java Memory Model . . . 27
Jaroslav Ševč́ık and David Aspinall

Safe Cross-Language Inheritance . 52
Kathryn E. Gray

Session II

Liquid Metal: Object-Oriented Programming Across the
Hardware/Software Boundary . 76

Shan Shan Huang, Amir Hormati, David F. Bacon, and
Rodric Rabbah

Kilim: Isolation-Typed Actors for Java: A Million Actors, Safe
Zero-Copy Communication . 104

Sriram Srinivasan and Alan Mycroft

A Uniform Transactional Execution Environment for Java 129
Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon,
Tatiana Shpeisman, and Suresh Jagannathan

Session III

Ptolemy: A Language with Quantified, Typed Events 155
Hridesh Rajan and Gary T. Leavens

Prototyping and Composing Aspect Languages: Using an Aspect
Interpreter Framework . 180

Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit

XII Table of Contents

Assessing the Impact of Aspects on Exception Flows: An Exploratory
Study . 207

Roberta Coelho, Awais Rashid, Alessandro Garcia, Fabiano Ferrari,
Nélio Cacho, Uirá Kulesza, Arndt von Staa, and Carlos Lucena

Session IV

UpgradeJ: Incremental Typechecking for Class Upgrades 235
Gavin Bierman, Matthew Parkinson, and James Noble

Integrating Nominal and Structural Subtyping . 260
Donna Malayeri and Jonathan Aldrich

Flow Analysis of Code Customizations . 285
Anders Hessellund and Peter Sestoft

Session V

Online Phase-Adaptive Data Layout Selection . 309
Chengliang Zhang and Martin Hirzel

MTM2: Scalable Memory Management for Multi-tasking Managed
Runtime Environments . 335

Sunil Soman, Chandra Krintz, and Laurent Daynès

Externalizing Java Server Concurrency with CAL . 362
Charles Zhang and Hans-Arno Jacobsen

Session VI

Regional Logic for Local Reasoning about Global Invariants 387
Anindya Banerjee, David A. Naumann, and Stan Rosenberg

A Unified Framework for Verification Techniques for Object
Invariants . 412

S. Drossopoulou, A. Francalanza, P. Müller, and A.J. Summers

Extensible Universes for Object-Oriented Data Models 438
Achim D. Brucker and Burkhart Wolff

Session VII

Programming with Live Distributed Objects . 463
Krzysztof Ostrowski, Ken Birman, Danny Dolev, and
Jong Hoon Ahnn

Bristlecone: A Language for Robust Software Systems 490
Brian Demsky and Alokika Dash

Table of Contents XIII

Session-Based Distributed Programming in Java . 516
Raymond Hu, Nobuko Yoshida, and Kohei Honda

Session VIII

ReCrash: Making Software Failures Reproducible by Preserving Object
States . 542

Shay Artzi, Sunghun Kim, and Michael D. Ernst

An Extensible State Machine Pattern for Interactive Applications 566
Brian Chin and Todd Millstein

Practical Object-Oriented Back-in-Time Debugging 592
Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz

Session IX

Inference of Reference Immutability . 616
Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst

Computing Stack Maps with Interfaces . 642
Frédéric Besson, Thomas Jensen, and Tiphaine Turpin

How Do Java Programs Use Inheritance? An Empirical Study of
Inheritance in Java Software . 667

Ewan Tempero, James Noble, and Hayden Melton

Author Index . 693

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Return of Transactions

Rachid Guerraoui

School of Computer and Communication Sciences (LPD), EPFL
rachid.guerraoui@epfl.ch

Abstract. Major chip manufacturers have recently shifted their focus from
speeding individual processors to multiplying them on the same chip and ship-
ping multicore architectures. Boosting the performance of programs will thus
necessarily go through parallelizing them. This is not trivial and the average
programmer will badly need abstractions for synchronizing concurrent accesses
to shared memory objects. The transaction abstraction looks promising for this
purpose and there is a lot of interest around its use in modern parallel program-
ming. This talk will investigate whether the "return" of the old transaction idea
brings any interesting research question, especially for the programming lan-
guage community.

A Model for Java with Wildcards

Nicholas Cameron1, Sophia Drossopoulou1, and Erik Ernst2,�

1 Imperial College London
{ncameron, scd}@doc.ic.ac.uk

2 University of Aarhus
eernst@daimi.au.dk

Abstract. Wildcards are a complex and subtle part of the Java type
system, present since version 5.0. Although there have been various for-
malisations and partial type soundness results concerning wildcards, to
the best of our knowledge, no system that includes all the key aspects
of Java wildcards has been proven type sound. This paper establishes
that Java wildcards are type sound. We describe a new formal model
based on explicit existential types whose pack and unpack operations
are handled implicitly, and prove it type sound. Moreover, we specify a
translation from a subset of Java to our formal model, and discuss how
several interesting aspects of the Java type system are handled.

1 Introduction

This paper establishes type soundness for Java wildcards, used in the Java
type system to reconcile parametric polymorphism (also known as generics)
and inclusion polymorphism [7] (subclassing). A parametric (or generic) type
in Java, e.g., class List<X> ..., can be instantiated to a parameterised type,
e.g., List<Integer>. Wildcards extend generics by allowing parameterised types
to have actual type arguments which denote unknown or partially known types,
such as List<?> where ? stands for an unknown actual type argument. With
traditional generics, different actual type arguments to the same parametric type
create unrelated parameterised types, but wildcards introduce variance, i.e., they
allow for subtype relationships among such types; for instance, List<Integer>
is a subtype of List<? extends Number>.

Wildcards have been part of the Java language since 2004, but type soundness
for Java with wildcards has been an open question until now. There are several
informal, semi-formal, and formal descriptions of Java wildcards [3,11,17,24] and
soundness proofs for partial systems [5,14]. However, a soundness proof for a type
system exhibiting all of the interesting features of Java wildcards has been elu-
sive. Showing type soundness for Java with wildcards is difficult for a number of
reasons: first, the Java wildcard syntax prioritises a concise notation for common

� Supported by the DRCTPS grant 95093428.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 2–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Model for Java with Wildcards 3

cases, but is not expressive enough to denote all the types which may arise during
type checking; second, modeling wildcards with traditional existential types is
not straightforward; and third, the inference of type parameters during a process
known as wildcard capture requires careful treatment.

We show type soundness for Java with wildcards using a new formal model,
TameFJ, which extends FGJ [13], which is a formalisation of Java generics.
We use explicit existential types (such as ∃X.List<X>) to model Java wildcard
types, but packing and unpacking of existential types is handled implicitly, in
the rules for typing and subtyping. The implicit unpacking of existential types
is used to model wildcard capture in Java. The use of an implicit approach (also
found in Wild FJ [17]) contrasts with our recent previous work [5], where explicit
packing and unpacking expressions were used. This approach created problems
with expressiveness and, a soundness proof for Wild FJ is still missing, due in
part to the complexity of creating existential types ‘on the fly’. In this paper we
provide a soundness proof without compromising expressiveness. In addition, we
define a translation to TameFJ from a subset of the Java language that includes
wildcards.

The main contribution of this paper is the new formal model and the sound-
ness result, achieved via several technical innovations. Additionally, the transla-
tion supports the claim that TameFJ is a faithful model of Java with wildcards.

In Sect. 2 we outline the background for Java wildcards and their formalisa-
tion. In Sect. 3 we define and discuss TameFJ and its type soundness proof, and
in Sect. 4 we present the translation from Java to TameFJ. Finally, in Sect. 5
we cover related work, and in Sect. 6 we discuss future work and conclude.

2 Background

In this section we give some background for the key concepts of this paper. We
deliberately keep this section rather brief; more details may be found in [5]. In
the examples here and elsewhere in the paper we make use of a class hierarchy
of shapes: Shape is a subclass of Object, Polygon and Circle are subclasses of
Shape, and Square is a subclass of Polygon.

2.1 Generics, Wildcards and Existential Types

Generics [3,11] add parametric polymorphism to Java. Classes and interfaces
may be generic, i.e., they may have formal type parameters. Parameterised types
are then constructed by applying generic types to actual type parameters. For
example, a list class could be defined as class List<X>..., and we may then
construct lists of strings and shapes using List<String> and List<Shape>,
or more complex types like List<List<Y>>, where Y could be a type variable
defined in the context. Similarly, methods may have formal type parameters
and receive actual type arguments at invocation; e.g., the method walk has one
formal type parameter, X, while walkSquares has none:

4 N. Cameron, S. Drossopoulou, and E. Ernst

<X> List<X> walk(Tree<X> x) {...}

List<Square> walkSquares(Tree<Square> y) {
return this.<Square>walk(y);

}

Wildcards. A wildcard type is a parameterised type where ? is used as an actual
type parameter, for example List<?>. Such a type can be thought of as a list
of some type, where the wildcard is hiding that type. Where multiple wildcards
are used, for example Pair<?, ?>, each wildcard hides a potentially different
type. Wildcards enjoy variant subtyping [14], so List<Shape> is a subtype of
List<?>. This is in contrast to generic types that are invariant with respect to
subtyping, so List<Circle> is not a subtype of List<Shape>. Wildcards may
be given upper or lower bounds using the extends and super keywords, re-
spectively. This restricts subtyping to be co- or contravariant. So List<Square>
is a subtype of List<? extends Polygon> and List<Shape> is a subtype of
List<? super Polygon>, but not vice versa.

Java wildcards have the property of wildcard capture, where a wildcard is
promoted to a fresh type variable. This occurs most visibly at method calls:
List<?> is not a subtype of List<X>, but the wildcard can be capture converted
to a fresh type variable which allows otherwise illegal method invocations. Con-
sider the following legal Java code (using the method walk declared above):

List<?> walkAny(Tree<?> y) { (example 1)
this.walk(y);

}

At the method invocation, the wildcard in the type of y is capture converted
to a fresh type variable, Z, and the method invocation can then be thought of
as this.<Z>walk(y). In Sect. 3.4 we show how this example is type checked in
TameFJ.

Wildcard capture may give rise to types during type checking that can not
be denoted using the Java syntax. This is a serious obstacle for a direct formali-
sation of Java wildcards using the Java syntax, because type soundness requires
typability of every step of the computation, and this may require the use of types
that cannot be denoted directly.

In the next example we show how the type system treats each wildcard as
hiding a potentially different type. The method invocation at 1 is type incorrect
because the method compare requires a Pair parameterised by a single type
variable twice. Pair<?, ?> can not be capture converted to this type because
the two wildcards may hide different types. The invocation of the make method
at 2 has a type which is expressible but not denotable. The type checker knows
that the wildcards hide the same type (even though this can not be denoted in
the surface syntax) and so capture conversion, and thus type checking, succeeds.

A Model for Java with Wildcards 5

<X>Pair<X, X> make(List<X> x) {} (example 2)
<X>Boolean compare(Pair<X, X> x) {}

void m()
{

Pair<?, ?> p;
List<?> b;

this.compare(p); //1, type incorrect
this.compare(this.make(b)); //2, OK

}

Again, we show how this example is type checked in Sect. 3.4. The example can
be easily understood (and type checked) by using existential types to denote the
types that are expressible but not denotable using Java syntax.

Existential Types. Existential types are a form of parametric polymorphism
whereby a type may be existentially quantified [6,7,10,20,21,22]. For example,
a function may be defined with type ∃T.T → T, that is, the function has type
T to T for some type, T. Existential types are a basis for data hiding and ab-
straction in type systems; an early practical use was in modelling abstract data
types [20]. In our formalisation we use existential types in a Java like setting,
and so are concerned with types of the form ∃X.List<X>. Values of existential
types are opaque packages; usually they are created using a pack (or close) ex-
pression and then have to be unpacked (or opened) using another expression
before they can be used; in our approach both packing and unpacking occur
implicitly.

2.2 Formalising Wildcards

The correspondence between wildcards and existential types goes back to the work
on VariantParametricTypes [14]. It has been integral to all formal work with wild-
cards since [24]. This correspondence is discussed in more depth in Sect. 4.

Wildcards are a strict extension of Java generics, and far more interesting to
describe formally. A number of features contribute to this, but foremost among
them is wildcard capture. Wildcard capture is roughly equivalent to unpacking
an existential type [17,24], but an explicit unpack expression appears to be very
hard to use to safely model wildcard capture [5]. Wildcards may have lower
bounds, which also introduces problems. Indeed, they had to be omitted from
our previous work [5] in order to show type soundness. Lower bounds can cause
problems by transitivity of subtyping; a näıve formalism would consider a type
variable’s lower bound to be a subtype of its upper bound, even if there is no
such relationship in the class hierarchy. This issue is addressed in Sect. 3.3.
Furthermore, when an existential type is created (which occurs in subtyping in
Java and TameFJ) we must somehow keep track of the witness type—the type
hidden by the wildcard—in order to recover it when the type is unpacked. In [5]

6 N. Cameron, S. Drossopoulou, and E. Ernst

this is done in the syntax of close expressions. However, in a system without
explicit packing of existential types it has proven very difficult to track the
witness types. Therefore, we resort to following the Java compiler (and [17])
and infer the hidden type parameters during execution and type checking. This
reliance on a simple kind of type inference can cause problems for the proof of
subject reduction, as described in [17], and it is one of the contributions of this
paper to handle it safely.

Wild FJ [17] is the first, and previously only, formalism that includes all the
interesting features of Java wildcards. Our formal model is, in many ways, a
development of Wild FJ. The syntax of Wild FJ is a strict subset of Java with
wildcards, requiring explicit type arguments to polymorphic method calls as in
our approach. However, Java types are converted to existential types ‘on the
fly’, and this conversion of types makes the typing, subtyping, well-formedness,
and auxiliary rules more complicated in Wild FJ. As a rough metric there are 10
auxiliary functions with 23 cases, nine subtyping, and 10 well-formedness rules in
Wild FJ, compared with seven auxiliary functions with 15 cases, eight subtyping
(11, counting subclassing), and eight well-formedness rules in our system. Type
soundness has never been proven for Wild FJ.

3 Type Soundness for Java Wildcards

We show type soundness for Java by developing a core calculus, TameFJ, which
models all the significant elements of type checking found in Java with wildcards.

e ::= x | e.f | e.<P>m(e) | new C<T>(e) expressions

Q ::= class C<X� T> � N {T f; M} class declarations
M ::= <X� T> T m(T x) {return e;} method declarations

v ::= new C<T>(v) values

N ::= C<T> | Object<> class types
R ::= N | X non-existential types
T, U ::= ∃Δ.N | ∃∅.X types
P ::= T | � type parameters

Δ ::= X→[Bl Bu] type environments
Γ ::= x:T variable environments
B ::= T | ⊥ bounds

x variables
C classes
X, Y type variables

Fig. 1. Syntax of TameFJ

A Model for Java with Wildcards 7

TameFJ is not a strict subset of the Java language. However, a Java program
written in a subset of Java (corresponding to the syntax of Wild FJ) can be
easily translated to a TameFJ program, as we discuss in Sect. 4. Part of that
translation is to perform Java’s inference of type parameters for method calls
(except where this involves wildcards). As is common [17], we regard this as a
separate pre-processing step and do not model this in TameFJ.

TameFJ is an extension of FGJ [13]. The major extension to FGJ is the
addition of existential types, used to model wildcard types. Typing, subtyping
and reduction rules must be extended to accommodate these new types, and to
handle wildcard capture.

We use existential types in the surface syntax and, in contrast to Wild FJ,
do not create them during type checking; this simplifies the formal system and
our proofs significantly. In particular, capture conversion is dealt with more
easily in our system because fresh type variables do not have to be supplied. We
also ‘pack’ existential types more declaratively, by using subtyping, rather than
explicitly constructing existential types. This means that we avoid obtaining the
awkward1 type ∃X.X, found both in [17] and our previous work2 [5].

TameFJ has none of the limitations of our previous approach [5]; we allow
lower bounds, have more flexible type environments, allow quantification of more
than one type variable in an existential type, and have more flexible subtyping.
Thus, together with the absence of open and close expressions, TameFJ is much
closer to the Java programming language.

3.1 Notation and Syntax

TameFJ is a calculus in the FJ [13] style. We use vector notation for sequences;
for example, x stands for a sequence of ‘x’s. We use ∅ to denote the empty
sequence. We use a comma to concatenate two sequences. We implicitly assume
that concatenation of two sequences of mappings only succeeds if their domains
are disjoint. We use � as a shorthand for extends and � for super. The function
fv() returns the free variables of a type or expression, and dom() returns the
domain of a mapping. We assume that all type variables, variables, and fields
are named uniquely.

The syntax for TameFJ is given in Fig. 1. The syntax for expressions and
class and method declarations is very similar to Java, except that we allow � as
a type parameter in method invocations. In TameFJ (and as opposed to Java) all
actual type parameters to a method invocation must be given. However, where a
1 There is no corresponding type in Java, so it is unclear how such a type should

behave.
2 Such a type is required in earlier work because the construction ∃Δ.T appears in

the conclusion of type rules, where T is a previously derived type. Since T may
be a type variable, one may construct ∃X.X; this can not happen in our calculus.
Under a standard interpretation of existential types, types of the form ∃X� T.X have
no observably different behaviour from T because Java subtyping already involves
subclass polymorphism. Rigorous justification of this fact is outside the scope of this
paper, but is part of planned future work.

8 N. Cameron, S. Drossopoulou, and E. Ernst

type parameter is existentially quantified (corresponding to a wildcard in Java),
we may use � to mark that the parameter should be inferred. Such types can
not be named explicitly because they can not be named outside of the scope of
their type. The marker � is not a replacement for ? in Java; � can not be used
as a parameter in TameFJ types, and ? can not be used as a type parameter to
method calls in Java. Note that we treat this as a regular variable.

The syntax of types is that of FGJ [13] extended with existential types. Non-
existential types consist of class types (e.g., C<D<>>) and type variables, X. Types
(T) are existential types, that is a non-existential type (R) quantified by an
environment (Δ, i.e., a sequence of formal type variables and their bounds),
for example, ∃X → [∃∅.D<> ∃∅.Object<>].C<X>. Type variables may only be
quantified by the empty environment, e.g., ∃∅.X. In the text and examples, we
use the shorthands C for C<>, ∃X.C<X> for ∃X→[⊥ Object<>].C<X>, and R for
∃∅.R.

Existential types in TameFJ correspond to types parameterised by wildcards
in Java. Using T as an upper or lower bound on a formal type variable corre-
sponds to using extends T or super T, respectively, to bound a wildcard. This
correspondence is discussed further in Sect. 4. The bottom type, ⊥, is used only
as a lower bound and is used to model the situation in Java where a lower bound
is omitted.

Substitution in TameFJ is defined in the usual way with a slight modification.
For the sake of consistency formal type variables are quantified by the empty set
when used as a type in a program (∃∅.X). Therefore, we define substitution on
such types to replace the whole type, which is [T/X]∃∅.X = T.

A variable environment, Γ , maps variables to types. A type environment, Δ,
maps type variables to their bounds. Where the distinction is clear from the
context, we use “environment” to refer to either sort of environment.

3.2 Subtyping

The subclassing relation between non-existential types (��:), reflects the class
hierarchy. Subclassing of type variables is restricted to reflexivity because they
have no place in the subclass hierarchy. Subtyping (<:) extends subclassing by
adding subtyping between existential types and between type variables and their
bounds. Extended subclassing (�:) is an intermediate relation that expresses
the class hierarchy (with the addition of a bottom type) and the behaviour of
wildcards and type variables as type parameters; it is used mainly to simplify
the proofs of soundness. All three relations are defined in Fig. 2.

The rule XS-Env, adapted from Wild FJ [17], gives all the interesting vari-
ance properties for wildcard types. It gives a subtype relationship between two
existentially quantified class types, where the type parameters of the subtype
are ‘more precise’ than those of the supertype. The following relationships are
given by this rule, given the class hierarchy described in Sect. 2 and using the
shorthands described in Sect. 3.1:

∅ � Shape �: Shape
∅ � List<Shape> �: ∃X.List<X>

A Model for Java with Wildcards 9

Subclasses: � R ��: R

class C<X� Tu> � N {...}
� C<T> ��: [T/X]N

(SC-Sub-Class)

� R ��: R

(SC-Reflex)

� R ��: R′′ � R′′ ��: R′

� R ��: R′

(SC-Trans)

Extended subclasses: Δ � B �: B

class C<X� Tu> � N {...}
Δ � ∃Δ′.C<T> �: ∃Δ′.[T/X]N

(XS-Sub-Class)

Δ �⊥�: B

(XS-Bottom)

Δ � B �: B

(XS-Reflex)

Δ � B �: B′′

Δ � B′′ �: B′

Δ � B �: B′

(XS-Trans)

dom(Δ′) ∩ fv(∃X→[Bl Bu].N) = ∅ fv(T) ⊆ dom(Δ, Δ′)

Δ, Δ′ � [T/X]Bl <: T Δ, Δ′ � T <: [T/X]Bu

Δ � ∃Δ′.[T/X]N �: ∃X→[Bl Bu].N

(XS-Env)

Subtypes: Δ � B <: B

Δ � B �: B′

Δ � B <: B′

(S-SC)

Δ � B <: B′′ Δ � B′′ <: B′

Δ � B <: B′

(S-Trans)

Δ(X) = [Bl Bu]

Δ � ∃∅.X <: Bu

Δ � Bl <: ∃∅.X
(S-Bound)

Fig. 2. TameFJ subclasses, extended subclasses, and subtypes

∅ � List<Shape> �: ∃X→[Circle Object].List<X>
∅ � ∃X→[Circle Shape].List<X>�: ∃X→[Circle Object].List<X>
∅ � ∃X.Pair<X, X> �: ∃Y,Z.Pair<Y, Z>

That type parameters are ‘more precise’ is expressed in terms of a substitution,
[T/X], where X are some of the parameters of the supertype and T are the
corresponding parameters in the subtype. The subtype checks in the premises
of XS-Env ensure that T are ‘more precise’ than X; that is, that T are within
the bounds of X. The first premise ensures that free variables in the supertype
can not be captured in the subtype, thus forbidding erroneous subtypes such
as Δ � ∃X.C<X> �: C<X>. The second premise ensures that variables are not
introduced to the subtype which are not bound either in Δ or Δ′. This is a
limited form of well-formedness constraint on the subtype, and is only used in
the details of the proof of soundness.

Most of the type rules and lemmas are expressed in terms of subtyping, how-
ever, the standard object-oriented features of the language (such as field and
method lookup) are defined around subclassing. We therefore need lemmas that
link subtyping with subclassing. This is done in two stages: lemma 17 links

10 N. Cameron, S. Drossopoulou, and E. Ernst

subtyping to extended subclassing, and lemma 35 links extended subclassing to
subclassing.

Lemma 17 (uBound refines subtyping). If Δ � T <: T′ and � Δ ok

then Δ � uBoundΔ(T) �: uBoundΔ(T′).

This lemma states that if two types are subtypes then their upper bounds are
extended subclasses. The uBound function (defined in Fig. 7) returns a non-
variable type by recursively finding the upper bound of a type until a non-
variable type is reached. The interesting cases in the proof are from the S-Bound

rule; where T = ∃∅.X and T′ = Bu, then by the definition of uBound, we have
that uBound(∃∅.X) = uBound(Bu), and are done by reflexivity. The other S-

Bound sub-case is where T = Bl and T′ = ∃∅.X, here we use Δ � uBound(Bl) �:
uBound(Bu) from F-Env and uBound(∃∅.X) = uBound(Bu), again from the
definition of uBound. A corollary to this lemma is that any two non-variable
types, which are subtypes, are also subclasses.

Lemma 35 (Extended subclassing gives subclassing). If Δ �
∃Δ′.R′ �: ∃X→[Bl Bu].R and Δ � ok then there exists T where �
R′ ��: [T/X]R and Δ, Δ′ � T <: [T/X]Bu and Δ, Δ′ � [T/X]Bl <: T and
fv(T) ⊆ dom(Δ, Δ′).

This lemma states that for any types in an extended subclass relationship, a
substitution can be found where there is a subclass relationship between the

Well-formed types: Δ � B ok, Δ � P ok, Δ � R ok

X ∈ Δ

Δ � X ok

(F-Var)

Δ �⊥ ok

(F-Bottom)

Δ � Object<> ok

(F-Object)

Δ � � ok

(F-Star)

class C<X� Tu> � N {...}
Δ � T ok Δ � T <: [T/X]Tu

Δ � C<T> ok

(F-Class)

Δ � Δ′
ok

Δ, Δ′ � R ok

Δ � ∃Δ′.R ok

(F-Exist)

Well-formed type environments: Δ � Δ ok

Δ � ∅ ok

(F-Env-Empty)

Δ, X→[Bl Bu], Δ
′ � Bl ok Δ, X→[Bl Bu], Δ

′ � Bu ok

Δ � uBoundΔ(Bl) �: uBoundΔ(Bu)
Δ � Bl <: Bu Δ, X→[Bl Bu] � Δ′

ok

Δ � X→[Bl Bu], Δ
′
ok

(F-Env)

Fig. 3. TameFJ well-formed types and type environments

A Model for Java with Wildcards 11

subtype and the substituted supertype. The difference between subclassing and
extended subclassing is, essentially, the XS-Env rule. This rule finds an extended
subclass of an existential type by substituting away its existential type variables.
This substitution corresponds to the one in the conclusion of the lemma.

3.3 Well-Formedness

Rules for judging well-formed types and type environments are given in Fig. 3.
The rules for well-formed type environments are the most interesting. There are
two motivating issues: we must not allow type variables which have upper and
lower bounds that are unrelated in the class hierarchy; and we must restrict
forward references.

The first issue can cause a problem where an environment could judge a
subtype relation that does not reflect the class hierarchy. For example, an envi-
ronment containing Z→[Fish Plant] could judge (by using rule S-Bound and
transitivity) that Fish is a subtype of Plant, which is presumably incorrect.
We therefore check that the bounds of a type variable are related by subtyping
under an environment without that type variable. We also require the stronger
subclass relationship to hold for the upper bounds of the type variable’s imme-
diate bounds. This ensures that subtype relationships judged by a well-formed
environment respect the class hierarchy. We need this property to prove lemma
17, described in Sect. 3.2.

Method typing: Δ � M ok in C

Δ′ = Y→[⊥ Tu] Δ � Δ′
ok Δ, Δ′ � T, T ok

class C<X...> � N {...}
Δ, Δ′; x:T, this:∃∅.C<X> � e : T | ∅

override(m, N, <Y� Tu>T→ T)

Δ � <Y� Tu>T m(T x) {return e} ok in C

(T-Method)

mType(m, N) = <X� U>T→ T

override(m, N, <X� U>T→ T)

(T-Override)

mType(m, N) undefined

override(m, N, <X� U>T→ T)

(T-OverrideUndef)

Class typing: � Q ok

Δ = X→[⊥ Tu] ∅ � Δ ok Δ � N, T ok Δ � M ok in C

� class C<X� Tu> � N {T f; M} ok

(T-Class)

Fig. 4. TameFJ class and method typing rules

12 N. Cameron, S. Drossopoulou, and E. Ernst

Forward references are only allowed to occur as parameters of the bounding
type. In the well-formedness rule, this is addressed by allowing forward references
when checking that the bounds are well-formed types, but not when checking the
subtype and subclass relationships of the bounds. This reflects Java where (in a
class or method declaration) <X� Y, Y� Object> is illegal, due to the forward
reference in the bound of X; however, <X� List<Y>, Y� Object> is legal.

3.4 Typing

Method and class type checking judgements are given in Fig. 4 and are mostly
straightforward. The only interesting detail is the correct construction of type
environments for checking well-formedness of types and type environments. The
override relation allows method overriding, but does not allow overloading.

Expression typing: Δ; Γ � e : T |Δ

Δ; Γ � x : Γ (x) | ∅
(T-Var)

Δ � C<T> ok

fields(C) = f fType(f, C<T>) =U

Δ; Γ � e : U | ∅
Δ; Γ � new C<T>(e) : ∃∅.C<T> | ∅

(T-New)

Δ; Γ � e : ∃Δ′.N | ∅
fType(f, N) = T

Δ; Γ � e.f : T |Δ′

(T-Field)

Δ; Γ � e : U |Δ′

Δ, Δ′ � U <: T
Δ � Δ′

ok Δ � T ok

Δ; Γ � e : T | ∅
(T-Subs)

Δ; Γ � e : ∃Δ′.N | ∅ mType(m, N) = <Y� B>U→ U

Δ � P ok Δ; Γ � e : ∃Δ.R | ∅
match(sift(R, U, Y), P, Y, T)

Δ, Δ′, Δ � T <: [T/Y]B Δ, Δ′, Δ � ∃∅.R <: [T/Y]U

Δ; Γ � e.<P>m(e) : [T/Y]U |Δ′, Δ

(T-Invk)

Fig. 5. TameFJ expression typing rules

The typing rules are given in Fig. 5. Auxiliary functions used in typing are
given in Figs. 6 and 7.

The type checking judgement has the form Δ; Γ � e : T | Δ′, and should be
read as

expression e has type T under the environments Δ and Γ , guarded by
environment Δ′ .

A Model for Java with Wildcards 13

Δ′ contains variables that have been unpacked from an existential type during
type checking. These variables are used with Δ to judge some premises of a rule.
Any free variables in T are bound in either Δ or Δ′.

T-Subs is an extended subsumption rule; when Δ′ is empty it allows an
expression to be typed with a supertype of the expression’s type in the usual way.
The T-Subs rule can also be used to ‘remove’ the guarding environment from
the judgement. Type checking of a TameFJ expression is complete when a type is
found using an empty guarding environment (non-empty guarding environments
may only occur at intermediate stages in the derivation tree). This ensures that
no bound type variables escape the scope in which they are unpacked. The scope
covers the conclusions, some premises, and the derivations of these premises in
the type rule in which the variables are unbound.

Auxiliary Functions: uBoundΔ(B) and match(R, U, P, Y, T) and sift(R, U, Y)

uBoundΔ(B) =
uBoundΔ(Bu), if B = ∃∅.X, where Δ(X) = [Bl Bu]
B, otherwise

∀j where Pj = � : Yj ∈ fv(R′) ∀i where Pi �= � : Ti = Pi

� R ��: [T/Y,T′/X]R′

dom(Δ) = X fv(T, T′) ∩ Y, X = ∅
match(R, ∃Δ.R′, P, Y, T)

X ∈ Y

sift((R, R), (∃∅.X, U), Y) = sift(R, U, Y)

X �∈ Y sift(R, U, Y) = (R′, U′)

sift((R, R), (∃∅.X, U), Y) = ((R, R′), (∃∅.X, U′))

sift(∅, ∅, Y) = (∅, ∅)
sift(R, U, Y) = (R′, U′)

sift((R, R), (∃Δ.N, U), Y) = (R, R′, ∃Δ.N, U′)

Fig. 6. Auxiliary functions for TameFJ

Typing of variables and ‘new’ expressions is done in the usual way. The lookup
function fields returns a sequence of the field names in a class, and fType takes
a field and a class type and returns the field’s type.

The type checking of field access and method invocation expressions follow
similar patterns: sub-expressions are type checked and their types are unpacked,
then some work is done using these unpacked types, and a result type is found.
The rule T-Subs may then be used to find a final result type that does not
require a guarding environment.

14 N. Cameron, S. Drossopoulou, and E. Ernst

Lookup Functions

fields(Object) = ∅

class C<X� Tu> � D<...> {U f; M}
fields(D) = g

fields(C) = g, f

class C<X� Tu> � N {U f; M} f �∈ f

fType(f, C<T>) = fType(f, [T/X]N)

class C<X� Tu> � N {U f; M}
fType(fi, C<T>) = [T/X]Ui

class C<X� Tu> � N {U f; M} m �∈ M

mBody(m, C<T>) = mBody(m, [T/X]N)

class C<X� Tu> � N {U′ f; M}
<Y� T′u> U m(U x) {return e0;} ∈ M

mBody(m, C<T>) = (x; [T/X]e0)

class C<X� Tu> � N {U f; M} m �∈ M

mType(m, C<T>) = mType(m, [T/X]N)

class C<X� Tu> � N {U′ f; M}
<Y� T′u> U m(U x) {return e0;} ∈ M

mType(m, C<T>) = [T/X](<Y� T′u>U→ U)

Fig. 7. Method and field lookup functions for TameFJ

In the following paragraphs we describe unpacking and packing, followed by
descriptions of type checking using T-Field and T-Invk, accompanied with
examples.

Unpacking an existential type (∃Δ.R) entails separating the environment (Δ)
from the quantified type (R). Δ can be used to judge premises of a rule and must
be added to the guarding environment in the rule’s conclusion. R can be used
without quantification in the rule; bound type variables in R will now be free,
we must take care that these do not escape the scope of the type rule.

If the result of type checking an expression contains escaping type variables
(indicated by a non-empty guarding environment), then we must find a super-
type (using T-Subs) in which there are no free variables, and use this as the
expression’s type. In the case that an escaping type variable occurs as a type
parameter (e.g., X in C<X>), then the type may be packed to an existential type
(e.g., ∃X.C<X>) using the subtyping rule XS-Env. In the case that the type vari-
able is the whole type, i.e., ∃∅.X, then the upper bound of X can be used as the
result type by using S-Bound.

Field Access. In T-Field, the fType function applied to the unpacked type
(N) of the receiver gives the type of the field (T). Because T may contain type
variables bound in the environment Δ′, the judgement must be guarded by Δ′.

Example — Field Access. The following example of the derivation of a type
for a field access expression demonstrates the sequence of unpacking, finding the
field type, and finding a supertype that does not contain free variables. In the

A Model for Java with Wildcards 15

example, the type labelled 1 is unpacked to 2. The type labelled 3 would escape
its scope, and so its supertype (4) must be used as the result of type checking.
We assume that the TreeNode<Y> class declaration has a field datum with type
Y and that Γ = x:∃X→[⊥ Shape].TreeNode<X>.

∅; Γ � x : ∃X→[⊥ Shape].TreeNode<X>1 | ∅
fType(datum, TreeNode<X>2) = X3

∅; Γ � x.datum : X3 | X→[⊥ Shape]2

(T-Field)

∅, X→[⊥ Shape] � X3 <: Shape4

∅ � X→[⊥ Shape] ok

∅ � Shape4
ok

∅; Γ � x.datum : Shape4 | ∅
(T-Subs)

�

Method Invocation. In T-Invk, function mType applied to the unpacked
type (N) of the receiver gives the method’s signature, <Y� B>U→U. We use the
unpacked types (R) of the actual parameters and the match function to infer
any ‘missing’ (actual) type parameters (denoted by � in our syntax, following
Wild FJ). The (possibly inferred) actual type parameters are substituted for
formal ([T/Y]) in the method’s type signature. After substitution, the actual
type parameters (T) must be within the formal bounds (B), and the types of the
actual parameters must be subtypes of the types of the formal parameters (U).
These checks are performed under the type environment Δ, Δ′, Δ. Similarly to
T-Field, we must guard the conclusion of the type rule with the environments
extracted by unpacking (Δ′, Δ).

The substitution [T/Y] is determined using the types of actual (R) and formal
parameters (U). These types are filtered using the sift function before being
passed to match. This ensures that where the type of a formal parameter is one
of the formal type parameters (Ui ∈ Y), the formals and actuals at this position
are not used for inference. Hence, we only infer the value of a type variable based
on its usage as a type parameter in the formal type of a value argument.

Type parameter inference is done using the match relation (Fig. 6). All formal
type parameters (Y) are substituted by types T. These types are either given
explicitly, or are inferred if left unspecified (i.e., marked with �). The first premise
of match ensures that any unspecified type parameter can be inferred, i.e., it
appears as a type parameter in a type of at least one of the method’s formal value
parameters. The second premise ensures that each specified type parameter is
used in the returned sequence. The remaining premises find a substitution that
allows subclassing between the formal and actual parameter types. Part of this
substitution will be the substitution of actual type parameters for formals, and
these actual type parameters are T. The remainder (T′) account for existentially
quantified type variables in the formal parameter types. These are forgotten,
since in T-Invk we use full subtyping which allows us to use the XS-Env rule
to fulfil the same role.

Examples — Method Invocation. Example 1 from Sect. 2.1 demonstrates
method invocation with a simple case of wildcard capture. The existential type

16 N. Cameron, S. Drossopoulou, and E. Ernst

∃Z.Tree<Z> is unpacked to Tree<Z>, and Z is inferred and substituted for X.
The return type (List<Z>) is then packed to the existential type ∃Z.List<Z>.
We show how the example can be type checked using the T-Invk and T-Subs

rules (the bounds of type variables are omitted for clarity); the type labelled
1 is unpacked to 2 and the type labelled 3 is packed to 4. We omit from the
derivation tree the call to sift for clarity, note that sift(Tree<Z>2, Tree<X>, X) =
(Tree<Z>2, Tree<X>)

∅; this:C � this : C | ∅
mType(walk, C) = <X> Tree<X>→List<X>

∅; this:C � y : ∃Z.Tree<Z>1 | ∅
match(Tree<Z>2, Tree<X>, �, X, Z

2
)

Z2 � Tree<Z>2 <: Tree<Z>

∅; this:C � this.<�>walk(y) : List<Z>3 | Z2

(T-Invk)

Z2 � List<Z>3 <: ∃Z.List<Z>4

∅ � Z2
ok

∅ � ∃Z.List<Z>4
ok

∅; this:C � this.<�>walk(y) : ∃Z.List<Z>4 | ∅
(T-Subs) �

Example 2 from Sect. 2.1 expresses types which can not be denoted using Java
syntax. Using the syntax of existential types, it becomes clear why type checking
fails at 1. Namely, for the expression at 1 to be type correct, a T would need to
be found so that match(Pair<U, V>, Pair<X, X>, �, X, T). From the definition of
match we see that T would have to satisfy � Pair<U, V> ��: [T/X]Pair<X, X>;
no such T exists, and hence matching, and thus type checking, fails.

<X>Pair<X, X> make(List<X> x) {}
<X>void compare(Pair<X, X> x) {}

void m()
{

∃U,V.Pair<U, V> p;
∃Z.List<Z> b;

this.<�>compare(p); //1, type incorrect
this.<�>compare(this.<�>make(b)); //2, OK

}

�

Type Inference. As is usual with formal type systems, we consider type in-
ference to be performed in a separate phase before type checking. Due to the
presence of existential types, some inferred type parameters can not be named
and are marked with �. These parameters must be inferred during type checking.
In T-Invk we only allow the inference of types where they are used as parame-
ters to an actual parameter type (e.g., X in <X>void m(Tree<X> x)...). This is
enforced by the sift function (defined in Fig. 6), which excludes pairs of actual
and formal parameter types where the formal parameter type is a formal type
variable of the method.

A Model for Java with Wildcards 17

Computation: e � e

fields(C) = f

new C<T>(v).fi � vi

(R-Field)

v = new N(v′) v = new N(v′′)
mBody(m, N) = (x; e0) mType(m, N) = <Y� B>U → U

match(sift(N, U, Y), P, Y, T)

v.<P>m(v) � [v/x, v/this, T/Y]e0

(R-Invk)

Congruence: e � e

e � e′

e.f � e′.f

(RC-Field)

e � e′

e.<P>m(e) � e′.<P>m(e)

(RC-Inv-Recv)

ei � e′i
e.<P>m(..ei..) � e.<P>m(..e′i..)

(RC-Inv-Arg)

ei � e′i
new C<T>(..ei..) � new C<T>(..e′i..)

(RC-New-Arg)

Fig. 8. TameFJ reduction rules

3.5 Operational Semantics

The operational semantics of TameFJ are defined in Fig. 8. Most rules are simple
and similar to those in FGJ. The interesting rule is R-Invk, which requires
actual type parameters which do not include �, these are found using the match
relation. Avoiding the substitution of � for a formal type variable in the method
body prevents the creation of invalid expressions, such as new C<�>(). Since we
are dealing only with values when using this rule, there will be no existential
types and so all type parameters could be specified. However, there is no safe
way to substitute the appropriate types for �s during execution because each �
may mark a different type. In this rule, mBody (defined in Fig. 6) is used to
lookup the body (an expression) and the formal parameters of the method.

3.6 Type Soundness

We show type soundness for TameFJ by proving progress and subject reduction
theorems [27], statedbelow.We prove thesewith empty environments since, at run-
time, variables and type variables should not appear in expressions. A non-empty
guarding environment is required in the statement of the progress theorem,because
we use structural induction over the type rules; if this environmentwere empty, the
inductive hypothesis could not be applied in the case of T-Subs.

18 N. Cameron, S. Drossopoulou, and E. Ernst

In the remainder of this section, we summarise some selected lemmas; we list
most other lemmas in the appendix. We give full proofs in the extended version
of this paper, available from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron ecoop08 full.pdf

Theorem 1 (Progress). For any Δ, e, T, if ∅; ∅ � e : T | Δ then either
e � e′ or there exists a v such that e = v.

Theorem 2 (Subject Reduction). For any e, e′, T, if ∅; ∅ � e : T | ∅
and e � e′ then ∅; ∅ � e′ : T | ∅.

To prove these two theorems, 40 supporting lemmas are required. These estab-
lish ‘foundational’ properties of the system, properties of substitution, properties
of subtyping and subclassing (discussed in Sect. 3.2), which functions and re-
lations always give well-formed types, and properties specific to each case of
subject reduction and progress. Two of the most interesting lemmas concern the
match relation:

Lemma 36 (Subclassing preserves matching (receiver)). If Δ �
∃Δ1.N1 �: ∃Δ2.N2 and mType(m, N2) = <Y2 →[B2l B2u]>U2→U2 and
mType(m, N1) = <Y1 →[B1l B1u]>U1→U1 and match(sift(R, U2, Y2), P, Y2, T)
and ∅ � Δ ok and Δ, Δ′ � T ok then match(sift(R, U1, Y1), P, Y1, T).

Lemma 37 (Subclassing preserves matching (arguments)). If Δ �
∃Δ1.R1 �: ∃Δ2.R2 and match(sift(R2, U, Y), P, Y, T) and fv(U) ∩ Z = ∅
and Δ2 = Z→[Bl Bu] and ∅ � Δ ok and Δ � ∃Δ1.R1 ok and Δ � P ok

then there exists U′ where match(sift(R1, U, Y), P, Y, [U′/Z]T) and Δ, Δ1 �
U′ <: [U′/Z]Bu and Δ, Δ1 � [U′/Z]Bl <: U′ and � R1 ��: [U′/Z]R2 and
fv(U′) ⊆ Δ, Δ1.

Lemma 36 states that if match succeeds with the formal parameter types of a
superclass, then match will succeed where the formal parameter types are taken
from the (extended) subclass (and the other arguments remain unchanged). Since
overriding methods must have the same parameter types and formal type vari-
ables as the methods they override, the proof should be straightforward. How-
ever, it is complicated by extended subclassing of existential types; for example,
if a method m is declared to have a parameter with type Z in the class declaration
of class C<Z� Object>, then the type of m’s formal parameter will have type X
when looked up in ∃X.C<X> and A in C<A>. X may not be a subtype of A, even if
C<A> is an extended subclass of ∃X.C<X>. We show in the proof that such issues
do not affect T, because these types are found only from the actual parameter
types of the method call.

Lemma 37 performs a similar duty, but for the types of the actual parameters.
The conclusion defines a ‘valid’ substitution which is given by lemma 35 (see
Sect. 3.2). The types T in match are found from the actual parameter types and
so, in contrast to lemma 36, these types are affected by the substitution in the
conclusion of the lemma.

A Model for Java with Wildcards 19

Lemma 31 (Inversion Lemma (object creation))
If Δ; Γ � new C<T>(e) : T | Δ′ then Δ′ = ∅ and Δ � C<T> ok and
fields(C) = f and fType(f, C<T>) =U and Δ; Γ � e : U | ∅ and Δ �
∃∅.C<T> <: T.

Lemma 33 (Inversion Lemma (method invocation)). If Δ; Γ �
e.<P>m(e) : T | Δ′ and ∅ � Δ ok and Δ � Δ′

ok and ∀x ∈ dom(Γ) :
Δ � Γ (x) ok then there exists Δn where Δ′, Δn = Δ′′, Δ and Δ �
Δ′, Δn ok and Δ; Γ � e : ∃Δ′′.N | ∅ and mType(m, N) = <Y� B>U →
U and Δ; Γ � e : ∃Δ.R | ∅ and match(sift(R, U, Y), P, Y, T) and Δ �
P ok and Δ, Δ′′, Δ � T <: [T/Y]B and Δ, Δ′′, Δ � ∃∅.R <: [T/Y]U and
Δ, Δ′′, Δn � [T/Y]U <: T.

The formulation of the inversion lemmas is made more interesting by the
presence of the guarding environment (Δ′) in the typing judgement (Δ; Γ � e :
T | Δ′). In the case of object creation (lemma 31) we show that the guarding
environment must be empty. Intuitively, this is because no existential types may
be unpacked in the application of T-New, and T-Subs can only shrink the
guarding environment, but not add to it. This property of object creation is
used heavily in the proof of subject reduction since values in TameFJ are object
creation expressions.

Method invocation is more complex; the guarding environment of T-Invk

is formed from the environments unpacked from the types of the receiver and
arguments, but these may be re-packed by applying T-Subs. The conclusion
of lemma 33 is that there exists some environment, Δn, which, when concate-
nated with Δ′ will be equal to the unpacked environments from the receiver and
arguments.

Alpha Conversion and Barendregt’s Variable Convention. As well as the
standard use of alpha conversion to rename bound variables in existential types,
we also need to be able to rename type variables in the guarding environment,
as in the following lemma:

Lemma 7 (Alpha renaming of guarding environments)
If Δ; Γ � e : T | X→[Bl Bu] and Y are fresh, then
Δ; Γ � e : [Y/X]T | Y→[[Y/X]Bl [Y/X]Bu].

Lemma 7 guarantees that we can rename variables in Δ′ and T and preserve
typing. Thus, the guarding environment can be thought of as binding its type
variables; the scope of the binding is T, the result of type checking. Note that
we do not need to rename types in e. This is because any type variables in the
domain of the guarding environment (X) come from unpacked existential types,
and so can not be explicitly named in the expression syntax; instead they would
be marked with �.

In order to reduce the number of places where we need to apply alpha con-
version in our proofs, we make use of Barendregt’s variable convention [2]; i.e.,

20 N. Cameron, S. Drossopoulou, and E. Ernst

we assume that bound and free variables are distinct. For example, consider the
proof of lemma 2:

Lemma 2 (Subsititution preserves matching). If match(R, ∃Δ.R′, P, Y, U)
and (X∪fv(T))∩Y) = ∅ then match([T/X]R, [T/X]∃Δ.R′, [T/X]P, Y, [T/X]U).

We reach a point in the proofs where we have shown that
� [T/X]R ��: [T/X][U/Y,U′/Z]R′, dom(Δ) = Z, and (X ∪ fv(T)) ∩ Y) = ∅; we

wish to show � [T/X]R ��: [[T/X]U/Y,[T/X]U′/Z][T/X]R′ and for this we re-
quire that Z are not free in T. We would have used alpha conversion on ∃Δ.R′ to
accomplish this; however, this would have required extensive renaming through-
out the proof. Instead we use the variable convention and assume that Z are
fresh at the point of becoming free and we can proceed with an elegant proof.

The use of Barendregt’s variable convention is not always safe [25]. A sufficient
condition is that all rules are equivariant and that any binders in a rule do not
appear free in that rule’s conclusion [25]. Since TameFJ satisfies these conditions,
using Barendregt’s convention is safe.

4 Translating Java to TameFJ

In this section we describe a possible translation from the Java subset which
accommodates wildcards into TameFJ.

As said in the introduction, we work in a setting where we expect the first
phase to have happened. Here we describe the second phase, and define it in Fig.
10. In Fig. 9 we give the syntax of the relevant subset of Java types, which are
also those of Wild FJ.

Ns ::= C<Ts> Java class types
Ts ::= C<Ps> | X Java types
Ps ::= Ts | ? | ? � Ts | ? � Ts Java type parameters

Fig. 9. Syntax of Java types

The second phase is defined in terms of the functions T , P , and M, where
T translates Java types to TameFJ types; P translates a type parameter to
an environment and a TameFJ type; and M gives the minimal types out of
two. The function T maps each occurrence of a wildcard, ?, in a Java type
onto an existentially quantified type variable. To do this, it uses the function
P , which maps any Java type onto an environment and a TameFJ type. T uses
the collected environments to create an existential type, using the M function
to find the appropriate upper bounds, and replaces each type argument by its
image through P . Note that, in order to reduce the notational complexity, the

A Model for Java with Wildcards 21

translation of non-wildcard type parameters introduces a type variable which is
never used; this is harmless.

We now highlight some of the finer points of the translation in terms of
examples.

class C<X� Ts>... PΔ(Ps) = (Y→ [Us U′s], T)

TΔ(C<Ps>) = ∃Y→ [TΔ(Us) MΔ(TΔ(U′s), [Y/X]TΔ(Ts))] .C<T>

TΔ(X) = ∃∅.X
Δ � T <: T′

MΔ(T, T′) = T = MΔ(T′, T)
Δ � T �<: T′ Δ � T′ �<: T

MΔ(T′, T) = T

X is fresh

PΔ(?) = (X→ [⊥ ∃∅.Object], X)
PΔ(? � Ts) = (X→ [⊥ TΔ(Ts)], X)

PΔ(? � Ts) = (X→ [TΔ(Ts) ∃∅.Object], X)
PΔ(Ts) = (X→ [⊥ ∃∅.Object], TΔ(Ts))

Fig. 10. Translation from Java types to TameFJ types

A wildcard that occurs as a type parameter is replaced by a quantified
type variable. Bounds on the wildcard become bounds on the quantifying type
variable. Where bounds are not given we use ∃∅.Object as the default up-
per bound and ⊥ as the default lower bound. For instance, C<?� Shape> is
translated to ∃X→[⊥ ∃∅.Shape].C<X>, and the translation of C<?� Shape>
amounts to ∃X→[∃∅.Shape ∃∅.Object].C<X>. We must distinguish different
occurrences of the wildcard symbol by translating them to distinct type vari-
ables. Hence, Pair<?, ?> translates to ∃X,Y.Pair<X, Y>. Finally, nested wild-
cards are quantified at the immediately enclosing level, so C<C<C<?>>> translates
to ∃∅.C<∃∅.C<∃X.C<X>>>.

A subtle aspect of the translation is that wildcards can inherit their upper
bound from the upper bound of the corresponding formal type variable in the
class declaration. Since we want to avoid doing this in the calculus, we must take
care of this in the translation, which is achieved as in the following example: for
a class C declared as class C<Z� Circle>..., the type C<?> is translated to
∃X→[⊥ ∃∅.Circle].C<X>.

When an upper bound is declared both for a wildcard and in the corresponding
class declaration, then the ‘smallest’ type is taken as the upper bound, if the
types are subtypes of each other (M). Hence, C<?� Shape> is translated to the
same type as in the previous example, and is not a type error. Finally, if the
bounds are unrelated, then the bound from the declaration is taken as the upper
bound of the wildcard, which means that even the type C<?� Serializable>
is translated into the same type as the previous two examples.

22 N. Cameron, S. Drossopoulou, and E. Ernst

This last behaviour implies that the Java type analysis uses a more general
type for some expressions than it would have to in order to maintain soundness
(in the example it could have used the intersection of Circle and Serializable,
but it just uses Circle), and this means that some reasonable and actually
type safe programs will be rejected by the Java compiler. However, it poses no
problems for the soundness of Java, nor for our translation.

The most interesting aspect of the translation is where wildcards meet F-
bounds. An F-bounded type is a type where the formal type variable is bounded
by an expression in which the variable itself occurs. These types are crucial for
modelling common idioms such as subject-observer in Java generics [23]. In the
following example both instantiations of F using wildcards are legal.

class F<X � F<X>> {...}
void m(F<?> x1, F<? � F<?>> x2) {...}

The translation of the types F<?> and F<?� F<?>> is not immediately obvi-
ous, because in Java there is no finite type expression for the least supertype of
all legal type arguments to F, i.e., the upper bound of the type argument X is not
denotable in Java. However, in TameFJ this upper bound is, in fact, denotable:
it is just ∃Y→[⊥ F<Y>].F<Y>. Indeed, our translation of F<?> gives this type.
In the case of F<?� F<?>> where the wildcard is translated to the fresh variable
Y, the upper bound will be the least subtype of ∃Z.F<Z> (the translation of the
given bound; where Z is fresh) and F<Y> (the bound derived from the class dec-
laration). Since the latter is more strict, it is used, even though this appears to
contradict the rule of using fresh type variables for each wildcard; in fact it does
no such thing, the second wildcard is translated to a fresh type variable, but is
then forgotten.

5 Related Work

In this section we discuss related work. We distinguish three categories: the
evolution of wildcards, formal and informal specifications of Java wildcards, and
related systems with type soundness results.

Wildcards are a form of use-site variance. This means that the variance of a
type is determined at the instantiation of the type. The first uses of variant generic
types in object oriented languages were declaration-site variance, where the vari-
ance of a type is determined by the class declaration. Use-site variance was first
expressed in terms of structural virtual types [23]. The concept developed into
Variant Parametric Types [14] which were extended to give Java wildcards.

Wildcards in Java are officially (and informally) described in the Java Lan-
guage Specification [11]. Wildcards and generics are described in detail in [3].
Wildcards were first described in a research paper in [24], again informally, but
with some description of their formal properties and of the correspondence to
existential types. The most important formal description of wildcards is the
Wild FJ calculus [17], referred to throughout this paper. Wildcards have also

A Model for Java with Wildcards 23

been described in terms of access restriction [26] and flow analysis [8] (actually
Variant Parametric Types).

Variant Parametric Types [14] could be thought of as a partial model for Java
wildcards (notably missing wildcard capture, but different in several subtler
ways also). The calculus in [14] was proven type sound and as such it can be
regarded as a partial soundness result for wildcards. In [5] we describe a sound
partial model for wildcards using a more traditional existential types approach.
In particular, the calculus has explicit open and close expressions, as opposed
to the implicit versions found in this paper and in other approaches [14,17].
Subtyping of existential types in [5] is taken from the full variant of System F<:

with existential types [10], rather than the wildcards style subtyping, exemplified
in the XS-Env rule in this paper. The soundness result for that system follows
those of FGJ and traditional existential types closely. However, it is only a partial
result; the system lacks lower bounds amongst other restrictions.

6 Conclusion and Future Work

In this paper we have presented a formal model for Java with wildcards, TameFJ,
and a type soundness proof for this formalism. To the best of our knowledge, this
is the first type sound model for wildcards that captures all the significant fea-
tures for soundness. We have shown through discussion and a formal translation
that TameFJ is a satisfactory model for Java wildcards.

Future Work. We are investigating several directions for future work. The most
straightforward is to extend our model to include imperative features. Previous
work with existential types found issues that only occurred in an imperative
setting [12]; although we do not believe these issues affect our result, a proof for
an imperative system would settle this matter once and for all. To complete the
argument for type soundness in Java, we would like to prove soundness for the
translation described in Sect. 4, expanded to expressions. Another interesting
property for Java wildcards would be the decidability of typing and type infer-
ence. Such questions have been investigated elsewhere [15,19], but there is no
complete answer specifically for Java.

We would like to apply the tools developed for this work, i.e., existential types
for variance, in other settings. For example, ownership types, where an ‘any’ or
‘?’ parameter or ad hoc existential types often appear [1,4,16,28]; or virtual
classes [9,18]. We would also like to further develop the use of existential types
to give programmers a better understanding of how to use wildcards.

Acknowledgements. We are deeply grateful to Alex Summers for introducing
us to Barendregt’s variable convention, and to Christian Urban, Mariangiola
Dezani-Ciancaglini, and again Alex Summers, for discussions on the convention.
We had illuminating discussions with Alex Buckley about the Java language and
spec and the implementation of Wildcards, with Atushi Igarashi about Feather-
weight Java and FGJ, and with Dave Clarke about existential types and other
approaches. We thank the anonymous reviewers for their helpful comments.

24 N. Cameron, S. Drossopoulou, and E. Ernst

References

1. Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from
mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

2. Barendregt, H.: The Lambda Calculus. Revised edn. North-Holland, Amsterdam
(1984)

3. Bracha, G.: Generics in the Java programming language (2004), http://java.sun.
com/j2se/1.5/pdf/generics-tutorial.pdf

4. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple Ownership. In:
OOPSLA 2007 (October 2007)

5. Cameron, N., Ernst, E., Drossopoulou, S.: Towards an existential types model for
java wildcards. In: 9th Workshop on Formal Techniques for Java-like Programs
(2007)

6. Cardelli, L., Leroy, X.: Abstract types and the dot notation. Research report 56,
DEC Systems Research Center (1990)

7. Cardelli, L., Wegner, P.: On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys 17(4), 471–522 (1985)

8. Chin, W.-N., Craciun, F., Khoo, S.-C., Popeea, C.: A flow-based approach for
variant parametric types. In: Proceedings of the 2006 ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications (OOPSLA
2006). ACM Press, New York (2006)

9. Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Tribe: a simple vir-
tual class calculus. In: AOSD 2007: Proceedings of the 6th international con-
ference on Aspect-oriented software development, Vancouver, British Columbia,
Canada, pp. 121–134. ACM, New York (2007), http://doi.acm.org/10.1145/
1218563.1218578

10. Ghelli, G., Pierce, B.: Bounded existentials and minimal typing. Theoretical Com-
puter Science 193(1-2), 75–96 (1998)

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification Third
Edition. Addison-Wesley, Boston (2005)

12. Grossman, D.: Existential types for imperative languages. In: Le Métayer, D. (ed.)
ESOP 2002 and ETAPS 2002. LNCS, vol. 2305, pp. 21–35. Springer, Heidelberg
(2002)

13. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001); An
earlier version of this work appeared at OOPSLA 1999.

14. Igarashi, A., Viroli, M.: Variant parametric types: A flexible subtyping scheme
for generics. ACM Trans. Program. Lang. Syst. 28(5), 795–847 (2006); An earlier
version appeared as On variance-based subtyping for parametric types at (ECOOP
2002)

15. Kennedy, A.J., Pierce, B.C.: On decidability of nominal subtyping with variance.
In: International Workshop on Foundations and Developments of Object-Oriented
Languages (FOOL/WOOD 2007), Nice, France (January 2007)

16. Lu, Y., Potter, J.: On ownership and accessibility. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 99–123. Springer, Heidelberg (2006)

17. Torgersen, M., Ernst, E., Hansen, C.P.: Wild FJ. In: 12th International Workshop
on Foundations of Object-Oriented Languages (FOOL 12), Long Beach, California,
ACM Press, New York (2005)

A Model for Java with Wildcards 25

18. Madsen, O.L., Moller-Pedersen, B.: Virtual classes: a powerful mechanism in
object-oriented programming. In: OOPSLA 1989: Conference proceedings on
Object-oriented programming systems, languages and applications, pp. 397–406.
ACM Press, New York (1989)

19. Mazurak, K., Zdancewic, S.: Note on Type Inference for Java 5: Wildcards,
F-Bounds, and Undecidability (2006), http://www.cis.upenn.edu/∼stevez/
note.html

20. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential types. In: POPL
1985: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pp. 37–51. ACM Press, New York (1985)

21. Pierce, B.C.: Bounded quantification is undecidable. In: POPL 1992: Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 305–315. ACM Press, New York (1992)

22. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge (2002)
23. Krab Thorup, K., Torgersen, M.: Unifying genericity - combining the benefits of

virtual types and parameterized classes. In: Guerraoui, R. (ed.) ECOOP 1999.
LNCS, vol. 1628, pp. 186–204. Springer, Heidelberg (1999)

24. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahé, P., Bracha, G., Gafter, N.:
Adding wildcards to the Java programming language. Journal of Object Technol-
ogy 3(11), 97–116 (2004); Special issue: OOPS track at SAC 2004, Nicosia/Cyprus.

25. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule
inductions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 35–
50. Springer, Heidelberg (2007)

26. Viroli, M., Rimassa, G.: On access restriction with Java wildcards. Journal of
Object Technology 4(10), 117–139 (2005); Special issue: OOPS track at SAC 2005,
Santa Fe/New Mexico. The earlier version in the proceedings of SAC 2005 appeared
as Understanding access restriction of variant parametric types and Java wildcards.

27. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1), 38–94 (1994)

28. Wrigstad, T., Clarke, D.: Existential owners for ownership types. JOT 6(4), 141–
159 (2007)

A Summary of Lemmas

For all lemmas and theorems we require the additional premise that the program
is well-formed, i.e., for all class declarations, Q, in the program, � Q ok. Lemmas
in the text have not been repeated, some lemmas have been omitted; full proofs
of all lemmas can be downloaded from:

http://www.doc.ic.ac.uk/˜ncameron/papers/cameron ecoop08 full.pdf

Lemma 1 (Substitution preserves subclassing). If � R ��: R′ then
� [T/X]R ��: [T/X]R

′
.

Proof is by structural induction on the derivation of � R ��: R′.

Lemma 2Lemma 3 (Substitution on U preserves sift). If sift(R, U, Y) = (Rr, Tr)
and (fv(T) ∪ X) ∩ Y = ∅ then sift(R, [T/X]U, Y) = (Rr, [T/X]Tr).

Proof is by structural induction on the derivation of sift(R, U, Y) = (Rr, Tr).

26 N. Cameron, S. Drossopoulou, and E. Ernst

Lemma 4 (Substitution on R preserves sift). If sift(R, U, Y) = (Rr, Tr)
and f is a mapping from and to types in the syntactic category R. then
sift(f(R), U, Y) = (f(Rr), Tr).

Proof is by structural induction on the derivation of sift(R, U, Y) = (Rr, Tr).

Lemma 5Lemma 6Lemma 7Lemma 8Lemma 9Lemma 10 Proof. structural
Lemma 11 (Weakening of Typing).

If dom(Δ, Δ′, Δ′′′) ∩ dom(Δ′′) = ∅ and dom(Γ, Γ ′′) ∩ dom(Γ ′) = ∅ and
Δ, Δ′; Γ, Γ ′′ � e : T | Δ′′′ then Δ, Δ′′, Δ′; Γ, Γ ′, Γ ′′ � e : T | Δ′′′ and

Proof is by structural induction on the derivation of Δ, Δ′; Γ, Γ ′′ � e :
T | Δ′′′.

Lemma 12
Lemma 13 (Extension of type environments preserves well-
formedness). If Δ � Δ′

ok and Δ, Δ′ � Δ′′
ok then Δ � Δ′, Δ′′

ok.
Proof is by structural induction on the derivation of Δ � Δ′

ok.

Lemma 14Lemma 15Lemma 16Lemma 17 similar to case XS-Trans

Corollary If Δ � ∃Δ′.N <: ∃Δ′′.N′ and � Δ ok then Δ � ∃Δ′.N �: ∃Δ′′.N′.Lemma 18Lemma 19Lemma 20
Lemma 21 (Subsititution preserves typing).

If Δ; Γ � e : T | Δ′′ and Δ1 � T <: [T/X]Bu and Δ1 � [T/X]Bl <: T
and Δ = Δ1, X→[Bl Bu], Δ2 and Δ′ = Δ1, [T/X]Δ2 and X ∩ fv(Δ1) = ∅
and Δ1 � T ok and ∅ � Δ1 ok and Δ1, X→[Bl Bu] � Δ2 ok then
Δ′; [T/X]Γ � [T/X]e : [T/X]T | [T/X]Δ′′.

Proof is by structural induction on the derivation of Δ; Γ � e : T | Δ′′.

Lemma 22 (Superclasses are well-formed). If � R ��: R′ and Δ � R ok

and ∅ � Δ ok then Δ � R′ ok.
Proof is by structural induction on the derivation of � R ��: R′.

Lemma 23 (Subclassing preserves field types).
If � N ��: N′ and fType(f, N′) = T then fType(f, N) = T.
Proof is by structural induction on the derivation of � N ��: N′.

Lemma 24 (Subclassing preserves method return type). If � N1 ��: N2

and mType(m, N2) = <Y� Tu>T→T then mType(m, N1) = <Y� Tu>T→T.
Proof is by structural induction on the derivation of � N1 ��: N2.

Lemma 25 (Expression substitution preserves typing). If Δ; Γ, x:U �
e : T | Δ′ and Δ; Γ � e′ : U′ | ∅ and Δ � U′ <: U and Δ � U ok then
Δ; Γ � [e′/x]e : T | Δ′. Proof is by structural induction on the derivation of
Δ; Γ, x:U � e : T | Δ′.

Lemma 26Lemma 27Lemma 28
Lemma 29 (match gives well-formed types). If Δ � P ok and Δ �
∃Δ.R ok and ∅ � Δ ok and match(R, ∃Δ′.R′, P, Y, T) then Δ, Δ � T ok.

Lemma 30 (Typing gives well-formed types).
If Δ; Γ � e : T | Δ′ and ∅ � Δ ok and ∀x ∈ dom(Γ) : Δ � Γ (x) ok

then Δ, Δ′ � T ok.
Proof is by structural induction on the derivation of Δ; Γ � e : T | Δ′.

Lemma 31Lemma 32Lemma 33Lemma 34Lemma 35Lemma 36Lemma 37Lemma 38Lemma 39Lemma 40

On Validity of Program Transformations in the

Java Memory Model

Jaroslav Ševč́ık and David Aspinall

LFCS, School of Informatics, University of Edinburgh

Abstract. We analyse the validity of several common program trans-
formations in multi-threaded Java, as defined by the Memory Model
section of the Java Language Specification. The main design goal of the
Java Memory Model (JMM) was to allow as many optimisations as pos-
sible. However, we find that commonly used optimisations, such as com-
mon subexpression elimination, can introduce new behaviours and so are
invalid for Java. In this paper, we describe several kinds of transforma-
tions and explain the problems with a number of counterexamples. More
positively, we also examine some valid transformations, and prove their
validity. Our study contributes to the understanding of the JMM, and
has the practical impact of revealing some cases where the Sun Hotspot
JVM does not comply with the Java Memory Model.

1 Introduction

Although programmers generally assume an interleaved semantics, the Java Lan-
guage Specification defines more relaxed semantics, which is called the Java
Memory Model [11,18]. The reasons for having a weaker semantics become ap-
parent from the following example:

Initially, x = y = 0
x = 1 if (x==1) {
if (y==1) x = 0
print x y = 1

}

The question is: can this program ever print 1? In the interleaved semantics, the
answer is no, because if the program prints at all then all the instructions of the
second thread must be executed between the statements x=1 and if (y==1) of
the first thread. Hence, if the program prints, the write x=1 must be overwritten
by the assignment x=0, and the program prints 0.

In reality, a modern optimising compiler, such as Sun HotSpot JVM or GCJ,
will replace print x by print 1, because the read of x can reuse the value pre-
viously written to x. After this optimisation, the program can print 1, which was
not a possible behaviour of the original program. One could argue that compil-
ers should only perform optimisations that are safe for multi-threaded as well as
single-threaded programs; however, most modern processors would perform op-
timisations like this. Preventing the hardware from optimising memory accesses

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 27–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 J. Ševč́ık and D. Aspinall

comes at much higher cost than a missed optimisation in a compiler—typical
memory barrier instructions consume hundreds of cycles and should be avoided
if they are not necessary.

Instead of guaranteeing sequential consistency for all programs, the Java Lan-
guage Specification defines a semantics that guarantees sequential consistency
(interleaved semantics) for data race free programs, while giving some basic
security guarantees for programs with data races. The authors of the Java Mem-
ory Model claim that the JMM is flexible enough to validate commonly used
hardware and compiler optimisations. They give a theorem in [18], which states
that reordering of certain combinations of statements is a valid transformation.
However, Cenciarelli et al. [9] discovered a counterexample, which shows that
reordering of independent memory accesses is invalid in the JMM.

This raises several questions: What common transformations are valid in the
JMM? Can we fix the memory model so that more or all these transformations
become valid? We have made initial steps to address this question—in earlier
work we suggested a subtle variation of the JMM definition and conjectured that
their version allows reordering of independent statements.

Contribution. In this paper, we analyse several commonly used local optimisa-
tions and classify them by their validity in the Java Memory Model. We prove
that removal of redundant reads after writes and writes after writes are valid
transformations in the JMM. With the alternative definition suggested in [5]
we also establish validity of reordering of independent statements. On the other
hand, we demonstrate that some other cases of reordering, which [18] claims
to be valid, are not generally valid transformations. For example, swapping a
normal memory access with a consequent lock can introduce new behaviours,
and thus is not a valid transformation. Another example of an invalid transfor-
mation is reusing a value of a read for a subsequent read, or an introduction of
an irrelevant read. With this analysis, we establish that the JMM is still flawed,
because these transformations are performed by hardware and compilers. Even
Sun’s Hotspot JVM [19] performs transformations that are not compliant with
the JMM.

1.1 Introduction to the JMM

We illustrate the key properties of the JMM on three canonical examples (from
[18]), given in Fig. 1. The programs show statements in parallel threads, oper-
ating on thread-local registers (r1, r2, . . .) and shared memory locations (x, y,
. . .). We assume no aliasing, different location names denote different locations.

In an interleaved semantics, program A could not result in r1 = r2 = 1,
because one of the statements r1=x, r2=y must be executed first, thus either
r1 or r2 must be 0. However, current hardware can, and often does, execute
instructions out of order. Imagine a scenario where the read r1=x is too slow
because of cache management. The processor can realise that the next statement
y=1 is independent of the read, and instead of waiting for the read it performs
the write. The second thread then might execute both of its instructions, seeing

On Validity of Program Transformations in the Java Memory Model 29

initially x = y = 0
r1 = x r2 = y
y = 1 x = 1

initially x = y = 0
lock m1 lock m2
r1=x r2=y
unlock m1 unlock m2
lock m2 lock m1
y=1 x=1
unlock m2 unlock m1

initially x = y = 0
r1 = x r2 = y
y = r1 x = r2

A. (allowed) B. (prohibited) C. (prohibited)

Is it possible to get r1 = r2 = 1 at the end of an execution?

Fig. 1. Examples of legal and illegal executions

the write y=1 (so r2 = 1). Finally, the postponed read of x can see the value
1 written by the second thread, resulting in r1 = r2 = 1. Similar non-intuitive
behaviours could result from simple compiler optimisations, as illustrated in the
introduction.

However, there are limits on the optimisations allowed—if the programmer
synchronises properly, e.g., by guarding each access to a field by a synchronised
section on a designated monitor, then the program should only have sequentially
consistent behaviours. This is why the behaviour r1 = r2 = 1 must be prohibited
in program B of Fig. 1. This guarantee for data race free programs is called DRF
guarantee.

Even if a program contains data races, there must be some security guarantees.
Program C in Fig. 1 illustrates an unwanted “out-of-thin-air” behaviour—if a
value does not occur anywhere in the program, it should not be read in any
execution of the program. The out-of-thin-air behaviours could cause security
leaks, because references to objects from possibly confidential parts of program
could suddenly appear as a result of a self-justifying data race.

2 Transformations and Traces

In this section we give an overview of the classes of program transformations
that we have considered. Most common compiler transformations, such as com-
mon subexpression elimination, dead code elimination, and various types of loop
optimisations can be expressed as a composition of our basic transformations.
Similarly to [18], we will consider a transformation valid if it does not introduce
any new behaviours. A valid transformation may reduce the possible behaviours.
In Table 1 we classify the transformations by their validity under sequential con-
sistency (column ‘SC’), in the current Java Memory Model (column ‘JMM’), and
in the memory model modification suggested in [5] (column ‘JMM-Alt’). Note
that the JMM is in fact stricter than sequential consistency in terms of closure
under some transformations, even though the JMM is more relaxed in the sense
that any sequentially consistent execution is a JMM execution.

30 J. Ševč́ık and D. Aspinall

In the following subsections we describe the transformations and explain them
through examples. The proofs and counterexamples for (in)validity in the JMM
will follow in Sect. 4, after we have explained the mechanics of the JMM in
Sect. 3.

Table 1. Validity of transformations in the JMM

Transformation SC JMM JMM-Alt

Trace-preserving transformations � � �
Reordering normal memory accesses × × �
Redundant read after read elimination � × ×
Redundant read after write elimination � � �
Irrelevant read elimination � � �
Irrelevant read introduction � × ×
Redundant write before write elimination � � �
Redundant write after read elimination � × ×
Roach-motel reordering ×(�for locks) × ×
External action reordering × × ×

2.1 Traces

To describe some of the thread-local transformations we introduce the notion of
memory traces, which also constitute the connection between the JMM and the
sequential part of the Java language1. The memory traces are finite sequences
of memory operations, which can be of the following kinds:

– volatile read Rdv(v, i),
– volatile write Wrv(v, i),
– normal read Rd(x, i),
– normal write Wr(x, i),
– external action Ex(i),

– lock L(m),
– unlock U(m),
– thread start St,
– thread finish Fin,

where x is a non-volatile memory location, v is a volatile memory location, i is a
value, and m is a synchronisation monitor. In the spirit of the JMM, we consider
an external action to be an output of a value. The meaning of a sequential
program is then a prefix-closed set of the memory traces that can be performed
by the program.

For example, assuming that v is a volatile memory location, x and y non-
volatile locations, m a monitor, and r a thread-local register, the meaning of the
program

v:=1; lock m; r:=x; y:=r; unlock m; print(r)

is the prefix closure of the set

1 The JMM calls this connection intra-thread consistency.

On Validity of Program Transformations in the Java Memory Model 31

{[St, Wrv(v, 1), L(m), Rd(x, i), Wr(y, i), U(m), Ex(i), Fin] | i is a value}.

All our transformations can be generalised as transformations on memory
traces, and we will show this later in this paper when proving validity of some
transformations (Subsect. 4.2 and App. B).

2.2 Transformations

In the following paragraphs we describe the transformations that we have con-
sidered in our analysis. Our transformations are local, i.e., they should be valid
in any context.
Trace-preserving Transformations. Because the meaning of a program in the
JMM is just the set of its traces, any transformation that does not change the
set of traces must trivially be valid. E.g., if both branches of a conditional—
whose guard does not examine memory—contain the same code, it is valid to
eliminate the conditional, as illustrated by the transformation

if (r1==1)
{x=1;y=1}

else {x=1;y=1}
� x=1

y=1

Reordering. Reordering of independent statements is an important transforma-
tion that swaps two consecutive non-synchronisation memory accesses. It is often
performed in hardware [13,12,24], or in a compiler’s loop optimiser [15,10]. The
following program transformation shows a reordering of two independent writes.

x=1
y=1

−→ y=1
x=1

Although Manson et al. claim this transformation to be valid in the JMM
[18, Theorem 1], Cenciarelli et al. [9] found a counterexample to this. In earlier
work [5], we suggested a simple fix and conjectured that it makes reordering
of independent memory accesses valid. We state and prove this claim precisely
in Subsect. 4.2 and App. B. Demonstrating a successful repair for this crucial
property is one of the main contributions of this paper.

Redundant (Duplicated) Read Elimination. Elimination of a redundant read is a
transformation that replaces a read immediately preceded by a read or a write
to the same variable by the value of that read/write. This transformation is
often performed as a part of common subexpression elimination optimisations
in compilers. For example, the two examples of transformations below reuse the
value of x stored in register r1 instead of re-reading x:

r1 = x
r2 = x
if (r1==r2)

y = 1

−→
r1 = x
r2 = r1
if (r1==r2)
y = 1

x = r1
r2 = x
if (r1==r2)
y = 1

−→
x = r1
r2 = r1
if (r1==r2)

y = 1
(read after read) (read after write)

Later we will show that redundant read elimination is valid in the JMM for
a read after a write, but invalid for a read after a read.

32 J. Ševč́ık and D. Aspinall

Irrelevant Read Elimination. A read statement can also be removed if the value
of the read is not used. For example, r1=x;r1=1 can be replaced by r1=1, because
the register r1 is overwritten by the value 1 immediately after reading shared
variable x, and thus the value read is irrelevant for the continuation for the
program. An example of this transformation is dead code elimination because of
dead variables. It is valid in the JMM.

Irrelevant Read Introduction. Irrelevant read introduction is the inverse transfor-
mation to the irrelevant read elimination. It might seem that this transformation
is not an optimisation, but modern processor hardware often introduces irrele-
vant reads speculatively. For example, the first transformation in

if (r1==1) {
r2=x
y=r2

}
→

if (r1==1) {
r2=x
y=r2

} else r2=x

�
r2=x
if (r1==1)

y=r2

introduces irrelevant read of x in the else branch of the conditional (assuming
that r2 is not used in the rest of the program). In terms of traces, this is equiv-
alent to reading x speculatively, as demonstrated by the program on the right.
In Subsect. 4.1, we show that this is an invalid transformation in the JMM.

Redundant Write Elimination. This transformation eliminates a write in two
cases: (i) if it follows a read of the same value, or (ii) if it precedes another write
to the same variable. For example, in the first transformation in

r = x
if (r == 1)
x = 1

−→ r = x
x = 1
x = 3

−→ x = 3

(write after read) (write before write)

the write x=1 can be eliminated, because in all traces where the write occurs,
it always follows a read of x with value 1. The other transformation shows the
elimination of a previous overwritten write. This transformation is often included
in peephole optimisations [4]. Similarly to the read elimination, it is valid in the
JMM before a write, but invalid after a read.

Roach-motel Semantics. Intuitively, increasing synchronisation should limit a
program’s behaviours. In the limit, if a program is fully synchronised, i.e., data
race free, the DRF guarantee promises only sequentially consistent behaviours.
One way of increasing synchronisation is moving normal memory accesses into
synchronised blocks, as in

x=1
lock m
y=1

unlock m

−→
lock m

x=1
y=1

unlock m

On Validity of Program Transformations in the Java Memory Model 33

Although compilers do not perform this transformation explicitly, it may be per-
formed by underlying hardware if a synchronisation action uses only one memory
fence to prevent the code inside a synchronised section from being reordered to
outside of the section. Manson et al. [18, Theorem 1] claim that this transforma-
tion is valid. We show a counterexample to this in Subsect. 4.1, so unfortunately
it is invalid in general.

Reordering with external actions. As well as reordering memory operations with
one another, one may consider richer reorderings, for example, reordering mem-
ory operations with external operations. This seems more likely to alter the
behaviour of a program, but it is valid for data race free programs under se-
quential consistency. For example, the exchange of printing a constant with a
memory write: x=1;print 1 −→ print 1;x=1. Theorem 1 of [18] incorrectly
states that this transformation is valid in the JMM.

3 JMM Operationally

To reason about the Java Memory Model, we introduce an intuitive operational
interpretation, based on some observations about the construction of the formal
definition2. This re-interpretation will allow us to explain key counterexamples
in a direct way in the next section. The formal definition of the memory model
is used to argue about validity; our adjusted definition is given in detail App. A
(the original is given in [11]).

Unlike interleaved semantics, the Java Memory Model has no explicit global
ordering of all actions by time consistent with each thread’s perception of time,
and has no global store. Instead, executions are described in terms of memory
related actions, partial orders on these actions, and a visibility function that
assigns a write action to each read action. We first explain the building blocks
of Java executions, then we show how Java builds legal executions out of simple
“well-behaved” executions.

JMM actions and orders. An action is a tuple consisting of a thread identifier,
an action kind, and a unique identifier. Action kinds were described in Sect. 2.1.

The volatile read/write and lock/unlock actions are called synchronisation
actions. An execution consists of a set of actions, a program order, a synchroni-
sation order, a write-seen function, and a value-written function. The program
order (≤po) is a total order on the actions of each thread, but it does not relate
actions of different threads. All synchronisation actions are totally ordered by
the synchronisation order (≤so). From these two orders we construct a happens-
before order of the execution: action a happens-before action b (a ≤hb b) if (1) a
synchronises-with b, i.e., a ≤so b, a is an unlock of m and b is a lock of m, or a
is a volatile write to v and b is a volatile read from v, or (2) a ≤po b, or (3) there
is an action c such that a ≤hb c ≤hb b. The happens-before order determines an

2 Jeremy Manson made essentially the same observations in his description of his
model checker for the JMM [17].

34 J. Ševč́ık and D. Aspinall

upper bound on the visibility of writes—a read happening before a write should
never see that write, and a read r should not see a write w if there is another
write happening “in-between”, i.e., if w ≤hb w′ ≤hb r and w = w′, then r cannot
see w.3

We say that an execution is sequentially consistent if there is a total order
consistent with the program order, such that each read sees the most recent
write to the same variable in that order. A pair of memory accesses to the same
variable is called a data race if at least one of the accesses is a write and they are
not ordered by the happens-before order. A program is correctly synchronised
(or data-race-free) if no sequentially consistent execution contains a data race.

A thorny issue is initialisation of variables. The JMM says

The write of the default value (zero, false, or null) to each variable
synchronises-with to the first action in every thread [11]

However, normal writes are not synchronisation actions and synchronises-with
only relates synchronisation actions, so normal writes cannot synchronise-with
any action. For this paper, we will assume that all default writes are executed in
a special initialisation thread and the thread is finished before all other threads
start.

Committing semantics. The basic building blocks are well-behaved executions,
in which reads are only allowed to see writes that happen before them. In
other words, in these executions reads cannot see writes through data races,
and threads can only communicate through synchronisation. For example, pro-
grams A and C in Fig. 1 have just one such execution—the one, where r1 = r2 =
0. On the other hand, the behaviours of program B are exactly the behaviours
that could be observed by the interleaved semantics, i.e. r1 = r2 = 0, or r1 = 1
and r2 = 0, or r1 = 0 and r2 = 1. In fact, if a program is correctly synchronised
then its execution is well-behaved if and only if it is sequentially consistent [18,
Lemma 2]. This does not hold for incorrectly synchronised programs (e.g., see
the first counterexample in Subsect. 4.1).

The Java Memory Model starts from a well-behaved execution and commits
one or more read-write data races from the well-behaved execution. After com-
mitting the actions involved in the data races it “restarts” the execution, but
this time it must execute the committed actions. This means that each read
in the execution must be either committed and see the value through the race,
or it must see the write that happens-before it. Similarly, all committed writes
must be executed in the restarted execution and must write the same value.
The JMM can repeat the process, i.e., it may choose some non-committed reads
involved in a data race, commit the writes involved in these data races if they
are not committed already, commit the chosen reads, and restart the execu-
tion. The executions constructed using this procedure are called legal execu-
tions.

3 For details, see Defs. 2, 4 and 7 in App. A.

On Validity of Program Transformations in the Java Memory Model 35

The JMM imposes several requirements on the committing sequence:

1. All subsequent (restarted) executions must preserve happens-before ordering
of all the committed actions. Cenciarelli et al. [9] observed that this require-
ment makes reordering of independent statements invalid. In our earlier work
[5], we suggested that the happens-before ordering should be preserved only
between a read and the write it sees. We showed there that this revision still
satisfies the DRF guarantee; in this paper we further establish that validity
of reordering is indeed rescued in this version.

2. If some synchronisation happens-before the committed data race(s), the syn-
chronisation must be preserved in all subsequent executions4.

3. All external actions that happen-before any committed action must be com-
mitted, as well.

This committing semantics imposes a causality order on races—the outcome of
a race must be explained in terms of previously committed races. This prevents
causality loops, where the outcome of a race depends on the outcome of the
very same race, e.g., the outcome r1 = 1 in program C in Fig. 1. The DRF
guarantee is a simple consequence of this procedure. If there are no data races in
the program, there is nothing to commit, and we can only generate well-behaved
executions, which are sequentially consistent for data race free programs.

In fact, the JMM, as defined in [11], actually commits all actions in an exe-
cution, but committing a read that sees a write that happens-before it does not
create any opportunities for committing new races, because reads can see writes
that happen-before them in a well-behaved execution. This is why we need to
consider only read-write races and not write-write races. Similarly, committing
synchronisation actions does not create any committing opportunities and can
be always performed in the last step. Therefore, the central issue is committing
read-write data races, and we explain our examples using this observation.

Example. An example should help make the operational interpretation clearer.
First, we demonstrate the committing semantics on program A in Fig. 1. In the
well-behaved execution of this program, illustrated by the first diagram in Fig. 2,
the reads of x and y can only see the default writes of 0, because there is no
synchronisation. This results in r1 = r2 = 0.

W (x,0); W (y,0)

������
�����

�

R(x, 0)

��

R(y, 0)

��
W (y,1) W (x,1)

W (x, 0); W (y, 0)

�����
��

�����
��

R(x, 0)

��

[R(y, 1)]

��
[W (y, 1)] W (x,1)

W (x,0); W (y,0)

�����
��

�����
��

[R(x, 1)]

��

[R(y, 1)]

��
[W (y, 1)] [W (x, 1)]

Fig. 2. Justifying executions of program A from Fig. 1

There are two data races in this execution (depicted by the dotted lines, the
solid lines represent the happens-before order)—one on x and one on y. We can
4 For a formal definition, see rule 8 in the list that follows Def. 8.

36 J. Ševč́ık and D. Aspinall

commit either one of the races or both of them. Suppose we commit the race
on y. In the second diagram we show the only restarted execution that uses this
data race; the committed actions are in brackets and the committed read sees
the value of (the write in) the data race. The non-committed read sees the write
that happens-before it, i.e., the default write. This execution gives the result
r1 = 0 and r2 = 1. The JMM can again decide to commit a data race from
the execution. There is only one such data race. Committing the data race on x
gives the last diagram, and results in r1 = r2 = 1.

4 Validity of Transformations

This sections contains the technical explanations of validity and invalidity of the
transformations. All invalidity arguments will be carried in the finite version5 of
the Java Memory Model as described in [11], but the same arguments apply to
the alternative weaker memory model JMM-Alt. On the other hand, the validity
argument will refer to the more permissive JMM-Alt. It is straightforward to
simplify the argument to prove the valid transformations of the original JMM.

4.1 Invalid Transformations

In this subsection we show and explain our counterexamples for the invalid trans-
formations. The examples follow the same pattern—at first we list a programwhere
a certain behaviour is not possible in the JMM, and then we show that after the
transformation the behaviour becomes possible (in the JMM). This shows that
the transformation in question is invalid, because any run of the transformed pro-
gram should be indistinguishable from some run of the original program. In the
Java Memory Model, the behaviour of a program is essentially the set of external
actions, such as printing, performed by the program6. In our examples, we will
consider final contents of registers being part of the program’s behaviour, because
we could observe them by printing them at the end of each thread.

Redundant Write After Read Elimination

initially x = 0
lock m1 lock m2 lock m1
x=2 x=1 lock m2

unlock m1 unlock m2 r1=x

r2=x
unlock m2

unlock m1

5 We use the finite version, because the infinite JMM is inconsistent [5].
6 The definition in [18] is slightly more complex because of non-terminating executions

and ordering, see Def. 10 for details. Our examples are always terminating.

On Validity of Program Transformations in the Java Memory Model 37

First note that no well-behaved execution of this program contains a read-
write data race, so all legal executions of this program are well-behaved. More-
over, in all executions the read r2=x must see the write x=r1, because it over-
writes any other write. As the write x=r1 always writes the value that is read
by r1=x, we have that r1 = r2.

On the other hand, if a compiler removes the redundant write x=r1, the reads
r1=x and r2=x can see different values in a well-behaved execution, e.g., we
might get the outcome r1 = 1 and r2 = 2.

Redundant Read After Read Elimination. The counterexample for the
elimination of a read after a read uses a trick with switching the branches of an
if statement—in the first well-behaved execution we take one branch, and then
we commit a data race so that we can take the other branch after we restart.
Let us examine the program below.

x = y = 0
r1=x r2=y
y=r1 if (r2==1) {

x=r3
} else x=1

The question is whether we can observe the result r2 = 1. This result is not
possible in this program, but it becomes possible after rewriting r3=y to r3=r2.

First we show that this is not possible with the original program: With the
initially empty commit set we can get just one well-behaved execution—the one,
where r1 = r2 = 0. In this well-behaved execution, we have two data races:
(i) between the actions preformed by y=r1 and r2=y with value 0, (ii) between
the actions performed by r1=x and x=1 with value 1. If we commit (i), we are
stuck with r2 = 0, because all subsequent restarted executions must perform
the committed read of y with the value 0. If we commit (ii) and restart, we get
an execution, where r1 = 1, so we can now commit the data race between y=r1
and r2=y with value 1. After we restart the execution, suppose we were to read
r1 = r2 = 1. Then r3=y must read a value that happens-before it; the only such
value is the default value 0, but then x=r3 must write 0, which contradicts the
commitment to perform the write of 1 to x.

On the other hand, if JVM transforms the read r3=y into r3=r2, we can
obtain the result r2 = 1 by committing the data race between r1=x and x=1,
restarting, committing the data race between y=r1 and r2=y, and restarting
again. As opposed to the original program, now we can keep the commitment to
write 1 to x, because r3 = r2 = 1 in the transformed program.

Roach Motel Semantics. We demonstrate the invalidity of roach motel se-
mantics on the program:

38 J. Ševč́ık and D. Aspinall

initially x = y = z = 0
lock m lock m r3= y
x=2 x=1 z=r3

unlock m unlock m r2=z
if (r1==2)

y=1
else

y=r2
unlock m

This program cannot result in r1 = r2 = r3 = 1 in the JMM: In all well-behaved
executions of this program, we have r1 = r2 = r3 = 0, and four data races—two
on x with values 1 and 2, then on y and z with value 0. If we commit the data
race on y (resp. z, resp. x with value 2) we would be stuck with r3 = 0 (resp.
r2 = 0, resp. r1 = 2), so we can only commit a race on x. However, if we commit
the race with x=1 and restart, we are only left with races on z and y with value
0. Committing any of these races would result in r2 and r3 being 0.

However, after swapping r1=x and lock m the program offers more freedom to
well-behaved executions, e.g., the read r1=x can see value 2 (without committing
any action on x!), and we can commit the data race on y with value 1 (see
execution A from Fig. 3). After restarting, we can commit data race on z with
value 1. After another restart, we change the synchronisation order so that the
write x=1 overwrites the write x=2, and the read r1=x sees value 1 (see execution
B from Fig. 3). In this execution, we have r1 = r2 = r3 = 1.

W (x, 0);W (y, 0);W (z, 0)

�������������

������������

L(m)

��

L(m)

��

R(y, 0)

��
W (x, 2)

��

L(m)

��

R(x, 2)

��

W (z, 0)

U(m)

��

W (x,1)

��

R(z, 0)

��
U(m) W (y,1)

��
U(m)

�����������������

W (x,0); W (y,0); W (z, 0)

�������������

�������������

L(m)

��

L(m)

��

L(m)

��

[R(y, 1)]

��
W (x, 2)

��

W (x,1)

��

R(x, 1)

��

[W (z, 1)]

U(m)

�����������
U(m)

�������������
[R(z, 1)]

��
[W (y, 1)]

��
U(m)

A. B.

Fig. 3. Justifying and final executions for the roach motel semantics counterexample

Note that this committing sequence respects the rule that all the subsequent
restarted executions must preserve synchronisation that was used to justify the
previous data races, because our committing sequence only introduces new syn-
chronisation that in effect overwrites the write x=2 with the write x=1. This prob-
lem seems to be hard to solve in a committing semantics based on well-behaved
executions, because more synchronisation gives more freedom to well-behaved
executions and allows more actions to be committed.

On Validity of Program Transformations in the Java Memory Model 39

Irrelevant Read Introduction. The counterexample for irrelevant read in-
troduction uses the trick with switching branches again. The program

x = y = z = 0
r1 = z x = 1
if (r1==0) { r2 = y
r3 = x z = r2
if (r3==1) y = 1

} else {

r4 = 1
y = r1

}

cannot result in r1 = r2 = 1: its only well-formed execution has data races on x
with value 1 and z with value 0. We cannot commit the data race on z, because
then r1 would remain 0. If we commit the data race on x and restart, we have
a new data race between y=1 and r2=y. After committing it and restarting, we
can try to commit the data race on z with value 1. However, after this commit
and restart, we cannot fulfil the commitment to perform the data race on x.

On the other hand, if we introduce the irrelevant read r4=x by uncommenting
the commented-out line, we can keep the commitment to perform the committed
read on x, and the program can result in r1 = r2 = 1. This seems to be another
deep problem with committing semantics—even introducing a benign irrelevant
read may validate some committing sequence that was previously invalid.

Reordering with External Actions. The program

x = y = 0
r1=y r2=x
if (r1==1) y=r2

x=1
else { ; }

cannot result in r1 = r2 = 1 in the JMM, because to have r2 = 1 we must
commit the data race on x and, by the rule for committing external actions, also
the external printing action. To get r1 = 1 we must also commit the race on
y, but then we are not able to keep the commitment to perform the committed
printing action.

However, if we swap print "!" with x=1 in the else-branch, the rule for
external actions does not apply, and we can commit the race on x, and then the
race on y, resulting in r1 = r2 = 1.

4.2 Valid Transformations

In this subsection we outline the proof of the validity of irrelevant read elimina-
tion, read after write elimination, write after write elimination, and reordering of
independent non-volatile memory accesses in the weaker memory model (JMM-
Alt). Using the same method one could also prove that the first three of these
transformations are valid in the standard JMM [11].

40 J. Ševč́ık and D. Aspinall

The validity of a transformation says that any behaviour of the transformed
program is a behaviour of the original program. We prove the validity very
directly—we take an execution of the transformed program that exhibits the be-
haviour in question, then we apply an ‘inverse’ transformation to the execution,
and finally we show that the untransformed execution has the same behaviour as
the one of the transformed program. Since the details of the proof are somewhat
technical, we show a careful proof in App. B. In this section we only explain
informally the main ideas, i.e., the construction of the inverse transformation,
and the relationship between the transformations on programs and the memory
traces. Note that our proof technique does not consider non-termination being
a behaviour; we only prove safety of transformations. We leave the preservation
of termination for future work.

The main idea of the proof is that we describe transformations using their
‘inverse’ transformations. We will say that P ′ is a transformation of P if for any
trace t′ ∈ P ′ there is an untransformation in P . By the untransformation we
mean a trace t of P together with an injective function f that describes a valid
reordering of the actions of t′. Moreover, each action of t that is not in rng(f)
must be either (i) a redundant read after write, i.e., it must be a read of the same
value as the last write to the same variable in the trace, and there cannot be any
synchronisation or read from the same variable in between, or (ii) a redundant
write before write, i.e., the write must precede another write to the same variable
such that there is no read from the same location or synchronisation in between,
or (iii) an irrelevant read, i.e., the value of the read cannot affect validity of the
trace t in P . For formal details, see Def. 11. By induction on the operational
execution of sequential programs, we can show that the program transforma-
tions on the syntax level implies the existence of an untransformed trace and an
untransformation function for each trace of the transformed program.

For example, the programon the left in Fig. 4 canbe transformed to the program
on the right of the arrow, because for each trace of the transformed program there
is its untransformation. For example, for the trace t′ (on the right of Fig. 4) of the
transformedprogramthere is a trace t of the originalprogram, anda function f that
determines the reordering of the actions. Moreover, Wr(x, 2) is a redundant write
before write, Rd(x, 2) is a redundant read after write, and Rd(y, ∗) is an irrelevant
read, i.e., t is a valid trace of P if we replace ∗ by any value.

Having this definition, the proof is technical, but straightforward—given an ex-
ecution of the transformed program we construct an execution of the original pro-
gram by untransforming the traces of all its threads, while preserving the synchro-
nisation order (see the details in App. B). This is possible because the definition of
program transformation preserves ordering of synchronisation actions, thus guar-
anteeing consistency of the program order with the synchronisation order.

We also observe that the untransformed execution is legal: if we take the
committing sequence of data races and justifying executions, and untransform
the justifying executions, we get a legal committing sequence for the untrans-
formed program (Lemma 3). We conclude that any behaviour of the transformed
program is a behaviour of the original program (Theorem 1).

On Validity of Program Transformations in the Java Memory Model 41

r1=z
x=2
r2=x
z=r2
r3=y
x=3
y=r1

→
r1=z
y=r1
z=2
x=3

(Program) (Trace)

Fig. 4. Transformation of a program as a transformation on traces

5 Practical Impact

The flaw in the memory model is important in theory, but it is conceivable that it
might not be manifested in practical implementations, because JVMs compile to
stricter memory models than the JMM. It is natural to ask whether some widely
used JVM actually implements optimisations that lead to forbidden behaviours.
In fact, this is indeed the case! We have experimented with the Sun Hotspot
JVM [19] to discover this. For example, the first program in Fig. 5 cannot print
1 under the JMM (for details, see the counterexample for redundant read after
read elimination in Subsect. 4.1). A typical optimising compiler may reuse the
value of y in r2 and transform x=(r2==1)?y:1 → x=(r2==1)?r2:1, which is
equivalent to the second program from Fig. 5. Then it may reorder the write
to x with read of y, yielding the last program in Fig. 5. Observe that this
transformed program can print 1 using the interleaving x=1, r1=x, y=r1, r2:=y,
print r2. After minor modifications to the program, Sun Hotspot JVMs will
perform these transformations, so it does not comply with the JMM7.

x = y = 0
r1=x r2=y
y=r1

print r2

−→
x = y = 0

r1=x
y=r1

print r2

−→
x = y = 0

r1=x x=1
y=r1

print r2

Fig. 5. Hotspot JVM’s transformations violating the JMM

The program in Fig. 5 is not data-race-free. Should we worry about behav-
iours of correctly synchronised programs after optimisations? We conjecture that
any composition of the transformations from this paper applied to a correctly
synchronised program can only yield a program that does not have any new
behaviours. This means that Java implementations might be in fact correct,
i.e., satisfy the DRF guarantee, and it is only the JMM specification that needs
fixing.
7 Tested on Java HotSpot(TM) Tiered VM (build 1.7.0-ea-fastdebug-b16-fastdebug,

mixed mode), Linux x86. Further details are in a short technical report [25].

42 J. Ševč́ık and D. Aspinall

6 Conclusion

We have examined the most common software and hardware local program trans-
formations and classified them by their validity in the Java Memory Model, and
its variation suggested by [5]. For each class of transformations we give either a
proof of its validity or a counterexample. Despite the JMM’s main design goal
to enable common optimisations, we show that the JMM does not allow several
commonly used optimisations although some of these transformations are valid
under the natural strict memory model–sequential consistency. This is a serious
flaw in the Java Memory Model, which does not seem to have an easy fix, as
discussed in the explanations of the counterexamples (Subsect. 4.1).

Related Work. The computer architecture community has studied the problem
of weak memory models (MM) for a long time, for a detailed survey see [3,2].
However, the problems of MMs in programming languages seems to be more
complex [20]. Most of the work has focused on alternative definitions of memory
models and proving the guarantee of sequential consistency for data race free
programs [16,1,9,23]. E.g., Cenciarelli et al. [9] describe a subset of the JMM
using the theory of configuration structures. However, they do not attempt to
prove validity of compiler transformations or compliance with any hardware
memory model. Saraswat et al. [23] use denotations of commands as functions on
partial stores and transformations on them to describe a memory model for their
X10 language. Although their work is based on transformations of denotations, it
is hard to map their transformations to program transformations in a Java-like
language because they use a language with restricted control-flow constructs.
Moreover, both [9] and [23] use languages that do not have any general loops,
and we do not see any easy way of adding them. To our knowledge, the only
work dealing with a program transformation in a weak memory model is the
POPL paper about the JMM [18]. Our paper shows a corrected version of their
proof, together with counterexamples for cases that seem to be hard to fix.
Brookes [8] studied program transformations in interleaved semantics using a
trace semantics, but his technique uses traces of global states, which makes it
hard to use with weak memory models.

There is some previous work that points out defects in the current JMM.
While looking for an alternative description based on event structures, Cencia-
relli et al. [9] observed that reordering of independent statements is an invalid
transformation. In our own previous work we found several minor flaws [5].

Future Work. Our main objective is to analyse the effects of the above trans-
formations on programs. We conjecture that for data race free programs these
transformations cannot introduce new behaviours, and for programs with data
races they satisfy some form of out-of-thin-air guarantees. To analyse the trans-
formations we intend to continue using the trace semantics, and employ ideas
from the trace semantics literature on shared memory and concurrency [7,22,14].
We believe that the JMM ought to be revised to admit all the transformations
considered in this paper.

On Validity of Program Transformations in the Java Memory Model 43

Acknowledgements

The authors enjoyed discussions on some of the examples in this paper with P.
Cenciarelli, M. Huisman, and G. Petri. We would especially like to thank G.
Petri, who supplied a simpler counterexample for the read after read elimination
transformation, and checked our counterexamples. The first author is supported
by a PhD studentship awarded by the UK EPSRC, grant EP/C537068. Both
authors also acknowledge the support of the EU project Mobius (IST-15905).
Some of the content of this paper was first presented at the VAMP’2007 work-
shop [6].

References

1. Adve, S.: The SC- memory model for Java (2004), http://www.cs.uiuc.
edu/∼sadve/jmm

2. Adve, S.V., Aggarwal, J.K.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

3. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Computer 29(12), 66–76 (1996)

4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc, Boston (1986)

5. Aspinall, D., Ševč́ık, J.: Formalising Java’s data race free guarantee. In: Schnei-
der, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 22–37. Springer,
Heidelberg (2007)

6. Aspinall, D., Ševč́ık, J.: Java memory model examples: Good, bad and ugly. Tech-
nical Report EDI-INF-RR-1121, School of Informatics, University of Edinburgh
(2007)

7. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput.
Sci. 375(1-3), 227–270 (2007)

8. Brookes, S.D.: Full abstraction for a shared variable parallel language. In: LICS,
pp. 98–109. IEEE Computer Society, Los Alamitos (1993)

9. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java memory model: Operationally,
denotationally, axiomatically. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421.
Springer, Heidelberg (2007)

10. Click, C.: Global code motion/global value numbering. SIGPLAN Not. 30(6), 246–
257 (1995)

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: Java(TM) Language Specification. In:
Threads and Locks, 3rd edn. Java Series, pp. 557–573. Addison-Wesley Profes-
sional, Reading (2005)

12. Intel. A formal specification of Intel Itanium processor family memory ordering
(2002), http://www.intel.com/design/itanium/downloads/251429.htm

13. Intel. Intel 64 architecture memory ordering white paper (2007), http://www.
intel.com/products/processor/manuals/318147.pdf

14. Jeffrey, A., Rathke, J.: A fully abstract may testing semantics for concurrent ob-
jects. Theor. Comput. Sci. 338(1-3), 17–63 (2005)

15. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

44 J. Ševč́ık and D. Aspinall

16. Maessen, J.-W., Shen, X.: Improving the Java memory model using CRF. In: OOP-
SLA, pp. 1–12. ACM Press, New York (2000)

17. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College
Park (2004)

18. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, pp. 378–391. ACM Press, New York (2005)

19. Paleczny, M., Vick, C., Click, C.: The Java Hotspot(TM) server compiler. In:
USENIX Java(TM) Virtual Machine Research and Technology Symposium (April
2001)

20. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6), 445–455 (2000)

21. Pugh, W., Manson, J.: Java memory model causality test cases (2004),
http://www.cs.umd.edu/∼pugh/java/memoryModel/CausalityTestCases.html

22. Reynolds, J.C.: Toward a grainless semantics for shared-variable concurrency. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 35–48.
Springer, Heidelberg (2004)

23. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: ACM 2007 SIGPLAN Conference on Principles and Practice of Parallel
Computing. ACM Press, New York (2007)

24. Sparc International. Sparc architecture manual, version 9 (2000),
http://developers.sun.com/solaris/articles/sparcv9.html

25. Ševč́ık, J.: The Sun Hotspot JVM does not conform with the Java memory model.
Technical Report EDI-INF-RR-1252, School of Informatics, University of Edin-
burgh (2008)

A JMM Definitions

The following definitions are mostly from [11,18]; however, we have weakened
the definition of execution legality as suggested in [5]. We use letters θ for thread
names, m for synchronisation monitor names, and v for variables (i.e., memory
locations, in examples, x, y, v etc.). The abstract type V will denote values.

The starting point is the notion of action.

Definition 1. An action is a memory-related operation; it is modelled by an
abstract type A with the following properties: (1) Each action belongs to one
thread, we will denote it by T (a). (2) An action is one of the following action
kinds:

– volatile read of v,
– volatile write to v,
– normal read from v,

– normal write to v,
– lock on m,
– unlock on m,

– thread start,
– thread finish,
– external action.

We denote the action kind of a by K(a), the action kinds will be abbreviated to
Rdv(v), Wrv(v), Rd(v), Wr(v), L(m), U(m), St, Fin, Ex. An action kind also
includes the associated variable or monitor. The volatile read, volatile write, lock,
unlock, start, finish actions are called synchronisation actions.

The JMM also defines thread spawn and join action kinds. We omit these for
simplicity.

On Validity of Program Transformations in the Java Memory Model 45

Definition 2. An execution E is a tuple E = 〈A, P, ≤po, ≤so, W, V 〉, where
A ⊆ A is a set of actions; P is a program, represented as a thread-indexed set of
memory traces; the partial order ≤po⊆ A × A is the program order, which is a
union of total orders on actions of each thread; ≤so⊆ A×A is the synchronisation
order, which is a total order on all synchronisation actions in A; V :: A ⇒ V is
a value-written function that assigns a value to each write from A; W :: A ⇒ A
is a write-seen function that assigns a write to each read action from A, the
W (r) denotes the write seen by r, i.e. the value read by r is V (W (r)).

Definition 3. In an execution with synchronisation order ≤so, an action a
synchronises-with an action b (written a <sw b) if a ≤so b and a and b sat-
isfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4. The happens-before order of an execution is the transitive closure
of the composition of its synchronises-with order and its program order, i.e.
≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. We consider single-thread
programs as sets of sequences of pairs of an action kind and a value, which we
call traces. A multi-thread program is a set of single-thread programs indexed
by thread identifiers.

Definition 5. Given an execution E = 〈A, P, ≤po, ≤so, W, V 〉, the action trace
of thread θ in E, denoted TrE(θ), is the list of actions of thread θ in the order
≤po. The trace of thread θ in E, written TrE(θ) is the list of action kinds and
corresponding values obtained from the action trace (i.e., V (W (a)) if a is a read,
V (a) otherwise).

By writing t ≤ t′ we mean that t is a prefix of t′, set(t) is the set of elements of
the list t, ι(t, a) is an index i such that ti = a, or 0 if a /∈ set(t). For an action
kind-value pair p = 〈k, v〉 we will use the notation πK(p) for the action kind k
and πV (p) for the value v. We say that a sequence s of action kind-value pairs
is sequentially valid with respect to a program P if t ∈ P . A sequentially valid
trace t is finished for P if there is no sequentially valid trace t′ > t. The operator
++ stands for trace concatenation.

To establish reasonable properties of concurrent programs we assume reason-
able properties of the underlying sequential language:

Definition 6. We say that program P is well-formed if sequential validity of
trace t in P implies:

1. any trace t′ ≤ t is sequentially valid (prefix closedness),
2. if the last action of t is a read with value v, then the trace obtained from t

by replacing the value in the last action by v′ is also sequentially valid in P
(final read value independence),

46 J. Ševč́ık and D. Aspinall

3. |t| > 0 implies πK(()t0) = St (start action first),
4. πK(()ti) = Fin implies i = |t| − 1 (finish action last).
5. θ = θinit implies ∀i. 1 ≤ i < |t| − 1 → ∃v. πK(()ti) = Wr(v) ∨ πK(()ti) =

Wrv(v) and πK(()t|t|−1) = Fin (initialisation thread only contains writes).

The well-formedness of programs should not be hard to establish for any rea-
sonable sequential language.

The next definition places some sensible restriction on executions.

Definition 7. We say that an execution 〈A, P, ≤po, ≤so, W, V 〉 is well-formed
if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads θ

different from the thread of l, the number of locks in θ before l in ≤so is the
same as the number of unlocks in θ before l in ≤so.

7. Program order is intra-thread consistent: for each thread θ, the trace of θ in
E is sequentially valid for Pθ.

8. ≤so is consistent with W : for every volatile read r of a variable v we have
W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.

9. ≤hb is consistent with W : for all reads r of v it holds that r ≤hb W (r) and
there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then W (r) = w.

10. The initialisation thread θinit finishes before any other thread starts, i.e.,
∀a, b ∈ A. K(a) = Fin ∧ T (a) = θinit ∧ K(b) = St ∧ T (b) = θinit → a ≤so b.

The following definition of legal execution constitutes the core of the Java Mem-
ory Model. In our work, we use a weakened version of the memory model that
we suggested in [5] and which permits more transformations than the original
version. In Tbl. 1, we label this version by ‘JMM-Alt’.

Definition 8. A well-formed execution 〈A, P, ≤po, ≤so, W, V 〉 with happens be-
fore order ≤hb is legal if there is a finite sequence of sets of actions Ci and
well-formed executions Ei = 〈Ai, P, ≤poi , ≤soi , Wi, Vi〉 with happens-before ≤hbi

and synchronises-with <swi such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A,
and for each i > 0 the following rules are satisfied:

1. Ci ⊆ Ai.
2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r ≤hbi

W (r),
3. Vi|Ci = V |Ci .
4. Wi|Ci−1 = W |Ci−1 .

On Validity of Program Transformations in the Java Memory Model 47

5. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.
7. If y ∈ Ci is an external action and x ≤hb y then x ∈ Ci.

The original definition of legality from [11,18] differs in rules 2 and 6, and adds
rule 8:

2. ≤hbi |Ci =≤hb |Ci .
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1 and Wi(r) ∈ Ci−1.
8. If x <sswi y ≤hbi z and z ∈ Ci − Ci−1, then x <swj y for all j ≥ i, where

<sswi is the transitive reduction of ≤hbi without any ≤poi edges, and the
transitive reduction of ≤hbi is a minimum relation such that its transitive
closure is ≤hbi .

The reasons for weakening the rules are invalidity of reordering of independent
statements, broken JMM causality tests 17–20 [21], and redundancy. For details,
see [5,6].

For reasoning about validity of reordering, we define observable behaviours of
executions and programs. Intuitively, a program P has an observable behaviour
B if B is a subset of external actions of some execution of P , and B is downward
closed on happens-before order (restricted to external actions). The JMM cap-
tures non-termination as a behaviour in the definition of allowable behaviours.

Definition 9. An execution 〈A, P, ≤po, ≤so, W, V 〉 with happens-before order
≤hb has a set of observable behaviours O if for all x ∈ O we have y ≤hb x
or y ≤so x implies y ∈ O or T (y) = θinit. Moreover, there is no x ∈ O such that
T (x) = θinit.

The allowable behaviours may contain a special external hang action if the ex-
ecution does not terminate. We will use the notation Ext(A)) for all external
actions of set A, i.e., Ext(A) = {a | K(a) = Ex}.

Definition 10. A finite set of actions B is an allowable behaviour of a program
P if either

– There is a legal execution E of P with a set of observable behaviours O such
that B = Ext(O), or B = Ext(O) ∪ {hang} and E is hung.

– There is a set O such that B = Ext(O) ∪ {hang}, and for all n ≥ |O| there
must be a legal execution E of P with set of actions A, and a set of actions
O′ such that (i) O and O′ are observable behaviours of E, (ii) O ⊆ O′ ⊆ A,
(iii) n ≤ |O′|, and (iv) Ext(O′) = Ext(O).

B Proof

We prove validity of irrelevant read elimination, elimination of redundant write
before write, elimination of redundant read after write, and reordering of non-
volatile memory accesses to different variables.

48 J. Ševč́ık and D. Aspinall

The plan of the proof is straightforward—for any behaviour B of a trans-
formed program P ′ we need to show that the original program P had the same
behaviour. Given a legal execution E′ of P ′ with behaviour B we build a le-
gal execution of P with (almost) the same behaviour. Using this construction,
we will prove that transformations do not introduce new allowable behaviours
(Def. 10), except hanging. The issues with hanging are tricky—its definition does
not correspond with the committing semantics.

Effects of Transformations on Traces. First, we define the notion of trans-
formed program loosely enough so that redundant read/write elimination, irrel-
evant read elimination and reordering fit our definition. The idea is that for any
trace of the transformed program there should be a trace of the original program
that is just reordered with the redundant and irrelevant operations added.

To describe the effects of irrelevant read elimination formally we define wild-
card traces that may contain star ∗ symbols instead of some values. For example,
sequence [〈Wr(x), 2〉, 〈Rd(y), ∗〉, 〈Rd(x), 3〉] is a wildcard trace. If t̂ is a wildcard
trace, then [[t̂]] stands for a family of all (normal) traces with the ∗ symbols
replaced by some values.

Given a wildcard trace t̂, we say its ith component t̂i = 〈a, v〉 is

– irrelevant read if a is a read and v is the wildcard symbol ∗,
– redundant read if a is a read of some x and the most recent access of x is a

write of the same value, and there is no synchronisation or external action
in between; formally, there must be j < i such that t̂j = 〈Wr(x), v〉 and for
each k such that j < k < i it must be that t̂k = 〈Wr(y), v′〉 or t̂k = 〈Rd(y), v′

for some y = x and some v′,
– redundant write if a is a write to some x and one of these two cases holds:

(i) the write is overwritten by a subsequent write to the same variable and
there are no synchronisation or external actions, and no read of x in between,
or (ii) t̂i is the last access of the variable in the trace and there are no
synchronisation or external actions in the rest of the trace.

Definition 11. We will say that P ′ is a transformed program from P if for any
trace t′ in P ′ there is a wildcard trace t̂ and a function f :: {0, . . . , |t′| − 1} →
{0, . . . , |t̂| − 1} such that:

1. all traces in [[t̂]] are sequentially valid in P .
2. if t′ is finished in P ′ then all traces in [[t̂]] are finished in P ,
3. function f is injective,
4. the action kind-value pair t′i is equal to t̂f(i),
5. for 0 ≤ i ≤ j < |t′| we have that f(i) ≤ f(j) if any of the following reordering

restrictions holds:
(a) t′i or t′j is a synchronisation or external actions, or
(b) t′i and t′j are conflicting memory accesses, i.e., accesses to the same

variables such that at least one is a write,
6. if there is an index j < |t̂| such that f(i) = j for any i, then t̂j must be a

redundant read, a redundant write, or an irrelevant read.

On Validity of Program Transformations in the Java Memory Model 49

A multi-thread program P ′ is a transformed program of P if all single-thread
programs of P ′ are transformed programs of single-thread programs of P with
the same index. For space reasons we omit the link between the concrete syn-
tax and the meaning in terms of traces. It is straightforward to establish by
induction on derivation in operational semantics that if we obtain a program
P ′ from a program P by a memory trace preserving transformation, or by an
elimination of a redundant read after write, or by an elimination of a redundant
write before write, or by an elimination of an irrelevant read, or by reordering
of independent non-volatile memory accesses, then the set of traces of P ′ is a
transformed program from the set of traces of P . The only non-trivial part is
proving that reordering of independent non-volatile memory accesses on source
level corresponds to a trace transformation if the trace of the transformed pro-
gram ends in between the reordered statements. In this case we can consider the
missing part of the statement as being eliminated (either as a redundant write
or an irrelevant read), and finish the proof.

Transforming Executions. Let P ′ be a program transformed from P , and
E′ = 〈A′, P ′, ≤′

po, ≤′
so, W

′, V ′〉 be a legal execution of P ′. Our goal is to construct
a legal execution E of P with the following properties with the same observable
behaviours.

The main idea of the construction is to take the memory trace of each thread
in E′ and use Def. 11 to obtain a trace of P , and mapping of actions and program
order of E′ to actions and program order of our newly constructed execution.
We will also need to restore actions that were eliminated by the transformation
and construct the visibility functions W and V for the reconstructed actions.

Given an execution E′ = 〈A′, P ′, ≤′
po, ≤′

so, W
′, V ′〉 we construct untrans-

formed execution E of P : for each thread θ = θinit let TrE′(θ) be the trace
of θ in E′. By the definition of transformed program (Def. 11), there must be
a wildcard trace of P , let’s denote it by t̂θ and corresponding transformation
function fθ.

For the initialisation thread θinit we define

t̂θinit = [〈St, 0〉]++TrE′(θinit)|W ++InitE++[〈Fin, 0〉],

where TrE′(θinit)|W is the trace of the initialisation thread of E′ restricted
to (possibly volatile) write actions, and InitE is any sequence of initialisation
writes for all variables that appear in any component of t̂θ (θ = θinit), but
are not initialised in E′. We set fθinit(i) = i if 0 ≤ i < |TrE′(θinit)| − 1, and
fθinit(|TrE′(θinit)| − 1) = |t̂θinit | − 1.

From the traces t̂θ we build action traces tθ of the same length. For 0 ≤ i < |t̂θ|,
we set the i-th component of tθ to be

– f−1
θ (i)-th element of TrE′(θ) if f−1

θ (i) exists, or
– fresh action a such that K(a) = t̂θi and T (a) = θ, if there is no j such that

i = fθ(j).

We use the action traces tθ to construct our untransformed execution E =
〈A, P, ≤po, ≤so, W, V 〉:

50 J. Ševč́ık and D. Aspinall

1. A = {tθi | 0 ≤ i < |t̂θ|},
2. order ≤po is the order induced by the traces tθ, i.e.

≤po= {(a, b) | T (a) = T (b) ∧ ι(tT (a), a) ≤ ι(tT (a), b)}

3. order ≤so is equal to ≤′
so,

4. the write-seen function W (a) is
– W ′(a) if a ∈ A′,
– most recent write8 to x in ≤hb if a /∈ A′ and a is a read from x,
– a otherwise, i.e., if a is not a read,

5. V (a) is the corresponding value in the wildcard trace t̂θ, i.e., V (a) =
πV (t̂T (a)

ι(tT (a),a)
).

Lemma 1. Let P ′ be a transformation of P , E′ be a well-formed execution of
P ′ with happens-before order ≤′

hb and E be the untransformed execution of P
with happens-before order ≤hb. Let x and y be two actions from E′ such that any
of them is synchronisation action, or they are conflicting memory accesses9, or
T (x) = T (y). Then x ≤hb y if and only if x ≤′

hb y.

Proof. Observe that by point 3 of Def. 11 we have x ≤po y iff x ≤′
po y for all x

and y from E′ such that x or y is a synchronisation or external action, or x and y
are conflicting memory accesses. By induction on the transitive closure definition
of ≤hb we get that for any z ≤hb y either z ≤po y or there is a synchronisation
action s such that z ≤po s ≤′

hb y. With the observation above we conclude that
x ≤hb y implies x ≤′

hb y if x is in E′ and x or y is a synchronisation action, or
x and y are conflicting memory accesses, or T (a) = T (b). On the other hand,
we prove that z ≤′

hb x implies that either z ≤′
po x or there is a synchronisation

action s such that z ≤′
po s ≤hb x by induction on the definition of ≤′

hb. This
implies the other direction of the equivalence.

Lemma 2. Let P ′ be a transformation of P , E′ be a well-formed execution of P ′

and E be the untransformed execution of P . Then E is a well-formed execution
of P .

Proof. Properties 1–8 and 10 of well-formedness (Def. 7) are satisfied directly by
our construction. We prove property 9, the hb-consistency, i.e., that for all reads
in E, r ≤hb W (r) and there is no write w to the same variable as W (r) such
that W (r) <hb w ≤hb r. There are two cases: (i) for r being an irrelevant read
or a redundant read the hb-consistency is satisfied trivially by construction, (ii)
for r ∈ E′, we get the result using hb-consistency of E′ and Lemma 1.

Lemma 3. Let P ′ be a transformation of P , E′ be a legal execution of P ′ and
E be the untransformed execution of P . Then E is a legal execution of P .

8 Note that the initialisation writes in thread θinit happen-before any read action, so
a most recent write always exists.

9 I.e. a read and a write to the same variable, or two writes to the same variable.

On Validity of Program Transformations in the Java Memory Model 51

Proof. Let {Ci}n
i=0 be a sequence of committing sets and {E′

i}n
i=0 the corre-

sponding justifying executions for E′. Let Ei be the untransformed executions
of E′

i. Let’s define Cn+1 as the set of actions of E and En+1 = E. Then it is
straightforward to show that the committing sequence {Ci}n+1

i=0 with justifying
executions {Ei}n+1

i=0 satisfies the conditions (1), (3), (4) and (6) of Def. 8. To
establish rules (2), (5) and (7) we use Lemma 1 and legality of E′.

In the following we will write C≤so,≤po(X) to denote ≤so and ≤po downward
closure of X without the initialisation actions, i.e.

C≤so,≤po(X) = {y | ∃x ∈ X. y ≤po∪so x ∧ T (y) = θinit},

where ≤po∪so= (≤po ∪ ≤so)+. We will often use CE(X) for C≤so,≤hb
(X), where

E has synchronisation order ≤so and happens-before order ≤hb. The set CE(X)
is an observable behaviour of execution E with actions A for any X ⊆ A.

Lemma 4. Let P ′ be a transformation of P , E′ be a legal execution of P ′

with observable behaviour O′, and E be the untransformed execution of P . Then
Ext(CE(O′)) = Ext(O′).

Proof. The direction ⊇ is trivial, because Ext(−) is monotone and CE(O′) ⊇ O′.
On the other hand, if an external action x ≤po∪so y ∈ O′, then for any

z ≤po∪so y there is s such that z ≤po s ≤′
po∪so y by induction on the transitive

definition of ≤po∪so. By Lemma 1 we get x ≤′
po∪so y, thus x ∈ O′.

The main theorem says that transforming a program using Def. 11 cannot in-
troduce any new behaviour, except hanging.

Theorem 1. Let P ′ be a program transformed from P . If B is an allowable
behaviour of P ′ then B \ {hang} is an allowable behaviour of P .

Proof. By Def. 10, there must an execution E′ of P ′ with observable behaviour
O′ such that B = Ext(O′) or B = Ext(O′) ∪ {hang}.

Let’s take an untransformation E of E′ and let O = CE(O′). Using Lemma 4,
we have Ext(O) = Ext(O′). Since O is an observable behaviour of E and E is a
legal execution of P (Lemma 3), the set B \ {hang} = Ext(O) is an allowable
behaviour of P .

Safe Cross-Language Inheritance

Kathryn E. Gray

Computer Laboratory, University of Cambridge, UK
kathryn.gray@cl.cam.ac.uk

Abstract. Inheritance is a standard means for reuse and for interfacing
with external libraries. In a multi-language software product, extend-
ing a class written in a statically-typed language with a dynamically-
typed class can require a significant number of manual indirections and
other error-prone complications. Building on our previous interoperabil-
ity work, we introduce a technique that allows safe, easy inheritance
across languages. We demonstrate our technique for cross-language in-
heritance with a statically-typed object calculus and a dynamically-typed
object calculus, where a statically-typed class can extend a dynamically-
typed one and vice versa. We provide a proof sketch of soundness, as well
as a guarantee that dynamic type errors do not arise due to statically-
typed expressions.

1 Crossing Language Boundaries

Object-oriented libraries often require that clients extend a class. For a multi-
language product, extending the proper class may require developing a super-
fluous bridge between two languages with manual data marshaling, dispatch-
ing, and dynamic type-checking. Providing access to useful libraries can lead
to language developers manually building these bridges for each relevant class
(MrEd [1], Groovy [2], etc.), developing reflective APIs (MLj, Jython, JScheme,
Bigloo, etc.), or using an external tool. All of these techniques add complex-
ity to developing programs in multiple languages and allow conversion/checking
omissions that violate language safety and cause obscure runtime errors.

In our previous work, Java+dynamic [3], we demonstrated a compiler tech-
nique for automatically inserting dynamic checks and data conversions in pro-
grams that connect two languages, namely Java and PLT Scheme. Runtime
type-errors report which value failed to match a required type specification and
blame the origin of this value for the program fault. The programmer should
expect a Scheme value, never a Java value, to be blamed for any dynamic type
fault. However, inheritance of a Java class from Scheme performed no data con-
versions and caused misallocated blame, and inheritance of a Scheme class from
Java carried the same problems while requiring an external type specification.

We expand our support for interoperability by modifying the dynamic dis-
patch mechanism of a class so that cross-language inheritance automatically
performs conversions and cannot result in dynamic type errors within typed an-
cestors or descendants. We present this in terms of a combined calculus, with

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 52–75, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Safe Cross-Language Inheritance 53

class Wizard extends Character {

dynamic spellbook;

Action response() {
dynamic plan = scheme.control.analyze(items ...); ...
if (plan.fire())
return spellbook.invoke("fire");

...
}
Stat[] getStats(boolean current) { ... }

}

(module control
(define (analyze items opponent partners)

(send opponent get-stats #t) ...))

Fig. 1. A partial Java+dynamic and PLT Scheme program

typed classes, untyped classes, and untyped functions. Our calculus also models
the interoperability support from our previous implementation. We show the full
model sound and we further show that dynamic type errors only arise from dy-
namic expressions, building on the work of Tobin-Hochstadt [4] and Wadler [5]
and their proofs of blame assignment for functional language combinations.

1.1 Interoperability Background: Java+dynamic

Our Java+dynamic language extension allows programs to mix Scheme modules
and Java classes without concern for data representations or dynamic checks.
The extension allows Java programmers to import Scheme values and store them
locally; it also allows Scheme programmers to interact with Java objects.

Our Java compiler automatically detects Java expressions that use Scheme
values and annotates the program with conversions and dynamic checks based
on the local context. An example program appears in Fig. 1 where a Java game
framework interfaces with a Scheme agent.

The Wizard class imports function values from the control module using
a ‘scheme.’ naming convention; this prefix directs the compiler to extract val-
ues from Scheme modules instead of Java packages. Since values exported from
Scheme modules do not provide type information (and may not have valid Java
types), Java+dynamic uses a dynamic keyword in place of a type specifica-
tion for references to Scheme values. Java values may also be assigned to these
variables, hiding their static type information.

During compilation, each use of plan, spellbook, or analyze is annotated
with type expectations to be checked at runtime. The value returned from
plan.fire() must be a (conversion of a) Java boolean value or violate Java’s

54 K.E. Gray

type safety. Therefore, the compiler inserts a runtime check (and data conver-
sion) around this expression that isolates the point of failure if an incompatible
value is produced. Similarly, the value returned by response must behave in
all circumstances as an instance of the Action class; the compiler inserts an-
other check and a conversion that contains the Action type signature. Failure
to adhere to these type expectations causes an exception that reports a faulty
value and the source location where the conversion was introduced; this informs
programmers that the error lies at the language boundary and not within the
typed portion of the program.

Within the control module, the analyze function invokes a method of the
opponent parameter using send and provides (a Scheme representation of) a
boolean. In our example, this object is an instance of a Java class, and its meth-
ods do not expect the Scheme representations of values. We cannot statically
determine whether a Scheme program respects the Java type requirements and
data expectations, nor should we expect Scheme programmers to perform nec-
essary conversions that tie functions to Java. Therefore, our compiler inserts
conversions for Java values used in dynamically typed expressions to Scheme
representations.

Runtime checking is the key to safe interoperability; however, checking that
the value returned by response fully complies with the Action type signature
cannot occur immediately. Without static information, we cannot assess the be-
havior of higher-order values. Instead, we check that an object support fields and
methods with the required names, then embed objects in higher-order wrappers
that perform type-directed conversions and checks at method and field bound-
aries. Unaccessed members are never checked.

This example also illustrates the problem with extending classes while using
multiple languages. Although the Wizard class does not require manual checks
and conversions, it does separate the Wizard class into two implementations,
increasing the difficulty of refining the class in the future. With safe inheritance,
the Wizard class could be written in Scheme for flexibility while allowing future
refinements in Scheme or Java.

Roadmap

We illustrate our technique to support multi-language class inheritance in Sect. 2.
In Sect. 3, we present the formal representations of our language. Sections 4 and 5
demonstrate that our model, and therefore our style of interoperability, is sound
and that dynamic type errors do not arise from typed expressions.

2 Safe Inheritance

An overridden method in Java always accepts the same number and type of pa-
rameters and always produces the same type of value. In PLT Scheme, the type
and number of parameters and type of return for a method can change on each
class extension. With type-checked subtype inheritance, statically maintaining

Safe Cross-Language Inheritance 55

Fig. 2. Safe interactions along super calls

these invariants is expected by programmers and compilers; with dynamically-
checked inheritance, the programmer may rely on the ability to modify the kind
of value produced or expected. A cross-language inheritance system should sup-
port the static guarantees when considering a member of the class-hierarchy
within typed definitions and support the lack of guarantee when considering a
member within untyped definitions.

Figure 2 includes a section of a class hierarchy spanning typed and untyped
languages; the Character and SquareWizard classes are implemented in the
typed language, while Wizard is implemented in the untyped one. As an untyped
object, an instance of Wizard may assign any value to level and spellbook;
while as a typed object, an instance of SquareWizard must assign integers to
level; similar constraints apply to the returned value of the stated methods.

In addition to the language boundaries discussed in Sect. 1.1, objects also
cross language boundaries at super calls and self-dispatches within an object.
As dynamically-checked languages may not support compile-time analysis and
inspection, some wrapper insertions must now occur during evaluation.

2.1 Safety with Untyped Parent

Within SquareWizard, a compiler can inject wrappers on all super calls to con-
vert typed parameters and checks to ensure that the returned value matches
the stated return type. These inserted wrappers preserve the type expectations,
and thus type safety, of any SquareWizard object when all methods are overrid-
den. It is unlikely for a class to override every method of its parent and distant
ancestors, yet without this property the inheritance is unsafe.

A SquareWizard object, s, may be passed to a method expecting a Character.
If the getStats method is overridden in Wizard and not in SquareWizard, then
any call to getStats on s does not pass through any wrappers and produces

56 K.E. Gray

an untyped value. This can result in dynamic errors elsewhere in the program
as the compiler did not anticipate the possibility of an untyped value within
Character.

We resolve this by automatically overriding every method (not directly over-
ridden) when a typed class extends an untyped one. The body of each inserted
method contains only a super call forwarding the necessary parameters; the types
of each inserted method reflect the original type specifications of the method,
by examining the types of the nearest typed ancestor and using dynamic when
no applicable ancestor is found. Thus all calls, including self-references, pass
through a wrapper to perform conversions and checks. The SquareWizard ex-
tension now serves as a bridge between languages in the class hierarchy as well
as serving as behavioral extensions.

2.2 Safety with Untyped Child

Some dynamic languages provide means of modifying code after compilation,
whether through macros, dynamic evaluation, explicit method insertion, or mu-
table method bodies. While we do not model these features particularly, we re-
spect the dynamic nature of our untyped language and do not statically analyze
or annotate untyped methods or expressions. We do statically inspect untyped
class definitions and insert class-hierarchy information; however, this process
could be delayed until evaluation in a dynamic implementation.

The untyped Wizard class from our example also serves as a bridge between
the typed ancestors and any untyped children. As with SquareWizard, problems
can arise in Wizard objects calling inherited (non-overridden) methods from
Character with untyped parameters and ill-formed primitive values. Therefore,
we augment the untyped class definition with method declarations for each in-
herited (non-overridden) method, with a super call expression.

Wrappers are necessary when a Wizard instance invokes a super call as the
parent class is statically-typed, however none are present in the method as no
analysis has occurred. In order to inject wrappers dynamically, each untyped
class must contain a runtime-representation of its parent’s type. This type in-
formation is used by the super-call dispatch to insert checks and wrappers for
parameters and returned values.

By embedding the parent type in the class while delaying wrapping values
until runtime, we respect the typed class hierarchy’s static guarantees and avoid
static analysis of the dynamic class hierarchy’s method implementations. This
solution can support delayed method body definition and insertion, although our
model does not support these features.

Figure 2 also demonstrates the insertion of wrappers on super calls through
an untyped parent or child. The wrappers depicted are the conversion for the
current object, i.e. this; a wrapped untyped-object conforms to the types of the
immediate typed parent on super calls, and a wrapped typed object enforces
its type expectations on its untyped parent. Type errors only occur within the
untyped class body, even with a typed subclass instantiation.

Safe Cross-Language Inheritance 57

def ::=
| class cid {field∗ method∗ }
| class cid1 extends cid2 {field∗ method∗ }
| (defineU id valueU)
| (classU cid (fid∗) (methodU ∗))
| (classU-extends cid1 cid2 (fid∗) (methodU ∗))

Fig. 3. Definitions in J+S

J-forms

field ::= type fid ;

method ::=
| type mid(type0 id0, .. , typen idn) { exprT }

exprT ::= new cid (exprT0, .. , exprTn)
| get-field (exprT , fid)
| call (exprT , mid , exprT0 .. , exprTn)
| super (mid , exprT0, .. , exprTn)
| if (exprT1) exprT2 else exprT3

| instanceof (exprT , type)
| cast(exprT , type)
| app(exprT , exprT0 .. , exprTn)
| this | id | valueT

valueT ::= trueT | falseT
type ::= cid |boolean |dynamic

S-forms

methodU ::= (mid (id0 .. idn) exprU)

exprU ::=
| (newU cid exprU0 .. exprUn)
| (get-fieldU exprU fid cid)
| (callU exprU mid exprU0..exprUn)
| (superU thisU (mid : cid)

exprU0 .. exprUn)
| (ifU exprU1 exprU2 exprU3)
| (exprU exprU0 .. exprUn)
| thisU | id | valueU

valueU ::=
| trueU
| falseU
| (λ (id0 .. idn) exprUA)

Fig. 4. J+S language

3 J+S Language

In modeling cross-language inheritance, we combine a statically typed object-
oriented calculus, J, with a dynamically-checked joint object-oriented and func-
tion calculus, S. Definitions in our language, see Fig. 3, are either typed classes
with semantics similar to Java, untyped classes with semantics similar to Scheme,
or function definitions. The typed J-forms, on the left of Fig. 4, may appear only
in typed classes. The untyped S-forms, marked with a U on the right of Fig. 4,
may appear only in untyped classUs and value definitions.

The J+S language builds on our previous model [6], represented in PLT
Redex[7]. The PLT Redex model included a small-step semantics and annotation
relation supporting typed class inheritance, and value conversion, but restricted
the forms of cyclic dependencies, did not contain casts, nor cross-language in-
heritance. This extension supports these features and has been proven sound.

58 K.E. Gray

embeds ::=
| guard exprA |(typeA,expr)

| mimic exprA |(typeA,expr)

Fig. 5. Guards and mimics

A program in J+S consists of a sequence of def s followed by an expr, which
is an exprU or exprT. Although we present one language, the J and S portions
are syntactically disjoint to represent a single program written in two languages.
Each class name, cid, in the def sequence must be unique, and we assume that
ancestors precede descendants in the sequence. Within a class, the field, variable,
and method names – fid, id, and mid – can intersect provided no duplicate
fields, methods, or method parameters occur. Typed values cannot occur in
untyped expressions, and vice-versa. We model different value representations,
with suffixes, to demonstrate primitive value conversions. A new expression may
only refer to a typed class name, while a newU expression may only refer to an
untyped class.

A superU expression contains the current class name as a means of repre-
senting the source location. The get-fieldU expression’s class name specifies a
particular field definition to allow duplicate field names in a class hierarchy, this
reflects existing models and dynamic class systems [8,9,10]. The app J-expression
only applies untyped functions and produces untyped values.

We do not support higher-order classes or mutation. The first omission allows
us to simplify evaluation; higher-order classes could be supported within our
model by duplicating class annotation rules within the reduction rules. Model-
ing mutation adds complexity to the model that is not inherent in supporting
interoperability; our representation and rules should support mutable fields.

3.1 Safe Interoperability – Mimic and Guard

Our compilation technique provides safe interoperability by expanding the source
language to insert wrappers that transfer values between typed and untyped ex-
pressions. We use two wrappers: one that converts typed-values into untyped
expressions – a guard; and another that converts untyped values into typed
expressions – a mimic. Both wrappers contain an embedded expression, a type,
and a source location (represented as an expression), see Fig. 5; reductions involv-
ing these expressions use the embedded type information to check and convert
values during higher-order accesses.1

From our initial example, Fig. 1, the expression returned from response is
embedded in a mimic with type Action and the expression items is embedded
in a guard with type Item[]. A mimic injects a runtime check as well, so that
only valid untyped values are converted. A failed mimic expression produces an
error containing the source of the failure (the expression) and the incorrect value.

1 These forms assume the role of mirrors and unmirrors, respectively, from Gray [3].

Safe Cross-Language Inheritance 59

Fig. 6. Calling method getStats through embeddings

Guards. A guard is an interactive converter for typed to untyped values. No
checking precedes the conversion, as the embedded value must be a subtype of
the recorded type specification. Despite embedding a typed value, a guard ex-
pression is untyped. Conversions of primitive values occur immediately; thus a
reduction of guard trueT|boolean produces trueU.

A guard on an object reduces to a special value containing the object and
redirecting all future access to the object. The left side of Fig. 6 presents a
method call to a guarded Wizard object (the dark oval). The guard injects a
mimic expression (the light octagon) onto the parameters of the call using
the embedded type information. These mimicked values pass to the embedded
object’s method and the resulting value is embedded in a new guard.

Mimics. A mimic checks that an untyped value satisfies the embedded type,
and is then an interactive converter for untyped to typed values. A mimic ex-
pression is a typed expression, with the type matching the embedded specifica-
tion. As with guards, primitive values are immediately checked and converted
while object values remain embedded.

Figure 6, on the right, illustrates the interaction of a call to a mimicked
Wizard object. First, the mimic ensures that a Wizard satisfies the Character
specification. An object satisfies a class specification when the value contains a
superset of the specified class’s fields and methods; we do not require that the
object descend from the specified class as the object may itself be a guard or the
languages may have differing object representations. When passing parameters,
the mimic injects guards on the values to implement conversions and embeds
the result in a new mimic.

60 K.E. Gray

4 Modeling Interoperability

Safe interoperability requires that compilation wrap expressions that cross from
untyped contexts to typed contexts. We model this with a big-step annota-
tion relation, which additionally confirms that a source program is well-typed,
and a small-step evaluation-context relation. The reduction relation extends our
previous evaluation-context relation [6]. Our previous model supported typed
inheritance, object-instantiation, protected conversions for primitive and object
values, and pure functions. The small-step context-based annotation relation did
not support cyclic class references (i.e. a class could not include any descendent
types), nor was the interaction between the annotations and evaluation relations
shown to be sound. The model presented below removes the cyclic-reference re-
striction (preserving the common cyclic inheritance restriction) as well as adding
support for casts and mutual inheritance.

4.1 Annotated Language

Our annotation relation expands a prog into a progA, key differences between the
grammars are outlined in Fig. 7. Annotated class definitions include inheritance
information, including the type signature of the super class. Annotated field and
fieldU definitions include the name of their containing class; methodAs include
an exprTA.

In addition to the new productions shown, the exprA grammar includes the
exprTA forms and the exprUA forms. The exprUA grammar follows the exprU
grammar exactly except that all values are allowed. Untyped methods are not
expanded, but the body must be an exprUA.

Figure 7 contains the modified forms for typed expressions: a super call spec-
ifies the immediate parent and the implicit object; the get-field form specifies
the containing class; and expressions can be embedded in guards or mimics
with the annotated type. The error forms included in exprA are used to signal
errors within the reduction rules and are not generated by the annotation. An
object’s tag, either T or U, indicates whether the object came from new or
newU.

4.2 Type System and Annotations

Our annotation-type relation, Fig. 82, relies on a set of predicates that ensures 1)
unique class names 2) acyclic inheritance 3) unique method/field names within
each class and 4) unique top-level identifiers. Annotation proceeds when prog
is well-typed; otherwise the relation is ‘stuck’ and the program is ill-formed.
antProg builds a tuple-environment, Γ , that maps ids to typeAs andcids to
class types or dynamic (using cMap) and a definition map, Δ.

2 We use the semantics specification tool, Ott, for our relations. In our rules, a line
over an item indicates repetition; the tag on each line identifies the set of items.

Safe Cross-Language Inheritance 61

progA ::= defA∗ exprA

defA ::=
| class cid { ancestor ∗ fieldA∗ methodA∗ }
| (classU cid (ancestor ∗) (fieldAU ∗) (methodUAS))
| (defineU id valueU)

ancestor ::= (cid typeA)

typeA ::=
| classT cid [cid∗] [fieldT ∗] [methodT ∗]
| boolean
| dynamic

fieldA ::= type fid cid ;

exprA ::= . . .
| badCast
| mimicError (value, expr)
| dynamicError
| E [exprA]

exprTA ::= ...
| get-field (exprTA , fid , cid)
| get-field (exprTA , fid , dynamic)
| super (exprTA , mid , cid , exprTA0 , .. , exprTAn)
| value
| guard exprA |(typeA,expr)

| mimic exprA |(typeA,expr)

objValue ::=
| obj (cid , tag , parents , fieldVals)
| guardVvalue |(typeA,expr)

| mimicVvalue |(typeA,expr)

value ::= valueU | valueT | objValue

Fig. 7. Expanded language

� prog � progA

Γ = { ε , cMap (def1 .. defm , ε) } Δ = def1 .. defm
Γ, Δ � def1 � defA1 .. Γ, Δ � defm � defAm

Γ � expr �a exprA : typeA

def1 .. defm expr � defA1 .. defAm exprA
antProg

Fig. 8. Program expansion

Class annotation embeds ancestor types, annotates methods, and also cre-
ates the stubs for non-overridden methods discussed in Sect. 2. Figure 9 con-
tains the expansion of a typed class and the corresponding method creation.
The inheritMethod function maps the addMType function over the inher-
ited, non-overriden methods. The function inserts the correct type signature for
methods inherited from the nearest typed ancestor, emitting dynamic when no
information is available. Untyped class annotation proceeds similarly, with an
inheritMethodU that maps over a function to strip the type information from
inherited methods.

62 K.E. Gray

Γ, Δ � def � defA

Γ (cida) : dynamic
Δ (cida) .ancestors ⇒ ancestori

i
typeA = typeAnc(ancestori

i
)

Δ (cida) .fields ⇒ fieldAUj
j

Δ (cida) .methods ⇒ methodUA′
l
l

fieldA′
j
j

= inheritField(fieldAUj
j
) fieldn�cidfieldAn

n

methodUAp
p

= intersect(methodUA′
l
l
, methodm

m
)

method ′
p

p
= inheritMethod(methodUAp

p
, typeA)

Γ � methodm�(cid,cida)methodAm
m

Γ � method ′
p�(cid,cida)methodA′

p
p

Γ, Δ � class cid extends cida {fieldn
n
methodm

m }�
class cid { (cida dynamic) ancestori

i

fieldA′
j
j
fieldAn

n
methodA′

p
p
methodAm

m }

classEu

inheritMethod(methodUAS , typeA)

inheritMethod(methodUAS , typeA) ≡mapaddMTypemethodUAS typeA

addMType(methodUA, typeA)

addMType((mid (id1 .. idn) exprUA),

classT cid [cid∗][fieldT ∗][methodTi
i
mid type [type ′

1 .. type ′
n] methodT ′

p
p
]) ≡

type mid(type ′
1 id1, .. , type ′

n idn) {super(mid , id1, .. , idn)}
addMType((mid (id1 .. idn) exprUA), −) ≡

dynamicmid(dynamic id1, .. , dynamic idn) {super(mid , id1, .. , idn)}

Fig. 9. Class expansion

Γ � method �(c,a) methodA

Γ = {ε, typeMap} Γ ′ = {idi : typei ::
i
ε, typeMap}

Γ ′ � exprT�exprTA1 : typeA
Γ � typeA �d type Γ � exprTA1 : typeA �→type,exprT exprTA

Γ � type mid (typei idi
i
) { exprT }�type mid (typei idi

i
) { exprTA }

antMeth

Fig. 10. Method expansion

Method expansion, Fig. 10, expands Γ with the parameter bindings to an-
notate the body, which may be wrapped with an embed based on the expected
and actual types, and ensures that the derived type is a subtype of the declared
type. The � relation is tagged with the current and parent class name, these do
not change during expansion.3

3 For simplicity, we omit these tags unless needed in the rule.

Safe Cross-Language Inheritance 63

Γ � exprT�(c,a)exprTA : typeA

Γ � exprT�exprTA :

classT cid [cid∗] [fieldT ∗] [methodTr
r
mid type [typen

n
]methodT1 p

p
]

Γ � exprTn�exprTA1 n : typeAn
n

Γ � typeAn �d typen
n

Γ � exprTA1 n : typeAn �→typen ,exprTn exprTAn
n

Γ (type) : typeA

Γ � call(exprT , mid , exprTn
n
)�call(exprTA, mid , exprTAn

n
) : typeA

antCall

expr = super(mid , exprTn
n
)

typeA′ = classT cidc [cid∗] [fieldT ∗]

[methodTi
i
mid type [type ′

n
n
] methodT ′

l
l
]

Γ (cidc) : typeA′ Γ (cida) : dynamic Γ (type) : typeA
Γ � this : typeA′ �→dynamic,this exprTA

Γ � exprTn�(cidc,cida)exprTA′
n : typeAn

n
Γ � typeAn�dtype ′

n
n

Γ � exprTA′
n : typeAn �→dynamic,exprTn exprTAn

n

Γ � super(exprTA,mid , cida, exprTAn
n
) : typeA �→dynamic,expr

exprTA′′

Γ � expr�(cidc,cida)exprTA′′ : typeA
antSuperD

Fig. 11. Type annotation rules

Γ � typeR �d typeR′

Γ � typeR �d typeR
subDReflex

Γ � dynamic �d typeR
subDBottom

Γ � classT cid1 [cid3 m
m

cid2 cid4 p
p
] [fieldT ∗] [methodT ∗] �d

classT cid2 [cid5 n
n

] [fieldT ∗
1] [methodT ∗

1]

subDClassT

Fig. 12. Subtype relation

Expression annotation typically follows a similar pattern to the treatment of a
method body. Figure 11 contains a typical rule, antCall, and an atypical one,
antSuperD. Like method annotation, the call rule checks that the parameters
are subtypes of the specified types. Figure 12 contains the subtype relation for
expansion, in which dynamic is a subtype for all types. The derived expression
type and the specified type guide the embedding relation, Fig. 13, to insert
guards and mimics.

The antSuperD rule annotates a super call for an untyped parent. The
implicit this parameter is inserted within a guard for the current class type, and
the explicit parameters are embedded in appropriate guards. Each parameter’s
derived type determines the guarded expectation; however, each derived type
must be a subtype of the specified parameter.

64 K.E. Gray

Γ � exprTA : typeA �→(type,expr) exprTA′

typeA �= dynamic

Γ � exprTA : typeA �→dynamic,expr guard exprTA |(typeA,expr)

embGuard

Γ (cid) : typeA

Γ � exprTA : dynamic �→cid,expr mimic exprTA |(typeA,expr)

embMimicObj

Γ � exprTA : dynamic �→boolean,expr

mimic exprTA |(boolean,expr)

embMimicBool

Γ � exprTA : dynamic �→dynamic,expr exprTA
embDyn

typeA �= dynamic type �= dynamic

Γ � exprTA : typeA �→type,expr exprTA
embReflect

Fig. 13. Embedding Rules

Γ � exprT�(c,a)exprTA : typeA

Γ � exprT�exprTA1 : typeA1

Γ |− typeA1 �d type ∨ Γ |− type �d typeA1

exprTA2 = cast(exprTA1, type)
Γ � exprTA2 : typeA1 �→type,exprT exprTA
Γ (type) : typeA

Γ � cast(exprT , type)�exprTA : typeA
antCast

Fig. 14. Cast annotation

The embedding rules in Fig. 13 determine the embedding of expressions in
guards and mimics. Guards arise when an expectation, i.e. the declared type, is
dynamic. Mimics arise when the declared type is not dynamicand the de-
rived expression type is dynamic. Embeddings are not introduced in other
circumstances.

Cast annotation, Fig. 14, embeds the cast value (where necessary) such that
any embedding check occurs before the cast check, so that the value is properly
embedded as well as ensuring that casts remain nominal.

4.3 Operational Semantics

The final exprA of a progA reduces to a value or an error using a small-step eval-
uation context reduction. The reduce rule, Fig. 15 constructs an environment,
Γ , mapping class names to types and constructs Δ to represent the program

Safe Cross-Language Inheritance 65

� progA → progA′

Δ = defA0 .. defAn Γ = {ε, cAMap(defA0 .. defAn)}
Γ, Δ � E [exprA]→ exprA′

� defA0 .. defAn exprA → defA0 .. defAn exprA′
reduce

Fig. 15. Program reduction

Γ, Δ � exprA → exprA′

value = obj(cid , tag , parents , fieldVals)
Δ(cid) ⇒ class cid {ancestor ∗ fieldA∗

methodAm
m

type mid(type ′
n idn

n
) {exprTA}methodA′

p
p}

Γ, Δ � E [call(value,mid , v ′
n

n
)]→ E [exprTA{this |= value} {idn |= v ′

n}
n
]

call

typeA = classT cid [cid∗] [fieldT ∗]
[methodTr

r
mid type [type ′ n

] methodT ′
p

p
]

Γ (type ′
n) : typeA′

n
n

Γ � valuen : typeA′
n �→dynamic,expr exprTA′

n
n

Γ � (callU value mid exprTA′
n

n
) : dynamic �→type,expr exprTA

Γ, Δ � E [call(mimicVvalue |(typeA,expr) , mid , valuen
n
)] → E [exprTA]

callM

typeA = classT cid [cid∗] [fieldT ∗]
[methodTr

r
mid type [type ′ n

]methodT ′
p

p
]

Γ (type) : typeA′ Γ � valuen : dynamic �→type′
n ,expr exprTAn

n

Γ � call(value, mid , exprTAn
n
) : typeA′ �→dynamic,expr exprTA

Γ, Δ � E [(callUguardVvalue |(typeA,expr) mid valuen
n
)] → E [exprTA]

callUG

Fig. 16. Call reduction

definitions. The type environment is necessary for operations on mimics and
guards.

Reduction of most expressions, such as conditionals and function applica-
tion, is straightforward. Reduction of a method call for an object value, call

in Fig. 16, uses Δ to extract the correct method body, then substitutes the
parameter values into the body, denoted with |=. Method calls for guarded or
mimicked objects require the insertion of appropriate wrappers on parameters
and on the resulting value; callM demonstrates this for a mimicked object,
while callUG demonstrates a guarded one. These rules dispatch to a method
call in the alternate expression form using their embedded value directly.

Typed super calls follow the same pattern as standard method calls, extracting
the specified expression body instead of using the object. Untyped super calls
must insert wrappers to dynamically protect the language boundary when the
immediate ancestor is typed. The superUM rule, in Fig. 17, extracts the parent
class’s type and uses the method type information to dynamically embed the

66 K.E. Gray

Γ, Δ � exprA → exprA′

Δ(cid).ancestors.first⇒ typeA1

typeA1 = classT cid ′ [cid ′′
l

l
] [fieldT ∗]

[methodTi
i
mid type [type ′

n
n
]methodT ′

j
j
]

Γ (type) : typeA Γ � valuen : dynamic �→type′
n ,expr exprTAn

n

value ′ = mimicVvalue |(typeA1,thisU)

expr = (superUthisU (mid : cid) valueUn
n
)

Γ � super(value ′, mid , cid ′, exprTAn
n
) : typeA �→dynamic,expr exprTA

Γ, Δ � E [(superU value (mid : cid) valuen
n
)]→ E [exprTA]

superUM

Fig. 17. superU reduction, with a typed parent

Γ, Δ � exprA → exprA′

Γ, Δ � E [guard trueT |(boolean,expr)] → E [trueU]
guardTrue

value �= trueU value �= falseU

Γ, Δ � E [mimic value |(boolean,expr)] →mimicError(value , expr)
mimicBoolF

typeA = classT cid [cidam
m

] [fidn cidn typen
n
] [midr type ′

r [type ′′
p

p
]
r
]

value = obj(cidc, tag , parents , (fid ′
j cid ′

j valuej)
j
)

Δ(cidc).methods.mid ⇒ mid ′
l
l

midr
r ⊆ mid ′

l
l

fidncidn
n ⊆ fid ′

j cid
′
j
j

Γ, Δ � E [mimic value |(typeA,expr)] → E [mimicVvalue |(typeA,expr)]
mimicObj

typeA = classT cid [cidam
m

] [fidn cidn typen
n
] [midr type ′

r [type ′′
p

p
]
r
]

value = obj(cidc, tag , parents , (fid ′
j cid ′

j valuej)
j
)

Δ(cidc).methods.mid ⇒ mid ′
l
l

midr
r �⊆ mid ′

l
l

fidncidn
n �⊆ fid ′

j cid
′
j
j

Γ, Δ � E [mimic value |(typeA,expr)] →mimicError(value, expr)
mimicObjF

Fig. 18. Mimic and guard reductions

method parameters, result, and current object. The actual call dispatches to the
equivalent exprTA call using the now typed object.

Mimicking the current object in superUG cannot fail. This is the only mimic
embedding that cannot fail; a failed mimic contains the wrong primitive or an
object lacking the correct interface, Fig. 18 presents mimic failure and success.
Failed mimics halt evaluation with a mimicError containing the offending value
and the expression which introduced the wrapper (to blame the source of the

Safe Cross-Language Inheritance 67

Γ, Δ � exprA → exprA′

typeA = classT cid ′[cidam
m

cid cida ′
n

n
][fieldT ∗][methodT ∗]

Γ, Δ � E [cast(mimicVval |(typeA,expr), cid)] → E [mimicVval |(typeA,expr)]
castMA

Fig. 19. Cast of a mimicked object

error). Theorem 2 in Sect. 5 shows that this value cannot be a typed value, and
therefore interoperability cannot lead to errors within typed programs.

Cast reduction for object values examines the cid list within the obj value for
the target class name, resulting in a badCast when the list does not contain the
name. With mimicked objects, as seen in Fig. 19, the reduction checks the cid
list within the embedded type and preserves the mimic, performing a nominal
cast.

All reductions that result in an error eliminate the surrounding context and
thereby halts evaluation. Unlike the cast check, to successfully mimic an object,
the fields and methods of the value must be a superset of the fields and meth-
ods from the mimicked class. These checks are thus structural, allowing flexible
object representations in different languages.

Although both the typed and untyped languages use the same object repre-
sentation, with a tag distinguishing typed from untyped, the representation can
vary between the languages. Guards and mimics control all interaction to their
embedded values, and each must present an external interface consistent with
surrounding expressions. Internally, the two wrappers interact with the embed-
ded value using the interface of the opposite language. This allows languages to
interoperate without necessitating significant implementation changes.

Even in the presence of cross-language inheritance, object representations can
differ provided guards and mimics control all cross-language interactions. This re-
quires that type information be embedded within the class representation to ac-
commodate interoperability, which can be accomplished with small modifications.

4.4 Soundness

For soundness, we require a relation that associates an exprA to a typeA for
reductions in preservation. Our annotation relation associates exprs to exprAs
and typeAs and is unsuitable. We therefore use a third relation that associates
the annotated language to types and closely resembles the annotation relation
without embedding expressions. Figure 20 presents the updated rule for checking
super calls, as well as the rules for checking guards and mimics.

Due to dynamic typing, reductions can result in the errors badCast, dynam-
icError, and mimicError. The first indicates a cast failure within a typed
expression; the second, an error in reducing an exprU or app; and the third,
an error in transferring an untyped value into an exprTA. With these possible
errors, soundness in our system says

68 K.E. Gray

Γ �(c,a) exprTA : typeA

Γ (cidc) : classT cidc[cid∗] [fieldT ∗]

[methodTi
i
mid type ′ [typen

n
]methodT ′

l
l
]

Γ (cida) : dynamic
Γ � exprTA : dynamic Γ �(cidc,cida) exprTAn : dynamic

n

Γ �(cidc,cida) super(exprTA, mid , cidc, exprTAn
n
) : dynamic

CheckSuperD

Γ � exprTA : typeA

Γ � guard exprTA |(typeA,expr) : dynamic
checkG

Γ � exprA : dynamic

Γ �mimic exprA |(typeA,expr) : typeA
checkM

Fig. 20. Type checking annotated expressions

Theorem 1 (Soundness).
If Γ � exprA : typeA and Δ, Γ � exprA→→exprA′ and FV (exprA) ⊆ dom(Δ) ⊆
dom(Γ) then either exprA′ ∈ value or ∃exprA′′. Δ, Γ � exprA′ → exprA′′ or
∃v , e. exprA′ ∈ {badCast,mimicError(v , e),dynamicError}.

Proof. By lemmas 1 and 2.

Where FV returns the free ids, cids, and any this or thisU occurring in exprA.

Lemma 1 (Progress). If Γ � exprA : typeA and FV (exprA) ⊆ dom(Δ) ⊆
dom(Γ) then either exprA ∈ value or Δ, Γ � exprA → exprA′.

Proof. Proof by induction on the structure of exprA.
Cases for exprTA expressions proceed following standard case analysis with

induction. Case splits occur for expressions containing an objValue, performing
a different reduction on the possible forms. Three expressions can result in a
dynamicError: app, when the first value is not a function; get-field and call,
when for the first expression, e1, Γ � e1 : dynamic.

Cases for exprUA expressions proceed following standard case analysis with in-
duction. Similar case splits occur for objValue; mimic values cannot occur based
on the type relation precondition. Each expression can result in a
dynamicError.

There are no cases for mimicError, dynamicError, or badCast, none of
which derive a type. Neither are there cases for this or thisU, which are replaced
by substitution, and do not occur within dom(Δ).

Lemma 2 (Preservation). If Γ � exprA : typeA and Γ, Δ � exprA → exprA′

and FV (exprA) ⊆ dom(Δ) ⊆ dom(Γ) then either Γ � exprA′ : typeA′ where
Γ � typeA′ �d typeA and FV (exprA′) ⊆ dom(Δ) ⊆ dom(Γ) or ∃v . exprA′ ∈
{badCast,mimicError(v),dynamicError}.

Safe Cross-Language Inheritance 69

Proof. By case analysis of the → reduction relation with induction on E in each
case.

Most cases follow a standard rule analysis showing that the constructed ex-
pression is either a subtype or same type as the original expression. Some cases
rely on the unique-names contained in Γ , stated in Sect. 4.2. The method call and
function application rules use a standard substitution lemma 3, including this
and thisU as identifiers. Remaining identifiers use an identifier rule, topDef,
that extracts the value of defineU bindings from the program.

Cases for the rules reducing guard and mimic expressions show that the
reduced expression always provides the same type as the type expectation. Cases
for rules using method substitutions also rely on method preconditions for the
checkProg rule asserting that methods have unique ids and correctly override.

Lemma 3 (Substitution). For any exprA, id, and value, if Γ � exprA : typeA,
Γ (id) : typeA1, Γ � value : typeA′

1, and Γ � typeA′
1 �d typeA1 then Γ �

exprA{id ← value} : typeA′ and Γ � typeA′ �d typeA.

Proof. By a standard induction on the structure of exprA. J+S is a call-by-value
language with closed terms. The λ-expression introduces only internal bindings.
Therefore all cases follow a standard substitution proof.

5 Blaming Untyped Relatives

For a statically-typed language, soundness means that programs do not fail; in
a combined system, soundness cannot provide this result as both dynamic type
errors and conversion errors may occur. These errors are an inescapable result
of combining languages with differing static guarantees; however, no dynamic
errors should arise within a typed program, only within untyped programs and
expressions that bridge the two languages. The value within the mimicError
violates the type expectations of a typed program and the expression provides
the program location where the value was introduced to the typed program. If
the incorrect value is a typed value, then the program semantics allowed a typed
expression to produce a type error. This violates our expectations for a typed
program, but is not ruled out through a traditional soundness proof.

We strengthen the soundness claim to have a further safety property, eliminat-
ing the possibility that type errors arise due to typed portions of the program.
Our proof follows insights from the works of Tobin-Hochstadt [4] and Wadler [5]
to show that well-typed programs are not responsible for type errors in languages
with combined semantics and only untyped expressions cause type errors.

We consider J+S to be safe as well as sound, meaning that

Theorem 2 (Safety).
If Γ � expr � exprA : typeA and Γ � exprA : typeA, and typeA = dynamic,
then exprA ∈ value or Γ, Δ � exprA → exprA′ and exprA′ = dynamicError.
If Γ � expr � exprA : typeA and Γ, Δ � exprA→→mimicError(v, e), dom(Δ) ⊆
dom(Γ) then Γ � v : dynamic.

70 K.E. Gray

Proof. The first statement shows that typed expressions cannot cause type fail-
ures; the second that typed values do not violate type expectations. We prove
the two statements separately.

The proof of the first statement is by a case analysis on the rules of the
→ relation. We can inspect that each rule with dynamicError relates to an
expression on the left that derives type dynamic; therefore, a typed expression
cannot reduce to dynamicError in one step.

The proof of the second statement begins with a case analysis on the rules
of → that relate to the mimicError expression. Each of these rules contain a
mimic expression with an embedded value, related to the mimicError. With
lemma 4, we show that for each of these rules, the embedded value must be
untyped and therefore the type expectations from the enclosed expression were
not failed by a typed expression.

Mimic reduction rules only apply when the context supplies a value; therefore
lemmas 4 and 5 can ignore reductions resulting in errors and nontermination.

The following lemmas require two sets: valueU+, containing all untyped val-
ues, and valueT+, containing all typed values.
v ∈ valueU+ iff v ∈ valueU ∨ v ∈ objValueU
v ∈ objValueU iff (v = guardVv1|(typeA,expr) ∧ v1 ∈ valueT+) ∨

(v = obj(cid , cid∗,U, (fidncid ′
nv ′

n
n
)) ∧ v′n ∈ valueU+

n
)

v ∈ valueT+ iff v ∈ valueT ∨ v ∈ objValueT
v ∈ objValueT iff (v = mimicVv1|(typeA,expr) ∧ v1 ∈ valueU+) ∨

(v = obj(cid , cid∗,T, (fidncid ′
nv ′

n
n
)) ∧

∀i. i ∈ n =⇒ (Γ (cidi)(fidi) : dynamic =⇒ v′i ∈ valueU+)
∧ (Γ (cidi)(fidi) = dynamic =⇒ v′i ∈ valueT+))

Lemma 4 (Untyped values). If Γ � expr � exprA : dynamic and Γ, Δ �
exprA →→ v for v ∈ value then v ∈ valueU+

Proof. Proof by induction on the structure of expr. Interesting cases are newU;
superU; callU, super, call, and get-field.
case e : (newU cid exprUAn

n
)

Each exprUA derives dynamic, by � rules; exprUAn ∈ valueU+
n

by induc-
tive hypothesis. Therefore e reduces to a v ∈ valueU+ by newU.
case e: (superU exprU (mid : cid) exprUAn

n
)

Each exprUA derives dynamic, by � rules; both exprUAn ∈ valueU+
n

and
exprUA ∈ valueU+ by inductive hypothesis.

When referring to a typed parent class, e reduces to a guard, g by superUM.
We show that v1 in g is a member of valueT+, by lemma 5 and thus g ∈ valueU+
case e: callU, get-fieldU, get-field, call, super

These five cases are similar, resulting in a guard expression g. In each g ∈
valueU+ when the embedded value v1 is in valueT+ by lemma 5. Addition-
ally, both call expressions rely on type preservation during substitution using
lemma 3.

Safe Cross-Language Inheritance 71

Our value lemmas, 4 and 5 are mutually inductive; we separate them for clarity
in the specifications.

Lemma 5 (Typed values). If Γ � expr � exprA : typeA and Γ, Δ � exprA
→→v, where v ∈ value, and typeA = dynamic then v ∈ valueT+

Proof. Proof by induction on the structure of expr, omitting exprU forms due
to type derivations. Most cases proceed like the corresponding untyped cases in
lemma 4 with case splits for object values versus mimic values, where reduction
to a mimic relies on the embedded value being in valueU+ by lemma 4.

The cases for call and super substitute values into typed expressions and
require a typed expression as a result; however, substituted values can be sub-
types of the declared parameter types and could therefore switch the type to be
dynamic. We show by lemma 6 that the substituted values, although subtypes
of the declared types, do not have type dynamic unless the specified parameter
type was dynamic.

After annotation, correctly typed programs do not allow untyped expressions
within typed expressions unless mimicked. We prove this using a variation of
our type checking relation – Γ � exprA :S typeA. This relation uses a modi-
fied subtype relation �, in which there is no subDBottom rule, without other
changes. Thus dynamic is related only to itself after annotation, as proposed
by Wadler [5]. Using this lemma, we show that substitution cannot introduce
untyped values during reduction.

Lemma 6 (Correct Annotations). If Γ � expr � exprA : typeA then Γ �
exprA :S typeA

Proof. Proof by induction on the structure of expr. Cases where no � relation
rule use the embedding relation follow from the rules, as the type and represen-
tation cannot change.

Other cases are all similar, to illustrate we consider the call expression,
call(e,mid , ed). The ed argument may be embedded in a mimic during anno-
tation, to eAd. This annotated subexpression does not impact the derived type
during annotation, but it does during type checking. For the call expression to
type check and derive the same typeA, the type of eAd, tA, must be a subtype
of the declared parameter, tA � t. Lemma 7 shows that embedding preserves
this property.

Lemma 7 (Embed). If Γ � exprTA : typeA �→type exprTA′ then Γ � exprTA′ :
typeA′ where Γ � typeA′ � type

Proof. Proof by inspection of the �→ relation. The top three rules embed ex-
pressions but do not modify the type, which is directly extracted checkM and
checkG. The final two are identity relations on the expressions.

Removing the subDBottom rule separates the type systems of our typed and
untyped languages, allowing us to show that values crossing between typed and

72 K.E. Gray

untyped expressions must pass through the appropriate wrapper. Theorem 1
relied on the original subtype relation for preservation; however, the �D subtype
relation is not necessary for preservation. We proved preservation using both
subtype relations with no difference between the proofs.

This shows that in cross-language interoperability, dynamic must be the
bottom subtype during annotation, to derive the insertion of appropriate ex-
pression embeddings; however, it must not be related after annotation so that
strict boundaries between languages can be observed.

6 Implementing Inheritance

We implement our inheritance reduction relation in the PLT Redex system, as
an extension of our previous reduction relation. We also extend our small-step
annotation relation to annotate super calls and embed class types. This creates
an executable model within the PLT Redex framework, where we can create
specific cross-language class hierarchies and examine intermediate stages in the
reduction to ascertain that values are properly converted. The Redex reduction
relation differs from the presented model by eliminating the definition map and
environment, instead our context rules use the program’s context to extract
method definitions and the embedded ancestor types.

This experience gives us insight into the steps necessary to extend our existing
implementation with cross-language inheritance support. The primary change
would be to embed type information for the parent class in the untyped rep-
resentation; as the existing class system requires an elaboration phase, we can
insert the type and redirect super calls during this phase. The embedded type
could be stored either as a closure value or a new element in the class table –
it is neither desirable nor necessary to institute a per-object overhead. We can
insert the requisite stub methods while building the method table.

7 Related Work

Previous work on interoperability explores exchanging values safely between lan-
guages with different semantics and permitting execution of partially-typed pro-
grams; these projects did not directly address the concerns of permitting inher-
itance across language boundaries with value and type preservation.

The style of our language model draws heavily from previous object and func-
tion calculi; primarily ClassicJava [9] and Featherweight Java [8].

Siek and Taha [11] present a calculus for incorporating typed and untyped
expressions within an object system, where a fully-typed program cannot pro-
duce a runtime type error. Their calculus, building on the Abadi and Cardelli
OB<: calculus, can encode structural inheritance of existing objects through
copying. However, this does not preserve type guarantees across generations as
subtyping is only structural and inheritance only behavioral. Our system is the
first to support cross-language inheritance in this style with support for nominal

Safe Cross-Language Inheritance 73

subtyping and behavioral inheritance, conforming to the expectations of both
languages.

The Siek and Taha work uses casts to confirm runtime-type compliance that
provide higher-order wrappings for object values after type-erasure. While they
show that fully-annotated programs are sound, their work does not take the
additional step of showing that typed programs cannot be blamed for runtime
errors. Their earlier work [12], connects the simply-typed lambda calculus to the
untyped variant, and prove that their fully annotated calculus is equivalent to
simply-typed lambda calculus.

Wadler and Findler [5] demonstrate a proof technique for proving safety in a
language supporting different static guarantees, including untyped expressions,
using contracts. This work shows that a well-typed program cannot be blamed for
type inconsistencies introduced across a contract. Additionally, thy demonstrate
that in a combined language, with full contract annotations, the dynamic type is
neither a subtype nor super type of the statically-checked types. Our experience
provides further evidence of this relationship for fully annotated programs.

Tobin-Hochstadt’s and Felleisen’s [4] work on integrating statically-typed
functional modules, following the PLT Scheme module system, with untyped
modules in the same language provide a proof showing that the typed modules
cannot be blamed for any dynamic type errors. In this language, boundaries
between typed and untyped implementations occur at module levels, so blame
tracking reports the relevant module. Boundaries within our system can oc-
cur with finer granularity, complicating the source of the blame. However, both
Tobin-Hochstadt’s proof and our own demonstrate the necessity of proving that
the source of type inconsistencies lies with untyped program fragments.

Matthews and Findler [13] propose models of combining multiple languages
using guards to protect the type expectations of the different languages. Their
semantics follows similar techniques as those presented in our model; however,
neither language represented in this work supports object-oriented computations
focusing on functional language interoperation.

A proposed extension to ML allows for a Dynamic type constructor [14,15],
which is similar to the dynamic declaration. The Dynamic operators allow the ex-
plicit extraction of untyped data into programmer specified types; guards are not
supported. This work demonstrates that within one language, such operations
are sound.

7.1 Mixing Dynamic and Static Types

Some implementations also provide combinations of static and dynamic types.
Strongtalk [16] adds an optional static type system to Smalltalk [17]. On the

boundary between typed and untyped expressions the compiler either assumes
a type or relies on an annotation from the programmer.

The Amber programming language [18] also mixes static and dynamic type
checking. Values with statically checked types can be placed into Dynamic wrap-
pers, in which the static type information is disregarded. During program ex-
ecution, interaction with these values is checked to conform to the static type

74 K.E. Gray

knowledge. Like the Dynamic ML language, the programmer must explicitly cast
the type.

Work on embedding languages by Benton [19] and Ramsey [20] provides con-
nections between statically-typed languages and embedded dynamically-typed
languages. For both systems, when a value from the dynamically typed language
is passed into the statically typed language, the system performs an immediate
check of the value but does not check higher-order properties. The expected type
is derived from a specification either written by the programmer or provided by
the system library.

8 Conclusions

While the J+S language does not support mutation, the get-field and superU
semantics reflect the possibility of extending the model to include both mu-
table fields and mutable method implementations. Field accesses dispatch to
the embedded object before inserting wrappers; in a system with mutable fields
this ensures that the current value is always retrieved. Field updates require
the same embeddings as method and object-instantiation parameters; the only
missing pieces are the representation of a store and reference indirections.

By dynamically injecting wrappers during superU reduction, the untyped
language could support the modification of method bodies without any varia-
tion in the insertion. Further, dynamically injecting additional methods into a
leaf class should similarly cause no variation for interoperability. Injecting meth-
ods into a non-leaf class in a multi-language hierarchy can lead to the errors
we describe for partially overriding classes. We suspect that a descendent class
should consider its parent sealed at the point of extension, with any additions
invisible, to alleviate this problem.

Using our technique, a program combining Java with Ruby, Groovy, Scheme,
or Javascript, can provide safe interaction without the requirements of marshal-
ing or checking values reducing the programmer overhead typically involved in
these combinations. Our proof of safety confirms that only dynamically-typed
expressions cause type failures. Further we provide evidence that the proof re-
quirements presented by Tobin-Hochstadt [4] and the subtyping relations and
blame assessment presented by Wadler [5] apply to any two interoperating lan-
guages, while providing similar safety assurances.

Our full semantics, their Ott-based specification, and an executable PLT Re-
dex model are available from www.cl.cam.ac.uk/∼keg29/inheritance-model.

Acknowledgements

We thank the anonymous reviewers for helping us improve the presentation of
this work, as well as Alan Mycroft and Matthew Flatt; Matthias Felleisen and
Scott Owens for helping us find flaws in our model; and the developers of PLT
Redex and Ott for providing tools that simplify the specification of semantic
models.

Safe Cross-Language Inheritance 75

References

1. Flatt, M., Findler, R.B.: PLT MrEd: Graphical Toolbox Manual. Technical Report
PLT-TR-2007-2-v370, PLT Scheme (2007)

2. Koenig, D., Glover, A., King, P., Laforge, G., Skeet, J.: Groovy in Action. Manning
Publications (2007)

3. Gray, K.E., Findler, R.B., Flatt, M.: Fine-grained interoperability through mirrors
and contracts. In: Proc. ACM Conf. on OOPSLA (2005)

4. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: From scripts to pro-
grams. In: Proc. of ACM Dynamic Languages Symposium (2006)

5. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Proc. ACM
Workshop on Scheme and Functional Programming (2007)

6. Gray, K.E.: A model of Java/Scheme interoperability. In: Findler, R.B., Flatt, M.,
Felleisen, M. (eds.) Designing, Developing, and Debugging Programming Language
Models. MIT Press, Cambridge (to appear, 2008)

7. Matthews, J., Findler, R.B., Flatt, M., Felleisen, M.: A visual environment for
developing context-sensitive term rewriting systems. In: van Oostrom, V. (ed.)
RTA 2004. LNCS, vol. 3091. Springer, Heidelberg (2004)

8. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A Minimal Core Calculus
for Java and GJ. In: Proc. ACM Conf. on OOPSLA (1999)

9. Flatt, M., Krishnamurthi, S., Felleisen, M.: A Programmer’s Reduction Semantics
for Classes and Mixins. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of
Java. LNCS, vol. 1523. Springer, Heidelberg (1999)

10. Flatt, M.: PLT MzLib: Libraries manual. Technical Report PLT-TR-2007-n-v370,
PLT Scheme (2007)

11. Siek, J.G., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609. Springer, Heidelberg (2007)

12. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proc. ACM
Workshop on Scheme and Functional Programming (2006)

13. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
In: Proc. ACM Conf. on Principles of Programming Languages (2007)

14. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic Typing in a Statically
Typed Language. ACM J. Tran. on Prog. Languages and Systems 13 (1991)

15. Duggan, D.: Dynamic Typing for Distributed Programming in Polymorphic Lan-
guages. ACM J. Tran. on Prog. Languages and Systems 21, 11–45 (1999)

16. Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk in a Production
Environment. In: Proc. ACM Conf. on OOPSLA (1993)

17. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading (1983)

18. Cardelli, L.: Amber. In: Cousineau, G., Curien, P.-L., Robinet, B. (eds.) LITP
1985. LNCS, vol. 242. Springer, Heidelberg (1986)

19. Benton, N.: Embedded Interpreters. Journal of Functional Programming 15 (2005)
20. Ramsey, N.: Embedding an Interpreted Language Using Higher-Order Functions

and Types. Journal of Functional Programming (to appear) Initial version in ACM
Workshop on Interpreters, Virtual Machines and Emulators (June 2003)

Liquid Metal: Object-Oriented Programming

Across the Hardware/Software Boundary

Shan Shan Huang1, Amir Hormati2, David F. Bacon3, and Rodric Rabbah3

1 Georgia Institute of Technology
2 University of Michigan

3 IBM Research

Abstract. The paradigm shift in processor design from monolithic pro-
cessors to multicore has renewed interest in programming models that
facilitate parallelism. While multicores are here today, the future is likely
to witness architectures that use reconfigurable fabrics (FPGAs) as co-
processors. FPGAs provide an unmatched ability to tailor their circuitry
per application, leading to better performance at lower power. Unfortu-
nately, the skills required to program FPGAs are beyond the expertise
of skilled software programmers. This paper shows how to bridge the
gap between programming software vs. hardware. We introduce Lime,
a new Object-Oriented language that can be compiled for the JVM or
into a synthesizable hardware description language. Lime extends Java
with features that provide a way to carry OO concepts into efficient
hardware. We detail an end-to-end system from the language down to
hardware synthesis and demonstrate a Lime program running on both a
conventional processor and in an FPGA.

1 Introduction

The end of the free ride from clock scaling has stimulated renewed interest in
alternative computer architectures. Due to the increased complexity of these ar-
chitectures, there has also been a corresponding revival of interest in alternative
models for programming them.

Most of the attention has been focused on multicore chips, but many other
types of systems are being produced and explored: SIMD, graphics processors,
“manycore”, and reconfigurable hardware fabrics. While multicore chips are the
most straightforward for chip manufacturers to produce, it remains an open
question as to which hardware organization is the most efficient or the easiest
to program. Furthermore, as power outweighs chip area, it seems likely that
systems will become increasingly heterogeneous.

Among these alternative architectures, reconfigurable fabrics such as field-
programmable gate arrays (FPGAs) have many compelling features: low power
consumption, extremely high performance for many applications, a high degree
of determinism, and enormous flexibility. Because FPGAs route and operate on
single bits, it is possible to exploit many different kinds of parallelism either
individually or in combination: at the micro-scale of bits or the macro-scale of
tasks, with pipelining or data parallelism, etc.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 76–103, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Liquid Metal: Object-Oriented Programming 77

Recently, chip manufacturers have begun providing interfaces to allow the
kinds of high-bandwidth data transfer that makes it easier to connect accelera-
tor chips to CPUs (for instance, AMD’s Torenza and Intel’s QuickAssist). Some
motherboards come with an open socket connected to such a bus into which one
can plug an FPGA. The increasing availability of systems with FPGAs offers
an opportunity to customize processing architectures according to the applica-
tions they run. An application-customized architecture can offer extremely high
performance with very low power compared to more general purpose designs.

However, FPGAs are notoriously difficult to program, and are generally pro-
grammed using hardware description languages like VHDL and Verilog. Such
languages lack many of the software engineering and abstraction facilities that
we take for granted in modern Object-Oriented (OO) languages. On the other
hand, they do provide abstractions of time and a much more rigorous style of
modular decomposition. In hybrid CPU/FPGA systems, additional complex-
ity is introduced by the fact that the CPU and the FPGA are programmed in
completely different languages with very different semantics.

The goal of the Liquid Metal project at IBM Research is to allow such hybrid
systems to be programmed in a single high-level OO language that maps well
to both CPUs and FPGAs. This language, which is backward-compatible with
Java, is called Lime.

While at first glance it may seem that conflicting requirements for program-
ming these different kinds of systems create an inevitable tension that will result
in a hodgepodge language design, it is our belief that when the features are
provided at a sufficiently high level of abstraction, many of them turn out to be
highly beneficial in both environments.

By using a single language we open up the opportunity to hide the complexity
of domain crossing between CPU and FPGA. Furthermore, we can fluidly move
computations back and forth between the two types of computational devices,
choosing to execute them where they are most efficient or where we have the
most available resources.

Our long-term goal is to “JIT the hardware” – to dynamically select methods
or tasks for compilation to hardware, potentially taking advantage of dynamic
information in the same way that multi-level JIT compilers do today for software.
However, many challenges remain before this vision can be realized.

In this paper, we present an end-to-end system from language design to co-
execution on hardware and software. While some of the individual components
are incomplete, significant portions of each part of the system have been built,
and the overall system architecture is complete.

The system that we present in this paper consists of the components shown in
Figure 1 (the components are labeled with the paper sections in which they are
described). The system consists of a front-end for the Lime language which can
generate either Java bytecodes or a spatial intermediate language suitable for
computing on FPGAs. When compiling to hardware, a sequence of compilation
steps is used to produce bitfiles which can be loaded onto the FPGA. The Liquid
Metal Runtime system (LMRT) consists of portions that reside on both the

78 S.S. Huang et al.

Fig. 1. The Liquid Metal Compilation and Runtime System

FPGA and on the CPU. LMRT handles communication and synchronization
between the two domains, as well as loading of FPGA code.

The infrastructure also allows generation of C code, which could be used for
compilation to either standard multicores or SIMD processors like Cell. However,
we have not investigated the performance of this portion of the tool chain, so we
do not discuss it in this paper.

2 Lime: Language Design

Lime is designed with two goals in mind: Programmers should be able to program
with high-level OO features and abstractions; These high-level programs should
be amenable to bit-level analysis and should expose parallelism. To achieve these
goals, Lime extends Java with value types, value generic types, and enum-indexed
arrays. In this section, we discuss these features and demonstrate how they can
be used by the programmer. We will also highlight their implications for the
compiler, particularly with respect to efficient synthesis to an FPGA.

A value type in Lime can be an enum, class, or interface, annotated with
the modifier value. The defining characteristic of value types is that they are
immutable. An object of a value type, once created, never changes. We begin
our exposition with the building block of value types: value enum’s.

Liquid Metal: Object-Oriented Programming 79

Lime’s value types share many properties with those of Kava [1]. However, they
have simpler type rules, can be safely used in Java libraries, and support generics.

2.1 Value Enumeration Types

A value enum is a restricted form of the Java enum type. It represents a value
type with a bounded number of possible values. The following is a user-defined
representation of type bit, with two possible values, bit.zero, and bit.one:

public value enum bit { zero, one; }

Unlike Java enum’s, a value enum cannot define non-default constructors (i.e.
constructors taking arguments), nor can it contain mutable fields. We elaborate
in Section 2.5 the type checking performed on all value types to ensure their
immutability. For the moment, it is sufficient to know that all fields of a value
type, including enum’s, must be final references to objects of value types.

The Lime compiler provides a number of conveniences for value enum’s, making
them as easy to use as values of primitive types.

DefaultValues. A variable of a value enum type is never null. If uninitialized, the
variable is assigned a default value: the first value defined for that enum type. For
example, in declaration bit b; variable b has the default value bit.zero. In fact,
a default value is automatically given for all value types, as we will show shortly.

Compiler-Defined Operators. Arithmetic operators such as +, -, ++, and --,
are automatically defined for value enum’s. For example, bit.one + bit.zero
returns bit.one. Similarly, bit.one + bit.one, returns bit.zero, akin to how
integers wrap around when overflowing their range. Comparison operators are
also defined for value enum’s. For example, bit.one > bit.zero returns true.

Lime alsoprovides programmersan easyway to produce and iterate over a range
of values. Lime introduces the binary operator, ::. The expression x :: y produces
an object of lime.lang.Range<T> or lime.lang.ReverseRange<T>, depending on
whether x < y, or x > y, and where T is the least upper bound type of x and y. Both
Range<T> and ReverseRange<T> are value types, implementing the Iterable<T> in-
terface in Java. They are thus usable in the “for-each” style loops introduced since
Java 5. For example, the following code defines a loop over the range of values
greater than or equal to bit.zero, and less than or equal to bit.one:

for (bit b : bit.zero :: bit.one) { System.out.println(b); }

Furthermore, there is nothing required of the programmer to indicate whether
a range is ascending or descending, even when the operands’ values cannot be
statically determined. For instance, in the code below, depending on the argu-
ments used to invoke printBits, the object generated by begin :: end can be
either Range<bit> or ReverseRange<bit>:

void printBits(bit begin, bit end) {
for (bit b : begin :: end) { System.out.println(b); }

}

80 S.S. Huang et al.

In Lime programs, programmers often need to iterate over the entire range of
possible values of a value enum. A convenient shorthand is provided for iterating
over this range. For example, for (bit b) {...} is equivalent to for (bit b :

bit.first :: bit.last) {...}. Such a default range is always an ascending one.
The :: operator is automatically defined for any value type supporting the

operators ++, --, < and >. Lime also supports the :: operator for Java’s primitive
integral types, such as int, short, etc.

Compiler-Defined Fields and Methods. In addition to operators, static
fields first and last are automatically defined to reference the smallest and
largest values in a value enum’s range. For instance, bit.first returns bit.zero.
These fields may seem redundant for a known enum type, but they become in-
valuable when we iterate over the range of an enum type variable, where the exact
values of an enum are not known statically.

Methods next() and prev() are generated to return the value proceeding and
preceding the value invoking the method: bit.first.next() returns bit.one.

Since objects of value enum’s (and in fact, all value types) do not have ob-
ject identity at the Lime language level (i.e., all instances of bit.zero should
be treated as the same object), the Lime compiler automatically generates
equals(Object o) and hashCode() methods for these enum’s. The compiler also
overloads the == operator for value enum’s to invoke equals(Object o). (An ex-
ception to this case is when == is used inside the definition of equals(Object

o) itself.) Note that this is exactly the opposite from what is in Java: the
equals(Object o) method in Java defaults to invoking == and comparing ob-
ject identity.

User-defined Operators. Lime also allows programmers to define their cus-
tom operators, or even override the automatically defined ones. For instance, we
can define a unary complement operator for bit:

public bit ~ this { return this++; }

A binary operator could be similarly defined. For instance, the operator & for
bit can be defined as follows:

public bit this & (bit that) { return this == one && that == one; }

Operator definitions are converted into compiler-generated methods,
dispatched off of the this operand. For example, the ∼ operator definition be-
comes: public bit $COMP() { return this++; }, and the definition for & thus
becomes public bit $AND(bit that) { ... }.

2.2 enum-indexed Arrays

Lime also extends Java with enum-indexed arrays. For example, int[bit] twoInts;

declares an int array, named twoInts. The size of twoInts is bounded by the num-
ber of values in the value enum type bit. Thus, twoInts has a fixed size of 2. Fur-
thermore, only an object of the array size’s enum type can be used to index into

Liquid Metal: Object-Oriented Programming 81

an enum-indexed array. The following code demonstrates the use of enum-indexed
arrays.

int i = twoInts[0]; // ILLEGAL! 0 is not of type bit
int j = twoInts[bit.zero] // OK

An enum-indexed array has space automatically allocated for it by the com-
piler. enum-indexed arrays provide a nice way to express fixed-size arrays, where
the type system can easily guarantee that array indexes can never be out of
bounds. Both of these are important properties for laying out the program in
hardware – but are also valuable for writing exception-free software and for
compiling it for efficient execution.

2.3 A More Complex Value Type: Unsigned

Using value enum’s and enum-indexed arrays, we can now define a much more
interesting value class, Unsigned32:

public value enum thirtytwo { b0,b1,...,b31; }

public value class Unsigned32 {
bit data[thirtytwo];

public Unsigned32(bit vector[thirtytwo]) { data = vector; }

public boolean this ^ (Unsigned32 that) {
bit newData[thirtytwo];
for (thirtytwo i)

newData[i] = this.data[i] ^ that.data[i];
return new Unsigned32(newData);

}
... // define other operators and methods.

}

Unsigned32 is an OO representation of a 32-bit unsigned integer. It uses the
value enum type thirtytwo to create an enum-indexed array of exactly 32 bit’s,
holding the data for the integer. The definition of Unsigned32 exposes another
interesting feature of the Lime compiler. Recall that a value type must have a
default value that is assigned to uninitialized variables of that type. This means
each value type must provide a default constructor for this purpose. Notice
however that there is no such default constructor defined for Unsigned32. Conve-
niently, the Lime compiler can automatically generate this constructor for value
types. The generated constructor initializes each field to its default value. Recall
that one of the typing requirements of value types is that all fields must be refer-
ences to value types. Thus, each field must also have a default value constructor
defined (or generated) for it. The base case of our recursive argument ends with
value enum’s. Thus, it is always possible for the Lime compiler to generate a
default constructor.

82 S.S. Huang et al.

Implications for the Compiler. Even though Unsigned32 is defined using
high-level abstractions, the combination of value enum’s and enum-indexed arrays
exposes it to bit-level analysis. We can easily analyze the code to see that an
object of Unsigned32 requires exactly 32 bits: each element of data[thirtytwo] is
of type bit, which requires exactly 1 bit; there are 32 of them in data[thirtytwo].

This high level abstraction provides the Lime compiler with a lot of flex-
ibility in both software and hardware representations of a value object and
its operations. In software, Lime programs can be compiled down to regular
Java bytecode and run on a virtual machine. We can choose to represent ob-
jects of Unsigned32 and thirtytwo as true objects, and iterations over values
of thirtytwo are done through next() method calls on the iterator. However,
without any optimizations, this would yield very poor performance compared
to operations on a primitive int. We can thus also choose to use the bit-level
information, and the knowledge that value objects do not have mutable state,
to perform optimizations such as semantic expansions [2]. Using semantic ex-
pansions, value objects are treated like primitive types, represented in unboxed
formats. Method invocations are treated as static procedure calls. These choices
can be made completely transparent to the programmer.

The same analogy holds for hardware. Existing hardware description lan-
guages such as VHDL [3] and SystemC [4] require programmers to provide de-
tailed data layouts for registers, down to the meaning of each bit. In contrast,
Lime’s high level abstraction allows the compiler to be very flexible with the
way object data is represented in hardware. For instance, in order to perform
“dynamic dispatch” in hardware, each object must carry its own type informa-
tion in the form of a type id number. However, we can also strip an object of
its type information when all target methods can be statically determined, and
achieve space savings. The hardware layout choices are again transparent to the
programmer.

The definition of Unsigned32 exposes bit-level parallelism when it is natural
to program at that level. Even more performance speed up can be gained through
coarser-grained parallelism, where entire blocks of code are executed in a par-
allel or pipelined fashion. Very sophisticated algorithms have been developed
to discover loop dependencies and identify which loops can be parallelized or
pipelined safely. The knowledge of immutable objects make Lime programs even
more amenable to these techniques. Our eventual goal is to design language con-
structs that promote a style of programming where different forms of parallelism
are easily discovered and easily exploited.

2.4 Generic Value Types

A closer inspection of Unsigned32 shows that its code is entirely parametric to
the value enum type used to represent the length of the array data. No matter
what enum is used to size data, the definitions for the constructor and operator ^

are exactly the same, modulo the substitution of a different enum for thirtytwo.
A good programming abstraction mechanism should allow us to define these
operations once in a generic way. Lime extends the type genericity mechanism in

Liquid Metal: Object-Oriented Programming 83

Java to offer exactly this type of abstraction. The following is a generic definition
of Unsigned<W>, where type parameter W can be instantiated with different value
enum to represent integers of various bit width:

public value class Unsigned<W extends Enum<W>> {
bit data[W];

public Unsigned(bit vector[W]) { data = vector; }

public Unsigned<T> this ^ (Unsigned<T> that) {
bit newData[T];
for (T i)

newData[i] = this.data[i] ^ that.data[i];
return new Unsigned<T>(newData);

}
... // similarly parameterize operator definitions

}

Thus, to represent a 32-bit integer, we simply use type Unsigned<thirtytwo>.
Similarly, we could use Unsigned<sixtyfour> to represent a 64-bit integer where
sixtyfour is defined as follows:

public value enum sixtyfour { b0,b1,...,b63; }

Note that type parameters to value type are assumed to be value types, and
can only be instantiated with value types.

For notational convenience, Lime offers a limited form of type aliasing. A
typedef declaration can appear wherever variable declarations are allowed, and
are similarly scoped. For example, the following statement declares Unsigned32

as an alias for Unsigned<thirtytwo>:

typedef Unsigned32 = Unsigned<thirtytwo>;

We use the aliased forms of the Unsigned<W> class for the remainder of the paper.

2.5 Type-Checking Value Types

In order to ensure that the objects of value types are truly immutable, we must
impose the following rules on the definition of a value type:

1. A field of a value type must be final, and of a value type. The keyword
final is assumed in the definition of value types and is inserted by the
Lime compiler. Compile-time checks make sure that assignment to fields
only happen in initializers.

2. The supertypes of a value type must also be value types (with the exception
of Object).

3. The type parameter of a value type is assumed to be a value type during the
type checking process, and can only be instantiated by value types.

4. Objects of value types can only be assigned to variables of value types.

84 S.S. Huang et al.

Fig. 2. Block level diagram of DES and Lime code snippet

The first three rules are fairly straight forward. The last rule requires a bit
more elaboration. The Lime compiler imposes that value types can only be sub-
types of other value types, except for Object. Therefore, the only legal assign-
ment from a value type to a non-value type is an assignment to Object. In this
case, we “box” the object of value type into an object of lime.lang.BoxedValue,
a special Lime compiler class. The boxed value can then be used as a regular ob-
ject. In fact, this is the technique used when a value type is used in synchronized,
or when wait() is invoked on it.

Method equals(Object o) requires special treatment by these rules. The equals
method must take an argument of Object type. It is inefficient to box up a value
type to pass into the equals of another value type, which then has to strip the
boxed value before comparison. Thus, the Lime compiler allows a value type to be
passed into the equals of value types without being boxed. These equals methods
have been type-checked to ensure that they do not mutate fields, it is thus safe to
do so.

It is also important to point out that an array holding objects of value types
is not a value type itself. Neither is an enum-indexed array holding objects of
value types. The contents of the array can still mutate. A value array, then, is
expressed as (value int[]) valInts. Similarly for value enum-indexed arrays.

A value array must be initialized when it is declared. All further writing into
the array is disallowed. Our syntax does not allow multiple levels of immutability
in arrays. It is not possible to express a mutable array of value arrays, for exam-
ple. The value keyword at the outside means the entire array, at all dimensions,
are immutable.

Liquid Metal: Object-Oriented Programming 85

Finally, methods finalize(), notify(), and notifyAll() can never be called
on objects of value types. Objects of value types have no storage identity, thus
these methods do not make sense for value objects.

3 Running Example

The Liquid Metal system is somewhat complex, consisting of a front-end compiler
that generates bytecode or an FPGA-oriented spatial intermediate representa-
tion (SIR), a high-level SIR compiler, a layout planner, a low-level compiler, and
finally a synthesis tool. In order to demonstrate how all of these components fit
together, we will use a single running example throughout the rest of the paper.

Our example program implements the Data Encryption Standard (DES). The
program inputs plain text as 64-bit blocks and generates encrypted blocks (cipher
text) of the same length through a series of transformations. The organization
of the DES algorithm and its top level implementation in Lime are shown in
Figure 2. The transformations occur in 16 identical rounds, each of which en-
crypts the input block using an encryption key. The plain text undergoes an
initial permutation (IP) of the bit-sequence before the first round. Similarly, the

public value class Unsigned<T extends Enum<T>> {
...
Unsigned<T> permute ((value T[T]) permTable) {

bit newBits[T];
for (T i) {

newBits[i] = data[permTable[i]];
}
return new Unsigned<T>(newBits);

}
...

}

// initial permutation (IP)
import static DES.sixtyfour.*;

public value class IP {
public static (value sixtyfour[sixtyfour]) Permutation = {

b57, b49, b41, b33, b25, b17, b9, b1, b59, b51, b43, b35, b27, b19, b11, b3,
b61, b53, b45, b37, b29, b21, b13, b5, b63, b55, b47, b39, b31, b23, b15, b7,
b56, b48, b40, b32, b24, b16, b8, b0, b58, b50, b42, b34, b26, b18, b10, b2,
b60, b52, b44, b36, b28, b20, b12, b4, b62, b54, b46, b38, b30, b22, b14, b6

};
...

}
Fig. 3. DES code snippets showing initial permutation

Fig. 4. Permutation pattern for IP

86 S.S. Huang et al.

static Unsigned32 Fiestel(KeySchedule keys, Sixteen round, Unsigned32 R) {
// half-block expansion
Unsigned48 E = expand(R);

// key mixing
Unsigned48 K = keys.keySchedule(round);
Unsigned48 S = E ^ K;

// substitutions
Unsigned4 Substitutes[eight];

fourtyeight startBit = fourtyeight.b0;
for (eight i) {

// extract 6-bit piece
fourtyeight endBit = startBit + fourtyeight.b5;
Unsigned6 bits = S.extractSixBits(startBit, endBit);

// substitute bits
Substitutes[i] = Sbox(i, bits);

// move on to next 6-bit piece
startBit += fourtyeight.b6;

}

// concatenate pieces to form
// a 32-bit half block again
thirtytwo k;
bit[thirtytwo] pBits;
for (eight i) {

for (four j) {
pBits[k] = Substitutes[i].data[j];

}
}

// permute result and return
Unsigned32 P = new Unsigned32(pBits);
return reversePermute(P);

}

Fig. 5. DES Fiestel round

Fig. 6. Block level diagram of Fiestel round

bit-sequence produced in the final round is permuted using a final permutation
(FP). The output of the initial permutation is partitioned into two 32-bit half
blocks. One half (R) is transformed using a Feistel function. The result of the

Liquid Metal: Object-Oriented Programming 87

function is then exclusive-OR’ed (xor) with the other half (L). The two halves
are then interchanged and another round of transformations occurs.

The initial and final permutations consume a 64-bit sequence and produce a
sequence of bits according to a specific permutation pattern. The pattern for the
initial permutation is illustrated in Figure 4. We implemented the permutations
using a lookup table as shown in Figure 3. The permute method loops through
the output bit indexes in order, and maps the appropriate input bit to the cor-
responding output bit. The enumerations and their iterators make it possible
to readily name each individual bit, and as a result, bit-permutations are easy
to implement. The ability to specify transformations at the bit-level provides
several advantages for hardware synthesis. Namely, the explicit enumeration of
the bits decouples their naming from a platform-specific implementation, and as
a result there are no bit-masks or other bit-extraction routines that muddle the
code. Furthermore, the enumeration of the individual bits means we can closely
match permutations and similar transformations to their Verilog or VHDL coun-
terparts. As a result, the compiler can command a lot of freedom in transforming
the code. It has also been shown that such a bit-level representation of the com-
putation leads to efficient code generation for conventional architectures and
processors that support short-vector instructions [5,6]. There are also various
benefits for a programmer. For example, the permute method can process the in-
put or output bits in any order, according to what is most convenient. Similarly,
off-by-one errors are avoided, through the use of enum-indexed arrays.

The Fiestel method performs the transformations illustrated in Figure 6.
The 32-bit R half block undergoes an expansion to 48-bits, and the result is
mixed with an encryption key using an xor operation. The result is then split
into eight 6-bit pieces, each of which is substituted with a 4-bit value using a
unique substitution box (Substitutes[i]). The eight 4-bit resultant values are
concatenated to form a 32-bit half block that is in turn permuted. The Fiestel

method and coding rounds run in hardware on the FPGA. The main method,
shown below, runs in software on the CPU.

public static void main(String[] argv) {
Unsigned64 key = makeUnsigned64("0xFEDCBA9876543210");
Unsigned64 text = makeUnsigned64("0x0123456789ABCDEF");

KeySchedule keys = new KeySchedule(key);
Unsigned64 cipher = DEScoder(keys, text);
System.out.println(Long.toHexString(cipher.longValue()));

}

Theprogramexercisesco-executionbetweenhardwareandsoftware,anddemon-
strates the use of varying object sizes and object-oriented features in hardware.

4 From Lime to the Virtual Machine

Lime programs can be compiled to regular Java bytecode and executed on any
Java VM. The Lime bytecode generation performs two additional steps than the

88 S.S. Huang et al.

Java compiler. First, the Lime compiler generates bytecode to add “value” to
value types:
– Default constructors, equals(Object o) and hashCode() methods are cre-

ated for those value classes that do not define them.
– Uninitialized variables of value types are rewritten with default initializers.
– Operator definitions listed in Section 2.1 are added for value enum’s. Value

types that support ++, --, < and > operators have the range operator, ::,
defined for them.

– Operator expressions are converted to appropriate operator method calls.
E.g., x == y is converted to x.equals(y), assuming x is of value type.

For the purpose of separate compilation, all value types are translated to
implement the lime.lang.Value interface. When loaded as a binary class, this
interface indicates to the Lime compiler that it is a value class. Additional inter-
faces are added for value types supporting different operators. For example, all
value types supporting operator < implement the interface lime.lang.HasGT<T>,
where HasGT<T> contains one operator, boolean this < (T op2).

Next, instantiations of value generic types must be expanded. Generics is a
powerful abstraction tool for programmers. However, generic value classes also
significantly complicate our compilation process. To see why, consider generating
a default constructor for Unsigned<W>. This constructor needs to initialize the
data field to a bit-array of size w, where w is the number of values defined for
enum type W. However, the value of w changes for each concrete instantiation
of W. We have no way of initializing this field without knowing what W is type-
instantiated to. For this reason, the erasure-based compilation technique used by
Java generics is not applicable. We must employ an expansion-based compilation
scheme, where each instantiation of Unsigned<W> creates a different type.

Java generic classes not annotated with the value modifier are translated using
the standard erasure technique, as long as they do not instantiate generic value
types with their type variables. As a result, pure Java code that is compiled with
our compiler remains backward compatible.

There are of course numerous optimizations that exploit bit-width information
and the immutable properties of value types (see Section 2.3 for examples). Such
optimizations are well studied and understood. In this paper, we primarily focus
on the less understood parts of our language, such as translating Object-Oriented
semantics down to the hardware fabric.

The Lime frontend compiler (source to bytecode or spatial intermediate rep-
resentation) is implemented using the JastAdd extensible Java compiler [7].

5 Liquid Metal Runtime for Mixed-Mode Execution

A Lime program may run in mixed-mode. That is, some parts of the program
will run in the virtual machine, and some parts will run in hardware (FPGA). An
example mixed-mode architecture is a CPU coupled with an FPGA coprocessor,
or a desktop workstation with an FPGA PCI card. Yet another example is an
FPGA with processors that are embedded within the fabric. We use a Xilinx

Liquid Metal: Object-Oriented Programming 89

Virtex-4 board as an instance of the latter. The Virtex-4 is also our evaluation
platform for this paper. Programs that run in software use its embedded IBM
PowerPC 405 which runs at a frequency of 300 MHz. The processor boots an
embedded Linux kernel and can run a JVM.

The Liquid Metal runtime (LMRT) provides an API and a library implemen-
tation that allows a program to orchestrate its execution on a given computa-
tional platform. It simplifies the exchange of code and data between processing
elements (e.g., PowerPC and FPGA), and automatically manages data transfer
and synchronization where appropriate. The API calls are typically generated
automatically by our compiler, although a programmer can make use of the API
directly and manually manage the computation when it is desirable to do so.

The LMRT organizes computation as a set of code objects and buffer objects.
A buffer is either an input buffer, an output buffer, or a shared buffer. A code
object reads input data from an attached input buffer. Similarly it writes its out-
put to an attached output buffer. Data is explicitly transferred (copied) between
input and output buffers. In contrast, a shared buffer simultaneously serves as an
input and output buffer for multiple code objects. All communication between
code objects is done through buffers.

5.1 Code Objects

The LMRT assumes there is a master processing element that initiates all com-
putation. For example, the VM running on the PowerPC processor serves as the
master on our Virtex board. The VM can invoke the LMRT API through JNI.
The master creates code objects, attaches input and output buffers, and then
runs, pauses, or deletes the code object as the computation evolves.

A code object embodies a set of methods that carry out computation. It can
contain private mutable data that persists throughout its execution (i.e., stateful
computation). However, code objects are not allowed to maintain references to
state that is mutated in another object.

A Lime program running wholly in the virtual machine can be viewed as a
code object with no input or output buffers. A program running in mixed-mode
consists of at least two code objects: one running in software, and the other
running in hardware. Data is exchanged between them using buffer objects.

5.2 Buffer Objects

A buffer is attached to a code object which can then access the buffered data
using read and write operators. The LMRT defines three modes to read data
from or write data to a buffer.

– FIFO: The buffer is a first-in first-out queue, and it is accessed using push
or pop methods. For example, code running in the VM can push data into
the buffer, and code running in the FPGA pops data from the buffer.

– DMA: The buffer serves as a local store, with put operations to write data
to the buffer, and get operations to read data from it. The put and get
commands operate on contiguous chunks of data.

90 S.S. Huang et al.

– RF: The buffer serves as a scalar register file, shared between code objects.

The LMRT makes it possible to decouple the application-level communication
model from the implementation in the architecture. That is, a buffer decouples
(1) the program view of how data is shared and communicated between code
objects from (2) the actual implementation of the I/O network in the target
architecture. Hence a program can use a pattern of communication that is suit-
able for the application it encodes, while the compiler and runtime system can
determine the best method for supporting the application-level communication
model on the architecture.

5.3 The LMRT Hardware Interface Layer

One of the main reasons for the LMRT is to automatically manage communica-
tion and synchronization between processing elements. In a mixed-mode envi-
ronment, communication between the VM and FPGA has to be realized over a
physical network interconnecting the FPGA with the processor where the VM
is running.

In our current Virtex platform, we use the register file (RF) interface between
the processor and the FPGA. The RF is synthesized into the fabric itself. It is
directly accessible from the FPGA. From the processor side, the registers are
memory mapped to a designated region of memory. The RF we use consists of
32 registers, each 32 bits wide. The 32 registers are portioned into two sets. The
first is read accessible from the FPGA, but not write accessible. Those registers
are read/write accessible from the VM. The second set is read accessible from
the VM, but not write accessible. The registers in the second set are read/write
accessible from the FPGA.

The FIFO and DMA communication styles are implemented using the RF
model. The FIFO model maintains head and tail pointers and writes the registers
in order. The DMA model allows for 15x32 bits of data transfer, with 32 bits
used for tags. While we use a register file interface between the VM and the
FPGA, other implementations are feasible. Namely, we can implement a FIFO
or a DMA directly in the FPGA fabric, and compile the code objects to use
these interfaces. This kind of flexibility makes it possible to both experiment
with different communication models, and adapt the interconnect according to
the characteristics of the computation.

6 From Lime to a Spatial Intermediate Representation

Compiling a Lime program to execute on the FPGA requires a few transforma-
tions. Some transformations are necessary to correctly and adequately handle
object orientation in hardware. Others are necessary for exposing parallelism and
generating efficient circuits. Performance efficiency in the FPGA is attributed
to several factors [8]:

Liquid Metal: Object-Oriented Programming 91

1. Custom datapaths: a custom datapath elides extraneous resources to
provide a distinct advantage over a predefined datapath in a conventional
processor.

2. Multi-granular operations: a bit-width cognizant datapath, ALUs, and
operators tailor the circuitry to the application, often leading to power and
performance advantages.

3. Spatial parallelism: FPGAs offer flexible parallel structures to match the
parallelism in an application. Hence bit, instruction, data, and task-level
parallelism are all plausible forms of parallelism. We refer to parallelism in
the FPGA as spatial since computation typically propagates throughout the
fabric.

In this paper we focus exclusively on the issues related to discovering spatial
parallelism and realizing such parallelism in hardware. Toward this purpose, we
employ a spatial intermediate representation (SIR) that facilates the analysis
of Lime programs. The SIR also provides a uniform framework for refining the
inherent parallelism in the application to that it is best suited for the target
platform.

6.1 Spatial Intermediate Representation

The SIR exposes both computation and communication. It is based on the syn-
chronous dataflow model of computation [9,10]. The SIR is a graph of filters
interconnected with communication channels. A filter consists of a single work
method that corresponds to a specific method call derived from a Lime program.
A filter may contain other methods that are called helpers. The difference be-
tween the work method and the helpers is that only the work method may read
data from its input channel or write data to its output channel.

For example, each static call to permute() in the DES example corresponds
to a specific filter in the SIR. A filter consumes data from its input channel,
executes the work method, and writes its results to an output channel. The
input and output of the permute method that performs the initial permutation
is an Unsigned64 value. Hence, the work method for permute consumes 64 bits
and produces 64 bits on every execution. The filter work method runs repeatedly
as long as a sufficient quantity of input data is available. Filters are independent
of each other, do not share state, and can run autonomously.

Filters have a single input channel and a single output channel. A filter may
communicate its output data to multiple filters by routing the data through a
splitter. A splitter can either duplicate the input it receives and pass it on to its
siblings, or it can distribute data in a roundrobin manner according to a spec-
ified set of weights. The splitter’s counterpart is a joiner. A joiner collects and
aggregates data from multiple filters in a roundrobin manner, and routes the re-
sultant data to another filter. The single-input to single-output restriction placed
on filters, and the routing of data through splitters and joiners for fan-out and
fan-in imposes structure on the SIR graphs. The structure can occasionally lead
to additional communication compared to an unstructured graph. In DES, this

92 S.S. Huang et al.

Fig. 7. SIR example for box substitutions in DES

occurs between Fiestel rounds where the values of L and R are interchanged1.
However we believe that the benefits of a structured SIR outweigh its drawbacks,
and prior work has shown that structured graphs can be practically refined to
their unstructured counterparts [11].

The SIR graph in Figure 7 illustrates an example derived from the box sub-
stitutions (Sbox) that occur in the Fiestel rounds. In the Figure, the output of
the xor operator is duplicated to eight filters labeled Extract, each of which im-
plements the extractSixBits methods but for different bit indexes. For example,
the left-most filter labeled Extract b0..b5 inputs a 32-bit value and always ex-
tracts a value consisting of the bits at locations b0..b5. Similarly, the Extract
b42..b47 filter always extracts the bits b42..b47. The output of the former is
the input to the Sbox 1 filter which performs the appropriate bit substitutions
for bits b0..b5. The Extract and Sbox filters make up a producer-consumer
pair and are said to form a pipeline. Pipelines in the SIR graph expose pipeline
parallelism that is readily exploited in hardware. The output of each Sbox is
routed to a joiner that collects each of the 4-bit pieces in a roundrobin manner
and outputs a 32-bit half block.

Filters, like objects, may have fields. The fields are initialized using an init
method whose parameters must be resolved when the SIR is constructed. Each of
the Extract filters is initialized with the start and end bits that it is responsible
for. Similarly, each of the Sbox filters is initialized with a table that encodes the
unique substitution pattern for the bits it is responsible for. The fields of a filter
cannot be shared and are conceptually stored in a local memory that is exclusive
to that filter. In the Figure 7, the cylinders labeled Box 1..8 store the substi-

1 Figure 2 illustrates unstructured communication. It is left as an exercise for the
reader to determine the structured SIR equivalent.

Liquid Metal: Object-Oriented Programming 93

tution boxes. The Extract method requires no storage since the initialization
parameters are constant-propagated throughout the filter work method.

6.2 Compiling Lime to SIR

There are three key considerations in translating a Lime program into a spatial
representation. We must determine the dataflow of the program: which objects
(or primitive values) need to be passed from filter to filter, and which can be
statically initialized (or calculated from statically initialized variables). We must
also determine what constitutes a filter: what Lime code is a filter responsible
for executing? Lastly, we must determine how important object-oriented features
can be supported in hardware: how are objects represented? How do we support
virtual method dispatch? How do we handle object allocation?

Answering these questions requires us to first construct a control flow graph
from program entry to exit, including inlining recursive method calls2. The only
cycles the control flow graph can have are those produced by Lime’s looping prim-
itives, such as for or while. The inlining of recursive method calls necessarily
places a restriction on the type of programs that can be synthesized into hard-
ware: programs involving recursive method calls that are not statically bounded
are out of the reach of synthesis. The basic approach is to construct a dataflow
graph of non-static data in a program. Methods that receive non-static data
as input are conceptually mapped to filters. The flow of data between methods
outlines the overall SIR topology.

Determining Dataflow. We use constant propagation to determine which
variables have statically computable values. For example, in for (eight i) { ...

} used in the box substitution in Fiestel, the variable i is statically initialized to
be eight.b0, and subsequently updated by i + eight.b1 during each iteration.
This updated value can be computed from statically known values. Thus, i does
not need to be an input to a filter work method. Instead, it is used as a filter
initializer or mapped to a filter field. On the other hand, bits is initialized
by expression S.extractSixBits(startBit, endBit). S does not have a statically
computable value—its value depends on the filter input to method Fiestel. Thus,
the computation of S.extractSixBits(startBit, endBit) requires S as an input.
(Note that the receiver of a method invocation is considered an input, as well.)
Consequently, bits is not statically computable either, and must be the output of
the filter/pipeline for the expression S.extractSixBits(startBit, endBit). Using
standard dataflow techniques, we can determine the data necessary at each point
of the program.

Defining Filters. The identifying characteristic of filters is that they perform
input or output (I/O) of data that is not statically computable. Once we de-
termine what data is needed for input and output at each program location,

2 There is no good way to deal with unbounded recursion in hardware.

94 S.S. Huang et al.

we decompose the program into (possibly nested) I/O “containers”, and then
construct filters and pipelines from these containers.

The entry and exit of a Lime method form natural bounds for an outer-
most I/O container. For example, an outermost I/O container is constructed for
method Fiestel. Within these bounds, we identify two types of I/O containers.

First, an I/O container is indicated by a method or constructor invocation,
where at least one of the arguments (including this, if method call is not static)
has been identified as a filter input. For example, S.extractSixBits(startBit,
endBit) in Fiestel becomes an I/O container, with S as its input. We then
analyze the declaration of extractSixBits, and inline the I/O containers for the
method declaration inside the container for the method invocation.

A second type of I/O container is formed from branching statements such
as for loops, or if/else, where the body of a branch references filter inputs.
Each branching container may include nested containers depending on the body
of the branch. For example, the box substitution for (eight i) { ... } loop
in Fiestel becomes a branching I/O container. Nested within it, are a series of
containers, such as the one for method call S.extractSixBits(startBit, endBit),
as well as a container of Sbox(i, bits).

Figure 8 illustrates the I/O containers identified for Fiestel in Figure 3.
Note that expression E^K constitutes an I/O container because operator ^ is
defined for Unsigned. Thus, E^K is turned into method invocation E.$XOR(K).
Also note that non-I/O statements, such as loop index update (e.g., sIndex +=

fourtyeight.b6;), become local to their enclosing I/O container. For space rea-
sons, ... represents elided I/O containers.

SIR from I/O Containers. An I/O container has a natural mapping down to
the SIR. An I/O container with no nested containers naturally maps to a filter.
Its work method contains all the statements enclosed by the container. These
are generally arithmetic computations that have a straight-forward mapping to
hardware. If these statements involve any static references, the definitions of the
referenced data or methods are declared as local fields in the filter or as local
variables in the work method.

Filters (or pipelines) from I/O containers at the same nesting level are con-
nected to form a pipeline. Thus, an I/O container with nested containers is
mapped down to a pipeline formed by its children.

A branching I/O container that is formed by a for statement, creates a more
interesting mapping to the SIR. First, the work statements or nested I/O con-
tainers within the loop body are turned into a filter (or pipeline, respectively).
If the loop iterations are independent of each other with respect to the filter
input and output data, then the filter (pipeline) that makes up the loop body is
considered data-parallel. It can be replicated once for each iteration of the loop.
This basically translates the Lime code to a data-parallel representation in the
SIR. A data splitter is added at the beginning of the for I/O container. The
splitter duplicates the incoming data, and sends it down each replicated loop
body filter (pipeline). Data that is not part of the filter input and that may

Liquid Metal: Object-Oriented Programming 95

Fig. 8. I/O containers for Fiestel

depend on the loop index are used as init values for the filter construction. A
joiner is then added at the exit of the for I/O container to assemble the output
of each replicated filter (pipeline).

When we cannot determine that the loop iterations are independent, we have
to explore an alternative mapping. In the case, the computation is considered
stateful. In this case, we can statically unroll the loop and connect the unrolled
loop body filter (pipeline) sequential to form longer pipelines. Alternatively,
we can create a feedback loop such that the output of the loop body filter
(pipeline) feeds back into itself. This second option, however, is untested in our
SIR compiler.

Similar split/join structures are generated for other branching statement I/O
containers. Applying these rules, it is easy to see how I/O containers from Fig-
ure 8 can be mapped to exactly the SIR structure in Figure 7.

Object Representation in Hardware. The most general way an object can
be represented in hardware is by serializing it into an array of bits that is ei-
ther packed into registers, or stored in memory. The kind of Lime programs
most amenable for synthesis to hardware use data with efficient representations.
Lime’s language design is geared toward exposing such representations from a
high level, as we illustrated in Section 2. Objects of value types have no mutable
state, and thus can be safely packed into registers, instead of being stored in
much slower memory.

Dynamic Dispatch in hardware. One of the defining features of object-
oriented paradigms is the dynamic dispatch of methods. In order to perform
dynamic dispatch in hardware, we assign a unique identifier to each type, which

96 S.S. Huang et al.

is then carried by the object of that type. Thus, object representation may re-
quire bits for the type identifier to be serialized, as well. When mapping an I/O
container resulting from a virtual method invocation to SIR filters, we must gen-
erate a pipeline for each possible target method of the virtual call. All pipelines
from target methods are then added to a switch connector. The condition for
the switch is the type identifier that is carried by the incoming this object. A
pipeline of the target method is only invoked if the type identifier of the input
this object is equal to the type identifier of the method’s declaring class, or
one of its subclasses. We use analysis such as RTA [12] to reduce the number of
potential target methods that need to be synthesized. If the target method of a
virtual call can be statically identified, then the object does not have to carry a
type identifier.

Object Allocation in Hardware. Lime programs can use the new keyword to
create new objects. However, laying out a program in hardware means all mem-
ory needed must be known ahead of time. Thus, a program for synthesis must
be able to resolve statically all new’s, and space is allocated in registers or mem-
ory. Repeatedly new-ing objects in an unbounded loop, with the objects having
lifetimes persisting beyond the life of the loop, is not permitted in synthesized
programs.

7 SIR Compiler

The SIR that we adopt is both a good match for synthesis and also convenient
for performing coarse-grained optimizations that impact the realized parallelism.
We build heavily on the StreamIt compiler [13] to implement our SIR and our
SIR compiler. The StreamIt compiler is designed for the StreamIt programming
language. In StreamIt, programs describe SIR graphs algorithmically and pro-
grammatically using language constructs for filters, pipelines, splitters/joiners,
and feedback loops. The latter create cycles in the SIR graph although we do
not currently handle cycles.

7.1 Lowering Communication

The SIR compiler transforms the SIR graph to reduce the communication over-
head and cost. In an FPGA, excessive fan-out and fan-in is not desirable. Hence
the compiler attempts to collapse subgraphs that are dominated by a splitter
and post-dominated by a joiner. This transformation is feasible when the filters
that make up the subgraph are stateless. In a Lime program, methods of a value
class are stateless. For example, the Extract and Sbox filters in the SIR graph
shown in Figure 7 are stateless since neither of the two has any mutable state.
However, since each of these filters is specialized for a specific set of bits, col-
lapsing the subgraph results in at least one stateful filter, namely the Sbox filter
in this case. The collapsed graph is shown in Figure 9. Each execution of the
work method updates the state of the filter (shown as i in the Figure) so that

Liquid Metal: Object-Oriented Programming 97

XOR

Sbox

C
o
n
t
r
o
l
l
e
r

C
o
n
t
r
o
l
l
e
r

S (48 bits)

Work

Box
1..8Work

Permute

C
o
n
t
r
o
l
l
e
r

(32 bits)

bits (6 bits)

i

Extract
b0..b5

C
o
n
t
r
o
l
l
e
rWork

PWork

Fig. 9. Result of collapsing SIR shown in Figure 7

on the first execution it performs the substitution that correlates with Sbox 8,
on its second execution it performs the substitution for Sbox 7, and so on until
its ninth execution where it resets the state and resumes with Sbox 8.

The Extract filter does not need to keep track of its execution counts if the
compiler can determine that each of the Extract filters in the original graph
operated in order on mutually exclusive bits. Such an analysis requires dataflow
analysis within the filter work method, and is aided by very aggressive constant
propagation, loop unrolling, and dead code elimination. More powerful analy-
sis is also possible when filters carry out affine computations [14,15,6]. The SIR
compiler employs these techniques to reduce overall communication. The impact
on the generated hardware can be significant in terms of speed (time) and overall
area (space). We demonstrate the space-time tradeoff by synthesizing the SIR
graphs in Figures 7 and 9. The results for these two implementations appear
as Sbox Parallel Duplicate and Sbox State respectively in Figure 10. The
evaluation platform is a Virtex-4 FPGA with an embedded PowerPC processor
(PPC). The speedup results compare the performance of each hardware imple-
mentation to the implementation that yields the best results on the PPC.

We also performed two other transformations: Sbox Parallel Roundrobin
and Sbox Coarse. The former uses dataflow analysis to determine that a
roundrobin splitter can replace the duplicate splitter and the Extract filters
in Figure 7. The latter eliminates the state from the Sbox filter in Figure 9 by
substituting all 48 bits in one execution of the work method. The results are
as one should expect. The fastest hardware implementation uses the roundrobin
splitter and parallel Sbox filters. This implementation is roughly 3x faster than
the duplicate splitter implementation and 100% more space efficient since the
roundrobin splitter avoids needless communication and optimizes the datapaths
between filters aggressively. The area overhead is 50% larger than that of the
most compact implementation, namely Sbox State which is a pipelined imple-
mentation with an aggressively optimized datapath. The coarse implementation

98 S.S. Huang et al.

0

1

2

3

4

5

6

7

8

9

10

Sbox Parallel
Roundrobin

Sbox Parallel
Duplicate

Sbox State Sbox Coarse

sp
ee

du
p

co
mp

ar
ed

 t
o

be
st

PP

C4
05

 i
mp

le
me

nt
at

io
n

(S
bo

x
Co

ar
se

)

0

200

400

600

800

1000

1200

1400

1600

Sbox Parallel
Roundrobin

Sbox Parallel
Duplicate

Sbox State S box Coars e

ar
ea

 (
nu

mb
er

 o
f

FP
GA

 s
li

ce
s)

Fig. 10. Speedup and area results for different SIR realizations of Sbox

is the slowest of the four variants since it performs the most amount of work
per execution of the work method and affords little opportunity for pipeline
parallelism. It is however the best implementation for software although it is
worthy to note that it does not use the natural width of the machine in this
case. In other words, the version of Sbox Coarse that we benchmark in soft-
ware uses the same granularity as the FPGA and runs the work methods at
bit-granularity. This purpose of the performance comparison is to illustrate the
space-time trade-off that exists. In Section 9 we compare our synthesis results
to various optimized baselines.

7.2 Load Balancing

The SIR compiler also attempts to refine the SIR graph to realize a more load-
balanced graph. This is important because it minimizes the effects of a bottleneck
in the overall design. Toward this end, we currently use the heuristics and op-
timizations described in [11] and implemented in the StreamIt compiler. The
compiler uses various heuristics to fuse adjacent filters when it is profitable to
do so. The heuristics rely on a work-estimation methodology to detect load im-
balance. In our case, work-estimation is a simple scalar measure of the critical
path length through the filter work method. It is calculated using predefined
latencies for individual primitive operations. We believe however that there are
other ways of dealing with load imbalance on an FPGA platform but we have
not yet thoroughly investigated alternatives.

8 Getting to Hardware

The last step in our toolflow is HDL code generation. It is accomplished using
our SIR to Verilog compiler called Crucible. It compiles each filter in the SIR to
a Verilog hardware module. It then assembles the modules together according
to the dataflow edges in the SIR graph. The Crucible also generates the HDL
interfaces used to exchange data between the processor and the FPGA in order
to support mixed-mode execution. The interfaces work in conjunctions with the

Liquid Metal: Object-Oriented Programming 99

Table 1. Comparison of DES implementation on different processing platforms

processor PPC 405 FPGA Pentium-II Core 2 Duo

frequency 300 MHz 129 MHz 400 MHz 2.66 GHz

throughput 27 Mbps 30 Mbps 45 Mbps 426 Mbps

performance 1 1.11 1.69 16

DES version C reference Lime C reference C reference

Liquid Metal runtime to provide the network between processing elements, as
well as the API implementation from the FPGA side. The completed design is
finally synthesized using commercial synthesis tools to produce a bitstream that
can be used to program the FPGA. We use the Xilinx synthesis tool (XST) for
this purpose. FPGAs typically require vendor specific tools, so for other targets,
the appropriate synthesis tool is used. The Crucible controls and guides the
synthesis tool by setting appropriate synthesis parameters that impact resource
allocation policies, arithmetic circuit implementation, the placement of objects
in FPGA memory, etc. The Crucible is best suited to guide these policies since
it has a global view of the application.

The Crucible address both micro-functional (intra-filter) and macro-functional
(inter-filter) synthesis issues. It extends the Trimaran [16] compiler with optimiza-
tions and heuristics that are space-time aware. We leverage many of the existing
analysisandoptimizations inTrimarantooptimizethecodewithineachfilter.These
optimizations include criticalpath reduction, region formation for instruction-level
parallelism, predication, vectorization, and aggressive instruction scheduling algo-
rithms. In addition, the Crucible is bit-width cognizant, and although the compiler
can perform bit-width analysis, we primarily rely on the high level semantics of the
Lime program to elide or augment the analysis where feasible.

Inthemicro-functionalsense,thecompileroperatesonacontrolflowgraph(CFG)
consisting of operations and edges. Operations are grouped into basic blocks. Basic
blocks are in turn grouped into procedures. Each procedure typically represents a
filter.The codegenerationapplies abottom-upalgorithmto theCFG, startingwith
the operations. It generatesVerilog for each operation, then routes theoperands be-
tween them. Basic blocks serve as a hierarchicalbuilding block. They are composed
together with dataflow edges, eventually encompassing the entire procedure. Since
procedures represent filters, it is also necessary to generate the FIFOs that inter-
connect themaccording to theSIR. The size of eachFIFO is either determined from
the SIR according to the data types exchanged between filters, or using a heuristic
that is subject to space-time constraints. This is an example of a macro-functional
optimization. If too little buffering is provided, then throughput decreases as mod-
ules stall to sendor receivedata;whereastoomuchbuffering incurs substantial space
overheads.Macro-functionaloptimizationsrequirecarefulconsiderationofareaand
performance trade-offs to judiciously maximize application throughput at the low-
est costs.

In addition to the buffering considerations, the Crucible also generates hard-
ware controllers that stage the execution of the filters in hardware. The results

100 S.S. Huang et al.

presented in this paper use a basic execution model that executes the filter
work methods when the input data is ready, and reads from an empty channel
(writes to full channel) block the filter under the channel until other filters make
progress.

A greater description of the Crucible and its optimizations are beyond the
scope of this paper.

9 Experimental Results

We compiled and synthesized the DES Lime code from Section 3 to run in
an FPGA. We measured the application throughput at steady state in terms of
Mbits per second second (Mbps). We compare our results to an optimized imple-
mentation of DES (reference implementation) running on an Intel Pentium-II at
400 MHz, a Core 2 Duo processor with a frequency of 2.66 GHz, and a 300 MHz
PPC 405 which is the embedded processor available in the Virtex-4 LX200. The
frequency of the DES design generated from the Lime program is 129 MHz. The
results are summarized in Table 1. The row labeled performance shows the rel-
ative throughput compared to the PPC 405. The PPC is a reasonable baseline
since it is manufactured in the same technology as the FPGA fabric. Compared
to the embedded processor, the FPGA implementation is 11% faster. It is 66%
slower than a reasonably optimized DES coder running on a Pentium-II, and
14x slower than the fastest processor we tested.

The results show that we can achieve a reasonable hardware implementation
of DES starting from a high level program that was relatively easy to implement.
Compared to reference C implementations that we found and studied, we be-
lieve the Lime program is easier to understand. In addition, the Lime program is
arguably more portable since computation is explicitly expressed at the bit-level
and is therefore platform independent. This is in contrast to software implemen-
tations that have to match the natural processing width of their target platforms
and hence express computation at the granularity of bytes or words instead of
bits. We believe that starting with a bit-level implementation is more natural
for a programmer since it closely follows the specification of the algorithm.

The FPGA implementation that we realized from the Lime program requires
nearly 84% of the total FPGA area. This is a significant portion of the FPGA.
The area requirement is high because we are mapping the entire DES coder
pipeline (all 16 rounds) to hardware and we are not reusing any resources. The
spatial mapping is straightforward to realize but there are alternative mapping
strategies that can significantly reduce the area. Namely, sharing resources and
trading off space for throughput is an important consideration. We showed an
example of this kind of trade-off earlier using the Sbox code (refer to Figure 10).
We believe that there is significant room for improvement in this regard and this
is an active area of research that we are pursuing.

Our goal however is not to be the world’s best high-level synthesis compiler.
Rather, our emphasis is on extending the set of object-oriented programming fea-
tures that we can readily and efficiently implement in hardware so that skilled

Liquid Metal: Object-Oriented Programming 101

Java programmers can transparently tap the advantages of FPGAs. In the cur-
rent work, we showed that we can support several important features including
value types, generics, object allocation, and operator overloading. We are also ca-
pable of supporting dynamic dispatch in hardware although the DES example did
not provide a natural way to showcase this feature.

10 Related Work

10.1 Languages with Value Types

Kava [1] is an early implementation of value types as lightweight objects in Java.
The design of Lime is very much inspired by Kava. However, Kava was designed
before enum types or generics were introduced into Java. Thus, Kava chose a
different type hierarchy which put value types and Object at the same level.
This design does not fit in well with the current Java design. Lime remedied this
by using a value modifier. Lime also provides support for value generic types.
Additionally, Kava value types are not automatically initialized, nor are default
constructors generated.

C# [17] offers value types in the form of structs. One important difference
between C# value types and Lime value types is that C# value types cannot
inherit from other value types. Inheritance and dynamic dispatch of methods are
key features of the OO paradigm. Value types should be able to take advantage
of these abstractions. Furthermore, C# struct references must be manually ini-
tialized by the programmer, even though a default constructor is provided for
each struct. Lime value type references are automatically initialized, similar to
the way primitive types are treated.

Recent work by Zibin et al. [18] has shown a way to enforce immutability
using an extra immutability type parameter. In this work, a class can be defined
such that it can be used in a mutable or immutable context. In Lime, a value
class and a mutable class must be separately defined. The method proposed in
[18] is an interesting way to integrate a functional style with Java’s inherently
mutable core. We could incorporate similar techniques in Lime in the future.

10.2 Synthesizing High-Level Languages

Many researchers have worked on compilers and new high-level languages for
generating hardware in the past few years. Languages such as SystemC [4] have
been proposed to provide the same functionality as lower-level languages such as
Verilog and VHDL at a higher-level of abstraction. SystemC is a set of library
routines and macros implemented in C++, which makes it possible to simulate
concurrent processes, each described by ordinary C++ syntax. Similarly, Handle-
C [19] is another hardware/software construction language with C syntax that
support behavioral description of hardware. SA-C [20] is a single assignment
high-level synthesizable language. An SA-C program can be viewed as a graph
where nodes correspond to operators, and edges to data paths. Dataflow graphs
are ideal (data driven, timeless) abstractions for hardware circuits.

102 S.S. Huang et al.

StreamC [21] is a compiler which focuses on extensions to C that facili-
tate expressing communication between parallel processes. Spark [22] is another
C to VHDL compiler which supports transformations such as loop unrolling,
common sub-expression elimination, copy propagation, etc. DEFACTO[23] and
ROCCC[24] are two other hardware generation systems that take C as input
and generate VHDL code as output. To the best of our knowledge, none of these
compilation systems support high level object-oriented techniques.

Work by Chu[25] proposes object oriented circuit-generators. Circuit-gene-
rators, parameterized code which produces a digital design, enable designers to
conveniently specify reusable designs in a familiar programming environment.
Although object oriented techniques can be used to design these generator, this
system is not intended for both hardware and software programming in a parallel
system. Additionally, the syntax used in the proposed system is not appropriate
for large-scale object oriented software designs.

11 Conclusion

In this paper, we introduce Lime, an OO language for programming heteroge-
neous computing environments. The entire Lime architecture provides end-to-
end support from a high-level OO programming language, to compilation to both
the Java VM, the FPGA, and a runtime that allows mixed-mode operation such
that code can run on partly on the VM and partly on the FPGA, delegating
work to the most optimal fabric for a certain task. Lime is a first step toward a
system that can “JIT the hardware”, truly taking advantage of the multitude of
computing architectures.

Acknowledgments

This work is supported in part by IBM Research and the National Science Foun-
dation Graduate Research Fellowship. We thank Bill Thies and Michael Gordon
of MIT for their help with the StreamIt compiler, Stephen Neuendorffer of Xil-
inx for his help with the Xilinx tools and platforms, and the reviewers for their
helpful comments and appreciation of our vision.

References

1. Bacon, D.F.: Kava: A Java dialect with a uniform object model for lightweight
classes. Concurrency—Practice and Experience 15, 185–206 (2003)

2. Wu, P., Midkiff, S.P., Moreira, J.E., Gupta, M.: Efficient support for complex
numbers in java. In: Java Grande, pp. 109–118 (1999)

3. IEEE: 1076 IEEE standard VHDL language reference manual. Technical report
(2002)

4. IEEE: IEEE standard SystemC language reference manual. Technical report (2006)
5. Narayanan, M., Yelick, K.A.: Generating permutation instructions from a high-

level description. In: Workshop on Media and Streaming Processors (2004)

Liquid Metal: Object-Oriented Programming 103

6. Solar-Lezama, A., Rabbah, R., Bod́ık, R., Ebcioğlu, K.: Programming by sketch-
ing for bit-streaming programs. In: PLDI 2005: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation, pp.
281–294. ACM, New York (2005)

7. Ekman, T., Hedin, G.: The jastadd extensible java compiler. In: OOPSLA 2007:
Proceedings of the 22nd annual ACM SIGPLAN conference on Object oriented
programming systems and applications, pp. 1–18. ACM, New York (2007)

8. Babb, J., Frank, M., Lee, V., Waingold, E., Barua, R., Taylor, M., Kim, J., Dev-
abhaktuni, S., Agarwal, A.: The raw benchmark suite: Computation structures
for general purpose computing. In: Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (1997)

9. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. on Computers (1987)

10. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers, Dordrecht (1996)

11. Gordon, M., Thies, W., Amarasinghe, S.: Exploiting Coarse-Grained Task, Data,
and Pipeline Parallelism in Stream Programs. In: Proceedings of the 12th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (2006)

12. Bacon, D.F.: Fast and effective optimization of statically typed object-oriented
languages. PhD thesis (1997)

13. StreamIt (2003), http://cag.csail.mit.edu/streamit
14. Lamb, A.A., Thies, W., Amarasinghe, S.: Linear Analysis and Optimization of

Stream Programs. In: PLDI (2003)
15. Agrawal, S., Thies, W., Amarasinghe, S.: Optimizing stream programs using linear

state space analysis. In: CASES (2005)
16. Trimaran Research Infrastructure (1999), http://www.trimaran.org
17. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# Language Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston (2003)
18. Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kieżun, A., Ernst, M.D.: Object and

reference immutability using Java generics. In: ESEC/FSE 2007: Proceedings of
the 11th European Software Engineering Conference and the 15th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, Dubrovnik, Croa-
tia (2007)

19. Handle-C Language Overview (2004), http://www.celoxica.com
20. Najjar, W., Bohm, W., Draper, B., Hammes, J., Rinker, R., Beveridge, J.,

Chawathe, M., Ross, C.: High-level language abstraction for reconfigurable com-
puting (2003)

21. Mencer, O., Hubert, H., Morf, M., Flynn, M.J.: Stream: Object-oriented program-
ming of stream architectures using PAM-blox. In: FPL, pp. 595–604 (2000)

22. Gupta, S.: Spark: A high-level synthesis framework for applying parallelizing com-
piler transformations (2003)

23. Diniz, P.C., Hall, M.W., Park, J., So, B., Ziegler, H.E.: Bridging the gap between
compilation and synthesis in the defacto system. In: Lecture Notes in Computer
Science, pp. 52–70 (2001)

24. Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K.: Optimized generation of data-path
from c codes for fpgas. In: Design Automation Conference (2005)

25. Chu, M., Sulimma, K., Weaver, N., DeHon, A., Wawrzynek, J.: Object oriented
circuit-generators in Java. In: Pocek, K.L., Arnold, J. (eds.) IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 158–166. IEEE Computer Society
Press, Los Alamitos (1998)

Kilim: Isolation-Typed Actors for Java

(A Million Actors, Safe Zero-Copy Communication)

Sriram Srinivasan and Alan Mycroft

University of Cambridge Computer Laboratory,
Cambridge CB3 0FD, UK

{Sriram.Srinivasan,Alan.Mycroft}@cl.cam.ac.uk

Abstract. This paper describes Kilim, a framework that employs a
combination of techniques to help create robust, massively concurrent
systems in mainstream languages such as Java: (i) ultra-lightweight,
cooperatively-scheduled threads (actors), (ii) a message-passing frame-
work (no shared memory, no locks) and (iii) isolation-aware messaging.

Isolation is achieved by controlling the shape and ownership of mu-
table messages – they must not have internal aliases and can only be
owned by a single actor at a time. We demonstrate a static analysis built
around isolation type qualifiers to enforce these constraints.

Kilim comfortably scales to handle hundreds of thousands of actors
and messages on modest hardware. It is fast as well – task-switching
is 1000x faster than Java threads and 60x faster than other lightweight
tasking frameworks, and message-passing is 3x faster than Erlang (cur-
rently the gold standard for concurrency-oriented programming).

1 Imagine No Sharing

Computing architectures are getting increasingly distributed, from multiple cores
in one processor and multiple NUMA processors in one box, to many boxes in a
data centre and many data centres. The shared memory mindset – synonymous
with the concurrent computation model – is at odds with this trend. Not only
are its idioms substantially different from those of distributed programming, it
is extremely difficult to obtain correctness, fairness and efficiency in the presence
of fine-grained locks and access to shared objects.

The “Actor” model, espoused by Erlang, Singularity and the Unix pro-
cess+pipe model, offers an alternative: independent communicating sequential
entities that share nothing and communicate by passing messages. Address-
space isolation engenders several desirable properties: component-oriented test-
ing, elimination of data races, unification of local and distributed programming
models and better optimisation opportunities for compilers and garbage collec-
tors. Finally, data-independence promotes failure-independence [1]: an exception
in one actor cannot fatally affect another.

1.1 Motivation

The actor and message-passing approach, with its coarse-grained concurrency
and loosely-coupled components is a good fit for split-phase workloads (CPU,

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 104–128, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Kilim: Isolation-Typed Actors for Java 105

parse
type-
check

annotated
src

byte-
code

heap
model

isolation
check

CPS
transform

byte-
code

Kilim weaver

javac

external
annotations

Fig. 1. javac output post-processed by Kilim weaver

network and disk) [4] and service-oriented workflows. With a view to immedi-
ate industrial adoption, we impose the following additional requirements: (a) no
changes to Java syntax or to the JVM, (b) lightweight actors1 (c) fast messaging
(d) no assumptions made about a message receiver’s location and implementa-
tion language (e) widespread support for debugging, logging and persistence.

1.2 The Kilim Solution

This paper introduces Kilim2, an actor framework for Java that contains a byte-
code post-processor (“weaver”, see Fig. 1) and a run-time library. We list below
some important features as well as the design points:

Ultra-lightweight threads. Kilim’s weaver transforms methods identified by
an @pausable annotation into continuation passing style (CPS) to provide
cooperatively-scheduled lightweight threads with automatic stack manage-
ment and trampolined call stack [3, 20]. These actor threads are quick to
context-switch and do not need pre-allocated private heaps. The annotation
is similar in spirit to checked exceptions in that all callers and overriding
methods must be marked @pausable as well.

Messages as a special category. For the reasons outlined above, we treat
message types as philosophically distinct from, and much simpler than other
Java objects. Messages are:

– Unencapsulated values without identity (like their on-the-wire coun-
terparts, XML, C++ structs, ML datatypes and Scala’s case classes).
The public structure permits pattern-matching, structure transforma-
tion, delegation and flexible auditing at message exchange points; these
are much harder to achieve in the presence of encapsulation.

– Not internally aliased. A message object may be pointed to by at most
one other message object (and then only by one field or array element of

1 For example, threads are too heavyweight to assign per HTTP connection or per
component in composable communication protocol state machines.

2 Kilims are flexible, lightweight Turkish flat rugs woven with fine threads.

106 S. Srinivasan and A. Mycroft

it). The resulting tree-structure can be serialized and cloned efficiently
and effortlessly stored in relational and XML schemas. The lack of in-
ternal aliasing is less limiting in practice than would first appear, mostly
because loosely-coupled components tend to have simple interfaces. Ex-
amples include events or messages in most server frameworks, windowing
systems, the Singularity operating system [18] and CORBA valuetypes.

– Linearly owned. A message can have at most one owner at any time.
This allows efficient zero-copy message transfer where possible. The pro-
grammer has to explicitly make a copy if needed, and the imperative to
avoid copies puts a noticeable “back pressure” on the programmer.

Statically-enforced isolation. We enforce the above properties at compile-
time. Isolation is interpreted as interference-freedom, obtained by keeping
the set of mutable objects reachable from an actor’s instance fields and stack
totally disjoint from another actor’s. Kilim’s weaver performs a static intra-
procedural heap analysis that takes hints from isolation qualifiers specified
on method interfaces.

Run-time support. Kilim contains a run-time library of type-parametrised
mailboxes for asynchronous message-passing with I/O throttling and priori-
tised alting [23]; SEDA-style I/O conditioning [36] is omnipresent. Mailboxes
can be incorporated into messages, π-calculus [28] style. Space prevents us
from presenting much of the run-time framework; this paper concentrates on
the compile-time analysis and transformations.

The contribution of this work is the synthesis of ideas found in extant litera-
ture and in picking particular design points that allow portability and immediate
applicability (no change to the language or the JVM).

1.3 Isolation Qualifiers and Capabilities: A Brief Overview

Drossopoulou et al [16] present in their brief survey the choices of syntactic rep-
resentations for controlling aliasing. One issue they raise is the need to “develop
lightweight and yet powerful [shape] systems”. We have adopted “only trees may
be transferred between actors” as our guiding principle.

The motivations given in Sec. 1.1 led us to choose a scheme with (i) a marker
interface Message to identify tree-shaped message types which may contain prim-
itive types, references to Messages and arrays of the above; and (ii) three qual-
ifiers (@free, @cuttable, @safe) on method parameters, which we formalise
within a calculus.

These qualifiers can be understood in terms of two orthogonal capabilities of
an object in a tree: first, whether it is pointed to by another object or not (called
a root in the latter case) and second, whether or not it is structurally modifi-
able (whether its pointer-valued fields are assignable). The latter is a transitive
property; an object is structurally modifiable if its parent is.

Kilim: Isolation-Typed Actors for Java 107

Given this, an object is free3 if it is the root of a tree and is structurally
modifiable. A cuttable object may or may not be the root, but is structurally
modifiable. An object with a safe capability cannot be structurally modified
(transitively so), and does not care whether or not it is the root. These capabil-
ities represent in decreasing order the amount of freedom offered by an object
(in our ability to modify it, send to another actor, to placel on either side of
a field assignment). We use the term send (sent) to mean that the message is
effectively transferred out of the sender’s space after which the sender is not
permitted access to the message.

Clearly, in all cases, a node in our Message tree can have at most one other
object pointing to it4; in Boylands’ terminology [9], all fields of our Messages
are unique, which provides a system-wide invariant that permits an easy intuitive
grasp of our isolation qualifiers as deep qualifiers. The cut operator (see below)
can be read as an explicit version of the notion of destructive reads [9]. The
cuttable and safe capabilities can be seen as variants of Boylands’ borrowed.

The relationship between qualifiers and capabilities is this: the qualifiers are
specified on method interfaces and imply a interface contract between a method
and its caller and, in addition, bestow the corresponding capability on the object
referred to by the method parameter. Sec. 3 gives the specifics.

The cut operator performs a specific structural modification: it cuts a branch
of a tree, severing a subtree from its parent. In addition, it grants the root of
the subtree a free capability. Only new and cut can create free objects.

As an aside, we provide an additional (unchecked) escape interface Sharable
that allows the programmer to identify classes that do not follow our message
restrictions, yet can be safely transferred across to another thread. These may
include immutable classes and those with internal aliasing.

2 Example

Fig. 2 shows a simple Actor class TxtSrvr that blocks on a mailbox awaiting a
message, transforms the message and responds to a reply-to mailbox specified
in the message itself.

TxtMsg is a message class identified as such with the marker interface Message.
The programming model for actors (TxtSrvr here) is similar to that for Java
threads – replace Thread with Actor and run() with execute(). Similarly, an
actor is spawned thus: new TxtSrvr().start();

The entry point of a Kilim task is execute(), the only method of the actor
required to be public. Its other non-private methods may only have message-
compatible parameters and results. The @pausable annotation on a method
informs Kilim’s weaver that the method may (directly or transitively) call other
pausable methods such as Actor.sleep() and Mailbox.get().
3 Note: parameters have qualifiers, objects have capabilities; we write @free for the

programmer-supplied qualifier and free for the corresponding object’s capability.
4 At most one heap alias. Multiple local variables may also have the same pointer

value.

108 S. Srinivasan and A. Mycroft

import kilim.*;
class Mbx extends Mailbox<TxtMsg> {}

class TxtSrvr extends Actor {
Mbx mb;
TxtSrvr(Mbx mb) {this.mb = mb;}

@pausable
public void execute() {

while(true) {
TxtMsg m = mb.get();
transform(m);
reply(m);

}}

@pausable
void reply(@free TxtMsg m) {

m.replymb.put(m);
}

// @safe is default, so optional
void transform(@safe TxtMsg m) {· · ·}

}

class TxtMsg
implements Message

{
Mbx replymb;
byte [] data;

}

// Sample driver code

// spawn actor
Mbx outmb = new Mbx();
new TxtSrvr(outmb).start();

// Send and recv message
Mbx replymb = new Mbx();
byte [] data = ...
outmb.put(new TxtMsg(replymb, data));
... = replymb.get();

Fig. 2. Example Kilim code showing annotations for message and stack management.
Kilim’s semantic extensions are in bold.

The blocking call (to Mailbox.get()) in an infinite loop illustrates auto-
matic stack management. A typical state machine framework would have the
programmer rewrite this in a callback-oriented style and arrange to return to a
main loop; this style is prevalent even in multi-threaded settings because threads
are expensive and slow resources.

Kilim’s mailboxes are type-specific and thread-safe message queues, and being
sharable objects (see Sec. 5.2), they can be passed around in messages. They
support blocking, timed-blocking and non-blocking variants of get and put. An
actor may simultaneously wait for a message from one of many mailboxes using
select (like CSP’s alt [23]). Rudimentary I/O throttling is provided in the form
of bounded queue sizes (default is unbounded), and the caller of Mailbox.put()
is suspended if the queue is full (which is why reply()) must be marked as
pausable in the example.

The isolation qualifier @free on the reply() method’s parameter is a contract
between the caller (execute()) and the callee. The weaver checks that the caller
supplies an object with a free capability to the callee and subsequently does not
use any local variables pointing to or into the message. In turn, reply cedes

Kilim: Isolation-Typed Actors for Java 109

FuncDcl ::= freeopt m(�p : �α) { (lb : Stmt)∗; }
Stmt ::= x := new | x := y

| x := y.f | x.f := y | x := cut(y.f)
| x := y[·] | x[·] := y | x := cut(y[·])
| x := m(�y) | if/goto �lb | return x

x, y, p ∈ variable names f ∈ field names
lb ∈ label names m ∈ function names
sel ∈ field names ∪ {[·]} [·] pseudo field name for array access
α, β ∈ isolation qualifier {free , cuttable , safe}
null is treated as a special readonly variable

Fig. 3. Core syntax. All expressions are in A-normal form. Variables not appearing in
the parameter list are assumed to be local variables.

all rights to the message after calling the mailbox’s put() method (because the
latter too has a @free annotation on its formal parameters).

The transform() method does not require its supplied arguments to be
free. This means that execute() is permitted to use the message object after
transform() returns. Note also that transform() is not marked with @pausable,
which guarantees us that it does not call any other pausable methods.

3 Core Language

Fig. 3 shows our core syntax, a Java-like intra-procedural language. The language
is meant for the isolation checking phase only; it focuses solely on message types
and its statements have a bearing on variable and heap aliasing only. We confine
ourselves to purely intra-procedural reasoning for speed, precision and localising
the effect of changes to code (whole program analyses sometimes show errors in
seemingly unrelated pieces of code).

Primitive fields and normal Java objects, while tracked for the CPS transfor-
mation phase, are not germane to the issue of isolation checking. A program in
this language is already in A-normal form (all intermediate expressions named).

Isolation Qualifiers and Capabilities. We mentioned earlier that isolation
qualifiers (α, β) are specified in the form of annotations on method parame-
ters and return values. Like normal types, they represent the capabilities of the
arguments expected (an object must be at least as capable). Internally to the
method, the qualifiers represent the initial capability for each parameter object;
the object’s capability may subsequently change (unlike its Java type). Other
objects’ capabilities are inferred by a data-flow analysis (Sec. 5). In all cases, we
enforce the invariant that there can be at most one heap pointer to any message
object.

The list below informally describes object capabilities (Fig. 8 has the precise
semantics). It bears repeating that they reflect a lattice composed of two boolean

110 S. Srinivasan and A. Mycroft

properties – root node or not and, whether or not its pointer-valued fields are
assignable (structurally modifiable).

free: The free capability is granted to the root of a tree by new and by cut, and
to a method parameter marked as @free. A free object is guaranteed to be
a root, but not vice-versa. It is field-assignable to another non-safe object
and can be used as an argument to a method with any qualifier.

cuttable: This capability is granted to an object obtained via a field lookup
of another non-safe object, from downgrading a free object by assigning it
to a field of another (it is no longer a root) and to a method parameter
marked @cuttable. This capability permits the object to be cut, but not
to be assigned to another object (because it is not necessarily a root). This
capability is transitive: an object is cuttable if its parent is.

safe: The safe capability is granted to a method parameter marked @safe or
(transitively) to any object reachable from it. A safe object may not be
structurally modified or further heap-aliased or sent to another actor.

The qualifiers on method parameters impose the following interface contracts on
callers and callees:

@free: This allows the method to treat the parameter (transitively the entire
tree rooted there) as it sees fit, including sending it to another actor. The
type system ensures that the caller of the method supplies a free argument,
and subsequently forbids the use of all local variables that may point to any
part of the tree (reachable from the argument).

@cuttable: The caller must assume that the corresponding object may be cut
anywhere, and must therefore forget about all local variables that are reach-
able from the argument (because the objects they refer to could be cut off
and possibly sent to another actor).

@safe: The caller can continue to use a message object (and all aliases into it)
if it is passed to a @safe parameter. The callee cannot modify the structure.

The cut operator severs a subtree from its (cuttable) parent thus:

y = cut(x.sel)
def
= y = x.sel; x.sel = null;

Crucially, and in addition, it marks y as free; ordinarily, performing the two
operations on the right hand side would only mark y as cuttable. The cut oper-
ator works identically on fields and arrays. Because it is a single operation and
because messages (and their array-valued components) are tree-structured by
construction, the subtree can be marked free.

Remark 1. The most notable aspect of this calculus is that we amplify the re-
quirement that at most one actor owns a given message into the stronger one
that at most one dynamically active method stack frame may refer to a free
message. This is justified by the requirements that (i) a free object is a root
object and (ii) the rules on passing it to a method expecting a @free parame-
ter cause all local variables pointing to it to be marked inaccessible. Therefore

Kilim: Isolation-Typed Actors for Java 111

inter-actor communication primitives of the form send and receive are treated
as simple method calls; in other words, all that is required of an inter-actor
messaging facility like the mailbox is that they annotate their parameters and
return values (for send and receive operations respectively) with free, thereby
trivially isolating the intricacies of inter-actor and inter-thread interaction, Java
memory model, serialization, batched I/O, scheduling etc.

Remark 2. One could readily add an intermediate qualifier between @cuttable
and @safe, say @cutsafe, which permits all modifications except cutting. That
is, it could allow additions to the tree and nullification, but not extraction via
cut for possible transfer of ownership.

In addition to matching object capabilities with isolation qualifiers on method
parameters, Kilim enforces a rule to eliminate parameter-induced aliasing: argu-
ments to a method must be pairwise disjoint (trees may not overlap) if any one
of them is non-safe, and the return value, if any, must be free and disjoint from
the input parameters.

3.1 Why Qualifiers on Variables Are Not Enough

One might hope that a simple type system à la PacLang [17] can be created by
associating variables of Message type with isolation type qualifiers, which change
with the program point. However, such type systems do not take relationships
between variables into account. For example, if we know that x and y are aliases,
or y points within the structure rooted at x, then passing x to a method accepting
a free message (e.g. Mailbox.put()) must result in not only x but also y being
removed from the objects accessible from the scope of the actor.

In other words, while it is convenient to think of variables as having a qualifier
such as @free, it is really the objects that have such a qualifier. We need to
analyse methods to infer variable dependencies; the next two sections expand on
this subject.

We split isolation checking into two phases for exposition, although the imple-
mentation performs them pointwise on the control flow graph. These two phases
are covered in Sec. 4 and Sec. 5.

4 Heap Graph Construction

A program may create an unbounded set of message objects at run-time. A
compile-time analysis of such a program requires that we first create an abstract
model of the heap, called a heap graph. Each node of this (necessarily finite) graph
represents a potentially infinite set of run-time objects that have something in
common with each other at a given program point, and different heap analyses
differ on the common theme that binds the objects represented by the node.

We base our heap graph abstraction on a simple variant of shape analysis [37];
we claim no novelty. Our contribution is the set of design choices (isolation
qualifiers, tree-structure, local analysis, the cut operator) that make the problem

112 S. Srinivasan and A. Mycroft

G : 〈L, E〉 Heap graph is a pair of local var info L and edges E

L ∈ P(〈Var ,LNode〉) L = relation between local variable names and nodes
(LNode is logically the nodes of the graph)

E ∈ P(〈Node, sel,Node〉) E = a set of Node-Node edges labelled with field names

LNode ∈ P(V ar) Heap Graph node; in this formalism the name of the node
consists of the set of local variable names that may
point to it.
Well-formedness: 〈x, N〉 ∈ L ⇔ x ∈ N

Node ∈ P(V ar) ∪ {∅} Labelled nodes plus summary node.

Convenience:

L(x)
def
= {N | 〈x, N〉 ∈ L} set of LNodes to which a local variable might point.

Fig. 4. Heap Graph formalism following [37]

simpler and faster to reason about; it is a shape-enforcement rather than a
general analysis problem.

A heap graph G (see Fig. 4) is a pair 〈L, E〉; L is the set of associations
between variable names and nodes, and E represents the set of labelled edges
between nodes. A node may be pointed to by more than one variable and is
identified by a label that is merely the set of variable names pointing to it (a
reverse index).

Fig. 5 shows example heap graphs at two program points. The sample heap
graph l1 is represented algebraically as follows5:

L = { 〈a, {a}〉, 〈b, {b, d}〉, 〈d, {b, d}〉, 〈c, {c, d}〉, 〈d, {c, d}〉, 〈e, {e}〉 }
E = { 〈{a}, f, {b, d}〉, 〈{a}, f, {c, d}〉, 〈{b, d}, g, {e}〉, 〈{c, d}, g, {e}〉 }
The common theme among run-time objects represented by a shape analysis

node is that they are all referred to by the set of variables in the node’s label,
at that program point, for any given run of the program – a node is an aliasing
configuration.

In addition to the labelled nodes mentioned thus far, there is one generic
summary node with the special label ∅ that represents all heap objects not
directly referred to by a local variable. When a node ceases to be pointed to by
any variable, its label set becomes empty and it is merged with the summary
node (hence ‘∅’—by analogy with the empty set symbol).

Note that edges originate or end in labelled nodes only; the heap graph does not
know anything about the connectivity of anonymous objects (inside the ∅ node)

The most important invariant in heap graph construction is that there can-
not be an edge between two nodes whose labels are not disjoint. Without the
invariant, an edge such as 〈{x, y}, f, {x, u}〉 would represent the following im-
possible situation. x and y point to the same set of run-time objects (at that

5 Parallels to shape analysis [37]: G is their static shape graph, L is Ev with a layer of
subscripting is removed; we write 〈y, {x, y, z}〉 for their 〈y, nx,y,z〉.

Kilim: Isolation-Typed Actors for Java 113

 a = new; b = new; c = new
 if ...
 a.f = b
 d = b
 else
 a.f = c
 d = c
 e = d.g
l
1
:

 d = null
 b.g = null
l
2
:

a

b,d

c,d

e

f

f g

g

a

b

c

e

f

f g

l
1
:

l
2
:

Fig. 5. Sample heap graphs at l1 and l2. Only edges E are shown; L is implicit.

program point, on any run of the program). These objects in turn are connected
to another bunch of objects, referred to by x and u. This is clearly not possible,
because x’s objects have both an outgoing and an incoming edge while its alias-
ing partners (y and u) only have one or the other edge. Non-disjoint alias sets
can coexist in the graph, as long as they do not violate this invariant.

Given the control flow graph CFG mentioned earlier, we use the following
equations to construct the heap graph G after every program point. The anal-
ysis is specified in terms of an iterative forward flow performed on the lattice
〈G, ⊆〉. We merge the heap graphs at control-flow join points to avoid the expo-
nential growth in the set of graphs (like [37], unlike [29]). This means all transfer
functions operate on a single heap graph (rather than a set of graphs).

Ginit
out = 〈 { }, { } 〉

Gl
in =

⋃
{Gl′

out | (l′, l) ∈ CFG}
Gl

out = � · �(Gl
in)

The second equation merges the graphs from the CFG node’s incoming edges
(simple set union of node and edge sets). � · � represents the transfer functions
for each CFG node (Fig. 6). Note that if goto and return do not have transfer
functions; they are turned into edges of the CFG.

The transfer functions are simpler than the ones in shape analysis because they
do not deal with sharing (attempts to share are faulted in the isolation checking
phase). Note that the heap graph may have nodes with multiple incoming edges,
but it reflects a may-alias edge, not an edge that induces sharing. The node
labelled e in Fig. 5 represents two disjoint sets of run-time objects, one of which
has incoming edges from the {b, d} set of objects and the other from {c, f}.

The transfer function for x := y.f deserves some attention. It associates x
with all nodes T pointed to by y.f , which may or may not have been created
as yet by the analysis procedure. Fig. 7 covers both possibilities. In the case
where a node does not exist, it is treated as if it belongs as a discrete blob inside
the summary node, implicitly referred to by y.f (the grey region in Fig. 7). In

114 S. Srinivasan and A. Mycroft

Notation: V (any Node), S (source Node), T (target Node)

Sx
def
= S ∪ {x}

Sy
x

def
=

{
S ∪ {x} if y ∈ S
S otherwise

kill(G, x)
def
= L′ = { 〈v, V ′〉 ∈ L | v �= x ∧ V ′ = V \ {x} ∧ 〈v, V 〉 ∈ L}

E′ = { 〈S \ {x}, sel, T \ {x}〉 | 〈S, sel, T 〉 ∈ E}
�entry(mthd)� G L′′ =

⋃
i { 〈pi, {pi}〉 }

where pi is the ith parameter of mthd
E′′ = {}

�x := new� G G′ : 〈L′, E′〉 = kill(G, x)
L′′ = L′ ∪ 〈x, {x}〉, E′′ = E′

�x := y� G G′ : 〈L′, E′〉 = kill(G, x)
L′′ = { 〈v, V y

x 〉 | {v, V } ∈ L′}
E′′ = { 〈Sy

x , sel, T y
x 〉 | 〈S, sel, T 〉 ∈ E′}

�x.f := y� G E′ = E \ { 〈S, f, ∗〉 ∈ E | x ∈ S }
E′′ =

{
E′ if y ≡ null
E′ ∪ { 〈S, f , T 〉 | x ∈ S ∧ y ∈ T} otherwise

L′′ = L

�x[·] := y� G E′′ =

{
E if y ≡ null
E ∪ { 〈S, ‘[·]′ , T 〉 | x ∈ S ∧ y ∈ T} otherwise

L′′ = L

�x := y.sel� G

G′ : 〈L′, E′〉 = kill(G, x)
L′′ = L′

∪ { 〈t, Tx〉 | 〈t, T 〉 ∈ L′ ∧ 〈y, S〉 ∈ L′ ∧ 〈S, sel, T 〉 ∈ E′}
∪ { 〈x, Tx〉 | 〈y, S〉 ∈ L′ ∧ 〈S, sel, T 〉 ∈ E′}

E′′ = (E′ \ ⋃ {〈y, sel, ∗〉 ∈ E′ })
∪ { 〈y, sel, Tx〉 | 〈y, sel, T 〉 ∈ E′}
∪ { 〈Tx, sel, U〉 | 〈T, sel, U〉 ∈ E′}

�x := cut(y.sel)� �y.sel := null� ◦ �x := y.sel�

�x := m(�v)� G G′ : 〈L′, E′〉 = kill(G, x)
L′′ = L′ ∪ { 〈x, {x} 〉 }
E′′ = E′

Fig. 6. Transfer functions � · � for heap graph construction. They transform G : 〈L, E〉
to G′′ : 〈L′′, E′′〉. ‘∗’ represents wildcards and sel represents field and array access.

this case, the node is materialized [37] out of the summary node and all edges
outgoing from that node are replicated and attached to the newly materialized
node. This replication is necessary because we do not have precise information
about which portion of the anonymous heap (represented by the summary node)
is responsible for the outgoing edges (the grey blob, or the non-grey portion).
Note that we do not have to replicate the incoming edges because we know that
nodes are not shared and that the newly materialized node is already pointed
to by the y.f edge.

Kilim: Isolation-Typed Actors for Java 115

Shape analysis provides strong nullification and disjointness [37], as illustrated
in Fig. 5 by the transition from heap graph at l1 to that of l2. Unfortunately,
shape analysis cannot do the same for arrays: setting “x[i] = y” tells us nothing
at all about x[j]. However, cut performs strong nullification even on arrays,
because our type system ensures that the array’s components are disjoint both
mutually and from the variable on the right hand side.

Remark 3. There is an important software engineering reason for having cut,
instead of relying on shape analysis to inform us about disjointness: we want
to make explicit in the code the act of cutting a branch from the tree and
giving the subtree a free capability. Most methods do not need to cut; they can
have the default @safe qualifier, which allows them to (transitively) modify the
arguments, but not cut or send the object.

y,z

y

tf

f h v

g u y,z

y

x,tf

f

h v

g u

x

h

AfterBefore

Fig. 7. Example heap graph before and after transformation by �x := y.f�. Double
lines show the newly materialized node and edge. The grey blob is the portion of the
anonymous heap that is the implicit target of y.f .

5 Isolation Capability Checking

Having built heap graphs at every program point, we now associate each labelled
node n in each heap graph with a capability κ(n), as mentioned earlier. All run-
time objects represented by n implicitly have the same capability.

Fig. 8 shows the monotone transfer functions operating over the capability
lattice in a simple forward-flow pass. At CFG join points, the merged heap
graph’s nodes are set to the minimum of the capabilities of the corresponding
nodes in the predecessor heap graphs (in the CFG). For example,

a = new // κ(a) := free
if ...

b.f = a // κ(a) := cuttable
// join point. κ(a) := min(free, cuttable)

send(a) // ERROR: κ(a) is not free

116 S. Srinivasan and A. Mycroft

Assumption 1: the current method’s signature is free mthd(�p : �α).
Assumption 2: E and L used (e.g.) in dependants result from Heap Graph analysis for
the current instruction.

�entry(mthd)� κ = [�p
κ�→ �α]

�x := new T � κ = κ[x
κ�→ free]

�x := y� κ = κ[x
κ�→ κ(y)]

precondition : κ(y) = free

�x.f := y� κ = κ[y
κ�→ cuttable]

�x := y.f� κ = κ[x
κ�→ s]

s =

j
safe if κ(y) = safe
cuttable if κ(y) ∈ {free, cuttable}

precondition : βi � κ(yi) ∧ (∀i �= j)(disjoint(yi, yj) ∨ βi = βj = safe)

�x := m(�y)� κ = κ

"
dependants(yi) ∪ {yi} κ�→ ⊥, if (βi = free)

dependants(yi)
κ�→ ⊥, if (βi = cuttable)

h
x

κ�→ free
i

(assumption: m’s signature is free m(�β). Return value is always free)

precondition : κ(y) ∈ {free, cuttable}
�x := cut(y.f)� κ = κ[x

κ�→ free]

precondition : κ(x) = free ∧ ∀i(αi = cuttable =⇒ disjoint(x, pi))
�return x� κ = κ (no change)

where:
κ(n) : LNode �→ Capability gives the Capability associated with a node n ∈ LNode
(Capability, �) = ⊥ � safe � cuttable � free

κ(v)
def
= min(κ(n)), n ∈ L(v)

κ[v
κ�→ c : Capability]

def
= κ[n �→ c], n ∈ L(v)

dependants(v)
def
= {v′ |n ∈ L(v) ∧ n′ ∈ L(v′) ∧ n′ ∈ reachset(n)}

where reachset(n) =
S

{n, , n′}∈E{n′} ∪ reachset(n′)

disjoint(x, y)
def
= x �= y ∧ (x �∈ dependants(y) ∧ y �∈ dependants(x)

Fig. 8. Transfer functions for capability inference. Standard precondition: variables
used as rvalues must be valid (i.e. �⊥).

Isolation qualifier β

κ(y) free cuttable safe

free κ′ = κ[y
κ�→ ⊥, �z

κ�→ ⊥] κ′ = κ[y
κ�→ ⊥] κ′ = κ

cuttable κ′ = κ[y
κ�→ ⊥] κ′ = κ

safe κ′ = κ

Fig. 9. Effect of the call m(y) – where m’s signature is m(β p)) – on the capabilities
of y and on the dependants �z of y. A blank indicates the call is illegal.

Kilim: Isolation-Typed Actors for Java 117

Note that the function κ has been overloaded to work for both variables and
nodes; a variable’s capability is the minimum capability of all the nodes to which
it points.

The transfer function for method calls may be better understood from Fig. 9.
The matrix matches capabilities of the argument with the corresponding pa-
rameter’s isolation qualifier and each cell of the matrix reflects the effect on the
capabilities of objects reachable from the argument.

5.1 Soundness

A formal proof of correctness is left to future work. Below, we outline the in-
tuitions that justify our belief that the system is correct, and which we expect
could form the basis of a proof.

Firstly, we require all built-in functions that can transfer a message (or a tree
of such messages) from one actor to another do so via a free parameter or re-
sult. Therefore it is necessary to ensure that when an object is so transferred,
no part of it remains accessible by the caller after the call – i.e. all local vari-
ables that can reference it can no longer be used. Of course, using conventional
stack frames, there may remain pointers into the transferred structure, but the
critical requirement is that all variables that may refer to these are marked with
capability ⊥. This effect is achieved by a combination of heap graph analysis
followed by the capability dataflow propagation.

Secondly, we need to ensure that all operations in the language preserve the
invariant that messages are tree-structured and that only the root of a message
is ever marked as free. This requires a careful examination of each language
primitive. Critical cases are:

– x := cut(y.f). If y is a well-formed tree, the modified y and x are also
well-formed.

– x.f := y. This is the only form that can create heap aliases and its precon-
ditions ensure that no more than one heap alias is created for any object.
Further, y simultaneously loses the property of being a root and being free.

The correctness of the heap graph analysis rests on it being a special case of
shape analysis (we can omit the “heap-sharing” flag).

Together, the argument is that each single step of evaluation preserves the
property that only the root of a message can ever be free.

As a consequence each heap node is only accessible from at most one method
in one actor as free, and therefore accessible from at most one actor.

5.2 Interoperation with Java

Java classes identified by the marker interface Message are treated as message
types. We have treated Java objects and Messages as immiscible so far. This
section describes the manner in which they can be mixed and the effect of such
mixing on correctness.

118 S. Srinivasan and A. Mycroft

Immutable classes such as String and Date already satisfy our interference-
freedom version of isolation—even though, in the JVM they may be implemented
as references shared by multiple actors, this sharing is benign. However, if the
programmer wants to share a class between actors and is aware of the implica-
tions of sharing such a class (the mailbox is an example), he can have the class
implement a marker interface Sharable. The weaver does not perform any checks
on objects of such and therefore permits multiple heap-aliases. Clearly, this is
a potential safety loophole. Objects derived from fields of Sharable objects are
treated as regular Java objects, unless they too are instances of a Sharable class.

If a method parameter is not a message type, but is type compatible (upcast
to Object, for example), then the absence of an annotation is treated as an
escape into unknown territory; the weaver treats it as a compile-time error.
For existing classes whose sources cannot be annotated, but whose behaviour is
known, the programmer can supply “external annotations” to the weaver as a
text file (Fig. 1):

class java.lang.String implements Sharable

interface java.io.PrintStream {
void println(@safe Object o);

}

This scheme works as if the annotations were present in the original code.
Clearly, it only works for non-executable annotations (type-qualifiers used for
validation); @pausable cannot be used as it results in code transformations.
Further, externally annotated libraries are not intended to be passed through
Kilim’s weaver; the annotations serve to declare the library methods’ effects on
their parameters.

The @safe annotation implies that the method guarantees that the parameter
does not escape to a global variable or introduce other aliases (such as a collection
class might), guarantees that are ordinarily given by message-aware methods.

Kilim accommodates other object types (needed for creating closures for the
CPS transformation phase), but does not track them as it does message types.
We take the pragmatic route of allowing ordinary Java objects (and their arrays)
to be referenced from message classes but give no guarantees of safety. We do
not implement any run-time checks or annotations or restrictions (such as a
classloader per actor) on such objects.

Finally, the weaver limits static class fields to constant primitive or final
Sharable objects and prevents exceptions from being message types.

6 Creating Scalable, Efficient Actors

Traditional threading facilities (including those available in the JVM) are tied
to kernel resources, which limits their scalability and the efficiency of context
switching. We map large numbers of actors onto a few Java threads by the simple
expedient of rewriting their bytecode and having them cooperatively unwind

Kilim: Isolation-Typed Actors for Java 119

their call stack. Unwinding is triggered by calls to Actor.pause or Actor.sleep
(the mailbox library calls these internally).

A scheduler then initiates the process of rewinding (restoring) another actor’s
call stack, which then continues from where it left off. Much of the mechanics of
transformation has been covered in an earlier paper [33]; this section summarises
and highlights some of the important engineering decisions.

Unwinding a call stack involves remembering, for each activation frame, the
state of the Java operand stack and of the local variables and the code offset to
which to return. A call stack can unwind and rewind only if the entire call chain
is composed of methods annotated with @pausable. Each pausable method’s
signature is transformed to include an extra argument called a fiber (of type
Fiber), a logical thread of control. The fiber is a mechanism for a method to
signal to its caller that it wants to return prematurely. The fiber also acts as a
store for the activation frame of each method in the call hierarchy as the stack
unwinds. The activation frame of a method consists of the program counter (the
code offset to jump back to), the operand stack and the local variables. When
the callee pauses (calls Actor.pause() or mailbox.get()), the caller examines
the fiber, learns that it is now in a pausing state, stores its activation frame on
the fiber and returns. And so on all the way up past the call chain’s starting
point, the actor’s execute() method. This way, the entire call stack with its
control and data elements is reified onto the fiber. The process is easily reversed:
each method consults the fiber upon entry, jumps directly to the resumption
point and restores its state where necessary.

This is conceptually equivalent to a continuation passing style (CPS) transfor-
mation; it is however applied only to pausable methods and produces single-shot
continuations. The transform inlines local subroutines (reachable from the jsr
instruction and used in try-finally blocks). Finally, the A-normal form of the CFG
helps deal with the restriction imposed by the JVM that one cannot branch to
an offset between new and the corresponding constructor invocation.

Transforming Java bytecode has the advantage that its format has remained
constant while the source language has undergone tremendous transformations
(generics, inner classes and soon, lambda functions and closures). It also allows
us to perform local surgery and to goto into a loop without modifying any of
the original code. Finally, it is applicable to other JVM-based languages as well
(e.g. Scala).

Fig. 10 shows a sample CFG of a pausable method that makes a call to an-
other pausable method, before and after the transformation performed by Kilim’s
weaver. The CFG shows extended basic blocks (multiple out-edges that account
for JVM branching instructions and exception handlers), with the invoke in-
struction to a pausable method separated out into its own block. We will hence-
forth refer to this basic block as a call site.

The weaver adds one prelude node at entry, modifies each call site and adds
two edges, one from the prelude to the call site to help recreate the stack and
another from the call site to the exit to pause and unwind the stack. It also adds
a node at the entry to every catch handler. None of the original nodes or edges

120 S. Srinivasan and A. Mycroft

Init

Exit

call n()

Init

Exit

call n(f)

Prelude

New

Old

old

new

rewinding

pausing

normal entry

normal exit

Fig. 10. CFG before and after transform

are touched, but the weaver maintains the JVM-verified invariant that the types
and number of elements in the local variables and operand stack are identical
regardless of the path taken to arrive at any instruction. This means that we
cannot arbitrarily jump to any offset without balancing the stack first. For this
reason, the stack and variables may need to be seeded with an appropriate
number of dummy (constant) values of the expected type before doing the jump
in the prelude.

6.1 Implementation Remarks

While the general approach is similar to many earlier approaches [5, 25], we feel
the following engineering decisions contribute to the speed and scalability of our
approach.

We store and restore the activation frame’s state lazily in order to incur the
least possible penalty when a pausable method does not pause. Unlike typical
CPS transformations, we transform only those methods that contain invocations
to methods marked @pausable. Our heap analysis phase also tracks live vari-
ables, duplicate values and constants. The latter two are never stored in the
fiber; they are restored through explicit code. These steps ensure the minimum
possible size for the closure. To the extent we are aware, these analyses are not
performed by competing approaches.

In contrast to most CPS transformations on Java/C# bytecode, we chose to
preserve the original call structure and to rewind and unwind the call stack.
One reason is that CPS transformations also typically require the environment
to support tail-call optimisation, a feature not present in the JVM. Second, the
Java environment and mindset is quite dependent on the stack view of things:
from security based on stack inspection to stack traces for debugging. In any
case, the process of rewinding and unwinding the call stack turned out to be
far less expensive than we had originally suspected, partly because we eagerly
restore only the control plane, but lazily restore the data plane: only the topmost

Kilim: Isolation-Typed Actors for Java 121

activation frame’s local variables and operand stack are restored before resuming.
If the actor pauses again, the intermediate activation frames’ states are already
in the fiber and do not need to be stored again.

Some researchers have used exceptions as a longjmp mechanism to unwind
the stack; we use return because we found exceptions to be more expensive by
almost two orders of magnitude. Not only do they have to be caught and re-
thrown at each level of the stack chain, they clear the operand stack as well. This
unnecessarily forces one to take a snapshot of the operand stack before making
a call; in our experience, lazy storage and restoration works better.

We chose to modify the method signatures to accommodate an extra fiber
parameter in contrast to other approaches that use Java’s ThreadLocal facility
to carry the out-of-band information. Using ThreadLocals is inefficient at best
(about 10x slower), and incorrect at worst because there’s no way to detect at
run time that a non-pausable method is calling a pausable method (unless all
methods are instrumented).

We have also noticed that the @pausable annotation makes explicit in the
programmer’s mind the cost of pausing, which in turn has a noticeable impact
on the program structure.

7 Performance

Erlang is the current standard bearer for concurrency-oriented programming
and sets the terms of the debate, from micro-benchmarks such as speed of pro-
cess creation and messaging performance, to systems with an incredible 9-nines
reliability [2]. Naturally, a comparison between Kilim and Erlang is warranted.

Unfortunately, no standard benchmark suites are yet available for the actor
paradigm. We evaluated both platforms on the three most often quoted and much
praised characteristics of the Erlang run-time: ability to create many processes,
speed of process creation and that of message passing.

All tests were run on a 3GHz Pentium D machine with 1GB memory, running
Fedora Core 6 Linux, Erlang v. R11B-3 (running HIPE) and Java 1.6. All tests
were conducted with no special command-line parameters to tweak performance.
Ten samples were taken from each system, after allowing the just-in-time com-
pilers (JITs) to warm up. The variance was small enough in all experiments to
be effectively ignored.

Kilim’s performance exceeded our expectations on all counts. We had assumed
that having to unwind and rewind the stack would drag down performance that
could only be compensated for by an application that could make use of the JIT
compiler. But Kilim’s transformation, along with the quality of Java’s current
run-time, was able to compete favourably with Erlang on tasking, messaging
and scalability.

Process creation The first test (Fig. 11(a)) measures the speed of (lightweight
Erlang) process creation. The test creates n processes (actors) each of which
sends a message to a central accounting process before exiting. The test measures
the time taken from start to the last exit message arriving at the central object.

122 S. Srinivasan and A. Mycroft

0

500

1000

1500

2000

2500

0 50000 100000 150000 200000

Erlang

Kilim

(a) Creation and Destruction

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000

Erlang

Kilim

(b) Messaging

Fig. 11. Erlang vs. Kilim times. X-axis: n actors (n2 messages), Y-axis: Time in ms
(lower is better).

Kilim’s creation penalty is negligible (200,000 actors in 578ms, a rate of 350KHz),
and scaling is linear. We were unable to determine the reason for the knee in the
Erlang curve.

Messaging Performance. The second test (Fig. 11(b)) has n actors exchanging n2

messages with one another. This tests messaging performance and the ability to
make use of multiple processing elements (cores or processors). Kilim’s messaging
is fast (9M+ messages in 0.54 μ sec, which includes context-switching time) and
scales linearly.

Exploiting parallelism. The dual-core Pentium platform offered no tangible im-
provement (a slight decrease if anything) by running more than one thread with
different kinds of schedulers (all threads managed by one scheduler vs. indepen-
dent schedulers). We tried the messaging performance experiment on a Sun Fire
T2000 machine with 32G total memory, eight cores on one chip and four hard-
ware threads per core. We compared the system running with one thread vs.
ten. Fig. 12 demonstrates the improvement afforded by real parallelism. Note
also that the overall performance in this case is limited by the slower CPUs
running at 1.4 GHz.

Miscellaneous numbers. We benchmarked against standard Java threads, RMI
objects and Scala (2.6.1-RC1) (within one JVM instance). We do not include
these numbers because we found all of them to be considerably slower: a simple
binary ping-pong test with two objects bouncing a message back and forth has
Kilim 10x faster than Scala’s Actor framework [22] (even with the lighter-weight
react mechanism), 5x faster than threads with Java’s Pipe*Stream and 100x
faster than RMI between collocated objects (RMI always serialises its messages,
even if the parameters are non-referential types). Larger scales only worsened
the performance gap.

Interpreting the results. One cannot set too much store by micro-benchmarks
against a run-time as robust as that of Erlang. We are writing real-world appli-
cations to properly evaluate issues such as scheduling fairness, cache locality and

Kilim: Isolation-Typed Actors for Java 123

0

1000

2000

3000

4000

5000

6000

7000

0 500 1000 1500 2000

Number of Tasks

E
la

p
s
e
d
 t

im
e
 (

m
s
)

1 thread

10 threads

Fig. 12. Kilim messaging performance and hardware parallelism. (n actors, n2 mes-
sages).

memory usage. Still, these tests do demonstrate that Kilim is a promising step
combining the best of both worlds: concurrency-oriented programming, Erlang
style, and the extant experience and training in object-oriented programming.

8 Related Work

Our work combines two orthogonal streams: lightweight tasking frameworks
and alias control, with the focus on portability and immediate applicability (no
changes to Java or the JVM).

Concurrent Languages. Most concurrency solutions can—on one axis—be
broadly classified as a language versus library approach [11]. We are partial
to Hans Boehm’s persuasive arguments [6] that threads belong to the language,
not a library. While most of the proposed concurrent languages notably sup-
port tasks and messages, few have found real industrial acceptance: Ada, Erlang
and Occam. For the Java audience, Scala provides an elegant syntax and type
system with support for actors provided as a library [22]; however, lack of isola-
tion and aliasing are still issues. Scala has no lightweight threading mechanism,
although the combination of higher-order functions and the react mechanism
is a far superior alternative to callback functions in Java. JCSP [35], a Java
implementation of CSP [23] has much the same issues.

The Singularity operating system [18] features similar to ours: lightweight
isolated processes and special message types that do not allow internal aliasing.
The system is written in a new concurrency-oriented language (Sing#), and
a new run-time based on Microsoft’s CLR model but with special heaps for

124 S. Srinivasan and A. Mycroft

exchanging messages. While ours is a more of an evolutionary approach, we look
forward to their efforts becoming mainstream.

Tasks and Lightweight Threads. None of the existing lightweight tasking frame-
works that we are aware of address the problems of aliased references.

The word “task” is overloaded. We are interested only in tasking frameworks
that provide automatic stack management (can pause and resume) and not run
to completion, such as Java’s Executor, FJTask [27]) and JCilk [14]. That said,
we have much to learn from the Cilk project’s work on hierarchical task struc-
tures and work-stealing scheduling algorithms.

The Capriccio project [4] modified the user-level POSIX threads (pthreads)
library to avoid overly conservative pre-allocation of heap and stack space, re-
lying instead on a static analysis of code to infer the appropriate size and lo-
cations to dynamically expand heap space. They report scalability to 100,000
preemptively-scheduled threads.

Pettyjohn et al [30] generalise previous approaches to implementing first-class
continuations for environments that do not support stack inspections. However,
their generated code is considerably less efficient than ours; it relies on exceptions
for stack unwinding, it creates custom objects per invocation site, splits the code
into top-level procedures which results in loops being split into virtual function
calls.

Many frameworks such as RIFE [5], and the Apache project’s JavaFlow [25]
transform Java bytecode into a style similar to ours. RIFE does not handle
nested pausable calls. Kilim handles all bytecode instructions (including jsr)
and is significantly faster for reasons explained earlier (and in [33]).

Static Analysis. Inferring, enforcing, and reasoning about properties of the heap
is the subject of a sizable proportion of research literature on programming
languages. We will not attempt to do this topic justice here and will instead
provide a brief survey of the most relevant work. We heartily recommend [24],
an “action plan” drawn up to address issues caused by unrestricted aliasing in
the context of object-oriented programming languages.

Alias analysis concentrates on which variables may (or must) be aliases, but
not on how sets of aliases relate to each other, an important requirement for
us. We also require strong nullification and disjointness-preservation, something
not available from most points-to analyses (e.g. [31]), because their method of
associating abstract heap nodes with allocation points is equivalent to fixing the
set of run-time objects that a variable may point to.

Shape analysis provides us the required properties because it accommodates
dynamic repartitioning of the set of run-time objects represented by an alias
configuration. However, the precision comes at the expense of speed. Our an-
notations provide more information to the analysis and pave the way for more
modular inter-procedural analyses in the future.

Our approach is most closely related to Boyland’s excellent paper on alias
burying [10], which provides the notions of unique (identical to our free) and
borrowed, which indicates that the object is not further aliasable (cuttable and

Kilim: Isolation-Typed Actors for Java 125

safe, in our case). Boyland does not speak of safety from structural modifica-
tions, but this is a minor difference. The biggest difference in our approach is
not the mechanics of the analysis, but in our design decision that messages be
different classes and references to them and their components be unique. Making
them different helps in dealing with versioning and selective upgrades (for exam-
ple, one can have separate classloaders for actors and messages). Allowing free
mixing of non-unique and unique references makes it very difficult to statically
guarantee safety unless one extends the language, as with ownership types. This
is an important software engineering decision; the knowledge that every message
pointer is always unique and not subject to lock mistakes ensures that code for
serialization, logging, filtering and persistence code does not need to deal with
cycles, and permits arrays and embedded components to be exposed.

Type systems are generally monadic (do not relate one variable to another)
and flow-insensitive (a variable’s type does not change), although flow-sensitive
type qualifiers [19] and quasi-linear types [26] are analogous to our efforts. Quasi-
linear types have been successfully for network packet processing [17]; however
packet structures in their language do not have nested pointers.

Ownership types [12, 7, 8] limit access to an object’s internal representations
through its owners. External uniqueness types [13] add to ownership types a
linearly-typed pointer pointing to the root object. Each of these schemes offers
powerful ways of containing aliasing, but are not a good fit for our current
requirements: retrofitting into existing work, working with unencapsulated value
objects and low annotation burden. An excellent summary of type systems for
hierarchic shapes is presented in [16].

StreamFlex [32] relies on an implicit ownership type system that implements
scoped allocation and ensures that there are no references to an object in a higher
scope, but allows aliasing of objects in sibling and lower scopes. Their analysis
relies on a partially closed world assumption. The type system is eminently suited
for hooking together chained filters; it is less clear to us how it would work for
long-lived communicating actors and changing connection topologies.

There are clearly domains where internal aliasing is useful to have, such as
transmitting graphs across compiler stages. Although gcc’s GIMPLE IR is tree-
structured, one still has to convert it back to a graph, for example. A type system
with scoped regions, such as StreamFlex’s, permits internal aliasing without
allowing non-unique pointers to escape from their embedded scope.

There are several works related to isolation. Reference immutability anno-
tations [34, 21] can naturally complement our work. The Java community has
recently proposed JSR-121, a specification for application level isolation; this
ensures all global structures are global only to an isolate.

9 Conclusion and Future Work

We have demonstrated Kilim, a fast and scalable actor framework for Java. It
features ultra-lightweight threads with logically disjoint heaps, a message-passing
framework and a static analysis that semantically distinguishes messages from

126 S. Srinivasan and A. Mycroft

other objects purely internal to the actor. The type system ensures that messages
are free of internal aliases and are owned by at most one actor at a time. This is
in contrast to the current environment in all mainstream languages: heavyweight
kernel threads, shared memory and explicit locking.

The techniques are applicable to any language with pointers and garbage
collection, such as C#, Scala and OCaml.

Our target deployment platform is data-centre servers, where a user request
results in a split-phase workflow involving CPU, disk and possibly dozens of re-
mote services [15]; this application scenario helps distinguish our design choices
from extant approaches to parallel and grid computing, which are oriented to-
wards CPU-intensive problems such as protein folding.

Our message-passing framework lends itself naturally to a seamless view of lo-
cal and distributed messaging. Integrating our platform with distributed naming
and queueing systems is our current focus.

Another promising area of future work of interest to server-side frameworks
is precise accounting of resources such as database connections, file handles and
security credentials; these must be properly disposed of or returned even in the
presence of actor crashes. We expect to extend the linearity paradigm towards
statically-checked accountability of resource usage.

Acknowledgements. Thanks are due to Jean Bacon, Boris Feigin, Alexei
Gotsman, Reto Kramer, Ken Moody, Matthew Parkinson, Mooly Sagiv, Vik-
tor Vafeiadis, Tobias Wrigstad and the anonymous referees for their patient and
detailed feedback. This work is supported by EPSRC grant GR/T28164.

References

[1] Armstrong, J.: Making Reliable Distributed Systems in the Presence of Software
Errors. PhD thesis, The Royal Institute of Technology, Stockholm (2003)

[2] Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Program-
ming in Erlang. Prentice-Hall, Englewood Cliffs (1996)

[3] Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, J.R.: Cooperative
Task Management Without Manual Stack Management. In: USENIX Annual
Technical Conference, General Track, pp. 289–302 (2002)

[4] von Behren, R., Condit, J., Zhou, F., Necula, G., Brewer, E.: Capriccio: Scalable
threads for Internet Services. In: 19th ACM Symposium on Operating Systems
Principles (2003)

[5] Bevin, G.: Rife, http://rifers.org
[6] Boehm, H.J.: Threads cannot be implemented as a library. In: ACM Conf. on

PLDI, pp. 261–268 (2005)
[7] Boyapati, C., Lee, R., Rinard, M.C.: Ownership types for safe programming: pre-

venting data races and deadlocks. In: Proc. of OOPSLA, pp. 211–230 (2002)
[8] Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:

Proc. of ACM POPL, pp. 213–223 (2003)
[9] Boyland, J., Noble, J., Retert, W.: Capabilities for sharing: A generalisation of

uniqueness and read-only. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 2–27. Springer, Heidelberg (2001)

Kilim: Isolation-Typed Actors for Java 127

[10] Boyland, J.: Alias burying: Unique Variables Without Destructive Reads. Softw.
Pract. Exper. 31(6), 533–553 (2001)

[11] Briot, J.P., Guerraoui, R., Löhr, K.P.: Concurrency and distribution in object-
oriented programming. ACM Comput. Surv. 30(3), 291–329 (1998)

[12] Clarke, D.G., Potter, J., Noble, J.: Ownership types for flexible alias protection.
In: Proc. of OOPSLA, pp. 48–64 (1998)

[13] Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003)

[14] Danaher, J.S., Lee, I.T.A., Leiserson, C.E.: Programming with exceptions in JCilk.
Sci. Comput. Program. 63(2), 147–171 (2006)

[15] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s Highly
Available Key-value Store. In: SOSP, pp. 205–220 (2007)

[16] Drossopoulou, S., Clarke, D., Noble, J.: Types for Hierarchic Shapes. In: Sestoft, P.
(ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 1–6. Springer, Heidelberg
(2006)

[17] Ennals, R., Sharp, R., Mycroft, A.: Linear types for Packet Processing. In:
Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 204–218. Springer, Heidelberg
(2004)

[18] Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus, J.R.,
Levi, S.: Language support for fast and reliable message-based communication in
Singularity OS. In: Proc. of EuroSys (2006)

[19] Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: ACM Conf.
on PLDI, pp. 1–12 (2002)

[20] Ganz, S.E., Friedman, D.P., Wand, M.: Trampolined style. In: ICFP, pp. 18–27
(1999)

[21] Haack, C., Poll, E., Schäfer, J., Schubert, A.: Immutable objects for a Java-like
language. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 347–362.
Springer, Heidelberg (2007), http://www.cs.ru.nl/∼chaack/papers/papers/
imm-obj.pdf

[22] Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Proc. Joint Modular Languages Conference. Springer, Heidelberg (2006)

[23] Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

[24] Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R.C.: The Geneva Conven-
tion on the treatment of object aliasing. OOPS Messenger 3(2), 11–16 (1992)

[25] JavaFlow: The Apache Software Foundation: http://jakarta.apache.org/
commons/sandbox/javaflow

[26] Kobayashi, N.: Quasi-linear types. In: Proc. of ACM POPL, pp. 29–42 (1999)
[27] Lea, D.: A Java fork/join framework. In: Java Grande, pp. 36–43 (2000)
[28] Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge Uni-

versity Press, Cambridge (1999)
[29] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,

Heidelberg (1999)
[30] Pettyjohn, G., Clements, J., Marshall, J., Krishnamurthi, S., Felleisen, M.: Con-

tinuations from generalized stack inspection. In: ICFP, pp. 216–227 (2005)
[31] Salcianu, A., Rinard, M.C.: A combined pointer and purity analysis for Java

programs. In: MIT Technical Report MIT-CSAIL-TR-949 (2004)

128 S. Srinivasan and A. Mycroft

[32] Spring, J.H., Privat, J., Guerraoui, R., Vitek, J.: Streamflex: High-throughput
stream programming in Java, 211–228 (2007)

[33] Srinivasan, S.: A thread of one’s own. In: Workshop on New Horizons in Compilers
(2006), http://www.cse.iitb.ac.in/∼uday/NHC-06/advprogram.html

[34] Tschantz, M.S., Ernst, M.D.: Javari: adding reference immutability to Java. In:
Proc. of OOPSLA, pp. 211–230 (2005)

[35] Welch, P.: JCSP, http://www.cs.kent.ac.uk/projects/ofa/jcsp
[36] Welsh, M., Culler, D.E., Brewer, E.A.: SEDA: An architecture for well-

conditioned, scalable internet services. In: SOSP, 230–243 (2001)
[37] Wilhelm, R., Sagiv, S., Reps, T.W.: Shape analysis. In: Watt, D.A. (ed.) CC 2000

and ETAPS 2000. LNCS, vol. 1781, pp. 1–17. Springer, Heidelberg (2000)

A Uniform Transactional Execution

Environment for Java

Lukasz Ziarek1, Adam Welc2, Ali-Reza Adl-Tabatabai2, Vijay Menon2,
Tatiana Shpeisman2, and Suresh Jagannathan1

1 Dept. of Computer Sciences
Purdue University

West Lafayette, IN 47907
{lziarek,suresh}@cs.purdue.edu

2 Programming Systems Lab
Intel Corporation

Santa Clara, CA 95054
{adam.welc,ali-reza.adl-tabatabai,vijay.s.menon,

tatiana.shpeisman}@intel.com

Abstract. Transactional memory (TM) has recently emerged as an ef-
fective tool for extracting fine-grain parallelism from declarative criti-
cal sections. In order to make STM systems practical, significant effort
has been made to integrate transactions into existing programming lan-
guages. Unfortunately, existing approaches fail to provide a simple imple-
mentation that permits lock-based and transaction-based abstractions to
coexist seamlessly. Because of the fundamental semantic differences be-
tween locks and transactions, legacy applications or libraries written us-
ing locks can not be transparently used within atomic regions. To address
these shortcomings, we implement a uniform transactional execution en-
vironment for Java programs in which transactions can be integrated
with more traditional concurrency control constructs. Programmers can
run arbitrary programs that utilize traditional mutual-exclusion-based
programming techniques, execute new programs written with explicit
transactional constructs, and freely combine abstractions that use both
coding styles.

1 Introduction

Over the last decade, transactional memory (TM) has emerged as an attractive
alternative to lock-based abstractions by providing stronger semantic guarantees
(atomicity and isolation) as well as a simpler programming model. Transactional
memory relieves the burden of reasoning about deadlocks and locking protocols.
Additionally, transactional memory has also been utilized to extract fine-grain
parallelism from critical sections. In particular, software transactional memory
(STM) systems provide scalable performance surpassing that of coarse-grain
locks and a simpler, but competitive alternative to hand-tuned fine-grain locks
[3,10,12,25,30].

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 129–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

130 L. Ziarek et al.

In order to make STM systems practical, significant effort has been made to
integrate transactions into existing programming languages, virtual machines,
and run-time systems. Since languages such as Java already provide concurrency
control primitives based on mutual exclusion, seamlessly integrating transac-
tions into these languages requires rectifying the semantics and implementation
of the two constructs. Existing approaches that attempt to support different
concurrency control mechanisms [10,30] do not provide a uniform implementa-
tion. Therefore, complex programs that make use of mutual-exclusion cannot
be executed on a system providing transactional support without breaking com-
posability and abstraction – to be assured that it is safe to execute a code re-
gion transactionally requires knowing that methods invoked within the dynamic
context of this region do not make use of mechanisms that violate transactional
semantics such as I/O or communication. Such disparities between different con-
currency control mechanisms have prevented the integration of transactions into
large, complex programs and limited mainstream deployment. As a result, pro-
grammers cannot easily compose transactions with other concurrency primitives.

In this paper, we describe a uniform transactional execution environment for
Java programs in which transactions and other concurrency control constructs
can be seamlessly integrated, interchanged, and composed. Programmers can run
arbitrary programs that utilize traditional mutual-exclusion-based programming
techniques, execute new programs written with explicit transactional constructs,
and freely combine abstractions that use both coding styles. Our framework
allows programmers to write modular transactional code without having to hand-
inspect all calls within a transactional region to guarantee safety. The uniform
transactional execution environment is composed of two mutually co-operating
implementations, one for locks and the other for transactions, and allows for
dynamic handoff between different concurrency control primitives.

Our paper makes the following contributions:

1. We describe how explicit transactional constructs can be seamlessly inte-
grated into Java. We present a programming model which provides both
synchronized and atomic primitives, and a uniform semantics for composing
and interchanging the two.

2. We provide an in-depth exploration of how transactions can be used to sup-
port execution of lock-based synchronization constructs. Our study includes
issues related to language memory models, and concurrency operators which
inherently break isolation such as wait and notify. We explore properties
that must be satisfied by a transactional implementation striving to address
these issues. We present the theoretical foundations of such an implementa-
tion we call P-SLE (pure-software lock elision).

3. We present the design and implementation of the first fully uniform execution
environment supporting both traditional (locks) and new (atomic blocks)
constructs.

4. We evaluate the performance of our system on a set of non-trivial bench-
marks demonstrating scalability comparable to programs using fine-grained
mutual-exclusion locks, and improved performance over coarse-grain locks.

A Uniform Transactional Execution Environment for Java 131

T1 T2
synchronized(hmap1) {
synchronized(hmap2) {

synchronized(hmap1) {
hmap2.move(hmap1);

hmap1.get(x);
} }
}

Fig. 1. An example program where locks can be elided, allowing for additional concur-
rency

Our benchmarks perform I/O actions, inter-thread communication, thread
spawns, class loading, and reflection, exercising a significant portion of Java
language features.

2 Motivation

Locks are the most pervasive concurrency control mechanism used to guard
shared data accesses within critical sections. Their semantics is defined by the
mutual exclusion of critical sections. In addition to providing thread synchroniza-
tion and preventing interference between locked regions, lock operations act as
memory synchronization points providing ordering and visibility guarantees [16].
Software transactional memory, advocated as a lock replacement mechanism, un-
fortunately provides different semantics. STMs guarantee atomicity and isolation
of operations executed within critical sections (also known as atomic regions or
atomic blocks) to prevent interference. The exact semantics provided by an STM
is defined in terms of an underlying transactional implementation. For example,
STMs with weakly atomic and strongly atomic semantics [4,26] are implemented
differently. STM systems also typically define their own notions of ordering and
visibility (e.g., closed vs. open nesting [21]). Due to differences in both semantics
and implementations, locks and transactions cannot easily be composed or in-
terchanged. For example, mutual exclusion may hinder extraction of additional
scalability, whereas semantic properties of atomic regions may violate visibility
guarantees provided by lock-based synchronized blocks.

To provide composability, differences in semantics and implementations must
be rectified. The semantics of locked regions and atomic blocks must be con-
sistent and their implementations uniform. Observe that the semantics of locks
may be supported by an implementation different from mutual exclusion and,
similarly, alternative implementations can be used to implement the semantics
dictated by transactions. The following examples illustrate some of the issues
that arise in defining a uniform implementation and consistent semantics for
both constructs.

132 L. Ziarek et al.

synchronized(m) {
count--;
if (count == 0) m.notifyAll();
while (count != 0) {
m.wait();

}
}

Fig. 2. Barrier Example

Consider the example Java program in Figure 1 which consists of two threads
operating over two different hashmaps hmap1 and hmap2. Although highly con-
current lock-based Java implementations of hashmap exist, exclusively locking
the hashmap object to perform operations on the hashmap as a whole fundamen-
tally limits scalability. In the example in Figure 1 thread T1 moves the content of
hashmap hmap1 into hmap2, locking both hashmaps and thus preventing thread
T2 from concurrently accessing hmap1. In some cases, as seen in the example in
Figure 1, locks can be elided – their implementation, mutual exclusion of critical
sections, can be replaced by a transactional one. This can be accomplished by
rewriting source code to utilize transactions without changing the semantics of
the original program. If locks were elided, thread T2 in Figure 1 would be able
to perform its operations concurrently with thread T1. The underlying transac-
tional machinery would guarantee correctness and consistency of the operations
on hmap1 and hmap2. To summarize, in this example either transactions or locks
may be utilized with no change to the underlying program semantics.

Lock elision, however, is not always possible. Consider an example program
that spawns multiple worker threads that perform work over a collection of
shared structures. Data computed by those threads is then collected and aggre-
gated (SPECjbb2000 [29] is an example of such a program). Such programs use
coordination barriers to synchronize the worker threads so that data may be com-
piled. Coordination barriers typically use a communication protocol that allows
threads to exchange information about their arrival at the barrier point. Consider
a simple counter-based Java implementation that notifies all threads waiting on
the barrier when the counter (initialized to the total number of threads) reaches
zero (Figure 2).

A naive translation of the synchronized block in Figure 2 to use transactions
is problematic for multiple reasons. First, the execution of the wait and notify
methods inside of atomic regions is typically prohibited by STMs [3,10]. Second,
even if an STM defined meaningful behavior for the invocation of such methods
inside atomic regions, the execution of the barrier would not complete. The
update to the internal counter would never become visible because transactions
impose isolation requirements on the code they protect.

A potential solution to translating the example in Figure 2 to use atomic re-
gions must therefore not only support wait/notify but also allow updates to the

A Uniform Transactional Execution Environment for Java 133

T1 T2
atomic {
synchronized(m) {

synchronized(m) {
foo();
} bar();
... }
}

Fig. 3. Composition of synchronized blocks and atomic regions

internal counter to become visible to other threads. One solution, suggested by
[27], is to expose the value of the internal counter by explicitly violating isolation
of the original atomic region – splitting the atomic region into multiple separate
regions without altering the behavior of the program. Isolation would also have
to be broken to support wait/notify primitives. Breaking isolation in such a
manner creates a race condition on accesses to the shared counter because it is
no longer protected within the same contiguous critical region. Alternatively, we
can leave the synchronized block unmodified. Such a solution requires reasoning
about all possible interactions between the synchronized blocks and the atomic
regions present in the program.

Although it may be possible to translate the example code in Figure 2 with
extensions to an STM, previous work [4] suggests that even with access to all
source code a translation of synchronized blocks to atomic regions that retains
the original program’s semantics is not always feasible. At best, such a trans-
lation requires careful analysis of the original program’s source code. However,
source code may not always be available, might be complex, and may need to
be re-engineered for transactions. Our own experience in translating lock-based
versions of some well-known benchmarks into their transactional equivalents [26]
mirrors these findings. Even with STM extensions, it is still unclear if certain
synchronized blocks can even be translated at all, motivating the necessity of
supporting composability between synchronized blocks and atomic regions.

Unfortunately, composability of different concurrency control primitives is not
easily achieved. Since atomic regions and synchronized blocks provide different
semantic guarantees on visibility and isolation, composition of the two constructs
can yield non-intuitive and potentially erroneous behavior. Consider the program
in Figure 3. In the common case, locks protecting synchronized blocks in both
threads might be elided allowing execution to proceed fully under transactional
control. However, consider a situation when method foo() executes a native call
and prints a message to the screen. In order to prevent the message from being
printed more than once, a possibility that could arise if the synchronized block
is implemented transactionally, the block must be expressed using mutual exclu-
sion semantics. Additionally, once thread T1 acquires lock m, the synchronized
block executed by thread T2 must also be implemented using mutual exclusion.
Moreover, an abort may still be triggered after thread T1 finishes executing its

134 L. Ziarek et al.

synchronized block but before it finishes executing the outer atomic region. As
a result, the entire atomic region in thread T1 must also be prevented from
aborting, and thus must be implemented using mutual exclusion.

To address these issues, this paper presents a uniform execution environment
that allows safe interoperability between lock-based and transaction-based con-
currency primitives. The execution environment dynamically switches between
transactional and lock based implementations to provide consistent semantics for
both constructs. This allows for arbitrary composition and interchangeability of
synchronized blocks and atomic regions.

3 Programming and Execution Model

Our system supports concurrent programming in Java by offering two basic
primitives to programmers: synchronized providing lock semantics and atomic
providing transactional semantics. The system imposes no constraints on how
the two primitives may interact. Programmers may utilize both primitives for
concurrency control and can compose them arbitrarily. Additionally, there are
no restrictions on what code can be executed within the dynamic context of a
transaction, allowing support for I/O, legacy and native code.

Both primitives are realized using a transactional implementation. In our
system, synchronized blocks are automatically and transparently transformed to
implicitly use a transactional implementation we call pure-software lock elision
(P-SLE), rather than an implementation based on mutual exclusion. We explore
properties that the P-SLE implementation must satisfy in order to preserve lock
semantics in Section 4. User-defined atomic regions are already implemented
using transactions and thus require no additional support under P-SLE (details
are given in Section 5).

Since transactions and locks differ in their semantic definitions, execution of
lock-based critical sections using P-SLE may not always be possible. When such
situations are detected, our system seamlessly reverts critical sections to use
an implementation based on mutual exclusion. This is accomplished through
a fallback mechanism discussed in Section 4. Fallback has a natural definition
for transactions translated from critical sections: acquire the original lock as
defined by the input program. User injected atomic regions, however, are not
defined with regard to locks. Thus, we present a new mechanism called atomic
serialization which allows for the execution of user-defined transactions under
mutual exclusion. Conceptually, atomic serialization works by effectively serial-
izing execution of atomic regions using a single global lock. Atomic serialization
aborts a transaction which must fallback and acquires a global lock prior to
re-executing the critical region protected by the user-defined transaction.

Our system thus optimistically executes all concurrency control primitives
transactionally. In situations where such an execution is infeasible (e.g., eliding
locks violates lock semantics), the implementation switches back to using mu-
tual exclusion. This transition is one-directional – once execution of a critical
section reverts to using mutual exclusion, it will run in this execution mode until

A Uniform Transactional Execution Environment for Java 135

Fig. 4. Execution model for a program containing both synchronized blocks and atomic
regions. The uniform execution environment utilizes both a lock-based implementation
and a transactional one. Double arrows represent the fallback mechanism, while single
arrows show the initial implementation underlying both concurrency control primitives.

completion. Figure 4 illustrates the system depicting both concurrency control
primitives and the transitions supported by the implementation.

4 Pure-Software Lock Elision (P-SLE)

Our first step to constructing a uniform transactional execution environment
for Java programs is replacing the existing implementation for Java’s synchro-
nized blocks (i.e., mutual exclusion) with P-SLE. Because in doing so we are
obligated to preserve lock semantics, P-SLE must provide properties mirroring
mutual exclusion, that is, both thread and memory synchronization effects of
lock operations. The JMM uses these lock properties to define valid executions
for Java programs.

4.1 Correctness

Clearly, in order for one implementation to be correctly replaced by the other we
must define a correlation between their semantics. We do so in terms of program

136 L. Ziarek et al.

schedules produces by each implementation. A program schedule reflects the
execution of a concurrent program on a single-processor machine and defines a
total order among program operations. This notion of a schedule can be easily
generalized to a multi-processor case – operations whose order cannot be de-
termined when analyzing the execution of a program are independent and can
be executed in arbitrary order. For schedules generated under a transactional
implementation, only operations of the last successful execution of a transaction
become part of the program schedule.

Our first step in defining the correctness property is to determine what it
means for two schedules to be equivalent under the JMM. The JMM defines a
happens-before relation (written hb→) among the actions performed by threads in
a given execution of a program. For single-threaded executions, the happens-
before relation is defined by program order. For multi-threaded executions, the
happens-before relation is defined between pairs of synchronization operations,
such as the begin and end of a critical section, or the write and read of the same
volatile variable. The happens-before relation is transitive: xhb→y and y

hb→z imply
x

hb→z.
The JMM uses the happens-before relation to define visibility requirements

for operations in a given schedule. Consider a pair of read and write operations,
rv and wv, accessing the same variable v and ordered by the happens-before
relation (wv

hb→ rv). Assume further that no intervening write exists such that
wv

hb→ w′v
hb→ rv. In other words, wv is the “latest” write to v preceding rv in the

order defined by the happens-before relation. Then, rv is obligated to observe
the effect of wv, unless intervening writes to v unordered by the happens-before
relation, exist between wv and rv. In this case, rv may observe either a value
produced by wv or a value produced by any of the intervening writes. We say that
two schedules are identical if all happens-before relations are preserved between
the same operations in both schedules.

The JMM has been defined under an implicit assumption that critical sec-
tions are implemented using mutual exclusion locks. Given a program P , the
JMM defines a set of possible schedules, S, that characterizes P ’s runtime be-
havior. Clearly, a transactional version of P , τ(P), cannot produce a schedule
s such that s /∈ S. Similarly, if S = {s} then τ(P) can only have one unique
schedule as defined by the JMM, namely s. Thus, a transactional version of a
Java program cannot produce any new schedules and it must produce the exact
schedule the original program produces if only one exists. However, what occurs
when multiple schedules are plausible for a program P? The JMM itself does
not enforce any scheduling fairness restrictions. The underlying virtual machine
and its scheduler are free to provide any proper subset of schedules for P . We
leverage the freedom provided by the JMM in defining correct executions for a
transactionalized program. If program P produces a set of schedules S under the
JMM and τ(P) produces a set of schedules S′ then τ(P) is a correct execution
if S′ ⊆ S.

A Uniform Transactional Execution Environment for Java 137

Table 1. A list of safety properties for isolation and ordering concerns related to shared
memory accesses (∗ – depends on a particular incarnation)

Mutual Weak Strong P-SLE
Property Exclusion Atomicity Atomicity

Repeatable Reads no no yes yes/no∗

Intermediate Updates no no yes yes/no∗

Intermediate Reads no yes/no∗ yes yes/no∗

Speculation Safety yes yes/no∗ yes yes
Publication Safety yes yes/no∗ yes yes
Privatization Safety yes yes/no∗ yes yes
Granular Safety yes yes/no∗ yes yes

One could argue that a uniform transactional execution environment should
only be obligated to provide correctness guarantees for transactional and lock-
based executions when the program is properly structured [30]. Such programs
do not exhibit races, have shared data protected by a consistent set of locks,
etc. Unfortunately, requiring programs to be properly structured in order to
leverage transactional execution is a severe restriction in practice and prevents
such programming idioms as privatization [26]. Our focus is on ensuring well-
defined behavior even when programs are not properly structured.

We identify a set of properties that the P-SLE implementation must satisfy
in order to correctly support lock semantics. We do so by analyzing proper-
ties of existing implementations: both non-transactional (mutual exclusion) and
transactional (weak atomicity and strong atomicity 1). Our discussion is sepa-
rated into two parts: one concerning problems related to isolation and ordering
of operations that may lead to incorrect results being computed, and the other
concerning problems related to visibility of an operation’s effects that may pre-
vent programs from making progress. Problems related to isolation and ordering
have been examined in previous work [19,26] and our system builds off of such
solutions.

4.2 Isolation and Ordering Concerns

Table 1 presents a classification of isolation and ordering safety properties pre-
served by different implementations (yes means that the implementation sup-
ports the property, no means that it does not and yes/no means that different
incarnations of a particular implementation exist which may or may not pre-
serve it 2.). In the following, accesses to shared variables can be either protected
within critical sections or unprotected.

The first three properties described in the table concern direct interactions
between protected and unprotected accesses. In order to provide some intuition
1 We assume that both weak atomicity and strong atomicity use closed nesting.
2 For example, some incarnations of weak atomicity use updates in-place while others

use write buffering.

138 L. Ziarek et al.

Initially x==0
T1 T2
critical
{ r1=x;

x=1;
r2=x; }

Initially x==0
T1 T2
critical
{ r=x;

x=10;
x=r+1; }

Initially x==0
T1 T2
critical
{ x++;

r=x;
x++; }

(a) r1!=r2 violates RR (b) x==1 violates IU (c) odd r violates IR

Fig. 5. Safety violations resulting from direct interactions between protected and un-
protected accesses

behind their definition, Figure 5 demonstrates what happens if these properties
are violated. The code samples in Figure 5 use the same shared variable x for
illustration of the violations and (as well as all the remaining figures in this
section) are written in “pseudo-Java” – we use the critical keyword to denote
critical sections (instead of synchronized or atomic) to avoid implying a par-
ticular implementation of a concurrency control mechanism. We assume that if
mutual exclusion is used to execute critical sections, then all threads synchronize
using the same global lock.

Preservation of repeatable reads (RR) requires that protected reads of the
same shared variable by one thread must return the same value despite interme-
diate unprotected write to the same variable by another thread being executed
between the reads. The intermediate updates (IU) property is preserved if the
effect of an unprotected update to some shared variable happening between a
protected read of the same variable and a protected write of the same variable
is not lost. Finally, preservation of the intermediate reads (IR) property requires
that an unprotected read of some shared variable does not see a dirty interme-
diate value available between two protected writes of the same variable. Since
mutual exclusion preserves none of these properties, they also do not need to be
preserved by P-SLE.

The next property described in the table, speculation safety (SS)3, concerns
(possibly indirect) interactions between protected and unprotected accesses com-
bined with the effects of speculative execution. Speculation safety prevents a
protected speculative write to some variable from producing an “out-of-thin-
air” value that could be observed by an unprotected read in another thread.
Mutual exclusion trivially preserves speculation safety since no protected access
is ever speculative under this implementation. As a result, P-SLE must preserve
this property as well, but in case of transactional implementations special care
needs to be taken to satisfy it – strong atomicity preserves it but weak atomicity
may or may not, depending on its particular incarnation. The example in Figure
6 illustrates one possible scenario when speculation safety gets violated – under
mutual exclusion, thread T2 could never observe r==1 since critical sections of
threads T1 and T2 would be executed serially and thread T2 would never see
3 This safety property subsumes another safety property discussed in previous work

[19] – observable consistency.

A Uniform Transactional Execution Environment for Java 139

T1 T2 T3
critical
{ critical
y++; {

if(y!=z) x=1;
r=x;

z++; // abort
} }

Fig. 6. r==1 violates SS

values of y and z to be different from each other. When executed transaction-
ally, the transaction executed by thread T2 could observe different values of y
and z, and even though the transaction would be later aborted because of an
inconsistent state, it would still perform an update to x producing a value out
of thin air, visible to thread T3.

The following two safety properties, privatization safety (PRS) and publica-
tion safety (PUS), concern ordering of protected accesses with respect to unpro-
tected accesses. These idioms reflect how a privatizing or publishing action can
convert data from shared to private state, or vice versa. The privatization safety
pattern is generalized in Figure 7(a) – some memory location is shared when
accessed in S1 but private to T2 when accessed in S2. An intervening privatizing
action ensures that the location is only accessible to T2 and involves execution of
a memory synchronization operation to guarantee that other threads are aware
of the privatization event. The publication pattern, generalized in Figure 7(b),
is a reverse of the publication pattern. Both patterns have been well-researched
[19,1,26,28], and the conclusion is that while mutual exclusion trivially preserves
both safety properties, it is not necessarily automatically true for transactional
implementations, such as P-SLE, and requires special care to provide the same
memory synchronization effects.

The last property, granular safety (GS), prevents protected writes from af-
fecting unprotected reads of adjacent data. In Java, a protected write to a field
x of an object should have no effect on a read of field y of the same object.
By definition, granular safety cannot be violated when using mutual exclusion

T1 T2
critical
{
S1;
}

[privatizing action]
S2;

T1 T2
S1;
[publication action]

critical
{
S2;
}

(a) privatization (b) publication

Fig. 7. Safety of protected vs. unprotected accesses ordering

140 L. Ziarek et al.

Initially x=0
T1 T2
synchronized(o) {
synchronized(m)
{ x=42; }

synchronized(m)
{
tmp=x;
{

synchronized(m)
{ x=0; }
}

tmp == 42 is possible

Initially x=0
T1 T2
atomic {
atomic
{ x=42; }

atomic
{

atomic
{ x=0; }
}

tmp=x;
}

tmp == 42 is not possible
(a) lock-based execution (b) transactional execution

Fig. 8. Visibility in presence of inner synchronization-related operations

locks since no protected accesses ever modify adjacent data (protected reads and
writes occur at the same granularity as “regular” data accesses). In order for the
same guarantee to hold for transactional implementations, special care may have
to be taken on how modified data is logged and written to shared memory.

Thus, P-SLE must provide at least the same level of isolation and order-
ing guarantees as mutual exclusion provides. At the same time, according to
our correctness definition presented in Section 4.1, P-SLE can provide stronger
guarantees than mutual exclusion since our obligation is to reproduce only a
subset of all schedules legal under the JMM. For example, an implementation
of a P-SLE system can allow or disallow violation of any of the first properties
listed in Table 1, provided that the visibility properties described in the next
section are satisfied.

4.3 Visibility Concerns

While the isolation and ordering properties of transactional systems have re-
cently attracted significant attention, issues concerning mismatches between vis-
ibility properties of systems supporting mutual exclusion semantics and those
supporting transactional semantics have been, with some notable exceptions
[4,30], largely neglected.

Visibility issues are closely tied to progress guarantees provided by the under-
lying execution engine. The JMM (or, in fact, the Java Language Specification [8]
or the Java Virtual Machine Specification [15]) does not require the Java execu-
tion environment to provide any guarantees with respect to application progress
or scheduling fairness. As a result, a legal implementation of a JVM could at-
tempt to execute all threads in sequential order, getting “stuck” when control
dependencies among operations in these threads manifest. In other words, it is

A Uniform Transactional Execution Environment for Java 141

Table 2. A list of safety properties for visibility concerns related to shared memory
accesses. (∗ – depends on a particular incarnation).

Mutual Weak Strong P-SLE
Property Exclusion Atomicity Atomicity

Symmetric Dependent Visibility yes no no yes
Asymmetric Dependent Visibility yes yes/no∗ no yes

legal for a JVM to never successfully complete an inter-thread communication
action, such as the coordination barrier presented in Section 2 in Figure 2. While
we certainly agree that different JVM implementations are free to make their
own scheduling decisions, we also believe that certain programs are intuitively
expected to make progress under lock semantics, and these programs must be
guaranteed to make progress regardless of the underlying execution model. This
is consistent with our correctness definition presented in Section 4.1 – two sched-
ules generated for the same program under two different execution models cannot
be equal if one of them is terminating and the other is non-terminating.

In languages like Java, different locks can be used to protect different accesses
to the same shared data. In other words, no concurrency control is enforced
if two accesses to the same location are protected by two different locks. As a
result, two critical sections protected by different locks can execute concurrently,
such as an outer critical section of thread T1 and a critical section of thread T2
in Figure 8(a).

Transactions, on the other hand, make no such distinction between critical
sections. All transactions will appear serialized with respect to one another.
Consequently, if the critical sections in Figure 8(a) were executed transaction-
ally, the schedule presented in this figure could not have been generated. In
a transactional implementation supporting pessimistic writers [3,12], thread T1
would acquire a write lock when writing x for the first time and release it only at
the end of the outer critical section, making an intermediate read of x by thread
T2 impossible. One possible schedule that could be generated is presented in Fig-
ure 8(b). In accordance with isolation properties of transactions, propagation of
both updates performed by thread T1 is delayed until the end of the outermost
critical section executed by thread T1. Observe that the schedule presented in
Figure 8(b) would still be legal under lock-based execution if the runtime system
used a different thread scheduling policy.

Thus, delaying propagation of updates can often be explained as a benign
change in scheduler behavior. However, additional visibility-related safety prop-
erties must be defined to guarantee that lock semantics can be correctly sup-
ported by a transactional implementation in situations where this is not true.
In the following code samples, an explicit “lock” parameter is used with the
critical keyword in order to be able to express the difference between execu-
tions using transactions and executions using mutual exclusion locks. We assume
that if transactions are used to execute critical sections then the “lock” parame-
ter is ignored.

142 L. Ziarek et al.

Visibility-related safety properties can be divided into two categories summa-
rized in Table 2: symmetric dependent visibility (SV) and asymmetric dependent
visibility (AV). Their definitions rely on the notion of control dependency be-
tween operations of different threads. We say that two operations are control
dependent if, under all lock-based executions, the outcome of the first operation
dictates whether the second one is executed.

Symmetric Dependent Visibility. Dependent symmetric visibility (SV) con-
cerns the case when all control dependent operations are executed inside of criti-
cal sections. The SV property is satisfied if a schedule can be generated in which,
for every pair of control dependent operations, the second operation eventually
sees the outcome of the first.

Consider the following example of a handshake protocol given in Figure 9(a).
In this code the variables x, y, and z are used for communication. The two
executing threads alternate waiting on variables to be set to one by spinning in
while loops, making read and write operations on these variables control depen-
dent. Under locks, the dependent symmetric visibility is obviously satisfied – the
updates of x, y, and z will become visible to the respective threads allowing
for the handshake to proceed. Consequently, the same visibility property must
also be satisfied by P-SLE. However, if we executed this program using strong
or weakly atomic transactions, the program would hang because transactions

Initially x=y=z=0
T1 T2

critical(o)
{

critical(m)
{ x=1; }

do {
critical(m)
{{ if (x==1)
y=1; break; }}

}while(true);
do {
critical(m)
{{ if(y==1)
z=1; break; }}
}while(true);

do {
critical(m)
{{ if (z==1)
break; }}

}

Assume x and y are volatile
Initially x=y=false;

T1 T2
critical(m)
{
x=true;

do {
...
}while(!x);
y=true;

do {
...
}while(!y);

}

(a) symmetric (b) asymmetric

Fig. 9. Dependent visibility – is termination guaranteed?

A Uniform Transactional Execution Environment for Java 143

enforce isolation of shared accesses: execution of the outer transaction in thread
T2 would prevent the update of x and z from being visible to the code it protects.

Detecting potential visibility violations between critical sections is then tan-
tamount to detecting control dependencies among data accesses executed within
critical sections. We describe one solution to discovering symmetric dependent
visibility violations in Section 6.

Asymmetric Dependent Visibility. Unfortunately, examining only critical
sections is insufficient since visibility issues can also arise between protected and
unprotected code. Dependent asymmetric visibility (AV) addresses this case.

Consider the example given in Figure 9(b). Thread T2’s progress depends on
making a result of thread T1s update of x available to thread T2. Since x is a
volatile, lock semantics dictates that Thread 2 must eventually see the result of
thread T1’s update to x. Similarly, thread T1 is guaranteed under lock semantics
to see the result of thread T2’s update to y. Therefore, this program is guaranteed
to successfully complete execution of both threads under lock semantics. At the
same time, strong atomicity and certain incarnations of weak atomicity (such
as those using write buffering) would prevent a write to x from being visible to
thread T2 until the end of the critical section in thread T1. If we run this program
under such an implementation, the program will fail to terminate 4. Once again
we notice that the variables through which communication occurs are in fact
control dependent. Discovering and remedying violations of the AV property
is additionally complicated when compared to SV because of the asymmetry
of control dependent operations (one of the operations is unprotected), as we
describe in Section 6.

Our examples illustrate that neither strong nor weak atomicity satisfy the
properties required from P-SLE to support lock semantics. As a result, exist-
ing transactional implementations must be modified to detect violations of lock
semantics with respect to visibility concerns. We use a fallback mechanism to
remedy such problems whenever they are discovered.

5 Explicit Transactions

Based on the discussion presented in Section 4, we observe that Java’s syn-
chronized blocks can be supported by two implementations: non-transactional
(mutual exclusion) and transactional (P-SLE). Now we have to consider the
opposite – what are the implementations that can support user-defined atomic
regions? Our task is much simpler here. We can choose the same transactional
implementation, P-SLE, to support execution of both atomic regions and syn-
chronized blocks. Since visibility-related properties of atomic regions are not as
strictly defined as in case of Java’s synchronized blocks, we only need to con-
sider the properties of P-SLE that concern isolation and ordering, described in
4 On the other hand, the execution under a weakly atomic model that exposes un-

committed values to other threads could lead to violation of the speculation safety
property described in Section 4.2.

144 L. Ziarek et al.

Section 4.2. The analysis of required properties for P-SLE defined in the last
column of Table 1 reveals that this set corresponds to a so-called SGLA (Single
Global Lock Atomicity) transactional semantics [9,19]. SGLA is a middle-of-
the-road semantics which is STM-implementation agnostic. SGLA provides a
simple, more intuitive, semantics compared to weak atomicity, but does incur
additional implementation-related constraints because it must provide stronger
guarantees. By utilizing SGLA, our system is not tied to a particular underlying
STM, as demonstrated in [19]. Atomic regions behave under SGLA as if they
were protected by a single global lock, including treatment of entry and exit to
every atomic region as a memory synchronization point for a unique lock with
respect to visibility requirements defined by the JMM. This property allows us
to trivially define a non-transactional implementation for atomic regions, atomic
serialization, in which execution of atomic regions is serialized using a unique
global mutual exclusion lock.

6 Implementation

Our implementation builds on an STM system using in-place updates, support-
ing optimistic readers and pessimistic writers, and providing strong atomicity
guarantees [26]. Although our implementation leverages strong atomicity, any
STM implementation that supports SGLA semantics is sufficient. We first briefly
describe an implementation of the “base” transactional infrastructure, then dis-
cuss how multiple semantics can be supported within the same system, and
finally describe modifications and extensions to the base transactional imple-
mentation needed to make it match properties required by P-SLE. Our imple-
mentation supports all of Java 1.4 including native method calls, class loading,
reflection, dynamic thread creation, wait/notify, volatiles, etc. but does not cur-
rently support Java 1.5 extensions.

The base STM system extends the Java language into Transactional Java with
an atomic primitive. Transactional Java is defined through a Polyglot [23] ex-
tension and implemented in pure Java. Our implementation utilizes the StarJIT
compiler [2] to modify code of all critical sections so that they can be executed
using either mutual exclusion locks or transactions. The run-time system, com-
posed of the ORP JVM [7] and the transactional memory (TM) run-time library,
provides transactional support and is tasked with handling interactions between
transactions and Java monitors.

6.1 Base System

In the base STM system every access to a shared data item is “transactionalized”
– mediated using a transaction record. In case of objects, a transaction record is
embedded in the object header, and in case of static variables it is embedded in
the header of an object representing the class that declares this static variable
(access to all static variables of a given class is mediated through the same
transaction record). The appropriate barriers implementing transactionalized

A Uniform Transactional Execution Environment for Java 145

accesses are automatically generated by the JIT compiler and protect accesses
to data objects performed inside of transactions.

Data objects can be either exclusively write-locked or unlocked. In case a
given data item is unlocked, its transaction record contains a version number.
In case a given data item is write-locked, its transaction record contains a trans-
action descriptor pointer pointing to a data structure containing information
about the lock owner (transaction descriptor). These two cases can be distin-
guished by checking a designated low-order version bit. When a transaction
record contains a transaction descriptor pointer, this bit is always unset since
pointers are aligned. In case a transaction record contains a version number, this
bit is always set because of the way version numbers are generated. All writes
performed by a transaction are recorded in a transaction-local write set which
allows a terminating (committing or aborting) transaction to release its write
locks by incrementing version numbers for locations it has updated. All reads
performed by a transaction are recorded in the transaction-local read-set which
is used at transaction commit to verify validity of all the reads performed by the
committing transaction – writes are automatically valid since they are preceded
by acquisition of exclusive write locks. If this validation procedure is successful,
the transaction is allowed to commit, otherwise it is aborted and re-executed.

Because the base STM system supports strong atomicity, appropriate barriers
are generated for non-transactional data accesses. Non-transactional reads are
allowed to proceed only when a given data item is unlocked. Non-transactional
writes, in order to avoid conflicts with transactional accesses, behave as micro-
transactions : they acquire a write lock, update the data item and release the
write lock. Since the write is conceptually non-transactional, no explicit trans-
action owns the lock. Therefore, instead of a regular write lock, non-transactional
writes acquire an anonymous lock. The anonymous lock is implemented by flip-
ping a version bit to give the contents of the transaction record the appearance
of a write lock [26].

We augment the base STM system to handle translation of both concurrency
primitives (Section 6.2) and their interchangeability (Section 6.3). The STM was
also extended with special types of barriers (Section 6.4) and a visibility violation
detection scheme (Section 6.5). Our implementation spans all three parts of the
STM system: ORP, StarJIT and the TM library.

6.2 Translating Concurrency Primitives

Both types of concurrency primitives (synchronized and atomic) are translated
by the JIT compiler to use the same run-time API calls:

– criticalstart(Object m, ...)
– criticalend(Object m, ...)

Both API calls take an object as one of their parameters representing a Java
monitor (i.e., a mutual exclusion lock) – either associated with the synchronized
keyword or generated by the run-time system in case of atomics. The run-time

146 L. Ziarek et al.

while (true) {
try { try {
monitorenter(m) criticalstart(m,..)
... ...
monitorexit(m) =⇒ if (criticalend(m,...)) continue;
} catch (Throwable x) { } catch (Throwable x) {
monitorexit(m) if (criticalend(m,...)) continue;
throw(x) throw(x)
} }

break;
}

Fig. 10. Translation of synchronized blocks

system, thus, has the ability to choose a specific implementation for critical
sections – either transactional (by instructing the TM library to start or commit
a transaction) or lock-based (by acquiring or releasing a monitor passed as a
parameter). The remaining parameters are used to pass additional transactional
meta-data.

A typical JVM (including ORP) handles synchronized blocks and synchro-
nized methods differently. In case of synchronized blocks, the source-to-bytecode
compiler (e.g., javac) generates explicit calls to the JVM’s implementation of the
bytecode-level monitorenter and monitorexit primitives. The synchronized
methods, on the other hand, are simply marked as such in the bytecode and the
JVM is responsible for insertion of the appropriate synchronization operations
during the generation of method prologues and epilogues. In order to be able to
treat synchronized methods and synchronized blocks uniformly, we modify the
JIT compiler to wrap the body of every synchronized method in a synchronized
block (using either this object or the “class” object as a monitor) instead of
invoking synchronization operations in the method’s prologue and epilogue.

Our translation of synchronized blocks and methods in the JIT compiler
mirrors the code structure of atomic blocks generated at the source level by
the Polyglot compiler [3]. Figure 10 depicts this translation as a pseudo-code
transformation (with monitorenter and monitorexit operations represented
as method calls) – the left-hand side shows code generated for acquisition of
monitor m to support Java’s synchronized blocks and the right-hand side the
code after transformation. The actual translation involves an additional pass
in the JIT compiler which transforms the control-flow graph – the pseudo-
code description of the transformation is out of necessity somewhat simplified.
The intuition behind this transformation is that monitorenter(Object m) and
monitorexit(Object m) operations are translated to criticalstart(Object
m, ...) and criticalend(Object m, ...) method calls. The existing byte-
code structure is leveraged to handle exceptions thrown inside of a transaction.
Re-executions of aborted transactions are supported through an explicit loop
inserted into the code stream – successful commit of a transaction is followed by
a loop break.

A Uniform Transactional Execution Environment for Java 147

During translation of original Java synchronization primitives, we also need
to correctly disambiguate nesting. Our transactional API calls have one of two
different versions selected depending on the execution context – outer (when no
transaction is currently active) and inner (when executed in the context of an
already active transaction). To discover the execution context, the JIT compiler
performs a data flow analysis and builds a stack representation of monitor en-
ter/exit calls for each node in the control flow graph. This allows us to identify the
code fragments protected by transactions, and their nesting level. Additionally,
every compiled method is marked as either transactional or non-transactional,
depending on its calling context.

6.3 Coexistence of Transactions and Java Monitors

Ideally, Java monitors would be elided and all critical regions would be executed
transactionally. Unfortunately, this is not possible for code that performs native
method calls with side effects, triggers class loading and initialization, or contains
critical regions that engage in inter-thread communication or spawn threads. In
such cases, the fallback mechanism is utilized to use mutual exclusion rather
than transactional execution.

The fallback operation is performed by aborting the currently running (out-
ermost) transaction. The transaction is then restarted in fallback mode where
concurrency is managed by acquiring and releasing Java monitors passed to
transactional API calls as parameters. As a result, the implementation of the
existing synchronization-related primitives, such as wait and notify operations,
can be left largely untouched provided that they are only executed by fallback
transactions.

Naturally, as a result of the fallback operation, some critical sections in the
system are protected by Java monitors and others protected by transactions. In
order to guarantee correct interaction between critical sections, every fallback
transaction acquires transactional locks on all objects representing Java monitors
it is using (to simulate transactional writes) and every regular transaction adds
all its Java monitors to its read-set (simulating transactional reads). This pre-
vents any regular transaction (translated from a Java monitor) from successfully
completing if another thread is executing a critical section in fallback mode with
the same monitor. The read-set of the regular transaction would become invalid,
and the transaction itself would be aborted and re-executed. Notice that arbi-
trarily many regular transactions may execute concurrently, even if they share
the same monitor.

6.4 Fallback Barriers

In the base STM system, the JIT compiler generates two versions of each method,
transactional and non-transactional, containing appropriate versions of read and
write barriers. The specific version of the method is then chosen at run-time
depending on its invocation context. Read and write barriers occur on non

148 L. Ziarek et al.

T1 T2
synchronized(n) {
data=dummy;

critical(m) {
tmp=data;

data=1; // no barrier ...
}

}

Fig. 11. Incorrectly eliminated barrier thread (T1 is in fallback mode, thread T2 is
transactional)

transactional code since our implementation is strongly atomic. The JIT com-
piler eliminates unnecessary barriers where appropriate.

In our system, transactions in fallback mode behave differently than regular
transactions - namely their execution must be faithful to Java monitor semantics.
In order to reproduce Java monitor semantics, transactions in fallback mode have
to ignore conflicts between each other while still properly interacting with reg-
ular transactions. Since concurrency control between a regular transaction and
a transaction in fallback mode sharing the same monitor is mediated through
this monitor, it does not need to be controlled at the level of data accesses. At
the same time, according to the Java monitor semantics, no special concurrency
control guarantees are provided between critical sections using different moni-
tors. As a result, operations executed by a transaction in fallback mode should
behave as if they were non-transactional, by blocking on reads of write-locked
data items (to avoid speculation-related problems) and turning write operations
into micro-transactions.

The read barriers for transactions executing in fallback mode can therefore
be identical to non-transactional barriers. Unfortunately, turning write barriers
into micro-transactions is surprisingly tricky. This is because code for fallback
transactions has been compiled with regular transactional barriers. Optimiza-
tions may remove some barriers because they appear to be redundant. Consider
the example shown in Figure 11 in which the second write of thread T1 executing
a transaction in fallback mode should cause an abort of the regular transaction
executed by thread T2. Unfortunately, the transactional barrier at the second
write is dominated by the barrier at the first write (in a regular transaction the
first write would acquire a lock) and would be eliminated.

One option is to have the JIT compiler generate yet another version of all
methods executed by transactions in fallback mode. However, this would lead to
increase in code size, complicate the method dispatch procedure, and increase
compilation time. Additionally, we would lose all benefits of barrier elimination
optimizations. Therefore, we adopt a dynamic solution and re-use barrier code
sequences for both regular transactions and transactions executing in fallback
mode. To do so, we introduce another version of the anonymous lock, the fallback
lock. The fallback lock can be acquired only by a transaction executing in fallback

A Uniform Transactional Execution Environment for Java 149

mode and is held until this transaction is completed. If more than one fallback
transaction wants to acquire a fallback lock for the same data item, the lock
gets inflated - we need to count the number of writers and retain information
about the version number. Regular transactions block when trying to access a
data item locked by a fallback transaction. At the same time, non-transactional
reads are allowed to access it freely, as are the non-transactional writes that
additionally change fallback lock to an anonymous lock for the duration of the
write operation 5. A diagram illustrating transitions in a lock’s state is given in
Figure 12.

Write Locked

Anonymously Locked

Fallback Locked

Unlocked

TXN

F-TXN

Fig. 12. Transitions made by non-transactional accesses are depicted by black arrows.
White arrows represent transactional accesses – a single arrow by a bona fide transac-
tion and a double arrow by a fallback transaction.

6.5 Detecting Dependent Visibility Violations

When dependent visibility violations occur, the observable effect is that exe-
cution becomes “stuck”. We provide a mechanism to detect these situations
rather than painstakingly tracking data and control dependencies between criti-
cal sections. Our specific solution differs slightly between cases of symmetric and
asymmetric dependent visibility violations.

Symmetric Case. In case some transaction T is (permanently) unable to com-
plete its execution because it expects to see results computed by a different
transaction T ′ (such as in the example presented in Section 4.3 in Figure 9(a)),
the control dependencies between data access operations that belong to these
transactions must form a cycle. Otherwise, if transaction T ′ was independent
of transaction T and allowed to complete successfully, its computation results
would be eventually made available to T removing the reason for it being stuck.

5 Fallback transaction must wait for anonymous lock to be released both when updat-
ing the value and when releasing the fallback locks.

150 L. Ziarek et al.

This situation can be trivially generalized to the multi-transaction case. Obvi-
ously, we could employ full-fledged cycle detection to detect such situations, but
because we assume these kinds of situation to be infrequent, we opt for a simpler
solution and choose to utilize a time-out mechanism. If a transaction is unable
to complete its data access operation after a pre-specified amount of time, it
will be aborted and will re-execute in fallback mode. As a result of reverting
to an implementation that is identical with Java monitors, the visibility viola-
tion cannot happen upon re-execution since Java monitor semantics prevents it
automatically.

Asymmetric Case. This case is a little more subtle, because execution can get
stuck in a non-transactional code region (as illustrated in Section 4.3 in Figure
9(b)). Therefore, the run-time system has no transactional context available that
could be aborted and re-executed in a different mode. The solution we adopt
to handle this case is for the non-transactional data access operation that failed
to successfully complete its execution after a pre-specified amount of time, and
to request the transaction blocking this data access to abort and re-start in
fallback mode. It is guaranteed that this request will be ultimately delivered since
by definition there must be a control dependency that prevents the transaction
from completing. The identity of the transaction blocking the data access is
readily available from the transaction record that must contain its transaction
descriptor in order for the access to be forbidden. Note that non-transactional
execution can only get stuck on accesses to volatile variables – otherwise no
happens-before edge forcing the visibility restriction would exist. Thus, we are
obligated to modify only those data accesses that concern volatile variables.

7 Performance Evaluation

Our implementation is based on an STM system that has already been shown
to deliver good performance for explicitly transactional applications [26]. In this
section, we consider the performance characteristics of legacy applications exe-
cuted with transactions and mutual exclusion.

In order to better understand the performance implications of our system, we
chose three different benchmarks representing three different locking schemes:

– OO7 [6]. This benchmark traverses and updates a shared tree-like data struc-
ture. Each each thread locks the entire shared data structure before perform-
ing a traversal (using a mixture of 80% lookups and 20% updates). This
benchmark reflects a coding style that uses coarse-grain locks for concurrency
control.

– SpecJBB2000 [29]. This server application involves multiple threads operat-
ing over different objects (e.g., warehouses). Because operations of different
threads are protected by different locks, this benchmark reflects a coding
style that uses fine-grain locks for concurrency control.

– TSP. This implementation of the traveling salesman involves threads that
perform their searches independently, but share partially completed work

A Uniform Transactional Execution Environment for Java 151

1 2 4 8
threads

0

200

400

600

800

ti
m

e
(m

s)

P-SLE
SYNCH

(a) OO7 execution time

1 2 4 8
threads

0

20 k

40 k

60 k

80 k

100 k

120 k

140 k

th
ro

u
g

h
p

u
t

P-SLE
SYNCH

(b) SPECjbb2000 throughput

1 2 4 8
threads

0

1000

2000

3000

4000
ti

m
e

(m
s)

P-SLE
SYNCH

(c) TSP execution time

Fig. 13. Preformance evaluation over multiple threads

and the best-answer-so-far via shared memory. It uses both fine- and coarse-
grained concurrency control.

We ran all the benchmarks in two configurations: P-SLE which utilized our
uniform transaction execution environment, transparently translating all syn-
chronized blocks into atomic regions and dynamically falling back where nec-
essary and Synch which used mutual exclusion provided by the original imple-
mentation of Java monitors. Synch represents the original benchmark without
the additional overhead of transactional instrumentation and fallback. All our
experiments have been performed on an Intel Clovertown system with two 2.66
GHz quad-core processors for a total of eight hardware threads and 3.25 GB of
RAM running Microsoft Windows XP Professional with Service Pack 2.

The performance of our system has met our expectations. When running the
lock-based version of OO7 benchmark transactionally under the P-SLE configura-
tion, the system was able to automatically extract additional parallelism and sig-
nificantly improve performance over executions using coarse-grain mutual exclu-
sion locks (Figure 13(a)). Since our implementation is based on a strongly atomic
implementation, there is a certain amount of overhead that is expected [26] when

152 L. Ziarek et al.

only small amount of additional parallelism is available compared to executions
using mutual-exclusion locks. However, note that even though the absolute per-
formance of SPECjbb2000 when executed transactionally does not quite match
its performance when executed using mutual-exclusion locks, the scalability char-
acteristics in both cases is virtually the same (Figure 13(b)). Finally, the per-
formance of the TSP benchmark is almost identical, regardless of whether it is
executed transactionally or using mutual-exclusion locks (Figure 13(c)).

Given that our system is based on a strongly atomic engine, our performance
evaluation results reflect very similar trends to those reported in [26]. In our
prior case study benchmarks were modified by hand to use explicit atomic blocks
under a strong atomicity model. Using our uniform transactional execution en-
vironment we were able to avoid by hand translation and ensure safety while
improving both scalability and performance.

8 Related Work

Recently there have been many proposals for Software Transactional Mem-
ory [5,11,13,14,17,18,20,22,24,26]. Such systems, unfortunately, provide limited
or no support to compose transactions with locks. The Haskel STM [11] uti-
lizes the type system to prevent any I/O actions within a transaction. Although
we suspect such a restriction would allow for the safe composition of locks and
atomic regions, it defacto limits the use of libraries that perform I/O in trans-
actions. Other systems do not explicitly prevent composability of concurrency
constructs, but they leave their interactions undefined. Interactions can vary
based on the transactional implementation. Weakly atomic STMs, such as [13],
suffer from subtle visibility and isolation anomalies [4], where as strongly atomic
systems prevent the use wait/notify primitives. As such, program semantics vary
based on the virtual machine’s implementation of Java monitors as well as the
guarantees provided by the STM itself. Programs must be hand-tuned for each
system and virtual machine pairing.

Previous work which attempts to combine Java monitors and transactions
[30,31] place restrictions on programmers. Notably, programs must be race-free,
even if races are benign. Such restrictions prevent the use of programming para-
digms such as privatization. In such systems, programmers are forced to examine
all interactions between transactions and locks to guarantee safety.

Other approaches [27] attempt to mirror lock based semantics by providing
programmers with additional primitives to break transactional properties. Po-
tential interactions between threads are tracked through the type system and
reported to the programmer. The programmer is required to establish consis-
tency at specific points within the transaction. Unfortunately, the programmer
must reason about the transitive effects of a given transactional region. Trans-
actional regions maybe called from many different contexts and it is unclear if a
break of isolation in one context is compatible with another.

A Uniform Transactional Execution Environment for Java 153

9 Conclusions

We have presented the design and implementation of the first uniform transac-
tional execution environment for Java programs. We have explored implications
of executing arbitrary lock-based Java programs transactionally. We have also
presented techniques that allow explicit transactional constructs, such as atomic
blocks, to be seamlessly integrated into an existing programming language. We
have presented performance evaluation of our system that demonstrates its abil-
ity to extract additional parallelism from lock-based applications by executing
them transactionally, providing better performance when coarse-grain locks are
used and providing performance approaching those of mutual-exclusion locks in
case of fine-grain locking.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. In: POPL 2008 (2008)

2. Adl-Tabatabai, A.-R., Bharadwaj, J., Chen, D.-Y., Ghuloum, A., Menon, V.S.,
Murphy, B.R., Serrano, M., Shpeisman, T.: The StarJIT compiler: a dynamic com-
piler for managed runtime environments. Intel Technology Journal 7(1) (2003)

3. Adl-Tabatabai, A.-R., Lewis, B.T., Menon, V.S., Murphy, B.R., Saha, B., Shpeis-
man, T.: Compiler and runtime support for efficient software transactional memory.
In: PLDI 2006, Ottawa, Canada (2006)

4. Blundell, C., Lewis, E.C., Martin, M.: Subtleties of transactional memory atomicity
semantics. Computer Architecture Letters, 5(2) (November 2006)

5. Blundell, C., Lewis, E.C., Martin, M.: Unrestricted transactional memory: Sup-
porting i/o and system calls within transactions. Technical Report CIS-06-09, Uni-
versity of Pennsylvania, Department of Comp. and Info. Science (2006)

6. Carey, M.J., DeWitt, D.J., Kant, C., Naughton, J.F.: A status report on the OO7
OODBMS benchmarking effort. In: OOPSLA (1994)

7. Cierniak, M., Eng, M., Glew, N., Lewis, B., Stichnoth, J.: Open Runtime Platform:
A Flexible High-Performance Managed Runtime Environment. Intel. Technology
Journal 7(1) (2003)

8. Gosling, J., Joy, B., Steele Jr., G., Bracha, G.: The Java Language Specification,
2nd edn. Addison-Wesley, Reading (2000)

9. Grossman, D., Manson, J., Pugh, W.: What do high-level memory models mean
for transactions? In: MSPC 2006 (2006)

10. Harris, T., Fraser, K.: Language support for lightweight transactions. In: OOPSLA
2003 (2003)

11. Harris, T., Marlow, S., Jones, S.P., Herlihy, M.: Composable memory transactions.
In: PPoPP 2005 (2005)

12. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions.
In: PLDI 2006 (2006)

13. Herlihy, M., Luchangco, V., Moir, M., William, I., Scherer, N.: Software transac-
tional memory for dynamic-sized data structures. In: PODC 2003 (2003)

14. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing soft-
ware transactional memory. In: OOPSLA 2006 (2006)

15. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading (1999)

154 L. Ziarek et al.

16. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005 (2005)
17. Marathe, V.J., Scherer, W.N., Scott, M.L.: Adaptive software transactional mem-

ory. In: ISDC 2005 (2005)
18. Marathe, V.J., Scherer, W.N., Scott, M.L.: Design tradeoffs in modern software

transactional memory systems. In: LCR 2004 (2004)
19. Menon, V., Balensiefer, S., Shpeisman, T., Adl-Tabatabai, A.-R., Hudson, R.L.,

Saha, B., Welc, A.: Single global lock semantics in a weakly atomic stm. In:
TRANSACT 2008 (2008)

20. Moir, M.: Hybrid hardware/software transactional memory (2005), http://www.
cs.wisc.edu/ rajwar/tm-workshop/TALKS/moir.pdf

21. Moss, J.E.B., Hosking, A.L.: Nested transactional memory: model and preliminary
architecture sketches. In: SCOOL 2005 (2005)

22. Ni, Y., Menon, V., Adl-Tabatabai, A.-R., Hosking, A.L., Hudson, R.L., Moss,
J.E.B., Saha, B., Shpeisman, T.: Open Nesting in Software Transactional Memory.
In: PPoPP 2007 (2007)

23. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: an extensible compiler frame-
work for Java. In: Bodik, R. (ed.) CC 2005. LNCS, vol. 3443. Springer, Heidelberg
(2005)

24. Ringenburg, M.F., Grossman, D.: AtomCaml: first-class atomicity via rollback. In:
ICFP 2005 (2005)

25. Saha, B., Adl-Tabatabai, A.-R., Hudson, R., Minh, C.C., Hertzberg, B.: McRT-
STM: A high performance software transactional memory system for a multi-core
runtime. In: PPoPP 2006 (2006)

26. Shpeisman, T., Menon, V., Adl-Tabatabai, A.-R., Balensiefer, S., Grossman, D.,
Hudson, R.L., Moore, K.F., Bratin, S.: Enforcing isolation and ordering in stm. In:
PLDI 2007 (2007)

27. Smaragdakis, Y., Kay, A., Behrends, R., Young, M.: Transactions with Isolation
and Cooperation. In: OOPSLA 2007 (2007)

28. Spear, M.F., Marathe, V.J., Dalessandro, L., Scott, M.L.: Privatization techniques
for software transactional memory. Technical Report 915, University of Rochester,
Computer Science Dept (2007)

29. Standard Performance Evaluation Corporation. SPEC JBB 2000 (2000),
http://www.spec.org/jbb2000

30. Welc, A., Hosking, A.L., Jagannathan, S.: Transparently reconciling transactions
with locking for Java synchronization. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067. Springer, Heidelberg (2006)

31. Welc, A., Jagannathan, S., Hosking, A.L.: Transactional monitors for concurrent
objects. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086. Springer, Heidelberg
(2004)

Ptolemy: A Language with Quantified, Typed Events�

Hridesh Rajan and Gary T. Leavens

1 Iowa State University
hridesh@cs.iastate.edu
2 University of Central Florida
leavens@eecs.ucf.edu

Abstract. Implicit invocation (II) and aspect-oriented (AO) languages provide
related but distinct mechanisms for separation of concerns. II languages have ex-
plicitly announced events that run registered observer methods. AO languages
have implicitly announced events that run method-like but more powerful advice.
A limitation of II languages is their inability to refer to a large set of events suc-
cinctly. They also lack the expressive power of AO advice. Limitations of AO
languages include potentially fragile dependence on syntactic structure that may
hurt maintainability, and limits on the available set of implicit events and the
reflective contextual information available. Quantified, typed events, as imple-
mented in our language Ptolemy, solve all these problems. This paper describes
Ptolemy and explores its advantages relative to both II and AO languages.

1 Introduction

For temperance and courage are destroyed both by excess and defect,
but preserved by moderation. – Aristotle, Nicomachean Ethics

The objective of both implicit invocation (II) [1,2,3,4,5,6] and aspect-oriented (AO) [7]
languages is to improve a software engineer’s ability to separate conceptual concerns.
The problem that they address is that not all concerns are amenable to modularization
by a single dimension of decomposition [8]; instead, some concerns cut across the main
dimension of decomposition. For example, code implementing a visualization concern
would be scattered across the classes of an object-oriented (OO) decomposition. The II
and AO approaches aim to better encapsulate such crosscutting concerns and decouple
them from other code, thereby easing maintenance.

However, both II and AO languages suffer from various limitations. The goal of this
paper is to explain how our language Ptolemy, which combines the best ideas of both
kinds of language, can solve many of these problems.

1.1 Implicit Invocation Languages and Their Limitations

The key idea in II languages is that events are used as a way to interface two sets of
modules, so that one set can remain independent of the other. Events promote decou-

� Rajan was supported in part by the NSF grant CNS-0627354. Leavens was supported in part
by NSF grant CCF-0429567. Both were supported in part by NSF grant CNS 08-08913.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 155–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 H. Rajan and G.T. Leavens

1 abstract class FElement extends Object{
2 event ChangeEvent(FElement changedFE);
3 event MoveUpEvent(FElement targetFE,
4 Number y, Number delta);
5 }
6 class Point extends FElement { /* ... */
7 Number x; Number y;
8 FElement setX(Number x) {
9 this.x = x;

10 announce ChangeEvent(this);
11 this
12 }
13 FElement moveUp(Number delta) {
14 announce MoveUpEvent(this,this.y,delta);
15 this.y = this.y.plus(delta); this
16 }
17 FElement makeEqual(Point other) {
18 other.x = this.x; other.y = this.y;
19 announce ChangeEvent(other); other
20 }
21 }

22 class Update extends Object { /* ... */
23 FElement last;
24 Update registerWith(FElement fe) {
25 fe.register(this, FElement.ChangeEvent);
26 fe.register(this, FElement.MoveUpEvent);
27 this
28 }
29 FElement update(FElement changedFE, Number x){
30 this.last = changedFE;
31 Display.update();
32 changedFE
33 }
34 FElement check(FElement targetFE,
35 Number y, Number delta) {
36 if (delta.lt(100)) { targetFE }
37 else{throw new IllegalArgumentException()}
38 }
39 when FElement.ChangeEvent do update
40 when FElement.MoveUpEvent do check
41 }

Fig. 1. Drawing Editor in an II language

pling and can be seen as direct linguistic support for the Observer pattern [9]. The
mechanisms of an II language are also known as “event subscription management.” [3]

With declared events, certain modules (subjects) dynamically and explicitly an-
nounce events. Another set of modules (observers) can dynamically register methods,
called handlers. These handlers are invoked (implicitly) when events are announced.
The subjects are thus independent of the particular observers.

Figure 1 illustrates the mechanisms of a hypothetical Java-like II language based on
Classic Java (and thus similar to Ptolemy) for a figure editor that we will use as a run-
ning example in this paper. This code is part of a larger editor that works on drawings
comprising points, lines, and other such figure elements [10,11]. The code announces
two kinds of events, named ChangeEvent and MoveUpEvent (lines 2–4). The sub-
class Point announces these events using announce expressions (lines 10, 14, and
19). When an instance of the class Update is properly “registered”, by calling the
registerWith method on an instance of the Point class, these announcements
will implicitly invoke the methods of class Update (lines 22–41). The connection be-
tween the events and methods of class Update is made on lines 39–40, where it is
specified that the update method is to be called when the ChangeEvent occurs and
the check method when MoveUpEvent occurs. Dynamic registration (lines 25–26)
allows the receiver of these method calls to be determined (and allows unregistration
and multiple registration).

The main advantage of an II language over OO languages is that it provides consider-
able automation of the Observer pattern [3], which is key to decoupling subject modules
from observer modules. That is, modules that announce events remain independent of
the modules that register methods to handle their event announcements. Compared to
AO languages, as we will see, II languages also have some advantages. First, event an-
nouncement is explicit, which helps in understanding the module announcing the event,
since the points where events may occur are obvious from the code. Second, event an-
nouncement is flexible; i.e., arbitrary points in the program can be exposed as events.

Ptolemy: A Language with Quantified, Typed Events 157

However, compared with AO languages, II languages also have three limitations:
coupling of observers to subjects, no ability to replace event code, and lack of quantifi-
cation. We describe these below.

Coupling of Observers to Subjects. While subjects need not know about observers in
an II language, the observer modules still know about the subjects. In Figure 1, for
example, the registration code on lines 25–26 and the binding code on lines 39–40
mentions the events declared in FElement. (Mediators, a design style for II languages,
also decouple subjects and observers so that they can be changed independently [6].
However, mediator modules remain coupled to both the subject and observers.)

No Replacement of Event Code. The ability to replace the code for an event (what AO
calls “around advice”), is not available, without unnecessarily complex emulation code
(to simulate closures in languages such as Java and C#). Instead, to stop an action, one
must have a handler throw an exception (as on line 37), which does not clearly express
the idea. Similarly, throwing an exception does not support replacing actions with dif-
ferent actions, such as replacing a local method call with a remote method invocation.

No Quantification. In II languages describing how each event is handled, which follow-
ing the AO terminology we call quantification, can be tedious. Indeed, such code can
grow in proportion to the number of objects from which implicit invocations are to be
received. For example, to register an Update instance u to receive implicit invocations
when events are announced by both a point p and a line l, one would write the follow-
ing code: u.registerWith(p); u.registerWith(l). One can see that such
registration code has to find all figure element instances. In this case these problems
are not too bad, since all such instances have types that are subtypes of FElement,
where the relevant events are declared. However, if the events were announced in unre-
lated classes, then the registration code (lines 25–26) and the code that maps events to
method calls (lines 39–40) would be longer and more tedious to write.

1.2 Aspect-Oriented Languages and Their Limitations

In AO languages [12,13] such as AspectJ [7,10,14,15] events (called “join points”) are
pre-defined by the language as certain kinds of standard actions (such as method calls)
in a program’s execution. (We emphasize AspectJ for the maturity of its design and
the availability of a workable implementation.) AO events are all implicitly announced.
Pointcut descriptions (PCDs) are used to declaratively register handlers (called “ad-
vice”) with sets of events. Using PCDs to register a handler with an entire set of events,
called quantification [16], is a key idea in AO languages that has no counterpart in II
languages. A language’s set of PCDs and events form its event model (in AO terms this
is a “join point model”).

The listings in Figure 2 shows an AspectJ-like implementation for the drawing ed-
itor discussed before. (We have adapted the syntax of AspectJ to be more like our
language Ptolemy, to make comparisons easier.) In this implementation the Point
class is free of any event-related code (as are other figure elements such as Line).

158 H. Rajan and G.T. Leavens

Modularization of display update is done with an aspect. This aspect uses PCDs such
as target(fe) && call(FElement+.set*(..)) to select events that change
the state of figure elements. This PCD selects events that call a method matching set*
on a subtype of FElement and binds the context variable fe (of type FElement) to
that call’s receiver.

1 abstract class FElement extends Object {}
2 class Point implements FElement { /*...*/
3 Number x; Number y;
4 FElement setX(Number x) {
5 this.x = x; this
6 }
7 FElement moveUp(Number delta) {
8 this.y = this.y.plus(delta); this
9 }

10 FElement makeEqual(Point other) {
11 other.x = this.x;
12 other.y = this.y; other
13 }
14 }

15 aspect Update {
16 FElement around(FElement fe) :
17 call(FElement+.set*(..)) && target(fe)
18 || call(FElement+.makeEq*(..)) && args(fe){
19 FElement res = proceed(fe);
20 Display.update(); res
21 }
22 FElement around(FElement fe, Number delta):
23 target(fe)&&(call(FElement+.move*(..))
24 && args(delta){
25 if (delta.lt(100) { proceed(delta) }
26 else { fe }
27 }
28 }

Fig. 2. Drawing editor’s AO implementation

AO languages also have several advantages. Quantification provides ease of use. For
example, one can select events throughout a program (and bind them to handlers) by
just writing a simple regular expression based PCD, as on lines 17–18. Moreover, by
not referring to the names in the modules announcing events directly, the handler code
remains, at least syntactically, independent of that code. Implicit event announcement
both automates and further decouples the two sets of modules, compared with II lan-
guages. This property, sometimes called obliviousness [16], avoids the “scattering” and
“tangling” [7] of event announcement code within the other code for the subjects, which
can be seen in lines 10, 14, and 19 of Figure 1. In that figure, this explicit announce-
ment code is mixed in with other code, resulting in tangled code that makes it harder to
follow the main program flow.

However, AO languages suffer from four limitations, primarily because most cur-
rent event models use PCDs based on pattern matching. These languages differ by what
they match. For example, AspectJ-like languages use pattern matching on names [10],
LogicAJ and derivative languages use pattern matching on program structures [17,18],
and, history-based pointcuts use pattern matching on program traces [19]. An ex-
ample PCD in languages that match names is call(FElement+.set*(..))
that describes a set of call events in which the name of the called method
starts with “set”. An example PCD in languages that match program structures
is stmt(?if,if(?call){??someStatements}&&fooBarCalls(?call)
that describes a set of call events in which the name of the called method is “foo”
or “bar” and the call occurs within an if condition [17, Fig 4.]. An example
PCD in languages that match program traces would be G(call(∗Line.set(..)) →
F (call(∗Point.set(..)))) that describes every call event in which the name of the called
method is “Line.set” and that is finally followed by another call event in which the
name of the called method is “Point.set” [20, Fig 3.].

Ptolemy: A Language with Quantified, Typed Events 159

Fragile Pointcuts. The fragility of pointcuts results from the use of pattern matching
as a quantification mechanism [21,22]. Such PCDs are coupled to the code that im-
plements the implicit events they describe. Thus, seemingly innocuous changes break
aspects. For example, for languages that match based on names, a change such as adding
new methods that match the PCD, such as settled, can break an aspect that is count-
ing on methods that start with “set” to mean that the object is changing. As pointed
out by Kellens et al. [23], in languages that match based on program structures a sim-
ple change such as changing an if statement to an equivalent statement that used a
conditional (?:) expression would break the aspect. For languages that match based on
program traces a simple change such as to inline the functionality of “Point.set”
would break the aspect that is counting on “Line.set” to be eventually followed
by “Point.set” [23]. Conversely, when adding a method such as makeEqual that
does not conform to the naming convention, one has to change the PCD to add the new
method pattern (as shown in line 18 of Figure 2). In the same vein, when adding a new
call such as foo()within a while statement that does not conform to the existing pro-
gram structure, one has to change the PCD to accomodate the new program structure.
Similar arguments apply for trace-based pointcuts. Indeed, to fix such problems PCDs
must often be changed (e.g., to exclude or include added methods). Such maintenance
problems can be important in real examples.

Several recent ideas such as Aspect Aware Interfaces (AAIs) [11], Crosscut Program-
ming Interfaces (XPIs) [24,25], Model-based Pointcuts [23], Open Modules (OM) [26],
etc, have recognized and proposed to address this fragile pointcut problem. Briefly,
AAIs, computed using the global system configuration, allow a developer to see the
events in the base code quantified by a PCD, but do not help with reducing the impact
of base code changes on PCDs, which primarily causes the fragile pointcut problem.
XPIs reduce the scope of fragile pointcut problem to the scope declared as part of the
interface, however, within a scope the problem remains. OMs allow a class to explicitly
expose the set of events, however, for quantifying such events explicit enumeration is
needed, which couples the PCD with names in the base code. Such enumerations are
also potentially fragile as pointed out by Kellens et al. [23]. A detailed discussion of
these ideas is presented in Section 4.

Quantification Failure. The problem of quantification failure is caused by incomplete-
ness in the language’s event model. It occurs when the event model does not implicitly
announce some kinds of events and hence does not provide PCDs that select such events
[24, pp. 170]. In AspectJ-like AO languages there is a fixed classification of potential
event kinds and a corresponding fixed set of PCDs. For example, some language fea-
tures, such as loops or certain expressions, are not announced as events in AspectJ and
have no corresponding PCDs.1 While there are reasons (e.g., increased coupling) for not
making some kinds of potential events available, some practical use cases need to handle

1 Some may view that as a problem of the underlying language rather than the approach to aspects:
e.g., in a language where all computation takes place in methods, this, target and args are
always defined. We argue that it may not be necessary to continue to support such differentiation
between means of computation, instead a unified view of all such means of computation can
be provided to the aspects.

160 H. Rajan and G.T. Leavens

them [27,28]. This fixed set of event kinds and PCDs contributes to quantification failure,
because some events cannot be announced or used in PCDs.

There are approaches such as LogicAJ that provide a finer-grained event model [17].
For example, in LogicAJ one could match arbitrary program structure in the base code,
which is significantly more expressive compared to matching based on names. However,
as discussed above, a problem with such technique is that the PCDs becomes strongly
coupled with the structure of the base code and therefore become more fragile.

An alternative approach to solving this problem is taken by the technique used in
SetPoint [29]. This technique allows a programmer to select events by attaching anno-
tations to locations of such events. This technique is not fragile in the sense that it does
not depend on names, program structure, or order of events. A problem, however, is that
this technique does not allow arbitrary expressions to be selected, primarily because the
underlying languages do not allow annotations on arbitrary expressions.

Limited Access to Context Information. Current AO languages provide a limited in-
terface for accessing contextual (or reflective) information about an event [24]. For
example, in AspectJ, a handler (advice) can access only fixed kinds of contextual in-
formation from the event, such as the current receiver object (this), a call’s target,
its arguments, etc. Again there are good reasons for limiting this interface (e.g., avoid-
ing coupling), but the fundamental problem is that, in current languages, this interface
is fixed by the language designer and does not satisfy all usage scenarios. For exam-
ple, when modularizing logging, developers need access to the context of the logging
events, including local variables. However, local variables are not available in existing
AO event models.

Approaches such as LogicAJ [17] allow virtually unlimited reflective access to the
program context surrounding code using meta-variables, which is more expressive than
AspectJ’s model; e.g., a local variable can be accessed by associating it with a meta-
variable. However, as we discuss in detail below, this unlimited access is achieved with
ease only in cases where the events form a regular structure.

Uniform Access to Irregular Context Information. A related problem occurs when con-
textual information that fulfills a common need (or role) in the handlers is not available
uniformly to PCDs (and handlers). For example, in Figure 2 setX and makeEqual
contribute to the event “changing a figure element,” however, they are changing differ-
ent figure element instances: this and other in the case of setX and makeEqual
respectively. In this simple case, it is possible to work around this issue by writing a
PCD that combines (using ||, as in lines 17–18 of Figure 2) two separate PCDs, as
shown in Figure 2. Each of these PCDs accesses the changed instance differently (one
using target, the other using args). However, each such PCD depends on the par-
ticular code features that it needs to access the required information.

This problem is present in even significantly more expressive approaches based on
pattern matching such as LogicAJ [17]. For irregular context information, the best so-
lution in these techniques also need to resort to explicit enumeration of base code struc-
ture to identify meta-information that need to be accessed. Note that such enumeration
increases the coupling between the PCDs and the details of the base code.

Ptolemy: A Language with Quantified, Typed Events 161

1.3 Contributions

In this work, we present a new language, Ptolemy, which adds quantified, typed events
to II languages, producing a language that has many of the advantages of both II and
AO languages, but suffers from none of the limitations described above.

Ptolemy declares named event types independently from the modules that announce
or handle these events. These event types provide an interface that completely decou-
ples subject and observer modules. An event type p also declares the types of informa-
tion communicated between announcements of events of type p and handler methods.
Events are explicitly announced using event expressions. Event expressions enclose a
body expression, which can be replaced by a handler, providing expressiveness akin to
around advice in AO languages. Event type names can also be used in quantification,
which simplifies binding and avoids coupling observers with subjects.

Key differences between Ptolemy and II languages are thus:

– separating event type declarations from the modules that announce events,
– the ability to treat an expression’s execution as an event,
– the ability to override that execution, and
– quantification by the use of PCDs.

Key differences between Ptolemy and AO languages are:

– events are explicitly announced, but quantification over them does not require enu-
meration unlike techniques such as Open Modules [26],

– an arbitrary expression can be identified as an event (unlike Setpoint [29]) without
exacerbating the fragile pointcut problem (unlike languages like LogicAJ [17]),

– events can communicate an arbitrary set of reflective information to handlers with-
out coupling handlers to program details (cf. [23]), and

– PCDs can use declared event types for quantification.

The benefit of Ptolemy’s new features over II languages is that the separation of
event type declarations allows further decoupling, and that the ability to replace events
completely is more powerful. The benefit over AO languages is that handler methods
(advice) can uniformly access reflective information from the context of events without
breaking encapsulation of the code that announces events. Furthermore, event types also
permit further decoupling over AO languages, since PCDs are decoupled from the code
announcing events (the “base code”).

These benefits make Ptolemy an interesting point in the design space between II
and AO languages. Since event announcement is explicit, announcing modules are not
completely “oblivious” to the presence of handlers, and hence by some definitions [16]
Ptolemy is not aspect-oriented. However, this lack of obliviousness is not fatal for in-
vestigating its utility as a language design, and indeed highlights the advantages and
disadvantages of obliviousness, as we will explain Sections 3.3 and 4.

In summary, this work makes the following contributions. It presents:

– a language design with simple and flexible event model;
– a precise operational semantics and type system for the language’s novel constructs;
– an implementation of the language as an extension of Eclipse’s Java compiler; and,
– a detailed analysis of our approach and the closely related ideas.

162 H. Rajan and G.T. Leavens

2 Ptolemy’s Design

Ptolemy (Claudius Ptolemaeus), fl. 2d cent. A.D.,
celebrated Greco-Egyptian mathematician, astronomer, and geographer.

In this section, we describe Ptolemy’s design. Its use of quantified, typed events ex-
tends II languages with ideas from AO languages. Ptolemy features new mechanisms
for declaring event types and events. It is inspired by II languages such as Rapide [3]
and AO languages such as AspectJ [10]. It also incorporates some ideas from Eos [30]
and Caesar [31]. As a small, core language, its technical presentation shares much in
common with MiniMAO1 [32,33]. The object-oriented part of Ptolemy has classes,
objects, inheritance, and subtyping, but it does not have super, interfaces, exception
handling, built-in value types, privacy modifiers, or abstract methods. The novel fea-
tures of Ptolemy are found in its event model and type system.

Like Eos [30], Ptolemy does not have special syntax for “aspects” or “advice”. In-
stead it has the capability to replace all events in a specified set (a pointcut) with a call
to a handler method. Each handler takes an event closure as its first argument. An event
closure [30] contains code needed to run the applicable handlers and the original event’s
code. An event closure is run by an invoke expression.

Like II languages a class in Ptolemy can register handlers for events. However, un-
like II languages, where one has to write an expression for registering a handler with
each event in a set, Ptolemy allows a handler to be declaratively registered for a set of
events using one succinct PCD in a binding (which is similar to declaring AO “around
advice”). At runtime, one can use Ptolemy’s register expression to activate such re-
lationships. The register expression supplies an observer instance (an object) that
becomes the receiver in calls to its handler methods that are made when the corre-
sponding events are announced.2 It is thus easy to make individual observer instances
that handle event announcements (“instance-level advising”) [34]. Singleton “aspects”
could be easily added as syntactic sugars.

2.1 Syntax

Ptolemy’s syntax is shown in Figure 3 and explained below. A program in Ptolemy
consists of a sequence of declarations followed by an expression. The expression can
be thought of as the body of a “main” method. In Figure 4 we illustrate the syntax using
the example from Section 1.

Declarations. The two top-level declaration forms, classes and event type declarations,
may not be nested. A class has exactly one superclass, and may declare several fields,
methods, and bindings. Bindings associate a handler method to a set of events described
by a pointcut description (PCD). The binding in Figure 4, line 47 says to run update
when events of type FEChange are announced. Similarly, the binding on line 48 says
to run check when events of type MoveUpEvent are announced.

2 In AO languages such as Eos [34] and Caesar [31] register expressions correspond to “deploy-
ing aspects.”

Ptolemy: A Language with Quantified, Typed Events 163

prog ::= decl* e
decl ::= c evtype p { form* }

| class c extends d { field* meth* binding* }
field ::= c f;
meth ::= t m (form*) { e }
t ::= c | thunk c
binding ::= when pcd do m
form ::= t var, where var �=this
pcd ::= p | pcd ‘||’ pcd
e ::= new c() | var | null | e.m(e*) | e.f

| e.f = e | cast c e | form = e; e | e; e
| register(e) | event p { e } | invoke(e)

where
c, d ∈ C, a set of class names

p ∈ P, a set of evtype names
f ∈ F , a set of field names

m ∈ M, a set of method names
var ∈ {this} ∪ V,V is

a set of variable names

Fig. 3. Ptolemy’s abstract syntax, based on Clifton’s dissertation [32, Figures 3.1, 3.7]

1 FElement evtype FEChange{
2 FElement changedFE;
3 }
4 FElement evtype MoveUpEvent{
5 FElement targetFE; Number y; Number delta;
6 }
7 class FElement extends Object{}
8 class Point extends FElement{ /* ... */
9 Number x; Number y;

10 FElement setX(Number x) {
11 FElement changedFE = this;
12 event FEChange{ this.x = x; this }
13 }
14 FElement moveUp(Number delta){
15 FElement movedFE = this;
16 event MoveUpEvent{
17 this.y = this.y.plus(delta); this
18 }
19 }
20 FElement makeEqual(Point other){
21 FElement changedFE = other;
22 event FEChange{
23 other.x = this.x;
24 other.y = this.y; other
25 }
26 }
27 }

28 class Update extends Object{
29 FElement last;
30 Update init(){
31 register(this)
32 }
33 FElement update(thunk FElement next,
34 FElement changedFE){
35 FElement res = invoke(next);
36 this.last = changedFE;
37 Display.update(); res
38 }
39 FElement check(thunk FElement next,
40 FElement targetFE,
41 Number y, Number delta){
42 if (delta.lt(100)){
43 FElement res = invoke(next)
44 };
45 targetFE
46 }
47 when FEChange do update
48 when MoveUpEvent do check
49 }

Fig. 4. Drawing Editor in Ptolemy

An event type (evtype) declaration has a return type (c), a name (p), and zero or
more context variable declarations (form*). These context declarations specify the types
and names of reflective information exposed by conforming events. Two examples are
given in Figure 4 on lines 1–6. The intention of the first event type declaration (lines
1–3) is to provide a named abstraction for a set of events, with result type FElement,
that contribute to an abstract state change in a figure element, such as moving a point.
This event type declares only one context variable, changedFE, which denotes the
FElement instance that is being changed. Similarly, the event type MoveUpEvent
(lines 4–6) declares three context variables,targetFE, which denotes the FElement
instance that is moving up, y, the current Cartesian co-ordinate value for that instance,
and delta, the displacement of the instance.

Quantification: Pointcut Descriptions. PCDs have two forms. The named PCD de-
notes the set of events identified by the programmer using event expressions with the

164 H. Rajan and G.T. Leavens

given name. Two examples appear on lines 47–48 of Figure 4. The first, FEChange,
denotes events identified with the type FEChange. The context exposed by this PCD
is the subset of the lexical context named by that event type and available at event
expressions that mention that type.

The disjunction (||) of two PCDs gives the union of the sets of events denoted by
the two PCDs. The context exposed by the disjunction is the intersection of the context
exposed by the two PCDs. However, if an identifier I is bound in both contexts, then
I’s value in the exposed context is I’s value from the right hand PCD’s context.

Expressions. Ptolemy is an expression language, thus the syntax for expressions in-
cludes several standard object-oriented (OO) expressions [32,33,35].

There are three new expressions:register, invoke, and event. The expression
register(e) evaluates e to an object o, registers o by putting it into the program’s
list of active objects, and returns o. The list of active objects is used in the semantics
to track registered objects. Only objects in this list are capable of advising events. For
example lines 30–32 of Figure 4 is a method that, when called, will register the method’s
receiver (this). The expression invoke(e) evaluates e, which must denote an event
closure, and runs that event closure. This runs the handlers in the event closure or, if
there are no handlers, the event closure’s original expression.

The expression event p {e} announces e as an event of type p and runs any han-
dlers of registered objects that are applicable to p, using a registered object as the re-
ceiver and passing as the first argument an event closure. This event closure contains the
rest of the handlers, the original expression e, and its lexical environment. In Figure 4
the event expression on line 10 has a body consisting of a sequence expression. Notice
that the body of the setX method contains a block expression, where the definition on
line 11 binds this to changedFE, and then evaluates its body, the event expression.
This definition makes the value of this available in the variable changedFE, which
is needed by the context declared for the event type FEChange. In this figure, the event
declared on line 22–25 also encloses a sequence expression. As required by the event
type, the definition on line 21 of Figure 4 makes the value of other available in the
variable changedFE. Thus the first and the second event expressions are given differ-
ent bindings for the variable changedFE, however, code that advises this event type
will be able to access this context uniformly using the name changedFE.

The II syntax “announce p” can be thought of as sugar for “event p {null}.”
Thus Ptolemy’s event announcement is strictly more powerful than that in II languages.

2.2 Operational Semantics of Ptolemy

This section defines a small step operational semantics for Ptolemy. The semantics is
based on Clifton’s work [32,33,36], which builds on Classic Java [37].

The expression semantics relies on four expressions that are not part of Ptolemy’s
surface syntax as shown in Figure 5. The loc expression represents locations in the
store. The under expression is used as a way to mark when the evaluation stack needs
popping. The two exceptions record various problems orthogonal to the type system.

Figure 5 also describes the configurations, and the evaluation contexts in the opera-
tional semantics, most of which is standard and self-explanatory. A configuration con-

Ptolemy: A Language with Quantified, Typed Events 165

Added Syntax:

e ::= loc | under e | NullPointerException | ClassCastException
where loc ∈ L, a set of locations

Domains:

Γ ::= 〈e, J, S, A〉 “Configurations”
J ::= ν + J | • “Stacks”
ν ::= lexframe ρ Π | evframe p ρ Π “Frames”
ρ ::= {j : vk}k∈K , where K is finite, K ⊆ I “Environments”
v ::= loc | null “Values”
S ::= {lock → svk}k∈K , where K is finite “Stores”
sv ::= o | pc “Storable Values”
o ::= [c.F] “Object Records”
F ::= {fk → vk}k∈K , where K is finite “Field Maps”
pc ::= eClosure(H, θ) (e, ρ, Π) “Event Closures”
H ::= h + H | • “Handler Record Lists”
h ::= 〈loc, m, ρ′〉 “Handler Records”
A ::= loc + A | • “Active (Registered) List”

Evaluation contexts:

E ::= − | E .m(e . . .) | v.m(v . . . E e . . .) | cast t E | E .f | E ;e | E .f=e
| v.f=E | t var=E; e | E; e | register(E) | under E | invoke(E)

Fig. 5. Added syntax, domains, and evaluation contexts used in the semantics, based on [32]

tains an expression (e), a stack (J), a store (S), and an ordered list of active objects (A).
Stacks are an ordered list of frames, each frame recording the static environment (ρ) and
some other information. (The type environments Π are only used in the type soundness
proof [35].) There are two types of stack frame. Lexical frames (lexframe) record an
environment ρ that maps identifiers to values. Event frames (evframe) are similar, but
also record the name p of the event type being run. Storable values are objects or event
closures. Event closures (eClosure) contain an ordered list of handler records (H), a
PCD type (θ), an expression (e), an environment (ρ), and a type environment (Π). The
type θ and the type environment Π (see Figure 7) are maintained by but not used by the
operational semantics; they are only used in the type soundness proof [35]. Each handler
record (h) contains the information necessary to call a handler method: the receiver ob-
ject (loc), a method name (m), and an environment (ρ′). The environment ρ′ is used to
assemble the method call arguments when the handler method is called. The environment
ρ recorded at the top level of the event closure is used to run the expression e when an
event closure with an empty list of handler records is used in an invoke expression.

Figure 6 presents the key rules. The details about standard OO rules are omitted here,
however, interested reader can refer to our technical report on Ptolemy [35]. The rules
all make implicit use of a fixed (global) list, CT , of the program’s declarations.

The (EVENT) rule is central to Ptolemy’s semantics, as it starts the running of
handler methods. In essence, the rule forms a new frame for running the event,
and then looks up bindings applicable to the new stack, store, and list of registered
(active) objects. The resulting list of handler records (H) is put into an event clo-
sure (eclosure(H, θ) (e, ρ′, Π))), which is placed in the store at a fresh location.
This event closure will execute the handler methods, if any, before the body of the
event expression (e) is evaluated. Since a new (event) frame is pushed on the stack,

166 H. Rajan and G.T. Leavens

Evaluation relation: ↪→: Γ → Γ

(EVENT)
ρ = envOf (ν) Π = tenvOf (ν) (c evtype p{t1 var1, . . . , tn varn}) ∈ CT

ρ′ = {vari → vi | ρ(vari) = vi} π = {vari : var ti | 1 ≤ i ≤ n}
loc �∈ dom(S) π′ = π∪−{loc : var (thunk c)} ν′ = evframe p ρ′ π′

H = hbind(ν′ + ν + J, S, A) θ = pcd c, π S′ = S ⊕ (loc → eclosure(H, θ) (e, ρ, Π))

〈E[event p {e}], ν + J, S, A〉 ↪→ E[under (invoke(loc))], ν′ + ν + J, S′, A

(UNDER)
〈E[under v], ν + J, S, A〉

↪→ 〈E[v], J, S, A〉

(REGISTER)
〈E[register(loc)], J, S, A〉
↪→ 〈E[loc], J, S, loc + A〉

(INVOKE-DONE)
eclosure(•, θ) (e, ρ, Π) = S(loc) ν = lexframe ρ Π

〈E[invoke(loc)], J, S, A〉 ↪→ 〈E[under e], ν + J, S, A〉

(INVOKE)
eclosure((〈loc′, m, ρ〉 + H), θ) (e, ρ′, Π) = S(loc)

[c.F] = S(loc′) (c2, t m(t1var1, . . . , tnvarn){e′}) = methodBody(c, m)
n ≥ 1 ρ′′ = {vari → vi | 2 ≤ i ≤ n, vi = ρ(vari)} loc1 �∈ dom(S)

S
′
= S ⊕ (loc1 → eclosure(H, θ) (e, ρ

′
, Π)) ρ

′′′
= ρ

′′ ⊕ {var1 → loc1} ⊕ {this → loc′}
Π′ = {vari : var ti | 1 ≤ i ≤ n}∪−{this : var c2} ν = lexframe ρ′′′ Π′

〈E[invoke(loc)], J, S, A〉 ↪→ E[under e
′
], ν + J, S

′
, A

Fig. 6. Operational semantics of Ptolemy, based on [32]. Standard OO rules are omitted

the invoke expression that starts running this closure is placed in an under expres-
sion. The (UNDER) rule pops the stack when evaluation of its subexpression is finished.

The auxiliary function hbind [35] uses the program’s declarations, the stack, store,
and the list of active objects to produce a list of handler records that are applicable for
the event in the current state. When called by the (EVENT) rule, the stack passed to it
has a new frame on top that represents the current event.

The (REGISTER) rule simply puts the object being activated at the front of the list of
active objects. The bindings in this object are thus given control before others already
in the list. An object can appear in this list multiple times.

The evaluation of invoke expressions is done by the two invoke rules. The
(INVOKE-DONE) rule handles the case where there are no (more) handler records. It
simply runs the event’s body expression (e) in the environment (ρ) that was being re-
membered for it by the event closure.

The (INVOKE) rule handles the case where there are handler records still to be run
in the event closure. It makes a call to the active object (referred to by loc) in the first
handler record, using the method name and environment stored in that handler record.
The active object is the receiver of the method call. The first formal parameter is bound
to a newly allocated event closure that would run the rest of the handler records (and
the original event’s body) if it used in an invoke expression.

2.3 Ptolemy’s Type System

Type checking uses the type attributes defined in Figure 7. The type checking rules
themselves are shown in Figure 8. Standard rules for OO features are omitted [35]. The

Ptolemy: A Language with Quantified, Typed Events 167

θ ::= OK| OK in c | var t | exp t | pcd τ, π “type attributes”
τ ::= c | ⊥ “class type exps”
π, Π ::= {I : θI}I∈K , “type environments”

where K is finite, K ⊆ (L ∪ {this} ∪ V)

Fig. 7. Type attributes

(CHECK BINDING)
(c2, c′ m(t1 var1, . . . , tn varn){e}) = methodBody(c, m) � pcd : pcd c′, π isClass(c′)

n ≥ 1 t1 = thunk c′ (∀i ∈ {2..n} :: isType(ti)) {var2 : var t2, . . . , varn : var tn} ⊆ π

Π � (when pcd do m) : OK in c

(CHECK EVTYPE)
isClass(c) (∀i ∈ {1..n} :: isType(ti))

� c evtype p {t1 var1; . . . tn varn;} : OK

(EV ID PCD TYPE)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT π = {var1 : var t1, . . . varn : var tn}

� p : pcd c, π

(DISJUNCTION PCD TYPE)
� pcd : pcd τ, π � pcd′ : pcd τ ′, π′ τ ′′ = τ � τ ′ π′′ = π ∩ π′

� pcd || pcd′ : pcd τ ′′, π′′

(UNDER EXP TYPE)
Π � e : exp t

Π � under e : exp t

(REGISTER EXP TYPE)
Π � e : exp c

Π � register(e) : exp c

(INVOKE EXP TYPE)
Π � e : exp (thunk c)

Π � invoke(e) : exp c

(EVENT EXP TYPE)
(c evtype p {t1 var1; . . . tn varn;}) ∈ CT

{var1 : var t1, . . . , varn : var tn} ⊆ Π Π � e : exp c′ c′ � c

Π � event p {e} : exp c

Auxiliary Functions:
isClass(t) = (class t . . .) ∈ CT
isThunkType(t) = (t = thunk c ∧ isClass(c))
isType(t) = isClass(t) ∨ isThunkType(t)

Fig. 8. Type-checking rules for Ptolemy. Rules for standard OO features are omitted

notation τ ′ � τ means τ ′ is a subtype of τ . It is the reflexive-transitive closure of the
declared subclass relationships [35].

As in Clifton’s work [32,33], the type checking rules are stated using a fixed class
table (list of declarations) CT , which can be thought of as an implicit (hidden) inherited
attribute. This class table is used implicitly by many of the auxiliary functions. For ease
of presentation, we also follow Clifton in assuming that the names declared at the top
level of a program are distinct and that the extends relation on classes is acyclic.

The type checking of method and binding declarations within class c produces a
type of the form OK in c, in which c can be considered an inherited attribute. Thus the
rule (CHECK BINDING) works with such an inherited attribute c. It checks consistency
between c’s method m and the PCD. PCD types contain a return type c′ and a type
environment π, and all but the first formal parameter of the method m must be names
defined in π with a matching type. The first formal parameter must be a thunk type that
returns the same type, c′, as the result type of the method.

168 H. Rajan and G.T. Leavens

Checking event type declarations involves checking that each type used is declared.
The type checking of PCDs involves their return type and the type environment that

they make available [32,35]. The return type and typing context of a named PCD are
declared where the event type named is declared. For example, the FEChange PCD
has FElement as its return type and the typing context that associates changedFE
to the type FElement.

For a disjunction PCD, the return type is the least upper bound of the two PCDs’
return types, and the typing context is the intersection of the two typing contexts. For
each name I in the domain of both contexts, the type exposed for I is the least upper
bound of the two types assigned to I by the two PCDs.

Expressions are type checked in the context of a local type environment Π , which
gives the types of the surrounding method’s formal parameters and declared local vari-
ables. Type checking of under and register is straightforward.

In an expression of the form invoke(e), e must have a type of the form thunk c,
which ensures that the value of e is an event closure. The type c is the return type of
that event closure, and hence the type returned by event(e).

In an event expression, the result type of the body expression, c′, must be a subtype
of the result type c declared by the event type, p. Furthermore, the lexical scope available
(at e) must provide the context demanded by p.

The proof of soundness of Ptolemy’s type system uses a standard preservation and
progress argument [38]. The details are contained in our technical report [35].

2.4 Ptolemy’s Compiler

We designed an extension of Java to have quantified, event types and implemented a
compiler for this extension using the Eclipse’s JDT core package [39]. Our prototype
compiler [40] is backwards compliant; i.e., all valid Java code is valid Ptolemy code.
It also generates standard Java byte-code. In the rest of the section, we describe the
extensions to the Eclipse JDT Core we used to support quantified, event types.

We modified the scanner and parser of Eclipse JDT (contained in the package
org.eclipse.jdt.internal.compiler.parser) to parse Ptolemy’s new
constructs (namely evtype, event, register, and bindings). Events were added
as both expressions and statements, since Java makes this distinction. These modifica-
tions were fairly modular and did not require changing the existing structure of Eclipse’s
Java grammar; however, for automating the (extremely manual and error prone) parser
building process of Eclipse some modifications to the type-hierarchy of the parser and
its parser generation tool (jikespg) were made.

Eclipse’s Java document object model (JDOM) was extended to include
EventTypeDeclaration as a new TypeDeclaration, EventStatement
as a new Statement, EventExpression and RegisterExpression
as new subclasses of Expression, and BindingDeclaration as a new
TypeMemberDeclaration.

Standard OO type checking rules are already implemented in Eclipse JDT. The se-
mantic analysis is organized in a style similar to the composite design pattern [9], where
both the composite and the leaf nodes provide uniform interface and the operation in
the composite is implemented by recursively calling the operation on components. A

Ptolemy: A Language with Quantified, Typed Events 169

visitor structure (ASTVisitor) is also provided, but the internal semantic analysis
and code generation process does not use this structure. To add the type-checking rules
for Ptolemy described in Section 2.3, we simply implemented them in the new AST
nodes. The code generation for new AST nodes was also implemented similarly. These
two steps also did not require modifications to implementation of other AST nodes.

Detailed description is beyond the scope of this paper, however, briefly the code gen-
eration proceeds as follows. Corresponding to an event type a set of classes and inter-
faces are generated that serve to model event frames, event closures, and event handlers.
A closure object containing the body of event expression or statement is created as an in-
ner class that replaces the original expression or statement. This inner class implements
the interface that represents the event type at runtime and provides an implementation
of the invoke method, which contains the original event’s body. The replacement of the
body requires a def-use analysis [41] with respect to its original environment and some
name and reference mangling to propagate side-effects.

The class representing the event frame creates a chain of linked frames during reg-
istration that are parametrized with event closures during event invocation, as in the
(EVENT) and (INVOKE) rules in Figure 6. Much of this is similar to the intuition dis-
cussed in Ptolemy’s operational semantics in Section 2.2.

3 Comparisons with II and AO Langauges

The most perfect political community must be amongst those
who are in the middle rank. – Aristotle, Politics

In this section we compare Ptolemy with II and AO languages. We start with an ex-
tended example that illuminates some differences between Ptolemy and AO languages.

3.1 An Extended Example in Ptolemy

In the extended example presented in this section, we use notations closer to a full-
fledged language such as Java, such as if statements. Such constructs can be easily
added to Ptolemy’s core language.

The example shown in Figure 9 extends the example from Section 1. A set of classes
are added to facilitate storing several figure elements in collections, e.g. as a linked
list (FEList), as a set (FESet), and a hash table (FEHashtable). Furthermore,
Counter implements the policy that whenever an FElement is added to the system
a count must be incremented.

The notion of “adding an element” differs among the different types of collection.
For example, calling add on a FEList always extends the list with the given ele-
ment. However, calling add on a FESet only inserts the element if it is not already
present, as shown on lines 16–20. Therefore, an AO-style syntactic method of selecting
events such as “an FElement is being added” will need to distinguish which calls will
actually add the element. In a language like AspectJ, one could use an if PCD. A
PCD such as call(* FESet.add(FElement fe)) && this(feset) &&
if(!feset.contains(fe)) would filter out undesired call events.

170 H. Rajan and G.T. Leavens

1 FElement evtype FEAdded {FElement addedFE;}

3 class FEList extends Object {
4 Node listhead; /*head of linked list*/
5 FElement add(FElement addedFE) {
6 event FEAdded {
7 Node temp = listhead;
8 listhead = new Node();
9 listhead.data = addedFE;

10 listhead.next = temp; addedFE
11 }
12 }
13 FElement remove(FElement fe) { /*...*/ }
14 boolean contains(FElement fe) { /*...*/ }
15 }
16 class FESet extends FEList { /* ... */
17 FElement add(FElement addedFE) {
18 if(!this.contains(addedFE)) {
19 event FEAdded {
20 Node temp = listhead;
21 listhead = new Node();

22 listhead.data = addedFE;
23 listhead.next = temp; addedFE
24 }
25 } else { null }
26 }
27 }

29 class Counter extends Object {
30 Number count;
31 Counter init() {
32 register(this)
33 }
34 FElement increment(thunk FElement next,
35 FElement addedFE) {
36 this.count = this.count.plus(1);
37 invoke(next)
38 }
39 when FEAdded do increment
40 }

42 Counter u = new Counter().init();
43 /* ... */

Fig. 9. Figure Element Collections in Ptolemy

However, there are two issues with using such an if PCD. The first issue is that
it exposes the internal implementation details of FESet.add (in particular that its
representation does not allow duplicates). Second, such a PCD should only be used if
the expression feset.contains(fe) does not have any side-effects. (Side-effects
would usually be undesirable when used solely for filtering out undesired events.)

Other possibilities for handling such events include: (1) testing the condition in the
handler body and (2) rewriting the code for FESet.add to make the body of the if
a separate method call. The first has problems that are similar to those described above
with using an if PCD. Rewriting the code to make a separate method call obscures
the code in a way that may not be desirable and may cause maintenance problems,
since nothing in the syntax would indicate why the body of the called method was not
used inline. There may also be problems in passing and manipulating local variables
appropriately in such a body turned into a method, at least in a language like Java or C#
that uses call by value.

Such workarounds are also necessary in more sophisticated AO languages such as
LogicAJ [17]. These have PCDs that describe code structure, but that does not prevent
undesirable exposure of internal implementation details, since the structure of the code
is itself such a detail.

By contrast, Ptolemy easily handles this problem without exposing internal details
of FESet’s add method, since that method simply indicates the occurence of event
FEAdded. In essence, Ptolemy’s advantage is that it can explicitly announce the body
of an if as an event. Doing so precisely communicates the event without the problems
of using if PCDs or extra method calls described above.

3.2 Advance Over Implicit Invocation Languages

Consider the II implementation of our drawing editor example (Figure 1). Compared
to that implementation, in Ptolemy registration is more automated (see Figure 4), so
programmers do not have to write code to register an observer for each separate event.

Ptolemy: A Language with Quantified, Typed Events 171

Ptolemy’s registration also better separates concerns, since it does not require nam-
ing all classes that announce an event of interest. This is because events are not
considered to be attributes of the classes that announce them. Thus, event handlers
in Ptolemy need not be coupled with the concrete implementation of these subclasses.
Furthermore, naming an event type, such as FEChange, in a PCD hides the details of
event implementation and allows succinct quantification.

Ptolemy can also replace (or override) code for an event (like AO’s “around ad-
vice”). Although similar functionality can be emulated, Ptolemy’s automation signifi-
cantly eases the programmer’s task.

3.3 Advance Over AO Languages

Some of the advantages of named event types would also be found in a language like
AspectJ 5, which can advise code tagged with various Java 5 annotations. If one only
advises code that has certain annotations, then join points become more explicit, and
more like the explicitly identified events in Ptolemy. However, Java 5 cannot attach
annotations to arbitrary statements or expressions, and in any case such annotations do
not solve the problems described in the rest of this section.

Robust Quantified, Typed Events. If instead of lexical PCDs Ptolemy’s event expressions
are used to announce events and PCDs are written in terms of these event names, innocu-
ous changes in the code that implements the events will not change the meaning of the
PCDs. For further analysis of robustness against such changes, let us compare the syn-
tactic version of the PCD target(fe) && call(FElement+.set*(..)) with
Ptolemy’s version in Figure 4. The syntactic approach to selecting events provides ease
of use, i.e., by just writing a simple regular expression one can select events through-
out the program. But this also leads to inadvertent selection of events: set* may select
setParent, which perhaps does not change the state of a figure element. AO languages
with sopisticated matching, based on program structure [17] or event history [20], have
more possibilities for precise description of events, but can still inadvertently select un-
intended events. Ptolemy’s quantified typed events do not have this problem.

Flexible Quantification. The event expression in Ptolemy allows one to label any
expression as an event expression and all such events can be selected by using the
event type name in a PCD. Significant flexibility comes from giving developers the
ability to decide what expressions constitute events and making them all available for
quantification purposes. This largely solves the quantification failure problem [24]. The
events that can be made available to handlers are no longer limited to interface elements,
and the implementations of these events are not exposed to handlers. Handlers only rely
on event type declarations. In contrast to implicitly announced events in AO languages,
Ptolemy’s event expression allows one to announce any expression as an event.

Flexible Access to Context Information. The third problem that we considered in Sec-
tion 1 was the difficulty of retrieving context information from a join point. Event types
in Ptolemy solve this problem. To make the reflective information at the event avail-
able, a programmer only needs to define, in the lexical scope surrounding the event
expression, values for the names declared in that event’s type. For example, in Fig-
ure 4 in the setX method a block expression assigns this to changedFE. Note

172 H. Rajan and G.T. Leavens

that this flexibility does not introduce additional coupling between events and handlers.
Handlers are only aware of the context variable declaration changedFE made avail-
able by the event type FEChange and not of the concrete mapping to the variables
available in the lexical scope of the event expression.

Uniform Access to Irregular Context Information. AO join point models currently do
not provide uniform access to irregular contextual information. But Ptolemy’s event
expressions allow uniform access to such context information. For example, in Figure 4,
the event expression in the setX method and in the makeEqual method are given
different bindings for the context variablechangedFE, yet the handlerupdate is able
to access this context information uniformly using the event type name changedFE.
The implementation details are also hidden from PCDs, which can uniformly access the
context provided at the event (e.g., using the event type changedFE).

Concern and Obliviousness. Both AO languages and Ptolemy have advantages for cer-
tain programming tasks. Consider first whether the concern needs to affect the code in
which the events happen — the base code in AO terminology. “Spectator” concerns,
like tracing, do not affect the base code’s state [42,36,43]. Since spectators do not af-
fect reasoning about the base code, explicit announcements in the base code give little
benefit. Hence the determining factor is whether PCDs are easier to write lexically (in
the AO style) or using explicitly named events (as in Ptolemy). For syntactically un-
related pieces of code, e.g., the locations of the event FEAdded in Figure 9, explicit
announcement makes writing such PCDs more convenient. However, if the events oc-
cur in sections of the base code that are syntactically related (by a naming convention,
placement in a common package, etc.), then lexical PCDs are preferable.

Besides the availability of uniform context (as described above) another property
that affects how easy it is to write lexical PCDs is whether events in the base code
are explicit at a module’s interface, e.g., calls or executions of a public method. As
pointed out by Aldrich [26] internal events should not be implicitly exported, hence
explicit announcement should be used for such events to force negotiation about the
commitments involved in having spectators rely on these events.

“Assistants” (i.e., non-spectators [42]) have handlers that affect the base code’s state.
Hence events handled by assistants are important for reasoning about the base code’s
state. With implicit announcement it is difficult to see these events and take them into
account during reasoning. Furthermore, conclusions drawn about the base code will
change depending on which assistants are added to the program. Thus we believe that
events that are of concern to assistants should always be explicitly announced.

In conclusion, implicit announcement—obliviousness—is useful for spectator con-
cerns when it is easy to write lexical PCDs. In other cases, Ptolemy’s explicit event
announcement and its event model are better.

4 Comparative Analysis with Related Work

“There is no other royal path which leads to geometry,” said Euclid to Ptolemy I.

In this section, we compare Ptolemy with other mechanisms that address similar prob-
lems in AO language design. The other mechanisms we selected for analysis include

Ptolemy: A Language with Quantified, Typed Events 173

Aspect-Aware Interfaces (AAIs) [11], Open Modules (OMs) [26], and Crosscut Pro-
gramming Interfaces (XPIs) [24] [25]. The next section summarizes these ideas.

4.1 Overview of Related Ideas

Aspect Aware Interfaces (AAIs) [11] show dependencies between code and handlers.
The whole program’s configuration, which contains all classes and bindings (includ-
ing PCDs) is first used to compute dependencies between events and handlers (called
the “global step” [11]). The result of this global step is similar in some ways to code
in Ptolemy, since one can look at an AAI and see where events may occur that will
call handlers, and what handlers may be called for such events. However, whenever
the program’s bindings are changed, the global step must be repeated and an entirely
new set of implicitly announced events might be handled, causing new dependencies.
Ptolemy’s event expressions do not declare what handlers are applicable for the event
they explicitly announce, but the use of explicit announcement ensures that changing
a program’s bindings will not advise other (previously unanticipated) program points.
AAIs also give no help with the problems discussed in Section 1.

Aldrich’s Open Modules (OMs) proposal [26] is closely related to this work and has
similar advantages. Like our work, OMs also allows a class developer to explicitly ex-
pose the sets of events that are announced. The implementations of these events remain
hidden from PCDs and handlers. As a result, the impact of code changes within the class
on PCDs is reduced. However, in OMs each explicitly exposed PCD has to be enumer-
ated when binding handlers to sets of events (i.e., when writing advice). By contrast,
Ptolemy’s event types provide significantly simpler quantification. In Ptolemy, instead
of enumerating the events of interest, one can use the event types for more convenient
non-syntactic quantification to select join points. As with OMs, a programmer using
Ptolemy’s event types must systematically modify modules in a system that a given
concern crosscuts to expose events that are to be advised, by using event expressions.
For example, the module Point in Figure 4 had to be modified to expose events of type
FEChange. However, unlike OMs, once modules have incorporated such event ex-
pressions, no awkward enumeration of explicitly exposed join points is necessary for
quantification. Instead, one simply uses the event type FEChange in a PCD. Further-
more, in Ptolemy one can expose events that are internal to a module, such as the bodies
of if statements (Figure 9, lines 17–20), which is not possible in OMs.

Sullivan et al. [24] proposed a methodology for aspect-oriented design based on de-
sign rules. The key idea is to establish a design rule interface that serves to decouple
the base design and the aspect design. These design rules govern exposure of execu-
tion phenomena as join points, how they are exposed through the join point model of
the given language, and constraints on behavior across join points (e.g. provides and
requires conditions [25]). These design rule interfaces were later called crosscut pro-
gramming interface (XPI) by Griswold et al. [25]. XPIs prescribe rules for join point
exposure, but do not provide a compliance mechanism. Griswold et al. have shown
that at least some design rules can be enforced automatically. In Ptolemy, enforcing
design rules is equivalent to type checking of programs, because Ptolemy’s event types
automatically provide the interfaces needed to decouple different modules.

174 H. Rajan and G.T. Leavens

Criteria Description AAIs OMs XPIs Ptolemy
Abstraction Supports abstraction? Yes Yes Yes Yes
Aspect/Base IH Is information hiding supported for aspect / base? Aspect Base Aspect + Base Aspect + Base
Reasoning What is the granularity of reasoning? Join point Module XPI’s Scope Expression
Configuration Requires complete system configuration? Yes No No No
Decoupling Decouples aspects from base code? No Yes Yes Yes
Locality Are interface definitions textually localized? No No Yes Yes
Stable Is it stable against code changes? Low High Medium High
Pattern Allows pattern-based quantification? Yes in module in XPI’s scope No
Type Allows quantification based on type hierarchy? No No No Yes
Scope What is the scope of the interface? Program Module User defined User defined
Scope control Has fine-grained control over scope? No No No Yes
Adaptation Requires base code adaption / refactoring? No Yes Yes Yes
Oblivious Is it purely oblivious? No No No No
Lexical hints Provides lexical hints in a module? Yes Yes No Yes

Fig. 10. Results of comparative analysis

4.2 Criteria and Analysis Results

The criteria and the analysis results are summarized in Figure 10. The rest of this section
presents our analysis in detail.

Abstraction, Information Hiding. The first criterion is whether the approach supports
abstraction. All four approaches support abstraction. AAIs abstract the advice that is
being executed at the join point, while providing information about the advising struc-
tures in a specific system deployment scenario. Their automatically computed abstrac-
tion is useful for the developer of the base code in hiding the details of the aspects that
may come to depend on the base code. OMs abstract the join point implementation
by providing an explicitly declared pointcut as part of the module description. Their
abstraction is useful for the aspect code and hides the details of the base code. XPIs
provide an abstraction for a set of join points to the aspects, and an abstraction for the
possible cumulative behavior of all advice constructs to the base program through their
requires/provides clauses. Ptolemy provides an abstraction for a set of events to the
handlers. It also provide a two-way abstraction for all context information exchanged
between an event expression and the handler.

Modular Reasoning and the Role of the System Configuration. All four approaches
support different mechanisms for modular reasoning. AAIs are different from OMs,
XPIs and Ptolemy in that they require that dependencies between base code and aspects
be computed before modular reasoning can begin. This may preclude reasoning about
a module until all aspects and classes are known. OMs are geared towards supporting
reasoning about a change inside a module without knowing about all aspects and classes
present in the system. By ensuring that no aspects come to depend upon the changeable
implementation details the need to pre-compute all base-aspect dependencies is elim-
inated. XPIs are geared towards supporting reasoning about a change inside a scope.
Ptolemy allows reasoning at the expression level; in particular, only event expressions
require any special treatment compared with OO programs.

Locality. This criterion evaluates whether the AO interface definitions are textually
localized. AAIs are computed for each point where advice might apply, and thus are not
localized. OMs are similar in that the interface of each module explicitly specifies the

Ptolemy: A Language with Quantified, Typed Events 175

join points exposed by that module. In XPIs, the AO interface definitions are localized
as an abstract aspect. In Ptolemy the event expressions are not localized but the type
definition that serves as an interface to the handlers is localized.

Pattern-based Quantification, Scope, and Scope Control Mechanisms. AAIs, OMs and
XPIs all support pattern-based quantification. The difference lies in the scope of appli-
cation of the pattern-based quantification techniques. The scope in the case of AAIs is
generally the entire program, but can be limited to specific regions using lexical pointcut
expressions such as within and withincode. In OMs, they are applicable to inside
a module only if used to declare explicitly exposed pointcut and to the entire program
if used to select interface elements of modules. XPIs have an explicit scope component
that can serve to limit the effect of pattern-based quantification, which in turn is imple-
mented using the within and withincode PCDs. In Ptolemy, one can only select
program execution events that are declaratively identified. A much finer-grained scope
control is available in the case of Ptolemy. In other approaches scope control depends
on the language’s expressiveness.

Base Code Adaptation and Obliviousness. Obliviousness is a widely accepted tenet
for aspect-oriented software development [16]. In an oblivious AO process, the de-
signers and developers of base code need not be aware of, anticipate or design code
to be advised by aspects. This criterion, although attractive, has been questioned by
many [26,42,43,25,11,44,24]. All four approaches limit the notion of obliviousness to
some extent. In Ptolemy adapting base code is necessary.

5 Other Related Ideas

advertise, annunciate, broadcast, declare, proclaim, promulgate, publish
– entry for “announce” in Roget’s II

In some AO langauges quantification is not based on pattern matching of lexical names.
For example, in LogicAJ [17] and similar languages such as LogicAJ2, Sally [45],
quantification is based on program structures, in languages that support trace-based
pointcuts [46], quantification is based on program traces. As mentioned before, such
languages, although significantly expressive compared to the AspectJ-like languages
that quantify based on names, also exhibit fragile pointcut problem. Compared to this
entire class of such AO languages, which quantify based on pattern matching, Ptolemy’s
quantified event types in Ptolemy further decouple event handlers and the code that
signals events and encapsulates the details of the signaller’s code. However, upfront
efforts will be required in Ptolemy to anticipate and announce events.

Explicitly labeling methods for use in quantification is not a new idea and has ap-
peared previously in SetPoint [29] and Model-based Pointcuts [23]. In SetPoint explic-
itly placed annotations are used for quantification. In Model-based Pointcuts, explictly
created models, which express the relationship between names in the model and the pro-
gram’s structure, are used for quantification. Compared to these approaches, the novelty
of our approach lies in: allowing arbitrary expressions to be announced as events, in
providing explicitly announced events with types, in formalizing the language’s sound,

176 H. Rajan and G.T. Leavens

static type system, and in providing access to the context of event announcements. Com-
pared to model-based pointcuts, our technique does not require a model construction
step. Furthermore, keeping such model consistent with the code can be challenging.

Steimann and Pawlitzki have independently advanced ideas that are very similar [47].
Their language has event types and explicitly announced events that contain arbitrary
statements. Their event types are similar to Ptolemy’s. Their language is a modifica-
tion of AspectJ, and has both implicit (AO style) and explicit announcement of events,
whereas Ptolemy only has explicit announcement. In their language explicit announce-
ment passes context positionally (as in a Java constructor call), whereas in Ptolemy
context is passed by name matching. Their language is also somewhat similar to Open
Modules in that the event types that are exported by a class must be declared by that
class. They also have a prototype implementation, but do not formally present their
language’s semantics or type system.

Delegates in .NET languages such as C# and Java’s EventObject class are also
related to our approach. They are type-safe mechanism for implementing call back func-
tions that can also be used to abstract event declaration code; however, these mecha-
nisms do not provide the quantification feature of Ptolemy’s PCDs.

Another related area is mediator-based design styles [6]. In this design style modules
tell mediators about event declarations and announcements. Other modules can register
with mediators to have their methods invoked by event announcements. An invocation
relation is thus created without introducing name dependencies. In our approach, event
types play the role of mediators. However, in Ptolemy, one can also use event types for
quantification, which simplifies registration and binding. By contrast, in mediator based
designs a developer has to resort to explicit and possibly error-prone enumerations to
register handlers with events.

Consider a language with closures and the ability to reflectively get the run time con-
text of a statement or expression. In such language, one could achieve the same effect as
Ptolemy’s quantified event types by declaring classes to represent events, announcing
events by creating a closure after reflectively accessing the event body’s run time con-
text and then looping over a set of registered handler methods, passing each a closure
(that it could invoke). Ptolemy provides three advantages over this emulation:

– Static typechecking of bindings, which ensures that PCDs only associate handlers
with events that provide the necessary context.

– A considerable amount of automation. Ptolemy’s register, event, and
invoke expressions hide the details of registration, announcement, and running
handlers. Furthermore PCDs provide quantification, which is not easy to emulate.

– Improved compiler optimizations. Since Ptolemy controls the details of how reg-
istration, announcement, and running handlers are implemented, there is more po-
tential for optimization then when these features are emulated.

6 Future Work and Conclusions

Onward and upward. — Abraham Lincoln

We designed Ptolemy to be a small core language, in order to clearly communicate
its novel ability to announce arbitrary expressions as events and its use of quantified,

Ptolemy: A Language with Quantified, Typed Events 177

event types, and in order to avoid complications in its theory. However, this means that
many practical and useful extensions had to be omitted from the language. The most
important future work in the area of Ptolemy’s semantics is subtyping of event types
and investigating the possible advantages of positional context exposure (instead of
Ptolemy’s name-based context exposure). We have already extended Ptolemy’s opera-
tional semantics to include control flow (“cflow”) PCDs [35], which are not discussed
in this paper due to lack of space. It would also be interesting to combine Ptolemy’s
type system with an effect system, to limit the potential side effects of handler methods
[32,36]. This might allow more efficient reasoning. One could also imagine combining
specifications of handler methods into code at event expressions, thus allowing veri-
fication of code that uses event types to be more efficient and maintainable than directly
reasoning about the compiled code’s semantics. In general, a detailed investigation of
specification and verification issues for Ptolemy would be very interesting.

In conclusion, the main contribution of this work is the design of a language,
Ptolemy, with quantified, typed events. In addition to a precise operational semantics
and formal definition of Ptolemy’s type system (see our technical report for a sound-
ness proof [35]), we have carefully examined how Ptolemy fits in the design space of
languages that promote separation of concerns. The main new feature of Ptolemy is
event types, which contain information about the names and types of exposed context.
In Ptolemy’s new event model, events are explicitly announced by event expressions,
which declaratively identify the type of event being announced. These event types are
used in PCDs to associate handlers with sets of events. Such PCDs are robust against
code changes, since they are only affected by changes to event expressions. The event
types used in PCDs make it easier for handlers to uniformly access reflective informa-
tion about the events without breaking encapsulation. Ptolemy has been implemented
as a compiler, and an implementation is available for free download [40].

Ptolemy’s ability to announce any expression as an event, which permits one to ex-
pose internal states in a principled way, promises real value. For example, this would
help the integration of components when hidden internal states and transitions must be
accessed in order to achieve proper composition.

References

1. Dingel, J., Garlan, D., Jha, S., Notkin, D.: Reasoning about implicit invocation. SIGSOFT
Software Engineering Notes 23(6), 209–221 (1998)

2. Garlan, D., Notkin, D.: Formalizing design spaces: Implicit invocation mechanisms. In:
Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 551, pp. 31–44. Springer, Heidelberg
(1991)

3. Luckham, D.C., Vera, J.: An event-based architecture definition language. IEEE Trans.
Softw. Eng. 21(9), 717–734 (1995)

4. Notkin, D., Garlan, D., Griswold, W.G., Sullivan, K.J.: Adding implicit invocation to lan-
guages: Three approaches. In: JSSST International Symposium on Object Technologies for
Advanced Software, pp. 489–510 (1993)

5. Reiss, S.P.: Connecting tools using message passing in the Field environment. IEEE
Softw. 7(4), 57–66 (1990)

6. Sullivan, K.J., Notkin, D.: Reconciling environment integration and software evolution.
ACM Transactions on Software Engineering and Methodology 1(3), 229–268 (1992)

178 H. Rajan and G.T. Leavens

7. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

8. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N degrees of separation: Multi-dimensional
separation of concerns. In: ICSE 1999 (1999)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Publishing Co., Inc, Reading (1995)

10. Kiczales, G., et al.: An overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327–353. Springer, Heidelberg (2001)

11. Kiczales, G., Mezini, M.: Separation of concerns with procedures, annotations, advice and
pointcuts. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 195–213. Springer, Hei-
delberg (2005)

12. Filman, R.E., Elrad, T., Clarke, S., Akşit, M. (eds.): Aspect-Oriented Software Development.
Addison-Wesley, Boston (2005)

13. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction. Commun.
ACM 44(10), 29–32 (2001)

14. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning (2003)
15. AspectJ Team: The AspectJ programming guide. Version 1.5.3 (2006),

http://eclipse.org/aspectj
16. Filman, R.E., Friedman, D.P.: Aspect-oriented programming is quantification and oblivious-

ness. In: Workshop on Advanced Separation of Concerns (OOPSLA 2000 (October 2000)
17. Rho, T., Kniesl, G., Appeltauer, M.: Fine-grained generic aspects. In: FOAL 2006 (2006)
18. Eichberg, M., Mezini, M., Ostermann, K.: Pointcuts as functional queries. In: Chin, W.-N.

(ed.) APLAS 2004. LNCS, vol. 3302, pp. 366–381. Springer, Heidelberg (2004)
19. Douence, R., Fradet, P., Sudholt, M.: Trace-based aspects. Aspect-oriented Software Devel-

opment, 141–150
20. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In: Fifth Workshop on Runtime

Verification (RV 2005) (2005)
21. Stoerzer, M., Graf, J.: Using pointcut delta analysis to support evolution of aspect-oriented

software. In: ICSM 2005, pp. 653–656 (2005)
22. Tourwé, T., Brichau, J., Gybels, K.: On the existence of the AOSD-evolution paradox. In:

SPLAT 2003, Boston (March 2003)
23. Kellens, A., Mens, K., Brichau, J., Gybels, K.: Managing the evolution of aspect-oriented

software with model-based pointcuts. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 501–525. Springer, Heidelberg (2006)

24. Sullivan, K.J., Griswold, W.G., Song, Y., Cai, Y., Shonle, M., Tewari, N., Rajan, H.: Informa-
tion hiding interfaces for aspect-oriented design. In: ESEC/FSE 2005, pp. 166–175 (2005)

25. W. G. Griswold et al.: Modular software design with crosscutting interfaces. IEEE Software
(January/ February 2006)

26. Aldrich, J.: Open Modules. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 144–
168. Springer, Heidelberg (2005)

27. Harbulot, B., Gurd, J.R.: A join point for loops in AspectJ. In: AOSD 2006, pp. 63–74 (2006)
28. Rajan, H., Sullivan, K.J.: Aspect language features for concern coverage profiling. In: AOSD

2005, pp. 181–191 (2005)
29. Altman, R., Cyment, A., Kicillof, N.: On the need for Setpoints. In: European Interactive

Workshop on Aspects in Software (2005)
30. Rajan, H., Sullivan, K.J.: Classpects: unifying aspect- and object-oriented language design.

In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 59–68. Springer, Hei-
delberg (2006)

31. Mezini, M., Ostermann, K.: Conquering aspects with Caesar. In: AOSD 2003, pp. 90–99
(2003)

Ptolemy: A Language with Quantified, Typed Events 179

32. Clifton, C.: A design discipline and language features for modular reasoning in aspect-
oriented programs. Technical Report 05-15, Iowa State University (July 2005)

33. Clifton, C., Leavens, G.T.: MiniMAO1: Investigating the semantics of proceed. Science of
Computer Programming 63(3), 321–374 (2006)

34. Rajan, H., Sullivan, K.J.: Eos: instance-level aspects for integrated system design. In: ES-
EC/FSE 2003, pp. 297–306 (2003)

35. Rajan, H., Leavens, G.T.: Quantified, typed events for improved separation of concerns.
Technical Report 07-14c, Iowa State University, Dept. of Computer Sc. (October 2007)

36. Clifton, C., Leavens, G.T., Noble, J.: MAO: Ownership and effects for more effective reason-
ing about aspects. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 451–475. Springer,
Heidelberg (2007)

37. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes
and mixins. In: Formal Syntax and Semantics of Java, pp. 241–269. Springer, Heidelberg
(1999)

38. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Com-
putation 115(1), 38–94 (1994)

39. Eclipse Foundation, http://www.eclipse.org/
40. Rajan, H., Leavens, G.T.: Ptolemy (2007),

http://www.cs.iastate.edu/~ptolemy/
41. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd printing edn.

Springer, Heidelberg (2005)
42. Clifton, C., Leavens, G.: Observers and assistants: A proposal for modular aspect-oriented

reasoning. In: FOAL 2002, pp. 33–44 (2002)
43. Dantas, D.S., Walker, D.: Harmless advice. In: POPL 2006, pp. 383–396 (2006)
44. Steimann, F.: The paradoxical success of aspect-oriented programming. In: OOPSLA 2006,

pp. 481–497 (October 2006)
45. Hanenberg, S., Unland, R.: Parametric introductions. In: AOSD 2003, pp. 80–89 (2003)
46. Douence, R., Motelet, O., Südholt, M.: A formal definition of crosscuts. In: REFLECTION

2001, pp. 170–186 (2001)
47. Steimann, F., Pawlitzki, T.: Types and modularity for implicit invocation with implicit an-

nouncement. Obtained from the first author (August 2007)

Prototyping and Composing Aspect Languages
Using an Aspect Interpreter Framework

Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
{w.havinga,l.m.j.bergmans,m.aksit}@ewi.utwente.nl

Abstract. Domain specific aspect languages (DSALs) are becoming more pop-
ular because they can be designed to represent recurring concerns in a way that
is optimized for a specific domain. However, the design and implementation of
even a limited domain-specific aspect language can be a tedious job. To address
this, we propose a framework that offers a fast way to prototype implementations
of domain specific aspect languages. A particular goal of the framework is to be
general enough to support a wide range of aspect language concepts, such that
existing language concepts can be easily used, and new language concepts can be
quickly created.

We briefly introduce the framework and its underlying model, as well as the
workflow used when implementing DSALs. Subsequently, we show mappings of
several domain specific aspect languages to demonstrate the framework. Since in
our approach the DSALs are mapped to a common model, the framework pro-
vides an integrating platform allowing us to compose programs that use aspects
written in multiple DSALs. The framework also provides explicit mechanisms to
specify composition of advices written in multiple DSALs.

1 Introduction

The benefits of using domain specific aspect languages (DSALs) are widely recognized
[8,16,24]. In fact, the idea of expressing each crosscutting concern using a dedicated
domain-specific language was at the very heart of the first proposals called “AOP” [12].

However, designing and implementing DSALs can be a tedious job. For example,
each aspect language has to define under which circumstances an aspect should influ-
ence the program, and implement mechanisms to facilitate this (e.g. using bytecode
weaving).

In addition, most applications will need to express concerns from different problem
domains, making it desirable to write programs using multiple DSALs. That way, each
DSAL could be used to effectively address the concerns within its specific domain.

It is not trivial to compose aspects expressed in several DSALs however, as each
language typically constructs its own model of the program; unless a lot of care is
taken, the effects of one aspect may not be reflected in the models constructed by other
DSALs. In addition, aspects written in several DSALs may interact with each other,
possibly in undesirable ways (depending on the situation).

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 180–206, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Prototyping and Composing Aspect Languages 181

Our paper contributes the following to address these problems:
(1) We propose an aspect interpreter framework that can be used to prototype domain

specific aspect languages. As our framework supports a wide range of aspect language
concepts, it can be used to prototype diverse DSALs in a reasonable amount of time, as
we will show in section 3.

(2) Using our approach, aspects written in several (domain-specific) languages are
mapped to a common model. As a result, we can compose applications that are written
using multiple DSALs, as we will show in section 4.1.

(3) The framework provides explicit mechanisms to specify composition of advices,
even if advices are written in several DSALs. This is discussed in section 4.3.

In this paper, we show implementations of only three DSALs. However, our work is
based on a thorough study of aspect oriented languages [19], as well as the modeling of
their possible implementation mechanisms using an interpreter, as presented in [7].

In the next section, we briefly introduce the framework itself. Section 3 presents
more details about the framework by showing the implementations of several DSALs
using our framework. Section 4 discusses the composition of aspects written in multiple
DSALs, including specifications to resolve the interactions between aspects. Section 5
discusses several design and implementation considerations related to our framework.
We discuss related work in section 6, and conclude the paper in section 7

2 JAMI - An Aspect Interpreter Framework

One of the defining features of AOP languages is the support for ”implicit invocation”
of application behavior. That is, behavior can be invoked without an explicit reference
(such as a method call statement) being visible in the (source) code at the point of
invocation. Implicit invocation is a key feature of the interface between the base pro-
gram and the aspect program. The framework to model aspect language mechanisms we
present in this paper is strongly based on implicit invocation as the connection between
the base program and the aspects (advices).

In this section, we briefly discuss the concepts used in the aspect language domain,
based on a reference model proposed in [19]. We then propose a framework that pro-
vides common implementations of these concepts, while supporting variations on these
concepts found in different aspect languages. The general design and architecture of the
framework was first proposed in [7] and [11]. Finally, we briefly outline the workflow
used to prototype DSALs using this framework.

2.1 Common Aspect Language Concepts

Aspect languages must first of all support the concept of pointcuts. Pointcuts define the
circumstances under which an aspect influences a program – for example, at certain
locations (such as entering a particular method) or under particular runtime conditions
(e.g., only when a variable x equals 5). Pointcuts can be seen as predicates or conditions
over the execution state of a program. The execution state may, in a broad sense, include
information about the call stack, objects, or even the execution trace and structure of the
program. As pointcuts may match at several places or moments during the execution

182 W. Havinga, L. Bergmans, and M. Aksit

of a program, the concept of joinpoints is used to model references to the relevant
execution state (e.g., which method is being intercepted) whenever a pointcut matches.
Pointcuts can be bound to advices, which may add to or replace parts of the original
program behavior and/or its runtime state. Advices can use the joinpoint information
to adapt their behavior based on the current runtime situation. Finally, bindings specify
how pointcuts and advices are connected and grouped into modules (usually called
aspects). In addition, bindings are also used to bind “aspect state” – data stored by
aspects, such that it can be shared between advices (i.e., similar to sharing state between
methods by using instance variables).

2.2 Framework Implementation

Aspect languages adopt varying implementations of the concepts listed above. We pro-
vide a framework that implements the behavior of these high-level concepts, and allows
for their refinement to facilitate specific language implementations.

Base part

Aspect part

Interception
mechanism

structure

call stack heap/objects

Execution state / context

<<intercepts>>

Aspect program

Joinpoint

execute

Pointcuts

matches(JP)

{"active" PC's}
Pointcut

matches(JP)

retrieve
aspect
state

affects

BindingBinding

Advice
evaluate()

Advice
evaluate()

Fig. 1. The Java Aspect Metamodel Interpreter - an overview

Figure 1 shows a global overview of our framework, called the Java Aspect Meta-
model Interpreter (JAMI) [1]. Basically, this framework enforces the high-level struc-
ture and control flow of aspects, while providing implementations of common concepts
at an abstraction level that is appropriate when prototyping DSALs – as we intend to
demonstrate in section 3. By enforcing a fixed high-level control flow, our framework
provides a common platform that enables composition of aspects written in multiple
DSALs, as we will show in section 4. To provide the flexibility required to model fea-
tures of particular languages, each concept can be either instantiated in a dedicated
configuration of framework elements, or refined (extended) when necessary. JAMI pro-
vides many of the common implementations found in different aspect languages.

Control Flow. We briefly discuss the high-level control flow within JAMI. In principle,
the base program (a normal Java application) runs as it would without the interpreter.
However, the interception mechanism (see figure 1) intercepts the control flow at any
point that is of potential interest to the aspect interpreter. Our current implementation
uses a regular AspectJ aspect to intercept all method calls and field assignments. Apart

Prototyping and Composing Aspect Languages 183

from intercepting method calls, the mechanism keeps track of context information that
may be of interest to the framework. Currently, it keeps track of the call stack, senders,
targets, and method signatures of all calls on the stack, as well as field assignments.
Upon interception of the control flow, the mechanism creates a joinpoint object repre-
senting the current joinpoint. A refinement class exists for each different joinpoint type,
such as MethodCallJoinpoint, MethodReturnJoinPoint or AssignmentJoinpoint. Each of
these joinpoint objects keeps a reference to the relevant context information - e.g., the
method that was executing upon interception, etc.

Subsequently, each pointcut registered with the aspect interpreter is evaluated against
the current joinpoint (see figure 1). As indicated before, pointcuts are basically condi-
tions that either match or do not match a particular joinpoint. Thus, the main pointcut
class consists of only an evaluate method, which returns true or false based on whether
it matches the current joinpoint. Refinement classes are provided for many common
pointcut conditions; new ones can be created if necessary to implement DSAL-specific
pointcut types. For example, we provide pointcuts that match based on the type of join-
point, method signature, or target object type. In addition, there are pointcut classes
that can combine other pointcuts using regular logic expressions (and, or, not). Many
concrete examples of implemented pointcut conditions will be shown in section 3.

One or more pointcuts can be associated to one or more advices using bindings
(see figure 1). For each matching pointcut, the interpreter looks up the corresponding
advice through these bindings. Advice can be expressed in terms of elementary advice
“building blocks” provided by JAMI, which allows the expression of many common
types of advice without creating custom implementations for each advice. In addition,
advice can be expressed using normal base code, when necessary. Advices may also
want to share state among each other, or among different executions of the same advice.
Therefore, we also provide bindings to aspect state; this will be discussed in more detail
in section 3.1.

When several pointcuts match at the same joinpoint, the order of advice execution
has to be resolved. This issue is discussed in detail in section 4.

Fur further details about the implementation, we refer to the JAMI manual and API
documentation available on the JAMI website [1].

2.3 Prototyping DSALs: General Workflow

We briefly describe the steps involved in prototyping a DSAL using JAMI.
First of all, we define a grammar that can conveniently express the domain concepts

of a particular DSAL, as well as the relations between those concepts. Next, a parser
is needed - using a parser generator is typically the most convenient way to implement
this (we use Antlr, but any Java-based parser generator could be used). Subsequently,
we convert the abstract syntax trees (ASTs) obtained from the parser to an object-based
version, such that the domain concepts are semantically represented by objects. This
conversion can be implemented using handwritten code, or by using generated “tree
walkers”. The final step is to convert the object-based AST representation of domain
concepts to JAMI elements. We currently implement this conversion using handwritten
code.

184 W. Havinga, L. Bergmans, and M. Aksit

Once an aspect written in a DSAL is (automatically) converted to JAMI elements in
the way described above, the JAMI interpreter framework can run the aspect as part of
a normal Java application. Typically, we write an explicit instruction to load and deploy
the aspect at application startup. Once the aspect is deployed, JAMI ensures that the
aspect behavior is called at the appropriate times, as described in the previous section.

In the following section, we introduce several examples to demonstrate the frame-
work in detail. We focus on expressing each example using JAMI elements, showing
the object structure of the JAMI representations of each aspect 1. The full examples,
including parsers and code that executes the mapping steps as described above, can be
downloaded from the JAMI website [1].

3 Features of JAMI, Demonstrated by Example

In this section, we show 3 aspect languages optimized for a specific task, implemented
using the Java Aspect Metamodel Interpreter. We first introduce a running example that
we will use to demonstrate each language.

addLine(String)
setContent(List<String>)
getContent() : List<String>
wordCount : long

content : List<String>

Document

...

doc : Document

WordProcessor

Fig. 2. Example application, used throughout the paper

Figure 2 shows the UML class-diagram of a simple word processor application.
Within this application, class Document defines some methods to modify a document
(addLine() and setContent()), a method to obtain the document content (getContent), as
well as a method that counts the current number of words in the document (wordCount).

In the following subsections, we extend this example using aspects written in several
domain-specific aspect languages. These extensions will allow us to: (1) create an au-
tosave mechanism using a modularized version of the decorator pattern, (2) synchronize
access to documents, such that multiple threads can access its content at the same time
(for example, to run a background spellchecker), and (3) cache the results of expensive
method calls, as long as variables on which the method depends are unchanged.

3.1 A Domain-Specific Language for the Decorator Pattern

Suppose we want to add autosave behavior to our word processing application. We can
implement this using the decorator pattern [10] by defining a class AutoSaveDocument.
This class implements the same methods as class Document, but adds the behavior to
save any changes made to the document (e.g., to a file), before forwarding method calls
to the original document object - see figure 3.

1 In fact, the object diagrams in this paper are based on observing (using the Eclipse debug-
ger) the actual runtime JAMI ASTs, which where automatically converted from the DSAL
notations.

Prototyping and Composing Aspect Languages 185

addLine(String)
setContent(List<String>)
getContent() : List<String>
wordCount : long

content : List<String>

Document

addLine(String)
...

decoratee : Document

AutoSaveDocument

 saveLine(line);
 decoratee.addLine(line);

Fig. 3. Decorator pattern example

Listing 1 shows how we could use this decorator class:

1 public class WordProcessor {
2 Document doc;
3 AutoSaveDocument autoSaveDoc;
4
5 public void testAutoSave() {
6 doc = new Document();
7 autoSaveDoc = new AutoSaveDocument(doc);
8
9 autoSaveDoc.addLine("AutoSaved"); // ok

10 doc.addLine("Not AutoSaved"); // bad!
11 }
12 }

Listing 1. Example of decorator pattern usage

There are two issues with this code. (1) When writing this in plain Java, we can still
make calls to the object that is being decorated (also called the decoratee) - see line
10. This is almost certainly unintended, as the behavior of the decorator is not invoked
this way. (2) Part of the code dealing with the decorator pattern is visible in the client
(class WordProcessor in this example) – it is not fully modularized. We experiment with
simple domain-specific extensions to Java to solve these issues.

Enforcing the Decorator Pattern. We start with the issue of enforcing the decorator
pattern. Once a decorator is associated with a decoratee (listing 1, line 7), all subse-
quent calls should be made to the decorator. We define a small domain specific aspect
language (DSAL) to enforce this - by automatically forwarding calls to a decoratee
object to the decorator. In the first version of our language, a program in this DSAL
defines which classes may act in the decorator and decoratee roles, respectively, see
listing 2:

1 decorate: Document -> AutoSaveDocument

Listing 2. An aspect language to enforce the decorator pattern

We take the specification in listing 2 to mean the following: objects of type Document
may be decorated by objects of type AutoSaveDocument. However, we do not want to
simply decorate every object of type Document. Doing so would defeat the purpose of
the decorator design pattern, which is used to decide dynamically which objects should
be decorated. Therefore, our first implementation will automatically infer the decorator-
decoratee relationship between objects from the occurrence of constructor calls such as

186 W. Havinga, L. Bergmans, and M. Aksit

shown in listing 1, line 7. That is, an association is established upon calling a constructor
of a class that is indicated to be a decorator in our DSAL specification (listing 2), of
which the first argument is of the corresponding specified decoratee class.

Mapping to JAMI. To think of the above language in terms of an aspect language
definition, we consider the aspect language concepts as shown in figure 1. The main
task of programs written in this language is to intercept calls to decoratee objects, and
forward them to the associated decorator object. In aspect terminology, the intercep-
tion specification can be seen as a pointcut, whereas the forwarding part is an advice
specification.

For the above pointcut/advice definition to make sense, the aspect program needs to
know which objects are associated in the roles of decoratee and decorator, i.e. we need
to establish and store this association as part of the aspect.

Therefore, to create the association, we intercept (using another pointcut) calls to the
constructor of the type acting as decorator. The connected advice is to create an associ-
ation between the object being created (the decorator object), and the first argument of
the constructor call (which we assume to be the decoratee object, as discussed above).
This association is stored as “aspect state”, such that it can be shared between advices.

We now explain the mapping to JAMI in detail, by showing object diagrams that
represent the aspect program given in listing 2. The object structures shown here consist
largely of elements (classes) predefined by the JAMI framework. All these elements are
described in the JAMI API documentation and reference manual, which is available
online [1].

: Aspect

getInstance(Context)

decorator :
AspectVariable

getInstance(Context)

decoratee :
AspectVariable

otherVar = "decoratee"
: PerAssociationInstantiationPolicy

otherVar = "decorator"
: PerAssociationInstantiationPolicy

:Hashtable
associationTable

associationTable

instantiationPolicy

instantiationPolicy

variable variable

CallForwarding
(subview)

selectorAdvBinding

selectorAdvBinding

AssociationCreation
(subview)

Fig. 4. Bindings between the parts of a decorator aspect

Figure 4 shows an aspect definition expressed using JAMI elements. The figure con-
tains two subviews specifying “selector-advice-bindings”, constructs connecting a par-
ticular pointcut to a particular advice. These subviews refer to figures 5 and 6, which
we will discuss shortly. We model the grouping of several pointcut/advice combinations
into a single aspect module to facilitate the sharing of state (data) between related ad-
vices. An “aspect” module can define its own variables, which can have different kinds
of instantiation policies. For example, a “singleton” policy means that there is one in-
stance of the variable for the entire program, a “per object” policy means there is one

Prototyping and Composing Aspect Languages 187

instance of the aspect variable for each target object (where the current target object
depends on the join point context), etc. In JAMI, each variable can have its own in-
stantiation policy, i.e. even variables within the same aspect module can have different
instantiation policies.

Instantiation is usually implicit: new instances are automatically created when
needed (using the default constructor of the specified variable type), i.e. on first use
in a particular context. However, explicit instantiations are possible as well, as we will
show in this example. Figure 4 shows two “aspect variables”, decorator and decoratee,
which have a ’per association’ instantiation policy. This policy means that when the
value of one variable is known, the value of the other one can be retrieved through it.
In our implementation, this is done through the hashtable shared by the two instanti-
ation policy objects. The associations themselves have to be explicitly instantiated, as
we will show in the “AssociationCreation” subview (figure 5). The implementation of
“association variables” is similar to the concept of “Association aspects” as proposed
in [21].

: SelectorAdviceBinding

: AndSelector

: AndSelector

: SelectConstructorCalls

signature = "<init>(Document)"
: SelectByMethodSignature

toCompare = "target"
mustEqual = "AutoSaveDocument"

: SelectByObjectType

leftExpr

rightExpr

rightExpr

joinpointSelector

associator = decoratorPolicy
: AssociateDecoratorAdvice

advice

leftExpr

Fig. 5. Association by intercepting constructor calls

Figure 5 shows how associations between decoratee and decorator objects are cre-
ated. The top element, a SelectorAdviceBinding connects a pointcut definition (on the
left) to an advice definition (on the right). The pointcut definition (called “join point se-
lector” in JAMI) in this case consists of several “primitive” selection criteria, which can
be combined using the standard logic operators (i.e. and, or, not). The pointcut in this
figure selects (a) constructor calls, (b) for which the type of the created object is “Au-
toSaveDocument”, and (c) the constructor being called has 1 argument of type “Docu-
ment”. This pointcut is connected to a custom advice class – extending the framework
– which explicitly creates the association between decorator (the constructed object)
and decoratee (the value of the first argument). The class “AssociateDecoratorAdvice”
(consisting of ca. 20 lines of code) is the only extension to JAMI needed to implement
our decorator aspect language.

To finish the example, figure 6 shows the definition of the call forwarding part of the
aspect. The pointcut in this figure (on the left) selects method calls for which the target
object occurs as a decoratee value in the association table, except those for which the
caller object is a decorator. Omitting this exception would make it impossible to reach

188 W. Havinga, L. Bergmans, and M. Aksit

: SelectorAdviceBinding

: SkipOriginalCallAction

signature = jp.methodSignature
: MethodCallAction

fromVariable = "decorator"
: SetTargetObjectFromVariableAction

: AndSelector

: AndSelector
: SelectMethodCalls

toCompare = "target"
mustEqualValueOf = "decoratee"

: SelectByAssociatedVariable

: NotSelector

toCompare = "sender"
mustEqualValueOf = "decorator"

: SelectByAssociatedVariable

leftExpr
rightExpr

rightExpr

notExpr

joinpointSelector

leftExpr

toVariable = "decoratee"
bindObject = "target"

: BindObjectToVariableAction

: ComposedAdviceAction

advice

Fig. 6. Forwarding calls from decoratee to decorator

the decoratee object at all, and would in addition lead to an infinite loop on the first
call to the decorator object (as the decorator will at some point call the decoratee, see
figure 3).

The advice attached to this pointcut is composed of 4 predefined JAMI elements.
The first, BindObjectToVariableAction, binds the value of the current target value to the
variable decoratee. Next, the instruction SetTargetObjectFromVariableAction modifies
the target object of the call to the value of the decorator variable, which can now be
looked up through the corresponding aspect variable. Finally, we instruct the interpreter
to execute the method call on the current target (in this case, set by the previous instruc-
tion). As we did not modify the signature of the called method, effectively a method
with the same signature (as referred to by the current joinpoint context) is called, ex-
cept on a different object (i.e. the decorator object instead of the decoratee). Finally, the
instruction SkipOriginalCallAction instructs the interpreter not to execute the original
call.

The sample program defining a JAMI-based “aspect-AST” (abstract syntax tree) as
presented above can be downloaded from the JAMI website; when we initialize the
aspect interpreter using this aspect, together with the “word processor” base program
presented earlier, we can now write code calling the decoratee (as in listing 1, line
10), and still get the correct behavior. The call to the decoratee object (Document) is
automatically forwarded to the decorator object (AutoSaveDocument).

Modularizing the Decorator Pattern. The simple aspect language defined above does
not fully modularize the decorator pattern: associations are created in base code using
explicit constructor calls to a decorator. If we want to fully separate the decorator from
the base code, we have to find a way to specify when a decorator has to be created, and
to which decoratee object it should apply. This is non-trivial, as the decorator pattern is
(usually) to be applied selectively, i.e. not simply to all objects of a particular class.

In this section, we look at one way to specify decorator associations from an aspect.
There are many possible ways to specify this, each having their own language design
trade-offs. A benefit of using JAMI is that we can quickly prototype several proposals,
so that we can experiment with the resulting language using real programs.

Prototyping and Composing Aspect Languages 189

In the proposal we suggest, a programmer can specify which particular instance vari-
able (indicated by name) should be decorated, and by which decorator class. We could
specify this as shown in listing 3, line 1. The decorator is created and associated when-
ever a new value is assigned to the decoratee instance variable – variable “doc”, in this
case. In listing 3, this happens on line 7. The forwarding behavior stays the same as
before, i.e. on line 9, the call will be forwarded to the auto-saving decorator.

1 decorate: Document WordProcessor.doc -> AutoSaveDocument;
2
3 public class WordProcessor {
4 Document doc;
5
6 public void testAutoSave() {
7 doc = new Document();
8
9 doc.addLine("AutoSaved!");

10 }
11 }

Listing 3. Decorator example: modularized version

To implement this, we only have to replace the “association creation” part as it was
shown in figure 5. Instead, we create the structure as shown in figure 7. The pointcut
combines 3 criteria using the logical AND operator: the join point must be of the type
field assignment, must be contained by class WordProcessor, and have the name/identi-
fier doc. The advice is a custom advice class (extending the JAMI model) that associates
the value assigned to the field (i.e. the decoratee) to a newly created and initialized dec-
orator object.

: SelectorAdviceBinding

: AndSelector

: AndSelector

: SelectFieldAssignments

containingType = "WordProcessor"
: SelectByFieldContainingType

mustEqual = "doc"
: SelectByFieldName

leftExpr

rightExpr

rightExpr

joinpointSelector
decorateeType = "Document"
decoratorType = "AutoSaveDocument"

: ConstructAndAssociateDecoratorAdvice

advice

leftExpr

Fig. 7. Modularized creation of a decorator object

As shown above, we could implement our proposal by writing a minimal amount of
(new) source code: a method constructing the (partial) aspect AST such as displayed
in figure 7, as well as the custom advice class ConstructAndAssociateDecoratorAdvice.
Everything else is already handled by the (existing) framework and interpreter. It took
us 4 days to implement the entire language, enabling both the enforcement as well as
modularization of the decorator pattern.

190 W. Havinga, L. Bergmans, and M. Aksit

3.2 Using the D/COOL Domain-Specific Aspect Language for Synchronization

To show that JAMI can be used to conveniently accommodate more complex domain-
specific languages as well, we implement a representative subset of the coordination
aspect language “COOL”, which is part of the D language framework. The language is
documented extensively in the dissertation describing this framework [16].

Suppose we want to add a spellchecker to our word processor, which runs concur-
rently with the user interface by using a separate thread. To ensure correct behavior
when multiple threads may access the document concurrently, we use a synchroniza-
tion specification written in COOL, as shown in listing 4. By using COOL, we do not
have to put any synchronization-related code in the Java source code itself.

1 coordinator Document {
2 selfex addLine, setContent;
3 mutex {addLine, setContent};
4
5 mutex {addLine, getContent};
6 mutex {addLine, wordCount};
7 mutex {setContent, getContent};
8 mutex {setContent, wordCount};
9 }

Listing 4. Using COOL to synchronize reader/writer access

Listing 4 specifies that we want to coordinate instances of class Document. Line 2
specifies that the methods addLine and setContent are self-exclusive; i.e. only 1 thread
at a time may be running those methods. Line 3 specifies that these methods are mutu-
ally exclusive in addition; i.e. only one thread may be active in either addLine or setCon-
tent at a given time. Note that self-exclusion does not imply mutual exclusion: without
mutual exclusion, it could still occur that one thread is running addLine, while another is
running setContent. Vice versa, mutual exclusion does not imply self-exclusion either:
although only one of the methods in a mutual exclusion specification may be running
at the same time, multiple threads may be executing that one method.

Lines 5-8 also specify pairs of methods not allowed to run at the same time - ad-
dLine and setContent are writer methods, and should not run at the same time as reader
methods getContent or wordCount.

By default, COOL synchronizes method access per object, i.e. in the above example,
several threads can still run method addLine at the same time, as long as they do so
within different object contexts. COOL also allows to specify a per class modifier,
which makes the synchronization “global” for the specified class.

Mapping to JAMI. We now describe a mapping of the subset of COOL described
above to JAMI. First, for each method involved in a synchronization (i.e. selfex/mutex)
specification, we calculate the set of methods that may not be entered while another
thread is active within that method. For method addLine, this “exclusion set” contains
addLine itself (because of the selfex specification on line 2), as well as methods set-
Content, getContent and wordCount (because of the mutex specifications on line 3, 5
and 6). How these exclusion sets are determined exactly is documented in [16]; we do
not repeat the details here.

Prototyping and Composing Aspect Languages 191

: Aspect

getInstance(Context)

coordinator :
AspectVariable

: Per[Object/Class]InstantiationPolicy

instantiationPolicy

variable

EnteringSync(addLine)
(subview)

selectorAdvBinding

selectorAdvBinding

LeavingSync(addLine)
(subview)

EnteringSync(..)
(subview)

LeavingSync(..)
(subview)

selectorAdvBinding

selectorAdvBinding

...

Fig. 8. Expressing COOL coordinators using JAMI concepts

A coordinator is modeled (see figure 8) as an aspect that defines one AspectVariable
named coordinator. This variable has a “per object” or “per class” instantiation policy,
depending on the specified granularity of the coordinator. Thus, the variable is shared
between advices belonging to this coordinator, and can be used to regulate the synchro-
nization. The instantiation policies in JAMI automatically give us the desired granu-
larity as proscribed by the synchronization specification. Two selector-advice-bindings
are defined for each method involved in a synchronization specification; one will be
executed upon entering the method, one upon leaving.

: SelectorAdviceBinding

: AndSelector

: AndSelector : SelectMethodCalls

toCompare = "target"
mustEqual = "Document"

: SelectByObjectType

mustEqual = "addLine(java.lang.String)"
: SelectByMethodSignature

leftExpr rightExpr

rightExpr

joinpointSelector

exclusionSet = {addLine, setContent,
 setContent, wordCount }

: EnterSyncedContextAction

advice

leftExpr

Fig. 9. Entering a synchronization context: pointcut and advice

Figure 9 shows the object diagram for the selector-advice-binding executed upon
entering method addLine. It matches only join points of type MethodCall, of which the
target object is of type Document, and of which the signature of the called method is
addLine. Before the call is executed, we execute the advice EnterSyncedContextAction,
an advice class specific to this language.

We show the source code of this advice in listing 5. First, the advice retrieves (line 2-
4) the coordinator aspect variable instance belonging to this specific context (i.e. object
or class, depending on the instantiation policy). This coordinator object ensures that the
synchronization “bookkeeping” itself is properly synchronized. While the advice holds

192 W. Havinga, L. Bergmans, and M. Aksit

a lock on this object (line 6-21), it can safely inspect the MethodState objects for this
coordinator. For each method (involved in synchronization), such a MethodState object
tracks which threads are currently running that method. While other threads are active
in any method in the exclusion set of the currently invoked method (line 11,12), the
advice waits (releasing the lock on the coordinator while waiting) until this is no longer
the case (line 14-16). When the loop is left, it means the method is free to run - after the
advice registers the current thread with the corresponding MethodState object (line 20)
and releases the lock on the coordinator object.

1 public boolean evaluate(InterpreterContext metaContext) {
2 CoordinatorImplementation coord =
3 (CoordinatorImplementation) metaContext.getAspect().
4 getDataFieldValue(metaContext, "coordinator");
5
6 synchronized(coord) {
7 boolean shouldWait;
8 do {
9 shouldWait = false;

10 // Wait while any other thread is active in any method in our exclusionset
11 for (String excludedMethod : exclusionSet)
12 shouldWait |= coord.getMethodState(excludedMethod).isActiveInOtherThread

();
13
14 if (shouldWait) {
15 try { coord.wait(); }
16 catch(InterruptedException e) { }
17 }
18 } while (shouldWait);
19 // This method is now allowed to run, register it
20 coord.getMethodState(myMethodName).enteringMethod();
21 }
22 return true;
23 }

Listing 5. Advice executed when entering a synchronized method

1 public boolean evaluate(InterpreterContext metaContext) {
2 CoordinatorImplementation coord = ...; // as in previous listing
3
4 synchronized(coord) {
5 // deregister this thread from running this method
6 coord.getMethodState(myMethodName).leavingMethod();
7 // Notify all threads (not just one), as potentially several may be allowed

to continue
8 coord.notifyAll();
9 }

10 return true;
11 }

Listing 6. Advice executed when leaving a synchronized method

Similarly, another pointcut is created to intercept join points that occur upon leaving
any of the methods involved in the synchronization specification. The object diagram is
analogous to figure 9, except the pointcut now matches only join points of type Method-
Return, and executes an advice of type LeaveSyncedContextAction. We show the source
of this advice in listing 6. The advice waits until it obtains a lock on the coordinator

Prototyping and Composing Aspect Languages 193

object within the given context (object or class, as in the previous advice), allowing it
to update the synchronization “bookkeeping”. Once the lock is obtained, it deregisters
the current thread from the MethodState object for this method (line 6). It then noti-
fies all waiting threads (if any), such that they can re-evaluate their waiting conditions
(line 8).

This concludes our implementation of (a subset of) COOL. The above essentially de-
scribes the same implementation mechanisms as used in [16], except using an
interpreter-based implementation instead of source-code weaving. We believe that this
exercise demonstrates the usefulness of JAMI in several ways. First, we successfully
mapped an existing, complex language proposal to JAMI. In addition, it took minimal
effort to build a functional prototype, which can be used on real base programs. It took
4 days to write the prototype, and it consists of only 500 lines of code. The advice code
as shown in listings 5 and 6 comprises the majority of the actual implementation mech-
anism; in addition we created a parser for the subset of COOL used in this example (ca.
100 lines of code), an object-based representation of this AST (ca. 100 lines of code), as
well as code to map such object-based COOL ASTs to “aspect-AST” structures such as
shown in figure 8 and 9 (ca. 200 lines of code). Thus, JAMI proves useful as a “testbed”
to prototype DSALs.

3.3 An Experimental DSAL to Implement Caching

As a final example, we implement an experimental language that introduces a modular
way to specify caching of method return values (also called memoization).

Methods (or functions) to which memoization is applied, traditionally have to con-
form to the following conditions: (1) the method depends on its (input) parameters only;
(2) given the same input parameter values, it should return the same result every time;
(3) the method should have no side effects. Our implementation maintains the last two
requirements. However, the first requirement is often violated in object-oriented pro-
gramming, as results of a method call are often influenced by instance variables (within
the same object) or specific method calls (on the same object). Therefore, our imple-
mentation extends the notion of memoization as defined above, by allowing cached
results to be invalidated when the value of particular fields changes, or when particular
methods are called.

In our example application from figure 2, the method wordCount is a good candidate
for memoization, as repeatedly calculating the number of words – even when the doc-
ument has not changed – can become quite time consuming on large documents. The
method has no side effects, but depends on the value of instance variable content. This
variable is written by method setContent, as it contains the statement “this.content =
newContent;”. The method addLine, containing the statement “content.add(line);” does
not overwrite the instance variable itself; it does however modify its contained object
structure. Therefore, calls to method addLine should also invalidate the return value of
wordCount.

We specify the above using a domain specific aspect language as shown in listing 7.

194 W. Havinga, L. Bergmans, and M. Aksit

1 cache Document object {
2 memoize wordCount,
3 invalidated by assigning content
4 or calling addLine(java.lang.String);
5 }

Listing 7. Example specification of a memoization aspect

This specification means the following: apply a caching aspect on each Document
object (line 1). This caching aspect will memoize the return value of method word-
Count (line 2). The cache will be invalidated when a new value is assigned to instance
variable content within the corresponding Document object (line 3), or when the method
addline(..) is called on the Document object (line 4).

: Aspect

getInstance(Context)

cache_wordCount :
AspectVariable

: PerObjectInstantiationPolicy

instantiationPolicy

variable

before(wordCount)
(subview)

selectorAdvBinding

selectorAdvBinding

after(wordCount)
(subview)

invalidate wordCount
by assigning content

(subview)

selectorAdvBinding

invalidate wordCount
by calling addLine

(subview)

selectorAdvBinding

Fig. 10. Mapping a caching aspect to JAMI concepts

Mapping to JAMI. We now show how to map the specification shown in listing 7 to
JAMI. As figure 10 shows, we create an aspect variable of type Cache for each memoize
declaration. Its instantiation policy can again be specified as per object or per class - in
the example above, we want to cache the return value of method wordCount for each
object of type Document. The class Cache models a simple wrapper object that can
store and retrieve an object, as well as clear its currently stored value.

: SelectorAdviceBinding

: AndSelector

: AndSelector : SelectMethodCalls

toCompare = "target"
mustEqual = "Document"

: SelectByObjectType

mustEqual = "wordCount()"
: SelectByMethodSignature

leftExpr rightExpr

rightExpr

joinpointSelector

cacheVarName = {cache_wordCount }
: MemoizeRetrieveAction

advice

leftExpr

Fig. 11. Selector-advice binding for retrieving cached values

Prototyping and Composing Aspect Languages 195

For each memoized method, we need a pointcut that intercepts calls to that method,
coupled to an advice that returns the cached value (if one is stored). Another pointcut in-
tercepts returns from the memoized method, coupled to an advice that stores the return
value in the cache. Finally, a pointcut is needed for each cache validation specification,
coupled with an advice that invalidates the cache. In this example there are two such
pointcuts, corresponding to the invalidation specifications in line 3 and 4 of listing 7).

As shown in figure 11, we intercept calls to the method of which the results should
be cached. The advice that is executed is shown in listing 8. First, the advice retrieves
the aspect variable corresponding to this memoize declaration (line 2+3). If the cache
currently contains a value (which means it must have been set after a previous call),
we instruct the interpreter not to execute the original call after it finishes executing
this advice (line 7), and instead to set the return value to the value found in the cache
(line 8).

1 public boolean evaluate(InterpreterContext metaContext) {
2 Cache cache = (Cache)metaContext.getAspect()
3 .getDataFieldValue(metaContext, cacheVarName);
4
5 if (cache.hasValue())
6 { // Use cached value!
7 metaContext.setExecuteOriginalCall(false);
8 metaContext.setReturnValue(cache.getValue());
9 }

10 return true;
11 }

Listing 8. Advice: retrieving a cached value

After the method returns, the advice in listing 9 is called, which stores the return
value of the method.

1 public boolean evaluate(InterpreterContext metaContext) {
2 Cache cache = (Cache)metaContext.getAspect()
3 .getDataFieldValue(metaContext, cacheVarName);
4
5 cache.setValue(metaContext.getReturnValue());
6 return true;
7 }

Listing 9. Advice: storing a cached value

First, the advice retrieves the cache variable (line 3+4). Next, it stores the return
value of the called method, which can be obtained through the interpreter context (line
6). Note that we do not take method parameters into account in this implementation
(fortunately, the method wordCount() does not have any). This is done to avoid clutter-
ing the example; adding this behavior would be straightforward.

To finalize our example, we show one of the pointcut-advice-bindings used to in-
validate the cache. Figure 12 shows a pointcut that will match field assignments, but
only to the field named content, and when the assignment takes place within an object
of type Document. The advice is to call the method clearValue on the aspect variable

196 W. Havinga, L. Bergmans, and M. Aksit

: SelectorAdviceBinding

: AndSelector

: AndSelector

: SelectFieldAssignments

toCompare = "target"
mustEqual = "Document"

: SelectByObjectType

mustEqual = "content"
: SelectByFieldName

leftExpr rightExpr

rightExpr

joinpointSelector

leftExpr

signature = "clearValue()"
: MethodCallAction

fromVariable = "cache_wordCount"
: SetTargetObjectFromVariableAction

: ComposedAdviceAction

advice

Fig. 12. Selector-advice binding for invalidating cached values

cache wordCount. The cache can also be invalidated by particular method calls; this
binding reuses the same advice, but has a pointcut selecting the specified method, in a
way equivalent to many of the examples shown above, e.g. in figure 11.

It took us 3 days to implement this language, including a parser for specifications
as shown in 7 and an automated mapping of the parsed structure to the JAMI object
diagrams as shown in this section.

4 Composition of Multiple DSALs

As each DSAL is designed to address concerns within a particular problem domain, we
would often want to combine the use of several such languages within a single applica-
tion2. Implementing this is not straightforward however, as partial programs expressed
in several languages have to be composed into a single combined, working applica-
tion. Even if this is technically feasible (which is not necessarily the case), running the
combined application may reveal unexpected and/or undesired results.

In this section, we discuss how several aspects written in different DSALs (all im-
plemented using JAMI) can be composed and used within the same application. We
discuss several difficulties that may occur in this case, and explain how JAMI can help
to address these issues.

4.1 DSAL Composition in JAMI

In general, the composition of multiple aspect languages is far from trivial. As an exam-
ple, consider the common implementation of aspect languages as transformation of the
source code or byte code representation of the base program (where each of these as-
pect language implementations may, or may not, share a common infrastructure). This
would require the sequential execution of aspect language implementations over the in-
crementally transformed base code. Typically, such a byte code transformation is not

2 Note that the entire discussion about the composition of DSALs technically also holds for the
composition of general purpose aspect languages, or a mixture of these. However, we believe
composition of DSALs is much more realistic to expect, hence we focus on this.

Prototyping and Composing Aspect Languages 197

commutative, meaning that the behavior of the resulting program could vary, according
to the –normally undefined– execution order of the aspect language implementations.

In section 3, we have shown how aspects written in several DSALs are mapped to
JAMI elements. Such aspects, expressed in terms of JAMI elements, or refinements of
JAMI elements, can be deployed within a single application–even though they origi-
nate from different aspect languages. This is enabled by the common runtime platform
provided by JAMI.

This platform defines common abstractions and a common data structure for the rep-
resentation of aspects (e.g. in terms of pointcut expressions, advice-selector bindings,
ordering constraints, etc.). Further, the framework imposes a unified high-level con-
trol flow for the execution of aspects, as shown schematically in figure 1. At the same
time, while adopting these predefined abstractions and high-level control flow, for each
language there is a large freedom to define in varying ways how e.g. pointcuts can be
defined and matched.

Thus, using JAMI, it is possible to execute aspects written in different DSALs within
a single application. This does not require any tailoring or design decisions that are
specific to the other DSALs that are combined. However, this does not guarantee that
the resulting application will show the “correct” or “desired” behavior. As is the case
with aspects written in a single language, interactions or interference may also occur
between aspects written in different DSALs.

This phenomenon has also been observed before: e.g. in [17], two categories of as-
pect interactions are distinguished3:

– co-advising: the composition of advice of multiple aspect languages at a shared join
point.

– foreign advising: this corresponds to the notion of ”aspects on aspects”, where ad-
vice from one aspect language may apply to a join point associated with the execu-
tion of advice in another aspect language.

In the remainder of section 4, we first discuss the issue of co-advising, followed by an
explanation of the advice composition mechanism of JAMI in section 4.3, and finally
a discussion of foreign advising. These problems are all illustrated by combining the
aspects shown in section 3 within the same application.

4.2 Co-advising

When multiple pointcuts match at the same join point, the order in which advices bound
to these pointcuts are executed may lead to different behavior [20,9], if there are depen-
dencies between the aspects. Reversely, in the absence of any ordering specification at
shared join points, the application behavior may be non-predictable and undesirable.

The above is also true if the shared join points originate from programs written in
different aspect languages. For individual languages, many mechanisms exist to deal
with this.

However, when pointcuts originate from different languages, there are two additional
issues:

3 [17] defines these terms using a description based on weaving semantics, we reformulated
these in terms of aspect execution.

198 W. Havinga, L. Bergmans, and M. Aksit

– We need improved or additional mechanisms to compose advices from different
aspect languages. The reason is that we (want to) assume DSALs to be developed
independently, so that aspects written in a particular DSAL are likely (and prefer-
ably) unaware of those written in another DSAL. JAMI supports a uniform con-
straint model (first proposed in [20]) that facilitates ordering constraints within as
well as between languages. We demonstrate this below.

– There is a distinction between language-level and program-level composition [17].
In particular for DSALs, composition constraints may be specific to a combination
of DSALs, and should apply to all aspects written in those DSALs (i.e. language-
level constraints). However, it may –in addition– be possible that some constraints
are program-specific (i.e. program level).

Example: Composing the Synchronization and Caching Aspects. When we deploy
the aspects for synchronization (shown in listing 4) and caching (listing 7) within our
original application (see figure 2), we observe that several shared join points occur, as
most calls to methods within class Document are advised by both aspects. Therefore,
we need to determine in what order these advices should be executed.

As an example, we consider the join point that occurs when returning from method
wordCount.

thread 1 thread 2

call to addLine(..)
wait to enter critical section

enter critical section

cache.invalidate()
..

..
return from wordCount()

cache.setValue(retValue)

leave critical section
notify other threads

sync.
advice

caching
advice

sync.
advice

caching
advice

Fig. 13. Concurrent execution; correct advice
ordering

thread 1 thread 2

call to addLine(..)
wait to enter critical section

enter critical section

cache.invalidate()

..

..
return from wordCount()

leave critical section
notify other threads

cache.setValue(retValue)

sync.
advice

caching
advice

sync.
advice

caching
advice

Fig. 14. Incorrect advice ordering

At this join point, a caching advice will store the value that was returned by the
method. The synchronization advice leaves the critical section that was entered before
the method was executed, as shown in listing 6. In this case, the caching advice –at
the end of a method– should be executed before the synchronization advice. This is
illustrated in figure 13, whereas figure 14 illustrates a specific scenario of two threads
where –in both cases– the synchronization advice precedes the caching advice. In the
latter case, a different thread executing a writer method may invalidate the cache as soon
as the critical section is left, while subsequently the caching aspect stores an (already
invalidated!) value in the cache. In that case, the next call to wordCount would return a
cached value that is incorrect.

To generalize the example, we observe that any caching advice should occur within
the critical sections as imposed by the synchronization advice. Specifically, for ad-
vices executed at a shared MethodCalljoinpoint, the synchronization advice should have
precedence, while at a shared MethodReturnJoinpoint, the caching advice should have
precedence. This is an example of a language-level composition constraint.

Prototyping and Composing Aspect Languages 199

Example: Composing Further with the Decorator Aspect. As a test case, we il-
lustrate the composition of three DSALs in JAMI, including a join point where advices
from all three languages must be applied. In addition to the synchronization and caching
aspects discussed above, we add the decorator aspect as shown in listing 2 to our ap-
plication. This means that for objects of type Document that are decorated, all calls
to methods within Document will be forwarded instead to AutoSaveDocument. Thus,
shared join points may occur where all three aspects (each originating from a different
language) want to execute an advice. In this case, the desired behavior is more complex
than simply ordering the advices.

When a call is redirected by a forwarding advice (as defined by a decorator aspect),
the original call does no longer lead to the execution of a method –as specified by
the SkipOriginalCallAction in figure 6. Therefore, after the execution of the advice
of the decorator aspect (in this case), there is no method execution join point active.
Effectively, this means that no other advices should be executed at this join point. This
implies that any advice from the decorator aspect should be executed before advices
specified by both other languages. After all, it would be illogical to continue and cache
or synchronize the execution of a method that will not be executed at all.

sync. adv.

WordProcessor

Document

wordCount()

<intercepted>

decorator adv.

AutoSaveDoc

wordCount() { [..]
doc.wordCount() }

caching adv.

sync. adv.

caching adv.

<forwarded>

<intercepted>

<continue>

doc.wordCount()

<canceled>

Fig. 15. Control flow combining aspects from 3 DSALs

In figure 15, we illustrate that the intended behavior is obtained by ordering the
advices per language as described above. When method Document.wordCount is called,
all three aspects match this join point. The decorator advice will be executed first, and
forwards the call to AutoSaveDoc.wordCount, as a result canceling the original call. In
addition, it ensures that no other advices are executed at this join point. Subsequently,
the implementation of AutoSaveDoc.wordCount calls Document.addLine again. The
decorator aspect does not match this (new!) join point, as internal calls from decorator
to decoratee should not be intercepted (as defined by the pointcut expression in figure
6). The other two aspects both match this join point however, and are executed in an
order such that caching takes place within the critical section of the synchronization
advice.

This example illustrates that with JAMI, composition of more than two aspect lan-
guages is supported, even in the presence of delicate interdependencies; JAMI supports

200 W. Havinga, L. Bergmans, and M. Aksit

the expression of the necessary composition constraints such that the intended effect of
each aspect is preserved.

4.3 The Advice Composition Mechanism of JAMI

JAMI offers two complementary advice composition mechanisms. First, it implements
a generic ordering constraint mechanism as proposed in [19,20]. At shared join points,
constraints may limit which advices are currently applicable. Such constraints may be
conditional, and may for example depend on which advices where already executed (at
the same join point). Even so, the application of constraints may still leave several ad-
vices eligible for execution. Second, JAMI therefore supports a “scheduling” interface
to determine the further selection of advice execution. Different strategies can be im-
plemented to disambiguate the selection of advice. Our default implementation picks
an arbitrary element from the set of applicable bindings, and in addition prints a warn-
ing that the program is potentially ambiguous. In addition, the scheduler can decide to
cancel further advice executions at a given join point, if requested to do so by particular
advice actions4.

Constraints are specified over selector-advice-bindings, as these are the primary el-
ements over which we want to express ordering criteria –as opposed to ordering spec-
ified per advice, pointcut, or aspect. The reason is that advices (and pointcuts) can be
reused in several bindings; the desired ordering may be different per binding. In addi-
tion, selector-advice-bindings are the most “low-level” construct within JAMI to which
an ordering can be applied. Ordering between aspects can be expressed in terms of
(several) constraints between selector-advice-bindings. These are examples of program-
level constraints. Language-level constraints are also expressed in terms of (several)
constraints between individual selector-advice-bindings. The framework could include
’convenience methods’ to allow to directly express constraints between all bindings
within particular aspects, or between all bindings of all aspects written in a particular
language. We believe that the constraint mechanism adopted by the framework can be
used as the basis of any such higher-level ordering mechanism.

Constraints are decoupled from the “aspect modules” (as shown in e.g. figure 4),
and are instead kept as a separate set of entities within the aspect evaluation frame-
work. This enables the specification of constraints between selector-advice-bindings
that are part of several aspects, or that even originate from several aspect languages. It
would even be possible to define a “constraint language” that can express constraints
over aspects from several different DSALs, although this requires that DSALs make
it possible to identify (e.g. by name) the entities to which an ordering may need to be
applied.

As discussed above, for our example we want to specify language-level composition
based on the originating language of each selector-advice-binding. We do not need any
program-level constraints, in this case. Therefore, we simply create constraints between
all selector-advice-bindings, such that caching advices occur within the critical section
created by synchronization aspects (if the advices apply at the same join point), and
decorator advices get even higher priority.

4 This corresponds to the run-time detection and resolution of aspect interactions in [23].

Prototyping and Composing Aspect Languages 201

Finally, we extend the “forwarding” advice of the decorator aspect (as shown in
figure 6) with an advice action that instructs the scheduler to cancel any other advices at
the current join point. We argue that this action should be part of the decorator language,
as its “forwarding” advice effectively negates the occurrence of the join point at which
it is executed. Therefore, no other advices should be executed at that join point.

A functional implementation (in JAMI) that composes aspects written in all three
DSALs discussed in this paper – including the constraints as discussed in this section,
is downloadable as part of the example discussed throughout this paper [1].

4.4 Foreign Advising

Another way to compose aspects, which we did not discuss so far, is the application
of aspects on aspects. In particular, the application of advice written in one DSAL on
another advice written in a different DSAL, is also called “foreign advising” [17].

Within JAMI, advices expressed in any DSAL are eventually executed in terms of
the same kind of instructions used by the base program (e.g. using objects and method
calls). Such advice instructions can again be advised, like any normal base language
construct. A weaver-based approach must make sure to weave aspects (written in sev-
eral DSALs) in a particular order, to ensure that the effects of one DSAL can be advised
by another –or to ensure that they are not advised by another DSAL. As no weaving
takes place within JAMI, the execution of advice is simply a runtime occurrence that
can be intercepted like any other join point, if needed.

We test the application of “foreign advice” within JAMI by applying a decorator
aspect to the caching aspect discussed in listing 7. Our example decorator class logs
the actions of the caching aspect, which can be useful when e.g. debugging the caching
aspect. We use the following decorator specification:

1 decorate: MemoizeRetrieveAction -> MemoizeLogDecorator

This specification intercepts all executions of the memoization advice, and redirects
them instead to an instance of class MemoizeLogDecorator, which logs the activity of
the caching aspect and then forwards the call back to the original advice method. Thus,
it applies an advice to the caching advice.

As a final note, we remark that the advising of advice can quite easily lead to infinite
interception loops. Therefore, by default, we exclude all framework classes (and exten-
sions thereof, such as class MemoizeRetrieveAction) from interception by the frame-
work. However, in cases where interception is desired, an annotation can be used to
indicate that a particular class should be included for interception. On the other hand,
method executions within the base language that are caused by advice executions are
by default intercepted.

5 Discussion

In this section, we discuss some of the important design decisions and implementation
characteristics of JAMI.

202 W. Havinga, L. Bergmans, and M. Aksit

5.1 Efficiency vs. Flexibility

JAMI is designed to provide maximum flexibility while designing or testing new as-
pect languages or language features. As a result, in cases where we had to choose be-
tween flexibility and efficiency, we chose the former. For example, the interception
of all joinpoints within an application is not very attractive from a performance point
of view. However, using this mechanism makes it much simpler to experiment with
pointcuts that depend on complex combinations of runtime state (including historic in-
formation). While designing a language, the developer can ignore such details as e.g.
deciding which part of a pointcut can be evaluated statically, and which remaining dy-
namic checks have to be woven at such statically determined “shadow join points”. In
addition, when composing several DSALs, the effects of one DSAL may influence the
static evaluation of pointcuts in other DSALs. Using JAMI, such issues do not occur, as
the entire pointcut evaluation takes place at runtime.

However, when creating an efficient language implementation is a primary design
goal rather than the prototyping of (new) language features, the use of other frameworks
such as abc [2] may be more suitable.

A research framework that aims specifically at modeling efficient implementation
techniques of AO mechanisms is ALIA [4]. We are currently exploring the possibility
to (manually) map JAMI models to ALIA models. In this way, one could use the JAMI
framework to experiment with the language design, and subsequently use the ALIA
framework to implement the language to be as efficient as possible.

5.2 Modeling Different Types of Advice

JAMI does not make a distinction between different types of advice, such as around,
before or after advice. Join points before and after method calls are simply consid-
ered different (kinds of) join points alltogether (i.e. MethodCall and MethodReturn join
points). The two defining features of around advice (as it is known in e.g. AspectJ) are
the ability (1) to share state between the before and after advice parts around a method
call (using local variables within the advice definition), and (2) to decide whether or not
to execute the code at the location of the current join point (determined by whether or
not the advice “executes” a proceed construct). Both can be accomplished using JAMI
as well; the first by using aspect variables with an appropriate instantiation policy, the
second by using meta-advice actions that instruct the interpreter whether or not to exe-
cute the code at the current join point. For an example using both features, see section
3.3. We believe that our advice model allows more freedom over the specification of
e.g. advice ordering and the semantics of particular advice actions, while it is also able
to accommodate existing advice models, as indicated above.

6 Related Work

In [18], Masuhara and Kiczales propose the Aspect Sand Box, an interpreter frame-
work to model aspect mechanisms. Using this framework, the effects of aspects are
defined in terms of weaving semantics. The weaving process is modeled by extending

Prototyping and Composing Aspect Languages 203

or modifying the interpreter of a base language that models a single-inheritance OO
language (which can be seen as a core subset of Java). In comparison, JAMI defines a
common runtime environment for aspects, which allows us to express explicit ordering
constraints between advices, and enables the deployment of multiple aspect languages
within a single application. As discussed in section 4, it would be harder to define a sin-
gle weaver that models the composition of multiple languages. Essentially, JAMI can
be seen as an implementation of a single, parameterized (by using different predefined
framework classes) aspect composition process as indicated in the future work section
of [18]. In this sense, JAMI can be seen as an elaboration on the ideas proposed in the
Aspect Sand Box project, thus enabling the implementation of additional features such
as mentioned above.

The AspectBench Compiler (abc) [2] is a workbench that – like JAMI – facilitates
experimentation with new (aspect) language features. Unlike JAMI however, it focuses
mainly on extensions to AspectJ, and strives to provide an industrial-strength compiler
architecture that facilitates efficient implementations of extensions to the AspectJ lan-
guage. In contrast, while designing JAMI we specifically tried to avoid design decisions
that would limit the flexibility of our framework, as discussed in section 5.1. In addition,
abc is not designed to handle composition between multiple languages.

In [3], Bagge and Kalleberg propose to implement DSALs by creating a library that
implements a program transformation system (cf. weaver), in addition to a notation that
“configures” the behavior of this library. The paper does not discuss the composition of
multiple DSALs, or the ordering of advices at shared joinpoints.

In [5], Bräuer and Lochmann describe how to integrate multiple DSLs based on
a common semantic metamodel, using an MDA-based transformation approach. Like
JAMI, this provides a model to integrate modularized specifications written in several
DSLs. However, the paper aims to propose a common semantic model for the composi-
tion of multiple DSLs in general – as opposed to expressing crosscutting functionality
(i.e. aspects) in particular, as is the focus of JAMI. Likely as a result of this, the pa-
per does not discuss the interference issues that may result from composing multiple
crosscutting specifications.

The work from Kojarski and Lorenz [17,14,13] is strongly related to ours; in particu-
lar, they also investigate the issue around the composition of multiple aspect languages.

In [14], seven interaction patterns among features of composed aspect languages
are described. Some of these, such as emergent advice ordering, are also discussed
in this paper. However, because (1) JAMI introduces its own set of abstract features,
such as selector-advice bindings, and (2) in our interpreter-based approach, individual
aspect languages are not translated into base language terminology, hence, there is never
accidental interaction, not all interaction patterns are applicable. However, the proposed
analysis approach could also be applied in the context of our work.

In [17,13], the AWESOME framework is described; instead of an interpreter-based
approach, this adopts a weaver-based approach, that also addresses foreign advising,
and language-level, but currently –according to [17] – not program level co-advising
(which we presented in section 4.3).

The Reflex AOP kernel [24,23] is also closely related work; it is a reflection-based
kernel for AOP languages, with a specific focus on the composition of aspect programs.

204 W. Havinga, L. Bergmans, and M. Aksit

To this extent, it provides an (extensible) set of composition operators, which can be
used when translating an aspect specification to a representation in terms of the kernel-
level abstractions. Although there are many similarities with JAMI, a key difference of
the current implementation is that it is weaving-based, rather than interpreter-based.
Mostly due to this, the support for foreign advising is limited (as e.g. exemplified
in [14]).

The XAspects project [22] implements a system to map DSALs to AspectJ source
code. The approach addresses the need to compose aspects written in multiple DSAL,
but does not provide explicit mechanisms to deal with interactions between aspects,
other than suggesting the use of the AspectJ declare precedence construct. Compared
to this, JAMI offers more elaborate ways to specify the composition of aspects.

In [6], Brichau et.al. propose the definition and composition of DSALs (“Aspect-
Specific Languages”) using Logic Metaprogramming. Although their approach is not
based on a typical OO framework, it does allow the reuse and refinement of aspect lan-
guages. It is based (in [6]) on static source code weaving (by method-level wrapping).
The composition of aspect languages (program level composition is not supported) is
achieved by explicit composition of languages into new, combined languages. In our
opinion, this is less flexible, as it requires explicit composition for each configuration
of aspect DSALs that occur in an application, and the late addition of a new aspect lan-
guage in a system may not be possible without restructuring the composition hierarchy.

7 Conclusion

In this paper, we introduced an aspect interpreter framework aimed at the prototyping
of (domain-specific) aspect languages. We demonstrated the framework by implemen-
tating three domain-specific aspect languages, and also briefly discussed the workflow
used to implement these. Using our framework, it took only 3-4 days (per language) to
create functional prototypes of these diverse DSALs. Aspects written in these DSALs
can be composed with regular Java programs at runtime, in an interpreted style.

We have used JAMI in a programming language course to teach the common aspect
language concepts and various implementations thereof. As part of this course, students
successfully developed small DSALs within limited allotted time. This supports our
claim that JAMI can be used to prototype DSALs while requiring relatively little effort,
even including the learning curve of the framework itself.

We contribute the effectiveness of JAMI as a framework for prototyping DSALs in
large part to its flexibility and expressiveness. For example, as aspects are completely
dynamically evaluated, it is easy to experiment with pointcuts that express complex
selection criteria over the runtime state. In addition, our support for ”aspect state” using
variables that each may have different instantiation policies provides a flexible way to
implement aspect language features, while requiring relatively little effort.

We have shown that our framework supports applications composed of aspects writ-
ten in several DSALs. In addition, we have discussed interactions that may occur when
combining multiple DSALs, and demonstrated mechanisms implemented as part of
JAMI to specify aspect composition – also of aspects written in different languages.

Prototyping and Composing Aspect Languages 205

The complete framework as well as the examples shown in this paper can be down-
loaded from the JAMI website [1].

Acknowledgments

This work is supported by European Commission grant IST-2-004349: European Net-
work of Excellence on Aspect-Oriented Software Development (AOSD-Europe).

References

1. Java Aspect Metamodel Interpreter (2007), http://jami.sf.net/
2. Avgustinov, P., Christensen, A.S., Hendren, L.J., Kuzins, S., Lhoták, J., Lhoták, O., de Moor,

O., Sereni, D., Sittampalam, G., Tibble, J.: abc: An extensible aspectj compiler. Transactions
on Aspect-Oriented Software Development I 3880, 293–334 (2006)

3. Bagge, A.H., Kalleberg, K.T.: DSAL = library+notation: Program transformation for
domain-specific aspect languages. In: Proceedings of the Domain-Specific Aspect Languages
Workshop (October 2006)

4. Bockisch, C., Mezini, M.: A flexible architecture for pointcut-advice language implementa-
tions. In: VMIL 2007: Proceedings of the 1st workshop on Virtual machines and intermediate
languages for emerging modularization mechanisms, ACM Press, New York (2007)

5. Bräuer, M., Lochmann, H.: Towards semantic integration of multiple domain-specific lan-
guages using ontological foundations. In: Proceedings of 4th International Workshop on
(Software) Language Engineering (ATEM 2007) co-located with MoDELS 2007 (October
2007) (to appear)

6. Brichau, J., Mens, K., De Volder, K.: Building composable aspect-specific languages with
logic metaprogramming. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002. LNCS,
vol. 2487, pp. 110–127. Springer, Heidelberg (2002)

7. Brichau, J., Mezini, M., Noyé, J., Havinga, W., Bergmans, L., Gasiunas, V., Bockisch, C.,
Fabry, J., D’Hondt, T.: An Initial Metamodel for Aspect-Oriented Programming Languages.
Technical Report AOSD-Europe Deliverable D39, Vrije Universiteit Brussel, 27 February
2006 (2006)

8. D’Hondt, M., D’Hondt, T.: Is domain knowledge an aspect? In: Lopes, C.V., Black, A.,
Kendall, L., Bergmans, L. (eds.) ECOOP 1999 (1999)

9. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of stateful
aspects. In: Lieberherr [15], pp. 141–150

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

11. Havinga, W.K., Staijen, T., Rensink, A., Bergmans, L.M.J., van den Berg, K.G.: An abstract
metamodel for aspect languages. Technical Report TR-CTIT-06-22, Enschede (May 2006)

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

13. Kojarski, S., Lorenz, D.H.: Awesome: an aspect co-weaving system for composing multiple
aspect-oriented extensions. SIGPLAN Not. 42(10), 515–534 (2007)

14. Kojarski, S., Lorenz, D.H.: Identifying feature interactions in multi-language aspect-oriented
frameworks. In: Proceedings of the 29th International Conference on Software Engineering
ICSE 2007, Minneapolis, MN, May 20-26 2007, pp. 147–157. IEEE Computer Society Press,
Los Alamitos (2007)

206 W. Havinga, L. Bergmans, and M. Aksit

15. Lieberherr, K. (ed.): Proc. 3rd Int’ Conf. on Aspect-Oriented Software Development AOSD
2004. ACM Press, New York (2004)

16. Lopes, C.V.: D: A Language Framework for Distributed Programming. PhD thesis, College
of Computer Science, Northeastern University (1997)

17. Lorenz, D.H., Kojarski, S.: Understanding aspect interactions, co-advising and foreign ad-
vising. In: ECOOP 2007 Second International Workshop on Aspects, Dependencies and In-
teractions (2007)

18. Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-oriented mechanisms. In:
Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 2–28. Springer, Heidelberg (2003)

19. Nagy, I.: On the Design of Aspect-Oriented Composition Models for Software Evolution.
PhD thesis, University of Twente (June 2006)

20. Nagy, I., Bergmans, L., Aksit, M.: Composing aspects at shared join points. In: Robert
Hirschfeld, A.P., Kowalczyk, R., Weske, M. (eds.) Proceedings of International Conference
NetObjectDays, NODe2005, Erfurt, Germany, September 2005. Lecture Notes in Informat-
ics, vol. P-69, Gesellschaft für Informatik (GI) (2005)

21. Sakurai, K., Masuhara, H., Ubayashi, N., Matsuura, S., Komiya, S.: Association aspects. In:
Lieberherr [15], pp. 16–25.

22. Shonle, M., Lieberherr, K., Shah, A.: XAspects: an extensible system for domain-specific
aspect languages. In: OOPSLA 2003: Companion of the 18th annual ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and applications, pp. 28–37.
ACM Press, New York (2003)

23. Tanter, É.: Aspects of composition in the Reflex AOP kernel. In: Löwe, W., Südholt, M.
(eds.) SC 2006. LNCS, vol. 4089, pp. 98–113. Springer, Heidelberg (2006)

24. Tanter, É., Noyé, J.: A versatile kernel for multi-language AOP. In: Glück, R., Lowry, M.
(eds.) GPCE 2005. LNCS, vol. 3676, pp. 173–188. Springer, Heidelberg (2005)

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 207–234, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Assessing the Impact of Aspects on Exception Flows:
An Exploratory Study

Roberta Coelho1,2, Awais Rashid2, Alessandro Garcia2, Fabiano Ferrari2,
Nélio Cacho2, Uirá Kulesza3,4, Arndt von Staa1, and Carlos Lucena1

1 Computer Science Department – Pontifical Catholic University of Rio de Janeiro, Brazil
2 Computing Department, Lancaster University, Lancaster, UK

3 CITI/DI/FCT - New University of Lisbon, Portugal
4 Recife Center for Advanced Studies and Systems, Brazil
{roberta, arndt,lucena}@inf.puc-rio.br,

{marash,garciaa, ferrari.f, n.cacho}@comp.lancs.ac.ak
 uira@di.fct.unl.pt

Abstract. Exception handling mechanisms are intended to support the devel-
opment of robust software. However, the implementation of such mechanisms
with aspect-oriented (AO) programming might lead to error-prone scenarios. As
aspects extend or replace existing functionality at specific join points in the
code execution, aspects’ behavior may bring new exceptions, which can flow
through the program execution in unexpected ways. This paper presents a sys-
tematic study that assesses the error proneness of AOP mechanisms on excep-
tion flows of evolving programs. The analysis was based on the object-oriented
and the aspect-oriented versions of three medium-sized systems from different
application domains. Our findings show that exception handling code in AO
systems is error-prone, since all versions analyzed presented an increase in the
number of uncaught exceptions and exceptions caught by the wrong handler.
The causes of such problems are characterized and presented as a catalogue of
bug patterns.

Keywords: Exception handling, aspect-oriented programs, static analysis, em-
pirical study, uncaught exceptions, obsolete handler, unintended handler.

1 Introduction

Exception handling mechanisms aim at improving software modularity and system
robustness by promoting explicit separation between normal and error handling code.
It allows the system to detect errors and respond to them correspondingly, through the
execution of recovery code encapsulated into handlers. The importance of exception
handling mechanisms is attested by the fact they are realized in many mainstream
programming languages, such as Java, C++ and C#.

The goal of Aspect-Oriented Programming (AOP) [41] is to modularize concerns
that crosscut the primary decomposition of a system (e.g., functions, classes, compo-
nents) through a new abstraction called aspect. Aspects use specific constructs to
perform invasive modifications of programs [1], and include additional behavior at
specific points in the code. AOP is being exploited to improve the modularity of

208 R. Coelho et al.

exception handling and other equally-important crosscutting concerns, such as trans-
action management [31], distribution [31], and certain design patterns [13, 15]. Ac-
cording to some studies [5, 6, 7, 9, 20, 31], AOP has succeeded in improving the
modular treatment of several exception handling scenarios. However, it is recognized
that flexible programming mechanisms (e.g., inheritance and polymorphism [24])
might have negative effects on exception handling. Hence, while the invasiveness of
aspect composition mechanisms may bring a realm of possibilities to software design,
often allowing for more stable crosscutting designs [14, 25, 9], they might be useless
for practical purposes if they make the exception handling code error prone. Aspec-
tual refinements of base behavior can either improve abnormal behavior robustness or
adversely contribute to typical problems of poorly designed error handling code, such
as exception subsumption [29] and unintended handler action [24, 29].

Unfortunately, there is no systematic evaluation of the positive and negative effects
of AOP on the robustness of exception handling code. Existing research in the litera-
ture has been limited to analyze the impact of aspects on the normal control flow [8,
18, 19, 27]. In addition, most of the empirical studies of AOP do not go beyond the
discussion of modularity gains and pitfalls obtained when aspects are applied to ex-
ception handling [5, 6, 7] and other crosscutting concerns [9, 14, 26, 31]. For instance,
these studies do not account for the consequences bearing with new exceptions and
handlers that come along with the aspects’ added functionality.

This paper reports a first systematic study that quantitatively assesses the error
proneness of aspect composition mechanisms on exception flows of programs. The
evaluation was based on an exception flow analysis tool (developed in this work) and
code inspection of exception behaviors in Java and AspectJ [33] implementations of
two industrial software systems – Health Watcher [14, 31] and Mobile Photo [9] –
and one open-source project – JHotDraw [16]1. For the first two systems more than
one release was examined. Overall, this corresponds to 10 system releases, 41.1
KLOC of Java source code of which around 4.1 KLOC are dedicated to exception
handling, and 39 KLOC lines of AspectJ source code, of which around 3.2 KLOC are
dedicated to exception handling. These systems are representatives of different appli-
cation domains and exhibit heterogeneous exception handling strategies. Some nega-
tive outcomes were consistently detected through the analyzed releases using AOP,
such as:

• higher evidence of uncaught exceptions [17] when aspect advices act as ex-
ception handlers, thereby leading to unpredictable system crashes [34]; and

• a multitude of exception subsumptions [29], some of them leading to unin-
tended handlers [24], .i.e, exceptions that are thrown by aspects and unex-
pectedly caught by existing handlers in the base code;

The causes of such increases were investigated, and are presented in the form of a
bug pattern catalogue related to the exception handling code. During this study we
implemented an exception flow analysis tool for Java and AspectJ programs, which
was very useful when finding and characterizing these bugs. The contributions of this
study are as follows:

1 The source code of all systems used in this study is available on the website http://www.

inf.puc-rio.br/~roberta/aop_exceptions.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 209

• It performs the first systematic analysis which aims at investigating how as-
pects affect the exception flows of programs.

• It introduces a set of bug-patterns related to the exception handling code of
AO programs that were characterized based on the data empirically collected.

• It presents an exception flow analysis tool for Java and AspectJ programs,
which was developed to support the analysis.

The contributions of this work allow for: (i) developers of robust aspect-oriented
applications to make more informed decisions in the presence of evolving exception
flows, and (ii) designers of AOP languages and static analysis tools to consider push-
ing the boundaries of existing mechanisms to make AOP more robust and resilient to
changes. The remainder of this paper is organized as follows. Section 2 describes
basic concepts associated with exception handling in AO programs. Section 3 defines
the hypotheses and configuration of our exploratory study, the target applications and
the evaluation procedures. Section 4 reports our analysis of the empirical data col-
lected in this study. Section 5 presents a bug catalogue for exception handling code in
AO systems based on the bug patterns that actually happened in each investigated
system, and Section 6 provides further discussions and lessons learned. Section 7
describes the related work. Finally, Section 8 presents our conclusions and directions
for future work. Due to space limitations, throughout this article we assume that the
reader is familiar with AOP terminology (i.e., aspect, join point, pointcut, and advice)
and the syntax of AspectJ’s main constructs.

2 Characterizing the Exception Handling Mechanism in AO
 Programs

In order to support the reasoning about exception flows in AO programs we present
the main concepts of an exception-handling mechanism and correlate each element
with the constructs available in most AO languages. An exception handling mecha-
nism is comprised of four main concepts: the exception, the exception signaler, the
exception handler, and the exception model that defines how signalers and handlers
are bound [12].

Exception Raising. An exception is raised by an element - method or method-like
construct, e.g., advice - when an abnormal state is detected. In most languages an
exception is usually assumed as an error, and represents an abnormal computation
state. Whenever an exception is raised inside an element that cannot handle it, it is
signaled to the element’s caller. The exception signaler is the element that detects the
abnormal state and raises the exception. Thus, in AO programs the signaler can be
either a method or an advice. In Figure 1, the advice a1 detects an abnormal condition
and raises the exception EX. Since this advice intercepts the method mA, the excep-
tion EX comes with the additional behavior included into the affected method.

Exception Handling. The exception handler is the code invoked in response to a
raised exception. It can be attached to protected regions (e.g. methods, classes and
blocks of code) or specific exceptions [16]. Handlers are responsible for performing
the recovery actions necessary to bring the system back to a normal state and, when-
ever this is not possible, to log the exception and abort the system in an expectedly

210 R. Coelho et al.

safe way. In AO programs, a handler can be defined in either a method or an advice.
Specific types of advice (e.g., around and after [6]) have the ability to handle the
exceptions thrown by the methods they advise.

Handler Binding. In many languages, the search for the handler to deal with a raised
exception occurs along the dynamic invocation chain. This is claimed to increase
software reusability, since the invoker of an operation can handle it in a wider context
[16, 24]. In AO programs the handler of one exception can be present: (i) in one of the
methods in the dynamic call chain of the signaler; or (ii) in an aspect that advises any
of the methods in the signaler’s call chain. Figure 1 depicts one scenario in which one
advice (a1) signals the EX exception, and the other advice (a2) is responsible for
handling EX, i.e. a2 intercepts one of the methods in the dynamic call chain and han-
dles this exception.

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler ECMethod mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler ECMethod mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

Handler EB

Method mA

Method mB

E X

Normal Interface

Handler EA

Handler ECMethod mC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

method call

method-like contstruct

exception ptopagation

Legend :

crosscuts

protected region

Fig. 1. Exception propagation

An exception path is a path in a program call graph that links the signaler and the
handler of an exception. Notice that if there is no a handler for a specific exception,
the exception path starts from the signaler and finishes at the program entrance point.
In Figure 1, the exception path of EX is <a1→mA→mB→mC→a2>. Therefore, the
exception flow comprises three main moments: the exception signaling, the exception
flow through the elements of a system, and the moment in which the exception is
handled or leaves the bounds of the system without being handled, thus becoming an
uncaught exception.

Exception Interfaces [24]: The caller of a method needs to know which exceptions
may cross the boundary of the called one. In this way, the caller will be able to pre-
pare the code beforehand for the exceptional conditions that may happen during sys-
tem execution. For this reason, some languages provide constructs to associate to a
method’s signature a list of exceptions that this method may throw. Besides providing
information for the callers of such method, this information can be checked at com-
pile time to verify whether handlers were defined for each specified exception. This
list of exceptions is defined by Miller and Tripathi [24] as a method’s exception inter-
face. Ideally, the exception interface should provide complete and precise information
for the method user. However, they are most often neither complete nor precise [4],
because languages such as Java provide mechanisms to bypass this mechanism. This

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 211

is achieved by throwing a specific kind of exception, called unchecked exception,
which does not require any declaration on the method signature. For convenience, in
this paper we split this concept of exception interface into two categories:

(i) the explicit exception interfaces, which are part of the method (or method-like
construct) signature and explicitly declare the list of exceptions; and

(ii) the complete (de facto) exception interfaces, which capture all the exceptions
signaled by a method, including the implicit (unchecked) ones not specified in
the method signatures.

In the rest of this paper, unless it is explicitly mentioned, we use the expression
“exception interface” to refer to a complete (de facto) exception interface. Although
both the normal interface (i.e. method signature) and the exception interface of a
method can evolve along a software life cycle, the impact of such a change on the
system varies significantly. When a method signature varies, it affects the system
locally, i.e. only the method callers are directly affected. On the other hand, the re-
moval or inclusion of new exceptions in an exception interface may impact the system
as a whole, since the exception handlers can be anywhere in the code. As depicted in
Figure 1, an aspect can add behavior to a method without changing the normal inter-
face of that method. However, the additional behavior may raise new kinds of excep-
tions, hence impacting the exceptional interfaces.

Exception Types and Exception Subsumption. Object-oriented languages usu-
ally support the classification of exceptions into exception-type hierarchies. The ex-
ception interface is therefore composed by the exception types that can be thrown by a
method. Each handler is associated with an exception type, which specifies its han-
dling capabilities - which exceptions it can handle. The representation of exceptions
in type hierarchies allows type subsumption [29] to occur: when an object of a sub-
type can be assigned to a variable declared to be of its supertype, the subtype is said
to be subsumed in the supertype. When an exception is signaled, it can be subsumed
into the type associated to a handler, if the exception type associated to the handler
(i.e., the hander type) is a supertype of the exception type being caught.

3 Evaluation Procedures

This section describes our study configuration in terms of its goals and hypotheses,
the criteria used for the target systems selection (Section 3.1), methodology employed
to conduct the exceptional code analyses (Section 3.2), and the actual execution of our
study (Section 3.3). The goal of this case study is to evaluate the impact of AOP on
exception flows of AspectJ programs, comparing them with their Java counterparts.
The investigation relies on determining, in multiple Java and AspectJ versions, which
exception-handling bug patterns (Section 5) are typically introduced in their original
and subsequent releases. The analyzed error-prone scenarios vary from uncaught to
unintended handler actions.

The OO and AO versions of three applications have been compared in order to
observe the positive and negative effects caused by aspects on their exception
flows. Specific procedures were undertaken in order to distinguish AOP liabilities
for exception handling implementation from well-known intrinsic impairments of

212 R. Coelho et al.

OO mechanisms on exception handling [24]. These procedures were important to
detect whether and which AO mechanisms are likely to lead to unexpected and
error-prone scenarios involving exception handling. As a result, the null hypothesis
(H0) for this study states that there is no difference in robustness of exception han-
dling code in Java and AspectJ versions of the same system. The alternative hy-
pothesis (H1) is that the impact of aspects on exception flows of programs can lead
to more program flaws associated with exception flow.

3.1 Target Systems

One major decision that had to be made for our investigation was the selection of the
target applications. We have selected three medium-sized systems to which there was a
Java version and an AspectJ version available. Each of them is a representative of dif-
ferent application domains and heterogeneous realistic ways of incorporating exception
handling into software systems being developed incrementally. The target systems
were: Health Watcher [14, 31] (HW), Mobile Photo [9] (MP) and JHotDraw [16, 21]
(JHD). The HW system [14, 31] is a Web-based application that allows citizens to regis-
ter complaints regarding health issues in public institutions. MP is a software product
line that manipulates photo, music and video on mobile devices. JHotdraw framework
[16] is an open-source project that encompasses a two-dimensional graphics framework
for structured drawing editors. It comprises a Java swing and an applet interface. In our

Table 1. Target Systems description

System Description and Crosscutting Concerns
Version 1 : concurrency control, persistence (partially) and exception handling (partially).

Version 9 : concurrency control, transaction management, design patterns (Observer,
Factory and Command), persistence (partially) and exception handling (partially).

Version 4 : exception handling and some functional requirements comprising photo
manipulation, such as to sort a list of photos, to choose the favorites, and to copy photo.

Version 6: exception handling and some functional requirements comprising the
manipulation of different kinds of media (i.e., photos and audio files), such as: to sort a list
of medias, to choose the favorites, and to copy a media and sending SMS).

AJHotDraw (HD) Version 1 : persistence concern, design policies contract enforcement and undo command.

Health Watcher (HW)

Mobile Photo (MP)

Table 2. Code characteristics per system

Number of: OO AO OO AO OO AO OO AO OO AO
Lines of code 6080 5742 8825 7838 2540 3098 1571 1859 21027 21123
Lines of code for exception handling 1167 854 1889 1242 474 424 356 296 320 341
Classes 88 90 132 129 46 49 30 29 288 279
Aspects 0 11 0 24 0 14 0 10 0 31
try blocks 131 118 233 173 49 40 36 24 60 61
catch blocks 285 177 481 266 69 60 52 38 67 72
throw clauses 227 182 334 229 21 18 20 17 52 56
try blocks inside classes 131 108 233 161 49 21 36 9 60 61
catch blocks inside classes 285 164 481 252 69 28 52 16 67 72
throw clauses inside classes 227 176 334 219 21 4 20 4 52 51
try blocks inside aspects n/a 10 n/a 12 n/a 19 n/a 15 n/a 0
catch blocks inside aspects n/a 13 n/a 14 n/a 32 n/a 22 n/a 0
throw clauses inside aspects n/a 6 n/a 10 n/a 14 n/a 13 n/a 5
after advices n/a 4 n/a 22 n/a 30 n/a 15 n/a 15
around advices n/a 5 n/a 6 n/a 21 n/a 17 n/a 18
before advice n/a 3 n/a 4 n/a 5 n/a 2 n/a 15

HotDrawHealth Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 213

study, we focused on the Java Swing version of the JHotdraw. Moreover, such systems
exhibit a number of crosscutting concerns in addition to exception handling. Table l lists
the crosscutting concerns that were implemented as aspects in the AO versions of each
system.

Heterogeneous, Non-Trivial Policies for Exception Handling. The target systems
were also selected because they met a number of relevant additional criteria for our
intended evaluation (Section 3). First, they are non-trivial software projects and par-
ticularly rich in the ways exception handling is related to other crosscutting and non-
crosscutting concerns. For instance, we could find most of the typical categories of
exception handlers in terms of their structure as documented in [7], including nested
exception handlers and context-affecting handlers. Second, the behavior of exception
handlers also significantly varied in terms of their purpose [4], ranging from error
logging to application-specific recovery actions (e.g., rollback). Third, each of these
systems contains a considerable amount of code dedicated to exception handling
within both aspects and classes as detailed in Table 2.

Presence of Different Aspects in Incrementally-Developed Programs. Finally, AOP was
applied in different ways through the system releases: (i) aspects were used to extract
non-exception-handling concerns in JHotDraw, and all exception handlers are defined in
the base code, (ii) aspects were used to modularize various crosscutting concerns in the
Mobile Photo product line, including exception handling apart from the original release,
and (iii) aspects were used to partially implement error handling in Health Watcher,
where other behaviors were also aspectized. Good AOP practices were applied to struc-
ture such systems as stated in [9, 14, 31, 21]. Similar to Java releases, all the AspectJ
releases were implemented and changed by developers with around three years of experi-
ence in AO design and programming. In fact, HW and MP systems have been used in the
context of other empirical studies focusing on the assessment and comparison of their
Java and AspectJ implementations in terms of modularity and stability [9, 14]. Align-
ments of Java and AspectJ versions have been undertaken in order to guarantee that both
were implementing the same normal and exceptional functionalities.

3.2 Static Analysis of Exception Flow

The analysis of the exception flow can easily become unfeasible if done manually [28,
29]. In order to discover which exceptions can be thrown by a method, due to the use of
unchecked exceptions, the developer needs to recursively analyze each method that can
be called from such method. Moreover, when libraries are used, the developer needs to
rely on their documentation, which is most often neither precise nor complete [4].

Current exception flow analysis tools [10, 11, 28] do not support AOP constructs.
Even the tools which operate on Java bytecode level [11] cannot be used in a straight-
forward fashion. They do not interpret the aspect-related code included on the byte-
code after the weaving process of AspectJ. Hence, we developed a static analysis tool
to derive exception flow graphs for AspectJ programs and support our investigation
on determining flaws associated with exception flows. This tool is based on the Soot
framework for bytecode analysis and transformation [32] and is composed of two
main modules: the Exception Path Finder and the Exception Path Miner. Both
components are described next, and more detailed information can be found at the
companion website [3].

214 R. Coelho et al.

Exception Path Finder. This component uses Spark, one of the call graph builders
provided by Soot. Spark is a field-sensitive, flow-insensitive and context-insensitive
points-to analysis [32], also used by other static analysis tools [10, 11]. The Exception
Path Finder generates the exception paths for all checked and unchecked exceptions,
explicitly thrown by the application or implicitly thrown (e.g., via library method) by
aspects and classes. It associates each exception path with information regarding its
treatment. For instance, whether the exception was uncaught, caught by subsumption
or caught by the same exception type. In this study we are assuming that only one
exception is thrown at a time – the same assumption considered in [10, 11].

Exception Path Miner. This component classifies each exception path according to its
signaler (i.e., class method, aspect advice, intertype or declare soft constructs) and
handler. Such classification helps the developer to discover the new dependencies that
arise between aspects and classes on exceptional scenarios. For instance, an exception
can be thrown by an aspectual module and captured by a class or vice-versa. These
different dependencies represent seeds to manual inspections whose goal is to evalu-
ate the error proneness of the abnormal code in AO systems.

3.2.1 Inspection of Exception Handlers
The classification of the handler action for each exception path was based on a com-
plementary manual inspection. It consisted of examining the code of each handler
associated with exception paths found by the exception flow analysis tool (Section
3.2.1). Such manual inspections were also targeted at: discovering the causes for un-
caught exceptions and exception subsumptions. It enabled us to systematically dis-
cover bug hazards associated with Java and AspectJ modules on the exception han-
dling code. A bug hazard [2] is a circumstance that increases the chance of a bug to be
present in the software. For instance, type coercion in C++ is a bug hazard because it
depends on complex rules and declarations that may not be visible when working on a
class. Each handler action was classified according to one of the categories presented
in Table 3.

Table 3. Categories of handler actions and corresponding descriptions

Category Description
swallowing The handler is empty.
logging Some information related to the exceptional scenario is logged.
customised message A message describing the failure is presented to the user.
show exception message The exception message attribute (exception.getMessage()) is presented to the user.
application specific action An specific action is performed (e.g., rollback).
incorrect user message A message that is not related to the failure that happened is presented to the user.
new exception A new exception is created and thrown.

wrap
The original exception or any information associated to it is used to construct a new
exception which is thrown.

convert to soft
The exception is converted into a SoftException. This action is specific to AspectJ
programs and happens when the delcare soft construct is used.

framework default action
To avoid uncaught exceptions some application frameworks such as java.swing, define
catch classes that handle any exception that was not caught by the application and
performs a default action (e.g. kill the thread which threw the exception.).

uncaught No handler caught the exception.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 215

3.3 Study Operation

This study was undertaken from March 2007 to November 2007. During this period
target systems were selected and the static analysis tool was implemented and exe-
cuted for each target system. It was followed by the manual inspection of every ex-
ception path. The Exception Path Finder was used to generate the exception flow
graph for every exception occurrence. Then the Exception Path Miner classified each
exception path according to its signaler and handler (see Table 4). We discarded a few
unchecked exceptions2 that can be thrown by JVM in almost every program statement
execution (e.g., IllegalMonitorStateException) and are not normally handled in-
side the system. The same filter was adopted by Cabral and Marques [4] in an empiri-
cal study of exception handling code in object-oriented systems. This filtering was
performed on the static analysis. Then we manually inspected each one of the 2.901
exception paths presented in Table 4. The goal of this inspection was threefold: (i) to
discover what caused uncaught exceptions and exception subsumptions; (ii) to specify
the handler action of each exception path, and (iii) to determine the bug hazards asso-
ciated with AspectJ constructs on certain exception handling scenarios.

4 Analysis of Exception Flows and Handler Actions

This section presents the results for each of the study stages. First, it presents evalua-
tion of the data collected via the exception flow analysis tool (Section 4.1). The fol-
lowing discussion focuses on the information collected during the manual inspections
of each exception path (Section 4.2). Our goal in providing such a fine-grained data
analysis is to enable a detailed understanding of how aspects typically affected posi-
tively or negatively the robustness of exception handling in each target system and its
different releases.

4.1 Empirical Data

Table 4 presents the number of exception paths identified by the exception flow
analysis tool (Section 3.2.1). It presents the tally of exception paths per target system
structured according to a “Signaler-Handler” relation. The element responsible for
signaling the exception can be either a class or an aspect. When the exception is sig-
naled by an aspect, it is signaled by one of its internal operations: an advice, a method
defined as intertype declaration, or a declare soft construct3. An exception occur-
rence can be caught in two basic ways. It can be caught by a specialized handler when
the catch argument has the same type of the caught exception type. Alternatively, it

2 The discarded exceptions were the exceptions thrown by bytecode operations (NullPointerEx-

ception, IllegalMonitorStateException, ArrayIndexOutOfBoundsException, ArrayStoreExcep-
tion, NegativeArray SizeException, ClassCastException, ArithmeticException) and excep-
tions specific to the AspectJ (NoAspectBoundException). Since such exceptions may be
thrown by almost every operation, including those could generate too much information
which could compromise the usability of the exception analysis.

3 Declare soft is an AspectJ specific construct. It is associated to a pointcut and wraps any
exception thrown on specific join points in a SoftException, and re-throws it.

216 R. Coelho et al.

can be caught by subsumption when the catch argument is a supertype of the excep-
tion being caught. It is also possible that the exception is not handled by the applica-
tion and remains uncaught. This happens when there is no system’s handler defined
for the exception type in the exception flow.

Table 4. Classification of exception paths per target system

OO AO OO AO OO AO OO AO OO AO

 Uncaught 5 9 9 0 0 0 0 0 124 112

 Specialized Handler 196 132 277 119 53 26 63 13 64 5
 Subsumption 43 26 47 21 13 0 9 0 316 143

 Specialized Handler n/a 8 n/a 8 n/a 7 n/a 2 n/a 0
 Subsumption n/a 4 n/a 40 n/a 0 n/a 0 n/a 0

 Uncaught n/a 2 n/a 27 n/a 5 n/a 16 n/a 0

 Specialized Handler n/a 0 n/a 0 n/a 2 n/a 0 n/a 0
 Subsumption n/a 3 n/a 2 n/a 1 n/a 3 n/a 84

 Specialized Handler n/a 21 n/a 60 n/a 18 n/a 8 n/a 0
 Subsumption n/a 98 n/a 181 n/a 0 n/a 2 n/a 0

 Uncaught n/a 32 n/a 1 n/a 42 n/a 40 n/a 0

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 46 n/a 47 n/a 1 n/a 1 n/a 36

 Specialized Handler n/a 0 n/a 63 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 20 n/a 0 n/a 0 n/a 0

 Uncaught n/a 0 n/a 0 n/a 0 n/a 0 n/a 24

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 121

 Specialized Handler n/a 0 n/a 0 n/a 0 n/a 0 n/a 0
 Subsumption n/a 0 n/a 0 n/a 0 n/a 0 n/a 0

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

Handler on Class

Handler on Aspect

 Construct: Advice

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

Construct: Declare Soft

 Construct: Intertype

Signaler: Class

Signaler: Aspect

Handler on Class

Handler on Aspect

The next subsections analyze the exception paths presented in Table 4 in detail.
First, Section 4.1.1 contrasts the occurrence of subsumptions and uncaught exceptions
in Java and AspectJ versions of each target system. Section 4.1.2 determines the rela-
tion between certain aspect elements (as exception signalers) and higher or lower
incidences of uncaught exceptions and subsumptions. Section 4.1.3 focuses the analy-
sis on how exceptions thrown by aspects are typically treated in the target systems.

4.1.1 The Impact of Aspects on How Exceptions Are Handled
A recurring question to AO software programmers is whether it is harmful to aspec-
tize certain behaviors in existing OO decompositions in the presence of exceptional
conditions. Hence, our first analysis focused on observing how aspects affected the
robustness of the original exception handling policies of the Java versions. Figure 2
illustrates the total number of exception paths on which exceptions (i) remained un-
caught exceptions, (ii) were caught by subsumption, or (iii) by specialized handlers in
each of the target systems.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 217

Fig. 2. Uncaught exceptions, subsumptions, and specialized handlers per system

Figure 2 shows a significant increase in the overall number of exception paths.
Also significant is the increase in uncaught exceptions and subsumptions for the AO
versions of all the three systems. This increase is a sign that the robustness of excep-
tion handling policies in AspectJ releases was affected and sometimes degraded when
compared to their Java equivalents. Of course, the absolute number of exception paths
is expected to vary due to design modifications, such as aspectual refactorings.
However, the number of uncaught exceptions and subsumptions ideally should be
equivalent between the Java and AspectJ implementations of a same system, since
experimental procedures were undertaken to assure that both versions implemented
the same functionalities (Section 3).

Figure 3 shows the percentage of occurrence for each category of handler action.
We can observe that the relative number of uncaught exceptions also increased in

80.3%

41.5%

83.2%

44.7%

80.3%

48.4%

87.5%

25.3%
12.7%

17.6%

46.9%

14.1%

50.1%

12.5%

7.2%

73.1%

1.0%

62.7%
2.1%

19.7%

2.0% 2.7%
5.2%

11.7%

49.5%

67.5%

24.6% 25.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

OO AO OO AO OO AO OO AO OO AO

Health Watcher V1 Health Watcher V9 Mobile Photo V4 Mobile Photo V6 HotDraw

 Same Exception Subsumption Uncaught

Fig. 3. Percentage of uncaught exceptions, subsumptions, and specialized handlers

Health Watcher V1

196
153

43
1735

43

0

100

200

300

400

500

600

OO AO

ex

ce
p

ti
o

n
 p

at
h

s

Same Exception Subsumption Uncaught

Health Watcher V9

277 242

47

271

28

9

OO AO

Mobile Photo V4

53
46

13

2

47

0

20

40

60

80

100

OO AO

Mobile Photo V6

63

21

9

6

56

OO AO

Hot Draw

64

316

5

384

136
124

0

100

200

300

400

500

600

OO AO

218 R. Coelho et al.

every system, and so did the relative number of subsumptions. In some target systems,
this increase was significant. In the Mobile Photo V6, for example, the number of
uncaught exceptions represent 67.5% of the exceptions signaled on the system. In the
Health Watcher V9, the percentage of exceptions caught by subsumption increased
from 14.1% in OO version to 50.1% in the AO version. This significant increase am-
plifies the risk of unpredictable system crashes in AspectJ systems, caused by either
uncaught exceptions or inappropriate exception handling via subsumptions. Corre-
spondingly, there was a decrease in the percentage of exceptions handled by special-
ized handlers in all AO implementations. When the handler knows exactly which
exception is caught, it can take an appropriate recovery action or show a more precise
message to the user. However, this was not the typical case in the AO implementa-
tions of the investigated systems.

4.1.2 The Blame for Uncaught Exceptions and Subsumptions
After discovering that the number of uncaught exceptions and subsumptions has sig-
nificantly increased in the AO implementations (Section 4.1.1), we continued our
analysis, looking for the main causes of such discrepancies between AO and OO
versions. The intuition here is that most of these exceptions were signaled by the
aspects in the three target systems. Figure 4 presents charts that confirm this intuition;
they show the participation of the exceptions signaled by aspects in the entire number
of uncaught exceptions and subsumptions per system.

79,1%

13,7%

85,0%

0%

20%

40%

60%

80%

100%

Uncaught Sub

100%

50,8%

92,3%

Uncaught Same Sub

100%

43,5%

100%

Uncaught Same Sub

100%

38,1%

100%

Uncaught Same Sub

17,6 %

0,0 %

62,8 %

Uncaught Sub

Health Watcher AO V1 Health Watcher AO V9 Mobile Photo AO V4 Mobile Photo AO V6 HotDraw AO

Same Same

Fig. 4. Participation of aspect-signalized exceptions on the whole number of subsumption,
uncaught and specifically-handled exceptions per system

In both AO versions of Health Watcher and Mobile Photo, the aspects were re-
sponsible for signaling most of the uncaught exceptions and those ones caught by
subsumption. In Mobile Photo V4 and V6, for example, aspects were responsible for
100% of the uncaught exceptions found in this system. This means that no base class
in this system signaled an exception that became uncaught. In the AO version of
JHotDraw, the aspects were responsible for signaling only 17.6% of the uncaught
exceptions, and the aspects participation on the number of exceptions caught by sub-
sumption was high (62.8%). This is explained by the fact that the exception policy of
the HotDraw OO was already based on exception subsumption (see Figure 2), thus
the exceptions signaled by aspects were handled in the same way.

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 219

4.1.3 Are All Exceptions Signaled by Aspects Becoming Uncaught or Caught by
 Subsumption?
Figure 5 gives a more detailed view of what is happening with all exceptions signaled
by aspects. We can observe that not all exceptions signaled from aspects become
uncaught or are caught by subsumption. In HealthWatcher AO V9, for example, only
7% of the exceptions signaled by aspects became uncaught, but they represented
100% of the uncaught exceptions reported to this system (see Figure 3). On the other
hand, in the AO versions of the MobilePhoto, the percentage of exceptions signaled
by aspects that became uncaught is high (68.1% and 80%). As discussed in the next
section, this system was the one that had the exception handling concern aspectized.

16,8%
7,0%

68,1%
80,0%

9,1%

2,9%

10,4% 30,7%

26,1% 11,4%

24,3%
12,2%

2,9%
5,7%

90,9%

48,5% 50,1%

2,9%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Health Watcher
AO V1

Health Watcher
AO V9

Mobile Photo
AO V4

Mobile Photo
AO V6

HotDraw AO

Handler on Aspect (Subsumption)

Handler on Class (Subsumption)

Handler on Aspect (Specialized)

Handler on Class (Specialized)

Uncaught

Fig. 5. Handler type of exceptions thrown by aspects

In Figure 5, the exceptions caught by subsumption on handlers coded inside
classes characterize a potential fault. They may represent scenarios in which the ex-
ception signaled by an aspect is mistakenly handled by an existing handler in the base
code. Another interesting thing to notice in Figure 5 is the increase in the percentage
number of exceptions signaled by aspects and handled by specialized handlers from
versions 1 to 9 of Health Watcher AO. It illustrates that exceptions signaled by an
aspect can be adequately handled.

4.2 Detailed Inspection

In order to obtain a more fine-grained view of how exceptions were handled in AO
and OO versions of the same system, we manually inspected all the 2,901 exception
paths presented in Table 2. Each exception path was classified according to the action
taken on its handler – following the classification presented in Section 3.2.2. Table 5
illustrates the number of each type of handler action per target system and the ratio
(%) between the number of the handler action in the AO version and the correspond-
ing value in the OO version of the same system. The ratio is expressed as the quotient
of former divided by the latter.

As mentioned before, the total number of exception paths mostly increased in AO
versions. During the manual inspections we discovered there were two causes for that:
(i) if one exception is not caught inside a specific method (e.g., due to a fault on an
aspect that acts as handler) this exception will continue to flow on the call chain,

220 R. Coelho et al.

generating new exception paths; and (ii) specific design modifications bring new
elements to the call graph and consequently lead to more exception paths. Figure 6
illustrates the handler actions per target system. Overall, it confirms the findings of
previous sections based on the tool outputs: the aspects used to implement the cross-
cutting functionalities tend to violate the exception policies previously adopted in
each system. Subsequent subsections elaborate further on the data in Figure 6 and
explain the causes behind AspectJ inferiority.

Table 5. Classification of exception paths according to their handler action

Handler Action OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, % OO AO Ratio, %

swallowing 5 7 140.0 5 7 140.0 0 0 -- 0 0 -- 3 3 100.0
logging 7 1 14.3 12 10 83.3 14 6 42.9 41 13 31.7 4 11 275.0
customised message 12 43 358.3 20 73 365.0 13 4 30.8 0 0 -- 0 0 --
show exception message 43 32 74.4 39 100 256.4 0 0 -- 7 1 14.3 291 285 97.9
application specific action 115 121 105.2 169 160 94.7 3 5 166.7 0 0 -- 8 0 0.0

incorrect user message 17 53 311.8 16 43 268.8 0 0 -- 0 0 -- 0 0 --

new exception 3 3 100.0 3 3 100.0 0 3 -- 1 2 200.0 0 0 --

wrap 37 38 102.7 60 65 108.3 36 0 -- 23 0 0.0 0 0 --
convert to soft 0 40 -- 0 100 -- 0 37 -- 0 13 -- 0 8 --

framework default action 0 0 -- 0 0 -- 0 0 -- 0 0 -- 74 82 110.8
uncaught 5 43 860.0 9 28 311.1 0 47 -- 0 56 -- 124 136 109.7
TOTAL 244 381 156.1 333 589 176.9 66 102 154.5 72 85 118.1 504 525 104.2

Mobile Photo V4 Mobile Photo V6Health Watcher V1 Health Watcher V9 HotDraw

0

100

200

300

400

500

600

OO AO OO AO

Health Watcher V1 Health Watcher V9

swallowing logging customised message show exception message

application specific action incorrect user message new exception wrap
convert to soft framework default action uncaught

0

20

40

60

80

100

120

OO AO OO AO

Mobile Photo V4 Mobile Photo V6

0

100

200

300

400

500

600

OO AO

HotDraw

ex

ce
pt

io
n

pa
th

s

Fig. 6. The handler actions in the exception paths of each target system

4.2.1 Health Watcher
In the AO versions of Health Watcher, there was an increase in the number of excep-
tion paths classified as incorrect user message (see Table 5), in relation to the
corresponding OO versions. It means that there were exception paths in such systems
in which a message not related to the exception that really happened was presented to
the user. This characterizes the problem known as Unintended Handler Action, when
an exception is handled by mistake by an existing handler. The causes of such failures
were diverse: (i) mistakes on the pointcut expressions of exception handling aspects

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 221

in both versions; (ii) in version 9, an aspect defined to handle exceptions intercepted a
point in the code in which the exception was already caught; (iii) aspects signaled
exceptions and no handler was defined for such exceptions in both versions; and (iv)
the wrong use of the declare soft statement. Each of these causes entails a bug
pattern in AspectJ that will be discussed in Section 5. In the version 1, all softened
exceptions became uncaught (categories convert to soft and uncaught respec-
tively), because the declare soft statement was not used correctly (see Handler
Mismatch in Section 5.3). In version 9, the misuse of the declare soft statement was
fixed but some exceptions remained uncaught or unintended, handled by a catch
block on the base code that presented an incorrect user message.

4.2.2 Mobile Photo
In all AO versions of Mobile Photo there was a significant increase in the number of
uncaught exceptions. This application defined many exception handler aspects. Due
to mistakes on pointcut expressions and a limitation on the use of declare soft many
exceptions became uncaught. Differently from the exception handling policy defined
in the Health Watcher system, in Mobile Photo there were no “catch all” clauses on
the View layer to prevent exceptions - not handled by the handler defined for it - from
becoming uncaught.

4.2.3 HotDraw
The target system that presented the lesser impact on the exception policy was the
JHotDraw system. The reason is twofold. First, the exception policy in OO version
was poorly defined, which is visible thanks to the expressive number of uncaught
exceptions and subsumptions (Figure 2). Second, the AO version of the JHotDraw
system was built upon a well defined set of refactoring steps [21], and most of the
aspects of AJHotDraw were composed by intertype declarations. These refactorings
moved specific methods from classes to aspects, such as the methods related to persis-
tence and undo concerns. The catch statements for exceptions thrown by the refac-
tored methods were not affected in the AO version, i.e. they remained in the same
places on the base code. This explains why most of the exceptions signaled by aspects
were caught by base code classes (Figure 5). However, even this system presented
potential faults in the exception handling code (Section 5).

5 Characterizing Exception-Handling Bug Patterns in AspectJ

Bug patterns [2] are recurring correlations between signaled errors and underlying
bugs in a program. They are related to design anti-patterns, but bug patterns are typi-
cal sources of faults at source code level. The manual inspection of the exception
handling code related to the exception paths reported by the tool allowed us to iden-
tify several exception-handling bug patterns. These patterns can be classified into
three categories. First, the use of aspects as handlers led to some scenarios in which
the catch clauses were moved to aspects, the so-called exception handling aspects.
However, these aspects did not catch the exceptions they were intended to handle.
Second, the application of aspects as signalers often implied aspects signaling excep-
tions for which no handler was defined. Such exceptions flew through the system and

222 R. Coelho et al.

became uncaught exceptions or were caught by an existing handler in the code (usu-
ally by subsumption). Third, the use of declare soft construct was often problem-
atic: due to its complex semantics, almost all developers performed similar mistakes
when using this construct in almost all the analyzed software releases.

In some cases, we observed that the use of declare soft in combination with after
throwing advice generated a bytecode in which the after throwing advice were not
included, what represents a bug in the AspectJ weaver. Table 6 summarizes the bug
pattern distribution in relation to the analyzed systems. The next sections describe the
bug patterns shown in this table. For each of them, we provide a description, but due
to space constraints, only some examples based on code snippets are provided; code
examples for all the bug patterns can be found on the companion website [3].

Table 6. Distribution of the bug patterns per system

HotDraw AO
Bug patterns V1 V9 V4 V6 V1

 Inactive Aspect handler
 Late Binding Aspect Handler
 Obsolete Handler in the Base Code

 Solo Signaler Aspect
 Unstable Exception Interfaces

 Handler Mismatch.
 Solo Declare Soft Statement.
 Unchecked Exception Cause
 The Precedence Dilemma

Mobile Photo AO

Aspects as Handlers

Aspects as Signalers

Exception Softening

Health Watcher AO

5.1 Advice as Exception Handlers

The role of aspects as handlers can be classified into two: (1) the aspect can handle its
own internal exceptions; and (2) and it can handle external exceptions thrown by
other aspects or classes. Aspects can be used to modularize the handlers of external
exceptions relative to other crosscutting concerns implemented as aspects. The latter
occurred in both Health Watcher and Mobile Photo systems. It can also be used to
modularize part of exception handling from the base code (as in Mobile Photo). Such
exception handling aspects are implemented using around and after throwing
advice. The first two bug patterns presented next are related to aspects that act as
external exception handlers, the last one is related to aspects implementing internal
handlers.

Inactive Aspect Handler. This kind of fault happens when an Aspect Handler does
not handle the exception that it was intended to handle. The cause is a faulty pointcut
expression. Such a fault prevents the handler from advising the join point in which an
exception should be handled. This exception either becomes uncaught (Section 5.2) or
is mistakenly caught by an existing handler (unintended handler action discussed in
Section 5.2). Instances of this bug pattern were detected in Health Watcher and Mo-
bile Photo systems as exception handling was not aspectized in HotDraw. The typical
reasons for this bug pattern are the fragility of the pointcut language, usually based on

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 223

naming conventions, and the number of different and very specific join points to be
intercepted by the handler aspects.

Late Binding Aspect Handler. This bug pattern occurred in Health Watcher V9. The
concurrency control was implemented within an aspect, which throws the Transac-
tionException exception. A specific handler aspect – called EHAspect - was de-
fined to handle this exception and although the pointcut expression was correctly
specified, the handler intercepted a point in which the exception was already caught
beforehand by a “catch all clause” on the base code. This problem is difficult to diag-
nose because the current IDEs will indicate to the developer of the EHAspect that the
join points in the code (where the exception should be caught) are correctly inter-
cepted. This explains why this fault remained until version V9 of the HW system.
Moreover, even if there is no “catch all” clause between signaler and aspect handler
during development, such a clause can be added in a maintenance task. If the handler
was defined in the base code and it was a checked exception, the compiler would
warn the developer that the handler was inactive. Figure 7 (a) presents a schematic
view of this problem. In this figure, the advice a1 adds a new functionality to method
mA. This additional functionality comes along with a new exception EX, which flows
through the advised method call chain until it is handled. Another advice was defined
to handle the exception (advice a2), which intercepts a point on the base code were
the exception EX should be handled (method mC). We can observe from this sche-
matic view that the exception EX was caught by a catch clause defined on method mB
and, as a consequence, EX could not reach the point in the code where it should be
handled by advice a2.

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scope

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scope

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler E1

Handler E2

Method mB

Method mC

E2

Method mA

Advice XAdvice x

Method h

...

E2

(b)

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

Handler EXSupertype

EX

Normal Interface

Handler EA

Handler EC

Exception Interface

Normal Interface Exception Interface Advice X

Advice a1

EX

Advice a2

Handler EX

Normal Interface Exception Interface

(a)

Method mA

Method mB

Method mC

method call protected region Exception propagation

Legend :
crosscuts scopemethod call protected region Exception propagation

Legend :
crosscuts scope

Fig. 7. Schematic view of Bug Patterns - (a) Late Binding Handler, and (b) Unstable Exception
Interfaces

Obsolete (or Outdated) Handler in the Base Code. When an aspect handles or sof-
tens (Section 3.4.3) an exception previously thrown by an application method, the
handler associated with this exception on the base code will become obsolete. The
reason is that the exception handled by it can no longer be signaled. In this study, four

224 R. Coelho et al.

exceptions handled by aspects generated obsolete handlers. Notice that an obsolete
handler may lead to the consequences presented by Miller and Tripathi [24].

5.2 Aspects as Exception Signalers

During the manual inspections we found potential faults that can occur when aspects
signal exceptions. They are detailed below.

Solo Signaler Aspect. Solo Signalers are the aspects that signal an exception and no
handler is bound to it. Such an aspect may lead to the same failures caused by the
Inactive Aspect Handler defined in the previous section: an uncaught exception or an
Unintended Handler Action. The Unintended Handler Action [24] is usually charac-
terized by the exception signaled by an aspect being handled by subsumption via
classes.

Unstable Exception Interface. In this study we observed that aspects had the ability
of destabilizing the exception interface of the advised methods. Every time a static or
dynamic scope is used and the advice may signal an exception, the exception interface
of the method will vary according to the scope in which a method is called. As a con-
sequence, the same method could raise a different set of exceptions, even when the
method arguments were the same, depending on the static (e.g., which class called it)
or dynamic (information on the execution stack) scopes. The next code snippet, ex-
tracted from the AJHotDraw implementation, exemplifies an unstable exception inter-
face.

 pointcut commandExecuteCheckView(AbstractCommand command): this(command)

 && execution(void AbstractCommand+.execute())
 && !within(*..DrawApplication.*) && !within(*..CTXWindowMenu.*)
 && !within(*..WindowMenu.*) && !within(*..JavaDrawApp.*);

 before(AbstractCommand command) : commandExecuteCheckView(command) {

if (command.view() == null) {
 throw new JHotDrawRuntimeException("execute should NOT be
 getting called when view() == null");

}
 }

In this example, the execute()method will throw a JHotDrawRuntimeException if
it is called from a method that is not defined on the classes specified on the pointcut
expression (DrawApplication, CTXWindowMenu, WindowMenu and JavaDrawApp).
As a consequence, the same method will have different behaviors depending on the
scope it is called. When the exceptions that can be thrown from a method vary ac-
cording to the scope it is executed, we say that such method contains an unstable
exception interface.

Figure 7 (b) presents a schematic view of this problem. In this figure, the advice x
adds a new functionality to method mA only when such method is called from method
mC (i.e., the pointcut expression contains a dynamic scope delimiter). Therefore, this
additional functionality, and the new exception E2 that comes with it, will not be part
of method mA when it is called from another method such as method h. As a conse-
quence, when the method mA is called from method mC it may throw E2 exception –
and a handler should be defined for it. On the other hand, if it is called from method h,
it will not throw the exception E2 (even if the method arguments are the same as the

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 225

one passed on the previous scope) since advice x does not affect the method mA in
this scope.

5.3 Softening Exceptions

In AspectJ an advice can only throw a checked exception if all intercepted methods
can signal it (i.e. declaring it on their throws clause). In other words, concerning
checked exceptions, an advice should follow a rule similar to the “Exception Confor-
mance” rule [28] applied during inheritance, when methods are overridden. As a re-
sult an advice can only throw a checked exception if it is thrown by every intercepted
method. To bypass this restriction, AspectJ offers the declare soft statement,
which converts (wraps) a given checked exception (in a specific scope) into a special-
ized unchecked exception, named SoftException. The syntax is: declare soft
: <someException> : <scope>. The scope is specified by a pointcut that se-
lects the join points in which the someException exception will be wrapped. As-
pectJ is the only AO language that provides a declare soft construct. As detailed in
Section 6.4, in Spring AOP and JBoss AOP, advices are allowed to throw any kind of
exception, either checked or unchecked. It is possible because their weavers convert
the exception interface of every advised method to allow every kind of exception to
flow from it – including a Throwable in its throws clause. This section presents
some bug patterns and also potential error-prone scenarios on the exception handling
code when the declare soft statement is used.

Solo Declare Soft Statement. According to the AspectJ documentation [33], every
time an exception is softened by an aspect, the developer should implement another
aspect that will be responsible for handling the softened exception. However, this
solution is very fragile. It is up to the programmer to define a new aspect to handle the
exception that was softened, and no message is shown at compile time to warn the
programmer in case s/he forgets to define this aspect handler. In Health Watcher and
Mobile Photo, exceptions were softened and no handler was defined for them. This
led to uncaught exceptions and unintended handler actions - exceptions caught by
subsumption on the base code.

Unchecked Exception Cause. When a checked exception is softened, it is wrapped in
a SoftException object. As mentioned before, in Java-like languages the type of
an exception is used to make the binding between an exception and its handler. Thus,
when wrapping an exception, we are also wrapping useful information in order to
provide a fine-grained action for each exception. To overcome this limitation, at every
point that needs to handle a softened exception, one should catch the SoftExcep-
tion and unwrap it (through its getCause() method) in order to compare its cause
with every possible exception that may potentially be thrown inside the handler’s
context. Such “wrapping” solution is documented as one of the exception handling
anti-patterns [22].

Handler Mismatch. Some exceptions were softened in one of the Health Watcher
versions. However, handlers were defined for the exceptions’ primitive types (i.e.
types before being wrapped in a SoftException). This Handler Mismatch implies
that almost all exceptions signaled by aspect implementations became uncaught or

226 R. Coelho et al.

were caught by unintended handlers. The code snippet bellow, extracted from Health
Watcher, illustrates this problem. The HWTransactionManagement aspect softens
the exception, and the HWTransactionExceptionHandler aspect tries to capture
the primitive exception (i.e., a TransactionException exception). This bug pat-
tern illustrates an emergent property of a particular combination of aspects woven into
the base program.

public aspect HWTransactionManagement {
 ...
 declare soft: TransactionException:
 call(void IPersistenceMechanism.beginTransaction())…;
}

public aspect HWTransactionExceptionHandler {
 void around(HttpServletResponse response) :
 execution(* HWServlet+.doGet(HttpServletRequest,
 HttpServletResponse)) && args(.., response) {
 try { proceed(response); }
 catch (TransactionException e) { ... }
 }

 }

The Precedence Dilemma. This problem occurs when an after throwing advice is
used in combination with the declare soft statement for a specific pointcut. Only
the code related to the declare soft is included in the bytecode. Since both con-
structions work by converting one exception into another, the weaver cannot decide
which one should happen first and as a consequence includes on the bytecode only the
code relative to the declare soft statement. This bug in the language implementa-
tion generates a SoftException exception that will not be adequately caught.

6 Discussions and Study Constraints

This section provides further discussion of issues and lessons learned while perform-
ing this exploratory study.

6.1 Exception Handling vs. AOP Properties

The goal of exception handling mechanisms is to make programs more reliable and
robust. However, we could observe that some properties of AOP may conflict with
characteristics of exception mechanisms. In this study we observed that quantification
and obliviousness properties pose specific pitfalls to the design of exception handling
code. We explain and discuss these pitfalls in the following.

Quantification Property. Aspects have the ability to perform invasive modifications
at specific join points in the program execution where a property holds – an ability
also known as the quantification property [35]. AspectJ supports quantification via
pointcuts and advice. Pointcuts are in general specified in terms of two kinds of point-
cut designators: call and execution. They intercept the call and execution of meth-
ods, respectively. On exception-aware systems, such designators may cause different
impact in the exceptional interfaces of methods. While the execution pointcut affects
the exceptional interface of the advised methods themselves, the call advice affects
the exceptional interface of the advised method’s caller. Such impact can also be

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 227

influenced by static and dynamic scopes associated with the pointcuts. Static scopes
such as within and withincode delimit the classes or packages on which the aspects
will inject a new behavior. Yet, dynamic scope constructs (i.e., cflow and cflowbe-
low) allow aspects to affect (or not) a specific point in the code depending on the
information available on the runtime execution stack.

The main consequence of the quantification property on exception-aware AO sys-
tems was that the exception interfaces of methods can vary depending on where the
method was called, even when the method arguments were the same. Therefore, the
same method of a class could raise a different set of exceptions depending on which
object called it or on some information on the execution stack (in case of cflow and
cflowbelow, for example). These unstable exception interfaces cannot happen in OO
programs since the set of exceptions thrown by a method cannot vary according to the
scope where it is executed – provided that the arguments are the same. We observed
in our study that in scenarios in which methods presented such unstable exceptional
interfaces, the exceptions signaled on specific scopes by the advised method often
became uncaught or were erroneously handled by an existing handler on the base
code (Unintended Handler Action bug pattern discussed in Section 5). A possible
reason is that it is more difficult for the method’s user to prepare the base code to
handle the exceptions that will be thrown depending on the dynamic or static scope it
is executed.

Obliviousness property. The obliviousness property [35], which was believed to be a
fundamental property for aspect-oriented programming, states that programmers of
the base code do not need to be aware of the aspects which will affect it. It means that
programmers do not need to prepare the base code to be affected by the aspects [35].
However, since there are no mechanisms to protect the base code from the exceptions
that will flow from aspects, a new exception signaled by the aspect may flow through
the system, if no handler is defined for it. This exception may become uncaught and
terminate the system in an unpredictable way. Even in cases when a handler aspect is
defined for each aspect that can throw an exception (as implemented in the AO ver-
sions of Health Watcher), there is no guarantee that the exception thrown by an aspect
will be handled by the handler aspect defined to it. Such exceptions may be prema-
turely caught by a handler on the base code, as illustrated on the bug pattern Late
Binding Aspect Handler (Section 5.1). Moreover, AspectJ and other existing AO
languages allow the invasive modifications caused by aspects to happen dynamically.
Although this mechanism opens a new realm of possibilities in software development,
it hinders the task of preparing the base code of the exceptions that can be thrown
from aspects. During system execution, it is difficult to anticipate whether any unin-
tended handler action or uncaught exception will be caused by the aspects.

6.2 Representativeness

We have investigated other AOP technologies such as: CaesarJ [23], JBoss AOP and
Spring AOP. Basically, they follow the same join point model as AspectJ, which
allows an aspect to add or modify behavior on join points, potentially adding new
exceptions. Table 7 summarizes our analysis regarding exception throwing and han-
dling mechanisms available in such technologies, which was mainly based on avail-
able documentation.

228 R. Coelho et al.

Table 7. EH constructs in different AO programming languages

checked unchecked
handler-

like
after

throwing
after-all-

like
around call execution

within-
like

withincode-
like

cflow-
like

cflowbelow-
like

AspectJ yes partially yes yes yes yes yes yes yes yes yes yes yes
CaesarJ no partially yes yes yes yes yes yes yes yes yes yes yes
JBoss AOP no yes yes no yes yes yes yes yes yes yes yes yes
Spring AOP no yes yes no yes yes yes no yes yes no no no

pointcut scope
static dynamicdeclare

soft

advice can signal advice types that act as external handlers
moments of

actuation

According to Table 7, only AspectJ provides a syntactic element to explicitly sof-
ten checked exceptions (2nd column). Thus, the bug patterns related to this construct
(Section 5.3) are peculiar to AspectJ. Depending on the nature of exceptions that may
be thrown by advice, all languages allow advice to throw runtime exceptions (4th
column). In AspectJ and CaesarJ, an advice can only throw a checked exception if
“every” intercepted method can throw it (declaring it on its throws clause) (3rd col-
umn). In CaesarJ, only around advice signature may throw checked exceptions. In
Spring AOP and JBoss AOP languages, advice may throw checked exceptions, no
matter the exceptions that can be signaled by the advised methods4. All languages
allow the definition of pointcut scopes (11th to 14th columns), and allow the advice to
intercept a method at both calls and executions (9th and 10th columns), consequently
facilitating the occurrence of unstable exceptional interfaces. Therefore all bug pat-
terns associated with Advice as Signalers (Section 5.2) may occur on systems devel-
oped in such languages. Finally, all languages allow the definition of aspects that may
handle exceptions thrown by another aspect of the base code (5th to 7th columns). As a
consequence, all bug patterns associated with Advice as Handlers (Section 5.1) can
also be found on systems developed in these languages.

6.3 Study Constraints

The main benefit of an exploratory study such as this one is that it allows the effect of
a new programming method to be assessed in realistic situations [42]. One may argue
that evaluating the AO and OO versions in a sample of 10 releases for three different
systems is a limiting factor. The needed characteristics for the target systems (i.e.,
medium-sized systems to which there was a Java version and an AspectJ version
available) and study based on manual code inspections (a very time-consuming task)
restricted the number of subjects evaluated in the study. Given such restrictions, we
feel that our set is representative as it includes significant, varied policies and aspecti-
zation processes for exception handling (Section 3.1). Another factor that might influ-
ence the study results against aspectual decompositions could be the developers’
expertise on AOP and AspectJ. However, as mentioned before (Section 3.1) all the
target systems developers had significant experience in AOP and AspectJ constructs.
Moreover, the fact that the AO version of each target system was developed after the
OO version, could also impact in the study results, acting in favor or against AO
solutions. However, most AO systems developed so far are derived from an OO

4 It is possible because the exception interface of every advised method is modified to allow

any kind of exception to flow from it (throws Throwable defines the exception interface
of the intercepted methods).

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 229

version, to which AO refactorings [21] are typically applied. Therefore, the threats to
validity in this study are not much different than the ones imposed on the other em-
pirical studies with similar goals [6, 9, 13, 14].

6.4 Additional Lessons Learned

AO Refactoring Strategies in Exception-Aware Systems. Many AO systems nowa-
days are generated from an OO version in which some crosscutting concerns are de-
tected and AO Refactoring techniques are used to convert some crosscutting concerns
into aspects. Such AO Refactoring techniques should account for the consequences of
aspects on the exception flow of programs. The catalogue of bug patterns presented in
this study can be used by such techniques to prevent some avoidable bugs when refac-
toring a system.

Software Maintainability. Since it is very hard to define at the beginning of a project
which exceptions should be dealt with inside the system [30], the exception handling
code is often modified along the system development and maintenance tasks. As a
consequence, some bugs avoided during AO refactoring, such as the Late Binding
Aspect Handler (Section 5.1), may be included during a maintenance task - breaking
an existing exception handling policy. The exception handling policy comprises a set
of design rules that defines the system elements responsible for signaling, handling
and re-throwing the exceptions; and the system dependability relies on the confor-
mance to such rules. Reasoning about the excep-tional control path, looking for po-
tential-faults on the exception handling code, can quickly become unfeasible if carried
out manually [28]. Thus, developers need tools to support them in (i) understanding
the impact of aspect weaving on the existing exception handling policy, and (ii) find-
ing bugs on the exceptional handling code along maintenance tasks.

Finding Bugs on Exception Handling Code of AO Programs. Testing exception
handling code is inherently difficult [36] due to the huge number of possible excep-
tional conditions to simulate in a system and the difficulty associated to the simulation
of most scenarios. Hence, a valuable strategy for finding faults on the exception han-
dling code can be to statically look for them [36]. The exception flow analysis tool
developed in our work can detect some failures (e.g., uncaught exceptions), and sup-
port the manual inspections whose goal is to find out the cause of the failure (e.g., bug
diagnosing5). Our tool could be extended in order to automatically detect some of the
bug patterns described in this work. A similar strategy was adopted by Bruntink et al
[36] to find faults on idiom-based exception handling code.

New Interactions between Aspects and Classes. The works presented so far on the
interactions between aspects and classes focus on the normal control flow and on
information extracted from data-flow analysis. In this study we could observe that
new kinds of interaction, between aspects and classes, emerged from the exceptional
scenarios (e.g., one class catches one exception thrown by an aspect). Such Signaler-
Handler relationships between the elements of an AO system can be used as a

5 The Bug fixing is a less complex problem after the bug was effectively diagnosed.

230 R. Coelho et al.

coupling metric that exists between these elements on exceptional scenarios. We are
currently refining the categorization of the Signaler-Handler relationships derived
from this study.

7 Related Work

Since the effects of AO composition mechanisms on the flow of exceptions on a sys-
tem are still not well understood, we conducted an empirical study in order to dis-
cover these effects and their extent in AO systems. In this section, we present works
we believe are directly related to our own, distributed in four categories: (i) static
analysis tools; (ii) AOP and exception handling; (iii) experimental studies on excep-
tion handling code; and (iv) AO fault models and bug patterns.

Static Analysis Tools: Robillard and Murphy [29] developed a tool called Jex that
analyzes the flow of exceptions in Java Programs. Based on java source code this tool
performs dataflow analysis in order to find the propagation paths of checked and
unchecked exception types. Jo et al. [17] present a set-based static analysis of Java
programs that estimates their exception flows. This analysis is used to detect too gen-
eral or unnecessary exception specifications and handlers. Fu et al. [10] developed a
static analysis tool, built upon Soot framework for bytecode analysis, and Spark a call
graph builder provided by Soot that generates a call graph of a higher precision com-
pared to the works mentioned previously. This static analysis tool generates the ex-
ception paths to every exception thrown on the system. Fu et al. [11] extended their
tool in order to compute chains. An exception chain is a combination of semantically-
related exception paths. Our tool is similar to the previous one [10], but it works on
top of AspectJ code.

AOP and Exception Handling: Lippert and Lopes [20] applied aspect constructs on a
large OO framework, called JWAM, to modularize the exception handling code. In
their experiment, they obtained a large reduction in the amount of exception handling
code present in the application – from 11% of the total code in the OO version to
2.9% in the AO version. Castor Filho et al. [6, 7] performed a similar study but their
work reports that the reuse of exception handlers is not straightforward as advocated
beforehand by Lippert and Lopes [20]. Instead, it depends on a set of factors such as:
the type of exceptions being handled; what the handler does; the amount of contextual
information needed; what the method raising the exception returns; and what the
throws clause actually specifies. Our study differs from its predecessors since it does
not aim at aspectizing exception handling constructs. Actually, we aim at providing a
better understanding on how programmers write exception handling code in AspectJ,
and identifying possible flaws in the usage of aspects in the presence of exceptional
scenarios.

Experimental Studies on Exception Handling Code: Bruno and Cabral [4] per-
formed a quantitative study in which they examined source code samples of 32 differ-
ent applications, both for Java and .NET. The goal of their study was to identify how
exceptions were handled in different categories of systems. They examined the excep-
tion handlers and the respective actions taken on them. As a result of this analysis,
they observed that the action handlers were very simple (e.g., logging and present a

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 231

message to the user). However, Bruno and Cabral did not consider the exception paths
of each system. As a consequence, they did not take into account the number of un-
caught exceptions, and the number of exceptions treated by each handler. In our
work, we performed an empirical study of how AOP constructs may influence on the
way the exceptions are treated on the system.

AO Fault Models and Bug Patterns: Alexander et al. [37] proposed a candidate fault
model that includes a set of fault types mostly related to AspectJ features. However,
none of them is related to the exceptional scenarios. This fault model was later ex-
tended by Cecatto et al. [38], who characterized faults related to “incorrect changes in
exceptional control flow.” These faults may occur when an aspect signals an excep-
tion which can triggers the execution of a catch statement, either in the aspect itself or
in the base program. They also argue that signaled exceptions, when declared as soft,
may imply the execution of different branches in the aspectized code. Bækken [39]
presents a fine-grained fault model for pointcuts and advice in AspectJ programs.
Although Bækken does not describe faults related to exceptional scenarios, he discuss
how control and data flows are influenced by exception throwing in order to establish
necessary and collectively sufficient conditions for a fault to produce a failure. Ferrari
et al. [43] summarized all the previously identified fault types and included three new
ones, which were all grouped according to the AO features they are related to. In
addition, Ferrari et al. proposed a set of mutation operators to model instances of most
of identified fault types, including some related to exception handling code. However,
none of these authors detail the consequences of possible faults nor assessed the fault
density in the context of real systems. Regarding bug patterns in AO programs, Zhang
and Zhao [40] presented a set of general bug patterns for AO programs based on the
AspectJ language. The authors stated that a bug pattern is a “recurring relationship
between potential bugs and explicit errors in a program.” However, the authors did
not conduct any observational study that could provide evidences of presence of the
proposed bug patterns. The bug patterns we present in this paper are specifically re-
lated to exception handling code in AO software and are based on recurring faults
found throughout a fine-grained analysis of a set of AO applications.

8 Concluding Remarks

This paper presented a quantitative study to evaluate the impact of aspects on the
exception control flow of programs. We selected a set of three systems that were
implemented in Java and AspectJ. For two of these systems two different releases
were investigated. After that, we compared all versions of the systems in terms of the
number of uncaught exceptions, exceptions caught by subsumption, and exceptions
caught with specialized handlers. In all the AspectJ versions, we observed an increase
in the number of uncaught exceptions and a decrease in the number of exceptions
caught with specialized handlers. Such increase was less significant in AJHotdraw
due to the fact that it was built through a well defined set of refactoring steps [21],
and most of the aspects are composed by intertype declarations. We performed sys-
tematic code inspection of each exception path to find out what caused such negative
discrepancies in AspectJ releases. The bug patterns identified came from three

232 R. Coelho et al.

sources: aspects acting as handlers, aspects as exception signalers, and misuses of the
declare soft construct. This paper also presents a catalogue of bug patterns that
characterizes a set of recurring program anomalies found on the exception handling
code of AspectJ programs. Our findings indicate that mechanisms of AO languages
negatively affect the robustness of exception-aware software systems. As a result,
there is a need for both improving the design of exception handling mechanisms in
AO programming languages and building static analysis tools and testing techniques
tailored to improve the reliability of the error handling code in AO programs. We are
currently working on an extension of AspectJ [5] to improve modularity and robust-
ness of exception handling. We are also currently evolving our exception flow analy-
sis tool to support automatic finding of the bug patterns catalogue in this paper.

Acknowledgements. This research was partially sponsored by: CAPES (grants No.
3548-06-6 and 653-07-1);FAPERJ (grant No. E-26/100.061/06);FAPESP (grant No.
05-55403-6);EC Grant AOSD-Europe-European Network of Excellence on AOSD
(IST-2-004349);EC Grant AMPLE - Aspect-Oriented, Model-Driven Product Line
Engineering (IST-33710);and LatinAOSD/CNPq-Prosul project.

References

1. Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Black, A.P. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005)

2. Allen, E.: Bug patterns in Java, 2nd edn. Apress (2002)
3. Assessing the Impact of Aspects on Exception Flows: An Empirical Study,

http://www.inf.puc-rio.br/~roberta/aop_exceptions
4. Cabral, B., Marques, P.: Exception Handling: A Field Study in Java and.NET. In: Ernst, E.

(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 151–175. Springer, Heidelberg (2007)
5. Cacho, N., Castor Filho, F., Garcia, A., Figueiredo, E.: EJFlow: Taming Exceptional Con-

trol Flows in Aspect-Oriented Programming. In: Proc. of AOSD 2008 (2008)
6. Castor Filho, F., Cacho, N., Figueiredo, E., Maranhão, R., Garcia, A., Rubira, C.: Excep-

tions and Aspects: The Devil is in the Details. In: 13th ACM SIGSOFT (2006)
7. Castor Filho, F., Garcia, A., Rubira, C.: Extracting Error Handling to Aspects: A Cook-

book. In: ICSM 2007 (2007)
8. Clifton, C., Leavens, G.T.: Observers and Assistants: A Proposal for Modular Aspect-

Oriented Reasoning. In: Workshop on Foundations of Aspect Languages (2002)
9. Figueiredo, E., et al.: Evolving Software Product Lines with Aspects: An Empirical Study

on Design Stability. In: Proc. of ICSE 2008 (2008)
10. Fu, C., Milanova, A., Ryder, B.G., Wonnacott, D.: Robustness Testing of Java Server Ap-

plications. IEEE Trans. Software Engineering 31(4), 292–311 (2005)
11. Fu, C., Ryder, B.G.: Exception-Chain Analysis: Revealing Exception Handling Architec-

ture in Java Server Applications. In: ICSE 2007, pp. 230–239. ACM Press, New York
(2007)

12. Garcia, A., et al.: A Comparative Study of Exception Handling Mechanisms for Building
Dependable Object-Oriented Software. Journal of Systems and Software 59(6), 197–222
(2001)

13. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C.J.P., von Staa, A.:
Modularizing Design Patterns with Aspects: A Quantitative Study. In: AOSD 2005, pp. 3–
14 (2005)

 Assessing the Impact of Aspects on Exception Flows: An Exploratory Study 233

14. Greenwood, P., et al.: On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 176–200.
Springer, Heidelberg (2007)

15. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ. In:
OOPSLA 2002, pp. 161–173. ACM Press, New York (2002)

16. JHotDraw as Open-Source Project (accessed 19/12/2007), http://www.jhotdraw.
org/

17. Jo, J., Chang, B., Yi, K., Choe, K.: An Uncaught Exception Analysis for Java. Journal of
Systems and Software 72(1), 59–69 (2004)

18. Katz, S.: Aspect Categories and Classes of Temporal Properties. In: Rashid, A., Aksit, M.
(eds.) Transactions on Aspect-Oriented Software Development I. LNCS, vol. 3880, pp.
106–134. Springer, Heidelberg (2006)

19. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying Aspect Advice Modularly. In: FSE
2004, pp. 137–146. ACM Press, New York (2004)

20. Lippert, M., Lopes, C.: A Study on Exception Detection and Handling Using Aspect-
Oriented Programming. In: Proc. of ICSE 2000, pp. 418–427. ACM Press, New York
(2000)

21. Marin, M., Moonen, L., van Deursen, A.: An Integrated Crosscutting Concern Migration
Strategy and its Application to JHotDraw. In: SCAM 2007, pp. 101–110. IEEE Comp.
Soc, Los Alamitos (2007)

22. McCune, T.: Exception Handling Antipatterns (2006) (accessed 19/12/2007),
http://today.java.net/pub/a/today/006/04/06/exception-handling-antipatterns.html

23. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: AOSD 2003, pp. 90–99
(2003)

24. Miller, R., Tripathi, A.: Issues with Exception Handling in Object-Oriented Systems. In:
Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 85–103. Springer,
Heidelberg (1997)

25. Molesini, A., Garcia, A., Chavez, C., Batista, T.: On the Quantitative Analysis of Archi-
tecture Stability in Aspectual Decompositions. In: WICSA 2008 (2008)

26. Rashid, A., Chitchyan, R.: Persistence as an Aspect. In: AOSD 2003, pp. 120–129 (2003)
27. Rinard, M., Salcianu, A., Bugrara, S.: A Classification System and Analysis for Aspect-

Oriented Programs. In: FSE 2004, pp. 147–158. ACM Pres, New York (2004)
28. Robillard, M., Murphy, G.: Static Analysis to Support the Evolution of Exception Struc-

ture in Object-Oriented Systems. ACM Trans. Softw. Eng. Methodol. 12(2), 191–221
(2003)

29. Robillard, M., Murphy., G.: Analyzing Exception Flow in Java Programs. In: Nierstrasz,
O., Lemoine, M. (eds.) ESEC 1999 and ESEC-FSE 1999. LNCS, vol. 1687, pp. 322–337.
Springer, Heidelberg (1999)

30. Robillard, M., Murphy., G.: Designing Robust Java Programs with Exceptions. In: Proc. of
FSE 2000, pp. 2–10. ACM Press, New York (2000)

31. Soares, S., Borba, P., Laureano, E.: Distribution and Persistence as Aspects. Software
Practice and Experience 36(7), 711–759 (2006)

32. The Soot Framework (accessed 19/12/2007) (2007), http://www.sable.mcgill.
ca/soot

33. The AspectJ Project (accessed 19/12/2007) (2007), http://www.eclipse.org/
aspectj/

34. van Dooren, M., Steegmans, E.: Combining the Robustness of Checked Exceptions with
the Flexibility of Unchecked Exceptions Using Anchored Exception Declarations. In:
Proc. of OOPSLA 2005, pp. 455–471. ACM Press, New York (2005)

234 R. Coelho et al.

35. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development. Ad-
dison-Wesley, Reading (2005)

36. Bruntink, M., Deursen, A., Tourwé, T.: Discovering faults in idiom-based exception han-
dling. In: ICSE 2006, pp. 242–251 (2006)

37. Alexander, R.T., Bieman, J.M., Andrews, A.A.: Towards the Systematic Testing of As-
pect-Oriented Programs. Report CS-04-105, Dept. of Computer Science, Colorado State
University, Fort Collins/Colorado - USA (2004)

38. Ceccato, M., Tonella, P., Ricca, F.: Is AOP Code Easier or Harder to Test than OOP
Code? In: Proc. of WTAOP 2005 (2005)

39. Bækken, J.S.: A Fault Model for Pointcuts and Advice in AspectJ Programs. Master’s the-
sis, School of Electrical Engineering and Computer Science, Washington State University,
Pullman/WA - USA (2006)

40. Zhang, S., Zhao, J.: On Identifying Bug Patterns in Aspect-Oriented Programs. In: Proc. of
COMPSAC 2007, pp. 431–438. IEEE Computer Society, Los Alamitos (2007)

41. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: ECOOP (1997)

42. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering - An Introduction. Kluwer Academic Publishers, Dordrecht
(2000)

43. Ferrari, F.C., Maldonado, J.C., Rashid, A.: Mutation Testing for Aspect-Oriented Pro-
grams. In: Proc. of ICST 2008. IEEE Computer Society Press, Los Alamitos (2008)

UpgradeJ: Incremental Typechecking
for Class Upgrades

Gavin Bierman1, Matthew Parkinson2, and James Noble3

1 Microsoft Research Cambridge
2 University of Cambridge

3 Victoria University of Wellington

Abstract. One of the problems facing developers is the constant evolution of
components that are used to build applications. This evolution is typical of any
multi-person or multi-site software project. How can we program in this environ-
ment? More precisely, how can language design address such evolution? In this
paper we attack two significant issues that arise from constant component evo-
lution: we propose language-level extensions that permit multiple, co-existing
versions of classes and the ability to dynamically upgrade from one version of
a class to another, whilst still maintaining type safety guarantees and requiring
only lightweight extensions to the runtime infrastructure. We show how our ex-
tensions, whilst intuitive, provide a great deal of power by giving a number of
examples. Given the subtlety of the problem, we formalize a core fragment of our
language and prove a number of important safety properties.

1 Introduction

Modern programming languages typically provide support for separate compilation and
dynamic linking of components. This allows for code to be developed at multiple sites
and shared across multiple applications, supporting code evolution and reuse. Program-
mers can build applications from these components, utilizing the runtime infrastructure
to dynamically link in the components as required.

Experience has shown that this style of software construction is extremely fragile:
because both context code and components evolve independently, there are few guar-
antees a program will actually “run anywhere”—or even typecheck—when linked dy-
namically against the motley collections of components found in most installed systems.
There are many instances of this problem—commonly known as “DLL hell” or more
recently “JAR hell”—servlet engines that depend on different, incompatible versions of
XML libraries; web tools that rely on rendering engines from specific versions of open-
source web browsers, so upgrading the browsers breaks the associated tools; language
runtimes that depend on exact versions of ActiveX code support and so on.

A number of solutions to this problem have been proposed, ranging from third-
party tools, particular programming patterns, centralized management systems (e.g.
RPM [4]), dynamic, reflective package infrastructures (e.g. OSGi [21]), to runtime ar-
chitectural support (e.g. .NET and JVM). Most of these solutions are external to the
application itself, and place a burden on the runtime infrastructure. Rather than solving
the problem of evolving and incompatible programs and components, they just move
it sideways, into tools, middleware, or external policies that allow flexible bindings but

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 235–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

236 G. Bierman, M. Parkinson, and J. Noble

make few guarantees about the compatibility between a program and the components
to which it may be bound.

In this paper, we aim to tackle the problem of program and component upgrading and
evolution head-on, giving control to the programmer. Rather than having implicit rules
about how programs can be bound, we make component versions explicit: every class
and type in the program has a version number. We provide language support for up-
grading classes in a variety of ways, and provide an assymetrical, incremental (but not
iterative) type system that checks upgrades for consistency with the currently-running
program. This enables us to be explicit about component compatibility; to give guaran-
tees about which changes to classes are at least type safe (and which are not); and so to
write code that is robust against multiple upgrades of the same component.

Having decided on language support for upgrading, an immediate question is at what
level of granularity do we provide such support? Unfortunately, many issues concerning
programming in the large are still being resolved for Java-like languages, e.g. witness
the ongoing discussions on providing modules for Java [28]. In this paper we address
upgrading in the small rather than in the large.

In any case, we argue that upgrading of classes is the essence of the problem—
even if language support is eventually provided at some higher level, matters will still
boil down to class definitions in Java-like languages. As we shall see, this is a highly
non-trivial problem. The issues of correctness are subtle enough that we believe that
a precise approach is essential, and required prior to any implementation or software
engineering issues.

The conceptual contribution of this paper is embodied in the design of UpgradeJ,
a Java-like language with support for type-safe dynamic class upgrading. We extend
classes to have explicit version numbers, e.g.

class Button[1] extends Widget[1] {
Font[1] font = new Font[1=]();
Colour[2] colour = new Colour[3+]();

}

and types declare the versions of classes they will accept (the font field stores ob-
jects compatible with Font version 1, while the colour field stores Colour instances
compatible with version 2). Then, new expressions also include version numbers with
the class names, but in addition they include information about instances’ upgradeabil-
ity. Hence the new Font object instance will remain fixed at version 1, whilst the new
Colour object will be version 3 but may be upgraded later. (The exact behaviour of
these annotations will be explained in more detail in §2 and formalized precisely in §4.)

Programmers can also request instances of the most evolved version of a particular
class. For example, given:

Colour[3] latest = new Colour[3++]();

the instance actually stored in latest will be the most evolved version of Colour
version 3 at object creation time. Moreover, it may be subsequently upgraded.

UpgradeJ then allows classes to be updated with newer versions dynamically. There
are a number of ways that this could be supported; but for simplicity we model up-
grading with upgrade statements of the form: upgrade. When an upgrade statement is
executed the program will be upgraded if any suitable upgrades are available.

UpgradeJ: Incremental Typechecking for Class Upgrades 237

Not all upgrades make sense, or can be supported trivially. The technical contribution
of the paper is exactly how we enforce the safe upgrading of classes to be incremental—
so that any class declaration is only ever typechecked once—whilst ensuring that an
upgrade can never break the type safety of a running program.

Compared to some previous work, the focus of UpgradeJ is on what we call class
upgrading: adding in new classes to a running system, and performing minor or major
upgrades of existing classes. Unlike many other approaches, UpgradeJ does not perform
any kind of object or instance upgrading. In other words we never alter a runtime object,
just perhaps its behaviour. As a result, we expect that the features of UpgradeJ should
be able to be implemented efficiently: each class or method definition is checked only
once when first presented to the system; and UpgradeJ never requires any (expensive)
traversals, inspections or bulk modifications of the heap. Indeed, our aim in this paper
is to explore the design space of upgrading mechanisms that are strictly less powerful
than object updates, although we argue in §6 that object updating could be implemented
in UpgradeJ by combining class upgrades with a couple of reflective primitives. For
similar reasons of practicality, we do not consider any kind of functional correctness
between upgrades: we work only with types, and not with behavioural specifications.

The rest of the paper is organized as follows. We give an extensive, examples-driven
introduction to the support for class upgrades in UpgradeJ in §2, beginning with sup-
port for class versions, then describing three different kinds of upgrades: new class
upgrades that introduce new subclasses; revision upgrades that change the code of ex-
isting classes; and evolution upgrades that extend existing classes (but do not change
existing instances). In §3 we consider a more realistic example and show how UpgradeJ
can be used to dynamically upgrade a long-running server application. In §4 we give
a precise definition of a featherweight version of UpgradeJ, FUJ, and define formally
its type system and operational semantics. We can prove that FUJ is type-sound. We
discuss related and future work in §5 before concluding in §6.

2 An Introduction to UpgradeJ

Explicit versions and new class upgrades: UpgradeJ extends Java syntactically by re-
quiring all class names (other than Object by convention) to be annotated by a version
number in square brackets after the class name.1 For example:

class Button[1] extends Object {
Object press() { ... }
}
class AnimatedButton[1] extends Button[1] {
Object fancyPress() { ... this.press(); ... }
}

UpgradeJ programs can include upgrade statements, written upgrade. When an up-
grade statement is executed, the program waits to receive an upgrade (this could be via
a command prompt or from a file). The upgrade is typechecked and if correct is applied
to the program. Having explicit upgrade statements allows programmers to control the
timing of upgrades to the application. UpgradeJ supports three forms of upgrade that
we shall now discuss in turn.

1 One can imagine tool support that would alleviate the burden of writing version numbers.

238 G. Bierman, M. Parkinson, and J. Noble

The simplest form of upgrade supported by UpgradeJ is called a new class upgrade.
It allows new class definitions to be added (at runtime) to the class table. For clarity,
a new class upgrade is written as a class definition prefixed with the keyword new. To
differentiate upgrades from standard code in this paper, we present them in a shaded
box. For example, in the example above the class AnimatedButton[1] could have
been defined via a new class upgrade as follows:

new class AnimatedButton[1] extends Button[1] {
Object fancyPress() { ... this.press(); ... }
}

UpgradeJ will typecheck the upgrade in the context of the current program state: if
the tests pass, then the current program is upgraded to include the new definitions. An
important design feature of UpgradeJ is that typechecking of upgrades is incremental,
that is, only the new definitions in the upgrade are typechecked. Old definitions are
never re-checked: the typechecker will check the correctness of each class definition
only once (either when supplied as part of the initial program, or when it arrives as an
upgrade).

At this point there is no way an UpgradeJ program can use any classes introduced
by a new class upgrade: references from old classes to new classes will fail because the
old classes will have been typechecked before the upgrades arrive: we call this the “no
time travel” principle. As we shall see later, new class upgrades are still very useful as
they allow new code to be installed; other upgrade forms will allow this code to be put
to work.

Revision upgrades: Returning to our simple button example, let’s imagine that Button
has also a method bgColourwhich returns the colour of their background. For example,
the first version of Button was clearly written around 1990:

class Button[1] extends Object {
Object press(){ ... }
Colour bgColour() { return new BeigeColour[1](); }
}

By the mid-90s, these buttons have begun to look dated. In UpgradeJ we can use
a revision upgrade to provide a revision of an existing class to fix this problem. The
revision upgrade is written as follows:2

new class Button[2] extends Object revises Button[1]{
Object press(){...}
Colour bgColour() { return new GreyColour[1](); }
}

To allow upgrades to affect running programs, we provide new forms of instantia-
tion. As in Java, objects are created by calling new, however in UpgradeJ programmers
must supply both a version number for the class and an annotation of either ‘+’ to de-
note an upgradeable instance or ‘=’ to denote a non-upgradeable (or exact) instance.

2 Actually, this is sugar for two primitive UpgradeJ upgrades: first, a new class upgrade
introducing the class Button[2], and second, a revises statement Button[2] revises
Button[1]. Our formalization in §4 uses these primitive forms.

UpgradeJ: Incremental Typechecking for Class Upgrades 239

For example, new Button[2=]() creates a new instance of Button[2], the = ensures
that the object will have the exact version 2 (in other words, if the Button class is
subsequently upgraded this instance is insensitive to those upgrades). By contrast, up-
gradeable objects take advantage of all revisions as soon as they are supplied: after a
revision upgrade, any methods sent to an upgradeable object will execute the revised
method definitions.

For example, we can create two instances of Button[1], one exact and one upgrade-
able, both of which will have a beige background. Then, we can execute an upgrade
statement (whose effect is to revise Button[1] to Button[2] as above), and ask each
button for its bgColour. The exact button object will still return a BeigeColour in-
stance, while the upgradeable button will return GreyColour.

Button[1] x = new Button[1=](); // exact
Button[1] u = new Button[1+](); // upgradeable
x.bgColour(); // returns BeigeColour
u.bgColour(); // returns BeigeColour

upgrade; // Button[2] revises Button[1]

x.bgColour(); // returns BeigeColour
u.bgColour(); // returns GreyColour

One point to note here is that the types of the variables storing the buttons are the
same — both are just Button[1]. This is because every class introduced as a revision
upgrade, just as every class introduced as a new class upgrade, is a subtype of the class
being upgraded. A type like Button[1] will accept any Button[1] (as per usual);
any subclass of Button[1] (defined either in the initial program or supplied via a new
class upgrade); and any other upgrade of Button[1].3 We discuss supporting exact
annotations on types later in this section.

As fashions change, we can upgrade again:

new class Button[3] extends Object revises Button[2]{
Object press(){ ... }
Colour bgColour() { return new TransparentAquaColour[1](); }
}

Multiple upgrades can be hard to follow, so we draw class diagrams showing version
numbers explicitly, and revision relationships with a wavy arrow. The three versions of
the Button class that we have defined so far are shown as follows:

Object

+press() : Object
+bgColour() : Colour

Button[2]

+press() : Object
+bgColour() : Colour

Button[1]

+press() : Object
+bgColour() : Colour

Button[3]

3 UpgradeJ supports explicit syntax for this. In fact, Button[1] is shorthand for Button[1+].

240 G. Bierman, M. Parkinson, and J. Noble

To support the dynamic behaviour of upgradeable objects, however, UpgradeJ must
place some restrictions on the bodies of revision upgrades: the classes must have the
same name, the upgrade cannot revise a class that has already been revised, and (most
importantly) the resulting revised class must have exactly the same fields and method
signature as the class it is revising, and implement every interface. By the method
signature of a class, we mean all the methods and their types that are understood by
objects of that class, including inherited methods. Hence, the methods themselves need
not reside in the same class; this allows for refactoring by upgrades (see later).

So, for example,

new class Button[4] extends Object revises Button[2] { ... }

is an invalid upgrade if Button[2] has already been revised to Button[3]; and

new class Button[5] extends Object revises Button[3] {
...
Integer transparency;
Integer setTransparency(Integer t){...}
...
}

is invalid because it includes a new field and a new method to the Button class.
The restrictions on version numbers and names are primarily there to make the type

names consistent. The linear ordering on revisions (only the latest revision can itself be
revised) is important to support upgradeable objects: there is a simple, nonbranching
sequence of revisions, the latest revision of a class is always obvious, and so it’s clear
which methods an upgradeable object should run.

The restriction that the resulting revised class must have exactly the same fields and
method signature means that revised classes can change method bodies, and omit or
override methods declared concretely in ancestor classes. This restriction is necessary
to support the incremental nature of UpgradeJ, and to avoid any heap inspection. A
revision cannot add (or remove) fields from an object, because that would require the
heap representation of every upgradeable object to be changed. Methods cannot be
added into a class because they cannot be checked incrementally. We do not expect
these restrictions to be too arduous in practice because they reflect the intent of revision
upgrades: to revise an existing class, not to introduce new functionality.

Evolution upgrades: New class upgrades allow new fields and methods to be defined,
but require a new class to be created: existing instances cannot take advantage of the
upgrade. On the other hand, revision upgrades take immediate effect across all upgrade-
able instances of the class, but cannot add fields and methods. The final type of upgrade
supported by UpgradeJ is the evolution upgrade that is, in some sense, a combination
of the other two upgrade forms.

Evolution upgrades may add new methods and fields, but do not update existing
objects. Rather, evolution upgrades are supported by another form of new, written
new C[v++]() that creates an upgradeable object of the latest evolution of a class—in
effect, doing a dynamic dispatch from a class to its most recent evolution upgrade.

UpgradeJ: Incremental Typechecking for Class Upgrades 241

Returning to our simple button example, we can add “2007” design and animation
features to the button class with an evolution upgrade:4

new class Button[6] extends Object evolves Button[3]{
Integer animationRate;
void tick() {this.redraw(); }
Colour bgColour() { return new VistaBlackColour[1](); }
...
}

Writing new Button[1++] will create a new instance of the latest revision of the
latest evolution upgrade of the Button[1] class.

Button[1] e = new Button[1++]();
e.bgColour(); // returns TransparentAquaColour

upgrade; // Button[6] evolves Button[3]
e.bgColour(); // returns TransparentAquaColour

e = new Button[1++](); // latest creation
// now Button[6] is the latest kind of button

e.bgColour(); // returns VistaBlackColour

Note that this example demonstrates that, unlike revision upgrades, evolution up-
grades do not upgrade the behaviour of existing instances. As with other upgrades, the
types of the variables do not need to change; every upgrade is still a subtype of its target
class; a variable at version n will be compatible with every subsequent version of that
class.

There are restrictions on evolution upgrades. Whereas revision upgrades must pre-
serve the same fields and method signatures of the revised class, evolution upgrades
can extend both. Thus the new version of the class must include the fields and method
signatures of the old version, but it can add new fields and new methods.

We also introduce a diagrammatic form for evolution upgrades. We introduce an
evolution relationship between classes which is denoted using a “sawtooth” arrow (this
is intended to symbolize the breaking change possible with an evolution upgrade). For
example:

+press() : Object
+bgColour() : Colour

Button[3]

+press() : Object
+bgColour() : Colour
+tick() : void

-animationRate : Integer
Button[6]

Revision, Evolution, and Inheritance: UpgradeJ has three different relationships be-
tween classes: the traditional inheritance relationship (that can be extended with new
class upgrades), plus the revision and evolution relationships introduced to support up-
grades. How do these relationships interact?

First, UpgradeJ permits a single class to have both revision and evolution upgrades.
For example, consider the following definitions, where C[1] is revised by C[2] and, in
addition, evolved into C[3]:

4 Again, we use some syntactic sugar: this evolution upgrade can be decomposed into a new
class upgrade and an evolves statement (in this case Button[6] evolves Button[3]).

242 G. Bierman, M. Parkinson, and J. Noble

class C[1] {
void v() { print "one"; }

}

new class C[2] revises C[1] {
void v() { print "two"; }

}
new class C[3] evolves C[1] {
void v() { print "three"; }

}

giving the following class structure:

+v() : void

C[2]

+v() : void

C[1]

+v() : void

C[3]

There are three forms of object creation in UpgradeJ: (1) exact creation giving a fixed
object; (2) creating an upgradeable object (that follows the revises relationship); and
(3) creating an upgradeable object of the latest version (that follows both the evolves
relationship and then the revises relationship):

new C[1=]().v(); // outputs "one"
new C[1+]().v(); // outputs "two"
new C[1++]().v(); // outputs "three"

Second, inheritance (the extends relationship) interacts quite straightforwardly with
upgrades. Message sends to upgradeable objects always take account of revision up-
grades (while sends to exact objects always ignore them) so upgradeable objects also
see revisions to their superclasses:

new class D[2] extends C[1] {}

new D[2=]().v(); // outputs "one"
new D[2+]().v(); // outputs "two"

while new class and evolution upgrades will only affect message sending if instances of
their classes are involved directly.

Refactoring: As revision upgrades are required to preserve only the fields and method
signatures of the classes they revise, we can move methods around the hierarchy using
a combination of revision and evolution or new class upgrades. The key here is that pro-
vided a revised class has the same signatures and fields as the target class it is revising,
the two classes need have no other relationship. Given a couple of simple classes:

UpgradeJ: Incremental Typechecking for Class Upgrades 243

class Component[1] { }
class Button[1] extends Component[1] {
TLevel getTransparencyLevel(){...}
}

We can evolve the Component superclass to define a getTransparencyLevel()
method, and then revise the Button subclass to inherit that method from the new su-
perclass, and so removing the method from the subclass.

new class Component[2] evolves Component[1] {
TLevel getTransparencyLevel(){...}

}

new class Button[2] extends Component[2] revises Button[1] { }

The resulting structure is shown below: note that, because we use a revision upgrade
upon the Buttons, this change will apply dynamically to every upgradeable instance of
Button[1].

Component[1]

Button[2]

+getTransparencyLevel() : TLevel

Button[1]

+getTransparencyLevel() : TLevel

Component[2]

Exact version types: Sometimes programmers will need to restrict their code to a par-
ticular version of a class. For example, for historical or aesthetic reasons, a programmer
might wish to write a BeigeWindow class that only uses the first beige version for its
Buttons:

class BeigeWindow[1] extends Window {
Button[1=] okButton, cancelButton;
...

}

To prevent the fields okButton and cancelButton from receiving more recent ver-
sions, we use exact version types declared with an “=” modifier.

An exact version type is compatible with only one (or a list of) explicit version(s):
versions of the type outside that list are not subtypes of the exact version type. (The
relationship between exact version types and version types is the same as that be-
tween exact types and subtypes in object-oriented languages [9]). An exact version
type is assignable only from another exact type or an exact object creation. Hence,
okButton = new Button[2]();would fail to typecheck, as Button[2] is not a sub-
type of the exact version type Button[1=], but only of the non-exact type Button[1].

In fact, our UpgradeJ language design supports a list of versions in exact types, and
also allows that list to be open ended. For example, if it was known that the Button[3]
upgrade introduced a bug that was subsequently removed by the Button[5] upgrade, a
variable safeButton could be declared as: Button[1=,2=,5] safeButton; permit-
ting exact Button objects of versions 1 and 2, and any exact or upgradeable Buttons

244 G. Bierman, M. Parkinson, and J. Noble

of version 5 or above to be stored in the variable but not the buggy Button[3] or
Button[4].

Exact types, even more than exact objects, reduce the flexibility of software which
uses them: we expect that they would be used sparingly, primarily to avoid bugs in
particular versions of components. This is why the default for type declarations is that
the types are upgradeable, and why exact types require the “=” annotation. Nevertheless,
we expect there will be situations where programmers will demand that only a particular
version of a component is used to build a system, and exact version types provide this
guarantee.

Summary: UpgradeJ introduces a number of novel features to Java-like programming
languages: explicit versions of classes, fixed version and upgradeable version objects,
an upgrade statement, new class, revision, and evolution upgrades, and exact version
types.

The following table summarizes the relationships between the main features of Up-
gradeJ: the kinds of upgrades versus the kinds of objects and constructor calls.

Upgrade Type
New Class Revision Evolution

Class Definitions: Redefine existing method bodies N/A yes yes
Add new fields yes no yes
Add new methods yes no yes

Creation: Exact new C[1=] no no no
Upgradeable new C[1+] no yes no
Latest new C[1++] no yes yes

Method invocation: Exact T[1=,2=] no no no
Upgradeable T[1] no yes no

Revision and evolution upgrades may redefine methods (give new method bodies
such that the resulting flattened class signature does not change), while only new class
and evolution upgrades may declare new fields or methods. Creating an exact object
“new C[1=]” sees no upgrades, while creating an upgradeable object “new C[1+]”
sees revision upgrades and using latest creation “new C[1++]” creates an instance of
the most recent revision of the most recent extension. Methods sent to exact objects
again see no revisions, while methods sent to upgradeable objects see revision updates.

Finally (not shown in the table), exact version types are subtypes only of the exact
versions given in the type, while all subsequent versions of a type (both exact and not-
exact) are subtypes of earlier non-exact versions of that type.

3 Example: Upgrading a Server Application

In this section we present a fairly realistic example of the upgrading of a long-lived
server application. This example first appeared in a functional programming setting in
work on dynamic software updating by Bierman et al. [5] (although updates in that set-
ting required a run-time typecheck of the entire program state). To make the example
simpler, we ignore the issues of concurrency and assume a single-threaded, event-based
software architecture. In order to save space, we also only give the essential code frag-
ments to illustrate our point, rather than giving a full program.

UpgradeJ: Incremental Typechecking for Class Upgrades 245

Initial system: The code for our server is given below. The key class is Server which
contains a private field, myQ, containing a queue of events, e.g. HTTP requests from
clients or responses from handlers. (We do not give details of the Queue class for lack
of space.) New events are created by the NewEvent method, which either enqueues the
event and returns, or blocks if the queue is empty and no new events have occured. Once
an event occurs, then it is removed from the head of the queue using the removemethod.
All events extend the Event class, which specifies a handle method. We assume for
now just two events; get_Event and upgrade_Event (the programmer has forgotten
about put events; this will be added later). The upgrade_Event simply executes an
upgrade statement and leaves the event queue untouched. This enables the server to
be upgraded. Note that after this upgrade has taken place, the next statement is the
recursive call to loop, i.e. no remaining computation exists at this point.

class Event[1]{
void handle (Queue[1] q);
}
class get_Event[1] extends Event[1]{
void handle (Queue[1] q){ ... }
}
class upgrade_Event[1] extends Event[1]{
void handle (Queue[1] q){ upgrade; }
}
class Server[1]{
Queue[1] myQ = new Queue[1]();
void newEvent(){...}
void loop(){
newEvent(); // Enqueues new event
Event[1] e = (Event[1])myQ.remove(); // remove head of myQ
e.handle(myQ);
loop();
}
}

The code for the main method of our application then simply creates an upgradeable
instance of the Server class and invokes its loop method, as follows.

Server[1] s = new Server[1+](); // Upgradeable object!
s.loop(); // Do the work

First upgrade: Handling put events: As mentioned earlier, the programmer has for-
gotten about put events. These are easy to add to the system dynamically using new
class and revision upgrades. First, we use a new class upgrade (by sending an upgrade
event to the server) to add the new class put_Event.

new class put_Event[1] extends Event[1]{
void handle (Queue[1] q){ ... }

}

We will also need to change the code of the newEvent method, as it will need to
create instances of the put_Event class. As the signature of this method will be un-
changed, this can be captured by a revision upgrade. We add the new revised class

246 G. Bierman, M. Parkinson, and J. Noble

Server[2] which is identical to Server[1] save for the new code in the newEvent
method.

new class Server[2] revises Server[1] {
Queue[1] myQ = new Queue[1]();
void newEvent(){ ... } //NEW CODE!
void loop(){
newEvent(); //Enqueues new event
Event[1] e = (Event[1])myQ.remove();

// remove head of myQ
e.handle(myQ);
loop();
}

}

Now the original instance of Server[1] will invoke the new code for the newEvent
method the next time it enters loop.

Second upgrade: Adding a log: Now we consider a much more disruptive upgrade
to our system: adding a log to the server and requiring that all events update the log
when they are handled. First we need to change the Event class as follows (the classes
get_Event, put_Event and upgrade_Event must also be changed accordingly).

new class Event[2] evolves Event[1] {
void handle (Queue[1] q, Log[1] l);

}

Note that this is an evolution upgrade: the signature of the events has changed. We also
need an evolution upgrade to the Server class, as follows.

new class Server[3] evolves Server[2] {
Queue[1] myQ = new Queue[1]();
Log[1] myLog = new Log[1]();
void newEvent(){ ... }
void handOver(Queue[1] q){ myQ=q; loop(); }
void logv1Event(Event[1] e){ ... }
void loop(){
newEvent(); //Enqueues new event
Object e = myQ.remove();
if (e instanceof Event[2])
(Event[2])e.handle(myQ,myLog);

else {
e.handle(myQ);
logv1Event(e);

}
loop();
}

}

This new version of the Server class has a new field, myLog to contain the system
log. It also contains a new method, logv1Event to enable the logging of a Event[1]
object. The body of the loop method is similar except that we now need to inspect each

UpgradeJ: Incremental Typechecking for Class Upgrades 247

event to see if it can log itself or not. The handOver method will be more apparent
after the next revision upgrade. (Note here the use of co-existing revision and evolution
upgrades.)

new class Server[2.1] revises Server[2]{
Queue[1] myQ = new Queue[1]();
void newEvent(){ ... }
void loop(){
Server[3] s = new Server[3+]();
s.handOver(myQ);
}

}

This revision upgrade of Server[2] changes only the body of the loop method. Recall
that after the upgrade event the next call is to the latest revision of the loop method.
Hence our original (version 1) instance of Server will invoke the loop method defined
in version 2.1. This loop method now simply creates a fresh Server[3] object and
invokes its handOver method. The handOver method accepts the state from the old
Server object and executes the loop method of the Server[3] object. Hence we have
elegantly transitioned from an old to a new version of the server at runtime, whilst both
maintaining the state and guaranteeing type safety!

4 Formalizing UpgradeJ

Featherweight UpgradeJ (FUJ) is to UpgradeJ what other core calculi such as FJ [18]
and MJ [7] are to Java. It is a small, but expressive subset of the language that is used
to verify formal properties of the language. FUJ is slightly unusual in that it has an
extremely compact form, which facilitates a very simple operational semantics, how-
ever, it is as expressive as more familiar core calculi. It is important to note that FUJ
programs are syntactically correct UpgradeJ programs.

Syntax: The syntax of FUJ class definitions, types, field and method definitions, and
statements is defined as follows.

T, S, U ::= Type
C[v1=, . . . ,vn=] Version list type (n ≥ 1)
C[v+] Version range type

K, J, I ::= C[v=] Exact version type

R ::= Runtime type
C[v=] Exact type
C[v+] Upgradeable type

L ::= class I extends J{ T f; M } Class definitions

M ::= S m(T x){ B return y; } Method definition

B ::= T x; s Method block

248 G. Bierman, M. Parkinson, and J. Noble

t, s ::= Statement
x = y; Assignment
x = y.f; Field access
x.f = y; Field update
x = y.m(z); Method invocation
x = (T)y Cast
if(x == y){s} else {t} Equality test
if(x instanceof I){s} else {t} Instance test
x = new C[v=](); Object creation
x = new C[v+](); Object creation
x = new C[v++](); Object creation
x = new Object(); Object creation
upgrade; Upgrading

Z ::= Upgrade definitions
new L New class upgrade
C[v=] revises C[w=] Revision upgrade
C[v=] evolves C[w=] Evolution upgrade

In the syntax rules we assume a number of metavariables: f ranges over field names,
C over class names, m over method names, v, w over versions,5 and x, y, z over program
variables. We assume that the set of program variables includes a designated variable
this, which cannot be used as an argument to a method. We follow FJ and use an
‘overbar’ notation to denote sequences.

FUJ types are ranged over by S, T, U and can be either an exact version type, of
the form C[v=], or a version list type, written C[v1=, . . . ,vn=], or a version range
type, written C[v+]. To simplify some definitions we use the metavariables I and J
to range over exact version types. As with FJ, for simplicity we do not include any
primitive types in FUJ. In FUJ there is a special exact version class Object[1=] which
we abbreviate to Object. We do not allow this class to be revised or evolved, so it
remains the root of the inheritance hierarchy.

A FUJ class definition, L, contains a collection of field and method definitions. For
simplicity, in this paper we shall not consider constructor methods; they do not compli-
cate the treatment of versioning and we simply model that fields are initialised to null.
A field is defined by a type and a name. A method definition, M, is defined by a return
type, a method name, an ordered list of arguments—where an argument is a variable
name and a type—a method block, B, and a return statement.

The real economy of FUJ is that we do not have any syntactic forms for expressions
(or even promotable expressions [7]), and that the forms for statements are syntactically
restricted. All expression forms appear only on the right-hand side of assignments.
Moreover expressions only ever involve variables. In this respect, our form for state-
ments is reminiscent of the A-normal form for λ-terms [17]. A statement, s, is either
an assignment, a field access, a field update, a method invocation, a cast, an instance
conditional, an object creation, or an upgrade statement. In spite of the heavy syntactic
restrictions, we have not lost any expressivity; it is quite simple to translate FJ or MJ

5 Purely for presentational simplicity, versions are restricted to be integers.

UpgradeJ: Incremental Typechecking for Class Upgrades 249

programs into FUJ. Another advantage of our approach is that we have no need for the
‘stupid’ rules of FJ.

In FUJ we assume a rather large amount of syntactic regularity to make the defini-
tions compact. All class definitions must (1) include a supertype; (2) start with all the
declarations of the variables local to the method (hence a method block is a sequence of
local variable declarations, followed by a sequence of statements); (3) have a return
statement at the end of every method; and (4) write out field accesses explicitly, even
when the receiver is this.

A FUJ upgrade is either a new class upgrade (which consists of a class definition
prefixed with a newmodifier) or a revision upgrade (which is of the form I revises J)
or an evolution upgrade (which is of the form I evolves J).

Class table and subtyping: Following FJ, we take an FUJ program to be a pair (CT , B)
of a class table CT and a method block B. This method block corresponds to the main
method. As we are interested in upgrading the class table it cannot be assumed to be
fixed and implicit as in FJ.

A FUJ class table, CT , is a triple 〈C, revises, evolves〉. The first component is
a map from exact version types to class definitions. The second and third are relations
between exact version types. We use some shorthand and write CT � I � {T f; M} and
CT � I extends J where C(I) = class I extends J{ T f; M }. We also write I ∈
dom(CT) to mean I ∈ dom(C). We write CT � I revises J when (I, J) ∈ revises,
and similarly CT � I evolves J when (I, J) ∈ evolves. The revises and evolves
relations are initially empty and are incremented by the action of upgrade definitions.

By looking at a class table, we can read off a subtype relation between types. We
write CT � S <: T when S is a subtype of T given the class table CT . This relation
is slightly more complicated than for FJ because we have three relations between types
(extends, revises and evolves) and also support version list and version range types. The
rules for forming valid subtyping judgements are defined as follows.

v= ∈ w
[ST-In]

CT � C[v=] <: C[w]

CT � C[v=] revises C[w=]
[ST-RevRng]

CT � C[v=] <: C[w+]

CT � C[v=] evolves C[w=]
[ST-EvRng]

CT � C[v=] <: C[w+]

CT � S <: T CT � T <: U
[ST-Trans]

CT � S <: U

CT � C[v=] revises C[w=]
[ST-RngRng1]

CT � C[v+] <: C[w+]

CT � C[v=] evolves C[w=]
[ST-RngRng2]

CT � C[v+] <: C[w+]

CT � C[v=] extends I
[ST-Rng]

CT � C[v+] <: I

CT � C[v=] extends I
[ST-Ex]

CT � C[v=] <: I

CT � C[v1=] <: T · · ·CT � C[vn=] <: T
[ST-List]

CT � C[v1=, . . . ,vn=] <: T

Correctness conditions: Unlike in normal fragments of Java where correctness con-
ditions on the class table are so routine that they are traditionally omitted [18], they
are essential in formalizing UpgradeJ. In some senses they are the very essence of

250 G. Bierman, M. Parkinson, and J. Noble

UpgradeJ as the class table can be changed at runtime and all upgrade checks are made
with reference to the class table. In other words an upgrade should not be able to com-
promise type safety.

The first correctness condition we impose is a well-formedness property on the three
relations in the class table.

Definition 1. � CT wfr iff

1. ∀S, T. If CT � S <: T and CT � T <: S then T = S,
2. ∀K, I, J. If CT � K extends I and CT � K extends J then I = J, I ∈

dom(CT) and K ∈ dom(CT),
3. ∀K, I, J. If CT � I revises K and CT � J revises K then I = J, I ∈ dom(CT)

and K ∈ dom(CT), and
4. ∀K, I, J. If CT � I evolves K and CT � J evolves K then I = J, I ∈ dom(CT)

and K ∈ dom(CT).

Condition (1) ensures that the subtyping relation induced by the class table does not
include cycles. Condition (2) reflects the fact that UpgradeJ supports only single inher-
itance. Analogously, UpgradeJ only supports single revision (3) and single evolution
(4). Note that this does not preclude a class being both revised and evolved.

The next two correctness conditions we impose are on the revises and evolves
relations.

Definition 2.

1. CT � J revises I ok iff fields(CT , I) = fields(CT , J) and methSig(CT , I) =
methSig(CT , J)

2. CT � J evolves I ok iff fields(CT , I) ⊆ fields(CT , J) and methSig(CT , I) ⊆
methSig(CT , J)

(The auxiliary functions fields and methSig are defined in Figure 1.)

These correctness conditions for the upgrade relations formalize the discussions of §2.
Thus a class J revises a class I if (i) the fields are identical, and (ii) the method sig-
natures are identical. Notice that this does not force class J itself to have the same
methods as class I; just that they support the same methods (possibly inherited from
other classes). This allows us to support the refactoring upgrades described in §2.

The correctness rule for an evolution upgrade is similar but more permissive, as it
allows the evolved class to have more fields and a larger method signature.

We can now give the overall correctness condition for a class table.

Definition 3. � CT = 〈C, revises, evolves〉 ok iff

1. � CT wfr,
2. ∀I ∈ dom(C).CT � I ok,
3. ∀I, J.(I, J) ∈ revises =⇒ CT � I revises J ok, and
4. ∀I, J.(I, J) ∈ evolves =⇒ CT � I evolves J ok.

Informally, a class table is correct if (1) the class table relations are well-formed, (2)
every class definition in the class table is correct (the formal definition of this is given
later in this section), and (3-4) the revises and evolves relations are correct (in the sense
of Defn. 2).

UpgradeJ: Incremental Typechecking for Class Upgrades 251

Fields:

fields(CT , Object)
def
= ∅

fields(CT , I)
def
= {T f} ∪ fields(CT , J) where CT � I � {T f; M}

and CT � I extends J
Field lookup:

ftype(CT , I, f)
def
= T where CT � I � {S g;T f;U h; M}

ftype(CT , I, f)
def
= ftype(CT , J, f) where CT � I � {S g; M}, f �∈ g,

and CT � I extends J

ftype(CT , C[v+], f)
def
= ftype(CT , C[v], f)

ftype(CT , C[v1, . . . vn], f)
def
= ftype(CT , C[v1], f)

Method type lookup:
mtype(CT , I, m)

def
= T→ S where CT � I � {U f; M},

and S m(T x){ B return y; } ∈ M

mtype(CT , I, m)
def
= mtype(CT , J, m) where CT � I � {U f; M}, m �∈ M,

and CT � I extends J

mtype(CT , C[v+], m)
def
= mtype(CT , C[v], m)

mtype(CT , C[v1, . . . vn], m)
def
= mtype(CT , C[v1], m)

Method body lookup:

mbody(CT , C[v=], m)
def
= x.B return y; where CT � C[v=] � {U f; M},

and S m(S x){ B return y; } ∈ M
def
= mbody(CT , I, m) where CT � C[v=] � {U f; M}, m �∈ M̄,

CT � C[v=] extends I

mbody(CT , C[v+], m)
def
= mbody(CT , I+, m) where CT � I revises C[v=]
def
= x.B return y; where ∀I.¬(CT � I revises C[v=]),

and CT � C[v=] � {U f; M},
and S m(S x){ B return y; } ∈ M.

def
= mbody(CT , J+, m) where ∀I.¬(CT � I revises C[v=])

and CT � C[v=] � {U f; M},
and m �∈ M,
and CT � C[v=] extends J

Method signature:

methSig(CT , Object)
def
= ∅

methSig(CT , I)
def
= {m : mtype(CT , I, m)}m∈M ∪methSig(CT , J)
where CT � I � {U f; M}, and CT � I extends J

Latest version:

latest(CT , J)
def
= latest(CT , I) if CT � I evolves J
def
= latest(CT , I) if CT � I revises J, and ∀K.¬(CT � K evolves J)
def
= J otherwise

Fig. 1. Auxiliary functions

252 G. Bierman, M. Parkinson, and J. Noble

Typing rules: The typing rules for statements are given below where a typing environ-
ment Γ is a finite map from variables to types.

CT � S <: T
[T-Assign]

CT ; Γ, x : T, y : S � x = y; ok

CT � ftype(CT , S, f) <: T
[T-FAccess]

CT ; Γ, x : T, y : S � x = y.f; ok

CT � S <: ftype(CT , T, f)
[T-FAssign]

CT ; Γ, x : S, y : T � y.f = x; ok
[T-New1]

CT ; Γ, x : Object � x = new Object(); ok

CT � C[v] <: T
[T-New2]

CT ; Γ, x : T � x = new C[v=](); ok

CT � C[v+] <: T
[T-New3]

CT ; Γ, x : T � x = new C[v+](); ok

CT � C[v+] <: T
[T-New4]

CT ; Γ, x : T � x = new C[v++](); ok

CT � S <: T CT � S <: R
[T-DCast]

CT ; Γ, x : T, y : R � x = (S)y; ok

CT � R <: S CT � S <: T
[T-UCast]

CT ; Γ, x : T, y : R � x = (S)y; ok
[T-Upgrade]

CT ; Γ � upgrade; ok

CT ; Γ � s ok CT ; Γ � t ok CT � S <: T or CT � T <: S
[T-If]

CT ; Γ, x : S, y : T � if(x == y){s} else {t} ok

CT ; Γ � s ok CT ; Γ � t ok CT � T <: S or CT � S <: T
[T-IfInst]

CT ; Γ, x : S � if(x instanceof T){s} else {t} ok

mtype(CT , S, m) = T1 → U
CT � T0 <: T1 CT � U <: V [T-Invoke]

CT ; Γ, x : V, y : S, z : T0 � x = y.m(z); ok

These rules are pretty routine. The remaining typing rules for statement sequences,
method blocks, method definitions, and class definitions are similarly straightforward
and are as follows.

CT ; Γ � s1 ok · · · CT ; Γ � sn ok

CT ; Γ � s1 · · · sn ok

CT ; Γ, x : T � s ok

CT ; Γ � T x;s ok CT � Object ok

Γ
def
= x : T, this : I CT ; Γ � B ok CT � Γ (y) <: S CT � I extends J

If mtype(CT , J, m) = T1 → S1 then T1 = T and S1 = S

CT � S m(T x){ B return y; } in I ok

CT � I � {T f; M} CT � I extends J CT � J � {S g; N} f ∩ g = ∅ CT � M in I ok

CT � I ok

Operational Semantics: We define the operational semantics of FUJ in terms of la-
belled transitions between configurations (where l ranges over the labels). A configura-
tion is a four-tuple, written (CT , S, H, s), where CT is a class table, S is a stack which
is a function from program variables to values, H is a heap which is a function from

UpgradeJ: Incremental Typechecking for Class Upgrades 253

object identifiers to heap objects, and s is a sequence of statements that represents the
code that is being executed. Because of the restricted syntactic form of FUJ we do not
need the evaluation contexts of FJ [18] or the frame stacks and scopes of MJ [7]. The
operational semantics are given in Figure 2.

The transition rules are fairly routine; the ones of interest are those dealing with ob-
ject creation, method invocation and upgrades. The rule for creating a non-upgradeable
object creates an object with a runtime type C[v=] and the rule for creating a revision
upgradeable instance produces an object with a runtime type C[v+]. The rule dealing
with creating a evolution upgradeable instance (new C[v++]) is a little more subtle.
First we use the auxiliary function latest to discover the latest version of type C[v=],
which is, say, I. We then create an upgradeable instance of type I. We write this type
I+, where (C[v=])+ is defined to be C[v+].

The rule for method invocation uses the auxiliary function mbody to return the body
of method m for an object whose runtime type is R. The definition of mbody is given in
Figure 1. Its behaviour is dependent on the runtime type of the object. If it is an exact
type, then mbody behaves as it does for FJ. If the runtime type is C[v+], then we look to
see if the class has been revised. If there has been a revision, then we recursively search
the revision. If there have been no revisions to the class and the method is implemented
in class C[v=] then we use this implementation. If class C[v=] does not implement the
method and there has not been a revision then we recursively search the superclass of
C[v=].

We have also included the transition rules that deal with erroneous situations, e.g.
null pointer invocation. Rather than introduce exceptions we follow MJ [7] and define
a number of “stuck states”.

Now we consider the upgrade transition rules. We label the transition with the up-
grade definition in the familiar way [27]. Each of the transition rules for upgrades must
extend the CT while ensuring that the subtype relation is a partial order (Defn. 1.1).
Each transition rule builds on the following lemma to ensure this.

Lemma 1. If R is a partial order, ¬(xRy) and ¬(yRx), then (R ∪{(x, y)})∗ is also a
partial order.

We consider the three ‘upgrade’ transition rules in turn.
Semantics of new class upgrades First we check that the new class has not already
been defined. If it hasn’t then we first add the definition to the class table (we use the
shorthand CT � L to mean that the map from class names to definitions is updated) and
then check that the class definition is type correct. (It must be added first to allow for
recursive uses of the class in its definition.)

The transition rule embodies the following property that follows from the definition
of the typing rules.

Lemma 2. If � CT ok, I ∈ dom(CT), CT ′ def= CT � class I extends J{ U f; M }
and CT ′ � I ok, then � CT ′ ok.

Semantics of revision upgrades First we need to check that the revision upgrade will
not introduce any cycles in the inheritance graph. Assuming that it does not we then
check that the revision upgrade is type correct. Finally we extend the class table with
this revision (we use the shorthand CT � (J revises I) to mean that the class table’s
revises relation is extended with the pair (J, I).)

254 G. Bierman, M. Parkinson, and J. Noble

(CT , S, H, x = y;s) −→ (CT , S[x �→ S(y)], H, s)

(CT , S, H, x = y.f;s) where S(y) = o and H(o) = 〈 , F 〉
−→ (CT , S[x �→ F (f)], H, s)

(CT , S, H, x.f = y;s) where S(x) = o and H(o) = 〈R, F 〉 and F ′ def
= F [f �→ S(y)]

−→ (CT , S, H[o �→ 〈R, F ′〉], s)
(CT , S, H, x = (T)y;s) where S(y) = o, H(o) = 〈R, F 〉, and CT � R <: T.
−→ (CT , S[x �→ o], H, s)

(CT , S, H, if(x == y){s} else {t} u)
−→ (CT , S, H, s u) if S(x) = S(y)
−→ (CT , S, H, t u) otherwise

(CT , S, H, if(x instanceof T){s} else {t} u)
−→ (CT , S, H, s u) if S(x) = o, H(o) = 〈R, F 〉, and CT � R <: T
−→ (CT , S, H, t u) otherwise

(CT , S, H, x = new Object();s) where fields(CT , Object) = T f, o /∈ dom(H),
−→ (CT , S[x �→ o], H ′, s) and H ′ def

= H[o �→ 〈Object, {f �→ null〉}]
(CT , S, H, x = new C[v=]();s) where fields(CT , C[v=]) = T f, o /∈ dom(H),
−→ (CT , S[x �→ o], H ′, s) and H ′ = H[o �→ 〈C[v=], {f �→ null}〉]

(CT , S, H, x = new C[v+]();s) where fields(CT , C[v=]) = T f, o /∈ dom(H),
−→ (CT , S[x �→ o], H ′, s) and H ′ = H[o �→ 〈C[v+], {f �→ null}〉]

(CT , S, H, x = new C[v++]();s) where latest(CT , C[v=]) = I, fields(CT , I) = T f,
−→ (CT , S[x �→ o], H ′, s) o /∈ dom(H), and H ′ def

= H[o �→ 〈I+, {f �→ null〉}]
(CT , S, H, x0 = y0.m(z0);s) where S(y0) = o, H(o) = 〈R, F 〉,
−→ (CT , S′, H, (Bσ) x0 = (yσ);s) mbody(CT , R, m) = x.B return y;,

(y1, z1) ∩ dom(S) = ∅, σ = [this, x := y1, z1],
and S′ = S[y1, z1 �→ S(y0), S(z0)]

(CT , S, H, upgrade;s) where L = class I extends J{ U f; M }
new L−−−−→ (CT ′, S, H, s) I �∈ dom(CT), CT ′ def

= CT � L and CT ′ � I ok

(CT , S, H, upgrade;s) where ¬(CT � I <: J), ¬(CT � J <: I)
I revises J−−−−−−−→ (CT ′, S, H, s) CT � I revises J ok, ¬∃K(CT � K revises J) and

CT ′ def
= CT � (I revises J)

(CT , S, H, upgrade;s) where ¬(CT � I <: J), ¬(CT � J <: I)
I evolves J−−−−−−−→ (CT ′, S, H, s) CT � I evolves J ok, ¬∃K(CT � K evolves J) and

CT ′ def
= CT � (I evolves J)

(CT , S, H, x = y.f;s)
(CT , S, H, y.f = x;s)
(CT , S, H, x = y.m(z);s)

⎫⎬⎭ −→ (CT , S, H, NPE) where S(y) = null

(CT , S, H, x = (T)y;s) −→ (CT , S, H, CCE) where S(y) = o, H(o) = 〈R, F 〉 and CT �� R <: T

Fig. 2. Operational semantics of FUJ

This transition rule embodies the following property that follows from the definition
of the typing rules.

Lemma 3. If � CT ok, ¬(CT � I <: J), ¬(CT � J <: I), ¬∃K(CT � K revises J),
CT � I revises J ok and CT ′ def= CT � (I revises J), then � CT ′ ok.

UpgradeJ: Incremental Typechecking for Class Upgrades 255

Semantics of evolution upgrades This transition is similar to that for revision upgrades
except that it involves the evolves relation. It embodies the following property.

Lemma 4. If � CT ok, ¬(CT � I <: J), ¬(CT � J <: I), ¬∃K(CT � K evolves J),
CT � I evolves J ok and CT ′ def= CT � (I evolves J), then � CT ′ ok

Type soundness: One advantage of our formal approach is that we are able to prove
important safety properties of our system. The most fundamental property is type sound-
ness: this means that the upgrades permitted by the FUJ transition rules do not compro-
mise the underlying language-based security system of Java-like languages. In this sec-
tion we give only an outline of the proof of this property; the somewhat routine details
can be found elsewhere [6].

As is familiar with type soundness proofs [31] we need to both extend the notion of
typing to FUJ configurations (Γ � (CT , S, H, s) ok) in the obvious way and to prove
various weakening lemmas; the most interesting of which is the following.

Lemma 5 (Class table weakening). If CT ⊆ CT ′, � CT ′ ok and Γ � (CT , S, H,
s) ok, then Γ � (CT ′, S, H, s) ok.

We can then prove that the transition rules preserve type correctness as follows.

Lemma 6 (Type preservation). If Γ � (CT , S, H, s) ok, � CT ok, and (CT , S, H, s)
l−→ (CT ′, S′, H ′, s′), then there exists Γ ′ such that Γ ′ � (CT ′, S′, H ′, s′) ok and
� CT ′ ok.

Proof. For most transition rules the proof is identical to that for pure MJ [7]. The new
cases are to handle the upgrade definitions. The type preservation of these three transi-
tion rules is essentially given by Lemmas 2, 3 and 4.

Finally we can prove that an well-typed configuration is either a value, stuck or can
make a transition.

Lemma 7 (Progress). If Γ � (CT , S, H, s) ok then either s ≡ ε (ε denotes an empty

sequence), or s ≡ NPE, or s ≡ CCE or ∃l. (CT , S, H, s) l−→ (CT ′, S′, H ′, s′).

5 Future and Related Work

Future work: Clearly there is much work still to be done; a fuller description is given
elsewhere [6]. In the interests of space we simply record some initial thoughts on im-
plementation and on object-level updating.

We do not yet have an implementation of UpgradeJ, although we are currently de-
signing a prototype based on Java. We propose a series of annotations on classes and
types (@version() to specify an upgradeable version, @exact() for an exact version,
and @latest() for latest version creation) and plan to produce a basic pluggable type
checker to implement the type system [2]. Then, we expect that typechecked UpgradeJ
programs will be translated and executed on a JVM using HotSwap6 to implement the

6 http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

256 G. Bierman, M. Parkinson, and J. Noble

upgrading. As part of this process, however, we use the annotations on classes and types
to drive bytecode rewritings to create several JVML classes and interfaces for each Up-
gradeJ class, and use name mangling to encode versions into JVML typenames.

For each UpgradeJ class we create two JVML classes, one for exact instances of the
class, and one for variable instances — this means we do not need any extra per-object
storage to distinguish between exact and upgradable objects. New class and evolution
upgrades are implented by using HotSwap to bring in new classes, while revision up-
grades additionally overwrite the upgradeable versions of the classes that are being
revised. The duplicate hierarchies means we get the effect of the two behaviours of the
mbody lookup functions without having to change the standard JVM lookup. Methods
can be removed where necessary by replacing them with calls to super; exact and up-
gradeable objects are created by instantiating the appropriate class; and latest creation
requires a reflexive call to implement the dynamic lookup for the most recent upgrade.

Finally, to translate exact and upgradeable types, we also produce two JVML in-
terfaces for each UpgradeJ class, one for each unitary exact type, and one for each
upgradeable type: variables are declared as the appropriate interface, and each JVML
class we produce implements the interfaces appropriate to its type; we also produce a
single JVML interface to represent exact version set types. This means that most of the
UpgradeJ runtime type structure is also encoded in JVML types, but where necessary
(exact version set types) we use bytecode rewriting and casts.

We have carefully restricted UpgradeJ to provide class upgrading rather than ob-
ject updating: UpgradeJ does not require any heap inspection. Given class upgrading,
however, it is interesting to consider how little additional support is required to provide
object updates. Runtime support for a heap lookup primitive (FIND) and updating indi-
vidual objects (value assignments “:=”, or Smalltalk’s “one way become”) are sufficient
for programmers to implement object updates in a library:

while ((Button[2] b = FIND Button[2])!=null) {b := Button[4](b.x, b.y);}

This code example searches for instances of Button[2] (assuming FIND returns a
random instance of that class) and replaces them with new Button[4] instances. To
preserve type safety, the r-value must be a subtype of the l-value (as usual in assign-
ment), and the assignment needs to check that the l-value is quiescent (that is, check the
stack so that the target object is nowhere bound to “this”). The return value could be
tested to check the success of the update, but in this case, if an object is not updated it
will presumably be returned sometime later from FIND.

Related work: A full comparison with related work is impossible given the space
constraints—here we atttempt to provide the surrounding context for UpgradeJ. Up-
gradeJ supports multiple co-existing versions; an idea from our earlier work on up-
dating ML-like modules [5]. By moving to an object-oriented setting we have found
different problems, in particular, how upgrading and inheritance can be combined; how
classes can be upgraded without heap inspection; and how the latest version of a class
can be created.

The .NET architecture addresses versioning issues by allowing assemblies to contain
version information [22,10]. It allows multiple versions to be stored on a client and
lets the versioning policy select the correct version. It is unclear, however, that this
can deal with the different versions interacting, as it appears that each application can
only require one version of the code. The more recent OSGi framework [21] provides

UpgradeJ: Incremental Typechecking for Class Upgrades 257

stronger support for multiple versioning and updating, allowing bundles to be loaded,
updated, and unloaded dynamically, and supporting multiple versions of classes within
the same VM. Like .Net, however, OSGi does not have a formal model of version type
safety: we hope that FUJ could in the future provide the basis for such a model.

Closely related to versioning is dynamic linking. Dynamic linking also allows late
updates to code to occur. Drossopoulou et al. have studied dynamic linking in detail
[15,13,16]. They provide details of when linking errors will occur under changes of
class definitions, paying close attention to when different phases of the compilation
occur, such as field layout. In this paper we have remained at a level close to the source
code to avoid the problems they highlight. To avoid directly compiling versions into
the code, one might like to consider a versioned variant of polymorphic bytecode [1],
which is an extension to Java bytecode that allows more flexible linking at run-time.

UpgradeJ’s revision upgrades have some similarity to various forms of object re-
classification; for example, Kea [19], Predicate Classes [11] and Fickle [14]. Compared
with UpgradeJ, these systems are much more flexible: classes can move around the hi-
erarchy (implicitly based on values of instance variables in Kea and Predicate classes,
or via an explicit reclassification operation in Fickle), and can gain or lose fields de-
pending on that classification. In contrast, UpgradeJ supports revision upgrades taking
objects to higher versions without affecting memory layout, and new class and evolution
upgrades that can introduce new fields but do not affect existing classes. All UpgradeJ
upgrades are “one way” operations: our “no time travel” principle means that upgraded
objects can never be downgraded to previous versions.

Object-level updating has also been studied in depth. Techniques that search-and-
replace objects on the heap via user-supplied update functions are well known, but
generally rely on dynamic checks; CLOS, for example, directly supports class redefini-
tion and allows programmers to update individual instances in various ways [26]. Some
recent research has investigated how objects can be updated in a typesafe manner. For
example, Boyapati et al. describe how ownership types can assist in updating aggregate
objects in object-oriented databases [8].

More prosaically, the idea of incrementally defining and updating the classes rather
than the objects is also not new. The earliest Smalltalk systems were in practice main-
tained by passing around “goodies”— patches that could affect multiple classes [23].
Modular Smalltalk propsed an explicit class extension construct to support this [30].
More recently, systems like Changeboxes [20] have supported dynamic extensions to
systems, with relatively flexible mechanisms for describing potential changes and run-
time support for multiple coexisting versions. All these systems are checked dynami-
cally, of course, whereas UpgradeJ is checked statically.

UpgradeJ’s dynamic lookup over the revises and extends relationships has
some commonality with the two-dimensional inheritance hierarchies found e.g. in New-
tonScript [25]. The key difference here is that NewtonScript’s secondary hierarchy fol-
lows interface widget’s composition structure, while our secondary hierarchy follows
dynamically upgraded versions of classes.

Open Classes [12] and Expanders [29] also allow new methods and fields to be added
to pre-existing classes. Both these systems have restrictions to ensure unambiguous
typesafe module composition which prevent replacing existing methods. In contrast, we
can revise any method, and avoid ambiguity via incremental typechecking. Moreover,
UpgradeJ allows classes to be upgraded at runtime.

258 G. Bierman, M. Parkinson, and J. Noble

Zenger [32] takes a different approach to the versioning problem. He proposes an
extension of Java with an extensible module system, which allows modules to be up-
graded. The main advantage of our work is that it does not require such a big leap from
the original programming language.

A number of functional languages provide varying support for versioning and up-
grading. Most notably, Erlang [3] is an untyped, first-order language that supports con-
currency and module-level upgrading, but not multiple versions of the same module.
Acute [24] is an extension of OCaml that has a rich set of version constraints and poli-
cies intended for distributed programming. It is interesting future work to see if similar
support is possible in the UpgradeJ setting.

6 Conclusions

Programs, especialy long running, widely distributed programs, are no longer mono-
lithic. Programs need to be upgraded with new features, new classes, and new meth-
ods even while they continue running. Previous work has focused on how to trans-
late objects in the heap, in a type-safe and version-consistent way. This paper takes
a different approach: in order to have a lightweight mechanism no heap update is ap-
plied, and assumptions on versions are made explicit. UpgradeJ supports class upgrades
directly—adding new classes, revising existing classes, and evolving classes to incom-
patible versions—and typechecking is purely incremental. We hope UpgradeJ will pro-
vide a useful conceptual model of the core problems of software upgrading, and that it
may inspire future language designs.

References

1. Ancona, D., Damiani, F., Drossopoulou, S., Zucca, E.: Polymorphic bytecode: Composi-
tional compilation for Java-like languages. In: Proceedings of POPL (2005)

2. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing plug-
gable type systems. In: Proceedings of OOPSLA (2006)

3. Armstrong, J., Virding, R., Wikstrom, C., Williams, M.: Concurrent programming in Erlang.
Prentice-Hall, Englewood Cliffs (1996)

4. Bailey, E.: Maximum RPM. Sams (1997)
5. Bierman, G., Hicks, M., Sewell, P., Stoyle, G.: Formalizing dynamic software updating. In:

Proceedings of USE (2003)
6. Bierman, G., Parkinson, M., Noble, J.: UpgradeJ: Incremental typechecking for class up-

grades. Technical Report 716, University of Cambridge Computer Laboratory (2008)
7. Bierman, G., Parkinson, M., Pitts, A.: MJ: An imperative core calculus for Java and Java

with effects. Technical Report 563, University of Cambridge Computer Laboratory (2004)
8. Boyapati, C., Liskov, B., Shrira, L.: Lazy modular upgrades in persistent object stores. In:

Proceedings of OOPSLA (2003)
9. Bruce, K.B., Foster, J.N.: LOOJ: Weaving LOOM into Java. In: Proceedings of ECOOP

(2004)
10. Buckley, A.: A model of dynamic binding in.NET. In: Proceedings of FTfJP (2005)
11. Chambers, C.: Predicate classes. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707.

Springer, Heidelberg (1993)
12. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: Modular open classes and

symmetric multiple dispatch for Java. In: Proceedings of OOPSLA (2000)

UpgradeJ: Incremental Typechecking for Class Upgrades 259

13. Drossopoulou, S.: Towards an abstract model of Java dynamic linking, loading and verifica-
tion. In: Proceedings of TIC (2000)

14. Drossopoulou, S., Damiani, F., Dezani, M., Giannini, P.: FickleII more object reclassifica-
tion. ACM Transactions on Programming Languages and Systems 24(2) (2002)

15. Drossopoulou, S., Eisenbach, S., Wragg, D.: A fragment calculus—towards a model of sep-
arate compilation, linking and binary compatibility. In: Proceedings of LICS (1999)

16. Drossopoulou, S., Lagorio, G., Eisenbach, S.: Flexible models for dynamic linking. In:
Degano, P. (ed.) ESOP 2003 and ETAPS 2003. LNCS, vol. 2618. Springer, Heidelberg (2003)

17. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with continua-
tions. In: Proceedings of PLDI (1993)

18. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and
GJ. ACM Transactions on Programming Languages and Systems 23(3), 396–450 (2001)

19. Mugridge, W.B., Hamer, J., Hosking, J.G.: Multi-methods in a statically-typed program-
ming language. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072. Springer, Heidelberg
(2001)

20. Nierstrasz, O., Denker, M., Gı̂rba, T., Lienhard, A.: Analyzing, capturing and taming soft-
ware change. In: Proceedings of the Workshop on Revival of Dynamic Languages (2006)

21. OSGi Alliance. About the OSGi service platform (November 2005), http://osgi.org
22. Pratschner, S.: Simplifying deployment and solving DLL hell with the .NET framework

(2001), http://msdn.microsoft.com
23. Putz, S.: Managing the evolution of Smalltalk-80 systems. In: Smalltalk-80: Bits of History,

Words of Advice. AW (1984)
24. Sewell, P., Leifer, J., Wansbrough, K., Allen-Williams, M., Zappa Nardelli, F., Habouzit, P.,

Vafeiadis, V.: Acute: High-level programming language design for distributed computation.
Design rationale and language definition. Technical Report 605, University of Cambridge
Computer Laboratory (October 2004)

25. Smith, W.R.: Using a prototype-based language for user interface: The Newton project’s
experience. In: Proceedings of OOPSLA (1995)

26. Steele, G.: Common Lisp the Language. Digital Press (1990)
27. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis mutandis: Safe and pre-

dictable dynamic software updating. In: Proceedings of POPL (2005)
28. Strniša, R., Sewell, P., Parkinson, M.: The Java module system: core design and semantic

definition. In: Proceedings of OOPSLA (2007)
29. Warth, A., Stanojević, M., Millstein, T.: Statically scoped object adaptation with expanders.

In: Proceedings of OOPSLA (2006)
30. Wirfs-Brock, A., Wilkerson, B.: An overview of Modular Smalltalk. In: Proceedings of OOP-

SLA (1988)
31. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information and Compu-

tation 115(1), 38–94 (1994)
32. Zenger, M.: Programming Language Abstractions for Extensible Software Components. PhD

thesis, EPFL, Switzerland (2004)

Integrating Nominal and Structural Subtyping

Donna Malayeri and Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{donna, aldrich}@cs.cmu.edu

Abstract. Nominal and structural subtyping each have their own strengths and
weaknesses. Nominal subtyping allows programmers to explicitly express de-
sign intent, and, when types are associated with run time tags, enables run-time
type tests and external method dispatch. On the other hand, structural subtyping
is flexible and compositional, allowing unanticipated reuse. To date, nearly all
object-oriented languages fully support one subtyping paradigm or the other.

In this paper, we describe a core calculus for a language that integrates the
key aspects of nominal and structural subtyping in a unified framework. We have
also merged the flexibility of structural subtyping with statically typechecked ex-
ternal methods, a novel combination. We prove type safety for this language and
illustrate its practical utility through examples that are not easily expressed in
other languages. Our work provides a clean foundation for the design of future
languages that enjoy the benefits of both nominal and structural subtyping.

1 Introduction

In a language with structural subtyping, a type U is a subtype of T if its methods and
fields are a superset of T ’s methods and fields. The interface of a class is simply its
public fields and methods; there is no need to declare a separate interface type. In a
language with nominal subtyping, on the other hand, U is a subtype of T if and only
if it is declared to be. Accordingly, structural subtyping can be considered intrinsic,
while nominal subtyping is declarative. Each kind of subtyping has its merits, but a
formal model has not been developed for a language that integrates the two subtyping
disciplines.

Structural subtyping offers a number of advantages. It is often more expressive than
nominal subtyping, as subtyping relationships do not need to be declared ahead of time.
It is compositional and intrinsic, existing outside of the mind of the programmer. This
has the advantage of supporting unanticipated reuse—programmers don’t have to plan
for all possible scenarios. Additionally, structural subtyping is often more notationally
succinct. Programmers can concisely express type requirements without having to de-
fine an entire subtyping hierarchy. In nominal systems, some situations may require
multiple inheritance or an unnecessary proliferation of types; in a structural system, the
desired subtyping properties just arise naturally from the base cases. Finally, structural
subtyping is far superior in contexts where the structure of the data is of primary im-
portance, such as in data persistent environments or distributed computing. In contrast,
nominal subtyping can lead to unnecessary versioning problems: if some class C is
modified to C′ (perhaps to add a method m), C′ objects cannot be serialized and sent to
a distributed process with the original definition C, even if C′ is a strict extension of C.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 260–284, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integrating Nominal and Structural Subtyping 261

As an example of the reuse benefits of structural subtyping, suppose class A has
methods foo(), a() and b(), and class B has methods foo(), x() and y(). Suppose
also that the code for A and B cannot be modified. In a language with structural sub-
typing, A and B share an implicit common interface { foo } and a programmer can
write code against this interface. But, in a language with nominal subtyping, since the
programmer did not plan ahead and create an IFoo interface and make A and B its
subtypes, there is no way to write code that takes advantage of this commonality (short
of using reflection). In contrast, with structural subtyping, if a class C is later added that
contains method foo(), it too will share this implicit interface. If a programmer adds
new methods to A, A’s interface type will change automatically, without the program-
mer having to maintain the interface himself. If B or C also contain these new methods,
the implicit combined interfaces will automatically exist.

Nominal subtyping also has its advantages. First, it allows the programmer to express
and enforce design intent explicitly. A programmer’s defined subtyping hierarchy serves
as checked documentation that specifies how the various parts of a program are in-
tended to work together. Second, explicit specification has the advantage of preventing
“accidental” subtyping relationships, such as the standard example of cowboy.draw()
and circle.draw(). Nominal subtyping also allows recursive types to be easily and
transparently defined, since recursion can simply go through the declared names. Third,
error messages are usually much more comprehensible, since, for the most part, every
type in a type error is one that the programmer has defined explicitly. Finally, nominal
subtyping enables efficient implementation of external dispatch.

External dispatch is provided by number of statically typed languages, such as Cecil
[6, 7], MultiJava [8], among others. External methods increase the flexibility and evolv-
ability of code because they do not fix in advance the set of methods of a class. Consider
the example of a class hierarchy that represents AST nodes. (This motivating example is
expanded further in Sec. 2.3.) Suppose this is part of a larger system, which includes an
IDE for editing elements represented by this AST. Now suppose a programmer wishes
to add new functionality to the IDE but cannot modify the original source code for the
AST nodes. The new function provides the capability to jump from one node to a node
that it references; this differs depending on what type of node is selected. Clearly, this
functionality cannot be written without code that somehow performs dispatch on the
AST class hierarchy.

In a language without external dispatch, the developer has limited choices. Usually,
she must resort to manually writing instanceof tests, which is tedious and error-
prone. In particular, if a new element is added to the AST hierarchy, the implementation
will not behave correctly.

If the developers of the original class hierarchy anticipated this need and imple-
mented the Visitor design pattern, it would then be easy to add new operations to the
hierarchy, but then it would be difficult to add new classes. At best, Visitor trades one
problem for another.

On the other hand, in a language with external dispatch, a programmer simply writes
an external method that dispatches on the AST class hierarchy (i.e., separate from
its code). External dispatch makes it easy to adapt existing code to new interfaces,
since new code can be added as an external method. Exhaustiveness checking rules for

262 D. Malayeri and J. Aldrich

external methods ensure that when a new class is added to the hierarchy, in the absence
of an inherited method, a new method must be added for that class.

Nominal subtyping enables efficient external dispatch since there is a name on which
to tie the dispatch. Additionally, if external dispatch were allowed on structural types,
the problem of accidental subtyping would be exacerbated, since overridden methods
would apply wherever there was a structural match. Further, ambiguity problems could
frequently arise, which would have to be manually resolved by the programmer. Con-
sider, for example, a method m defined on objects with a foo:int field. If m is also
later defined for objects with a bar:char field, m is now ambiguous—which method
is called for an object with both fields?

In our language, Unity, we sidestep this issue—nominal and structural subtyping are
integrated. This makes efficient external dispatch compatible with structural subtyping,
but also gives programmers the benefits of both subtyping disciplines. Nominal sub-
typing gives programmers the ability to express explicit design intent, while structural
subtyping makes interfaces easier to maintain and reuse.

Contributions. The contributions of this paper are as follows:

– A language design, Unity, that provides user-defined and structural subtyping re-
lationships in a novel and uniform way. Unity combines the flexibility of external
dispatch with the conceptual clarity of width and depth subtyping.

– A formalization of the design of Unity, along with proofs of type safety (Sec. 5).
– Examples that illustrate the expressiveness and flexibility of the language (Sec. 2),

We contrast Unity with other languages in Sec. 2.1.
– A case study (Sec. 3) and an empirical study of several Java programs (Sec. 4).

2 Motivating Examples

We give, by example, the intuition behind Unity and illustrate combining structural
subtyping with external methods. In Unity, an object type is a record type tagged with
a brand. Brands induce the nominal subtyping relation, which we call “sub-branding.”1

Brands are nominal in that the user defines the sub-brand relationship, like the subclass
relation in languages like Java, Eiffel, and C++.

When a brand β is defined, the programmer lists the fields that any objects tagged
with β will include. In other words, if the user defines the brand Point as having the
fieldss {x : int, y : int}, then any value tagged with Point must include at least the
labels x and y (with int type)—but it may also contain additional fields, due to record
subtyping. For instance, a programmer could create a colored point object with the
expression Point({x=0,y=1,color=blue}). Subtyping takes into account both the
nominal sub-brand relationship and the usual structural subtyping relationship (width
and depth) on records.

To integrate these two relationships, brand extension is constrained: the associated
field types must be subtypes. In other words, a brand β1 can be declared as a sub-brand

1 The name “brand” is borrowed from Strongtalk [3], which in turn borrowed it from Modula-3.

Integrating Nominal and Structural Subtyping 263

of β2 only if β1’s field type is a structural subtype of β2’s field type. As an example, sup-
pose the brand 3DPoint is defined as 3DPoint({x:int, y:int, z:int}). 3DPoint
can be declared as a sub-brand of Point, since {x:int,y:int, z:int} is a sub-record
of {x:int, y:int}. However, a brand 1DPoint({x:int}) cannot be a sub-brand of
Point (since it lacks the y field), nor can FloatingPoint(x:float,y:float}) (as-
suming float is not a subtype of int).

2.1 Example 1: A Window Toolkit

Fig. 1 contains a code excerpt for a windowing system and illustrates the novel features
of Unity. The built-in brand Top is the root of the brand hierarchy, like Object in Java.
To simplify the presentation, we include only the field title. ScrollBar is defined as
a type alias using the type syntax. By default, a window does not have a scrollbar. The
brands Textbox and StaticText extend Window, and also do not scroll by default.2

To add scrolling functionality, we have defined the function scroll, which oper-
ates on any Window (or sub-brand thereof) that has a getScrollBar() method. The
type Window({getScrollBar():ScrollBar}) classifies such an object. (We sup-
pose here that the implementation of scroll need only access the scrollbar field and
the fields of Window.) Note that the structural component of this type refers to another
structural type, ScrollBar; structural types may be arbitrarily nested.

Let us assume that in a non-scrolling textbox, the user can only enter a fixed num-
ber of characters. Consequently, we define the brand ScrollingTextbox in order to
change textbox functionality—in particular, the behavior when inserting a character.
The scroll function is applicable to ScrollingTextbox since it is automatically a
subtype of Window({getScrollBar():ScrollBar}).

In Unity, methods can be either internal (defined within a brand), or external (de-
fined outside the brand). To allow sound modular checking of external methods (see
Sec. 5), only internal methods are permitted to be abstract; external methods must
be concrete. The method insertChar has been defined as an external method. This
method is applicable to a Textbox or ScrollingTextbox that has a getCurrentPos
method. Textbox does not have an internal getCurrentPos method, so it has been
added as an external method. The method getCurrentPos, in turn, is only applicable
to a Textbox that has a pos:int field. This illustrates the structural constraints that
can be put on a method. For a method m, a programmer can specify a set of fields and
methods that must be present in m’s receiver.

Since a textbox that scrolls allows the user to enter more text than the window size
permits, a new sub-brand had to be defined so that its implementation of insertChar
could be overridden. If other sub-brands of Window (such as StaticText) do not need
to change their existing behavior when a scrollbar is added, no new sub-brands need be
defined. Scrolling functionality can be added to these types by including a ScrollBar
field and a getScrollBar()method, and the scroll function is then applicable.

This example demonstrates both the use of functions (i.e., lambda expressions), and
methods. The difference between the two is that functions do not perform dispatch (that

2 Note that all fields must be listed by the subtypes of Window; this design decision is merely to
simplify our core calculus.

264 D. Malayeri and J. Aldrich

abstract brand Window ({title : string}) extends Top
concrete brand Textbox ({title : string, text : string}) extends Window
concrete brand StaticText ({title : string, text : string}) extends Window
concrete brand ScrollingTextbox({title : string, text : string, s : ScrollBar};

method getScrollbar() : ScrollBar = this.s)
extends Textbox

type ScrollBar = Top(getMaximum():int, setMaximum(x:int) : unit,
getValue():int, setValue(x:int) : unit)

let scroll = λw : Window({getScrollBar() : ScrollBar}) .
... // code that performs the scrolling operation

method insertChar Textbox({getCurrentPos() : int}) : unit =
λc : char // insert a character only if it will fit in the window

method insertChar ScrollingTextbox({getCurrentPos() : int}) : unit =
λc : char // insert the character, scrolling if necessary

method getCurrentPos(Textbox({pos:int})) : int = ...

Subtyping relationships

Window ({title : string, s : ScrollBar}) ≤ Window ({title : string})
Textbox ({...}) ≤ Window ({title : string})
ScrollingTextbox ({. . . }) ≤ Textbox ({. . . })
ScrollingTextbox({...}) ≤ Window({title : string, s : ScrollBar})
StaticText({. . . }) ≤ Window ({title : string})
StaticText({..., s : ScrollBar}) ≤ Window(title : string, s : ScrollBar)

Fig. 1. Unity code for a windowing system. Nominal subtyping allows the brand
ScrollingTextbox to change the behavior of insertChar through tag dispatch, while struc-
tural subtyping allows the scroll function to apply to any window with an s : ScrollBar field.
ScrollBar is defined as a type alias using the type syntax. In the subtyping relationships, some
field names are elided with “. . . .”

is, they cannot be overridden), but they can be defined at any scope. Methods can be
overridden, but they can only be defined at the top-level.

These brand definitions induce subtyping relationships, shown below the code
listing in Fig. 1. Interestingly, ScrollingTextbox({. . .}) is a subtype of both
Window({getScrollBar():ScrollBar}) and of Textbox({. . .}), but we have
avoided both multiple inheritance and the problems typically associated with it. The
type Window({getScrollBar():ScrollBar}) is a conceptual interface that exists
without being named.

The example illustrates the two kinds of extensibility that Unity provides: structural
extensibility and brand extensibility.

Integrating Nominal and Structural Subtyping 265

Window

StaticText

ScrollingTextbox

Textbox

(a) The windowing example as
implemented in Unity. Depicted
here are the brands that must be
defined in order to obtain the de-
sired subtyping relationships.

IWindow

IScrollableWindow

ScrollingWindow

Window

ScrollingStaticText

StaticText

ScrollingTextbox

Textbox

(b) The same example implemented in Java.
Dashed rectangles are interfaces; solid rec-
tangles are classes. Dashed lines indicate the
implements relationship and solid lines indi-
cate extends.

Fig. 2. For the windowing example, the user-defined subtyping relationships necessary in Unity
vs. those necessary in Java

– Structural types can be used to create structural method constraints—methods
that an object must have in order to conform to that type. They can be also be used
to create a new type that adds fields to an existing brand, without defining new
behavior for the resulting type. So, a ScrollBar can be added to a StaticText
object without defining a new brand, as the existing functionality of the static text
box does not need to change if a scrollbar is added.

– Brand extension creates a new brand that can be used in dispatch; as a con-
sequence, programs can define new behavior for the newly defined brand. Here,
ScrollingTextbox is defined as an extension of Textbox because the behavior
of insertChar is different depending on whether or not the text box has a scroll-
bar attached to it. Design intent is preserved because whenever different behavior is
required (such as with Cowboy.draw() and Circle.draw()), nominal subtyping
must be used.

Additionally, we see here the synergy between structural subtyping and external dis-
patch. Structural subtyping can be used to specify the constraints of a method, and
external methods can be used to make existing brands conform to those constraints.

2.2 Comparison to Other Systems

Here we compare Unity to closely related systems. See Sec. 6 for other related work.

Java. In Java-like languages, expressing this example would be unwieldy. A common
way to express the necessary constraints would involve first defining two interfaces,
IWindow and IScrollableWindow. ScrollBar would also have to be an interface.

If a programmer wished to allow the possibility of adding a scrollbar to a window
class, even without changing any other functionality, he would have to define a sub-
class that also implemented IScrollableWindow. In this example, we would define

266 D. Malayeri and J. Aldrich

the classes ScrollingWindow, ScrollingTextbox, and ScrollingStaticText,
though only ScrollingTextbox needs to change any functionality; see the class di-
agram Fig. 2(b). Contrast this with the brand structure of the Unity program depicted
in Fig. 2(a). In Unity, only the types associated with dispatch need to be defined, in
contrast to Java.

The Java equivalent of the scroll function could be a static function of some helper
class and would take an object of type IScrollableWindow. Of course, if a program-
mer defined a new scrolling window class with the correct getScrollBar() method,
but forgot to implement IScrollableWindow, the scroll function could not be used
on objects of that class. (This situation often arises in Java programs, particularly when
one wishes to use library code, the developers of which are not even aware of the inter-
face that they should implement.)

There are other oddities in the Java version. The Java class ScrollingWindow is
semantically analogous to the Unity type Window(getScrollBar():ScrollBar),
but ScrollingTextbox and ScrollingStaticText are not subclasses of
ScrollingWindow, while the corresponding Unity types are subtypes of
Window(getScrollBar():ScrollBar). To have such subtyping relationships
would require multiple inheritance in a language like Java, while the Unity code works
with just single inheritance. This illustrates the lack of expressiveness that is inherent
in languages that require the programmer to name all relevant subtyping relationships.

Traits. A language with traits [25] would provide a much cleaner solution than that
of Java, but would still lack the expressiveness of Unity’s structural subtyping. This is
because traits are mainly designed to solve issues of implementation inheritance (espe-
cially multiple inheritance) that are largely orthogonal to the ones we are considering.
In this example, the same subtyping hierarchy would have to be created as in the Java
example, but the scroll function could be written for IScrollableWindow with the
appropriate dispatch. (A static method could always be written in Java, but it would
not perform dispatch on subtypes.) This would enable some code reuse, but would still
require creating a number of types.

Mixins. In a language with mixins [2], the programmer would create a mixin class
ScrollableWindow that consists of the fields of Window along with s : ScrollBar
and the code for the function scroll. The code for the ScrollableWindow would
then be mixed into StaticText to create a ScrollingStaticText and into Textbox
to create ScrollingTextbox. The behavior of insertCharwould then be specialized
for ScrollingTextbox.

With mixins, the same number of eventual classes would be created as in Java, but
creating them becomes easier because of mixin construction. In contrast with Unity,
the code for scroll cannot be reused unless the mixin ScrollableWindow is used,
which restricts its flexibility. This can pose a problem when interoperating with classes
that were created in isolation from the mixin. Mixins also require up-front planning;
methods and fields cannot be added after-the-fact.

Structural subtyping. Languages which support structural subtyping, such as Moby
[10], O’Caml [14], and PolyTOIL [4], would elegantly express all of the desired
subtyping relationships, but these languages allow only internal dispatch—that is, all

Integrating Nominal and Structural Subtyping 267

methods must be defined inside the class definition. In our language, insertChar
can be an external method; it need not reside inside the definitions of Textbox and
ScrollingTextbox. It would be non-trivial to add support for external dispatch or
multimethods to these types of languages.

Cecil. Cecil fully supports external and multimethod dispatch [6, 7]. Cecil’s pow-
erful, but very complex, type system can express most of the necessary rela-
tionships (though new classes do need to be defined for ScrollingWindow and
ScrollingStaticText). To write the scroll function, a programmer would have
to use bounded quantification and a “where” clause constraint, the latter being type-
checked via a constraint solver. That is, in psuedo-code, the argument to scroll would
have type:

for all T where T <: Window and signature getScrollBar(T) : ScrollBar
Here, the type ScrollBar would have to be a class, rather than a structural type as
in Unity, due to two major shortcomings of where clauses: they cannot be nested and
can only occur on top level methods. Additionally, where clauses cannot be used to
constrain the method’s receiver. In Unity, on the other hand, structural types are com-
positional and can therefore be nested within another type (e.g., ScrollBar in Fig. 1),
can occur at any level in the program (e.g., the lambda expression scroll), and can be
used to constrain a method’s receiver (e.g., method insertChar).

Virtual classes. Some of the required relationships could be expressed elegantly us-
ing virtual classes [15] or nested inheritance [21], but only with advance planning. To
express this example, the programmer would create a class Base containing the vir-
tual classes Window, Textbox, and StaticText. Then, she would create a subclass
of Base, called Scroll, that contained its own Window. This definition of Window
would add a field for a scrollbar. Additionally, Scroll would have a virtual class
ScrollingTextboxwhich would include the new definition of insertChar. The pro-
grammer would not to create a new class ScrollingStaticText since the new defin-
ition of Window would automatically apply to StaticText (i.e., Scroll.StaticText
would automatically have a scrollbar).

The virtual classes solution is elegant, but if the programmer did not plan ahead
and redefine Window in the Scroll class, there would not be a way to describe this
type. Essentially, virtual classes make it very easy to reuse code across related classes
(an advantage of virtual classes and nested inheritance over Unity), but cannot easily
express the structural types of Unity.

2.3 Example 2: AST Nodes in an IDE

In this section, we describe another example to show other ways in which Unity can be
used. Suppose we have an integrated development environment that includes an editor
and a compiler. The top portion of Fig. 3 contains an excerpt of a simplified version of
the code for such a system. Here, the brands PlusNode, Num and Var define a simple ab-
stract syntax tree. The internal method compile performs compilation on an AstNode.

One can use structural subtyping to create AST nodes with additional information,
such as a node with a loc field specifying the file location of the code corresponding
to the node. Additional functions are available for such nodes, such as the function
highlightNode that highlights a node’s source code in the text editor.

268 D. Malayeri and J. Aldrich

abstract brand AstNode(;{abstract method compile : () → unit}) extends Top
concrete brand PlusNode ({n1 : AstNode(), n2 : AstNode()};
method compile() : unit = compilePlus(this); /* compile PlusNode */)
extends AstNode

concrete brand Num ({val : int}; method compile() : unit = ... /* compile Num*/)
extends AstNode

concrete brand Var ({s : Symbol}; method compile() : unit = ... /* compile Var */)
extends AstNode

// highlight the text corresponding to ‘node’ in the text editor,
// using the location specified by the ‘loc’ field
let highlightNode = λ node : AstNode(loc : Location). ...

// AST nodes with debug information
concrete brand DebugPlusNode ({n1 : AstNode(), n2 : AstNode(), loc : Location};
method compile() : unit = compilePlus(this); outputLocation(out, this.loc))
extends PlusNode

concrete brand DebugNum ({val : int, loc : Location};
method compile() : unit = ... /* compile DebugNum */) extends Num

concrete brand DebugVar ({s : Symbol, loc : Location, varName : string};
method compile() : unit = ... /* compile DebugVar */) extends Var

Fig. 3. Example 2: AST Nodes in an IDE. The top portion is the code before changes to add debug
information to the AST. The function highlightNode makes use of structural information and
the external dispatch in compile changes its behavior for the declared Debug* sub-brands.

We did not have to define a new brand for AST nodes that include file location in-
formation. Whether or not a node contains file information, functions that operate over
AST nodes need not change their behavior, so in this case structural subtyping suffices.

Suppose now that the programmer wishes to add “debug” versions of these AST
nodes that contain additional output information for compiling in debug mode. For
example, a DebugNum has a Location field, while DebugVar includes a Location
field as well as a string representation of the variable name. The newly added code is
listed in the bottom portion of Fig. 3.

Since each of these brands have been defined as extensions, they may also cus-
tomize the behavior of compile to output this additional information when compil-
ing. Additionally, since all of the Debug* brands have a Location field, the function
highlightNode can be used on objects of this type.

This example again illustrates the expressiveness that achieved by combining nom-
inal and structural subtyping; highlightNode makes use of additional structural in-
formation, while compile relies on nominal dispatch to behave differently in different
situations.

2.4 Real-World Examples

The following real-world examples illustrate the gains in flexibility that could be
achieved through structural subtyping.

Eclipse SWT. In the Eclipse SWT (Simple Windowing Toolkit), many classes (such
as Button, Label, Link, etc.) have the methods getText and setText, that set the

Integrating Nominal and Structural Subtyping 269

main text for the control, such as a button’s text, the text in a textbox, etc. However,
there is no common IText interface. Many classes—13 in total—also support adding
an image through the getImage and setImage method, but again there is no interface
that captures this. A programmer may wish to write a method that sets the image of
any control by retrieving the image from an image registry. Given the current API, such
a method would have to rely on runtime reflection, with no guarantee of successful
method invocation at compile time.

Eclipse JDT. In the JDT (Java Development Tools), there are 8 classes (including
IMethod, IType, IField) that have the method getElementName, but there is no
IElement interface with this method. With structural subtyping, these classes implic-
itly share an interface, and code could be written that is polymorphic over the exact
class type. For instance, a tree view of an AST may wish to display packages, methods,
and fields in a uniform way. With the current hierarchy it is not possible to simply call
the getElementName of the object, since these classes do not have an explicit interface
with this method.

3 Case Study: Optional Methods in Java

In this section, we describe the tradeoffs that a library designer must make when using
a language that has only nominal subtyping. The design of the Java collections library
illustrates that designers would rather circumvent the type system than have a prolif-
eration of types. We believe this situation often occurs with nominal subtyping, but
because of structural subtyping, such a situation need not occur in Unity.

In the Java collections library, the interface java.util.Collection has sev-
eral “optional” methods: add, addAll, clear, remove, removeAll, and retainAll.
Many of the abstract classes implementing Collection (e.g., AbstractCollection,
AbstractList, AbstractSet) throw an UnsupportedOperationException when
those methods are called. There are a total of 30 optional methods in java.util.*,
and java.lang.Iterator has an additional optional method. The methods were de-
signed this way to avoid an explosion of interfaces such as MutableCollection,
ImmutableCollection, etc., and a corresponding increase in the number of sub-
interfaces (e.g., MutableList, ImmutableList, etc.) [18].

Let us consider a Java collections framework without the optional methods. Figure 4
shows a relevant portion of the current Java collections hierarchy. Figure 5 show new
interfaces that capture the distinction of mutability directly in the hierarchy—doing
away with optional operations. The interface Collection<E> represents a collection
that is modifiable, while the new interface ReadableCollection<E> represents a col-
lection that only contains read operations. Accordingly, its iterator() method re-
turns a ReadIterator, which is defined without a remove() operation. There are now
two new ListIterator interfaces, for fixed-size lists, modifiable lists, read-only lists.
These correspond to the FixedSizeList<E>and ReadableList<E> interfaces in Fig-
ure 5. (The interface FixedSizeList<E> has been added because selective overriding
of methods in AbstractListwould yield such a type, as noted in the documentation.)
The hierarchy for Set is similar to that of List (though simpler, since there are no
fixed-size sets, and no set-specific iterator).

270 D. Malayeri and J. Aldrich

ArrayList

AbstractList

LinkedList

AbstractSet

<<interface>>
Set<E>

EnumSet HashSet

iterator() : Iterator<E>

<<interface>>
Iterable<E>

contains(Object o) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E>

listIterator() : ListIterator<E>

<<interface>>
List<E>

nextIndex() : int
hasPrevious() : boolean
previous() : E
previousIndex() : int
set(object : E)
add(object : E)

<<interface>>
ListIterator<E>

hasNext() : boolean
next() : E
remove()

<<interface>>
Iterator<E>

Fig. 4. A portion of the Java collections framework. A few methods are highlighted in most inter-
faces. Type parameters are elided in classes.

iterator() :
ReadIterator<E>

<<interface>>
ReadIterable<E>

<<interface>>
ReadableSet<E>

iterator() : Iterator<E>

<<interface>>
Iterable<E>

listIterator() :
ReadableListIterator<E>

<<interface>>
ReadableList<E>

listIterator() :
FixedSizeListIterator<E>

<<interface>>
FixedSizeList<E>

listIterator() :
ListIterator<E>

<<interface>>
List<E>

<<interface>>
Set<E>

contains(Object o) : boolean
iterator() : Readterator<E>

<<interface>>
ReadableCollection<E>

add(E object) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E>

remove()

<<interface>>
Iterator<E>

set(object : E)

<<interface>>
FixedSizeListIterator<E>

add(object : E)

<<interface>>
ListIterator<E>

hasNext() :
boolean
next() : E

<<interface>>
ReadIterator<E>

nextIndex() : int
hasPrevious() : boolean
previous() : E
previousIndex() : int

<<interface>>
ReadableListIterator<E>

Fig. 5. Refactored AbstractList and AbstractSet classes, along with new interfaces to re-
move optional methods. A few methods of most interfaces are highlighted for List and Set; for
iterators, all methods, except for inherited methods, are shown. New interfaces have a gray back-
ground.

In a language with structural subtyping, such as Unity, not all interesting combi-
nations of structural types have to be declared in advance (though in a library setting
they might be, for consistency’s sake). For a language with type abbreviations, the key
idea is that a type abbreviation would simply be syntactic sugar for a set of methods,

Integrating Nominal and Structural Subtyping 271

which could be given an abbreviation with a different name in another part of the sys-
tem. Additionally, the subtyping relationships between all the interfaces would not need
to be defined in advance. Finally, as a side note, the notational overhead in defining
type abbreviations would be potentially far lower than that of defining a Java inter-
face, which has a relatively high notational cost (due, in part to the nominal nature of
interfaces).

For this example, in Unity, the new interfaces (shown in gray), would not neces-
sarily need to be defined by the library author, unless specifically needed. This eases
the task of library development, as the library author does not need to anticipate which
supertypes of the given interfaces would be useful for clients.

Thus, with a combination of nominal and structural subtyping, we need not sacrifice
static type safety in order to overcome the shortcomings of a purely nominal type system.

4 Empirical Analysis

To determine if there are potential cases where structural subtyping would be useful in a
real system, we ran an analysis of 15 open-source Java programs. The analysis searches
for common method signatures that are not related through inheritance. A “common
method” is any method declaration where there exists in another class a method decla-
ration with an identical name and the same signature, but the method is not present in
any common supertype of the two.

For instance, in Apache Collections, four buffer classes had the methods increment
and decrement, but these were not contained in a common superclass or super-
interface. The results of the analysis are in Fig. 6. Tomcat, a servlet container, had
the greatest percentage of common methods, 28.4%. Ant, the software build system,
was close behind with 28.1%. Even the programs with the smallest number of com-
mon methods had a significant number of them; Areca, a backup program, had 11.9%
common methods.

Inspecting the common methods, we found several cases where a structural type
could be useful. For instance, in Smack, a Jabber client library, there were 6 classes with
the common method String getElementName(). There were also 30 classes with the
method String toXML() which might also be a method that clients might wish to call
in a uniform manner. In JHotDraw, a GUI framework, there were 9 classes that had
addPropertyChangeListener and removePropertyChangeListenermethods. In
Log4j, a logging library, there were 4 classes with the method int getBufferSize(),
and 8 classes with the method setOption. In the Apache Collections library, nearly
all the common methods appeared to be potentially useful. For instance, there were 5
iterator decorator classes with getIterator and setIteratormethods. 4 bag classes
had a method getBag, 4 buffer classes had a method getBuffer, and 4 classes had the
method getComparator. Additionally, 7 classes had the method int size() and 5
classes had the method int indexOf(Object).

Note that we did not closely examine the implementations of these methods to deter-
mine if they were semantically performing similar actions, as we were unfamiliar with
the codebase. So, it is possible that the methods coincidentally had similar names but

272 D. Malayeri and J. Aldrich

Total Common % Common Average Total common
methods methods methods/group groups

Tomcat 14678 4172 28.4% 3.2 1288
Ant 9178 2577 28.1% 3.5 727
JHotDraw 5149 1193 23.2% 2.8 428
Smack 3921 881 22.5% 3.3 270
Struts 3783 772 20.4% 2.7 291
Apache Forrest 164 28 17.1% 2.2 13
Cayenne 9243 1545 16.7% 2.8 553
Log4j 1950 312 16.0% 3.1 102
OpenFire 8135 1300 16.0% 2.8 470
Apache Collections 3762 584 15.5% 2.8 211
Derby 24521 3575 14.6% 2.5 1402
Lucene 2472 331 13.4% 2.5 134
jEdit 5845 699 12.0% 2.6 271
Apache HttpClient 1818 217 11.9% 2.6 83
Areca 3565 423 11.9% 2.6 163

Fig. 6. Results of empirical analysis. For each program, the total number of methods, the num-
ber of common methods, the percentage of common methods compared to the total, the average
number of methods in each common method group, and the number of common method groups
are displayed. “Total methods” includes interface methods, abstract methods, and overriding im-
plementations of the same method. The results suggest that many Java programs have potential
uses of structural subtyping.

were performing different actions. In future work, we plan to study one application in
depth to see how it can benefit from structural subtyping.

Overall, however, we found the results to be promising, and they suggest that Java
programs could indeed benefit from structural subtyping. If a programmer wished to
write code that called a common method, he could easily do so by using a type—which
exists implicitly—consisting of that method. In contrast, in Java and other languages
with nominal subtyping, programmers would have to explicitly create interfaces. And,
in some cases, the interface would contain only one method, which seems an unneces-
sary overhead.

5 Formal System

The Unity grammar is presented in Fig. 7. The language is a lambda calculus extended
with values tagged with brands. Methods can be defined on a brand and the usual dis-
patch semantics apply. Brand and method declarations are top-level. To define brands,
the brand construct is used. A brand can be either abstract or concrete. Objects can-
not be created from abstract brands (similar to Java’s abstract classes). We use the
metavariables β and θ to range over brand names. The metavariable M ranges over a
list of (method : type) pairs.

Integrating Nominal and Structural Subtyping 273

Programs p ::= decl in p | e | e; p
Declarations decl ::= brand-decl | ext-decl

Brand declaration brand-decl ::= mod brand β(τ ; m-decl) extends β

Modifiers mod ::= abstract | concrete

Method declaration m-decl ::= abstract method m (m : τ) : τ

| method m (m : τ) : τ = e

External method ext-decl ::= method m β(m : τm) : τ = e

Expressions e ::= () | x | λx:τ. e | e e | β(e) | { = e} | e. | e.m
Types τ ::= unit | τ → τ | τ ∧ τ | β(m : τ) | { : τ} | τ ⇒ τ

Values v ::= () | β(v) | { = v} | λx:τ. e |

Contexts Γ ::= · | Γ, x : τ

Σ ::= · | Σ, mod β(τ ;mod m : τ) extends β

Δ ::= · | Δ, β(m = e) extends β

Conventions

β ≡ tag value corresponding to β

fieldTypeΣ(β) = τ if β(τ ;m : τ) extends β′ ∈ Σ

modifierΣ(β) = mod if mod β(τ ;m : τ) extends β′ ∈ Σ

M ranges over m : τ

Fig. 7. Unity grammar

One of the valid expression forms for a program is an expression followed by a
program (e; p). In this last construct, the expression is evaluated and will be type correct
according to the definitions that preceded it.

When a brand is defined, a name is given for it, as well as the brand’s field type
(usually a record); this is the type of the fields of the brand. The programmer initializes
the field value when an object is created.

In Unity, a method is either internal or external. In the former case, the method
is defined along with the brand, like method declarations in Java-like languages. To
allow modular exhaustiveness checking of external methods, external methods cannot
be abstract; a method body must be provided for every external method. We have taken
this rule from MultiJava [8].

When a method m is defined on a brand β, a set of methods is specified—the meth-
ods that must exist within β (either internal or external) before m can be invoked.3

For example, in Fig. 1, the function insertChar required that its receiver have a
getCurrentPosmethod.

3 For simplicity and to support information hiding, types cannot contain field constraints as in
example 1, but this is not a fundamental limitation of the system.

274 D. Malayeri and J. Aldrich

To simplify the formal system, methods take only one argument: the this parameter.
Additional parameters may be specified using lambda expressions.4

If β is a brand name, then β̂ is the tag value corresponding to β. In other words,
β(m : τ) is a type, and β̂ is its run-time analogue.

To create objects, the expression form β̂(e) is used. This creates an object that is
tagged with β̂. Methods are called using e.m, while function application is written
e1e2.

Our language includes a limited form of intersection types. Our motivation for in-
cluding these is to make external methods available to objects that were defined before
the external method was created. Section 5.1 describes this in more detail.

Σ is the subtyping context; it stores the user-declared sub-branding relationships. Δ
is the corresponding run-time context. Δ contains a strict subset of the information in
Σ—it does not contain whether a brand is abstract or concrete, and it does not keep
track of the field type or methods associated with each brand. We assume the existence
of a special brand Top that is not defined in Σ or Δ, but that may be extended by user-
defined brands. Since every brand must have a super-brand, the brand subtype hierarchy
is a tree rooted at Top.

Like other object calculi, Unity is purely functional so as to simplify the system. State
is orthogonal to the issues we are considering; our design should be easily adaptable to
a language with imperative features.

5.1 Static Semantics

Here we describe the subtyping and typing judgements shown in Figures 8, 9 and 10.
Auxiliary judgements are in Fig. 11

Subtyping. Subtyping comprises two parts: the sub-brand judgement (�) and the sub-
type judgement (≤). The latter is shown in Fig. 8. The first judgement is not on types,
but brands, which are a component of a type but not themselves a type. The sub-brand
judgement is just the reflexive, transitive closure of the declared extends relation.

The subtype judgement (≤) uses the sub-brand judgement in the third subtyping rule,
which states that an object type β1(M1) is a subtype of β2(M2) when β1 is a sub-brand
of β2 (β1 � β2) and M1 is a sub-record of M2 (M1 ≤ M2). There are additional
conditions that β1(M1) type and β2(M2) type, which ensures that these are valid
types. The relevant type formation rule here is:

m distinct Γ | Σ � σ type
Σ � β extends β2 overrideΣ(m : σ, β2)

Γ | Σ � β(m : σ) type

This rule checks that the given labels and types are a sub-record of the required fields
for the brand. This ensures that a brand type always contains at least the labels it

4 Note that if the body of a method is a lambda expression, it does not perform dispatch. To per-
form dispatch, the body of the method should be another method call. In this way, asymmetric
multimethods (multimethods where the order of parameters is used in dispatch) can easily be
encoded in our system. To encode a method m with body e that dispatches on β1 and β2,
method m in β1 dispatches to method m in β2, the body of which is e.

Integrating Nominal and Structural Subtyping 275

Σ � τ1 ≤ τ2

Σ � τ ≤ τ

Σ � τ1 ≤ τ2 Σ � τ2 ≤ τ3

Σ � τ1 ≤ τ3

Σ � β1 � β2 Σ �M1 ≤ M2
Σ � β1(M1) type Σ � β2(M2) type

Σ � β1(M1) ≤ β2(M2)

Σ � σ1 ≤ τ1 Σ � τ2 ≤ σ2

Σ � τ1 → τ2 ≤ σ1 → σ2

Σ � τ ≤ σ1 Σ � τ ≤ σ2

Σ � τ ≤ σ1 ∧ σ2 Σ � τ1 ∧ τ2 ≤ τ1

Σ � τ1 ∧ τ2 ≤ τ2

{�i : τi
i∈1..n} is a permutation of {�j : τj

j∈1..n}
Σ � {�i : τi

i∈1..n} ≤ {�j : τj
j∈1..n}

n > m
Σ � {�i : τi

i∈1..n} ≤ {�j : τj
j∈1..m}

Σ � τi ≤ σi (i∈1..n)

Σ � {�i : τi} i∈1..n ≤ {�i : σi} i∈1..n

Σ � β1 � β2

Σ � β1(M1) ∧ β2(M2) ≤ β1(M1 ∧M2)

Σ � β1 � β2 Σ �M2 ≤ M1 Σ � σ1 ≤ σ2

Σ � β1(M1) ⇒ σ1 ≤ β2(M2) ⇒ σ2

Σ � {m : τ} ≤ {n : σ}
Σ �m : τ ≤ n : σ

Fig. 8. Unity subtyping judgement

was defined to have. There is an additional check that the methods are valid overrides
(override is defined in Fig. 11). The rest of the rules for the type formation judgement
are straightforward; the full judgement appears in Appendix A.

Our language includes a limited form of intersection types, à la Davies and Pfenning;
the rules for intersection types are borrowed from their work [9].

There is also a subtyping rule for a list of (method : type) pairs; it simply applies
the record subtyping rule. The remaining subtyping rules are the standard reflexivity,
transitivity, and function subtyping rules.

Typing rules. Full typing rules for typechecking programs and expressions appear in
Figs. 9 and 10, respectively. Auxiliary judgements are defined in Fig. 11. The interest-
ing rules are TP-BRAND, TP-EXT-METHOD, TP-NEW-OBJ and TP-INVOKE; the others are
standard.

The rule TP-BRAND (Fig. 9) ensures that a brand declaration is well-formed. The
newly defined brand must contain at least the labels and fields of the supertype (possibly
with refined types); this is checked via the condition τ ≤ fieldType

Σ
(β′). Note that if

a field type is a record, then subtypes must list all the labels of the parent. Aside from
simplifying the calculus, this sidesteps issues of variable shadowing while allowing
subtypes to refine the type of a particular label. The rule also checks that the methods
given are valid overrides of the methods of the super-brand, and, in the case of concrete
classes, that all methods are concrete.

276 D. Malayeri and J. Aldrich

Σ � p ok

β /∈ Σ τ ≤ fieldTypeΣ(β′)
Σ � β.m-decl : (modmm : τ) Σ′ = Σ, mod β(τ; modm m : τ) extends β′

Σ′ � β.(τ; m-decl) ok overrideΣ(m : τ, β′)
mod = concrete implies methodsΣ′ (β) = concrete n : σ Σ′ � p ok

Σ �mod brand β(τ; m-decl) extends β′ in p ok
(TP-BRAND)

Σ = {mod β1(σ; M′) extends β2}, Σ0
m /∈ M′ Σ′ = {mod β1(σ; M′, m : β1(M) ⇒ τ) extends β2}, Σ0

overrideΣ(β1(M) ⇒ τ, β2)
this : β1(M), fields : σ | Σ′ � e : τ Σ′ � p ok

Σ �method m β1(M) : τ = e in p ok
(TP-EXT-METHOD)

· | Σ � e : τ

Σ � e ok
(TP-EXPR1)

· | Σ � e : τ Σ � p ok
Σ � e; p ok

(TP-EXPR2)

Fig. 9. Unity typing judgement for programs

Γ | Σ � e : τ

x : τ ∈ Γ

Γ | Σ � x : τ Γ � () : unit
Σ � τ1 type Γ, x : τ1 | Σ � e : τ2

Γ | Σ � λx:τ1. e : τ1 → τ2

Γ | Σ � e1 : τ1 → τ2 Γ | Σ � e2 : τ1

Γ | Σ � e1 e2 : τ2

Γ | Σ � e : σ Σ � σ ≤ τ

Γ | Σ � e : τ

concrete β(τ) ∈ Σ

Γ | Σ � e : τ ′ Σ � τ ′ ≤ τ methodsΣ(β) = modm m : σ

Γ | Σ � β(e) : β(m : σ)
(TP-NEW-OBJ)

Γ | Σ � e : τ

Γ | Σ � (= e) : { : τ}
Γ | Σ � e : {i : τi

i∈1..n}
Γ | Σ � e.k : τk

Γ | Σ � e : β(M) mk : τmk ∈ (M ∧methodsΣ(β))
τmk = β′(n : σ)⇒ τ β(M ∧methodsΣ(β)) ≤ β′(n : σ)

Γ | Σ � e.mk : τ
(TP-INVOKE)

Fig. 10. Unity typing judgement for expressions

This rule and the type formation rule for brands described above illustrate the need
for both a sub-brand and subtype judgement. The context Σ stores information about the
fields and methods of a brand; these are retrieved via fieldType

Σ
and methodsΣ (called

by overrideΣ), respectively. Additionally, without a runtime component to the nominal
hierarchy, there would not be a way to perform dispatch, which we describe in Sect. 5.2.

Integrating Nominal and Structural Subtyping 277

Σ �m-decl : τ

Σ � β(m : σ) ⇒ τ type
Σ � β.mod method m1(m : σ) : τ = e :

mod m1 : β(m : σ) ⇒ τ

Σ � β.(τ; m-decl) ok

this : β(m : σ), fields : τ | Σ � e : τ′

Σ � β.(τ; method m1(m : σ) : τ′ = e) ok

methodsΣ(β) = mod m : τ

methodsΣ(Top) = ·

Σ � β1(τ; mod1 m : τm, M) extends β2

methodsΣ(β2) = mod2 m : σm, M′

methodsΣ(β1) = mod m : τm, M, M′

overrideΣ(m : τ, β)

methodsΣ(β) = (mod m : σ, M) implies τ ≤ σ

Σ � overrideΣ(m : τ, β)

M1 ∧M2

(mi : τmi
i∈1..n, M) ∧ (mi : τ′mi

i∈1..n, M′)
def=
(

mi : (τmi ∧ τ′mi
) i∈1..n, M, M′

)
where mi, M, M′are mutually exclusive

Fig. 11. Unity typechecking auxiliary judgements

The rule TP-EXT-METHOD checks external method definitions. The existing brand
definitions are updated by adding the new external method via the new context Σ′. The
rule also checks that the method types of the external method defined on sub-brands are
in the subtype relation, which ensures that the context Σ′ is well-formed.

The rule TP-NEW-OBJ (Fig. 10) checks the correctness of the object creation expres-
sion. The rule checks that the brand has been defined as concrete, and that the given
record labels are a subtype of the required record labels.

The rule TP-INVOKE typechecks method invocations. The method being called must
be contained in either the set of methods in the brand’s type, M , or in the set of
methods of the brand (methodsΣ(β)). Additionally, the methods in the brand’s type,
combined with the methods of the brand (via intersection) must be a subtype of the
method’s required methods. Adding the intersection condition increases expressive-
ness over having the rule just consider the methods of the brand, since the type might
have methods defined on a sub-brand. For example, within the body of the function
λx : Top(toString : () → string). e, the type of x contains the method toString.
If we suppose that toString is not defined for the brand Top, then x’s type contains
methods that are not defined in the brand itself.

5.2 Dynamic Semantics

Most of the evaluation rules for Unity are standard; the evaluation judgement is in
Fig. 12 and auxiliary judgements are in Fig. 13.

The interesting evaluation rules are E-BRAND-DECL and E-EXT-DECL, which eval-
uate brand definitions and external method definitions, respectively. To evaluate a brand

278 D. Malayeri and J. Aldrich

p | Δ
−→ p′ | Δ′

m-decl
−→ m = e

mod brand β1(τ; m-decl) extends β2 in p | Δ
−→
p | Δ, (β1(m = e) extends β2)

(E-BRAND-DECL)

Δ = {β(m = e) extends β′}, Δ0

method m1 β(m : τm) : σ = e1 in p | Δ
−→
p | {β(m = e, m1 = e1) extends β′}, Δ0

(E-EXT-DECL)

e
−→Δ e′

e | Δ
−→ e′ | Δ
e
−→Δ e′

e; p | Δ
−→ e′; p | Δ
p | Δ
−→ p′ | Δ′

v; p | Δ
−→ p′ | Δ′

e
−→Δ e′

e
−→Δ e′

e.m
−→Δ e′.m

mbodyΔ(m, β̂) = e

β̂(v).m
−→Δ [β̂(v)/this, v/fields] e
(E-INVOKE)

e
−→Δ e′

β̂(e)
−→Δ β̂(e′)
e1
−→Δ e′1

e1 e2
−→Δ e′1 e2

e2
−→Δ e′2
v1 e2
−→Δ v1 e′2 (λx :τ. e) v
−→Δ [v/x] e

ek
−→Δ e′k
{. . . , �k = ek, . . . }
−→Δ

{. . . , �k = e′k, . . . }
e
−→Δ e′

e.�
−→Δ e′.� {�i = vi
i∈1..n}.�k
−→Δ vk

Fig. 12. Unity evaluation judgement

definition, the method definitions are evaluated to the method body and the rest of the
program is evaluated with the extended context. Similarly, E-EXT-DECL updates the
context with new method definitions for the brand, then evaluates the rest of the program
with the new context.

The auxiliary function mbodyΔ(m, β̂) finds the appropriate method body for a
method m, starting at the tag β̂. This function is used by the rule E-INVOKE, which
within the method body returned by mbodyΔ, substitutes the object for this and the
field value of the object for fields. Method declarations are evaluated in a straight-
forward manner; all of the type information is discarded (so in the case of abstract
methods, the entire declaration is discarded), leaving just the method body.

5.3 Type Safety

The full proof of type safety is provided in a companion technical report [17]. We
summarize the main results here. First, we provide the definition of a well-formed
context:

Integrating Nominal and Structural Subtyping 279

mbodyΔ(m,β) = e

β1(m0 = e0, m′ = e′m) extends β2 ∈ Δ

mbodyΔ(m0, β1) = e0

β1(m = e) extends β2 ∈ Δ

m0 /∈ m mbodyΔ(m0, β2) = e0

mbodyΔ(m0, β1) = e0

m-decl �−→ m = e

abstract method m(m : σm) : τ �−→ · method m(m : σm) : τ = e �−→ m = e

Fig. 13. Unity evaluation auxiliary judgements

Definition 1 (Well-formed context).
The context Σ is well-formed, iff the following conditions hold:

1. there is exactly one entry for each brand β.
2. if mod β1(τ ; M) extends β2 ∈ Σ, then

(a) β2(M) type
(b) τ ≤ fieldType

Σ
(β2)

(c) if mod = concrete, then methodsΣ(β1) = concrete n : τ .

Our theorems on type safety assume a correspondence between the static brand de-
finition context Σ and the runtime context Δ. This ensures that the runtime context,
which does not contain type information, is consistent with the static typing context.
Formally, this correspondence is defined as follows:

Definition 2 (Models relation on contexts). The definition of Σ �Δ (Σ models Δ)
is given by the following inference rules:

· � ·

Σ �Δ

Σ′ = Σ,mod β1(τ ; {concrete mi : β1(Mi)⇒ τ ′
i

i∈1..n}, abstract n : σ) extends β2

this : β1(Mi), fields : τ | Σ′ � ei : τi (i∈1..n)

Σ′ �Δ, β1(mi = ei
i∈1..n) extends β2

Type safety is proved using the standard progress and preservation theorems. For
progress, we prove a lemma that states that if we have a well-typed value whose type
contains a method mk, then a runtime context consistent with the static context must
contain a method body for mk:

Lemma 1. If Γ | Σ � β̂(v) : τ and Σ � τ ≤ β′(M), where Σ � Δ and mk ∈ M ,
then mbodyΔ(mk, β̂) is defined.

The lemma is stated in this way so that the subsumption case is easy to prove. The
lemma is proved by induction on the typing derivation. The interesting case is that of
TP-NEW-OBJ, which uses the definition of a well-formed context and that of Σ �Δ.

280 D. Malayeri and J. Aldrich

Theorem 1 (Progress [programs]). If · | Σ � p ok, for some Σ, then either p is a
value or, for Δ such that Σ �Δ, there exist p′ and Δ′ such that p | Δ �−→ p′ | Δ′.

This theorem is proved by appealing to an auxiliary lemma that proves progress for ex-
pressions and a standard canonical forms lemma. The interesting case is that of method
invocation, which is proved using Lemma 1.

Preservation is slightly more difficult to prove. We first prove the following lemma
by induction on the typing derivation. The lemma states that the body of a method is
well-typed if the static context Σ models the runtime context Δ.

Lemma 2. If Γ | Σ � θ̂(v) : σ and σ ≤ β(m0 : β′(M0) ⇒ τ, M) and Σ � Δ and
mbodyΔ(m0, θ̂) = e0, then this : β′(M0), fields : fieldType

Σ
θ | Σ � e0 : τ .

Theorem 2 (Preservation [programs]). If Γ | Σ �p ok and Σ �Δ and p | Δ �−→
p′ | Δ′, then there exists a Σ′ such that Σ′ �Δ′ where Γ | Σ′ � p′ ok.

We prove this theorem using of a preservation theorem on expressions, a standard sub-
stitution lemma, and Lemma 2 above.

5.4 Modularity

Our typechecking rules are modular; each rule relies only on information in the context
up to the current program point, rather than requiring a global dictionary of brand de-
finitions. Our exhaustiveness checks are modular because external method definitions
cannot be abstract (enforced by the grammar); otherwise, information about all brand
definitions would be required.

Since our language does not include modules, our ambiguity checks are not modular
in the strictest sense of the term, as they depend on all definitions up to the current pro-
gram point. However, our system could be easily extended with additional rules to support
modular ambiguity checking.Millstein andChambershavedeveloped such rulesand have
also defined several levels of modular typechecking [19]. Our current system is compat-
ible with their broadest notion of modular typechecking, the so-called “most-extending
module” approach, exemplified by their language System E. To perform the most modular
form of typechecking, however, we would require that all implementations of an external
method be in the same module. Further, external methods would be forbidden from over-
riding internal methods (currently permitted in our system). These checks correspond to
the restriction M1 in Dubious [19] and restriction R3 in MultiJava [8].

A related issue is that of information hiding, a form of which our language supports.
A brand’s field value can only be accessed by the brand’s methods, effectively making
them private. It would be possible to extend this further and disallow external methods
from accessing fields, or allow marking some internal methods as private.

5.5 Polymorphism and Recursive Types

We have designed an extension Unityα with polymorphism (described in [17]), but we
have omitted this feature in this version of Unity since we discovered that polymor-
phism was orthogonal to the issues surrounding nominal and structural subtyping. In
Unityα, the syntax is extended as follows:

Integrating Nominal and Structural Subtyping 281

brand-decl ::= mod brand ∀T . β〈T 〉(τ ; m-decl) extends β〈τ 〉
ext-decl ::= method m ∀T ′. β〈T ′〉(m : τ) : τ = e

e ::= . . . | β̂[τ] | ΛT. e | e[e]
τ ::= . . . | X | β〈τ 〉(m : τ) | ∀T. τ

The sub-brand judgement is on parameterized brands (i.e. β〈τ 〉) and, aside from a
new rule for ∀T. τ types, the subtype judgement is essentially the same.

We have also created an extension that includes structural recursive types [17]. Unity
as presented in this paper supports only nominal recursive types; when defining a brand
β, the name β can be used in the components of its definition. Adding structural re-
cursive types was relatively straightforward; we simply added standard iso-recursive
μ types to the language, along with a fold and unfold operation. In this system, it is
possible to express types such as:

μX.Top(clone() : X)
which specifies that the result of the clone function is the type itself being defined.
The advantage to structural recursive types is that structural object interfaces, such as
ScrollBar in Example 1, can be specified as pure structural types (using the Top
brand) while still being self-referential.

6 Related Work

Type Systems. At the FOOL/WOOD ’07 workshop, we presented the predecessor of
this version of Unity [16]. Here, we have extended that work by adding methods and
information hiding to our core calculus, providing additional examples, and including
a case study.

Researchers have recently considered the problem of integrating nominal and struc-
tural subtyping. Reppy and Turon have addressed the problem in the context of type-
checking traits [24]. Their resulting type system is a hybrid of nominal and structural
subtyping. However, in their system, structural types are second-class; they apply to
trait functions but not to expressions or ordinary functions. Consequently, there is less
expressiveness as compared with Unity: it is not possible to constrain the argument of
a function to have particular members, for example.

After our initial workshop proposal, Odersky et al. independently implemented a
similar language feature, validating the practical importance of our work. In Scala, type
refinements allow a nominal type to include additional structural information [22]. Scala
type refinements have many similarities with the language Whiteoak, an extension of
Java with structural types [12]. Like Scala, in Whiteoak, by using intersection types, a
type can include both structural and nominal aspects.

Scala and Whiteoak differ from Unity in that they do not have external methods,
nor do they allow structural constraints to be placed on a method’s receiver. Also, the
language designs have neither been formalized nor proved sound.

Ostermann has designed a language that seeks to enhance the expressiveness of nom-
inal subtyping to gain some of the benefits of structural subtyping [23]. Ostermann has
identified an additional important benefit of nominal subtyping—that of blame assign-
ment: i.e., who accepts responsibility for maintaining a subtype relation, the user or the

282 D. Malayeri and J. Aldrich

designer of a component? The language design is much more expressive than a purely
nominal system; it is possible to, for example, create subtypes of a class type with-
out inheriting its implementation, and declare supertypes of an existing type. But, this
comes at the cost of a subtyping relation that is not transitive, which may prove counter-
intuitive to programmers. The programmer must manually provide a set of “witness”
types so that the typechecker can apply subsumption. Therefore, it is unclear whether
this approach is practical.

Bono et al. have also proposed a type system that includes both nominal and struc-
tural aspects, but their system does not fully integrate the two disciplines [1]. The sys-
tem only uses structural typing when typechecking uses of the this variable, making
their system considerably less expressive than ours.

The language MOBY is in many ways similar to Unity, as it supports structural sub-
typing and a form of tag subtyping through its inheritance-based subtyping mechanism,
which is similar to our sub-branding [10, 11]. This allows expressing many useful sub-
typing constraints, but MOBY’s class types are not integrated with object types in the
same way as in Unity. For instance, in MOBY, it is not possible to express the constraint
that an object should have a particular class and should have some particular methods
(that are not defined in the class itself). Additionally, the object-oriented core of MOBY

supports only internal dispatch. MOBY does include “tagtypes” that are very similar to
our brands. These can be used to support downcasts or to encode multimethods, but
they are disjoint from the object-oriented core of the system.

Strongtalk presents a structural type system for Smalltalk and also supports named
subtyping relationships through its “brand” mechanism [3]. However, it is not possible
to define subtyping on brands. Additionally, since it is a type system for Smalltalk, it
supports only the single dispatch model.

Modula-3’s type system has structural types with branding, but not structural
subtyping [20]. That is, its type system will treat two record types as equivalent if they
have the same structure but different type aliases, but does not recognize one as a sub-
type of the other if it has additional fields. The object-oriented part of the language uses
nominal subtyping.

In the C++ concepts proposal, concepts can be either nominal or structural [13].
However, concepts apply only to template constraints, not to the subtyping relation.

External and Multimethod Dispatch. External and multimethod dispatch has been ex-
tensively studied, but in the context of either dynamically typed languages, or languages
with a purely nominal type system. Cecil is one of the first languages to include stati-
cally checked multimethods, but performs a whole-program analysis to ensure that mul-
timethods are exhaustive and unambiguous [6, 7]. As previously mentioned (Sect. 2.2),
Cecil contains “where” clauses that can model some aspects of structural types, but they
can only appear on top-level methods and cannot be nested, in contrast to Unity.

More recent work has focused on modular typechecking of external methods and
multimethods, as well as the problem of integrating external methods into existing lan-
guages; this includes the Dubious calculus (System M) and MultiJava [19, 8]. We have
built on these existing techniques for modular typechecking of external methods.

The language λ& [5] includes multimethod dispatch and includes structural subtyp-
ing on methods, similar to Unity. However, the subtyping hierarchy on classes uses only
nominal subtyping, in contrast to Unity.

Integrating Nominal and Structural Subtyping 283

Acknowledgements. We would like to thank Karl Crary and William Lovas for helpful
discussion and feedback on our language, and Kevin Bierhoff for comments on an earier
version of this paper. This research was supported in part by the U.S. Department of De-
fense, Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually
Available and Secure Information Systems,” and NSF CAREER award CCF-0546550.

References

[1] Bono, V., Damiani, F., Giachino, E.: Separating Type, Behavior, and State to Achieve
Very Fine-grained Reuse. In: Electronic proceedings of FTfJP (2007), http://www.
cs.ru.nl/ftfjp/

[2] Bracha, G., Cook, W.: Mixin-based inheritance. In: ECOOP 1990(1990)
[3] Bracha, G., Griswold, D.: Strongtalk: typechecking Smalltalk in a production environment.

In: OOPSLA 1993, pp. 215–230 (1993)
[4] Bruce, K.B., Schuett, A., Gent, R.V., Fiech, A.: PolyTOIL: A type-safe polymorphic object-

oriented language. ACM Trans. Program. Lang. Syst. 25(2), 225–290 (2003)
[5] Castagna, G., Ghelli, G., Longo, G.: A calculus for overloaded functions with subtyping.

Inf. Comput. 117(1), 115–135 (1995)
[6] Chambers, C.: Object-oriented multi-methods in Cecil. In: Lehrmann Madsen, O. (ed.)

ECOOP 1992. LNCS, vol. 615. Springer, Heidelberg (1992)
[7] Chambers, C.: Cecil Group. The Cecil language: specification and rationale, version 3.2

(February 2004), http://www.cs.washington.edu/research/projects/cecil/
[8] Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.: MultiJava: Design rationale, com-

piler implementation, and applications. ACM Trans. Program. Lang. Syst. 28(3), 517–575
(2006)

[9] Davies, R., Pfenning, F.: Intersection types and computational effects. In: ICFP 2000, pp.
198–208 (2000)

[10] Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: PLDI 1999, pp. 37–49
(1999)

[11] Fisher, K., Reppy, J.: Inheritance-based subtyping. Inf. Comput. 177(1), 28–55 (2002)
[12] Gil, J., Maman, I.: Whiteoak (2008), http://ssdl-wiki.cs.technion.ac.il/wiki/

index.php/Whiteoak
[13] Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.: Concepts: Linguis-

tic support for generic programming in C++. In: Proceedings of OOPSLA 2006, October
2006, pp. 291–310. ACM Press, New York (2006)

[14] Leroy, X., Doligez, D., Garrigue, J., Rémy, D., Vouillon, J.: The Objective Caml system,
release 3.09 (2004), http://caml.inria.fr/pub/docs/manual-ocaml/index.html

[15] Madsen, O.L., Moller-Pedersen, B.: Virtual classes: a powerful mechanism in object-
oriented programming. In: OOPSLA 1989, pp. 397–406 (1989)

[16] Malayeri, D., Aldrich, J.: Combining structural subtyping and external dispatch.
In: FOOL/WOOD 2007 (January 2007), http://foolwood07.cs.uchicago.edu/
program.html

[17] Malayeri, D., Aldrich, J.: Integrating Nominal and Structural Subtyping. Technical Report
CMU-CS-08-120, School of Computer Science, Carnegie Mellon University (May 2008)

[18] Sun Microsystems. Java collections API design FAQ (2003), http://java.sun.com/
j2se/1.4.2/docs/guide/collections/designfaq.html

[19] Millstein, T.D., Chambers, C.: Modular statically typed multimethods. Inf. Comput. 175(1),
76–118 (2002)

284 D. Malayeri and J. Aldrich

[20] Nelson, G. (ed.): Systems programming with Modula-3. Prentice-Hall, Inc., Upper Saddle
River (1991)

[21] Nystrom, N., Chong, S., Myers, A.C.: Scalable extensibility via nested inheritance. In:
OOPSLA 2004, pp. 99–115 (2004)

[22] Odersky, M.: The Scala language specification (2007), http://www.scala-lang.
org/docu/files/ScalaReference.pdf

[23] Ostermann, K.: Nominal and Structural Subtyping in Component-Based Programming.
Journal of Object Technology 7(1) (2008)

[24] Reppy, J., Turon, A.: Metaprogramming with traits. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609. Springer, Heidelberg (2007)

[25] Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of behavior.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743. Springer, Heidelberg (2003)

A Formal System

Well-formed judgement

Σ � τ type

Σ � unit type

Σ � τ1 type Σ � τ2 type

Σ � τ1 → τ2 type

Σ � τ1 type Σ � τ2 type

Σ � τ1 ∧ τ2 type

m distinct Σ � σ type
Σ � β extends β2 Σ � override(m : σ, β2)

Σ � β(m : σ) type

 distinct Σ � τ type

Σ � { : τ} type

Σ � β(mi : θi(ni : σi)⇒ τ ′
i

i∈1..n) type Σ � β � θi (i∈1..n) Σ � τ2 type

Σ � β(mi : θi(ni : σi)⇒ τ ′
i

i∈1..n) ⇒ τ2 type

Flow Analysis of Code Customizations

Anders Hessellund and Peter Sestoft

IT University of Copenhagen, Denmark
{hessellund,sestoft}@itu.dk

Abstract. Inconsistency between metadata and code customizations
is a major concern in modern, configurable enterprise systems. The
increasing reliance on metadata, in the form of XML files, and code
customizations, in the form of Java files, has led to a hybrid development
platform. The expected consistency requirements between metadata
and code should be checked but often are not, so current tools offer
surprisingly poor development support. In this paper, we adapt classical
data flow analyses to detect inconsistencies and provide better static
guarantees. We provide a formalization of the consistency requirements
and a set of adapted analyses for a concrete case study. Our work
is implemented in a fast and efficient prototype in the form of an
Eclipse plugin. We validate our work by testing this prototype on
actual production code; preliminary results show that this approach
is worthwhile. We found a significant number of previously undetected
consistency errors and have received very positive feedback from the
developer community in the case study.

1 Introduction

Complex enterprise systems increasingly use metadata in the form of XML files
for configuration. This facilitates maintenance and allows developers to gain a
better overview by focusing on the what of the system rather than on the how.
However, metadata cannot tell the whole story and especially for business logic
requirements, it is often necessary to add custom code (e.g. in Java) to implement
specialized functionality. This is frequently done through code customizations.
A code customization is a small code snippet with a predefined interface that
can be plugged into the base system. The relation between metadata and code
customization is that metadata declares the existence of specialized business logic
and the code customization provides an implementation. A code customization
fulfills concrete requirements but at the same time introduces new consistency
constraints on the system: Metadata and code must agree on proper use of
common names and types. Current tools are surprisingly poor at managing these
consistency constraints and the errors that arise from violating them.
In this paper, we claim that some of these problems can be eliminated by

adapting classic data flow analyses to framework-specific code customizations.
We propose a set of data flow analyses for a concrete case study: The Apache
Open For Business (OFBiz) [1] enterprise resource planning (ERP) system.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 285–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

286 A. Hessellund and P. Sestoft

These analyses are implemented in an Eclipse plugin and have been applied
to a production quality installation of OFBiz. Our prototype has found a large
number of consistency errors in this code base. In this paper, we show how our
prototype can locate the source of each error and help developers increase the
quality of their code customizations. The prototype has been released to the
OFBiz developer community and received very positive feedback [2, 3].
The contributions of this work are:

– A formalization of the consistency constraints between metadata and code
customizations in OFBiz.
– A set of framework-specific adaptions of dataflow analyses based on this
formalization.
– A working implementation of these analyses in the form of an Eclipse plugin.
– An empirical validation of the tool by analyzing production code and eliciting
feedback from OFBiz developers.
– A discussion of the limitations of the analyses, and the trade-off between
soundness (no false negatives) and precision (only few false positives).

Section 2 below shows a motivating example from the out-of-the-box version
of OFBiz, and section 3 provides more background on this case study with an
emphasis on its size and complexity. Section 4 formalizes the implicit consistency
requirements in OFBiz, and sections 5 and 6 describe the flow analyses used to
realize these consistency requirements. Section 7 describes our prototype Eclipse
plugin that implements these analyses, and section 8 presents and discusses em-
pirical results from applying this tool to the case study. Section 9 discusses wider
perspectives and implications of this work, and section 10 considers related work.

2 Motivating Example: Code Customizations in OFBiz

The OFBiz framework exposes a range of services. A service can be described
in a service definition such as that shown in listing 1.1. A service definition
contains metadata about a service, such as its name and where it is implemented,
and describes the service’s input and output in the form of attributes. For
each attribute, it states its name and type as well as whether this attribute
is mandatory or optional. Services are often implemented in Java code snippets,
called code customizations. A code customization must conform to the service
interface given by the service definition. Conformance is in this case defined
as accepting the same input and returning the same output as specified in the
service definition.
Listing 1.1 provides an actual example of the buildPdfFromSurveyResponse

service from the Content module in OFBiz v.3. This service creates PDF-files
based on online surveys. The actual implementation of a service is typically
written in a more expressive language such as Java. As stated in line 3 of
listing 1.1, the buildPdfFromSurveyResponse service is implemented in Java
by the method buildPdfFromSurveyResponse, shown in listing 1.2. The service

Flow Analysis of Code Customizations 287

� �

1 <service name="buildPdfFromSurveyResponse" engine="java"
2 location="org.ofbiz.content.survey.PdfSurveyServices"
3 invoke="buildPdfFromSurveyResponse">
4 <description >Build Pdf From Survey

Response </description >
5 <attribute name="surveyResponseId" type="String"

mode="IN" optional="false" />
6 <attribute name="outByteWrapper"

type="org.ofbiz.entity.util.ByteWrapper"
mode="OUT" optional="false" />

7 </service >
� �

Listing 1.1. The buildPdfFromSurveyResponse service definition states that the
service is implemented in Java by the buildPdfFromSurveyResponse method
in the PdfSurveyServices class. The service has a mandatory input attribute
surveyResponseId and a mandatory output attribute outByteWrapper.

� �

1 public static Map buildPdfFromSurveyResponse
2 (DispatchContext dctx , Map context) {
3 GenericDelegator delegator = dctx.getDelegator ();
4 Map results = ServiceUtil.returnSuccess ();
5 String surveyResponseId =

(String)context.get("surveyResponseId");
6 String contentId = (String)context.get("contentId");
7 try {
8 if (UtilValidate.isNotEmpty(surveyResponseId)) {
9 GenericValue surveyResponse =
10 delegator.findByPrimaryKey("SurveyResponse",
11 UtilMisc.toMap("surveyResponseId",

surveyResponseId));
12 }
13 ...some 45 lines of code left out ...
14 ByteWrapper outByteWrapper =
15 new ByteWrapper(baos.toByteArray ());
16 results.put("outByteWrapper", outByteWrapper);
17 } catch (GenericEntityException e) {
18 ServiceUtil.returnError(e.getMessage ());
19 }
20 return results;
21 }

� �

Listing 1.2. The buildPdfFromSurveyResponse method implements the service
declared in listing 1.1. The context map declared in line 2 contains input attributes
and the results map in line 4 contains the output attributes. An input attribute is
read in line 5 and an output attribute is set in line 16.

declares two mandatory attributes: an input attribute surveyResponseId of
type String and an output attribute outByteWrapper of type ByteWrapper.

288 A. Hessellund and P. Sestoft

There are three expected kinds of consistency constraints between listing 1.1
and 1.2, detailed in sections 2.1 through 2.3 below. These constraints are not
stated explicitly in the OFBiz documentation and are not checked until runtime
where violations can lead to unpredictable behaviour.

2.1 A Java Implementation Must Exist

The service definition says that there must exist a PdfSurveyServices class with
a buildPdfFromSurveyResponsemethod that implements the service. Checking
this constraint is a prerequisite for checking the two other kinds of constraints;
since this is fairly easy to do it is not discussed further.

2.2 Only Declared Input Attributes May Be Accessed

The service definition contains a mandatory input attribute surveyResponseId
of type String. Input attributes are supplied to the method via the contextmap
in line 2 in listing 1.2. The implementation code should only access keys in this
map that correspond to declared input attributes, such as surveyResponseId.
Lines 5 and 6 in listing 1.2 show a correct access to a declared input attribute
surveyResponseId and an incorrect access to an undeclared input attribute
contentId.

2.3 All Declared Output Attributes Must Be Assigned

The example service definition contains a single mandatory output attribute,
outByteWrapper. Clients of this service can assume that on successful execution,
this key is present in the results map. Hence the service implementation
should make sure that either the key is present or an error message is returned.
In listing 1.2, the outByteWrapper attribute is set in line 16. However, the
findByPrimaryKey method in line 10 may throw a checked exception which
would prevent the attribute from being set. The catch block in line 18 creates a
map containing an error message but does not return this map and hence has no
effect. This type of subtle error is hard to spot and potentially leads to erroneous
output of the service.
Note that the two errors described above are genuine consistency errors found

in the release version of OFBiz (November 2007).

2.4 Current Development Tools

A key concern in OFBiz development is to ensure that the definition and
implementation of a service are consistent. Development is traditionally done
using normal Java- and XML-editors, so there is no tool-support for checking
the three above-mentioned kinds of consistency constraints. This is because
traditional tools such as XML schema conformance checking and Java type
checking do not reveal constraint violations that involve both XML and Java
artifacts. This lack of tool support causes slow development, costly maintenance,

Flow Analysis of Code Customizations 289

and errors in deployed OFBiz products, as shown in a previous survey [4] of the
OFBiz user forums, issue tracking system, and so on. That consistency is a major
concern is further evidenced from the positive feedback that we have received
from the OFBiz community on the release of our initial prototype [2, 3]. Before
we describe analyses and tools developed, we briefly introduce the overall case
study, OFBiz.

3 Case Study: Apache Open for Business (OFBiz)

The OFBiz [1] project is an open source enterprise resource planning (ERP)
system. The cornerstone of the project is a J2EE-based framework. The base
framework is implemented in Java and can be configured using XML files
conforming to 17 different schemas. These schemas can be considered as
separate domain-specific languages tailored for individual concerns in OFBiz
development, such as user interface, data model, services, workflow etc. The
use of these schemas is described in greater detail in [4]. Apart from XML
configuration files, code customizations written as small Java code snippets can
be added to realize specialized functionality that is beyond the scope of ordinary
configuration. Finally, the framework uses HTML and a template engine to
render user interfaces, and also uses scripting languages, such as BeanShell script
[5], for minor tasks.

The framework has a three layer architecture as shown

Fig. 1. The 3-layer ar-
chitecture of OFBiz

in figure 1. The bottom layer is a base engine that
handles loading and wiring of modules. The middle
layer is a set of base modules to define business objects,
services, graphical widgets and workflows. The top
layer is a set of standard ERP application modules
such as Inventory, Accounting, Content Management
etc. Developers can add their own modules or extend
existing modules so the framework is highly flexible.
To give an impression of the size and strength of

OFBiz, we list the following metrics: The out-of-the-
box solution consists of approximately 180 000 lines
of Java code and 195 000 lines of XML. The data

model consists of more than 700 domain classes designed according to patterns
based on industrial practice [6]. Industrial users include large companies such as
British Telecom and United Airlines [7] as well as a range of small- and medium-
sized companies [8]. It is a top-level project in the Apache Software Foundation
and is backed by an active community. We therefore consider it a valid case
study of large scale, industrial-strength development with metadata and code
customizations.
Because of the size and complexity of OFBiz, we have chosen to focus on

a specific subset of code customizations. OFBiz exposes a range of services
to internal and external clients. These services are located by their metadata
descriptions, i.e., service definitions as exemplified in listing 1.1. A concrete

290 A. Hessellund and P. Sestoft

service, described by a service definition, can be implemented in a variety of ways,
such as SOAP, RMI, scripting languages, a custom domain-specific language for
data manipulation called Minilang, or by a general-purpose language. We will
focus on the last option, viz. the general-purpose language Java, since services
implemented in Java are the cause of most problems. Using Java is a double-
edged sword: On one hand, it gives developers great expressive power to meet
their requirements; on the other hand, this is easily misused to create a whole
range of new and subtle bugs.

4 Formalizing the Consistency Requirements

The OFBiz documentation does not state any consistency requirements on the
relation between metadata and code customizations. The expected requirements
are implicit and only enforced at runtime where a constraint violation can lead to
unpredictable behaviour or system malfunction. In this section, we will formalize
the exact consistency requirements between metadata and code customizations
with respect to input and output. Later in sections 5 and 6, we will describe
our analyses that are approximations of these requirements. Our formalization
is based on the idea that the XML metadata files are the specification that the
Java code must conform to. To formalize the consistency constraints between
metadata and code, we first introduce our general formalization of metadata
and code.

4.1 Formalizing Metadata

To represent a service definition from the XML metadata, we introduce the
following definitions: Let Θ be the unbounded set of all possible service
attributes, and let θ be an individual attribute, such as surveyResponseId. We
will use the predicate mandatory to denote whether an attribute is mandatory
or optional. We will use the predicates in and out to denote declared input and
output attributes. Note that an attribute can be both input and output at the
same time. Let ΘIN be the bounded set of all declared input attributes. Let
ΘOUT be the bounded set of declared output attributes. Finally, let ΘREQ be
the bounded set of all declared, mandatory output attributes.

Θ = {θ1 , θ2 , . . .}
ΘIN = {θ|θ ∈ Θ ∧ in(θ)}

ΘOUT = {θ|θ ∈ Θ ∧ out(θ)}
ΘREQ = {θ|θ ∈ ΘOUT ∧mandatory(θ)}

4.2 Formalizing Code

Code customizations of services in OFBiz always have the following signature:

public static Map service
(DispatchContext dctx , Map context)

Flow Analysis of Code Customizations 291

Input attributes are stored in the context map and output attributes are
typically stored in a results map. We will use context and results as general
identifiers for the sets of input and output attributes in our formalization.
Furthermore, let Σ be the set of all program traces. A program trace, σ =
〈α1 , α2 . . . αn〉, is a sequence of executed statements.

Σ = {σ1 , σ2 . . .}
σ = 〈α1 , α2 . . . αn〉

4.3 Input Requirements

Service input consists of a set of input attributes, as described in section 2. The
requirement on input attributes is that only declared attributes are read in the
code. As an illustration, one can think of this as similar to Java’s scoping rules
[9, ch.6.3]. An attribute can only be used if it is in the scope of its declaration. If
an attribute is required by the service definition then it is in scope in the code.
The context parameter contains the input attributes so we are interested in

checking every use of context. To use an input attribute, x, one must invoke
the context.get(x). If this method is invoked then the service definition must
state that x is indeed an input attribute. This rule can be stated more formally
as follows:

∀〈α1 , α2 . . . αn〉 ∈ Σ.∀x ∈ Θ.∀i.αi is context.get(x) ⇒ x ∈ ΘIN

The above constraint is violated if there is a statement αi and a key x /∈ ΘIN
such that αi attempts to read x from context.

4.4 Output Requirements

Service output consist of a set of output attributes. Like input attributes, output
attributes are stored in a Map but an output map may be returned from multiple
return statements. The requirement on output attributes is that mandatory
output attributes are definitely assigned at the point where they are returned. In
particular, one must ensure that all mandatory output attributes have definitely
been assigned for each individual return statement. This corresponds to the
definite assignment rules of Java [9, ch.16] and checking that these rules are
obeyed involves many of the same intricacies, most notably in the case of try
statements.
Output attributes are stored in a results map, so we are interested in

checking every use of results. To assign a value y to an output attribute x
one must invoke results.put(x, y). Such an assignment can be undone by
invoking the results.remove(x)method. If an output attribute x is mandatory
then it must be assigned when the method returns. This rule can be stated more
formally like this:

∀x ∈ ΘREQ .∀〈α1 , α2 . . . αn〉 ∈ Σ.∀i.αi is return results ⇒
∃j.j < i.(αj is results.put(x, y)∧ ¬∃k.j < k < i.αk is results.remove(x))

292 A. Hessellund and P. Sestoft

The above constraint is violated if there is a mandatory output attribute x and
an execution σ with a return statement αi and such that either there is no
statement αj that sets key x before αi or there is a statement αk between αj
and αi that removes the key x from the map.

4.5 Further Output Attribute Checks

In addition, one might require that the service implementation only attempts
to set output attributes that may be needed according to the service definition.
This rule can also be stated formally as follows:

∀x ∈ Θ.∀〈α1 , α2 . . . αn〉 ∈ Σ.∀i.αi is return results ∧
∃j.j < i.αj is results.put(x, y) ⇒ x ∈ ΘOUT

This constraint is violated if there is an attribute x and an execution σ with a
return statement αi and a key x /∈ ΘOUT such that αi attempts to assign x to
the returned map results, and x is not an output attribute.

4.6 Duality of Requirements

Interestingly, the requirement on the output in section 4.4 is the dual of the
requirement on the input in section 4.3. The input requirement says that if x is
used in context.get(x) on some execution path in the code then attribute x
must be provided to the service according to the XML service definition. The
output requirement says that if attribute x must be returned from the service
according to the XML service definition then every execution path that leads
to a return statement in the Java code must define x. We shall see that this
duality is reflected in the analyses by the use of different meet operators.

5 Analysis of Service Input

In this section, we describe the individual steps performed by our analysis of
service input. The analysis uses two artifacts: the service definition and the
implementation code. The analysis consists of the following five steps:

1. Collect declared attributes from the XML service definition.
2. Construct a control flow graph for the Java code.
3. Perform a reaching definitions flow analysis on the code.
4. Construct a def-use chain for the code.
5. For each use of the input map, check that only declared keys are used.

5.1 Collect Declared Attributes from the XML Service Definition

The first step in the analysis is to determine which input attributes are declared.
Not all service definitions are as simple as listing 1.1. Figure 2 shows the OFBiz

Flow Analysis of Code Customizations 293

domain classes involved in the collection of service attributes. In addition to the
service’s own attributes, a service can inherit attributes from other services and
optionally override characteristics of these inherited attributes. For instance,
the ClearCommerce and CyberSource provider services from the Accounting
module all inherit attributes from the general OFBiz credit card and payment
processing services to enable service polymorphism. Furthermore, a service
can automatically collect attributes based on the fields of a business entity
through the auto-attributes association, shown in figure 2. For instance, the
updateAgreement service from the Accounting module uses all fields of the
Agreement business entity as input attributes. The advantage of this is that
whenever the Agreement business entity is extended with a new field, this change
is automatically reflected in the updateAgreement service. This can be further
refined such that all primary keys are mandatory attributes and all non-primary
keys are optional attributes.

Fig. 2. The domain classes relevant for locating and collecting attributes for an OFBiz
service. The collection process is described as step (1) in section 5. A service may
have its own attributes, may inherit attributes from other services, and may collect
automatic attributes based on fields of a set of business entities, extends and views.

In summary, collecting service attributes from the metadata is a non-
trivial process. The collection process requires traversing the service inheritance
hierarchy and checking for overridden attributes. If the service uses the
auto-attributes association, shown in figure 2, then one must also traverse
related business entities, use their fields as attributes and check whether primary
or non-primary keys are filtered out and whether any named fields are included
or excluded.

294 A. Hessellund and P. Sestoft

5.2 Construct a Control Flow Graph for the Java Code

The second step in the analysis is to construct an intraprocedural control flow
graph for the service implementation to facilitate flow analysis at a later stage.
The control flow graph is constructed using classical algorithms [10, ch.8.4] with
graph nodes being statements. The construction process handles straightforward
constructs such as conditionals and loops as well as the more complicated
try-catch-finally construct in Java. For our prototype, described in section
7, we traverse the built-in abstract syntax tree representation of the Eclipse Java
Development Tools (JDT) to build the control flow graph.
Constructing the control flow graph for the try-catch-finally construct

requires some special considerations. The control flow must facilitate a flow
analysis that can determine whether a variable is definitely assigned after a
try statement. As the Java Language Specification [9, ch.16.2.15] shows, this
is non-trivial matter since (1) try statements can be nested, (2) there can be
several catch clauses, (3) the exception classes form an inheritance hierarchy
that affects catch clause matching, and (4) one has to take any finally clauses
into account.
The construction process proceeds in the following manner: For each state-

ment that is in scope of one or more try statements, we add an edge to the
next statement in the current try block, or if there is no such next statement,
we add an edge to either the first statement in the finally block (if any) or
else to the next statement after the try-catch statement. For each checked
exception that the statement in question throws, we must add an edge to the
corresponding catch clause. To do the latter, we iterate through every catch
clause starting from the first in the innermost try statement to the last in
the outermost try statement. If the innermost try statement does not have a
relevant catch clause, we must add an edges to any intermediate finally clauses
(in the case of nested try statements). In principle, almost every statement in the
try block can throw an unchecked exception, but our analysis only takes checked
exceptions into account. Taking unchecked exceptions into account would lead
to too many edges on the graph and render the results of the final flow analysis
less interesting because the final result would contain too many false positives.

5.3 Perform a Reaching Definitions Flow Analysis on the Code

The third step in our analysis is to perform a classic reaching definitions flow
analysis [10, ch.9.2.4]. The purpose of this flow analysis is to determine which
definitions reach each statement in the code. A definition is represented as a pair
of a variable and its defining statement’s location (its AST node). Specifically, for
each statement we determine which variable definitions reach this point. This is
done by solving the following equations where entry(stmt) is the set of definitions
reaching a statement, stmt. The set exit(stmt) contains the definitions that may
be exposed to the successors of stmt in the control flow graph. The genstmt and
killstmt sets are the definitions that are generated and killed by the statement
stmt. The init node is the starting point of the graph [10, p.605-6].

Flow Analysis of Code Customizations 295

exit(init) = ∅
exit(stmt) = genstmt ∪ (entry(stmt)− killstmt)

entry(stmt) = ∪pred is a predecessor of stmtexit(pred)

The analysis is monotonic and the result is the least fixpoint of the equations.
An important part of the equations is the use of union as the meet operator. The
significance is that a definition reaches a statement if there is some path from a
definition to the statement on the control flow that does not kill the definition.

5.4 Construct a Def-Use Chain for the Code

The control flow graph and the results of the reaching definitions analysis enable
us to build def-use chains for every variable in the code. A def-use chain ties
a definition of a variable together with the statements where the variable is
being used. For the purposes of our analysis, we are specifically interested in the
defToUse function which given a definition, def, returns the set of statements,
stmt, where this definition is being used. The use predicate expresses whether a
statement uses a variable and the entry(stmt) set is the previously computed
set of definitions reaching stmt [11].

defToUse(def) = {stmt|use(stmt, def) ∧ def ∈ entry(stmt)}

5.5 For Each Use of the Input Map, Check That Only Declared
Keys Are Used

The final step in our service input analysis is to check that only declared
input attributes are actually being used. This is the consistency requirement
on service input described in section 4.3. The analysis as implemented provides
an approximation to this exact requirement, primarily because the control
flow graph generates a superset of the set Σ of possible program traces. The
analysis may deem a statement context.get(x) reachable although no actual
computation could execute it.
Furthermore, the analysis checks whether the attribute is being cast to the

correct type, such as when surveyResponseId is cast to the String type in line 5
in listing 1.2. The idiom (C)context.get(x) is used for casting input attributes
so the analysis performs the type check simply by checking whether the declared
type of x is assignable to type C.
A constraint violation is flagged as an error called Use of undeclared input

attribute. In some cases, the key, x, is an expression or a variable whose
value is computed by an expression at an earlier program statement. Then
the analysis fails and the statement is annotated with a warning that the
analysis is unable to determine whether this attribute is declared in the service
definition. Using such computed keys can be considered metaprogramming on
top of the OFBiz framework. An example of this practice is for instance the
updateOrRemove service in the Content Management Module. This service can

296 A. Hessellund and P. Sestoft

change the structure of business entities at runtime. This practice is used in less
than 10 places in our version of the framework so we consider it beyond the
scope of our current analysis requirements.

6 Analysis of Service Output

In this section, we will describe the steps performed in the service output
analysis. The analysis uses the service definition and the implementation code.

1. Collect declared attributes from the XML service definition.
2. Construct a control flow graph for the Java code.
3. Perform an available map keys flow analysis on the code.
4. For each return statement, check that each mandatory output attribute has
definitely been assigned before that statement.

5. For each use of the output map, check that only declared keys are used.

6.1 Collect Declared Attributes from the XML Service Definition

The collection of output attributes is completely analogous to the collection of
input attributes, described in section 5.1.

6.2 Construct a Control Flow Graph for the Java Code

The control flow graph from the previous section is reused.

6.3 Perform an Available Map Keys Flow Analysis on the Code

The third step in the analysis is to determine which keys are put into the
map of output attributes during different traces of the program. The analysis
is a flow analysis which shares some characteristics with the classical available
expressions flow analysis [10, ch.9.2.6]. The purpose of the analysis is to compute
the domain of each defined map for each statement in the implementation code.
By domain, we here mean the set of keys that have definitely been assigned.
The analysis results are represented as a pair of the AST node defining the
map and a set of those map keys. Where the available expressions flow analysis
determines whether an expression is definitely available at a given program point,
our available map keys analysis determines whether a key in a given map is
definitely available at a given program point. The main difference is that in our
analysis map entries are treated as variables instead of merely runtime values.
This difference is reflected in the gen and kill functions.
Analysis of output attributes is a bit more complicated than input attributes

because an output attribute can be set in several different but equivalent ways.
The most common approach is to instantiate a HashMap and invoke the put(x,
y) method on that map to set the output attribute x to the value y. Another
approach is to use the framework-provided method UtilMisc.toMap which
takes a number of keys and values and returns a map containing those keys

Flow Analysis of Code Customizations 297

and values as entries, i.e., a batch of put invocations. A third approach is to
programmatically invoke another service, e.g., the someService service, which
returns a map using the method dctx.runSynch("someService",inputMap).
Each of these different approaches generates a key at the statement where it
occurs and plays a part in the genstmt function. Examples of the corresponding
killstmt function would be invocations of methods such as clear() or remove(x)
on the map of output attributes.
The analysis is performed similarly to the available expressions analysis with

the main difference being different gen and kill functions. Specifically, we solve
the following set of equations [10, p.612]:

exit(init) = ∅
exit(stmt) = genstmt ∪ (entry(stmt)− killstmt)

entry(stmt) = ∩pred is a predecessor of stmtexit(pred)

An important part of the analysis is the use of intersection as the meet
operator in these equations as opposed to union in the reaching definitions
analysis in section 5.3. This reflects the duality of the consistency requirements
on input and output discussed in section 4.6. The significance of using
intersection here is that a map key only definitely reaches a return statement
if every path leading to this return sets the map key. This means that if a map
key is in the entry set of a return statement, the output attribute is definitely
assigned at that statement. Another difference between the two analyses is that
where the reaching definitions analysis starts by initializing every statement to
have empty exit sets, the available map keys analysis initializes the exit set of
every statement, except the starting node, to the universe of all possible keys.
This is a direct consequence of using the intersection operator and in terms of
execution of the analysis, it requires a pre-pass to compute the universe.

6.4 For Each Return Statement, Check That Each Mandatory
Output Attribute has Definitely been Assigned Before That
Statement

The fourth step in the analysis is to check that mandatory output attributes
have definitely been assigned on return. This is the consistency requirement on
service output described in section 4.4. A constraint violation is flagged as an
error called Missing mandatory output attribute, x. This is because there is some
path leading to this statement that does not set the key x in the returned map.

6.5 For Each Use of the Output Map, Check That Only Declared
Keys Are Used

Finally, similar to the previous analysis in section 5.5 we check that only
declared keys are used. Violations of this constraint do not cause the system
to malfunction but indicate an attribute spelling error or other programmer
error or misunderstanding. Setting an undeclared output attribute is somewhat
similar to declaring a local variable in Java and never making use of it. It is not
an error but a redundancy that indicates a possible problem in the code.

298 A. Hessellund and P. Sestoft

7 Prototype Implementation

Eclipse is a commonly used tool among OFBiz developers, so our implementation
approach has aimed to extend Eclipse and make the previously described
analyses available in that environment. Our prototype is an Eclipse plugin that
provides an OFBiz model browser, as shown in figure 3, that allows developers
to browse the logical structure of an OFBiz installation to manage entities and
services rather than XML- and Java-files. From the browser, one can navigate
to service definitions and service implementations in a single click. From the
browser one can also initiate an analysis of either a single service or the entire
installation.

Fig. 3. Our prototype extends Eclipse with a browser for the logical model of an
OFBiz installation. Here, the buildPdfFromSurveyResponse service in the Content
Management component is selected and the two attributes of the service are shown.
The context menu offers the choice of navigating to the service implementation or
service definition.

The prototype uses a standard XML parser to parse and load all relevant
XML files and relies on the Eclipse Java Development Tools (JDT) to parse
and build abstract syntax trees for the corresponding Java code. The analyses
are performed by traversing these XML- and Java-representations. The result
of each analysis is reported as errors and warnings in the Problems View and
marked in XML and Java editors as well, as shown in figure 4. The prototype
is therefore integrated into the regular OFBiz development experience in a non-
invasive way. Developers can quickly navigate from an error in the Problems
View to the cause of the error in a Java editor, and repair it there.

Flow Analysis of Code Customizations 299

Fig. 4. Our prototype pointing out the inconsistency in listing 1.1 line 6. When an
analysis is executed, the results are shown as entries in the Problems View at the
bottom. When the user selects an error line in the Problems View, the Java editor is
opened and the cursor is placed at the error’s location in the source code.

We have released a preliminary version of the prototype to the OFBiz
developer community and received very positive feedback [2, 3]. This indicates
that the prototype addresses a real need and that the detected errors are
considered serious. The prototype is available on the Internet along with an
online Flash-demo of its capabilities [12]. In the next section, we will describe
the results of applying this prototype to actual OFBiz production code.

8 Empirical Results

In order to validate our claims, we have applied our prototype on the out-of-the-
box version of OFBiz (November 2007). This version contains some 2000 services
of which 550 are implemented using Java code customizations. Our test setup is
an Intel Core 2 CPU, 1.83 GHz, laptop with 2 GB of RAM. Running a complete
analysis of the entire OFBiz installation (see section 3) took 22.3 seconds and
used an average of 105 MB of heap space. In another setup with constrained
memory, the complete analysis took 65.2 seconds but used only an average of 55
MB of heap space. This indicates that the prototype is fast enough to be used
in a real industrial scenario.

300 A. Hessellund and P. Sestoft

Table 1. Overview of the 133 errors and 122 warnings detected in the out-of-the-box
version of OFBiz. This version is already deployed in several industrial settings so these
errors and warnings are present in live installations.

Severity Type No. of

Error Undeclared input attribute 77

Error Missing mandatory output attribute 56

Warning May be missing mandatory output attribute 16

Warning Unable to analyze expression 12

Warning Unable to analyze complex returns 27

Warning Unable to analyze interprocedural call 67

Our analysis found 133 errors and 122 warnings in our OFBiz installation. The
tested OFBiz installation is a relatively stable version that is currently being used
in several industrial settings. This means that the errors and warnings we have
detected are present in several deployed OFBiz products. An overview of these
errors and warnings can be found in table 1.
The two classes of errors in table 1 are the most serious problems. Use of

an undeclared input attribute can potentially lead to NullPointerExceptions
since reading an undeclared attribute from the map of input attributes typically
returns null. An attempt to call a method on this attribute will therefore throw
a NullPointerException and cause the OFBiz application to fail. A missing
mandatory output attribute is quite simply a breach of the contract specified in
the service definition. Clients of the service in question will expect this contract
to be fulfilled. Closer examination of these errors has shown that it is often
an exception handling control flow path that does not assign all mandatory
output attributes. In some special cases, the analysis indicates that a mandatory
output attribute might not be assigned. This happens when irregular use of
certain framework-provided utility methods is detected. The last three classes of
warnings are all caused by limitations in the analysis. If a variable is assigned
the value of an expression and later used as key in the map of output attributes,
it is typically part of some metaprogramming on top of the framework.

int j = computeFieldNo ();
String key = "field" + j;
results.put(key , "someValue");
return results;

These parts of the code are beyond the scope of the analysis, and this is indicated
by the unable to analyze expression warning.
If a return statement returns the value of an expression then the analysis

issues a warning since we are unable to determine the value of that expression.

return isEmpty () ? new HashMap () : results;

Flow Analysis of Code Customizations 301

Finally, the largest class of warnings are those caused by interprocedural
calls that have not been incorporated into the analysis. The analysis has been
adapted to handle most framework-provided utility methods. However, certain
customizations introduce idiosyncratic utility methods that the analysis is unable
to handle.

Map results = new HashMap ();
otherObject.foo(results);
return results;

Where otherObject.foo is a custom method not provided by the framework
and hence not included in the analysis.

9 Discussion

Several questions arise from our analysis and examination of the OFBiz
framework. In this section, we will discuss four central ones. First, what are the
limitations of our analysis? Second, can our approach be applied to other areas of
OFBiz? Third, are the code customization described in this paper particular for
OFBiz or do they appear in other frameworks as well? Fourth, is the OFBiz idiom
of using maps to store input and output attributes really an internal domain-
specific language, embedded in Java? If so, our input and attribute analyses are
really standard compiler checks for consistency of this domain-specific language.

9.1 Limitations of the Analysis

Our analyses compute approximations of the constraints outlined in section
4. To discuss the sources of approximation, let us say that a “positive” is an
actual consistency error, and a “negative” is the absence of such an error. A
“true positive” is when an analysis discovers and reports an actual consistency
error; a “false positive” is when an analysis reports a consistency error but there
actually is none: the service will always execute without failure. Conversely, “true
negative” is when an analysis reports no consistency error and there is none; a
“false negative” is when an analysis reports no consistency error, but actually
there is one: the service may fail.
Using an analogy from logic, we may say that an analysis without false

positives is complete and that one without false negatives is sound. An analysis
with neither false positives nor false negatives is exact.
For computability reasons, our analyses are necessarily incomplete and have

false positives: they may report a consistency error where there is none. The
main reason for this is that the control flow graph built in sections 5.2 and 6.2
is an approximation of the set Σ of actual program traces. Consider:

if (... complex expression , always false ...)
context.get("thisAttributeIsNotDefined");

302 A. Hessellund and P. Sestoft

Moreover, our analyses are unsound and have false negatives: they may report no
consistency error although the service may fail at runtime. Some people would
consider such an analysis flawed and useless, but our point of view is that making
the analysis sound (by eliminating all false negatives) would increase the number
of false positives to an extent that would make the analysis uninteresting.
There are two sources of unsoundness:

(a) We perform no alias analysis [10, ch.12.4]
(b) We consider only checked exceptions when building the control flow graph
for try-catch-finally statements

The lack of alias analysis affects the analysis of both input and output attributes.
For input attributes, it means that we get a false negative in this case, where
thisAttributeIsNotDefined is not an input attribute:

Map inputMapAlias = context;
inputMapAlias.get("thisAttributeIsNotDefined");

Our analysis will not discover that inputMapAlias is an alias of the input
attribute may context, and hence will not flag the get-method call as a violation
of the input attribute constraint.
For output attributes, the lack of alias analysis means that we get a false

negative in this case:

Map results = new HashMap ();
results.put("x", 1);
Map outputMapAlias = results;
outputMapAlias.remove("x");
return results;

Our analysis would not report that the output attribute x is missing from the
results map.
It would be fairly easy to add an alias analysis step and hence remove

this source of unsoundness, but we believe that it will only marginally affect
the practical utility of the analysis, because there is no reason for service
implementations to define aliases of input and output maps.
Considering only checked exceptions is the other main source of unsoundness.

The construction of the control flow graph does not take unchecked (runtime)
exceptions into account. Almost every Java statement may throw a runtime
exception. Taking such exceptions into account would give significantly more
control flow edges, which would cause a large number of false positives in the
analysis without contributing any significant new useful error messages. We have
therefore omitted runtime exceptions to get a simpler graph, fewer false positives,
and an analysis that is overall more useful.
Finally, a further source of approximation in our analyses is that they are

intraprocedural only. Hence if an input or output map is passed to a method the
analysis will issue a warning, corresponding to “don’t know” rather than give a
positive or negative answer:

Flow Analysis of Code Customizations 303

Map results = new HashMap ();
doSomething(results);
return results;

Since the doSomethingmethod may manipulate the entries in the resultsmap,
and the analysis is intraprocedural only, it cannot know the state of results
after the method call.
The analysis does understand the effect of a small number of framework-

provided utility methods, such as UtilMisc.toMap, that perform batch assign-
ment of values to attributes. User-defined utility methods are, however, beyond
the scope of our analysis.

9.2 Other Areas of Application in OFBiz

The OFBiz framework contains several other areas where our analysis may
be applicable. Service implementations in Java account for only 25% of the
service implementations in the entire framework. The remaining OFBiz service
implementations are written in a domain-specific language called Minilang, see
listing 1.3 for an example. Minilang is a simple, imperative, data manipulation
language with a concrete syntax in XML. One can express operations on
primitive types, Strings and OFBiz entities as well as conditionals and simple
error handling.

� �

1 <simple -method method -name="createWorkEffortCostCalc"
2 short -description="Create a WorkEffortCostCalc entry">
3 <make -value entity -name="WorkEffortCostCalc"

value -name="newEntity"/>
4 <set -pk -fields map -name="parameters"

value -name="newEntity"/>
5 <set -nonpk -fields map -name="parameters"

value -name="newEntity"/>
6 <if -empty field -name="newEntity.fromDate">
7 <now -timestamp -to-env env -name="newEntity.fromDate"/>
8 </if -empty>
9 <create -value value -name="newEntity"/>
10 </simple -method >

�

Listing 1.3. The implementation of the createWorkEffortCostCalc service in the
Minilang DSL. The code creates a WorkEffortCostCalc entity and initializes its fields
from a map of input attributes called parameters.

Minilang is much less expressive than Java so it should be fairly easy to
adapt our analyses to this language. This adaptation would involve two steps:
(1) changing our parser from the Eclipse JDT parser to a standard XML parser,
and (2) changing the gen and kill functions to include the syntactical constructs
of Minilang. The reason that we focused on Java is that if the analysis can handle

304 A. Hessellund and P. Sestoft

Java with all its complexity then we claim that it is a trivial matter to extend
the analysis to other implementation languages in OFBiz.

9.3 Code Customizations in Other Frameworks

An obvious question that arise from this work is whether these analyses are
restricted to OFBiz. One of the main points of the paper is that exactly by
adapting classic flow analyses to a framework-specific setting can we reap extra
benefits. As it turns out, code customizations are found in other frameworks
than OFBiz. Request processing in J2EE web applications provides good
examples, such as servlet filters [13, ch.11] and Actions in Struts [14]. The Spring
Framework [15] is an open source, J2EE-based webapplication framework with
widespread industry adoption. Listing 1.4 shows an excerpt from one of the
Spring sample applications. In this code we can identify the exact same patterns
as in OFBiz. In line 3, an input attribute is accessed, and in lines 6 and 7
output attributes are assigned. In this case the metadata are split between Spring
configuration files and the client-side HTML, and standard tools do not enforce
consistency with the handleRequest code.

Listing 1.4. The handleRequest method from the ViewItemController class in the
JPetStore sample application from the Spring Framework version 2.5. The code follows
the same idiom as OFBiz code customizations by accepting a map, in this case the
request, and returning another map, in this case the model.

Our prototype could be adapted to the Spring framework merely by changing
the gen and kill functions in the available map keys analysis. The code in
listing 1.4 uses getParameter(x) instead of OFBiz’s get(x) to access an input
attribute named x. Similarly, the output analysis would also only need a little
tweaking. Further work, however, must be done in order to determine how easy
it is to capture this kind of variability in the prototype.

9.4 An Internal Domain-Specific Language

It seems that the OFBiz style approach is common, especially in the context of
Java web application frameworks. We do, however, want to further extend our

� �

1 public ModelAndView handleRequest
2 (HttpServletRequest request , HttpServletResponse response)..{
3 String itemId = request.getParameter("itemId");
4 Item item = this.petStore.getItem(itemId);
5 Map model = new HashMap ();
6 model.put("item", item);
7 model.put("product", item.getProduct ());
8 return new ModelAndView("Item", model);
9 }

� �

Flow Analysis of Code Customizations 305

claim about this approach. The use of attributes stored in maps can be thought
of as an internal domain-specific language (DSL) hosted in the Java language.
Let us call this language the Attribute DSL. The Attribute DSL contains the
following five language constructs:

Construct Meaning

java.util.Map.get(x) reads an attribute x

java.util.Map.put(x, y) assigns value y to attribute x

java.util.Map.remove(x) deletes an attribute x

org.ofbiz.base.util.UtilMisc.toMap(...) batch assignment of values

java.util.Map.clear() batch deletion of attributes

The Attribute DSL is weakly typed in contrast to Java. So by using this DSL
within Java, we lose static guarantees. Reading an attribute is a good example
of this loss; the existence of the Customer attribute is checked only at runtime,
and the type of the attribute value is checked only at runtime. The introduction
of generic types in Java 5.0 does not solve this problem since a single input map
may contain attributes of type String, Customer and Integer. The most specific
java.util.Map type that can hold these attribute is Map<String,Object>,
which means that all attributes will have compile-time type Object.

Customer customer = (Customer) context.get("Customer");

Fortunately, OFBiz provides us with the metadata needed by our analysis to
re-establish the previously lost static guarantees:

<attribute name="Customer" type="dk.itu.Customer" ../>

The existence of these metadata may explain why OFBiz developers feel
confident leaving out the explicit runtime checks that one would expect in the
above code.
The analyses that we have provided in the previous sections provide the

static guarantees of definedness and type correctness that are missing from the
Attribute DSL. The input attribute analysis is really a standard compiler check
for variables being in scope when used, and the output attribute analysis is a
standard compiler check for definite assignment.

10 Related Work

This work is influenced mainly by two areas of research: framework-completion
and static semantic checking of weakly typed languages.

306 A. Hessellund and P. Sestoft

10.1 Framework-Completion

Framework-completion code is similar to code customizations in the sense that
they conform to predefined interfaces and makes use of framework-provided
methods. The code customizations that we have described are a bit more
monolithic than framework-completion code which typically is split between
multiple methods and relies heavily on framework callbacks.
Fairbanks et al. [16] have investigated framework-completion code in the

Eclipse and the Java Applet framework and identified API complexity as a key
problem in development. To help developers they propose design fragments, a
kind of framework-completion recipes expressed in XML. These design fragments
are similar to OFBiz service definitions in the sense that they contain extra
metadata. The tool support for design fragments is of a more syntactic nature
than our plugin which on the other hand relies more on semantics in the form
of data flow. Other related work in this category is recent papers on framework-
specific modelling languages that synthesize metadata and code in a higher-level
language [17, 18].

10.2 Static Semantic Checking of Weakly Typed Languages

The idiom of storing attributes in maps has, as described in section 9, the
unfortunate consequence that the type system is weakened. Our flow analyses
are a way of providing static guarantees in spite of this weakened type system.
There are several pieces of related work in area of weakly typed languages.
Wright and Cartwright [19] have suggested the concept of soft typing based on
work in Scheme. The main idea is to provide type information for the compiler
by relying on a generalization of Hindley-Milner type inference. This work has
been extended to other languages such as JavaScript [20] and Erlang [21]. Our
work has a similar purpose but can be distinguished by the fact that we rely on
two artifacts: metadata and code as opposed to merely code. Another related
approach which relies heavily on data flow analysis is Christensen et al. [22].
Their focus is on dynamically generated string expressions such as SQL queries
but the goal is similar to ours.

11 Conclusion

The use of XML and Java as a hybrid development platform for configurable
enterprise systems leads to inconsistencies between metadata and code cus-
tomizations. We have formalized the consistency constraints for a concrete
platform, viz. OFBiz, and provided a set of dataflow analyses adapted to this
platform. The analyses are implemented in the a tool that we have successfully
applied to OFBiz. Using the tool, we have detected a large number of errors as
well as elicited very positive feedback from the OFBiz community. Our overall
contributions in this paper are:

– A formalization of the consistency constraints between metadata and code
customizations in OFBiz.

Flow Analysis of Code Customizations 307

– A set of framework-specific adaptions of dataflow analyses based on this
formalization.
– A working implementation of these analyses in the form of an Eclipse plugin.
– An empirical validation of the tool by analyzing production code and eliciting
feedback from OFBiz developers.
– A discussion of the limitations of the analyses, and the trade-off between
soundness (no false negatives) and precision (only few false positives).

Acknowledgement

The authors would like to thank Kasper Østerbye, Andrzej Wąsowski and Steen
Brahe for their valuable comments on an earlier draft of the paper.

References

1. The Apache Software Foundation: The Apache Open for Business Project (2007)
March 8 (2007), http://ofbiz.apache.org/

2. Franck, D.: Personal correspondance (2008)
3. Chen, S.: Personal correspondance (2008)
4. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided Development with Multiple
Domain-Specific Languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.
(eds.) MODELS 2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

5. BeanShell: Lightweight Scripting for Java (2007), http://www.beanshell.org/
6. Jones, D., Schuessler, E.: Apache OFBiz: Real-World Open Source Java Platform
ERP. Presented at the 2007 JavaOne Conference (2007)

7. Chen, S.: Opening Up Enterprise Software: Why Enterprises are Adopting Open
Source Applications (2006), http://www.opensourcestrategies.com/slides/

8. Various: Apache OFBiz User List (2007), http://docs.ofbiz.org/display/
OFBIZ/Apache+OFBiz+User+List

9. Gosling, J., Joy, B., Steele, G.L., Bracha, G.: The Java Language Specification, 3rd
edn. Sun Microsystems (2005)

10. Aho, A.W., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
& Tools. 2 edn. Pearson Education, Inc (2007)

11. Fuhrer, R.M.: Static Analysis for Java in Eclipse, Lecture slides from the tutorial
Static Analysis for Java in Eclipse at the ACM SIGPLAN 2005 Programming
Language Design and Implementation (PLDI), Chicago, Illinois, USA. (2005),
http://www.cs.purdue.edu/homes/jv/plditut/eclipse/index.html

12. Hessellund, A.: OFBiz Explorer v2 (2007), http://www.itu.dk/people/
hessellund/smartemf/ofbizexplorer.htm

13. Bodoff, S., Armstrong, E., Ball, J., Carson, D., Evans, I., Green, D., Haase, K.,
Jendrock, E.: J2EE Tutorial, 2nd edn. Prentice-Hall, Englewood Cliffs (2004)

14. The Apache Software Foundation: The Struts Framework (2007), http://struts.
apache.org/

15. Spring Source: The Spring Framework (2007), http://www.springframework.org/
16. Fairbanks, G., Garlan, D., Scherlis, W.L.: Design fragments make using frameworks
easier. In: Tarr, P.L., Cook, W.R. (eds.) OOPSLA, pp. 75–88. ACM, New York
(2006)

308 A. Hessellund and P. Sestoft

17. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-
trip engineering. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 692–706. Springer, Heidelberg (2006)

18. Antkiewicz, M., Bartolomei, T.T., Czarnecki, K.: Automatic extraction of
framework-specific models from framework-based application code. In: ASE
2007: Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, pp. 214–223. ACM, New York (2007)

19. Wright, A.K., Cartwright, R.: A practical soft type system for scheme. In: LISP
and Functional Programming, 250–262 (1994)

20. Thiemann, P.: Towards a type system for analyzing javascript programs. In: Sagiv,
S. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)

21. Marlow, S., Wadler, P.: A practical subtyping system for erlang. In: ICFP 1997:
Proceedings of the second ACM SIGPLAN international conference on Functional
programming, pp. 136–149. ACM, New York (1997)

22. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String
Expressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

Online Phase-Adaptive Data Layout Selection�

Chengliang Zhang1 and Martin Hirzel2

1 Microsoft in Redmond, WA
(C. Zhang was a student at the U. of Rochester when doing this work.)

chengzh@microsoft.com
2 IBM in Hawthorne, NY

hirzel@us.ibm.com

Abstract. Good data layouts improve cache and TLB performance of
object-oriented software, but unfortunately, selecting an optimal data
layout a priori is NP-hard. This paper introduces layout auditing, a
technique that selects the best among a set of layouts online (while the
program is running). Layout auditing randomly applies different layouts
over time and observes their performance. As it becomes confident about
which layout performs best, it selects that layout with higher probability.
But if a phase shift causes a different layout to perform better, layout
auditing learns the new best layout. We implemented our technique in a
product Java virtual machine, using copying generational garbage collec-
tion to produce different layouts, and tested it on 20 long-running bench-
marks and 4 hardware platforms. Given any combination of benchmark
and platform, layout auditing consistently performs close to the best
layout for that combination, without requiring offline training.

1 Introduction

Cache and TLB misses often cause programs to run slowly. For example, we esti-
mate that pseudojbb05 spends 34% of its time stalled in misses on a 4-processor
AMD machine [17]. Cache and TLB misses often stem from a mismatch between

xa
la
n
ip
si
xq
l

ja
ck

m
trt

fo
p pm

d

co
m
pr
es
s

lu
in
de
x

jy
th
on an

tlr

ps
eu
do
jb
b0
5
ja
va
c
je
ss

ch
ar
t
lu
se
ar
ch

ec
lip
se

m
pe
ga
ud
io

bl
oa
t

db
hs
ql
db

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

Fig. 1. Percent speedup of HI data layout, compared to BF, on an 8-processor AMD
at 4× the minimum heap size. Section 5 explains HI and BF, and Section 6 explains
the methodology. The error bars show 95% confidence intervals from Student’s t-test.
� This research was funded in part by DARPA contract No. NBCH30390004.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 309–334, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 C. Zhang and M. Hirzel

data layout and data access order. For example, Fig. 1 shows that the same
layout can degrade or improve runtime depending on how well it matches the
program’s data accesses, and on how expensive the layout is to apply.

Results like those in Fig. 1 are typical: optimizations that improve perfor-
mance for some programs often risk degrading performance for other programs.
The results depend on tradeoffs between optimization costs and rewards, and on
interactions between complex software and hardware systems. Picking the best
data layout a priori is difficult. Petrank and Rawitz showed that even with per-
fect knowledge of the data access order, finding the optimal data placement, or
approximating it within a constant factor, is NP-hard [32]. Zhang et al. showed
that finding a general affinity-hierarchy layout is also NP-hard [45]. While these
hardness results were shown for fairly regular scientific code, reliance on pointers
and dynamic dispatch exacerbate the problem further for object-oriented code.
Practically, picking a data layout before the program starts would require train-
ing runs and command line arguments, both of which impede user acceptance.

This paper proposes layout auditing, a framework for picking the best data
layout online without requiring any user input. Layout auditing optimizes data
layouts with a try-measure-decide feedback loop: use a data reorganizer to try
one of several data layouts, use a profiler to measure the impact of the data
layout on performance, and use a controller to decide which layout to try next.

The data reorganizer tries a layout for the program’s data. The data reorganizer
can reorder data arraysor indexarrays for scientificprograms [11]; or it can copyob-
jects in a specific order during garbage collection for object-orientedprograms [13];
or it can even remap addresses using special-purpose hardware [46]. Layout audit-
ingworkswithoff-the-shelfdata reorganizers [24],andtheengineerswho implement
them need not be aware that the layouts get picked based on profile information.

The profiler measures the reward of the layout of the program’s current data.
The reward is high iff the program spends little physical time per virtual time.
Virtual time is a data layout-independent measure of program progress, such as
loop iterations, allocated bytes, or instructions. Physical time (seconds) depends
on the data layout. The profiler can either simply obtain physical time from
the CPU clock, or it can derive physical time from other information sources.
The profiler reports not just the reward of a data layout in terms of program
performance, but also the cost of the data reorganizer, profiler, and controller.

The controller decides the layout for the next data reorganization, and also
decides how much, if any, time to spend on profiling. If the controller is confident
about which layout is best, it picks that layout to exploit its good performance
characteristics. If the controller is uncertain, it picks a layout it is curious about,
to explore its reward. The controller uses off-the-shelf reinforcement learning
techniques [41]. It turns the reward and curiosity for each data layout into a
probability, and then picks randomly from its repertoire of layouts using those
probabilities. To adapt to phase shifts, the profiler never allows probabilities to
drop to zero, so that it always performs a minimal amount of exploration.

Selecting oneof several layouts is amulti-armedbandit problem [33].Theanalogy
is that of a slotmachine (one-armedbandit),butwithmore thanone arm.Each arm

Online Phase-Adaptive Data Layout Selection 311

is a data layout, and the reward is improved program performance. The controller
repeatedly tries different arms, and hones in on the best ones. Layout auditing sub-
scribes to the philosophy of blind justice. The controller is a fair and impartial judge
who decides based on hard evidence only, and gives each candidate the benefit of
the doubt. In fact, the judge is not only fair, but also merciful: even when a layout
performs badly, it still gets sampled occasionally to check for phase changes.

Layout auditing combines the advantages of two strands of prior work. First,
like online profile-directed locality optimizations, it adapts to platforms, pro-
grams, and phases to achieve better performance than what offline optimization
can achieve. Second, like performance auditing [26], it separates optimization
concerns from controller concerns, it requires no correct model of complex hard-
ware interaction, and it does not get fooled by misleading access patterns where
finding the optimal data layout is NP-hard [32]. Unlike performance auditing,
this paper addresses data layouts, not code optimization, and adapts to phases.
This paper differs from prior profile-directed locality optimizations as well as
from performance auditing in that it uses a uniform controller for not just per-
formance rewards, but also optimization costs.

We evaluated layout auditing for 20 long-running Java programs on 4 hard-
ware platforms. The layouts were produced by copying generational garbage
collection changing the relative placement of heap objects in memory. Given any
combination of benchmark and platform, layout auditing consistently performs
close to the best layout for that combination.

Section 2 presents layout auditing as a framework, and Sections 3 to 5 present
one concrete implementation that is evaluated in Sections 6 and 7. Section 8
sketches alternative implementations of the framework, Section 9 discusses re-
lated work, and Section 10 concludes.

2 Layout Auditing Framework

Fig. 2 illustrates the try-measure-decide feedback loop of layout auditing. The
data reorganizer tries a data layout, the profiler measures its reward, and the
controller decides the next actions of the data reorganizer and the profiler.

Profiling decision

Layout decision

Data

Layout

Rewards

Performance

PerformanceData

reorganizer

Program

Profiler

Controller

Fig. 2. Feedback loop

312 C. Zhang and M. Hirzel

2.1 Program

What: The program performs some calculation on behalf of the user. It is obliv-
ious to the layout auditing feedback loop that surrounds it. The layout of the
program’s data in memory is determined by the data reorganizer, and the pro-
gram’s performance is monitored by the profiler.

How: Section 6 describes a suite of 20 large Java programs from a wide range
of application domains. They run unperturbed on a product language runtime
system with JIT compilation, a popular operating system, and stock hardware.

2.2 Data Reorganizer

What: The data reorganizer executes a layout decision by placing the program’s
data in a specific order in memory. The layout affects program performance;
in addition, the performance of the data reorganizer itself is monitored by the
profiler.

How: Garbage collection is widely used to support robust object-oriented soft-
ware. Section 5 uses copying garbage collection to implement the data reorga-
nizer. This paper is based on high-performance implementations of two well-
known collectors [7,44] that ship with a product language runtime system, and
some experimental collectors [17].

2.3 Profiler

What: The profiler monitors the performance of the program and the data reor-
ganizer. It reports rewards for each data layout to the controller. Rewards mea-
sure physical time per virtual time. Virtual time is a metric of program progress
that is independent of the data layout, such as loop iterations, allocated bytes,
or executed instructions.

How: Section 4 describes the minimalist profiler. It simply looks at the machine
clock to obtain physical time in seconds, and counts bytes allocated as virtual
time. The minimalist profiler uses the most authoritative model of the interac-
tion of data layouts with the hardware: concrete measurements of unperturbed
execution.

2.4 Controller

What: The controller turns rewards of data layouts into decisions for which
layout to try next, and how much profiling to do. The controller is responsible
for optimizing overall performance, even when the program has phase changes.

How: Section 3 describes the softmax controller. It uses a simple reinforcement
learning policy [41] to turn rewards into probabilities. The controller remembers
historical rewards to avoid unstable decisions when there is noise, but it decays
old rewards to adapt to phase changes.

Online Phase-Adaptive Data Layout Selection 313

3 Softmax Controller

The controller turns data layout rewards from the profiler into layout decisions
for the data reorganizer, and profiling decisions for the profiler. It does so by first
turning rewards into probabilities, then deciding randomly based on those prob-
abilities. The two main challenges for the controller are noise and phase changes:
noise is random jitter in program behavior that the controller should ignore, and
phase changes are systematic transitions in program behavior that the controller
should adapt to. The controller in this section solves both challenges for a small
fixed number of layouts while remaining reasonably simple.

3.1 Layout Decision

In reinforcement learning, functions that map rewards to probabilities are known
as policies. The softmax controller is named for the softmax policy [41]:

Pr(�) =
ereward(�)/τ∑

�′
ereward(�′)/τ

(1)

Equation 1 calculates Pr(�), the probability with which the controller will
decide on layout � for the next data reorganization. Layouts with higher rewards
receive higher probabilities, since ereward(�)/τ is larger. Before exponentiation,
each reward is divided by a temperature τ . A high τ makes probabilities of
different rewards more similar. A low τ emphasizes the reward differences in the
probabilities; at low temperatures, controller decisions “freeze”. The division in
Equation 1 normalizes the probabilities such that they add up to 1.

Depending on the temperature, layout auditing will spend additional time
exploring other layouts besides the best layout. Spending time on exploration
is only justified if the information so far is too unreliable to exploit. To make
this tradeoff, the controller computes the pooled standard error of the rewards
of all layouts, and uses that as a curiosity value. The intuition for using error as
curiosity is that when the error is high, the controller is curious to learn more,
whereas additional data points will satisfy curiosity by shrinking the error. The
controller sets the temperature such that the expected reward of the chosen
layout differs from the reward of the best layout only by a small constant k
times the curiosity. Given a temperature τ , the expected reward of a randomly
chosen layout is

expectedReward(τ) =
∑

�

{
Pr
τ

(�) · reward(�)
}

(2)

The controller tries different values for τ using binary search until the absolute
difference between the maximum reward and the expected reward matches the
desired target value k · curiosity :

k · curiosity =
∣∣∣∣max

�
{reward(�)} − expectedReward(τ)

∣∣∣∣ (3)

314 C. Zhang and M. Hirzel

We chose k = 1% to ensure performance close to the best layout.
Curiosity is the pooled standard error of historical rewards for different lay-

outs. To adapt to changes in program behavior, it should weigh recent results
more heavily than old results that might come from a different phase. The con-
troller achieves this with exponential decay. In other words, the weight of a
reward is decayage , where the base decay can be for example 0.95, and the expo-
nent age is the number of data reorganizations since the reward was measured.
Because the statistical formula for pooled standard error does not directly ac-
commodate weighing values, the controller implements exponential decay with
a trick: it duplicates values with higher weights, then computes the statistics on
a larger population.

To adapt to phase changes and to admit redemption after miscarriages of jus-
tice (if any), the controller shows mercy to layouts that seemed to perform badly
in the past. It achieves this by assigning each layout a probability of at least 5%,
regardless of its reward. The price of mercy is degraded performance compared
with the best layout. The controller blindly assumes that all unexplored layouts,
for which there is no data yet, initially have infinite rewards.

3.2 Profiling Decision

Some profilers incur overhead, and should only be activated when their bene-
fits (information gain) outweigh their costs (overhead). This paper uses a zero-
overhead profiler, so the profiler is always active, without controller decisions.
Nevertheless, this section offers a technique to the interested reader for control-
ling profiling overhead with layout auditing. The decision to profile (p = �) or
not (p = ⊥) is a two-armed bandit problem, which the controller can decide with
reinforcement learning analogously to the multi-armed layout decision.

The reward of profiling, reward(p = �), is the reward of satisfied curiosity,
which Section 3.1 defined as the pooled standard error of layout costs. The reward
of not profiling, reward(p = ⊥), is avoiding two overheads: profiling overhead
incurred during program execution, plus overhead incurred when the profiler
processes raw measurements to compute layout rewards.

The controller computes reward(p = �), and relies on the profiler to report its
own overhead in the form of reward(p = ⊥). The controller then decides whether
or not to profile during the next execution interval using the softmax policy

Pr(p) =
ereward(p)/τ∑

p′
ereward(p′)/τ

(4)

The temperature τ is the same as in Equation 3.

4 Minimalist Profiler

The profiler monitors the performance of the program and the data reorganizer,
and turns them into rewards for each data layout for the controller. The main

Online Phase-Adaptive Data Layout Selection 315

challenge for any profiler used in online optimization is maximizing truthfulness
while ignoring noise and minimizing overhead and Heisenberg effects. If the
controller should be a blind judge, then the profiler should be a reliable witness.

The measurements of the minimalist profiler are very simple: seconds and
allocated bytes. Both can be obtained truthfully at negligible overhead. This
section discusses how the minimalist profiler turns seconds and bytes into re-
wards for each layout. Internally, the minimalist profiler computes costs, which
are negative rewards, so low costs correspond to high rewards and vice versa. A
cost is a seconds-per-byte ratio, and has the advantage of being additive when
there are different costs from different system components. Formally, the reward
of a data layout � is

reward(�) = −cost(�) (5)

The cost of a layout � is the sum of its execution time cost coste(�) and its
data reorganization cost costr(�):

cost(�) = coste(�) + costr(�) (6)

The quantities in Equation 6 represent averages of ratios of corresponding
historical measurements. To explain what that means, we first introduce some
notation. Let ei be the physical time of the program execution interval that
follows reorganization i; let vi be the virtual time in number of bytes allocated
between reorganizations i and i + 1; and let �i be the layout of reorganization i.
The minimalist profiler calculates

coste(�) = avg
{

ei

vi
| �i = �

}
(7)

In words: to compute the programs’s execution time cost for layout �, average
the set of historical seconds per bytes ratios ei/vi that used layout �. Likewise,
given the physical time ri of data reorganization number i, the formula for data
reorganizer cost is

costr(�) = avg
{

ri

vi−1
| �i = �

}
(8)

The minimalist profiler assumes that reorganizer time ri is proportional to the
allocation volume vi−1 of the preceding execution interval, and that execution
time ei reflects the layout �i of the preceding data reorganization.

Averaging over historical values (Equations 7 and 8) reduces noise. To reduce
noise further, the averages omit outliers. The averages are weighted toward recent
data using an exponential decay curve, to adapt when program behavior changes
over time.

In addition to rewards for layouts, profilers also report their own cost to the
controller in the form of reward(p = ⊥), which is the reward of not profiling.
Since the minimalist profiler incurs no overhead, there is no reward for not
profiling, hence reward(p = ⊥) is always 0.

316 C. Zhang and M. Hirzel

To summarize, the minimalist profiler uses only information that is trivially
available on any platform: seconds and allocated bytes. The disadvantage is
that layout auditing will settle slowly when there is too much noise. Another
drawback is the assumption that program execution time reflects the data layout
of the previous data reorganization only, which plays down the effect of data in a
different memory area that was unaffected by that reorganization, and thus has
a different layout. On the positive side, the minimalist profiler is cheap, portable,
and direct.

5 Data Reorganization with Garbage Collection

The data reorganizer tries a layout for the program’s data. There are many pos-
sible implementations for data reorganizers; this paper chose to use off-the-shelf
garbage collection algorithms [24]. This section reviews background on copying
collectors, and describes some common data layouts.

5.1 Copying Garbage Collection

Copying garbage collection divides heap memory into two semispaces. Only one
semispace is active for allocation at a time. Garbage collection starts when the
active semispace is full. The collector traverses pointers from program variables
to discover reachable objects, which it copies to the other semispace (from from-
space to to-space). It updates all pointers to refer to the to-space copies, and
discards the from-space originals. When the program resumes, it uses to-space as
the active semispace for allocation. An example for a copying garbage collector
is Fenichel and Yochelson’s algorithm, which traverses objects with a recursive
procedure [13].

Most language runtime systems today use generational garbage collectors,
because they tend to yield the best throughput. Generational collectors segregate
objects by age into generations [27,42]. Younger generations are collected more
often than older generations, which reduces overall collector work, because most
objects become unreachable while they are still young. This paper is based on a

to-space

from-space

young
generation

old
generationsp

ac
e

copying

Fig. 3. Generational copying garbage collection

Online Phase-Adaptive Data Layout Selection 317

generational garbage collector with two generations, a copying young generation
and a mark-sweep old generation. The collector also implements numerous other
techniques, among others, parallelism [16] and tilted semi-spaces [28].

Fig. 3 shows the two kinds of copying: between the semi-spaces of the young
generation, and from the young generation to the old generation. Each garbage
collection can independently choose a copy order. Each set of objects allocated
between the same two collections starts out in allocation order, and may then ex-
perience different layouts as it gets copied within the young generation. When the
objects reach an age threshold, they get copied into the old generation (tenured),
where they come to rest with a final layout.

The repeated data reorganizations when copying objects give layout auditing
the opportunity to find the best layout.

5.2 Data Layouts

This section briefly surveys some common data layouts; for a more comprehen-
sive survey and evaluation, see [17].

Fenichel and Yochelson’s recursive algorithm uses variables on the call stack to
keep track of already copied objects that may contain pointers to not-yet copied
objects [13]. Using a LIFO-stack leads to copying objects in depth-first (DF)
order. Other DF copying collectors are not recursive, but maintain the stack
as an explicit data structure and share it between parallel collector threads [8].
The DF layout is good for locality if the program often accesses a parent object
together with a child object that it points to.

When the collector keeps objects in a FIFO-queue during the reachability
traversal, it copies them in breadth-first (BF) order. Cheney’s BF copying al-
gorithm [7] uses the to-space copies of the objects themselves as an implicit
queue. The BF layout is good for locality if the program often accesses sibling
objects together.

An algorithm designed to achieve both the parent→ child locality of the
depth-first layout and the sibling locality of the breadth-first layout is hier-
archical (HI) garbage collection by Moon and Wilson et al. [30,44]. It works by
copying a subtree to the same block as its root whenever possible.

Most of this paper uses layout auditing (LA) to choose between parallel im-
plementations of the BF and HI layouts [22,38].

Compacting collectors do not reserve an entire semispace for copying, in-
stead they move objects toward one end of just one space. Sliding compaction
aims at preserving the relative order of objects [24, Lisp 2 collector, Section
5.4]; [1,14,25]. When used as the sole copying mechanism, sliding compaction
preserves allocation order (AO), which yields good locality when the program
touches objects in the same order it allocated them, and can also facilitate stride
prefetching [2,23].

Segregating objects by type (TY) may yield better locality if the program
tends to access objects of the same type together. This data layout also has

318 C. Zhang and M. Hirzel

potential benefits in reducing object header sizes, and has been used for reducing
data reorganizer cost [19,36].

6 Methodology

Table 1 shows the benchmark suite, consisting of 20 Java programs: pseudojbb05,
which runs SPECjbb20051 for a fixed number of transactions; the 7 SPECjvm98
programs2; the 11 DaCapo benchmarks version 2006-10 [4]; and ipsixql3. Except
for Fig. 4, all numbers in this paper are averages of nine JVM process invo-
cations. Within each JVM invocation, the layout auditor starts with a clean
slate, learning the best layout online as it goes. As is common practice for these
benchmarks, each run contains several iterations (application invocations within
one JVM process invocation), see Column “Command line arguments”. Timings
measure the entire run of the JVM process, and thus include any overheads in-
curred by layout auditing, such as initially making wrong decisions. Furthermore,
all numbers in this paper are checked for statistical confidence using Student’s
t-test. Wherever the t-test indicates that performance differences are too small
to be relevant at 95% confidence, we report a “0” value instead.

Table 1. Benchmark programs

Name Suite Command line arguments Description PT MB

antlr DaCapo -s large -n 16 parser generator 1 2.0

bloat DaCapo -s large -n 4 bytecode optimizer 1 16.1

chart DaCapo -s large -n 8 pdf graph plotter 1 14.3

compress jvm98 -a -m72 -M72 -s100 Lempel-Ziv compressor 1 7.0

db jvm98 -a -m24 -M24 -s100 in-memory database 1 11.2

eclipse DaCapo -s small -n 4 development environment >1 14.0

fop DaCapo -s large -n 60 XSL-FO to pdf converter 1 9.1

hsqldb DaCapo -s large -n 12 in-memory JDBC database 20 173.8

ipsixql Colorado 80 7 in-memory XML database 1 2.5

jack jvm98 -a -m164 -M164 -s100 parser generator 1 1.3

javac jvm98 -a -m92 -M92 -s100 Java compiler 1 20.5

jess jvm98 -a -m228 -M228 -s100 expert shell system 1 2.1

jython DaCapo -s large -n 4 Python interpreter 1 1.9

luindex DaCapo -s large -n 32 text indexing for search 1 2.2

lusearch DaCapo -s large -n 8 keyword search in text 32 7.1

mpegaudio jvm98 -a -m156 -M156 -s100 audio file decompressor 1 1.0

mtrt jvm98 -a -m232 -M232 -s100 multi-threaded raytracer 2 8.7

pmd DaCapo -s large -n 4 source code analyzer 1 15.7

pseudojbb05 jbb05 SPECjbb-4x200000.props business benchmark 4 123.9

xalan DaCapo -s large -n 16 XSLT processor 1 27.5

1 http://www.spec.org/jbb2005/
2 http://www.spec.org/osg/jvm98/
3 http://www-plan.cs.colorado.edu/henkel/projects/colorado bench/

Online Phase-Adaptive Data Layout Selection 319

Column “PT” in Table 1 shows the number of program threads. The JVM
also has some service threads that run concurrently with the program. Garbage
collection is parallel with itself, but not concurrent with program execution.
Column “MB” gives, in megabytes, the minimum heap size in which the program
runs without throwing an OutOfMemoryError. Most experiments in this paper
provision each program with 4× its minimum heap size; garbage collection kicks
in when the heap size is exhausted.

Table 2. Memory hierarchy parameters per core

L1 Cache L2 Cache TLB
AMD Intel AMD Intel AMD Intel

Associativity 2 8 16 8 4 8

Block size 64 B 64 B 64 B 64 B 4 KB 4 KB

Capacity/blocks 1,024 256 16K 16K 512 64

Capacity/bytes 64K 16K 1,024K 1,024K 2,048K 256K

The experiments in this paper ran on one 2-processor Linux/IA32 machine,
and on three different Linux/AMD machines with 2, 4, and 8 processors. We
used the default run level of Linux (not single-user mode) to demonstrate that
layout auditing can make correct decisions even in the presence of noise. The
Intel machine was a Pentium 4 clocked at 3.2GHz with SMT, so the 2 physical
processors correspond to 4 virtual processors. The AMD machines had Opteron
270 cores clocked at 2GHz, with 2 cores per chip. Table 2 shows the data caches
and TLBs for each core. We implemented layout auditing in J9, which is IBM’s
high-performance product Java virtual machine. The experiments in this paper
are based on an internal development release of J9.

7 Results

This section evaluates data layout auditing using the concrete component in-
stantiations from earlier sections: softmax policy, minimalist profiler, and data
reorganization by copying garbage collection.

7.1 A Control Theoretic Approach to Controller Evaluation

Layout auditing employs an online feedback loop to control a system. Such feed-
back loops have been extensively studied in control theory. Control theory com-
monly talks about SASO properties: Stability, Accuracy, Settling, and Over-
shoot. A good controller is a controller that is stable, accurately makes the right
decisions, settles on that decision quickly, and does not overshoot the range of
acceptable values. In the context of layout auditing, stability means sticking with
a data layout once the controller picks one; accuracy means picking the data lay-
out that yields the best performance; and settling is the time from the start or
from a phase shift until the controller has made a decision. Overshoot does not

320 C. Zhang and M. Hirzel

apply in this context, because all layout decisions are in the range of acceptable
values by definition. This is common for discrete, rather than continuous, control
systems.

In addition to the SASO properties, layout auditing strives to achieve another
desirable property: low overhead. Since the minimalist profiler treats the time for
data reorganization as part of the reward of a data layout, there is no separate
overhead for data reorganization. The minimalist profiler just reads the clock and
counts bytes, so it does not incur any overhead on its own. This leaves controller
overhead : time spent doing the statistical calculations in the softmax controller.
On average, each control decision takes on the order of 0.1ms. Compared to
data reorganization times, which are on the order of 10ms to 100ms, controller
overhead is negligible in most cases.

Phase adaptivity is the ability of the controller to change its decision if the
program changes its behavior such that a different data layout becomes the
best data layout. Phase adaptivity is another way to look at settling, accuracy,
and stability. The minimalist profiler and the softmax controller achieve phase
adaptivity by using exponential decay to forget old profile information. The
decay factor determines how well layout auditing can adapt to phase changes.

Overall, layout auditing can make investments, such as profiling overhead,
data reorganization cost, or time spent exploring data layouts it is curious about.
For these investments, it reaps rewards, such as improved program execution
time or improved data reorganization time due to reduced cache and TLB misses.
The success of layout auditing depends on its ability to make the right tradeoff
between the different investments and rewards.

7.2 Accuracy

This section explores the accuracy of the layout auditor presented in this paper.
Accuracy is the ability of the controller to accurately pick the correct data layout.
If it does, then the bottom-line performance of a program when run with layout
auditing should match the performance of that program with its best statically
chosen layout. In terms of Fig. 1, layout auditing should get all the speedups
for programs at the right side of the bar chart, while avoiding all the slowdowns
for programs at the left side of the bar chart. To evaluate accuracy, this section
ran all 20 benchmark programs from Table 1 using the breadth-first (BF) and
hierarchical (HI) data layout, both with and without layout auditing (LA).

Table 3 shows the results. For each of the 4 runtime platforms (2-processor
Intel and 2-, 4-, and 8-processor AMD), there is one column for each of the data
layouts BF and HI and one for layout auditing LA. All the numbers are per-
cent slowdowns compared to the best runtime of the given benchmark/platform
combination. For example, for ipsixql on the 2-processor Intel machine, BF was
best, HI caused a 12% slowdown compared to BF, and LA matched the per-
formance of BF. A “0” in Table 3 means that the results of the 9 runs with
that data layout were indistinguishable from the results of the 9 runs with the
best data layout for that benchmark and platform, using Student’s t-test at
95% confidence. The bottom of Table 3 shows summary rows: “Average” is the

Online Phase-Adaptive Data Layout Selection 321

Table 3. Percent slowdown compared to best, on varying platforms at heap size 4×

Benchmark Intel-2 AMD-2 AMD-4 AMD-8
BF HI LA BF HI LA BF HI LA BF HI LA

antlr 0 1.1 2.1 1.4 0 2.2 0 0 0 0 0 0

bloat 0 0 0 0 0 0 0 0 0 0 0 0

chart 0 0 0 0 0 0 0 0 0 0 0 0

compress 0 1.2 0 0 0 0 0 0 0 0 0 0

db 5.2 0 2.9 6.0 0 1.9 0 0 0 6.5 0 0

eclipse 0 0 0 0 0 0 0 0 0 0 0 0

fop 0 0 0 0 0 0 0 0 0 0 0 0

hsqldb 0 0 0 0 0 0 2.8 0 0 7.2 0 0

ipsixql 0 12.0 0 0 10.7 1.9 0 10.4 0 0 7.9 1.4

jack 0 0 0 0 2.4 0 0 0 0 0 5.5 0

javac 0 1.5 0 0 1.3 0 0 0 0 0 0 0

jess 0 1.4 2.2 0 3.6 3.1 0 0 0 0 0 0

jython 0 0 0 0 0 0 0 0 0 0 0 0

luindex 0 0 0 0 0 0 0 0 0 0 1.0 1.0

lusearch 0 0 0 0 0 0 0 2.7 0 0 0 0

mpegaudio 0 1.8 0 0 0 0 0 0 0 0 0 0

mtrt 0 0 0 0 0 0 0 0 0 0 0 0

pmd 0 0 0 0 0 0 8.4 0 0 0 0 0

pseudojbb05 2.1 0 1.2 1.6 0 0 0 0 0 0 0 0

xalan 0 0 0 0 0 0 0 4.0 0 0 8.4 4.3

Average 0.4 0.9 0.4 0.5 0.9 0.5 0.6 0.9 0.0 0.7 1.1 0.3

not 0 2 6 4 3 4 4 2 3 0 2 4 3

Worst 5.2 12.0 2.9 6.0 10.7 3.1 8.4 10.4 0.0 7.2 8.4 4.3

arithmetic mean of the slowdowns of the layout compared to the best layout
for each benchmark, “# not 0” counts benchmarks for which the layout was not
the best, and “Worst” is the maximum slowdown of the layout compared to the
best.

Table 3 demonstrates that on all four platforms, online layout selection per-
forms almost as well as an oracle that would pick the best layout for each program
offline. Note that Petrank and Rawitz have shown conclusively that building
such an offline oracle would be impractical [32]. Layout auditing usually, but
not always, matches the performance of the best data layout for a program and
platform; sometimes the program finishes executing too quickly for LA to settle
on the best layout and recoup its exploration costs. However, layout auditing
has the most benign worst cases. Statically picking the wrong layout can slow
down execution by up to 12.0%, but dynamically picking with layout auditing
never causes slowdowns exceeding 4.3%.

As noted in prior work [20,38], some benchmarks, such as db and ipsixql,
are unusually sensitive to data layouts. For those programs, layout auditing has
the largest benefits. But it is equally important that for benchmarks that are
mostly insensitive to data layouts, layout auditing does not degrade performance

322 C. Zhang and M. Hirzel

appreciably. Except for antlr and jess, this is usually the case. The reliable ac-
curacy of layout auditing over a large range of programs and platforms gives it
an edge over traditional locality optimizations.

To summarize, layout auditing is accurate. It makes good on its promise of re-
quiring no model of the complex hardware/software interaction: it works equally
well with no user tuning on four platforms.

7.3 Settling, Stability, and Phase Adaptivity

This section investigates how long our implementation of layout auditing takes
to settle, whether it is stable once it reaches a decision, and whether it can adapt
to phase changes. This section answers these questions with a layout auditing
experiment designed to illustrate phase changes, while still being realistic. Let
T be the time in seconds since the start of the run, then the experiment first
executes benchmark db from T = 0 to T = 155, then executes benchmark mtrt
from T = 155 to T = 320, and finally goes back to db from T = 320 to T = 475.
The softmax controller decides between the breadth-first data layout BF and
the hierarchical data layout HI.

Benchmark db is much more data layout sensitive than mtrt. This constitutes
a challenging scenario for settling, stability, and phase adaptivity. The two data
layouts BF and HI have been shown to exhibit among the largest performance
differences between common data layouts [17, Figure 4]. The experiment ran
on the 2-processor AMD machine, and used heap size 44.8MB, which is 4×
the minimum for db and 5.1× the minimum for mtrt. This setup models what
happens when a server machine changes to a different workload that exercises
different code.

Fig. 4 shows the results. There are three columns: Column (a/d/g) is based
on a run where the minimalist profiler and the softmax controller use decay 0.9,
Column (b/e/h) uses decay 0.95, and Column (c/f/i) did not decay historical
values (decay=1.0). The x-axis of all graphs is the same: physical time in seconds.
Row (a/b/c) shows rewards as reported by the minimalist profiler, Row (d/e/f)
shows the controller’s current probability of BF, and Row (g/h/i) shows the
cumulative number of decisions for HI and against BF. Each time the controller
chooses HI for a data reorganization, the choice curve increases by one; each
time the controller chooses BF, the choice curve decreases by one.

Rewards are physical time per virtual time, where lower is better. The reward
graphs (Figures 4(a/b/c)) use a logarithmic y-axis, because data layout rewards
are an order of magnitude higher in db than in mtrt. The phase transitions at
around T = 155 and T = 320 are clearly visible. With a decay value of 0.9,
the minimalist profiler quickly forgets earlier data, and therefore computes a
reward that closely follows each spike in the data. Zooming in closely on the
first phase in Fig. 4(a) reveals that the rewards for HI are higher than the re-
wards for BF, but the difference is lower than the amplitude of the program’s
own performance behavior over time. Fig. 4(c) shows that when the decay is 1.0,

Online Phase-Adaptive Data Layout Selection 323

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

BF
HI

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

BF
HI

 0.01

 0.1

 0 50 100 150 200 250 300 350 400 450 500

BF
HI

(a) −Reward, decay=0.9 (b) −Reward, decay=0.95 (c) −Reward, decay=1.0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

(d) Probability, decay=0.9 (e) Probability, decay=0.95 (f) Probability, decay=1.0

-200

-100

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450 500
-500

-400

-300

-200

-100

 0

 100

 200

 300

 0 50 100 150 200 250 300 350 400 450 500
 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

(g) Choice, decay=0.9 (h) Choice, decay=0.95 (i) Choice, decay=1.0

Fig. 4. Controller behavior over time for db/mtrt/db run, on AMD-2

the profiler never forgets, and the curve becomes smooth over time. This means
that without decay, the profiler can not adapt to phases: by the last phase, the
rewards of BF and HI are indistinguishable. Figures 4(a/b/c) show that the
controller faces a tough challenge: it has to learn the best layout despite the
fact that the difference between the layouts is dwarfed by the difference between
program phases.

The probability graphs (Figures 4(d/e/f)) illustrate settling. For decay 0.9,
the controller settles on the best data layout for each phase at approximately
T = 20, T = 220, and T = 370, which is 20, 75, and 50 seconds after the phase
transitions. For decay 0.95, the controller settles on the best data layout for each
phase at approximately T = 15, T = 200, and T = 445, which is 15, 45, and 125
seconds after the phase transitions. For decay 1.0, the controller settles on HI
for the first phase, but then takes the entire second phase to discover that HI is
no longer the best, and is then unstable during the last phase. This illustrates
that decay is necessary for phase adaptivity.

The probability graphs (Figures 4(d/e/f)) also illustrate stability. Fig. 4(d)
shows that for decay 0.9, the controller is mostly stable during the first and the
third phase, but has some spikes indicating instability. During the second phase,

324 C. Zhang and M. Hirzel

it is less stable, but Fig. 4(g) shows that it still chooses the correct layout most of
the time. Fig. 4(e) shows that for decay 0.95, the controller is more stable during
the first and second phases than with decay 0.9, but takes so long to settle that
it only becomes stable again at the very end of the third phase. Fig. 4(f) shows
that decay 1.0 leads to the best stability for stationary programs, at the cost of
sacrificing settling after phase changes.

The choice graphs (Figures 4(g/h/i)) follow the probability graphs (Fig-
ures 4(d/e/f)), in the sense that when the probability is 50/50, the choice forms
a horizontal line; when the probability for HI is high, the line rises; and when
the probability for BF is high, the line falls. Figure 4(i) may look unexpected at
first. During the second phase, BF is the best layout, yet the choice curve rises
even more steeply than during the first phase where HI was the best layout. The
reason why it rises is that the controller makes wrong decisions: without decay,
it fails to adapt to the phase change. The explanation why the curve rises more
steeply is that there are more data reorganizations per second. That is caused
by the fact that mtrt has a higher alloc/live ratio than db (see Table 4 in [4]).
That also explains the increased gradients in Figure 4(g/h).

To summarize, this section showed settling times ranging from 15s to 125s for
decay values of 0.9 and 0.95. Lower decay values lead to less stable controller
decisions; when the decay is too small, the controller gets confused by noise in
the program behavior. But in the other extreme, when the decay is too high or
when there is no decay, the controller can not adapt to phase changes. This mo-
tivates why we designed the controller the way we did. With decay, the softmax
controller adapts to phase changes by accurately picking the best data layout
for each phase.

7.4 Cache and TLB Behavior

This section explores whether the performance improvements of layout auditing
come from reducing the program’s data cache and TLB miss rates. The cache
and TLB misses are measured in the same experiments as those for Section 7.2,
by using PAPI [5] and then accumulating the counts for all program threads but
excluding the data reorganizer.

Table 4 shows the results. The columns and rows are the same as in Table 3,
and the numbers show percent miss rate increases compared to the layout with
the best miss rate for a given program and platform. It turns out that layout
auditing does not always achieve the lowest miss rate. We did not expect that
it would: we already saw that layout auditing achieves the best performance,
but program cache and TLB miss rates are only one factor in that. They have
to be weighed against other performance factors, such as data reorganization
time, hardware prefetching effects, instruction level parallelism, bus bandwidth,
etc. Layout auditing does prevent the worst-case miss rates that occur for some
programs; without layout auditing, those miss rate increases can easily amount
to 100% and more. But more importantly, no matter how complex the perfor-
mance effects of a particular hardware, layout auditing consistently and reliably
optimizes the bottom-line performance.

Online Phase-Adaptive Data Layout Selection 325

Table 4. Percent miss rate increase compared to best, at heap size 4×

Benchmark L2:Intel-2 L2:AMD-2 L2:AMD-4 L2:AMD-8
BF HI LA BF HI LA BF HI LA BF HI LA

antlr 0 0 0 5.2 0 1.9 2.5 0 3.0 2.6 0 2.5
bloat 0 0 0 12.9 0 5.8 13.2 0 0 12.7 0 5.4
chart 0 0 0 0 0 0 0 0 0 0 0 0
compress 0 0 0 0 0 0 0 0 0 0 0 0
db 0 20.9 10.3 0 0 0 0 0 0 0 0 0
eclipse 0 0 0 0 0 0 0 0 0 0 0 0
fop 0 0 0 3.7 0 0 3.7 0 0 11.2 0 0
hsqldb 0 0 0 0 0 0 0 2.5 0 0 0 0
ipsixql 0 11.7 0 0 46.5 0 0 61.3 3.3 0 62.3 7.0
jack 0 0 0 0 0 13.5 0 0 0 0 14.2 0
javac 0 0 0 7.3 0 6.3 5.8 0 0 6.0 0 0
jess 0 0 0 0 0 0 0 7.2 5.2 0 9.1 3.7
jython 0 0 0 0 0 0 0 0 0 0 0 0
luindex 0 0 0 4.2 0 2.5 0 2.1 0 0 1.9 2.0
lusearch 0 0 0 0 0 0 0 12.5 0 0 0 0
mpegaudio 0 0 0 0 0 29.2 0 0 0 0 0 0
mtrt 7.0 0 0 0 0 7.9 7.1 0 0 0 0 0
pmd 0 0 0 0 0 0 0 0 0 10.2 0 0
pseudojbb05 0 0 0 9.2 0 4.8 8.7 0 5.5 8.2 0 5.0
xalan 0 0 0 4.1 0 2.3 3.4 0 0 0 0 0

Average 0.4 1.7 0.5 2.5 2.4 3.9 2.3 4.5 0.9 2.5 5.0 1.5
not 0 1 2 1 7 1 9 7 5 4 6 5 7
Worst 7.0 20.9 10.3 12.9 46.5 29.2 13.2 61.3 5.5 12.7 62.3 7.0

Benchmark TLB:Intel-2 TLB:AMD-2 TLB:AMD-4 TLB:AMD-8
BF HI LA BF HI LA BF HI LA BF HI LA

antlr 0 0 0 2.0 0 0 0 0 0 0 0 0
bloat 10.1 0 0 0 0 0 5.7 0 0 0 0 0
chart 0 0 0 0 0 0 0 0 0 18.1 0 9.1
compress 0 0 0 0 0 1.1 0 0 0 0 0 0
db 134.2 0 59.7 163.3 0 46.2 167.3 0 65.3 177.6 0 94.3
eclipse 0 0 0 0 0 0 0 0 0 0 0 0
fop 0 0 0 1.7 0 2.0 4.0 3.9 0 0 0 0
hsqldb 13.5 0 0 12.6 0 0 11.0 0 0 0 0 0
ipsixql 20.5 22.9 0 31.2 0 0 0 0 0 0 11.4 0
jack 0 0 0 0 0 0 0 0 0 0 0 0
javac 15.9 0 13.3 14.9 0 9.4 11.0 0 12.1 9.0 0 0
jess 3.2 0 0 3.1 0 0 0 0 0 0 0 0
jython 10.4 0 0 0 0 0 0 0 0 0 0 0
luindex 9.3 0 0 0 0 0 0 0 0 0 0 0
lusearch 0 0 0 0 0 0 2.6 0 0 9.2 0 0
mpegaudio 0 0 0 0 0 0 0 2.9 2.1 0 0 0
mtrt 31.9 0 14.8 25.0 0 16.6 22.8 0 9.6 15.4 0 0
pmd 0 0 0 10.2 0 9.7 0 0 0 22.9 0 0
pseudojbb05 6.1 0 0 11.7 0 7.5 13.4 0 7.7 11.5 0 7.4
xalan 12.0 0 6.7 7.1 0 6.3 5.7 0 0 9.5 0 0

Average 14.1 1.2 5.0 14.9 0.0 5.2 12.8 0.4 5.1 13.7 0.6 5.5
not 0 11 1 4 11 0 8 9 2 5 8 1 3
Worst 134.2 22.9 59.7 163.3 0.0 46.2 167.3 3.9 65.3 177.6 11.4 94.3

7.5 Data Reorganization Cost and Heap Sizes

Switching between data layouts changes not just program performance, but also
data reorganizer performance. In addition, if the data reorganizer is a garbage
collector, its performance is also affected by the heap size: in a large heap, the
program can allocate more memory before triggering a garbage collection. This

326 C. Zhang and M. Hirzel

Table 5. Percent slowdown compared to best, on AMD-2 at varying heap sizes

Benchmark 2× heap 4× heap 10× heap
BF HI LA BF HI LA BF HI LA

antlr 0 1.0 2.9 1.4 0 2.2 0 0 2.1

bloat 0 0 0 0 0 0 0 0 0

chart 0 0 0 0 0 0 0 0 0

compress 0 0 0.7 0 0 0 0 0 0

db 5.3 0 2.6 6.0 0 1.9 6.4 0 2.5

eclipse 0 0 0 0 0 0 0 0 0

fop 0 0 0 0 0 0 0 0 0

hsqldb 0 0 0 0 0 0 0 0 0

ipsixql 0 10.6 3.9 0 10.7 1.9 0 13.8 6.5

jack 0 2.3 0 0 2.4 0 0 0 0

javac 0 3.3 0 0 1.3 0 0 0 0

jess 0 2.1 4.1 0 3.6 3.1 0 0 0

jython 0 0 0 0 0 0 0 0 0

luindex 0 0 0 0 0 0 0 0 0

lusearch 0 0 0 0 0 0 0 0 0

mpegaudio 0 0 0 0 0 0 0 0 0

mtrt 0 0.7 0 0 0 0 0 0 0

pmd 0 0 0 0 0 0 0 0 0

pseudojbb05 0 0 0 1.6 0 0 0 0 0

xalan 0 1.0 0 0 0 0 0 0.8 0

Average 0.3 1.1 0.7 0.5 0.9 0.5 0.3 0.7 0.6

not 0 1 7 5 3 4 4 1 2 3

Worst 5.3 10.6 4.1 6.0 10.7 3.1 6.4 13.8 6.5

usually means that objects have more time to die, and thus garbage collection
is cheaper, since it has to run less frequently and processes relatively fewer
survivors.

Layout auditing takes data reorganization cost into account, as described in
Section 4. It should therefore always find the right performance tradeoff irre-
spective of heap size and garbage collection cost. The experiments in this section
provision each program with 2×, 4×, or 10× the minimum heap size in which
the program runs without throwing an OutOfMemoryError. The tight heap size
2× (50% utilization) frequently triggers garbage collection; the standard heap
size 4× (25% utilization) is what most of the rest of this paper uses; and the
roomy heap size 10× (10% utilization) infrequently triggers garbage collection.
Table 5 shows the relative overall performance of the different data layouts in
different heap sizes. Table 5 is organized similarly to Table 3, with which it
shares the AMD-2 / 4× heap columns. Remember that “0” values indicate that
whatever performance degregation there may be compared to the best layout is
too small to be deemed statistically relevant. The 10× heap makes benchmarks
less layout sensitive, since that heap size deemphasizes data reorganizer cost,
one of the factors in performance differences. Conversely, the 2× heap makes

Online Phase-Adaptive Data Layout Selection 327

benchmarks more layout sensitive. The slightly worse results in the 10× heap
might be caused by fewer garbage collections offering fewer trials. Even so, in
all three heap sizes, layout auditing picks the best layout most of the time.

7.6 Bandits with More Than Two Arms

The results so far are based on layout auditing chosing between two layouts BF
and HI. These are the only two high-performance layouts implemented in our
infrastructure. So in order to explore chosing between three layouts, we had to
resort to slow experimental garbage collectors. We use the algorithms from [17],
but whereas that paper focuses on program time excluding data reorganization
cost only, here we look at the total cost including data reorganization. We use the
layouts BF s, DF s, and TY s, where the subscript denotes slow implementations.
Note in particular that BFs �= BF.

Table 6, which is formatted similarly to Table 3, shows the results. Despite
running in a loose heap, the slow data reorganizer of TY s causes high overheads
compared to the other two reorganizers. Layout auditing successfully avoids the
risk of degrading performance nearly as much as TY s, and comes close to BF s

and DF s. In fact, for most programs, layout auditing performs close to the best

Table 6. Multi-layout percent slowdown compared to best, at heap size 10×

Benchmark AMD-2 AMD-8
BF s DF s TY s LAs BF s DF s TY s LAs

antlr 4.8 0 24.3 4.4 3.3 0 20.1 2.7

bloat 0 0 18.3 0 0 0 26.4 0

chart 0 0 10.3 0 0 0 79.9 0

compress 0 0 0 0 0 0 1.2 0

db 8.1 0 22.7 3.4 10.1 0 21.8 7.0

eclipse 0 0 18.2 7.2 0 0 24.5 8.8

fop 0 0 10.4 0 0 0 18.5 0

hsqldb 10.2 0 214.0 24.5 17.0 0 253.1 22.5

ipsixql 19.8 0 144.3 7.4 32.9 0 158.6 4.3

jack 0 2.4 14.7 0 0 0 13.4 0

javac 8.4 0 90.3 3.9 11.5 0 92.5 0

jess 0 0 17.6 2.4 0 0 16.4 4.6

jython 0 0 0 0 2.2 0 1.9 0

luindex 0 0 9.1 0 0 0 8.4 1.7

lusearch 0 0 5.9 0 0 0 13.5 7.0

mpegaudio 0 1.5 0 0 1.8 0 0 0

mtrt 0 0 151.6 0 0 0 212.4 0

pmd 0 0 35.3 0 0 0 39.2 5.5

pseudojbb05 2.6 0 74.9 9.3 9.4 0 113.6 18.9

xalan 5.5 0 15.8 6.9 8.5 0 47.6 4.9

Average 3.0 0.2 43.9 3.5 4.8 0.0 58.2 4.4

not 0 7 2 17 9 9 0 19 11

Worst 19.8 2.4 214.0 24.5 32.9 0 253.1 22.5

328 C. Zhang and M. Hirzel

of the three layouts. We do not expect layout auditing to perform well with tens
or hundreds of layouts, because the settling time would grow unreasonably long.

8 Alternative Layout Auditing Components

This section discusses alternative data reorganizers, profilers, and controllers
that fit in the layout auditing framework from Section 2.

8.1 Alternative Data Reorganizers

Layout auditing is designed to accommodate a variety of off-the-shelf data reor-
ganization techniques. Section 5 already mentioned several data layouts (depth-
first, breadth-first, hierarchical, allocation order). Other garbage collectors seg-
regate objects by size, type, or allocating thread. One could even consider a
random data layout; while random layouts are unlikely to perform best, they
are equally unlikely to perform worst, and can thus effectively prevent patholog-
ical interference situations.

While layout auditing works with profile-oblivious data layouts, it can be
applied just as easily to decide whether or not to use profile-directed approaches,
such as Huang et al.’s online object reordering [20] or the locality optimizations
by Chen et al. [6].

As mentioned earlier in this paper, layout auditing is not confined to garbage
collection; a variety of other data reorganizers has been proposed. One technique
is to reorder data arrays or index arrays for scientific programs [11]. Zhang et
al. present and simulate a piece of hardware that can remap data to a different
layout [46]. Another possibility is to change the data layout during allocation,
for example, by using different alignments, or by profile-directed techniques [37].

8.2 Alternative Profilers

In the easiest case, the profiler just measures seconds by looking at the clock. The
advantage is that this causes no overhead, but the disadvantage is that it makes
it hard to isolate the impact of the data layout from the impact of extraneous
effects. To complicate things further, it is often desirable to isolate the impact
of the layout of some memory subspace from the impact of the layout of other
subspaces. This challenge could be addressed with a subspace locality profiler.

For example, if the data reorganizer is a generational garbage collector (like
in Section 5), each collection of the young generation copies some objects within
the young generation, and others from the young to the old generation. Over
time, a situation like in Fig. 5 arises. The left column shows the heap spaces:
an old generation, and a young generation with two semispaces. The middle
column further divides spaces into groups of objects, annotated by the last time
they were copied; e.g., “survivors (T-3)” were tenured 3 collections ago, whereas
the “newest” objects were allocated after the last collection and have yet to
be copied for the first time. Column “layout” shows which copy order, and
hence which data layout, the corresponding objects have. It is easy to keep

Online Phase-Adaptive Data Layout Selection 329

newest

survivors (T-1)

empty

empty

survivors (T-3)

survivors (T-6)

survivors (T-1)

survivors (T-3)

survivors (T-4)

empty

copy
reserve

active
semispace

young
generation

old
generation

0

BF

HI

BF

AO

0

HI

AO

layout treemaptime last copiedheap spaces

sp
ac

e

Fig. 5. Mapping from addresses to layouts

track of the mapping from addresses to memory areas and their data layouts; a
subspace locality profiler could do so with a treemap. What is needed, then, is
a measurement of locality for specific data addresses.

One possibility for this is PEBS (precise event based sampling), where hard-
ware counter overflows generate interrupts, and the interrupt handler can in-
spect parts of the machine state. Adl-Tabatabai et al. used PEBS on Itanium
to identify objects that cause cache misses [2]. Similarly, one could count misses
separately for memory subspaces with different data layouts. Unfortunately, on
IA32 and AMD, the PEBS machine state does not contain the data address, and
each interrupt costs several thousand cycles.

Another possibility for a subspace locality profiler is trace-driven cache simu-
lation. To accommodate layout auditing, the tracing and simulation must occur
online and automatically. Bursty tracing [3,18] can produce a memory access
trace at low overhead. Online cache simulation has been reported by Zhao et
al. [48]. To use online trace-driven simulation for layout auditing, map simu-
lated accesses and misses to data layouts via the treemap from Fig. 5.

A drawback of more sophisticated profilers is that they make more assump-
tions about how the software and hardware interact. Such assumptions can be
misleading: for example, more cache misses do not necessarily imply worse per-
formance if instruction-level parallelism overlays them with useful computation.

8.3 Alternative Controllers

Layout auditing is designed to accommodate a variety of off-the-shelf machine
learning techniques. The authors come from a systems background, and have
to refer the reader to the relevant literature for details [41]. This paper uses a
softmax policy. Other possibilities include sequential analysis and reinforcement
computation.

330 C. Zhang and M. Hirzel

Also, there are alternatives for dealing with phase changes. This paper uses
exponential decay of historical profile information. Another possibility is to re-
member a sliding window of values. There are also more sophisticated stand-
alone phase detectors [31,35].

9 Related Work

Layout auditing uses an online feedback loop that first tries different data lay-
outs, then evaluates their performance, and based on that, changes data layout
decisions later in the same run. This section reviews other online try-measure-
decide feedback loops.

Lau et al. proposed performance auditing [26], which first tries different ways to
optimize a method using a JIT compiler, then evaluates their performance, and
finally decides which one to use. Performance auditing addresses measurement
noise by continuing to collect information until it reaches statistical confidence
for a decision. Our work is also performance auditing, but we apply it to data, not
code, and we extend it to adapt when program behavior changes over time.

We picked copying garbage collection as the mechanism for executing data
layout decisions. Our controller switches between different copying collectors for
the young generation. Soman et al. showed how to switch between a more diverse
set of collectors, including both generational and non-generational, copying and
non-copying algorithms [40]. But whereas we decide to switch to another collector
based on online measurements of application performance, Soman et al. decide
based on heap size thresholds.

Chen et al. try a data layout optimization in a garbage collector, measure
whether it reduces miss rates, and throttle it if it does not [6]. Whereas Chen
et al. use online feedback to throttle an optimization in one collector, we use
online feedback to pick between multiple alternative collectors. Chen et al.’s
throttling mechanism is woven into the collector, and this tightly integrated
design compromises desirable features for both: the collector is not parallel, and
the controller does not use statistical or machine learning techniques to deal
with noise or with changes in program behavior.

Besides changing the data layout, an alternative technique for improving lo-
cality is prefetching. Some papers propose online try-measure-decide feedback
loops for picking the best prefetch distance [34,47].

Zhang et al. use an online try-measure-decide feedback loop for picking the
largest memory footprint that does not yet cause paging [45]. Unlike our work,
they change the heap size, not the data layout, and focus on paging, not on
cache and TLB locality.

A number of papers show how to pick between differently optimized versions
of scientific code at runtime [12,15,43]. Unlike our work, and unlike Lau et al.’s
performance auditing [26], they pay little attention to dealing with noise. Also,
they focus on code, we focus on data.

Other online data layout optimizations do not use a try-measure-decide feed-
back loop [9,10,20,21]. Instead, they use online profile data to predict which

Online Phase-Adaptive Data Layout Selection 331

layout will benefit performance, without checking later whether the prediction
came true. Petrank and Rawitz showed that these predictions can be easily fooled
by misleading data access patterns [32]. This is exacerbated by the fact that the
predictions rely on a model of hardware/software interactions, which change and
become more complex over time.

Reinforcement learning has been used for programming language optimiza-
tions in the past (e.g., [29]), and different machine learning techniques have
been used for selecting garbage collectors [39]. But unlike layout auditing, these
approaches require offline training runs, and their benefits only become available
by providing learned information to a second production run.

10 Conclusions

Layout auditing is an approach for picking the best among a set of data layouts by
trying them and measuring their performance. It handles noise with a continuous
feedback loop, and with a controller based on reinforcement learning. It smoothly
adapts when program behavior changes over time. It controls its own profiling
and exploration overheads by tuning them in the same way it tunes data layout
decisions. This paper demonstrates that layout auditing achieves close to the best
performance for all programs we tried it on, and avoids pathological worst cases
that can happen with any statically chosen layout. Layout auditing successfully
reevaluates its decisions after phase changes during program execution.

The trend towards multicore machines is likely to increase the importance
of locality optimizations in the near future, as more CPUs compete for limited
memory subsystem resources. At the same time, hardware complexity is on the
rise, and the unpredictability of hardware behavior calls for approaches like lay-
out auditing that optimize regardless of the detailed instruction-level behavior.

Acknowledgements. We thank Matthew Arnold, Jeremy Lau, Rodric Rabbah,
Erik Altman, Priya Nagpurkar, and the anonymous reviewers for their feedback.

References

1. Abuaiadh, D., Ossia, Y., Petrank, E., Silbershtein, U.: An efficient parallel heap
compaction algorithm. In: Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2004)

2. Adl-Tabatabai, A.-R., Hudson, R.L., Serrano, M.J., Subramoney, S.: Prefetch in-
jection based on hardware monitoring and object metadata. In: Programming Lan-
guage Design and Implementation (PLDI) (2004)

3. Arnold, M., Ryder, B.G.: A framework for reducing the cost of instrumented code.
In: Programming Language Design and Implementation (PLDI) (2001)

4. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (2006)

332 C. Zhang and M. Hirzel

5. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: IEEE SuperComputing (SC) (2000)

6. Chen, W.K., Bhansali, S., Chilimbi, T., Gao, X., Chuang, W.: Profile-guided proac-
tive garbage collection for locality optimization. In: Programming Language Design
and Implementation (PLDI) (2006)

7. Cheney, C.J.: A nonrecursive list compacting algorithm. Communications of the
ACM (CACM) (1970)

8. Cheng, P., Blelloch, G.E.: A parallel, real-time garbage collector. In: Programming
Language Design and Implementation (PLDI) (2001)

9. Chilimbi, T.M., Larus, J.R.: Using generational garbage collection to implement
cache-conscious data placement. In: International Symposium on Memory Man-
agement (ISMM) (1998)

10. Courts, R.: Improving locality of reference in a garbage-collecting memory man-
agement system. Communications of the ACM (CACM) (1988)

11. Ding, C., Kennedy, K.: Improving cache performance in dynamic applications
through data and computation reorganization at run time. In: Programming Lan-
guage Design and Implementation (PLDI) (1999)

12. Diniz, P., Rinard, M.: Dynamic feedback: An effective technique for adaptive com-
puting. In: Programming Language Design and Implementation (PLDI) (1997)

13. Fenichel, R.R., Yochelson, J.C.: A LISP garbage-collector for virtual-memory com-
puter systems. Communications of the ACM (CACM) (1969)

14. Flood, C.H., Detlefs, D., Shavit, N., Zhang, X.: Parallel garbage collection for
shared memory multiprocessors. In: Java Virtual Machine Research and Technol-
ogy Symposium (JVM) (2001)

15. Fursin, G., Cohen, A., O’Boyle, M., Temam, O.: A practical method for quickly
evaluating program optimizations. In: Conte, T., Navarro, N., Hwu, W.-m.W.,
Valero, M., Ungerer, T. (eds.) HiPEAC 2005. LNCS, vol. 3793. Springer, Heidelberg
(2005)

16. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation.
Transactions on Programming Languages and Systems (TOPLAS) (1985)

17. Hirzel, M.: Data layouts for object-oriented programs. In: Measurement and Mod-
eling of Computer Systems (SIGMETRICS) (2007)

18. Hirzel, M., Chilimbi, T.M.: Bursty tracing: A framework for low-overhead temporal
profiling. In: Feedback-Directed and Dynamic Optimizations (FDDO) (2001)

19. Hirzel, M., Diwan, A., Hertz, M.: Connectivity-based garbage collection. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA)
(2003)

20. Huang, X., Blackburn, S.M., McKinley, K.S., Moss, J.E.B., Wang, Z., Cheng, P.:
The garbage collection advantage: improving program locality. In: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA) (2004)

21. Ibrahim, A., Cook, W.R.: Automatic prefetching by traversal profiling in object
persistence architectures. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067.
Springer, Heidelberg (2006)

22. Imai, A., Tick, E.: Evaluation of parallel copying garbage collection on a shared-
memory multiprocessor. IEEE Transactions on Parallel and Distributed Systems
(1993)

23. Inagaki, T., Onodera, T., Komatsu, H., Nakatani, T.: Stride prefetching by dynam-
ically inspecting objects. In: Programming Language Design and Implementation
(PLDI) (2003)

Online Phase-Adaptive Data Layout Selection 333

24. Jones, R., Lins, R.: Garbage collection: Algorithms for automatic dynamic memory
management. John Wiley, Chichester (1996)

25. Kermany, H., Petrank, E.: The Compressor: Concurrent, incremental, and paral-
lel compaction. In: Programming Language Design and Implementation (PLDI)
(2006)

26. Lau, J., Arnold, M., Hind, M., Calder, B.: Online performance auditing: Using
hot optimizations without getting burned. In: Programming Language Design and
Implementation (PLDI) (2006)

27. Lieberman, H., Hewitt, C.: A real-time garbage collector based on the lifetimes of
objects. Communications of the ACM (CACM) (1983)

28. McGachey, P., Hosking, A.L.: Reducing generational copy reserve overhead
with fallback compaction. In: International Symposium on Memory Management
(ISMM) (2006)

29. McGovern, A., Moss, J.E.B., Barto, A.G.: Building a basic block instruction sched-
uler with reinforcement learning and rollouts. Machine Learning 49(2-3) (2002)

30. Moon, D.A.: Garbage collection in a large Lisp system. In: LISP and Functional
Programming (LFP) (1984)

31. Nagpurkar, P., Hind, M., Krintz, C., Sweeney, P., Rajan, V.: Online phase detection
algorithms. In: Code Generation and Optimization (CGO) (2006)

32. Petrank, E., Rawitz, D.: The hardness of cache conscious data placement. In: Prin-
ciples of Programming Languages (POPL) (2002)

33. Robbins, H.E.: Some aspects of sequential design of experiments. Bulletin of the
American Mathematical Society (58), 527–535 (1952)

34. Saavedra, R.H., Park, D.: Improving the effectiveness of software prefetching with
adaptive execution. In: Parallel Architectures and Compilation Techniques (PACT)
(1996)

35. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find
periodic behavior and simulation points in applications. In: Malyshkin, V.E. (ed.)
PACT 2001. LNCS, vol. 2127. Springer, Heidelberg (2001)

36. Shuf, Y., Gupta, M., Bordawekar, R., Singh, J.P.: Exploiting prolific types for
memory management and optimizations. In: Principles of Programming Languages
(POPL) (2002)

37. Shuf, Y., Gupta, M., Franke, H., Appel, A., Singh, J.P.: Creating and preserving
locality of Java applications at allocation and garbage collection times. In: Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA) (2002)

38. Siegwart, D., Hirzel, M.: Improving locality with parallel hierarchical copying GC.
In: International Symposium on Memory Management (ISMM) (2006)

39. Singer, J., Brown, G., Watson, I., Cavazos, J.: Intelligent selection of application-
specific garbage collectors. In: International Symposium on Memory Management
(ISMM) (2007)

40. Soman, S., Krintz, C., Bacon, D.F.: Dynamic selection of application-specific
garbage collectors. In: International Symposium on Memory Management (ISMM)
(2004)

41. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

42. Ungar, D.: Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. In: Software Engineering Symposium on Practical Software
Development Environments (SESPSDE) (1984)

43. Voss, M.J., Eigenmann, R.: High-level adaptive program optimization with
ADAPT. In: Principles and Practice of Parallel Programming (PPoPP) (2001)

334 C. Zhang and M. Hirzel

44. Wilson, P.R., Lam, M.S., Moher, T.G.: Effective “static-graph” reorganization to
improve locality in a garbage-collected system. In: Conference on Programming
Language Design and Implementation (PLDI) (1991)

45. Zhang, C., Ding, C., Ogihara, M., Zhong, Y., Wu, Y.: A hierarchical model of data
locality. In: Principles of Programming Languages (POPL) (2006)

46. Zhang, L., Fang, Z., Parker, M., Mathew, B.K., Schaelicke, L., Carter, J.B., Hsieh,
W.C., McKee, S.A.: The Impulse memory controller. IEEE Transactions on Com-
puters (2001)

47. Zhang, W., Calder, B., Tullsen, D.M.: A self-repairing prefetcher in an event-driven
dynamic optimization framework. In: Code Generation and Optimization (CGO)
(2006)

48. Zhao, Q., Rabbah, R., Amarasinghe, S., Rudolph, L., Wong, W.-F.: Ubiquitous
memory introspection. In: Code Generation and Optimization (CGO) (2007)

MTM
2
: Scalable Memory Management for

Multi-tasking Managed Runtime Environments

Sunil Soman1, Chandra Krintz1, and Laurent Daynès2

1 Computer Science Department
University of California, Santa Barbara
{sunils,ckrintz}@cs.ucsb.edu

2 Sun Microsystems Inc.
laurent.daynes@sun.com

Abstract. Multi-tasking, managed runtime environments (MREs) for
modern type-safe, object-oriented programming languages enable
isolated, concurrent execution of multiple applications within a single
operating system process. Multi-tasking MREs can potentially extract
high-performance on desktop and hand-held systems through aggressive
sharing of classes and compiled code, and by exploiting high-level dy-
namic program information.

We investigate the performance of a state-of-the-art multi-taking MRE
for concurrent program execution. We find that due to limited support for
multi-tasking and performance isolation in the memory management sub-
system, multi-tasking performs poorly compared to a production-quality,
single-tasking MRE. We present MTM2: a comprehensive memory
management system for concurrent multi-tasking. MTM2 facilitates per-
formance isolation and efficient heap space usage through on-demand al-
location of application-private regions. MTM2 mitigates fragmentation
using a novel hybrid garbage collector that combines mark-sweep with
opportunistic copying. Our evaluation shows that MTM2 improves over-
all performance, scalability, and footprint for concurrent workloads over
state-of-the-art, multi- and single-tasking MREs.

1 Introduction

As desktop and hand-held platforms become more capable (faster multicore
CPUs, larger memories, etc.), users increasingly expect more from the soft-
ware they execute. In particular, users that once executed a single program at
a time, now demand that these systems multi-task, i.e, seamlessly and simulta-
neously execute multiple applications (such as, instant messaging, calendar and
email clients, audio player, Internet browsers, office suite, etc.). Concurrently, de-
velopers of these applications commonly employ high-level, type-safe, portable
programming languages (e.g. JavaTM and the Microsoft .NetTM languages) for
their implementation, since these languages offer high programmer productivity,
portability, rapid deployment, and support for verification of safety properties.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 335–361, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

336 S. Soman, C. Krintz, and L. Daynès

Programs in these languages are encoded by a source compiler into an archi-
tecture neutral format that can be executed on any system with a managed
runtime environment (MRE) for the format. To address both of these demands
and to better utilize the underlying resources on modern desktops and hand-held
systems, modern MREs have emerged with multi-tasking extensions [5,4,26,28].

Multi-tasking MREs address isolation and resource management for multi-
application workloads and provide application developers with a first-class rep-
resentation of an isolated program execution (e.g., the isolate in [15,5] and the
application domain in .Net [19]). This representation provides the necessary func-
tionality to launch and control the life cycle of multiple, isolated execution units
(programs).

MREs have access to high-level program information, can potentially monitor
time-varying program behavior and resource requirements, and can dynamically
optimize programs as well as the runtime based on prior information. Therefore,
they offer potential for more intelligent scheduling and resource management
of programs. Prior work has shown that multi-tasking is more effective at en-
abling cross-program sharing of dynamically loaded and compiled code, and at
achieving smaller memory footprint and faster startup times [4,6] than tradi-
tional MREs that rely on process-based isolation. Yet, little attention has been
directed at the performance of multi-tasking MREs for simultaneous program
execution, i.e., concurrent workloads, compared to a more common scenario in
which each program runs in its own process.

Figure 1 shows the results from a set of experiments that we have conducted
to compare MVM [4,26], a state-of-the art multi-tasking JVM from Sun Mi-
crosystems, with the single-tasking JVM (the Sun Microsystems HotSpot vir-
tual machine version 1.5.0) from which the MVM is derived. The programs are
a subset of the benchmarks that we use for our evaluation (that we describe
in detail in Section 4) that exhibit significant garbage collection (GC) activ-
ity for the old generation (the longer-lived region). The figure shows that the
MVM significantly degrades execution performance for concurrent workloads (2,
5, and 10 concurrent program instances in this graph), despite the significant
opportunity for sharing (i.e. multiple versions of the same program are executing
concurrently).

The MVM prototype that we use in this study is based on prior work [26]
and achieves partial performance isolation across applications, reclamation of an
application’s heap memory upon task termination without having to perform
GC, per-application accounting of heap usage, and per-application control of
heap size settings. However, our results indicate that the prior state-of-the-art
fails to perform favorably compared to its single-tasking counterpart for con-
current workloads that fully exercise the memory management system. The key
impediment to scalability is the lack of GC performance isolation and a poorly
performing full-heap GC algorithm.

To address these issues, we propose a novel memory management approach,
which we call multi-tasking memory manager (MTM2). MTM2 provides bet-
ter GC performance isolation between programs while preserving other benefits

MTM2: Scalable Memory Management for Multi-tasking MREs 337

-80

-60

-40

-20

0

20

40

db
ja

vac
antlr fo

p

lu
in

dex

Avera
ge

Benchmarks

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e

2 5 10

Number of homogenous instances

per benchmark

Fig. 1. Performance of a state-of-the-art multi-tasking MRE (MVM) versus multiple
instances of the JavaTM HotSpot virtual machine for concurrent execution of five com-
munity benchmarks. No prior work has performed such an evaluation. Our analysis of
MVM reveals that the key bottleneck to multi-tasking performance is memory manage-
ment. MVM enables significant sharing and fewer OS processes, but this benefit does
not outweigh the lack of performance isolation in the garbage collection subsystem.

of multi-tasking (small aggregate footprint, fast startup and sharing of classes
and dynamically compiled code). MTM2 is a generational GC system [29] that
employs per-application young generation collection from [26] and introduces a
novel hybrid approach to old generation collection that (i) maintains the con-
straint that all live objects within a region belong to the same application (which
is key to GC isolation and the accuracy of tracking per-application heap usage),
(ii) ensures that the aggregate footprint of the multi-tasking MRE is small for
concurrent workloads, and (iii) enables space reclaimed through opportunistic
evacuation of objects from sparsely populated regions of one program to be made
available to other programs. To achieve these goals, MTM2 performs full collec-
tion of a single program’s heap in isolation with co-located concurrent programs
by combining fast, space-efficient, mark-sweep collection for regions with little
fragmentation, with copying collection for regions with significant garbage and
fragmentation. MTM2 combines and extends a large body of recent GC re-
search [8,26,25,2,20] to facilitate scalability via hybrid collection of independent
applications in a multi-tasking MRE.

We have integrated MTM2 with a prototype of MVM described in [26], and
have used it to compare the execution of multiple programs executed using a
single multi-tasking MRE versus using multiple concurrent instances of single-
tasking MREs (one per program). Two metrics are particularly interesting with
respect to the scalability of the two approaches: the overall footprint when exe-
cuting multiple programs, and the execution times of programs. We demonstrate

338 S. Soman, C. Krintz, and L. Daynès

that on average, MTM2 achieves better overall execution times and footprint
versus its single-tasking counterpart, for concurrent workloads using a number
of community benchmarks. Moreover, MTM2 is able to do so while maintaining
the other benefits of running with a multi-tasking MRE. MTM2 outperforms the
HotSpot single-tasking MRE by up to 14% on average for concurrent instances
of the same program (homogeneous), and by up to 16% on average for workloads
with a mix of programs (heterogeneous). MTM2 achieves up to 41% reduction
in footprint on average for homogeneous workloads, and by up to 33% on average
for heterogeneous workloads over the single-tasking MRE. Finally, we show that
MTM2 outperforms an extant state-of-the-art multi-tasking MRE by 10% to
22% for concurrent workloads.

In summary, we contribute the following:

– the first study that compares multi-instance JVM execution vs multi-tasking
execution for concurrent program execution;

– a complete memory management system that provides full GC performance
isolation for multi-tasking MREs;

– the design and implementation of a hybrid, multi-tasking aware GC that
combines GC approaches that are well understood, i.e., mark-sweep and
copying, to balance GC performance and memory footprint. Hybrid GC re-
uses reclaimed space across multiple isolated program executions; this design
achieves footprint-aware memory management that facilitates runtime effi-
ciency for concurrent workloads;

– an empirical evaluation that shows that multi-tasking MREs when equipped
with appropriate mechanisms for GC performance isolation, compare favor-
ably to single-tasking MREs with respect to footprint and program execution
time for concurrent workloads. This result further strengthens the case for
multi-tasking MREs.

In the sections that follow, we first detail the design and implementation
of MTM2. We then present our experimental framework and empirical results
in Section 4. We compare and contrast related work in Section 5. Finally, we
conclude with a summary of our findings and contributions in Section 6.

2 Multi-tasking Memory Management

MTM2’s design enables GC to be performed for a given application in isolation,
and concurrently with respect to the mutators (threads modifying heap objects)
of other applications.

MTM2 follows the generational design [29] and each application is provided
with a private two-generation heap. As with prior versions of MVM, a third
generation, called the permanent generation, is shared across applications. The
permanent generation is used to allocate long-lived meta-data, such as the run-
time representation of classes (including method byte codes, constant pools,
etc.), symbols and interned strings, and data structures of the MRE itself, all of
which may be transparently shared across programs. The meta-data stored in

MTM2: Scalable Memory Management for Multi-tasking MREs 339

the permanent generation may survive the execution of many programs, and is
rarely collected.

The permanent generation is a single contiguous area. Memory for the young
and old generations of applications originates from two pools of fixed-size regions
managed by MTM2. Each pool uses its own region size. The two pools and
the shared permanent generation are contiguous in virtual space, such that old
regions are in between the young regions pool and the permanent generation.

Memory for the young generation of a program is allocated at program startup,
by provisioning a region from the young generation pool. Memory for a program’s
old generation is allocated on demand, on a per-region basis, from an old region
pool. Thus, old and young generations are both made of one or more regions, that
are possibly disjoint in virtual space. Regions are made of an integral number
of operating system virtual pages and aligned to page boundaries to enable on-
demand allocation/deallocation of the physical pages allocated to regions by the
operating system1. Backing storage for the virtual pages of a region is allocated
only upon allocation of the region to a program. Conversely, when a region is
returned to the pool, the backing storage for its virtual memory pages is freed
immediately.

A region can only contain objects allocated by the same program, i.e., a
region is always private to a program. This constraint facilitates both track-
ing of program memory usage and instantaneous, GC-less, reclamation of space
upon program-termination [26]. It also helps performance isolation since GC
only needs to synchronize with the threads of a single application (instead of all
applications).

Following standard generational GC practice, programs allocate primarily
from their young generation. Threads of a program are each assigned a thread
local allocation buffer (TLAB) [14,9,16] from the corresponding program’s young
generation. TLABs satisfy most allocation requests with a simple, non-atomic,
increment of a pointer of the TLAB’s allocation hand (bump-pointer).

Tracking of cross-generation references uses a card-marking scheme [3,12,11,1].
Old regions are card-aligned and consist of an integral number of cards, so that
young generation collection of an application only needs to scan the dirty cards
that correspond to the old regions allocated to the application. These are main-
tained by MTM2 in a per-application list ordered by increasing virtual address.
Each application is also associated with a current old region, which identifies
the region used to allocate tenured space for the applications. Tenured space is
allocated primarily during young generation collection, when promoting young
objects, and occasionally, directly by mutator threads of the application to allo-
cate space for large objects.

MTM2 initiates a young generation collection for an application when the
application’s young generation is full, and an old generation collection when
the application reaches its maximum heap size limit, or when allocation of a
region from the pool of old region fails. Minor collection for an application is

1 E.g., using map/unmap system calls on the SolarisTM OS.

340 S. Soman, C. Krintz, and L. Daynès

performed concurrently with respect to other applications using mechanisms
described previously [26].

Collection of the old generation of an application’s heap space follows a hybrid
approach that combines fast, space-efficient, mark-sweep for regions of the old
generation with little fragmentation or garbage, with a copying collection for
regions of the old generation with either significant fragmentation or with a
significant amount of garbage. Old generation collection is on a per-application
basis, i.e., only the old generation of the application that triggers GC is collected.

MTM2 also exploits MVM’s representation of classes to organize the per-
manent generation in a way to limit tracing, during young and old generation
collection, to objects of the application that initiated the collection (henceforth
called the GC initiator). The MVM separates the application-dependent part of
the runtime representation of classes from the rest of the class representation.
When a class is sharable across applications, a task table is interposed between
the class representation and its application-dependent part, the latter being al-
located in the old generation of the corresponding application. The task table for
a class has an entry for every application executing in the MRE, and each appli-
cation is assigned, upon startup, a unique number (the task identifier) which is
used to index these tables. The entry of a task table holds a reference to the ob-
ject that holds the application-dependent part of the class when the application
associated with that entry loads the class, or a null pointer otherwise [4]. Classes
whose representation cannot be shared across programs (e.g., classes defined by
program-defined class loaders) refer directly to the application-dependent part.
All data structures that directly reference application-dependent data are clus-
tered in a specific area of the permanent generation, which is the only area that
needs to be traced during collection of younger generations. When an application
does not use program-defined class loaders, tracing is limited to a single entry
in every task table (the entry assigned to the GC trigger).

Other data-structures that reference application-dependent data (e.g., JNI
Handles) are organized either in a per-application pool or in tables with one entry
per application, similar to the task table. MTM2 is aware of this organization
and exploits it to scan only those pools or table entries associated with the GC
initiator. Further, only stacks of threads of the GC initiator are scanned for
roots.

3 MTM2’s Mark-Evacuate-Sweep Garbage Collector

Our experiments with prototypes of MVM suggest that efficient GC is key to
making the concurrent execution of multiple programs using multi-tasking a
viable alternative to running the same programs using one instance of a single-
task MRE per application.

MTM2’s old generation design is constrained by the need to ensure that
an old region contains only objects from the same application, for performance
isolation, as well as for efficient and accurate tracking of heap resources. This
implies that dead space within an old region allocated to an application cannot

MTM2: Scalable Memory Management for Multi-tasking MREs 341

be reused by another application. This can potentially lead to significant frag-
mentation and substantially increase footprint for multi-tasking. Copying GC is
effective at mitigating fragmentation, but at the cost of excessive copying of live
objects, and the necessity of a copy reserve area. In place compaction requires
multiple passes over the heap (although recent work has significantly optimized
compaction [20]). Mark-sweep, however, is fast, and involves a single pass over
live data, but may result in poor space utilization [17].

MTM2 combines two relatively simple and well-understood techniques: mark-
sweep and copying. We use copying to evacuate live objects from only those
regions that are fragmented or are sparsely populated, and mark-sweep for the
remaining regions. The goal is to maintain a low footprint, but without the
overhead of copying of all live objects and a copy reserve for every GC. Space
reclaimed via sweeping can only be used by the GC initiator, since the free space
may be co-located with live data in the same region. Evacuated regions, on the
other hand, can be returned to the old region pool where the backing storage for
their virtual pages is freed until the regions are re-assigned to an application.

Candidate regions for evacuation are selected based on the amount of frag-
mentation the GC is likely to cause in the region. Before the collection begins,
MTM2 suspends all the threads of the GC initiator at a GC safepoint. The
threads are restarted when GC completes.

The collection itself is performed in four phases: marking, selecting candidate
regions for evacuation, evacuation (copying), and sweeping and adjustment of
regions (performed in the same pass). The first two phases gather information
(liveness, connectivity, occupancy, and estimated fragmentation) necessary for
the last two phases. Evacuation and adjustment are optional, and occurs only if
the second phase selects regions for evacuation.

Figure 2 illustrates with an example the main phases of MTM2’s hybrid
collection. The following sub-sections detail each of the four phases.

3.1 Marking Phase

The marking phase begins a collection and produces two data structures as
output: a mark bitmap that records live objects of the GC initiator; and a con-
nectivity matrix that records connectivity information between old generation
regions. Together, these are used to determine regions to evacuate, sweep and
adjust.

Storage for the mark bitmap and the connectivity matrix is allocated for
the duration of the hybrid GC cycle. The mark bitmap has one bit for every
word of heap memory. Marking starts with the roots of live objects for the GC
initiator: the stacks of the application’s threads; the entry corresponding to the
GC initiator in each task table for the runtime representation of shared classes
in the permanent generation, and entries in global tables maintained by the
multi-tasking MRE (such as JNI handles).

Marking then traverses the object graph from these roots. Because isolation
is strictly enforced between applications through application-private regions, the

342 S. Soman, C. Krintz, and L. Daynès

marking phase will never access an object allocated by another application nor
traverse a region allocated to another application.

The connectivity matrix is updated when a yet unmarked object is traversed.
The matrix is encoded as a two-dimension boolean array, so that an entry (i, j)
set to true indicates that there exists at least one reference from region i to
region j. The matrix is initially zero-filled.

Testing whether each reference crosses a region boundary can be expensive.
We have observed that inter region object references in the old generation are
clustered, and that the distance between the referencing (source) object and the
object being referenced (destination) in an old region is often small. Therefore,
given an old region size that is large enough, the source and destination objects
are likely to reside in the same region. If region size is a power of two, and
regions are aligned, testing whether two addresses are in the same region can be
inexpensively performed as follows 2:

to == *from;
if (to ∧ from) >> LOG REGION SIZE) != 0 {

// Not in the same region.
update connectivity matrix(to,from);

}

When the test fails, a slow path is taken in order to update the connectivity
matrix. The choice of an appropriate region size contributes to confine clusters
of connected objects to a single region, which has two benefits: reducing the
overhead of tracking inter-region connectivity (i.e., the fast path will be taken
more often); and limiting the number of regions that needs to be inspected for
potential pointer adjustment after regions are evacuated. We have empirically
identified an old region size of 256KB that works well.

In summary, tracking of connectivity information helps to reduce the amount
of live data that needs to be scanned during pointer adjustment if any region is
evacuated.

3.2 Selecting Regions for Evacuation

The decision to evacuate a region attempts to balance the cost of evacuation (copy-
ing and pointer adjustment) and heap fragmentation (consequently, footprint). To
maintain a low cost for evacuation we evacuate sparsely populated regions, while
to maintain a low footprint, we evacuate regions with fragmentation.

That is, our evacuation policy evacuates a region unconditionally if the ratio
of the live to dead space (live ratio) is less than a certain minimum live ratio
(MinLiveRatio). The region is also evacuated if it is estimated to be fragmented.
This is done by comparing the average size of each contiguous fragment of dead
space to a threshold (MinFragmentSize). That is, given L, the amount of live

2 This test for cross-region object references is similar to the test in the write barrier
of the Beltway framework [2] except that, in our case, the test is performed at
marking-time.

MTM2: Scalable Memory Management for Multi-tasking MREs 343

data in the region, F , the number of contiguous areas of dead objects in the
region, and R the size of the region, a region is selected for evacuation if:

(L/R)<MinLiveRatio∨((L/R)<K∧(F >1)∧((R−L)/F)<MinFragmentSize)

We empirically chose MinLiveRatio to be 0.25, i.e., a region is always evacu-
ated if it contains over 75% of garbage. When the pool of old regions is closed to
exhaustion, this parameter is increased up to 0.9 to aggressively evacuate all but
the almost full regions. K is the occupancy threshold and chosen to be 0.9, i.e., we
look for fragmentation in regions that are at least 90% full. MinFragmentSize
is set to 50 bytes by default.

In order to realize this policy, MTM2 needs to determine the ratio of live
to dead data and the number of contiguous fragments of dead space in each
region. This is done following the completion of the marking phase, by scanning
the mark bitmap. For each region belonging to the GC initiator, MTM2 walks
over the region’s objects, using the mark bitmap to determine their liveness and
the objects’ header to obtain their size. In addition, in this pass, adjacent dead
objects are coalesced into a single dead area to reduce scanning time for future
passes.

3.3 Evacuation, Sweeping and Adjustment of Old Regions

Live objects in regions selected for evacuation are relocated to new regions allo-
cated from the old regions pool. Evacuation traverses the region being evacuated
for live objects using the mark bitmap. Live objects are copied to the new region,
and a forwarding pointer is installed in the header of the (old) copied object. For-
warding pointers are necessary for pointer adjustment. This, however, prevents
the evacuated regions from being freed before adjustment is complete.

New regions used to store evacuated objects are added to the set of regions
that need adjustment, i.e., we assume that the a region is likely to contain objects
that point to other objects in the same region.

Once evacuation is complete, sweeping and adjustment of pointers can be
performed in the same pass. For each region that was not evacuated, the mark
bitmap corresponding to the region is used to build lists of live and free areas
within the region. The connectivity matrix is also checked to determine if the
region contains objects that reference objects in evacuated regions. If so, the
live objects in the region are scanned to adjust references. Finally, the free and
live lists of areas are combined into a list of live old generation areas used by
the application. The live list is used to account for the old generation usage
of the application, as well as during young generation collection to limit the
amount of work that is done during card scanning, i.e., we only need to scan
dirty cards that correspond to the application’s list of old generation regions.
The application’s free list that was constructed during sweeping can only be
used to satisfy allocation requests for that application (cf. Section 2).

344 S. Soman, C. Krintz, and L. Daynès

live lists app 1 app 2 old region pool

Before Marking

After Marking

evacuate sweep

Evacuation & Sweeping

0... 0101... 1.01

app1 free
regions

mark bitmap

old region pool

old region pool

Fig. 2. Marking, Evacuation and Sweeping of Old Regions. Each application has a
corresponding list of live areas. Marking traverses live objects for an application and
marks live objects in the mark bitmap. After marking, candidate regions for evacuation
(or sweeping) are selected based on the amount of live data and fragmentation. Regions
selected for evacuation are then evacuated, regions selected for sweeping are swept and
free areas in these added to a per-application free list. Pointer adjustment for swept
regions is also performed during this pass, if necessary.

If any region is evacuated, in addition to adjustment of some old regions,
we also need to adjust objects in the young generation of the application, the
permanent generation, and outside the heap (globals) that reference objects in
the evacuated region(s).

The young generation is typically small (the default is 2MB) and can there-
fore be scanned in its entirety without significant overhead. However, perform-
ing an object graph traversal beginning from the roots to identify globals and
permanent generation pointers that need to be adjusted can be prohibitively
expensive. Instead, we keep track of the locations of these pointers during the
marking phase, and update them during pointer adjustment. The space overhead
required to keep track of these locations is small, and is reported as part of the
total footprint of MTM2 in Section 4.

MTM2: Scalable Memory Management for Multi-tasking MREs 345

live lists app 1 app 2

src dst
2 3

app1 region connectivity

1 2 3

Fig. 3. Adjustment of old regions. Application 1 is being collected. We build the region
connectivity matrix for application 1 during the marking phase. Region 2 has outgoing
pointers to Region 3, therefore, Region 2 must be scanned if Region 3 is evacuated.
However, Region 1 and 4 do not need to be scanned.

Once all regions have been adjusted, the evacuated regions are returned to
the pool of free regions, and backing physical memory corresponding to their
virtual address pages is unmapped, i.e., freed regions do not consume physical
memory and can be later re-mapped and used as part of the old generations for
any application.

Objects larger than a single region are treated specially. They are assigned
an integral number of contiguous old regions large enough to hold the object.
MTM2 notes whether a region is part of a single large object region and whether
that object contains no references (scalars only). This information is used to
reclaim space when these large objects die (e.g., by returning their regions im-
mediately to the pool, without waiting for adjustment).

4 Evaluation

The design of MTM2 was motivated by the poor behavior of extant approaches
to multi-tasking for concurrent application workloads, especially when compared
to running the same concurrent workload using one instance of a single-tasking
MRE per application as noted in Section 1.

In this section, we report our assessment of how well a multi-tasking MRE
using MTM2 fares when facing similar workloads. We first compare the per-
formance of the most recent prototype of MVM (described in [26]) to that of
an MVM modified to integrate MTM2. We then compare MTM2 to a single-
tasking MRE. We use the JavaTM HotSpot virtual machine, version 1.5.0-03 [14],
a production quality, high-performance virtual machine from Sun Microsystems
(which we will refer to as HSVM from now on). Both MVM and MTM2 derive
their implementation from HSVM and share a significant amount of code, which
facilitates comparison. MVM and MTM2 differ only in their memory manage-
ment sub-systems and modification to the runtime to achieve GC performance
isolation. All other mechanisms to support multi-tasking and sharing of the run-
time representation of classes, byte code and compiled code (see [4,5] for detailed
descriptions) as well as other virtual machine implementation aspects inherited
from HSVM are identical.

346 S. Soman, C. Krintz, and L. Daynès

The main metrics of interest for our comparison are execution time and the
aggregate memory footprint necessary to run concurrent workloads.

We begin with a description of our experimental setup, including hardware,
benchmark, and methodology.

Benchmark

compress SpecJVM98 compression utility (input 100)

jess SpecJVM98 expert system shell benchmark:

 Computes solutions to rule based puzzles (input 100)

db SpecJVM98 database access program (input 100)

javac SpecJVM98 Java to bytecode compiler (input 100)

mtrt SpecJVM98 multi-threaded ray tracing implementation (input 100)

jack SpecJVM98 Java parser generator based on the Purdue Compiler

antlr Dacapo antlr: Parses grammar files and generates a parser

 and lexical analyzer for each (default input)

fop Dacapo fop: XSL-FO to PDF parser/converter (default input)

luindex Dacapo luindex: uses lucene to index the works of Shakespeare

 and the King James Bible (default input)

ps Dacapo ps: Postscript interpreter (default input)

opengrok Open source code browser and cross reference tool

 (input: Source files in HSVM "memory" subdirectory, 118 files)

jruby Ruby interpreter written in Java

 (uses small scripts as input: beer song, fibonacci numbers,

 number parsing, thread test)

groovy Groovy interpreter written in Java

 (input: unsigns, i.e., strips MANIFESTs) for a number of jar

 files from Apache ant)

antlr-mixed mixed workload consisting of antlr, fop and opengrok

luindex-mixed mixed workload consisting of luindex, fop and ps

javac-mixed mixed workload consisting of javac, jess, mtrt and jack

scripts-mixed mixed workload consisting of groovy and jruby

Description

Fig. 4. Benchmarks and workloads used in the empirical evaluation of MTM2

4.1 Experimental Methodology

We ran our experiments on a dedicated dual CPU 1.5GHz UltraSPARC IIIi
system, with 2GB physical memory, 32KB instruction and 64KB data cache
running the SolarisTM Operating System version 10.

Figure 4 describes the benchmarks and workloads we used for our experiments.
Programs used in our concurrent workloads are selected from community

programs from the SpecJVM98 [27] and Dacapo [7] benchmark suites 3, as
well as two commonly used open-source scripting applications, jruby [18] and
groovy [10], and an open-source source code browser and cross reference tool
called opengrok [23]. We exclude mpegaudio from SpecJVM98 (as is commonly
done) since it does not exercise the GC.

We experimented with two types of workloads: homogeneous and heteroge-
neous. A homogeneous workload consists of multiple concurrent instances of the
same program. For instance, 10 instances of javac implies that 10 instances of
this program are launched simultaneously. A heterogeneous workload consists of
concurrent instances of different programs.
3 We used version 2006-10-MR2 version of the Dacapo benchmarks, and ps from Da-

capo version beta-05022004.

MTM2: Scalable Memory Management for Multi-tasking MREs 347

Exec time Footprint Exec time Footprint Exec time Footprint

Bmark (sec) (MB) (sec) (MB) (sec) (MB)

compress 10.96 139.44 27.60 351.16 56.41 650.80

jess 4.93 19.82 12.33 33.18 24.54 55.12

db 20.84 35.95 52.50 74.05 105.10 141.00

javac 10.40 49.51 26.78 109.85 53.97 261.03

mtrt 3.39 20.46 8.47 62.27 16.24 114.26

jack 4.21 30.84 10.75 59.53 20.89 104.78

antlr 9.17 67.51 20.95 114.23 39.86 219.61

fop 6.00 51.84 14.31 87.45 28.53 148.49

luindex 40.08 76.68 89.45 173.35 169.42 333.43

ps 27.18 16.63 68.37 23.91 136.80 37.02

opengrok 10.44 101.50 25.40 230.85 51.35 429.77

groovy 10.15 138.06 21.54 366.63 50.92 544.25

jruby 2.58 34.80 5.66 49.67 10.67 73.47

Average 12.33 60.23 29.55 133.55 58.82 239.46

Number of instances

102 5

Exec time Footprint Exec time Footprint

Bmark (sec) (MB) (sec) (MB)

antlr-mixed 12.64 79.52 24.43 148.06

luindex-mixed 34.44 77.04 42.47 132.76

javac-mixed 13.28 31.97 23.58 63.57

scripts-mixed 8.28 68.68 11.30 118.95

Average 17.16 64.30 25.45 115.84

1 2

Number of instances

Fig. 5. Total execution time (in seconds) and footprint (in MB) data with MTM2 for
concurrent homogeneous (multiple instances of same application), and heterogeneous
(multiple instances of different applications). The benchmarks are described in Figure 4.
All relative performance improvement results for execution time as well footprint in
this paper use these values.

We refer to the heterogeneous workload as mixed in Figure 4. We present
results for 1 and 2 instances each of an application in a heterogeneous workload.
For example, 2 instances each for antlr-mixed implies that we launch 2 instances
each of antlr, fop and opengrok simultaneously, i.e., 6 concurrent instances.

We report total execution time by reporting the time elapsed since the appli-
cations in a workload were launched and until the last application completes. We
use a harness that executes each application as an isolate [15] using reflection
and we report total elapsed time using System.nanoTime(). To measure foot-
print, we use the UNIX pmap utility, which we execute as an external process in
a tight loop and report the maximum of the total RSS (resident segment size)
value reported by executing pmap -x on the MRE process. Footprint and exe-
cution times are reported using independent runs. In case of single-tasking, we
sum the RSS values returned by pmap for each individual MRE process (since
to execute concurrent workloads, we must launch a single-tasking MRE process
for each application).

We perform all HSVM experiments using the client compiler and the default
serial GC (sliding mark-compact) used for client configuration (i.e., using the
-client -XX:+UseSerialGC command line flags). HSVM and MTM2 both use

348 S. Soman, C. Krintz, and L. Daynès

copying GC for collecting the young generation. For all results, we present the
average of 5 executions.

4.2 MTM2 Versus MVM

We first present performance results that compare MTM2 to MVM. MVM
provides performance isolation for the young generation only, per-application
resource accounting, and immediate, GC-less reclamation of heap space upon
program termination. However, as seen earlier, this MVM performs poorly for
concurrent workloads relative to executing the same concurrent workload with
multiple instances of HSVM (cf Figure 1).

0

10

20

30

40

50

60

db
ja

vac
antlr fo

p

lu
in

dex

Avera
ge

Benchmarks

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e

2 5 10

Number of homogenous instances

per benchmark

Fig. 6. Percentage improvement in execution time enabled by MTM2 versus a state-
of-the-art implementation of MVM for concurrent workloads that show significant old
generation GC activity. MTM2 enables better performance due to a more efficient old
generation GC and performance isolation.

Figure 6 shows the performance improvement enabled by MTM2 over this
MVM. The results indicate that MTM2 outperforms MVM by 10%, 15%, and
22% on average when running 2, 5, and 10 concurrent instances, respectively. For
this experiment, we only present results for applications that show significant
old generation GC activity. This performance improvement is possible due to
the hybrid old generation GC in MTM2 that enables performance isolation, as
well as improved GC performance.

Figure 7 shows the old generation GC times for MTM2 versus MVM.
MTM2’s hybrid GC significantly improves GC performance over MVM. MVM
uses a stop-the-world mark-compact GC for the old generation that performs
three passes over the entire old generation (for all applications), with cost pro-
portional to the size of the heap. With more concurrent instances, the cost of
old generation GC in MVM increases.

MTM2: Scalable Memory Management for Multi-tasking MREs 349

MVM MTM
2

% imp MVM MTM
2

% imp MVM MTM
2

% imp

Bmark (sec) (sec) (sec) (sec) (sec) (sec)

db 0.57 0.28 51.95 2.92 0.70 76.05 5.47 1.38 74.81

javac 3.24 2.51 22.47 8.95 3.48 61.06 40.10 7.93 80.23

antlr 2.44 0.48 80.17 4.11 1.29 68.69 6.23 1.39 77.75

fop 1.18 0.67 42.96 2.29 1.11 51.58 4.98 2.54 49.00

luindex 4.27 1.51 64.73 8.36 2.86 65.82 14.35 8.24 42.60

Average 2.34 1.09 52.46 5.32 1.89 64.64 14.22 4.29 64.88

2 5 10

Number of instances

Fig. 7. Old generation GC times (total) for MTM2 versus a prior state-of-the-art
implementation of multi-tasking (MVM). GC times are presented in seconds along
with percentage improvement in GC time enabled by MTM2 vs MVM. MTM2 ’s
per-application hybrid old generation GC outperforms MVM’s mark-compact old gen-
eration GC.

-5

5

15

25

35

45

55

co
m

pre
ss

je
ss db

ja
vac

m
trt ja

ck
antlr fo

p

lu
in

dex ps

opengro
k

gro
ovy

jru
by

Avera
ge

Benchmarks

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e 2 5 10
Number of instances
per benchmark

Fig. 8. Percentage improvement in execution time enabled by MTM2 over HSVM (de-
fault initial heap size = max heap size = 64MB) for homogeneous concurrent workloads
(multiple instances of the same application). Benchmarks are described in Figure 4.

In addition, unlike MVM, MTM2 never pauses tasks to perform GC and all
allocation and collection for any application is isolated with respect to other
applications. MTM2 scales better over MVM overall due to performance isola-
tion as the number of instances is increased, as seen in Figure 6. The impact of
performance isolation is especially evident in the case of javac. For instance,
when 10 concurrent instances of javac execute, the total old generation GC
time for MVM is about 40 seconds. The cost of old generation GC is higher
since mark-compact GC needs to scan a larger heap in case of MVM. Further,
since all applications are paused during old generation GC, MVM significantly
degrades execution time for javac. In the case of db and luindex, GC time does
not dominate total execution time, and consequently, the improvement enabled
by MTM2 versus MVM is less significant.

350 S. Soman, C. Krintz, and L. Daynès

0

5

10

15

20

25

30

antlr
-m

ix
ed

lu
in

dex-m
ix

ed

ja
vac-

m
ix

ed

scr
ip

ts
-m

ix
ed

Avera
ge

Benchmarks

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e

1 2

Number of instances

per benchmark

Fig. 9. Percentage improvement in execution time enabled by MTM2 versus HSVM
(default initial heap size = max heap size = 64MB) for heterogeneous concurrent
workloads (multiple instances of different applications). Benchmarks are described in
Figure 4.

4.3 MTM2 Versus HSVM

We next compare the execution time and footprint of MTM2 to HSVM. HSVM
allows users to specify an initial heap size (32MB by default) and a maximum
heap size (64MB by default) when launching an application. The initial heap size
controls the heap limit, the point at which a full GC is triggered. The initial heap
size grows (or shrinks) after a full GC, if required. For results in Figures 8, 9, 10,
and 11, we set the initial heap size for HSVM equal to the maximum heap size.
With this setting, HSVM performs less frequent GC and achieves better overall
performance (total execution time), compared to when the initial heap size is
at the default value. This setting allows single-tasking to perform at its best
potential since the application heap is not restricted. We also present results
for the other case, i.e., when the initial heap size for HSVM is not set to the
maximum initially (the default behavior), thereby allowing HSVM to achieve
a smaller footprint (Figures 14, 15, 12 and 13). MTM2 does not restrict the
initial heap size, or use a “soft limit” for applications, yet we always ensure that
we never exceed the maximum heap size setting for an application (which is set
to the HSVM default maximum heap size of 64MB in order to ensure a fair
comparison).

Figure 8 shows percentage improvement in total execution time when homoge-
neous workloads are executed with MTM2 versus the HSVM virtual machine,
i.e., concurrent instances of the same application. We present results for 2, 5
and 10 concurrent instances for each application. Multi-tasking allows sharing
of compiled code and classes between applications resulting in reduced overall
execution time. MTM2 enables an improvement of 11%, 13% and 14% for 2, 5

MTM2: Scalable Memory Management for Multi-tasking MREs 351

0 0.5 1 1.5 2

compress

jess

db

javac

mtrt

jack

antlr

fop

luindex

ps

opengrok

groovy

jruby

Average

B
e
n

c
h

m
a
r
k
s

Footprint relative to single-tasking

2 5 10
Number of

instances

per benchmark

Fig. 10. Percentage improvement in footprint enabled by MTM2 versus HSVM (de-
fault initial heap size = max heap size = 64MB) for homogeneous concurrent workloads
(2, 5, and 10 instances of the same application).

and 10 concurrent applications on average for homogeneous workloads. MTM2

allows complete application isolation and space reclaimed by evacuating old gen-
eration regions for an application to be reused by other applications. Scripting
and parsing applications such as antlr and jruby are commonly used on desktop
systems and particularly show a significant benefit due to sharing of compiled
code.

For some applications, such as compress, javac and ps multi-tasking does
not outperform single-tasking. For compress in particular, multi-tasking per-
formance lags single tasking due to the fact that it allocate large objects (byte
arrays) in the old generation which leads to fragmentation and worse GC perfor-
mance in a shared old generation address space, and also due to the overhead due
to a level of indirection to access static variables [4]. However, MTM2 attempts
to mitigate the adverse impact of fragmentation and achieves a significant bene-
fit for these worst-case applications over the state-of-the-art multi-tasking MRE
implementation, as shown earlier (cf Figure 6), while achieving performance that
is close to the performance of these applications with single-tasking (within 3%).
On average, MTM2 significantly outperforms single-tasking.

Figure 9 shows the percentage improvement in total execution time for het-
erogeneous workloads, i.e., concurrent instances of different applications for 1
instances of each application, and 2 instances of each application for every het-
erogeneous workload (see Figure 4). For example, antlr-mixed with two instances
indicates that 2 instances each of antlr, fop, opengrok are executed concurrently
(6 concurrent applications). On average, MTM2 improves performance by up
to 16%, with improvements ranging from 3% to 25% in individual cases. As seen
earlier, scripting workloads in particular perform very well with multi-tasking.

352 S. Soman, C. Krintz, and L. Daynès

0 0.5 1 1.5 2

antlr-mixed

luindex-mixed

javac-mixed

scripts-mixed

Average

B
e
n

c
h

m
a
r
k
s

Footprint relative to single-tasking

1 2
Number of

instances

per benchmark

Fig. 11. Percentage improvement in footprint enabled by MTM2 versus HSVM (de-
fault initial heap size = max heap size = 64MB) for heterogeneous concurrent work-
loads. 1 denotes 1 instance each of the mix of applications that constitute a heteroge-
neous workload. 2 indicates 2 instances of each application in the mix.

Figures 10 and 11 compare the total process footprint for MTM2 versus
HSVM for the same set of applications as in the previous figures. Each bar
represents the ratio of the footprint for MTM2 versus HSVM. The value 1
indicates that MTM2 and HSVM have identical footprint for a given workload.
Values less than 1 indicate that MTM2 has a lower footprint.

MTM2 shows a better footprint compared to HSVM and on average, MTM2

achieves 34% to 41% reduction in footprint for homogeneous workloads, and 31%
to 33% benefit for heterogeneous workloads. These savings are possible due to
sharing of classes and compiled code in a multi-tasking MRE.

However, compress shows worse footprint (around 50% or 1.5x). The worse
footprint for compress can be attributed to large scalar objects (objects that do
not hold references, such as byte arrays). As noted earlier, compress allocates
a significant number of large byte arrays which are directly allocated in the old
generation. Since our old generation is non-contiguous, and since we allocate
large scalar objects in a separate region, which we can safely skip during pointer
adjustment, allocation of very large (> minimum region size, which is 256KB
by default), byte arrays leads to excess fragmentation. A new region needs to
be allocated for each such large byte array, and this region needs to be aligned
to the region boundary for correctness. However, the number and size of these
is unknown at runtime, without a priori profiling. Therefore, we cannot pre-
allocate a suitable sized region. As part of future work, we plan to address the
allocation of large objects, by providing a per-application large object region
that is sized differently and collected separately from the old generation. Note

MTM2: Scalable Memory Management for Multi-tasking MREs 353

0 0.5 1 1.5 2

compress

jess

db

javac

mtrt

jack

antlr

fop

luindex

ps

opengrok

groovy

jruby

Average

B
e
n

c
h

m
a
r
k
s

Footprint relative to single-tasking

2 5 10
Number of

instances

per benchmark

Fig. 12. Percentage improvement in footprint enabled by MTM2 versus HSVM (de-
fault initial heap size = 32MB) for homogeneous concurrent workloads (2, 5, and 10
instances of the same application)

0 0.5 1 1.5 2

antlr-mixed

luindex-mixed

javac-mixed

scripts-mixed

Average

B
e
n

c
h

m
a
r
k
s

Footprint relative to single-tasking

1 2
Number of

instances

per benchmark

Fig. 13. Percentage improvement in footprint enabled by MTM2 versus HSVM (default
initial heap size = 32MB), heterogeneous workloads, i.e., multiple concurrent instances of
different applications. 1 denotes 1 instance each of the mix of applications that constitute
a heterogeneous workload. 2 indicates 2 instances of each application in the mix.

that compress is a numerical computation benchmark and does not represent
typical MRE workloads.

Figures 12 and 13 compare the process footprint for MTM2 versus HSVM,
when the initial heap size for HSVM is restricted and increased gradually. In this

354 S. Soman, C. Krintz, and L. Daynès

-5

5

15

25

35

45

55

co
m

pre
ss

je
ss db

ja
vac

m
trt ja

ck
antlr fo

p

lu
in

dex ps

opengro
k

gro
ovy

jru
by

Avera
ge

Benchmarks

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e
2 5 10

Number of instances
per benchmark

Fig. 14. Percentage improvement in execution time enabled by MTM2 versus HSVM
(default initial heap size = 32MB) homogeneous concurrent workloads. Benchmarks
are described in Figure 4.

configuration, HSVM gradually increases the heap (if required), starting from an
initial default (32MB), in order to achieve smaller footprint. As expected, HSVM
runs in a much smaller heap and consequently, the process footprint is lower. On
average, MTM2 shows a footprint improvement of 6% to 14% for homogeneous
workloads, and 12% to around 15% for heterogeneous workloads. Note that these
values are smaller compared to the earlier configuration of HSVM, i.e. when the
initial heap size for HSVM is not restricted. However, if we look at the execution
time for MTM2 versus HSVM (Figures 14 and 15) when the initial heap size for
HSVM is restricted, MTM2 outperforms HSVM by a greater margin than when
we do not restrict the initial heap size for HSVM. On average, MTM2 shows an
improvement of 15% to over 17% for homogeneous workloads, and 19% to 21%
for heterogeneous workloads.

In summary, by controlling heap growth the single-tasking HSVM virtual
machine can achieve a better footprint when the heap is not restricted, however,
MTM2 shows a comparable or better footprint on average across concurrent
workloads that we looked at. Further, MTM2 outperforms HSVM by a larger
margin, since there is a reduction in performance for the single-tasking MRE
due to more frequent GC. There exists a tradeoff between execution time and
footprint by choosing the threshold at which GC is triggered. We believe that
manually having to select an appropriate per-application heap size in a context
of a multi-tasking VM is counter-productive. On average, MTM2 significantly
outperforms HSVM and has a better footprint without having to manually select
an appropriate initial per-application heap size.

We next examine the performance of MTM2 versus HSVM as the heapsize
is varied from the minimum that an application requires to execute in MTM2 ,
to 4 times the minimum for that application (Figure 16). We only consider
benchmarks that show significant old generation GC activity. The minimum

MTM2: Scalable Memory Management for Multi-tasking MREs 355

0

5

10

15

20

25

30

35

antlr
-m

ix
ed

lu
in

dex-m
ix

ed

ja
vac-

m
ix

ed

scr
ip

ts
-m

ix
ed

Avera
ge

Benchmarks

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e

1 2

Number of instances

per benchmark

Fig. 15. Percentage improvement in execution time enabled by MTM2 versus HSVM
(default initial heap size = 32MB) for heterogeneous concurrent workloads (multiple
instances of different applications). Benchmarks are described in Figure 4.

0

5

10

15

20

25

30

35

40

45

d
b

ja
va

c

an
tl
r

fo
p

lu
in

d
ex

A
ve

ra
g
e

Benchmark

P
e
r
c
e
n

ta
g

e
 I

m
p

r
o

v
e
m

e
n

t
in

 T
o

ta
l

T
im

e

1x 2x 3x 4xHeapsize relative to minimum

Fig. 16. Percentage improvement in execution time enabled by MTM2 over HSVM
for 1 through 4 times the minimum heap size that each benchmark needs to execute
in MTM2 .

heap size selected is 45MB for luindex and 22MB for the rest. Across heap
sizes, MTM2 outperforms HSVM by 18 – 19% on average.

However, HSVM is able to execute programs in a smaller heap compared to
MTM2 (i.e., < 45MB for luindex and < 22MB for other benchmarks). HSVM
uses in-place sliding compacting GC, which is more space efficient than MTM2’s
hybrid GC for small heaps. This is due to the fact that evacuation, although it is
partial and selective, requires a copy reserve for the duration of the GC to copy
live objects. For highly memory constrained scenarios, HSVM’s GC may be a

356 S. Soman, C. Krintz, and L. Daynès

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MS CP MS CP MTM
2

MS CP MS CP MTM
2

MS CP MS CP

Bmark (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB) (KB)

javac 49.5 127.7 65.4 61.2 24.3 109.9 297.5 117.7 63.1 6.6 261.0 602.1 261.7 56.6 0.3

luindex 76.7 128.4 83.5 40.3 8.2 173.4 302.9 182.0 42.8 4.7 333.4 589.5 351.9 43.4 5.2

vs vs vs

% imp % imp % imp

Number of instances

2 5 10

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MS CP MS CP MTM
2

MS CP MS CP

Bmark (KB) (KB) (KB) (KB) (KB) (KB)

antlr-mixed 79.5 86.1 80.6 7.6 1.3 148.1 156.6 148.2 5.5 0.1

javac-mixed 32.0 51.9 41.6 38.4 23.2 63.6 91.3 87.5 30.4 27.4

scripts-mixed 68.7 94.8 104.5 27.5 34.3 119.0 127.0 140.3 6.4 15.2

1 2

Number of instances

vs vs

% imp % imp

Fig. 17. Footprint for MTM2 with hybrid GC (mix of mark-sweep and copying) versus
mark-sweep (MS) only and copying GC (CP) only for a set of homogeneous (instances of
the same application) and heterogeneous (different applications) concurrent workloads.
Hybrid GC achieves a footprint that is lower than always choosing mark-sweep or
always choosing copying.

more suitable choice compared to evacuation. We are investigating mechanisms
to perform in-place compaction across disjoint regions as part of future work.

4.4 Sensitivity Analysis

In the next set of results, we examine how MTM2 with selective evacuation
(copying) and mark-sweep compares to only mark-sweep and only copying. Our
hybrid GC can operate as a mark-sweep only GC (by setting the MinLiveRatio
threshold described in Section 3 to 0), or as a copying only GC (by setting the
MinLiveRatio threshold to 1, i.e., 100%).

In particular, in Figure 17 we present total process footprint for MTM2 with
hybrid GC versus MTM2 with mark-sweep only, and MTM2 with copying only,
for a subset of benchmark programs. We only present results for benchmarks that
show significant change in footprint compared to either mark-sweep or copying
(> 5%). For all other benchmarks, we did not find a significant change in the
footprint (however, MTM2 with hybrid GC never shows a worse footprint com-
pared to either mark-sweep or copying).

For javac, luindex, javac-mixed and scripts-mixed, hybrid GC has a
much smaller footprint compared to mark-sweep. We believe this is due to frag-
mentation due to using mark-sweep only without any compaction. For
javac-mixed and scripts-mixed, copying has a higher footprint, since always
copying all live data requires a larger copy reserve space during GC. While per-
forming evacuation, the old as well as the new (copied to) regions need to be
occupied (mapped) for the duration of the GC cycle.

We next examine the effect of using hybrid GC, mark-sweep only, and copy-
ing only, on execution time for javac, which shows a significant difference in

MTM2: Scalable Memory Management for Multi-tasking MREs 357

performance (Figure 18). Using mark-sweep only results in excess fragmenta-
tion. Fragmentation has an interesting effect on execution time for javac – an
increase in young generation GC time by 8% on average (or 0.51 sec, 0.66 sec
and 1.17 sec for 2, 5 and 10 instances respectively) due to an increase in card
scanning time, since more cards need to be scanned. Using copying alone results
in excess copying and adjustment, and consequently, performance suffers due to
an increase in old generation GC time by around 6% (or 0.07 sec, 0.16 sec and
0.70 sec for 2, 5 and 10 instances respectively).

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MTM
2

MS CP MS CP MTM
2

MS CP MS CP MTM
2

MS CP MS CP

Bmark (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

javac 10.40 10.82 10.57 3.9 1.6 26.78 28.14 27.29 4.8 1.9 53.97 56.48 55.25 4.4 2.3

% imp % imp % imp

vs vs vs

Number of instances

2 5 10

Fig. 18. Execution time MTM2 with hybrid GC (mix of mark-sweep and copying)
versus mark-sweep (MS) only and copying GC (CP) only for the javac benchmark

For other benchmarks, we did not encounter a significant change in execution
time (however, in all cases, hybrid GC never performs worse than using mark-
sweep or copying alone).

To summarize, hybrid GC achieves a lower footprint in many cases for bench-
marks that show significant old generation GC activity, while maintaining per-
formance that is on-par or better than using mark-sweep or copying alone.

5 Related Work

Our work relates directly to other multi-tasking implementations of MREs. To
our knowledge, no prior work conclusively demonstrates that multi-tasking has
the ability to outperform a single-tasking MRE in terms of execution time, as well
as overall footprint for concurrent workloads (multiple applications executing si-
multaneously). MVM is the most well-known, state-of-the-art implementation of
a multi-tasking MRE. Prior work on MVM reports substantial improvement for
startup, footprint and execution time compare to a corresponding single-tasking
JVM [4,5]. However, execution times were measured for serial execution of pro-
grams, and footprint of concurrently running programs were obtained when ap-
plications were quiescent, and do not reflect the footprint of programs when they
are actually running concurrently and are exercising the memory management
system. Recent attempts at improving GC performance isolation for MVM [26]
only address young generation GC and GC-less instantaneous reclamation of
the heap space of terminated programs, and demonstrates only provision of
performance isolation for short-lived programs that do not stress the GC. Sun
Microsystems’ CLDC HotSpot Implementation, aimed at small hand-held de-
vices, supports multi-tasking in a way that is similar to MVM, but uses a single

358 S. Soman, C. Krintz, and L. Daynès

heap shared by all tasks [28], with no provision for GC performance isolation.
We were not able to find any information about GC performance isolation for
.NET application domains.

Our work also builds upon and extends a large body of important contribu-
tions to memory management for single-tasking MREs.

Our hybrid GC bears some similitude to incremental copying GCs that di-
vide the heap into equally sized regions that can be evacuated independently of
others. In our case, heap space partitioning is primarily motivated by the need
to allocate private tenured space to isolated applications on demand. Like our
hybrid GC, Garbage First [8] only evacuates regions that can be reclaimed with
little copying. Information regarding the amount of live data in regions is pro-
vided by a concurrent marker (as opposed to a synchronous marking phase in
our case). Bidirectional remembered sets between regions are maintained by mu-
tators (with help from the concurrent marker) to allow any set of regions to be
collected independently of the others. In the case of our hybrid GC, this property
is achieved by gathering cross-regions connectivity information during marking.
The Mature Object Space (MOS) collector of Hudson and Moss [13] is another
region-based incremental copying GC. It uses unidirectional remembered sets,
which requires regions to be evacuated in order. MOS cannot therefore pick an
arbitrary region to evacuate based on cost-related criteria (e.g., amount of live
data). Both Garbage First and MOS are evacuation-only GC.

Lang and Dupont [21] describes a hybrid mark-sweep and copy similar to
ours. The heap is divided into equal size segments. During GC, a single segment
is compacted, while others are swept. Like our hybrid mark-sweep-evacuate GC,
the collector is primarily mark-sweep. The cost of compaction is bounded since
a single segment is collected. However, the segment compacted at each GC is
chosen arbitrarily. By contrast, we use copying opportunistically, only to evacu-
ate sparsely populated regions or highly fragmented one. We may thus evacuate
several regions during a single GC, or none if the regions are densely populated
with little fragmentation.

MC2 [25] and its predecessor, Mark-Copy [24] describe an incremental copying
GC that uses a marking phase to precisely annotate equal size regions of the
old generation of the heap with the amount of live data in them, like our GC,
and then build uni-directional remembered set to update pointers to evacuated
objects. MC2 builds precise remembered sets, whereas we build an imprecise
connectivity matrix that only records regions that references other regions. MC2

aims at achieving good throughput and low pause times for memory constrained
devices.

Beltway [2] provides incremental and generational GC by partitioning the
heap into belts and collecting a single belt during GC. Garbage cycles larger than
a belt cannot be reclaimed by collecting a single belt. However, Beltway has a
provision for performing full GC by providing a separate belt with a single region
and collecting this when it occupies half the heap space. Our per-application GC
is complete and reclaims all garbage for that application. We, therefore, do not

MTM2: Scalable Memory Management for Multi-tasking MREs 359

require precise remembered sets between regions or need mechanisms to ensure
completeness.

McGachey et al [22] present a scheme that uses a generational GC with a
reduced copy reserve, with the ability to dynamically switch to a compacting
GC if necessary.

Page unmapping as well as compaction has been used to reduce application
memory footprint in prior work, such as the Compressor [20]. However, Compres-
sor is a concurrent, parallel compacting GC that achieves low pause times. Our
goal is different: to provide a relative simple, per-application GC that achieves
good footprint and overall performance for desktop or small client applications,
while allowing other applications to execute concurrently, without interference.

6 Conclusion

Multi-tasking has been proposed as a means to enable sharing of code and classes
between applications in order to enable better startup performance, footprint
and for faster overall execution compared to single-tasking, i.e., executing each
application in a separate MRE process. While prior implementations of multi-
tasking have demonstrated the above for serial execution of programs, and for
execution of multiple programs with little simultaneous activity, we show that
the prior state-of-the-art performs poorly for concurrent workloads. We attribute
this to lack of performance isolation and a poor performing garbage collector for
full garbage collection (GC).

We have described MTM2, a scalable approach to memory management for
multi-tasking managed runtime environments. MTM2 enables complete perfor-
mance isolation with respect to GC, provides each application with a private
heap, and employs generational GC with a hybrid GC for old generation collec-
tion. MTM2’s hybrid GC combines mark-sweep with copying collection in the
same GC cycle along with fast adjustment for copied objects, to achieve good
performance and a low footprint while avoiding the overhead of full copying GC.
The hybrid GC uses marking to gather information (liveness, connectivity, occu-
pancy, and estimated fragmentation) necessary to determine regions of the old
generation to evacuate (if any) and to sweep and to identify which regions need
to be scanned for pointer adjustment.

We have integrated MTM2 with MVM, a multi-tasking implementation of
the JVM, and a compare it to a widely used, production-quality, single-tasking
MRE for concurrent application workloads. Our results show that MTM2 en-
ables significant performance, as well as footprint improvement compared to
single-tasking for concurrent workloads. MTM2 outperforms single-tasking by
up to 14% on average for homogeneous workloads (instances of the same appli-
cation) and up to 16% on average for heterogeneous workloads (mix of different
applications). MTM2 achieves up to 41% reduction in footprint on average for
homogeneous workloads, and up to 33% on average improvement for heteroge-
neous workloads over single-tasking. In addition, MTM2 achieves better perfor-
mance for concurrent workloads over the extant state-of-the-art multi-tasking

360 S. Soman, C. Krintz, and L. Daynès

implementation, outperforming it by 10% to 22%. These results indicate that
multi-tasking is a viable approach for executing concurrent applications and
strengthens the case for multi-tasking MREs.

Trademarks

Sun, Sun Microsystems, Inc., Java, JVM, HotSpot, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc., in the United States and other
countries. SPARC and UltraSPARC are trademarks or registered trademarks of
SPARC International, Inc., in the United States and other countries.

References

1. Blackburn, S., McKinley, K.: In or Out? Putting Write Barriers in Their Place. In:
International Symposium on Memory Management (ISMM) (2002)

2. Blackburn, S.M., Jones, R., McKinley, K.S., Moss, J.E.B.: Beltway: Getting around
garbage collection gridlock. In: Conference on Programming Language Design and
Implementation (June 2002)

3. Chambers, C.: The Design and Implementation of the SELF Compiler, an Opti-
mizing Compiler for an Objected-Oriented Programming Language. PhD thesis,
Stanford University (March 1992)

4. Czajkowski, G., Daynès, L.: Multitasking without Compromise: A Virtual Machine
Evolution. In: Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (October 2001)

5. Czajkowski, G., Daynès, L.: A Multi-User Virtual Machine. In: USENIX 2003
Annual Technical Conference (June 2003)

6. Czajkowski, G., Daynès, L., Nystrom, N.: Code Sharing among Virtual Machines.
In: European Conference on Object-Oriented Programming (ECOOP) (June 2002)

7. The Dacapo Benchmark Suite, version beta050224, http://www-ali.cs.
umass.edu/DaCapo/gcbm.html

8. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-First Garbage Collection.
In: International Symposium on Memory Management (ISMM) (October 2004)

9. Garthwaite, A., Dice, D., White, D.: Supporting per-processor local-allocation
buffers using lightweight user-level preemption notification. In: First International
Conference on Virtual Execution Environments (June 2005)

10. Groovy: An agile dynamic language for the Java Platform, http://groovy.
codehaus.org/

11. Hölzle, U.: A Fast Write Barrier for Generational Garbage Collectors. In: OOP-
SLA/ECOOP Workshop on Garbage Collection in Object-Oriented Systems (Oc-
tober 1993)

12. Hosking, A.L., Moss, J.E.B., Stefanović, D.: A Comparative Performance Evalu-
ation of Write Barrier Implementations. In: Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA) (October 1992)

13. Hudson, R.L., Moss, J.E.B.: Incremental Garbage Collection for Mature Objects.
In: International Workshop on Memory Management (IWMM) (1992)

14. Sun Microsystems Inc.: The Java Hotspot Virtual Machine white paper,
http://java.sun.com/products/hotspot/docs/whitepaper/
Java HotSpot WP Final 4 30 01.html

MTM2: Scalable Memory Management for Multi-tasking MREs 361

15. Java Community Process. JSR-121: Application Isolation API Specification,
http://jcp.org/jsr/detail/121.jsp

16. Jones, R., King, A.C.: A Fast Analysis for Thread-Local Garbage Collection with
Dynamic Class Loading. In: Fifth International Workshop on Source Code Analysis
and Manipulation (SCAM 2005) (2005)

17. Jones, R.E., Lins, R.: Garbage Collection: Algorithms for Automatic Dynamic
Memory Management, July 1996. Wiley, Chichester (1996)

18. JRuby: Java powered Ruby implementation, http://jruby.codehaus.org/
19. Kennedy, A., Syme, D.: Combining generics, pre-compilation and sharing between

software-based processes. In: Proceedings of the Second Workshop on Seman-
tics, Program Analysis and Computing Environments for Memory Management
(SPACE 2001) (2001)

20. Kermany, H., Petrank, E.: The Compressor: concurrent, incremental, and paral-
lel compaction. Proceedings of the, ACM SIGPLAN conference on Programming
language design and implementation (2006)

21. Lang, B., Dupont, F.: Incremental Incrementally Compacting Garbage Collection.
In: Symposium on Interpreters and Interpretive Techniques (1987)

22. McGachey, P., Hosking, A.L.: Reducing Generational Copy Reserve Overhead
with Fallback Compaction. In: International Symposium on Memory Management
(ISMM) (June 2006)

23. OpenSolaris Project: OpenGrok.
http://opensolaris.org/os/project/opengrok/

24. Sachindran, N., Eliot, J., Moss, B.: Mark-copy: Fast Copying GC with less Space
Overhead. In: Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) (October 2003)

25. Sachindran, N., Eliot, J., Moss, B.: MC2: high-performance garbage collection for
memory-constrained environments. In: Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) (October 2004)

26. Soman, S., Daynès, L., Krintz, C.: Task-Aware Garbage Collection in a Multi-
Tasking Virtual Machine. In: International Symposium on Memory Management
(ISMM) (June 2006)

27. SpecJVM’98 Benchmarks, http://www.spec.org/osg/jvm98
28. Sun Microsystems Inc. CLDC HotSpotTM Implementation, http://java.sun.

com/javame/reference/docs/cldc-hi-2.0-web/
29. Ungar, D.: Generation Scavenging: A Non-disruptive High Performance Storage

Recalamation Algorithm. In: Software Engineering Symposium on Practical Soft-
ware Development Environments (April 1992)

Externalizing Java Server Concurrency with CAL

Charles Zhang1 and Hans-Arno Jacobsen2

1 Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

charlesz@cse.ust.hk
2 Department of Electrical and Computer Engineering

and Department of Computer Science
University of Toronto

jacobsen@eecg.toronto.edu

Abstract. One of the most important design decisions about a server
program is regarding its concurrency mechanisms. However, good con-
currency models for general-purpose server programs are increasingly
difficult to conceive as the runtime conditions are hard to predict. In
this work, we advocate that the concurrency code is to be decoupled
from server programs. To enable such separation, we propose and eval-
uate CAL, — the Concurrency Aspect Library. CAL provides uniform
concurrency programming abstractions and mediates the intrinsic dif-
ferences among concurrency models. Through CAL, a server program is
not tied to any particular concurrency model and framework. CAL can
be configured without modifications to use concurrency frameworks of
fundamentally different natures. The concurrency code based on CAL is
simpler and looks closer to the design. Leveraging the customizability of
CAL, we show that a commercial middleware server, refactored to use
CAL, outperforms its original version by as much as 10 times.

1 Introduction

A common definition of concurrency is the perceived simultaneous executions of
multiple sets of program instructions within the same address space. Concur-
rency mechanisms, particularly in relation to I/O, are vital to the functional-
ity of today’s general-purpose server programs, such as databases, web servers,
application servers, and middleware systems. Since the trend of multi-core ar-
chitectures no longer focuses on the clock speed, server programs increasingly
rely on concurrency for performance improvements. The current research on the
design of concurrency models is characterized by the pattern-based concurrency
designs [2,18,20,21]. These approaches primarily focus on achieving high, scal-
able and fair server throughput, assuming specific runtime conditions such as
hardware concurrency capabilities and characteristics of incoming requests. As
the nature of today’s network-based applications continues to diversify, such
concurrency models will become increasingly hard, if not completely impossible,
to design due to the difficulties in predicting the runtime conditions for general

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 362–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Externalizing Java Server Concurrency with CAL 363

purpose server programs. Let us first exemplify this problem through a simple
design exercise.

The goal of our design exercise is to allow a simple server program, presented
in Figure 1(A), to provide a generic upload service to simultaneously connected
clients. Despite its simplicity, the server performs some of the typical operations
of Java server programs: binding to a server-side socket and waiting for incoming
connections (Line 9), decoding the application frame from the incoming socket
(Line 4), and processing the received frame such as storing it in a database
(Line 5). This server, as shown, can only serve one client for the duration of
request processing.

Fig. 1. (A) Upload server (B) Thread-per-connection

First solution. Our first attempt is to implement the “thread-per-connection”
concurrency model (Figure 1(B)), common in tutorials, textbooks, and indus-
trial practices. We evaluate our improved design through quantifying the server
throughput measured as number of processed requests per unit time1. In Fig-
ure 3, we plot the number of frames received by the server within a fixed duration
against the number of concurrent clients. We measure two types of client/server
connections: long, i.e., the clients keep their connections alive for the entire
duration (upload(L)); and short, i.e., the clients repeatedly connect to the
server, send a piece of data, and disconnect (upload(S)). Figure 3(A) shows
that our solution works well as the server throughput only degrades around
20% to 30% for both types of connections even for a high number of clients.
We now introduce an evolutionary change to the example server by adding a
new service: factorizing big integers, as illustrated in Figure 2(A). The measure-
ments for this new service are plotted in Figure 3(A) with labels factor(L) and
factor(S). We immediately observe that, when the number of concurrent clients
gets large (> 1000), the throughput of the constant connections (factor(L)) de-
grades as much as 90%, and the periodic connections also suffers from significant
throughput oscillations. Seasoned concurrency programmers can quickly point
out that the use of Java threads in our factor server does not scale to the large

1 We also measure the fairness of the services. However, for motivation purposes here
we omit the relevant discussions. We come back to the fairness issue in Section 4.

364 C. Zhang and H.-A. Jacobsen

Fig. 2. (A) Evolved server (B) Reactor-based event multiplexing

number of concurrent clients due to contention of the CPU resources between
the thread-level context switches and the factorization work itself.

Modified solution. The availability of asynchronous I/O in the Java platform
allows concurrency to be supported using the event multiplexing model, hence,
avoiding the thread-level context switches. Figure 2(B) illustrates a modified
implementation of the server using the Reactor [18] design pattern, in which
each incoming connection is registered with a key (Line 5). The key is used by
the reactor (Line 16) to invoke the corresponding handler when data from the
network is ready to be processed. The stream-based sockets are also replaced
by the channel-based counterparts. Figure 3(B) plots the measurements for the
reactor-based server regarding both the factorization and the upload services.
The factorization service scales very well for both connection types. However,
the upload service suffers from around 63% degradation when admitting 5000
clients. This is because, when the dispatch table used by the reactor becomes
large, frequent I/O event triggering and dispatching become costly for both OS
and the VM when a large amount of network data arrive.

We now run the same server program on a dual-core CPU machine as quan-
tified in Figure 4. For the number of connections lower than 2000, the event-
dispatch model is once again significantly costly to use even for the CPU-bound
requests that have low I/O dispatch overheads, due to the performance boost to
the multi-threaded concurrency model by the multi-core CPU. Our modified so-
lution, in spite of significant design and code-level alterations, is still not general
enough for both types of connections.

Based on this example, we argue that, if designing a general concurrency
model for our simplistic example server is not straightforward, it would be even
more difficult to do so for servers of much more sophisticated semantics. The
difficulty lies in the fact that concurrency designs are dependent upon both the
deployment and the runtime conditions of the server programs such as the load
characteristics and the hardware capabilities. More specifically, these deployment
and runtime conditions are subject to the following design uncertainties:

Externalizing Java Server Concurrency with CAL 365

Fig. 3. (A) Thread-per-connection (B) Reactor-based event multiplexing. Data is col-
lected on JRockit JVM version R27.3.1-jre1.6.0 01. Programs are hosted on two Intel
Single CPU Xeon 2.5GHz machines with 512KB cache and 2GB physical memory
connected by a 100MB switched network. Both machines run Fedora 2 with the 2.6.10
kernel. Uploads are in 80KB chunks. The integer factored is 22794993954179237141472.
Each data point is measured three times for a duration of 60 seconds. The median value
is chosen for the plot.

I: Unforeseeable platform capabilities. The computing resources of the hard-
ware are not known until deployment time. Java programs are separated further
from both the hardware and the operating system due to the virtual machine
model. However, concurrency mechanisms are sensitive to hardware profiles such
as the number of processors, the size of the physical memory, and execution
privileges regarding the number of allowed open files or active OS-level threads.

Fig. 4. Event-based factorization server on
dual-core CPU

II: Diversified load characteris-
tics. General-purpose server pro-
grams exert little control over how
they are actually used, hence, they
are often subject to diversified and
yet specialized load characteristics.
Browsing requests seen by Web
servers are usually I/O-bound and
short in duration, while provid-
ing services like YouTube needs
to support longer I/O-bound re-
quests of both outbound (view-
ing) and inbound (uploading)
traffic. client-server interactions in
services such as online interactive

games are typically CPU-bound and long in duration, while services for com-
puting driving routes usually serve shorter CPU-bound requests.

III: Unanticipated evolution. Our server example demonstrates a case of unan-
ticipated evolution of the server semantics. The recent push towards multi-core
architectures, for example, makes it attractive for many legacy server

366 C. Zhang and H.-A. Jacobsen

architecture to parallelize their operations. Another kind of unanticipated evolu-
tion concerns with concurrency frameworks and libraries. The I/O and concur-
rency facilities of the Java platform is a very good example. Java servers on early
JVMs only had synchronous I/O and the “thread” primitive at their disposal.
More powerful concurrency and event-driven I/O support later came from third
party libraries such as the util.concurrent library2, the aio4j library3, and the
NBIO package4. The latest Java platforms introduce both more sophisticated
concurrency primitives and the support for the asynchronous I/O. During this
period of fast evolution, leveraging platform advances would require repeated
and “deep” modifications to the server code even if the server semantics do not
change.

IV: Different correctness requirements. It is important and often very diffi-
cult to maintain the safety and liveness [15] properties in complex concurrent
systems. Most concurrency primitives, as those in JDK, rely on the experience
of the programmers to guard against concurrency hazards such as race condi-
tions, deadlocks, or livelocks. For some domains, the transient faults produced
by concurrency bugs can be tolerated through sophisticated schemes such as
replication [3]. But it is often important for the concurrency implementation to
be provably correct. Verifiable concurrency models such as CSP [9] or the Actor
model [1] have been proposed for decades. However, as far as Java programs are
concerned, these models use very different abstractions and operating semantics,
which are constitute barriers to popular adoption.

Conventional wisdom tells us that the effective way to treat the afore-mentioned
uncertainties, or unanticipated changes in general, is through modularity and
proven software decomposition principles such as information hiding [17] or design
by contract [16]. However, due to the strong coupling of concurrency mechanism
and application semantic, concurrency implementation and synchronizationprim-
itives are usually tightly integrated and entangled with the application code. For
example, locks can appear as class variables of any class that need to be re-entrant.
Inheritance is usually the only choice for a class type to use the primitives of con-
currency libraries. The conventional concurrency code is typically invasive and not
aligned with respect to the modular boundaries of the server logic. For this rea-
son, concurrency is often referred to as a type of crosscutting concerns [13,4,14,22]
which is best treated by the aspect-oriented programming (AOP) [13] paradigm.

We are not the first to examine the suitability of AOP to the support of
concurrency. Earlier studies [4,14] drew opposite conclusions regarding the pos-
sibilities of both the syntactic and the semantic separation of concurrency design
from the application logic. We take the mid-ground. We believe that we should
only abolish both the design-time and the code-level coupling between server
code and specific concurrency models. However, the server code should stay
amenable to the common characteristics of different concurrency models. We

2 The util.concurrent package. URL: http://gee.cs.oswego.edu/dl/classes/
EDU/oswego/cs/dl/util/concurrent/intro.html

3 IBM NIO package. URL: http://www.alphaworks.ibm.com/tech/aio4j
4 NBIO Package. URL: http://www.eecs.harvard.edu/∼mdw/proj/seda/

Externalizing Java Server Concurrency with CAL 367

term this property “concurrency awareness”. Its purpose is to make the coding
structures of concurrent parts of the server logic explicit for allowing external
manipulations. We formulate “concurrency awareness” as a set of programming
invariants, encoding commonly observed design practices. In combination with
these invariants, we create high-level abstractions for programmers to work with
the differences of concurrency models through a uniform API and the associ-
ated Concurrency Aspect Library, CAL. CAL functions as a mediator between
the “concurrency-aware” server logic and the diversified abstractions of concur-
rency libraries. We show that the use of CAL not only simplifies the coding effort
but also makes concurrency implementations more explicit in terms of design.
Due to the effective mediation capabilities of CAL, we can compose the same
server code with a variety of different concurrency models purely by changing
the compilation configurations. CAL not only incurs no observable performance
overhead, but also significantly improves the performance of a commercial mid-
dleware implementation by as much as ten times through changing concurrency
models according to the runtime conditions.
The contributions of our work are as follows:

1. We present the concept of “concurrency awareness” as the foundation of
decoupling concurrency models from the server logic. We describe a set of
programming invariants as the guiding principles for creating “concurrency
awareness” in server programs.

2. We describe the design of CAL, the Concurrency Aspect Library, which allows
programmers to work with concurrent frameworks of very different genders
through a uniform API. CAL also effectively decouples these frameworks
from the server logic at the code level. We make CAL publicly available
at: http://www.cse.ust.hk/∼charlesz/concurrency for inspections and
experiments.

3. We present the quantification of our approach in terms of both the cod-
ing effort and performance measurements. We show that programming con-
currency with CAL, especially against different concurrency models, can be
simplified and be structurally explicit. CAL can support a complex commer-
cial middleware system with no runtime penalty and, through adaptations,
dramatically improve its performance.

The rest of the paper is organized as follows: Section 3 describes the “concurrency-
aware” architecture principles and the implementation of CAL and Section 4
presents the evaluation of our approaches.

2 Related Work

In this section, we present the related research on enabling the architecture-
level customization of concurrency mechanisms. Please refer to [20] for a good
summary of the different types of concurrency mechanisms themselves. We first
present research in the code-level separation of concurrency mechanisms us-
ing AOP-like approaches, i.e., those based on aspect-oriented programming and

368 C. Zhang and H.-A. Jacobsen

other meta-programming approaches such as the use of annotations. We then
present approaches for enabling the flexible compositions of concurrency mod-
els in server applications, not limited to Java applications. We last discuss the
difference of our work compared to the AOP treatment of design patterns in
general.

Java concurrency externalization. The work closest related to our approach
is the assessment of concurrency and failure in distributed systems conducted by
Kienzle and Guerraoui [14]. They have focused on investigating the semantic sep-
aration of concurrency and failure through the use of AspectJ in the context of
transaction processing. The conclusion was that a separation is not possible. We
agree that the server logic cannot be made entirely semantically oblivious to con-
currency semantics. However, we demonstrate that, through making the server
code concurrency-aware, it can be made semantically and syntactically oblivious
to lower-level details of specific concurrency models. We delay the study of our
approach in treating transaction-based concurrency to future work. Douence et
al [6] introduced a generative approach to synthesize and to coordinate concur-
rency mechanisms defined in aspect modules. Their approach is complementary
to our effort in verifying the correctness of concurrency model compositions.

D [4] is a language system for separating the distribution code from Java pro-
grams. D consists of a simplified Java language, the Cool language for composing
the synchronization of threads, and the Ridl language for composing the commu-
nication between threads. The D aspect weaver is responsible for merging three
language systems to produce the transformed Java sources. The main objective
of D is to provide one of the first evaluations of the benefit of using AOP-like
languages to compose distribution.

JAC [8] uses annotation-based hints in Java programs and the accompanied
Java pre-compiler to separate the concurrency code from the operational logic
of the server. The pre-compiler modifies the Java source by inserting both syn-
chronization and concurrency code based on the annotations. We think that
annotation-based approaches, despite sharing many similarities to the aspect-
oriented approach, do not achieve the source-level detachment of concurrency
models compared to our approach. The server implementation is hardwired to
JAC-based concurrency support. With respect to our work, it is not clear how
different concurrency models and the composition of these models can be sup-
ported by JAC annotations. The evaluation of the JAC approach on complex
distributed systems is not reported.

Java concurrency can be entirely externalized for Java programs hosted by
application servers. For example, Java server programs written as Enterprise
Java Beans (EJB) can be free of concurrency and synchronization concerns and,
instead, have them configured as runtime policies understood by the EJB con-
tainers. Our work is concerned with the concurrency models used by application
containers themselves. It is possible to build server programs on top of contain-
ers such as Spring5 and have the container control the concurrency mechanisms.

5 The Spring framework. URL: www.springframework.org

Externalizing Java Server Concurrency with CAL 369

Due to the fact that containers typically utilize reflection to enable object invo-
cations, we choose not to evaluate such approaches because of their significant
performance overhead compared to the bytecode transformation of the AspectJ
compiler.

Customizable concurrency. Many conventional approaches give server ap-
plications the flexibility of choosing the best concurrency models according to
the specific server needs. SEDA [20] proposed and evaluated an architecture for
Java servers utilizing asynchronous events and thread pools to partition server
data flows into multi-staged pipelines. From the software engineering point of
view, SEDA enables the server application to compose the most appropriate
concurrency models by changing the topology and the depth of the pipeline as
well as the control parameters of pipeline stages. Similarly, the ACE framework
allows C++ servers to choose concurrency models adaptively through the use of
C++ templates. The components of the ACE network library are in the form of
parameterized templates so that the internal implementation mechanisms can
be changed without affecting the user code. This is an instance of the open
implementation principles [12]. The architecture adaptation of concurrency in
these approaches is confined within the provided frameworks themselves. The
applications are hardwired and subject to the framework capabilities, which is
the exact problem we address in this work.

Aspect-oriented treatment of patterns. There have been numerous recent
approaches on externalizing the implementation of design patterns with aspect-
oriented programming by Kendall [10], Hannemann and Kiczales [7], and Cunha
et al [5]. The externalization of patterns are realized by reusable pattern libraries
implementing the roles of patterns as mix-in types and role interactions as re-
targetable abstract pointcuts. Our work, inspired by this line of research, reasons
about the common characteristics of concurrency patterns in general and takes
the application-aspect co-design approach. As shown by our examples later in
the paper, it is possible to support complex design patterns through composition
of basic modules using the CAL library APIs.

3 Concurrency Externalization

For the virtue of reuse and customizability, the afore-presented design uncer-
tainties mandate the dismantling of both the design-time and the code-level
coupling of server code to particular concurrency models or libraries. We achieve
this goal first by making the observation that there exist common interaction
assumptions which the different concurrency models make towards the server
logic. The server code needs to be compatible with these assumptions and be-
come “concurrency-aware”. The main utility of an aspect concurrency library
is essentially to facilitate programmers in capturing these assumptions in the
server code through a uniform API. In this section, we introduce these concepts
in detail.

370 C. Zhang and H.-A. Jacobsen

3.1 Concurrency-Aware Servers

We loosely define the concurrency-aware server programs as programs not con-
current themselves but having salient properties about their structures and ex-
ecution flows that are compatible to the common interaction assumptions of
concurrency models. Finding a comprehensive list of these assumptions for all
concurrency models is not an easy task. We present our initial findings which
we have found to be effective as follows:

I.Captivity assumption. The primary interaction assumption of concurrency
models is that certain parts of the server logic can be captured as units of con-
current activities and submitted to a concurrent executor. Popular concurrency
libraries identify such parts of the server logic as instances of classes. For Java
programs, a unit of concurrent activity is typically cast as an instance of Thread,
Runnable6, Handler [20], or Task in the util.concurrent package.

II. Execution context assumption. Each concurrent activity has an execution
context that has control over the life-cycle of the activity: creation, modification,
and termination. The context can be exclusive to each activity or shared among
all activities. For example, creating a thread in Java through extending the
Thread class type causes each thread to have independent object states. Creating
threads through inner classes allows all threads to share the same object state.

III. Data flow assumption. Concurrent activities might have an immediate
incoming data flow dependency upon their execution contexts. The context,
however, typically does not have the same dependency upon the activities. For
example, activities supported by thread-pools might rely on the context to per-
petually supply data that are to be processed. These activities are usually con-
tinuously active and do not return control to the context until they terminate,
hence, have no immediate outgoing data flow, such as passing a return value to
the context.

IV. Execution mode assumption. The mode of the execution flow of the server
logic can be active, with instructions executed in loops, or passive, completely
subject to external activations. The execution mode is assumed to be consis-
tent with the currency models of use. For example, for the reactive concurrency
model [18], the concurrent activity is typically passive since it only reacts to
events. Concurrent activities in models based on the abstraction of “thread” are
in general active, i.e., executing in a proactive manner.

V. Synchronization assumption. The usages of synchronization primitives also
need to be kept consistent with the concurrency models of use. For example, con-
current activities in the reactive model are usually unsynchronized because they
are always executed in a serialized manner. However, they need to be carefully
synchronized for thread-based concurrency schemes. Inconsistent synchroniza-
tion policies incur either runtime overhead or incorrect program behaviours.

One of the essential goals of concurrency awareness is to preserve these in-
teraction assumptions in the server code. We therefore formulate concurrency
awareness as a set of programming invariances as follows:
6 Both Thread and Runnable are documented in the Java 5 Documentation.

URL:http://java.sun.com/j2se/1.5.0/docs/api/

Externalizing Java Server Concurrency with CAL 371

Rule 1: Group concurrent activities within concurrency-aware procedures. A
concurrency-aware procedure usually satisfies three minimum requirements: (1)
It has well defined termination conditions that are known to the caller; (2) It
does not contain active execution controls such as persistent loops or regularly
scheduled executions; (3) It does not return a value that is to be used later by
the caller.

Rule 2: Localize data inflow at either invocations or instantiations. One of
the major functions of concurrent activities in server programs is to process a
continuous inflow of data or requests. We advocate that the data in-flow is in
form of parameter passing at the time of initializing a concurrent activity or of
invoking its procedures.

Rule 3: Make the concurrent activities of the server logic “synchronizable”.
The choices of synchronization mechanisms should be considered in conjunction
with the chosen concurrency models. To protect the shared program state, we
advocate making the relevant server logic synchronizable (not synchronized) by
making critical regions structurally explicit, e.g., having procedural boundaries.

These structural rules are syntactic with no semantic connotations, hence,
generally applicable. The first two rules are also common practices in the eyes
of a veteran concurrency programmer. The last rule is to avoid any critical
regions within undistinguishable code structures, which are problematic to have
synchronization policies applied externally. Server code following these structural
rules generally satisfies the common assumptions of many concurrency models.
The physical composition between the server code and the concurrency libraries
is facilitated by CAL, the Concurrency Aspect Library, presented in the next
section.

3.2 Concurrency Aspect Library

The core of our externalization approach is the Currency Aspect Library CAL.
CAL aims at providing high level abstractions to hide the details of concurrency
models and to enable a closer correspondence between the concurrency design
and the code. We design CAL with the following specific goals in mind:

1. Oblivious. The library should allow concurrency implementors to focus on
expressing concurrency in terms of application semantics while remaining
oblivious to the details of the concurrency frameworks, as long as the server
code remains concurrency-aware. This is a crucial requirement for achieving
the separation of server semantics from concurrency mechanisms.

2. Versatile. The library should be capable of supporting concurrency frame-
works of very different mechanisms and type abstractions. Neither design
alteration nor coding changes are required for the server code if we choose
to switch from one framework, such as a reactive model, to another, such as
one based on threads.

3. Uniform. The library should provide simple and uniform programming in-
terfaces to facilitate the implementation of concurrency. The programming
effort required to use Framework A should not differ significantly from the

372 C. Zhang and H.-A. Jacobsen

use of Framework B. Otherwise the library is not effective in capturing com-
mon interaction assumptions.

4. Efficient. The library should only incur acceptable runtime overhead as
a trade-off for the structural flexibility. For server programs, performance,
more specifically, throughput and fairness, is the vital quality metric not to
be significantly compromised.

We now describe our library from two perspectives: the static perspective of
dealing with the diversification of types in concurrency libraries through “type
mediation”, and the dynamic perspective of integrating concurrency mechanisms
with the server execution flow through “activity capture”. We believe the first
two design goals can be validated after the design of the library is presented
in detail. The quantitative evaluations of these design goals are deferred until
Section 4.

Type mediation: We have previously argued that the common interaction as-
sumptions of concurrency models center around “activities” and “contexts of ac-
tivities”. In CAL, we use the entities Activity and WorkingContext to represent
these two concepts. These two concepts mediate between the server-specific con-
cepts and concurrency models through a two-step type-space adaptation process
accomplished by the CAL user. The first step adapts towards the abstract data
types in the concurrency frameworks, and the second to the server class types.
The automatic adaptation is performed by the library if the activities are mapped
to the call-sites of methods. We term this type of activity an auto activity. Auto
activities might share the same working context if the mapped method invo-
cations are made by the same caller. This simple scheme decouples the direct
type-space wiring between the server code and concurrency frameworks. The
liability lies with the generality of the library concepts in representing the in-
teraction assumption of concurrency models. As we will show in our evaluation,
we have found that our existing concepts are quite adequate with respect to a
broad range of different concurrency schemes.

We illustrate the type mediation process in Figure 5, which depicts three sets
of domain models. The concurrency models are exemplified by three popular
schemes on the top of the drawing: reactive, thread-per-task, and thread pooling.
The outer box with dotted borders represents the state of the program with
respect to the concurrent executions. The inner light-shaded boxes represent
concurrent activities (the “wired” box denotes the “thread” abstraction). The
consistent shading and arrows across the concurrency and the library models
signify the “representation” relationship. Arrows with bold lines represent the
“mapping” relationship between library models and server domain models are
represented as UML diagrams on the bottom of the graph.

Activity capture: The primary purpose of the type mediation is to flexibly in-
tegrate multiple concurrency libraries into a unified type space. To integrate the
dynamic execution flow of the server logic into these libraries, we provide pro-
gramming APIs for the users of the library to identify, based on domain knowl-
edge, the appropriate dynamic execution points in the server program where the

Externalizing Java Server Concurrency with CAL 373

Fig. 5. Concept mediation

concurrent activities can be “captured” by the library. These APIs are in the
forms of AspectJ [11] pointcuts:

captureOnInstantiation is a call-based pointcut used to identify the instan-
tiation relationship between the WorkingContext and the Activity. The point-
cut is typically mapped to constructor calls or factory methods. This entails
that one class type is associated with one particular concurrency model with
its concurrency-aware method adapted by the generic library interface. If the
adapted concurrency-aware method of the class is invoked somewhere in the
server code, the invocation needs to be canceled. The invocation can be canceled
because, by our definition of concurrency-awareness, there is no data depen-
dencies between the concurrency-aware procedures and their calling stacks. We
provide the cancelCall pointcut to automate this action.

captureOnInvocation is a call-based pointcut used to identify the invocation
relationship instead. In this case, method invocations are created as the new
concurrent activities. Compared to captureOnInstantiation, one advantage of
this finer granularity of activity capturing is that it allows one class to have a
different concurrency scheme per method, if the method is invoked by different
callers. Our implementation of the method-level activity captivity essentially
creates a Java inner class per method invocation, which, in spite of incurring no
runtime overhead in our experiments, can be an expensive operation.7

7 Java duplicates the runtime state of the parent class for each inner class created.

374 C. Zhang and H.-A. Jacobsen

In Figure 6, we show a simplified version of an AspectJ module in CAL, which
supports the activity capture on method invocations for the Java 5 executor
framework. Line 5 is the abstract pointcut, part of the library API, to be mapped
to the invocation of a concurrency-aware procedure in the server code. Lines 10-
16 execute in place of the procedure invocation by the around advice. The inner
class (Lines 10-13) performs the type-space adaptation of the library native type,
IExecutorActivity, to the Java executor interface type, Runnable. Line 15
submits method executions as inner classes of type Runnable to the executor
framework.

Fig. 6. Implementation of Concurrency Aspect Library

3.3 The CAL Implementation

To verify the fundamental concepts of our aspect oriented approach, we have
created an aspect library consisting of the support for four types of representa-
tive and dramatically different concurrency models. All implementations assume
that the concurrency-aware procedure uses a Boolean return value to signal the
termination condition.

Reactive. Central to our reactive concurrency library is a simpler version of the
Reactor [18] event multiplexer using the Java nio package. The server processes
client requests in a single thread of execution, demultiplexing I/O events to
a collection of IAsyncWorkers. In addition to the type mediation and activity
capture functionalities, our library enables the automatic and seamless socket
replacement for creating the asynchronous counterparts of the synchronous Java
sockets and I/O stream classes. The replacement is realized by intercepting the
creation process for synchronous sockets and streams using AspectJ advices. Our
library implementation is capable of supporting 10K simultaneous connections
on a 2GHZ commodity PC8.
8 The C10K problem. URL: http://www.kegel.com/c10k.html

Externalizing Java Server Concurrency with CAL 375

Executor framework. We have implemented the mediation and the capture
capabilities leveraging the new Java 5 Executor concurrency framework9. Among
many capable concurrency models provided in the executor framework, we chose
to implement support for the thread-per-activity and the pooled-thread models.

JCSP framework. JCSP [19]10 is a Java framework implementing the con-
cepts of the Communication Sequential Process [9]. JCSP facilitates the creation
of “verifiable” concurrent programs for which the model-checking techniques can
be used to check for concurrency problems such as race conditions, deadlocks,
or livelocks. Our JCSP aspect library executes concurrent activities as JCSP
processes. The pooling model is implemented leveraging the inherent synchro-
nizing capabilities of JCSP Channels. Special support is needed for common
synchronization mechanisms such as locks and synchronized regions due to the
lack of these primitives in the CSP vocabulary.

Native Java thread. We have also implemented support for the native Java
thread class as a representation of the conventional approach to multi-threading.
The thread pool model is implemented as a fixed number of threads feeding on
an activity queue.

3.4 Example

We now go back to our simple server, presented in Section 1, to illustrate how
users of CAL can compose different concurrency models without code modifi-
cations. We present two examples. The first example shows how CAL APIs are
used to support the Java 5 executor framework. We then showcase the compo-
sition capabilities of CAL by building a multi-staged hybrid concurrency model
from two basic ones: the executor framework and the event-driven model, again
requiring no changes to the server code.

Java executor framework. The Java executor framework is a new addition
to the Java platform that offers improved support for concurrency. We first
present an abbreviated version of the server code in Figure 7(A). We identify,
with dotted rectangles, two activities that can be executed concurrently: the
establishment of a new connection (Line 14) and the persisting of uploaded data
(Line 7). The concurrency implementation is given in Figure 8. Given some de-
gree of familiarity with the AspectJ syntax, one can see that this implementation
looks very close to an actual design blueprint. The user first determines that the
type Server encapsulates some concurrent activities, represented by dotted rec-
tangles (declare Server as the WorkingContext at Line 4). She then explicitly
specifies two method invocations to be executed concurrently (“concretize” the
abstract pointcut at Lines 7-9). Lines 11-14 are not part of the library usage,
however, they are necessary to switch the server into the active execution mode.
9 Java Executor. http://java.sun.com/j2se/1.5.0/docs/api/
java/util/concurrent/Executor.html

10 Communicating Sequential Processes for Java
URL:http://www.cs.kent.ac.uk/projects/ofa/jcsp/

376 C. Zhang and H.-A. Jacobsen

Fig. 7. (A) Analysis for Executor (B) Analysis for Hybrid

The example shows that the most important difference of our library approach,
compared to conventional ways of concurrency programming, is that the concur-
rency perspective of the server program is not only modularized but also more
explicit and descriptive.

Fig. 8. Implementing the executor framework through CAL

Multi-staged concurrency model. In reality, complex server programs often
use a combination of concurrency models to maximize the processing efficiency.
For our simple server example, it could be more efficient to provide the data
uploading service by using the event-based model to accept new incoming con-
nections and the executor framework to dispatch the database operations in
separate threads. In this way, we avoid the threading overhead for a higher
number of clients and pipeline the incoming data towards the database service.
Figure 7(B) depicts our design: The entire start method definition is identified
as a unit of asynchronous activity and the call to the Database.store method

Externalizing Java Server Concurrency with CAL 377

is to be executed concurrently by Java executors. The Server, therefore, is both
an executor working context and an asynchronous activity11.

We realize this implementation with two aspect modules in less than 20 lines
of code as presented in Figure 9. In the reactive stage implementation, Line 3
maps a special pointcut defined in the reactive library to signify when the reac-
tor starts to gain control of the program execution. Line 4 captures the instance
of Server at creation as an async activity. Lines 6-8 perform the type adaption,
and Lines 10-12 are to associate the Server class with the correct dispatching
key. This example demonstrates the modular “composability” of CAL in build-
ing complex and multi-staged server programs as those described in the SEDA
project [20]. Benefiting from the externalized approach, the server code remains
oblivious to specific concurrency implementations. We have the option of us-
ing an entirely different concurrency model that is possibly better in a different
service context.

Fig. 9. Implementing the hybrid model through CAL

3.5 Synchronization

The externalization of synchronization is a challenging topic. In the context of
this paper, we present the synchronization externalization as an implementation
issue and delay further discussion to future work. We address synchronization
in Java programs via two simple rewriting rules: (1) For methods to be de-
clared with the synchronized keywords, we use around advices with execution

11 Note that in this case Server is not a working context because we identify its method
definition as the activity.

378 C. Zhang and H.-A. Jacobsen

pointcuts to enclose the method body within the synchronized blocks. (2) For
block-level, i.e., intra-method, critical regions, we factor the block into a method,
if necessary, and enclose the call-site of the method with either synchronized
blocks or other synchronization primitives, such as wait/notify pairs, through
the call-based around advices.

Special implementation concern is given to the JCSP library for its lack
of common Java synchronization operations such as synchronized regions and
wait/notify/notifyAll operations. These Java primitives are supported, with the
exception of the notifyAll semantics, by the JCSP concept of Channel as we em-
ulate mutual exclusion as the exclusive communication between the executing
thread and an oracle. The notifyAll semantics is supported by the JCSP con-
cept of Bucket for its capability of releasing multiple threads simultaneously.
Our implementations support the correct operations of the systems that we
have evaluated with negligible runtime overhead. The functional evaluation is
presented in Section 4.

4 Evaluation

We intend to achieve four design objectives with our aspect-oriented library ap-
proach to concurrency externalization: obliviousness, versatility, uniformity, and
efficiency. To evaluate these design objectives, we have used the CAL library on
two server programs: our simple server presented earlier as a micro-benchmark,
and ORBacus12, a commercial middleware implementation. With respect to these
two server programs, our evaluation aims at answering two questions:

1. How effective is the concurrency awareness concept and the CAL API in sim-
plifying concurrency implementations when working with diversified concur-
rency models?

2. What is the runtime cost of the CAL-based server implementations as a trade-
off for the configuration flexibility compared to conventional approaches?

We answer the first question through the static quantification regarding the
structures of the CAL user code. We provide insights to the second question by
extensive runtime simulations. The rest of the section proceeds as follows. We
first describe the relevant physical attributes of the CAL implementation and
the applications of CAL to both the micro benchmark and ORBacus. We then
present the quantification of the coding quality of the CAL-based implementa-
tions, followed by the metric-based runtime evaluations.

4.1 The CAL Implementations

As aforementioned, the CAL library consists of support for four different types of
concurrency models: Java thread, event-driven, Java executor framework, and
JCSP framework. Each model is supported by CAL types extended from the
12 ORBacus URL:http://www.iona.com/orbacus

Externalizing Java Server Concurrency with CAL 379

generic Activity and WorkingContext interfaces. For instance, the Runnable
interface of the thread and the executor models are adapted by IThreadActivity
and IExecutorActivity interfaces in the library, respectively. For each concur-
rency model, we implemented both the bounded and unbounded versions with
respect to the number of concurrently executed tasks. The unbounded version
admits as many concurrency activities as possible and the bounded version uses
a “thread” pool that feeds on a queue of CAL activities.13 The library is fairly
light weight, consisting of 84KB in total bytecode size. We prove by implemen-
tation that the concepts such as Context and Activity are compatible to the
chosen concurrency models.

We implemented the four concurrency models for both the example server pre-
sented throughout the paper and the ORBacus14 object request broker (ORB)
using CAL. ORBacus is implemented in Java. It supports the full CORBA 2.4
specification15 and is being commercially deployed. It consists of around 2000
Java classes and 200K lines of code. The network communication components
of ORBacus use the thread-per-connection model to serve the incoming clients.
Refactoring was first performed to remove the native concurrency implemen-
tation from these components. We then make them concurrency-aware by re-
moving the loop structures and the synchronization code. The relevant method
definitions in the original implementation do not have data dependencies over
the callers. They also have well defined termination conditions defined by state
variables. These variables are accessible by AspectJ constructs and checked in
the library user code. Applying CAL to the simple server allows us to better
assess the performance characteristics of CAL without being influenced by the
operational complexity of the server. ORBacus, on the other hand, serves as
an experimentation of how our concurrency externalization approach benefits
non-trivial and sophisticated server programs.

4.2 Coding Effort

To assess the coding effort of the concurrency implementation using CAL, we
examine the static code structures of the CAL user code for both the micro-
benchmark and ORBacus. Our hypothesis is that, if CAL effectively supports
model variations, the effectiveness can be reflected in two ways: (1) One does
not need to write a lot of code to use a concurrency model and (2) one does
not need to change the code dramatically to switch to a different concurrency
model. Note that the server code stays the same for all of the models.

In Table 1, we enumerate the AspectJ language elements used in the user code
of CAL as a way of reflecting the coding effort as well as the structural similarity
in dealing with the four concurrency models. Each model, including the pool
13 Due to the technical difficulty of sharing Selector across threads, we implemented

the pool version of the event-driven model essentially as to balancing the load among
concurrently running Selector event loops.

14 The ORBacus ORB.
URL: http://www.iona.com/products/orbacus.htm?WT.mc id=1234517

15 CORBA 2.4 URL: http://www.omg.org/corba

380 C. Zhang and H.-A. Jacobsen

version, is supported by one aspect module, corresponding to a row in the table.
For ORBacus, we also report the aspect-oriented synchronization implementa-
tions for both the thread-based models and the JCSP model16. We observe that
for both cases, in addition to the light coding effort17, the coding structure among
the bounded as well as the unbounded (pool) versions are almost identical. In
fact, the actual code only differs from each other for extending different interface
types. Interested readers are invited to verify this themselves by obtaining a copy
of our implementation18. The simplified coding effort reflects the effectiveness of
the high-level abstractions provided by CAL in matching code with design. The
similarity of the coding structures shows that the CAL abstractions capture the
common characteristics of the chosen concurrency models.

Table 1. Structural comparison for the micro-benchmark (MB) and ORBacus (ORB).
LOC:lines of code. ITD: inter-type declaration.

Model LOC pointcut type ITD method ITD advice
MB ORB MB ORB MB ORB MB ORB MB ORB

event 47 37 3 3 1 4 3 6 1 0
executor 10 46 2 3 1 3 0 3 1 1
thread 9 46 2 3 1 3 0 3 1 1

csp 9 46 2 3 1 3 0 3 1 1
exe.pool 12 50 2 3 1 3 1 4 1 1

thread.pool 12 50 2 3 1 3 1 4 1 1
csppool 12 50 2 3 1 3 1 4 1 1

thread sync N/A 37 N/A 1 N/A 1 N/A 0 N/A 2
csp sync N/A 39 N/A 1 N/A 1 N/A 0 N/A 2

Ave. 16 45 2 3 1 3 1 3 1 1

4.3 Runtime Assessment

To assess the runtime overhead of concurrency through CAL, we measure the
server throughput as well as the client-side fairness on server machines based on
both single-core and multi-core CPUs. To benchmark the two servers, we sim-
ulate four types of client/server communication patterns: the sustained (CPU)
or the periodic (CPU short) connections for CPU-bound factorization requests,
and the sustained (IO) or the periodic connections (IO short) for sending data
chunks of 80K bytes. In all experiments, we use the thread-per-connection model,
implemented in vanilla Java as the baseline for comparison. For each server, we

16 Recall that the synchronization semantics in JCSP is based on channels.
17 The event-driven model needs more coding effort to associate asynchronous activities

with dispatching keys as illustrated in Figure 9.
18 The examples can be downloaded from

http://www.cse.ust.hk/∼charlesz/concurrency

Externalizing Java Server Concurrency with CAL 381

produce 8 runs. Due to space limits, we selectively report 4 runs for each case.
The fairness is calculated from the average, m, and the standard deviation, δ, of
the number of messages sent by each client as follows: fairness = (m − δ)/m.
It is a measure of how much clients deviate from the mean in successfully being
serviced by the server.

Micro benchmark: The measurements for the micro-benchmark are reported
in Figure 10. The first conclusion we draw from our observations is that CAL does
not incur noticeable performance overhead because the baseline performance is
not consistently better than any CAL implementations in any case. For long
CPU-bound connections, the event-driven model (async) significantly outper-
forms the other models when the number of clients increases on the single CPU
server. This is not true on the dual-core machine (CPU(Multi)), as the single-
threaded event-driven model (async) becomes significantly more costly to use
when the number of connections is less than 2000. This is because thread-based
models can be boosted by the dual-CPU configuration. The problem is solved
by our load-balanced event-driven version (asyncpool). For the I/O-bound pe-
riodic connections (IO Short (Single)), the baseline is at par with other mod-
els except the executor framework . The sustained I/O-bound connections on
the dual-core machine (IO (Multi)) are well serviced by thread-based models,
whereas the event-driven models, whether load balanced or not, suffer severely.

In summary, our experiments confirm that, for this simple server, none of the
concurrency models we chose to implement scales well for all connection types
and processor profiles. Fortunately, due to the externalized approach, we are
able to flexibly choose the most appropriate concurrency implementations and
always outperform the baseline.

ORBacus: For the performance evaluation of ORBacus, we created two CORBA
server objects, one performing the factorization task and the other simply re-
ceiving the inbound data chunks. We observe that, in accordance to the case of
the micro-benchmark, the CAL-based approaches do not incur perceivable perfor-
mance overhead. For the I/O-bound measurements (IO (Single) and IO Short
(Multi)), the server throughput generally degrades as the number of client
ORBs increases. This behavior is different compared to the micro-benchmark
version in which case the server scales well. This is due to a particular demar-
shalling mechanism used in the request broker. The demarshalling process is
a CPU-bound operation carried out for each incoming data chunk for decod-
ing the middleware frames from the network data. The demarshalling process
is in contention with the thread context switches on the CPU resources. The
sustained CPU-bound connections (CPU (Multi)), in accordance to the case of
the micro-benchmark, are well serviced by the load balanced event-dispatching
model. In the case of CPU Short (Single), we observe that the thread pooling
is very effective in servicing periodic short CPU-bound requests as all of the
three pooling versions have near constant throughput. The event-driven model
is most suitable for both kinds of CPU-bound connections. As for the fairness
measures, the Executor and JCSP frameworks have consistently the worst fairness

382 C. Zhang and H.-A. Jacobsen

Fig. 10. Measurements of the example server for the CPU intensive connections on
both types of servers, the short I/O connections on the single CPU server, and the
sustained I/O connections on the dual-core server. In all charts, the baseline measure-
ments are plotted as thick solid lines for the ease of visual comparison. The technical
settings of the single-core experiments are identical to the ones presented in the in-
troduction section. The multi-core experiments are conducted on two server machines
with Intel Xeon dual core CPUs clocked at 1.8GHz with 4MB on-chip cache and 3GB
physical memory. These two servers are both running Linux 2.6 kernels and connected
by a 1Gbps switched network. All experiments are carried out by the JRockit R27.3.1-
jre1.6.0 01 JVMs with 1M memory limitations (Xmx flag) and 156K maximum stack
size (Xss). The pool size is fixed at 100.

measures compared to all other versions. We suspect this is due to the intrinsic
mechanisms of these frameworks not to the use of CAL because the fairness of
the baseline is not consistently better than the rest of the models.

Externalizing Java Server Concurrency with CAL 383

Fig. 11. Measurements of ORBacus: Sustained CPU-bound (CPU (Multi)) and pe-
riodic I/O-bound (IO Short (Multi)) requests on dual-core servers; Sustained I/O-
bound (IO (Single)) and periodic CPU-bound (CPU Short (Single)) requests on
single-core servers. For fairness measures, we present the plots for the sustained dual-
core CPU-bound and the periodic single-CPU I/O-bound. The technical settings are
identical to the previous case except that the Xss flag is not used.

In summary, our experiments reveal that we made significant improvements
over the original implementation for the continuous and periodic CPU-bound
requests by changing the concurrency models to either the event-based or the
pool-based. The improvements range from around 50% on the single CPU server
to about 4-10 times on the dual-core CPU. The benefit of changing concurrency
models for the I/O-bound requests, however, is not significant compared to the
original implementation of ORBacus. On the one hand this shows that the use

384 C. Zhang and H.-A. Jacobsen

of CAL achieves the same performance as the conventional approach and, at the
same time, exhibits the customization flexibilities. On the other hand, it poses
new challenges for us to improve processing for requests that are both I/O and
CPU intensive. Our future work will address this issue.

5 Conclusions

The ubiquitous trend of network-based computations require the architecture
of concurrency in today’s server programs to adapt to the large variations of
runtime conditions. Consequently, server programs often need to employ multiple
concurrency models that can be very different in nature. In this work we propose
CAL, the Concurrency Aspect Library, as a way of both raising the level of
abstraction for programming concurrency and, more importantly, separating the
specific semantics of concurrency models from the server architecture.

We have presented CAL as both a design methodology and a prototype imple-
mentation. Server programs leveraging CAL must maintain a set of coding invari-
ants to become “concurrency-aware”. This is an effective compromise between
the conventional approach of invasive concurrency programming and the seman-
tic obliviousness of concurrency that is highly desired but difficult to achieve.
Concurrency-aware server programs are amenable to the basic interaction as-
sumptions of many intrinsically different concurrency models. CAL provides a
uniform programming interface consisting of both static type and dynamic exe-
cution abstractions for programmers to work with the concurrency-aware server
code and CAL hides the semantic details of individual concurrency models.

Our general conclusion is that the externalization of concurrency mechanisms
using CAL is effective. The effectiveness of the CAL approach is based on two fac-
tors: the imposed programming invariants need to give applications the customiza-
tion and performance advantages; the API abstractions of CAL need to reduce the
programming effort in coding architecture customizations for the concurrency li-
braries. To evaluate these design objectives, we implemented the CAL support for
four different concurrency models and applied CAL on two server programs. Our
observation is that even for a sophisticated server program the coding effort of pro-
gramming concurrency with CAL is both light and consistent in spite of model dif-
ferences. The server code, without being modified, can be composed with the four
concurrency libraries either individually or in combination. We have also shown
that the code written based on CAL has closer correspondence to the design of con-
currency as compared to conventional approaches.

We presented the evaluation of the performance of the CAL-based concurrency
on both single and multi-core CPU hardware platforms. We conclude that CAL
does not incur observable runtime overhead on both kinds of platforms while
enabling customization and flexibility. Compared to conventional approaches,
the CAL-based concurrency customization can produce speedups as much as ten
fold. The load-time transformation capability of AspectJ allows us to make very
delayed concurrency customization decisions for servers after gathering sufficient
information about how the servers are being used in deployment.

Externalizing Java Server Concurrency with CAL 385

We are only at the initial stage of the concurrency externalization research.
We plan to continuously gain experience with the applications of CAL by evalu-
ating more broader types of server programs including Web servers and database
servers. We will continue to validate our design by enriching the concept of con-
currency awareness and the capabilities of CAL. In particular, we plan to focus
on the externalization of synchronization and intend to explore the meaning of
“synchronizable code” as well as the structure of a synchronization aspect li-
brary. We also plan to study more sophisticated load characteristics and think
about how concurrency customizations can help with server loads that are not
exclusively CPU or I/O bound.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

2. Buschmann, F., Meunier, R.: A System of Patterns. John Wiley, Chichester (1997)
3. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: USENIX OSDI,

Berkeley, CA, USA, pp. 173–186. USENIX Association (1999)
4. Kiczales, G., Lopes, C.V.D.: A Language Framework for Distributed Programming.

TR SPL97-010, P9710047 Xerox PARC
5. Cunha, C.A., Sobral Jo, a.L., Monteiro, M.P.: Reusable aspect-oriented imple-

mentations of concurrency patterns and mechanisms. In: AOSD, ACM, New York
(2006)

6. Douence, R., Botlan, D.L., Noyé, J., Südholt, M.: Concurrent aspects. In: GPCE,
pp. 79–88. ACM Press, New York (2006)

7. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ.
In: ACM OOPSLA, pp. 161–173. ACM Press, New York (2002)

8. Haustein, M., Löhr, K.-P.: JAC: Declarative Java Concurrency. Concurrurrent
Computing: Practice & Experience 18(5), 519–546 (2006)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

10. Kendall, E.A.: Role model designs and implementations with aspect-oriented pro-
gramming. In: ACM OOPSLA, pp. 353–369. ACM Press, New York (1999)

11. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–355. Springer, Heidelberg (2001)

12. Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mendhekar, A., Murphy, G.C.:
Open implementation design guidelines. In: IEEE ICSE, pp. 481–490 (1997)

13. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

14. Kienzle, J., Guerraoui, R.: AoP – does it make sense? the case of concurrency
and failures. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 37–54.
Springer, Heidelberg (2002)

15. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transaction
of Software Engineering 3(2), 125–143 (1977)

16. Meyer, B.: Design by contract. In: Advances in Object-Oriented Software Engi-
neering, pp. 1–50 (1991)

386 C. Zhang and H.-A. Jacobsen

17. Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM 15(12), 1053–1058 (1972)

18. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture Patterns for Concurrent and Networked Objects, 1st edn. Software
Design Patterns, vol. 2. John Wiley, Chichester (1999)

19. Welch, P.H., Brown, N.C., Moores, J., Chalmers, K., Sputh, B.: Integrating and
Extending JCSP. In: McEwan, A.A., Ifill, W., Welch, P.H. (eds.) CPA, July 2007,
pp. 349–369 (2007)

20. Welsh, M., Culler, D., Brewer, E.: Seda: an architecture for well-conditioned, scal-
able internet services. In: ACM SOSP, pp. 230–243. ACM Press, New York (2001)

21. Welsh, M., Gribble, S.D., Brewer, E.A., Culler, D.: A design framework for highly
concurrent systems. UC Berkeley Technical Report UCB/CSD-00-1108

22. Zhang, C., Jacobsen, H.-A.: Refactoring Middleware with Aspects. IEEE Transac-
tions on Parallel and Distributed Systems 14(11), 1058–1073 (2003)

Regional Logic
for Local Reasoning about Global Invariants

Anindya Banerjee1,�, David A. Naumann2,��, and Stan Rosenberg2,��

1 Kansas State University, Manhattan KS 66506 USA and
Microsoft Research, Redmond WA 98052 USA

2 Stevens Institute of Technology, Hoboken NJ 07030 USA

Abstract. Shared mutable objects pose grave challenges in reasoning, especially
for data abstraction and modularity. This paper presents a novel logic for error-
avoiding partial correctness of programs featuring shared mutable objects. Using
a first order assertion language, the logic provides heap-local reasoning about mu-
tation and separation, via ghost fields and variables of type ‘region’ (finite sets of
object references). A new form of modifies clause specifies write, read, and allo-
cation effects using region expressions; this supports effect masking and a frame
rule that allows a command to read state on which the framed predicate depends.
Soundness is proved using a standard program semantics. The logic facilitates
heap-local reasoning about object invariants: disciplines such as ownership are
expressible but not hard-wired in the logic.

1 Introduction

The potential for interference between supposedly independent program phrases or
components due to shared mutable objects is the bane of formal reasoning and static
analysis of software. This paper charts new territory, combining two simple and well
known ideas —regions and ghost state— in a new way. We formulate a logic that needs
only classical, first-order assertions, though inductively defined predicates are compati-
ble. The key novelty is “modifies” specifications expressed in terms of state-dependent
region expressions. Together with judicious static analysis of the “footprints” of formu-
las, this makes it possible to achieve the kinds of modularity associated with ownership
methodologies and separation logic, in a flexible way that is compatible with widely
used specification languages and tools.

Various notions of regions have been used in static analysis to abstract sets of ob-
jects of interest [28]. Separation logic [23] owes its success in specifying and verifying
pointer algorithms at least in part to its ability to manifest the “footprint” or region
of heap relevant to a particular predicate (and thereby the footprint of a command).
At a coarser level, ownership systems and separation logic ideas have been critical to
advances in data abstraction [11,2], especially for object invariants [18,5].

In this paper, instead of abstracting from regions and expressing separation via logi-
cal connectives or ownership types, we make regions explicit in a way similar to work

� Partially supported by US NSF awards CNS-0627748, ITR-0326577.
�� Partially supported by US NSF awards CNS-0627338, CRI-0708330, CCF-0429894.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 387–411, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

388 A. Banerjee, D.A. Naumann, and S. Rosenberg

of Amtoft et al [1]. Most importantly, we follow Kassios [14] in using regions to directly
represent footprints. We augment a Java-like language with type rgn ranging over fi-
nite sets of (allocated) references. Following Kassios, we instrument programs with
assignments to ghost variables and fields, so assertions can refer explicitly to regions.
Whereas Kassios works in the setting of a relational refinement theory and higher order
logic, we develop a Hoare logic using first class regions in the “modifies” clause, often
the most useful part of a program specification. Asserting the disjointness of regions
helps delimit effects and facilitate heap-local reasoning.

It is no surprise that it is possible to reason in terms close to the semantic model [8].
If one’s aim is to prove functional correctness of, say, a garbage collector then at the
very least, the specification involves reachability, inductive definitions, quantification
over paths, etc. But to specify and prove weaker properties, e.g., that an application
program does not stray beyond its intended resources, what we achieve is promising.
Without the need for inductive predicates or quantification over predicates to hide all
but their footprint, we reason directly in terms of footprints. In particular we get “frame
rules” that account for modular reasoning about representation invariants.

Notions like ownership [11] support encapsulation of state on which a single object’s
invariant depends. A precursor to our work is the use of ghost state to encode ownership
[16,22] in a way that allows transfer of objects between clients and abstractions (as in
low level memory management and higher level OO design patterns like connection
pools and layered I/O abstractions). Unlike ownership type systems or programming
disciplines, and unlike static analyses using regions, we avoid commitment to a fixed
use of regions. On the contrary, regions as ghost state can encode such disciplines but
can also combine them in uniform or ad hoc ways.

A benefit of treating regions as ghost state is that it can be done using first-order
specification languages based on classical logic with modest use of set theory. Thus it
fits with mostly-automated tools based on verification condition generation and it fits
with conventional means of program structuring such as scope-based encapsulation. In
this foundational study we expose the issues and formalize the ideas in terms of a simple
object-based language and Hoare-style proof system which we prove sound using a
standard program semantics. There is a major difficulty: “modifies” specifications using
region expressions dependent on mutable state are susceptible to a kind of interference:
The effect of a command can alter the meaning of the effect specification of another
command! This issue has appeared before, in Kassios’ dissertation and in the work of
Leino and Nelson [17]; we explicitly focus on modifies specifications and offer a novel
and flexible solution.

Our first contribution is the logic: its rules and subsidiary judgements together with
proof of soundness. Various subtleties made it difficult to correctly design the details of
our logic, but we find most of the rules and soundness proofs to be elegant.

Our second contribution is to show how the logic serves as a basis for encapsulat-
ing object invariants and invariants for clusters of objects (peers, friends and beyond).
Remarkably, our approach can be formalized by a second order frame rule like that
of separation logic. Soundness of the second order frame rule in separation logic is
challenging [23,7]. Our version is an admissible rule, but the technical result is the sub-
ject of another paper [21]. In this paper, we propose an approach to developing sound

Regional Logic for Local Reasoning about Global Invariants 389

and flexible disciplines for modular reasoning about invariants, inspired by the work of
Kassios, the Boogie team, and many others.

Outline. Sec. 2 sketches an example to illustrate features of the logic. Sec. 3 formalizes
an illustrative, object-based programming language and Sec. 4 presents the assertion
language. Sec. 5 formalizes effects using regions and Sec. 6 gives a static analysis for
the separation of a formula from a write effect. Sec. 7 defines correctness statements
and gives the proof rules and soundness theorem. Sec. 8 wraps up the running example
and Sec. 9 applies the logic to modular reasoning about invariants. Sec. 10 discusses
related work. More examples and proofs are in the online appendix [3].

2 A Small Example

We give a step-by-step correctness proof of a command acting on variable x of type
Node. A Node has three fields: item of type int and left ,rt of type Node. The com-
mand sets the item field of x ’s left node to zero. The precondition is P ∧Q and the
postcondition is Q where

P =̂ x �= null∧ x .left ∈ r1∧ x .rt ∈ r2∧ r1 # r2∧ closed
closed =̂ r1•left ⊆ r1∧ r1•rt ⊆ r1∧ r2•left ⊆ r2∧ r2•rt ⊆ r2

Q =̂ ∀x :Node ∈ r2 | x .item > 0

The specification uses two region variables, r1 and r2. Precondition P expresses that x
is non-null and the object denoted by x .left is in r1 (and x .rt is in r2). Furthermore,
regions r1,r2 are disjoint which in our syntax is denoted by r1 # r2. Regions are finite
sets of object references, of any type. Since null is not a reference, x .left ∈ r1 implies
x .left �= null. Formula closed says that both r1 and r2 are closed under both left and
rt : If o ∈ r1 and o.left �= null then o.left ∈ r1, etc.

In general, for region expressions G,G ′ and field name f , the formula G •f ⊆ G ′

says that the f -image of region G is contained in G ′. For reasons discussed later, “G •f ”
is not a region expression.

In summary, the precondition P states that the left “subtree” of x is in r1 and the
right “subtree” of x is in r2. (But these “subtrees” need not be trees, nor even dags.)

The formula Q plays the role of an invariant. It says that for any node o in r2, o’s item
field is positive. Finally, since the command writes to the item field, we will show that
its write effect is at most the item field of objects residing in r1, denoted by wrr1•item.
The complete correctness statement is

{P ∧Q } var y :Node in y := x .left ;y.item := 0 end {Q } [wrr1•item] (1)

One can prove a stronger postcondition but this is enough for expository purposes.
We now turn to the proof. Here is a specification for the first assignment:

{x �= null} y := x .left {y = x .left } [wry]

This is a small specification in that it only mentions entities that are relevant to the
assignment. Since y := x .left only writes y , and since neither P nor Q mention y , their

390 A. Banerjee, D.A. Naumann, and S. Rosenberg

truth value is not changed by the assignment. So we conjoin P ∧Q to both pre- and
post-condition:

{P ∧Q } y := x .left {y = x .left ∧P ∧Q } [wry]

This step is an instance of the Frame rule (Fig. 9), cf. [23]. We will be more precise later,
but for now we say that x ,r1,r2,〈x 〉•left ,r1•left ,r2•left ,〈x 〉•rt ,r1•rt ,r2•rt constitute a
“frame” of P because modifications to the frame may affect the truth value of P , but
no other modifications can. Notice that y , the variable modified by the command, is not
in the frame. Similarly, r2,r2•item constitute the frame of Q . Again, y is absent. This
separation between the write effect of the command and the frames licenses conjoining
P ∧Q to the pre- and postconditions above.

Recall that x .left ∈ r1 implies x .left �= null which together with y = x .left implies
that y �= null and y ∈ r1. The last assertion implies a weaker one: 〈y〉 ⊆ r1, where 〈y〉
denotes the singleton region iff y is non-null, and otherwise the empty region. Thus by
the standard rule of Consequence we get

{P ∧Q } y := x .left {P ∧y �= null∧〈y〉 ⊆ r1∧Q } [wry] (2)

Here is a small specification for y.item := 0:

{y �= null} y.item := 0 {y.item = 0} [wr〈y〉•item]

The write effect, wr〈y〉•item, records the fact that the item field of the singleton region,
〈y〉, may have changed. Now we would like to conjoin Q to pre/post of the above spec-
ification, so it could be sequenced with (2). However, doing so appears to be unsound,
since Q reads item whereas the command writes item. We shall refine the above spec-
ification to obtain a stronger precondition, which will imply that Q is separated from
the write. First, we use the Frame rule to conjoin P ∧〈y〉 ⊆ r1, whose frame is clearly
separated from 〈y〉•item because a write to y.item leaves y , r1, and r2 unchanged and
item is not in the frame of P . This yields

{y �= null∧P ∧〈y〉 ⊆ r1 } y.item := 0 {y.item = 0∧P ∧〈y〉 ⊆ r1 } [wr〈y〉•item]

Now, to apply the Frame rule to Q we need that r2•item is separated from the write
of 〈y〉•item. It suffices to show that 〈y〉 is a region disjoint from r2. This follows from
〈y〉 ⊆ r1 and the fact that P ⇒ r1 # r2. So Frame yields

{y �= null∧P ∧〈y〉 ⊆ r1∧Q } y .item := 0 {y .item = 0∧P ∧〈y〉 ⊆ r1∧Q } [wr 〈y〉•item]

whence by the rule of Consequence we obtain

{y �= null∧P ∧〈y〉 ⊆ r1∧Q } y.item := 0 {Q } [wr〈y〉•item] (3)

Now we are ready to sequence (2) followed by (3). But what should the effects be?
Simply unioning the effects wry and wr〈y〉•item is unsound because effects are inter-
preted in the pre-state: the y in wry •item does not have the same meaning as in the
pre-state of the sequence, because y is modified by the first command. So the write to

Regional Logic for Local Reasoning about Global Invariants 391

x ,y ,r ∈ VarName f ,g ∈ FieldName K ∈DeclaredClassNames

T ::= int |K | rgn
E ::= x | c | null | E ⊕E where c is in Z and ⊕ is in {=,+,−,∗,>, . . .}
G ::= x | x .f | 〈E 〉 | emp | alloc |G⊗G where ⊗ is in {∪,∩,−}
F ::= E |G
C ::= x := F | x := new K | x := x .f | x .f := F

| if x then C else C | while x do C | C ;C | var x :T in C end

Fig. 1. Programming language. We confuse category names with typical elements (e.g., T).

the item field must be recorded by some other expression. Precondition 〈y〉 ⊆ r1 of (3)
implies that wr〈y〉•item is a sub-effect of wrr1•item, so by weakening we obtain

{y �= null∧P ∧〈y〉 ⊆ r1∧Q } y.item := 0 {Q } [wrr1•item]

Now we can apply the rule of sequential composition to obtain

{P ∧Q } y := x .left ;y.item := 0 {Q } [wry,wrr1•item]

The rule for local blocks lets us remove the effect wry and conclude the proof of (1).

3 Programming Language

This section presents an illustrative language for which we formalize the programming
logic. A program consists of a command C in the context of some class declarations.
The grammar for commands etc. is in Fig. 1. A class declaration class K {T f } intro-
duces a type name K ; values of this type are null and references to mutable objects with
typed fields f :T . Here and throughout, identifiers with an overline range over lists. As
in Java, an assignment x := y.f implicitly dereferences the value in y and reads field f
in the heap. Equality test, written =, is for reference equality.

In addition to int and reference types, there is type rgn with values ranging over
finite sets of references (excluding null). Region expressions include set operations like
subtraction (−). Region expressions cannot influence control flow or the value of non-
region fields/variables, so they can only serve as ghosts for reasoning.

Ordinary expressions (E in Fig. 1) do not depend on the heap: y.f is not an expres-
sion but rather part of the primitive command x := y.f for reading a field. There is
also a primitive formula for reading a field (see Fig. 3). This restriction serves, as in
separation logic, to simplify rules for reasoning about assignments. We also gain some
simplification in the framing rules to come (Fig. 7). Region expressions (G in Fig. 1) do
include a form that reads a single step into the heap, namely x .g when g has type rgn
(in which case x .g.f is not well formed). The form x .g is essential for our purposes, but
allowing multi-step heap dependence would cause complications, e.g., in the framing
rules. This is why the form “G •f ” which appears in effects and assertions is not a region
expression. Of course syntax sugars can be added for practical purposes, with derived
rules.

392 A. Banerjee, D.A. Naumann, and S. Rosenberg

There is an ambient class table comprising a well formed collection of class decla-
rations. We write fields(K) for the field declarations f :T of class K . The judgement
Γ � F :T says that region or ordinary expression F has type T in context Γ that as-
signs types to variable names. Similarly, Γ � C says C is a well formed command.
For programs we assume the standard rules that prevent “field not defined” errors. For
brevity we omit a boolean type. The guard for an if- or while-command has type int;
the semantics interprets any non-zero value as true.

We omit most of the rules since they are straightforward, but note that int is sepa-
rated from reference types: there is no pointer arithmetic. The typing rules make some
distinctions between region expressions G and those of other type. The rule for single-
ton region 〈E 〉 enforces that E is of reference type. Field dereferencing in expressions

is allowed only for fields of type rgn, as per:
(g :rgn) ∈ fields(K)
Γ ,x :K � x .g :rgn

. Recall that metavari-

able K ranges over class names; only classes have fields. Here and throughout the paper,
rules are only permitted to be instantiated when the consequent as well as the antecedent

are well formed. For example, the rule for context extension is
Γ � F :T ′

Γ ,x :T � F :T ′ and it

cannot be used with x that is in dom(Γ), because the comma in Γ ,x :T denotes the
union of disjoint partial functions.

The concrete syntax x := y.f has an ambiguity that is resolved by typing: If f :rgn
then it is read as x := F with F ≡ y.f —and in case y is null, the value is the empty
region, for convenience in reasoning. If f is any other type, it is read as a primitive
command —and of course there is a runtime error if y is null.

Semantics. We use a straightforward denotational semantics where commands denote
deterministic state transformers, which fits well with pre/post specifications. The details
are adapted and simplified from a machine-checked semantics of CoreJML encoded in
PVS and including hooks to add types like rgn and operations on ghost state [15].

We are given a set, Ref, of reference values and a distinguished value, null, not in
Ref or Z or 2Ref . The values denoted by a reference type K include null as well as all
references that have been allocated for objects of type K , and the values of type rgn are
finite sets of allocated references (of any type).

A state for context Γ has the form (r ,h,s) where: r is a ref context, i.e., a partial
function mapping the allocated references to their types; h is a heap that maps each allo-
cated reference to its object state (i.e., map from field names to values); and s is a store
that maps each variable x in Γ to its value. Throughout the paper, states are assumed
to be well typed and have no dangling references. The semantics is parameterized on
the allocator, i.e., a deterministic function of the state that yields fresh references but is
otherwise arbitrary.

Following separation logic and program verifiers like ESC/Java, correctness judge-
ments specify error-free partial correctness. So we use a denotational semantics in
which [[Γ � C]]σ , for Γ -state σ , is either � (fault),⊥ (divergence), or a Γ -state σ ′ (nor-
mal termination). The only faults are null dereference, since we consider programs that
satisfy usual Java-style typing rules and therefore there are no dangling references (and
we assume the arithmetic operators are error-avoiding, to avoid complications about
definedness). The compound commands like sequence and loops are strict in � as well

Regional Logic for Local Reasoning about Global Invariants 393

[[y]]σ = σ(y) [[G1∪G2]]σ = [[G1]]σ∪[[G2]]σ
[[x .g]]σ = σ(x .g) if σ(x) �= null, else ∅ [[G1∩G2]]σ = [[G1]]σ∩[[G2]]σ
[[〈E 〉]]σ = { [[E]]σ } if [[E]]σ �= null, else ∅ [[G1−G2]]σ = [[G1]]σ− [[G2]]σ
[[alloc]]σ = alloc(σ) [[emp]]σ = ∅

Fig. 2. Semantics of region expressions (eliding Γ � . . . :rgn). Here y and g have type rgn.

as in ⊥. The semantics of loops is given by fixpoint as usual, where we order outcomes
by ⊥ ≤ � and ⊥ ≤ σ for any state σ (but distinct states are incomparable and not
comparable with �).

We use the following abbreviations, for state σ = (r ,h,s)
σ(x) for s(x) —variable lookup
σ(x .f) for h(s(x))(f) —field of object referenced by variable x
σ(o.f) for h(o)(f) —field of reference value o
alloc(σ) for dom(r) —set of all allocated references
type(o,σ) for r(o) —type of an allocated reference
update(σ ,x ,v) for (r ,h,s ′), where s ′ overrides s to map x to v
extend(σ ,x ,v) for (r ,h,s ′), where s ′ extends s to map x to value v , for x �∈ dom(s)
update(σ ,o.f ,v) for (r ,h ′,s), where h ′ overrides h to map field f of o to v .

Here metavariables x ,y,z range over variable names, whereas we use o,p,q for
elements of Ref. We write fields(o,σ) for fields(type(o,σ)). Less obviously, we write
f ∈ refields(o,σ) to say that f is of some reference type, i.e., there is K such that
(f :K) ∈ fields(o,σ).

Semantics for expressions and commands are routine and omitted. Note that [[E]]σ
depends on the store but not the heap and is always a value (of appropriate type), never
� or ⊥. As one would expect, x .f := E faults if x is null, and the same for x := y.f
—except in case f has type rgn. As mentioned earlier, that case is actually parsed as
x := G and uses the semantics of region expressions given in Fig. 2.

4 Assertion Language

Fig. 3 gives the grammar for assertions. Quantification is over int and reference types
only, and in the latter case a bounding region is required as in (∀x :K ∈ alloc | P)
where the quantification is over all allocated objects as is usual [25,9] and important for
certain global invariants. There are also atomic formulas for inclusion and disjointness
of regions. The formula G1•f ⊆ G2 says that for every object in G1, if it has field f
with non-null value then that value is in G2. The formula x .f = E says that x is non-
null and the value of its f field is E . The semantics is two-valued and classical. So
false can be defined as 1 = 0, ∨ and ∃ by DeMorgan, etc. Another syntax sugar is
E ∈ G =̂ E �= null∧ 〈E 〉 ⊆ G . Officially, we cannot write “x .f ∈ G” because x .f
is not an expression (unless f :rgn, but then ∈ does not make sense). But it is safe to
abbreviate x .f ∈G =̂ x .f �= null∧〈x 〉•f ⊆G . Another convenient feature is the ability
to refer to all fields, as in G •any⊆G; we use it in examples but omit the formalization.
Finally, we abbreviate x isK for type(K ,〈x 〉).

394 A. Banerjee, D.A. Naumann, and S. Rosenberg

P ::= E = E | x .f = F | G ⊆G | G #G | type(K ,G)
| G•f ⊆G | G•f #G | (∀x : int | P) | (∀x :K ∈G | P) | P ∧P | ¬P

σ |= x .f = F iff σ(x) �= null and σ(x .f) = [[F]]σ
σ |= G1 #G2 iff [[G1]]σ ∩ [[G2]]σ = ∅

σ |= G1•f ⊆G2 iff σ(o.f) = null or σ(o.f) ∈ [[G2]]σ
for all o ∈ [[G1]]σ with f ∈ refields(o,σ)

σ |= G1•f #G2 iff σ(o.f) /∈ [[G2]]σ for all o ∈ [[G1]]σ with f ∈ refields(o,σ)
σ |= type(K ,G) iff type(o,σ)≤K for all o ∈ [[G]]σ
σ |=Γ ∀x : int | P iff extend(σ ,x ,v) |=Γ ,x :int P for all v ∈ Z

σ |=Γ ∀x :K∈G | P iff extend(σ ,x ,o) |=Γ ,x :K P for all o in [[G]]σ with type(o,σ)≤K

Fig. 3. Formulas: grammar and selected semantics. The boolean connectives are standard.

The well-formedness judgement Γ � P has straightforward rules, but note:

Γ �G :rgn Γ �G ′ :rgn (f :K) ∈ fields(K ′)
Γ �G•f ⊆G ′

Γ ,x :K � P Γ �G :rgn

Γ � ∀x :K ∈G | P

The first rule (like that for Γ � G •f # G ′) ensures that f is of class type. The second
disallows quantification over regions and demands that the bound variable x not appear
in the bound, G , of the quantification where G is a region expression. This facilitates
framing.

To streamline the treatment of local variables and quantifiers, we assume a hygiene
condition: no identifier should occur both bound and free in any context, nor bound
more than once.

The semantics of a well-formed formula Γ � P is given as a satisfaction relation,
written σ |=Γ P and defined for all Γ -states σ . The definition is in Fig. 3. In most cases
we elide Γ since it is unchanged throughout. A formula in context Γ is called valid iff
it is true in all states.

Example. The recursive predicate List(o,r) defined below expresses that o points to
null -terminated list and that the region r is exactly the set of all nodes of the list. Our
running example involves a subject together with its list of observers. Thus variable o
and field nxt have type Observer .

List(o :Observer , r :rgn) =̂ (〈o〉•nxt = emp⇒ r = 〈o〉) ∧
(〈o〉•nxt �= emp⇒ o ∈ r ∧List(o.nxt ,r −〈o〉)

Note that in the case that o is null, 〈o〉 is empty and so is 〈o〉•nxt . If o is non-null but
its nxt field is null, then 〈o〉•nxt is empty and 〈o〉 is the singleton set {o}.

We do not formalize recursively defined predicates. There is no difficulty with List
since its occurrences on the right side are in monotonic positions (with respect to the
subset ordering on state-sets); such recursions have least fixpoints in the complete lattice
of state-sets. (A small complication is that List has parameters.) Note that “o.nxt” is not
in the syntax for expressions; we write List(o.nxt ,r −〈o〉) to abbreviate the formula
o.nxt ∈ r ∧∀p :Observer ∈ r | p = o.nxt ⇒ List(p,r −〈o〉).

Regional Logic for Local Reasoning about Global Invariants 395

class Subject{ class Observer{
Observer obs; int val ; rgn O ; Subject sub; int cache;

Observer nxt ;
Subject(){

self.obs := null; self.val := 0; self.O := emp;} Observer(Subject s){
self.sub := s; s.register(self);}

void register(Observer o){
self.add(o); o.notify();} void notify(){

self.cache := self.sub.get();}
void update(int n){

self.val := n; Observer o := self.obs; int val(){return self.cache;}
while (o! = null){o.notify(); o := o.nxt ;}} }

int get(){return self.val ;}

void add(Observer o){
self.O := self.O∪〈o〉;
o.nxt := self.obs; self.obs := o;

}

Fig. 4. Subject/Observer implementation

5 Effects

The “frames” described in Sec. 2 are formalized as read effects. For commands, we fo-
cus in this paper on write effects. But the full logic includes read effects for commands;
these are useful for reasoning about method calls in assertions as well as for program
transformations. An effect set is a comma-separated list ε of effects, ε , with grammar

ε ::= rdx | rdG •f | wrx |wrG •f | rdalloc | wralloc | frG

The idea is that rdx allows variable x to be read, rdG •f allows read of the f field
of objects in G , wrx allows update of variable x , wrG •f allows update of the f field
of objects in G . The region expression alloc is like a variable that holds the set of all
allocated references and is automatically updated by the allocator, so wralloc allows
allocation and rdalloc allows dependence on the set of allocated objects. Finally, frG
says that all elements of G in the final state are freshly allocated.

Freshness is used to mask updates to fresh objects in sequences. For example, con-
sider the sequence x := new Node;x .rt := 0 in using class Node from Sec. 2, By itself,
the field update has effect wr〈x 〉•rt . But in the pre-state of the sequence, 〈x 〉 cannot
possibly contain the updated object. Indeed, no pre-existing object is updated. In the
proof rules, the effect of x := new Node includes fr〈x 〉 which by the sequence rule (in
Fig. 8) annihilates the write effect.

Before delving into the technicalities of effects, we give, in Fig. 4, code that we will
use as a running example, Subject/Observer . Fig. 5 gives the specifications. Note that
notify is called on an observer from within the update method but this results in a
callback to the Subject ’s get method via self.sub.get().

396 A. Banerjee, D.A. Naumann, and S. Rosenberg

Method Pre-condition Post-condition

Subject() true SubObs(self,0)
register(o) o �= null∧SubObs(self,val)∧o �∈O SubObs(self,val)∧o ∈O
update(n) SubObs(self,val) SubObs(self,n)
get Sub(self,val) Sub(self,val)∧ res = val
add(o) o �= null∧Sub(self,val)∧o �∈O Sub(self,val)∧o ∈O

Observer(s) SubObs(s,s.val) SubObs(s,s.val)∧ self ∈ s.O
notify Sub(sub,sub.val) Sub(sub,sub.val)

∧Obs(self,sub,cache) ∧Obs(self,sub,sub.val)
val SubObs(sub,sub.val)∧ self ∈ sub.O SubObs(sub,sub.val)∧ res = sub.val

Method Effects

Subject()
register(o) wrself.O •nxt ,〈self〉•O ,〈o〉•nxt ,〈o〉•cache,〈self〉•obs
update(n) wr 〈self〉•val ,self.O •cache
get
add(o) wrself.O •nxt ,〈self〉•O ,〈o〉•nxt ,〈self〉•obs
Observer(s) wrs.O •nxt ,〈s〉•O ,〈s〉•obs
notify wr 〈self〉•cache
val

Fig. 5. Specifications for Subject/Observer example based on Parkinson [24]

For the specifications of the methods of Fig. 4, the predicates SubObs , Sub, Obs are
used (following Parkinson [24]). The predicate List used in Sub is defined in Sec. 4.

SubObs(s ,v) =̂ Sub(s ,v)∧∀o :Observer ∈ s .O |Obs(o,s ,v)
Sub(s ,v) =̂ s .val = v ∧List(s .obs ,s .O)
Obs(o,s ,v) =̂ o.cache = v ∧o.sub = s

SubObs is an invariant for the entire aggregate structure comprising an instance of
Subject together with its Observers. SubObs holds when the subject’s invariant, Sub,
holds and for each observer in the subject’s list of observers, that observer’s invariant,
Obs , holds. The invariant Sub(s ,v) says that the current internal state of subject s
is v and all observers of s are in a list whose nodes lie in region s .O . The invariant
Obs(o,s ,v) says that o is an observer of subject s and that o’s view of s’s internal state
is v .

With the above definitions, the method specifications in Fig. 5 are self-explanatory
so we move on to explaining the effects. The effect for notify records that a call to it
will result in the writing of an observer’s cache. The effect for add records that O was
written to when an observer o was added to the existing list of observers of a subject.
The effect for register takes into account the effects of add and notify . The effect
for update records that the subject’s val field is updated and also takes into account
the effects accrued as a result of calling notify . The constructor for Subject has no
effects that need be recorded; we are only concerned with the write effects of pre-
existing objects. Similarly, note the absence of effects wr〈self〉•sub,wr〈self〉•nxt and
wr〈self〉•cache in the effects of the constructor for Observer .

Regional Logic for Local Reasoning about Global Invariants 397

Technicalities. Effects must be well formed (wf) for the context Γ in which they occur:
rdx and wrx are wf if x ∈ dom(Γ); rdG •f , wrG •f , and frG are wf if G is wf in Γ .
We say σ ′ extends σ provided alloc(σ)⊆ alloc(σ ′) and type(o,σ) = type(o,σ ′) for all
o ∈ alloc(σ). The semantics has the property that σ ′ extends σ whenever σ ′ = [[C]]σ .

Definition 1 (allows transition). Let effect set ε be well formed in Γ and let σ ,σ ′ be
Γ -states. We say ε allows transition from σ to σ ′, written σ → σ ′ |= ε , iff σ ′ extends
σ and the following all hold:

(a) for every y in dom(Γ) we have either σ(y) = σ ′(y) or wry is in ε
(b) for every o ∈ alloc(σ) and every f ∈ fields(o,σ), either σ(o.f) = σ ′(o.f) or there

is wrG •f in ε such that o ∈ [[G]]σ
(c) if alloc(σ ′) �= alloc(σ) then wralloc is in ε .
(d) for each frG in ε , [[G]]σ ′ ⊆ alloc(σ ′)− alloc(σ).

Definition 2 (agreement on read effects). Let ε be an effect set and σ ,σ ′ be states
such that σ ′ extends σ . Say that σ and σ ′ agree on ε , written σ ∼ε σ ′, provided the
following hold:

(a) for all rdx in ε , we have σ(x) = σ ′(x)
(b) if rdalloc in ε then alloc(σ) = alloc(σ ′)
(c) for all rdG •f in ε , for all o ∈ [[G]]σ with f ∈ fields(o,σ), we have σ(o.f) =

σ ′(o.f)

For Def. 2(c), note that because σ ′ extends σ , we have o ∈ alloc(σ ′) and type(o,σ) =
type(o,σ ′), hence f ∈ fields(o,σ ′). But it need not be the case that o ∈ [[G]]σ ′. Were we
to consider alloc as a variable, (b) would be subsumed by (a); but it is not an ordinary
variable.

Often, as discussed following Eqn. (3) in Sec. 2, we need to subsume an effect by a
weaker one when the effect refers to a local variable in a different context. An effect set
ε,ε , with ε added to ε , allows at least the effects allowed by ε . In the case of an effect
like wrG •f there is also the possibility of more liberal effect wrG ′•f in case G ⊆ G ′.
Since regions can be state-dependent, inclusions like the above are state-dependent, so
we use a judgement P � ε ≤ ε ′ to express that the writes/reads in a bigger effect are
more permissive. Subsumption for freshness effects is treated separately, since such
effects are interpreted in the post-state. Rules for sub-effecting are defined in Fig. 6.
Note that the relation is reflexive, since in the weakening rule � ε ≤ ε ,ε one may choose
ε to be some element of the set ε .

Lemma 1 (write sub-effect). Suppose P � ε1 ≤ ε2 and ε1 allows transition from σ to
σ ′. If σ |= P then ε2 allows transition from σ to σ ′.

Lemma 2 (read sub-effect). Suppose P � ε1≤ ε2 and σ and σ ′ agree on ε2. If σ |= P
then σ ,σ ′ agree on ε1.

398 A. Banerjee, D.A. Naumann, and S. Rosenberg

G1 ⊆G2 � wrG1•f ≤ wrG2•f G1 ⊆G2 � rdG1•f ≤ rdG2•f true � ε ≤ ε,ε

true � wrG1•f ,wrG2•f ≶ wr(G1∪G2)•f true � rdG1•f ,rdG2•f ≶ rd(G1∪G2)•f

P � ε1 ≤ ε2 P � ε2 ≤ ε3

P � ε1 ≤ ε3

P ′ ⇒ P P � ε ≤ ε ′

P ′ � ε ≤ ε ′
P � ε1 ≤ ε2

P � ε1,ε ≤ ε2,ε

Fig. 6. Selected sub-effect rules. We write ≶ to abbreviate two inclusion rules.

6 Framing and Separators

This section defines a judgement, P � ε frm P ′, that says the truth or falsity of predi-
cate P ′ depends only on the state read according to ε , i.e., ε covers the footprint of P ′ in
P -states. This is one of the two critical ingredients in the Frame rule (Sec. 7). The other
is the notion of separator, which applies to the read effects of a formula and the write
effects of a command. Their separator is a conjunction of region disjointness formulas
sufficient to ensure that in any transition from state σ to σ ′ allowed by the write effects,
σ ,σ ′ agree on the read effects.

6.1 Framing

First, we define a syntax-directed analysis that computes a precise “footprint” of or-
dinary expressions, region expressions and primitive assertions. Intuitively, the foot-
print is all reads needed to evaluate a given expression or primitive assertion whereas
the frame of an assertion is an over-approximation of these requisite reads. We want
true � ftpt(P) frm P to hold for any primitive assertion P .

For any expression F , define the set of read effects of F , written ftpt(F), as follows:
If F is an ordinary expression, E , define ftpt(E) = {rdx | x ∈Vars(E)}. For a region
expression G , define ftpt(G) as:

ftpt(x) = {rdx} ftpt(x .g) = {rdx ,rd〈x 〉•g}
ftpt(alloc) = {rdalloc} ftpt(emp) = ∅

ftpt(G1∪G2) = ftpt(G1)∪ftpt(G2) ftpt(G1∩G2) = ftpt(G1)∪ftpt(G2)
ftpt(G1−G2) = ftpt(G1)∪ftpt(G2) ftpt(〈E 〉) = ftpt(E)

For primitive assertions P , define ftpt(P) as follows:

ftpt(E = E ′) = ftpt(E)∪ftpt(E ′)
ftpt(x .f = F) = {rdx ,rd〈x 〉•f }∪ftpt(F)
ftpt(G1 ⊆G2) = ftpt(G1 #G2) = ftpt(G1)∪ftpt(G2)
ftpt(G1•f ⊆G2) = ftpt(G1•f #G2) = ftpt(G1)∪ftpt(G2)∪{rdG1•f }

Fig. 7 specifies the judgement P � ε frm P ′. The rule for framing a conjunction P1∧P2

with ε allows P1 to be used as hypothesis in showing that ε frames P2. This is sound
because in a state where P1 is false, the conjunction’s value is independent from the

Regional Logic for Local Reasoning about Global Invariants 399

P is primitive

true � ftpt(P) frm P

P � ε1 frm P ′ P � ε1 ≤ ε2 Q ⇒ P

Q � ε2 frm P ′

P1 ⇔ P2 P � ε frm P1

P � ε frm P2

P � ε frm P1 P ∧P1 � ε frm P2

P � ε frm P1∧P2

P � ε,rdx frm P ′

P � ε frm ∀x : int | P ′
ftpt(G)⊆ ε P ∧x ∈G � ε,rdx ,rd 〈x〉•f frm P ′

P � ε,rdG•f frm ∀x :K ∈G | P ′

ftpt(G)⊆ ε ftpt(G ′)⊆ ε
P ⇒∀x ∈G | x .g ⊆G ′ P ∧x ∈G � ε,rdx ,rd〈x〉•f ,rdx .g •g frm P ′

P � ε,rdG•f ,rdG ′•g frm ∀x :K ∈G | P ′

Fig. 7. Inductive definition of the frames judgement

value of P2. It is very helpful in subsuming local effects by more global effects. For
example, suppose ε = rdo,rdp,rd r ,rdr •nxt and we wish to establish that ε frames
the formula o ∈ r ∧p = o.nxt . It is clear that ε frames o ∈ r . But the frame of p = o.nxt
must include 〈o〉•nxt , and this is missing from ε . However, because of o ∈ r we have
rd〈o〉•nxt ≤ rdr •nxt using the second rule in Fig. 6. Note that ∧ is commutative —it
has standard semantics. The rule for ∧ can be use for either conjunct, owing to the rule
to its left which allows use of a valid P1 ⇔ P2.

To frame a quantification ∀x :K ∈ G | P ′ in context P , observe that because P ′

might refer to x , we are likely to need rdx ,rd〈x 〉•f and x .g •g (i.e., the read effects
of the pivot field x .g) to frame P ′. The frame of the quantification cannot mention x .
However, read effects rd〈x 〉•f may be subsumed by rdG •f because x ∈ G . Similarly
if we are able to establish that for all x the pivot expressions x .g are all bounded by
the region G ′, the effect x .g •g can be subsumed by G ′•g . The first rule in Fig. 7 for
quantification of a reference variable (x :K) applies when there are no pivot regions,
the second when P ′ uses only a single pivot region, x .g . The generalization to multiple
pivots is straightforward but notationally messy.

For our running examples one can derive the following:

true � rdo,r ,r •nxt frm List(o,r)
true � rdo,s ,v ,〈o〉•cache,〈o〉•sub frm Obs(o,s ,v)

true � rds ,v ,〈s〉•val ,〈s〉•obs ,〈s〉•O ,s .O •nxt frm Sub(s ,v)
true � rds ,v ,〈s〉•val ,〈s〉•obs ,〈s〉•O ,s .O •nxt ,s .O •cache,s .O •sub frm SubObs(s ,v)

Lemma 3 (footprint agreement). For any states, σ ,σ ′, for any expression F , suppose
that σ ,σ ′ agree on ftpt(F). Then [[F]]σ = [[F]]σ ′.

Lemma 4 (frame agreement). For any σ ,σ ′, any predicates P , P ′, and any set of
effects ε , suppose P � ε frm P ′ and σ |= P and σ ∼ε σ ′. Then σ |= P ′ iff σ ′ |= P ′.

Proof. By induction on a derivation of P � ε frm P ′. We consider the case for con-
junction. Suppose P |= ε frm P1∧P2 because P |= ε frm P1 and P ∧P1 |= ε frm P2.

400 A. Banerjee, D.A. Naumann, and S. Rosenberg

Assume that σ ,σ ′ agree on ε and σ |= P . By induction on judgement of P1 we obtain
σ |= P1 iff σ ′ |= P1. Case σ |= P1: Then σ |= P ∧P1. Hence by induction on judge-
ment of P2 we obtain σ |= P2 iff σ ′ |= P2. Thus σ |= P1∧P2 and σ ′ |= P1∧P2. Case
σ �|= P1: Then σ ′ �|= P1. Hence, in either case, σ |= P1∧P2 iff σ ′ |= P1∧P2. ��

6.2 Separators

Given effect sets εr and εw , we define the separator formula εr �εw to be a conjunction
of certain disjointnesses. In a state where εr � εw holds, nothing that the read effects in
εr allow to be read can be written according to the write effects in εw . Note that εw
(resp. εr) may contain read (resp. write) effects but these do not influence the separator.

Definition 3 (separator). Define separator εr � εw by recursion on the effect sets:

rdG1•f � wrG2•g = if f ≡ g then G1 #G2 else true
rdy � wrx = if x ≡ y then false else true
rdalloc � wralloc = false
ε � ε ′ = true otherwise (for all other single effects)
(ε,ε) � ε1 = (ε � ε1)∧ (ε � ε1)
ε � (ε ′,ε) = (ε � ε ′)∧ (ε � ε)

In Sec. 2, to get Eqn. (3) we needed to use a separator. We can now restate that condition
as 〈y〉 ⊆ r1∧r1 #r2 ⇒ rdr2•item � wr〈y〉•item. By definition of �, it is immediate that
the consequent is equal to r2 # 〈y〉 so the implication is valid.

Lemma 5 (separator agreement). Consider any effect sets ε1 and ε2. Suppose σ →
σ ′ |= ε2 and σ |= ε1 � ε2. Then σ ∼ε1 σ ′.

On separating conjunction. In separation logic, P1 ∗P2 says that P1 and P2 are both
true and their truth is supported by disjoint regions of the heap. We can approximate
the intuitionistic version that allows there to be objects outside the footprint of P1 and
P2. Suppose ε1 frm P1 and ε2 frm P2. Obtain ε ′2 from ε2 by discarding reads of
variables and replacing each region read rdG •f by wrG •f . Then the separation logic
formula P1 ∗P2 amounts to P1∧P2∧ (ε1 � ε ′2).

There is a significant difference, however. The semantics of ∗ is that there exists a
partition of the heap, and there may be more than one partition in case P1 and P2 do
not have unique semantic footprints. Our use of explicit footprints and ghost variables
can be seen as skolemizing the existential implicit in ∗, since ε1 � ε ′2 typically refers to
regions involving ghost variables assigned in the (instrumented) program. For example,
define P(r) =̂ ∀x :Node ∈ r | x .item ≤ 0 and Q(r) =̂ ∀x :Node ∈ r | x .item ≥ 0. Let
R =̂ P(r)∧Q(alloc−r). Then we have both {R } x := new K ;x .n := 0 {R } [wrx ,r]
and {R } x := new K ;x .n := 0;r := r∪〈x 〉 {R } [wrx ,r]. But the reasoner must choose
between these two commands. Issues with nondeterminacy could arise if we allowed
bound region variables, e.g.,∃r |P(r)∧Q(alloc−r). Such matters are discussed further
in [21].

Regional Logic for Local Reasoning about Global Invariants 401

6.3 Immunity

Recall from Sec. 2 the sequence y := x .left ;y.item := 0. The individual effects, write
of y and write of 〈y〉•item, cannot just be unioned to give the effect of the sequence,
because write effects are interpreted in the pre-states (Def. 1(b)). The y in wr〈y〉•item is
not the same y as in the pre-state of the entire composition. The proof rule for sequential
composition in Fig 8 must therefore ensure that the effect of the field update is immune
from (or does not interfere with) the effect of the assignment. In this particular case we
saw that the effect wr〈y〉•item can be subsumed by a bigger effect, wrr1•item. The
footprint of the region r1 in the write effect is separate from the footprint of y and this
permits the combined write effects to be wry,wrr1•item.

Definition 4 (P/ε-immune). Region expression G is said to be P/ε-immune pro-
vided P ⇒ ftpt(G) � ε is valid. Effect set ε2 is P/ε1-immune provided that for all
G, f such that wrG •f occurs in ε2, it is the case that G is P/ε1-immune. ��

For example, alloc is P/ε-immune provided wralloc is not in ε . Also, wrx
is true/wrx -immune (vacuously), but wr〈x 〉•f is not true/wrx -immune because
ftpt(〈x 〉) � wrx = false by Def. 3.

The key property of immunity is that if {P } C1 {P1 } [ε1] and {P1 } C2 {P ′ } [ε2]
are valid, and ε2 is P/ε1-immune, then ε1,ε2 is a valid effect for the sequence C1;C2.
This is part of the proof of soundness for the [Seq] rule, see Thm. 1.

Lemma 6. Let G be P/ε-immune. Then [[G]]σ = [[G]]σ ′ for any σ ,σ ′ such that σ →
σ ′ |= ε and σ |= P .

Proof. Since G is P/ε-immune, P ⇒ ftpt(G) � ε . So by σ |= P , we have σ |=
ftpt(G) � ε . Then from σ → σ ′ |= ε we have by Lemma 5 that σ ,σ ′ agree on ftpt(G).
Then by Lemma 3 we have [[G]]σ = [[G]]σ ′. ��

7 Program Correctness

A correctness statement takes the form {P } C {P ′ } [ε]. The intended meaning is that
from any initial state that satisfies P , C does not fault (terminate with error), and if it
terminates then the final state satisfies P ′. Moreover any allocation and update effects
are allowed by ε (Def. 1). The statement is well-formed in Γ provided that P , P ′, C ,
and ε are well-formed in Γ .

The notation �Γ is used for provability of statements that are well formed in Γ , so
the proof system derives judgements of the form �Γ {P } C {P ′ } [ε]. The semantics
is used to define valid correctness statements, for which we use notation |=Γ .

Definition 5 (validity). For state transformer ϕ of type Γ , define ϕ |=Γ {P }−{P ′ } [ε]
iff for all Γ -states σ ,σ ′ such that σ |= P we have ϕ(σ) �= � and if ϕ(σ) = σ ′ then
σ ′ |= P ′ and σ → σ ′ |= ε .

Let {P }C {P ′ } [ε] be well-formed in Γ . The correctness statement is valid, written
|=Γ {P } C {P ′ } [ε], if and only if [[Γ � C]] |=Γ {P } − {P ′ } [ε]. ��

402 A. Banerjee, D.A. Naumann, and S. Rosenberg

ALLOC
fields(K) = f :T

� { true } x := new K {x isK ∧x .f = default(T)} [wrx ,wralloc, fr 〈x〉]

FIELDACC
z �≡ x

� {y �= null∧ z = y } x := y .f {x = z .f } [wrx]

FIELDUPD � {x �= null∧y = F } x .f := F {x .f = y } [wr 〈x〉•f]

SEQ

� {P } C1 {P1 } [ε1, frG]
� {P1 } C2 {P ′ } [ε2,wrG •f] ε1 is fr -free ε2 is P/ε1-immune
G is P1/(ε2,wrG •f)-immune P1 ⇒G i ⊆G for every wrG i •f i

� {P } C1 ;C2 {P ′ } [ε1,ε2, frG]

VAR
�Γ ,x :T {P ∧x = default(T)} C {P ′ } [wrx ,ε]

�Γ {P } var x :T in C end {P ′ } [ε]

Fig. 8. Selected correctness rules and axioms for commands

FRAME
� {P } C {P ′ } [εC] P � εQ frm Q P ⇒ εQ � εC

� {P ∧Q } C {P ′ ∧Q } [εC]

SUB EFF
� {P } C {P ′ } [ε] P � ε ≤ ε ′

� {P } C {P ′ } [ε ′]
CONTEXT

�Γ {P } C {P ′ } [ε]

�Γ ,x :T {P } C {P ′ } [ε]

NO UPDATE
� {P } C {P ′ } [wr〈x〉•f ,ε] rdx � ε rdy � ε P ∨P ′ ⇒ x .f = y

� {P } C {P ′ } [ε]

Fig. 9. Selected structural rules. Rules of Consequence, Conjunction, etc. are as usual.

Fig. 8 gives selected syntax-directed proof rules and axioms. In axiom [FieldUpd], one
step of dereferencing is allowed since F in the rule can be of the form x .f in the case that
f :rgn. But if we allowed command x .f := y.f .g , the rule would yield postcondition
x .f = y.f .g which is unsound due to possible sharing.

Fig. 9 gives selected structural rules. Rule [No Update] illustrates how assertional
reasoning can be used to eliminate effects.

Theorem 1. If � {P } C {P ′ } [ε] then |= {P } C {P ′ } [ε], for any C ,P ,P ′,ε .

Proof. By induction on the derivation of � {P } C {P ′ } [ε]. This boils down to show-
ing soundness for each rule. For brevity we focus on the case of normal termination.
Recall that σ ,σ ′,σ1 range over proper states (non-�).

Case [Frame]: To prove |= {P ∧Q } C {P ′ ∧Q } [εC], suppose σ |= P ∧Q and
[[C]]σ = σ ′. Then σ |= P . From � {P } C {P ′ } [ε] we get |= {P } C {P ′ } [ε] by
induction, hence σ ′ |= P ′ and σ → σ ′ |= εC . Using σ |= P and P ⇒ εQ � εC , we

Regional Logic for Local Reasoning about Global Invariants 403

get σ |= εQ � εC . Now by Lemma 5 we can conclude that σ ,σ ′ agree on εQ . So we
have P � εQ frm Q and σ ,σ ′ agree on εQ and σ |= P . Thus from Lemma 4 we can
conclude that σ |= Q iff σ ′ |= Q . But σ |= Q because σ |= P ∧Q . Hence σ ′ |= Q and
so σ ′ |= P ′ ∧Q .

Case [Seq]: Let σ be any Γ -state such that σ |= P . Suppose [[C1]]σ = σ1 and
[[C2]]σ1 = σ ′. By validity of the antecedent correctness statements we get σ1 |= P1

and σ ′ |= P ′; moreover σ → σ1 |= ε1, frG and σ1 → σ ′ |= ε2,wrG •f . To prove σ →
σ ′ |= ε1,ε2, frG , we argue by cases on the parts of Def. 1.

Part (a): Consider any x such that σ(x) �= σ ′(x). If σ1(x) �= σ ′(x) then wrx is
in ε2, by σ1 |= P1 and σ1 → σ ′ |= ε2,wrG •f (from above). If σ1(x) = σ ′(x) then
σ(x) �= σ1(x) so then wrx is in ε1, by σ |= P and σ → σ1 |= ε1, frG (from above).
Part (b): Consider any p ∈ alloc(σ) and f such that σ(p.f) �= σ ′(p.f).

– Case σ1(p.f) �= σ ′(p.f): Owing to σ1 |= P1 and σ1 → σ ′ |= ε2,wrG •f , we have
one of two cases:
• There is wrG ′•f ∈ ε2 such that p ∈ [[G ′]]σ1. By antecedent of [Seq], ε2 is

P/ε1-immune, so G ′ is P/ε1-immune. Thus by Lemma 6, p ∈ [[G ′]]σ . Thus
this update is allowed in virtue of wrG ′•f .

• There is i such that p ∈ [[G i]]σ1 and f i is f . Since σ1 |= P1, antecedent P1 ⇒
G i ⊆G of [Seq] yields p ∈ [[G]]σ1. And since we have σ → σ1 |= ε1, frG , we
have that [[G]]σ1 ⊆ alloc(σ ′)−alloc(σ), which contradicts the assumption that
p ∈ alloc(σ) —so this case cannot happen.

– Case σ1(p.f) = σ ′(p.f): Then σ(p.f) �= σ1(p.f), so by σ → σ1 |= ε1, frG there
is some wrG ′•f ∈ ε1 with p ∈ [[G ′]]σ .

Part (c): Consider any p ∈ alloc(σ ′) such that p /∈ alloc(σ). Case p ∈ alloc(σ1): then
wralloc is in ε1. Case p /∈ alloc(σ1): then wralloc is in ε2.

Part (d): For any frG ′ in ε2, we have [[G ′]]σ ′ ⊆ alloc(σ ′)− alloc(σ1) from σ1 → σ ′ |=
ε2,wrG •f . Since σ1 extends σ (by semantics), we thus have [[G ′]]σ ′ ⊆ alloc(σ ′)−
alloc(σ). Finally, since ε1 is fr -free it remains to justify the final effect frG: Using the
antecedent that G is P1/(ε2,wrG •f)-immune, and σ1 |= P1, we have by Lemma 6 and
σ1 → σ ′ |= ε2,wrG •f that [[G]]σ1 = [[G]]σ ′. By σ |= P and σ → σ1 |= ε1, frG we
have [[G]]σ1 ⊆ alloc(σ1)− alloc(σ) and hence since σ ′ extends σ1 we have [[G]]σ1 ⊆
alloc(σ ′)−alloc(σ). Using [[G]]σ1 = [[G]]σ ′ we get [[G]]σ ′ ⊆ alloc(σ ′)−alloc(σ). ��

Substitution and ghost elimination rules. In order to connect initial and final states, we
often use variables that occur in pre- and post-conditions but not the program. Substi-
tution for such variables is sound, but it takes a bit of work to formulate that they do
not occur in the program. This is made straightforward by the inclusion of read effects
in command specifications. Then we can formulate the substitution rule as follows. We
use Reynolds’ notation for substitution in formulas, writing P/x→F for substitution
of F for x in P .

� {P } C {P ′ } [ε] (P/x→F)⇒ ftpt(F) � (ε/x→F) rdx /∈ ε wrx /∈ ε
� {P/x→F } C {P ′/x→F } [ε/x→F]

In accord with our convention on well formed rule instantiations, the result of substi-
tution must be well formed here, e.g., (x .g ⊆ r)/x→null is not. The proof uses routine

404 A. Banerjee, D.A. Naumann, and S. Rosenberg

techniques but it requires the semantics of read effects of commands which we omit
from this paper for brevity. There is also an auxiliary elimination rule (cf. Owicki-
Gries), needed since local variables of type rgn are used as ghosts for reasoning.

8 Examples

We conclude the Subject/Observer example by verifying a simple client program us-
ing the specifications in Fig. 5. Method call and constructor rules are omitted from
the technical formalization but are straightforward and we use them here. Here is the
client program: o := new Observer(s); s .update(n); i := o.val(); . Here is its spec-
ification: requires SubObs(s ,s .val), ensures i = n , effects ε1,ε2,wr i where: ε1 =
wralloc,o,s .O •nxt ,〈s〉•O ,〈s〉•obs , fr 〈o〉, and ε2 = wr〈s〉•val ,s .O •cache. Our first
step uses the (omitted) rule for allocation with constructor call. Informally, the rule
says that we can use constructor’s pre/postconditions by adapting them to the call-
ing context. The effects are those of the constructor with self replaced by LHS of the
assignment.

{SubObs(s ,s .val)} o := new Observer(s) {SubObs(s ,s .val)∧o ∈ s .O } [ε1] (4)

The method call rule yields {SubObs(s ,s .val)} s .update(n) {SubObs(s ,n)} [ε2].
Now we can apply Frame to conjoin o ∈ s .O since true � rdo,s ,〈s〉•O frm o ∈ s .O
and true ⇒ (rdo,s ,〈s〉•O) � (wr 〈s〉•val ,s .O •cache).

{SubObs(s ,s .val)∧o ∈ s .O } s .update(n) {SubObs(s ,n)∧o ∈ s .O } [ε2] (5)

Next, we have by the method call rule, and [Conseq]

{SubObs(o.sub,o.sub.val)∧o ∈ o.sub.O } i := o.val() { i = o.sub.val } [wr i]

Let Q =̂ o.sub = s ∧ s .val = n . Framing the above with Q we obtain

{SubObs(o.sub,o.sub.val)∧o ∈ o.sub.O ∧Q } i := o.val() { i = o.sub.val ∧Q } [wr i]

First, i = o.sub.val ∧Q implies i = n . Next, we can show that the postcondition of
(5) implies SubObs(o.sub,o.sub.val)∧ o ∈ o.sub.O ∧Q by unfolding the definition
of SubObs using o ∈ o.sub.O . Thus we get by [Conseq]

{SubObs(s ,n)∧o ∈ s .O } i := o.val() { i = n } [wr i] (6)

Now using [Seq] on (4), (5), (6) we obtain the desired correctness judgement at the
beginning of the section.

For examples that use separation without any inductive predicates, we have veri-
fied the standard list copy and in-situ reversal algorithms with respect to the following
specifications. For reversal : requires x ∈ r ∧ r •nxt = r , ensures res ∈ r ∧ r •nxt = r ,
effect wrr •nxt . That is, r remains closed, the result is in r , and there is no alloca-
tion. Our specification for copy says the copy is disjoint from the original: requires
x ∈ r1∧ r1•nxt = r1, ensures res ∈ r2∧ r2•nxt = r2∧ r1 # r2, effect wrr2, alloc.

Regional Logic for Local Reasoning about Global Invariants 405

9 Framing Module Invariants

The previous section focused on framing in the small: using effect specifications to
reason about commands in terms of specifications of their constituent commands. This
section addresses framing at a higher level, in particular, reasoning about invariants for
encapsulated state [13]. The idea is that the implementation of an abstract data type
can maintain an invariant that pertains to its encapsulated data representation, without
exposing the invariant to clients (or subclasses). This creates a mismatch between the
client’s view of a method call, say {P/self→x } x .m() {P ′/self→x } [. . .], using the
specification P ,P ′ of m, and the proof obligation for the implementation Cm of m:
{P ∧ Inv(self)} Cm {P ′ ∧ Inv(self)} [. . .].

Sec. 9.1 considers ownership confinement, the idea that a client-visible object that
represents, say, a Collection can encapsulate its internal representation as a region dis-
joint from the reps of other collections and from clients. If the invariant is framed by the
owned reps, and disjointness is maintained as a confinement invariant, and client effects
are disjoint from the reps, then the mismatched proof obligations [13] are sound.

We treat confinement as an explicit invariant that pertains to all instances of some
class (or subclasses, though we refrain from emphasizing that dimension). We treat the
object invariant in terms of a single invariant that pertains to all instances. This treatment
allows an encapsulation discipline to be expressed on a per-module basis, rather than
being globally imposed on all code. Moreover, it allows the mismatch to be formalized
as a second order frame rule like that of separation logic [23], with a confinement in-
variant and client effect bound carried through the part of a proof in which an invariant
is hidden. The rule is admissible [21], which amounts to saying that the mismatch can
always be fixed by augmenting the proof with explicit uses of our ordinary Frame rule.

Sec. 9.2 returns to the Subject/Observer example, again in terms of a global invari-
ant that describes disjointness of encapsulated islands, albeit not based on hierarchical
ownership.

9.1 Ownership and Object Invariants

The following classes illustrate a scenario like a set represented by a linked list that may
contain duplicate elements.

class Coll {rgn rep; Node lst ; int size;} class Node {T item; int len; Node nxt ;}

The size of a collection is part of its external interface. For the sake of an example, we
choose an object invariant that relates size to the internal representation:

CollI (c) =̂ c �= null∧c isColl ∧c.lst ∈ c.rep∧c.rep•nxt ⊆ c.rep∧c.lst .len ≥ c.size

Recall that c.lst ∈ c.rep abbreviates c.lst �= null∧〈c〉•lst ⊆ c.rep. Field rep serves to
delimit the encapsulated representation or owned objects. The following can be derived:

true � rdc,〈c〉•(rep, lst ,size),c.rep•(len,nxt) frm CollI (c) (7)

Let d :Collection, to consider a call d .m() that relies on invariant CollI (d).
Methodologies based on ownership can be described as a way to ensure that a

406 A. Banerjee, D.A. Naumann, and S. Rosenberg

client command, say {P } C {P ′ } [ε], can be lifted by the Frame rule to {P ∧
CollI (d)} C {P ′ ∧CollI (d)} [ε] because the frame of CollI (d) is necessarily sepa-
rate from the client effect. If specifications for all parts of the client code are thus lifted,
they match the hidden precondition CollI (d).

An object invariant is intended to apply separately to each instance of the class. It
is easy to say it applies to each instance: ∀c :Coll ∈ alloc | CollI (c). To illustrate the
flexibility of our logic, let us instead suppose there is a global region variable CollS
that holds some or all instances of Coll . (In practice this would be a static field of class
Coll .) The “component” of interest to clients is the pool of objects in CollS . We want
each of these collections to satisfy its invariant: ∀c ∈ CollS | CollI (c). To frame this
formula, suppose global variable CollR holds the union of the reps of CollS , i.e.

CollC0 =̂ ∀c ∈ CollS | c.rep ⊆ CollR

This serves to derive, from (7), a frame for ∀c ∈CollS | CollI (c), to wit

CollC0 � rdCollS ,CollR,CollS •(rep, lst ,size),CollR•len frm ∀c ∈CollS |CollI (c)

Formula CollC0 says that the module’s internal representation objects are in CollR. We
can express the “package confinement” condition that clients don’t reach reps:

CollC1 =̂ (alloc− (CollS∪CollR))•any #CollR

If package confinement holds at call sites, then we can use the Frame rule to lift client
code to get it to match with

{P ∧∀c ∈ CollS | CollI (c)} d .m() {P ′ ∧∀c ∈ CollS | CollI (c)} [. . .] (8)

(Doing this once and for all is the point of the second order frame rule [21].)
The precondition of (8) is certainly strong enough to verify the implementation of

m, since it implies CollI (d). The postcondition appears very strong. But recall that an
object invariant is supposed to apply “separately” to each instance. Besides separating
clients from representations, with CollC1, we can also use an “island confinement”
condition to say that distinct collections have disjoint reps:

CollC2 =̂ ∀c,c′ :Coll ∈CollS | c = c′ ∨ c.rep # c′.rep

Confinement conditions like CollC0, CollC1, and CollC2 can be enforced by owner-
ship type systems and other pointer analyses.1 Such enforcement mechanisms typically
ensure that confinement holds in all reachable states.2

1 For example, if we represent an ownership hierarchy using a ghost field owner , and impose
the dominator property of Ownership Types, then CollC2 will be an easy consequence. If
instead we allow some references, for read-only use as in Universe Types, then a weaker
confinement condition holds; but the story can still play out, as we distinguish between read
and write effects of commands.

2 Making these conditions explicit in program annotations might be a high cost, compared
with getting them as global invariants “for free” from a separate static analysis. On the other
hand, making them explicit would be one way to show soundness of the result of a particular
analysis, and also provide a means to work around restrictions due to approximations made
by static analysis. For now we set that issue aside and simply assume they are all-states
invariants.

Regional Logic for Local Reasoning about Global Invariants 407

Let us return to the problem of establishing the postcondition of (8) in the imple-
mentation of method m. To focus on self, we can rewrite ∀c ∈ CollS | CollI (c) as
PC ∧CollI (self) where

PC =̂ ∀c ∈ CollS −〈self〉 | CollI (c)

In light of the frame we found for ∀c ∈ CollS | CollI (c), we can frame PC as

CollC0 � rdself,CollS ,CollR,(CollS −〈self〉)•(rep, lst ,size),CollR•len frm PC

Further, we can remove self.rep•len from the effect rdCollR•len owing to the island
confinement CollC2.

In short, we should verify the implementation with respect to just CollI (self). Owing
to confinement, the footprint of the implementation is disjoint from the frame of ∀c ∈
CollS −〈self〉 | CollI (c), so the frame rule will yield ∀c ∈ CollS | CollI (c).

Making confinement an all-states invariant is sufficient but not necessary. The con-
finement conditions are necessary at those points where the frame rule is used to lift a
local correctness property, like preserving CollI (self), to a stronger property like pre-
serving ∀c ∈CollS |CollI (c). Confinement may also be exploited for reasoning within
the implementation, e.g., at outgoing method calls —more on that below.

In summary, we suggest that method implementations maintain module invariants,
which may include module-wide conditions for resource management etc, together with
object invariants in global form, like ∀c ∈CollS | CollI (c).

On reentrant callbacks. Through cyclic references, it is possible for some module op-
eration to invoke a method that leads to a re-entrant callback. That is, an invocation on
some object o at a point when another operation is already in progress and which may
thus have temporarily falsified the invariant. In some cases, re-entrant callback can be
shown to be impossible simply in virtue of the graph of which method implementations
invoke which (disambiguated) methods. Another technique is the “visible state seman-
tics” [18] in which invariants are required to hold on every method call boundary; so
in particular the module operation is required to re-establish the object invariant before
making any call. In some cases, pointer analysis can determine the absence of cyclic
references by which a chain of calls can lead back to an instance. Using the Frame
requires separation and thus prevents hiding invariants in cases where the effects of
callbacks are not disjoint from the invariants’ footprints.

Sometimes reentrant callbacks are desirable, of course. The Subject/Observer code
is an example where the relevant methods belong together in a module and therefore
hiding the invariant is not an issue. In cases where hiding is important, such as other
Subject/Observer scenarios where the Observer cannot be expected to be responsible for
the Subject’s invariants, a typical solution is to designate the intended callback methods
as not assuming the hidden invariant.

Hierarchical ownership. Coll relies on Node operations. If Node is in a different mod-
ule, it may rely on invariants that are hidden from Coll . For example, if Coll requires
that the actual number of values in the list is at most lst .len , then Node takes care of
that when a new item is inserted. On the other hand, that will make self .lst .len out of
sync with self .size; restoring that is Coll ’s responsibility.

408 A. Banerjee, D.A. Naumann, and S. Rosenberg

Our idea is that a module, say the module for Node, has some confinement policy
and its clients are checked for conformance. The code of Node can thereby rely on
its object invariant. This can be hidden from Coll , which is a client of Node. In turn,
by encapsulating its list nodes, possibly by a different discipline, Coll ensures that
operations on nodes of c.reps only happen when methods of Coll have control.

9.2 Beyond Ownership to Cluster Invariants

In this section let us say an abstract component is one or more interface objects that
serve to represent some data abstraction, together with their representation objects
which are meant for internal use. For example, a collection together with its iterators
are an abstract component that provides a set with stateful enumerations. Ownership is
suited to situations where there is a single interface object. Perhaps the most obvious
way to express an invariant for this example is as a predicate that involves an instance
of Coll together with all its associated Iterators . A number of techniques have been
proposed to treat such a “cluster invariant” as one or more object invariants whose de-
pendencies are constrained but not by ownership [22]. There are several reasons to try
to reduce cluster invariants to object invariants. On the other hand, notions like peer de-
pendencies and friendship are very limited in applicability. It is worthwhile to develop
disciplines tailored to design patterns in wide use, such as Subject/Observer and Itera-
tor. But it is also desirable to have a setting in which ad hoc reasoning patterns can be
devised for very specific situations, yet still achieving modular and economic reasoning
based on encapsulated invariants.

The client of a cluster with multiple interface objects has the potential to interfere
with the invariant via those multiple handles, and thus the specifications of operations
on particular interface objects —like adding to the collection, or advancing one of its
iterators— must surely expose a holistic view of the cluster. In the paper [24] from
which we borrow the Subject/Observer example, Parkinson uses a cluster invariant
SubObs that appears in preconditions of methods of both Subject and Observer.

First, we imagine Subject and Observer are together in a module, with methods
register and add given module scope while others are public. The module-scope meth-
ods are verified in the same context and without need to hide the invariant; it can simply
be made explicit in their specifications. Now we factor apart the Sub predicate into a
condition, SubX , suited to public (external) specifications, and another, SubH , suited
to be a hidden invariant. (In a more realistic example, val would be a model field.)

SubX (s ,v) =̂ s .val = v SubH (s ,v) =̂ List(s .obs ,s .O)
SubObsX (s ,v) =̂ SubX (s ,v)∧∀o :Observer ∈ s .O |Obs(o,s ,v)
SubObsH (s ,v) =̂ SubH (s ,v)∧SubX (s ,v)

Whereas the X-versions of the invariant are left in the method specifications, the H-
versions are used only for verification of the implementations of the methods of Subject
and Observer. Specifically, a global invariant like this is used:

SOI =̂ (∀s :Subject ∈ alloc | SubObsH (s ,s .val))
∧ (∀o :Observer ∈ alloc | o.sub �= null⇒ o ∈ o.sub.O)

Regional Logic for Local Reasoning about Global Invariants 409

Given precondition SOI for a method of Observer , the verifier can instantiate the sec-
ond conjunct with self for o, and the first conjunct with self.sub for s , to obtain the
invariant for its cluster. Confinement invariants can be used to separate clusters so that
the Observer method is responsible for restoring the invariant, SubObsH , for its cluster
but then restores SOI for all others simply by framing. In particular, the separation of
clusters would look similar to CollC2, though in this case the islands are not as isolated
from clients since both Subjects and Observers are accessible.

10 Discussion

The genesis of this work is our ongoing work on secure information flow analysis, com-
bining verification and type checking [4]. We are developing a relational logic that lets
us specify fine grained declassification policies. Amtoft et al [1] achieve precise, mod-
ular reasoning about information flow using regions. In order to extend their work to
declassification policies, which may depend on complex program state conditions, we
needed to enrich the assertion language, which led to dropping their abstract interpreta-
tion of heap locations in favor of explicit regions.

State of the art verifiers use intricate reasoning about the heap, often based on vari-
ants of ownership régimes. Our approach is inspired by the Boogie methodology [5,16],
which is explicitly based on all-states invariants that use ghost fields to express an en-
capsulation régime (though not focused on confinement). Boogie also combines in-
stance invariants into a global condition akin to our example∀c :Coll ∈ alloc |CollI (c).

Another inspiration is the work of Kassios [14], showing how explicit use of ghost
state can be effective without global imposition of a fixed programming discipline. Kas-
sios uses a ghost field to hold the footprint of an object’s invariant, a means to specify
the footprint, and a means to specify that a procedure touches only that footprint. Kas-
sios works directly with the semantics of “frames” as a second order predicate, quan-
tifying over all global program states. By contrast, we work out a first order assertion-
based logic. But there are similarities, e.g., Metatheorem 5.4.1 in his thesis is related to
our notion of immunity, as is the swinging pivots restriction of Leino and Nelson [17,
Sec. 8.3].

Smans et al [26] investigate Kassios’ approach to framing in the setting of pre / post
/ modifies specifications, focusing on reasoning with pure method calls in assertions.
Like us they use explicit regions in modifies specifications, expressed as pure methods.
Their approach has been implemented in a prototype verifier and applied to examples
like observer and iterator.

Smith [27] uses regions denoted by ownership contexts to formulate a simple, type
based frame rule that resembles ours.

Recent work on ownership has addressed the need for clusters without a single dom-
inating owner. Cameron et al [10] give a good survey of ownership systems. They adapt
Ownership Types to a system of “boxes” (clusters) that describes rather than restricts
program structure. Thus it does not ensure encapsulation, but they provide and prove
sound an effect system for disjointness of boxes. Müller and Rudich [19] extend Uni-
verse Types, which provides encapsulation and has been adopted by JML for invariants,
to solve the difficult problem of ownership transfer. Drossopoulou et al [12] provide a

410 A. Banerjee, D.A. Naumann, and S. Rosenberg

general theory to account for a variety of invariant disciplines, focusing on visible state
semantics. Ownership type systems cater for hierarchical ownership, with the benefit of
uniformity and a fixed semantics of when invariants hold. We propose the use of second
order framing with module-specific disciplines, in hopes of more flexible deployment
of these and even earlier and simpler ownership systems.

The influence of separation logic on our work is clear. The separating conjunction
hides the heap and expresses separation in the heap implicitly. Becauses footprints are
shadows of predicates, specifications require full functional descriptions using induc-
tive definitions, or else quantification over predicates. Parkinson’s position paper [24]
clearly articulates the case for specifications at the level of object clusters. In higher
order separation logics [7] and Hoare type theory [20], one can quantify predicates to
get multi-instance abstractions at the cost of intricate semantics and sometimes the loss
of the [Conj] rule. Various works articulate the view that the second order frame rule
pertains to static, single-instance modules, e.g., this motivated Parkinson’s technique
for hiding invariants by opaque naming, which can be understood as second order exis-
tentials [6].

Now we turn to future work. The Boogie discipline can be viewed as a proof outline
logic; it would be interesting to show that the invariants specified in the discipline hold
in that logic by using reasoning similar to the one developed in this paper. More gen-
erally, the logic may be of use in connecting and even unifying various disciplines for
ownership and beyond. To that end we are investigating better means to abstract from
field names than the crude “any” used here in examples. Another question is whether
effects can be made conditional, or even subsumed in two-state postconditions, while
retaining effective generation of framing conditions as in Sec. 6.

The proof rules of our logic are formulated in a way that shows how reasoning works.
An automated verifier will likely not apply such rules directly but will rather transform
the code and generate verification conditions. Experiments with the logic are underway,
by translating into BoogiePL, and the third author is investigating decision procedures
for quantifier-free assertions. Another avenue to explore is use of the logic as translation
target from higher level static analyses; instead of metatheory to justify that analysis and
its use, it just creates verification conditions (c.f. runtime verification).

Acknowledgements. We are grateful for encouragement and helpful suggestions from
people including Mike Barnett, Sophia Drossopoulou, Manuel Fähndrich, Peter Müller,
James Noble, Peter O’Hearn, Matthew Parkinson, and anonymous reviewers for POPL
and ECOOP.

References

1. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented
programs. In: ACM Symposium on Principles of Programming Languages (POPL) (2006)

2. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation independence
for object-oriented programs. Journal of the ACM 52(6), 894–960 (2005)

3. Banerjee, A., Naumann, D., Rosenberg, S.: Regional logic for local reasoning about global
invariants, www.cs.stevens.edu/∼naumann/pub/rllrgi.pdf

Regional Logic for Local Reasoning about Global Invariants 411

4. Banerjee, A., Naumann, D., Rosenberg, S.: Towards a logical account of declassification. In:
ACM Workshop on Programming Languages and Analysis for Security (2007)

5. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)

6. Bierman, G., Parkinson, M.: Separation logic and abstraction. In: ACM Symposium on Prin-
ciples of Programming Languages (POPL), pp. 247–258 (2005)

7. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and higher-
order frame rules. In: IEEE Symp. on Logic in Computer Science (LICS) (2005)

8. Bornat, R.: Proving pointer programs in Hoare logic. In: MPC (2000)
9. Calcagno, C., O’Hearn, P., Bornat, R.: Program logic and equivalence in the presence of

garbage collection. Theoretical Comput. Sci. 298(3), 557–581 (2003)
10. Cameron, N.R., Drossopoulou, S., Noble, J., Smith, M.J.: Multiple ownership. In: OOPSLA

(2007)
11. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and

effect. In: OOPSLA, pp. 292–310 (November 2002)
12. Drossopoulou, S., Francalana, A., Müller, P.: A unified framework for verification techniques

for object invariants. In: FOOL (2008)
13. Hoare, C.A.R.: Proofs of correctness of data representations. Acta. Inf. 1, 271–281 (1972)
14. Kassios, I.T.: Dynamic framing: Support for framing, dependencies and sharing without re-

striction. In: Formal Methods: International Conference of Formal Methods Europe (2006)
15. Leavens, G.T., Naumann, D.A., Rosenberg, S.: Preliminary definition of core JML. Technical

Report CS Report 2006-07, Stevens Institute of Technology (2006)
16. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)

ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg (2004)
17. Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans. Prog.

Lang. Syst. 24(5), 491–553 (2002)
18. Müller, P.: Modular Specification and Verification of Object-Oriented Programs. In: Müller,

P. (ed.) Modular Specification and Verification of Object-Oriented Programs. LNCS,
vol. 2262. Springer, Heidelberg (2002)

19. Müller, P., Rudich, A.: Ownership transfer in Universe Types. In: ACM Conf. on Object-
Oriented Programming Languages, Systems, and Applications (OOPSLA) (2007)

20. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare type theory.
In: ICFP (2006)

21. Naumann, D.A.: An admissible second order frame rule in region logic. Technical Report
CS Report 2008-02, Stevens Institute of Technology (2008)

22. Naumann, D.A., Barnett, M.: Towards imperative modules: Reasoning about invariants and
sharing of mutable state. Theoretical Comput. Sci. 365, 143–168 (2006)

23. O’Hearn, P., Yang, H., Reynolds, J.: Separation and information hiding. In: ACM Symposium
on Principles of Programming Languages (POPL), pp. 268–280 (2004)

24. Parkinson, M.: Class invariants: the end of the road. In: International Workshop on Aliasing,
Confinement and Ownership (2007)

25. Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming. Theoretical
Comput. Sci. 343, 413–442 (2005)

26. Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for java-like programs
based on dynamic frames. In: FASE (2008)

27. Smith, M., Drossopoulou, S.: Cheaper reasoning with ownership types. In: International
Workshop on Aliasing, Confinement and Ownership (2003)

28. Tofte, M., Talpin, J.-P.: Implementation of the Typed Call-by-Value lambda-Calculus using
a Stack of Regions. In: POPL (1994)

A Unified Framework for Verification Techniques

for Object Invariants

S. Drossopoulou1, A. Francalanza2, P. Müller3, and A.J. Summers1

1 Imperial College London
2 University of Southampton

3 Microsoft Research, Redmond

Abstract. Object invariants define the consistency of objects. They
have subtle semantics because of call-backs, multi-object invariants and
subclassing. Several visible-state verification techniques for object in-
variants have been proposed. It is difficult to compare these techniques
and ascertain their soundness because of differences in restrictions on
programs and invariants, in the use of advanced type systems (e.g., own-
ership types), in the meaning of invariants, and in proof obligations.

We develop a unified framework for such techniques. We distil seven
parameters that characterise a verification technique, and identify suf-
ficient conditions on these parameters which guarantee soundness. We
instantiate our framework with three verification techniques from the
literature, and use it to assess soundness and compare expressiveness.

1 Introduction

Object invariants play a crucial role in the verification of object-oriented pro-
grams, and have been an integral part of all major contract languages such as
Eiffel [25], the Java Modeling Language JML [17], and Spec# [2]. Object in-
variants express consistency criteria for objects, ranging from simple properties
of single objects (for instance, that a field is non-null) to complex properties of
whole object structures (for instance, the sorting of a tree).

While the basic idea of object invariants is simple, verification techniques for
practical OO-programs face challenges. These challenges are made more daunting
by the common expectation that classes should be verified without knowledge
of their clients and subclasses:

Call-backs: Methods that are called while the invariant of an object o is tem-
porarily broken might call back into o and find o in an inconsistent state.

Multi-object invariants: When the invariant of an object p depends on the
state of another object o, modifications of o potentially break the invariant
of p. In particular, when verifying o, the invariant of p may not be known
and, if not, cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields declared in a
superclass C then methods of C can break D’s invariant by assigning to these
fields. In particular, when verifying a class, its subclass invariants are not
known in general, and so cannot be expected to be preserved.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 412–437, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Unified Framework for Verification Techniques for Object Invariants 413

Several verification techniques address some or all of these challenges [1, 3, 14,
16,18,23,26,27, 31]. They share many commonalities, but differ in the following
important aspects:

1. Invariant semantics: Which invariants are expected to hold when?
2. Invariant restrictions: Which objects may invariants depend on?
3. Proof obligations: What proofs are required, and where?
4. Program restrictions: Which objects’ methods/fields may be called/updated?
5. Type systems: What syntactic information is used for reasoning?
6. Specification languages: What syntax is used to express invariants?
7. Verification logics: How are invariants proved?

These differences, together with the fact that most verification techniques are
not formally specified, complicate the comparison of verification techniques, and
hinder the understanding of why these techniques satisfy claimed properties such
as soundness. For these reasons, it is hard to decide which technique to adopt,
or to develop new sound techniques.

In this paper, we present a unified framework for verification techniques for
object invariants. This framework formalises verification techniques in terms of
seven parameters, which abstract away from differences pertaining to language
features (type system, specification language, and logics) and highlight char-
acteristics intrinsic to the techniques, thereby aiding comparisons. Subsets of
these parameters describe aspects applicable to all verification techniques; for
example, a generic definition of soundness is given in terms of two framework
parameters, expressivity is captured by three other parameters.

We concentrate on techniques that require invariants to hold in the pre-state
and post-state of a method execution (often referred to as visible states [27])
while temporary violations between visible states are permitted. These tech-
niques constitute the vast majority of those described in the literature.

Contributions. The contributions of this paper are:

1. We present a unified formalism for object invariant verification techniques.
2. We identify conditions on the framework that guarantee soundness of a ver-

ification technique.
3. We separate type system concerns from verification strategy concerns.
4. We show how our framework describes some advanced verification techniques

for visible state invariants.
5. We prove soundness for a number of techniques, and, guided by our frame-

work, discover an unsoundness in one technique.

Our framework allows the extraction of comparable data from techniques that
were presented using different concepts, terminology and styles. Comparative
value judgements concerning the techniques are beyond the scope of our paper.

Outline. Sec. 2 gives an overview of our work, explaining the important con-
cepts. Sec. 3 formalises program and invariant semantics. Sec. 4 describes our
framework and defines soundness. Sec. 5 instantiates our framework with exist-
ing verification techniques. Sec. 6 presents sufficient conditions for a verification

414 S. Drossopoulou et al.

technique to be sound, and states a general soundness theorem. Sec. 7 discusses
related work. Proofs and more details are in the companion report [8]. This paper
follows our FOOL paper [7], but provides more explanations and examples.

2 Example and Approach

Example. Consider a scenario, in which a Person holds an Account, and has a
salary. An Account has a balance, an interestRate and an associated DebitCard.
This example will be used throughout the paper. We give the code in Fig. 1.

class Account {
Person holder ;
DebitCard card;
int balance, interestRate ;

// invariant I1 : balance < 0 ==>
interestRate == 0;

// invariant I2 : card.acc == this;

void withdraw(int amount) {
balance −= amount;
if (balance < 0) {

interestRate = 0;
this .sendReport();

}
}

void sendReport()
{ holder . notify () ; }

}

class SavingsAccount
extends Account {

// invariant I3 : balance >= 0;
}

class Person {
Account account;
int salary ;

// invariant I4 :
// account.balance + salary > 0;

void spend(int amount)
{ account.withdraw(amount); }

void notify ()
{ ... }

}

class DebitCard {
Account acc;
int dailyCharges ;

// invariant I5 :
// dailyCharges <= acc.balance;

}

Fig. 1. An account example illustrating the main challenges for the verification of
object invariants. We assume that fields hold non-null values.

Account’s interestRate is required to be zero when the balance is negative (I1).
A further invariant (the two can be read as conjuncts of the full invariant for
the class) ensures that the DebitCard associated with an account has a consistent
reference back to the account (I2). A SavingsAccount is a special kind of Account,
whose balance must be positive (I3). Person’s invariant (I4) requires that the
sum of salary and account’s balance is positive. Finally, DebitCard’s invariant (I5)

A Unified Framework for Verification Techniques for Object Invariants 415

requires dailyCharges not to exceed the balance of the associated account. Thus,
I2, I4, and I5 are multi-object invariants.

To illustrate the challenges faced by verification techniques, suppose that p is
an object of class Person, which holds the Account a with DebitCard d:

Call-backs: When p executes its method spend, this results in a call of withdraw
on a, which (via a call to sendReport) eventually calls back notify on p; the
call notify might reach p in a state where I4 does not hold.

Multi-object invariants: When a executes its method withdraw, it may tem-
porarily break its invariant I1, since its balance is debited before any corre-
sponding change is made to its interestRate. This violation is not important
according to the visible state semantics; the if statement immediately after-
wards ensures that the invariant is restored before the next visible state.
However, by making an unrestricted reduction of the account balance, the
method potentially breaks the invariants of other objects as well. In partic-
ular, p’s invariant I4, and d’s invariant I5 may be broken.

Subclassing: Further to the previous point, if a is a SavingsAccount, then call-
ing the method withdraw may break the invariant I3, which was not neces-
sarily known during the verification of class Account.

These points are addressed in the literature by striking various trade-offs between
the differing aspects listed in the introduction.

Approach. Our framework uses seven parameters to capture the first four as-
pects in which verification techniques differ, i.e., invariant semantics, invariant
restrictions, proof obligations and program restrictions. To describe these pa-
rameters we use two abstract notions, which we call regions and properties. A
region (when interpreted semantically) describes a set of objects (e.g., those on
which a method may be called), while a property describes a set of invariants
(e.g., the invariants that have to be proven before a method call). We deal with
the aspects identified in the previous section as follows:
1. Invariant semantics: The property X describes the invariants expected to

hold in visible states. The property V describes the invariants vulnerable to
a given method, i.e., those which may be broken while the method executes.

2. Invariant restrictions: The property D describes the invariants that may
depend on a given heap location. This also characterises indirectly the loca-
tions an invariant may depend on.

3. Proof obligations: The properties B and E describe the invariants that must
be proven to hold before a method call and at the end of a method body,
respectively.

4. Program restrictions: The regions U and C describe the permitted receivers
for field updates and method calls, respectively.

5. Type systems: We parameterise our framework by the type system. We state
requirements on the type system, but leave abstract its concrete definition.
We require that types are formed of a region-class pair so that we can handle
types that express heap topologies (such as ownership types).

416 S. Drossopoulou et al.

6. Specification languages: Rather than describing invariants concretely, we as-
sume a judgement that expresses that an object satisfies the invariant of a
class in a heap.

7. Verification logics: We express proof obligations via a special construct prv ,
which throws an exception if the invariants in property cannot be proven,
and has an empty effect otherwise. We leave abstract how the actual proofs
are constructed and checked.

Fig. 2 illustrates the parameters of our framework by annotating the body of
the method withdraw. X may be assumed to hold in the pre- and post-states of
the method. Between these visible states, some object invariants may be broken
(so long as they fall within V), but X\V is known to hold throughout the method
body. Field updates and method calls are allowed if the receiver object (here,
this) is in U and C, respectively. Before a method call, B must be proven. At
the end of the method body, E must be proven. Finally, D (not shown in Fig. 2)
constrains the effects of field updates on invariants. Thus, assignments to balance
and interestRate affect at most D.

void withdraw(int amount) {

balance −= amount;

if (balance < 0) {

interestRate = 0;

this .sendReport();
}

}

assume X�

check this in U�

check this in U�

check this in C�
prove B

prove E�
assume X�

X \ V holds

�

�

Fig. 2. Role of framework parameters for method withdraw from Fig. 1

The number of parameters reflects the variety of concepts used by verification
techniques, such as accessibility of fields, purity, helper methods, ownership, and
effect specifications. For instance, V would be redundant if all methods were to
re-establish the invariants they break; in such a setting, a method could break
invariants only through field updates, and V could be derived from U and D.
However, in general, methods may break but not re-establish invariants.

The seven parameters capture concepts explicitly or implicitly found in all
verification techniques, defined either through words [27, 14, 16, 31] or typing
rules [23]. For example, V is implicit in [27], but is crucial for their soundness
argument. X and V are explicit in [23], while U and C are implicitly expressed as
constraints in their typing rules. Subsets of these seven parameters characterise
verification technique concepts e.g., soundness (through X and V), expressiveness
(D, X and V), proof obligations (B and E).

A Unified Framework for Verification Techniques for Object Invariants 417

3 Invariant Semantics

We formalise invariant semantics through an operational semantics, defining at
which execution points invariants are required to hold. In order to cater for the
different techniques, the semantics is parameterised by properties to express proof
obligations and which invariants are expected to hold. In this section, we focus
on the main ideas of our semantics and relegate the less interesting definitions to
App. A. We assume sets of identifiers for class names Cls, field names Fld, and
method names Mthd, and use variables c ∈ Cls, f ∈ Fld and m ∈Mthd.

Runtime Structures. A runtime structure is a tuple consisting of a set of heaps
Hp, a set of addresses Adr, and a set of values Val = Adr ∪ {null}, using
variables h ∈ Hp, ι ∈ Adr, and v ∈ Val. A runtime structure provides the
following operations. The operation dom(h) represents the domain of the heap.
cls(h, ι) yields the class of the object at address ι. The operation fld(h, ι, f)
yields the value of a field f of the object at address ι. Finally, upd(h, ι, f, v)
yields the new heap after a field update, and new(h, ι, t) yields the heap and
address resulting from the creation of a new object of type t. We leave abstract
how these operations work, but require properties about their behaviour, for
instance that upd only modifies the corresponding field of the object at the
given address, and leaves the remaining heap unmodified. See Def. 9 in App. A
for details.

A stack frame σ ∈ Stk = Adr×Adr×Mthd×Cls is a tuple of a receiver
address, an argument address, a method identifier, and a class. The latter two
indicate the method currently being executed and the class where it is defined.

Regions, Properties and Types. A region ∈ R is a syntactic representation
for a set of objects; a property ∈ P is a syntactic representation for a set of
assertions about particular objects. It is crucial that our syntax is parametric
with the specific regions and properties; we use different regions and properties
to model different verification techniques.1

We define a type t ∈ Typ, as a pair of a region and a class. The region allows
us to cater for types that express the topology of the heap, without being specific
about the underlying type system.

Expressions. In Fig. 3, we define source expressions e ∈ Expr. In order to
simplify our presentation (but without loss of generality), we restrict methods
to always have exactly one argument. Besides the usual basic object-oriented
constructs, we include proof annotations e prv . As we will see later, such a
proof annotation executes the expression e and then imposes a proof obligation
for the invariants characterised by the property . To maintain generality, we
avoid being precise about the actual syntax and checking of proofs.

In Fig. 3, we also define runtime expressions er ∈ RExpr. A runtime ex-
pression is a source expression, a value, a nested call with its stack frame σ, an
1 For example, in Universe types, rep and peer are regions, while in ownership types,

ownership parameters such as X, and also this, are regions (more in Sec. 5).

418 S. Drossopoulou et al.

e ::= this (this) | x (variable) | null (null)
| new t (new object) | e.f (access) | e.f = e (assignment)
| e.m(e) (method call) | e prv (proof annotat.)

er ::= . . . (as source exprs.) | v (value) | verfExc (verif exc.)
| fatalExc (fatal exc.) | σ ·er (nested call) | call er (launch)
| ret er (return)

Fig. 3. Source and runtime expression syntax

exception, or a decorated runtime expression. A verification exception verfExc
indicates that a proof obligation failed. A fatal exception fatalExc indicates that
an expected invariant does not hold. Runtime expressions can be decorated with
call er and ret er to mark the beginning and end of a method call, respectively.

In Def. 10 (App. A), we define evaluation contexts, E[·], which describe con-
texts within one activation record and extend these to runtime contexts, F [·],
which also describe nested calls.

Programming Languages. We define a programming language as a tuple consist-
ing of a set Prg of programs, a runtime structure, a set of regions, and a set of
properties (see Def. 11 in App. A). Each Π ∈ Prg comes equipped with the fol-
lowing operations. F (c, f) yields the type of field f in class c as well as the class
in which f is declared (c or a superclass of c). M (c, m) yields the type signature
of method m in class c. B(c, m) yields the expression constituting the body of
method m in class c as well as the class in which m is declared. Moreover, there
are operators to denote subclasses and subtypes (<:), inclusion of regions (�),
and interpretation ([[·]]) of regions and properties.

The interpretation of a region produces a set of objects. We characterise each
invariant by an object-class pair, with the intended meaning that the invariant
specified in the class holds for the object.2 Therefore, the interpretation of a
property produces a set of object-class pairs, specifying all the invariants of
interest. Regions and properties are interpreted w.r.t. a heap, and from the
viewpoint of a “current object”; therefore, their definitions depend on heap and
address parameters: [[. . .]]h,ι.

Each program also comes with typing judgements Γ � e : t and h � er : t
for source and runtime expressions, respectively. An environment Γ ∈ Env is a
tuple of the class containing the current method, the method identifier, and the
type of the sole argument.

Finally, the judgement h |= ι, c expresses that in heap h, the object at address ι
satisfies the invariant declared in class c. We define that the judgement trivially
holds if the object is not allocated (ι �∈ dom(h)) or is not an instance of c
(cls(h, ι) �<: c). We say that the property is valid in heap h w.r.t. address ι if
all invariants in [[]]h,ι are satisfied. We denote validity of properties by h |= , ι:

h |= , ι ⇔ ∀(ι′, c) ∈ [[]]h,ι . h |= ι′, c

2 An object may have different invariants for each of the classes it belongs to [18].

A Unified Framework for Verification Techniques for Object Invariants 419

(rThis)
σ = (ι, , ,)

σ ·this, h −→ σ ·ι, h

(rVar)
σ = (, v, ,)

σ ·x, h −→ σ ·v, h

(rNew)
σ = (ι, , ,) h′, ι′ = new(h, ι, t)

σ ·new t, h −→ σ ·ι′, h′

(rDer)
v = fld(h, ι, f)

ι.f, h −→ v, h

(rAss)
h′ = upd(h, ι, f, v)

ι.f = v, h −→ v, h′

(rCxtFrame)
er, h −→ e′r, h′

σ ·er, h −→ σ ·e′r, h′

(rCall)
B(m, cls(h, ι)) = e, c σ = (ι, v, c, m)

ι.m(v), h −→ σ ·call e, h

(rCxtEval)
σ ·er, h −→ σ ·e′r, h′

σ ·E[er], h −→ σ ·E[e′r], h′

(rLaunch)
σ=(ι, , c, m) h |=Xc,m, ι

σ ·call e, h −→ σ ·ret e, h

(rLaunchExc)
σ=(ι, , c, m) h �|=Xc,m, ι

σ ·call e, h −→ σ ·fatalExc, h

(rFrame)
σ=(ι, , c, m) h |=Xc,m, ι

σ ·ret v, h −→ v, h

(rFrameExc)
σ=(ι, , c, m) h �|=Xc,m, ι

σ ·ret v, h −→ fatalExc, h

(rPrf)
σ = (ι, , ,) h |= , ι

σ ·v prv , h −→ σ ·v, h

(rPrfExc)
σ = (ι, , ,) h �|= , ι

σ ·v prv , h −→ σ ·verfExc, h

Fig. 4. Reduction rules of operational semantics

Operational Semantics. The framework parameter X describes which invariants
are expected to hold at visible states. Given a program Π and a set of properties
Xc,m, each characterising the property that needs to hold at the beginning and
end of a method m of class c, the runtime semantics is the relation −→ ⊆
(RExpr×Hp)× (RExpr×Hp) defined in Fig. 4.

The first eight rules are standard for object-oriented languages. Note that in
rNew, a new object is created using the function new, which takes a type as
parameter rather than a class, thereby making the semantics parametric w.r.t.
the type system: different type systems may use different regions and definitions
of new to describe heap-topological information. Similarly, upd and fld do not
fix a particular heap representation. Rule rCall describes method calls; it stores
the class in which the method body is defined in the new stack frame σ, and
introduces the “marker” call er at the beginning of the method body.

Our reduction rules abstract away from program verification and describe only
its effect. Thus, rLaunch, rLaunchExc, rFrame, and rFrameExc check whether Xc,m is
valid at the beginning and end of any execution of a method m defined in class
c, and generate a fatal exception, fatalExc, if the check fails. This represents the
visible state semantics discussed in the introduction. Proof obligations e prv
are verified once e reduces to a value (rPrf and rPrfExc); if is not found to be
valid, a verification exception verfExc is generated.

Verification using visible state semantics amounts to showing all proof oblig-
ations in some program logic, based on the assumption that expected invariants
hold in visible states. Informally then, a specific verification technique described

420 S. Drossopoulou et al.

in our framework is sound if it guarantees that a fatalExc is never encountered.
Verification technique soundness does allow verfExc to be generated, but this
will never happen in a correctly verified program. We give a formal definition of
soundness at the end of the next section.

This semantics allows us to be parametric w.r.t. the syntax of invariants and
the logic of proofs. We also define properties that permit us to be parametric
w.r.t. a sound type system (cf. Def. 15 in App. A). Thus, we can concentrate
entirely on verification concerns.

4 Verification Techniques

A verification technique is essentially a 7-tuple, where the components of the
tuple provide instantiations for the seven parameters of our framework. These
instantiations are expressed in terms of the regions and properties provided by
the programming language. To allow the instantiations to refer to the program
(for instance, to look up field declarations), we define a verification technique as
a mapping from programs to 7-tuples.

Definition 1. A verification technique V for a programming language is a map-
ping from programs into a tuple:

V : Prg → eXp×Vul×Dep×Pre×End×Upd×Cll

where

X ∈ eXp = Cls×Mthd→ P V ∈ Vul = Cls×Mthd→ P

D ∈ Dep = Cls→ P B ∈ Pre = Cls×Mthd×R→ P

E ∈ End = Cls×Mthd→ P C ∈ Cll = Cls×Mthd×Cls→ R

U ∈ Upd = Cls×Mthd×Cls×Mthd→ R

To describe a verification technique applied to a program, we write the applica-
tion of the components to class, method names, etc., as Xc,m, Vc,m, Dc, Bc,m, ,
Ec,m, Uc,m,c′ , Cc,m,c′,m′ . The meaning of these components is:

Xc,m: the property expected to be valid at the beginning and end of the body of
method m in class c. The parameters c and m allow a verification technique
to expect different invariants in the visible states of different methods. For
instance, JML’s helper methods [17] do not expect any invariants to hold.

Vc,m: the property vulnerable to method m of class c, that is, the property
whose validity may be broken while control is inside m. The parameters c
and m allow a verification technique to require that invariants of certain
classes (for instance, c’s subclasses) are not vulnerable.

Dc: the property that may depend on fields declared in class c. The parameter
c can be used, for instance, to prevent invariants from depending on fields
declared in c’s superclasses [16,27].

Bc,m, : the property whose validity has to be proven before calling a method
on a receiver in region from the execution of a method m in class c. The
parameters allow proof obligations to depend on the calling method and the
ownership relation between the caller and the callee.

A Unified Framework for Verification Techniques for Object Invariants 421

Ec,m: the property whose validity has to be proven at the end of method m
in class c. The parameters allow a technique to require different proofs for
different methods, e.g., to exclude subclass invariants.

Uc,m,c′: the region of allowed receivers for an update of a field in class c′, within
the body of method m in class c. The parameters allow a technique, for
instance, to prevent field updates within pure methods.

Cc,m,c′,m′: the region of allowed receivers for a call to method m′ of class c′,
within the body of method m of class c. The parameters allow a technique
to permit calls depending on attributes (e.g., purity or effect specifications)
of the caller and the callee.

The class and method identifiers used as parameters to our components can be
extracted from an environment Γ or a stack frame σ in the obvious way. Thus,
for Γ =(c, m,) or for σ=(ι, , c, m), we use XΓ and Xσ as shorthands for Xc,m;
we also use BΓ, and Bσ, as shorthands for Bc,m, .

Well-Verified Programs. The judgement Γ �V e expresses that expression e is
well-verified according to verification technique V . It is defined in Fig. 5.

(vs-null)

Γ �V null

(vs-var)

Γ �V x

(vs-this)

Γ �V this

(vs-new)

Γ �V new t

(vs-fld)
Γ �V e

Γ �V e.f

(vs-ass)
Γ � e : c′ F (c′, f) = , c
� UΓ,c Γ �V e Γ �V e′

Γ �V e.f = e′

(vs-call)
Γ � e : c′ B(c′, m) = , c
� CΓ,c,m Γ �V e Γ �V e′

Γ �V e.m(e′ prv BΓ,)

(vs-class)

B(c, m) = e, c
M (c, m) = t, t′

⇒ e = e′ prv Ec,m

c, m, t �V e′

�V c

Fig. 5. Well-verified source expressions and classes

The first five rules express that literals, variable lookup, object creation, and
field lookup do not require proofs. The receiver of a field update must fall into
U (vs-ass). The receiver of a call must fall into C (vs-call). Moreover, we require
the proof of B before a call. Finally, a class is well-verified if the body of each
of its methods is well-verified and ends with a proof obligation for E (vs-class).
Note that we use the type judgement Γ � e : t without defining it; the definition
is given by the underlying programming language, not by our framework.

Fig. 9 in App. A defines the judgement h �V er for verified runtime expressions.
The rules correspond to those from Fig. 5, with the addition of rules for values
and nested calls.

A program Π is well-verified w.r.t. V , denoted as �V Π , iff (1) all classes
are well-verified and (2) all class invariants respect the dependency restrictions
dictated by D. That is, the invariant of an object ι′ declared in a class c′ will be
preserved by an update of a field of an object of class c if it is not within Dc.

422 S. Drossopoulou et al.

Definition 2. �V Π ⇔
(1) ∀c ∈ Π. �V c

(2) F (cls(h, ι), f) = , c, (ι′, c′) �∈ [[Dc]]h,ι, h |= ι′, c′ ⇒ upd(h, ι, f, v) |= ι′, c′

Valid States. The properties X and X \ V characterise the invariants that are
expected to hold in the visible states and between visible states of the current
method execution, respectively. That is, they reflect the local knowledge of the
current method, but do not describe globally all the invariants that need to hold
in a given state.

For any state with heap h and execution stack σ, the function vi(σ, h) yields
the set of valid invariants, that is, invariants that are expected to hold :

vi(σ, h) =
∅ if σ = ε

(vi(σ1, h) ∪ [[Xσ]]h,σ)\[[Vσ]]h,σ if σ = σ1 ·σ

The call stack is empty at the beginning of program execution, at which point
we expect the heap to be empty. For each additional stack frame σ, the corre-
sponding method m may assume Xσ at the beginning of the call, therefore we
add [[Xσ]]h,σ to the valid invariants. The method may break Vσ during the call,
and so we remove [[Vσ]]h,σ from the valid invariants.

A state with heap h and stack σ is valid iff:
(1) σ is a valid stack, denoted by h �V σ (Def. 12 in App. A), and meaning that

the receivers of consecutive method calls are within the respective C regions.
(2) The valid invariants vi(σ, h) hold.
(3) If execution is in a visible state with σ as the topmost frame of σ, then the

expected invariants Xσ hold additionally.

These properties are formalised in Def. 3. A state is determined by a heap h
and a runtime expression er; the stack is extracted from er using function stack,
given by Def. 13 in App. A.

Definition 3. A state with heap h and runtime expression er is valid for a
verification technique V , er |=V h, iff:

(1) h �V stack(er) (2) h |= vi(stack(er), h)

(3) er =F [σ ·call e] or er =F [σ ·ret v] ⇒ h |= Xσ, σ

Soundness. A verification technique is sound if verified programs only produce
valid states and do not throw fatal exceptions. More precisely, a verification
technique V is sound for a programming language PL iff for all well-formed
and verified programs Π ∈ PL, any well-typed and verified runtime expression
er executed in a valid state reduces to another verified expression e′r with a
resulting valid state. Note that a verified e′r contains no fatalExc (see Fig. 9).

Well-formedness of program Π is denoted by �wf Π (Def. 14, App. A). Well-
typedness of runtime expression er is denoted by h � er : t and required as part
of a sound type system in Def. 11, App. A. These requirement permits separation
of concerns, whereby we can formally define verification technique soundness in
isolation, assuming program well-formedness and a sound type system.

A Unified Framework for Verification Techniques for Object Invariants 423

Definition 4. A verification technique V is sound for a programming language
PL iff for all programs Π ∈ PL:

�wf Π, h � er : , �V Π, er |=V h,
h �V er, er, h −→ e′r, h′ ⇒ e′r |=V h′, h′ �V e′r

5 Instantiations

In our earlier paper [7], we discuss six verification techniques from the literature
in terms of our framework, namely those by Poetzsch-Heffter [31], Huizing &
Kuiper [14], Leavens & Müller [16], Müller et al. [27], and Lu et al. [23]. In
this paper we concentrate on the techniques based on heap topologies [27, 23],
because those benefit most from the formalisation in our framework.

Müller et al. [27] present two techniques for multi-object invariants, called
ownership technique and visibility technique (OT and VT for short), which
use the hierarchic heap topology enforced by Universe types [6]. Their distinc-
tive features are: (1) Expected and vulnerable invariants are specified per class.
(2) Invariant restrictions take into account subclassing (thereby addressing the
subclass challenge). (3) Proof obligations are required before calls (thereby ad-
dressing the call-back challenge) and at the end of calls. (4) Program restrictions
are uniform for all methods3, and are based on the relative object placement in
the hierarchy.

Lu et al. [23] define Oval, a verification technique based on ownership types,
which support owner parameters for classes [5], thus permitting a more precise
description of the heap topology. The distinctive features of Oval are: (1) Ex-
pected and vulnerable invariants are specific to every method in every class
through the notion of contracts. (2) Invariant restrictions do not take subclass-
ing into account. (3) Proof obligations are only imposed at the end of calls.
(4) To address the call-back challenge, calls are subject to “subcontracting”, a
requirement that guarantees that the expected and vulnerable invariants of the
callee are within those of the caller.

OT, VT, and Oval are discussed in more detail in our companion report [8].
In the remainder of this section, we introduce these techniques and summarise
them in Fig. 6. We explain the notation from Fig. 6 informally, and define it
formally in the appendix. This section (without the appendix) gives an overall
intuition, aimed at the reader who is not interested in all of the formal details.

To sharpen our discussion w.r.t. structured heaps, we will be adding annota-
tions to the example from Fig. 1, to obtain a topology where the Person p owns
the Account a and the DebitCard d.

5.1 Instantiation for OT and VT

Universe types associate reference types with Universe modifiers, which specify
ownership relative to the current object. The modifier rep expresses that an
3 However, both OT and VT have special rules for pure (side-effect free) methods.

We ignore pure methods here, but refer the interested reader to [7].

424 S. Drossopoulou et al.

Müller et al. (OT) Müller et al. (VT) Lu et al.(Oval)
Xc,m own ; rep+ own ; rep+ I ; rep∗

Vc,m super〈c〉 � own+ peer〈c〉 � own+ E ; own∗

Dc self〈c〉 � own+ peer〈c〉 � own+ self ; own∗

Bc,m,
super〈c〉 if intrsPeer()
emp otherwise

peer〈c〉 if intrsPeer()
emp otherwise

emp

Ec,m super〈c〉 peer〈c〉 self if I=E
emp otherwise

Uc,m,c′ self peer
self if I=E
emp otherwise

Cc,m,c′,m′ rep〈c〉 � peer rep〈c〉 � peer , with SC(I,E,I′,E′,O ,c)

Fig. 6. Components of verification techniques. For Oval, O ,c is the owner of ; we use
shorthands I = I(c, m), and E = E(c, m), and I′ = ; I(c′, m′), and E′ = ;E(c′, m′).

object is owned by the current object; peer expresses that an object has the
same owner as the current object; any expresses that an object may have any
owner. Fig. 7 shows the Universe modifiers for our example from Fig. 1, which
allow one to apply OT and VT.

class Account {
peer DebitCard card;
any Person holder ;
...

}

class Person {
rep Account account;
...

}

class DebitCard {
peer Account acc;
...

}

Fig. 7. Universe modifiers for the Account example from Fig. 1

To address the subclass challenge, OT and VT both forbid rep fields f and g
declared in different classes cf and cg of the same object o to reference the same
object. This subclass separation can be formalised in an ownership model where
each object is owned by an object-class pair (see [18] for details).

Regions and Properties. For OT and VT, we define the sets of regions and
properties to be:

∈ R ::= emp | self | rep〈c〉 | peer | any | �
∈ P ::= emp | self〈c〉 | super〈c〉 | peer〈c〉 | rep | own | rep+| own+| � | ;

In our framework, Universe modifiers intuitively correspond to regions, since they
describe areas of the heap. For example, peer describes all objects which share
the owner (object-class pair) with the current object. However, because of the
subclass separation described above, it is useful to employ richer regions of the
form rep〈c〉, describing all objects owned by the current object and class c. For

A Unified Framework for Verification Techniques for Object Invariants 425

regions (and properties) we also include the “union” of two regions (properties).
The predicate intrsPeer() checks whether a region intersects the peer region.

For properties, self〈c〉 represents the singleton set containing a pair of the
current object with the class c. The property super〈c〉 represents the set of pairs
of the current object with all its classes that are superclasses of c. The prop-
erty peer〈c〉 represents all the objects (paired with their classes) that share the
owner with the current object, provided their class is visible in c. There are also
properties to describe the invariants of an object’s owned objects, its owner, its
transitively owned objects, and its transitive owners. A property of the form

1; 2 denotes a composition of properties, which behaves similarly to function
composition when interpreted. The formal definitions of the interpretations of
these regions and properties can be found in App. B.

Ownership Technique. As shown in Fig. 6, OT requires that in visible states, all
objects owned by the owner of this must satisfy their invariants (X).

Invariants are allowed to depend on fields of the object itself (at the current
class), as in I1 in Fig. 1, and all its rep objects, as in I2. Other client invariants
such as I4 and I5) and subclass invariants that depend on inherited fields (such as
I3) are not permitted. Therefore, a field update potentially affects the invariants
of the modified object and of all its (transitive) owners (D).

A method may update fields of this (U). Since an updated field is declared
in the enclosing class or a superclass, the invariants potentially affected by the
update are those of this (for the enclosing class and its superclasses, which ad-
dresses the subclass challenge) as well as the invariants of the (transitive) owners
of this (V).

OT handles multi-object invariants by allowing invariants to depend on fields
of owned objects (D). Therefore, methods may break the invariants of the tran-
sitive owners of this (V). For example, the invariant I2 of Person (Fig. 1) is legal
only because account is a rep field (Fig. 7). Account’s method withdraw need not
preserve Person’s invariant. This is reflected by the definition of E: only the in-
variants of this are proven at the end of the method, while those of the transitive
owners may remain broken; it is the responsibility of the owners to re-establish
them, which addresses the multi-object challenge. As an example, the method
spend has to re-establish Person’s invariant after the call to account.withdraw.

Since the invariants of the owners of this might not hold, OT disallows calls
on references other than rep and peer references (C). For instance, the call
holder.notify() in method sendReport is not permitted because holder is in an
ancestor ownership context.

The proof obligations for method calls (B) must cover those invariants ex-
pected by the callee that are vulnerable to the caller. This intersection contains
the invariant of the caller, if the caller and the callee are peers because the callee
might call back; it is otherwise empty (reps cannot callback their owners).

Visibility Technique. VT relaxes the restrictions of OT in two ways. First, it
permits invariants of a class c to depend on fields of peer objects, provided
that these invariants are visible in c (D). Thus, VT can handle multi-object

426 S. Drossopoulou et al.

structures that are not organised hierarchically. For instance, in addition to the
invariants permitted by OT, VT permits invariants I4 and I5 in Fig. 1. Visibility
is transitive, thus, the invariant must also be visible wherever fields of c are
updated. Second, VT permits field updates on peers of this (U).

These relaxations make more invariants vulnerable. Therefore, V includes ad-
ditionally the invariants of the peers of this. This addition is also reflected in
the proof obligations before peer calls (B) and before the end of a method (E).
For instance, method withdraw must be proven to preserve the invariant of the
associated DebitCard, which does not in general succeed in our example.

5.2 Instantiation for Oval

Fig. 8 shows our example in Oval using ownership parameters [5] to describe heap
topologies. The ownership parameter o denotes the owner of the current object;
p denotes the owner of o and specifies the position of holder in the hierarchy,
more precisely than the any modifier in Universe types.

class Account[o,p] {
DebitCard〈o〉 card;
Person〈p〉 holder;
...
void withdraw(int amount)〈this,this〉
{ ... }

void sendReport()〈bot,p〉
{ ... }

}

class Person[o] {
Account〈this〉 account;
...
void spend(int amount)〈this,this〉
{ account.withdraw(amount); }

void notify ()〈bot,top〉
{ ... }

}

Fig. 8. Ownership parameters and method contracts in Oval

Method Contracts. Ownership parameters are also used to describe expected and
vulnerable invariants, which are specific to each method. Every Oval program
extends method signatures with a contract 〈I, E〉: the expected invariants at
visible states (X) are the invariants of the object characterised by I and all objects
transitively owned by this object; the vulnerable invariants (V) are the object
at E and its transitive owners. These properties are syntactically characterised
by Ls in the code (and Ks in typing rules), where:

L ::= top | bot | this |X K ::= L |K ; rep

and where X stands for the class’ owner parameters.4 An ordering L L′ is
defined, expressing that at runtime the object denoted by L will be transitively
owned by the object denoted by L′. This is used to formally specify various
restrictions in the technique, for example that for all method contracts, I E
must hold.
4 We discuss a slightly simplified version of Oval, where we omit the existential owner

parameter ‘∗’, and non-rep fields, a refinement whereby only the current object’s
owners depend on such fields. Both enhance the expressiveness of the language, but
are not central to our analysis.

A Unified Framework for Verification Techniques for Object Invariants 427

In class Account (Fig. 8), withdraw() expects the current object and the objects
it transitively owns to be valid (I=this) and, during execution, this method may
invalidate the current object and its transitive owners (E=this). The contract of
sendReport() does not expect any objects to be valid at visible states (I=bot)
but may violate object p and its transitive owners (E=p).

Subcontracting. Call-backs are handled via subcontracting, which is defined using
the order L L′.To interpret Oval’s subcontracting in our framework, we use
SC(I, E, I′, E′, K), which holds iff:

I ≺ E ⇒ I′ � I I = E ⇒ I′ ≺ I I′ ≺ E′ ⇒ E � E′ I′ = E′ ⇒ E � K

where I, E characterise the caller, I′, E′ characterise the callee, and K stands for
the callee’s owner. The first two requirements ensure that the caller guarantees
the invariant expected by the callee. The other two conditions ensure that the
invariants vulnerable to the callee are also vulnerable to the caller. For instance,
the call holder.notify() in method sendReport satisfies subcontracting because
caller and callee do not expect any invariants, and the callee has no vulnerable
invariants. In particular, the receiver of a call may be owned by any of the owners
of the current receiver, provided that subcontracting is respected (C).

Given that I E for all well-formed methods, and that Bc,m, =emp, the
first two requirements of subcontracting exactly give (S1), while the latter two
exactly give (S3) from Def. 5 in the next section – more in [8].

Regions and Properties. To express Oval in our framework, we define regions
and properties as follows (see App. B for their interpretations):

∈ R ::= emp | self | c〈K〉 | � ∈ P ::= emp | self | K | K ; rep∗ | K ; own∗

As already stated, expected and vulnerable properties depend on the contract
of the method and express X as I ; rep∗ and V as E ; own∗ (see Fig. 6). Similarly
to OT, invariant dependencies are restricted to an object and the objects it
transitively owns (D). Therefore, I1 and I4 are legal, as well as I3, which depends
on an inherited field. Oval imposes a restriction on contracts that the expected
and vulnerable invariants of every method intersect at most at this. Consequently,
at the end of a method, one has to prove the invariant of the current receiver,
if I = E = this, and nothing otherwise (E). In the former case, the method is
allowed to update fields of its receiver; no updates are allowed otherwise (U).
Therefore, spend and withdraw are the only methods in our example that are
allowed to make field updates. Oval does not impose proof obligations on method
calls (B is empty), but addresses the call-back challenge through subcontracting.
Therefore, call-backs are safe because the callee cannot expect invariants that
are temporarily broken. With the existing contracts in Fig. 8, subcontracting
permits spend to call account.withdraw(), and withdraw to call this.sendReport(),
and also sendReport to call holder.notify(). The last two subcalls may potentially
lead to callbacks, but are safe because the contracts of sendReport and notify do
not expect the receiver to be in a valid state (I=bot).

428 S. Drossopoulou et al.

Subclassing and Subcontracting. Oval also requires subcontracting between a
superclass method and an overriding subclass method. As we discuss later, this
does not guarantee soundness [22], and we found a counterexample (cf. Sec. 6).
Therefore, we require that a subclass expects no more than the superclass, and
vice versa for vulnerable invariants, and that if an expected invariant in the
superclass is vulnerable in the subclass, then it must also be expected in the
subclass:5

I′ � I � E � E′ I = E′ ⇒ I′ = E′

where I, E, I′, E′ characterise the superclass, resp. subclass, method. This require-
ment gives exactly (S5) from Def. 5. It allows I′ = I= E=E′ which is forbidden
in Oval. We refer to the verification technique with the above requirement for
method overriding as Oval′.

5.3 Summary

In spite of differences in, e.g., the underlying type systems and the logics used,
our framework allows us to extract comparable information about these three
techniques. We summarise here the commonalities and differences in the results.
1. Invariant semantics: In OT and VT, the invariants expected at the be-

ginning of withdraw are I1, I2, and I3 for the receiver, as well as I5 for the
associated DebitCard (which is a peer). For withdraw in Oval, I=this, therefore
the expected invariants are I1, I2, and I3 for the receiver.

2. Invariant restrictions: Invariants I2 and I5 are illegal in OT and Oval, while
they are legal in VT (which allows invariants to depend on the fields of
peers). Conversely, I3 is illegal in OT and VT (it mentions a field from a
superclass), while it is legal in Oval.

3. Proof obligations: In OT, before the call to this.sendReport() and at the end
of the body of withdraw, we have to establish I1 and I2 for the receiver. In
addition to these, in VT we have to establish I5 for the debit card. In Oval,
the same invariants as for OT have to be proven, but only at the end of the
method because call-backs are handled through subcontracting. In addition,
I3 is required.6 In all three techniques, withdraw is permitted to leave the
invariant I4 of the owning Person object broken. It has to be re-established
by the calling Person method.

4. Program restrictions: OT and VT forbid the call holder.notify() (reps can-
not call their owners), while Oval allows it. On the other hand, if method
sendReport required an invariant of its receiver (for instance, to ensure that
holder is non-null), then Oval would prevent method withdraw from calling
it, even though the invariants of the receiver might hold at the time of the
call. The proof obligations before calls in OT and VT would make such a
call legal.

5 Note, that we had erroneously omitted the latter requirement in [7].
6 This means that verification of a class requires knowledge of a subclass. The Oval

developers plan to solve this modularity problem by requiring that any inherited
method has to be re-verified in the subclass [22].

A Unified Framework for Verification Techniques for Object Invariants 429

6 Well-Structured Verification Techniques

We now identify conditions on the components of a verification technique that are
sufficient for soundness, state a general soundness theorem, and discuss sound-
ness of the techniques presented in Sec. 5

Definition 5. A verification technique is well-structured if, for all programs in
the programming language:

(S1) � Cc,m,c′m′ ⇒ (� Xc′,m′) \ (Xc,m \ Vc,m) ⊆ Bc,m,

(S2) Vc,m ∩ Xc,m ⊆ Ec,m

(S3) Cc,m,c′,m′ � (Vc′,m′ \ Ec′,m′) ⊆ Vc,m

(S4) Uc,m,c′ � Dc′ ⊆ Vc,m

(S5) c′ <: c ⇒ Xc′,m ⊆ Xc,m ∧ Vc′,m\Ec′,m ⊆ Vc,m \ Ec,m

In the above, the set theoretic symbols have the obvious interpretation in the
domain of properties. For example (S2) is short for ∀h, ι : [[Vc,m]]h,ι∩([[Xc]]h,ι ⊆
[[Ec,m]]h,ι. We use viewpoint adaptation � , defined as:

[[�]]h,ι =
⋃

ι′∈[[]]h,ι
[[]]h,ι′

meaning that the interpretation of a viewpoint-adapted property � w.r.t. an
address ι is equal to the union of the interpretations of w.r.t. each object in
the interpretation of .

The first two conditions relate proof obligations with expected invariants. (S1)
ensures for a call within the permitted region that the expected invariants of the
callee (� Xc′,m′) minus the invariants that hold throughout the calling method
(Xc,m \ Vc,m) are included in the proof obligation for the call (Bc,m,). (S2)
ensures that the invariants that were broken during the execution of a method,
but which are required to hold again at the end of the method (Vc,m∩Xc,m) are
included in the proof obligation at the end of the method (Ec,m).

The third and fourth condition ensure that invariants that are broken by a
method m of class c are actually in its vulnerable set. Condition (S3) deals with
calls and therefore uses viewpoint adaptation for call regions (Cc,m,c′,m′ � . . .).
It restricts the invariants that may be broken by the callee method m′, but
are not re-established by the callee through E. These invariants must be in-
cluded in the vulnerable invariants of the caller. Condition (S4) ensures for
field updates within the permitted region that the invariants broken by up-
dating a field of class c′ are included in the vulnerable invariants of the enclosing
method, m.

Finally, (S5) establishes conditions for subclasses. An overriding method m
in a subclass c may expect fewer invariants than the overridden m in superclass
c′. Moreover, the subclass method must leave less invariants broken than the
superclass method.

430 S. Drossopoulou et al.

Note that the five soundness conditions presented here are slightly weaker
than those in the previous version of this work [7]. 7

Soundness Results. The five conditions from Def. 5 guarantee soundness of a
verification technique (Def. 4), provided that the programming language has a
sound type system (see Def. 15 in App. A).

Theorem 6. A well-structured verification technique, built on top of a program-
ming language with a sound type system, is sound.

This theorem is one of our main results. It reduces the complex task of proving
soundness of a verification technique to checking five fairly simple conditions.

Unsoundness of Oval. The original Oval proposal [23] is unsound because it
requires subcontracting for method overriding. As we said in the previous section,
subcontracting corresponds to our (S1) and (S3). This gives, for c′ <: c, the
requirements that Xc′,m′ ⊆ Xc,m\Vc,m, and Vc′,m′ \Ec′,m′ ⊆ Vc,m, which do
not imply (S5). We were alerted by this discrepancy, and using only the X, E

and V components (no type system properties, nor any other component), we
constructed the following counterexample.

class D[o] {

C1<this> c = new C2<this>();
void m() <this,o> { c.mm() }

}

class C1[o]{
void mm() <this,this> {...}

}
class C2[o] extends C1<o> {

void mm() <bot,this> {...}
}

The call c.mm() is checked using the contract of C1::mm; it expects the callee
to re-establish the invariant of the receiver (c), and is type correct. However,
the body of C2::mm may break the receiver’s invariants, but has no proof oblig-
ations (EC2,mm = emp). Thus, the call c.mm() might break the invariants of
c, thus breaking the contract of m. The reason for this problem is, that the—
initially appealing—parallel between subcontracting and method overriding does
not hold. The authors confirmed our findings [22].

Soundness of the Presented Techniques

Theorem 7. The verification techniques OT, VT, and Oval′ are well-structured.

Corollary 8. The verification techniques OT, VT, and Oval′ are sound.

7 Namely, (S3) and (S5) are weaker, and thus less restrictive, here. In [7], instead
of (S3) we required the stronger version Cc,m,c′,m′ � (Vc′,m′ \Xc′,m′)⊆Vc,m, and a
similarly stronger version for (S5). However, the two versions are equivalent when
Ec,m is the minimal set allowed by (S2), i.e., when Ec,m = Vc,m∩Xc,m for all c and
m. In all techniques presented here, Ec,m is minimal in the above sense.

A Unified Framework for Verification Techniques for Object Invariants 431

Our proof of Corollary 8 confirmed soundness claims from the literature. We
found that the semi-formal arguments supporting the original soundness claims
at times missed crucial steps. For instance, the soundness proofs for OT and
VT [27] do not mention any condition relating to (S3) of Def. 5; in our formal
proof, (S3) was vital to determine what invariants still hold after a method
returns. We relegate proofs of the theorems to the companion report [8].

7 Related Work

Object invariants trace back to Hoare’s implementation invariants [12] and mon-
itor invariants [13]. They were popularised in object-oriented programming by
Meyer [24]. Their work, as well as other early work on object invariants [20,21]
did not address the three challenges described in the introduction. Since they
were not formalised, it is difficult to understand the exact requirements and
soundness arguments (see [27] for a discussion). However, once the requirements
are clear, a formalisation within our framework seems straightforward.

The idea of regions and properties is inspired from type and effects sys-
tems [33], which have been extremely widely applied, e.g., to support race-free
programs and atomicity [10].

The verification techniques based on the Boogie methodology [1, 3, 18, 19] do
not use a visible state semantics. Instead, each method specifies in its precondi-
tion which invariants it requires. Extending our framework to Spec# requires two
changes. First, even though Spec# permits methods to specify explicitly which
invariants they require, the default is to require the invariants of its arguments
and all their peer objects. These defaults can be modelled in our framework by
allowing method-specific properties X. Second, Spec# checks invariants at the
end of expose blocks instead of the end of method bodies. Expose blocks can
easily be added to our formalism.

In separation logic [15, 32], object invariants are generally not as important as
in other verification techniques. Instead, predicates specifying consistency criteria
can be assumed/proven at any point in a program [28]. Abstract predicate fami-
lies [29] allow one to do so without violating abstraction and information hiding.
Parkinson and Bierman [30] show how to address the subclass challenge with ab-
stract predicates. Their work as well as Chin et al.’s [4] allow programmers to
specify which invariants a method expects and preserves, and do not require sub-
classes to maintain inherited invariants. The general predicates of separation logic
provide more flexibility than can be expressed by our framework.

We know of only one technique based on visible states that cannot be directly
expressed in our framework: Middelkoop et al. [26] use proof obligations that refer
to the heap of the pre-state of a method execution. To formalise this technique,
we have to generalise our proof obligations to take two properties; one for the pre-
state heap and one for the post-state heap. Since this generality is not needed for
any of the other techniques, we omitted a formal treatment in this paper.

Some verification techniques exclude the pre- and post-states of so-called
helper methods from the visible states [16, 17]. Helper methods can easily be

432 S. Drossopoulou et al.

expressed in our framework by choosing different parameters for helper and
non-helper methods. For instance in JML, X, B, and E are empty for helper
methods, because they neither assume nor have to preserve any invariants.

Once established, strong invariants [11] hold throughout program execution.
They are especially useful to reason about concurrency and security properties.
Our framework can model strong invariants, essentially by preventing them from
occurring in V.

Existing techniques for visible state invariants have only limited support for
object initialisation. Constructors are prevented from calling methods because
the callee method in general requires all invariants to hold, but the invariant
of the new object is not yet established. Fähndrich and Xia developed delayed
types [9] to control call-backs into objects that are being initialised. Delayed
types support strong invariants. Modelling these in our framework is future work.

8 Conclusions

We presented a framework that describes verification techniques for object in-
variants in terms of seven parameters and separates verification concerns from
those of the underlying type system. Our formalism is parametric w.r.t. the
type system of the programming language and the language used to describe
and to prove assumptions. We illustrated the generality of our framework by
instantiating it to describe three existing verification techniques. We identified
sufficient conditions on the framework parameters that guarantee soundness,
and we proved a universal soundness theorem. Our unified framework offers the
following important advantages:

1. It allows a simpler understanding and separation of verification concerns.
In particular, most of the aspects in which verification techniques differ are
distilled in terms of subsets of the parameters of our framework.

2. It facilitates comparisons since relationships between parameters can be ex-
pressed at an abstract level (e.g., criteria for well-structuredness in Def. 5),
and the interpretations of regions and properties as sets allow formal com-
parisons of techniques in terms of set operations.

3. It expedites the soundness analysis of verification techniques, since checking
the soundness conditions of Def. 5 is significantly simpler than developing
soundness proofs from scratch.

4. It captures thedesign spaceof soundvisible statesbasedverification techniques.

We are currently using our framework in developing verification techniques for
static methods, and plan to use it to develop further, more flexible, techniques.

Acknowledgements. We thank Rustan Leino, Matthew Parkinson, Ronald
Middelkoop, John Potter, Yi Lu, as well as the POPL, FOOL and ECOOP
referees for their feedback. This work was funded in part by the Information So-
ciety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project.

A Unified Framework for Verification Techniques for Object Invariants 433

References

1. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification
of object-oriented programs with invariants. JOT 3(6), 27–56 (2004)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: CASSIS. LNCS, pp. 49–69. Springer, Heidelberg (2005)

3. Barnett, M., Naumann, D.: Friends need a bit more: Maintaining invariants over
shared State. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer,
Heidelberg (2004)

4. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO verifica-
tion with separation logic. In: POPL, pp. 87–99. ACM Press, New York (2008)

5. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA, vol. 33(10), pp. 48–64. ACM Press, New York (1998)

6. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. JOT 4(8), 5–32
(2005)

7. Drossopoulou, S., Francalanza, A., Müller, P.: A unified framework for verification
techniques for object invariants. In: FOOL (2008)

8. Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified frame-
work for verification techniques for object invariants. In: Vitek, J. (ed.) ECOOP
2008. LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008),
http://www.doc.ic.ac.uk/∼ajs300m/papers/frameworkFull.pdf

9. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In:
OOPSLA, pp. 337–350. ACM Press, New York (2007)

10. Flanagan, C., Qadeer, S.: A Type and Effect System for Atomicity. In: PLDI, pp.
338–349. ACM Press, New York (2003)

11. Hähnle, R., Mostowski, W.: Verification of safety properties in the presence of
transactions. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T.
(eds.) CASSIS 2004. LNCS, vol. 3362, pp. 151–171. Springer, Heidelberg (2005)

12. Hoare, C.A.R.: Proofs of correctness of data representation. Acta Informatica 1,
271–281 (1972)

13. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun.
ACM 17(10), 549–557 (1974)

14. Huizing, K., Kuiper, R.: Verification of object-oriented programs using class
invariants. In: Maibaum, T.S.E. (ed.) ETAPS 2000 and FASE 2000. LNCS,
vol. 1783, pp. 208–221. Springer, Heidelberg (2000)

15. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: POPL, pp. 14–26. ACM Press, New York (2001)

16. Leavens, G.T., Müller, P.: Information hiding and visibility in interface speci-
fications. In: ICSE, pp. 385–395. IEEE Computer Society Press, Los Alamitos
(2007)

17. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual. Department of Computer Science,
Iowa State University (February 2007), http://www.jmlspecs.org

18. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg (2004)

19. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

20. Liskov, B., Guttag, J.: Abstraction and Specification in Program Development.
MIT Press, Cambridge (1986)

21. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM ToPLAS 16(6),
1811–1841 (1994)

434 S. Drossopoulou et al.

22. Lu, Y., Potter, J.: Soundness of Oval. Priv. Commun. (June 2007)

23. Lu, Y., Potter, J., Xue, J.: Object Invariants and Effects. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 202–226. Springer, Heidelberg (2007)

24. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs (1988)

25. Meyer, B.: Eiffel: The Language. Prentice-Hall, Englewood Cliffs (1992)

26. Middelkoop, R., Huizing, C., Kuiper, R., Luit, E.J.: Invariants for non-hierarchical
object structures. Electr. Notes Theor. Comput. Sci. 195, 211–229 (2008)

27. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Science of Computer Programming 62, 253–286 (2006)

28. Parkinson, M.: Class invariants: the end of the road? In: International Workshop
on Aliasing, Confinement and Ownership (2007)

29. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp.
247–258. ACM Press, New York (2005)

30. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In:
POPL, pp. 75–86. ACM Press, New York (2008)

31. Poetzsch-Heffter, A.: Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich (1997)

32. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society Press, Los Alamitos (2002)

33. Talpin, J.P., Jouvelot, P.: The Type and Effect Discipline. In: LICS, pp. 162–173.
IEEE Computer Society Press, Los Alamitos (1992)

A Appendix—The Framework

Definition 9. A runtime structure is a tuple
RStruct = (Hp,Adr,�,�,dom, cls, fld, upd, new)

where Hp, and Adr are sets, and where
� ⊆ Hp×Hp � ⊆ Hp×Hp dom : Hp → P(Adr)
cls : Hp×Adr ⇀ Cls new : Hp×Adr×Typ → Hp×Adr

fld : Hp×Adr× Fld ⇀ Val upd : Hp×Adr× Fld ×Val → Hp

where Val=Adr ∪ {null} for some element null �∈ Adr. For all h ∈ Hp, ι, ι′ ∈
Adr, v ∈ Val, we require:

(H1) ι ∈ dom(h)⇒ ∃c.cls(h, ι) = c

(H2) h � h′ ⇒ dom(h) = dom(h′), cls(h, ι) = cls(h′, ι)

(H3) h � h′ ⇒ dom(h) ⊆ dom(h′), ∀ι ∈ dom(h).cls(h, ι) = cls(h′, ι)

(H4) upd(h, ι, f, v) = h′ ⇒ h � h′ fld(h′, ι, f) = v,

ι �= ι′ or f �= f ′ ⇒ fld(h′, ι′, f ′) = fld(h, ι′, f ′)

(H5) new(h, ι, t) = h′, ι′ ⇒ h � h′, ι′ ∈ dom(h′)\dom(h)

Definition 10. E[·] and F [·] are defined as follows:
E[·] ::= [·] | E[·].f | E[·].f = e | ι.f = E[·] | E[·].m(e) | ι.m(E[·]) | E[·] prv | ret E[·]
F [·] ::= [·] | F [·].f | F [·].f = e | ι.f = F [·] | F [·].m(e) | ι.m(F [·]) | F [·] prv | σ ·F [·]

| call F [·] | ret F [·]

A Unified Framework for Verification Techniques for Object Invariants 435

Definition 11. A programming language is a tuple
PL = (Prg,RStruct,R,P)

where R and P are sets, and Prg is a set where every Π ∈ Prg is a tuple

Π =
F , M , B, <: (class definitions) �, [[·]] (inclusion and interpretations)
|=,� (invariant and type satisfaction)

with signatures:
F : Cls× Fld ⇀ Typ×Cls M : Cls×Mthd ⇀ Typ×Typ

B : Cls×Mthd ⇀ Expr×Cls

<: ⊆ Cls×Cls ∪ Typ×Typ � ⊆ R×R

[[·]] : R×Hp×Adr→ P(Adr) [[·]] : P×Hp×Adr→ P(Adr×Cls)
|= ⊆ Hp×Adr×Cls � ⊆ (Env × Expr ∪ Hp×RExpr)×Typ

where every Π ∈ Prg must satisfy the constraints:
(P1) F (c, f) = t, c′ ⇒ c <: c′ (P2) B(c, m) = e, c′ ⇒ c <: c′

(P3) F (cls(h, ι), f) = t, ⇒ ∃v.fld(h, ι, f) = v (P4) 1 � 2 ⇒ [[1]]h,ι ⊆ [[2]]h,ι

(P5) [[]]h,ι ⊆ dom(h) (P6) h � h′ ⇒ [[]]h,ι ⊆ [[]]h′ ,ι

(P7) c <: ′ c′ ⇒ � ′, c <: c′

Definition 12. Stack σ is valid w.r.t. heap h in a verification technique V ,
denoted by h �V σ, iff:

σ=σ1 ·σ ·σ′ ·σ2 ⇒ σ′ = (ι, , c′, m), h, σ � ι : , c′ <: c, � Cσ,c,m

Definition 13. The function stack : RExpr → Stk
∗ yields the stack of a

runtime expression:

stack(E[er]) =
σ ·stack(e′r) if er = σ ·e′r
ε otherwise

Definition 14. For every program, the judgement:
�wf : (Hp× Stk× Stk×R) ∪ (Env ×Hp× Stk) ∪ Prg is defined as:

– �wf Π ⇔

(F1) M (c, m) = t, t′ ⇒ ∃e. B(c, m) = e, , c, m, t � e : t′

(F2) c <: c′, F (c′, f) = t, c′′ ⇒ F (c, f) = t′, c′′, t′ = t

(F3) c <: c′, M (c, m) = t, t′, M (c′, m) = t′′, t′′′ ⇒ t = t′′, t′ = t′′′′

(F4) c <: c′, B(c′, m) = e′, c′′ ⇒ ∃c′′′. B(c, m) = e, c′′′, c′′′ <: c′′

– h, σ �wf σ′ : ⇔ σ′ = (ι, , ,), h, σ � ι :

– Γ �wf h, σ ⇔ ∃c, m, t, ι, v. Γ = c, m, t, σ = (ι, v, c, m),

cls(h, ι) <: c, h, σ � v : t

Definition 15. A programming language PL has a sound type system if all
programs Π ∈ PL satisfy the constraints:

(T1) Γ � e : t, t <: t′ ⇒ Γ � e : t′ (T2) h � er : t, t <: t′ ⇒ h � er : t′

(T3) h � er : t, h � h′ ⇒ h′ � er : t (T4) h � σ ·ι : c ⇒ cls(h, ι) <: c
(T5) h � σ ·ι.m(v) : t ⇒ h � σ ·ι : c M (c, m) = t′, t, h � σ ·v : t′

(T6) σ = (ι, , ,), h � σ ·ι′ : ⇒ ι′ ∈ [[]]h,ι

(T7) Γ � e : c, Γ � h, σ ⇒ h � σ ·e : c
(T8) �wf Π, h, σ � er : t er, h −→ e′r, h′ ⇒ h′, σ � e′r : t

436 S. Drossopoulou et al.

(ad-null)

h �V σ ·null

(ad-addr)
ι ∈ dom(h)

h �V σ ·ι

(ad-new)

h �V σ ·new t

(ad-Var)

h �V σ ·x
(ad-this)

h �V σ ·this

(ad-verEx)

h �V F [verfExc]

(ad-ass)
h, σ � er : c′

F (c′, f) = , c
� Uσ,c

h �V σ ·er

h �V σ ·e′r
h �V σ ·er.f = e′r

(ad-fld)
h �V σ ·er

h �V σ ·er.f

(ad-end)
h �V σ′ ·v

h �V σ ·σ′ ·ret v

(ad-call)
h, σ � er : c′

B(c′, m) = , c
� Cσ,c,m

h �V σ ·er

h �V σ ·e′r
h �V σ ·er.m(e′r prv Bσ,)

(ad-call-2)
h, σ � v : c′

B(c′, m) = , c
h |= Bσ, , σ
� Cσ,c,m

h �V σ ·v
h �V σ ·v′

h �V σ ·v.m(v′)

(ad-start)
h �V σ′ ·e

h �V σ ·σ′ ·call e prv Eσ′

(ad-frame)
h �V σ′ ·er

h �V σ ·σ′ ·ret er prv Eσ′

Fig. 9. Well-verified runtime expressions

B Appendix—The Instantiations

Müller et al. We assume an additional heap operation, which gives an object’s
owner: own : Hp×Adr → Adr×Cls.
Regions are interpreted as follows:

[[self]]h,ι = {ι} [[any]]h,ι = dom(h)

[[rep〈c〉]]h,ι = ι′ | own(h, ι′) = ι c [[emp]]h,ι = ∅
[[peer]]h,ι = ι′ | own(h, ι′) = own(h, ι) [[1 � 2]]h,ι = [[2]]h,ι ∪ [[2]]h,ι

Properties are interpreted as follows:

[[self〈c〉]]h,ι = {(ι, c) | cls(h, ι) <: c} [[emp]]h,ι = ∅
[[peer〈c〉]]h,ι = {(ι′, c′) | own(h, ι′) = own(h, ι) ∧ vis(c′, c)}

[[rep]]h,ι = {(ι′, c′) | own(h, ι′)= ι } [[rep+]]h,ι = [[rep]]h,ι ∪ [[rep; rep+]]h,ι

[[own]]h,ι ={own(h, ι)} [[own+]]h,ι = [[own]]h,ι ∪ [[own; own+]]h,ι

[[super〈c〉]]h,ι = {(ι, c′) | c <: c′} [[1; 2]]h,ι = (ι′,c)∈[[1]]h,ι
[[2]]h,ι′

The predicate intrsPeer(), is defined as:
intrsPeer(emp) = intrsPeer(rep〈c〉) = false
intrsPeer(self) = intrsPeer(peer) = intrsPeer(any) = true
intrsPeer(1 � 2) = intrsPeer(1) || intrsPeer(2)

Lu et al. We interpret regions as follows:

[[emp]]h,ι =∅ [[self]]h,ι ={ι} [[� ′]]h,ι =[[]]h,ι ∪ [[′]]h,ι

[[c〈K〉]]h,ι = ι′ | h � ι′ : c〈ι〉,∀i. ιi ∈ [{Ki}]h,ι

A Unified Framework for Verification Techniques for Object Invariants 437

As usual in ownership systems, h � ι : c〈ι〉 describes that ι points to an object of
a subclass of c〈ι〉, while h � ι′ ι expresses that ι′ is owned by ι, and h � ι′ ∗ ι
is the transitive closure. We interpret properties as follows:

[[emp]]h,ι = [[top]]h,ι = [[bot]]h,ι = ∅ [[self]]h,ι = {(ι, c) | ...}
[[K]]h,ι = (ι′, c) | ι′ ∈ [{K}]h.ι, cls(h, ι′) <: c

[[K;]]h,ι =
all(h) K= top, = rep∗ ∨K=bot, =own∗

(ι′,c)∈[[K]]h,ι
[[]]h,ι′ ∈ {rep∗, own∗}

[[rep∗]]h,ι = ι′ | h � ι′ �∗ ι [[own∗]]h,ι = ι′ | h � ι �∗ ι′

[{X}]h,ι = ιi | h � ι : c〈ι〉, c has formal parameters X̄, X = Xi

The owner extraction function O is defined as:

O ,c =

K1, if = c〈K〉
X1, if = self, class c has formal parameters X̄.

⊥ otherwise

Extensible Universes for Object-Oriented

Data Models

Achim D. Brucker1 and Burkhart Wolff2

1
SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

achim.brucker@sap.com
2 Universität des Saarlandes, 66041 Saarbrücken, Germany

wolff@wjpserver.cs.uni-sb.de

Abstract. We present a datatype package that enables the shallow em-
bedding technique to object-oriented specification and programming lan-
guages. This datatype package incrementally compiles an object-oriented
data model to a theory containing object-universes, constructors, acces-
sors functions, coercions between dynamic and static types, characteristic
sets, their relations reflecting inheritance, and the necessary class invari-
ants. The package is conservative, i. e., all properties are derived entirely
from axiomatic definitions. As an application, we use the package for an
object-oriented core-language called IMP++, for which correctness of a
Hoare-Logic with respect to an operational semantics is proven.

1 Introduction

While object-oriented programming is a widely accepted programming para-
digm, theorem proving over object-oriented programs or object-oriented spec-
ifications is far from being a mature technology. Classes, inheritance, subtyp-
ing, objects and references are deeply intertwined and complex concepts that
are quite remote from the platonic world of first-order logic or higher-order
logic (HOL). For this reason, there is a tangible conceptual gap between the ver-
ification of functional and imperative programs on the one hand and imperative
and object-oriented programs on the other.

Among the existing implementations of proof environments dealing with sub-
typing and references, two categories can be distinguished: 1) pre-compilation into
standard logic, and2)deep-embeddings into ameta-logic. As pre-compilation tools,
for example, we consider Boogie for Spec# [2, 14] and tools based on the Java
Modeling Language (JML) such as Krakatoa [15]. The underlying idea is to com-
pile object-oriented programs into standard imperative ones and to apply a ver-
ification condition generator on the latter. While technically sometimes very ad-
vanced, the foundation of these tools is quite problematic: The compilation in itself
is not verified, and it is not clear if the generated conditions are sound with respect
to the (usually complex) operational semantics. Among the tools based on deep-
embeddings, there is a sizable body of literature on formal models of Java-like lan-
guages (e. g., [5, 10, 11, 21, 25]). In a deep embedding of a language semantics, syn-
tax and types are represented by free datatypes. As a consequence, derived calculi

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 438–462, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extensible Universes for Object-Oriented Data Models 439

inherit a heavy syntactic bias in form of side-conditions over binding and typing
issues. This is unavoidable if one is interested in meta-theoretic properties such
as type-safety; however, when reasoning over applications and not over language
tweaks, this advantage turns into a major obstacle for efficient deduction. Thus,
while proofs for type-safety, soundness of Hoare-Calculi and even soundness of ver-
ification condition generators are done, none of the mentioned deep embeddings
has been used for substantial proof work in applications.

In contrast, the shallow embedding technique has been used for semantic rep-
resentations such as HOL itself (in Isabelle/Pure), for HOLCF (in Isabelle/HOL)
allowing reasoning over Haskell-like programs [17] or, for HOL-Z [7]. These em-
beddings have been used for substantial applications (e. g., [3]). The essence of a
shallow embedding is to represent object-language binding and typing directly
in the binding and typing machinery of the meta-language. Thus, many side-
conditions are simply unnecessary; type-safety, for example, has been proven
implicitly when deriving computational rules from semantic definitions. Since
implicit side-conditions are “implemented” by built-in mechanisms, they are
handled orders of magnitude faster compared to an explicit treatment.

At first sight, it seems impossible to apply the shallow embedding technique to
object-oriented languages in HOL. In this technique, an expression E of type T in
some object-oriented language must be translated into some HOL-expression E of
HOL-type T . The translation should preserve well-typedness in both ways. How-
ever, by “translation” we do not mean a simple one-to-one conversion; rather,
the translation might use the object-oriented type system for a pre-processing
step, making, for example, implicit coercions between subtypes and supertypes
explicit. Still, this requires a representation where subtyping is embedded into
parametric polymorphism.

The type representation problem becomes apparent when defining the most
fundamental concept of an object-oriented language, namely its underlying state
called object structure. Objects are abstract representations of pieces of memory
that are linked via references (object identifiers, oid) to each other. Objects
are tuples of class attributes, i. e., elementary values like Integers or Strings or
references to other objects. The type of these tuples is viewed as the type of
the class they are belonging to. Obviously, object structures are maps of type
oid ⇒ U relating references to objects living in a universe U of all objects.

Instead of constructing such a universe globally for all data-models (which
is either untyped or “too large” for (simply) typed HOL, where all type sums
must be finite), one could think of generating an object universe only for each
given system of classes. Ignoring subtyping and inheritance for a moment, this
would result in a universe U 0 = A + B for some class system with the classes
A and B. Unfortunately, such a construction is not extensible: If we add a
new class to an existing class system, say D, then the “obvious” construction
U 1 = A+B+D results in a different type to U 0, making their object structures
logically incomparable. Properties, that have been proven over U 0 will not hold
over U 1. Thus, such a naive approach rules out an incremental construction of
class systems, which makes it clearly unfeasible.

440 A.D. Brucker and B. Wolff

As contributions of this paper, we will present a novel universe construction
which represents subtyping within parametric polymorphism in a preserving
manner and which is extensible. This construction is used in a novel kind of
datatype-package (implemented for Isabelle/HOL), i. e., a kind of logic compiler
that generates for each class system and its extensions (for example, given as
class models in a standardized format like XMI) various conservative defini-
tions representing an object-oriented data theory. This includes the definition
of constructors and accessors, coercions between types, tests, characteristic sets
of objects. On this basis, properties reflecting subtyping and proof principles
like class invariants are automatically derived. Further, we apply this datatype-
package for a small imperative language with object-oriented features and show
the soundness of a Hoare-Calculus.

2 Formal and Technical Background

Isabelle [20] is a generic, LCF-style theorem prover implemented in SML. For our
objects-oriented datatype package, we use the possibility to build SML programs
performing symbolic computations over HOL formulae in a logically safe way.
Isabelle/HOL offers support for checks for conservatism of definitions, datatypes,
primitive and well-founded recursion, and powerful generic proof engines based
on rewriting and tableaux provers.

Higher-order logic (HOL) [1] is a classical logic with equality enriched by to-
tal polymorphic higher-order functions. It is more expressive than first-order
logic, e. g., induction schemes can be expressed inside the logic. HOL is based
on the typed λ-calculus, i. e., the terms of HOL are λ-expressions. The appli-
cation is written by juxtaposition E E′, and the abstraction is written λx. E.
Types may be built from type variables (like α, β, optionally annotated by type
classes, e. g., α ::order) or type constructors (e. g., bool). Type constructors may
have arguments (e. g., α list). The type constructor for the function space is
written infix: α ⇒ β; multiple applications like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .)
are also written as [τ1, . . . , τn] ⇒ τn+1. HOL is centered around the extensional
logical equality = with type [α, α] ⇒ bool, where bool is the fundamen-
tal logical type. The logical connectives ∧ , ∨ , → of HOL have type
[bool, bool] ⇒ bool, ¬ has type bool ⇒ bool. The quantifiers ∀ . and ∃ .
have type [α set, α ⇒ bool] ⇒ bool. Quantifiers may range over higher order
types, i. e., functions.

The type discipline rules out paradoxes such as Russels paradox in untyped
set theory. Sets of type α set can be defined isomorphic to functions of type
α ⇒ bool; the element-of-relation ∈ has the type [α, α set] ⇒ bool and
corresponds basically to the application; in contrast, the set comprehension { | }
has type [α set, α ⇒ bool] ⇒ α set and corresponds to the λ-abstraction.

Isabelle supports conservative theory extensions schemes; this means that a
theory (viewed as a pair of a signature Σ and a set of axioms Φ) can only by
extended by type-declarations, constant-declaration and axioms with a partic-
ular form. For example, the conservative extensions of a constant definition is

Extensible Universes for Object-Oriented Data Models 441

constrained to a constant declaration c :: τ and an axiom c = E where c is fresh,
i. e., not contained in the previous signature, E does neither contain free (type)
variables nor c (these syntactic conditions are checked by Isabelle). For conser-
vative extension schemes such as constant definitions, the extended theory is
consistent (“has models”) if the original theory is consistent [12].

For our work, we assume a type class α :: bot for all types α that provide
an exceptional element ⊥; for each type in this class a test for definedness is
available via def x ≡ (x �= ⊥). The HOL type constructor τ⊥ assigns to each
type τ a type lifted by ⊥. Thus, each type α⊥ is member of the class bot. The
function
� : α → α⊥ denotes the injection, the function � : α⊥ → α its inverse
for defined values.

3 Typed Object Universes in an Object Store

In this section, we focus on the map associating an expression E of type T to
a HOL expression E of type T . The cornerstones of this map are the (func-
tional) constructors,1 selectors, tests for dynamic type and kind as well as cast
operations between objects along the class hierarchy.

As a pre-requisite, we have to define the families U i of object universes. Each
U i comprises all value types and an extensible class type representation induced
by a class hierarchy. To each class, a class type (like Node or Object) is associated
which represents the set of object instances or objects. The extensibility of a
universe type is reflected by “holes” (polymorphic variables), that can be filled
when “adding” extensions to a class. Our construction ensures that U i+1 is just
a type instance of U i (where U (i+1) is constructed by adding new classes to U i).
Thus, properties proven over object systems over U i remain valid with respect
to U i+1, see Figure 1 for an illustration of the main ideas of the construction
we present in the following.

A Formal Framework of Object Structure Encodings. We will present
the framework of our object encoding together with a small example: assume
a class Node with an attribute i of type integer and two attributes left and
right of type Node, and an inherited class Cnode (i. e., Cnode is a subtype of
Node) with an attribute color of type Boolean.

In the following we define several type sets which all are subsets of the types
of the HOL type system. These sets, although denoted in usual set-notation, are
a meta-theoretic construct, i. e., they cannot be formalized in HOL. For the class
attributes we define:

Definition 1 (Attribute Types). The set of attribute types A is defined
inductively as follows:
1. {Boolean, Integer, Real, String, oid} ⊂ A, and
2. {a Set, a Sequence, a Bag} ⊂ A for all a ∈ A.

1 These constructors only create a value, in contrast to constructors in object-oriented
languages that additionally bind this value to a fresh oid in the memory.

442 A.D. Brucker and B. Wolff

A A βObject

αA

U 1
(αA,βObject) = A× αA⊥ + βObject

U 2
(αB ,αC ,βA,βObject) = A× (

=αA
︷ ︸︸ ︷

B × αB⊥ + C × αC⊥ + βA)⊥

(a) A single class A represented by the type sum A× αA
⊥ + βObject . The type variable

αA
⊥ allows for introducing subclasses of A and the type variable βObject allows for

introducing new top-level classes.

A

B C

A βObject

B

αB

C βA

αC

U 2
(αB ,αC ,βA,βObject) = A× (

=αA
︷ ︸︸ ︷

B × αB⊥ + C × αC⊥ + βA)⊥
+ βObject

(b) Extending the previous class model simultaneously with two direct subclasses of
A is represented by instantiating the type variable αA of U 1

(αA,βObject).

Fig. 1. Assume we have a model consisting only of one class A which “lives” in the
universe U 1

(αA,βObject) that we want to extend simultaneously with two new subclasses,
namely B and C. As both new classes are derived from class A, we construct a local type
polynomial B×αB

⊥ +C×αC
⊥ +βA. This type polynomial is used for instantiating type

variable αA. This process results in the universe U 2
(αB ,αC ,βA,βObject) for the final class hi-

erarchy. In particular, the universe U 2
(αB ,αC ,βA,βObject) is a type instance of U 1

(αA,βObject).

Thus, properties that have been proven over the initial universe U 1
(αA,βObject) are still

valid over the extended universe U 2
(αB ,αC ,βA,βObject).

In principle, classes are Cartesian products of its attribute types extended by
an abstract type ensuring uniqueness.

Definition 2 (Tag Types). For each class C a tag type t ∈ T is associated.
The set T is called the set of tag types.

Tag types allow for building a strongly typed universe (with regard to the object-
oriented type system), e. g., for class Node we assign an abstract datatype Nodet

with the only element Nodekey. For each class, we introduce a base class type:

Definition 3 (Base Class Types). The set of base class types B is defined
as follows:
1. classes without attributes are represented by (t×unit) ∈ B, where t ∈ T and

unit is a special HOL type denoting the empty product.
2. if t ∈ T is a tag type and ai ∈ A for i ∈ {0, . . . , n} then (t×a0×· · ·×an) ∈ B.

Thus, the base object type of class Node is Nodet × Integer× oid× oid and of
class Cnode is Cnodet × Boolean.

Extensible Universes for Object-Oriented Data Models 443

Without loss of generality, we assume in our object model a common supertype
of all objects. In the case of OCL, this is OclAny, in the case of Java this is Object.
This assumption is no restriction because such a common supertype can always
be added to a given class structure.

Definition 4 (Object). Let Objectt ∈ T be the tag of the common supertype
Object and oid the type of the object identifiers,
1. in the non-referential setting, we define α Object := (Objectt × α⊥).
2. in the referential setting, we define α Object :=

(
(Objectt × oid)× α⊥

)
.

In the referential setting, object generator functions can be defined such that
freshly generated object-identifiers to an object are also stored in the object
itself; thus, the construction of reference types and of referential equality is fairly
easy. However, for other object-oriented semantics the non-referential setting is
appropriate, where objects are viewed more like values. The consequences of this
choice is discussed elsewhere in more detail [8]. Now we have all the foundations
for defining the type of our family of universes formally:

Definition 5 (Universe Types). The set of all universe types Uref resp. Unref
(abbreviated Ux) is inductively defined by:
1. U 0

α ∈ Ux is the initial universe type with one type variable (hole) α.
2. U(α0,...,αn,β1,...,βm) ∈ Ux, n, m ∈ N, i ∈ {0, . . . , n} and c ∈ B then

U(α0,...,αn,β1,...,βm)

[
αi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ Ux

3. U(α0,...,αn,β1,...,βm) ∈ Ux, n, m ∈ N, i ∈ {0, . . . , n}, and c ∈ B then

U(α0,...,αn,β1,...,βm)

[
βi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ Ux

Here, item 2 covers the special case of introducing the first subtype by instan-
tiating the α-variable and item 3 covers the general case of introducing further
subtypes by instantiating the corresponding β-variable.

The initial universe U 0
α represents the common supertype (i. e., Object) of all

classes, i. e., a simple definition would be U 0
α = αObject. However, we will need

the ability to also store value types: Values = Real+Integer+Boolean+String.
Therefore, we define the initial universe type by U 0

α = α Object + Values.
Continuing our example we extend the initial universe U 0

(α), in parallel, with the
classes Node and Cnode. This extension leads to the following successor universe
type:

U 1
(αC,βC,βN) ≡

(
(Nodet × Integer× oid× oid)

×
(
(Cnodet × Boolean)× (αC)⊥ + βC

)
⊥ + βN

)
Object+ Values

We pick up the idea of a universe representation without values for a class with
all its extensions (subtypes). For each class we construct a type that describes
this class and all its subtypes. They can be seen as paths in the tree-like structure
of universe types, collecting all attributes in Cartesian products and pruning the
type sums and β-alternatives.

444 A.D. Brucker and B. Wolff

Definition 6 (Class Type). The set of class types C is defined as follows: Let
U be the universe covering, among others, class Cn, and let C0, . . . , Cn−1 be the
supertypes of C, i. e., Ci is inherited from Ci−1. The class type of C is defined
as:
1. Ci ∈ B, i ∈ {0, . . . , n} then

C 0
α =

(
C0 ×

(
C1 ×

(
C2 × · · · × (Cn × α⊥)⊥

)
⊥
)
⊥

)
⊥
∈ C,

2. UC ⊃ C, where UC is the set of universe types with U 0
α = C 0

α .

Thus in our example we construct for the class type of class Node the type
abbreviation:

(αC , βC) Node =(
(Nodet×Integer×oid×oid)×

(
(Cnodet×Boolean)×(αC)⊥+βC

)
⊥
)
Object .

Here, αC allows for extension with new classes by inheriting from Cnode while
βC allows for direct inheritance from Node.

Alternatively, one could omit the lifting of the base types of the supertypes
in the definition of class types. This would lead to:

C 0
α =

(
C0 ×

(
C1 ×

(
C2 × · · · × (Cn × α⊥)

)))
⊥

We see our definition as the more general one, since it allows for “partial ob-
jects” potentially relevant for other object-oriented semantics for programming
languages. For example Java, for which partial class objects may occur during
construction. This paves the way for establishing the definedness of an object
step by step.

Furthermore, since the injections and projections are only built to define at-
tribute accessors, partial objects are hidden in our language.

In both cases the outermost ⊥ reflect the fact that class objects may also be
undefined, in particular after projecting them from some term in the universe or
failing type casts. This choice has the consequence that constructor arguments
may be undefined.

Handling Instances. For each class we provide injections and projects for
each class. In the case of Object these definitions are quite easy, e. g., using the
constructors Inl and Inr for type sums we can easily insert an Object object into
the initial universe via

mkObject o ≡ Inl o with type α Object → U 0
α

and the inverse function for constructing an Object object out of an universe
can be defined as follows:

getObject u ≡
{

k if u = Inl k
ε k. true if u = Inr k

with type U 0
α → α Object.

Extensible Universes for Object-Oriented Data Models 445

In the general case, the definitions of the projections are a little bit more com-
plex, but follows the same schema: for the injections we have to find the “right”
position in the type product and insert the given object into that position. Fur-
ther, we define in a similar way projections for all class attributes. For example,
we define the projections for accessing the left attribute of the class Node:

obj . left(l) ≡ (fst ◦ snd ◦ snd ◦ fst) �base obj

with type (α1, β) Node → oid⊥ and where base is a variant of snd over lifted
tuples:

basex ≡
{

b if x =
(a, b)�,
⊥ otherwise.

This construction is not yet type-safe. Nevertheless, this can be easily extended
to a type-safe one by adding a unique abstract type for each class type (see
Section 4 for details).

In a next step, we define type test functions; for universe types we need to
test if an element of the universe belongs to a specific type, i. e., we need to test
which corresponding extensions are defined. This is done for Object via

isUnivObject u ≡
{

true if u = Inl k
false if u = Inr k

with type U 0
α → bool.

For class types we define two type tests, an exact one that tests if an object is
exactly of the given dynamic type and a more liberal one that tests if an object
is of the given type or a subtype thereof. Testing the latter one, which is called
kind in the OCL standard, is quite easy. We only have to test that the base type
of the object is defined, e. g., not equal to ⊥:

isKindObject o ≡ def o with type α Object → bool.

An object is exactly of a specific dynamic type, if it is of the given kind and the
extension is undefined, e. g.:

isTypeObject o ≡ isKindObject∧¬
(
(def ◦ base) o

)
with type α Object → bool.

The type tests for user defined classes are defined in a similar way by testing the
corresponding extensions for definedness.

Finally, we define coercions, i. e., ways to type-cast classes along their subtype
hierarchy. Thus we define for each class a cast to its direct subtype and to its
direct supertype. We need no conversion on the universe types where the subtype
relations are handled by polymorphism. Therefore we can define the type casts
as simple compositions of projections and injections, e. g.:

Node[Object] ≡ getObject ◦mkNode with type (α1, β) Node → (α1, β1) Object,
Object[Node] ≡ getNode ◦mkObject with type (α1, β1) Object → (α1, β1) Node.

446 A.D. Brucker and B. Wolff

Universe

Object ValuesObject Values

A

B

C

A(0)
[OclAny]

B(0)
[A]

C(0)
[B]

OclAny(0)
[A]

A(0)
[B]

B(0)
[C]

mk(0)
A

mk(0)
B

mk(0)
C

get(0)
A

get(0)
B

get(0)
C

Fig. 2. The type casts, e. g., B[C] allow for the conversion of a type to its direct successor
or predecessor in the type hierarchy. The injections, e. g., mkB convert a class type to
the universe type and the projections, e. g., getB, convert a universe type to a concrete
class type. For a universe without values, the class type and the universe type of the
top most class are identical. Here, the package Universe represents the universe, i. e.,
the top level class (Object) and the primitive types (Values).

These type-casts are changing the static type of an object, while the dynamic
type remains unchanged. Figure 2 summarizes this construction for the three
classes A, B, and C.

Note, for a universe construction without values, e. g., U 0
α = α Object, the

universe type and the class type for the common supertype are the same. In
that case there is a particular strong relation between class types and universe
types on the one hand and on the other there is a strong relation between the
conversion functions and the injections and projections function. In more detail,
one can understand the projections as a cast from the universe type to the given
class type and the injections are inverse.

Now, if we build theorems over class invariants (based finally on these projec-
tions, injections, casts, characteristic sets, etc.), it will remain valid even if we
extend the universe via α and β instantiations.

3.1 Properties of Elementary Objects

Based on the presented definitions, our object-oriented datatype package proves
that our encoding of object-structures is a faithful representation of object-
oriented (e. g., in the sense of language like Java or Smalltalk or the UML

standard [22]). These theorems are proven for each model, e. g., during loading

Extensible Universes for Object-Oriented Data Models 447

a specific class model. This is similar to other datatype packages in interactive
theorem provers. Further, these theorems are also a prerequisite for successful
reasoning over object structures.

In the following, we assume an arbitrary model comprising the classes A, B
and C where B is a subclass of A and C is a subclass of B (recall Figure 2). We
start by proving this subtype relation for both our class type and universe type
representation:

isUniv(0)
A univ

isUniv(0)
B univ

isType(0)
B obj

isKind(0)
A obj

Moreover, we also show that we can switch between the universe representations
and object representation without losing information, in fact, both type systems
are isomorphic:

isUniv(0)
A univ

mk(0)
A (get(0)A univ) = univ

isType(0)
A obj

get(0)A (mk(0)
A obj) = obj

isType(0)
B obj

isUniv(0)
A (mk(0)

A obj)

isUniv(0)
A univ

isType(0)
A (get(0)A univ)

Moreover, we can “re-cast” an object safely, i. e., up and down casts are idem-
potent. However, casting an object deeper in the subclass hierarchy than its
dynamic type results in undefinedness:

isType(0)
A obj

obj (0)
[B] = ⊥

isType(0)
B obj(

(obj (0)
[A])

(0)
[B]

)
= obj

and also, the cast operations are strict and transitive, e. g.:

⊥(0)
[A] = ⊥

isType(0)
C obj

(obj (0)
[B])

(0)
[A] = obj (0)

[A]

Further, for all class types c, both isType(0)
c ⊥ = false and isKind(0)

c ⊥ = false
are valid. Summarizing, these derived rules show that our encoding of inheritance
establishes a subtype relation. Moreover, the (informal) relations between classes
one would expect from languages like UML, Java, or Spec#, also hold in our
encoding.

Our datatype package also derives similar properties for the injections and
projections into attributes automatically. For example, assume the class A has
two attributes a and b then we derive among others:

obj �= ⊥
(obj . set(0)a x). a(0) = x (obj . set(0)a x). b(0) = obj . b(0)

448 A.D. Brucker and B. Wolff

(obj . set(0)a x). set(0)a y = obj . set(0)a y

(obj . set(0)a x). set(0)b y = (obj . set(0)b y). set(0)a x

As we use a shallow embedding of object-oriented data-structures into HOL,
these properties cannot be proven as meta-theoretic property of our encoding.
Instead, our datatype package proves these properties, fully automatically, dur-
ing the import of an object-oriented data models.

4 The Package

The previously described construction is the foundation of the datatype package
of HOL-OCL [9, 6, 8]. For a given class system, described as UML class model,
the datatype package of HOL-OCL generates may definitions (the subset of de-
finitions presented in the previous section is marked by ≡). Technically, our
datatype package supports the standardized XMI format as input (see [8] for
implementation details). Besides, it proves automatically several theorems over
the imported specification; these theorems are proven for each class, e. g., during
loading a specific class model. This includes properties of the object structure,
e. g., that our conversion between universe representations and object represen-
tation is lossless. This property is characterized by the following two properties,
which are, among others, proven automatically by our datatype package:

isKindC o =⇒ getC(mkC o) = o and isUnivC u =⇒ mkC(getC u) = u .

Our construction works also for the encoding of recursive object structures,
including the support for class invariants. First we must introduce some ba-
sic notion: for arbitrary binary HOL operations op, we write σ � P op Q for
�P σop�Qσ. Moreover, we write σ � ∂ x (“x is defined in state σ”) for def(xσ),
and σ � �∂ x for the contrary. For constant symbols we will simplify the presen-
tation: for example, we will write 5 for λ σ. 5,
true� for λσ.
true�, etc.

Now we approach our main goal to provide a type-safe embedding of the
accessors, and, consequently, of the whole assertion language.

We define the store as a partial map based on the concept of object universes:

α St := oid ⇀ Uα .

Since all operations over our object store will be parametrized by α St, we in-
troduced the following type synonym:

Vα(τ) := α St ⇒ τ .

Thus we can define type-safe accessor functions, i. e., object identifiers (ref-
erences) are completely encapsulated. For example, the function for accessing

Extensible Universes for Object-Oriented Data Models 449

the left attribute of an object of class Node in a system state σ is defined as
follows:

obj . left ≡ λσ.

{
getNode u if σ(obj . left(l)) =
u�
⊥ otherwise.

For accessor with type set or sequence, we provide definitions that de-reference
each element of, e. g., a set of object identifiers and build a set of typed objects.

The object-language accessor .left of type Node, which is in fact a function
of type Node → Node, is now represented by our construction as follows:

. left ::V(αC ,βC)((αC , βC) Node) ⇒ V(αC ,βC)((αC , βC) Node) .

Thus, the representation map is injective on types; subtyping is represented by
type-instantiation on the HOL-level. However, due to our universe construction,
the theory on accessor, casts, etc. is also extensible.

All other operations like casting, type- or kind-check are lifted equivalently; in
the following, we will always assume these lifted versions since due to our typing
discipline, no confusion may arise. These definitions are also generated by our
package and “lifted” versions of the theorems are derived.

We turn now to our construction of characteristic sets and the derivation of
class invariant theorems. Recall our previous example, where the class Node de-
scribes a potentially infinite recursive object structure. Assume that we want to
constrain the attribute i of class Node to values greater than 5. This is expressed
by the following function approximating the set of possible instances of the class
Node and its subclasses:

NodeKindF :: U 1
(αC,βC,βN) St ⇒ U 1

(αC,βC,βN) St ⇒ (αC , βC) Node set

⇒ U 1
(αC,βC,βN) St ⇒ (αC , βC) Node set

NodeKindF ≡ λσ. λX.
{
obj
∣∣ σ � ∂ obj .i ∧ σ � obj .i > 5
∧ σ � ∂ obj .left ∧ σ � (obj .left) ∈ X

∧ σ � ∂ obj .right∧ σ � (obj .right) ∈ X
}

In a setting with subtyping, we need two characteristic type sets, a more
liberal one, the characteristic kind set, and narrower one, the characteristic type
set. By adding the conjunct σ � obj isTypeOf(Node) (essentially a notation
for the previously defined type tests), we can construct another approximation
function (which has obviously the same type as NodeKindF):

NodeTypeF ≡ λσ. λX.
{
obj
∣∣ (obj ∈ (NodeKindF σ X))

∧ σ � obj isTypeOf(Node)
}

Thus, the characteristic kind set for the class Node can be defined as the greatest
fixed-point over the function NodeKindF:

NodeKindSet :: U 1
(αC,βC,βN) St ⇒ U 1

(αC,βC,βN) St ⇒ (αC , βC) Node set

NodeKindSet ≡ λσ. (gfp(NodeKindF σ)) .

450 A.D. Brucker and B. Wolff

For the characteristic type set we proceed analogously. We infer a class invariant
theorem:

σ � obj ∈ NodeKindSet = σ � ∂ obj .i ∧ σ � obj .i > 5
∧ σ � ∂ obj .left ∧ σ � (obj .left) ∈ NodeKindSet
∧ σ � ∂ obj .right∧ σ � (obj .right) ∈ NodeKindSet

and prove automatically by monotonicity of the approximation functions and
their point-wise inclusion:

NodeTypeSet ⊆ NodeKindSet

This kind of theorem remains valid if we add further classes in a class system.
Now we relate class invariants of subtypes to class invariants of supertypes.

Here, we use coercion functions described in the previous section; we write o[Node]

for the object o converted to the type Node of its superclass. The trick is done
by defining a new approximation for an inherited class Cnode on the basis of
the approximation function of the superclass:

CnodeF ≡ λσ. λX.
{
obj
∣∣ obj [Node] ∈ (NodeKindF σ (λ o. o[Node]) � X)) ∧ · · ·

}
where the . . . stand for the constraints specific to the subclass.

Similar to [23] we can handle mutual-recursive datatype definitions by en-
coding them into a type sum. However, we already have a suitable type sum
together with the needed injections and projections, namely our universe type
with the make and get methods for each class. The only requirement is that
a set of mutual recursive classes must be introduced “in parallel,” i. e., as one
extension of an existing universe.

These type sets have the usual properties that one associates with object-
oriented type systems. Let CN (KN) and be the characteristic type set (char-
acteristic kind set) of a class N and CC and KN the corresponding type sets
of a direct subclass of N, then our encoding process proves formally that the
characteristic type set is a subset of the kind set, i. e.:

σ � obj ∈ CN −→ σ � obj ∈ KN

and that the kind set of the subclass is (after type coercion) a subset of the type
set (and thus also of the kind set) of the superclass:

σ � obj ∈ KC −→ σ � obj [Node] ∈ CN .

These proofs are based on co-inductions and involve a kind of bi-simulation of
(potentially) infinite object structures. Further, these proofs depend on theorems
that are already proven over the pre-defined types, e. g., Object. These proofs
were done in the context of the initial universe U 0 and can be instantiated
directly in the new universe without replaying the proof scripts; this is our main
motivation for an extensible construction.

Extensible Universes for Object-Oriented Data Models 451

The Underlying Method. Our object-oriented datatype package also supports
a special analysis and verification method based on the idea of providing several
versions of invariants that restrict the type and kind sets with different grades.
For example, the discussed type sets and kind sets are of major importance when
resolving overloading and late-binding: If we can infer from a class invariant that
some object must be of a particular type, then late-binding method invocation can
be reduced to a straight-forward procedure call with simplified semantics.

As a default we generate for each class three different type sets and kind sets:

1. a set based on the user-defined invariant,
2. a set allowing undefined references, i. e., all accessor to attributes of type oid

are or-ed with a corresponding �∂-statement, and
3. one allowing undefined references and undefined value types, i. e., all accessor

to attributes are or-ed with a corresponding �∂-statement.

This enumeration is ordered ascending with respect to the number of instances
that fulfill the conditions, i. e., every object that is in the first set, is also in
the other two. Such an hierarchy of invariants allows for formally specifying the
circumstances which invariants should hold.

In practice we assume the need for an even more fine-grained graduation of
invariants. Whereas at the moment one has to reproduce the encoding process of
our package to introduce new invariant types, we intend to provide an automatic
mechanism for defining new invariant types, i. e., an interface to our package
that defines new type sets and also automatically proves the basic properties,
including the inclusion relation with respect to the already defined type sets.

5 A Modular Proof-Methodology for Object-Oriented
Modeling

In the previous sections, we discussed a technique to build extensible object-
oriented data models. Now we turn to the wider goal of a modular proof method-
ology for object-oriented systems and explore achievements and limits of our
approach with respect to this goal. Two aspects of modular proofs over object-
oriented models have to be distinguished:

1. the modular construction of theories over object-data models and
2. a modular way to represent dynamic type information or storage assumptions

underlying object-oriented programs.

With respect to the former, the question boils down to what degree extensions of
class models and theories built over them can be merged. With respect to the latter,
we will show how co-inductive properties over the store help to achieve this goal.

5.1 Non-overlapping Merges

The positive answer to the modularity question is that object-oriented data-
model theories can be merged provided that the extensions to the underlying
object-data models are non-overlapping. Two extensions are non-overlapping, if

452 A.D. Brucker and B. Wolff

U 1:

A

U 2a:

A

C

U 2b:

A B

D

U 3:

A B

C D

(a) Non-conflicting Merges

U 1:

A

U 2a:

A

C

U 2b:

A

B

U 3:

A

BC

(b) Conflicting Merges

Fig. 3. Merging Universes

their set of classes including their direct parent classes are disjoint (see Figure 3a).
In these cases, there exists a most general type instance of the merged object
universe U 3 (the type unifier of both extended universes U 2a and U 2b); thus,
all theorems built over the extended universes are still valid over the merged
universe (see Figure 3a). We argue that the non-overlapping case is the pragmat-
ically more important one; for example, all libraries of the HOL-OCL system [8]
are linked to the examples in its substantial example suite this way. Without
extensibility, the datatype package would have to require the recompilation of
the libraries, which takes in the case of the HOL-OCL system about 20 minutes.

5.2 Handling Overlapping Merges

Unfortunately, one pragmatically important case in object-oriented modeling
is considered as an overlap in our package. Consider the case illustrated in
Figure 3b. Here, the parent class A is in the class set of both extensions (in-
cluding parent classes). The technical reason for the conflict is that the order of
insertions of sub-classes into a parent class is relevant since the type sum α + β
is not a commutative type constructor.

In our encoding scheme of object-oriented data models, this scenario of ex-
tensions represents an overlap that the user is forced to resolve. One pragmatic
possibility is to arrange an order of the extensions by changing the import hi-
erarchy of theories producing overlapping extensions. This worst-case results in
re-running the proof scripts of either B or C—usually a matter of a minute. An-
other option is to introduce an empty class B’ and inherit B from there. A further

Extensible Universes for Object-Oriented Data Models 453

option consists in adding a mechanism into our package allowing to specify for
a child-class the position in the insertion-order.

5.3 Modularity in an Open-World: Dynamic Typing

Our notion of extensible class models generalizes the distinction “open-world
assumption” vs. “closed-world assumption” widely used in object-oriented mod-
eling. Our universe construction is strictly “open-world” by default; the case of
a “closed-world” results from instantiating all α,β-“holes” in the universe by
the unit type. Since such an instantiation can also be partial, there is a spec-
trum between both extremes. Furthermore, one can distinguish α-finalizations,
i. e., instantiation of an α- variable in the universe by the unit type, and β-
finalizations. The former close a class hierarchy with respect to subtyping, the
latter prevent that a parent class may have further direct children (which makes
the automatic derivation of an exhaustion theorem for this parent class
possible).

In usual object-oriented languages, methods can be overridden, method invo-
cations like in object-oriented languages require an overridden resolution mech-
anism such as late binding as used in Java. Late binding uses the dynamic type
isTypeX obj of obj . The late-binding method invocation is notorious for its dif-
ficulties for modular proof. Consider the case of an operation:

method Node ::m():: Bool
pre: P
post: Q

Furthermore assume that the implementation of m invokes itself recursively, e. g.,
by self.left.m(). Based on an open-world assumption, the postcondition Q
cannot be established in general since it is unknown which concrete implemen-
tation is called at the invocation.

Based on our universe construction, there are two ways to cope with this un-
derspecification. First, finalizations of all child classes of Node results in a partial
closed-world assumption allowing to treat the method invocation as case switch
over dynamic types and direct calls of method implementations. Second, sim-
ilarly to the co-inductive invariant example in Section 4 which ensures that a
specific dereferentiation is in fact defined, we can specify that a specific derefer-
entiation obj . left has a given dynamic type. An analogous invariant Invleft(obj)
can be defined co-inductively. From this invariant, we can directly infer facts
like isType(1)

Node (obj . left), and isType(1)
Node (obj . left. left), i. e., in an object graph

satisfying this invariant, the left “spine” must consist of nodes of dynamic type
Node. Strengthening the precondition P by Invleft(obj) consequently allows to
establish postcondition Q—in a modular manner, since only the method imple-
mentation above has to be considered in the proof. Invoking the method on an
object graph that does not satisfy this invariant can therefore be considered as
a breach of the contract.

454 A.D. Brucker and B. Wolff

5.4 Modularity in an Open-World: Storage Assumptions

Similarly to co-inductive invariants, it is possible via co-recursive functions to
map an object to the set of objects that can be reached along a particular path
set. The definition must be co-recursive, since object structures may represent a
graph. However, the presentation of this function may be based on a primitive-
recursive approximation function depending on a factor k :: nat that computes
this object set only up to the length k of the paths in the path set.

ObjSetAleft 0 obj σ = {}
ObjSetAleft k obj σ = if σ |= ∂ obj then{}

else {obj } ∪ObjSetAleft (k − 1) (obj . left σ) σ

The function ObjSetleft obj σ can then be defined as limit⋃
n∈Nat ObjSetAleft n obj σ .

On the other hand, we can add a state invariant on our concept of state per
type definition αSt = {σ :: oid ⇀ U α. Inv σ}. Here, we require for inv that each
oid points to an object that contains itself:

∀ oid ∈ dom σ. OidOf(the(σ oid)) = oid

As a consequence, there exists a one-to-one correspondence between objects and
their oid in a state. Thus, sets of objects can be viewed as sets of references,
too, which paves the way to interpret these reference sets in different states and
specify that an object did not change during a system transition or that there
are no references from one object-structure into some critical part of another
object structure.

6 Application: A Shallow Embedding of IMP++

In the following, we integrate the operations derived from an object-oriented
data model into assertions in a derived Hoare-Calculus for a small, imperative
language. This language is pretty much in the spirit of Featherweight Java [13],
in the sense that it is reduced to the absolute minimum. IMP++does not even
comprise the concept of a method invocation or a procedure call; on the other
hand, it provides a “generic slot” for these concepts via the CMD-construct, that
allows for an arbitrary transition over the entire program state. Given the dy-
namic type tests of the data model, it is straight-forward to define an arbitrary
overload resolution within this language; demonstrating how this definitions scale
up with the presented machinery to a modular proof method, however, is a far
more evolved subject that we consider beyond the scope of this paper.

Instead, we focus on how our type-safe framework pays off by not further
complicating its rules by side-conditions related to well-formedness of objects,

Extensible Universes for Object-Oriented Data Models 455

the syntactic admissibility of attribute accesses to an object or reasoning along
the class hierarchy as in the deep embedding of, e. g., NanoJava [25]. We will
show that compact calculi for denotational, operational and axiomatic semantics
can be derived in a standard exercise.

We follow deliberately the standard presentation of IMP [19], a canonical
imperative core language, in the Isabelle/HOL library; this language has been
inspired by a standard textbook on program semantics [26]. We will extend
IMP with object-oriented typedness, creation, update, selection and a simple
form for exceptional computation (motivated by illegal memory accesses). In a
small example, we sketch how to apply it for reasoning on weak and strong data
invariants on tree-like structures.

In contrast to the previous sections where definitions and proofs were done
automatically for all classes and attributes—the proof presented here are done
interactively. However, we emphasize that a large part of it (e. g., the core Hoare-
Calculus and the rules for update and create) could be mechanically derived, too.

6.1 Syntax

The syntax of IMP++is introduced via a datatype definition:

α com = SKIP | EXN
| CMDα cmd | IF α bexp THEN α com ELSE α com
| α com ; α com | WHILE α bexp DO α com

SKIP denotes the empty, successfully terminating command, EXN the program
that raises the exception (IMP++ possesses only one). The generic command
CMD takes as argument a function α cmd which is a synonym for a function
α state ⇒ α state⊥. Thus, a α cmd is allowed to raise an exception; in our
context, this will be used to react operationally on undefined argument oid’s
of creation and update operations. The sequential composition, the conditional
and the while loop are the conventional constructs of the language. The latter
two are controlled by a Boolean expression α bexp which is a synonym for
α state ⇒ bool⊥. Any assertion has a type which is an instance of α bexp, thus,
it can be used as control expression in IMP++.

6.2 Denotational Semantics

In general, the denotational semantics of an imperative language is a relation on
states; since uncaught exceptions may occur on the command level, we have also
error states denoted by ⊥. Thus, the type of the relation is (α :: bot state⊥ ×
α state⊥)set. As a consequence, we need as prerequisite the “strict extension”
◦⊥ of type (β⊥ × γ⊥) set ⇒ (α⊥ × β⊥) set ⇒ (α⊥ × γ⊥) set on relations:

r ◦⊥ s ≡ {(⊥,⊥)} ∪ {(x, z). def x ∧ (∃y. def y ∧ (x, y) ∈ s ∧ (y, z) ∈ r)}
∪ {(x, z). def x ∧ (∃y.¬def y ∧ (x, y) ∈ s ∧ z = ⊥)}

456 A.D. Brucker and B. Wolff

The definition of the semantic function C is a primitive recursion over the syntax:

C(SKIP) = Id
C(EXN) = {(s, t). t = ⊥}

C(CMD f) = {(s, t). s = ⊥ ∧ t = ⊥} ∪ {(s, t). def s ∧ t = f �s}
C(c0; c1) = C(c1) ◦⊥ C(c0)

C(IF b THEN c1 ELSE c2) = {(s, t). (s = ⊥ ∨ b �s = ⊥) ∧ t = ⊥}
∪ {(s, t). def s ∧ b �s =
true� ∧ (s, t) ∈ C c1}
∪ {(s, t). def s ∧ b �s =
false� ∧ (s, t) ∈ C c2}

C(WHILE b DO c) = lfp(Γ b (C c))

where Γ is the usual approximation functional for the least fixed-point operator
lfp, enriched by the cases for undefined states:

Γ b cd ≡(λ φ. {(s, t). (s = ⊥ ∨ b �s = ⊥) ∧ t = ⊥}∪
{(s, t). def s ∧ b �s =
true� ∧ (s, t) ∈ (φ ◦⊥ cd)}∪
{(s, t). def s ∧ b �s =
false� ∧ s = t})

6.3 Hoare Semantics

In our setting, assertions are functions α :: bot state⊥ ⇒ bool. The validity of a
Hoare triple is stated as traditional:

|= {P}c{Q} ≡ ∀s t. (s, t) ∈ C(c) −→ P s −→ Q t

Based on the definition for C, we can derive a Hoare calculus for IMP++. Since we
focus on correctness proof and not completeness, we present the rules for validity
|= directly, avoiding a detour via a derivability notion �. Moreover, we use the
abbreviation $P for λσ. def σ ∧ Pσ. Thus, assertions like � {$P ′}c{$Q′}
relate “non-exception” states allowing inference of normal behavior. The derived
calculus is then surprisingly standard (see Table 1).

6.4 Data-Model Specific Hoare Rules

Recall our running example with the classes Node and CNode. Besides the type-
safe accessor functions, we need families of store-related (i. e., level 1) update and
creation operations on objects. For example, the lifting of update operations to
the level of the assertion language is straight-forward:

obj . set(1)left E ≡ λσ.σ(OidOf obj := obj σ. set(0)left (E σ))

Here, the operation (:=) denotes the usual update on functions. Instead of
CMD(obj . set(1)left E) we write obj . left := E.

Extensible Universes for Object-Oriented Data Models 457

Table 1. The Hoare Calculus for IMP++

∀s.P ′ s −→ P s � {P}c{Q} ∀s. Q s −→ Q′ s

� {P ′}c{Q′} � {�P} SKIP{�P}

� {�P}c{�Q} � {�Q}d{�R}

� {�P}c; d{�R}

� {�λσ. Pσ ∧ (�σ � b)}c{�P}

� {�P}{WHILE}b{DO}c{� λσ. Pσ ∧ (�σ � ¬ b)}

� {λ σ. σ = ⊥} c {λ σ. σ = ⊥} � {�λ σ. �σ � ∂ f ∧Q(f �σ)} CMD f{�Q}

� {�λ σ. (Pσ) ∧ (�σ � b) ∧ (�σ � ∂ b)}d{�Q}
� {�λ σ. (Pσ) ∧ (�σ � ¬ b) ∧ (�σ � ∂ b)}d{�Q}

� {�P}{IF}b{THEN}c{ELSE}d{�Q}

With respect to the creation operations, we define:

newOidσ ≡ ε x. x /∈ dom σ

where ε x. P x is the Hilbert-operator that chooses an arbitrary x satisfying P .

newNode oid ≡
((Objectt, oid),
((Nodet,⊥,⊥,⊥,⊥)�)�

The creation operation generates a new object of some type and stores the
reference to it in a given attribute of obj :

obj . new(1)
left ≡λ σ. letσ′ = σ(newOidσ := newNode (newOidσ))

in obj . set(1)left (newNode (newOid σ))σ′

Instead of CMD(obj . new(1)
left) we write obj . left := new(Node).

From these definitions, the following family of class model-specific Hoare-rules
is derived (as usual, we pick the case for attribute left):

|= {$λ σ. x(�σ � (∂ self)) ∧Q(obj . set(1)left E�σ)}obj . left := E{$Q}

The analogous case for the creation is a special case of this rule.

6.5 An Example in IMP++

A program that produces the smallest possible object system satisfying the CN-
ode invariant looks in a fictive language as follows:

458 A.D. Brucker and B. Wolff

method Node m();
var H1:CNode;
var H2:CNode;
begin

H1:= New(CNode);
H2:= New(CNode);
H1.i:= 7;
H1.color:=true;
H1.left :=H2;
H1.right:=H2;
H2.i:= 9;
H2.color:= false;
H2.left :=H1;
H2.right:=H1;
return H1

end

Well, the method call as such cannot be represented in IMP++ because we did
not provide syntax for that. However, we can represent the local variables by
extending the underlying class model by a stack object class for method m (a
terminology also used in the Java language specification), and express pre and
post conditions for the body called mbody.

The stack-object class class mso has the form:

self : Node
return : CNode
H1 : CNode
H2 : CNode

i. e., it comprises attributes for the local variables H1 and H2 with the previously
described types as well as a return attribute of type CNode. The package will
then generate the usual update functions for this class and give semantics to
the corresponding assignments in our example program (the return statement is
viewed as an update to the return attribute).

We want to specify that the program establishes by a sequence of creation and
update steps the global invariant verification of the body is stated as follows,
assuming that the stack object is defined when the method is called:

� {$λσ. σ |= ∂(mso)}mbody{$σ � mso. return(1) ∈ CNodeKindSet}

The proof for this statement proceeds in essentially two phases: First, by several
applications of the consequence rule and the update-rule, we accumulate an

Extensible Universes for Object-Oriented Data Models 459

equation system as assertion:

σ |= ∂(mso. H1(1))

∧ σ |= ∂(mso. H2(1))

∧ σ |= mso. H1. i(1) = 7 ∧ σ |= mso. H1. color(1) =
true�
∧ σ |= mso. H1. left(1) = H2 ∧ σ |= mso. H1. right(1) = H2

∧ σ |= mso. H2. i(1) = 9 ∧ σ |= mso. H2. color(1) =
false�
∧ σ |= mso. H2. left(1) = H1 ∧ σ |= mso. H2. right(1) = H1

∧ σ |= mso. return(1) = H1

(Recall that we overload 7, 9, . . . with λσ.7, λσ.7, . . . to simplify notation). This
assertion must imply the postcondition, which is reduced to:

σ |= mso. return(1) ∈ gfp CnodeKindF

The gap is bridged by the application of the derived fixed-point-induction:

∧
X.

[σ |= mso. return(1) ∈ X]
···

σ |= mso. return(1) ∈ CnodeKindF X

σ |= mso. return(1) ∈ gfp CnodeKindF

The example also shows how liberal invariants (a freshly generated object only
satisfies such an invariant since the .left and .right attribute are uninitialized)
can be used to establish stronger ones. In [14] local flags in objects are suggested
to switch on and off parts of static class invariants. Our approach does not
need such flags (while it can mimic them), rather, we would generate versions
of invariants and relate them via co-induction automatically.

7 Conclusion

We presented an extensible universe construction supporting object-oriented
datatype theories including subtyping and (single) inheritance. On the theoret-
ical side, this proves that object-oriented datatype theories can be represented
in typed λ-calculus with Hindley-Milner Polymorphism. As a by-product, the
construction also gives insight into the representation of open-world and closed-
world assumptions in types. The achievement on the practical side is three-fold:
First, we show that the core of object-oriented reasoning can be made amenable
to off-the-shelf HOL theorem provers (no Isabelle specific features are inherently
necessary for this) in form of a shallow embedding. Second, this can be done in
a conservative way: provided that the 9 axioms of HOL are consistent (on which
the large majority of logicians agree), the generated datatype theory will also
be consistent. Third, albeit the underlying complexity, deriving automatically

460 A.D. Brucker and B. Wolff

the datatype theory from the basic definitions is still technically feasible: [6, 8]
report on an example suite of class models. The computation time for each of
these models is below 2 minutes on recent hardware.

One might object that the universe construction described in Section 3 and
Section 4 is entirely meta-theoretic, thus not verifiable; and principles like con-
servative definitions are not applicable on this level. However, this is not entirely
true. While concepts like “the set of all HOL-types” or “the set of class types” are
indeed not formalized in HOL, for each concrete type resulting from the construc-
tion a consistent theory is generated. If our construction or our implementation
has an error, Isabelle will refuse to accept these definitions or the proofs.

Related Work. Work on object-oriented semantics based on deep embeddings
has been discussed earlier. For shallow embeddings, to the best of our knowledge,
there is only [24]. In this approach, however, emphasis is put on a universal type
for a classes comprising method tables. This results in local “universes” for input
and output types of methods and the need for reasoning on class isomorphisms.
Subtyping on objects must be expressed implicitly via refinement. With respect
to extensibility of data-structures, the idea of using parametric polymorphism is
partly folklore in HOL research communities; for example, extensible records and
their application for some form of subtyping has been described in HOOL [18].
Since only α-extensions are used, this results in a restricted form of class types
with no coercion mechanism to α Object.

Datatype packages have been considered mostly in the context of HOL or
functional programming languages. Going back to ideas of Milner in the 70ies,
systems like [16, 4] build over an S-expression like term universe (co)-inductive
sets which are abstracted to (freely generated) datatypes. Paulson’s inductive
package [23] also uses subsets of the ZF set universe i.

Even systems like Spec# [2, 14] or Krakatoa [15], which are clearly more
advanced with respect to the degree of automation for program verification as a
whole, might profit from guaranteed consistent data-models: at present, a quite
substantial axiomatization of a given object-oriented memory model is generated
in these systems. The second author witnessed several logical inconsistencies in
the data model underlying Spec#. We believe that the properties of our object-
oriented data model, even if taken axiomatically, could provide assurance. If
required, our system can generate for given class system proofs of consistency.

Future Work. We see the following lines of future research:

– Multiple Inheritance. Our approach is strictly limited to single inheritance.
However, it is easy to extend our package with support for multiple subtyping
based on interfaces.

– Modular Verification of Recursive Methods. The presented language does
not comprise method invocation—it remains to be shown how the presented
machinery can be used for an extensible program theory comprising these
crucial features.

– Support for Inductive Constraints. By introducing measure-functions over
object-structures, inductive datatypes can be characterized for defined

Extensible Universes for Object-Oriented Data Models 461

measures of an object. This paves the way for the usual structural induction
and well-founded recursion schemes,

– Support of built-in Co-recursion. Co-recursion can be used to define e. g.,
deep object equalities.

– Deriving VCG. Similar to the IMP-theory, verification condition generators
for IMP++programs can be proven sound and complete. This leads to effec-
tive program verification techniques based entirely on derived rules.

References

[1] Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth
through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

[2] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

[3] Basin, D.A., Kuruma, H., Takaragi, K., Wolff, B.: Verification of a signature
architecture with HOL-Z. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM
2005. LNCS, vol. 3582, pp. 269–285. Springer, Heidelberg (2005)

[4] Berghofer, S., Wenzel, M.T.: Inductive Datatypes in HOL – Lessons Learned in
Formal-Logic Engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C.,
Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690. Springer, Heidelberg (1999)

[5] Bierman, G.M., Parkinson, M.J.: Effects and effect inference for a core Java cal-
culus. Electronic Notes in Theoretical Computer Science 82(7), 1–26 (2003)

[6] Brucker, A.D.: An Interactive Proof Environment for Object-oriented Specifica-
tions. Ph.d. thesis, ETH Zurich, 2007. ETH Dissertation No. 17097

[7] Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-
specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)

[8] Brucker, A.D., Wolff, B.: The HOL-OCL book. Tech. Rep. 525, ETH Zurich (2006)
[9] Brucker, A.D., Wolff, B.: HOL-OCL – A Formal Proof Environment for

UML/OCL. In: Fiadeiro, J., Inverardi, P. (eds.) Fundamental Approaches to Soft-
ware Engineering FASE 2008, vol. 4961, pp. 97–100. Springer, Heidelberg (2008)

[10] Drossopoulou, S., Eisenbach, S.: Describing the semantics of Java and proving
type soundness. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java.
LNCS, vol. 1523, pp. 41–82. Springer, Heidelberg (1999)

[11] Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics
for classes and mixins. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of
Java. LNCS, vol. 1523, pp. 241–269. Springer, Heidelberg (1999)

[12] Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher order logic. Cambridge University Press, New York (1993)

[13] Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core cal-
culus for Java and GI. ACM Transactions on Programming Languages and Sys-
tems 23(3), 396–450 (2001)

[14] Leino, K.R.M., Müller, P.: Modular verification of static class invariants. In:
Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp.
26–42. Springer, Heidelberg (2005)

[15] Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing
and frame conditions. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 179–194. Springer, Heidelberg (2005)

462 A.D. Brucker and B. Wolff

[16] Melham, T.F.: A package for inductive relation definitions in HOL. In: Archer,
M., Joyce, J.J., Levitt, K.N., Windley, P.J. (eds.) International Workshop on the
HOL Theorem Proving System and its Applications (TPHOLs), pp. 350–357.
IEEE Computer Society Press, Los Alamitos (1992)

[17] Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
Journal of Functional Programming 9(2), 191–223 (1999)

[18] Naraschewski, W., Wenzel, M.: Object-Oriented Verification Based on Record
Subtyping in Higher-Order Logic. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998.
LNCS, vol. 1479, pp. 349–366. Springer, Heidelberg (1998)

[19] Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing 10(2), 171–186 (1998)

[20] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

[21] Nipkow, T., von Oheimb, D.: Java
ight is type-safe—definitely. In: ACM Symp.
Principles of Programming Languages POPL, pp. 161–170. ACM Press, New York
(1998)

[22] Unified modeling language specification (version 1.5) (2003), Available as OMG
document formal/03-03-01

[23] Paulson, L.C.: A fixedpoint approach to (co)inductive and (co)datatype defini-
tions. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language, and Inter-
action: Essays in Honour of Robin Milner, pp. 187–211. MIT Press, Cambridge
(2000)

[24] Smith, G., Kammüller, F., Santen, T.: Encoding Object-Z in Isabelle/HOL. In:
Bert, D., P. Bowen, J., C. Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002.
LNCS, vol. 2272, pp. 82–99. Springer, Heidelberg (2002)

[25] von Oheimb, D., Nipkow, T.: Hoare logic for NanoJava: Auxiliary variables, side
effects, and virtual methods revisited. In: Eriksson, L.-H., Lindsay, P.A. (eds.)
FME 2002. LNCS, vol. 2391, pp. 89–105. Springer, Heidelberg (2002)

[26] Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cam-
bridge (1993)

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 463–489, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Programming with Live Distributed Objects

Krzysztof Ostrowski1, Ken Birman1, Danny Dolev2, and Jong Hoon Ahnn1

1 Cornell University, and
2 The Hebrew University of Jerusalem

{krzys, ken, ja275}@cs.cornell.edu, dolev@cs.huji.ac.il

Abstract. A component revolution is underway, bringing developers improved
productivity and opportunities for code reuse. However, whereas existing tools
work well for builders of desktop applications and client-server structured sys-
tems, support for other styles of distributed computing has lagged. In this paper,
we propose a new programming paradigm and a platform, in which instances of
distributed protocols are modeled as “live distributed objects”. Live objects can
represent both protocols and higher-level components. They look and feel much
like ordinary objects, but can maintain shared state and synchronization across
multiple machines within a network. Live objects can be composed in a type-
safe manner to build sophisticated distributed applications using a simple, intui-
tive drag and drop interface, very often without writing any code or having to
understand the intricacies of the underlying distributed algorithms.

1 Motivation

It has become common to build applications in a component-oriented manner, com-
posing reusable building blocks by binding strongly-typed interfaces. At runtime, an
underlying object-oriented managed environment, such as Java/J2EE or .NET pro-
vides further checking and support. The paradigm has numerous benefits: it promotes
clean, modular architectures, facilitates extensions, enables collaborative development
and code reuse, and by making contracts between components explicit and their code
more isolated, reduces the risk of bugs resulting from badly documented or implicit
assumptions such as cross-component behavior or side effects.

Unfortunately, distributed systems developers are only able to exploit these tools in
limited ways, typically wedded to client-server programming styles. Moreover, the
most widely used technologies can be awkward and inflexible. For example, a devel-
oper uses different methods to access a system depending on whether it is hosted on a
single remote server [6], cloned for load-balancing on a cluster [37], or using state ma-
chine replication [52]. Yet even as the available tools have standardized on these lim-
ited options, the research community is creating a wave of powerful new technologies
that includes peer-to-peer and gossip protocols, multicast with various levels of consis-
tency, ordering and timing, Byzantine state replication, distributed hash tables, creden-
tial management services, naming services, content distribution networks, etc.

Our goal is to break through this barrier by treating protocols as components in the
same sense as in .NET or COM. We propose a technology in which application com-
ponents and protocols are unified within a single object-oriented paradigm. Our “live

464 K. Ostrowski et al.

distributed objects” represent running instances of distributed protocols, but they have
types and support composition, much like “ordinary” objects. While ours is certainly
not the first approach to unify distributed protocols with object-oriented environ-
ments, we innovate in ways that make the solution uniquely powerful:

• We leverage the type system without being language-specific. Our platform offers
mechanisms such as reflection and dynamic type checking, previously seen only in
systems closely tied to an underlying language, such as Smalltalk, Java, ML or IOA.
In our interactive GUI, type-checking prevents users from dropping objects in inap-
propriately. Down the road, we’ll use type checking to ensure that replicated applica-
tion objects use a protocol with sufficiently strong properties.

• It can be incrementally deployed, and supports legacy applications, including Ex-
cel spreadsheets, Oracle databases, and web services. For example, we can import data
from a database, multicast it, and export it back into a set of desktop spreadsheets.

• Our object-oriented embedding can support any distributed protocol as a reus-
able component. Existing systems are protocol-agnostic only in the limited sense that
users can choose among several different protocols to implement communication. For
us, protocols are objects; a small shift in perspective with broad implications.

• The approach extends from the UI to the hardware level, whereas prior systems
focused on one class of application objects, e.g. shared data structures or UI compo-
nents1. Jini has a vision similar to ours, but is tightly bound to the client-server para-
digm, whereas our model is focused on distributed multi-party protocols.

• We support composition of behavioral protocol types. Prior composition toolkits
either lacked types, or used a limited form of typing, where the protocol type was the
type of the implementing class, and composition was achieved via inheritance.

• Our model is replication-centric. Although many live objects don’t replicate
state, the handling of replication and scalability sets our solution apart from prior
ones. We’re able to support various replication (multicast) models, and to express this
in a type system.

• Our system may be the first drag and drop tool for type-safe protocol composi-
tion. Drag and drop mechanisms are easy to use and yet can support sophisticated
applications. For many applications, no new code is needed at all. Prior systems (in-
cluding some from which we took inspiration, such as Ensemble [33], BAST [20], x-
Kernel [45], and I/O automata [36]) were programmer-intensive.

Although the current system is quite usable, live objects raise a number of ques-
tions, only some of which have been addressed. The technology requires a scalable
multicast layer capable of supporting very large groups, and in which a single node can
join large numbers of object-groups. In work reported elsewhere, we describe Quick-
silver, a high-performance, scalable communication layer that achieves these goals
[46,47,48]. We’re also collaborating with a group at INRIA/IRISA on a gossip-based
infrastructure compatible with live objects; we expect this to be useful for discovering
and tracking system configuration information. Looking further out, we’re extending
Quicksilver to support a range of reliability models (expressed in a new protocol script-
ing language [47]), and are implementing a new security architecture based on reflec-
tion. We also have ideas for WAN and mobile applications, debugging, performance
tuning, system management, and object state persistence. However, all of these ques-
tions lie beyond the scope of the present paper.

1 Demos of this functionality and a prototype of our platform are available on our website [34].

 Programming with Live Distributed Objects 465

2 Prior Work

While we believe our work to be innovative in the ways just described, we’re not the
first to integrate the object-oriented and distributed programming models.

There are many language abstractions for distributed protocols, including remote
objects [25, 32], fault-tolerant objects [37], multicast objects [29], asynchronous col-
lections [17], tuple spaces [10, 58], and replicated objects driven by multicast [38, 56]
or two-phase commit [53]. None matches the requirements described above. First,
these abstractions are all specialized to support specific protocols. For example, asyn-
chronous collections cannot easily be used to express two-phase commit or leader elec-
tion. Second, most lack the notion of a distributed type, and in those that do, this notion
is shallow, e.g. the type of a multicast object [29] is determined by the type of transmit-
ted events, and the type of an asynchronous collection [17] is the type of the imple-
menting class. The former definition can’t convey information about subtle behaviors
of protocols such as virtual synchrony [5], while the latter severely restricts reusability.
Finally, most lack support for composition.

The idea of defining object types in terms of their behaviors is not new [55]. CSP
[24] and -calculus [41] were some of the first protocol specifications, and these early
process calculi serve as a basis for recent specification efforts, such as BPEL [3],
SSDL [49], and WSCL [4]. As recently noted [19], the weakness of process calculi,
and specifications based on them, is that they can’t express the semantics of replication
or the behavior of protocols such as consensus in a clean way. For example, while
BPEL is clearly strong enough to express business processes, the language defines
protocols in terms of sets of participants fixed at the outset, and can’t model dynamic
join or leave events. It would be very hard to express replication properties, such as
“once any group member does X, eventually all operational members do too” [12].

On the other hand, while state-based approaches such as I/O automata [36], CFSM
[7], interface automata [1], and others [18] are very expressive, they combine func-
tional descriptions of protocol behaviors with the specifics of their implementations
expressed through state transitions. This is useful in correctness proofs, but it may be
a weakness in the context of a type system. Two protocols implemented using differ-
ent data structures and states can exhibit the same external behavior, e.g. “messages
are totally ordered and delivered atomically with respect to failures”. We believe that
protocols that behave equivalently should be considered to have the same distributed
type; state transition representations can easily obscure such relationships [27].

Live objects support an extensible style of formal behavioral specifications for
group and multicast protocols [2, 12, 22, 26]. As one composes protocols, a construc-
tive distributed type system is obtained. The type checking mechanism is itself com-
ponentized, and can be extended by developers.

The idea of building protocols from simpler components dates to the x-Kernel [45]
and to systems like Ensemble [33], which constructed replication protocols from mi-
croprotocols. Among such systems, BAST [20] is closest to ours in terms of the di-
versity of protocols it can express, but lacks a behavioral notion of a protocol type:
protocol types in BAST are determined by the types of the implementing classes, and
composition is achieved by inheritance. The creators of BAST observed that in retro-
spect, inheritance wasn’t the right mechanism for this task. We’ve drawn lessons from
these experiences and created a model in which inheritance isn’t used at all: we treat

466 K. Ostrowski et al.

protocols as black boxes and connect them with typed event channels in a visual de-
signer. Our protocol objects interact via events, much as in Smalltalk [21].

Jini [58], the widely used Java-based platform in which clients access services by
dynamically loading proxy code, is highly relevant prior work. The strongest contrast
is that Jini has a pervasive client-server bias, making it very hard to express object
replication, particularly in applications that use strong consistency or (at the other
extreme) peer-to-peer protocols.

This client-server bias is visible in many ways. First, Jini lacks a rigorous notion
of a group [43], and it is hard to implement consistency across a set of group mem-
bers, state replication within the group, coordination, leader-election, etc. Jini's
lookup, join, and discovery specifications lack membership views (needed to assign
tasks to group members) and synchronized state transfer (used to initialize new group
members). Moreover, Jini doesn’t guarantee consistent failure detection. Thus, while
services in Jini can be grouped, the mechanism lacks expressive power to facilitate
building systems that use stronger forms of replication. Additionally, abstractions
such as notification and transactional protocols can’t be directly modeled as objects in
Jini. Finally, Jini lacks distributed types and protocol composition mechanisms.

Live objects are replication-centric, with a strong notion of protocol types and
composition. This makes live objects particularly appropriate for building applications
in which users collaborate, share content, or engage in other kinds of peer-to-peer
behaviors, (obviously we can also support traditional non-replicated and client-server
behaviors). Complex protocols can be modeled as objects, in a manner that separates
behavior of the protocol from its implementation.

Many of these same issues distinguish our work from WS-* standards. Elsewhere
[48], we discuss issues that arise if one tries to use WS-Notification or WS-Eventing
to implement live objects. We concluded that the relevant WS-* standards are tightly
bound to specific protocol implementations; as written, they cannot accommodate
commercially important protocols such as peer-to-peer video streaming, BitTorrent,
or Byzantine replication. We’ve proposed an extended WS-based eventing standard
matched to the work described here, and able to overcome this problem [48].

JXTA [57] is probably the most sophisticated existing collaboration technology for
peer-to-peer systems, but it doesn’t support stronger replication and consistency mod-
els. While JXTA does have notions such as a group and a membership view, members
can have inconsistent views. Researchers have struggled to layer reliable multicast on
these mechanisms [35]. Groupware toolkits, such as Croquet [53], Groove [39], and
group communication [5] toolkits all support replication, and some support strong
forms of consistency. However, unlike Jini, JXTA and our work, none of these is po-
sitioned as a general-purpose interoperability platform.

3 Model

3.1 Objects and Their Interactions

A live distributed object (or live object) is an instance of a distributed protocol: pro-
gramming logic executed by a set of components that may reside on different nodes
and communicate by sending messages over the network. For flexibility, we won’t
assume that the machines running the protocol “know” about one-another or that they

 Programming with Live Distributed Objects 467

share any common state. Thus, a live object could be a Byzantine fault-tolerant repli-
cated state machine, but it could also be an entity with purely local state, one that uses
gossip to share data, or an IP multicast channel.

Live objects have behavioral types. Suppose that object A logs messages on the
nodes where it runs, using a reliable, totally ordered multicast to ensure consistency
between replicas. Object B might offer the same functionality, but be implemented
differently, perhaps using a gossip protocol. As long as A and B offer the same inter-
faces and equivalent properties (consistency, reliability, etc), we consider A and B to
be implementations of the same type. The concept of behavioral equivalence is the
key here; we define it more carefully in section 3.2.

When node Y executes live object X, we’ll say that a proxy of live object X is run-
ning on Y. Thus, a live object is executed by the group of its proxies (Figure 1). A
proxy is a functional part of the object running on a node. When two objects have
proxies on overlapping sets of nodes, their respective proxies may interact. We can
think of the live objects as interacting through their proxies.

A reference to a live object X is a complete set of instructions for constructing and
configuring a proxy of X on a node. Thus, when node Y wants to access live object X,
node Y uses a reference to X as a recipe with which it can create a new proxy for X
that will run locally on Y. The proxy then executes the protocol associated with X.
For example, it might seek out other proxies for X, transfer the current distributed
state from them, and connect itself to a multicast channel to receive updates. Unlike
proxies, which can have state, references are just passive, stateless, portable recipes.

The instructions in a reference must be complete, but need not be self-contained.
Some of their parts can be stored inside online repositories, from which they need to
be downloaded. These repositories are themselves live objects, referenced by the ob-
jects that use them. Thus, given a reference, a node can dereference it without prior
“knowledge” of the protocol. An exception is thrown if dereferencing fails (for exam-
ple, if a repository containing a part of the reference is unavailable).

We model proxies in a manner reminiscent of I/O automata. A proxy runs in a vir-
tual context consisting of a set of endpoints: strongly-typed bidirectional event chan-
nels, through which the proxy can communicate with other software on the same node
(Figure 1). Unlike in I/O automata, a proxy can use external resources, such as local
network connections, clocks, or the CPU. These interactions are not expressed in our

proxy1 proxy2

node1 node2

proxy3

node3

live
object

proxy

A: 1 B: 2

C: 3 D: 4

typed
events

E: 1

typed
endpoints

network
messages

: 2

Fig. 1. To access a live object (protocol), a node starts a proxy: a software component that runs the
protocol on the node, and may communicate with proxies on other nodes by sending messages
over the network. On a given node, proxies for different objects communicate via endpoints:
strongly-typed, bidirectional event channels.

468 K. Ostrowski et al.

model and they are not limited in any way. However, interactions of a live object’s
proxy with any other component of the distributed system must be channeled through
the proxy’s endpoints.

All proxies of the same live object run that live object’s code. Unlike in state ma-
chines [37, 52], we need not assume that proxies run in synchrony, in a deterministic
manner, or that their internal states are identical. We do assume that each proxy of a
live object X interacts with other components of the distributed system using the same
set of endpoints, which must be specified as part of X’s type. To avoid ambiguity, we
sometimes use the term instance of endpoint E at proxy P to explicitly refer to a run-
ning event channel E, physically connected to and used by P.

Because our model is designed to facilitate component integration, we shall adopt a
somewhat radical perspective, in which the entire system, all applications and infra-
structure are composed of live objects. Accordingly, endpoints of a live object’s proxy
will be connected to endpoints exposed by proxies of other live objects running on the
same node (Figure 2). When proxies of two different objects X and Y are connected
through their endpoints on a certain node Z, we’ll say that X and Y are connected on Z.

Example (a). Consider a distributed collaboration tool that uses reliable multicast to
propagate updates between users (Figure 2). Let a be an application object in this sys-
tem that represents a collaboratively edited document. Proxies of a have a graphical
user interface, through which users can see the document and submit updates. Updates
are disseminated to other users over a reliable multicast protocol, so that everyone can
see the same contents. The system is designed in a modular way, so instead of linking
the UI code with a proprietary multicast library, the document object a defines a typed
endpoint reliable_channel_client, with which its proxies can submit updates to a reli-
able multicast protocol (event send) and receive updates submitted by other proxies
and propagated using multicast (event receive). Multicasting can then be implemented
by a separate object r, which has a matching endpoint reliable channel. Proxies of a
and r on all nodes are connected through their matching endpoints.

membership
object (m)

replicated
state

machine
object (s)

application
object (a)

m1 m2

m3 m4

r1 r2

u1 u2

s1 s2

a1 a2

reliable
multicast
object (r)

unreliable
multicast
object (u)

p1 p2 persistent
storage
object (p)

Fig. 2. Applications in our model are composed of interconnected live objects. Objects are
“connected” if endpoints of a pair of their proxies are connected. Connected objects can affect
one-another by having their proxies exchange events through endpoints. A single object can be
connected to multiple other objects. Here, a reliable multicast object r is simultaneously con-
nected to an unreliable multicast object u, a membership object m, and an application object a.
The same object can be accessed by different machines in different ways. For example, m is
used in two contexts: by the multicast object r, and by replicas of a membership service. The
latter employs a replicated state machine s, which persists its state through a storage object p.

 Programming with Live Distributed Objects 469

Similarly, object r may be structured in a modular way: rather than being a single
monolithic protocol, r could internally use object u for dissemination and object m for
membership tracking [12]. Additional endpoints unreliable channel and member-
ship would serve as contracts between r and its internal parts u and m.

Figure 2 illustrates several features of our model. First, a pair of endpoints can be
connected multiple times: there are multiple connections between different instances of
the reliable channel endpoint of object r and the reliable_channel_client endpoint of
a, one connection on each node where a runs. Since objects are distributed, so are the
control and data flows that connect them. If different proxies of r were to interact with
proxies of a in an uncoordinated manner, this might be an issue. To prevent this, each
endpoint has a type, which constrains the patterns of events that can pass through dif-
ferent instances of the endpoint. These types could specify ordering, security, fault-
tolerance or other properties. The live objects runtime won’t permit connections be-
tween a and r, unless their endpoint types declare the needed properties.

A single object could also define multiple endpoints. One case when this occurs is
when the protocol involves different roles. For example, the membership object m has
two endpoints, for clients and for service replicas. The role of the proxy in the proto-
col depends on which endpoint is connected. In this sense, endpoints are like inter-
faces in object-oriented languages, giving access to a subset of the object’s functional-
ity. Another similarity between endpoints and interfaces is that both serve as contracts
and isolate the object’s implementation details from the applications using it. We also
use multiple endpoints in object r, proxies of which require two kinds of external
functionality: an unreliable multicast, and a membership service. Both are obligatory:
r cannot be activated on a platform unless both endpoints can be connected.

Earlier, we commented that not all live objects replicate their state. We see the lat-
ter in the case of the persistent store p. Its proxies present the same type of endpoint to
the state machine s, but each uses a different log file and has its own state.

Our model promotes reusability by isolating objects from other parts of the system
via endpoints that represent strongly typed contracts. If an object relies upon external
functionality, it defines a separate endpoint by which it gains access to that functional-
ity, and specifies any assumptions about the entity it may be connected to by encoding
them in the endpoint type. This allows substantial flexibility. For example, object u in
our example could use IP multicast, an overlay, or BitTorrent, and as long as the end-
point that u exposes to r is the same, r should work correctly with all these implemen-
tations. Of course this is conditional upon the fact that the endpoint type describes all
the relevant assumptions r makes about u, and that u does implement all of the de-
clared properties.

3.2 Defining Distributed Types

The preceding section introduced endpoint types, as a way to define contracts between
objects. We now define them formally and give examples of how typing can be used to
express reliability, security, fault-tolerance, and real time properties of objects.

Formally, the type of a live object is a tuple of the form = (E, C, C'). E in this
definition is a set of named endpoints, E = {(n1, 1), (n2, 2), …, (nk, k)}, where ni is
the name and i is the type of the ith endpoint. C and C' represent sets of constraints
describing security, reliability, and other characteristics of the object (C), and of its

470 K. Ostrowski et al.

environment (C'). C models constraints provided by the object, such as semantics of
the protocol: guarantees that the object’s code delivers to other objects connected to it.
C' models constraints required, which are prerequisites for correct operation of the
object’s code. Constraints can be described in any formalism that captures aspects of
object and environment behavior in terms of endpoints and event patterns. Rather than
trying to invent a new, powerful formalism that subsumes all the existing ones, we
build on the concepts of aspect-oriented programming [28], and we define C to be a
finite function from some set A of aspects to predicates in the corresponding formal-
isms. For example, constraints C = {(a1, 1), (a2, 2), …, (am, m)} would state that in
formalism a1 the object’s behavior satisfies formula 1, and so on. We’ll give exam-
ples of various practically useful formalisms and constraints later in this section.

Type of an endpoint is a tuple of the form = (I, O, C, C'). I is a set of incoming
events that a proxy owning the endpoint can receive from some other proxy, O is a set
of outgoing events that the proxy can send over this endpoint, and C and C' represent
constraints provided and required by this endpoint, defined similarly to constraints of
the object, but expressed in terms of event patterns, not in terms of endpoints (for ex-
ample, an endpoint could have an event of type time, and with a constraint that time
advances monotonically in successive events). Each of the sets I and O is a collection
of named events of the form E = {(n1, 1), (n2, 2), …, (nk, k)}, where ni is event name
and i is its type. Event types can be value types of the underlying type system, such as
.NET or Java primitive types and structures, or types described by WSDL [13] etc., but
not arbitrary object references or addresses in memory. We assume that events are se-
rializable and can be transmitted across the network or process boundaries. References
to live objects are also serializable, hence they can also be passed inside events. The
subtyping relation on the event types is inherited from the underlying type system.

The purpose of creating endpoints is to connect them to other, matching endpoints,
as described in Section 3.1 and illustrated on Figure 2. Connect is the only operation
possible on endpoints. We say that endpoint types 1 and 2 match, denoted 1 ∝ 2,
when the following two conditions hold.

1. For each output event n of type of either endpoint, its counterpart must have an
input event with the same name n, and with either type , or some supertype of .
This guarantees that all events can be delivered between the two connected proxies.

2. The provided constraints of each of the endpoints must imply (be no weaker than)
the required constraints of the other. This ensures that the endpoints mutually sat-
isfy each other’s requirements.

Formally, for 1 = (I1, O1, C1, C1') and 2 = (I2, O2, C2, C2') we define:

1 ∝ 2 ⇔ O1 →* I2 ∧ O2 →* I1 ∧ C1 * C2' ∧ C2 * C1'. (1)

Relation →* between two sets of named events expresses the fact that events from the
first can be understood as events from the second. Formally, we express it as follows:

E →* E' ⇔ ∀ (n, ε)∈E ∃ (n, ε)∈E' such that ε ε . (2)

Operator “ ” on types always represents the relation of subtyping in this paper.
Relation * between two sets of constraints expresses the fact that the constraints

in the first set are no weaker than constraints in the second. Formally, we write this as:

 Programming with Live Distributed Objects 471

C * C' ⇔ ∀ (a,)∈C ∃ (a,)∈C such that a '. (3)

Relation a is simply a logical consequence in formalism a. Intuitively, this defini-
tion states that if C' defines a constraint defined in some formalism, then C must de-
fine a constraint that is no weaker than that, in the same formalism. For example, if C'
defines some reliability constraint expressed in temporal logic, then C must define an
equivalent or stronger constraint, also in temporal logic, in order for C * C' to hold.

For a pair of endpoint types 1 and 2, the former is a subtype of the latter if it can
be used in any context in which the latter can be used. Since the only possible opera-
tion on an endpoint is connecting it to another, matching one, hence 1 2 holds iff

1 matches every endpoint that 2 matches, i.e. 1 2 iff ∀ (2 ∝) (1 ∝),
which after expanding the definition of “∝” can be formally expressed as follows:

1 2 ⇔ O1 →* O2 ∧ I2 →* I1 ∧ C1 * C2 ∧ C2 * C1 . (4)

Intuitively, 1 2 if (a) 1 defines no more output events and no fewer input events
than 2, (b) the types of output events of 1 are subtypes and the types of input events
of 1 are supertypes of the corresponding events of 2, and (c) the provided con-
straints of 1 are no weaker and the required constraints of 1 are no stronger than
those of 2.

Subtyping for live object types is defined in a similar manner. Type 1 is a sub-
type of 2, denoted 1 2, when 1 can replace 2. Since the only thing that one
can do with a live object is connect it to another object through its endpoints, this
boils down to whether 1 defines all the endpoints that 2 defines, and whether the
types of these endpoints are no less specific, and whether 1 guarantees no less and
expects no more than 2. Formally, for two types 1 = (E1, C1, C1) and 2 = (E2,
C2, C2), we define:

1 2 ⇔ E1 * E2 ∧ C1 * C2 ∧ C2 * C1 . (5)

Relation * between sets of named endpoints used above is defined as follows:

E * E' ⇔ ∀ (n,)∈E ∃ (n,)∈E such that . (6)

The use of types in our platform is limited to checking whether the declared object
contracts are compatible, to ensure that the use of objects corresponds to the devel-
oper’s intentions. The live objects platform performs the following checks at runtime:

1. When a reference to an object of type is passed as a value of a parameter that is
expected to be a reference to an object of type ', the platform verifies that

'.

2. When an endpoint of type is to be connected to an endpoint of type ', either pro-
grammatically or during the construction of composite objects described in Section
4.2, the platform verifies that the two endpoints are compatible i.e. that ∝ '.

We believe that in practice, this limited form of type safety is sufficient for most uses.
For provable security, the runtime could be made to verify that live object’s code im-
plements the declared type prior to execution. Techniques such as proof-carrying code
[44] and domain-specific languages with limited expressive power could facilitate this.

472 K. Ostrowski et al.

3.3 Constraint Formalisms

We conclude this section with a discussion of different formalisms that can be used to
express the constraints in the definition of objects and endpoints. The issue is subtle
because on the one hand, a type system won’t be very helpful if it has nothing to
check, but on the other hand, there are a great variety of ways to specify protocol
properties. It isn’t much of an exaggeration to suggest that every protocol of interest
brings its own descriptive formalism to the table! As noted earlier, many prior sys-
tems have effectively selected a single formalism, perhaps by defining types through
inheritance. Yet when we consider protocols that might include time-critical multi-
cast, IPTV, atomic broadcast, Byzantine agreement, transactions, secure key replica-
tion, and many others, it becomes clear that no existing formalism could possibly cov-
er the full range of options.

A further issue is the incompleteness of many specifications, in a purely formal
sense. For example, one popular formalism is temporal logic [22,12]. Here, we as-
sume a global time and a set of locations, and a function that maps from time to
events that occur at those locations. In the context of endpoint constraints, we can
think of instances of the endpoint as locations, and the endpoint’s incoming and out-
going events, and explicit connect/disconnect events, as the events of the temporal
logic. Constraints would be expressed as formulas over these events, identifying the
legal event sequences within the (infinite) set of possible system histories.

Example (b). Consider the reliable channel endpoint, exposed by the reliable chan-
nel r in the example in Section 3.1. The endpoint’s type might define one incoming
event send(m) and one outgoing event receive(m), parameterized by message body
m. Constraints provided by the channel object r might include a temporal logic for-
mula stating that if event receive(m) is delivered by r through some of the instances
of the endpoint sooner than receive(m), then for any other instance of the endpoint, if
both events are delivered, they are delivered in the same sequence.

Example (b) illustrates a safety property of a type for which temporal logic is espe-
cially convenient. Chockler et. al. use temporal logic to specify a range of reliable
multicast protocols in [12]. However, the FLP impossibility result establishes that
these protocols cannot guarantee liveness in traditional networks. Thus, while we can
express a liveness constraint in such a logic, no protocol could achieve it – in effect,
such a protocol type would be useless in real systems!

Temporal logic is just one of many useful formalisms. In our work on a security
architecture, still underway, we’re looking into using a variant of the BAN logic [9] to
define security properties provided by live objects or expected from their environ-
ment. Real-time and performance guarantees are conveniently expressed as probabil-
istic guarantees on event occurrences, e.g. in terms of predicates such as “at least p %
of the time, receive(m) occurs at all endpoint instances at most t seconds following
send(m),” or “at least p % of the time, receive(m) occurs at all different endpoint
instances in a time window of at most t seconds”.

Yet another useful formalism would be a version of temporal logic that talks about
the number of instances of different endpoints in time. For example, constraints of the
sort “at most one instance of the publisher endpoint may be connected at any given
time” could describe single-writer semantics or similar assumptions made by the

 Programming with Live Distributed Objects 473

protocol designer. Constraints of this sort could also express fault-tolerance properties,
e.g. define the minimum number of proxies to maintain a certain replication level etc.

In general, with formalisms like those listed above, type-checking might involve a
theorem prover, and hence may not always be practical. In practice, however, the ma-
jority of object and endpoint types would choose from a relatively small set of stan-
dard constraints, such as best-effort, virtually-synchronous, transactional, or atomic
dissemination, total ordering of events etc. Predicates that represent common con-
straints could be indexed, and stored as macros in a standard library of such predi-
cates, and the object and endpoint types would simply list such macros. The runtime
would perform type-checking by comparing such lists, and using cached known facts,
such as that a virtually synchronous channel is also best-effort reliable etc. By taking
advantage of late binding and reflection, features of .NET and of most Java platforms,
it is easy to make these mechanisms extensible in a “plug and play” manner. This will
allow developers to introduce additional formalisms down the road.

3.4 Group Types

Readers familiar with group communication [5,11] may be concerned that although our
model is fundamentally about creating and working with groups of entities (live object
proxies), the type system itself lacks a rigorous notion of a group. This actually makes
our model simpler and more generic, without preventing us from expressing group
properties. For example, to model a virtually synchronous group, we can define a pair
of endpoints channel and membership, and specify constraints on the occurrences of
events on the two endpoints, as in group communication specifications [12]. Within
groups of endpoints, one can use temporal logic formulas with operators such as eve-
rywhere and everywhere within a membership view, much as in [2,12,22]. To bind to
such a group an object would define two matching endpoints. This approach has the
advantage of generality: we can potentially express a range of group semantics.

4 Language Embeddings and Support for Composition

4.1 Language Embeddings

Our model has a good fit with modern object-oriented programming languages. There
are two aspects of this embedding. On one hand, live object code can be written in a
language like Java and C# (we will demonstrate this in Section 4.2). On the other
hand, live objects, proxies, endpoints, and connections between them are first-class
entities that can be used within C# or Java code. Their distributed types build upon
and extend the set of non-distributed types in the underlying managed environment. In
this section, we’ll discuss each of the new programming language entities we intro-
duce: references to live objects, references to proxies, references to endpoint in-
stances, and references to connections between endpoints. An example of their use is
shown in Code 1. We will conclude this section with a discussion of two more ad-
vanced mechanisms, template object references and casting operator extensions.

474 K. Ostrowski et al.

Code 1. An example piece of code in a language similar to C#, but with a simplified syntax for
legibility. Here, “ReceiveObject” is a handler of an incoming event of a live object proxy. The
event is parameterized by a live object reference “ref_object”. If the reference is to a shared
folder, the code launches a new proxy to connect to the folder’s protocol and attaches a handler
to event “AddedElement” generated by this protocol, in order to monitor this folder’s contents.

01 void ReceiveObject(ref<liveobject> ref_object) // code of an event handler
02 {
03 if (referenced_type(ref_object) is SharedFolder)
04 {
05 ref<SharedFolder> ref_folder := (ref<SharedFolder>) ref_object;
06 SharedFolder folder := dereference(ref_folder); // creates a proxy
07 external<FolderClient> folder_ep := endpoint
08 internal<FolderClient> my_ep := new_endpoint<FolderClient>();
09 my_ep.AddedElement += ...;
10 connection my_connection := connect(folder_ep, my_ep);
11 // some code to store the newly created proxy and endpoint connection references
12 }
13 }

A. References to Live Objects. Operations that can be performed on these references
include reflection (inspecting the referenced object’s type), casting, and dereferencing
(the example uses are shown in Code 1, in lines 03, 05, and 06 accordingly). Derefer-
encing results in the local runtime launching a new proxy of the referenced object
(recall from Section 3.1 that references include complete instructions for how to do
this). The proxy starts executing immediately, but its endpoints are disconnected A
reference to the new proxy is returned to the caller (in our example it is assigned to a
local variable folder). This reference controls the proxy’s lifetime. When it is dis-
carded and garbage collected, the runtime disconnects all of the proxy’s endpoints and
terminates it. To prevent this from happening, in our example code we must store the
proxy reference before exiting (we would do so in line 11).

Whereas a proxy must have a reference to it to remain active, a reference to a live
object is just a pointer to a recipe for constructing a proxy for that object, and can be
discarded at any time. An important property of object references is that they are seri-
alizable, and may be passed across the network or process boundaries between prox-
ies of the same or even different live objects, as well as stored on in a file etc. The
reference can be dereferenced anywhere in the network, always producing a function-
ally equivalent proxy – assuming, of course, that the node on which this occurs is ca-
pable of running the proxy. In an ideal world, the environmental constraints would
permit us to determine whether a proxy actually can be instantiated in a given setting,
but the world is obviously not ideal. Determining whether a live object can be derefe-
renced in a given setting, without actually doing so, is probably not possible.

The types of live object references are based on the types of live objects, which we
will define formally below. To avoid ambiguity, if is a live object type, and x is a
reference to an object of type , we will write ref< > to refer to the type of entity x.

The semantics of casting live object references is similar to that for regular objects.
Recall that if a regular reference of type IFoo points to an object that implement IBar,
we can cast the reference to IBar even if IFoo is not a subtype of IBar, and while as a

 Programming with Live Distributed Objects 475

result the type of the reference will change, the actual referenced object will not. In a
similar manner, casting a live object reference of type ref< > to some ref< > pro-
duces a reference that has a different type, and yet dereferencing either of these refer-
ences, the original one or the one obtained by casting, result in the local runtime creat-
ing the same proxy, running the same code, with the same endpoints. A reference can
be cast to ref< > for as long as the actual type of the live object is a subtype of .

B. References to Proxies. The type of a proxy reference is simply the type of the
object it runs, i.e. if the object is of type , references to its proxies are of type .
Proxy references can be type cast just like live object references. One difference be-
tween the two constructs is that proxy references are local and can’t be serialized,
sent, or stored. Another difference is that they have the notion of a lifetime, and can
be disposed or garbage collected. Discarding a proxy reference destroys the locally
running proxy, as explained earlier, and is like assigning null to a regular object refer-
ence in a language like Java. The live object is not actually destroyed, since other
proxies may still be running, but if all proxy references are discarded (and proxies
destroyed), the protocol ceases to run, as if it were automatically garbage collected.

Besides disposing, the only operation that can be performed on a proxy reference is
accessing the proxy endpoints for the purpose of connecting to the proxy. An example
of this is seen in line 07, where we request the proxy of the shared folder object to
return a reference to its local instance of the endpoint named “folder”.

C. References to Endpoint Instances. There are two types of references to endpoint
instances, external and internal. An external endpoint reference is obtained by enu-
merating endpoints of a proxy through the proxy reference, as shown in line 07. The
only operation that can be performed with an external reference is to connect it to a
single other, matching endpoint (line 10). After connecting successfully, the runtime
returns a connection reference that controls the connection’s lifetime. If this reference
is disposed, the two connected endpoints are disconnected, and the proxies that own
both endpoints are notified by sending explicit disconnect events.

An internal endpoint reference is returned when a new endpoint is programmati-
cally created using operator new (line 08). This is typically done in the constructor
code of a proxy. Each proxy must create an instance of each of the object’s endpoints
in order to be able to communicate with its environment. The proxy stores the internal
references of each of its endpoints for private use, and provides external references to
the external code per request, when its endpoints are being enumerated. Internal refer-
ences are also created when a proxy needs to dynamically create a new endpoint, e.g.
to interact with a proxy of some subordinate object that it has dynamically
instantiated.

An internal reference is a subtype of an external reference. Besides connecting it to
other endpoints, it also provides a “portal” through which a proxy that created it can
send or receive events to other connected proxies. Sending is done simply by method
calls, and receiving by registering event callbacks (line 09).

An important difference between external and internal endpoint references is that
the former could be serialized, passed across the network and process boundaries, and
then connected to a matching endpoint in the target location. The runtime can imple-
ment this e.g. by establishing a TCP connection to pass events back and forth between
proxies communicating this way. This is possible because events are serializable.

476 K. Ostrowski et al.

Internal endpoint references are not serializable. This is crucial, for it provides iso-
lation. Since any interaction between objects must pass through endpoints, and events
exchanged over endpoints must be serializable, this ensures that an internal endpoint
reference created by a proxy cannot be passed to other objects or even to other proxies
of the same object. Only the proxy that created an endpoint has access to its portal
functionality of an endpoint, and can send or receive events with it.

D. References to Connections. Connection references control the lifetime of connec-
tions. Besides disposing, the only functionality they offer is to register callbacks, to be
invoked upon disconnection. These references are not strongly typed. They may be
created either programmatically (as in line 10 in Code 1), or by the runtime during the
construction of a composite proxy. The latter is discussed in detail in Section 4.2.

E. Template Object References. Template references are similar to generics in C# or
templates in C++. Templates are parameterized descriptions of proxies; when derefer-
encing them, their parameters must be assigned values. Template types do not support
subtyping, i.e. references of template types cannot be cast or assigned to references of
other types. The only operation allowed on such references is conversion to non-
template references by assigning their parameters, as described in Section 4.2.

Template object references can be parameterized by other types and by values. The
types used as parameters can be object, endpoint, or event types. Values used as pa-
rameters must be of serializable types, just like events, but otherwise can be anything,
including string and int values, live object references, external endpoint references etc.

Example (c). A channel object template can be parameterized by the type of mes-
sages that can be transmitted over the channel. Hence, one can e.g. define a template
of a reliable multicast stream and instantiate it to a reliable multicast stream of video
frames. Similarly, one can define a template dissemination protocol based on IP mul-
ticast, parameterized with the actual IP multicast address to use. A template shared
folder containing live objects could be parameterized by the type of objects that can
be stored in the folder and the reference to the replication object it uses internally.

F. Casting Operator Extensions. This is a programmable reflection mechanism.
Recall that in C# and C++, one can often cast values to types they don’t derive from.
For example, one can assign an integer value to a floating-point type. Conversion
code is then automatically generated by the runtime, and injected into this assignment.
One can define custom casting operators for the runtime to use in such situations. Our
model also supports this feature. If an external endpoint or an object reference is cast
to a mismatching reference type, the runtime can try to generate a suitable wrapper.

Example (d). Consider an application designed to use encrypted communication. The
application has a user interface object u exposing a channel endpoint, which it would
like to connect to a matching endpoint of an encrypted channel object. But, suppose
that the application has a reference to a channel object c that is not encrypted, and that
exposes a channel endpoint of type lacking the required security constraints. When
the application tries to connect the endpoints of u and c, normally the operation would
fail with a type mismatch exception. However, if the channel endpoint of c can be
made compatible with the endpoint of u by injecting encryption code into the connec-
tion, the compiler or the runtime might generate such wrapper code instead. Notice

 Programming with Live Distributed Objects 477

that proxies for this wrapper would run on all nodes where the channel proxy runs,
and hence could implement fairly sophisticated functionality. In particular, they could
implement an algorithm for secure group key replication. In effect, we are able to
wrap the entire distributed object: an elegant example of the power of the model.

The same can be done for object references. While casting a reference, the runtime
may return a description of a composite reference that consists of the old proxy code,
plus the extra wrapper, to run side by side (we discuss composite references in Sec-
tion 4.2). In addition to encryption or decryption, this technique could be used to auto-
matically inject buffering code, code that translates between push and pull interface,
code that persists or orders events, automatically converts event data types, and so on.

Currently, our platform uses casting only to address certain kinds of binary incom-
patibilities, as explained in Section 5.2. In future work, we plan to extend the platform
to support more sophisticated uses of casting, e.g. as in the example above, and define
rules for choosing casting operators when more that one is available.

4.2 Construction and Composition

As noted in Section 4.1, a live object exists if references to it exist, and it runs if any
proxies constructed from these references are active. Creating new objects thus boils
down to creating references, which are then passed around and dereferenced to create

Code 2. An example live object reference, based on a shared document template, parameterized
by a reliable communication channel. The channel is composed of a dissemination object and a
reliability object, connected to each other via their “UnreliableChannel” endpoints, much like r
and u in Figure 2. The “ReliableChannel” endpoint of the reliability object is exposed by the
channel. The dissemination object reference is to be found as an object named “MyChannel”, of
type “Channel”, in an online repository (“Id” and “Channel” are predefined types). The refer-
ence to the repository is to be found, as an object named “QuickSilver”, of type “Folder”, i.e.
containing channels, in another online repository, the “registry” object (see Section 0).

01 parameterized object // an object based on a parameterized template
02 using template primitive object 3
03 {
04 parameter "Channel" :
05 composite object // a complex object built from multiple component objects
06 {
07 component "DisseminationObject" :
08 external object "MyChannel" as Channel
09 from external object "QuickSilver" as Folder<Id, Channel>
10 from primitive object 2 // the registry ect
11 component "ReliabilityObject" :
12 // specification of some loss recovery object, omitted for brevity
13 connection // an internal connection between a pair of component endpoints
14 endpoint "UnreliableChannel" of "DisseminationObject"
15 endpoint "UnreliableChannel" of "ReliabilityObject"
16 export // endpoints of the components to be exposed by the composite object
17 endpoint "ReliableChannel" of "ReliabilityObject"
18 }
19 }

478 K. Ostrowski et al.

running applications. Object references are hierarchical: references to complex objects
are constructed from references to simpler objects, plus logic to “glue” them together.
The construction can use four patterns, for constructing composite, external, param-
eterized, and primitive objects. We shall now discuss these, illustrating them with an
example object reference that uses each of these patterns, shown in Code 2.

A. Composite References. A composite object consists of multiple internal objects,
running side by side. When such an object is instantiated, the proxies of the internal
objects run on the same nodes (like objects r and u in Figure 2). A composite proxy
thus consists of multiple embedded proxies, one for each of the internal objects. A
composite reference contains embedded references for each of the internal proxies,
plus the logic that glues them together. In the example reference shown in lines 05 to
18 in Code 2, there is a separate section “component name : reference” for each of
the embedded objects, specifying its internal name and reference. This is followed by
a section of the form “connection endpoint1 endpoint2”, for each internal connection.
Finally, for every endpoint of some embedded internal object that is to be exposed by
the composite object as its own, there is a separate section “export endpoint”.

When a proxy is constructed from a composite reference, the references to any in-
ternal proxies and connections are kept by the composite proxy, and discarded when
the composite proxy is disposed of (Figure 3). The lifetimes of all internal proxies are
thus connected to the lifetime of the composite. Embedded objects and their proxies
thus play the role analogous to member fields of a regular object.

B. External References. An external reference is one that has not been embedded
and must be downloaded from somewhere. It is of the form “external object name as
type from reference”, where reference is a reference to the live object that represents
some online repository containing live object references, and name is the name of the
object, the reference to which is to be retrieved from this repository. The type of the
retrieved object is expected to be a subtype of type, and the type of the external refer-
ence is ref<type>. One example of such a reference is shown in lines 08 to 10, and
another (embedded in the first one) in lines 09 to 10.

The repository could be any object of type folder, where type folder is a built-
in type of objects with a simple dictionary-like interface. Objects of this type have an
endpoint with input event get(n) and with output events item(n, r) and missing(n).
To retrieve an external reference, the runtime creates a repository object proxy from
the embedded reference, runs it, connects to its folder endpoint, submits the get event,
and awaits response. Once the response arrives, the repository proxy can be discarded.

The “as type” clause allows the runtime to statically determine the type of the ref-
erence without having to engage in any protocol. In case of composite, parameterized,
or primitive references, the runtime can derive the type right from the description. The
“as type” clause can still be used in the other categories of references as an explicit
type cast, in case it is necessary e.g. to hide some of the object’s endpoints.

The types in the reference (such as Channel in line 08 or Folder<Id, Channel> in
line 09) could either refer to the standard, built-in types, or they could be described

 Programming with Live Distributed Objects 479

explicitly using a language based on the formalisms in Section 3.2. To keep our ex-
ample simple, we assume that all types are built-in, and we refer to them by names.

C. Parameterized References. These references are based on template objects intro-
duced in Section 4.1. They include a section “using template reference”, where
reference is an embedded template object reference, and a list of assignments to pa-
rameter values, each in a separate section of the form “parameter name : argument”,
where the argument could be a type description or a primitive value, e.g. an embed-
ded object reference. For example, the reference in Code 2 is parameterized with a
single parameter, Channel. The type of the parameter needn’t be explicitly specified,
for it is determined by the template. In our example, the template expects a live object
reference to a reliable communication channel. The specific reference used here to
instantiate this template is the composite reference in lines 05 to 18.

D. Primitive References. The types of references mentioned so far provide a means
for recursively constructing complex objects from simple ones, but the recursion
needs to terminate somewhere. Hence, the runtime provides a certain number of built-
in protocols that can be selected by a known 128-bit identifier (lines 02 and 10 in
Code 2). Of course even a 128-bit namespace is finite, and many implementations of
the live objects runtime could exist, each offering different built-in protocols. To
avoid chaos, we reserve primitive references only for objects that either cannot be
referenced using other methods, or where doing so would be too inefficient. We will
discuss two such objects: the library template and the registry object.

reliability object dissemination object

composite

internal proxies

exposed endpoint references to
internal proxies
and connection
maintained
automatically
by the runtime

composite object

1 1

0..0..

Fig. 3. A live object class diagram for the composite object in Code 2 (left) and the structure of
the composite proxy (right). When constructing a composite proxy, the runtime automatically
constructs all the internal proxies and the internal connections between them, and stores their
references in the composite proxy. Embedded proxies and connections are destroyed together
with the composite proxy. The latter can expose some of the internal endpoints as its own.

Code 3. An example live object reference for a custom protocol, implemented in a library that
can be downloaded from http://www.mystuff.com/mylibrary.dll. Objects running this protocol
are of type “MyType1”, and can be found in the library under name “MyProtocol1”. The li-
brary template provides the folder abstraction introduced in Section 0.

01 external object "MyProtocol1" as MyType1 // my own, custom implementation
02 from parameterized object // an instance of the library template
03 using template primitive object 1 // an id of a built-in library template
04 {
05 parameter "URL" : http://www.mystuff.com/mylibrary.dll
06 }

480 K. Ostrowski et al.

a1

x1

a2

x2

t1

x3

t2

y1

a3

y2

a4

y3local
multicast
object (x)

composite
multicast
object (m)

application
object (a)

tunnel
object (t)

Fig. 4. An example of a hybrid multicast object m, constructed from two local protocols x, y
that disseminate data in two different regions of the network, e.g. two LANs, combined using a
tunnel object t that acts as a repeater and replicates messages between the two LANs. Different
proxies of the composite object m, running on different nodes, are configured differently, e.g.
some use an embedded proxy of object x, while others use an embedded proxy of object y.

Code 4. A portable reference to the “hybrid” object m from Figure 4 built using the registry.

01 external object "MyChannel" as Channel
02 from external object "MyPlatform" as Folder<Id, Channel>
03 from primitive object 2 // the registry

Code 5. An example of a “proper” use of the registry, to specify a locally configured multicast
platform, which could then be used by external references like the one in Code 4. Here, the
local instance of the communication platform is configured with the address of a node that con-
trols a region of the Internet, from which other objects can be bootstrapped.

01 parameterized object
02 using template external object "MyPlatform" as Folder<Id, Channel>
03 from parameterized object // from a binary downloaded from the url below
04 using template primitive object 1 // the library template
05 { parameter "URL" : http://www.mystuff.com/mylibrary.dll }
06 { parameter "LocalController" : tcp://192.168.0.100:60000 }

D.1 Library. A library is an object of type folder, representing a binary containing
executable code, from which one can retrieve references to live objects implemented
by the binary. The library template is parameterized by URL of the location where the
binary is located (see Code 3, lines 02 to 06). The binary can be in any of the known
formats that allow the runtime to locate proxy code, object and type definitions in it,
either via reflection, or by using an attached manifest (we show one example of this in
Section 5.2). After a proxy of a library is created, the proxy downloads the binary and
loads it. When an object reference retrieved from a library is dereferenced, the library
locates the corresponding constructor in the binary, and invokes it to create the proxy.

D.2 Registry. The registry object is again a live object of type folder, i.e. a mapping
of names to object references. The registry references are stored locally on each node,
can be edited by the user, and in general, the mapping on each node may be different.
Proxies respond to requests by returning the locally stored references.

 Programming with Live Distributed Objects 481

The registry enables construction of complex heterogeneous objects that can use
different internal objects in different parts of the network, as follows

Example (e). Consider a multicast protocol constructed in the following manner:
there are two LANs, each running a local IP multicast based protocol to locally dis-
seminate messages: local multicast objects x and y (Figure 4). A pair of dedicated
machines on these LANs also run proxies of a tunneling object t, connected to proxies
of x and y. Object t acts as a “repeater”, i.e. it copies messages between x and y, so
that proxies running both of these protocols receive the same messages. Now, con-
sider an application object a, deployed on nodes in both LANs, and having some of its
proxies connected to x, and some to y. From the point of view of object a, the entire
infrastructure consisting of x, y, and t could be thought of as a single, composite mul-
ticast object m. Object m is heterogeneous in the sense that its proxies on different
machines have a different internal structure: some have an embedded object x and
some are using y. Logically, however, m is a single protocol and we’d like to be able
to fully express it in our model. The problem stems from the fact that on one hand,
references to m must be complete descriptions of the protocol, so they should have
references to x and y embedded, yet on the other hand, references containing local
configuration details are not portable. The registry object solves this problem by in-
troducing a level of indirection (Code 4).

The reader might be concerned that the portability of live objects is threatened by
use of the registry. References that involve registry now rely on all nodes having
properly configured registry entries. For this reason, we use the registry sparingly, just
to bootstrap the basic infrastructure. Objects placed in the registry would represent the
entire products, e.g. “the communication infrastructure developed by company XYZ”,
and would expose the folder abstraction introduce earlier, whereby specific infra-
structure objects can be loaded. An example of such proper use is shown in Code 5.

5 System

5.1 Embedding Live Objects into the Operating System Via Drag and Drop

Our implementation of the live object runtime runs on Microsoft Windows2 with
.NET Framework 2.0. The system has two major components: an embedding of live
objects into Windows drag and drop technologies, discussed here, and embedding of
the new language constructs into .NET, discussed in Section 5.2.

Our drag and drop embedding is visually similar to Croquet [53] and Kansas [54],
and mimics that employed in Windows Forms, tools such as Visual Studio (or similar
ones for Java), and in the Object Linking and Embedding (OLE) [8], XAML [40], and
ActiveX standards used in Microsoft Windows to support creation of compound doc-
uments with embedded images, spreadsheets, drawings etc. The primary goal is to en-
able non-programmers to create live collaborative applications, live documents, and
business applications that have complex, hierarchical structures and non-trivial internal
logic, just by dragging visual components and content created by others from toolbars,
folders, and other documents, into new documents or design sheets.

2 Porting our system from C#/.NET to Mono, to run under Linux, or building a Java/J2EE ver-

sion of the runtime, shouldn’t be a problem, but we haven’t yet undertaken this task.

482 K. Ostrowski et al.

Our hope is that a developer who understands how to create a web page, and un-
derstands how to use databases and spreadsheets as part of their professional activi-
ties, would use live objects to glue together these kinds of components, sensors cap-
turing real-world data, and other kinds of information to create content-rich applica-
tions, which can then be shared by emailing them to friends, placing them in a shared
repository, or embedding them into standard productivity applications.

Live object references are much like other kinds of visual components that can be
dragged and dropped. References are serialized into XML, and stored in files with a
“.liveobject” extension. These “.liveobject” files can easily be moved about. Thus,
when we talk about emailing a live application, one can understand this to involve
embedding a serialized object reference into an HTML email. On arrival the object
can be activated in place. This involves deserializing the reference (potentially run-
ning online repository protocols to retrieve some of its parts), followed by analysis of
the object’s type. Live objects can also be used directly from the desktop browser
interface. We configured the Windows shell to interpret actions such as doubleclick
on “.liveobject” files by passing the XML content of the file to our subsystem, which
processes it as described above. Note that although our discussion has focused on GUI
objects, the system also supports services that lack user interfaces.

We have created a number of live object templates based on reliable multicast pro-
tocols, including 2-dimensional and 3-dimensional desktops, text notes, video streams,
live maps, and 3-dimensional objects such as airplanes and buildings. These can be
mashed up to create live applications such as the ones on our web site (Figure 5).

Although the images in Figure 5 are evocative of multi-user role-playing systems
such as Second Life, Live Objects differ in important ways. In particular, live objects
can run directly on the user nodes, in a peer-to-peer fashion. In contrast, systems such
as Second Life are tightly coupled to the data centers on which the content resides and
is updated in a centralized manner. In Second Life, the state of the system lives in that
data center. Live objects keep state replicated among users. When a new proxy joins,
it must obtain some form of a checkpoint to initialize itself, or starts in a null state.

As noted earlier, live objects support drag and drop. The runtime initiates a drag by
creating an XML to represent the dragged object’s reference, and placing it in a clip-
board. When a drop occurs, the reference is passed on to the application handling the
drop. The application can store it as XML, or it can deserialized it, inspect the type of
the dropped object, and take the corresponding action based on that. For example, the
spatial desktop on Figure 5, only supports objects with a 3-dimensional user interface.
Likewise, the only types of objects that can be dropped onto airplanes are those that
represent textures or streams of 3-dimensional coordinates. The decision in each case
is made by the application logic of the object handling the drop.

Live objects can also be dropped into OLE-compliant containers, such as Microsoft
Word documents, emails, spreadsheets, or presentations. In this case, an OLE compo-
nent is inserted with an embedded XML of the dragged object’s reference. When the
OLE component is activated (e.g. when the user opens the document), it invokes the live
objects runtime to construct a proxy, and attaches to its user interface endpoint (if there
is one). This way, one can create documents and presentations, in which instead of static
drawings, the embedded figures can display content powered by any type of a distrib-
uted protocol. Integration with spreadsheets and databases is also possible, although a

 Programming with Live Distributed Objects 483

little trickier because these need to access the data in the object, and must trigger actions
when a new event occurs.

As mentioned above, one can drag live objects into other live objects. In effect, the
state of one object contains a reference to some other live object. This is visible in the
desktop example on Figure 5. This example illustrates yet another important feature.
When one object contains a reference to another (as is the case for a desktop contain-
ing references to objects dragged onto it), it can dynamically activate it: dereference,
and connect to the proxy of the stored object, and interact with the proxy. For exam-
ple, the desktop object automatically activates references to all visual objects placed
on it, so that when the desktop is displayed, so are all objects, the references of which
have been dragged onto the desktop.

airplane
object

space
object

building
object

map
object

text note
object

image
object

desktop
object

Fig. 5. Screenshots of our platform running live objects with an attached user interface logic.
The 3-dimensional space, the area map embedded in this space, as well as each of the airplanes
and buildings (left) is a separate live object, with its own embedded multicast channel. Simi-
larly, the green desktop, and the text notes and images embedded in it are independent live
objects. Each of these objects can be viewed and accessed from anywhere on the network, and
separately embedded in other objects to create various web-style mash-ups, collaborative edi-
tors, online multiplayer games, and so on. Users create these by simply dragging objects into
one another. Our download site includes a short video demonstrating the ease with which appli-
cations such as these can be created.

By now, the reader will realize that in the proposed model, individual nodes might
end up participating in large numbers of distributed protocol instances. Opening a live
document of the sort shown on Figure 5 can cause the user’s machine to join hundreds
of instances of a reliable, totally ordered multicast protocol with state transfer, which
support the objects embedded in the document. This might lead to scalability con-
cerns. In our prior work we demonstrated that this problem is not a showstopper. Our
Quicksilver Scalable Multicast (QSM) system [46], can support thousands of overlap-
ping multicast groups, communicating at network speeds with low overhead.

5.2 Embedding Live Object Language Constructs into .NET Via Reflection

Extending a platform such as .NET to support the new constructs discussed in Section
4.1 would require extending the underlying type system and runtime, thus precluding
incremental deployment. Instead, we leverage the .NET reflection mechanism to im-
plement dynamic type checking. This technique doesn’t require modifications to the

484 K. Ostrowski et al.

.NET CLR, and it can be used for other managed environments, such as Java. The key
idea is to use ordinary .NET types as “aliases” representing our distributed types.
Whenever such an alias type is used in a .NET code, the live objects runtime “under-
stands” that what is “meant” by the programmer is actually the distributed type. Ali-
ases are defined by decorating.NET types with attributes, as in Code 6 and Code 7.

Example (f). Consider a template object type channel for multicast channels, param-
eterized by the .NET type of the messages that can be transmitted. One defines an alias
type as a .NET interface annotated with ObjectTypeAttribute (Code 6, line 01).
When a library object (of Section 4.2) loads a new binary, the runtime scans the binary
for .NET types annotated this way and registers them on its internal list of aliases.

Code 6. A .NET interface can be associated with a live object type using an “ObjectType” at-
tribute (line 01). The interface may then be used anywhere to represent the represented live
object type. The live objects runtime uses reflection to parse such annotations in binaries it
loads and build a library of built-in objects, object types and templates. Object and type tem-
plates are defined by specifying and annotating generic arguments (line 03).

01 [ObjectTypeAttribute]
02 interface IChannel<
03 [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 {
05 [EndpointAttribute("Channel")] EndpointTypes.IDual<
06 Interfaces.IChannel<MessageType>,
07 Interfaces.IChannelClient<MessageType>>
08 ChannelEndpoint { get; }
09 }

Parameters of the represented live object type are modeled as generic parameters of
the alias. Each generic parameter is annotated with Parameter Attribute (line 03), to
specify the kind of parameter it represents. The classes of parameters supported by the
runtime include Value, ValueClass, ObjectClass, EndpointClass, and others we won’t
discuss here. Value parameters are simply serializable values, including .NET types or
references to live objects, The others represent the types of values, types of live ob-
jects and types of endpoints. For example, we could define a live object type template
parameterized by the type of another live object. A practical use of this is a typed
folder template, i.e. a folder that contains only references to live objects of a certain
type. For example, an instance of this template could be a folder that contains reliable
communication channels of a particular type. Another good example is a factory ob-
ject that creates references of a particular type, e.g. an object that configures new reli-
able multicast channels in a multicast platform.

An alias interface for a live object type is expected to specify only .NET properties,
each annotated with EndpointAttribute (line 05). Each property defines one named
endpoint for all live objects of this type. The property can only have a getter (line 08),
which must return a value of a .NET type that is an alias for some endpoint type. The
example in Code 6 uses alias EndpointTypes.IDual<Interface1, Interface2>. This
is an alias template built into the runtime, but parameterized by two .NET interfaces.

 Programming with Live Distributed Objects 485

Code 7. A live object template is defined by decorating a generic class definition (line 01), its
generic class parameters (line 03), and constructor parameters (line 08) with .NET attributes.
To specify the template live object’s type, the class must implement an interface that is anno-
tated to represent a live object type (line 04 referencing the definition shown in Code 6). In the
body of the class, we create endpoints to be exposed by the proxy (created in lines 11-12, ex-
posed in lines 19-25), handle incoming events (line 27) and send events through its endpoints.

01 [ObjectAttribute("89BF6594F5884B6495F5CD78C5372FC6")]
02 sealed class MyChannel<
03 [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 : ObjectTypes.IChannel<MessageType>, // specifies the live object type
05 Interfaces.IChannel // we implement handlers to all incoming events, see line 12
06 {
07 public MyChannel(
08 [Parameter(ParameterClass.Value)] // also a parameter of the template
09 ObjectReference<ObjectTypes.IMembership> membership_reference)
10 {
11 this.myendpoint = new Endpoints.Dual<
12 Interfaces.IChannel, Interfaces.IChannelClient>(this);
13 ... // the rest of the constructor would contain code very similar to that in Code 1
14 }
15 // this is our internal reference to the channel endpoint
16 private Endpoints.Dual<
17 Interfaces.IChannel, Interfaces.IChannelClient> myendpoint;
18
19 EndpointTypes.IDual<
20 Interfaces.IChannel<MessageType>,
21 Interfaces.IChannelClient<MessageType>>
22 ObjectTypes.IChannel.ChannelEndpoint
23 {
24 get { return myendpoint; } // returns an external endpoint reference
25 }
26 // this is a handler for one of the incoming events of the channel endpoint
27 Interfaces.IChannel.Send(MessageType message) { ... } // details omitted
28 ... // the rest of the alias definition, containing all the other event handlers etc.
29 }

The methods defined by these interfaces, again accordingly annotated, are used by the
runtime to compile the list of this endpoint’s incoming and outgoing events, and simi-
lar annotations can be used to express its constraints. When the alias defined this way
is used in some context with its generic parameters assigned (lines 05-07), the runtime
treats it as an alias for the specific endpoint type, with the specific events defined by
those interfaces.

Having defined the object’s type, we can define the object itself. This is again done
via annotations. An example definition of a live object template is shown in Code 7.

A live object template is defined as a .NET class, the instances of which represent
the object’s proxies. The class is annotated with ObjectAttribute (line 01) to instruct
the runtime to build a live object definition from it. This template has two parameters:
the type parameter representing the type of messages carried by the channel (line 03),
and a “value” parameter - the reference to the membership object that this channel

486 K. Ostrowski et al.

should use (lines 08-09). To specify the type of the live object, line 03 inherits from
an alias. This forces our class to implement properties returning the appropriate end-
points (lines 19-25). The actual endpoints are created in the constructor (lines 11-12).
While creating endpoints, we connect event handlers for incoming events (hooking
itself up, in line 12, and implementing these handlers, as in line 27).

While the use of aliases is convenient as a way of specifying distributed types, alias
types are, of course, not distributed, and the .NET runtime doesn’t understand subtyp-
ing rules we defined in Section 3.2. The actual type checking is done dynamically.
When the programmer invokes a method of a .NET alias to request a type cast, or to
create a connection between endpoints, the runtime uses its internal list of aliases to
identify the distributed types involved and performs type checking by itself. The
physical .NET types of aliases are irrelevant. Indeed, if the runtime determines that
two different .NET types are actually aliases for the same distributed type, it will in-
ject a wrapper code, as demonstrated below.

Example (g). Suppose that binary Foo.dll defines an object type alias IChannel as in
Code example 6, and an object template alias MyChannel as in Code example 7.
Now, suppose that a different, unrelated binary Bar.dll also defines an alias IChannel
in exactly the same way, as in Code 6, and then uses this alias, e.g. in the definition of
an application object that could use channels of the corresponding distributed type. If
both binaries are loaded by the live objects runtime, we will end up with two distinct,
binary-incompatible .NET aliases IChannel, representing the same distributed type.
Whenever the programmer makes an assignment between these two types, the runtime
dynamically creates, compiles, and injects the appropriate wrapper to forward method
calls between the incompatible interfaces, to make the assignment legal in .NET.

6 Conclusions

Our paper described the architecture and implementation of a system supporting live
distributed objects, a strongly typed, object-oriented platform in which distributed
protocols are treated as first-class objects. The platform is working and quite versatile,
but is still a work in progress. Future challenges include implementing our security
and WAN architectures (designed but not yet operational), providing runtime moni-
toring and debugging tools, and automated self-configuration and tuning.

Acknowledgements. Our work was funded by AFRL/IF, AFOSR, NSF, I3P and In-
tel. We’d like to thank Mahesh Balakrishnan, Kathleen Fisher, Paul Francis, Lakshmi
Ganesh, Rachid Guerraoui, Chi Ho, Maya Haridasan, Annie Liu, Tudor Marian, Greg
Morrisett, Andrew Myers, Anil Nerode, Robbert van Renesse, Yee Jiun Song, Einar
Vollset, and Hakim Weatherspoon for the feedback they provided.

References

1. de Alfaro, L., Henzinger, T.: Interface automata. SIGSOFT Softw. Eng. Notes 26, 5 (2001)
2. Anceaume, E., Charron-Bost, B., Minet, P., Toueg, S.: On the Formal Specification of

Group Membership Services. Cornell University Tech. Report TR95-1534 (August 1995)

 Programming with Live Distributed Objects 487

3. Andrews, T., et al.: Business Process Execution Language for Web Services v1.1. May
(2003), http://download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-bpel/ws-bpel.pdf

4. Banerji, A., et al.: Web Services Conversation Language (WSCL),
http://www.w3.org/TR/wsc110

5. Birman, K.: The Process Group Approach to Reliable Distributed Computing. Communi-
cations of the ACM 36(12), 37–53 (1993)

6. Birrell, A., Nelson, G., Owicki, S., Wobber, W.: Network Objects. In: SOSP 1993
7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. JACM, 30(2) (1983)
8. Brockschmidt, K.: Inside OLE. Microsoft Press (1995)
9. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. TOCS 8(1), 18–36

(1990)
10. Carriero, N., Gelernter, D.: Linda in Context. CACM 32(4), 444–458 (1989)
11. Cheriton, D., Zwaenepoel, W.: Distributed Process Groups in the V Kernel. ACM Trans-

actions on Computer Systems 3(2), 77–107 (1985)
12. Chockler, G., Keidar, I., Vitenberg, W.: Group Communication Specifications: A Com-

prehensive Study. ACM Computer Surveys 33(4):1, 43 (2001)
13. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description

Lan-guage (WSDL). W3C Note 15 March (2001), http://www.w3.org/TR/wsdl
14. Eugster, P., Guerraoui, R.: On Objects and Events. In: OOPSLA 2001, pp. 254–269 (2001)
15. Eugster, P., Guerraoui, R.: Distributed Programming with Typed Events. IEEE Soft-

ware 21(2), 56–64 (2004)
16. Eugster, P., Damm, H., Guerraoui, R.: Towards Safe Distributed Application Develop-

ment. In: ICSE 2004, pp. 347–356 (2004)
17. Eugster, P., Guerraoui, R., Sventek, J.: Distributed Asynchronous Collections: Abstrac-

tions for Publish/Subscribe Interaction. In: Bertino, E. (ed.) ECOOP 2000. LNCS,
vol. 1850, pp. 252–276. Springer, Heidelberg (2000)

18. Fu, X., Bultan, T., Su, J.: Conversation Specification: A New Approach to Design and
Anal-ysis of E-Service Composition. In: WWW 2003, Budapest, Hungary, May 20-24
(2003)

19. Fuzzati, R., Nestmann, U.: Much Ado About Nothing. In: Algebraic Process Calculi, the
First Twenty Five Years and Beyond. Process algebra,
http://www.brics.dk/NS/05/3/

20. Garbinato, B., Guerraoui, R.: Using the Strategy Pattern to Compose Reliable Distributed
Protocols. In: Proceedings of 3rd USENIX COOTS, Portland, Oregon (June 1997)

21. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation. Addison-
Wesley Longman Publishing Co., Inc., Boston (1983)

22. Halpern, J., Fagin, R., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

23. Hickey, J., Lynch, N., van Renesse, R.: Specifications and proofs for Ensemble layers. In:
Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Hei-
delberg (1999)

24. Hoare, C.: Communicating sequential processes. CACM 21(8), 666–677 (1978)
25. Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-Grained Mobility in the Emerald Sys-

tem. ACM TOCS 6(1), 109–133
26. Karr, D.: Specification, Composition, and Automated Verification of Layered Communi-

cation Protocols. Ph.D. Thesis. Cornell University (1997)

488 K. Ostrowski et al.

27. Keidar, I., Khazan, R., Lynch, N., Shvartsman, A.: An inheritance-based technique for
building simulation proofs incrementally. ACM Trans. Soft. Eng. Methodol. 11(1), 63–91
(2002)

28. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

29. Krumvieda, C.: Distributed ML: Abstractions for Efficient and Fault-Tolerant Prgram-
ming. Technical Report, TR93-1376, Cornell University (1993)

30. Lamport, L.: The Temporal Logic of Actions. ACM Toplas 16(3), 872–923 (1994)
31. Liskov, B.: Distributed Programming in Argus. CACM 31(3), 300–312 (1988)
32. Liskov, B., Schieffler, R.: Guardians and Actions: Linguistic Support for Robust, Distrib-

uted Programs. ACM TOPLAS 5, 3 (1983)
33. Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.:

Building Reliable, High-Performance Communication Systems from Components. In:
SOSP (1999)

34. Live Objects at Cornell, http://liveobjects.cs.cornell.edu/
35. Loesing, K., Wirtz, G.: An Implementation of Reliable Group Communication Based on

the Peer-to-Peer Network JXTA. In: AICCSA 2005 (2005)
36. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for dist.ributed algorithms. In:

PODC 1987 (1987)
37. Maffeis, S., Schmidt, D.: Constructing Reliable Distributed Communication Systems with

CORBA. IEEE Communications Magazine 14 (February 1997)
38. Makpangou, M., Gourhant, Y., Le Narzul, J.-P., Shapiro, M.: Fragmented Objects for Dis-

tri-buted Abstractions, pp. 170–186. IEEE Computer Society Press, Los Alamitos (1994)
39. Microsoft. Microsoft Office Groove, http://office.microsoft.com/en-us/groove/
40. Microsoft. XAML Overview, http://msdn2.microsoft.com/en-us/library/ms752059.aspx
41. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, parts I and II. LFCS

Report 89-85. University of Edinburgh (June 1989)
42. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a Flexible Protocol Kernel Supporting Mul-

tiple Coordinated Channels. In: Proc. of 21st ICDCS, Phoenix, Arizona, pp. 707–710
(2001)

43. Montresor, A., Davoli, R., Babaoglu, O.: Enhancing Jini with group communication. In:
ICDCS Workshop, April 2001, pp. 69–74 (2001)

44. Necula, G.: Proof-Carrying Code. ACM SIGPLAN-SIGACT POPL 1997 (1997)
45. O’Malley, S., Peterson, L.: A Dynamic Network Architecture. TOCS 10(2), 110–143

(1992)
46. Ostrowski, K., Birman, K., Dolev, D.: Quicksilver Scalable Multicast. In: 7th IEEE Inter-

national Symposium on Network Computing and Applications (IEEE NCA 2008) (to ap-
pear, 2008)

47. Ostrowski, K., Birman, K., Dolev, D.: Declarative Reliable Multi-Party Protocols. Cornell
University Technical Report, TR2007-2088 (March 2007)

48. Ostrowski, K., Birman, K., Dolev, D.: Extensible Architecture for High-Performance,
Scalable, Reliable Publish-Subscribe Eventing and Notification. JWSR v. 4, no 4 (Octo-
ber- December 2007)

49. Parastatidis, S., Webber, J., Woodman, S., Kuo, D., Greenfield, P.: SOAP Service Descrip-
tion Language (SSDL). Technical Report, University of Newcastle, CS-TR-899 (2005)

50. Reiter, M., Birman, K.: How to securely replicate services. In: TOPLAS, vol. 16(3), pp.
986–1009 (1994)

 Programming with Live Distributed Objects 489

51. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building Adaptive Sys-
tems Using Ensemble. Software Practice and Experience. 28(9), pp. 963-979 (August
1998)

52. Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Approach: a
Tutorial. ACM Computng Surveys 22(4), 299–319 (1990)

53. Smith, D., Kay, A., Raab, A., Reed, D.: Croquet: a collaboration system architecture. Cre-
ating, Connecting and Collaborating Through Computing, C5 2003, p. 2–9 (2003)

54. Smith, R., Wolczko, M., Ungar, D.: From Kansas to Oz: Collaborative Debugging When a
Shared World Breaks. CACM, 72–78 (1997)

55. Snyder, A.: Encapsulation and Inheritance in Object-Oriented Programming Languages.
In: OOPLSA 1986

56. van Steen, M., Homburg, P., Tanenbaum, A.: Globe: A Wide Area Distributed System.
IEEE Concurrency 7(1), 70–78 (1999)

57. Sun Microsystems, Inc. JXTA v2.0 Protocols Specification, http://www.jxta.org
58. Waldo, J.: The Jini architecture for network-centric computing. CACM 42(7), 76–82

(1999)

Bristlecone: A Language for Robust Software Systems

Brian Demsky and Alokika Dash

University of California, Irvine

Abstract. We present Bristlecone, a programming language for robust software
systems. Bristlecone applications have two components: a high-level organization
description that specifies how the application’s conceptual operations interact,
and a low-level operational description that specifies the sequence of instructions
that comprise an individual conceptual operation. Bristlecone uses the high-level
organization description to recover the software system from an error to a consis-
tent state and to reason how to safely continue the software system’s execution
after the error.

We have implemented a compiler and runtime for Bristlecone. We have evalu-
ated this implementation on three benchmark applications: a web crawler, a web
server, and a multi-room chat server. We developed both a Bristlecone version
and a Java version of each benchmark application. We used injected failures to
evaluate the robustness of each version of the application. We found that the
Bristlecone versions of the benchmark applications more successfully survived
the injected failures.

1 Introduction

Software faults pose a significant challenge to developing reliable, robust software sys-
tems. The current approach to addressing software faults is to work hard to minimize
the number of software faults through development processes, automated tools, and
testing. While minimizing the number of software faults is a critical component in the
development process for reliable software, it is not sufficient: the faults that inevitably
slip through the development and testing processes will still cause deployed systems to
fail.

The Lucent 5ESS telephone switch, the Ericsson AXD301 ATM switch, and the
IBM MVS operating system are examples of critical systems that use recovery routines
to automatically recover from software failures [1,2]. The software in these systems
contains a set of manually coded recovery procedures that detect errors and then take
actions to automatically recover from the errors. The reported results indicate that the
recover routines can provide an order of magnitude increase in the reliability of these
systems [3]. This additional reliability comes at a significant additional development
cost — the recovery routines for the Lucent 5ESS telephone switch constitute more
than 50% of the switch’s software [4]. As a result of these high costs, recovery proce-
dures have been primarily relegated to the domain of critical infrastructure software that
can justify the cost. A wide range of other applications including desktop applications
such as web browsers, office applications, games, servers, and control systems could
potentially benefit from lower-cost automated recovery. The goal of Bristlecone is to

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 490–515, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bristlecone: A Language for Robust Software Systems 491

provide a lower-cost approach to software recovery that will enable a larger class of
applications to benefit from this technique.

The key inspiration for this research is the observation that many software errors
propagate through software systems to cause further damage either through data struc-
ture corruption or control-flow–induced coupling between conceptual operations. We
have developed Bristlecone, a programming language for robust software systems, to
address the error propagation problem. The basic idea is to address error propagation
by having developers write software systems as a set of decoupled tasks with each task
encapsulating an individual conceptual operation. The developer also provides speci-
fications that describe how these decoupled tasks interact and optionally what consis-
tency properties should hold for data structures. The runtime checks for data structure
consistency violations and monitors for illegal operations (such as illegal memory ac-
cesses or arithmetic errors) to detect software errors. If the runtime detects an error
in the execution, the runtime rolls back the data structures to their state at the begin-
ning of the task’s execution, and then uses the task specifications to adapt the execu-
tion of the software system to avoid re-executing the same error and make forward
progress.

Alternatively, we can view Bristlecone as a programming language that allows for a
large space of possible execution paths for any given software system with an implicit
ordering of how desirable any given path is. If the most desirable path results in an error,
the runtime rolls back the execution enough to follow a different path thereby avoiding
the error. The result is a robust software system that can continue to successfully provide
service even in the presence of errors.

1.1 Bristlecone Language

Figure 1 gives an overview of the components in the Bristlecone system. We can view
software systems as a composition of thousands of conceptual operations — in practice,
the correct execution of any conceptual operation is likely to be independent of many
of the other conceptual operations. However, many traditional programming languages
force developers to linearize the conceptual operations of a software system. This lin-
earization tightly couples these conceptual operations: if one conceptual operation fails,
it becomes unclear how to safely execute any future conceptual operations.

Bristlecone avoids artificially coupling operations by providing the developer with
the task program construct. The developer uses a task to encompass a single conceptual
operation. Tasks are represented in Figure 1 as rectangles. A set of task specifications
loosely couple the tasks together. Each task contains a task specification that the runtime
uses to determine (1) when to execute the task, (2) what data the task needs, and (3) how
the task changes the role this data plays in the computation. If a task fails, the runtime
uses the task specifications to reason how to adapt the future execution of the software
system so that the execution does not depend on the failed task.

Bristlecone contains the following components (represented by rounded boxes in the
figure):

• Bristlecone Compiler: The Bristlecone compiler compiles the tasks and task spec-
ifications into C code. Our implementation then uses the gcc C compiler to generate
executables. The ellipse labeled Compiled Tasks represents the compiled tasks.

492 B. Demsky and A. Dash

Task A

Task
Specification A Bristlecone Runtime:

1) Controls task sequencing
2) Reverts failed tasks
3) Adapts execution after failure
4) Provides standard runtime
 functionality (GC, system calls, etc)

Bristlecone Compiler :
1) Compiles code

Compiled Tasks

Compiled Task Specifications

Software System

Task B

Task
Specification B

Task C

Task
Specification C

Fig. 1. Overview of the Bristlecone System

• Runtime: The runtime uses the compiled code and compiled specifications gener-
ated by the compilers (represented by the ellipses in the figure) to execute the soft-
ware system. It uses the consistency checker to detect errors that silently corrupt
data structures. The runtime then uses rollback to recover consistent data structures
if it detects a software error. Finally, it uses the task specifications to determine
when to execute the tasks and how to recover from errors.

1.2 Scope

Bristlecone is not suitable for all software systems. Certain computations, such as some
scientific simulations, are inherently tightly coupled. While Bristlecone may detect er-
rors in such software systems, it is unlikely to enable these systems to recover in any
meaningful way. For other computations, it may be desirable for a software system to
shut down rather than deviate from a specific designed behavior or produce a partial
result.

Bristlecone is designed for software systems that place a premium on continued
execution and that can tolerate some degradation from a specific designed behavior.
For example, we expect that Bristlecone will be useful for financial server software,
e-commerce systems, office applications, web browsers, online game servers, sensor
networks, and control systems for physical phenomena. For applications like finance,
Bristlecone can be used to develop software systems that only process error-free trans-
actions and back out all changes that corrupt data structures, while still ensuring that
cosmetic errors do not cause potentially expensive downtime. Ultimately, the software
developer must decide whether using this approach is reasonable for a given software
system.

This decision could depend on the environment in which a system is deployed. For
example, in systems with redundant backup systems, we expect that developers would

Bristlecone: A Language for Robust Software Systems 493

design the primary system to fail-fast and the backup system to be robust in the presence
of errors.

1.3 Contributions

This paper makes the following contributions:

• Bristlecone Language: It presents a programming language which exposes both
the conceptual operations and the ordering and data dependences between these
conceptual operations to the compiler and runtime system.

• Recovery Strategy: It presents a strategy for repairing the damage caused by a
software error and adapting the software system’s execution in response to the error
to enable it to safely continue execution.

• Experience: It presents our experience using Bristlecone to develop three robust
software systems: a web crawler, a web server, and a multi-room chat server. For
each benchmark, we developed both a Bristlecone version and a Java version. We
designed the Java versions to be resilient: they use threads to tolerate failures. Our
experience indicates that the Bristlecone versions are able to successfully recover
from significantly more of the injected failures.

The remainder of the paper is structured as follows. Section 2 presents an example
that illustrates our approach. Section 3 presents the Bristlecone languages. Section 4
presents the runtime system. Section 5 presents our experience using Bristlecone to
develop several robust software applications. Section 6 discusses related work; we con-
clude in Section 7.

2 Example

We next present a web server example that illustrates the operation of Bristlecone.
This web server has specialized e-commerce functionality and maintains state to track
inventory.

As the example web server executes, the conceptual state or role of objects in the
computation evolves. This evolution changes the way that the software system uses
the object and can change the functionality that the object supports. For example, the
Java connectmethod changes the functionality of a Socket object in a computation:
after the connectmethod is invoked, data can be written to or read from that Socket
object.

The Bristlecone language provides flags to track the conceptual state of an object.
The runtime uses the conceptual state of the object as indicated by the object’s flag to
determine which conceptual operations or tasks to invoke on the given object. When a
task exits, it can change the values of the flags of its parameter objects.

2.1 Classes

Figure 2 gives part of the WebRequest class definition. The web server example uses
instances of the WebRequest class to manage connections to the web server. The
WebRequest class definition declares three flags: the initialized flag, which

494 B. Demsky and A. Dash

class WebRequest {
/* This flag indicates that the WebRequest object is in its

initial state. */
flag initialized;

/* This flag indicates that the system has received a request
to send a requested file. */

flag file_req;

/* This flag indicates that the connection should be logged.*/
flag write_log;
...

}

Fig. 2. WebRequest Class Declaration

indicates whether the connection is in the initial state; the file req flag, which in-
dicates that the server has received a file request from this client connection; and the
write log flag, which indicates whether the connection information is available for
logging.

In many cases, the developer may need to invoke a task on multiple objects that are
related in some way. Bristlecone provides a tag construct, which the developer can use
to group objects together. New tag instances are created using tag allocation statements
of the form tag tagname=new tag(tagtype). Such a tag allocation statement
allocates a new tag instance of type tagtype and assigns the variable tagname to
this tag instance. The developer can tag multiple objects with a tag instance to group
them, and then use that tag instance to ensure that the runtime invokes a task on two or
more objects in the group defined by the tag instance. The developer can tag an object
by including the statement add tagname in an object allocation site to tag the newly
allocated object or in a taskexit statement to tag a parameter object. The example
uses the connection tag to group a WebRequest object with the corresponding
Socket object that provides the TCP connection for that web request. Tag instances
can be added to objects when the object is allocated, and they can be added or removed
to or from a task’s parameter objects when the task exits.

2.2 Tasks

Bristlecone software systems consist of a collection of interacting tasks. The key dif-
ference between tasks and methods is that the runtime invokes a task when the heap
contains objects with the specified flag settings to serve as the task’s parameters. Note
that while the runtime controls task invocation, tasks can call methods. The runtime
uses a task’s specification to determine which objects serve as the task’s parameters and
when to invoke the task.

Each task declaration consists of the keyword task, the task’s name, the task’s
parameters, and the body of the task. Figure 3 gives the task declarations for the
web server example. We indicate the omission of the Java-like imperative code in-
side the task declarations with ellipses. The first task declaration declares a task named

Bristlecone: A Language for Robust Software Systems 495

/* This task starts the web server */
task startup(StartupObject start in initialstate) {

...
ServerSocket ss=new ServerSocket(80);
Logger l=new Logger() (initialized:=true);
taskexit(start: initialstate:=false);

}

/* This task accepts incoming connection requests and creates a
Socket object. */

task acceptConnection(ServerSocket ss in pending_socket) {
...
tag t=new tag(connection);
WebRequest w=new WebRequest(...)(initialized:=true, add t);
ss.accept(t);
...

}

/* This task reads a request from a client. */
task readRequest(WebRequest w in initialized with connection t,

Socket s in IO_Pending with connection t) {
...
if (received_complete_request)
taskexit(w: initialized:=false, file_req:=true,

write_log:=true);
}

/* This task sends the request to the client. */
task sendPage(WebRequest w in file_req with connection t,

Socket s with connection t) {
...
taskexit(w: file_req:=false);

}

/* This task logs the request. */
task logRequest(WebRequest s in write_log, Logger l in

initialized) {
...
taskexit(s: write_log:=false);

}

Fig. 3. Flag Specifications for Tasks

startup that takes a StartupObject object as a parameter and points the para-
meter variable start to this object. The declaration also contains a guard that states
that the StartupObject object must have its initialstate flag set before the
runtime can invoke this task. The runtime invokes the task when there exist parame-
ter objects in the heap that satisfy the parameters’ guard expressions. Before exiting,

496 B. Demsky and A. Dash

the taskexit statement in the startup task resets the initialstate flag in
the StartupObject to false to prevent the runtime from repeatedly invoking the
startup task.

Task declarations can contain constraints on tag bindings to ensure that the pa-
rameter objects are related. A tag binding constraint contains the keyword with
followed by the type of the tag and the tag variable. For example, the task
declaration task readRequest(WebRequest w in initialized with
connection t, Socket s in IO Pending with connection t) en-
sures that the runtime only invokes the readRequest task on a set of parameter
objects in which the first parameter object is bound to an instance of a connection
tag and the second parameter object is bound to the same connection tag instance.
When the task executes, the tag variable t is bound to that connection tag instance.

2.3 Error-Free Execution

Figure 4 gives a diagram of the dependences between tasks in the web server example.
The ellipses in the diagram represent tasks and the edges represent the control and data
dependences between the tasks. The rectangle labeled Runtime initialization
represents the initialization performed by the Bristlecone runtime. From this diagram,
we can see that the web server performs the following operations in an error-free exe-
cution (although not necessarily in this order):

1. Startup: When a Bristlecone program is executed, the Bristlecone runtime creates
a StartupObject object and then sets its initialstate flag to true. Setting
this flag causes the runtime to invoke the startup task in our example. Note that
the code never explicitly calls a task. Instead, the runtime keeps track of the status
of the flags of objects in the heap and invokes a task when the heap contains objects
with the specified flag settings to serve as parameters.

When the runtime invokes the startup task, the startup task creates a
ServerSocket object to accept incoming connections to the web server. Next,
it creates a Logger object to manage logging web page requests and sets its
initialized flag to indicate that the object is ready to provide logging func-
tionality. Finally, it resets the StartupObject object’s initialstate flag to
false to prevent the runtime from repeatedly invoking the startup task.

2. Accepting an Incoming Connection: At some point, the web server will re-
ceive an incoming connection request from a web browser. This causes the run-
time to set the ServerSocket object’s pending socket flag to true, which
in turn causes the runtime to invoke the acceptConnection task with this
ServerSocket object as its parameter. The acceptConnection task creates
a WebRequest object to store the connections state and calls the accept method
on the ServerSocket to create a Socket object to manage communication
with the web browser. Note that the acceptConnection task creates a new
connection tag instance to group the Socket object and WebRequest object
together by binding this tag instance to the WebRequest object and then pass-
ing this tag instance into the accept method to bind the newly created Socket
object.

Bristlecone: A Language for Robust Software Systems 497

Runtime initialization

startup Task

StartupObject {initialstate}

acceptConnection Task

ServerSocket {} +
Incoming Connection
ServerSocket{pending_socket}

sendPage Task logRequest Task

Logger {initialized}

readRequest Task

WebRequest {initialized} with
connection tag + Socket {IO_pending}
with same connection tag

WebRequest {file_req, ...}
with connection tag + Socket{}
with same connection tag WebRequest {write_log, ...}

Fig. 4. Task Diagram for the Web Server

3. Reading a Request: After a connection is established, the client web browser sends
a web page request to the server. In response to this incoming web page request, the
runtime sets the Socket object’s IO pending flag to true1, which in turn causes
the runtime to invoke the readRequest task. The readRequest task checks
whether the server has received the complete request.2 If it has received the com-
plete request, it sets both the file req flag and the write log flag to true and
resets the initialized flag to false. These flag changes cause the runtime to
eventually invoke both the sendPage and the logRequest tasks and prevents
repeated invocations of the readRequest task on the same object.

4. Sending the Page: The runtime invokes the sendPage task when the
WebRequest object’s request processed flag is set to true. The sendPage
task then reads the requested file and sends the contents of the file to the client
browser. The sendPage task then resets the received request flag to false
to prevent repeated invocations of the sendPage task.

5. Logging the Request: The runtime invokes the logRequest task when both the
WebRequest object’s write log flag is set to true and the Logger object’s

1 The IO pending flag is declared with the external keyword to indicate that the runtime
manages setting and clearing this flag. The current runtime implementation of Bristlecone is
single-threaded and, therefore, uses non-blocking I/O. Future runtime implementations will
support multiple concurrent tasks and (transactional) blocking I/O [5].

2 Note that it is possible for a client browser to split a long request across multiple packets and
therefore it may be necessary to invoke the readRequest task multiple times to receive a
single request.

498 B. Demsky and A. Dash

initialized flag is set to true. The logRequest task writes a log entry to
record which web page was requested. The logRequest task then resets the
write log flag to false to prevent repeated invocations of the logRequest task.

2.4 Error Handling

The Bristlecone runtime uses task specifications to automatically recover from errors.
For example, suppose that the logRequest task fails while updating the Logger
object. If the web server were written in a traditional programming language, it could
be difficult to recover from such a failure. While some traditional languages provide
exceptional handling mechanisms, using them effectively is challenging — the devel-
oper must both identify which failures are likely to occur and reason about how to
recover from those failures. Alternatively, the program could simply ignore the failure.
Unfortunately, if the web server were to simply ignore the failure, it could easily leave
the Logger object in an inconsistent state, possibly eventually causing a catastrophic
failure later.

To address this issue Bristlecone tasks have transactional semantics — upon fail-
ure, the Bristlecone runtime aborts the enclosing transaction to return the affected
objects, including the Logger object, to consistent states. The runtime then records
that the logRequest task failed when invoked on the combination of those specific
WebRequest and Logger objects. The runtime uses this record to avoid re-executing
the same specific failure. At this point, the Bristlecone runtime has returned the web
server to a known consistent state and must now determine how to safely continue the
web server’s execution.

The traditional problem with using transactions to recover from deterministic soft-
ware faults is that after aborting a transaction the software system cannot make forward
progress — retrying the same transaction will cause the system to repeat the same fail-
ure. Bristlecone solves this problem by using the flags, tags, and task specifications to
determine which other tasks are safe to execute after the error. Although the software
fault prevents the system from logging this request, since the file req flag is set to
true, the task specification for the sendPage task allows the runtime to invoke the
sendPage task. Therefore, the runtime can still safely serve the web page request.

The end result is that the software system is able to safely continue to execute even in
the presence of software errors. Bristlecone is able to successfully isolate the effects of
the error to a minimal part of the web server’s execution — only a single task is aborted
and the abort is logged. Without Bristlecone, the web server could potentially leave the
Logger object in an inconsistent state, possibly causing the web server to fail to log
future requests. If the web server written in a conventional language was designed to log
request before serving a request, corruption of the log data structure could even cause
the server to stop serving requests.

3 Language Design

The Bristlecone language includes a task specification language that describes how to
orchestrate task execution. Bristlecone introduces object flags to store the conceptual

Bristlecone: A Language for Robust Software Systems 499

flagdecl := flag flagname; | external flag flagname;

tagdecl := tagtype tagname;

taskdecl := task name(taskparamlist)

taskparamlist := taskparamlist, taskparam | taskparam

taskparam := type name in flagexp | type name in flagexp with tagexp

flagexp := flagexp and flagexp | flagexp or flagexp |!flagexp | (flagexp) | flagname | true | false
tagexp := tagexp and tagtype tagname | tagtype tagname

statements := ... | taskexit(flagactionlist) | tag tagname = new tag(tagtype) |
new name(params)(flagortagactions) | assert(expression)

flagactionlist := flagactionlist; name : flagortagactions | name : flagortagactions

params := ... | tag tagname

flagortagactions := flagortagactions, flagortagaction | flagortagaction

flagortagaction := flagaction | tagaction

flagaction := flagname := boolliteral

tagaction := add tagname | clear tagname

Fig. 5. Task Grammar

state of the object. Each task contains a corresponding task specification that describes
which objects the task operates on, when the task should execute, and how the task
affects the conceptual state of objects.

Bristlecone is an object-oriented, type-safe language with syntax similar to Java.
Figure 5 presents the grammar for Bristlecone’s task extensions to Java. We omit the
Java-like imperative component of Bristlecone from the grammar to save space. The
developer includes a flag declaration inside a class declaration to declare that objects of
that class contain the declared flag. Flag declarations use the flag keyword followed
by the flag’s name. The developer may optionally use the external keyword to spec-
ify that the flag is set and reset by the runtime system. External flags are intended to
handle asynchronous events such as communication over the Internet or mouse clicks.
External flags are intended to be declared in library code with the corresponding run-
time component setting and clearing the external flag.

The developer can use tags to enforce relations between the parameters of a task. The
developer can create new tag instances with the new tag statement and a tag type.
Note that there may be many instances of a given type of tag. Each different instance of
that tag is distinct — objects labeled by two different instances of the same tag type are
not grouped together. The developer can bind tags to objects when an object is allocated
or bind or unbind tags to or from parameter objects at the task’s exit.

The developer declares a task using the task keyword followed by the task’s name,
the task’s parameters, and the task’s code. Each task parameter declaration contains the
parameter’s name, the parameter’s type, a flag guard expression that specifies the state
of the parameter’s flags, and an (optional) tag guard expression that specifies the tags
the object has. The task may be executed when all of its parameters are available. A pa-
rameter is available if the heap contains an object of the appropriate type, that object’s
flags satisfy the parameter’s guard expression, and that object contains the tag instances
that the parameter’s guard expression specifies. Bristlecone adds a modified new state-
ment that specifies the initial flag settings and tag bindings for a newly allocated object.
These take effect when the task exits. Bristlecone contains a taskexit statement that

500 B. Demsky and A. Dash

specifies how the task changes the state of the flags or tag bindings of its parameter
objects at that task exit point.

Bristlecone contains an assert statement that can be used to specify correctness
properties that must hold. The goal of assert statements is to provide a mechanism to
detect higher-level errors that do not cause low-level exceptions. The compiled appli-
cation uses the assert statements to detect errors at runtime— if it detects an error, the
runtime system will invoke the recovery algorithm. These assertion statements can be
used with data structure consistency checking tools [6,7], JML assertions [8], or design
by contract methodologies [9]. In many cases, the assertions can be generated automat-
ically using dynamic invariant detection tools [10,11,12].

4 Runtime System

The Bristlecone runtime is responsible for dispatching tasks, detecting errors, and re-
covering from errors.

4.1 Task Execution

Recall that the task specification contains guard expressions for all of the task’s para-
meters and that the runtime executes a task when parameter objects are available that
satisfy these guards. We next discuss how our implementation efficiently performs task
dispatch. A naive approach to task dispatch could potentially be very inefficient — a
parameter’s guard expression is quantified over all objects in the heap!

Parameter Sets. The runtime maintains a parameter set for each parameter of each
task. A parameter set contains all of the objects that satisfy the corresponding para-
meter’s guard. For each object type, the runtime precomputes a list of parameter sets
that objects of this type can potentially be a member of. When a task exit changes an
object’s flag settings or tag bindings, the runtime updates that object’s membership in
the parameter sets by traversing the precomputed list of possible parameter sets for the
class and evaluating whether the object satisfies the guard expression to be a member
of the parameter set.

Bristlecone also uses the parameter sets as root sets for garbage collection. Objects
in Bristlecone are garbage collected if (1) the object is unreachable from any poten-
tial parameter objects and (2) the object cannot be a parameter object of any task as
determined by membership in a parameter set. Note that it is possible to write incor-
rect programs that leave objects in task queues (e.g consider a two parameter task with
tagged parameters, the program might only change one parameter object’s flags leaving
the other parameter object in the queue). We have developed a static analysis that the
developer can use to automatically identify this type of memory leak [13].

Task Queue. A task invocation is a tuple that includes both a task and bindings for
that task’s object parameters and tag parameters. An active task invocation is a task
invocation that satisfies all of the task specification’s guards and can therefore safely
be invoked by the runtime. The runtime maintains the task queue of all active task
invocations and executes task invocations from this task queue.

Bristlecone: A Language for Robust Software Systems 501

Our implementation maintains a conservative approximation of the task queue —
our implementation’s task queue may contain a number of non-active task invocations
in addition to all of the active task invocations. When an object is added to a parameter
set, the implementation generates all active task invocations that bind that object to the
corresponding parameter and then adds these active task invocations to the task queue.
When an object is removed from a parameter set, our implementation does not remove
task invocations from the task queue. Instead, before the implementation executes a
task invocation in the queue, the implementation verifies that the task invocation is still
active.

Iterators. We next describe how our implementation efficiently generates all active
task invocations. Note that tag bindings restrict how parameter objects can be grouped
together into a task invocation, and therefore, a naive implementation can needlessly ex-
plore many task invocations that do not satisfy tag guards. For example, the sendPage
task in a web server may require both a WebRequest object and a Socket object
tagged with the same connection instance as parameters. An efficient implementa-
tion must prune the search space of possible task invocations to avoid the overhead of
exploring many task invocations that do not satisfy the tag guards.

Our implementation searches the parameter binding space using a sequence of it-
erators. It uses two iterator types: object instance iterators and tag instance iterators.
Object instance iterators iterate over the objects in the corresponding parameter set that
are compatible with all tag variable bindings made by previous iterators. In general, we
expect that relatively few objects will be bound to a given tag instance and relatively few
tag instances will be bound to a given object. Our implementation uses this expectation
to optimize the object iterators: if the parameter has a tag guard with a tag variable that
was bound by a previous tag iterator, the implementation optimizes the object iterator
to only iterate over the objects bound to that tag instance. Tag iterators iterate over tag
instances that are bound to an object. Tag iterators bind the tag variables in tag guards
to tag instances.

As described above, our iterators use the constraints provided by the tag guards to
prune the search space. Note that the order of the iterators can affect the size of the
search space that the implementation explores to generate all active task invocations.
Our implementation precomputes iterator orderings for each parameter of each task.
The implementation uses the following ordering priority:

1. Tag iterators for tags bound to parameter objects that have already been iterated over
have the highest priority. We expect that the set of iterated tag instances will be small
and, therefore, tag bindings will substantially prune subsequent object iterations for
parameters bound to the same tag variable.

2. Object iterators for parameters with tags that are bound by previous tag iterators.

3. Object iterators for parameters with tags that have not yet been iterated over.

4. Remaining object iterators have the lowest priority.

Task Execution Semantics. Tasks may fail either as a result of software errors, hard-
ware failures, or user errors. If a task fails, it may leave data structures in inconsistent

502 B. Demsky and A. Dash

states. Further computation using these inconsistent data structures will likely have un-
predictable and potentially catastrophic results. To avoid this problem, tasks in Bristle-
cone have transactional semantics — if a task fails, the Bristlecone runtime aborts the
task’s transaction.

Recall that a potential issue with the use of transactions in traditional programming
languages is that after the system recovers to the previous point, the system may simply
re-execute the same deterministic fault and that fault will cause the system to fail repeat-
edly in the same way. Bristlecone addresses this issue by using the flexibility provided
by the task-based language to avoid re-executing the same failure. The Bristlecone run-
time records the combination of task and parameter assignments that caused the failure
and uses this record to avoid re-executing the failed combination task and parameter
assignments. Instead, the runtime executes other tasks to avoid retriggering the same
underlying fault.

4.2 Error Detection

Errors can cause the computation to produce incorrect results and corrupt data struc-
tures, potentially eventually causing the software system to perform unacceptably.
Bristlecone uses runtime checks to detect errors, enabling the software system to adapt
its execution. The Bristlecone runtime uses error detection routines to trigger recovery
actions.

Bristlecone uses checks to detect many software errors. For example, the Bristlecone
compiler generates array bounds checks. These checks verify that the software system
does not read or write past the end of arrays. The Bristlecone compiler also generates
the necessary type checks for array operations and cast operations. These checks ensure
that the dynamic types of objects do not violate type safety.

The runtime uses hardware page protection to perform null pointer checks. This
is implemented by catching the segmentation fault signal from the operating system.
These checks ensure that the software system does not attempt to dereference a null
pointer or write values to the fields of a null pointer. The runtime also uses hardware
exceptions to detect arithmetic errors including division by zero. Native library routines
also signal errors to the runtime. For example, if a software systems attempts to send
data over a closed network connection, the runtime will signal an error. Software errors
can also cause a program to loop. Looping can prevent the software system from pro-
viding services. It is straightforward to support developer-provided task time-outs that
the runtime can use to detect looping tasks.

Bristlecone includes a runtime assertion mechanism to ensure that the execution is
consistent with respect to specified properties. The developer can simply write im-
perative code to check properties or can use the assertion mechanism to call exter-
nal consistency checking code. This mechanism is intended to be used to ensure data
structure consistency or to use techniques such as design by contract to detect higher-
level errors. The mechanism can be used in conjunction with JML assertions [8],
data structure consistency specifications languages [6,7], or other runtime checkable
specifications.

Bristlecone: A Language for Robust Software Systems 503

4.3 Error Recovery

Bristlecone was designed to support reasoning about failures using the high-level task
abstraction. In Bristlecone, a task either successfully completes execution or does not
execute at all. The Bristlecone runtime uses a straightforward checkpointing-based
transaction approach to implement this failure abstraction. Because a task can only ac-
cess the part of the heap that is reachable from the task’s parameter, it suffices to create
a snapshot of all objects reachable from the task’s parameters.

While the current prototype implementation uses a naive checkpointing-based ap-
proach, it is conceptually straightforward for future Bristlecone implementations to
leverage the large body of work on efficiently implementing software or hardware trans-
actional memory. A second issue with the current implementation is transactionalizing
I/O. One solution is to use a transactional I/O API that delays the effects of I/O opera-
tions until a task commits.

If Bristlecone detects an error, it simply fails the entire task and uses this stored
checkpoint to rollback the state affected by the failed task. This recovery strategy greatly
simplifies reasoning about the state of the software system after a failure. Restoring state
from the previous checkpoint ensures that a failure does not leave partially updated data
structures in inconsistent states.

Many software errors are deterministic. If Bristlecone re-executes a failed task on
the same parameters in the same state, it is likely that the task will fail again due to
the same error. Bristlecone addresses this issue by maintaining a record of failures. For
each failure, this record contains the combination of the failed task and the parameter
assignments that failed. Bristlecone uses this record to avoid re-executing the same fail-
ures by checking reference equality of the task’s parameters. The Bristlecone runtime
then uses the object flags to determine which tasks can be executed even though part
of the computation has failed. To better handle non-deterministic failures, the approach
can be extended to automatically retry failed task executions a few times. We note that
after a failure, a failed object can remain in task queue and never be garbage collected.
We expect that in practice, software systems will be mostly correct and therefore a fail-
ure will be a rare occurrence and only small amounts of memory will be leaked due to
failures.

4.4 Debugging and Error Logging

While it is desirable for deployed Bristlecone software systems to make every effort
to avoid failures, during the development phase this behavior can mask failures and
therefore complicate the debugging process. To facilitate debugging, Bristlecone can be
configured to fail-fast. The fail-fast mode ensures that developers will notice software
errors during the development process. Moreover, it would be straightforward to have
the runtime record the state of the objects that caused the task failure by using the stored
checkpoints. This information could help with debugging many software errors.

Furthermore, both developers and system administrators often want to be aware of
failures in deployed systems so that the underlying software faults, if any, can be fixed.
Bristlecone contains a logging mechanism that records both the task that failed and the
type of error. This log ensures that developers and system administrators are aware of

504 B. Demsky and A. Dash

failures in Bristlecone software systems and gives the developers a starting point for
diagnosing the cause of the failure. In some cases, developers may wish to create a
custom framework to communicate failure data. It would be possible to provide an API
that applications could use to query the runtime system about failures.

5 Experience

We next discuss our experiences using Bristlecone to develop three robust software
systems: a web crawler, a web server, and a multi-room chat server.

5.1 Methodology

We have implemented the Bristlecone compiler. Our implementation consists of
approximately 22,400 lines of Java code and C code for the Bristlecone com-
piler and runtime system. The Bristlecone compiler generates C code that runs on
both Linux and Mac OS X. The Bristlecone runtime uses precise stop-and-copy
garbage collection. The source code for our compiler and runtime is available at
http://demsky.eecs.uci.edu/bristlecone/. We ran the benchmarks on
a MacBook with a 2 GHz Intel Core Duo processor, 1 GB of RAM, and Mac OS X
version 10.4.8.

For each benchmark, we developed two versions: a Bristlecone version and a Java
version. We designed the Java versions to tolerate faults by isolating components of the
computation using threads. Without the use of threads to provide fault tolerance, the
Java versions would have halted with the first failure.

Our evaluation was designed to evaluate how robust each version of the benchmark
applications was to the large class of faults that cause the faulty thread or task to per-
form an illegal operation. This fault class includes faults that cause null pointer deref-
erences, out of bound array index errors, failed assertions, failed data structure consis-
tency checks, library usage errors, and arithmetic exceptions. Our evaluation simulated
the effects of this fault class by randomly injecting halting failures.

We used the Bristlecone compiler to automatically insert failure injection code after
each instruction. We used the Java frontend of our compiler framework to compile
and instrument the Java versions. The failure injection code takes three parameters at
runtime: the number of instructions to execute before considering injecting a failure, the
probability that a failure will be injected, and the total number of failures to inject. For
each benchmark, we selected the number of failures and then set the failure probability
to ensure that the normal execution of the benchmark would reach the set number of
failures.

5.2 Web Crawler

The web crawler takes an initial Uniform Resource Locator (URL) as input, visits the
web page referenced by the URL, extracts the hyperlinks from the page, and then re-
peats this process to visit all of the URLs transitively reachable from the initial URL.

Bristlecone: A Language for Robust Software Systems 505

The Bristlecone version contains four tasks. The Startup task creates a Query
object to store the initial URL that was specified on the command line and creates
a QueryList object to store the list of URLs that the web crawler has extracted.
The requestQuery task takes a newly created Query object as input, contacts the
web server specified by the Query object, and then requests the URL specified by
the Query object. The readResponse task reads the data that is currently available
on the connection and then checks if the task has received the complete web page. The
processPage task extracts URLs from the web page, checks the QueryList object
to see if the crawler has seen this URL before, and then creates a Query object if the
URL has not been seen before.

The Java version uses a pool of three threads to crawl web pages. Each thread de-
queues a URL from a global list of pages to visit, downloads the corresponding web
page, extracts URLs from the web page, and then stores any URLs it has not seen be-
fore into the global list of pages to visit.

We evaluated the robustness of the web crawler by developing both a workload and
a failure injection strategy. Our workload consisted of a set of 100 web pages that each
contain 3 hyperlinks to other web pages in the set. We used randomized failure injection
to inject failures into the executions of the web crawlers. We injected 3 failures into each
execution with each instruction having a 1 in 426,000 chance of failing.

We performed 100 trials of the experiment on each of the two versions. For each
trial, we measured how many web pages the crawler downloaded. Figure 6 presents
the results of the web crawler experiments. Without the injected failures, both versions
download 100 web pages. With the injected failures, on average the Bristlecone version
downloaded 91 out of 100 web pages and the Java version downloaded 6 out of 100
web pages. While most of the injected failures in the Bristlecone version only affect
crawling a single web page, failures that are injected into either the startup task or the
processing of the initial web page can affect crawling many web pages. Such failures
prevent the Bristlecone version from discovering the URLs of any further pages and
significantly lowered the Bristlecone version’s average number of crawled pages.

Java Bristlecone
Web Pages Crawled (out of 100) 6 91

Fig. 6. Summary of Web Crawler Benchmark Results

5.3 Web Server

The web server benchmark contains features that are intended to model an e-commerce
server. The web server maintains an inventory of merchandise and supports requests to
perform commercial transactions on this inventory, including adding new items, selling
items, and printing the inventory.

The Bristlecone version contains six tasks. The StartUp task creates a
ServerSocket object to accept incoming connections, creates a Logger object
to log the connections, and creates an Inventory object to keep track of the cur-
rent inventory of merchandise. The AcceptConnection task processes incom-
ing connections and creates a WebSocket objects to manage each connection. The

506 B. Demsky and A. Dash

ProcessRequest task reads the data that is currently available from the incoming
connection and then checks if the task has received the complete request. When the
complete request is available, the ProcessRequest task parses the request to deter-
mine whether the request is an e-commerce transaction or a simple file request.

The Transaction task processes e-commerce transaction requests. It first inspects
the request to determine whether the request is to add new items to the inventory, to
make a purchase, or to display inventory and then performs the requested operation.
For example, after receiving a purchase request the task looks up the price of the item
in the Inventory object, verifies that the item is available, and if so, decrements the
inventory count for the item and adds the price of the item to the sales figure.

The SendFile task processes file requests. It opens the requested file, reads the
file’s contents, and writes the file’s contents to the socket. The LogRequest task logs
all of the requests to the log file.

The Java version of the web server uses a thread to monitor for incoming connec-
tions. When a new connection arrives, the server spawns a separate connection thread
for that incoming connection. The server uses a global object to store the inventory val-
ues. We used this design to isolate failures in connection threads to that specific request
as much as possible. Note that failures can potentially corrupt the shared state. Note that
unlike the Bristlecone version of the web server, a failure in a connection thread will
prevent the server from performing any further operations for that connection including
logging the request.

We evaluated the robustness of both versions of the web server by developing both
a workload and a failure injection strategy. Our workload simulated web traffic to the
server. Our workload consisted of a sequence of 4,400 transaction requests. Our failure
injection strategy utilized the failure injection code described in the previous section.

We used failure injection to randomly inject 50 failures into the execution with a
probability of injecting a failure after a given instruction of 1 in 2,100,000. We per-
formed 200 trials on each of the two versions. For each trial we recorded whether the
final inventory request was served, whether the final inventory was consistent, how
many requests each version failed to serve, and how many request each version failed
to log.

Figure 7 summarizes the results of the fault injection experiments with the web
server. The Java version failed to serve the inventory request in 4.5% of the trials while
the Bristlecone version failed to serve the inventory request in 1.5% representing a
three-fold reduction in the number of failures to serve inventory requests. More im-
portantly, while the Java version served correct inventory responses only 68.6% of the
time, the Bristlecone version served the correct inventory response 100% of the time.

Java Bristlecone
Failures to serve Inventory Responses 4.5% 1.5%
Correct Inventory Responses 68.6% 100%
Failures to Serve Request 3.8% 2.2%
Failures to Log Request 3.9% 2.6%

Fig. 7. Summary of Web Server Benchmark Results

Bristlecone: A Language for Robust Software Systems 507

The Java version failed to serve 3.8% of the web requests and Bristlecone version failed
to serve 2.2% of the web requests, representing a 42% reduction in the failure rate. The
Java version failed to log 3.9% of the web requests and Bristlecone version failed to log
2.6% of the web requests, representing a 33% reduction in the failure rate.

5.4 Chat Server

The multi-room chat server benchmark accepts incoming connections, asks the user
to create a new room or select an existing room, and then allows users to chat with
other users in the same chat room. The Bristlecone version contains six tasks. The
StartUp task creates a ServerSocket object to accept incoming connections and
a RoomObject to manage the chat rooms. The AcceptConnection task processes
incoming chat connections. It creates a ChatSocket object to manage this connection
and then sends a message to ask the user to select a chat room.

The ReadRequest task reads the user’s chat room selection. It reads the cur-
rently available data from the incoming connection and checks if the chat server has
received the complete chat room selection. When the complete room request has been
received, the ProcessRoom task processes the request. If the requested room does
not exist, it creates the requested chat room. It then adds the user to the requested chat
room. The chat server stores the mapping of chat room names to the set of chat room
participants and for each room, maintains a list of participants in the corresponding
room.

The Message task processes incoming chat messages and stores these message
in a Message object. The SendMessage task then reads these Message objects,
parses the messages, and then sends the messages to all of the participants in the
chat room. Note that a problematic message or other error condition that causes the
SendMessage task to fail will not prevent the server from processing future mes-
sages from the same connection.

The Java version of the chat server uses a thread to monitor for incoming connec-
tions. When a new connection arrives, the server spawns a separate connection thread
for that incoming connection. The server uses a global object to store the set of chat
rooms. Unless a failure corrupts the room list, this design isolates failures in connection
threads to the specific connection. Note that unlike the Bristlecone version of the chat
server, a single failure in a connection thread will prevent the server from relaying any
further messages from that connection.

We evaluated the robustness of both versions by developing both a workload and a
failure injection strategy. Our workload simulated multiple users chatting on the server.
Our workload sent a total of 800 messages. Our failure injection strategy utilized the
failure injection code described in the previous section.

We used failure injection to randomly inject 10 failures into the execution with a
probability of injecting a failure after a given instruction of 1 in 270,000. We performed
100 trials on each of the two versions. For each trial we recorded how many messages
were successfully transmitted.

In the presence of the injected failures, the Java version failed to deliver 39.9% of
the messages and the Bristlecone version failed to deliver 19.3% of the messages, rep-
resenting a factor of two reduction in the failure rate.

508 B. Demsky and A. Dash

5.5 Experiences Writing Bristlecone Applications

We have developed Bristlecone and Java versions of three different benchmark appli-
cations. In general, we found writing Bristlecone applications to be straightforward.
Typically, writing the Bristlecone version of an application simply requires reorganiz-
ing the application’s code.

The Bristlecone versions of the benchmarks were approximately the same size as
the Java versions. The Bristlecone version of the web crawler contained 20% fewer
lines of code than the Java version, the Bristlecone version of the web server con-
tained 2% more lines of code than the Java version, and the Bristlecone version of
the chat server contained 5% more lines of code. The Bristlecone version of the web
crawler was shorter because it did not require an auxiliary data structure to store
queries.

One potential concern with Bristlecone is that developers may make mistakes writing
the high-level task specifications that Bristlecone requires. In our experience, we have
found that task declarations were in general simpler than the lower-level imperative
code and therefore easy to write correctly. However, we have developed an analysis that
can analyze the task specification to extract state transition diagrams for each class [13].
Developers can use these state transition diagrams to quickly visually verify that their
task specifications have the desired behaviors.

5.6 Performance

Although Bristlecone uses standard compilation techniques for the body of methods
and tasks, it incurs extra overheads supporting transactions and task invocation. Our
current runtime implements transactions using a combination of checkpointing and
single-threaded execution. We have measured the current implementation’s checkpoint-
ing and task invocation overhead to be 4.7 microseconds per task invocation on a 3 GHz
Pentium-D machine for a microbenchmark. Researchers have developed efficient hard-
ware or software transactional memory implementations [14,15,16,17,18,19,20,21] that
could be used to lower the transaction overhead. Static task scheduling could also be
used to statically schedule a sequence of task invocations to further reduce the task
invocation overhead.

5.7 Discussion

Our experience indicates that software systems developed using Bristlecone can recover
from many otherwise fatal failures. The Bristlecone versions of all three benchmarks
were able to recover from many more injected failures and provided a higher of quality
of service than the hand-designed Java versions.

Note that these results only hold for software faults that can be automatically de-
tected. These results can be generalized to include faults that cause the application
to silently perform an incorrect action, if the developer provides Bristlecone with a
runtime-checkable correctness specification the detects the error. Examples of such
specifications include runtime assertions or data structure consistency specifications.

Bristlecone: A Language for Robust Software Systems 509

6 Related Work

We survey related work in testing, static analysis, exception mechanisms, fault toler-
ance, programming languages, and software architectures.

6.1 Approaches to Reliable Software

The standard approach to dealing with software failures is to work hard to find and
eliminate software faults. Approaches such as extensive testing [22], static analy-
sis [23,24,25], software model checking [26], error correction codes [27], and software
isolation mechanisms [28] are all designed, in part, to eliminate as many potential er-
rors as possible. We expect that Bristlecone will complement these other techniques:
Bristlecone will enable software systems to recover from software errors that the other
techniques miss.

Many programming languages, including Java, provide an exception handling mech-
anism [29]. Writing exception handlers requires developers to reason about what parts
of the computation are effected by the failure and how to recover the computation from
a failure — note that the failed operation may leave critical data structures in inconsis-
tent, partially updated states.

Fault tolerance researchers have developed many methods to address software fail-
ures. Recovery blocks allow a developer to provide multiple implementations of an al-
gorithm and an acceptance test for these implementations [30]. This technique requires
the developer to expend the effort to develop multiple implementations and acceptance
tests. Furthermore, the recovery block technique may fail if the algorithms share a com-
mon defect or if there is an error in the acceptance test.

Backward recovery uses a combination of checkpointing and acceptance tests
(or error detection) to prevent a software system from entering an incorrect
state [31,32,33,34]. Unfortunately, it can be difficult to handle deterministic failures us-
ing backward recovery as the same software error will likely cause the software system
to repeatedly fail. Forward recovery uses multiple copies of a computation to recover
from transient errors [35]. Forward recovery is designed to handle intermittent failures
— it cannot help deterministic errors that affect all copies of the computation.

Databases utilize transactions to ensure that the database is never left in a half-
updated state by a partially completed sequences of operations [3].

In N-version programming, the developer constructs a software system out of mul-
tiple, independent implementations and a decision algorithm to decide which result
to use in the event of a disagreement [36]. However, N-version programming may be
prohibitively expensive — it requires developers to perform the difficult task of imple-
menting multiple versions that are independent enough to not share failure modes but
similar enough to be comparable.

The Recovery-Oriented Computing project has explored integrating an undo
operation into software systems [37] and constructing systems out of a set of individ-
ually rebootable components [38]. Failure oblivious computing is designed to address
memory errors in C programs [39]. It detects erroneous memory operations and discards

510 B. Demsky and A. Dash

illegal write operations and manufactures values for invalid read operations. DieHard
handles similar memory errors by using replication and randomization of the memory
layout [40]. Randomization probabilistically ensures that illegal memory operations can
only damage data structures in one of the replicants.

Specification-based data structure repair automatically generates repair algorithms
from declarative specifications [7] and imperative consistency checking code [41]. This
technique enables software systems to recover from data structure consistency errors.

Researchers have used meta-languages to decompose numerical computations into
parallelizable tasks [42]. This technique is applicable to parallelizable numerical com-
putations that compute many subproblems and then combine the subproblem results to
compute an overall result. If one of the subcomputations executes slowly, this approach
can ignore the subcomputation. Bristlecone is designed to handle a broader class of
software systems including servers, control systems, and office applications. Bristle-
cone can provide stronger correctness guarantees.

6.2 Related Languages

A key component of Bristlecone is decoupling unrelated conceptual operations and
tracking data dependences between these operations. Bristlecone’s approach contains
common elements with many parallel programming paradigms [43]. Dataflow compu-
tation was one of the earlier computational models that keeps track of data dependences
between operations so that the operations can be parallelized [44]. Note that dataflow
languages are not designed to handle failures — a failure in a data flow program will
likely cause an operation to fail to place a value in a queue, which would likely cause the
application to fail catastrophically because operations that operate on multiple queues
would pair the wrong values for the rest of the computation. Bristlecone ensures that
failures cannot cause the wrong parameter objects to be paired together or prevent a
task from operating on parameter objects that were not affected by the error.

Tuple-space languages, such as Linda [45], decouple computations to enable paral-
lelization. The threads of execution communicate through a set of primitives that manip-
ulate a global tuple space. While these systems were not designed to address software
errors as errors in these systems can permanently halt the execution of threads, Bristle-
cone implements a similar technique to decouple the execution of its tasks.

The orchestration language Orc [46] specifies how work flows between tasks. Orc
is designed to decouple operations and expose parallelism. Note that if an operation
fails, any work (and any corresponding data) flowing through the task may be lost.
Since the goal of Orc is not failure recovery, it was not designed to contain mechanisms
to recover data from failed tasks. Therefore, errors can cause critical information to
disappear, eventually causing the software system to fail. Bristlecone uses flags to keep
track of the conceptual states (or roles) that objects are in, enabling software systems to
recover data from software errors and to continue to execute successfully.

Actors communicate through messages [47,48]. Actors were originally designed as
a concurrent programming paradigm. Failures may cause actors to drop messages and
corrupt or lose their state. Bristlecone’s objects persist across task failures and can still

Bristlecone: A Language for Robust Software Systems 511

be used by other tasks. Moreover, state corruption in actors can cause actors to perma-
nently crash. Since Bristlecone’s tasks are stateless, a previous failure of a task does not
affect future invocations of that task on different inputs.

Argus is a distributed programming language that organizes processes under
guardians and isolates a process failure to the guardian under which it executes [49].
Inconsistencies could potentially cause the enclosing guardian to shut down. Argus
supports failure recover through an exception handling mechanism. This approach is
complementary to Bristlecone: a developer can write exception handlers for anticipated
failures and Bristlecone can be used to recover from unexpected failures.

Oz is a concurrent, functional language that organizes computations as a set of
tasks [50,51]. Tasks are created and destroyed by the program. A task becomes re-
ducible (executable) once the constraint store satisfied the task’s guard. Task reducibil-
ity is monotonic — once a task is reducible it is always reducible. Task activation in
Bristlecone is not monotonic — the developer can temporarily disable a task when
other tasks have placed objects into states that are incompatible with the task or when
the effect of a task is no longer desirable. Non-monotonicity makes it straightforward
for a Bristlecone application to use multiple implementations of the same functionality
for redundancy. Moreover, since task creation is controlled by the program in Oz, it is
more difficult to reason statically about tasks.

Concurrent Prolog is logic-based language that uses unification to prove a
goal [52,53]. The proof corresponds to the execution of the program. Concurrent Pro-
log’s guarded notation is similar to Bristlecone’s flag expressions, but Concurrent Pro-
log’s evaluation strategy starts from an end goal and reasons backwards. Concurrent
Prolog programs may be able to recover from some failures by finding a different ex-
ecution that reaches the same end goal. The downside is that if a failure prevents the
program from completely achieving its end goal, the program will be unable to make
partial progress. Bristlecone works forward and therefore can make progress even if a
failure prevents the system from completely achieving its goal.

Erlang has been used to implement robust systems using a set of supervisors and a
hierarchy of increasingly simple implementations of the same functionality [54]. The
supervisors monitor the computation for errors. If an error is detected, the system falls
back to a simpler implementation in the hierarchy. Ericsson has taken this approach
in their telephone switches. Bristlecone is complementary to the supervisor approach
— while the supervisor approach gives the developer complete control of the recovery
process, the downside of this approach is that it requires the developer to manually de-
velop multiple implementations of the same functionality. Bristlecone requires minimal
development effort and could potentially make recovery cost effective for a larger set
of applications. Furthermore, while a shared but minor fault could cause the entire Er-
lang implementation hierarchy to fail, in many cases Bristlecone may be able to execute
around the fault and still provide nearly complete functionality.

Several research projects use type state-based approaches to automatically check
that an API is used correctly [55,56]. Puntigam proposes tokens as a synchronization
mechanism for object-oriented languages [57]. Bristlecone flags are similar to these
mechanisms with one significant difference — Bristlecone uses flags to determine the

512 B. Demsky and A. Dash

execution of a program while these mechanisms only check (or synchronize) the actions
of traditional imperative programs.

6.3 Related Software Architectures

The staged event-driven architecture (SEDA) pushes events through stages [58]. Note
that this architecture was been designed for high-performance computation and not fault
tolerance. An error in a stage can prevent relaying the event and cause information to be
lost. Stages also have local state, therefore, corruption of this state will cause that stage
to shutdown until reboot. It appears difficult to specify that an application should either
execute one sequence of operations or a second sequence, but not both.

7 Conclusion

We have successfully developed several robust software systems using Bristlecone.
Bristlecone software systems consist of a set of interacting tasks with each task im-
plementing one of the conceptual operations in the software system. The developer
specifies how these tasks interact using task specifications. Bristlecone uses transaction
to recover data structures from task failures. Bristlecone then uses task specifications to
reason about how to continue execution in the presence of a failed task. The key results
in this paper include the Bristlecone language, the Bristlecone compiler and runtime,
and our experience using the Bristlecone language. Our experience indicates that the
task-based approach used in Bristlecone can effectively enable software systems to re-
cover from otherwise fatal errors. Bristlecone promises to increase the robustness of
software systems and to decrease the cost of developing many classes of robust soft-
ware systems.

Acknowledgments. We would like to thank the anonymous referees for their insightful
feedback on our paper. This work was funded in part by NSF Grant CCF-0725350 and
NSF Grant CNS-0720854.

References

1. Haugk, G., Lax, F., Royer, R., Williams, J.: The 5ESS(TM) switching system: Maintenance
capabilities. AT&T Technical Journal 64(6 part 2), 1385–1416 (1985)

2. Mourad, S., Andrews, D.: On the reliability of the IBM MVS/XA operating system. IEEE
Transactions on Software Engineering (September 1987)

3. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
San Francisco (1993)

4. Baker, W.O., Ross, I.M., Mayo, J.S., Stanzione, D.C.: Bell labs innovations in recent
decades. Bell Labs Technical Journal 5(1), 3–16 (2000)

5. Harris, T.: Exceptions and side-effects in atomic blocks. Science of Computer Program-
ming 58(3), 325–343 (2005)

6. Demsky, B., Cadar, C., Roy, D., Rinard, M.C.: Efficient specification-assisted error local-
ization. In: Proceedings of the Second International Workshop on Dynamic Analysis (2004)

Bristlecone: A Language for Robust Software Systems 513

7. Demsky, B., Rinard, M.: Data structure repair using goal-directed reasoning. In: Proceed-
ings of the 2005 International Conference on Software Engineering (May 2005)

8. Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: notations and tools
supporting detailed design in Java. In: OOPSLA 2000 Companion, pp. 105–106 (2000)

9. Meyer, B.: Applying Design by Contact. Computer 23(10), 40–51 (1992)
10. Demsky, B., Ernst, M.D., Guo, P.J., McCamant, S., Perkins, J.H., Rinard, M.: Inference

and enforcement of data structure consistency specifications. In: Proceedings of the 2006
International Symposium on Software Testing and Analysis (2006)

11. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer 7(3), 212–232 (2005)

12. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly detecting relevant program
invariants. In: Proceedings of the 22nd International Conference on Software Engineering
(June 2000)

13. Demsky, B., Sundaramurthy, S.: Static analysis of task interactions in bristlecone for pro-
gram understanding. Technical Report UCI-ISR-07-7, Institute for Software Research, Uni-
versity of California, Irvine (October 2007)

14. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th ACM
Symposium on Principles of Distributed Computing (August 1995)

15. Ananian, C.S., Asanović, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded transac-
tional memory. In: 11th International Symposium on High Performance Computer Archi-
tecture (February 2005)

16. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions. In: Pro-
ceedings of the 2006 Conference on Programming Language Design and Implementation
(June 2006)

17. Spear, M.F., Marathe, V.J., Schereer, W.N., Scott, M.L.: Conflict detection and validation
strategies for software transactional memory. In: Proceedings of the Twentieth International
Symposium on Distributed Computing (2006)

18. Harris, T., Plesko, M., Shinnar, A., Tarditi, D.: Optimizing memory transactions. In: Pro-
ceedings of the 2006 ACM SIGPLAN conference on Programming Language Design and
Implementation, pp. 14–25. ACM Press, New York (2006)

19. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. In: Proceedings of the Twentieth Annual International Symposium on Computer
Architecture (1993)

20. Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A.: Hybrid transactional memory.
In: Proceedings of the Eleventh ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (2006)

21. Hammond, L., Wong, V., Chen, M., Hertzberg, B., Carlstrom, B., Prabhu, M., Wijaya, H.,
Kozyrakis, C., Olukotun, K.: Transactional memory coherence and consistency (tcc). In:
Proceedings of the 11th Intl. Symposium on Computer Architecture (June 2004)

22. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on java predicates
(2002)

23. Ghiya, R., Hendren, L.J.: Is it a tree, a dag, or a cyclic graph? a shape analysis for heap-
directed pointers in c. In: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages (1996)

24. Wies, T., Kuncak, V., Lam, P., Podelski, A., Rinard, M.: Field constraint analysis. In: Pro-
ceedings of the International Conference on Verification, Model Checking, and Abstract
Interpretation (2006)

25. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3–valued logic. In: Sympo-
sium on Principles of Programming Languages, pp. 105–118 (1999)

514 B. Demsky and A. Dash

26. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, Zheng, H.:
Bandera: Extracting finite-state models from Java source code. In: Proceedings of the 2000
International Conference on Software Engineering (2000)

27. Shirvani, P.P., Saxena, N.R., McCluskey, E.J.: Software-implemented EDAC protection
against SEUs. IEEE Transactions on Reliability 49(3), 273–284 (2000)

28. Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., Young, M.: Mach:
A new kernel foundation for UNIX development. In: Proceedings of the USENIX Summer
Conference (1986)

29. Goodenough, J.B.: Structured exception handling. In: POPL 1975: Proceedings of the 2nd
ACM SIGACT-SIGPLAN symposium on Principles of programming languages (1975)

30. Anderson, T., Kerr, R.: Recovery blocks in action: A system supporting high reliability.
In: Proceedings of the 2nd International Conference on Software Engineering, pp. 447–457
(1976)

31. Zhang, Y., Wong, D., Zheng, W.: User-level checkpoint and recovery for LAM/MPI. ACM
SIGOPS Operating Systems Review 39(3), 72–81 (2005)

32. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing under Unix.
In: Usenix Winter Technical Conference, January 1995, pp. 213–223 (1995)

33. Chandy, K.M., Ramamoorthy, C.: Rollback and recovery strategies. IEEE Transactions on
Computers C-21(2), 137–146 (1972)

34. Young, J.W.: A first order approximation to the optimum checkpoint interval. Communica-
tions of the ACM 17(9), 530–531 (1974)

35. Huang, K., Wu, J., Fernandez, E.B.: A generalized forward recovery checkpointing scheme.
In: Proceedings of the 1998 Annual IEEE Workshop on Fault-Tolerant Parallel and Distrib-
uted Systems (April 1998)

36. Avizienis, A.: The methodology of n-version programming (1995)
37. Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez, P.,

Fox, A., Kcman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman,
J., Treuhaft, N.: Recovery-oriented computing (ROC): Motivation, definition, techniques,
and case studies. Technical Report UCB//CSD-02-1175, UC Berkeley Computer Science
(March 15, 2002)

38. Candea, G., Fox, A.: Recursive restartability: Turning the reboot sledgehammer into a
scalpel. In: HotOS-VIII, May 2001, pp. 110–115 (2001)

39. Rinard, M., Cadar, C., Dumitran, D., Roy, D.M., Leu, T., William, S., Beebee, J.: Enhancing
server availability and security through failure-oblivious computing. In: Proceedings of the
6th Symposium on Operating Systems Design and Implementation (December 2004)

40. Berger, E., Zorn, B.: Diehard: Probabilistic memory safety for unsafe languages. In: Pro-
ceedings of the ACM SIGPLAN 2006 Conference on Programming Language Design and
Implementation (June 2006)

41. Khurshid, S., Garcı́a, I., Suen, Y.L.: Repairing structurally complex data. In: Proceedings
of the 12th International SPIN Workshop on Model Checking of Software (August 2005)

42. Rinard, M.: Probabilistic accuracy bounds for fault-tolerant computations that discard tasks.
In: Proceedings of the 20th ACM International Conference on Supercomputing (2006)

43. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#. In: Proceed-
ings of the 16th European Conference on Object-Oriented Programming (2002)

44. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming languages.
ACM Comput. Surv. 36(1) (2004)

45. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming
Languages and Systems 7(1), 80–112 (1985)

46. Cook, W.R., Patwardhan, S., Misra, J.: Workflow patterns in Orc. In: Proceedings of the
2006 International Conference on Coordination Models and Languages (2006)

Bristlecone: A Language for Robust Software Systems 515

47. Hewitt, C., Baker, H.G.: Actors and continuous functionals. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA (1978)

48. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor computation. Jour-
nal of Functional Programming 7(1), 1–72 (1997)

49. Liskov, B., Day, M., Herlihy, M., Johnson, P., Leavens, G., Scheifler, R., Weihl, W.: Argus
reference manual. Technical Report MIT-LCS-TR-400, Massachusetts Institute of Technol-
ogy (November 1987)

50. Smolka, G.: The Oz programming model. In: Proceedings of the European Workshop on
Logics in Artificial Intelligence, p. 251. Springer, London (1996)

51. Mehl, M.: The Oz Virtual Machine - Records, Transients, and Deep Guards. PhD thesis,
Technische Fakultät der Universität des Saarlandes (1999)

52. Shapiro, E.: The family of concurrent logic programming languages. ACM Computing Sur-
veys 21(3), 413–510 (1989)

53. Shapiro, E.: Concurrent Prolog: A progress report. Computer 19(8), 44–58 (1986)
54. Armstrong, J.: Making Reliable Distributed Systems in the Presence of Software Errors.

PhD thesis, Swedish Institute of Computer Science (November 2003)
55. DeLine, R., Fahndrich, M.: Typestates for objects. In: Proceedings of the 18th European

Conference on Object-Oriented Programming (2004)
56. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Proceedings of

the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems
and Applications, pp. 301–320 (2007)

57. Puntigam, F.: Internal and external token-based synchronization in object-oriented lan-
guages. In: Modular Programming Languages, Proceedings of the 7th Joint Modular Lan-
guages Conference, pp. 251–270 (2006)

58. Welsh, M., Culler, D.E., Brewer, E.A.: SEDA: An architecture for well-conditioned, scal-
able internet services. In: Proceedings of the Eighteenth Symposium on Operating Systems
Principles (October 2001)

Session-Based Distributed Programming in Java

Raymond Hu1, Nobuko Yoshida1, and Kohei Honda2

1 Imperial College London
2 Queen Mary, University of London

Abstract. This paper demonstrates the impact of integrating session
types and object-oriented programming, through their implementation in
Java. Session types provide high-level abstraction for structuring a series
of interactions in a concise syntax, and ensure type-safe communications
between distributed peers. We present the first full implementation of a
language and runtime for session-based distributed programming featur-
ing asynchronous message passing, delegation, and session subtyping and
interleaving, combined with class downloading and failure handling. The
compilation-runtime framework of our language effectively maps session
abstraction onto underlying transports and guarantees communication
safety through static and dynamic session type checking. We have im-
plemented two alternative mechanisms for performing distributed session
delegation and prove their correctness. Benchmark results show session
abstraction can be realised with low runtime overhead.

1 Introduction

Communication in object-oriented programming. Communication is be-
coming a fundamental element of software development. Web applications in-
creasingly combine numerous distributed services; an off-the-shelf CPU will soon
host hundreds of cores per chip; corporate integration builds complex systems
that communicate using standardised business protocols; and sensor networks
will place a large number of processing units per square meter. A frequent pat-
tern in communication-based programming involves processes interacting via
some structured sequence of communications, which as a whole form a nat-
ural unit of conversation. In addition to basic message passing, a conversation
may involve repeated exchanges or branch into one of multiple paths. Struc-
tured conversations of this nature are ubiquitous, arising naturally in server-
client programming, parallel algorithms, business protocols, Web services, and
application-level network protocols such as SMTP and FTP.

Objects and object-orientation are a powerful abstraction for sequential and
shared variable concurrent programming. However, objects do not provide suf-
ficient support for high-level abstraction of distributed communications, even
with a variety of communication API supplements. Remote Method Invocation
(RMI), for example, cannot directly capture arbitrary conversation structures;
interaction is limited to a series of separate send-receive exchanges. More flexible
interaction structures can, on the other hand, be expressed through lower-level

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 516–541, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Session-Based Distributed Programming in Java 517

(TCP) socket programming, but communication safety is lost: raw byte data
communicated through sockets is inherently untyped and conversation structure
is not explicitly specified. Consequently, programming errors in communication
cannot be statically detected with the same level of robustness as standard type
checking protects object type integrity.

The study of session types has explored a type theory for structured conver-
sations in the context of process calculi [27,12,13] and a wide variety of formal
systems and programming languages. A session is a conversation instance con-
ducted over, logically speaking, a private channel, isolating it from interference;
a session type is a specification of the structure and message types of a conver-
sation as a complete unit. Unlike method call, which implicitly builds a synchro-
nous, sequential thread of control, communication in distributed applications is
often interleaved with other operations and concurrent conversations. Sessions
provide a high-level programming abstraction for such communications-based
applications, grouping multiple interactions into a logical unit of conversation,
and guaranteeing their communication safety through types.

Challenge of session-based programming. This paper demonstrates the
impact of integrating session types into object-oriented programming in Java.
Preceding works include theoretical studies of session types in object-oriented
core calculi [10,8], and the implementation of a systems-level object-oriented lan-
guage with session types for shared memory concurrency [11]. We further these
works by presenting the first full implementation of a language and runtime for
session-based distributed programming featuring asynchronous message passing,
delegation, and session subtyping and interleaving, combined with class down-
loading and failure handling. The following summarises the central features of
the proposed compilation-runtime framework.

1. Integration of object-oriented and session programming disciplines. We ex-
tend Java with concise and clear syntax for session types and structured
communication operations. Session-based distributed programming involves
specifying the intended interaction protocols using session types and imple-
menting these protocols using the session operations. The session implemen-
tations are then verified against the protocol specifications. This methodol-
ogy uses session types to describe interfaces for conversation in the way Java
interfaces describe interfaces for method-call interaction.

2. Ensuring communication safety for distributed applications. Communication
safety is guaranteed through a combination of static and dynamic valida-
tions. Static validation ensures that each session implementation conforms
to a locally declared protocol specification; runtime validation at session ini-
tiation checks the communicating parties implement compatible protocols.

3. Supporting session abstraction over concrete transports. Our compilation-
runtime framework maps application-level session operations, including del-
egation, to runtime communication primitives, which can be implemented
over a range of concrete transports; our current implementation uses TCP.
Benchmark results show session abstraction can be realised over the under-
lying transport with low runtime overhead.

518 R. Hu, N. Yoshida, and K. Honda

A key technical contribution of our work is the implementation of distributed
session delegation: transparent, type-safe endpoint mobility is a defining feature
that raises session abstraction above the underlying transport. We have designed
and implemented two alternative mechanisms for performing delegation, and
proved their correctness. We also demonstrate how the integration of session
types and objects can support extended features such as eager remote class
loading and eager class verification.

Paper summary. Section 2 illustrates the key features of session programming
by example. Section 3 describes the design elements of our compilation-runtime
framework. Section 4 discusses the implementation of session delegation and its
correctness. Section 5 presents benchmark results. Section 6 discusses related
work, and Section 7 concludes. The compiler and runtime, example applications
and omitted details are available at [26].

2 Session-Based Programming

This section illustrates the central ideas of programming in our session-based
extension of Java, called SJ for short, by working through an example, an on-
line ticket ordering system for a travel agency. This example comes from a Web
service usecase in WS-CDL-Primer 1.0 [6], capturing a collaboration pattern
typical to many business protocols [3,28]. Figure 1 depicts the interaction be-
tween the three parties involved: a client (Customer), the travel agency (Agency)
and a travel service (Service). Customer and Service are initially unknown to
each other but later communicate directly through the use of session delega-
tion. Delegation in SJ enables dynamic mobility of sessions whilst preserving
communication safety. The overall scenario of this conversation is as follows.

1. Customer begins an order session s with Agency, then requests and receives
the price for the desired journey. This exchange may be repeated an arbitrary
number of times for different journeys under the initiative of Customer.

2. Customer either accepts an offer from Agency or decides that none of the
received quotes are satisfactory (these two possible paths are illustrated sep-
arately as adjacent flows in the diagram).

3. If an offer is accepted, Agency opens the session s′ with Service and delegates
to Service, through s′, the interactions with Customer remaining for s. The
particular travel service contacted by Agency is likely to depend on the
journey chosen by Customer, but this logic is external to the present example.

4. Customer then sends a delivery address (unaware that he/she is now talking
to Service), and Service replies with the dispatch date for the purchased
tickets. The transaction is now complete.

5. Customer cancels the transaction if no quotes were suitable and the session
terminates.

The rest of this section describes how this application can be programmed in
SJ. Roughly speaking, session programming consists of two steps: specifying
the intended interaction protocols using session types, and implementing these
protocols using session operations.

Session-Based Distributed Programming in Java 519

Customer Agency Service

Customer Agency

Fig. 1. A ticket ordering system for a travel agency

Protocol specification. In SJ, session types are called protocols, which are de-
clared using the protocol keyword. The protocols for the order session (between
Customer and Agency) are specified below as placeOrder, which describes the
interactions from Customer’s side, and acceptOrder, from Agency.1

protocol placeOrder {
begin. // Commence session.
![// Can iterate:

!<String>. // send String
?(Double) // receive Double

]*.
!{ // Select one of:

ACCEPT: !<Address>.?(Date),
REJECT:

}
}

Order protocol: Customer side.

protocol acceptOrder {
begin.
?[

?(String).
!<Double>

]*.
?{

ACCEPT: ?(Address).!<Date>,
REJECT:

}
}

Order protocol: Agency side.

We first look at placeOrder: the first part says Customer can repeat as many
times as desired (expressed by ![..]*), the sequence of sending a String (!<String
>) and receiving a Double (?(Double)). Customer then selects (!{...}) one of the
two options, ACCEPT and REJECT. If ACCEPT is chosen, Customer sends an Address
and receives a Date, then the session terminates; if REJECT, the session terminates
immediately. The acceptOrder protocol is dual to placeOrder, given by inverting

1 SJ also supports an alternative syntax for protocols (session types) that replaces the
symbols such as ‘!’ and ‘?’ with keywords in English [26].

520 R. Hu, N. Yoshida, and K. Honda

the input ‘?’ and the output ‘!’ symbols in placeOrder, thus guaranteeing a
precise correspondence between the actions of each protocol.

Session sockets. After declaring the protocols for the intended interactions,
the next step is to create session sockets for initiating sessions and performing
session operations. There are three main entities:

– Session server socket of class SJServerSocket, which listens for session re-
quests, accepting those compatible with the specified protocol.

– Session server-address of class SJServerAddress, which specifies the address
of a session server socket and the type of session it accepts; and

– Session socket of class SJSocket, which represents one endpoint of a session
channel, through which communication actions within a session are per-
formed. Clients use session sockets to request sessions with a server.

SJ uses the terminology from standard socket programming for familiarity. The
session sockets and session server sockets correspond to their standard socket
equivalents, but are enhanced by their associated session types. Client sockets
are bound to a session server-address at creation, and can only make requests
to that server. Session server sockets accept a request if the type of the server is
compatible with the requesting client; the server will then create a fresh session
socket (the opposing endpoint to the client socket) for the new session. Once the
session is established, messages sent through one socket will be received at the
opposing endpoint. Static type checking ensures that the sent messages respect
the type of the session; together with the server validation, this guarantees com-
munication safety. The occurrences of a session socket in a SJ program clearly
delineate the flow of a conversation, interleaved with other commands.

Session server sockets. Parties that offer session services, like Agency, use a
session server socket to accept session requests:

SJServerSocket ss_ac = SJServerSocketImpl.create(acceptOrder,port);

After opening a server socket, the server party can accept a session request by,

s_ac = ss_ac.accept();

where s ac is an uninitialised (or null) SJSocket variable. The accept operation
blocks until a session request is received: the server then validates that the
protocol requested by the client is compatible with that offered by the server (see
§ 3 for details) and returns a new session socket, i.e. the server-side endpoint.

Session server-address and session sockets. A session server-address in the
current SJ implementation identifies a server by its IP address and TCP port.
At the Customer, we set:

SJServerAddress c_ca = SJServerAddress.create(placeOrder, host, port);

A server-address is typed with the session type seen from the client side, in
this case placeOrder. Server-addresses can be communicated to other parties,
allowing them to request sessions with the same server. Customer uses c ca to
create a session socket:

Session-Based Distributed Programming in Java 521

SJSocket s_ca = SJSocketImpl.create(c_ca);

and request a session with Agency:

s_ca.request();

Assuming the server socket identified by c ca is open, request blocks until Agency
performs the corresponding accept. Then the requesting and accepting sides
exchange session types, independently validate compatibility, and if successful
the session between Customer and Agency is established. If incompatible, an
exception is raised at both parties (see ‘Session failure’ below).

Session communication (1): send and receive. After the session has been
successfully established, the session socket s ca belonging to Customer (respec-
tively s ac for Agency) is used to perform the actual session operations according
to the protocol placeOrder. Static session type checking ensures that this con-
tract is obeyed modulo session subtyping (see § 3.2 later).

The basic message passing operations, performed by send and receive, asyn-
chronously communicate typed objects. The opening exchange of placeOrder

directs Customer to send the details of the desired journey (!<String>) and
receive a price quote (?(Double)).

s_ca.send("London to Paris, Eurostar"); // !<String>.
Double cost = s_ca.receive(); // ?(Double)

In this instance, the compiler infers the expected receive type from the
placeOrder protocol; explicit receive-casts are also permitted.

Session communication (2): iteration. Iteration is abstracted by the two
mutually dual types written ![...]* and ?[...]* [10,8]. Like regular expres-
sions, [...]* expresses that the interactions in [...] may be iterated zero or
more times; the ! prefix indicates that this party controls the iteration, while its
dual party, of type ?[...]*, follows this decision. These types are implemented
using the outwhile and inwhile [10,8] operations, which can together be consid-
ered a distributed version of the standard while-loop. The opening exchange of
placeOrder, ![!<String>.?(Double)]*, and its dual type at Agency can be im-
plemented as follows.

boolean decided = false;
... // Set journey details.
s_ca.outwhile(!decided) {
s_ca.send(journeyDetails);
Double cost = agency.receive();
... // Set decided to true or
... // change details and retry

}

s_ac.inwhile() {
String journeyDetails

= s_ac.receive();
... // Calculate the cost.
s_ac.send(price);

}

Like the standard while-statement, the outwhile operation evaluates the boolean
condition for iteration (!decided) to determine whether the loop continues or

522 R. Hu, N. Yoshida, and K. Honda

terminates. The key difference is that this decision is implicitly communicated
to the session peer (in this case, from Customer to Agency), synchronising the
control flow between two parties.

Agency is programmed with the dual behaviour: inwhile does not specify a
loop-condition because this decision is made by Customer and communicated to
Agency at each iteration. These explicit constructs for iterative interaction can
greatly improve code readability and eliminate subtle errors, in comparison to
ad hoc synchronisation over untyped I/O.

Session communications (3): branching. A session may branch down one
of multiple conversation paths into a sub-conversation. In placeOrder, Cus-
tomer’s type reads !{ACCEPT: !<Address>.?(Date), REJECT: }, where ! signifies
the selecting side. Hence, Customer can select ACCEPT, proceeding into a sub-
conversation with two communications (send an Address, receive a Date); oth-
erwise, selecting REJECT immediately terminates the session.

The branch types are implemented using outbranch and inbranch. This pair
of operations can be considered a distributed switch-statement, or one may view
outbranch as being similar to method invocation, with inbranch likened to an
object waiting with one or more methods. We illustrate these constructs through
the next part of the programs for Customer and Agency.

if(want to place an order) {
s_ca.outbranch(ACCEPT) {
s_ca.send(address);
Date dispatchDate = s_ca.receive();

}
} else { // Don’t want to order.
s_ca.outbranch(REJECT) { }

}

s_ac.inbranch() {
case ACCEPT: {
...

}
case REJECT: { }

}

The condition of the if-statement in Customer (whether or not Customer wishes
to purchase tickets) determines which branch will be selected at runtime. The
body of ACCEPT in Agency is completed in ‘Session delegation’ below.

Session failure. Sessions are implemented within session-try constructs:

try (s_ac, ...) {
... // Implementation of session ‘s_ac’ and others.

} catch (SJIncompatibleSessionException ise) {
... // One of the above sessions could not be initiated.

} catch (SJIOException ioe) {
... // I/O error on any of the above sessions.

} finally { ... } // Optional.

The session-try refines the standard Java try-statement to ensure that multiple
sessions, which may freely interleave, are consistently completed within the spec-
ified scope. Sessions may fail at initiation due to incompatibility, and later at
any point due to I/O or other errors. Failure is signalled by propagating termi-
nal exceptions: the failure of one session, or any other exception that causes the

Session-Based Distributed Programming in Java 523

flow of control to leave the session-try block, will cause the failure of all other
ongoing sessions within the same scope. This does not affect a party that has
successfully completed its side of a session, which will asynchronously leave its
session-try scope. Nested session-try statements offer programmers the choice to
fail the outer session if the inner session fails, or to consume the inner exception
and continue normally.

Session delegation. If Customer is happy with one of Agency’s quotes, it
will select ACCEPT. This causes Agency to open a second session with Service,
over which Agency delegates to Service the remainder of the conversation with
Customer, as specified in acceptOffer. After the delegation, Agency relinquishes
the session and Service will complete it. Since this ensures that the contract of the
original order session will be fulfilled, Agency need not perform any further action
for the delegated session; indeed, Agency’s work is finished after delegation.

At the application-level, the delegation is exposed to only Agency and Service;
Customer will proceed to interact with Service unaware that Agency has left the
session, which is evidenced by the absence of any such action in placeOrder. The
session between Agency and Service is specified by the following mutually dual
protocols:

protocol delegateOrderSession {
begin.!<?(Address).!<Date>>

}

protocol receiveOrderSession {
begin.?(?(Address).!<Date>)

}

Delegation is abstracted by higher-order session types [10,13,8], where the spec-
ified message type is itself a session type; in this example, ?(Address).!<Date>.
The message type denotes the unfinished part of the protocol of the session be-
ing delegated; the party that receives the session will resume the conversation,
according to this partial protocol.

In terms of implementation, delegation is naturally represented by sending the
session socket of the session to be delegated. Continuing our example, Agency
can delegate the order session with Customer to Service by

case ACCEPT: {
SJServerAddress c_as = ... // delegateOrderSession.
SJSocket s_as = SJSocketImpl.create(c_as);
s_as.request();
s_as.send(s_ac); // Delegation: Agency has finished with s_ac.

}

and Service receives the delegated session from Agency by

SJServerSocket ss_sa = SJServerSocketImpl.create(..., port)
SJSocket s_sa = ss_sa.accept();
SJSocket s_sc = s_sa.receive(); // Receive the delegated session.

Service then completes the session with Customer.

Address custAddr = s_sc.receive();
Date dispatchDate = ... // Calculate dispatch date.
s_sc.send(dispatchDate);

524 R. Hu, N. Yoshida, and K. Honda

The SJ runtime incorporates two alternative mechanisms for delegation: § 4
discusses in detail the protocols by which these mechanisms coordinate the ses-
sion parties involved a delegation.

The example covered in this section illustrates only the basic features of SJ.
The full source code, compiler and runtime are available at [26], as well as further
SJ programs featuring more complex interactions, including the implementation
of business protocols from [6].

3 Compiler and Runtime Architecture

3.1 General Framework

The compilation-runtime framework of SJ works across the following three layers,
in each of which session type information plays a crucial role.

Layer 1 SJ source code.
Layer 2 Java translation and session runtime APIs.
Layer 3 Runtime execution: JVM and SJ libraries.

By going through these layers, transport-independent session operations at the
application-level are compiled into more fine-grained communication actions on
a concrete transport. Layer 1 is mapped to Layer 2 by the SJ compiler: session
operations are statically type checked and translated to the communication prim-
itives that are supported by the session runtime interface. Layer 3 implements
the session runtime interface over concrete transports and performs dynamic
session typing. The compiler comprises approximately 15 KLOC extension to
the base Polyglot framework [21]. The current implementation of the session
runtime over TCP consists of approximately 3 KLOC of Java.

A core principle of this framework is that explicit declaration of conversation
structures, coupled with the static and dynamic type-based validations, provides
a basis for well-structured communication programming. We envisage program-
mers working on a distributed application first agree on the protocols, specified
as session types, through which the components interact, and against which
the implementation of each component is statically validated. Dynamic type
checking, performed at runtime when a session is initiated, then ensures that
the components are correctly composed: session peers must implement compati-
ble protocols in order to conduct a conversation. The mechanisms encapsulated
by the session runtime, which realise the major session operations (initiation,
send/receive, branch, loop, delegation) as well as additional features (eager class
downloading, eager class verification), are discussed in § 3.3 and § 4.

3.2 The SJ Compiler and Type-Checking

The SJ compiler type-checks the source code according to the constraints of both
standard Java typing and session typing. Then using this type information, it
maps the SJ surface syntax to Java and the session runtime APIs. Type-checking

Session-Based Distributed Programming in Java 525

begin c.request(), ss.accept() // Session initiation.
!<C> s.send(obj) // Object ‘obj’ is of type C.
!<S> s1.send(s2) // ‘s2’ has remaining contract S.
?(T) s.receive() // Type inferred from protocol.
!{L:T,..} s.outbranch(L){...} // Body of case L has type T, etc.
?{L:T,..} s.inbranch(){...} // Body of case L has type T, etc.
![T]* s.outwhile(boolean expr){...} // Outwhile body has type T.
?[T]* s.inwhile(){...} // Inwhile body has type T.

Fig. 2. Session operations and their types

for session types starts from validating the linear usage of each session socket,
preventing aliasing and any potential concurrent usage. On the basis of linear-
ity, the type-checker verifies that each session implementation conforms to the
specified protocol with respect to the message types and conversation structure,
according to the correspondence between session operations and type construc-
tors given in Figure 2. As we discuss below, protocol declarations include all the
information required for static type-checking of higher-order session communi-
cation (delegation).

We illustrate some of the notable aspects of static session verification. Firstly,
when session sockets are passed via session delegation and as arguments to a
method call (the latter is an example of integrating session and object types),
the typing needs to guarantee a correct transfer of responsibility for completing
the remainder of the session being passed. For this purpose, a method that
accepts a session socket argument simply specifies the expected session type in
place of the usual parameter type, e.g.

void foobar(!<int>.?(String) s, ...) throws SJIOException {
... // Implementation of ‘s’ according to !<int>.?(String).

}

Session passing is also subject to linearity constraints. For example, the same
session socket cannot be passed as more than one parameter in a single method
call. Similarly the following examples are ill-typed since they delegate the outer
session s2 multiple times.

while(...) { s1.send(s2); } s1.inwhile() { s1.send(s2); }

However, delegation of nested sessions within an iteration is typable.
The type checking in SJ fully incorporates session subtyping, which is an im-

portant feature for practical programming, permitting message type variance
for send and receive operations as well as structural subtyping for branching
and selection [12,4]. Message type variance follows the object class hierarchy,
integrating object types into session typing; intuitively, a subtype can be sent
where a supertype is expected. Structural session subtyping [12,3] has two main
purposes. Firstly, an outbranch implementation only selects from a subset of
the cases offered by the protocol, and dually for inbranch; secondly, inbranch

526 R. Hu, N. Yoshida, and K. Honda

Fig. 3. The structure of the SJ session runtime

(server) and outbranch (client) types are compatible at runtime if the former
supports a superset of the all cases that the latter may require. The following
demonstrates these two kinds of session subtyping.

protocol thirstyPerson {
begin.!{

COFFEE: !<Euros>,
TEA: !<Euros>

}
}
...
if (...) { // Implemented...
s.outbranch(COFFEE) { ... };

}
else { // ...a coffee addict.
s.outbranch(COFFEE) { ... };

}

protocol vendingMachine {
begin.?{

COFFEE: ?(Money),
TEA: ?(Money),
CHOCOLATE: ?(Money)

}
}
...
s.inbranch() {
case COFFEE: { ... }
case TEA: { ... }
case CHOCOLATE: { ... }

}

This example demands the use of subtyping at both compilation and runtime.
Message subtyping is augmented by remote class loading, discussed in § 3.3.

3.3 The Session Runtime

The structure of the session runtime is illustrated in Figure 3. The SJ com-
piler translates the session operations, depicted as the upper-most layer of the
figure, into the communication primitives of the session APIs. The session run-
time implements these primitives through a set of interdependent protocols that
together model the semantics of the translated operations: these protocols ef-
fectively map the abstract operations to lower-level communication actions on
a concrete transport. In this way, the session APIs and runtime cleanly sep-
arate the transport-independent session operations from specific network and
transport concerns. The main components of the session runtime include:

Session-Based Distributed Programming in Java 527

– basic send/receive, which also supports in/outbranch and in/outwhile;
– the initiation protocol, class verifier and class downloader;
– the delegation protocol and the close protocol.

Session type information, tracked by the runtime as each session operation is
performed, is crucial to the operation of several of the component protocols. The
following describes each component, except for delegation which is discussed in
detail in § 4.

Basic send/receive. The properties of session types, such as strict message
causality for session linearity, require the communication medium to be reliable
and order preserving. This allows the session branch and while operations to be
implemented by sending/receiving a single message, i.e. the selected branch label
or loop condition value. Basic send/receive is also asynchronous, meaning a basic
send does not block on the corresponding receive; however, receive does block
until a (complete) message has been received. As depicted in Figure 3, our current
implementation uses TCP: each active session is supported by a single underlying
TCP connection. Session messages, either Java objects or primitive types, are
transmitted through the TCP byte stream using standard Java serialization.
Logically, we can use other transports; little modification would be required for
transports that also support the above properties, such as SCTP.

Session initiation and dynamic type checking. Session initiation takes
place when the accept and request operations of a server and client interact.
The initiation protocol establishes the underlying TCP connection and then
verifies session compatibility. The two parties exchange the session types which
they implement and which have already been statically verified, and each in-
dependently validates compatibility modulo session subtyping. If successful, the
session is established, otherwise both parties raise an exception and the session
is aborted. The runtime also supports monitoring of received messages against
the expected type. The initiation protocol can perform eager class downloading
and/or eager class verification, depending on the parameters set on each session
socket.

Class downloader and class verifier. Our runtime supports a remote class
loading feature similar to that of Java RMI. Remote class loading is designed to
augment message subtyping, enabling the communication of concrete message
types that implement the abstract types of a protocol specification. Session peers
can specify the address of a HTTP class repository (codebase) from which addi-
tional classes needed for the deserialization of a received message object can be
retrieved. By default, remote class loading is performed lazily, i.e. at the time of
deserialization, as in RMI. Alternatively, a party may choose to eagerly load, at
session initiation, all potentially needed classes as can determined from the ses-
sion type of the session peer (although, due to subtyping, lazy class loading may
still be required during the actual session). Similarly, session peers may choose
to perform eager class verification for all shared classes at session initiation;
class verification is currently implemented using the standard SerialVersionUID

checks for serializable classes.

528 R. Hu, N. Yoshida, and K. Honda

The close protocol. SJ does not have an explicit session close operation in its
surface syntax; instead, a session is implicitly closed when a session terminates.
There are essentially three ways for this to happen. The first case is when both
parties finish their parts in a conversation and the session terminates normally.
The second is when an exception is raised at one or both sides in an enclosing
session-try scope, signalling session failure. In this case, the close protocol is
responsible for propagating a failure signal to all other active sessions within the
same scope, maintaining consistency across such dependent sessions. The third,
more subtle, case arises due to asynchrony: it is possible for a session party to
complete its side of a session before or whilst the peer is performing a delegation.
§ 4 discusses how the delegation and close protocols interact in this case.

4 Protocols for Session Delegation

Session delegation is a defining feature of session-based programming; transpar-
ent, type-safe endpoint mobility raises session abstraction above ordinary com-
munication over a concrete transport. This means that a conversation should
continue seamlessly regardless of how many times session peers are interchanged
at any point of the conversation. Consequently, each session delegation involves
intricate coordination among three parties, or even four if both peers simultane-
ously delegate the same session. This section examines implementation strategies
for delegation, focusing on the protocols for two alternative mechanisms that re-
alise the above requirements, and presents key arguments for their correctness.

In the rest of this section, we use the following terminology. The s-sender
stands for session-sender; the s-receiver for session-receiver; and the passive-
party for the peer of the s-sender in the session being delegated. Recall that
delegation is transparent to the passive party. Our design discussions assume
a TCP-like connection-based transport, in accordance with the communication
characteristics of session channels: asynchronous, reliable and order-preserving.

4.1 Design Strategies for Delegation Mechanisms

Indefinite redirection and direct reconnection. One way to implement
delegation is for the s-sender to indefinitely redirect all communications of the
session, in both directions, between the s-receiver and passive-party. This is
similar to Mobile IP [16]. The merit of this approach is that no extra actions
are required on the part of the runtime of the passive-party. At the same time,
communication overhead for the indirection can be expensive, and the s-sender
is needed to keep the session alive even after it has been logically delegated.
Thus, the s-sender is prevented from terminating, even if it has completed its
own computation, and a failure of the s-sender also fails the delegated session.

An alternative strategy is to reconnect the underlying transport connections
so that they directly reflect the conversation dynamics: we first close the original
connection for the session being delegated, and then replace it with a connec-
tion between the new session peers (the s-receiver and the passive-party). This

Session-Based Distributed Programming in Java 529

mechanism demands additional network operations on the part of the runtime
of the passive-party: at the same time, it frees the s-sender from the obligation
to indefinitely take care of the delegated session. Reconnection precludes (long-
running) rerouting of messages, which can have significant cost if many message
exchanges are expected after the delegation or the session is further delegated.

While indefinite redirection is relevant for fixed and reliable hosts, its design
characteristics discussed above make it unsuitable for dynamic network environ-
ments such as P2P networks, Web services and ubiquitous computing, where
the functionality of delegation would be particularly useful. Direct reconnection
gives a robust and relatively efficient solution for such environments, and treats
resources and failure in a manner that respects the logical conversation topol-
ogy. For these reasons, we focus on designs based on direct reconnection in our
implementation framework for delegation.

Reconnection strategy and asynchrony. The crucial element in the design
of a reconnection-based delegation mechanism is its interplay with asynchronous
communication (i.e. send is non-blocking). We illustrate this issue by revisiting
the Travel Agency example in § 2 (see Figure 1): if Customer selects ACCEPT,
Agency delegates to Service the active order session with Customer, and then
Customer should send the Address to Service, its new peer. Now Customer, op-
erating concurrently, may asynchronously dispatch the Address before or during
the delegation, so that the message will be incorrectly delivered to Agency. We
call such messages “lost messages”: because Customer and Service may have
inconsistent session states at the point of delegation, performing reconnection
naively can break communication safety. Thus, a reconnection-based delegation
requires careful coordination by a delegation protocol that resolves this problem.

Two reconnection-based protocols: key design ideas. Below we outline
the key design ideas of the two reconnection-based protocols implemented in the
SJ runtime. They differ in their approach to resolving the issue of lost messages.

Resending Protocol: (resend lost messages after reconnection) Here lost mes-
sages are cached by the passive-party and are resent to the s-receiver after
the new connection is established, explicitly re-synchronising session state
before resuming the delegated session. In Travel Agency, after the original
connection is replaced by one between Customer and Service, Customer first
resends the Address to Service before resuming the conversation.

Forwarding Protocol: (forward lost messages before reconnection) Here the
s-sender first forwards all lost messages (if any) received from the passive-
party, and then the delegated session is re-established. In our example, the
Address is forwarded by Agency to Service and then the original connection
is replaced by the new connection between Customer and Service.

4.2 Correctness Criteria for Delegation Protocols

For a delegation protocol to faithfully realise the intended semantics of ses-
sion delegation, it needs to satisfy at least the following three properties. Below

530 R. Hu, N. Yoshida, and K. Honda

Case 1: A is performing an input oper-
ation (i.e. receive, including higher-order
receive, inbranch or inwhile), waiting for
a value, a session or a label.

Case 2: A has finished its side of s, and
is waiting (in the separate close thread) for
the acknowledgement.

Case 3: A is attempting to delegate an-
other session s′′ to B via s, where s′′ is with
the fourth party D.

Case 4: A is also delegating the session s,
to the fourth party D. This case is called
simultaneous delegation.

Fig. 4. The scenarios of session delegation

“control message” means a message created by the delegation protocol, as op-
posed to the actual “application messages” of the conversation.

P1: Linearity For each control message sent, there is always a unique receiver
waiting for that message. Hence, each control message is delivered determin-
istically without confusion.

P2: Liveness Discounting failure, the delegation protocol cannot deadlock, i.e.:
– (Deadlock-freedom) No circular dependencies between actions.
– (Readiness) The server side of the reconnection is always ready.
– (Stuck-freedom) The connection for the session being delegated is closed

only after all lost messages can be correctly identified.
P3: Session Consistency The delegation protocol ensures no message is lost

or duplicated, preserving the order and structure of the delegated session.

4.3 General Framework for Reconnection-Based Protocols

We first describe the structure shared by the two delegation protocols, introduc-
ing the common notation and terminology along the way. We write A for the
passive-party, B for the s-sender; and C for the s-receiver. B will delegate the
session s to C via s′. In each protocol, B will inform A that s is being delegated s
via a delegation signal containing the address of C. Eventually the original con-
nection for s is closed and A reconnects to the delegation target C. Henceforth,
we say “A” to mean the “runtime for A” if no confusion arises.

Session-Based Distributed Programming in Java 531

1. B→C: “Start delegation”
2. C: open server socket on free port pC , accept on pC

3. C→B: pC

4. B→A: DSB
A(C) = 〈STB

A , IPC , pC〉
5. A→B: ACKAB

6. A: close s 6’. B: close s
7. A: connect to IPC:pC

8. A→C: LM(STA
B − STB

A)

Fig. 5. Operation of the resending protocol for Case 1

We assume each delegation protocol uses the same (TCP) connection for both
application and control messages, as in our actual implementation. Since this
means ordering is preserved between the two kinds of messages, the delegation
signal from B will only be detected by the runtime of A when blocked expecting
some message from B, as dictated by the session type of s. The subsequent
behaviour of the delegation protocols depends on what A was originally expecting
this input to be. There are four cases, as illustrated in Figure 4 (the first picture
corresponds to Cases 1 and 2, the second Case 3 and the third Case 4). Case
3 comes from the fact that delegating a session is a compound operation that
contains a blocking input. Since A has to be waiting for an input to detect
the delegation signal, we need not consider the cases where A is performing an
atomic output operation (ordinary send, outbranch or outwhile).

As an illustration, we return to Travel Agency: Customer is attempting to
receive a Date (from Agency) when it detects the delegation signal, hence this
is an instance of Case 1. Taking Case 1 as the default case for the purposes of
this discussion, we shall illustrate the operation of the resending and forwarding
protocols in § 4.4 and § 4.5. The remaining three cases are outlined in § 4.6.

4.4 Resending Protocol

The operation of the resending protocol for Case 1, as implemented given our
existing design choices, is given in Figure 5. The key feature of this protocol
is the use of session types at runtime to track the progress of the two peers of
the delegated session: this makes it possible to exactly identify the session view
discrepancy (“the lost messages”) and re-synchronise the session.

The first phase of the protocol runs from Step 1 to Step 5, which delivers
the information needed for reconnection and resending to the relevant parties.
In Step 1, B informs C that delegation is happening. In Step 2, C binds a new
ServerSocket to a fresh local port p

C
for accepting the reconnection, and in Step

3, C tells B the value of pC . In Step 4, B sends the delegation signal (for target
C), denoted DSB

A(C), to A. As stated, this signal contains the runtime session
type of the session being delegated, from B’s perspective, denoted STB

A
. As a

result A can now calculate the difference between its view and B’s view for this
session. The delegation signal also contains the IP address and open port of the

532 R. Hu, N. Yoshida, and K. Honda

1. B→C: “Start delegation”
2. C: open server socket on free port pC

3. C→B: pC

4. B→A: DSB
A(C) = 〈IPC , pC〉

5. A→B: ACKAB 5’. B: enter f/w mode

6. A: close s 6’. B→C: Ṽ ::ACKAB

7. A: connect to IPC:pC 7’. B: exit f/w mode 7”. C: buffer Ṽ
8’. B: close s 8”. C: accept on pC

Fig. 6. Operation of the forwarding protocol for Case 1

delegation target, IPC and p
C
. In Step 5, A sends an acknowledgement ACKAB

to B. This concludes the first phase.
The second phase performs the actual reconnection and lost message resend-

ing. Firstly, in Step 6 and Step 6’, A (immediately after sending ACKAB) and B
(after receiving it) close their respective socket endpoints for the original session
connection: any lost messages at B are simply discarded. In Step 7, A connects
to C to establish the new connection for the delegated session (C has been wait-
ing for reconnection at pC since Step 2). In Step 8, A resends the lost messages,
denoted LM(STA

B
− STB

A
), to C based on the session type difference calculated

above (after Step 4). A retrieves the lost messages from its cache of previously
sent messages (maintained by each party), and C buffers them. In our running
example, the runtime type STB

A
(the view from B) is ...!{ACCEPT:!<Address>},

and the runtime type STA

B (the view from A) is ...?{ACCEPT: }. Hence the dif-
ference STB

A−STA

B is !<Address>, and the corresponding message is resent after
the reconnection. After Step 8, A and C can resume the session as normal.

4.5 Forwarding Protocol

In the forwarding protocol, A does not have to concern itself about lost messages
as they are automatically forwarded from B (the old endpoint of the delegated
session) to C (the new endpoint). The protocol works as listed in Figure 6.

The first phase of the protocol (Step 1 to Step 5) is precisely as in the resending
protocol, except that the delegation signal in Step 4 no longer needs to carry the
runtime session type STB

A
.

In the second phase, reconnection is attempted in parallel with the lost mes-
sage forwarding. In Step 5’, which immediately follows Step 4 (sending the del-
egation signal to A), B starts forwarding to C all messages that have arrived
or are newly arriving from A. The actual delivery is described in Step 6’ where
Ṽ denotes all messages received by B from A up to ACKAB, i.e. the “lost mes-
sages”. The delegation acknowledgment ACKAB sent by A in Step 5 signifies
end-of-forwarding when it is received and forwarded by B to C in Step 6’: B
knows that A is aware of the delegation and will not send any more messages (to
B), and hence ends forwarding in Step 7’. Ṽ is buffered by C to be used when
the delegated session is resumed.

Session-Based Distributed Programming in Java 533

In Step 6, A closes its endpoint to the connection with B after sending ACKAB

in Step 5; since B may still be performing the forwarding at this point, the
opposing endpoint is not closed until Step 8’. In Step 7, A requests the new
connection to C using the address and port number received in Step 4. However,
C does not accept the reconnection until Step 8” (pC is open so A blocks) after
receiving all the forwarded messages in Step 7”. As in the resending protocol,
after the session is resumed C first processes the buffered messages Ṽ before
any new messages from A, preserving message order. Note Steps 5-7, Steps 5’-8’
(after Step 4) and Steps 7”-8” (after Step 6’) can operate in parallel with two
cross-dependencies, 6’ on 5 and 8” on 7.

4.6 Outline of Delegation Cases 2, 3 and 4

We summarise how the two protocols behave for the remaining three cases of the
description in § 4.3. The full protocol specifications are found at [26]. In both
protocols, each of the remaining cases is identical to Case 1 in most parts: the
key idea is that the role of the delegation acknowledgement ACKAB in Case 1 is
now played by some other control signal in each case.

In Case 2, A sends a special signal FINAB (due to the close protocol) to let
B know that it has completed its side of the session. Basically FINAB signifies
to B (instead of ACKAB) that the original session connection can be closed
immediately (hence Step 5 is not needed).

In Case 3, A is the s-sender for another session s′′ between A and the fourth
party D (the passive-party of s′′). In this case, B receives a “Start delegation”
signal (for the delegation of s′′) from A. In the resending protocol, this signal
is resent with LM(STA

B − STB

A) at Step 8 to C in order to start the subsequent
run of the delegation protocol between A and D. In the forwarding protocol,
this message simply replaces ACKAB as an end-of-forwarding signal after being
forwarded by B, and at the same time alerts C to the subsequent delegation.

In Case 4, instead of ACKAB at Step 5, B receives DSA

B
(D) from A. In the

resending protocol, C then buffers the lost messages from A, closes this interme-
diate connection, and reconnects to the port at which D is waiting (C gets the
address of D from A). In the the forwarding protocol, the behaviour is similar
to that for Case 3.

4.7 Correctness of the Delegation Protocols

Below we briefly outline the key arguments for the correctness of our delegation
protocols with respect to the three properties P1-3 in § 4.2, focusing on Case 1
of the resending protocol. For details and the remaining cases, see [26].

Property P1 is obvious from the description of the protocol. For P2, we
first observe concurrent executions only exist between Step 6-8 and Step 6’.
Note that deadlock arises only when a cycle (like A→B and B→A) is executed
concurrently, which is impossible from the protocol definition. Readiness holds
since the connection to pC (Step 7) takes place after its creation (as Step 2).
Stuck-freedom holds since Steps 6 and 6’ take place after all operations are

534 R. Hu, N. Yoshida, and K. Honda

completed between A and B, ensured by ACKAB. The key property for the
correctness argument is P3. This holds since the sending action from C takes
place after the lost messages from Step 8 are stored at C, which in turn holds
since the sending action from C uses the same port pC. Hence the order of session
messages is preserved before and after the protocol.

5 SJ Runtime Performance

The current implementation of SJ [26] supports all of the features presented
in this paper, including implementations of both the forwarding and resending
protocols in § 4, called SJFSocket and SJRSocket. This section presents some
performance measurements for the current SJ runtime implementation, focus-
ing on micro benchmarking of session initiation and the session communication
primitives. Although the current implementation is as yet unoptimised, these
preliminary benchmark results demonstrate the feasibility of session-based com-
munication and the SJ runtime architecture: SJFSocket communication incurs
little overhead over the underlying transport, and SJRSocket, despite additional
costs, is competitive with RMI. The full source code for the benchmark applica-
tions and the raw benchmark data are available from the SJ homepage [26].

The micro benchmark plan. The benchmark applications measure the time
to complete a simple two-party interaction: the protocols respectively imple-
mented by the ‘Server’ and ‘Client’ sides of the interaction are

begin.?[!<MyObject>]* begin.![?(MyObject)]*

which basically specify that the Server will repeatedly send objects of type
MyObject for as long as the Client wishes. Recall that session-iteration involves
the implicit communication of a boolean primitive from the outwhile party (here,
the Client) to its peer. Although this protocol does not feature branching, the
SJ branch operations (communication of the selected label) are realised as the
send/receive of an ordinary object (String), hence perform accordingly.

The implementation of these protocols in SJ is straightforward, and simi-
larly for the “untyped” TCP socket implementation in standard Java (referred
to as Socket), which mimics the semantics of the session-iteration operations
using while-loops (with explicit communication of the boolean control value).
Socket serves as the base case (i.e. direct usage of the underlying transport) for
comparison with the SJ sockets. For the RMI implementation (RMI), the session-
iteration is simulated by making consecutive calls to a remote server method
with signature MyObject getMyObject(boolean b) (the boolean is passed to at-
tain the same communication pattern). Henceforth, a session of length n means
that the session-iteration is repeated n times; for RMI, n remote calls.

The benchmark applications specifically measure the time taken for the Client
to initiate a session with the Server and finish the session-iteration. For Socket,
session initiation simply means establishing a connection to the server. For RMI,
the connection is established implicitly by the first remote call (RMI “reuses” a

Session-Based Distributed Programming in Java 535

0

10

20

30

40

50

60

70

0 1 10 100

0

50

100

150

200

250

300

350

400

450

500

1000

0

10

20

30

40

50

60

70

80

90

100

0 1 10 100

0

100

200

300

400

500

600

700
b) MyObject: 10 KBytesa) MyObject: 100 Bytes

Socket SJFSocket SJRSocket RMISession Length (iterations)

Se
ss

io
n

D
ur

at
io

n
(m

s)
0 1 10 100 1000 0 1 10 100 1000

Fig. 7. Benchmark results for MyObject sizes 100 Bytes and 10 KBytes

server connection for subsequent calls), but we do not include the cost of looking
up the remote object in the RMI registry. Each run of a session is preceded by a
dummy run of length one: this helps to stabilise the Server and Client processes
before the actual benchmark run, and removes certain factors from the results
such as class loading and verification. The RMI dummy run calls an instance of
the remote object hosted on the local machine, to avoid creating a connection
to the Server before the actual benchmark run.

The benchmarks were conducted using MyObject messages of serialized size
100 Bytes (for reference, an Integer serializes to 81 Bytes) and 10 KBytes for
sessions of length 0, 1, 10, 100 and 1000. We recorded the results from repeating
each benchmark configuration 1000 times in low (∼0.1ms) and higher latency
(∼10ms) environments. Nagle’s algorithm was disabled (TCP NODELAY is set to
true) for these benchmarks, for both the standard and SJ sockets. RMI was run
using the default settings for each platform. Runtime state tracking is disabled
(as a default) for SJFSocket.

The low latency environment consisted of two physically neighbouring PCs
(Intel Pentium 4 HT 3 GHz, 1 GB RAM) connected via gigabit Ethernet, running
Ubuntu 7.04 (Linux 2.6.20.3) with Java compiler and runtime (Standard Edition)
version 1.6.0. Latency between the two machines was measured using ping (56
Bytes) to be on average 0.10 ms. The higher latency benchmarks were recorded
using one of the above machines as the Client (the timer) and a Windows XP
PC (SP2, Intel Core Duo 3 GHz, 2 GB RAM) with an average communication
latency (56 Byte ping) of 8.70 ms.

Results. We first look at the low latency results: minimising the latency factor
emphasises the internal overheads of the SJ runtime. Graphs a) and b) in Figure 7

536 R. Hu, N. Yoshida, and K. Honda

compare the results from the four benchmark applications over each session
length for each of the two MyObject sizes.

The results show that SJFSocket exhibits low runtime overhead in relation
to Socket, decreasing for longer sessions. Shorter sessions increase the relative
cost of SJ session initiation, roughly 2ms in the measured environment. Note
session initiation for both Socket and the session sockets involve establishing a
TCP connection, but the SJ sockets do extra work to check session compati-
bility. SJRSocket is slower than SJFSocket: the cost for session initiation is the
same for both, but SJRSocket employs (1) runtime state tracking and (2) a dif-
ferent routine for serialization and communication (in order to retain serialized
messages for the sent message cache, § 4). In fact, comparison of SJFSocket and
SJRSocket using sessions that communicate only primitive data types [26] show
that most of the overhead comes from (2) with runtime state tracking incurring
little overhead. Despite these additional overheads, SJRSocket performs better
than RMI for longer sessions.

The results from the higher latency benchmarks [26] also support these ob-
servations. We note a few additional points. The cost of session initiation, which
involves sending an extra message, increases accordingly. As before, the relative
overheads of the SJ sockets become smaller for longer sessions, although higher
communication latency appears to ameliorate these costs at a higher rate. This
means that the latency factor dominates the overheads of SJ, from both internal
computation and additional communication costs (such as SJ message headers
and extra control messages), under the present benchmark parameters. Indeed,
the differences in performance over the longer sessions are minimal.

Travel Agency benchmarks. Preliminary performance evaluation of session
delegation has also been conducted based on the Travel Agency example (§ 2).
We measured the time required to complete the transaction (10 iterations of the
order-quote exchange and Customer always accepts the quote) from the point
of view of Customer. For comparison, a purely forwarding-based (i.e. no recon-
nection) equivalent was implemented using standard sockets. Unlike the above
benchmarks, we now include the time needed to create the SJ socket objects
and close the session (in the SJ runtime, close involves spawning a new thread,
§ 4). The results for Socket, SJFSocket and SJRSocket using three machines in the
low latency environment (same specifications) were 3.8, 7.3 and 9.1 ms respec-
tively. We believe these figures are reasonable, given the overheads of delegation
(extra control messages and coordination, the cost of reconnection, resending
by SJRSocket, and others), and that the delegation mechanisms, like much of
the current runtime implementation, are as yet unoptimised. Note that Travel
Agency is in fact close to a worst case scenario for this kind of delegation bench-
mark: as discussed in § 4, reconnection-based protocols are advantageous when
there are a substantial number of communications after the delegation and/or
when the session is further delegated, especially if latency is high.

Potential optimisations. Firstly, many optimisations are possible exploiting
the information on conversation structure and message types given by session
types, including session-typed message batching (possibly based on the size of the

Session-Based Distributed Programming in Java 537

underlying transport unit), the promotion of independent send types (pushing
asynchronous sends earlier), tuning of I/O buffer sizes, and others. Knowing
the expected message types in advance can also be used to reduce the amount
of meta data (e.g. SJ message headers, class tags embedded by serialization)
for basic message passing. Secondly, sessions peers can exchange extra runtime
information at session initiation; for example, no delegation means SJRSocket

would not need to cache sent messages. We also envisage situations where the
duality check may only be needed whilst an application is being developed and
tested: once the application has been deployed in some trusted environment (e.g.
a company using an internal messaging system), this check can be disabled.

6 Related Work

Language design for session types. An application of session types in prac-
tice is found in Web services. Due to the need for static validation of the safety of
business protocols, the Web Services Choreography Description Language (WS-
CDL) is developed by a W3C standardisation working group [24] based on a
variant of session types. WS-CDL descriptions are implemented through com-
munications among distributed end-points written in languages such as Java or
WS4-BPEL. [3,6,14] studied the principles behind deriving sound and complete
implementations from CDL descriptions. Session types are also employed as a
basis for the the standardisation of financial protocols in UNIFI (ISO20022)
[28]. We plan to use our language and compiler-runtime framework as part of
the implementation technologies for these standards.

An embedding of session programming in Haskell is studied in [18]. More re-
cently, [22] proposed a Haskell monadic API with session-based communication
primitives, encoding session types in the native type system. A merit of these ap-
proaches is that type checking for session types can be done by that for Haskell.
Type inference for session types without subtyping has been implemented for
C++ [7]. In these works, a session initiation (compatibility check) for open and
distributed environments are not considered, and session delegation is not sup-
ported; type-safe delegation may be difficult to realise since their encoding does
not directly type I/O channels.

Fähndrich et. al [11] integrate a variant of session types into a derivative
of C� for systems programming in shared memory uni/multiprocessor (non-
distributed) environments, allowing interfaces between OS-modules to be de-
scribed as message passing conversations. Their approach is based on a com-
bination of session types with ownership types to support message exchange
via a designated heap area (shared memory): session communication becomes
basic pointer rewriting, obtaining efficiency suitable for low-level system pro-
gramming. From the viewpoint of abstraction for distributed programming, their
design lacks essential dynamic type checking elements and support for delega-
tion, and other features such as session subtyping. In spite of differences between
the target environments and design directions, our works both demonstrate the
significant impact the introduction of session types can have on abstraction and
implementation in objected-oriented languages.

538 R. Hu, N. Yoshida, and K. Honda

A framework based on F# for cryptographically protecting session execution
from both external attackers and malicious principals is studied in [9]. Their
session specifications model communication sequences between two or more net-
work peers (roles). The description is given as a graph whose nodes represent
the session state of a role, and edges denote a dyadic communication and con-
trol flow. Their aim is to use such specifications for modelling and validation
rather than direct programming; their work does not consider features such as
delegation or the design of a session runtime architecture.

Language design based on process calculi. The present work shares with
many recent works its direction towards well-structured communication-based
programming using types. Pict [20] is a programming language based on the
π-calculus with linear and polymorphic types. Polyphonic C� [2] is based on
the Join-calculus and employs a type discipline for safe and sophisticated object
synchronisation. Acute [1] is an extension of OCaml for coherent naming and
type-safe version change of distributed code. The Concurrency and Coordination
Runtime (CCR) [5] is a port-based concurrency library for C� for component-
based programming, whose design is based on Poly�.

Occam-pi [19,29] is a highly efficient concurrent language based on channel-
based communication, with syntax based on both Hoare’s CSP (and its practical
embodiment, Occam) and the π-calculus. Designed for systems-level program-
ming, Occam-pi supports the generation of more than million threads for a single
processor machine without efficiency degradation, and can realise various locking
and barrier abstractions built from its highly efficient communication primitives.
DirectFlow [17] is a domain specific language which supports stream processing
with a set of abstractions inspired by CSP, such as filters, pipes, channels and
duplications. DirectFlow is not a stand-alone programming language, but is used
via an embedding into a host language for defining data-flow between compo-
nents. In both languages, typing of a communication unit larger than a series of
individual communications or compositions is not guaranteed.

X10 [30] is a typed concurrent language based on Java, and designed for
high-performance computing. Its current focus is on global, distributed memory,
with sharing carefully controlled by X10’s type system. A notable aspect is the
introduction of distributed locations into the language, cleanly integrated with
a disciplined thread model. The current version of the language does not include
first-class communication primitives.

None of the above works use conversation-based abstraction for communi-
cation programming, hence neither typing disciplines that can guarantee com-
munication safety for a conversation structure, nor the associated runtime for
realising the abstraction are considered. The interplay between session types and
the design elements of the above works is an interesting future topic.

7 Conclusion and Future Work

There is a strong need to develop structured, higher-level and type-safe abstrac-
tions and techniques for programming communications and interaction. This

Session-Based Distributed Programming in Java 539

paper has presented the design and implementation of an extension of Java to
support session-based, distributed programming. Building on the preceding the-
oretical studies of session types in object-oriented calculi [10,8], our contribution
furthers these and other works on session types with a concrete, practical lan-
guage that supports the wide range of session-programming features presented.
Communication safety for distributed applications is guaranteed through a com-
bination of static and dynamic type checking. We implemented two alternative
mechanisms for performing type-safe session delegation, with correctness argu-
ments, and showed that session types can be used to augment existing features
such as remote class loading.

We believe our language exhibits a natural and practical integration of ses-
sion type principles and object-oriented programming. The session-programming
constructs and accompanying methodology, based on explicit specification of
protocols followed by implementation through these constructs (with static type
checking), aid the writing of communications code and improve readability. Our
experience so far indicates that session types can describe a diverse range of
structured interaction patterns [6,28]; further examples, such as file-transfer and
chat applications, are available from [26]. Future work includes detailed analysis
of how session-based programming can impact on the development of more com-
plicated and large-scale applications. Integration of session-based programming
with such languages as [30,19,17,25] is also an open subject.

Preliminary benchmark results demonstrate the feasibility of session-based
communication and our session runtime architecture. Static and dynamic per-
formance optimisations that utilise session type information (see §5) are a topic
for future investigation. Other interesting directions include the incorporation of
transports other than TCP into the session runtime, possibly coupled with the
design of alternative abstractions to (session) socket. Session parties can dynam-
ically monitor messages received against the expected type according to agreed
protocol: however, our current work does not yet tackle deeper security issues
involving malicious peers [9].

This work and future directions, combined with theories from [3,15], are being
developed as a possible foundation for public standardisations of programming
and execution for Web services [6] and financial protocols [28,23].

Acknowledgements. We thank the reviewers and Susan Eisenbach for their
useful comments, Fred Van Den Driessche for his contributions to the implemen-
tation, and our academic and industry colleagues for their stimulating conver-
sations. The work is partially supported by EPSRC GR/T04724, GR/T03208,
GR/T03215, EP/F002114 and IST2005-015905 MOBIUS.

References

1. Acute homepage, http://www.cl.cam.ac.uk/users/pes20/acute
2. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#.

ACM Trans. Program. Lang. Syst. 26(5), 769–804 (2004)

540 R. Hu, N. Yoshida, and K. Honda

3. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

4. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A
theoretical basis of communication-centred concurrent programming. Published in
[6] (2006)

5. CCR: An Asynchronous Messaging Library for C#2.0,
http://channel9.msdn.com/wiki/default.aspx/Channel9.ConcurrencyRuntime

6. W3C Web Services Choreography, http://www.w3.org/2002/ws/chor/

7. Collingbourne, P., Kelly, P.: Inference of session types from control flow. In:
FESCA. ENTCS. Elsevier, Amsterdam (to appear, 2008)

8. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous Session Types
and Progress for Object-Oriented Languages. In: Bonsangue, M.M., Johnsen, E.B.
(eds.) FMOODS 2007. LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

9. Corin, R., Denielou, P.-M., Fournet, C., Bhargavan, K., Leifer, J.: Secure Imple-
mentations for Typed Session Abstractions. In: CFS 2007. IEEE-CS Press, Los
Alamitos (2007)

10. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopoulou, S.: Session
Types for Object-Oriented Languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS,
vol. 4067, pp. 328–352. Springer, Heidelberg (2006)

11. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus, J.R.,
Levi, S.: Language Support for Fast and Reliable Message-based Communication
in Singularity OS. In: EuroSys 2006. ACM SIGOPS, pp. 177–190 (2006)

12. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informat-
ica 42(2/3), 191–225 (2005)

13. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998
and ETAPS 1998. LNCS, vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

14. Honda, K., Yoshida, N., Carbone, M.: Web Services, Mobile Processes and Types.
The Bulletin of the European Association for Theoretical Computer Science Feb-
ruary(91), 165–185 (2007)

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:
POPL 2008, pp. 273–284. ACM Press, New York (2008)

16. IETF. Mobility for IPv4, http://dret.net/rfc-index/reference/RFC3344

17. Lin, C.-K., Black, A.P.: DirectFlow: A domain-specific language for information-
flow systems. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 299–322.
Springer, Heidelberg (2007)

18. Neubauer, M., Thiemann, P.: An Implementation of Session Types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004)

19. Occam-pi homepage, http://www.occam-pi.org/

20. Pierce, B.C., Turner, D.N.: Pict: A programming language based on the pi-calculus.
In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, Cambridge (2000)

21. Polyglot homepage, http://www.cs.cornell.edu/Projects/polyglot/

22. Sackman, M., Eisenbach, S.: Session types in Haskell, draft (2008)

23. Scribble Project homepage, http://www.scribble.org

Session-Based Distributed Programming in Java 541

24. Sparkes, S.: Conversation with Steve Ross-Talbot. ACM Queue 4(2) (March 2006)
25. Spring, J.H., Privat, J., Guerraoui, R., Vitek, J.: StreamFlex: high-throughput

stream programming in Java. In: OOPSLA, pp. 211–228. ACM Press, New York
(2007)

26. SJ homepage, http://www.doc.ic.ac.uk/∼rh105/sessionj.html
27. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing

System. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

28. UNIFI. International Organization for Standardization ISO 20022 UNIversal Fi-
nancial Industry message scheme (2002), http://www.iso20022.org

29. Welch, P., Barnes, F.: Communicating Mobile Processes: introducing occam-pi.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 175–210. Springer, Heidelberg (2005)

30. X10 homepage, http://x10.sf.net

ReCrash: Making Software Failures Reproducible by
Preserving Object States

Shay Artzi, Sunghun Kim, and Michael D. Ernst

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA, 02139, USA

{artzi, hunkim, mernst}@csail.mit.edu

Abstract. It is very hard to fix a software failure without being able to reproduce
it. However, reproducing a failure is often difficult and time-consuming. This pa-
per proposes a novel technique, ReCrash, that generates multiple unit tests that
reproduce a given program failure. During every execution of the target program,
ReCrash stores partial copies of method arguments in memory. If the program
fails (e.g., crashes), ReCrash uses the saved information to create unit tests repro-
ducing the failure.

We present ReCrashJ, an implementation of ReCrash for Java. ReCrashJ re-
produced real crashes from Javac, SVNKit, Eclipsec, and BST. ReCrashJ is
efficient, incurring 13%–64% performance overhead. If this overhead is unac-
ceptable, then ReCrashJ has another mode that has negligible overhead until a
crash occurs and 0%–1.7% overhead until the crash occurs for a second time, at
which point the test cases are generated.

Keywords: Fault, bug, crash, failure, object, reproducing, capture, replay, test
generation.

1 Introduction

It is difficult to find and fix a software problem, and to verify the solution, without
the ability to reproduce it. As an example, consider bug #30280 from the Eclipse bug
database (Figure 1). A user found a crash and supplied a back-trace, but neither the
developer nor the user could reproduce the problem. Two days after the bug report, the
developer finally reproduced the problem; four minutes after reproducing the problem,
the developer fixed it.

Our work aims to reduce the amount of time it takes a developer to reproduce a
problem. Suppose that the user had been using a ReCrash-enabled version of Eclipse.
As soon as the Eclipse crash occurred, ReCrash would have generated a set of unit
tests (Figure 2), each of which reproduces the problem. The user could have sent these
test cases with the initial bug report, eliminating the two-day delay for the developer to
reproduce the problem.

Upon receiving the test cases, the developer could run them under a debugger to ex-
amine fields, step through execution, or otherwise investigate the cause of failure. (The
readability of the test case is secondary to reproducibility; a test need not be readable,
nor end-to-end, to be useful.) The developer can use the same test to verify the bug fix.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 542–565, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ReCrash: Making Software Failures Reproducible by Preserving Object States 543

2003-01-27 08:01 U: I found crash (here is the back-trace)
2003-01-27 08:26 D: Which build are you using?

Do you have a test-case to reproduce?
2003-01-27 08:39 D: Which JDK are you using?
2003-01-28 13:06 U: I’m running eclipse 2.1, . . .

I was not able to reproduce the crash
2003-01-29 04:28 D: Thanks for clarification . . .
2003-01-29 04:33 D: Reproduced
2003-01-29 04:37 D: Fixed . . .

Fig. 1. An excerpt of comments (https://bugs.eclipse.org/bugs/show bug.cgi?id=30280) be-
tween the user (U) who reported Eclipse bug #30280 and the developer (D) who fixed it

Reproducing failures (in Java, these often result from un-handled exceptions) can be
difficult for the following reasons.

Nondeterminism. A problem that depends on timing (e.g., context switching), mem-
ory layout (e.g., hash codes), or random number generators will manifest itself only
rarely. Reproducing the problem requires replacing the sources of nondeterminism
with specific choices that reproduce previous behavior. As an example, consider the
(somewhat contrived) RandomCrash program [30] of Figure 5.

Remote detection. A problem that is discovered by someone other than the developer
who can fix it may depend on local information such as user GUI actions, environ-
ment variables, the state of the file system, operating system behavior, and other
explicit or implicit program inputs. Not all dependences may be apparent to the
developer or the user; many users are not sophisticated enough to gather this infor-
mation; some of the information may be confidential; and the effort of collecting
it may be too burdensome for the user, the developer (during interactions with the
user), or both.

Test case complexity. Even if a problem can be reproduced deterministically, the ex-
posing execution might be complex, and the buggy method might be called multiple
times before the bug is triggered. A simpler test case, such as a unit test, is often
faster and easier to run and understand than the execution that triggered the failure.

We propose a technique, ReCrash, that addresses these problems in many cases.
ReCrash automatically converts a failing program execution into a set of deterministic
and self-contained unit tests. Each of the unit tests reproduces the problem that caused
the program to fail. ReCrash has two phases: monitoring and test case generation.

monitoring. During an execution of the target program, ReCrash maintains a shadow
stack with an n-deep copy of the receiver and arguments to each method. From
depth n on, these objects refer to the original objects on the heap (see Section 2.2.1).
Thus, ReCrash exploits the object-oriented nature of the program by using objects
as the unit of granularity for including or excluding values from the stored shadow
stack. When the program fails (i.e., crashes), ReCrash serializes the shadow stack
contents, including all heap objects referred to from the shadow stack. Heap data
that was not copied to the shadow stack might have been side-effected between the
point of the call and the point of the failure; this is a cause of imprecision for the
ReCrash technique.

544 S. Artzi, S. Kim, and M.D. Ernst

1 // Generated by reCrash

2 // Eclipse 2.1M4/JDK 1.4

3 //-- The original crash stack back trace for java.lang.NullPointerException:

4 // org...QualifiedAllocationExpression.resolveType

5 // org...Expression.resolve

6 // ...

7 public class EclipseTest extends TestCase {

8 protected void setUp() throws Exception {

9 ShadowStackReader.readTrace("eclipse.trace");

10 }

11

12 public void test_resolveType() throws Throwable {
13 ShadowStackReader.setMethodStackItem(0);

14

15 // load receiver

16 // rec = i.new Y()

17 QualifiedAllocationExpression rec =

18 (QualifiedAllocationExpression)ShadowStackReader.readReceiver(0);

19

20 // load arguments

21 // arg_1 = Scope-locals: java.lang.String;

22 BlockScope arg_1 = (BlockScope)ShadowStackReader.readArgument(1);

23

24 // Method invocation

25 rec.resolveType(arg_1);

26 }

27

28 public void test_resolve() throws Throwable {
29 ShadowStackReader.setMethodStackItem(1);

30

31 // load receiver

32 // rec = i.new Y()

33 Expression rec = (Expression)ShadowStackReader.readReceiver(0);

34

35 // load arguments

36 // arg_1 = Scope-locals: java.lang.String;

37 BlockScope arg_1 = (BlockScope)ShadowStackReader.readArgument(1);

38

39 // Method invocation

40 rec.resolve(arg_1);

41 }

42 }

Fig. 2. Two test cases (out of eight) generated by ReCrash to reproduce Eclipse bug #30280. Each
test case comes with a serialized representation of method arguments in file eclipse.trace
(line 9). Lines 16, 21, 32, 36 show the toString representation of the object being read from the
serialized trace.

test generation. ReCrash generates candidate tests by calling each method that was
on the shadow call stack with the de-serialized receiver and arguments from the
shadow stack. ReCrash outputs all candidate tests that reproduce the original fail-
ure. ReCrash outputs multiple tests because a test that calls only the method at top
of the call stack may not provide enough context to find the error. A test calling a
method closer to the bottom of the stack provides more context, but is less likely to
reproduce the original failure.

ReCrash: Making Software Failures Reproducible by Preserving Object States 545

ReCrash is effective, despite recording only partial information about the program
state in-memory. For many failures, it is possible to reproduce them with only some of
the information available on entry to the methods on the stack at the time of the failure.
This may be due to the following characteristics of object-oriented programs.

– Many bugs are dependent on small parts of the heap (also the premise of unit test-
ing).

– Good object-oriented style encapsulates important state nearby.
– Good object-oriented style avoids excessive use of globals. Furthermore, ReCrash

has access to and will store any parts of the global state or environment that are
passed as method arguments.

ReCrash’s monitoring phase can be made efficient by reducing the amount of moni-
toring. For example, objects that are not changed by the code need not be monitored. As
another example, ReCrash has an optimization mode called second chance in which the
monitoring phase initially records only stack back-traces when the program fails. On
subsequent runs, ReCrash monitors only the methods that were in the stack back-trace
of failures. If the same problem reappears, it will be captured and might be reproduced.
Second chance allows a vendor to use ReCrash in a similar way to an anti-virus program
which frequently updates the virus profile data. When one client discovers a failure and
sends the produced back-trace to the vendor, the vendor will send an update containing
a list of additional methods to monitor, to all other clients. When ReCrash is used re-
motely (not by the developer who is debugging a failure), the test generation phase may
be performed either remotely or by the developer.

ReCrashJ is an implementation of the ReCrash technique for Java. In a case study
of real applications, ReCrashJ reproduced failures from Javac-jsr308, SVNKit, Eclipse
Java Compiler, and BST with little performance overhead.

This paper makes the following contributions:

– The ReCrash technique efficiently captures and reproduces failures using in-memory
storage of method arguments.

– Optimizations give the ReCrash technique low enough overhead to enable routine
use, by monitoring only relevant parts of a program.

– The second chance mode operates with almost no overhead.
– ReCrashJ is a practical implementation of ReCrash for Java.
– Case studies show that ReCrashJ effectively and efficiently reproduces failures for

several real applications.

The remainder of this paper is organized as follows. Section 2 describes the ReCrash
technique. Section 3 presents the ReCrashJ implementation. Section 4 describes our
experimental evaluation. Section 5 discusses some of ReCrash’s limitations. Section 6
surveys related work, and Section 7 concludes.

2 ReCrash Technique

The ReCrash technique has two parts. Monitoring is done during program exe-
cution (Section 2.1), and test generation is done after the program fails (Section 2.3).
Section 2.2 discusses several optimizations to the monitoring phase.

546 S. Artzi, S. Kim, and M.D. Ernst

2.1 Monitoring Phase

In the monitoring phase, ReCrash maintains in memory a shadow version of the call
stack with copies of the receiver and arguments to each method. Figure 3 presents
pseudo-code for the monitoring phase.

On entry to method m with arguments args, ReCrash generates a unique id id for the
invocation of m, then pushes 〈id,m, reccopy, argscopy〉 onto the ReCrash shadow stack,
where reccopy contains copies of the method’s receiver and argscopy contains a copy of
the method’s arguments.

ReCrash can use different copy strategies. It can make a deep copy of each argu-
ment, store only a reference, or use hybrid strategies (see Section 2.2.1). If m exits
normally, ReCrash removes the method call data 〈id,m, reccopy, argscopy〉 from the top
of its shadow stack.

If an un-handled exception is thrown out of main, ReCrash outputs the un-handled
exception and a deep copy of the current ReCrash shadow stack. The methods that
ReCrash stores include at least the methods on the virtual machine call stack at the time
of the failure. In cases where a method catches an exception and then throws a different
uncaught exception, the ReCrash shadow stack contains additional methods (those that
were on the shadow stack when the original exception was thrown). This additional
information can improve the reproducibility of failures.

2.2 Optimizations to the Monitoring Phase

ReCrash’s time and space overhead is dominated by the cost of copying the methods
arguments at method entry. We have considered two orthogonal ways to reduce over-
head: reducing the depth of copied state for the method’s arguments, and monitoring
fewer methods. Recording less information might reduce the chances of reproducing a
failure. Section 4 discusses tradeoffs between the performance overhead and the ability
to reproduce failures.

2.2.1 Depth of Copying Arguments
In order to recreate the state of the method’s arguments at the time of the failure, Re-
Crash copies the arguments to the shadow stack on the method entry. However, a deep
copy of the shadow stack is only stored when an exception is not caught by the pro-
gram. Thus, any part of an argument’s state that is not copied into the shadow stack
may change between the method entry and the time of the failure. This change might
prevent ReCrash from reproducing the failure.

This section considers different strategies for copying arguments (including the re-
ceiver) at the method entry. In each strategy a different amount of the argument state
is copied to the shadow stack and the rest of the argument state uses references to the
original objects (that might get side-effected). The different copying strategies, in order
of increasing overhead, are:

reference (depth-0). Copying only the reference to the argument.
shallow (depth-1). Copying the argument itself. Each of the fields in the copy contains

whatever the original argument did, a primitive or a reference. Shallow copying is
more resilient to direct side effects on the top-level primitive fields of the arguments.

ReCrash: Making Software Failures Reproducible by Preserving Object States 547

Input: copy - a function that copies arguments (see Section 2.2.1)
Output: file - containing deep copy of the shadow stack

s : shadow stack of the current method on the call stack and their arguments

On program start:
begin

s← new empty stack
end

On entry to method m in the call rec.m(args):
begin

reccopy ← copy(rec)
argscopy ← copy(args)
id← generate unique id for current execution of m
push tuple 〈id,m, reccopy, argscopy〉 into s

end

On non-exceptional exit from method m:
begin

id← lookup id for current execution of m
pop from s until 〈id, , , 〉 is popped

end

On top-level (main) uncaught exception e:
begin

file← new output file
store e to file
foreach 〈id,m, reccopy, argscopy〉 in s do

store 〈id, m, deepCopy(reccopy), deepCopy(argscopy)〉 to file
end

end

Fig. 3. Pseudo-code for the ReCrash technique. If an exception is uncaught by the program
(main), ReCrash stores the exception and a deep copy of the current shadow stack to the out-
put file. The technique uses two auxiliary functions: deepCopy which copies all the reachable
state of an object, and copy which is a parameter to this technique. The exact semantics of copy
depends on the chosen copy strategy (see Section 2.2).

depth-i. Copying an argument to a specified depth: all the state reachable with i or
fewer dereferences.

deep copy. Copy the entire state. This strategy gives ReCrash the best chance of repro-
ducing the same method execution, since it preserves the object state at the time of
the method entry.

ReCrash has an additional copying option, used-fields, applicable to all copying
strategy except reference. When the used-fields option is selected, ReCrash performs
deeper copying on fields that are used (read or written) in the method. For example,
supposed that ReCrash is using shallow (depth-1) copying with used-fields, x is an
argument to a method m, and x.a is used in m. Then ReCrash will perform shadow
copying on x and x.a. The used fields are the fields that the method is likely to depend
on, and therefore copying them increases the chance of reproducing the failure.

548 S. Artzi, S. Kim, and M.D. Ernst

It is possible to use different strategies for different arguments. For instance, shallow
copying the receiver and reference copying of all other arguments. ReCrash always uses
the reference strategy for immutable parameters. A method’s parameter p is immutable
if the method never changes the state reachable from p. Therefore, an object passed to
an immutable parameter will have the same state at the method entry and at the time of
the failure.

2.2.2 Monitoring Fewer Methods
ReCrash need not monitor methods that are unlikely to expose or reveal problems, or
cannot be used in the generated tests. Those include empty methods, non-public meth-
ods, and simple methods such as getters and setters.

second-chance mode It would be most efficient to monitor only methods that will fail.
However, it is impossible to compute this set of methods in advance. One way of ap-
proximating this set is to create a set of methods that already failed, updating the set
each time a new method fails.

This is the underlying idea behind second chance, a mode of operating ReCrash that
only monitors methods that have failed at least once. In second chance mode, ReCrash
initially monitors no method calls. Each time a failure occurs, ReCrash enables method
argument monitoring for all methods found on the (real) stack back-trace at the time of
the failure.

This mode is efficient, but requires a failure to be repeated twice (possibly with
other failures in between) before ReCrash can reproduce it. Second chance mode has
no impact on the reproducibility of a failure (the second time the failure appears).

2.2.3 Which Optimizations to Use
When using ReCrash, a developer needs to decide which optimizations to use. Which
copying strategy should ReCrash use for the arguments? Should ReCrash use the used-
fields option on the arguments? Should ReCrash use the second-chance mode?

The answers depend on the developer’s needs and the subject program. For example,
if the developer doesn’t mind missing the first time a failure happens, and the failure
occurs relatively often, the second chance mode is a good fit. If one wants ReCrash
to reproduce all possible failures and can suffer the performance hit, then deep copy
might be the right mode. We found that using the copying strategy shallow copying
(depth-1) with used-fields enabled ReCrash to reproduce most failures with acceptable
performance overhead.

2.3 Test Generation Phase

The test generation phase of ReCrash attempts to generate a unit test for each method
invocation 〈id,m, reccopy, argscopy〉 in the ReCrash shadow stack. The pseudo-code for
the test generation phase is presented in Figure 4.

ReCrash generates a test for each of the method frame in the shadow stack (s). Re-
Crash restores the state of the arguments (module the shadow stack) that were passed
to m in execution id, and then invokes m the same way it was invoked in the original
execution. Only tests that end with the same exception as the original failure are saved.
Storing more than one test that ends with the same failure is useful because it is possible

ReCrash: Making Software Failures Reproducible by Preserving Object States 549

Input: inFile- containing deep copy of the shadow stack
Output: outFile- containing tests reproducing the failure
begin

e : exception, the original exception resulting in the failure
testSuite : Collection of test sources, each test reproducing the original failure
outFile : output file for the generated tests
testSuite← empty test suite
e← load exception from inFile
len← get length of shadow stack from inFile

for i =1 to len do
t : test source
t← generateTest(inFile, i)
if execution of t ends with e then

add t to testSuite
end

end
store testSuite into outFile

end

generateTest(File file, int i)
begin
〈id,m, reccopy, argscopy〉 ← pop ith tuple from file
output(“test m.id”)
output(“rec = load ith receiver from file”)
output(“args = load ith arguments from file”)
output(“rec.m(args)”);

end

Fig. 4. Pseudo-code for ReCrash test generation. ReCrash generates a test for every method on
the original stack at the time of the failure, using the saved copy of the arguments. ReCrash
outputs each test whose executions results in the same exception. The generateTest subroutine
creates the source for a test. Each test loads the appropriate receiver and arguments from the file
containing the shadow stack, and then calls the method on the receiver with the arguments.

that some tests reproduce a failure, but would not help the developer understand, fix, or
check her solution. See Section 3.2 for an example of such a case.

3 Implementation

We have implemented the ReCrash technique for Java. This section describes the imple-
mentation, ReCrashJ, using as an example the program in Figure 5. ReCrashJ has two
phases: monitoring (Section 3.1) and test generation (Section 3.2). Section 3.3 discusses
implementation details of the optimizations of Section 2.2.

3.1 Implementation of the Monitoring Phase

ReCrashJ instruments an existing program (in Java class file format, using the ASM
instrumentation tool [23]) to perform the monitoring phase of the ReCrash technique

550 S. Artzi, S. Kim, and M.D. Ernst

1 class RandomCrash {
2 public String hexAbs (int x) {
3 String result = null ;
4 if (x > 0)
5 result = Integer . toHexString (x) ;
6 else if (x < 0)
7 result = Integer . toHexString(−x) ;
8 return toUpperCase (result) ;
9 }

10

11 public String toUpperCase (String s) {
12 return s . toUpperCase () ;
13 }
14

15 public static void main (String args []) {
16 RandomCrash rCrash = new RandomCrash () ;
17 rCrash . hexAbs (random.nextInt()) ;
18 }
19 }

Fig. 5. This program, taken from [30], will crash with a null pointer exception in the
toUpperCase method, when the argument x to the method hexAbs is 0. Since the value of x
is randomly chosen (line 17), this crash is not deterministically repeatable. Figure 6 presents the
instrumented version of the program.

(Section 2.1). The instrumented program can be deployed in the field instead of the
original program. Figure 6 shows the instrumented version of the program in Figure 5.

The instrumentation has four parts, one for each of the tasks in Figure 3.

on program start. The shadow stack is implemented using static fields in the Shadow-
Stack class. When the program starts, the requested copy strategies for the receiver
and the arguments is set (Lines 33 and 34). The different copy strategy classes im-
plement the strategies of Section 2.2.1.

on entry to method m. The receiver and the arguments to the method are stored on the
shadow stack at the beginning of each method. In addition, ReCrashJ generates an
id for the invocation of m. The id is stored as a local variable (id) in the method.
This is demonstrated by lines 3–5 and 18–20 of Figure 6. The specific behavior
of the methods addReceiver and addArgument is determined by the type of the
ShadowStack (see Section 3.3 for more details).

on non-exceptional exit from method m. If the method successfully returns without
a crash, ReCrashJ removes all the data (arguments and receiver) about the method
execution from the shadow stack. ReCrashJ uses the unique identifier id to perform
this cleanup (lines 13, 23).

on top-level uncaught exception. In order to react to a thrown exception that is not
caught by main, ReCrashJ replaces the original main by a new main as shown in
lines 27–37 in Figure 6. The new main invokes the original main in a try-catch
block and handles exceptions. When an exception is caught by the new try-catch
block (line 36), ReCrashJ serializes the information on the shadow stack, and stores
it to the output file (line 36).

ReCrash: Making Software Failures Reproducible by Preserving Object States 551

1 class RandomCrash {
2 public String hexAbs (int x) {
3 int id = ShadowStack.push("hexAbs");
4 ShadowStack.addReceiver(this);
5 ShadowStack.addArgument(x);
6 String result = null ;
7 if (x > 0)
8 result = Integer . toHexString (x) ;
9 else if (x < 0)

10 result = Integer . toHexString(−x) ;
11

12 String ret = toUpperCase (result) ;
13 ShadowStack.popUntil(id);
14 return ret ;
15 }
16

17 public String toUpperCase (String s) {
18 int id = ShadowStack.push("toUpperCase");
19 ShadowStack.addReceiver(this);
20 ShadowStack.addArgument(s);
21

22 String ret = s . toUpperCase () ;
23 ShadowStack.popUntil(id);
24 return ret ;
25 }
26

27 public static void original main (String args[]) {
28 RandomCrash rCrash = new RandomCrash () ;
29 rCrash . hexAbs (random . nextInt ()) ;
30 }
31

32 public static void main (String args []) {
33 ShadowStack.setReceiverCopyingStrategy(new ShallowCopy());
34 ShadowStack.setArgumentsCopyingStrategy(new ReferenceCopy());
35 try original main (args);
36 catch (Throwable e) StackDataWriter.writeStackData(e);
37 }
38 }

Fig. 6. The instrumented program of Figure 5. Instrumentation code is bold.

3.1.1 Serialization
To serialize objects and store the serialized objects into a file, ReCrashJ uses the XStream
framework [6] rather than Java serialization. Java serialization is limited to classes im-
plementing the java.io.Serializable interface, and in which all fields must be of
Serializable types. XStream does not have this limitation. ReCrash should be simi-
larly applicable to any language with a library for marshalling/unmarshalling data. It may
be that an advantage of Java is that Java has libraries that represent external resources,
such as files, as Java objects. It may be that at language like Eiffel that uses opaque point-
ers would be at a disadvantage.

3.1.2 Alternatives to the Shadow Stack
The instrumented program is deployable. No other program or configuration is needed
in order to run it. Both the Java Platform Debugger Architecture (JPDA) [2] and the Java
Virtual Machine Tool Interface (JVMTI) [3] provide features to access Java objects in
the stack with low overhead. However, in order to use these tools, we would have to
deploy a separate program (in addition to the instrumented program) to communicate
with either JVM or JPDA.

552 S. Artzi, S. Kim, and M.D. Ernst

1 public void processList (List inputList) {
2 List minimizedList = minimizeList (inputList) ;
3

4 / / minimizedList should not be null
5 if (minimizedList == null) {
6 StackDataWriter . writeStackData () ; / / record this state
7 minimizedList = inputList ;
8 }
9

10 . . .
11 }

Fig. 7. A manually written ReCrash annotation helps record a program state and reproduce errors
that do not results in uncaught exceptions

3.1.3 Reproducing Non-crashing Failures
A developer may wish to reproduce failures other than crashes, for example exceptions
that are caught by an exception handler or errors that do not result in an exception. In
this case, the vendor can add calls to writeStackDatawherever the program becomes
aware of a failure—for example, in a catch-all handler or where an invariant is found to
be false in an invariant validation routine.

As an example, consider the methodprocessList in Figure 7. This method processes
large lists. It first tries to minimize the input list by removing duplicates before process-
ing it (call in line 2). However, if due to a bug, the minimization method fails and returns
null, it is possible to process the entire list without minimization. Thus, the processing
method is able to recover from the bug in the minimization method and continue. How-
ever, the developer will probably be interested in debugging the problem in the mini-
mization method. In this case, the developer can signal to ReCrash (using the annotation
in Line 6) that it should reproduce the state of the method in this case.

3.2 Implementation of the Test Generation Phase

ReCrashJ uses the stored shadow stack to generate a JUnit testSuite. Figure 8 shows
the tests that ReCrashJ generated for the crash in Figure 5. Figure 2 shows two of the
tests generated for the Eclipse compiler crash reported in Figure 1. Each test in the suite
loads the receiver and the method arguments for one method from the serialized shadow
stack, and then calls that method, which results in the same exception as the original
crash. To facilitate debugging, for each argument (including receiver) that has a custom
toString method, ReCrashJ write the argument’s string representation as a comment
(Lines 16, 21, 32, 36 of Figure 2).

Not every object is dynamically read from the stored shadow stack when a test is
executed. ReCrashJ writes the values of primitives, strings, and null objects directly
into the tests. For example, see lines 8 and 18 of Figure 8.

3.2.1 Generating Multiple Tests for Each Crash
The tests in Figure 8 demonstrate a reason to create multiple tests that reproduce the
crash, one for each method on the stack. The first test in Figure 8 is useless in detecting
and solving the problem, because the developer is unable to understand the source of the
null argument. This test would also continue to fail even when the problem is solved.

ReCrash: Making Software Failures Reproducible by Preserving Object States 553

1 public void test_toUpperCase () {
2 ShadowStackReader . setMethodStackItem (2) ;
3

4 / / load receiver
5 RandomCrash rec = (RandomCrash) ShadowStackReader . readReceiver (0) ;
6

7 / / Method invocation
8 rec . toUpperCase (null) ;
9 }

10

11 public void test_hexAbs () {
12 ShadowStackReader . setMethodStackItem (1) ;
13

14 / / load receiver
15 RandomCrash rec = (RandomCrash) ShadowStackReader . readReceiver (0) ;
16

17 / / Method invocation
18 rec . hexAbs (0) ;
19 }

Fig. 8. Tests generated by ReCrash for the program of Figure 5

On the other hand, the second test captures a value that is not handled correctly by
the hexAbs method. This test is useful in determining and verifying a solution for the
problem.

3.2.2 Extra Information
When instrumenting a subject program, developers can embed an identifier, such as a
version number, in the subject program. This identifier will appear in the generated test
cases, as shown in line 2 of Figure 2. This identifier can help the developers to identify
which version of their program failed.

3.3 Optimizations

In order to implement the different copying strategies of Section 2.2.1, ReCrashJ uses
the Java Cloneable interface. ReCrashJ automatically adds the clone method to all
classes that do not already implement it. The added clone method copies primitive fields
and the references of non-primitive fields. Parameter immutability classification can be
found statically [27] or by a combination of static and dynamic analysis [8]. ReCrashJ
currently uses [8].

ReCrashJ approximates simple methods (i.e., getters and setters) as methods with
no more than six opcodes. We use six opcodes as the bound since the standard getter
(getX() {return x}) has 4 opcodes and setter (setX(int x) {this.x=x}) has 6
opcodes without debug information.

4 Experimental Study

We evaluated ReCrashJ by performing experiments with crashes of real applications.
We designed the experiments around the following research questions:

Q1 How reliably can ReCrashJ reproduce crashes?
Q2 What is the size of the stored deep copy of the shadow stack?

554 S. Artzi, S. Kim, and M.D. Ernst

program crash exception type # of # of serialized
name candidate reproducible tests shadow

tests reference used-fields copy stack size

Javac-jsr308 j1 null pointer 17 5 5 5 374
j2 illegal argument 23 11 11 11 448
j3 null pointer 8 1 1 1 435
j4 index out of bounds 28 11 11 11 431

SVNKit s1 index out of bounds 3 3 3 3 36
s2 null pointer 2 2 2 2 34
s3 null pointer 2 2 2 2 33

Eclipsec e1 null pointer 13 0 1 8 62
BST b1 class cast 3 3 3 3 5

b2 class cast 3 3 3 3 5
b3 unsupported encoding 3 3 3 3 25

Fig. 9. Subject programs and crashes used in our experimental study. For each crash, ReCrashJ
generates multiple test cases that aim to reproduce the original crash. In the used-fields column
ReCrashJ used the shallow (depth-1) copying strategy with the used-fields option. The serialized
shadow stack size is in gzipped KB.

Q3 Are the tests generated by ReCrashJ useful for debugging?
Q4 What is the overhead (time and memory) of running ReCrashJ?

Our results indicate that ReCrashJ can reproduce many crashes, that it generates
useful tests, that it incurs low overhead, and that the size of the stored data (serialized
shadow stack) is small. We present the analysis of two real crashes in detail and show
that the tests generated by ReCrashJ help to locate the source of the problem. In ad-
dition, the developers of one subject program found the generated test cases helpful.
Overall, the experimental results indicate ReCrashJ is effective, scalable, and useful.

4.1 Subject Systems and Methodology

We use the following subject programs in our experiments:

– Javac-jsr3081 is the OpenJDK Java compiler, extended with the implementation
of JSR308 (“Annotations on Java Types”) [17]. We used four crashes that were
provided to us by the developers. Javac-jsr308 version 0.1.0 has 5,017 methods in
86 kLOC.

– SVNKit2 is a subversion3 client. We used three crash examples for SVNKit bug
reports #87 and #188. SVNKit version 0.8 has 2,819 methods in 22 kLOC.
Eclipsec4 is a Java compiler included in the Eclipse JDT. We used the crash from
bug #30280 found in the Eclipse bug database. In version 2.1 of Eclipse, Eclipsec
has 4,700 methods in 83 kLOC.

1 http://groups.csail.mit.edu/pag/jsr308/
2 http://svnkit.com/
3 http://subversion.tigris.org
4 http://www.eclipse.org

ReCrash: Making Software Failures Reproducible by Preserving Object States 555

– BST5 is a toy subject program used by Csallner in evaluating CnC [11,12]. We used
three BST crashes found by CnC. BST has 10 methods in 0.2 kLOC.

We used the following experimental procedure. We ran the ReCrashJ-instrumented
versions of the subject programs on inputs that made the subject programs crash. We
counted how many test cases reproduced each crash. We repeated this process for the
different argument copying strategies introduced in Section 2.2.1, and with and with-
out the second chance mode of Section 2.2.2. For the required parameter immutability
classification (see Section 2.2.2) ReCrashJ runs PIDASA [8] one time for each subject
program. It took less than half an hour to calculate the parameter immutability classifi-
cation for each of the subject programs.

4.2 Reproducibility

Q1 How reliably can ReCrashJ reproduce crashes?

ReCrashJ was able to reproduce the crash in all cases (Figure 9). For some crashes (b1,
b2, b3, s1, s2, and s3), every candidate test case reproduces the crash. For other crashes
(e1, j1, j2, j3, and j4), only a subset of the generated test cases reproduces the crash.

In most cases, simply copying references is enough to reproduce crashes (‘reference’
column). However, in some cases an argument is side-effected, between the method
entry and the point of the failure in the method, in such a way that will prevent the
crash if the modified argument had been supplied on the method entry. In those cases
(e.g., e1), using at least the shallow copying strategy with used-fields (Section 2.2.1)
was necessary to reproduce the crash.

4.3 Stored Deep Copy of the Shadow Stack Size

Q2 What is the size of the stored deep copy of the shadow stack?

If ReCrashJ is deployed in the field, and a crash happens, the user will need to send
the serialized deep copy of the shadow stack to the program developers. For each crash,
the last column of Figure 9 presents the size of the serialized deep copy of the shadow
stack for each of the inspected crashes. The size can be further reduced if the tests are
generated and executed locally. In this case ReCrash could trim the data from frames
whose candidate test cases were discarded, or perform other minimization of the test
cases.

4.4 Usability Study

Q3 Are the tests generated by ReCrashJ useful for debugging?

To learn whether ReCrashJ’s test cases help developers to find errors, we analyzed the
generated test cases for each crash. We present a detailed analysis of two crashes, e1
and j4. We also present developers’ comments about the utility of the generated tests
for j1-4.

5 http://www.cc.gatech.edu/cnc/index.html

556 S. Artzi, S. Kim, and M.D. Ernst

1 public Void visitMethodInvocation (MethodInvocationTree node , Void p) {
2 List<AnnotatedClassType> parameters = method . getAnnotatedParameterTypes () ;
3

4 List<AnnotatedClassType> arguments = new LinkedList<AnnotatedClassType > () ;
5 for (ExpressionTree arg : node . getArguments ())
6 arguments . add (factory . getClass (arg)) ;
7

8 for (int i = 0 ; i < arguments . size () ; i++) {
9 if (! checker . isSubtype (arguments . get (i) , parameters . get (i)))

10 . . .
11 }
12 }

Fig. 10. A code snippet that illustrates a Javac-jsr308 crash (j4). The crash (in line 9) happens
when the parameters list is shorter then the arguments list.

1 public void test_visitMethodInvocation () throws Throwable {
2 / / load receiver
3 / / rec = . . .
4 SubtypeVisitor rec = (SubtypeVisitor) ShadowStackReader . readReceiver (0) ;
5

6 / / load arguments
7 / / arg_1 = test (” foo ” , ”bar ” , ”baz ”) ;
8 MethodInvocationTree arg_1 = (MethodInvocationTree)
9 ShadowStackReader . readArgument (1) ;

10

11 / / Method invocation
12 rec . visitMethodInvocation(arg_1 , null) ;
13 }

Fig. 11. Test case generated for a Javac-jsr308 crash (j4)

Eclipsec bug (e1): Figure 12 presents the bug resulting in crash e1. Eclipsec crashes
in method canBeInstantiated (line 19) because an earlier if statement in lines 9–11
failed to set the hasError to true. Using the generated tests (Figure 2) the developer
would have been led to the buggy code. The developer would fix this problem by adding
hasError=true on line 11. Notice that the test case for method canBeInstantiated
(not shown in the figure) will reproduce the crash, but is not helpful in understanding
it as the state of the parameter is already corrupted. Also, note that just looking at the
backtrace does make the problem obvious: stepping through will be more useful (the
error is far removed from the crash, but is in a method on the stack.) This is an example
of why it is important to generate tests for multiple methods on the stack.

Javac-jsr308 bug (j4): Using Javac-jsr308 to compile source code with an annotation
with too many arguments results in an index-out-of-bounds exception. Figure 10 shows
the erroneous source code. The compiler assumes that the parameters and arguments
lists are of the same size (line 9), but may not be.

ReCrashJ generates multiple test cases that reproduce the crash; one test is shown in
Figure 11.

Note that the generated test does not require the whole source code and encodes only
the necessary minimum to reproduce the crash. This makes ReCrashJ especially useful

ReCrash: Making Software Failures Reproducible by Preserving Object States 557

1 public class QualifiedAllocationExpression {
2 public TypeBinding resolveType (BlockScope scope) {
3 TypeBinding receiverType = null ;
4 boolean hasError = false ;
5 if (anonymousType == null) {
6 if ((enclosingInstanceType =
7 enclosingInstance . resolveType (scope)) == null) {
8 hasError = true ;
9 } else if (enclosingInstanceType . isArrayType ()) {

10 . . .
11 //hasError = true; Missing and causing the error
12 } else if ((this . resolvedType =
13 receiverType = . . .)) == null) {
14 hasError = true ;
15 }
16 . . .
17 / / limit of fault−tolerance
18 if (hasError) return receiverType ;
19 if (! receiverType . canBeInstantiated ()) . . .
20 . . .
21 }
22 }

Fig. 12. Buggy source code from Eclipsec (Eclipse Java compiler) causing bug #30280. The
program crashes with a NullPointerException in the canBeInstantiated method (line 19).
This case happens when the positive path of the if in line 9 is taken. In which case hasError is
not set to false (line 11).

in scenarios where the compiler crash happens in the field, and the user cannot provide
the entire possibly proprietary source code for debugging.

Developer testimonials. We gave the tests for j1-4 to two Javac-jsr308 developers and
asked for comments about the tests’ usefulness. We received positive responses from
both developers.

Developer 1: “I often have to climb back up through a stack trace when debugging.
ReCrash seems to generate a test method for multiple levels of the stack, which would
make it useful.” “I find the fact that you wouldn’t have to wait for the crash to occur
again useful.”

Developer 2: “One of the challenging things for me in debugging is that when I set a
break point, the break point maybe be executed multiple times before the actual instance
where the error is cased, [...] Using ReCrash, I was able to jump (almost directly) to the
necessary breakpoint.”

4.5 Performance Overhead

Q4 What is the runtime overhead (time and memory) of ReCrashJ?

We compared the time and memory usage of the original and instrumented versions of
the subject programs, while performing the following tasks (the first three Java classes
were taken from the /samples/nio/server directory in JDK 1.7):

558 S. Artzi, S. Kim, and M.D. Ernst

task execution time
original reference shallow w/used-fields deep copy

SVNKit checkout 1.17 1.62 (38%) 1.75 (50%) 1657 (142,000%)
SVNKit update 0.56 0.62 (11%) 0.63 (13%) 657 (118,000%)
Eclipsec Content 0.95 1.08 (13%) 1.12 (15%) 114 (12,000%)
Eclipsec String 1.07 1.36 (27%) 1.39 (31%) 1656 (155,000%)
Eclipsec Channel 1.27 1.72 (34%) 1.74 (37%) 8101 (638,000%)
Eclipsec JLex 3.45 4.93 (42%) 5.51 (60%) > 2 days

task second-chance execution time
original reference shallow w/used-fields deep copy

SVNKit checkout 1.17 1.17 (0.0%) 1.18 (0.8%) 1.42 (21%)
SVNKit update 0.56 0.56 (0.0%) 0.56 (0.3%) 0.56 (0.8%)
Eclipsec Content 0.95 0.97 (1.5%) 0.96 (0.9%) 3.98 (317%)
Eclipsec String 1.07 1.09 (1.7%) 1.08 (0.8%) 8.99 (742%)
Eclipsec Channel 1.27 1.27 (0.1%) 1.27 (0.0%) 16.6 (1,210%)
Eclipsec JLex 3.45 3.47 (0.7%) 3.48 (1.1%) 1637 (47,000%)

Fig. 13. Execution times of the original and instrumented programs in seconds. Slowdowns from
the baseline appear in parentheses. The columns are described in Section 2.2.1.

SVNKit checkout: Checking out a project6, 880 files, 44Mb
SVNKit update: Updating a project, 880 files, 44Mb
Eclipsec Content: Compiling Content.java (48 LOC)
Eclipsec String: Compiling StringContent.java (99 LOC)
Eclipsec Channel: Compiling ChannelIOSecure.java (642 LOC)
Eclipsec JLex: Compiling JLex version 1.2.4 (7,841 LOC)7

Figure 13 compares the execution time of the original subject programs and the in-
strumented ones, measured using the UNIX time command. Because of variability in
network, disk, and CPU usage, there is some noise in the measurements, but the trend is
clear. Our deep copy version is completely unusable, except possibly in second chance
mode, where it might be usable for in-house testing. A more optimized implementation
could be more efficient, but will probably still be impractical.

Even copying only the references can be expensive, 11%–42% run-time overhead.
The shallow copying strategy with used-fields has a very similar overhead, 13%–60%
overhead. These values are probably usable for in-house testing.

Second chance mode, however, is where our system shines. It reduces the overhead
to a barely noticeable 0%–1.7% — and that is after a crash has already been observed,
before which the overhead is negligible (essentially 0%). Second chance mode obtains
these benefits by monitoring only a very small subset of all the methods in the program.
This simple idea is sufficient, effective, and efficient.

6 http://amock.googlecode.com/svn/trunk
7 http://www.cs.princeton.edu/∼appel/modern/java/JLex/

ReCrash: Making Software Failures Reproducible by Preserving Object States 559

task maximum memory usage (MB)
original shallow w/used-fields overhead%

SVNKit checkout 8.7 9.3 6.9
SVNKit update 7.6 7.8 2.6
Eclipsec Content 4.8 8.4 75.0
Eclipsec String 5.3 9.5 79.2
Eclipsec Channel 5.2 9.9 90.3
Eclipsec JLex 9.1 11.1 21.9

Fig. 14. Memory use overhead of the instrumented programs, as measured by JProfiler

For the memory usage comparison, we used JProfiler8 to measure the maximum
memory used in performing each task. Figure 14 shows the memory usage — in our
experiments, ReCrashJ adds 0.2M–4.7M memory overhead for the effective shallow
copying strategy with the used field option. The memory overhead for the same copying
strategy in the second-chance mode was negligible.

5 Discussion

This section discusses limitations of our technique and threats to the validity of our
experiments.

5.1 Limitation in Reproducing Failures

ReCrash cannot necessarily reproduce all failures. The following list contains some
cases that might prevent ReCrash from reproducing a failure:

failures dependent on timing. This category of failures includes concurrency-related
failures such as failures resulting from a race condition in a multi-threaded appli-
cation. Monitoring concurrency timing dependent failures and reproducing them is
future work.

failures dependent explicitly on external resources. ReCrash may be unable to re-
produce a failure that depends on external resources such as file system, network,
hardware devices, etc. For example, a failure might depend on loading a file that no
longer exists. ReCrash could be combined with tracing tools for calls that access
external resource. This would be less expensive than performing full tracing.

failures dependent implicitly on external resources. Failures may depend implicitly
on external resources. For instance, an argument such as a socket or GUI object,
cannot be serialized.

failures dependent on global state, or side-effected argument state. Failuresmayde-
pend on global state that is not serialized. Or a failure might depend on a part of the
argument state that is not stored to the shadow stack (due to the copy strategy) and is
side-effected between the method entrance and the time of the failure.

8 http://www.ej-technologies.com/products/jprofiler/overview.html

560 S. Artzi, S. Kim, and M.D. Ernst

1 public class SVNCommandLine {
2 private list myURLs ;
3

4 public String getURL (int index) {
5 return (String) myURLs . get (index) ;
6 }
7

8 protected void init (String [] arguments) throws SVNException {
9 myURLs = new ArrayList () ;

10 for (int i = 0 ; i < arguments . length ; i++) {
11 . . .
12 }
13 }
14 }

Fig. 15. A code snippet from SVNKit illustrating crash s1. The method causing the crash (init)
will not be on the stack at the time of the crash.

We believe that not storing global state is not a great limitation for Java, as noted in
Section 1, and validated by our experiments. Evaluating the effect of storing global
state on reproducibility is future work.

ReCrash might still be able to reproduce a failure that depends on one of these cases.
This may occur if the method call that ReCrash cannot reproduce results in a legal state
that triggers a failure later in the execution. In this case the developer might be able to
find, understand, and fix the failure even without understanding the exact condition that
led to the state exposing it.

5.2 Buggy Methods not in the Stack at Time of the Failure

It is possible that a failure is caused by a method that is not on the call stack at the
time of the failure. For example, consider the code in Figure 15. This figure contains
the source of crash s1 (SVNKit bug #87). An index-out-of-bounds exception is thrown
if the user omits the URL from the check out command. When no URL is supplied, the
method init should set a default URL or throw an exception about a missing URL, but
it does neither.

The program in Figure 15 will crash on Line 5, and at the time of the crash the call
stack will contain the methodgetURLbut will not contain the methodinit. The test case
ReCrash creates for method getURL calls the method getURLwith 0 as a parameter, and
the exception is thrown. This test does not help the developer to find the reason for the
illegal state of myURLs. However, ReCrash generates test cases for each frame in the call
stack. Thus, ReCrash will generate a test for the run method (not shown), which calls
init. Debugging using the test for the run method will expose the real bug.

5.3 Reusing ReCrash Generated Tests

The ReCrash generated tests are not intended to be added as is to the program test
suite. The reason is that the tests de-serialize objects. If the structure of a class changes,
the de-serialization will stop working. However, the generated test cases provide the
skeleton of tests, and developers can replace the de-serialization with normal code.

ReCrash: Making Software Failures Reproducible by Preserving Object States 561

Developers are not intended to examine the JUnit code of the generated tests to find
a bug. Rather, a developer can use a debugger to examine the test’s execution, revealing
the cause of the failure.

5.4 Privacy

One of the problems with debugging deployed applications is that users may be reluc-
tant to send data to the developers for fear of exposing proprietary data. For instance, a
user who discovers a bug in Eclipse might be unable to send proprietary source files to
the developer.

While we have not solved this problem, using ReCrash might be seen as an interme-
diate solution. Sending only the parts of the shadow stack that are used in selected tests
is less likely to contain proprietary data. In addition, it should be possible for a client
to prevent ReCrash from storing sensitive data by marking it (i.e., via program anno-
tations). Another possible solution is to provide a shadow stack reader to the client, so
that the client can review the encoded data and decide which parts of it (or which tests)
are safe to send to the developers.

5.5 Threats to Validity

We identify the following key threats to validity.

Systems and crashes examined might not be representative. We might have a sys-
tem or crash selection bias. Our experiments use every crash we considered. How-
ever, we examined only 11 crashes from 4 subject systems. It is time-consuming
to find a real bug (by studying bug reports), download an older version of the soft-
ware, compile it, and reproduce the bug. We may have accidentally chosen systems
or crashes that have better (or worse) than average ReCrash reproducibility.

All failures are runtime exceptions. Our experiments use failures that manifest as run-
time exceptions, such as null pointer or index out of bounds exceptions. However, Re-
CrashJ can monitor user-annotated exceptions or errors as discussed in Section 3.1.3.
Evaluating the usefulness of the ReCrash annotation requires a user study. Future
experiments and user studies should consider other types of failures including user-
annotated non-exception points.

6 Related Work

6.1 Record and Replay

Many existing record and replay techniques for postmortem analysis and debugging
[10,14,19,9,21,18,31,15] are based on three components: checkpoints, logging, and re-
play. The checkpoint provides a snapshot of the full state of the program at specific
times, while the log records events between snapshots. The replay component uses the
log to replay the events between checkpoints. By contrast, ReCrash performs a check-
point at each method entry and has no log of events, only an in-memory record of stack
elements. ReCrash does not replay the entire execution, instead ReCrash allows the

562 S. Artzi, S. Kim, and M.D. Ernst

developer to observe the system in several states before the failure, then run the orig-
inal program until the failure is reproduced. ReCrash’s logging simplicity allows it to
be deployed remotely with relatively low overhead. Most of the previous techniques
are designed for in-house testing or debugging, and have unreasonable overhead for
deployed applications.

BugNet [21], ReVirt [15], and FlashBack [28] require changes to the host operating
system while FDR [31] uses a proprietary hardware recorder. ReCrash, on the other
hand, can be deployed in any environment, and can be used to reproduce a recorded
failure in different environments.

Choi et al. [9], Instant Replay [19], BugNet [22], and many others emphasize the
ability to deterministically replay an execution of a non-deterministic program. They
are able to reproduce race conditions and other non-deterministic failures. In order to
achieve this goal, these techniques either impose a large space and time overhead [9,19],
or they only allow replaying a narrow window of time [22]. Similar to BugNet [22],
ReCrash only allows replaying a part of the execution before the failure. ReCrash is only
able to deterministically reproduce a non-deterministic failure if one of the generated
tests captures the state after the non-determinism. ReCrash could be combined with
other monitoring tools (storing only some of the environment dependencies) to create
an efficient technique that can reproduce non-deterministic failures.

jRapture [29], test factoring [26], test carving [16], and ADDA [10] capture the inter-
actions between the program and the environment to create smaller test cases or enable
reproducing failures. These techniques capture a trace, and then run the subject code in
a special harness, such as a mock object representing all interactions with the rest of the
system, that reads values out of the trace whenever the subject code would have inter-
acted with its environment. Test factoring does this at the level of method calls; ADDA
does it at the level of file operations and C standard library functions. By contrast, our
approach does not record a trace; it sets up the system in a particular start state, and
then the system runs unassisted. However, ReCrash can be viewed as writing mock ob-
jects in the method call data. The objects recorded are a faithful representation of the
actual objects down to a given depth. At lower depths their fields contain values that are
possibly incorrect, but that in practice are effective in reproducing program behavior.

6.2 Test Generation

Contract Driven Development [20] generates test cases using contracts (pre- and post-
conditions) written by developers. If a contract is violated during the execution of an
application in debug mode, CDD captures the transitive state of the arguments to one
method (often the failing method). CDD then attempts to use the captured state to gen-
erate a test case that reproduces the violation. Since the arguments’ state is captured
after the violation, it is equal to ReCrash’s reference copying strategy. ReCrash might
generate more useful tests and reproduce more failures because ReCrash can store ar-
guments’ state before a violation occurs, and because ReCrash generates multiple tests,
one for each method on the shadow stack at the time of the failure. CDD is designed
to be used in the development process, whereas ReCrash can be used either in-house
or in-field. ReCrash monitors the stack and generates a test case without the need for
special IDE support.

ReCrash: Making Software Failures Reproducible by Preserving Object States 563

CnC [12], JCrasher [11], Eclat [24], Randoop [25], and DSDCrasher [13] use ran-
dom inputs to find program crash points. Their generated tests may not be representative
of actual use, whereas ReCrash generates tests that reproduce real crashes. Palulu’s [7]
model-based test generation similarly attempt to generates tests based on values ob-
served during an actual program execution.

6.3 Remote Data Collection

Crash reporting systems such as Dr. Watson [4], Apple’s Crash Reporter [1], and Talk-
back [5] send a stack back-trace or program core-dump to the vendor. The vendor uses
the stack back-trace to correlate the report to known problems. If several reports share
similar characteristics, the vendor may try to reproduce the original failure. However,
reproducing the original failure requires non-trivial human effort. The core-dump pro-
vides one snapshot of the program state at the end of time (after the crash). ReCrash
provides several partial snapshots and enables execution of each of them, using a test.
ReCrash stored data is smaller than a core-dump and thus is easier to send to the vendor.

7 Conclusion

We have introduced the ReCrash technique for generating unit tests that reproduce a
software failure. The tests utilize partial snapshots of the program state that ReCrash
captures on each execution and records in the case of a failure. ReCrash is simple to
implement, it is scalable, and it generates simple, helpful test cases that effectively
reproduce failures. Our ReCrashJ tool implements the technique for Java.

We have evaluated ReCrashJ with real crashes from Javac-jsr308, SVNKit, Eclipsec,
and BST. ReCrashJ created tests that reproduced every crash we have inspected, and
developers found the generated tests useful for debugging. The performance overhead
of programs instrumented by ReCrashJ was 13%–64% for the shallow copying strategy
with used-fields and 0%–1.7% for all copying strategies in the second-chance mode. In
our experiments, ReCrashJ increases memory usage when using the effective shallow
copying strategy with used-fields, by 0.2M–4.7M, and the size of the stored snapshots,
the serialized shadow stack, is manageable (0.5k—448k). ReCrashJ is usable in real
software deployment.

The ReCrashJ tool described in this paper is publicly available for download from
http://pag.csail.mit.edu/ReCrash.

Acknowledgements. We thank Matthias Hauswirth and the anonymous reviewers for
their comments.

References

1. Apple Crash Reporter (2007), http://developer.apple.com/technotes/tn2004/tn2123.html
2. Java Platform Debugger Architecture (2007), http://java.sun.com/javase/technologies/
core/toolsapis/jpda/

564 S. Artzi, S. Kim, and M.D. Ernst

3. JVMTI Tool Interface (JVM TI) (2007), http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
index.html

4. Microsoft Online Crash Analysis (2007), http://oca.microsoft.com
5. Talkback Reports (2007), http://talkback-public.mozilla.org
6. XStream Project Homepage (2007), http://xstream.codehaus.org/
7. Artzi, S., Ernst, M.D., Kieżun, A., Pacheco, C., Perkins, J.H.: Finding the needles in the

haystack: Generating legal test inputs for object-oriented programs. Technical Report MIT-
CSAIL-TR-2006-056, MIT Computer Science and Artificial Intelligence Laboratory, Cam-
bridge, MA, September 5 (2006)

8. Artzi, S., Kieżun, A., Glasser, D., Ernst, M.D.: Combined static and dynamic mutability
analysis. In: ASE 2007: Proceedings of the 22nd Annual International Conference on Auto-
mated Software Engineering, Atlanta, GA, USA, November 7-9 (2007)

9. Choi, J.-D., Srinivasan, H.: Deterministic replay of Java multithreaded applications. In:
SPDT 1998: Proceedings of the SIGMETRICS symposium on Parallel and distributed tools,
pp. 48–59 (1998)

10. Clause, J., Orso, A.: A technique for enabling and supporting debugging of field failures.
In: ICSE 2007, Proceedings of the 29th International Conference on Software Engineering,
Minneapolis, MN, USA, May 23–25, 2007, pp. 261–270 (2007)

11. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java. Software:
Practice and Experience 34(11), 1025–1050 (2004)

12. Csallner, C., Smaragdakis, Y.: Check ’n’ Crash: Combining static checking and testing. In:
Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 422–431. Springer, Hei-
delberg (2006)

13. Csallner, C., Smaragdakis, Y.: DSD-Crasher: A hybrid analysis tool for bug finding. In:
ISSTA 2006, Proceedings of the 2006 International Symposium on Software Testing and
Analysis, Portland, ME, USA, July 18–20, 2006, pp. 245–254 (2006)

14. de Oliveira, D.A.S., Crandall, J.R., Wassermann, G., Wu, S.F., Su, Z., Chong, F.T.: Exe-
cRecorder: VM-based full-system replay for attack analysis and system recovery. In: ASID
2006: Proceedings of the 1st workshop on Architectural and system support for improving
software dependability, pp. 66–71 (2006)

15. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling intrusion
analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev., 211–224
(2002)

16. Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J.: Carving differential unit test cases from
system test cases. In: Proceedings of the ACM SIGSOFT 14th Symposium on the Founda-
tions of Software Engineering (FSE 2006), pp. 253–264 November 7-9 (2006)

17. Ernst, M.D.: Annotations on Java types: JSR 308 working document. November 12 (2007),
http://pag.csail.mit.edu/jsr308/

18. Geels, D., Altekar, G., Shenker, S., Stoica, I.: Replay debugging for distributed applications.
In: USENIX-ATC 2006: Proceedings of the Annual Technical Conference on USENIX 2006
Annual Technical Conference, Boston, MA, p. 27 (2006)

19. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging parallel programs with instant replay.
IEEE Trans. Comput. 36(4), 471–482 (1987)

20. Leitner, A., Ciupa, I., Fiva, A.: Contract Driven Development = Test Driven Development −
Writing Test Cases. In: Proc. of the 12th European Software Engineering Conference (ES-
EC/FSE), September 2007, pp. 425–434 (2007)

21. Narayanasamy, S., Pokam, G., Calder, B.: BugNet: Continuously recording program exe-
cution for deterministic replay debugging. In: ISCA 2005: Proceedings of the 32nd annual
international symposium on Computer Architecture, pp. 284–295 (2005)

22. Narayanasamy, S., Pokam, G., Calder, B.: BugNet: Recording application-level execution
for deterministic replay debugging. IEEE Micro. 26(1), 100–109 (2006)

ReCrash: Making Software Failures Reproducible by Preserving Object States 565

23. ObjectWeb Consortium. ASM - Home Page (2007), http://asm.objectweb.org/
24. Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classification of test inputs. In:

Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 504–527. Springer, Heidelberg (2005)
25. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test generation.

In: ICSE 2007, Proceedings of the 29th International Conference on Software Engineering,
Minneapolis, MN, USA, May 23–25 (2007)

26. Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic test factoring for Java. In: ASE
2005: Proceedings of the 20th Annual International Conference on Automated Software En-
gineering, Long Beach, CA, USA, November 9–11, 2005, pp. 114–123 (2005)

27. Sălcianu, A., Rinard, M.C.: Purity and side-effect analysis for Java programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)

28. Srinivasan, S.M., Kandula, S., Andrews, C.R., Zhou, Y.: Flashback: A lightweight extension
for rollback and deterministic replay for software debugging. In: ATEC 2004: Proceedings of
the USENIX Annual Technical Conference 2004 on USENIX Annual Technical Conference,
Boston, MA, p. 3 (2004)

29. Steven, J., Chandra, P., Fleck, B., Podgurski, A.: jRapture: A capture/replay tool for
observation-based testing. In: ISSTA 2000: Proceedings of the 2000 ACM SIGSOFT in-
ternational symposium on Software testing and analysis, pp. 158–167 (2000)

30. Tomb, A., Brat, G., Visser, W.: Variably interprocedural program analysis for runtime error
detection. In: ISSTA 2007, Proceedings of the 2007 International Symposium on Software
Testing and Analysis, London, UK, July 10–12 (2007)

31. Xu, M., Bodik, R., Hill, M.D.: A “flight data recorder” for enabling full-system multiproces-
sor deterministic replay. In: ISCA 2003: Proceedings of the 30th annual international sym-
posium on Computer architecture, pp. 122–135 (2003)

An Extensible State Machine Pattern for

Interactive Applications

Brian Chin and Todd Millstein

Computer Science Department
University of California, Los Angeles
{naerbnic, todd}@cs.ucla.edu

Abstract. The state design pattern is the standard object-oriented pro-
gramming idiom for implementing the state machine logic of interactive
applications. While this pattern provides a number of advantages, it
does not easily support the creation of extended state machines in sub-
classes. We describe the extensible state design pattern, which augments
the traditional state pattern with a few additional constraints that allow
subclasses to easily add both new states and new events. Further, we
observe that delimited continuations, a well-known construct from func-
tional programming languages, supports state refinement in subclasses
as well as the modular expression of control flow in the presence of in-
teraction. We illustrate our pattern in the context of Java, leveraging
its generics to obviate the need for dynamic typecasts and employing a
small library that implements delimited continuations. We have used our
pattern to simplify and modularize a widely used application written by
others.

1 Introduction

Interactive applications are those that repeatedly accept input from and produce
output to an external entity. Typically the output produced depends upon the
current input along with the current state of the application, and this output
may in turn affect the next input. Many common application domains are funda-
mentally interactive, including servers, user interface programs, and computer
games. In addition, more traditional applications often include an interactive
component. For example, a program whose behavior is configured by an XML
file might interactively parse the file through the event-driven Simple API for
XML (SAX) [17].

The logic of an interactive application essentially takes the form of a state
machine, and the standard way to implement this logic in an object-oriented
(OO) language is with the state design pattern [9]. This pattern reifies each
state as a distinct class, which has one method for each possible external event.
The state machine class maintains a field containing the current state, and all
external events are forwarded to the current state to be handled appropriately.
Handling an event may result in some output and additionally update the current
state.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 566–591, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Extensible State Machine Pattern for Interactive Applications 567

The state design pattern has a number of advantages. Because the current
state is represented explicitly as an object, there is no need to manually test
the current state of the machine when an event occurs. Instead, the state object
is sent an ordinary message send upon an event, and each state “knows” how
to appropriately respond to each kind of event. Further, each state class can
naturally encapsulate its own data (i.e., fields), which is less error prone than
storing all necessary data in the state machine itself.

While the state design pattern simplifies the creation of a new state machine,
even simple ways in which one might want to extend an existing state machine
in a subclass are difficult to implement without code duplication and/or unsafe
features like type casts. State logic is inherently difficult to reuse via standard
mechanisms like method overriding, since the logic of the machine is fragmented
across multiple cooperating event handlers. The state design pattern exacerbates
this problem by fragmenting the application logic across several interdependent
classes. As a result, the traditional benefits of object-oriented software reuse
mechanisms are not readily applicable to interactive applications.

In this paper, we present an extension of the state design pattern that we call
the extensible state design pattern (Section 2). In addition to the requirements
of the basic state pattern, we impose new rules on how state machines and state
classes should be structured. Obeying the rules allows subclasses to modularly
and safely extend the original state logic in a variety of desirable ways. This
pattern is implemented within vanilla Java 1.5, however, the pattern is not Java-
specific and could be implemented in other OO languages. The pattern relies on
the generics found in both Java and C#; an implementation in C++ is possible
using templates but would have weaker type-correctness guarantees.

Using our pattern, subclasses of a state machine can easily add new states to
the machine and override existing states to have new behaviors (Section 2.1),
as well as add new kinds of events that the extended state machine can accept
(Section 2.2). These tasks are similar to those in the expression problem identified
originally by Reynolds [16] and named by Wadler [20]. Torgersen [19] provides
several solutions to the expression problem in Java, which make heavy use of
generics. Our solution borrows ideas from his “data-centered” solution but is
specialized for the domain of the state design pattern, which allows for a simpler
solution without loss of functionality. For example, since states are not a recursive
datatype, we do not require the sophistication of F-bounded polymorphism [3].

The state pattern additionally has several extensibility requirements that have
no analogue in the expression problem. For example, we would like to allow a
subclass to easily “interrupt” the existing state logic, insert some additional logic,
and later resume the original state logic. This natural idiom can be seen as the
interactive equivalent of a subroutine call. It can also be used to express a form
of hierarchical state machines, whereby a state of the superclass is implemented
in the subclass as its own state machine. Further, traditional control flow logic
such as subroutines and loops are difficult to express modularly even within a
single state machine, due to the need to pass control back to the environment.
For instance, if a state machine must wait for an event in the middle of a loop,

568 B. Chin and T. Millstein

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Fig. 1. The Base State Machine

that loop must be unrolled and split between multiple classes, obfuscating the
original intent and introducing new possibilities for error.

We observe that delimited continuations [7], a well-studied language feature
from the functional programming community, naturally supports modular ex-
pression of traditional control flow in the presence of interaction. We have im-
plemented a form of delimited continuations as a small Java library with a simple
API (Section 4), and we incorporate the usage of this API as constraints in our
extensible state design pattern. We illustrate how this API and the associated
constraints overcome all of the difficulties described above and provide several
other benefits (Sections 2.3 and 3).

To validate our design pattern, we have used it to refactor a widely used
application written by others (Section 5). This application, JDOM [12], is an
XML parser that creates a DOM tree by using a SAX model parser. JDOM was
originally implemented as a monolithic class that used several fields to encode
properties of its current state. We refactored its implementation to employ our
design pattern, which greatly simplified the logic and made it significantly more
readable. Further, we demonstrate the extensibility benefits of our pattern by
structuring the refactored code as two state machines: a class that supports basic
XML parsing and a subclass that supports more advanced features of XML and
has the same functionality as the original JDOM implementation.

2 The Extensible State Pattern

In this section we build up our extensible state machine pattern in stages, be-
ginning with the standard state design pattern [9]. As a running example we
consider a state machine for a simple user interface, along with several desired
extensions to this state machine. Each stage in our discussion will refine the
design pattern to obey new constraints necessary to enable a particular kind
of extensibility. Our example sometimes sacrifices realism for simplicity, but it
represents the kinds of tasks which are needed in UIs in general.

In our first user interface, there is a window containing a single button. The
state machine logic should simply cause a function triggerButton to be invoked
whenever the button is clicked. The InputState interface at the top of Listing 1
shows the three events that can occur based on a user’s actions. Clicking a button
actually consists of two events, a mouse down followed by a mouse up, both of
which need to occur inside the bounds of the button. The diagram for this state
machine is depicted in Figure 1.

An Extensible State Machine Pattern for Interactive Applications 569

interface InputState {
void MouseUp(Point at);
void MouseDown(Point at);
void MouseMotion(Point from, Point to);

}

class InputStateMachine {
// standard currState members
private InputState currState = new MouseUpState();
public InputState getCurrState() {

return currState;
}
protected void setCurrState(InputState newState) {
currState = newState;

}

// state class definitions
protected class MouseUpState implements InputState {

public void MouseDown(Point at) {
if (buttonShape.contains(at)) {
setCurrState(new MouseDownState());

}
}

public void MouseUp(Point at) {}
public void MouseMotion(...) {}

}

protected class MouseDownState implements InputState {
public void MouseUp(Point at) {

if (buttonShape.contains(at)) {
setCurrState(new MouseUpState());
triggerButton();

}
}

public void MouseDown(Point at) {}
public void MouseMotion(...) {}

}

// forwarding methods and other members...
}

Listing 1. The base code for the UI example

570 B. Chin and T. Millstein

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotionMouseUp

MouseMotion

Fig. 2. Adding the Drag State

The rest of the code in Listing 1 uses the standard state design pattern to
implement the desired functionality. The InputStateMachine class maintains a
field currState representing the current state of the machine. There is one state
class per state in our machine. The MouseUpState represents the situation when
the mouse is currently up, and similarly for MouseDownState. We define these
classes as inner classes to allow them access to the state machine’s members.
Forwarding methods (not shown) pass signaled events to currState, which does
the main work of the state machine.

In the rest of this section, we illustrate how to sequentially extend our example
in three stages:

1. We will add basic drag-and-drop capabilities, allowing the user to click-drag
the button in order to move it around. Releasing the mouse after a drag will
not trigger the button.

2. We will add an event to handle keyboard presses, which can change the
button’s color. The user may modify the button’s color while dragging it.

3. We will add a feature to hit a designated button during a drag, which will
bring up a dialog box with information about the dragged object. When the
dialog box is dismissed, the drag will continue.

2.1 Adding and Overriding States

As the diagram in Figure 2 shows, implementing drag-and-drop functionality
requires the creation of a new state, to represent the situation when we are
in the middle of a drag. The state machine should move to this state upon a
MouseMotion event when the mouse is down on the button, and subsequent
MouseMotion events should be used to move the dragged button.

The state design pattern makes adding new states straightforward: a subclass
DragStateMachine of InputStateMachine can simply contain a new inner class
DragState to represent the DragState. DragStateMachine can similarly con-
tain a subclass DragMouseDownState of MouseDownState, which overrides the
implementation of MouseMotion to move to the dragging state as appropriate.

Unfortunately, these changes alone will not affect the state machine logic,
since the state machine is still creating instances of MouseDownState rather than
DragMouseDownState. We can of course solve this problem by code duplication,

An Extensible State Machine Pattern for Interactive Applications 571

class InputStateMachine {
// standard currState members
private InputState currState = makeMouseUpState();
// ...

// factory methods
protected InputState makeMouseUpState() {

return new MouseUpState();
}

protected InputState makeMouseDownState() {
return new MouseDownState();

}

// state class definitions
protected class MouseUpState implements InputState {

public void MouseDown(Point at) {
if (buttonShape.contains(at)) {
setCurrState(makeMouseDownState());

}
}
public void MouseUp(Point at) {}
public void MouseMotion(Point from, Point to) {}

}

// ...
}

Listing 2. The base state machine with factory methods added

for example by creating a subclass DragMouseUpState of MouseUpState, which
reimplements the MouseDown method to instantiate DragMouseDownState. How-
ever, this approach is tedious, error prone, and non-modular. This problem leads
to the first new constraint for our design pattern:

Constraint : There must exist a consistent way of creating states that will
allow future extensions to override the implementation of a state class.

To satisfy the constraint, we introduce factory methods [9] in the base state
machine, as shown in Listing 2. The state machine logic must never directly
instantiate state classes, but instead always go through the factory methods.
For example, the MouseUpState’s MouseDown method now invokes makeMouse-
DownState to create the new state.

Given this extension to the state design pattern, implementing drag-and-drop
functionality is straightforward, as shown in Listing 3. We define a new class
DragState as well as a subclass DragMouseDownState of MouseDownState. To
incorporate DragMouseDownState into the state machine logic, we simply over-
ride the corresponding factory method for that state. We also create a new

572 B. Chin and T. Millstein

class DragStateMachine extends InputStateMachine {
// overridden factory methods
protected InputState makeMouseDownState() {

return new DragMouseDownState();
}

// new factory methods
protected InputState makeDragState() {

return new DragState();
}

// subclassed state classes
protected class DragMouseDownState extends MouseDownState {

public void MouseMotion(Point from, Point to) {
setCurrState(makeDragState());

}
}

// new state classes
protected class DragState implements InputState {

public void MouseUp(Point at) {
setCurrState(makeMouseUpState());

}

public void MouseMotion(Point from, Point to) {
buttonShape.move(from, to);

}

public void MouseDown(Point at) {}
}

}

Listing 3. The drag-and-drop extension

factory method for the dragging state, so that DragStateMachine itself satis-
fies our constraint. In this way, the new state machine can itself be seamlessly
extended by future subclasses. We will maintain this hierarchical nature of the
design pattern throughout.

To summarize, we add the following rules to the standard state design pattern,
in order to support new states:
– Each state class should have an associated factory method in the state ma-

chine class.
– State objects must always be instantiated through their factory method.

2.2 Adding Events

As the diagram in Figure 3 shows, in order to implement our second extension
we need to respond to a new kind of event, representing a keyboard press. It is

An Extensible State Machine Pattern for Interactive Applications 573

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotion
MouseUp

KeyDownMouseMotion

Fig. 3. Adding the KeyDown Event

natural to incorporate this event through an extension to the InputState event
interface:

public interface KeyState extends InputState {
public void KeyDown(Key key);

}

Now a subclass KeyStateMachine of DragStateMachine can subclass each
state class to add a KeyDown method and implement this new interface. How-
ever, all of the factory methods are declared to return an InputState, as is the
currState field. Therefore, the KeyStateMachine will have to use type-unsafe
casts from InputState to KeyState whenever it needs to make use of the new
KeyDown method. If the implementer forgets to subclass one of the state classes
appropriately, this error will only manifest as a runtime ClassCastException.

The underlying problem is that the state interface is set in stone in the base
state machine. To be able to update the state interface without typecasts, our
pattern should obey the following constraint:

Constraint : Each state machine must abstract over the events it responds
to. While it may require that certain events exist, it may not limit what
events can be added by future extensions.

Generics provide a natural way to satisfy this constraint. Rather than hard-
coding the interface for events as InputState, we use a type variable to represent
the eventual interface to be used, as shown in Listing 4. The State type variable
replaces all previous occurrences of InputState. The State type variable is
declared to extend InputState, so the implementation of the state machine can
assume that at least the three events in InputState will be handled.

Since the factory methods no longer know which concrete class will actually
meet the abstract interface State, they can no longer have a concrete implemen-
tation and are instead declared abstract (making the entire class abstract as
well). As a result, the InputStateMachine class can no longer be instantiated
directly. Rather, we must concretize the state machine, as shown in Listing 5;
this new class is identical in behavior to our original version of the UI from
Listing 1. Concretization serves two purposes. First, it fixes the set of events by
instantiating the State type variable with an interface. Second, it fills in all of

574 B. Chin and T. Millstein

abstract class InputStateMachine<State extends InputState> {
// standard currState members
private State currState = makeMouseUpState();
public State getCurrState() {

return currState;
}
protected void setCurrState(State newState) {
currState = newState;

}

// factory methods
protected abstract State makeMouseUpState();
protected abstract State makeMouseDownState();

// ...
}

Listing 4. InputStateMachine modified for adding events

the factory methods by instantiating classes that meet this interface. Because
ConcreteInputStateMachine explicitly defines the state interface, it effectively
terminates future extensions being made from it. Of course this does not prevent
further extensions derived off of InputStateMachine.

The entire logic of the state machine is still contained within the abstract state
machine class. For example, the class in Listing 4 will contain the definitions
of the MouseUpState and MouseDownState classes that we have seen earlier.
The uniform usage of factory methods and the State type variable allow the
definitions of these state classes to remain unchanged. For example, a call of the
following form is the idiomatic way to change states and requires no typecasts
within the context of the class in Listing 4:

setCurrState(makeMouseUpState())

Extending the state machine is now accomplished by subclassing from the
abstract state machine class. Listing 6 contains an updated version of our drag-
and-drop state machine. The body of this class is identical to that of Listing 3,
except that the State variable is used in place of InputState and the factories
are abstract. Keeping this class abstract allows it to be uniformly extended, as
we will do next. Naturally, the concretized drag-and-drop state machine would
instantiate the State variable as InputState and add the necessary implemen-
tations of the factory methods.

Finally, Listing 7 shows how to use our pattern to easily add new events. The
State variable is given the new bound KeyState, which indicates that the state
machine must handle the KeyDown event in addition to the others. Accordingly,
the existing state classes are subclassed in order to provide appropriate KeyDown
implementations. The concretized version of this state machine (not shown) will
instantiate State with KeyState and override all of the factory methods to

An Extensible State Machine Pattern for Interactive Applications 575

class ConcreteInputStateMachine extends
InputStateMachine<InputState> {

protected InputState makeMouseUpState() {
return new MouseUpState();

}

protected InputState makeMouseDownState() {
return new MouseDownState();

}
}

Listing 5. The concretized InputStateMachine

abstract class DragStateMachine<State extends InputState>
extends InputStateMachine<State>

{
// new factory methods
protected abstract State makeDragState();
// ...

}

Listing 6. The DragStateMachine extension modified for adding events

abstract class KeyStateMachine<State extends KeyState>
extends DragStateMachine<State>

{
public class KeyDragState extends DragState implements KeyState {

public void KeyDown(Key key) {
if (key.equals(COLOR_KEY))
changeButtonColor(key);

}
}

// default implementation
public class KeyMouseUpState

extends MouseUpState implements KeyState
{ public void KeyDown(Key key) {} }

// same for others ...
}

Listing 7. Adding a new event in a state machine extension

576 B. Chin and T. Millstein

Mouse
Up

Mouse
Down

MouseDown

MouseUp

Drag

MouseMotionMouseUp

KeyDownMouseMotion

Help

Fig. 4. Interrupting the Drag

instantiate the new state classes. Unlike with the original pattern, no type casts
are necessary, and the Java typechecker will signal an error if one of the state
classes is not properly handling the new event.

To summarize, we add the following rules to our design pattern, in order to
support new events:

– A state machine must define a type variable that is bound by the currently
known state interface.

– This type variable must be used uniformly in place of any particular state
interface.

– All factory methods are declared abstract.
– A state machine must be concretized before it can be used, by fixing the

state interface type and implementing the factory methods.

2.3 Adding “Subroutines”

With the above modifications to our pattern, we can modularly add both new
states and new events. While these abilities allow essentially arbitrary modifi-
cations to the base state machine, there is a common extensibility idiom that
deserves special support. It is often useful to “interrupt” an existing state ma-
chine at some point, insert some new state logic, and later “resume” the original
state machine where it left off. Intuitively, this is the interactive equivalent of
a subroutine call, and it also naturally represents a form of hierarchical state
refinement, in which a state of the superclass is implemented as its own state
machine in the subclass.

A case in point is our final extension, shown pictorially in Figure 4. While
dragging an object, a user can press a specified key to bring up a dialog box
about the entity being dragged. Another key press will dismiss the dialog box,
at which point the drag should be resumed. Effectively, the drag state is be-
ing hierarchically refined. We could implement this extension using the above
techniques, but manually interrupting and resuming the drag is tedious. Further,

An Extensible State Machine Pattern for Interactive Applications 577

that approach requires care to ensure that the state of the drag upon resumption
is identical to the state before the interruption. For example, in general it may
not be sufficient to simply create a brand new instance of DragState with which
to resume the drag, since that could discard important state from the original
drag. This brings us to our final constraint:

Constraint : Each state transition should be able to be interrupted and
later resumed by a subclass.

As mentioned above, the interruption is akin to a subroutine call in traditional
program logic. We might therefore attempt to satisfy our constraint by allowing
the base state machine to include a call to a dummy method interruptKeyDown
within each KeyDown method:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key)
// ...

}

The location for this call is decided in the superclass. Now, we can override
interruptKeyDown in subclasses in order to perform the interruption. Unfor-
tunately, such an interruption would be forced to complete entirely within the
current state transition, before control is returned to the event sender. There-
fore, such an approach does not allow interruptions that require further user
interaction, as is required in our example.

One way around this problem is to capture the part of the KeyDown method
after the interrupt as an explicit function that can be called at will by subclasses.
Java’s Runnable interface provides a solution:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key, new Runnable() {

public void run() {
// ... rest of the transition after the interrupt

}
});

}

public void interruptKeyDown(Key key, Runnable next) {
next.run();

}

By default, interruptKeyDown simply invokes the given Runnable immediately,
thereby executing the rest of the transition. However, a subclass can override
the method to properly perform the interruption:

578 B. Chin and T. Millstein

public void interruptKeyDown(Key key, Runnable next) {
if (key.equals(HELP_KEY)) {
setCurrState(makeHelpState(next));

} else {
super.interruptKeyDown(key, next);

}
}

In the above code, if the help key is pressed, then we move to the new help
state (not shown). That state is passed the given Runnable, so it can properly
resume the original transition when the dialog box is dismissed by the user. If
a key other than the help key is pressed, then a super call is used to perform
the original transition as usual. With this approach, a state machine designer
can easily declare points in each state transition that are interruptible, allowing
future extenders to insert arbitrary state logic without breaking the original
state machine’s invariants.

There are two problems that need to be addressed in this approach. First, the
above code still requires the subclass to explicitly set the state back to the drag
state upon a resumption of the original transition. To address this problem, we
require each event handler to always end by setting its state appropriately, even
if the state does not change. With this rule, we can be sure that the original
code will set its state appropriately upon being resumed. To satisfy our rule, the
original code for KeyDown will be modified as follows:

public void KeyDown(Key key) {
// ...
interruptKeyDown(key, new Runnable() {

public void run() {
// ... rest of the transition after the interrupt
setCurrState(this);

}
});

}

The call to setCurrState ensures that we always return to the original drag
state after the dialog box subroutine completes.

Second, the use of simple functions (i.e., Runnables) to capture the code after
the interruption has a number of limitations. Since a runnable can only capture
the code within a single method, it has to be created in the top-level event
handler method, rather than in some auxiliary method. Similarly, these interrupt
points cannot easily occur within control structures like loops or conditionals,
since the resulting runnable would be stuck in a particular scope and therefore
unable to capture the entire rest of the computation. What we need is a uniform
way to save the entire state of the computation after an arbitrary interrupt point.

We discovered that delimited continuations [7,2,8], a language feature devel-
oped in the functional programming community, does exactly this. Programmers
can declare a reset point at any point in the code, which has no semantic effect.
However, if a shift is later executed, then the entire execution stack up to the

An Extensible State Machine Pattern for Interactive Applications 579

public void KeyDown(Key key) {
reset {

// ...
shift (continuation) {
interruptKeyDown(key, continuation);

}
// ...
setCurrState(this);

}
}

public void interruptKeyDown(Key key, Continuation cont) {
cont.execute();

}

Listing 8. Example use of delimited continuations

most recent reset is popped off and saved as a continuation. A block of code
provided with the shift is subsequently executed and is passed the continuation,
which can be invoked to restore the original computation.

For example, the shift-reset version of our KeyDown method is shown in List-
ing 8. It has the same semantics as the earlier code, but it avoids the limitations
mentioned above. The shift can occur anywhere in our code, even in methods
called by KeyDown or inside of control structures. Further, the “rest” of the
computation can be nicely kept outside of the shift block, unlike with runnables.

We have created a simple Java library that implements delimited continua-
tions, which is discussed in Section 4. The library allows the code to be written
essentially as shown above, except that reset and shift are method calls into
the library. For ease of presentation, we continue to use the prettier syntax.

Listing 9 shows how to use delimited continuations to implement our final
state-machine extension. The relevant portion of the KeyStateMachine has been
modified to satisfy the new constraint. The KeyDown method properly ends by
setting the state. The getThis factory method is necessary in order to satisfy
the typing constraints introduced by abstracting on the State type variable; the
concretization of this class will implement getThis appropriately. The KeyDown
method uses a shift to support interruption by subclasses. As mentioned earlier,
the state machine forwards each event to currState. Therefore, it is natural
to put a reset in each such forwarding method, as shown at the bottom of the
figure, thereby alleviating the need for resets within the state classes.

Listing 10 shows our final state machine extension. We override interrupt-
KeyDown in the dragging state in order to move to the new help state, rather
than simply calling the continuation. The new state stores the continuation and
opens up the dialog box. When any key is pressed subsequently, the dialog box
is closed and the continuation is invoked, in order to resume the drag.

To summarize, we add the following rules to our state design pattern, in order
to support state-logic interruptions:

580 B. Chin and T. Millstein

abstract class KeyStateMachine<State extends KeyState>
extends DragStateMachine<State>

{
public abstract class KeyDragState extends DragState implements KeyState {

public abstract State getThis();

public void KeyDown(Key key) {
if (key.equals(COLOR_KEY)) {
changeButtonColor(key);

}
shift (continuation) {
interruptKeyDown(key, continuation);

}
setCurrState(this.getThis());

}

protected interruptKeyDown(Key key, Continuation cont) {
cont.execute();

}
}

public void KeyDown(Point at) {
reset {

this .getCurrState().KeyDown(at);
}

}
}

Listing 9. The Key state machine with inserted interrupt-point

– The last command on each path through an event handler must either be a
setCurrState call or an invocation of a continuation.

– Each forwarding method in a state machine class should set a reset before
forwarding an event to the current state.

– An interrupt point consists of a shift placed anywhere inside code that is
part of an event handler. The associated code block contains a call to an
interrupt method, to which it passes the created continuation as well as any
auxiliary information.

– The default behavior for an interrupt method is to immediately call the
continuation which it is passed.

3 Interrupt Points Explored

This section discusses how our novel notion of interrupt points may be used in
our pattern to gain even more flexibility, giving several examples to illustrate
their expressiveness in a variety of dimensions.

An Extensible State Machine Pattern for Interactive Applications 581

abstract class HelpStateMachine<State extends InputState>
extends KeyStateMachine<State>

{
// new factory methods
public abstract State makeHelpState(Continuation cont);

public abstract class HelpDragState extends KeyDragState {
public void interruptKeyDown(Key key, Continuation cont) {

if (key.equals(HELP_KEY)) {
setCurrState(makeHelpState(cont));

} else {
super.interruptKeyDown(key, cont);

}
}

}

// new state class
public abstract class HelpState implements KeyState {

private Continuation cont;

public HelpState(Continuation cont) {
showHelpWindow();
this .cont = cont;

}

public void KeyDown(Key key) {
closeHelpWindow();
cont.execute();

}
// other events with the default body ...

}
}

Listing 10. Our extension using the added interrupt-point

3.1 Returning Values from Interrupt Points

So far shifts have been used only as control structures, copying the stack into a
continuation to return in the future. Our library also allows a shift to return a
value. The following code illustrates a simple example:

String name = shift(Continuation<String> k) {
k.execute(‘‘Hello World!’’);

}

As usual, the shift saves the current execution state in the continuation k and
executes its body. The type of the continuation indicates that it expects a String
as an argument. Accordingly, the continuation is invoked with a string literal in

582 B. Chin and T. Millstein

the shift block. This argument becomes the value of the entire shift expression,
so the above code causes name to have the value "Hello World!".

The ability for “interrupters” to easily pass values back to the interrupted
state logic is often extremely useful. Such values can be used to change the
behavior of the original state logic or to allow that logic to declaratively gather
necessary data from its extensions. Our case study in the next section uses this
feature of shifts to good effect.

3.2 A Stack of Interrupted States

Since any state that stores a continuation from an interrupt point may itself be
interrupted, it is easy to form an arbitrarily long chain of states, each of which has
been interrupted by the next state on the chain. In essence, this is the interactive
equivalent of a run-time call stack. Executing a shift that transitions to a new state
and passes the current continuation to that state has the effect of pushing that new
state onto the call stack. Invoking a continuation has the effect of popping the top
state off the call stack. This ability makes the state machine powerful enough to
declaratively encode a pushdown system. Our case study in the next section relies
on this technique to handle parsing of arbitrarily nested XML data.

Similar functionality could be implemented by having each state keep a ref-
erence to the previous state, given to it at creation time, forming a reference
stack that does not use delimited continuations. When a machine wants to tran-
sition back to a previous state, it just calls setCurrState() with the stored
state pointer. In the pure state machine case, where the only purpose of state
transitions is to end up in the specified state, this would work fine. In real-world
cases, when state transitions can have general Turing-complete code on them,
delimited continuations allow clean-up code to be run after the interrupt point
is returned to, such as that which may be desired in a locking protocol. Further,
the clean-up code could even be used to decide which state should come next,
based on the current context.

3.3 After-the-fact Interrupt Points

In our example in the previous section, the implementer of the base state machine
anticipated the need for an interrupt point in the KeyDown event handler. However,
subclasses can easily add new interrupt points after the fact, for use both within
that subclass and within any future extensions. Since our pattern requires that the
base state machine wrap each event handler call with a reset, any shifts within the
dynamic extent of an event handler are alwayswelldefined. For example, ifKeyDown
did not contain a shift, a subclass could simply override KeyDown and add one. We
make use of this ability in our case study in the next section.

3.4 Interrupt Points and Information Hiding

In the traditional state design pattern the current state object must maintain
all of the data associated with the current execution state. If any data is needed

An Extensible State Machine Pattern for Interactive Applications 583

public void KeyDown(Key key) {
DelimitedContinuation.Reset(new ResetHandler() {

public void doReset() {
// ...
DelimitedContinuation.Shift(new ShiftHandler<Unit>() {

public void doShift(Continuation<Unit>() cont) {
interruptKeyDown(key, cont);

}
});
// ...
setCurrState(this);

}
});

}

public void interruptKeyDown(Key key, Continuation<Unit> cont) {
cont.execute(null);

}

Listing 11. Version of Listing 8 using our API

in future states, it must be explicitly passed along to a new state whenever a
state transition occurs. Thus states may have to store data that they don’t need
in order to pass it on to states that may use it later. Aside from being tedious,
this also results in a loss of modularity, since data has to be available where it
logically should never be manipulated.

Interrupt points provide a convenient solution to this problem. A continua-
tion uniformly stores all current data (indeed, all data on the stack up to the
recent reset) and encapsulates it as a single value. Therefore, a state need only
accept a continuation in order to maintain all of the data potentially needed
in the future, and the state only needs to explicitly maintain the data that it
actually manipulates. When the continuation is eventually invoked, the data in
the continuation is restored and made available to the state logic that has been
resumed.

4 Implementation

As previously mentioned, we implemented delimited continuations as a Java
library. Each continuation is implemented as a thread, which is a simple way
to save the current execution state. A continuation thread waits on itself until
it is invoked. At that point the continuation thread is notifyed so it can run,
and the calling thread in turn waits on the continuation thread. When the
continuation thread is to return, the reverse logic happens. In this way we ensure
a deterministic handoff of control between threads.

Our library has a simple API. Listing 11 shows how Listing 8 looks using the
API. Reset is a static method on the DelimitedContinuation class. It takes a

584 B. Chin and T. Millstein

ResetHandler as an argument, whose doReset method provides the implemen-
tation of the reset block. Shift is handled analogously. The ShiftHandler is
parameterized by the type of the result, as discussed in Section 3.1. The Unit
type admits only the value null, thereby acting similar to void. The doShift
method is provided the continuation thread as an argument. When the continua-
tion is eventually invoked, the Shift method returns the value the continuation
was passed, and the code proceeds as usual.

Our library approach to implementing delimited continuations has a few lim-
itations. First, a continuation cannot be invoked more than once, and doing so
results in a dynamic error. Second, resets prevent exceptions from continuing up
the stack, thereby violating normal exception semantics. Others have considered
direct support for continuations in the Java virtual machine [5], which could
resolve these limitations.

5 Experience

JDOM [12] is a Java implementation of the Document Object Model (DOM)
for XML, which represents XML data as a tree of objects. Clients can then use
this tree to easily access the XML data from within Java programs. JDOM’s
implementation parses XML files using a SAX parser, which reads an XML file
and reports events to an instance of JDOM’s SAXHandler class, such as the start
of a new element, one by one. The SAXHandler object incrementally builds the
DOM tree in response to each event from the parser. As such, SAXHandler is a
real-world example of an interactive software component.

The original SAXHandler implementation is written as a single monolithic
class, rather than using the state design pattern. We refactored the code to use
our extensible state design pattern, creating explicit state classes. To illustrate
the extensibility provided by our pattern, we implemented the functionality of
SAXHandler in two stages. First we implemented a base state machine that can
build the DOM tree for basic XML documents. Then we created a subclass of
this state machine to handle more advanced features of XML, including entities,
Document Type Definitions (DTDs), and CDATA blocks. This class has the
same functionality as the original SAXHandler class.

5.1 Base State Machine

The original SAXHandler class implements four interfaces, which contain the
various parsing events that must be handled. Our basic refactored version of
SAXHandler implements only the ContentHandler interface, which provides
events for, among other things, the beginning and end of the XML document, the
beginning and end of an XML element, and character data within an element.

This state machine (depicted in Figure 5) is fairly simple. There are three
main states: The first is the initial state. On a startDocument event, it enters
the main parsing state. When the document is done, it gets sent the endDocument
event which causes it to enter the Document Complete state. There is one more

An Extensible State Machine Pattern for Interactive Applications 585

Initial
State

Parsing
Document

Document
Complete

startDocument

endDocument

startElement

Parsing
Element

endElement

startElement

Fig. 5. The State Machine for the Simple SAX Handler

state devoted to parsing XML elements, which we will describe in more detail
shortly.

Implementing this state machine in our pattern was straightforward. The most
interesting part is the need to handle arbitrarily nested elements. Effectively, the
statemachineneeds tomaintaina stackof elements that are currently in theprocess
of being parsed. In the original code, this stack was maintained explicitly, and in-
teger fields were used to keep track of the current nesting depth during parsing.

Our use of interrupt points provides a much more natural solution. We employ
our aforementioned “subroutine” idiom to parse a single element. This pattern is
indicated in Figure 5. The interrupt point (represented by the double triangle) is
the entrance to the subroutine that begins at the small triangle at the top, enter-
ing the “Parsing Element” state. When this state receives an endElement event,
it will exit the subroutine environment and return the constructed element, al-
lowing the remainder of the “calling” code to complete (in this case, adding the
returned element to the document). The parsing element state will also enter
into the same subroutine upon receiving the startElement event, causing a re-
cursive call. This recursion is what gives rise to the implicit stack-like nature of
this idiom.

Listings 12 and 13 show the code that implements this approach. When a
startElement event occurs, we invoke the readElement method shown in List-
ing 12. This method shifts the event handler’s execution, stores it into a contin-
uation k, and transitions into a ParsingElementState object, which stores the
continuation (in field prevCont) for later use. Recall that our pattern places a
reset at the beginning of each event handler, so this shift is well defined. The
ParsingElementStatebuilds up the current element (in field currElement) as it
receives characters events. If it receives a startElement event, then it invokes
readElement to recursively interrupt execution in order to parse the nested ele-
ment. Finally, as shown in Listing 13, when the ParsingElementState receives
the endElement event it invokes the stored continuation in order to resume ex-
ecution of the interrupted state machine, passing the parsed element back. This
value becomes the return value of the shift from readElement.

586 B. Chin and T. Millstein

public Element readElement(String name) {
return shift (Continuation<Element> k) {

setCurrState(makeParsingElementState(name, k));
}

}

Listing 12. The readElement() method

public void endElement(String name) {
prevCont.execute(currElement);

}

Listing 13. The endElement() event handler for the ParsingElementState

In addition to methods representing possible events, the ContentHandler
interface contains a method getDocument. This method should return the root
of the DOM tree if parsing has completed and null otherwise. This method does
not update any local state and hence is not part of the state logic of the machine.
Therefore, it is safe to implement it as a regular method, which does not conform
to the rules of our design pattern. For instance, it does not begin with a reset
nor end by updating the state. Our design pattern naturally accommodates such
methods, which query the state of the machine but do not update it.

5.2 Extended State Machine

Our subclass of the above state machine class adds support for the events in
the DeclHandler, DTDHandler, and LexicalHandler interfaces. These interfaces
respectively add support for XML entities, DTDs, and CDATA blocks. With the
addition of support for these events, our version of SAXHandler implements all of
the functionality of the original class. While for brevity’s sake we implemented
these aspects in a single extension, we could just as easily have created one
extension for each of these aspects.

In total, we added four new states and support for 12 new events. We also
used four interruption points to insert “subroutines” in the original logic. Our
extensible state design pattern made these additions straightforward. The most
inconvenient part was the addition of the new events, which required subclass-
ing each of the existing state classes in order to add the new methods. If Java
had multiple inheritance, we could create a class DefaultState which contains
default handlers for the new events, and each new state class could then inherit
from both the appropriate old state class as well as DefaultState. Because Java
lacks multiple inheritance, each new state class instead has its own implementa-
tion of each of the new events, thereby incurring some code duplication.

An Extensible State Machine Pattern for Interactive Applications 587

// ...
if (atRoot) {
document.setRootElement(element);
atRoot = false;

} else {
factory.addContent(getCurrentElement(), element);

}
currentElement = element;

Listing 14. A snippet of startElement() from the original SAXHandler implementa-
tion

We briefly discuss each of the three new pieces of functionality in turn. XML
entities are names that can be given to a block of XML data. When the name is
later referenced, it has the effect of inserting the associated data at the current
point, similar to a #include directive in C. Accordingly, when the SAX parser
encounters a reference to an entity, it sends events that correspond to the entity’s
associated data.

The original implementation of SAXHandler allowed the client code to decide
whether to handle entities properly or to simply ignore them. This was accom-
plished via a boolean field suppress, which was consulted within each event
handler to determine whether to handle the current event or not. Our imple-
mentation uses a more declarative approach. When we receive a startEntity
event in the ParsingElementState, we check the suppress field once. If the
client has configured us to expand all entities, we simply continue as usual.
Otherwise, we transition to a new SuppressedState, which simply ignores all
events.

When the SuppressedState receives an endEntity event, we must transition
back to the state we were in before the most recent startEntity event. Effectively,
the logic for suppressing entities interrupts the ordinary flow of the state machine
and later resumes it.Therefore,an interruptpoint is thenaturalapproach for imple-
menting this extension. Accordingly, the ParsingElementState’s startEntity
method uses a shift to transition to the SuppressedState:

shift (Continuation<Unit> cont) {
setCurrState(makeSuppressedState(cont));

}
setCurrState(this.getThis());

Upon an endEntity event, the SuppressedState invokes the given continuation
in order to resume the original state logic. After invoking the continuation, the
last statement above is executed, in order to return the state machine to the
proper state before returning control to the SAX parser.

Both DTDs (inline declarations of the XML schema) and CDATA blocks
(inline escaped text) were parsed in a similar manner. A new state was defined
for each, which was able to accept the events necessary to parse their respective
structure. The parsing of a CDATA block produces a value, so we implemented

588 B. Chin and T. Millstein

a readCDATA method in the same mold of the readElement method shown in
Listing 12.

5.3 Comparison

It is instructive to compare our refactored version of SAXHandler with the orig-
inal one. The original class maintained its state through many fields, including
seven boolean variables and an explicit stack for keeping track of the incom-
plete elements. The event handlers were typically rife with if statements dis-
patching on the aforementioned boolean fields to implement state-like behavior.
For instance, Listing 14 shows a snippet from the startElement event han-
dler which used the atRoot field to decide which implementation to use. Thus
implementation for two states was put into the same method, making it hard to
understand. In contrast, our pattern allowed us to separate out code associated
with different states, with each state class maintaining its own fields. For exam-
ple, our version of Listing 14 has each branch as an event handler in a distinct
state.

Our code was longer than the original code. Some of this was due to boilerplate
code that, to a practiced eye, could be quickly understood. Some of it was due
to the extra classes and methods which our pattern requires. The base class in
our version has 388 non-comment non-whitespace lines and the extension has
600, while the original JDOM code has 424 non-comment non-whitespace lines.
Excluding boilerplate (forwarding methods, empty event handlers, and factory
declarations), our numbers are 270 for the base and 330 for the extension.

We believe that the improved readability and extensibility of the reimple-
mented code outweighs the increase in code length. The mental overhead of the
pattern could be reduced by using a static checking framework such as Java-
COP [1] to automatically ensure that the pattern’s constraints are obeyed. It
could also be possible to automatically generate much of the boilerplate code,
given a high-level description of the state machine.

6 Related Work

The expression problem [16,20] highlights the difficulty of adding both new opera-
tions and new classes to an inheritance hierarchy in a statically typesafe manner,
and many solutions have been proposed. Our work borrows from solutions pro-
posed in Java [19] and in Scala [14], both of which use the idea of concretizing a
generic abstract class with a trivial concrete subclass that instantiates the type
parameters. Our pattern additionally introduces interrupt points via delimited
continuations as a form of extensibility and modular control flow in the face of
interactive logic.

Family polymorphism [6] is an inheritance scheme that allows a group of
classes to be extended simultaneously, enabling each of the extensions to explic-
itly use the new features of the other extended classes. This allows for much
more powerful interrelationships between the classes in the group as compared

An Extensible State Machine Pattern for Interactive Applications 589

to our state class extensions. Several languages such as gbeta [10] and Scala [18]
implement a version of it. Family polymorphism could be used to make our
pattern more lightweight. For instance, some forms of family polymorphism can
obviate the need for factory methods by making constructors virtual. Even so,
our pattern remains simple and can be implemented in vanilla Java 1.5.

Delimited continuations [7] are a language feature derived from classic con-
tinuations that limit the amount of remaining execution they save and can be
called without losing the current state of execution. A great deal of work has
been done in the functional community detailing properties and implementation
issues of delimited continuations [2,8] . To our knowledge, the use of delimited
continuations to achieve a common form of extensibility for state machines has
not previously been investigated.

The PLT Scheme web server [13] uses continuations to store the state of HTTP
sessions. This allows them to maintain state while transferring information over
the otherwise stateless HTTP. This approach is similar to our implicit stack
approach. We additionally identify the synergy between delimited continuations
and inheritance in OO languages, in order to support natural forms of state
machine extensibility, and we codify this idiom in a general design pattern.

Others have recently added direct support for various forms of continuation in
the Open Virtual Machine [15] for Java [5]. By leveraging their work, we may be
able to avoid the overhead of switching thread contexts in our implementation,
thus improving our performance and making our delimited continuation library
more powerful.

We previously described ResponderJ [4], an extension to Java that allows state
logic to be implemented as ordinary control flow interspersed with coroutine-
like event-dispatch blocks called eventloops. Actors [11] implement a similar
mechanism using the closures and pattern matching in Scala. Both features
are primarily targeted at improving the state logic of a single state machine
rather than at easily creating new state machines from old ones. However, careful
planning and leverage of ordinary method overriding can be used to achieve the
forms of extensibility that our pattern supports. For example, encapsulating each
eventloop in ResponderJ in its own method allows subclasses to override this
method in order to achieve the effect of replacing an existing state. ResponderJ
is a fairly large language extension, while our new pattern is implementable in
vanilla Java.

7 Conclusion

We have defined the extensible state design pattern, which adds a small number
of requirements onto the traditional state design pattern. By requiring a state
machine to obey extra constraints, we make it possible for subclasses to easily
and flexibly extend the state machine in several dimensions. Our pattern is
implementable in Java, and we have also shown how a library based on the notion
of delimited continuations can give the pattern more power. Our experience
indicates that our pattern’s new requirements are easy to respect and that the
pattern provides commonly desired forms of extensibility in a practical manner.

590 B. Chin and T. Millstein

Acknowledgements

This material is based upon work supported by the National Science Foundation
under Grant Nos. CCF-0427202 and CCF-0545850, as well as by a generous gift
from Microsoft Research. Thanks to Robby Findler and the anonymous reviewers
for useful feedback on this work.

References

1. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing
pluggable type systems. ACM SIGPLAN Notices 41(12), 57–74 (2006)

2. Biernacki, D., Danvy, O., Shan, C.: On the static and dynamic extents of delimited
continuations. Sci. Comput. Program 60(3), 274–297 (2006)

3. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded polymor-
phism for object-oriented programming. In: Proc. of 4th Int. Conf. on Functional
Programming and Computer Architecture, FPCA 1989, London, September 11-13,
1989, pp. 273–280. ACM Press, New York (1989)

4. Chin, B., Millstein, T.D.: Responders: Language support for interactive applica-
tions. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 255–278. Springer,
Heidelberg (2006)

5. Dragos, I., Cunei, A., Vitek, J.: Continuations in the java virtual machine. In: Pro-
ceedings of the Second Workshop on Implementation, Compilcation, Optimization
of Object-Oriented Languages, Programs and Systems (ICOOOLPS 2007) (2007)

6. Ernst, E.: Family polymorphism. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 303–326. Springer, Heidelberg (2001)

7. Felleisen, M.: The theory and practice of first-class prompts. In: POPL, pp. 180–190
(1988)

8. Flatt, M., Yu, G., Findler, R.B., Felleisen, M.: Adding delimited and composable
control to a production programming environment. In: Proceedings of the ACM
SIGPLAN International Conference on Functional Programming (ICFP 2007)
(2007)

9. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Massachusetts (1995)

10. GBeta home page, http://www.daimi.au.dk/∼eernst/gbeta
11. Haller, P., Odersky, M.: Event-based programming without inversion of control.

In: Lightfoot, D.E., Szyperski, C.A. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

12. JDOM home page, http://www.jdom.org

13. Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Impelementation and Use of the PLT Scheme Web Server. In: Higher-
Order and Symbolic Computation (2007)

14. Odersky, M., Zenger, M.: Independently extensible solutions to the expression prob-
lem. In: Proc. FOOL 12 (January 2005)

15. Ovm home page, http://www.ovmj.org

16. Reynolds, J.C.: User-defined types and procedural data structures as complemen-
tary approaches to type abstraction. In: Schuman, S.A. (ed.) New Directions in
Algorithmic Languages, pp. 157–168. IRIA, Rocquencourt (1975)

An Extensible State Machine Pattern for Interactive Applications 591

17. The Simple API for XML (SAX) home page, http://sax.sourceforge.net
18. The Scala language home page, http://scala.epfl.ch
19. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP

2004. LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004)
20. Wadler, P.: The expression problem. Email to the Java Genericity mailing list

(December 1998)

Practical Object-Oriented Back-in-Time Debugging

Adrian Lienhard, Tudor Gı̂rba, and Oscar Nierstrasz

Software Composition Group, University of Bern, Switzerland
{lienhard, girba, oscar}@iam.unibe.ch

Abstract. Back-in-time debuggers are extremely useful tools for identifying the
causes of bugs. Unfortunately the “omniscient” approaches that try to remember
all previous states are impractical because they consume too much space or they
are far too slow. Several approaches rely on heuristics to limit these penalties, but
they ultimately end up throwing out too much relevant information. In this paper
we propose a practical approach that attempts to keep track of only the relevant
data. In contrast to other approaches, we keep object history information together
with the regular objects in the application memory. Although seemingly counter-
intuitive, this approach has the effect that data not reachable from current appli-
cation objects (and hence, no longer relevant) is garbage collected. We describe
the technical details of our approach, and we present benchmarks that demon-
strate that memory consumption stays within practical bounds. Furthermore, the
performance penalty is significantly less than with other approaches.

1 Introduction

When debugging object-oriented systems, the hardest task is to find the actual root
cause of the failure as this can be far from where the bug actually manifests itself [1].
In a recent study, Liblit et al. examined bug symptoms for various programs and found
that in 50% of the cases the execution stack contains essentially no information about
the bug’s cause [2].

Classical debuggers are not always up to the task, since they only provide access
to information that is still in the run-time stack. In particular, the information needed
to track down these difficult bugs includes (1) how an object reference got here, and
(2) the previous values of an object’s fields. For this reason it is helpful to have pre-
vious object states and object reference flow information at hand during debugging.
Techniques and tools like back-in-time debuggers, which allow one to inspect previous
program states and step backwards in the control flow, have gained increasing attention
recently [3,4,5,6].

The ideal support for a back-in-time debugger is provided by an omniscient imple-
mentation that remembers the complete object history, but such solutions are imprac-
tical because they generate enormous amounts of information. Storing the data to disk
instead of keeping it in memory can alleviate the problem, but it only postpones the
end, and it has the drawback of further increasing the runtime overhead. Current imple-
mentations such as ODB [3], TOD [4] or Unstuck [5] can incur a slowdown of factor
100 or more for non-trivial programs.

The common strategy for discarding data is to delete the oldest data first, which in-
evitably leads to the problem that bugs that have their cause located far enough from

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 592–615, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Practical Object-Oriented Back-in-Time Debugging 593

their effect cannot be tracked down anymore [3]. Another strategy to address the mem-
ory problem is to generate less data by only instrumenting parts of the application [4].
In this case, however, the programmer must know upfront where the potential source of
the problem is. This approach produces less data, but it still presents the problem that
the data grows over time making it necessary to discard old data at some point.

In this paper, we attempt to answer the question: How can we make back-in-time
debugging practical, while still preserving all relevant information? Our approach is to
track historical information at the level of the virtual machine, and to keep the tracked
information (i.e., the object flows) in the same memory space as the regular application
objects. A direct consequence of this approach is that information no longer reachable
from the objects of the running application will be automatically garbage collected.

We extend the object memory model of conventional object-oriented virtual ma-
chines (such as Java or Smalltalk VMs) by representing object references as real ob-
jects on the heap. In this way we seamlessly integrate historical execution data into the
object model of the virtual machine. The created object references and their mutual re-
lationships capture side effects and the flow of objects through the system. This design
provides the following benefits:

– The relevance of a datapoint is determined by the reachability of an object in the
memory graph. Which history and how much of it is retained depends on the inter-
connectivity of the objects that capture historical execution data.

– Garbage collection of historical data comes “for free” since we can employ the
usual garbage collector without any modifications to incrementally and efficiently
delete no longer reachable data.

As our evaluation shows (Section 4), how much memory is consumed with our ap-
proach largely depends on the characteristics of the application. In some cases the data
recorded does not grow indefinitely and hence in these cases recording can be turned
on all the time. However, our approach does not guarantee that the virtual machine will
never run out of memory — it only makes it less likely. In case the recorded data contin-
ues to accumulate over time, we run out of memory much later than with conventional
approaches. In the latter case, we provide means to configure the recording to capture
and remember less data, which can lead to a dramatic decrease in memory consumption.

To make back-in-time debugging truly practical, it is important not only to man-
age memory consumption, but also to keep the runtime overhead within reasonable
limits. A slowdown of 100 can make a program unusable even for debugging. Unlike
many other back-in-time debuggers, which rely on bytecode manipulation techniques
and application-level logging, our implementation is at the virtual machine level and
because of that the performance is significantly improved. From our experiments the
worst case scenario led to a slowdown of only a factor of 7 compared to the original
virtual machine.
The contributions of this paper are:

– An object model for object-oriented virtual machines with an explicit notion of
references to capture and introspect historical execution data for back-in-time de-
buggers.

– An approach to capture past object state and object flow and to incrementally dis-
card no longer relevant information by employing the garbage collector.

594 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

– Benchmarks for a modified Smalltalk virtual machine implementing our approach
and an evaluation of the execution overhead and memory characteristics for real
world applications.

Outline. In the following section we describe our approach to incorporate historical
information into a high-level language virtual machine. In Section 3 we discuss our
implementation, in Section 4 we present our evaluation and in Section 5 we discuss the
results. We present the related work in Section 6 and conclude in Section 7.

2 Approach

Most back-in-time debuggers are based on tracing events emitted at the application
level. This technique is commonly based on transforming bytecode to introduce sen-
sors that emit events. We take a radically different approach by modifying the virtual
machine to add the program’s execution history to the object model. The model used to
store the execution history is based on our previous works on analyzing dynamic data
flows in the context of program comprehension [7,8,9].

2.1 The Basis: Representing Object References as Objects

The memory layout of objects in object-oriented virtual machines typically consists
of a header for the class pointer, hash bits, GC flags, size etc. and a fixed number of
fields containing object references and primitive values. In many virtual machines, ob-
ject references are implemented as direct pointers, that is, an object reference is just
the address of that object in memory. Examples are the Sun HotSpot VM, Jikes RVM
(formerly known as the Jalapeño VM [10]), and the Squeak Smalltalk VM [11].

In the proposed object model we add a level of indirection by representing object
references by so-called alias objects. We chose the term alias to discern it from an
object reference, the concept it represents.

Figure 1.a illustrates the typical approach where an object reference is represented by
a pointer, and Figure 1.b shows how in our object memory model the object reference is
substituted by an alias object. Thus, the pointer stored in field 1 points to the alias and
the alias has a pointer to the actual object. Aliases cannot be nested, that is, the object
reference of an alias is always a direct pointer to a non-alias object. Aliases cannot only
substitute reference values but also the undefined value and primitive values. In this
case field 1 contains the primitive value (e.g., tagged pointer for small integers).
Aliases have the following key properties that distinguish them from common objects:

– Transparency. Aliases are completely invisible at the application level. This means
that the semantics of the language are not altered. For instance, method lookup, field
access, or primitive operations are performed as if the actual object were referenced
directly. To make the information of an alias accessible at the application level we
use the concept of Mirrors [12].

– Optionality. The conventional direct pointer reference model (Figure 1.a) is still
supported. This allows the recording of aliases to be switched on only when re-
quired (Section 2.2).

Practical Object-Oriented Back-in-Time Debugging 595

header
header

header

header
header

regular objects

pointer

alias

(a) (b)

Fig. 1. (a) Typical object format with references as direct pointers and (b) proposed extension
with references being optionally represented by alias objects

– History. Apart from the object pointer, an alias carries information about the ob-
ject reference it represents. Through the relationship with other aliases, two main
dimensions of object-oriented runtime behavior are captured: historical object state
(Section 2.3) and object flow (Section 2.4).

Representing aliases directly as conventional objects allocated on the heap simpli-
fies the internal object model of the virtual machine and allows us to use the standard
garbage collector without needing to adapt it. For the same reason, many virtual ma-
chines represent classes and methods as internal objects.

2.2 Capturing Object References

In order to track object flow and reconstitute program states, we create an alias object
whenever an object is:

1. allocated (referred to as allocation alias),
2. passed as parameter (parameter alias),
3. returned from a method invocation (return alias),
4. read from a field (field read alias),
5. read from an array (array read alias),
6. written into a field (field write alias), and
7. written into an array (array write alias).

The rationale is to capture all situations in which an object is made visible in a
method invocation (1-5) or wherever a side effect is produced (6,7). Furthermore, we
also capture the initialization of fields with the undefined value (referred to as init alias).
By representing exceptions as objects, an allocation alias is created when an exception
is thrown. Like this, also the propagation of exceptions is captured and can be traced.

Figure 2 illustrates the relationships among the entities Alias, MethodInvocation, and
Value. With Value we refer to any type of value of the language (namely, objects, arrays,
and primitive values, including the undefined value). A MethodInvocation represents a
frame on the execution stack and also is a real object on the heap.

596 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

MethodInvocation

contextreference values
and primitive values

AliasValue
value

origin
0..1 * 0..1

0..1

predecessor

caller 0..1

*

*eld or array
element

target parameter

1

*

1

Fig. 2. Conceptual object model with aliases capturing historical execution data

In contrast to other back-in-time debugging approaches, which typically collect and
store data centrally as a trace of events, aliases are part of the object model. Like events,
aliases capture historical execution data, but instead of ordering them in a temporal trace
they are attached to object references. For example, in the case of writing to a field the
alias objects are directly pointed to from the corresponding field of the object. For each
value there can exist many aliases, whereas an alias always points to exactly one value.

Parameter aliases are referred to from the method invocation in which they replace
the pointer to the actual parameter objects. The context of an alias is used to navigate
to the method invocation in which the alias was created. To model the call stack, each
method invocation holds onto its caller. In case of object allocation, return value, field
read and array read, the aliases are used on the operand stack of the method invocation
the same way as the objects they point to would be.

The predecessor of a field write alias is the field write alias of the value previously
stored in the field (respectively the array write alias previously stored in the slot of the
array). Only field and array write aliases have a predecessor.

The origin of an alias is the alias that was used to create the alias. For instance, the
origin of a field read alias always is a field write alias because going back one step in the
flow of an object from a field read alias always leads to the field write alias. Any alias
can be the origin of potentially many other aliases. Allocation aliases and init aliases
are the only aliases without an origin.

In the following two sections we discuss the predecessor and origin relationships
among aliases in more depth. Those two orthogonal relationships among aliases are
key to our approach as they capture object state changes and as they track the flow of
objects.

2.3 Remembering Historical Object State

An important historical dimension to capture is how the state of an object evolves. This
allows a back-in-time debugger to answer the question: What were the previous values
of a field and where in the control flow were they assigned? More precisely, we want
to capture data that allows us to later determine which value was stored in a field of an
object (or at a specific index of an array) at a particular point in time.

Practical Object-Oriented Back-in-Time Debugging 597

:Person eld-write@t2

eld-write@t3

init@t1

"Doe"

person = new Person() t1
...
person.name = "Doe" t2
...
person.name = "Smith" t3

"Smith"

null

predecessor

predecessor

value

value

value

name

name

name

Fig. 3. Capturing historical object state through predecessor aliases

Figure 3 illustrates an example of a person object with the attribute name. When the
object is allocated at the point in time t1, the field is initially undefined. Later, at t2, the
string “Doe” is written into the field and at t3 it is renamed to “Smith”.

In our model, the initial undefined value is captured by an alias of type init and all
subsequent stores into the field are captured by aliases of type field write (or array write
respectively). In the example the field first points to the alias of null, then to the alias of
“Doe” and lastly to the alias of “Smith”. The key idea is that each alias keeps a reference
to its predecessor, that is, to the alias that was stored in the field beforehand. In this way,
the alias pointed to from a field is the head of a linked list of aliases that constitute the
history of that field.

Looking into the past. To go back in time, a selected process can be put into a state
in which it “sees” the system as it happened to exist at a certain point in the past. Like
this, accessing a historical value of a field is straightforward because when accessing a
field (or array), the historical value is returned directly — just like the current value is
normally returned.

Figure 4 shows pseudocode for the implementation of field access in the virtual ma-
chine. In case the current process has an activated back-in-time view, the predecessor
list of the currently referenced alias is traversed backwards to the alias that was present
in the field at the selected point in time.

In the example of Figure 3, accessing person.name at timestamp t3 directly returns
the alias of the string “Smith” whereas at t1 an alias of the undefined value is returned.

then
return x.f

else
alias := x.f
while alias.timestamp > process.timestamp and alias.predecessor is defined

alias := alias.predecessor
return alias

end if

Fig. 4. VM implementation of field access x.f with back-in-time capability

598 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

With this model previous object state can be accessed very quickly (depending on
the number of state changes of the field, which is typically a small number). Compared
to other approaches, which need to reconstitute previous object state from a log or
database, this is significantly faster (see Section 4).

2.4 Remembering the Flow of Objects

In addition to the historical object state dimension discussed above, we want to cap-
ture how objects propagate at runtime. The goal is to answer the second key question,
which is: How was this object passed here? This means, for any object accessible in
the debugger, we want to be able to inspect all origins up until the allocation of the ob-
ject. This also allows us to find out where a particular value of a variable comes from.
Furthermore, we also want to track the flow of the undefined value and any primitive
values. Tracking the undefined value is important as null pointer exceptions can be hard
to debug.

The way we track the flow of objects is similar to that of tracking past object states
discussed above. In our model, all transfers of object references in the system are cap-
tured by the creation of aliases (when recording is turned on). Each alias in the system
originates from an existing one, except for the allocation and init aliases, which are cre-
ated when instantiating a class. Therefore, to capture how an object is passed through
the system, each alias maintains a link to the alias from which it originates.

allocation

eld-write eld-read

parameter
eld-read

return

return

class Bank {

 Account openAccount() {

 return new Account();

 }

}

class Person {

 void createAccount(Bank bank) {

this.account = bank.openAccount();

 }

}

class Person {

 void printOn(Stream stream) {

 stream.print(this.account);

 }

}

class Company {

 void pay(Money money, Person person) {

 person.payAccount().deposit(money);

 }

}

running/completed method invocationLegend alias originalias

Fig. 5. Flow of an Account instance through an execution tree

Practical Object-Oriented Back-in-Time Debugging 599

Figure 5 illustrates the flow of an account object in an execution trace (represented
as a tree of method invocations where the callee points to the caller). A point represents
an alias. An arrow from one alias to another shows the origin of the alias. Note that the
actual flow of the object reference is opposite to the direction of the origin arrows.

Each alias is created in the context of the method invocation in which the object
reference becomes visible. This means that for return values this is the calling method
rather than the returning method. The parameter aliases are created at the callee site.

By means of the origin link of an alias we can track back how an object was passed to
a method invocation in which a failure occurred. This helps one to understand how and
why a possibly incorrect object reference has been propagated — even and especially if
its flow spans the whole program execution and goes through fields and arrays.

Introspecting object flows. Aliases are completely invisible at the application level
because they forward all messages to the actual objects. Therefore, we have to pro-
vide other means to access object flow information than to send messages to an alias
instance. We employ the concept of Mirrors [12] to introspect aliases. For each object
reference that is represented by an alias instance, a mirror can be obtained through a
primitive. A mirror is an object that provides an interface to access for example the
origin and the predecessor of an alias, which in both cases returns a new mirror of the
corresponding alias. In the same way we can access the method invocation context of
an alias to get information about where in the control flow the alias was created. Our
prototype implementation of the enhanced debugger uses this mechanism to navigate
backwards in time.

2.5 The Effect of Garbage Collection

The upper part of Figure 6 illustrates the same execution trace and object flow illus-
trated by Figure 5. The currently active call stack is highlighted on the right side. The
method invocations and the aliases are nodes in the memory graph, whereas the caller
and origin arrows are the directed edges in this graph. The effect of a garbage collection
is illustrated in the lower part of Figure 6.

In this example, the following objects survive the garbage collection:

– The current call stack is preserved since the active invocation (1) is considered a
root object.

– The return alias (2) of the invocation payAccount() is not deleted since it is referred
to from the operand stack of the active invocation pay().

– The invocation of payAccount() (3) is also preserved as it is the context of a field
read alias and the field read alias is the origin of the return alias (2).

– The corresponding field read alias originates in a much earlier executed branch of
the call tree where the account instance was written to a field after it was returned
from the method invocation openAccount() (4).

The branch of the object flow (the field read and parameter aliases in the middle of
the execution tree) does not survive the garbage collection. The reason is that no other
object flow exists that would make a connection to the alias and invocation sub-graph.
Also, many method invocations do not survive as they are not subject to relevant object
flows and as they are not in the caller chain of a relevant invocation.

600 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

active
invocation

allocation

eld-write eld-read

parameter
eld-read

return

allocation

eld-write

eld-read

return

return

return

running/completed method invocationLegend alias originalias

(1)

(2)

(3)(4)

garbage collection

sn
ap

sh
o

t
2

sn
ap

sh
o

t
1

Fig. 6. Flow of an object through an execution tree and the effect of garbage collection

Figure 7 shows memory statistics from the execution of the Squeak bytecode com-
piler. In regular intervals we measured how many aliases have been allocated in total
(solid line) and how many of those aliases still exist in memory (dashed line) over time.
The effect of the garbage collection over the whole execution is a reduction of data by
70%. Both statistics in Figure 7 show the same run of the compiler, but with different
garbage collector settings. On the left side, there are fewer GC cycles. For instance be-
tween 50ms and 120ms there is no GC activity and therefore both lines increase at the
same rate. On the right side, between almost all sample steps there is a GC cycle.

3 Implementation

We have extended the Smalltalk Squeak VM [11] with the recording capability and
representation of the execution history in the object model as described in Section 2.
The majority of the Squeak VM is implemented in a subset of Squeak Smalltalk, named
Slang. The Slang source code is then translated to C to compile and link with the low-
level, platform-specific C code. The Squeak VM implementation closely follows the
specification given in the Smalltalk-80 Blue Book [13], except for the object memory
format. Like most modern virtual machines, Squeak implements references as direct
pointers rather than using an object table.

Practical Object-Oriented Back-in-Time Debugging 601

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300 350 400 450

[ms]

Number of aliases allocated
Number of aliases in memory

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300 350 400

[ms]

Number of aliases allocated
Number of aliases in memory

Fig. 7. Garbage collection discards 70% of the aliases in a run of the compiler. The right side
shows the same execution but with a flatter curve due to more GC activity.

We implemented aliases as real objects of a new class Alias that has the fields value,
context, origin and predecessor as illustrated in Figure 1 and Figure 2. In addition, Alias
has an integer field that encodes information like the timestamp and the type of the alias
(one of the 8 types described in Section 2.2).

Representing aliases as ordinary objects in memory has the advantage of simplifying
the implementation. Most importantly, no changes to the object memory layout and
to the garbage collector are necessary. The two main changes to the virtual machine
are to allocate and initialize aliases, and to forward message sends to the actual target
object in case the object is aliased. Aliases are created in the bytecode routines (e.g.,
read and write aliases), on method invocation (parameter and return aliases) or when
instantiating a class. There exist a few exceptional classes for which no aliases are
created to simplify the implementation where aliasing is not important. Those classes
are Process, Semaphore, MethodContext, BlockContext, and CompiledMethod.

Since method invocations are already represented as objects in Squeak (instances of
the class MethodContext), to implement the model as illustrated in Figure 2, no further
changes were required.

To optimize performance and space we implemented Alias as a compact class. That
is, the object header of its instances consists of only a single 32-bit word and contains
the index of its class in the compact classes table. This spares one word per alias in-
stance, but more importantly, it allows the virtual machine to check whether an object
is an alias or a real object by looking at the object header alone. The efficiency of this
check is especially important because not every object reference is represented as an
alias and hence this check has to be performed very frequently.

To generate the different kind of aliases when tracing is enabled, we extended various
bytecode routines (e.g., the store and fetch bytecodes), the method invocation behavior,
and the class instantiation primitives. Small modifications had to be applied to many
other primitives and bytecode routines that operate on the actual object rather than on
the alias. In those cases the receiver and objects popped from the operand stack need to
be unwrapped, for instance in arithmetic operations or the jump bytecode routines.

Overall, about 200 methods of the Slang implementation were modified or created.
In comparison, the core of the virtual machine is implemented with about 750 methods

602 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

(not counting platform specific code directly written in C and plugin code). Half of our
changes were necessary due to the need of unwrapping aliases. Other parts of the virtual
machine, for instance the memory format, method lookup, and the garbage collector, are
not modified.

At the application level only very few extensions in system classes are required to
support recording, to allow the user to control recording, and to introspect the execu-
tion history. First, the class Alias has to be loaded. It implements no methods and cannot
be instantiated by the user. Second, the class Process is extended to allow the user to
control recording at runtime. We added a field to Process which specifies the record-
ing mode as well as the timestamp of its back-in-time point of view. At runtime, the
behavior of the virtual machine then depends on these settings of the active process.

In addition, we implemented the class AliasMirror, which can be loaded to introspect
the execution history. Mirrors are used by the graphical debugger, which we modified
to be capable of moving backwards in time and to navigate backwards in the flow of
objects. The debugger accesses information about the flow or history of an object by
requesting a mirror for the reference through which the object is made visible in the
selected method invocation. There is no need to traverse the heap or perform a lookup
in a trace to get the flow or history of an object, since this information is available
through direct object references. A mirror on an object reference is created by the virtual
machine through a primitive call. Using a mirror on an alias, the fields of the alias can be
accessed. This behavior is implemented with a set of primitives in the virtual machine
because any direct access to the alias would be performed on the actual object rather
than on the alias instance.

4 Evaluation

In this section we evaluate our implementation from the point of view of the execution
overhead (Section 4.1) and of the memory usage (Section 4.2). All experiments were
performed on a MacBook Pro, 2.4GHz Intel Core 2 Duo, 4GB RAM, with Mac OS X
10.5.2.

4.1 Execution Overhead

Setup. To evaluate the execution overhead, we compare the performance of the modi-
fied Squeak virtual machine to the original virtual machine by means of several standard
benchmarks. As a reference, we first executed the benchmarks in an original Squeak vir-
tual machine (version 3.9-10), which we compiled using gcc 4.0.1. Then, we executed
the same benchmarks using our modified virtual machine, which had been compiled
under identical conditions. First, we took the benchmarks with the recording of histor-
ical data being turned off, and second with recording turned on. For each of the three
cases the five benchmarks were executed 30 times, and before each execution we forced
a full heap garbage collect.

Overview. The results of this comparison are shown in Table 1. The first three columns
show the results of the benchmarks executed on our modified virtual machine without
historical data recording, that is, no aliases are created. The remaining columns to the

Practical Object-Oriented Back-in-Time Debugging 603

right show the results obtained from running the benchmarks with recording turned on.
These overheads include the time that is needed to allocate and initialize alias instances,
the additional time to forward message sends from aliases to normal objects and the
additional time spent in the garbage collector.

The most important numbers are shown in the two Δ columns, which indicate the
execution overhead of the benchmarks compared to the reference run of the unmodi-
fied standard virtual machine. The column time is the runtime of the benchmark and
%GC indicates how much of this time is consumed by the garbage collector. The last
two columns of the table show how many alias objects respectively method invocation
objects are created (k indicates that both figures are given in 1000 objects). The figures
in Table 1 are computed using the arithmetic mean of the 30 runs of each benchmark.

Table 1. In comparison with the original VM, the execution overhead of the modified VM aver-
aged 15% when recording is disabled and the average slowdown when recording is turned on is
3.84 (see column Δ)

Recording OFF Recording ON
Benchmark Δ time[s] %GC Δ time[s] %GC aliases methods
Tiny benchmark (bytecodes) 1.02 1.03 0.0 2.26 2.29 16.1 13773 k 8 k
Tiny benchmark (sends) 1.20 1.39 0.0 2.06 2.39 7.1 7881 k 11406 k
STones80 (low-level) 1.12 0.51 5.6 1.53 0.70 8.4 21600 k 4960 k
STones80 (medium-level) 1.27 0.38 0.4 6.43 1.91 46.0 59478 k 17077 k
Squeak macro benchmark 1.16 0.38 2.0 6.91 2.23 60.7 5532 k 669 k
Average 1.15 0.74 1.6 3.84 1.91 27.6 21653 k 6824 k

Benchmarks. We used five different benchmarks1. The first two rows show the results
of two Tiny benchmarks, which measure how many bytecodes and message sends can
be executed per second. The bytecode benchmark is based on a bytecode-heavy im-
plementation of the “Sieve of Eratosthenes” whereas the message send benchmark is
based on a send-heavy recursive calculation of Fibonacci numbers. The second and
third rows show the results of the STones80 benchmarks, which are available for many
different Smalltalk dialects. Whereas the low-level version mainly involves arithmetic
operations, array operations, and object allocation, the medium-level version also per-
forms recursive calls, collection and stream operations. The last row of Table 1 shows
the results of the Squeak macro benchmark, which measures decompiling and then re-
compiling methods.

Discussion. The results of the benchmarks taken with disabled recording averaged 15%.
These numbers are a good indication of the performance penalty caused by our virtual
machine modifications. When recording is turned off, no aliases are allocated and hence
no message sends have to be forwarded and no additional time is spent in the garbage
collector. Interestingly, the overhead of the Tiny bytecodes benchmark is very low with
an overhead of only 2%, while the overheads of the other benchmarks average between

1 The Tiny benchmarks can be found in the standard Squeak distribution. The STones80 and the
Squeak macro benchmarks can be found in the Benchmarks package on http://map.squeak.org/

604 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

12% and 27%. To find out whether this difference is significant or whether our modifi-
cations have no measurable influence on the performance of the bytecode benchmark,
we performed the following statistical analysis.

We formulate the null hypothesis H0 that the average runtime of the Tiny bytecode
benchmark is not slower when executed on our modified VM (M) compared to the
original VM (O), formally: μO ≥ μM . The alternative hypothesis H1 postulates that
the average runtime of the benchmark is slower when being executed on our modified
VM compared to the original VM, formally: μO < μM .

To test the hypotheses we apply the independent one-sided two-sample t-test [14]
with an α value of 1% and 58 degrees of freedom. The variance requirement is fulfilled
and both data sets are normally distributed (verified with the Kolmogorov-Smirnov
test). We calculated a t value of -16, which means that we can clearly reject the null
hypothesis H0 and accept the alternative hypothesis H1 (the t distribution tells us that
the probability that t ≤ −2.4 is 1%). Therefore, we can conclude that the 2% slowdown
of this benchmark is due to our modifications of the VM. Using the same method, we
can draw the analogous conclusion for all other benchmarks. This result is not surpris-
ing as those runtimes are clearly distinct from the reference runtimes.

In the case of recording switched on, particularly noticeable are the big differences
between the overheads of the first three low-level benchmarks compared to the other
higher-level benchmarks. The overheads of the medium-level STones80 benchmark
(factor 6.43) and the Squeak macro benchmark (factor 6.91) are more than three times
as big as the overheads of the low-level benchmarks. One reason for this is that those
benchmarks spend a significant percentage of their runtime in the garbage collector
(46.0% and 60.7%). The high pressure on the garbage collector cannot be explained
entirely by the higher rate by which alias and method invocation objects are created
(31 million aliases/s for medium-level STones80 and 2.5 million for the macro bench-
mark). For instance, the low-level STones80 benchmark produces 30.7 million aliases/s
but incurs a relatively low overhead. Rather, it is likely that the high pressure is due
to the different memory usage characteristics, e.g., how fast aliases can be garbage
collected.

Summary. These benchmarks suggest that a significant overhead incurs because of the
additional pressure on the garbage collector, which depends on the characteristics of
memory usage. (Memory usage characteristics are further discussed in Section 4.2.) In
turn, instantiating and initializing aliases seems to contribute not as much as the garbage
collector to the overhead.

Without much optimization effort the overhead of our implementation when record-
ing is switched off is just 15%. This suggests that with more aggressive performance
optimizations a virtual machine enhancement for capturing execution history could po-
tentially be incorporated into a standard distribution. This would allow users to switch
recording on and off as required without needing to recompile code and restart the ap-
plication with a different virtual machine.

4.2 Memory Usage

To further evaluate the practicality of our approach, we also investigated the charac-
teristics of larger applications with respect to the amount of memory consumed. Of

Practical Object-Oriented Back-in-Time Debugging 605

particular interest is whether the retained historical data increases steadily over time, or
whether the amount of data is bounded by an upper value.

We expected this characteristic to be dependent on the type of application. For ex-
ample, in applications with persistent objects that undergo many state changes, this is
obviously not possible as all previous object states are retained until the objects them-
selves are garbage collected. In contrast, in applications where objects are used only
temporarily it is possible that long running programs can be recorded without running
out of memory.
To study different types of memory usages we chose the following three programs:

– A program that allocates a large number of temporary objects that get garbage col-
lected after some time. We selected the Squeak bytecode compiler which we ran on
1000 classes. We expected that the history of objects generated to represent tokens,
AST nodes and intermediate representation objects can be garbage collected after
the bytecode of a class has been successfully emitted.

– A program with a stable number of objects that undergo a large number of state
changes. We selected a gas tank simulator shipped as a Squeak demo. Each mole-
cule in the tank is represented by an object and on each GUI update the position of
the molecules, their velocities and directions are recalculated and changed. Since
all previous positions of the molecules are remembered, we expected a lower effect
of the garbage collector in comparison to the bytecode compiler.

– A program with an existing object graph that is heavily accessed and modified.
We chose a commercial web content management system (CMS). The history of
modifications of the object model and the behavior leading to it cannot be discarded
after some time because the object model of the CMS is completely kept in memory.

Bytecode Compiler. Figure 8 shows virtual machine statistics taken from sampling the
execution of the Squeak bytecode compiler. We compiled 1000 classes from the Squeak
Smalltalk system which took 652 seconds when recording was turned on (compared to
168s when recording was disabled). In total the execution produced more than 2 billion
aliases (solid line in Figure 8) and 443 million method invocations (not shown). On av-
erage, 3 million aliases are created per second. The actual number of aliases in memory
was relatively low at an average of 2.9 million (notice the different scales of the left
and right Y-axes). The maximum amount of memory allocated by the virtual machine
was 317MB.

The temporal development of the number of regular objects (excluding alias objects)
is similar to one of the number of aliases. The reoccurring pattern of growth and decline
is caused by incremental and full garbage collect cycles.

The analysis of this application showed the expected behavior. The historical data
kept in memory does not grow without limit because the compiling history of a class is
discarded after the bytecode has been generated and emitted.

Gas tank simulation. Figure 9 shows the analysis of the following usage scenario of
the gas tank simulation. First we started one instance of the simulator and paused it after

606 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000
 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

#classes

Number of aliases allocated (left Y-axis)
Number of aliases in memory (right Y-axis)
Number of objects in memory (right Y-axis)

Fig. 8. Compiling 1000 classes (X-axis) produces more than 2 billion aliases, however, the num-
ber of aliases in memory stays below 6 million. Please note that because of the large differences
between the number of allocated aliases (solid line) and the aliases and objects in memory (dashed
and dotted lines), we use two scales: one for the solid line to the left and one for the dashed and
dotted lines to the right

the sample step #5. Then we started a second simulator with twice the number of mole-
cules. The higher rate of aliases allocated from this time on is reflected in Figure 9. At
step #10 we quit the second simulator and resumed the first one.

Quitting the second simulator has a big effect on the number of aliases retained in
memory (see decline between steps #10 and #11). Since the objects of the second sim-
ulator are not accessible anymore, the remaining execution history is garbage collected.
The same happens after quitting the simulator at the end of the analysis, where the
number of aliases in memory drops to zero.

A striking difference to the case of the bytecode compiler is that the number of aliases
in memory grows with respect to the number of aliases allocated over time. As Figure 9
shows, the ratio is constantly 22% in the first half of the analysis up until the event
where the second simulator instance was quit. This means, that for this application 78%
of the aliases are garbage collected but the rest adds up in memory and eventually the
virtual machine will run out of memory for long runs.

The execution history retained by our approach allows one to revert the state of
objects that are currently accessible (or that are accessible through a past field reference
of an accessible object). In case of the simulator this means that we can move back in
time as long as the simulator user interface has not been closed. For instance we can
set the point of view of its GUI process to a past point in time. This has the effect that
the molecules are displayed where they were positioned at that time, and that also all

Practical Object-Oriented Back-in-Time Debugging 607

 0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

 0 2 4 6 8 10 12 14 16 18
 0

 10

 20

 30

 40

 50

%

#samples

Number of aliases allocated
Number of aliases in memory
Number of objects in memory

Ratio between aliases in
 memory and allocated

Fig. 9. Analysis of a gas tank simulator shows that 22% of the aliases allocated are retained in
memory (19 samples with an interval of 3s each)

settings of the simulator are reverted to their previous states. To find out how a position
was calculated, we can follow back the flow of the corresponding point object to where
it was allocated.

Content Management System. Figure 10 illustrates an analysis of a user session in
Cmsbox2, a commercial web content management system. The session consists of 26
user actions such as login, editing content, drag and drop, copy and paste elements,
publish page etc.

We chose Cmsbox as a case study, because it stores all objects in memory rather
than in a database, which makes it a worst case scenario for our approach. Indeed, as
the figure shows, the aliases do increase steadily over time, the main reason being that
more objects are added and retained in the model and in memory.

This experiment shows the limits of our approach. However, as described in Sec-
tion 5.1 we can limit the effect of this phenomenon through selective recording of
aliases.

5 Discussion

Memory consumption and performance can be further tuned by adjusting the level of
detail of information gathered. We now look at several ways this can be done, and we
discuss difficulties, limitations and potential optimizations of our implementation.

2 http://www.cmsbox.com/

608 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

 0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

 5 10 15 20 25

#requests

Number of aliases allocated
Number of aliases in memory
Number of objects in memory

Fig. 10. Analysis of a user session in a Content Management System. After 26 requests, 24% of
the allocated aliases are still in memory.

5.1 Capturing and Remembering Less Data

Depending on the usage of the back-in-time debugger, for instance in a testing or pro-
duction environment, it can be necessary to further decrease memory consumption
and lower the execution overhead. A common solution to reduce the amount of data
recorded is to not instrument all code, for instance by excluding libraries and framework
code. The effect is that in the code that is out of scope, no side effects are captured and
the links of objects being passed through this code are lost.

We experimented with an alternative approach that is not based on structural scoping
but on tuning how fast recorded data is discarded. In particular, in our implementation
the user can change the behavior of the virtual machine by (a) disabling tracking of
predecessor aliases, (b) disabling tacking of origin aliases, and (c) selecting which types
of aliases are created. By default, all predecessor and origin aliases and all types of
aliases are recorded.

For example by not tracking predecessors, we can reduce the consumed memory but
still benefit from being able to inspect object flows. By means of such configurations
we can provide the same functionality as the following two debugger extensions that
have been proposed recently. They are specialized to a particular debugging task and
hence only need to track a fraction of the whole execution history.

Reverse watchpoint, an approach proposed by Maruyama et al., analyses the exe-
cution and moves the debugger to the last write access of a selected variable by re-
executing the program from the beginning [6]. This technique automates the task of
finding where a variable was erroneously written and then moves the debugger to that
point. With our approach, finding where a variable was written means to move one step

Practical Object-Oriented Back-in-Time Debugging 609

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 5 10 15 20 25

#requests

Number of aliases in memory (complete recording)
Number of field/array write aliases in memory

 (without predecessors and origins)

Fig. 11. Comparison of the number of aliases retained in memory with the default configura-
tion compared to the configuration where only the last write alias of each field and array slot is
remembered (same run of the CMS as in Figure 10)

back in the object flow from a field read alias to its origin, which is the field write alias.
If we want to gather exactly this information, we can disable predecessors, and restrict
the recording to create only field write and array write aliases. The effect is that for
each field the most recent write alias is available with the execution stack in which it
was created. When writing to a field, the previous write alias of the field or array can be
discarded immediately because it is not referenced as a predecessor or origin alias.

Our benchmarks show that with this minimal configuration, we achieve a very low
execution overhead that is only insignificantly higher than the base slowdown of 15%,
which the virtual machine incurs when recording is turned off completely. In com-
parison, Maruyama report a slowdown of their technique of about 400% [6]. Figure 11
shows that with this reduced configuration only a fraction of the aliases are remembered,
compared to the aliases remembered using the standard configuration as illustrated in
Figure 10.

Origin tracking of null values, proposed by Bond et al., is a very efficient tech-
nique to track the method in which an undefined values originates to support debugging
the well-known problem of null pointer exceptions [15]. We can do the same by only
tracking aliases of type undefined, which again incurs a similar overhead to the config-
uration discussed above. In comparison, the approach of Bond et al. adds an overhead
of only 4%. The low overhead is made possible by only tracking undefined values,
which allows for “value piggybacking”, a technique to store origin information directly
in pointers (in this case in null pointers).

610 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

5.2 Remembering Control Flow Dependencies

With the default configuration our approach retains information about the flow of ob-
jects and previous states of objects. In contrast, conventional back-in-time debuggers
typically record and store the complete execution history (until they run out of mem-
ory). While our approach records the same data, it discards most of it within a very
short time and only remembers what is relevant for the object flow and historical states
of objects that are accessible at the current point of execution. To provide enough con-
text, with each alias, the method invocation where it is used is retained, including the
execution stack with all target objects and objects passed as parameters.

Still, depending on the kind of bug, it is possible that relevant information is missing.
In particular, no links between aliases exist to represent the fact that the value of a
variable influences the value of another variable. For example, in the statement “if x.f
then y.f = 1” there is no dependency link between the field read alias x.f and the field
write alias y.f. In case the value of y.f turns out to be incorrect because of the unexpected
execution of a branch, it is possible that x.f has already been discarded. However, this
does not happen if x is the target object of the method or one of its parameters. In
this case it is referenced from the method invocation which in turn is referenced as the
context of the field write alias stored in y.f. (How exactly aliases and method invocations
refer to each other is illustrated in Figure 2.)

We decided not to explicitly capture such control flow dependencies because we
believe that the most difficult bugs in object-oriented programs are caused by subtle in-
consistencies in object graphs and by the propagation of unexpected object references.
However, it would be possible to extend our approach to also include dependency re-
lationships among aliases. Each alias would need to maintain a list of other aliases it
depends on, similar to the predecessor and origin relationships. The dependence infor-
mation could be computed by an intra-procedural static analysis. An inter-procedural
analysis would not be necessary since this dependency is indirectly captured by the link
of an alias to the target of the invocation in which it is created (alias → context →
target).

5.3 Limitations and Potential Optimizations of the Implementation

Not freed memory. Using our back-in-time debugger we noticed a couple of times
that parts of the history were unexpectedly not garbage collected. The reason turned
out to be that the program execution in those cases produced subtle side effects on
global state. The effect is that the part of the execution history that produced the side
effect is not garbage collected as long as the global state that was modified exists. We
observed three cases of this problem: singletons, caches and writing to a log console
(strings passed from the application are stored in the console stream and hence retain
links to the execution history where they originate). While in some cases this can be
the desired behavior (in case of the cache or singleton), it may be undesired in other
cases (the console). To remedy the undesired cases we can simply disable recording of
the appropriate methods or classes. The real difficulty, however, is to first find the cause
of such a problem. What is missing are high-level views to inspect and navigate the
recorded data.

Practical Object-Oriented Back-in-Time Debugging 611

Capturing non-word size data. A limitation of our implementation is that the history
of values stored as non-word data are not captured. For instance, in a byte array where
four bytes are stored per word, we cannot use the approach of exchanging a value with
an alias indirection because the alias pointer requires 4 bytes. Typically this is not prob-
lematic since Squeak uses non-word fields in most cases to represent internal data of
objects only, such as float objects, large integer objects, or strings.

Potential optimizations of our implementation. As our benchmarks show, the slow-
down is mainly caused by the additional garbage collector activity. An optimization
of the garbage collector to better cope with the special characteristics of our virtual
machine would improve the performance but is not straightforward to realize.

A different optimization that would also improve the performance of the virtual ma-
chine when tracing is turned off is to use different sets of bytecode routines. The current
implementation uses conditionals in bytecode routines and primitives to execute code
depending on the tracing state of the current thread. Implementing two sets of byte-
code routines would allow the virtual machine to switch jump tables when recording is
toggled.

The memory consumption of our implementation could be slightly optimized by
distinguishing between field/array write aliases and the other types of aliases. Field
write and array write aliases require the predecessor field to hold onto historical state,
whereas the other aliases do not need this field. Using two different classes of aliases
would be simple to implement and would save one word per non-historical alias
instance.

6 Related Work

Logging-based approaches. The most common approach to implementing back-in-
time debuggers has been to create a trace log of the program execution. ZStep95 is a
reversible debugger for Lisp that provides animated views but does not address perfor-
mance and scalability issues [16]. Lewis proposed ODB [3], a back-in-time debugger
for Java, and Hofer proposed Unstuck [5], a similar proof of concept implementation
for Squeak Smalltalk. Both approaches have in common that they keep the log history
in memory and hence can only record and store the complete history for a short period
of time. ODB allows one to set a fixed limit on the number of events and it then discards
older events when the limit is reached.

A more scalable approach has recently been proposed by Pothier et al. [4]. Their
back-in-time debugger, TOD, addresses the space problem by storing execution events
in a distributed database. While this approach has the benefit that no data is lost, its
drawback is that it requires extensive hardware power, which is not available for many
developers today. To cope with the data generated by a CPU-intensive program, 10
database nodes in a server cluster are required. Also, the approach has a performance
overhead of a factor 113 in the worst case, which is approximately the same as the one
of ODB for the same benchmark [4].

In comparison, the performance of our approach is about one order of magnitude
better. On the one hand, this is because our approach is implemented at the virtual
machine level, whereas all previously mentioned approaches are based on bytecode

612 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

instrumentation. On the other hand, as our approach stores historical data directly in
the application memory, it does not require any additional logging facility to gather
and store data. As a side effect, our representation of historical information is also
very space efficient. For example, there is no need to assign identifiers to objects or to
serialize objects since they exist in memory and can be referred to directly by pointers.

Outside of research, back-in-time debuggers have unfortunately not been widely
adopted yet. An example of a commercial back-in-time debugger is Omnicore’s Code-
Guide3. It is also based on bytecode instrumentation and its execution history, which
is kept in memory, is limited to the few last thousand events. An interesting aspect of
CodeGuide is that only methods containing breakpoints and methods close to them in
the control flow are instrumented to keep the runtime overhead low.

Related to logging-based back-in-time debugging is query-based debugging. In those
approaches the user formulates a query in a higher-level language that is then applied
to the logged data [17,18,19,20]. Queries can test complex object interrelationships
and sequences of related events. Approaches exist that execute the query at runtime,
which can improve performance because no history has to be stored [21]. Our approach,
like other back-in-time debugging approaches, does not support querying for complex
relationships in the history, but in return it incurs a much smaller execution overhead.

Replay-based approaches. A different approach for implementing back-in-time de-
buggers is to replay the debugged program until a desired point in the past. To optimize
the time required to reach a particular point in the past, many approaches take periodic
state snapshots, for instance Bdb [22] and Igor [23]. The main advantage of replay-
based approaches over logging-based approaches is their low performance overhead
(roughly 2 times for Bdb and 4 times for Igor). The disadvantage of those kinds of ap-
proaches is that moving backwards in time can be very slow because the program has to
be partly re-executed. This issue has been addressed in a recent publication by Xu et al.
[24]. Our approach can access past object state almost instantly because it only needs
to look up the appropriate alias in the predecessors chain (as described in Section 2.3).
An open issue of replay-based approaches is that of deterministic replay, which cannot
be guaranteed by all approaches if the program depends on external resources or if it is
multithreaded.

The approach of taking (incremental) memory snapshots and replaying has also
been used in the Leonardo virtual machine [25], a virtual machine based approach for
assembly-like languages that features reversing program state. Similar to our approach,
programs slow down by a factor of 6 in the worst case. However, the Leonardo virtual
machine does not support inspecting object flows and it does not provide a strategy to
discard data.

7 Conclusions and Future Work

In this paper we tackle the problem of how to make back-in-time debugging practical
by (1) keeping memory consumption within reasonable bounds by only keeping track
of still-relevant past data, and (2) reducing the run-time overhead by implementing

3 http://www.omnicore.com/

Practical Object-Oriented Back-in-Time Debugging 613

recording at the virtual machine level. Our approach does not store all data, but instead it
focuses on remembering the history of the objects that are still referenced in the current
program state. Our solution makes use of the garbage collector to release the objects
that are not referenced anymore in the program and that are not relevant anymore in the
program’s history.

Benchmarks have shown significant improvements over existing approaches. First,
the memory consumption is confined to an upper bound limit in the best case, or grows
slowly in the worst case. However, for the worst case scenario, we can configure the
recording to capture and remember less data, which can lead to a dramatic decrease in
memory consumption (e.g., 55 times fewer aliases when just remembering the last field
write alias). Second, performance is in the worst case 7 times slower than a regular exe-
cution. Furthermore, the modified virtual machine with tracing switched off introduces
only modest overhead (e.g., in our benchmarks, it introduces an average of 15%) as
compared with a regular one.

The results we obtained are very promising and we envision several paths to improve
them. First, we want to provide more control for adjusting the level of detail depending
on the static structure. For instance, we can gather more data in code that is young and
hence is more likely to have defects. Second, we want to experiment with instrumen-
tation mechanisms that can be adapted at runtime. For example, we can increase the
recording detail when an error is detected for the followup runs, or we can decrease
recording detail when memory gets low. Lastly, we want to further investigate the ef-
fectiveness of our approach, for instance to identify potential limitations of its usability
due to missing control flow dependencies.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008), and the financial support of ESUG. We
would like to thank Stéphane Ducasse and David Röthlisberger for their help in review-
ing drafts of this paper.

References

1. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann, San
Francisco (2005)

2. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug isolation.
In: Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI 2005), pp. 15–26. ACM, New York (2005)

3. Lewis, B.: Debugging backwards in time. In: Proceedings of the Fifth International Work-
shop on Automated Debugging (AADEBUG 2003) (October 2003)

4. Pothier, G., Tanter, E., Piquer, J.: Scalable omniscient debugging. In: Proceedings of the 22nd
Annual SCM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 2007). ACM, New York (to appear, 2007)

5. Hofer, C., Denker, M., Ducasse, S.: Design and implementation of a backward-in-time de-
bugger. In: Proceedings of NODE 2006, September 2006. Lecture Notes in Informatics,
vol. P-88, pp. 17–32. Gesellschaft für Informatik (GI) (2006)

614 A. Lienhard, T. Gı̂rba, and O. Nierstrasz

6. Maruyama, K., Terada, M.: Debugging with reverse watchpoint. In: Proceedings of the Third
International Conference on Quality Software (QSIC 2003), p. 116. IEEE Computer Society,
Washington (2003)

7. Lienhard, A., Greevy, O., Nierstrasz, O.: Tracking objects to detect feature dependencies. In:
Proceedings International Conference on Program Comprehension (ICPC 2007), June 2007,
pp. 59–68. IEEE Computer Society, Washington (2007)

8. Lienhard, A., Ducasse, S., Gı̂rba, T.: Object flow analysis — taking an object-centric view
on dynamic analysis. In: Proceedings of the 2007 International Conference on Dynamic Lan-
guages (ICDL 2007), pp. 121–140. ACM Digital Library, New York (2007)

9. Lienhard, A., Gı̂rba, T., Greevy, O., Nierstrasz, O.: Test blueprints – exposing side effects
in execution traces to support writing unit tests. In: 12th European Conference on Software
Maintenance and Reengineering (CSMR 2008), pp. 83–92. IEEE Computer Society Press,
Los Alamitos (2008)

10. Alpern, B., Attanasio, C.R., Cocchi, A., Lieber, D., Smith, S., Ngo, T., Barton, J.J., Hum-
mel, S.F., Sheperd, J.C., Mergen, M.: Implementing jalapeño in java. In: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications (OOPSLA 1999), pp. 314–324. ACM, New York (1999)

11. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The story of
Squeak, a practical Smalltalk written in itself. In: Proceedings of the 12th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications (OOP-
SLA 1997), November 1997, pp. 318–326. ACM Press, New York (1997)

12. Bracha, G., Ungar, D.: Mirrors: design principles for meta-level facilities of object-oriented
programming languages. In: Proceedings of OOPSLA 2004, ACM SIGPLAN Notices, pp.
331–344. ACM Press, New York (2004)

13. Goldberg, A., Robson, D.: Smalltalk 80: the Language and its Implementation. Addison-
Wesley, Reading (1983)

14. Kanji, G.K.: 100 Statistical Tests. SAGE Publications, Thousand Oaks (1999)
15. Bond, M.D., Nethercote, N., Kent, S.W., Guyer, S.Z., McKinley, K.S.: Tracking bad ap-

ples: reporting the origin of null and undefined value errors. In: Proceedings of the 22nd
annual ACM SIGPLAN conference on Object oriented programming systems and applica-
tions (OOPSLA 2007), pp. 405–422. ACM, New York (2007)

16. Lieberman, H., Fry, C.: ZStep 95: A reversible, animated source code stepper. In: Stasko, J.,
Domingue, J., Brown, M.H., Price, B.A. (eds.) Software Visualization — Programming as a
Multimedia Experience, pp. 277–292. MIT Press, Cambridge (1998)

17. Martin, M., Livshits, B., Lam, M.S.: Finding application errors and security flaws using
pql: a program query language. In: Proceedings of Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2005), pp. 363–385. ACM Press, New York (2005)

18. Lencevicius, R., Hölzle, U., Singh, A.K.: Query-based debugging of object-oriented pro-
grams. In: Proceedings of the 12th ACM SIGPLAN conference on Object-oriented program-
ming (OOPSLA 1997), pp. 304–317. ACM, New York (1997)

19. Potanin, A., Noble, J., Biddle, R.: Snapshot query-based debugging. In: Proceedings of the
2004 Australian Software Engineering Conference (ASWEC 2004), p. 251. IEEE Computer
Society, Washington (2004)

20. Ducasse, S., Gı̂rba, T., Wuyts, R.: Object-oriented legacy system trace-based logic testing.
In: Proceedings of 10th European Conference on Software Maintenance and Reengineering
(CSMR 2006), pp. 35–44. IEEE Computer Society Press, Los Alamitos (2006)

21. Lencevicius, R., Hölzle, U., Singh, A.K.: Dynamic query-based debugging. In: Guerraoui,
R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 135–160. Springer, Heidelberg (1999)

Practical Object-Oriented Back-in-Time Debugging 615

22. Feldman, S.I., Brown, C.B.: Igor: a system for program debugging via reversible execution.
In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS workshop on Parallel and distrib-
uted debugging (PADD 1988), pp. 112–123. ACM, New York (1988)

23. Boothe, B.: Efficient algorithms for bidirectional debugging. In: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and implementation (PLDI
2000), pp. 299–310. ACM, New York (2000)

24. Xu, G., Rountev, A., Tang, Y., Qin, F.: Efficient checkpointing of java software using con-
textsensitive capture and replay. In: Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC-FSE 2007), pp. 85–94. ACM, New York (2007)

25. Demetrescu, C., Finocchi, I.: A portable virtual machine for program debugging and direct-
ing. In: Proceedings of the 2004 ACM symposium on Applied computing (SAC 2004), pp.
1524–1530. ACM, New York (2004)

Inference of Reference Immutability

Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst

MIT Computer Science and Artificial Intelligence Lab
Cambridge, MA, USA

{jaimeq, tschantz, mernst}@csail.mit.edu

Abstract. Javari is an extension of Java that supports reference im-
mutability constraints. Programmers write readonly type qualifiers and
other constraints, and the Javari typechecker detects mutation errors
(incorrect side effects) or verifies their absence. While case studies have
demonstrated the practicality and value of Javari, a barrier to usability
remains. A Javari program will not typecheck unless all the references
in the APIs of libraries it uses are annotated with Javari type quali-
fiers. Manually converting existing Java libraries to Javari is tedious and
error-prone.

We present an algorithm for inferring reference immutability in Javari.
The flow-insensitive and context-sensitive algorithm is sound and pro-
duces a set of qualifiers that typecheck in Javari. The algorithm is pre-
cise in that it infers the most readonly qualifiers possible; adding any
additional readonly qualifiers will cause the program to not typecheck.
We have implemented the algorithm in a tool, Javarifier, that infers the
Javari type qualifiers over a set of class files.

Javarifier automatically converts Java libraries to Javari. Addition-
ally, Javarifier eases the task of converting legacy programs to Javari by
inferring the mutability of every reference in a program. In case studies,
Javarifier correctly inferred mutability over Java programs of up to 110
KLOC.

1 Introduction

An immutability reference constraint, such as a readonly type qualifier, pre-
vents a reference from being used to modify its referent objects (including their
transitive state). Immutability constraints have many benefits: programmers can
formally express intended properties of their code; explicit, machine-checked doc-
umentation enhances program understanding; static or dynamics checkers can
detect errors or guarantee their absence; and analyses and transformations de-
pending on compiler-verified properties are enabled. In practice, immutability
constraints have been shown to be practical and to find errors in software.

Writing reference immutability annotations to obtain these benefits can be
tedious and error-prone. An even more important motivation for immutability
inference is the need to annotate the signatures of all used libraries. Otherwise,
a sound reference immutability type checker would be forced to assume that
all methods in these libraries modify their arguments. In particular, passing a
readonly reference to any library method would be a type error.

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 616–641, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Inference of Reference Immutability 617

Java
class Event {

Date date;

Date getDate() {
return Date;

}

void setDate(Date d) {
this.date = d;

}
}

Javari
class Event {

/*this-mutable*/ Date date;

polyread Date getDate() polyread {
return Date;

}

void setDate(/*mutable*/ Date d) /*mutable*/ {
this.date = d;

}
}

Fig. 1. A Java class (left) and the corresponding Javari class (right) that is automat-
ically produced by Javarifier. Underlines indicate added immutability qualifiers. The
figure shows default qualifiers in comments for clarity (Javarifier adds nothing in such
cases). A qualifier after the parameter list and before the opening curly brace annotates
that method’s receiver, similar to annotations on other parameters. The qualifiers are
explained in Section 2.

We have created an algorithm that soundly calculates reference immutability.
Although our framework can accomidate other notions of reference immutabil-
ity, for concreteness, this paper uses the reference immutability constraints of
Javari [29]. Javari is an extension of Java with reference immutability type qual-
ifiers (see Section 2).

This algorithm computes all the references (including local variables, method
parameters, and static and instance fields) that may have Javari’s readonly,
polyread, or ? readonly keywords added to their declarations. Figure 1 shows an
example Java class and the corresponding inferred Javari class.

Our algorithm targets a realistic and fully-featured implementation of refer-
ence immutability, Javari. The algorithm infers the multiple annotations that are
needed for an expressive language, including readonly, an extension to wildcards
(? readonly), non-generics polymorphism (polyread), and containing-object con-
text this-mutable. 1 Javari provides reference immutability guarantees over the
abstract state of an object (see Section 2.1). The algorithm handles the com-
plexities of the Java language, including subtyping, generics, arrays, and unseen
code. The algorithm is sound and precise.

Javarifier is a scalable tool that implements this algorithm. Javarifier’s input
is a Java (or partially annotated Javari) program in classfile format, because
programmers may wish to convert library code whose source is unavailable. The
Javarifier toolset can insert the inferred qualifiers in source or class files, or
present them to a user for inspection. If the user wants to refine the results, the
user can insert any number of annotations in the program and run Javarifier in
1 As a pre-pass, the algorithm heuristically recommends fields to exclude from the

abstract state of a class via the assignable or mutable field annotations; the user
may accept some or all of the recommendations. Page limits prohibit an explanation
of these heuristics [28,22], though they are implemented in the Javarifier tool.

618 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Type qualifiers
readonly The reference cannot be used to modify its referent
/*mutable*/ The reference may be used to modify its referent
polyread Polymorphism (for parameters and return types) over mutability
? readonly The reference has a readonly upper bound and mutable lower bound

Field annotations
/*this-mutable*/ The field inherits its mutability from the

reference through which it is reached
assignable The field may be reassigned through a readonly reference
mutable The field may be mutated through a readonly reference

Fig. 2. Javari keywords: type qualifiers and field annotations. Default keywords that
are not written in a program are shown in comments.

the presence of these annotations (see Section 3.3). All of the tools use the JSR
308 [10] extension to Java annotations, which is backward-compatible and which
is planned for inclusion in Java 7.2

The rest of this paper is organized as follows. Section 2 provides an overview
of the Javari language for reference immutability. Sections 3–5 describe the algo-
rithm: sound inference of reference immutability for ordinary readonly references
(Section 3), arrays and generic types (Section 4), and polyread polymorphic
references (Section 5). Section 6 reports experience using Javarifier. Section 7
discusses related work. Finally, Section 8 concludes.

2 The Javari Language: Java with Reference Immutability

Javari extends Java’s type system to allow programmers to specify and statically
enforce reference immutability constraints. This section briefly explains Javari’s
keywords, as listed in figure 2. The language is fully defined elsewhere [29,28].

For every Java type T, Javari also has the type readonly T, with T being a
subtype of readonly T. A reference declared to have a readonly type cannot be
used to mutate the object it references:

readonly Date d = new Date();
d.setHours(9); // compile-time error

Mutation is any modification to an object’s abstract state (see Section 2.1).
References that are not readonly can be used to modify their referent and are
said to be mutable. By Java’s subtyping rules, a mutable reference can be used
anywhere a readonly reference is expected, but a readonly reference cannot be
treated as a mutable reference.

Javari handles generic type parameters in a natural way to account for the
fact that every type now specifies its mutability. Below are four declarations of
type List. The mutability of the parameterized type List does not affect the
mutability of the type argument.
2 To avoid explaining JSR 308, this paper uses keywords rather than annotations for

the Javari type qualifiers.

Inference of Reference Immutability 619

/*mutable*/ List</*mutable*/ Date> ld1; // List: may add/remove; Date: may mutate
/*mutable*/ List<readonly Date> ld2; // List: may add/remove
readonly List</*mutable*/ Date> ld3; // Date: may mutate
readonly List<readonly Date> ld4; // (no side effects allowed)

As in Java, subtyping is invariant in terms of type arguments. Javari ex-
presses the common supertype of List</*mutable*/ Date> and List<readonly

Date> as List<? readonly Date>. The ? readonly wildcard keyword is an exten-
sion to Java’s wildcard mechanism. It specifies that readonly Date is the type
argument’s upper bound and /*mutable*/ Date is its lower bound. Elements
are read from this type of list as readonly, but must be written to it as mutable.
This type would be written as List<? extends readonly Date super /*mutable*/

Date>, except Java does not allow the declaration of both a lower and an upper
bound on a wildcard.

The mutability wildcard is useful for the same reasons Java wildcards are.
For example, a method that prints all the Dates in an input List can have a
List<? readonly Date> parameter. If the parameter were declared as
List<readonly Date>, a List<mutable Date> argument could not be passed in.

Javari keywords, inclusindg ? readonly, apply to arrays analogously to para-
meterized types; each level of an array has its own mutability, and Javari arrays
are invariant with respect to mutability.

The polyread keyword (see Figure 3) expresses parametric polymorphism over
mutability. (polyread was previously named “romaybe” [29,28].) The type checker
conceptually duplicates any method containing a polyread keyword. In the first
version of the method, all instances of polyread are replaced by readonly. In
the second version, all instances of polyread are removed, so the references
are mutable. Clients may use either version. polyread may occur on fields of
method-local classes, and Javarifier inferred such annotations in our case stud-
ies. polyread is critical for precision; in the JDK, polyread is needed 70% as often
as readonly [19]. polyread is not expressible in terms of Java generics; Neither
of polyread and ? readonly subsumes the other [28].

2.1 Abstract State

By default, the abstract state of an object is its transitively reachable state,
which is the state of the object and all state reachable from it by following ref-
erences. Javari’s deep reference immutability is achieved by giving each field the
default annotation of this-mutable, which means the field inherits its mutability
from the reference (this) through which it is accessed. Since it is the default,
this-mutable is never written in a program.

The assignable and mutable keywords enable a programmer to exclude specific
fields from an object’s abstract state. The assignable keyword specifies that the
field may always be reassigned, even through a readonly reference; Java’s final

keyword plays a related role, specifying that a field may not be reassigned at
all through any reference once it has been set. The mutable keyword specifies
that a field has mutable type (its own fields may be reassigned or mutated) even

620 J. Quinonez, M.S. Tschantz, and M.D. Ernst

class Bicycle {
private Seat seat;
polyread Seat getSeat() polyread { return seat; }

}

static void lowerSeat(/*mutable*/ Bicycle b) {
/*mutable*/ Seat s = b.getSeat();
s.height = 0;

}

static void printSeat(readonly Bicycle b) {
readonly Seat s = b.getSeat();
System.out.println(s);

}

Fig. 3. The polyread keyword expresses polymorphism over mutability without poly-
morphism over the Java type. lowerSeat uses the mutable version of getSeat and takes
a mutable Bicycle parameter. printSeat uses the readonly version of getSeat and
can take a readonly Bicycle parameter. Without polyread, all the underlined annota-
tions would be /*mutable*/. In particular, printSeat would take a mutable Bicycle
parameter, and this imprecision could propagate through the rest of the program.

when referenced through a readonly reference. A mutable field’s abstract value
is not a part of the abstract state of the object (but the field’s identity may be).
Assignability and mutability of fields are orthogonal notions. Both are necessary
to express code idioms such as caches, logging, and benevolent side effects, where
not every field is part of the object’s abstract state. For example, in the following
class, the value of the log field is excluded from the abstract state of the object:

public class NetworkRouter {
mutable List<String> log;

// The readonly keyword indicates that the method does not modify its receiver
public void selectRoute(String destination) readonly {

log.add("selecting route to: " + destination);
}

}

The (implicit, default) mutable type qualifier denotes that a reference may be
used to modify its referrent. The (explicit) mutable field annotation denotes that
the field may always be used to modify its referrent— it is excluded from the
abstract state of the object.

3 Inferring Reference Immutability

Javarifier uses a flow-insensitive and context-sensitive algorithm to infer refer-
ence immutability. The algorithm determines which references may be declared

Inference of Reference Immutability 621

Q ::= class {f M} class def
M ::= m(x){s;} method def
s ::= x = x statements
| x = x.m(x)
| return x
| x = x.f
| x.f = x

Fig. 4. Grammar for core language used during constraint generation. x is shorthand
for the (possibly empty) sequence x1 . . . xn. The special variable thism is the receiver
of method m; it is treated as a normal variable, except that any program that attempts
to reassign thism is malformed.

with readonly or other Javari keywords; other references are left as the default
(this-mutable for fields, mutable for everything else). The algorithm is sound:
Javarifier’s recommendations type check under Javari’s rules. Furthermore, the
algorithm is precise: declaring any references in addition to Javarifier’s recom-
mendations as readonly— without other modifications to the code — will result
in the program not type checking.

Section 3.1 describes the core inference algorithm. The algorithm extends to
handle subtyping (Section 3.2); unseen code and pre-existing constraints includ-
ing assignable and mutable fields (Section 3.3); arrays (Section 4.1); Java generics
(Section 4.2); and mutability polymorphism (Section 5).

3.1 Core Algorithm

Given as input a program, Javarifier generates, then solves, a set of mutabil-
ity constraints. A mutability constraint states when a given reference must be
declared mutable. The core algorithm uses two types of constraints: unguarded
and guarded. (Section 5 introduces a third variety of constraints, double-guarded
constraints.) An unguarded constraint such as “x” states that a reference is un-
conditionally mutable. x is a constraint variable that refers to a Java reference
or other entity in the code. A guarded constraint such as “y → x” states that if
y is mutable, then x is mutable; again, x and y are constraint variables.

Constraint Generation. The first phase of the algorithm generates constraints
for each statement in a program. Unguarded constraints are generated when a
reference is used to modify an object. Guarded constraints are generated by
assignments and field dereferences.

We present constraint generation using a simple three-address core language
(Figure 4). Control flow constructs are not modeled, because the flow-insen-
sitive algorithm is unaffected by such constructs. Java types are not modeled
because the core algorithm does not use them. Constructors are modeled as
regular methods returning a mutable reference to thism. Static members are
omitted because they do not illustrate any interesting properties. Without loss

622 J. Quinonez, M.S. Tschantz, and M.D. Ernst

x = y : {x→ y} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {thism → y, p→ y, x→ retm}
(Invk)

retVal(m) = retm

return x : {retm → x} (Ret)

x = y.f : {x→ f, x→ y} (Ref)

x.f = y : {x, f→ y} (Set)

Fig. 5. Constraint generation rules for the statements of Figure 4. Auxiliary functions
this(m) and params(m) return the receiver reference (thism) and parameters of method
m, respectively. retVal(m) returns retm, the constraint variable that represents the
reference to m’s return value. type(x) returns the static type of x.

of generality, all references and methods have globally-unique names. (While
this paper’s formalism is simplified, the Javarifier implementation handles the
full Java language.)

Each statement from Figure 4 has a constraint generation rule (Figure 5):

Assign. The assignment of variable y to x causes the guarded constraint x → y

to be generated because, if x is a mutable reference, y must also be mutable
for the assignment to be valid.

Invk. The constraints are extensions of the Assign rule when method invo-
cation is viewed as pseudo-assignments or framed in terms of operational
semantics: the receiver, y, is assigned to thism, each actual argument is
assigned to the method’s corresponding formal parameter, and the return
value, retm, is assigned to x.

Ret. The return statement return x adds the constraint retm → x because, if
the return type of the method is found to be mutable, all references returned
by the method must be mutable.

Ref. The assignment of y.f to x generates two constraints. The first, x → f, is
required because, if x is mutable, then the field f cannot be readonly. The
second, x → y, is needed because, if x is mutable, then y must be mutable to
yield a mutable reference to field f. (The core algorithm assumes all fields
are this-mutable. Fields that have been manually annotated as mutable can
override this behavior, as discussed in Section 3.3.)

Set. The assignment of y to x.f causes the unguarded constraint x to be gen-
erated because x has just been used to mutate the object to which it refers.
The constraint f → y is added because if f, which is this-mutable, is ever
read as mutable from a mutable reference, then a mutable reference must be
assigned to it. If f is never mutated, the algorithm infers that it is readonly,
in which case y is not constrained to be mutable.

Inference of Reference Immutability 623

class C {
F f; field declaration
Y foo(P p) {
X x = p; Assign: {x→p}
Y y = x.f; Ref: {y → f, y→x}
Z z = x.foo(y); Invk: {thisfoo→x,

p→y, z→retfoo}
this.f = y; Set: {thisfoo, f→y}
return y; Ret: {retfoo→y}

}
void doNothing(P p)
{ no constraints to generate
}

}
Simplified program constraints:
{thisfoo, x, p}

class C {
readonly F f;
readonly Y foo(P p)

/*mutable*/ {
/*mutable*/ X x = p;
readonly Y y = x.f;

readonly Z z = x.foo(y);

this.f = y;
return y;

}
void doNothing(readonly P p)

readonly {

}
}

Fig. 6. Example of constraint generation and solving. The left part of the figure shows
the original code. The center shows, for each line of code, the constraint generation rule
used, the constraints generated, and the simplified program constraints —the references
that may not be declared readonly. All the other references (y, z, retfoo, and f) can
be declared readonly, as shown in the Javarifier output on the right side of the figure.

The constraint set for a program is the union of the constraints generated for
each line of the program. Figure 6 shows constraints for a sample program.

Constraint Solving. The second phase of the algorithm solves the constraints
by simplifying the constraint set. If any unguarded constraint satisfies (i.e.,
matches) the guard of a guarded constraint, then the guarded constraint is
“fired” by removing it from the constraint set and adding its consequent to
the constraint set as an unguarded constraint. Once no more constraints can be
fired, constraint simplification terminates. If the guarded constraints are viewed
as graph edges, then the core algorithm can be viewed as graph reachability
starting at the unguarded constraints. This approach can be implemented with
linear time complexity in the number of constraints [22], and the Javarifier tool
does so.

The unguarded constraints in the simplified constraint set must be declared
mutable (or this-mutable in the case of instance fields). All other references
may safely be declared readonly, since the algorithm propagated unguarded
constraints to every reference that those constraints could reach. Thus, the algo-
rithm excludes the maximum number of constraint variables from the unguarded
constraint set when there are no field annotations. (Section 3.3 discusses how
the assignable and mutable field annotations change the constraint generation
rules, but they do not change the constraint solving step.) For a fixed set of
field annotations, constraint solving therefore results in the maximum number
of readonly references in the program. (Section 4.1 expands this argument to
the other Javari qualifiers.) Constraint solving cannot fail because the algorithm
always terminates [22] and in the worst case, every reference is mutable when
the algorithm terminates.

624 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Figure 6 shows the result of applying the algorithm to an example program.

3.2 Subtyping

Java and Javari allow subtyping polymorphism, which enables multiple imple-
mentations of a method to be specified through overriding3. Javari requires that
overriding methods have covariant return mutability types and contravariant
parameter mutability types (including the receiver, the implicit this parame-
ter). To enforce these constraints, the algorithm adds the appropriate guarded
constraints for every return and parameter of an overriding method. If a para-
meter is mutable in an overriding method, it must be mutable in the overridden
method. If the return type is mutable in an overridden method, it must be mu-
table in the overriding method. For simplicity, a previous formalism [28] forced
the mutabilities of overriding methods to be idential to the overriden method,
but that is not required for correctness.

3.3 Pre-existing Annotations and Unanalyzed Code

This section extends the inference algorithm to incorporate pre-existing anno-
tations. These are useful for un-analyzable code such as native methods; for
missing code, such as clients of a library, which might have arbitrary effects; and
to permit users to override inferred annotations, such as when a reference is not
currently used for mutation, but its specification permits it to be. Furthermore,
user-provided annotations enable the algorithm to recognize which fields should
be excluded from the abstract state of a class [28,22].

This section first discusses pre-existing annotations that specify that a refer-
ence is either readonly or mutable. Then, it discusses annotations that exclude
a field from the abstract state of the object.

Mutability Annotations. A readonly annotation causes the algorithm, upon
finishing, to check whether the reference may be declared readonly. If not, the al-
gorithm issues an error. (Alternately, the algorithm can recommend code changes
that permit the reference to be declared readonly [28,22].)

A mutable type qualifier (not field annotation) or a field this-mutable anno-
tation causes the algorithm to add an unguarded constraint that the reference
is not readonly.

The algorithm has two modes. In closed-world, or whole-program, mode, the
algorithm may change the type qualifiers of returned/escaped references, such as
public method return types and types of public fields. This yields more precise
results— that is, more readonly references. In open-world mode, the algorithm
marks as mutable (i.e., adds an unguarded constraint for) every non-private field

3 We use the term overriding both for overriding a concrete method, and for im-
plementing an abstract method or a method from an interface. For brevity and to
highlight their identical treatment, we refer to both abstract methods and interface
methods as abstract methods.

Inference of Reference Immutability 625

¬assignable(f)

x.f = y : {x, f→ y} (Set-N)

assignable(f)

x.f = y : {f→ y} (Set-A)

mutable(f)

{f} (Mutable)

¬mutable(f)
x = y.f : {x→ f, x→ y} (Ref-N)

mutable(f)

x = y.f : {} (Ref-M)

Fig. 7. Modified constraint generation rules for assignable and mutable fields. The Set

and Ref rules of Figure 5 are replaced by those of this figure. Mutable is new.

and non-private method return value. The open-world assumption is required
when analyzing partial programs or library classes with unknown clients, because
an unseen client may mutate a field or return value.

Assignable and MutableFields. Javarifier handles fields annotated as mutable
or assignable by extending the constraint generation rules to check the assign-
ability and mutability of fields before adding constraints. The auxiliary function
assignable(f) returns true if and only if f is declared to be assignable; likewise for
mutable(f). The changes to the constraint generation rules are shown in Figure 7
and are described below.

To handle assignable fields, the Set rule is divided into two rules, Set-A

and Set-N, that depend on the assignability of the field. If the field is not
assignable, Set-N proceeds as normal. If the field is assignable, Set-A does
not add the unguarded constraint that the reference used to reach the field must
be mutable: an assignable field may be assigned through either a readonly or a
mutable reference.

Constraint generation rule Mutable adds an unguarded constraint for each
mutable field.

The Ref rule is divided into two rules depending on the mutability of the
field. If the field is not mutable, then Ref-N proceeds as normal. If the field
is mutable, then Ref-M does not add any constraints because, when compared
to the original Ref rule, (1) the consequence of the first constraint, x → f,
has already been added to the constraint set via the Mutable rule, and (2)
the second constraint, x → y, is eliminated because a mutable field is mutable
regardless of how it is reached.

4 Arrays and Generics

This section discusses how to infer immutability for arrays and generic classes.
(Javarifier also handles generic methods [28], but the details are omitted here
for brevity.) The key difficulty is inferring the ? readonly type, which requires

626 J. Quinonez, M.S. Tschantz, and M.D. Ernst

s ::= ...
| x[x] = x
| x = x[x]

T, S ::= A | C types
A, B ::= T[] array types
C, D class names

T, S ::= C<T> | X types
C, D class names
X, Y type variables

Fig. 8. Core language grammar (Figure 4) extended for arrays (left). Constraint gen-
eration type meta-variables extended for arrays (center) and parametric types (right).

inferring two types (an upper and a lower bound) for each array/generic class.
If the bounds are different, then the resulting Javari type is ? readonly.

4.1 Arrays

This section extends the algorithm to handle arrays. First, we extend the core
language grammar to allow storing to and reading from arrays (Figure 8).

A non-array reference has a single immutability annotation; therefore, a single
constraint variable per reference suffices. Arrays need more constraint variables,
for two reasons. First, an array reference’s type may have multiple immutability
annotations: the element type can be annotated in addition to the array itself.
Second, Javari array elements have two-sided bounded types (Section 2). For
example, the type (? readonly Date)[] has elements with upper bound readonly

Date and lower bound mutable Date, and (readonly Date)[] has elements with
identical upper bound and lower bound readonly Date.

Javarifier constrains each part of a type using a separate constraint variable.
An array has parts for the top-level array type and for the upper and lower
bounds of the element type. If the elements are themselves arrays, then there
are parts for the upper and lower bounds of elements of the elements, and so
on. For example, the type Date[][] has seven type parts: Date[][], the top-
level type; Date[]�, the upper bound of the element type, and Date[]�, the lower
bound of the element type; and four Date types corresponding to the upper/lower
bound of the upper/lower bound4.

We subscript upper bounds with � and lower bounds with �. This matches the
conventional ordering: in the declaration List<? extends readonly Date super

/*mutable*/ Date>, the upper bound is on the left and the lower bound is on
the right. We assume that within a program, textually different instances of the
same type are distinguishable. The type meta-variables are shown in Figure 8.
As usual, T and S range over types, and C and D over class names. We add A and
B to range over array types.

The type constraint generation rules use the auxiliary function type, which
returns the declared type of a reference, similar to the less intuitively named Γ
type environment used in other work.

4 An alternate approach of treating arrays as objects with fields of the same type
as the array element type would not allow inferring different mutabilities on the
different levels of the array. This alternate approach would not be able to infer the
? readonly qualifier.

Inference of Reference Immutability 627

S[]→ T[] T ⊂: S

T[] <: S[]

D→ C

C <: D

T� <: S� S� <: T�

T ⊂: S

Fig. 9. Simplified subtyping (<:) rules for mutability in Javari. These simplified rules
only check the mutabilities of the types, because we assume the program being con-
verted type checks under Java. An array element’s type, T, is said to be contained by
another array element’s type, S, written T ⊂: S, if the set of types denoted by T is
a subset of the types denoted by S. Each rule states an equivalence between subtyp-
ing and guarded constraints on types, so each rule can be replicated with predicates
and consequents swapped. Java arrays are covariant. Javari arrays are invariant in re-
spect to mutability (see Section 2); therefore, we use the contains relationship as Java’s
parametric types do.

x = y : {type(y) <: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y) <: type(thism), type(y) <: type(p), type(retm) <: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x) <: type(retm)}
(Ret)

x = y.f : {type(f) <: type(x), type(x) → type(y)} (Ref)

x.f = y : {type(x), type(y) <: type(f)} (Set)

x = y[z] : {type(y[z]) <: type(x)} (Array-Ref)

x[z] = y : {type(x), type(y) <: type(x[z])} (Array-Set)

Fig. 10. Constraint generation rules extended for arrays. These rules replace the con-
straint generation rules of Figure 5, where the type() function was not needed.

Constraint Generation. The constraint generation rules are extended to en-
force subtyping constraints. For the assignment x = y, where x and y are arrays,
the extension must enforce that y is a subtype of x. Simplified subtyping rules
for Javari are given in Figure 9.

The constraint generation rules now use types as constraint variables and
enforce the subtyping relationship across assignments including the implicit
pseudo-assignments that occur during method invocation. The extended rules
are shown in Figure 10.

Type Well-Formedness Constraints. In addition to the constraints gener-
ated for each line of code, the algorithm adds constraints to the constraint set to

628 J. Quinonez, M.S. Tschantz, and M.D. Ernst

ensure that every array type is well-formed. Array well-formedness constraints
enforce that an array element’s lower bound is a subtype of the element’s upper
bound.

Constraint Solving. Before the constraint set can be simplified as before,
subtyping (<:) and containment (⊂:) constraints must be reduced to guarded
(→) constraints. To do so, the algorithm replaces each subtyping or containment
constraint by the corresponding guarded constraints and simplified subtyping or
contains constraint (see Figure 9). This step is repeated until only guarded and
unguarded constraints remain in the constraint set. For example, the statement
x = y, where x and y have the types T[] and S[], respectively, would generate
and reduce constraints as follows:

x = y : {type(y) <: type(x)}
: {S[] <: T[]}
: {T[] → S[], S ⊂: T}
: {T[] → S[], S� <: T�, T� <: S�}
: {T[] → S[], T� → S�, S� → T�}

In the final result, the first guarded constraint enforces that y must be a mutable
array if x is a mutable array, while the second and third constraints constrain
the bounds on the arrays’ element types. T� → S� requires the upper bound of
y’s elements to be mutable if the upper bound of x’s elements is mutable. This
rule is due to covariant subtyping between upper bounds. S� → T� requires the
lower bound of x’s elements to be mutable if the lower bound y’s elements is
mutable. This rule is due to contravariant subtyping between lower bounds.

After reducing all subtyping and containment constraints, the remaining guar-
ded and unguarded constraint set is simplified as before. A subtype or contain-
ment constraint on an array type only leads to one guarded constraint for the
top-level type and two guarded constraints for the lower and upper bounds.
Compared to the non-array algorithm, the total number of constraints only in-
creases by a constant factor. Therefore, the constraint simplification algorithm
remains linear-time.

Applying Results. Finally, the results must be mapped back to the initial
Java program. Top-level types are annotated the same way they were before.
However, for element types, the constraints on the type upper bound and type
lower bound must map back to a single Javari type. Figure 11 illustrates this
mapping.

As in Section 3.1, given a fixed set of field annotations, the algorithm excludes
the maximum number of constraint variables from the unguarded constraint set.
After the mapping of mutabilities on constraint variables to Javari types, no
reference that is ? readonly could be readonly because a mutable lower bound
implies the reference cannot be readonly (since only mutable references can be
assigned to it). Therefore, the algorithm infers the maximum number of ref-
erences that do not need to be mutable, and each of these references is either
readonly or ? readonly.

Inference of Reference Immutability 629

Upper bound (�) Lower bound (�) Javari type
mutable mutable mutable
readonly readonly readonly
readonly mutable ? readonly

Fig. 11. The inferred mutability of the upper and lower bounds on array element
types are mapped to a single Javari type. The case that the upper bound is mutable
and the lower bound is readonly cannot occur due to the well-formedness constraints.

asTypeΔ(C<T>, C) = C<T>

class C<X V> � C′<U> S = asTypeΔ([T/X]C′<U>, D)

asTypeΔ(C<T>, D) = S

Fig. 12. asType returns C<T>’s supertype of class D

4.2 Parametric Types (Java Generics)

Parametric types (Java generics) are handled similarly to arrays. For a para-
metric type, constraint variables are created for the upper and lower bound of
each type argument to a parametric class. As with arrays, type parts serve as
constraint variables.

The following meta-syntax represents parametric types. Figure 8 shows the
type meta-variable definitions. As with arrays, � denotes type arguments’ upper
bounds and � denotes their lower bounds.

Auxiliary Functions. The subtyping rules use the auxiliary function boundΔ.
boundΔ(T) returns the declared upper bound of T if T is a type variable; if T
is not a type variable, T is returned unchanged. In this formulation, there is a
global type environment, Δ, that maps type variables to their declared bounds.
bound ignores any upper bound (�) or lower bound (�) subscripts on the type.

As with arrays, the type constraint generation rules use the auxiliary function
type, which returns the declared type of a reference.

The subtyping rules use the asTypeΔ(C<T>, D) function (Figure 12) to return
C’s supertype of class D5. asType is used when a value is assigned to a reference
that is a supertype of the value’s type. In such a case, asType converts the value’s
type to have the same class as the reference. For example, consider

class Foo<T> extends List<Date> { ... }

Foo<Integer> f;
List<Date> lst = f;
lst.get(0).setMonth(JUNE);

5 We call C<T> a type because its type arguments are present. We call D a class because
type arguments are not provided.

630 J. Quinonez, M.S. Tschantz, and M.D. Ernst

x = y : {type(y) <: type(x)} (Assign)

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {type(y) <: type(thism), type(y) <: type(p), type(retm) <: type(x)}
(Invk)

retVal(m) = retm

return x : {type(x) <: type(retm)}
(Ret)

x = y.f : {type(f) <: type(x), type(x) → type(y)} (Ref)

x.f = y : {type(x), type(y) <: type(f)} (Set)

Fig. 13. Constraint generation rules in the presence of parametric types

D → C T′′ ⊂: S′

T <: S where boundΔ(T) = C<T′> and boundΔ(S) = D<S′> and
asTypeΔ(C<T′>, D) = D<T′′>

T� <: S� S� <: T�

T ⊂: S

Fig. 14. Simplified subtyping rules for mutability in the presence of parametric types

On the assignment of f to lst, asType converts f’s type from Foo<Integer>

to List<Date> with the call: asTypeΔ(Foo<Integer>, List). This conversion en-
sures that constraints placed on the type of lst elements affect f indirectly
through the type of lst rather than the type of f, so the final inference re-
sult is class Foo<T> extends List</*mutable*/ Date> rather than the incorrect
Foo</*mutable*/ Integer> f.

ConstraintGeneration. As with arrays, the constraint generation rules (shown
in Figure 13) use subtyping constraints. However, the subtyping rules (shown in
Figure 14) are extended to handle type variables. In Javari, a type variable is not
allowed to be annotated as mutable; therefore, type variables cannot occur in the
constraint set. In the case of a type variable appearing in a subtyping constraint,
bound is used to calculate the upper bound of the type variable, and the mutabil-
ity constraints are applied to the type variable’s bound. Therefore, mutation of a
reference whose type is a type variable results in the type variable’s bound being
constrained to be mutable. An example of this behavior is shown in Figure 15.

Type Well-Formedness Constraints. As with arrays, in addition to the
constraints from the constraint generation rules, well-formedness constraints are
added to the constraint set. As before, a constraint is added that a type argu-
ment’s lower bound must be a subtype of the type argument’s upper bound.
Parametric types, additionally, introduce the well-formedness constraint that a

Inference of Reference Immutability 631

class Week<X extends /*mutable*/ Date> {
X f;
void startWeek() {

f.setDay(Day.SUNDAY);
}

}

Fig. 15. The result of applying type inference to a program containing a mutable
type variable bound. Since the field f is mutated, X’s upper bound is inferred to be
/*mutable*/ Date. The mutable annotation may not be applied directly to f’s type
because in Javari, a type parameter cannot be annotated as mutable.

type argument’s upper bound (and, therefore, by transitivity, lower bound) is a
subtype of the corresponding type variable’s declared upper bound.

Constraint Simplification and Applying Results. As with arrays, sub-
typing (and containment) constraints are simplified into guarded constraints by
removing the subtyping constraint from the constraint set and replacing it with
the subtyping rule’s predicate. The results of the solved constraint set are applied
in the same manner as with arrays. Javari does not allow raw types, and this
analysis is incapable of operating on code that contains raw types. In particular,
this algorithm does not account for the required casts when using raw types.

5 Inferring Mutability Polymorphism

This section extends the inference algorithm to infer the polyread keyword (pre-
viously named “romaybe” [29]). As described in Section 2 and illustrated in Fig-
ure 3, polyread enables more precise and useful immutability annotations to be
expressed than if methods could not be polymorphic over mutability.

5.1 Approach

Methods that have at least one polyread parameter or return type have two
contexts. In the first context, all polyread references are mutable. In the second
context, all polyread references are readonly. Javarifier creates both contexts
for every method. If a parameter/return type has an identical mutability in
both contexts, then that parameter/return type should have that mutability. If
a parameter/return type is mutable in the mutable context and readonly in the
readonly context, then that parameter/return type should be polyread.

To create two contexts for a method, Javarifier creates two constraint variables
for every method-local reference (local variables, return value, and parameters,
including the implicit this parameter). To distinguish each context’s constraint
variables, we superscript the constraint variables from the readonly context with
ro and those from the mutable context with mut. Constraint variables for fields
are not duplicated: polyread may not be applied to fields and, thus, only a single
context exists.

632 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Section 5.3 demonstrates that inferring polyread only requires increasing the
number of constraints (and the time complexity of the algorithm) by a constant
factor.

5.2 Constraint Generation Rules

With the exception of Invk, all the constraint generation rules are the same as
before, except now they generate (identical) constraints for constraint variables
from both the readonly and mutable versions of the methods. For example, x =

y now generates the constraints {xro → yro, xmut → ymut}.
Thus, there are now two constraint variables for every reference, one for when

it is in a mutable context and one for when it is in a readonly context. For
shorthand, we write constraints that are identical with the exception of con-
straint variables’ contexts by superscripting the constraint variables with “?”.
For example, the constraints generated by x = y can be written as: {x? → y?}.

The method invocation rule (shown in Figure 16) must be modified to invoke
the mutable version of a method when a mutable return type is needed, and
to invoke the readonly version otherwise. This restriction can be represented
using double-guarded constraints. For example, consider the code in Figure 3, in
which the Bicycle.getSeat() method has a polyread return type and a polyread

parameter. In the lowerSeat() method, the returned reference is mutated, so
the mutable version of getSeat() must be used. In the printSeat() method, the
returned reference is indeed readonly, so the readonly version of getSeat() can
be used.

The first constraint in the invocation rule of Figure 16 thus states that if
the returned reference s is mutable, then the reference b on which (the mutable

version of) getSeat() is called must be mutable if the receiver of getSeat() is
mutable inside the mutable version of getSeat(). (Recall that the receiver inside
a readonly method is readonly in both the mutable and readonly versions of
that method, whereas the receiver of a polyread method is mutable only in the
mutable version of the method.)

In matching Figure 3 to the invocation rule of Figure 16, note that the ? super-
scripts would be on the references s and b local to lowerSeat() (or printSeat()),
whereas the explicit mut superscript would only occur on references local to
getSeat(). In particular, since the lowerSeat() and printSeat() methods are
static, they only have one context so the different versions of duplicated con-
straint variables will always be the same. The ? superscripts demonstrate that
after fixing the explicit mut contexts, these constraints are generalized with ? in
the same fashion all other constraints are generalized.

The last constraint in the invocation rule states that if the reference s is later
mutated, then the return type of getSeat() must be mutable in the mutable

version of getSeat(). The Ret rule for return types and Ref rule for field
references in Figure 5 together generate the constraint that if the return type
of getSeat() is mutable (in whichever version of the method is called), then
the receiver of getSeat() is mutable (in that version of the method). Since the
method invocation rule in Figure 16 only generates the constraint that the return

Inference of Reference Immutability 633

this(m) = thism params(m) = p retVal(m) = retm

x = y.m(y) : {x? → thismutm → y?, x? → pmut → y?, x? → retmutm }
(Invk-polyread)

Fig. 16. The core algorithm’s Invk rule (Figure 5) is replaced by Invk-polyread,
which is used for method invocation in the presence of polyread references. Each
superscript denotes the contexts of the method in which the variable is declared. All
of the ? contexts refer to the method containing the references x and y, whereas the
explicit mut contexts refer to context inside method m.

type of getSeat() is mutable in the mutable version of getSeat(), the return type
and receiver of getSeat() are mutable only in the mutable version of the method,
and thus they are both inferred to be polyread.

5.3 Constraint Solving

The algorithm for solving the constraint set is an extension to the algorithm
briefly described in Section 3.1 in order to account for double-guarded con-
straints. For clarity, we now provide the full algorithm and demonstrate that it
has linear time complexity.

There are three constraint sets: the unguarded constraint set (U) which con-
tains constraints of the form a, the guarded constraint set (G) which contains
constraints of the form a → b, and the double-guarded constraint set (D) which
contains constraints of the form a → b → c. The following pseudocode illustrates
how the algorithm processes constraints using a work-list (W):

initialize W with all the constraints from U
while W is not empty
pop a constraint a from W
for each constraint g in G that has a as its guard

let c be the consequent of g

if c is not in U, add c to W and to U

for each double-guarded constraint d in D that has a as its first guard
let b → c be the consequent of d

if b is in U
if c is not in U, add c to W and to U

else, add b → c to G
The algorithm maintains linear time complexity if the sets G and D are im-

plemented as hash tables. For G, the table maps a guard to the constraint
variable it guards. For D, the table maps the first guard to a set of the con-
sequents (which are single-guarded constraints) that it guards. That is, given
constraints a → b1 → c1 and a → b2 → c2, the hash table maps a to the set
{b1 → c1, b2 → c2}. This allows looking up all single-guarded constraints that are
guarded by the same guard in a double-guarded constraint to take constant time,
in expectation. Since every constraint is read from either G or D at most once,
and each double-guarded constraint only adds one single-guarded constraint to

634 J. Quinonez, M.S. Tschantz, and M.D. Ernst

G, the constraint-solving algorithm has linear time complexity in the total num-
ber of constraints. The number of constraints is linear in the size of the program
under analysis as measured in the three-address core language of Figure 4.

5.4 Interpreting the Simplified Constraint Set

Once the constraint set is solved, the results are applied to the program. For
method-local references, the two constraint variables from the readonly and
mutable method contexts must be mapped to a single method-local Javari type:
readonly, mutable, or polyread.

A reference is declared mutable if both the mutable and readonly contexts of
the reference’s constraint variable are in the simplified, unguarded constraint
set. A reference is declared readonly if both mutable and readonly contexts of
the reference’s constraint variable are absent from the constraint set. Finally, a
reference is declared polyread if the mutable context’s constraint variable is in the
constraint set but the readonly constraint variable is not in the constraint set,
because the mutability of the reference depends on which version of the method is
called.6 Thus, in the example of Figure 3, after the constraints have been solved,
the receiver of getSeat() is known to be mutable in a mutable context but not
known to be mutable in a readonly context, so it is annotated as polyread. The
reference returned by getSeat() is similarly known to be mutable in a mutable

context but not known to be mutable in a readonly context, so it is also annotated
as polyread.

It is possible for a method to contain polyread references but no polyread

parameters. For example, below, x and the return value of getNewDate could be
declared polyread.

Date getNewDate() {
Date x = new Date();
return x;

}

However, polyread references are only useful if the method has a polyread pa-
rameter. Thus, if none of a method’s parameters (including the receiver) are
polyread, all the method’s polyread references are converted to mutable refer-
ences.

6 Evaluation

We have implemented the inference algorithm described in Sections 3–5 as a
tool, Javarifier, that reads a set of classfiles, determines the mutability of every
reference in those classfiles, and inserts the inferred Javari annotations in either

6 The case that the readonly constraint variable is found in the constraint set, but
the mutable context’s constraint variable is not, cannot occur by the design of the
Invk-Polyread constraint generation rule.

Inference of Reference Immutability 635

Size Annotatable references
Program lines classes Time Total readonly mutable this-mut. polyread ? readonly
JOlden 6223 57 9 1580 927 553 52 48 0
tinySQL 30691 119 47 5606 2227 2964 175 240 0
htmlparser 63780 238 45 4596 1623 2740 72 144 17
ejc 110822 320 1410 24899 8887 14774 690 548 0

Fig. 17. Subject programs used in our case studies. Inference time is in seconds on a
Pentium 4 3.6GHz machine with 3GB RAM. The right portion tabulates the number
of annotatable references for each inference result (in Javarifier’s closed-world mode).
When counting annotatable references, each type argument counts separately; for ex-
ample, List<Date> is counted as two references.

class files or Java source files. Javarifier is publicly available for download at
http://pag.csail.mit.edu/javari/javarifier/.

To verify that Javarifier infers correct and maximally precise Javari qualifiers
we performed two types of case studies. The first variety (Section 6.1) compared
Javarifier’s output to manually written Javari code that had been type-checked
by the Javari type-checker. The second variety (Section 6.2) compared Javarifier
to another tool for inferring immutability. For both varieties of case study, we
examined every difference among the annotations. The case studies revealed
no errors in Javarifier. It is possible that errors in Javarifier were masked by
identical errors in the other tools and the manual annotations, but we consider
this unlikely.

Figure 17 gives statistics for the subject programs used in our case studies:

– JOlden benchmark suite (http://osl-www.cs.umass.edu/DaCapo/benchmarks.
html)

– tinySQL database engine (http://www.jepstone.net/tinySQL/)
– htmlparser library for parsing HTML (http://htmlparser.sourceforge.net/)
– ejc compiler for the Eclipse IDE (http://www.eclipse.org/)

The JOlden benchmark suite is written using raw types, so we first converted
the source code to use generics. We also renamed some identically named but
distinct classes in the different benchmarks within JOlden.

6.1 Comparison to Manual Annotations

Before the Javarifier implementation was complete, a developer (not one of the
authors of this paper) manually annotated the JOlden benchmark suite and
verified the correctness of the annotations by running the Javari type-checker.
We compared the manually-written and automatically-verified annotations with
Javarifier’s inference results.

There were 74 differences between the manual annotations and Javarifier’s
output. 58 are human errors, and 16 disappear when using Javarifier’s inference
of assignable fields.

636 J. Quinonez, M.S. Tschantz, and M.D. Ernst

Program inheritance polyread this-mutable arrays

tinySQL 0 3 6 0
htmlparser 12 6 0 2
ejc 1 0 17 31

Fig. 18. Reasons for differences between Javarifier and Pidasa inference results. None
of the differences indicates an error in Javarifier.

The programmer omitted 22 readonly qualifiers, such as on the receiver of
toString(). Tool support while the programmer was annotating the program
would have both eased the annotation task and prevented these errors.

Javarifier inferred 36 private fields to be readonly, while the developer ac-
cepted the default of this-mutable, meaning that the fields are part of the ab-
stract state of the object. However, all 36 of these fields are either never read
or are only used to store intermediate values that do not need to be mutated.
Thus, Javarifier pointed out that these fields can be excluded from the abstract
state, or even removed altogether, without affecting the rest of the program.

The remaining 16 annotations that differed between the manual annotations
and Javarifier’s results do not represent any conceptual errors, and when we en-
abled heuristics for inferring assignable fields [22], Javarifier’s results were identi-
cal to the manual annotations. The developer had marked 4 fields as assignable.
Each of these fields is a placeholder for the current element in an Enumeration

class. The assignable annotation allowed the nextElement() method, which re-
assigns the field, to have a polyread receiver and return type. In other words,
the manual annotations differentiate the abstract state from the concrete state
of an object. When run without inference of assignable fields, Javarifier inferred
that the return type is readonly and the receiver is mutable, and this mutability
propagated to other methods, for a total of 16 differences in annotations.

6.2 Comparison to Another Mutation Inference Tool

Pidasa [3] is a combined static and dynamic immutability inference tool for
parameters and receivers. Pidasa uses a different but closely related definition of
reference immutability. We compared Javarifier’s results to Pidasa’s results on
four randomly-selected classes from each of tinySQL, htmlparser, and ejc (for
more details, see Artzi et al. [4]). We manually analyzed each difference to verify
the correctness of Javarifier’s results.

All of the differences can be attributed to four causes, as tabulated in Fig-
ure 18. The first three causes are conservatism in the Javari type system which
makes it impossible to express that a particular reference is not mutated. The
last cause is inflexibility in Pidasa that prevents it from expressing different
mutabilities on arrays and their elements.

Inference of Reference Immutability 637

class TagNode {
private List<Attribute> mAttributes;
public /*mutable*/ List<Attribute> getAttributes() /*mutable*/ {
return mAttributes;

}
public String toHtml() /*mutable*/ {
String s = "";
for(Attribute attr : getAttributes()) {

s += attr.toHtml();
}
return s;

}
}

class LazyTagNode extends TagNode {
public /*mutable*/ List<Attribute> getAttributes() /*mutable*/ {
// Actually mutates the abstract state of the object,
// in accordance to the specification for this class.

}
}

Fig. 19. Inheritance conservatism in the Javari type system, as observed in simplified
code from the htmlparser program. The method LazyTagNode.getAttributes() is
inferred to have a mutable receiver (line 16) because it may change the state of its
receiver. The method subtyping rule thus forces TagNode.getAttributes() to have a
mutable receiver (line 3). Since TagNode.toHtml() calls getAttributes() (line 8), it
must also have a mutable receiver (line 6), even though not every call to toHtml() can
cause a mutation.

Inheritance: In 13 cases, Javarifier inferred a method receiver to be mutable
due to contravariant receiver mutability in Javari, even though Pidasa was able
to recognize contexts in which the receiver could not be mutated. Figure 19 gives
an example.

polyread: In 9 cases, Javarifier inferred a parameter to be mutable due to the
type rules of the polyread qualifier, but Pidasa inferred the parameter to be
readonly. A method such as filter(polyread Date) cannot mutate its polyread

parameter because the method would not typecheck when all polyread qualifiers
are replaced with readonly. However, when filter is called from anoter method
(from the same class) that has a mutable receiver, the type of this is mutable

and thus Javari requires that the program typecheck as if the filter method
took a mutable parameter.

this-mutable: In 23 cases, Javarifier inferred a mutable parameter due to
Javari’s type rule that this-mutable fields are always written to as mutable, but
Pidasa inferred the parameter to be readonly. For example, if a method stores a
parameter into a this-mutable field, that parameter must be declared mutable,
even if no mutations occur to it.
Arrays: In 33 cases, Javarifier correctly inferred an array type to be partly
immutable, but Pidasa was conservative and marked the whole array as mutable.
For example, htmlparser used two readonly arrays of mutable objects. Javarifier
correctly inferred the outer level of the arrays to be readonly and the inner level
to be mutable. Pidasa infers a single mutability for all levels of the array. Ejc
contained examples of mutable arrays of readonly objects.

638 J. Quinonez, M.S. Tschantz, and M.D. Ernst

In conclusion, we found differences among the tools’ definitions, but in every
case Javarifier inferred correct Javari annotations, even where the results are not
immediately obvious— another advantage of a machine-checked immutability
definition such as that of Javari.

7 Related Work

Our full inference algorithm, and experience with a preliminary Javarifier im-
plementation, first appeared as part of Tschantz’s thesis [28]. This paper builds
upon that work with an extensive experimental evaluation.

In subsequent work, JQual [14] cites Tschantz’s thesis and adopts our ap-
proach. JQual’s core rules are essentially identical to Javarifier’s. Like Javarifier,
JQual uses syntax-directed constraint generation, then solves the constraints us-
ing graph reachability, and reports limited experimental results. However, there
are some differences in the approaches. (1) Polymorphism: JQual discards our
support for Java generics, and with it any hope for compatibility with the Java
language. Instead, JQual generalizes our mutability polymorphism. Whereas
polyread introduces exactly one mutability parameter into a method definition,
JQual supports an arbitrary number. Given support for Java generics, we have
not yet found a need for multiple mutability parameters. (2) Expressiveness:
JQual generalizes Javarifier by being able in theory to infer any type qualifier,
not just ones for reference immutability. This generality comes with a cost. JQual
is tuned to simple “negative” and “positive” qualifiers that induce subtypes and
supertypes of the unqualified type; it appears too inexpressive for richer type sys-
tems. JQual was used to create an inference tool for a @ReadOnly qualifier, but it
lacks support for every other Javarifier keyword, for qualifiers on different levels
of an array, for immutable classes, and for various other features of Javari. Addi-
tionally, it has a limitation on inheritance that ignores qualifiers in determining
method overriding: it does not enforce the constraint, required for backward
compatibility with Java, that mutability qualifiers do not affect overriding. (3)
Scalability: Context- and flow-sensitive variants of the JQual algorithm exist,
but the authors report that they are unscalable, so in their experiments they
hand-tuned the application of these features. Even so, JQual has not been run
on substantial codebases, andm, , except for JOlden, crashed on all of our sub-
ject programs. By contrast, both Javarifier’s algorithm and its implementation
are scalable. (4) Evaluation: JQual’s output and input languages differ (e.g., it
has no surface syntax for its parametric polymorphism), so its analysis results do
not type check even in JQual. Artzi et al. [4] report that JQual’s recall (fraction
of truly immutable parameters that were inferred to be immutable) was 67%,
compared to 94% recall for a version of Javarifier without inference of assignable
or mutable fields. JQual misclassifies a receiver as mutable in method m if m reads
a field f that is mutated by any other method. JQual also suffered a few errors
in which it misclassified a mutable reference as immutable.

Javarifier and JQual can be viewed as extensions of the successful
CQual [12,13] type inference framework for C to the object-oriented context.

Inference of Reference Immutability 639

Constraint-based type inference has also been used for inferring atomicity an-
notations to detect races [7,11], inferring non-local aliasing [1], and supporting
type qualifiers dependent on flow-sensitivity (like read, write, and open) [13].

Pidasa [3] is a combined static and dynamic analysis for inferring parameter
reference immutability. Pidasa uses a pipeline of (intra- and interprocedural)
stages, each of which improves the results of the previous stage, and which can
leave a parameter as “unknown” for a future stage to classify. This results in a
system that is both more scalable and precise than previous work. Pidasa has
both a sound mode and also unsound heuristics for applications that require
higher precision and can tolerate unsoundness. By contrast, our work is purely
static, making it sound but potentially less precise. Another contrast is that our
definition is more expressive: our inference determines reference immutability for
fields and for Java generics/arrays. Artzi et al. [4] compare both the definitions
and the implementations of several tools including Javarifier, Pidasa, and JQual.

JPPA [27] is a previous reference immutability inference implementation.
(Sălcianu also provides a formal definition of parameter safety, but JPPA imple-
ments reference immutability rather than parameter safety.) JPPA uses a whole-
program pointer analysis, limiting scalability. Earlier work by Rountev [24] takes
a similar approach but computes a coarser notion of side-effect-free methods
rather than per-parameter mutability.

Reference immutability is distinct from the related notions of object immutabil-
ity and of parameter “safety” [27]; none of them subsumes the others. They are use-
ful for different purposes; for example, reference immutability is effective for spec-
ifying interfaces that should not modify their parameters (even though the caller
may do so), and for a variety of other purposes [29]. A method parameter is safe if
the method never modifies the object passed to the parameter during method invo-
cation. Effect analyses [8,26,23,25,17,16] can be used to compute safety or object
immutability, often with the assistance of a heavyweight context-sensitive pointer
analysis to achieve reasonable precision. (Like type qualifier inference, points-to
analysis aims to determine the flow of objects or values through the program.) Our
algorithm is much more scalable— the algorithm is flow-insensitive, and the base
algorithm is context-insensitive— but is tuned to take advantage of the parametric
polymorphism offered by both Java and Javari.

Porat et al. [21] and Liu and Milanova [15] propose immutability inference for
fields in Java, the latter in the context ofUML,but their definitions differ from ours.

Our focus in this paper is on inference of reference immutability. For reasons
of space, we cannot review the extensive literature proposing different variants
of immutability. We briefly mention type checkers for closely related notions
of reference immutability. Birka built a type-checker for an earlier dialect of
Javari that lacked support for Java generics, and wrote 160,000 lines of code
in Javari [6]. Correa later wrote a complete Javari implementation using the
Checkers Framework [20] and did case studies involving 13,000 lines of Javari [19].
The JQual inference system [14] (discussed above) can be treated as a type
checker. JavaCOP [2] is a framework for writing pluggable type systems for
Java. Like JQual, JavaCOP aims for generality rather than practicality. Also

640 J. Quinonez, M.S. Tschantz, and M.D. Ernst

like JQual, JavaCOP has been used to write a type checker for a small subset
of Javari. The checker handles only one keyword (readonly) and cannot verify
even that one in the presence of method overriding. Neither the checker nor any
example output is publicly available, so it is difficult to compare to our work.
Other frameworks that could be used for writing pluggable type systems include
JastAdd [9], JACK [5], and Polyglot [18].

8 Conclusion

This paper presents an algorithm for statically inferring the reference immutabil-
ity qualifiers of the Javari language. Javari extends the full Java language (includ-
ing generics, wildcards, and arrays) in a rich and practical way: for example, it
includes parametric polymorphism over mutability and permits excluding fields
from an object’s abstract state. To the best of our knowledge, ours is the first
inference algorithm for a practical definition of reference immutability.

The algorithm is both sound and precise. Its correctness has been experimen-
tally confirmed. The experiments also show that, like any conservative static
type system, the Javari language’s definition sometimes requires a reference to
be declared mutable even when no mutation can occur at run time.

The Javarifier tool infers immutability constraints and inserts them in either
Java source files or class files. Javarifier solves two important problems for pro-
grammers who wish to confirm that their programs are free of (a large class of)
mutation errors. First, it can annotate existing programs, freeing programmers
of that burden or revealing errors. Second, it can annotate libraries; because the
Javari checker conservatively assumes any unannotated reference is mutable, use
of any unannotated library makes checking of a program that uses it essentially
impossible. Together, these capabilities permit programmers to obtain the many
benefits of reference immutability at low cost.

Javarifier is publicly available for download at http://pag.csail.mit.

edu/javari/javarifier/.

References

1. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local
non-aliasing. In: PLDI, June 2003, pp. 129–140 (2003)

2. Andreae, C., Noble, J., Markstrum, S., Millstein, T.: A framework for implementing
pluggable type systems. In: OOPSLA, October 2006, pp. 57–74 (2006)

3. Artzi, S., Kieżun, A., Glasser, D., Ernst, M.D.: Combined static and dynamic
mutability analysis. In: ASE (November 2007)

4. Artzi, S., Quinonez, J., Kieżun, A., Ernst, M.D.: A formal definition and evaluation
of parameter immutability, December 2007 (under review)

5. Barthe, G., Burdy, L., Charles, J., Grégoire, B., Huisman, M., Lanet, J.-L., Pavlova,
M., Requet, A.: JACK: A tool for validation of security and behaviour of Java
applications. In: FMCO (October 2006)

6. Birka, A., Ernst, M.D.: A practical type system and language for reference im-
mutability. In: OOPSLA, October 2004, pp. 35–49 (2004)

Inference of Reference Immutability 641

7. Cooper, K.D., Kennedy, K.: Interprocedural side-effect analysis in linear time. In:
PLDI, June 1988, pp. 57–66 (1988)

8. Cooper, K.D., Kennedy, K.: Interprocedural side-effect analysis in linear time. In:
PLDI, June 1988, pp. 57–66 (1988)

9. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: OOPSLA, Oc-
tober 2007, pp. 1–18 (2007)

10. Ernst, M.D.: Annotations on Java types: JSR 308 working document (November 12,
2007), http://pag.csail.mit.edu/jsr308/

11. Flanagan, C., Freund, S.N.: Type inference against races. In: Static Analysis Sym-
posium, pp. 116–132 (2004)

12. Foster, J.S., Fähndrich, M., Aiken, A.: A theory of type qualifiers. In: PLDI, June
1999, pp. 192–203 (1999)

13. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: PLDI, June
2002, pp. 1–12 (2002)

14. Greenfieldboyce, D., Foster, J.S.: Type qualifier inference for Java. In: OOPSLA,
October 2007, pp. 321–336 (2007)

15. Liu, Y., Milanova, A.: Ownership and immutability inference for UML-based object
access control. In: ICSE, May 2007, pp. 323–332 (2007)

16. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to and side-effect analyses for Java. In: ISSTA, July 2002, pp. 1–11 (2002)

17. Nguyen, P.H., Xue, J.: Interprocedural side-effect analysis and optimisation in the
presence of dynamic class loading. In: ACSC, February 2005, pp. 9–18 (2005)

18. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An Extensible Compiler
Framework for Java. In: Hedin, G. (ed.) CC 2003 and ETAPS 2003. LNCS,
vol. 2622, pp. 138–152. Springer, Heidelberg (2003)

19. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Pluggable type-
checking for custom type qualifiers in Java. Technical Report MIT-CSAIL-TR-
2007-047, MIT CSAIL (September 17, 2007)

20. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-
gable types for Java. In: ISSTA (July 2008)

21. Porat, S., Biberstein, M., Koved, L., Mendelson, B.: Automatic detection of im-
mutable fields in Java. In: CASCON (November 2000)

22. Quinonez, J.: Inference of reference immutability in Java. Master’s thesis, MIT
Dept. of EECS (May 2008)

23. Razafimahefa, C.: A study of side-effect analyses for Java. Master’s thesis, School
of Computer Science, McGill University, Montreal, Canada (December 1999)

24. Rountev, A.: Precise identification of side-effect-free methods in Java. In: ICSM,
September 2004, pp. 82–91 (2004)

25. Ryder, B.G., Rountev, A.: Points-to and Side-Effect Analyses for Programs Built
with Precompiled Libraries. In: Wilhelm, R. (ed.) CC 2001 and ETAPS 2001.
LNCS, vol. 2027, pp. 20–36. Springer, Heidelberg (2001)

26. Ryder, B.G., Landi, W.A., Stocks, P.A., Zhang, S., Altucher, R.: A schema
for interprocedural modification side-effect analysis with pointer aliasing. ACM
TOPLAS 23(2), 105–186 (2001)

27. Sălcianu, A., Rinard, M.C.: Purity and Side Effect Analysis for Java Programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

28. Tschantz, M.S.: Javari: Adding reference immutability to Java. Master’s thesis,
MIT Dept. of EECS (August 2006)

29. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java. In:
OOPSLA, October 2005, pp. 211–230 (2005)

Computing Stack Maps with Interfaces

Frédéric Besson1, Thomas Jensen2, and Tiphaine Turpin3

1 Inria
2 CNRS

3 Université de Rennes I
first.last@irisa.fr

Abstract. Lightweight bytecode verification uses stack maps to anno-
tate Java bytecode programs with type information in order to reduce the
verification to type checking. This paper describes an improved bytecode
analyser together with algorithms for optimizing the stack maps gener-
ated. The analyser is simplified in its treatment of base values (keeping
only the necessary information to ensure memory safety) and enriched
in its representation of interface types, using the Dedekind-MacNeille
completion technique. The computed interface information allows to re-
move the dynamic checks at interface method invocations. We prove
the memory safety property guaranteed by the bytecode verifier using
an operational semantics whose distinguishing feature is the use of un-
tagged 32-bit values. For bytecode typable without sets of types we show
how to prune the fix-point to obtain a stack map that can be checked
without computing with sets of interfaces i.e., lightweight verification is
not made more complex or costly. Experiments on three substantial test
suites show that stack maps can be computed and correctly pruned by
an optimized (but incomplete) pruning algorithm.

1 Introduction

The Java bytecode verifier, which is part of the Java Virtual Machine (JVM) [13],
is a central component of Java security. At load time, the verifier checks that the
bytecode conforms to the JVM typing policy. Together with additional dynamic
checks this enables the virtual machine to run safely untrusted bytecodes such
as web applets or mobile phone midlets. While the standard bytecode verifier
performs a dataflow analysis on the bytecode the lightweight bytecode verifier [4]
only checks the analysis result (which is called a stack map) that is shipped with
the bytecode. It was originally designed for resource-constrained devices but the
mainstream Java 2 Standard Edition (J2SE) is now moving towards lightweight
bytecode verification, with slightly enhanced stack maps (see JSR 202 [9]).

A particular issue for the type inference performed in bytecode verification is
the possibility for a class to implement several interfaces. The problem arises as
soon as the language has multiple inheritance (only for interfaces, in the case
of Java). This implies that the type hierarchy is not a lattice and prevents the
computation of a unique most precise type for some variables, unless using sets
of types. For simplicity, the choice made in the original verifiers (both standard

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 642–666, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Computing Stack Maps with Interfaces 643

void foo(boolean b) {
if (b) {

(1) i:=new A() ;
} else

(2) i:=new B();
(3) }
(4) i.m1();
(5) i.m2();
}

(a) Main method

Object

I2

I1 ∧ I2

I1

C I3

I3 ∧ I4

I4

A B

(b) Type hierarchy

Fig. 1. A Java bytecode program and its type hierarchy

and lightweight) was to ignore interfaces in bytecode verification and to make
the necessary checks dynamically. This choice has been maintained in JSR 202.

We propose to extend the bytecode analysis to check interfaces statically, using
conjunctions of types, and then to prune the result to get a stak map without
conjunctions that can be fed to an almost unmodified checker. This does not
work for every bytecode, but it applies to bytecode obtained by compilation of
Java programs. As a result, the dynamic checks on interface methods may be
safely removed for free. We describe the case of (idealised) Java bytecode, but
the solution would apply to a more general use of multiple inheritance.

In this paper, the term analysis refers to the typing process that produces
stack maps, checking is the validation of those stack maps on the consumer’s
side, and verification encompasses analysing, possibly pruning, and checking.

Motivating Example. Figure 1 provides a small example which illustrates
the existing verification and its extension to conjunctive types. Figure 1a rep-
resents a bytecode program written in pseudo Java, without type information.
We suppose a type hierarchy with three classes A, B and C and four interfaces
Ii (i ∈ [1, . . . , 4]) where C implements and I3 extends I1 and I2, and A and B
implements I3 and I4. Each interface Ii declares a method mi. Figure 1b shows
the completion of the type hierarchy that is used by our enhanced analyser,
which adds the elements I1 ∧ I2 and I3 ∧ I4 to the type hierarchy.

The standard bytecode verifier ignores interfaces. Thus, in method foo, the
variable i at program point 3 is given as type the first common super-class of A
and B, i.e., Object. Note also that the call to each method mi is in fact a call
to the method of interface Ii, where it is declared. When analysing those calls,
the bytecode verifier only checks statically that the variable i contains an object
type. At run-time, the JVM dynamically checks whether the object referenced
by i implements I1 and I2, before doing a lookup with respect to the dynamic
type of i. If it is not the case, a run-time exception is thrown.

644 F. Besson, T. Jensen, and T. Turpin

Our extended analizer will type the example program using conjunctions
of types, and in particular, the variable i at program point 3 will have type
I3 ∧ I4, which is propagated at program points 4 and 5. As this is a sub-type
of both I1 and I2, this ensures that the two method calls are safe. However,
for the purpose of lightweight bytecode verification, it is desirable to avoid an-
notating the variables with conjunctions. The backtracking pruning algorithm
proposed in Section 4 detects that in the above conjunction, only I3 is needed to
type the subsequent method invocations, hence it removes I4. In the resulting
stack map, the variable i has therefore the type I3 at program points 3, 4 and 5.

The example also shows that opting for a backward program analysis does
not simplify the problem. An analyser which starts from the invocation sites
and propagates these “uses” of a variable to the point of definition would still
require the use of conjunctions and lead to a back-tracking algorithm. With
such a technique, the variable i at program point 5 would get the type I2. The
problem arises when typing i at program point 4: it must be the intersection of
I1 and I2, which requires either to introduce the conjunction I1 ∧ I2, or to
choose one of the types C and I3. The right choice can only be made knowing
the creation sites 1 and 2, hence the need for a backtraking algorithm.

Organisation of the Paper. The formal development of these ideas is done
in Sections 2–4. We define the intraprocedural part of a small-step operational
semantics with big-step calls for a subset of the Java bytecode (Section 2), with
a low-level treatment of values that allows for a convincing definition of the
memory safety property (which is the base for all other security properties). The
analysis is presented in Section 3 in terms of an abstract interpretation [5]. We
define the notions of stack maps and lightweight verification for a method, and
state the main soundness theorem of the stack maps produced by the analysis.
Section 4 describes the pruning algorithms that remove conjunctive types from
those stack maps. We give an efficient algorithm that works in all but some
well-identified, pathological cases, that do not seem to occur in average Java
programs. We report on some experiments on verifying Soot, Eclipse and a suite
of Java MIDP applets for mobile phones with a prototype implementation in
Section 5. Related work is discussed in Section 6 and Section 7 concludes.

Notations. Sets have long italic names, other constants and constants functions
are in roman, with the exception of bytecode instructions for which we use
sans serif. Meta-variables have short lowercase italic names, except that we write
C, I, F � for classes, interfaces and abstract transfer functions, respectively.

For sets a and b, we write a ⇀ b for the set of partial functions from a to b. If
f is a partial function, dom(f) is the domain of f , and any boolean expression e
containing a sub-expression f(e′) implicitely means: e′ ∈ dom(f) ∧ e. We note
|x| for the cardinal of the set x, or the cardinal of its domain if x is a function. If
f is a function (or a partial function), we note f [x ← v] the function that maps
x to v and any y �= x to f(y).

Cartesian product takes precedence over other set operations: × ≺ ∪, →, ⇀.

Computing Stack Maps with Interfaces 645

2 Intraprocedural Semantics and Memory Safety

In this section we define formally our bytecode language and its semantics, and
state the memory safety property that we ensure. We define the semantics (and
safety) of one single method, parameterised by the semantics of the (direct)
method calls it may involve. The interprocedural part of the semantics (which
is essentially defined as a least fix-point of the intraprocedural semantics) and
the proof that the safety property can be lifted to whole programs are omitted
for space reasons. Details can be found in section 4 of a companion technical
report [2].

2.1 The Java Bytecode Language

We present a minimal subset of the language, abstracting away irrelevant features
(such as the operand stack) while keeping the main aspects (objects, interface
methods) that are relevant to typing. The subset is sufficiently representative
for the results to extend to the whole Java bytecode. We list some features
that are absent from our language. The local operand stack is a feature of the
bytecode that has no impact on the abstract domain used for the verification.
For this reason, we replace actual bytecode instructions by three-address style
instructions that directly operate on local variables. Constant fields and static
or interface members, exceptions, void methods, basic types others than int,
sub-routines, threads, class and objects initialisation, access control (visibility),
as well as explicit type checks (the checkcast instruction) are not considered. We
discuss their impact on this study in Section 5.1. Also, for conciseness we use
less specialised instructions than the real JVM (for example, we merge iaload
and aaload, ireturn and areturn).

Let ident be the set of fully qualified Java identifiers. We assume a set class ⊂
ident of class names with a distinguished element Object, and a disjoint set
interface ⊂ ident of interface names. We define the set of types recursively as:

type ::= int | C | I | t []

where C ∈ class , I ∈ interface , and t ∈ type.
The class hierarchy is modeled by the following three functions:

super : class \ {Object} → class
implements : class → P(interface)
extends : interface → P(interface)

The function super must be the ancestor function of a tree with root Object:

∀C ∈ class ∃i ≥ 0 superi(C) = Object.

A method signature is made of an object type, an identifier and a list of
parameter types. We assume a subset msig of such signatures which represents
the methods that are declared in the program being verified:

msig ⊂ {t .m(t1, . . . , tn) | t ∈ type \ {int},m ∈ ident , ti ∈ type}

646 F. Besson, T. Jensen, and T. Turpin

Note that we have a virtual method signature if t is a class or an array type, and
an interface method signature otherwise. We let arity(t .m(t1, . . . , tn)) = n. Each
method signature has a return type given by the function result : msig → type.

A field signature is made of a class name, an identifier and a type. We assume
a subset fsig of such signatures:

fsig ⊂ {C.f : t | C ∈ class , f ∈ ident , t ∈ type}

Note that C.f : t represents a field declared in class C, and consequently, the
set of fields that are relevant for a given class of objects must be looked for in
its super-classes too (see the function fields in Section 2.2).

As stated in the introduction, we only consider the verification of one “cur-
rent” method. We write var for the set of local variables of the method to
verify and arg ⊆ var for its set of formal parameters, whose types are de-
scribed by the function targ : arg → type. The return type of the current
method is denoted by tret ∈ type. Program points are represented by the in-
terval ppoint = [0, |ppoint | − 1]. Expressions and instructions are defined as
follows. Here, C ranges over classes, t over types, ms over method signatures, fs
over field signatures, x, y, z, xi over local variables, and p over program points.

expr ::= n n ∈ [−231, 231 − 1]
| null | y + z | new C | y.fs | new t [y] | y[z]
| y.ms(x1, . . . , xarity(ms))

instr ::= x := e e ∈ expr
| x.fs := y | x[y] := z | goto p | if x < y p | return x

The method code is represented by the function code : ppoint → instr mapping
program points to instructions. The last instruction code(|ppoint | − 1) must be
either goto p for some p or return x for some x.

These last definitions enforce some well-formedness constraints on the code:
the execution remains within the bounds of the code and cannot fall through
the end, only valid local variables are referred to, and methods are always called
with the right number of arguments. These properties are normally checked by
the bytecode verifier prior to the type verifications.

2.2 Semantics

The operational semantics is defined as a small-step transition relation between
program states (except for method calls which are big-step). A distinguishing
feature of our semantic model is that we use a single data type of 32-bit values
both for signed integer values and memory locations (note that objects and
arrays are still annotated with their dynamic type in the heap, as in actual JVM
implementations). This differs from most other formalisations where a disjoint
set of locations is used (or equivalently, values are tagged with their type), this
choice being only informally justified, as e.g. by Pusch [14]:

Computing Stack Maps with Interfaces 647

“[. . .] the type information is not used to determine the operational
semantics of (correct) JVM code.”

Barthe, Dufay, Jakubiec and de Sousa [1] formalized this intuition by considering
the actual virtual machine (which is called offensive) as an abstraction of the
tagged (defensive) machine, and proving that the former correctly abstracts the
latter, whenever the latter does not raise a type error (which is true for verifiable
bytecode). Working directly with an untagged semantics immediately frees us
from the risk of making unwanted implicit typing assumptions.

A precise model of the memory layout of objects and arrays is however not
necessary. It is enough to use functions, state explicitly their domain and not
use them outside of it; any concrete representation, for example that maps these
domains to sets of offsets, will conform to this model, if the allocator keeps track
of the range of objects and does not make them overlap.

Errors. We make an important distinction between two kinds of errors:

– Runtime errors that are checked for dynamically and cause the JVM to raise
an exception, such as accessing an array out of bounds or putting an element
of the wrong type in it, are represented by the absence of transition.

– Actual type errors (called linking errors in the JVM specification) that vi-
olate the assumptions that a virtual machine implementation is allowed to
make about the code (see [13]), such as dereferencing an integer, or accessing
a non-existing field of an object, are represented by a transition to the spe-
cial state error. This second kind of errors must be correctly handled by the
bytecode verification, as the behavior of the virtual machine is unspecified
for those cases, and in practice this can result in a crash (in the optimistic
case) or the by-passing of access controls.

In the current JVM, the invokeinterface instruction raises the exception
IncompatibleClassChangeError if the receiver of the method does not
implement the interface. Because our enhanced bytecode verifier will also type-
check interfaces, we shift this exception from the class of runtime errors to the
class of type errors. In our semantics, interface calls are dealt with like virtual
calls and it is a type error if the receiver of an interface call does not implement
the desired interface. Remark that the runtime errors raised in the explicit cast
instruction (which we don’t consider) are not removed by this technique.

Objects, Arrays and States. We write word for the set of 32-bit values.
Values are used to represent signed integers as well as memory locations. We
let fields : class → P(fsig) be the function that returns the set of (transitively
inherited) fields of a class:

fields(C) = {C.f : t ∈ fsig} ∪
{

fields(super(C)) if C �= Object
∅ otherwise

An object is a pair 〈C, o〉 where C ∈ class and o : fields(C) → word gives
the value of the relevant fields. We write object for the set of objects. We let

648 F. Besson, T. Jensen, and T. Turpin

array be the set of arrays, annotated with their element type (which can be
an array type). We define heap as the sets of partial mappings from non-zero
values to objects and arrays. The memory allocator is represented by a partial
function alloc : heap ⇀ word \ {0} that maps a heap h to a value that is
not defined in h (the absence of value represent the failure of the allocation)1:
∀h ∈ heap alloc(h) = v =⇒ v �∈ dom(h). A program state s = 〈h, l , p〉 consists
of a heap, a (total) mapping from variables to values, and a program point.

object = {〈C, o〉 | C ∈ class , o : fields(C) → word}
array = {〈t , a〉 | t ∈ type, a : [0, n− 1] → word , n ≥ 0}
heap = word \ {0}⇀ (object ∪ array)
state = heap × (var → word)× ppoint

Dynamic Typing. We first recall the standard sub-typing order ⊆ type×type
induced by the functions super, implements and extends. Note that, in J2SE, every
array type is a sub-type of the two interfaces Cloneable and Serializable.

t t
t t ′ t ′ t ′′

t t ′′
t t ′

t [] t ′[]

C super(C)
I ∈ implements(C)

C I

I ′ ∈ extends(I)
I I ′

I Object t [] Cloneable t [] Serializable

The key properties that are actually used in the following are i) that is a
partial order ii) the existence of the maximum element (which is called Object
in this case) iii) the covariant ordering of array types (third rule in the first line)
and of course the link with the functions super, implements and extends, for the
language that we consider.

The dynamic typing relation h � v : t between heaps, 32-bit values and types
is defined as follows:

h � v : int h � 0 : t

h(v) = 〈C, o〉 ∈ object C t
h � v : t

h(v) = 〈t , a〉 ∈ array t [] t ′

h � v : t ′

It is worth noting that dynamic types can be checked efficiently by at most a
heap access and a sub-typing check. This is important as such an operation is
used by the concrete semantics of array assignment.

Method Calls. Let bigstep be the type of big-step semantics for methods.

bigstep = P

⎛⎝⋃
n≥0

((heap × word × wordn)× (heap × word ∪ {error}))

⎞⎠
1 This is not completely accurate, as the allocation also depends on the needed size.

Computing Stack Maps with Interfaces 649

Let bs ∈ bigstep and 〈〈h, this , args〉, r〉 ∈ bs . this represents the object on which
the method is to be invoked, and args represents the list of the arguments. The
result r is either the error constant or a pair 〈h′, v〉 ∈ heap × word where v is
the returned value and h′ is the heap obtained by running the method from the
initial heap h. The direct method calls that may arise during the execution of
the current method are represented by associating a big step transition relation

ms−→ ∈ bigstep

to each method signature ms (note that the relation for one method signature
may correspond to several methods due to dynamic binding). As the relation is
supposed to represent every possible call without any assumption on the argu-
ments, is must be defined even for ill-typed ones, possibly with the result error.
Also, we make no hypothesis on the correctness of the invoked method yet, thus
the error state may be returned even for arguments of the right type. The ab-
sence of transition from a particular list of arguments represents non-termination
or a runtime exception.

Transition Relation. The semantics itself is given in Figure 2 by the transition
relation

→ ⊆ state × (state ∪ heap × word ∪ {error})
A couple of features in this semantics merit explanation: Writing to a field (see

Figure 2b) always succeeds (provided the field exists for the target object), even
if the value that is written is not of the right type. This is not a safety violation
in itself; only a future misuse of this bad value would be an error. Writing to an
array always triggers a dynamic check2 and the execution is stuck if the value
stored in the array is not a sub-type of the array’s own type, or if the index is out
of bounds. Remember that a run-time exception of virtual machine is modelled

�n�h,l = n (32-bit signed encoding)
�null�h,l = 0
�y + z�h,l = l(y) + l(z)

�y.fs�h,l =

o(fs) if h(l(y)) = 〈C,o〉 ∈ object ∧ fs ∈ fields(C)
⊥ if l(y) = 0
error if l(y) �= 0 ∧ l(y) �∈ dom(h)

∨ h(l(y)) �∈ object
∨ h(l(y)) = 〈C, o〉 ∈ object ∧ fs �∈ fields(C)

�y[z]�h,l =
a(l(z)) if h(l(y)) = 〈t , a〉 ∈ array ∧ 0 ≤ l(z) < |a|
⊥ if l(y) = 0 ∨ h(l(y)) = 〈t , a〉 ∈ array ∧ ¬ 0 ≤ l(z) < |a|
error if l(y) �= 0 ∧ l(y) �∈ dom(h) ∨ h(l(y)) �∈ array

(a) Semantics �e�h,l ∈ word ∪ {error,⊥} of a side-effect free expression e in context h, l

Fig. 2. Semantics of Java bytecode

2 This is unavoidable with the covariant arrays of the Java type system.

650 F. Besson, T. Jensen, and T. Turpin

�x := e�(h, l) =

h, l [x ← �e�h,l]
if �e�h,l �∈ {⊥, error}

⊥ if �e�h,l = ⊥
error if �e�h,l = error

if e �∈ {y.ms(· · ·),
new C,

new t [y]}

�x := new C�(h, l) =
h[v ← 〈C, λfs ∈ fields(C).0〉], l [x ← v]

if alloc(h) = v

⊥ if h �∈ dom(alloc)

�x := new t [y]�(h, l) =
h[v ← 〈t , λi ∈ [0, l(y)− 1].0〉], l [x ← v]

if l(y) ≥ 0 ∧ alloc(h) = v

⊥ if l(y) < 0 ∨ h �∈ dom(alloc)

�x.fs := y�(h, l) =

h[l(x)← 〈C, o[fs ← l(y)]〉], l
if h(l(x)) = 〈C, o〉 ∈ object ∧ fs ∈ fields(C)

⊥ if l(x) = 0
error if l(x) �= 0 ∧ l(x) �∈ dom(h)

∨ h(l(x)) �∈ object
∨ h(l(x)) = 〈C, o〉 ∈ object ∧ fs �∈ fields(C)

�x[y] := z�(h, l) =

h[l(x)← 〈t , a[l(y)← l(z)]〉], l
if h(l(x)) = 〈t , a〉 ∈ array
∧ h � l(z) : t ∧ 0 ≤ l(y) < |a|

⊥ if l(x) = 0
∨ l(x) = 〈t , a〉 ∈ array
∧ ¬ (h � l(z) : t ∧ 0 ≤ l(y) < |a|)

error if l(x) �= 0 ∧ l(x) �∈ dom(h) ∨ h(l(x)) �∈ array

(b) Semantics �i� : heap × (var → word) → (heap × (var → word) ∪ {error,⊥}) of a
non-branching intraprocedural instruction i

i �∈ {goto p, if · · · , return x, x := y.ms(· · ·)} �i�(h, l) �= ⊥
h, l

i−→ �i�(h, l) h, l
return x−→ h, l(x)

h, l(y), l(x1), . . . , l(xn)
ms−→ h ′, v

h, l
x:=y.ms(x1,...,xn)−→ h ′, l [x← v]

h, l(y), l(x1), . . . , l(xn)
ms−→ error

h, l
x:=y.ms(x1,...,xn)−→ error

(c) Semantics
i−→ ⊆ (heap× (var → word))× (heap× (var → word)∪heap×word ∪

{error}) of a non-branching instruction i

code(p) �∈ {goto p′, if · · · } h, l
code(p)−→ r r ∈ heap × word ∪ {error}

〈h, l , p〉 → r

code(p) �∈ {goto p′, if · · · } h, l
code(p)−→ h ′, l ′

〈h, l , p〉 → 〈h ′, l ′, p + 1〉
code(p) = goto p′

〈h, l , p〉 → 〈h, l , p′〉
code(p) = if x < y p′ l(x) < l(y)

〈h, l , p〉 → 〈h, l , p′〉
code(p) = if x < y p′ l(x) ≥ l(y)

〈h, l , p〉 → 〈h, l , p + 1〉

(d) Small step transition relation → ⊆ state × (state ∪ heap × word ∪ {error})

Fig. 2. Semantics of Java bytecode (continued)

Computing Stack Maps with Interfaces 651

in our setting by the execution being stuck. Finally, in Figure 2c, it is important
to remember that a method call can occur with ill-typed arguments, and that
the invoked method itself can be ill-typed, hence the rule for propagating the
error state.

2.3 Memory Safety

We give a modular definition of memory safety that is stronger than what is
actually needed for a complete program: it includes the preservation of the well-
typedness of the heap, and the fact that the heap is only extended, which is
needed to ensure a global safety. This property requires some prior definitions
to express those accurate invariants about the heap.

Well Typed Heaps. The following relation expresses that a heap is consistent.

∀v ∈ word \ {0}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v �∈ dom(h)

∨ h(v) = 〈C, o〉 ∈ object
∧ ∀C′.f : t ∈ fields(C) h � o(C′.f : t) : t

∨ h(v) = 〈t , a〉 ∈ array
∧ ∀i ∈ [0, |a| − 1] h � a(i) : t

h � h

Ordering on Heaps. The relation � expresses the preservation of existing
objects between two heaps.

∀v ∈ word \ {0}

⎧⎨⎩
v �∈ dom(h)

∨ h(v) = 〈C, o〉 ∈ object ∧ h′(v) = 〈C, o′〉 ∈ object
∨ h(v) = 〈t , a〉 ∈ array ∧ h′(v) = 〈t , a′〉 ∈ array

h � h′

Modular Memory-Safety. Definition 1 introduces the general safety property
for the transition relation associated with a method. We need to give two variants
of it since we use slightly different formalisations for the transition relation of
the current method and the relations representing method calls. As errors are
immediately propagated in the semantics, it is sound to define the safety as the
unreachability of error in the outermost invocation.

Definition 1. The relation → ⊆ state× (state ∪(heap×word)∪{error}) is safe
with respect to targ and tret if for all h, l such that h � h ∧ ∀x ∈ arg h �
l(x) : targ(x) then 〈h, l , 0〉 �→∗ error and 〈h, l , 0〉 →∗ h′, v =⇒ h � h′ ∧ h′ �
h′ ∧ h′ � v : tret.

Similarly, a transition relation ms−→ ∈ bigstep is safe with respect to the sig-
nature ms = t .m(t1, . . . , tn) if for all h, v, v1, . . . , vn such that h � h ∧ h � v :
t ∧ ∀i ≤ n h � vi : ti then h, v, v1, . . . , vn � ms−→ error and h, v, v1, . . . , vn

ms−→
h′, v′ =⇒ h � h′ ∧ h′ � h′ ∧ h′ � v′ : result(ms).

652 F. Besson, T. Jensen, and T. Turpin

Memory Safety and Security. In this paper we focus on memory safety which
is just one aspect of the security of Java bytecode. Memory safety ensures that
the virtual machine will not crash when executing the program but the secure
execution of untrusted bytecode requires stronger properties. A common (infor-
mal) security requirement is that a program should not be able to forge a pointer
to a heap location that it is not supposed to have access to; this is not easy to de-
fine formally without instrumenting the semantics. With the semantics defined in
this section we can prove that a method whose return type is a reference type will
return a heap location that is either unnallocated in the initial heap or reachable
through the (reference) arguments with which the method was invoked. This is
ensured by the analysis of Section 3 without any modification: only the proofs
must be extended by strengthening the concretisation function for the abstract
domain. This is still too simplistic, as it does not distinguish between private
or public fields, nor does it account for the fact that an untrusted program can
be given controlled access to some (private) objects through the invocation of
trusted methods from the API. Nevertheless, even though the memory safety
defined here does not in itself imply any access restriction property, the analysis
by which we ensure memory safety represents a large part of what is needed to
ensure security, as shown by Leroy and Rouaix [12] who formalize such stronger
security properties and give sufficient conditions, in addition to well-typedness,
for an applet to be safe with respect to these properties.

3 Extended Bytecode Typing

In this section we present an extended abstract domain for bytecode verification
and prove it sound with respect to the semantics. The main difference with the
standard verifier is the use of interfaces in types, which make the runtime check in
the “invokeinterface” instruction unnecessary. Another difference is that integers
are abstracted by �v. This simplifies the presentation and the stack maps.

3.1 Abstract Domain

The abstract domain elements are called stack maps in the context of Java
bytecode verification, as they normally map program points to abstract operand
stacks. We keep this name even though the stack is absent in our setting. Our
abstract domain associates a type to each variable at each program point. This
type is either �v (for non-reference values), null, or a conjunction of object (or
array) types.

value� ::= null | �v

| t1 ∧ · · · ∧ tn n ≥ 1, ti ∈ type \ {int},
∀i, j ≤ n ti tj =⇒ i = j

state� = var → value�

map = ppoint → state�

state��s

⊥s
= state� ∪ {⊥s,�s}

Computing Stack Maps with Interfaces 653

The two special abstract states ⊥s and �s indicate respectively an unreachable
program point and the possibility of the (concrete) error state being reachable.
We also define the abbreviation state��s

⊥s
. Conjunctions are defined up to the

order, i.e., t ∧ t ′ = t ′ ∧ t .
A conjunction is to be interpreted as the set of objects that are a member of

every atomic type in it. Note that we only consider conjunctions of unordered
atomic types. This is necessary to be able to define an order on abstract values
and not just a pre-order, and also to make the concretisation (almost) injective
(as adding a super-type of another conjunct does not change the concretisation of
a conjunction). Another isomorphic solution is to consider upward-closed (with
respect to) sets of atomic types. We choose the first representation which is
more compact and hence allows us to compute least upper bounds efficiently
(see below).

The following definition identifies a subset of stack maps in which we want to
choose a “certificate” to send with the current method.

Definition 2. A stack map m ∈ map is conjunction-free if all of its conjunc-
tions t1 ∧ · · · ∧ tn are reduced to one element (i.e., n = 1).

Concretisation. We define the concretisation functions γh : value� → P(word),
h ∈ heap, γp : state��s

⊥s
→ P(state ∪ {error}), p ∈ ppoint and γ : (value� ∪

{�s}) → P((heap × word) ∪ {error}) by

γh(�v) = word
γh(null) = {0}
γh(t1 ∧ · · · ∧ tn) = {v ∈ word | ∀i ≤ n h � v : ti}

γp(⊥s) = ∅
γp(�s) = state ∪ {error}
γp(l �) = {〈h, l , p〉 ∈ state | h � h ∧ ∀x ∈ var l(x) ∈ γh(l �(x))}

γ(�s) = heap × word ∪ {error}
γ(v�) =

{
h, v | h � h ∧ v ∈ γh (v�)

}
.

Partial Order, Least Upper Bound and Transfer Function. The partial
orders �v ⊆ value� × value� and � ⊆ state��s

⊥s
× state��s

⊥s
are defined by the

following rules:

null �v v� v� �v �v

∀j ≤ n′ ∃i ≤ n ti t ′j
t1 ∧ · · · ∧ tn �v t ′1 ∧ · · · ∧ t ′n′

⊥s � s� s� � �s

∀x ∈ var l �(x) � l ′�(x)

l � � l ′�

654 F. Besson, T. Jensen, and T. Turpin

The (commutative) least upper bound operators �v : value�×value� → value�

and � : state��s

⊥s
× state��s

⊥s
→ state��s

⊥s
are defined by

null �v v� = v�

v� �v �v = �v

t1 ∧ · · · ∧ tn
�v t ′1 ∧ · · · ∧ t ′n′

=
{

let T = {t ∈ type | ∃i ≤ n, j ≤ n′ ti t ∧ t ′j t}
in
∧{t ∈ T | ∀t ′ ∈ T t ′ t =⇒ t ′ = t}

⊥s � s� = s�

s� ��s = �s

l � � l ′� = λx.l �(x) �v l ′�(x).

The least upper bound of two (non-empty) conjunctions is always defined (and
non-empty), because Object is a super type of all reference types (including
interfaces and array types). The second line in the least upper bounds of two
conjunctions ensures that we keep only maximal atoms. The actual computation
of the least upper bound of two conjunctions can be performed efficiently: as
only minimal types t ∈ T will be kept, it is sufficient to find the first super-
class and/or super-interfaces of each pair ti, t ′j , which is done by traversing the
hierarchy above ti and t ′j . Figure 3 defines the abstract semantics as two relations:

−→ ⊆ ppoint × (state� → state��s

⊥s
)× ppoint

−→ ⊆ ppoint × (state� → value�)

3.2 Correctness of the Abstraction

Lemma 1 ensures the consistency of the partial order with respect to the con-
cretisation, which is crucial for the correctness of the verification.

Lemma 1. For all h ∈ heap and v�, v′� ∈ value�, if v� �v v′� then γh(v�) ⊆
γh(v′�). For all p ∈ ppoint and s�, s′� ∈ state��s

⊥s
, if s� � s′� then γp(s�) ⊆

γp(s′
�). For all v�, v′� ∈ value� ∪ {�s}, if v′� = �s ∨ v� �v v′� then γ(v�) ⊆

γ(v′�).

The least upper bound operator is used during the fix-point computation and
must be correct for the analyser to be correct (but not for the checker).

Lemma 2. For all v�, v′� ∈ value�, v� �v v′� 'v v� and v� �v v′� 'v v′�. For
all s�, s′� ∈ state��s

⊥s
, s� � s′� ' s� and s� � s′� ' s′�.

The core of the correctness of the checker (and of the analyser) resides in
Lemma 3 which says that the concrete transition relation is correctly approxi-
mated.

Lemma 3. Suppose that for every signature ms the relation ms−→ is safe with
respect to ms (see Definition 1). Let s ∈ state, r ∈ state∪(heap×word)∪{error},
p ∈ ppoint and l � ∈ state� such that s → r and s ∈ γp(l �). Then one of the
following holds:

Computing Stack Maps with Interfaces 655

�n�

l� = "v

�null�

l� = null

�y + z�

l� = "v

�new C�

l� = C

�new t [y]�

l� = t []

�y.fs�

l� =
t if fs = C.f : t ∧ l (y) �v C

"s otherwise

�y[z]�

l� =
t if l (y) = t [] t ∈ type

⊥s if l (y) = null
"s if l (y) �∈ {null} ∪ {t [] | t ∈ type}

�y.ms(x1, . . . , xn)�

l� =

result(ms)
if ms = t .m(t1, . . . , tn)

∧ l (y) �v t ∧ ∀i ≤ n l (xi) �v ti
"s otherwise

(a) Abstract semantics �e�

l� ∈ value ∪ {⊥s,"s} of an expression e in the abstract

context l

�x := e�(l) =

l [x ← �e�

l�]

if �e�

l� �∈ {⊥s,"s}
⊥s if �e�

l� = ⊥s

"s if �e�

l� = "s

�x.fs := y�(l) =
l if fs = C.f : t

∧ l (x) �v C ∧ l (y) �v t
"s otherwise

�x[y] := z�(l) =
l if l (x) = t [] t ∈ type
⊥s if l (x) = null

"s if l (y) �∈ {null} ∪ {t [] | t ∈ type}

(b) Abstract semantics �i� : state → state �s
⊥s

of a non-branching instruction i

(i �= return x)

code(p) �∈ {return x, goto p′, if · · · }

p
�code(p)��

−→ p + 1

code(p) = goto p′

p
λl�.l�−→ p′

code(p) = if x < y p′

p
λl�.l�−→ p′

code(p) = if x < y p′

p
λl�.l�−→ p + 1

code(p) = return x

p
λl�.l�(x)−→

(c) Abstract transition relations −→ ⊆ ppoint × (state → state�s
⊥s

) × ppoint and
−→ ⊆ ppoint × (state → value)

Fig. 3. Abstract semantics of Java bytecode

656 F. Besson, T. Jensen, and T. Turpin

1. p
F �

−→ p′ and r ∈ γp′(F �(l �)) for some p′ and F �, or

2. p
F �

−→ and r ∈ γ(F �(l �)) for some F �.

Furthermore, the functions F � are monotone.

Formal proofs can be found in the technical report [2].

3.3 Analysis and Checking

The following definition introduce the notion of witness of the current method
whose signature is given by targ and tret.

Definition 3. A witness is a stack map m ∈ map such that

1. ∀x ∈ var m(0)(x) 'v

{
targ(x) if x ∈ arg
�v otherwise

2. ∀p, p′ ∈ ppoint p
F �

−→ p′ =⇒ F �(m(p)) � m(p′)

3. ∀p ∈ ppoint p
F �

−→ =⇒ F �(m(p)) �v tret

Note that by definition of stack maps, witnesses contain no �s or ⊥s. This
correspond respectively to the assumptions that the code should type without
error, and that even dead code should be typable. This second condition is
necessary for the pruning to work.

The following lemma shows that the memory safety property can be ensured
by simply checking that some given stack map is a witness, and shows how to
compute the least witness. The next section will show that, for Java programs,
the least witness can be pruned resulting in a witness without conjunction.

Theorem 1. Suppose that every relation ms−→ is safe with respect to ms (see
Definition 1). If there exists a witness m then the relation → is safe with respect
to targ and tret. Moreover, the least witness3 (if there exists a witness) can be
computed by fixpoint iteration.

The proof can be found in the technical report [2].

4 Lightweight Verification by Fix-Point Pruning

In the previous section we formalised a bytecode analysis extended to inter-
faces, using conjunctions of types in the abstract domain. The drawback of this
extension is its computational cost, especially in terms of memory, that could
make it unapplicable on the smallest Java capable devices. We will now present
an additional step to the lightweight verification setting that removes the need
for computations of sets of types on the consumer side by computing a witness
without conjunction, if the safety of the program does not rely on them. This is
the case for programs compiled from Java in particular.
3 The abstract state ⊥s is not a witness by definition, but the state λx ∈ var .null is a

minimum of state. Thus, if the set of witnesses is not empty, it has a least element.

Computing Stack Maps with Interfaces 657

public static void main(String [] args) {
I3 ∧ I4 i = args.length > 0 ? new A() : new B();
i.m3();
i.m4();

}

Fig. 4. A safe Java bytecode program that has no conjunction-free witness

4.1 Stack Map Checking without Conjunctions

We first present an algorithm, which when possible, computes a conjunction-
free witness from the least fix-point. The key hypothesis of this algorithm is
therefore the existence of a witness without conjunction. This is not the case of
all bytecode programs. Figure 4 shows a method that has no such witness (I3,
I4, A and B are defined as in Section 1). It is shown in pseudo Java (with a
conjunction of types) but has to be written directly in bytecode.

As explained in the previous section, the checking of bytecode mainly consist
in the verification of the conditions of Definition 3, which reduces to compu-
tations of the functions F � of the abstract semantics, and ordering checks �
between abstract states. As the F �s never “create” a conjunction of types (this
is easily verified on the definition), we can see that the checking of a conjunction-
free witness can be performed without manipulating conjunctions4. So the tech-
nique of pruning removes the need for conjunction computations.

Fix-Point Pruning. The algorithm of Figure 5 optimistically searches for such
a witness. It starts from the least witness (if it exists)

lfp ∈ map

computed by direct analysis, and traverses the set of conjunction-free stack maps
that are greater than lfp, until a witness is reached or the search space is ex-
hausted. If there exists a witness without conjunction, it must belong to this set,
by definition of the least fix-point. Moreover, the finite ascending chain condition
satisfied by the lattice ensures that the search space is finite so the exploration
terminates (which is interesting in case there is no such witness). Therefore this
algorithm is complete in the sense that if a solution exists, it will find it.

More precisely, the idea is to start from �v at each program point and each
variable and replace those values by lesser ones until a witness is reached. The
non-deterministic instruction “choose” is to be interpreted as follows: if the
choice fails at any point (i.e., there is no v� satisfying the required conditions)
then we backtrack to a previous choice. The algorithm can terminate either by
returning a witness, or by returning nothing, if every combination of choices
4 In the real process, the value of the witness is only sent for some program points and

the remaining values are reconstructed at checking time, but no least upper bound
is involved, thus the property still holds.

658 F. Besson, T. Jensen, and T. Turpin

let w = λp ∈ ppoint .λx ∈ var ."v and W = ppoint
while W �= ∅ do

take p ∈W (and remove it)

choose a maximal l ∈ state such that

l is without conjunction and lfp(p) � l � w(p)

and ∀p′ ∈ ppoint p
F �

→ p′ =⇒
F (l) �= "s

∧ F (l) � w(p′)

∧ p
F �

→ =⇒ F (l) �v tret
if l �= w(p) then

w := w[p ← l]

W := W ∪ {p′ | p′ F �

→ p}
end if

done
return w

Fig. 5. Naive (complete) pruning algorithm

eventually gets stuck. As for the strategy used to implement the work-set (in-
struction “take”), we found that a stack without duplicates was an efficient and
simple heuristic. Note that this second sort of choice is never undone and does
not cause further backtracking.

The following theorem formalizes the fact that the algorithm of Figure 5 is
sound and complete (when a witness without conjunction exists).

Theorem 2. The complete pruning algorithm always terminates, either by re-
turning a stack map w or by a failure in the choice of l�. If it terminates
by returning some w, then w is a conjunction-free witness. Furthermore, if a
conjunction-free witness w exists, the algorithm will return such a witness.

The proof can be found in the technical report [2].

Java Programs. In the Java language, all variables are declared with a fixed
type t ∈ type (actually, the basic types are not exactly the same between Java
and bytecode: the smaller integer types are merged with int in the latter). This
type satisfies the same constraints that are expressed by the abstract semantics
in the previous section (including the ones for interfaces) and can therefore be
considered as a witness for each method, where the type of every variable is the
same regardless of the program point. The difference is that the variables are
the source variables, not the bytecode local variables and stack positions.

If the compiler does not transform the structure of the program too much,
more precisely if each variable of the source program is mapped to a (bytecode)
local variable in a given subset of the (bytecode) program points, without over-
lapping, then we see that the witness representing the typing of the source code
can be renamed to a corresponding witness on the bytecode. This witness has an
interesting feature: it does not contain any conjunction (because variables are

Computing Stack Maps with Interfaces 659

public static void main(String [] args) {
I3 i3 = args.length > 0 ? new A() : new B();
I4 i4 = args.length > 0 ? new A() : new B();
i3.m3();
i4.m4();
Object i = args.length > 0 ? i3 : i4;
i.toString();

}

Fig. 6. A Java program for which a conjunction-free witness cannot be build from the
atomic types of the least fix-point

declared with a single type). Therefore, for bytecode compiled from Java with
a “natural” compiler, there exists a conjunction-free witness for every method
(and thus the algorithm of the previous section will find it).

An alternative solution for introducing the verification of interfaces in a light-
weight verification process in the case of Java (source) programs is to generate a
stack map from the type annotations present in the source code. Indeed, as the
lightweight verification paradigm is being generalized to J2SE Java [9], the task
of generating stack maps is moving from a dedicated “preverifier” program to
the compiler itself. One disadvantage of this technique is that all the tools that
manipulate bytecode (notably the compiler) must take care of stack maps con-
sistently, which complicates their design. Instead, we extract a witness without
conjunction directly from the bytecode (given that there exists one).

4.2 Efficient Fix-Point Pruning

Although the first algorithm is complete, it takes potentially a very long time,
since the search space is the product over program points and local variables
of the part of the type hierarchy that is greater than the corresponding value
type in the least fix-point. In fact, it is rarely necessary, for a given variable and
program point, to consider the entire type hierarchy above the type given by
the least fix-point. Most of the time it is enough to choose one of its conjuncts
(if it is a conjunction). The resulting pruning algorithm still has an exponential
complexity, but it performs reasonably fast in practice.

Reducing the Branching Factor. In most cases, the following holds: there
exists a witness w ∈ map without conjunction such that the atomic types that
appear in w are atoms of the corresponding conjunctions in the least fix point.

∀p ∈ ppoint ∀x ∈ var w(p)(x) = t ∈ type =⇒ lfp(p)(x) = t ∧ · · ·

This is not true for the program in Figure 6 (I3, I4, A and B are defined as in
Section 1). In this example, we build two variables i3 and i4 with most precise
type I3 ∧ I4. The variable i is then defined as the “union” of the two, and its

660 F. Besson, T. Jensen, and T. Turpin

type is therefore I3 ∧ I4. However, in a stack map without conjunction, the
type of i3 must be I3, and the type of i4 must be I4 (because we call m3
and m4, respectively). Therefore, the type of i must be greater than the least
upper bound of I3 and I4, i.e., java.lang.Object, which is not an atom of
I3 ∧ I4. Nevertheless, this seems to be a pathological example and in practise
the above hypothesis holds for all our (substantial) benchmarks, which indicates
that it’s applicability is very general.

Algorithm. Taking into account the hypothesis of section 4.2, we proceed by
searching for a witness satisfying this hypothesis. The optimized algorithm is
obtained by replacing the condition

l � is without conjunction and lfp � l �

by the stronger condition

∀x ∈ var l �(x) = �
∨ l �(x) = t ∈ type ∧ lfp(p)(x) = t ∧ · · ·
∨ l �(x) = null = lfp(p)(x)

in the algorithm of Figure 5.

Correctness As the complete version, the new algorithm is sound and terminates
and, though it is incomplete (see the above counter-example), it will succeed in
finding a witness if the optimistic hypothesis holds. If not, the search will fail
and the complete algorithm presented before should then be run instead.

5 Experiments

We have implemented our ideas in a verifier for real Java bytecode that adds the
stack maps as method attributes, as defined in the JVM specification.

5.1 Extensions and Limitations

The bytecode language presented so far is considerably simplified. We had to
address a few more issues to deal with real bytecode. First, the Java bytecode
uses an operand stack in addition to local variables. This complicates the abstract
states, as they now have another list of abstract values, of variable length. Of
course, this adds more reasons for the verification to fail, namely, (operand)
stack overflow or underflow, or the possibility to have different stack heights
at some program point. Second, in addition to 32-bit integers, Java bytecode
has floats, longs and doubles. floats are easily abstracted by �v, and the 64-bit
types by two �vs. Note that, although 32-bit integers are not distinguished from
shorter integers at the bytecode level (they are in the source code), this is not the
case for arrays of such types. Therefore, to ensure that the array bounds checks
performed at runtime correctly interpret the length field, the size of elements
must be known. This implies that arrays of floats or ints must not be confused

Computing Stack Maps with Interfaces 661

with arrays of shorts. However, individual float and int values can still be merged,
since the instruction for accessing arrays are typed. The last additional feature is
throwing and catching exceptions. From the verification point of view, exceptions
just add some more transitions in the control flow graph, with a semantics that
empties the stack and then push some constant reference type (the type that is
caught by the corresponding handler). They pose no particular difficulty.

While analysing real bytecode, we have omitted some aspects of the verifica-
tion in the concrete implementation. In particular, we do not address the issue of
verifying sub-routines. Also, a byte code verifier should verify that any object is
initialized before being used. The benchmarks presented here do not include this
phase. Finally, note that the semantics that we gave to the bytecode used big-
step calls, which prevents us to consider even a simplified (interleaving) version
of concurrency, which would require explicit call stacks. Therefore, in principle,
all the results presented here only applies to single-threaded programs. However,
the scheme of the proof (an invariant that holds at each state of a small-step
semantics) does not seem to rely on sequentiality, and we believe that there is
no issue in extending it to threads.

5.2 Stack Maps and Checking

The stack maps that are attached to the bytecode are not exactly a representation
of conjunction-free witnesses, but only of the value of such witnesses for a subset
of the program points. These points correspond basically to the basic blocks of the
control flow graph. This reduces the size of stack maps, while still allowing a very
simple checking algorithm that evaluates program points in order. We will not de-
tail this aspect, as we used the same subset of program points and the same check-
ing algorithm as Sun’s lightweight bytecode verifier. The resulting stack maps are
encoded in the class files either as StackMap attributes in the same format as the
lightweight bytecode verifier, orwith anew attribute using a sparse representation.
In the latter, we just replaced an array of value types by an array of bits (to indi-
cate which values are not�v) followed by the list of non-�v values. In order for the
comparison to be fair, the sparse representation uses the same verbose encoding of
value types as the stack map representation.

5.3 Results

Three test suites were used to experiment with the analysis, pruning and checking
with interfaces. The first one consists of 433 old midlets (Java applets for mobile
phones) downloaded from midlet.org. The second one is Soot 2.2.4, a framework
for analysing Java bytecode. The last test case is Eclipse SDK 3.2.2

All methods have been successfully analysed, pruned and checked except those
that contained sub-routines, referred to unavailable libraries, contained dead
code (because the pruning algorithm does not apply if the least fix-point is ⊥s

for some program points) or referred to classes that existed in different versions in
the same program. This last case happens in Eclipse and we built conservatively

662 F. Besson, T. Jensen, and T. Turpin

the complete hierarchy of the distributed classes, by taking the union5. In all
cases, a stack map without conjunction could be obtained from the atoms of the
least fix-point, thanks to the heuristic presented in Section 4.2.

The first table shows the main interesting computing times for the three case

jar size analysis + pruning analysis pruning checking

midlets 11M 5m54 23% 77% 0m23

Soot 4.4M 3m40 17% 83% 0m11

Eclipse 96M 24m43 26% 74% 1m55

studies. The first column gives the size of the benchmarks (jar files). The second
one shows the total time taken by the complete stack map generation procedure
(on the producer’s side). This time is then divided into the analysis phase (third
column) and the pruning phase (fourth column). The last column correspond
to the checking time (consumer’s side). Clearly, most of the time is spent in
pruning, but even this time remains acceptable (three to six times the cost of
the analysis), especially since this operation only needs to be performed once,
by the code producer. The checking time is short and could be further reduced
with a reasonably optimised implementation.

The second table estimates the size of witnesses before and after pruning, in

proportion of non-"v in lfp pruned stack map ratio

midlets 44% 34% 77%

Soot 67% 42% 63%

Eclipse 58% 39% 66%

terms of the proportion of pairs p, x for which the value is not �v. The last
column shows the proportion of “positions” (of pairs p, x) that are kept with
a non-�v value by pruning. We see that the “initial” proportion of non-�v is
greater in Soot and Eclipse, which indicates that objects (or arrays) are used
more often in Eclipse than in midlets (remember that base types are abstracted
by �v). Also, the pruning removes more values in Soot and Eclipse than in
midlets (which is not surprising since there are more non-�v values to remove,
in proportion). In the end, the numbers of non-�v in the stack maps are very
close for the three test cases.

The first four sub-columns of the last table give the space saved by pruning,
both for the class files and the jar files (compressed archives). The numbers
correspond to the difference in size with respect to the same file format without
stack map. For example, the total jar size for Eclipse with pruned stack maps
included is 3.0% greater than the original jar files (without stack maps). In
the two columns for the fix-point, since only conjunction-free witnesses can be
encoded in class files, we did not include any stack map for the methods whose
least fix-point had conjunctions (which is actually quite rare). Note that we can
only underestimate the benefit of pruning by doing this. In the case of midlets,
5 Some classes even exist with different super-classes. In this case we just choose one,

which is definitely not safe.

Computing Stack Maps with Interfaces 663

witness fix-point pruned witness

representation extensive extensive sparse

format .class .jar .class .jar .class .jar

midlets 19.8% 7.3% 17.4% 6.8% 16.0% 7.0%

Soot 14.0% 7.2% 11.5% 6.5% 11.5% 7.3%

Eclipse 11.8% 3.3% 9.5% 3.0% 9.6% 3.2%

for example, the size of the stack maps is reduced from 19.8% to 17.4% of the
total initial class files, or from 7.3% to 6.8% of the initial jar files. Therefore
there is no significant improvement here since the size of what is shipped (i.e.,
the jar files with stack maps) is only reduced by less that one percent.

The last two sub-columns of the figure show the effect of a sparse representa-
tion of the stack maps obtained after pruning. We see that a sparse representation
has little impact on the size, and that the small savings that we get for (some)
class files are canceled by the compression phase, and tend to yeld larger jar files
(even if the eight-byte alignment of the class files is kept).

We have not tried to encode our stack maps with the new StackMapTable
attribute defined by JSR202, which was designed to factorize most of the infor-
mation. The results would probably be quite different since this format relies
on the assumption that the type of variables do not change too often, while the
pruning may for example set any variable to �v even if it was not modified, as
soon as the type information for this variable is not needed anymore.

6 Related Work

The formalisation of Java byte code verification has received a lot of attention.
Freund and Mitchell [7] prove the soundness of a type system for a very large
subset of the Java bytecode with respect to a small-step operational semantics
(with explicit stacks). Their model of states is close to ours, but instrumented
by tags that keep track of the type of every value. They do not address the
problem of inferring types in presence of interfaces. A survey of bytecode verifi-
cation techniques and solutions to various known difficulties (interfaces, object
initialisation, sub-routines) can be found in [11].

The concept of lightweight verification, which is now used in J2ME, was in-
troduced by Rose [16]. Several algorithms were given, with enhancements that
allow to reduce the number of program points for which a stack map is neces-
sary, more than what is done in Sun’s lightweight bytecode verifier. The issue of
verifying interfaces was not considered.

Using sets of types to verify interfaces has been explored by Knoblock and
Rehof [10] who analyse an SSA form of the Java bytecode in the Dedekind-
MacNeille completion of the type hierarchy. They show that this minimal com-
pletion achieves an optimal precision, i.e., every program typable in the power
set completion is typable in the Dedekind-MacNeille completion. The analysis
presented in section 3 is therefore very similar to their work. Our representa-
tion of the domain differs, though: we use conjunctions of types rather than

664 F. Besson, T. Jensen, and T. Turpin

disjunctions (in both cases, upward/downward-closed sets are not represented
in extension). The lattice that we use to abstract values is close to the ideal
completion of the type hierarchy (it is a super-set of the ideal completion be-
cause the latter further requires that conjunctions be “not empty”, in the sense
that they must have a lower bound in the hierarchy). Furthermore, our analysis
only uses the subset of value� that is obtained by taking upper bounds of atomic
types, which is isomorphic to the Dedekind-MacNeille completion of type \{int}.
See [6] for an account on completion techniques for posets. Knoblock and Rehof
do not prove the correctness of their analysis with respect to a concrete seman-
tics and safety property. Qian [15] proposes a type system for Java bytecode
that uses arbitrary disjunctions of reference types to allow the static verification
of interfaces. Several safety properties are proved for typable programs (type
preservation, possible uses of uninitialized objects, of sub-routines return ad-
dresses). The actual inference of types is not detailed. Push [14] has formalised
a variant of Qian’s bytecode verifier in HOL and proved its correctness with
respect to a small-step operational semantics. Again, concrete values are tagged
with their type. Goldberg [8] focuses on dynamic loading of classes and proposes
a framework for verifying Java class files out of order, while ensuring the global
soundness of typing. Class files are verified by a data-flow analysis that uses dis-
junctions of types (which solves the problem of not knowing the type hierarchy)
and yields the minimal set of ordering constraints between types under which
the class is type-safe. These constraints are added to a global typing context that
is transmitted across invocations of the verifier, and the global safety is defined
as the consistency of this context.

We have previously proposed a pruning algorithm for getting weaker abstract
interpretation witnesses [3]. Such pruning algorithms were independently studied
by Seo, Yang, Yi and Han [17]. The problem that we consider here is different:
the goal is not to get a maximal witness in a given lattice, but to get a witness
without conjunction, a property that is not monotone. Therefore, directly ap-
plying one of the algorithms from [3] would not necessarily help in getting such a
witness. The backward computation that we proposed in the same work for dis-
tributive analyses (which is the case of the bytecode verification) does not apply
either, as shown in the introduction: the backward algorithm performs greatest
lower bound operations, which in the present setting introduce conjunctions.

7 Conclusion

We have shown how the notion of pruning provides a viable means of integrat-
ing the verification of interfaces into lightweight bytecode verification. This is
achieved by combining an extended bytecode analyser and an algorithm for re-
moving conjunctions from the result of the analysis which, together, allows to
compute stack maps where interfaces are treated on a par with other types.

The bytecode analysis that we have proposed here adds sets of types to the
abstract domain in order to verify interfaces. The ensuing pruning step optimises
the typing found by the analyser, reducing all such sets to a singleton, and

Computing Stack Maps with Interfaces 665

removing as many typing information as possible while still ensuring the memory
safety, i.e., that all memory accesses will be to existing fields of objects. The
resulting stack maps can be checked without any overhead compared to existing
lightweight bytecode verification and will ensure statically the safety of interface
method calls. We also show that it is possible to simplify several aspects of the
BCV when constructing an abstract domain that is specific to the memory safety
property. In particular, there is no need to distinguish between base types and
it is even possible to identify these base type with the �v element of the domain
(which allows a program to use an address as an integer).

In terms of semantic correctness, we have shown that it is possible to reason
directly with an untyped concrete semantics rather than a defensive virtual ma-
chine. Both techniques are equally sound, but the latter requires an additional
abstraction step that explains the link between the raw state model that we use
and the tagged memory objects used in the instrumented semantics. In other
words, we use a notion of state that is closer to the actual implementation and,
hence, more convincing. In order to complete the picture, the semantics with
big-step calls that we used should be related to a small-step semantics with a
call stack, but we leave this for further work.

In terms of experiments, we have shown that the technique works well in prac-
tice, as we could successfully analyse a large set of Java class files. Furthermore,
the idea is not relevant just for Java, but should apply to other object oriented
languages with multiple inheritance, since it only relies on the transformation
of the poset representing a type hierarchy into a lattice. The results show that
it is feasible to compute efficiently conjunction-free stack maps with interfaces
; however, they are disappointing in terms of reducing the stack map size: even
though a significant number of variables are set to �v by pruning, this is not
enough for a sparse coding to be more efficient than a naive coding of stack
maps, especially as class files are eventually compressed.

As we said before, in this study we considered one aspect of the security of Java
bytecode, viz., the memory safety. Further work should extend the formalisation
proposed here to prove that for example access control properties are also ensured
by the verifier. In another direction, our stack map generator should be extended
to produce stack maps in the StacMapTable format proposed for Java.

References

1. Barthe, G., Dufay, G., Jakubiec, L., Melo de Sousa, S.: A formal correspondence
between offensive and defensive javacard virtual machines. In: Cortesi, A. (ed.)
VMCAI 2002. LNCS, vol. 2294, pp. 32–45. Springer, Heidelberg (2002)

2. Besson, F., Jensen, T., Turpin, T.: Computing stack maps with interfaces. Tech-
nical Report 1879, Irisa (2007)

3. Besson, F., Jensen, T., Turpin, T.: Small witnesses for abstract interpretation-
based proofs. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 268–283.
Springer, Heidelberg (2007)

4. Bracha, G., Lindholm, T., Tao, W., Yellin, F.: CLDC Byte Code Typechecker
Specification. Sun Microsystems (2003)

666 F. Besson, T. Jensen, and T. Turpin

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixpoints. In: Proc. of
the 4th ACM Symp. on Principles of Programming Languages (POPL 1977), pp.
238–252. ACM Press, New York (1977)

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, Cambridge (1990)

7. Freund, S.N., Mitchell, J.C.: A type system for the java bytecode language and
verifier. Journal of Automated Reasoning 30(3-4), 271–321 (2003)

8. Goldberg, A.: A specification of java loading and bytecode verification. In: Proc. of
the 5th ACM conference on Computer and Communications Security (CCS 1998),
pp. 49–58. ACM Press, New York (1998)

9. JSR 202 Expert Group. Java Class File Specification Update, Sun Microsystems
(2006)

10. Knoblock, T.B., Rehof, J.: Type elaboration and subtype completion for java byte-
code. ACM Transactions on Programming Languages and Systems 23(2), 243–272
(2001)

11. Leroy, X.: Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning 30(3-4), 235–269 (2003)

12. Leroy, X., Rouaix, F.: Security properties of typed applets. In: Proc. of the 25th
ACM Symp. on Principles of Programming Languages (POPL 1998), pp. 391–403.
ACM Press, New York (1998)

13. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

14. Pusch, C.: Proving the soundness of a java bytecode verifier specification in is-
abelle/hol. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 89–103.
Springer, Heidelberg (1999)

15. Qian, Z.: A formal specification of java virtual machine instructions for objects,
methods and subrountines. In: Formal Syntax and Semantics of Java, pp. 271–312
(1999)

16. Rose, E.: Lightweight bytecode verification. Journal of Automated Reasoning 31(3-
4), 303–334 (2003)

17. Seo, S., Yang, H., Yi, K., Han, T.: Goal-directed weakening of abstract interpre-
tation results. ACM Transactions on Programming Languages and Systems 29(6),
39 (2007)

How Do Java Programs Use Inheritance?
An Empirical Study of Inheritance in Java Software

Ewan Tempero1, James Noble2, and Hayden Melton1

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
ewan,hayden@cs.auckland.ac.nz

2 School of Mathematics, Statistics, and Computer Science, Victoria University of Wellington,
Wellington, New Zealand
kjx@mcs.vuw.ac.nz

Abstract. Inheritance is a crucial part of object-oriented programming, but its
use in practice, and the resulting large-scale inheritance structures in programs,
remain poorly understood. Previous studies of inheritance have been relatively
small and have generally not considered issues such as Java’s distinction between
classes and interfaces, nor have they considered the use of external libraries.

In this paper we present the first substantial empirical study of the large-scale
use of inheritance in a contemporary OO programming language. We present
a suite of structured metrics for quantifying inheritance in Java programs. We
present the results of performing a corpus analysis using those metrics to over
90 applications consisting of over 100,000 separate classes and interfaces. Our
analysis finds higher use of inheritance than anticipated, variation in the use of
inheritance between interfaces and classes, and differences between inheritance
within application types compared with inheritance from external libraries.

1 Introduction

Since the introduction of the object-oriented paradigm, much has been written on the
notion of “inheritance” [1]. To some, the very idea of “object-orientedness” is bound up
in inheritance [2,3]. Inheritance does appear to be very prominent in discussions about
good design. All the design patterns have it [4], frameworks depend on it [5] and it’s
even in UML [6].

Some presentations of the object-oriented paradigm (in textbooks for example) place
so much importance on inheritance that the implication is that any design without “lots
of inheritance” is not a good one (or certainly not “object-oriented”). At the same time,
there is a considerable amount of advice urging caution with respect to use of inheri-
tance, such as “Favor object composition over class inheritance” [4]. There have also
been studies providing conflicting answers as to its benefits [7,8,9], but also suggesting
that “too much” inheritance is detrimental.

The aim of this paper is to answer a simple question: “How do programs use inher-
itance?”. To make this question concrete, we address this question to Java, thus: “How
do JavaTM programs use inheritance?”.

To answer this question, we first consider how Java supports inheritance. Compared
with earlier object-oriented languages such as Smalltalk, Eiffel, or C++, Java distin-
guishes between extends and implements relationships. To understand how Java (and

J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 667–691, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

668 E. Tempero, J. Noble, and H. Melton

other languages making this distinction, such as C�) actually use inheritance, we need
to consider each relationship individually. We also consider other issues regarding in-
heritance — for example, we treat inheritance from one of the library classes as being
different to inheritance from another class defined for the system. Our work is grounded
in a systematic consideration of all these issues, resulting in a structured suite of metrics
for measuring the various kinds and usages of inheritance in Java programs.

The suite of inheritance metrics we propose provides a sensitive instrument for char-
acterising various types of inheritance in a particular program. To give an overall answer
to our question — how do Java programs in general use inheritance — we gathered a
substantial corpus of 93 open-source Java applications, including over 100,000 user-
defined types. Then we applied our metrics to this corpus, with the resulting distribu-
tion of metrics values characterising the use of inheritance in that corpus, and hopefully
getting as close to accepted practice in Java programs as possible.

A key point about the methodology we use here is that it is primarily descriptive:
our research question asks simply “what do Java programs do?” We are interested in
understanding “Java as she is spoke” — that is, in the way Java programs are actually
structured in the real world — rather than how we fondly imagine Java programs should
be written. As our terminology suggests, we draw on the established methodology of
corpus linguistics. Our corpus is collected from large, well-known, widely-used Java
programs (such as Eclipse, Open Office, Spring, Tomcat) — programs that are appar-
ently well regarded by other Java programmers, and that we believe constitute as much
a representative sample of Java programs “in the wild” as any other.

In evaluating individual programs (from the corpus or outside it) we can discuss
whether their use of inheritance is typical or extreme with respect to the corpus, that is
whether their use of inheritance seems relatively close to accepted practice embodied
by the corpus, or whether and how it diverges. This is not to say we are uninterested
in questions of how inheritance could or should be used in the abstract — just that
those questions are separate from the questions about how inheritance is actually used
in accepted Java practice, and we do not address them in this paper.

The paper makes the following contributions:

– A fine grained, structured suite of inheritance metrics for Java-like languages.
– A corpus analysis applying these metrics to 93 Java applications containing over

100,000 user-defined types.

Based on the corpus analysis, we demonstrate some important features of the accepted
practice regarding inheritance in Java programs:

– most classes in Java programs are defined using inheritance from other “user-
defined” types.

– classes and interfaces are used in stereotypically different ways, with approximately
one interface being declared for every ten classes.

– client metrics have truncated curve distributions while supplier metrics have power
law-like distributions.

– most types (classes and interfaces) are relatively shallow in the inheritance
hierarchy.

– almost all types have fewer than two types inheriting from them: however for some
very popular types, the bigger the programs, the more types will inherit from them.

How Do Java Programs Use Inheritance? 669

– larger (or older) systems make proportionally more use of inheritance from user-
defined classes, and less use of standard library or third-party library classes.

The rest of this paper is organised as follows. In the next section, we summarise
the related work. Section 3 discusses various issues regarding the characterisation of
inheritance that need to be considered when measuring it. Section 4 presents the metrics
we used in our study; our results from collecting these metrics are presented in section
5. Section 6 presents a discussion of our results, and finally we give our conclusions
and discuss future work in section 7.

2 Background and Related Work

The most often mentioned inheritance related metrics are Chidamber and Kemerer’s
DIT and NOC metrics [10,11]. DIT for a class is defined as the length of the longest
path from the class to the root of the inheritance hierarchy it is in. The authors argue
that the deeper the class, the more complex it would be as it would inherit from more
ancestors, but also the more potential reuse there could be. NOC for a class is defined
as the number of immediate subclasses of that class. The authors suggested that more
children means more reuse, but also the greater the likelihood of improper abstraction.
They also observed that NOC gives an idea of the influence a class has on the design.

DIT and NOC were introduced in 1991 but it was not until the 1994 publication that
Chidamber and Kemerer presented measurements using them. The measurements were
of two sites. One site consisted of two graphical user interface libraries with 634 C++
classes. The other consisted of class libraries used in the implementation of a computer
aided manufacturing system for the production of VLSI circuits and had 1459 Smalltalk
classes.

For DIT, the C++ site had a median value of 1 and maximum of 8, whereas the
Smalltalk site had a median of 3 and maximum of 10. However, it was noted that for
Smalltalk, all classes are subclasses of the class “Object”, meaning that only “Object”
could have a DIT measurement of 0. For NOC, 73% of the C++ classes and 68% of the
Smalltalk classes had no children. The maximum NOC measurements reported were
42 for C++ and 50 for Smalltalk. It is worth noting that the results in this paper were
presented as a frequency distribution. This presentation means that we can determine
such things as for the C++ site about 200 classes had a DIT of 0 (meaning about 400
classes had a non-zero DIT) and just under 300 classes in the Smalltalk site had a DIT
of 1 (and so 1100-1200 classes had a DIT of more than 1).

There have been various efforts to establish the veracity of Chidamber and Kemerer’s
thinking or similar claims about inheritance. We report only the most relevant to our
work.

Daly et al. carried out an investigation on the impact of depth of inheritance on main-
tenance as measured by the amount of time taken to perform a maintenance task [7].
Their results suggested that inheritance had a negative effect on maintenance time. This
study was later replicated, with the results suggesting the opposite effect — that in-
heritance had a positive effect on maintenance time [8]. That these two studies could
get such different results suggests there may be more to inheritance than just “depth,”

670 E. Tempero, J. Noble, and H. Melton

although both were sufficiently small that it is possible that some effect other than in-
heritance was observed.

Another replication was carried out by Harrison et al. [9]. They studied two C++ sys-
tems, each with two versions. One system had a version without inheritance consisting
of 360 LOC and a version with 290 LOC with maximum DIT of 3. The other system
had one version with 1200 LOC and the other with 900 LOC and maximum DIT of 5.
Their results suggest that inheritance made it harder to modify systems, but that size
and functionality of a system may affect understandability more than the “amount of
inheritance” used. The authors observed that an external threat to the validity of their
results was the small size of their system. They claimed that the levels of inheritance
investigated were “typical of those found in larger systems.” Our interest is in whether
DIT is sufficient to characterise “amount of inheritance”, and whether the systems used
in this and earlier studies really can be considered “typical.”

On the question of “how inheritance is used”, there appears to be little in the way
of published results. Manel et al. [12] try to determine differences in maintainability
of code written in the OO paradigm vs the structured programming paradigm, which
included use of metrics for inheritance. The two inheritance metrics they use are “num-
ber of derived classes”, and the number of lines of code in the classes a derived class
inherits from (in order to try and gauge the degree of reuse via inheritance). They look
at 5 versions of one “medium sized” application from the telecommunications domain.
The first version had 20 derived classes out of 57, while the 5th version had 87 derived
classes out of 225 (39%).

One of the largest studies that we are aware of is by Succi et al. [13]. They applied
the metrics suite by Chidamber and Kemerer to 100 Java and 100 C++ applications.
They were investigating the statistical properties of the CK metrics but our interest is
in the metric values they report. The Java applications ranged from 28 to 936 classes in
size (median 83.5) and the C++ applications ranged from 30 to 2520 classes (median
59). The actual applications were not identified. Interpreting their box plots, the DIT
measurements for the Java applications were mostly in the range 2-5, with outliers at
10. For the C++ applications, most measurements were in the range 5-6 with outliers
both above and below, and a maximum of 9. For NOC, the Java measurements were
almost entirely less than 10, although there were outliers larger than 150, and for the
C++ measurements, the range was similar, although there appear to be more outliers.

In another large study, Collberg et al. analysed 1132 Java jar files collected from
the Internet [14]. According to their statistics they analyse a total of 102,688 classes
and 12,188 interfaces. While no information was given as to what applications were
analysed, this paper is good for the amount of data it provides. Much of it is not directly
relevant to our study, but they did produce histograms of “inheritance graph height per
application” finding a maximum of 10, a median of 4 and a minimum of 1, and also
“number of user-class extenders per application” finding a maximum of 641, a median
of 5, and a minimum of 0.

Other studies involving measuring DIT and NOC have judged the measurements to
be “low”, but consisted of quite small samples. Chidamber et al. studied three systems,
one with 45 C++ classes, one with 27 Objective C classes, and one identifying 25 classes

How Do Java Programs Use Inheritance? 671

in design documents [15]. The largest values they report are DIT of 3 and NOC of 11
(both from the design documents).

Basili et al. investigated the Chidamber and Kemerer metric suite as predictors of
fault-prone classes [16]. Their study consisted of 8 teams of 3 students building a
“medium-sized” video rental system, resulting in 8 C++ applications consisting of 180
classes in total. The maximums they observed were 4 for DIT and 5 for NOC. However
it should be noted that with 180 classes spread over 8 applications, each application
must be fairly small.

Briand et al. carried out a study to determine to what extent various metrics are useful
for detecting the probability of detecting faulty classes using the same applications as
that by Basili et al. [17]. In addition to DIT and NOC, they also considered, number of
parents (NOP), number of descendants (NOD), and number of ancestors (NOA). The
maximums were 1 for NOP, 9 for NOD, and 4 for NOA.

Having a measurement by itself is of limited use. We also need what Kitchenham et
al. refer to as the entity population model, which identifies the “normal values” of what
is being measured under specific conditions [18]. They observe that without knowledge
of such models, we cannot interpret what a measurement means. A starting point to
developing such models for a metric is to apply it to “real” code, that is, code written as
part of a software application, rather than code written to demonstrate the metrics, and,
most importantly, report the results.

3 Characterising Inheritance

The starting point for our work was to determine a meaningful answer to the question
“How much inheritance is being used in this application?” There are several reasons
why having an answer to this question would be useful. This question is fundamental to
evaluate any claims made about its benefits. If we cannot reliably measure inheritance
use, then we cannot be sure that any changes that observed are due to (or just due to)
inheritance. For example, in the studies on the effect of inheritance on maintenance de-
scribed in the previous section, inheritance was characterised by just one measurement
(DIT), whereas other inheritance metrics have been proposed (e.g. NOC).

Given the advice against overuse of inheritance, it would be useful to know to what
extent this advice has been followed. We have previously seen a case where reality does
not match theory [19]. Such situations may indicate problems with the theory, problems
with its application (e.g., lack of appropriate tool support), or perhaps problems with
training. We cannot determine which without appropriate metrics, and knowledge of
how to interpret the measurements produced by the metrics.

To illustrate these points, consider the report by Chidamber and Kemerer on the
Smalltalk site. They reported it consisted of about 1450 classes and had a maximum
DIT of 10. How should we interpret this value of “10”? Chidamber and Kemerer char-
acterised it as “rather small.” But as we observed, other studies suggest that systems
with measurements of 10 would have maintainability issues, implying it should be rare,
which is what the study by Succi et al. suggests.

Another view of the meaning of a DIT value can be gained by considering a complete
binary tree with the maximum number of nodes possible while also having a maximum

672 E. Tempero, J. Noble, and H. Melton

DIT of 10. Such a hierarchy would have 211 − 1 = 2047 nodes in it, which is com-
fortably more than the 1450 classes of the Smalltalk application. While we should not
expect a realistic inheritance hierarchy to look like a binary tree, it does give an indica-
tion as to what the hierarchy must look like in order to get DIT measurements greater
than 10. Its shape would have to somewhat more “tall and skinny”. Our key observation
is, we do not know what maximum DIT value we should expect for an application with
1450 classes.

In the complete binary tree hierarchy, the maximum NOC would be 2, and all but one
class would inherit from some other class. Yet many variations on this are obviously
possible: fewer classes could inherit from other classes while still having a maximum
DIT of 10 and NOC of 2, the maximum DIT could be much greater than 10 while the
NOC is no more than 2, the NOC can be much greater than 2 while the DIT is less
than 10. On this basis we argue that it is not sufficient to characterise the inheritance
hierarchy of an application by just one (or two) metrics.

Chidamber and Kemerer observed that the Smalltalk distribution is somewhat “top
heavy”, with the frequencies for DIT measurements 1-3 being around 300, and those
for 4 and 5 being around 200. The Smalltalk distribution could be explained by the
presence of the class library that is standard for any Smalltalk distribution. We speculate
that many DIT distributions for Smalltalk software would be dominated by the library
classes, meaning all distributions would look very similar. This raises the question as to
how such standard libraries should be handled when defining metrics.

As we noted, Chidamber and Kemerer originally provided distributions of these met-
rics, and from these we can answer such questions as “how many classes have DIT or
NOC of 0”. The proportion of classes with DIT of 0 is the proportion of classes that do
not use inheritance in their definition. Knowing whether this proportion is 70% rather
than 90% would seem to give us some reasonable idea of the degree to which the ap-
plication uses inheritance to define classes. Similarly it would be useful to know the
proportion of classes with NOC of 0, that is, not providing inheritance relationships
with other classes. Rather than rely on determining these values from frequency distri-
butions, we will define such metrics directly.

Classes can be involved in inheritance in a number of different ways. For example,
in Smalltalk, all classes except “Object” can be said to use inheritance. Perhaps we
should distinguish those that inherit from “Object” from those that inherit from other
classes. Taking this further, perhaps we should distinguish classes that inherit from any
standard library class from those that are defined in the application. Those that inherit
from a library class could be considered to be benefiting the most from reuse (since the
library class doesn’t have to be written) albeit restricted to what the library provides. A
user-defined class inheriting from another user-defined class benefits less from reuse,
but the designs of both classes are under the control of the software developer, and so
this relationship could better represent the “quality” of the design.

The issue with measuring some kind of “DIT” metric in Java is the distinction be-
tween extends and implements. This distinction allows for a certain kind of “mul-
tiple” inheritance. The issue of measuring DIT in the context of multiple inheritance
was defined by Chidamber and Kemerer to be the length of the longest path to the root
[11]. However, if we are measuring a class that extends another class and implements

How Do Java Programs Use Inheritance? 673

an interface, it’s not clear that paths that follow the extends relationship are the same as
those that follow the implements relationship. Rather than make a judgement, we will
consider all variations.

Another issue in measuring DIT in Java is dealing with the situation where a type
defined in the application inherits from a type for which we do not have the definition.
For example, we create a new class MyVector that extends java.util.Vector.
Since Vector has 3 ancestors, DIT (MyVector) should be 4. If we did not know
Vector’s ancestry (or at least its DIT value), then we would not be able to measure
DIT for MyVector. It is a limitation of our study that the corpus we use does not
have the complete external libraries, making it impossible to determine the “true” DIT
values in all cases. We will note that as far as the developer is concerned Vector (and
any other type that is not part of the application) can usually be treated as if it were a
“flattened” type. In the case of our example, we know MyVector extends Vector,
but in terms of reasoning about MyVector it is not so relevant what Vector’s true
structure is. For this reason we will define a variant of DIT (and similar metrics) that
considers only the user-defined inheritance structure.

4 Inheritance Metrics for Java

4.1 Modelling Inheritance

In order to unambiguously define metrics for inheritance in Java we need to specify a
model of Java inheritance. What we have been colloquially calling the inheritance “hi-
erarchy” is really a directed acyclic graph (DAG), where the vertices are Java reference
types and edges are inheritance relationships. For the purposes of the definition we al-
ways assume that java.lang.Object is in the graph, and that any classes without
explicit superclasses have an edge to Object. To do otherwise would mean that some
metrics change values if a programmer explicitly includes extends Object.

There are two kinds of edges, one for extends and one for implements. If A
extends B then A is the child and B is the parent, similarly if A implements B.
When we “follow an edge”, we traverse the edge from child to parent.

The Java Language rules mean that at most one type of edge can connect any pair
of vertices, and in some cases both may be disallowed. For example, an implements
edge cannot occur between two class vertices. Practically speaking, the most common
connections will be between pairs of classes, pairs of interfaces, or class-interface pairs.
All others are very unlikely (e.g. enum implements annotation) or at least very rare (e.g.
class implements annotation). Table 1 shows all the possibilities.

We have different kinds of vertices to distinguish different kinds of types, that is,
classes (C), interfaces (I), enums (E), annotations (A) and exceptions (Ex). We dis-
tinguish classes and interfaces as they have quite different inheritance relationships
with each other and play different roles in an inheritance hierarchy. We distinguish
enums and annotations because, although they are respectively implemented as spe-
cialised classes and interfaces, their roles are somewhat different. Furthermore, they
are in fact implemented in terms of inheritance (extending java.lang.Enum and
java.lang.annotation.Annotation respectively), something that is evident
at the bytecode level, although for the purposes of our metrics we will ignore these

674 E. Tempero, J. Noble, and H. Melton

Table 1. Allowable type inheritance relationships

Class Interface Enum Annotation Exception
Class extends implements implements
Interface extends extends
Enum implements implements
Annotation
Exception implements implements extends

relationships. Finally, exceptions are distinguished from classes as they also have spe-
cialised roles, and furthermore are explicitly defined in terms of inheritance (extending
java.lang.Exception). Combining exceptions with other classes when trying to
determine the amount of inheritance may therefore give misleading results.

As well as ignoring the implicit inheritance relationships with Annotation and
Enum we also ignore inheritance relationships with marker interfaces, specifically
java.io.Serializable and java.lang.Cloneable.

For each kind of type there are 3 different kinds of vertices: user-defined (that come
from the application we are measuring) standard library (from the Java Standard API),
and third party (any remaining types from neither user code nor the standard library).

Each vertex has a “nesting level” attribute that indicates the level of nesting of the
type represented by the vertex, where 0 indicates a top-level type, and the nesting level
of any nested type (e.g., inner class or interface) is 1 more than its enclosing type.

4.2 Scalar Inheritance Metrics

The first set of metrics are what we refer to as “scalar” metrics — they all produce
a single scalar value for a user-defined type, such as the original DIT and NOC met-
rics do. All the metrics are defined in terms of paths (following edges) in the DAG
and for the purpose of this paper we only present these metrics for classes or inter-
faces (that is, neither enums, annotations, nor exceptions). All paths consist of either
all extends edges, in which case all the vertices are represent either classes or inter-
faces, or at most a single implements edge, which will have only vertices represent
classes before it and vertices representing interfaces after it. In all cases, we do not
count java.lang.Object.

There are roughly 4 categories of metrics — one category involves paths going from
the type being measured to a root (“depth in tree” — DIT), one involves the number
of other types reachable from the type either directly (“number of parents” — NOP)
or transitively (“number of ancestors” – NOA), one is the number of other types from
which the type being measured is reachable either directly (“number of children” —
NOC) or transitively (“number of descendants” — NOD), and the last involves paths
from a leaf to the type being measured (“height in tree” – HIT), however we do not
consider this last category in this study.

Within each category, we can specify different metrics by specifying the allowable
vertices and edges in the paths we consider. Some distinctions include: paths that only
begin at classes and only follow extends edges (“CC”), paths that only begin at

How Do Java Programs Use Inheritance? 675

NOAUD(B)=1

Object

A

B

C

D

TPA

E

F P

G

TPB

H

I

J

K N

M

SLA

L

Standard Library Class

Third Party Class

User Defined Class

Standard Library Interface

Third Party Interface

User Defined Interface

extends

implements

DITCCUD(A)=0 DITCCUD(B)=1
NOCCC(C)=2
NODCC(C)=3

DITCCUD(C)=1 DITCCUD(E)=3 DITIIUD(G)=1
NOCII(G)=2
NODII(G)=2
NOD(G)=5

DITIIUD(H)=2

NOCII(I)=1
NOCCI(I)=1
NOCI(I)=2

DITIIUD(J)=2

NOPI(J)=2

DITCCUD(K)=0
NOPC(L)=2

NOPCI(N)=2
NOPC(N)=2

DITIIUD(P)=0
NOCCI(P)=2NOAIIUD(J)=4
NOAIIUD(P)=0

NOAUD(L)=7

NOAUD(J)=4

Fig. 1. Example of scalar metrics

interfaces and only follow extends edges (“II”), paths that only begin at a class and
must begin with an implements edge (“CI”), paths that begin at classes and follow
any edges (“C”), similarly for interfaces (“I”), or paths that begin at any type and follow
any edges.

The name of a metric indicates its category and the kinds of edges allowed. Thus, for
example, DITCC (DIT category, CC edges) is the length of the longest path starting at a
class and following only extends edges to the root, NOCII is the number of interfaces
incident (via extends edges) on an interface, and NOPCI is the number of interface
vertices reachable from the type via an implements edge.

Following our discussion in section 3, we have two variants of DIT relating to
whether or not the paths consist only of user-defined (UD) types or not. So, DITCCUD
considers only paths that end at a non user-defined class. If the last class is Object,
then DITCCUD is one less than the length of the path, otherwise it is the length of the
path. DITCCUD is undefined for anything other than classes. DITIIUD is the equivalent
for interfaces.

NOCI is a metric that applies only to interfaces and measures the indegree of the
corresponding vertex. As we will see, this is useful as an interface with NOCI of zero is
one that is neither implemented nor extended. NOPC only applies to classes and is the
outdegree of the vertex. This tells us how many parents, following both extends and
implements edges.

There are 2 NOA variants and 3 NOD variants. NOA has the same prob-
lem as DIT with respect to external libraries so we define metrics that refer only to
user-defined types. NOAIIUD, NODCC, and NODII follow the conventions established

676 E. Tempero, J. Noble, and H. Melton

above (NOACCUD is equivalent to DITCCUD). NOAUD and NOD do not restrict the
paths when determining what is an ancestor or descendant. NOAUD for a type X is
then the number of variables with different user-defined types than X to which values
of type X can be assigned. NOD for a type X is then the number of values with types
different to X that can be assigned to a variable of type X .

Figure 1 gives examples of a number of the metrics. All metrics are also summarised
in Appendix A.

4.3 Inheritance Summary Metrics

Inheritance Summary metrics apply to applications, that is, they produce values that
are measurements of an application rather than an individual type as the scalar met-
rics do. These metrics report the proportion of user-defined types that fall into different
categories. In the following, “DUI” (Defined Using Inheritance) denotes metrics that
consider the types that occupy the child end of an edge in the inheritance DAG and “IF”
(Inherited From) denotes metrics that consider types at the parent end. We can focus
on what kinds of types participate in an inheritance relationship, with “CC” indicating
class–class relationships (i.e., extends), “CI” indicating class–interface relationships
(i.e., implements), “II” indicating interface–interface relationships (i.e., extends),
and so on. As indicated above, we divide the user-defined types involved in an appli-
cation into 3 subsets according to their origins, which we denote UD (user-defined), TP
(third-party), and SL (standard library).

We begin with two metrics that give an overall idea of how much inheritance exists
in an application.

DUI. The proportion of types that either implement an interface or extend another type
other than Object, or, the proportion of types that occupy a child end of an edge
in the inheritance DAG.

IF. The proportion of types that are either extended or implemented, or, the proportion
of types that occupy a parent end of an edge in the inheritance DAG.

While these two metrics give us the proportion of user-defined types that participate
in an inheritance relationship, we must keep in mind the interface/class distinction. For
example, it seems reasonable to expect that all user-defined interfaces will be imple-
mented, and thus boost the DUI measurement, so we have more refined metrics.

CCDUI. The proportion of user-defined classes that extend some other class.
CIDUI. The proportion of user-defined classes that implement some other interface.
IIDUI. The proportion of user-defined interfaces that extend some other interface.
CCIF. The proportion of user-defined classes extended by some other (user-defined)

class.
CIIF. The proportion of user-defined interfaces implemented by some (user-defined)

class.
IIIF. The proportion of user-defined interfaces extended by some other (user-defined)

interface.

How Do Java Programs Use Inheritance? 677

We can specify more refined metrics for the “DUI” category by classifying the types
being extended. For each of the possible type relationships (table 1), we can consider
the proportion of those relationships that have parents in SL, TP, or UD. We name these
metrics by indicating which parent subset, which relationship, and the fact that we are
measuring proportions at the child end of the relationship. So, for example, the propor-
tion of classes that inherit from standard library classes is SLCCDUI, the proportion of
classes that implement third-party interfaces is TPCIDUI, and the proportion of inter-
faces that extend user-defined annotations is UDIADUI.

Finally, we can specify metrics for types at a given nesting level, indicated by a
subscript denoting the nesting level. So SLIIDUI1 is the proportion of level-1 nested
interfaces that extend standard library interfaces.

The metrics are also summarised in Appendix A.

5 Results

We have created a standard corpus of software to use for these kinds of studies [20].
For this study we analysed a total of 239 different codesets from 93 different open-
source Java applications from the corpus. We list the latest version of each application
in Appendix B. Considering only the latest version of each application, we measured
96,302 classes and 12,665 interfaces (108,967 types in total). The instrument we used
for measuring looks at the bytecode version of the codeset.

In the previous section we described over 50 metrics (not counting nesting level dis-
tinctions). Due to space constraints, we present here just those measurements that seem
most interesting. In particular, we provide only measurements relating to all classes
and interfaces regardless of nesting level (leaving out those for enums, annotations, and
exceptions). The full dataset is available on request.

5.1 Scalar Inheritance Metrics

We begin with the scalar metrics. Table 2 shows the maximum values we saw of each
of these metrics, together with the applications that had types with those maximum
measurements.

Some measurements are unsurprising, as are the applications that have the maxi-
mum measurements. For example, the maximum DITCCUD measurement is 10, which
is consistent with other studies. Also, eclipse is one of the larger applications
in our study (17622 classes, 1926 interfaces), and so it is unsurprising that it has
many of the maximum values, although that one class has 795 children is notewor-
thy. Yet the much smaller openoffice (1320 classes, 1617 interfaces) has an in-
terface with even more interface children. Trove’s NOPCI (number of interfaces a
class implements) value of 56 also seems rather extreme. The class with that value is
gnu.trove.SerializationProcedure, which does not extend anything (other
than Object) and so the NOPC maximum is the same.

Figure 2 shows frequency distributions for various tree depth metrics, summing all
applications across the whole corpus, and reporting results in absolute values of metrics
(x axis) for absolute number of classes with that metric value (y axis) on a log-log scale.

678 E. Tempero, J. Noble, and H. Melton

Table 2. Maximum values for scalar metrics

Metric max Applications
DITCCUD 10 netbeans-5.5-beta
DITIIUD 8 scala-1.4.0.3,netbeans-5.5-beta
NOCCC 795 eclipse SDK-3.1.2-win32
NOCCI 279 eclipse SDK-3.1.2-win32
NOCII 878 openoffice-2.0.0
NOCI 878 openoffice-2.0.0
NOPCI 56 trove-1.1b5
NOPC 56 trove-1.1b5
NOPI 13 luxor-1.0-b9
NODCC 983 eclipse SDK-3.1.2-win32
NODII 1244 openoffice-2.0.0
NOD 1873 eclipse SDK-3.1.2-win32
NOACCUD 11 netbeans-5.5-beta
NOAIIUD 18 glassfish-9.0-b15
NOAUD 57 trove-1.1b5

The first four graphs concern the “client” side of the inheritance relationship, that
is, how a class relates to other classes that it inherits from. The first graph shows
DITCCUD, that is the number of transitive superclasses (ancestors) of each class (not
counting Object). The graph shows, for example, that over 10,000 classes have pre-
cisely 2 transitive superclasses not including Object, for example Vector extends
AbstractList which extends AbstractCollection which extends Object,
while only 100 classes across our corpus have 7 transitive superclasses. The second
graph, DITIIUD, is similar to the first but for interfaces, and counts the length of the
longest chain of transitive superinterfaces of each interface. The shape of the distrib-
utions are similar, except that there are far fewer interfaces than classes in the corpus
— roughly one interface for every ten classes. The third graph, NOPC, shows the num-
ber of parents (classes and interfaces) that each class extends or implements; while the
fourth graph, NOAUD, shows all ancestors, that is the transitive closure of all classes
and interfaces contribution to a definition by any kind of inheritance.

These four client graphs have the same shape, which we have previously described
in software as a “truncated curve” distribution [21]. Truncated curves are most likely
log normal or stretched exponential distributions, and so quite different from normal
distributions. Truncated curve distributions are highly skewed: almost every class will
have a metric value of at least one, but this then decreases rapidly. Truncated curve
distributions also have a maximum value (as their name suggests, they are truncated
where they meet the x axis) that tends not to depend upon the size of the underlying data
set — for depth (DITCCUD and DITIIUD) this is around 10; for parents (NOPC) 10
and for ancestors (NOAUD) around 12 for most applications. The maximum values for
the parents and ancestors metrics are from trove, a library rather than an application,
which is a clear outlier.

How Do Java Programs Use Inheritance? 679

 1

 10

 100

 1000

 10000

 100000

 1 10

N
um

be
r

of
 c

la
ss

es
 (

lo
g)

DITCCUD (log)

DITCCUD for all classes

 1

 10

 100

 1000

 10000

 1 10

N
um

be
r

of
 in

te
rf

ac
es

 (
lo

g)

DITIIUD (log)

DITIIUD for all interfaces

 1

 10

 100

 1000

 10000

 100000

 1 10 100

N
um

be
r

of
 c

la
ss

es
 (

lo
g)

NOPC (log)

NOPC for all classes

 1

 10

 100

 1000

 10000

 100000

 1 10 100

N
um

be
r

of
 ty

pe
s

(lo
g)

NOAUD (log)

NOAUD for all types

 1

 10

 100

 1000

 10000

 1 10 100 1000

N
um

be
r

of
 in

te
rf

ac
es

 (
lo

g)

NOCIC (log)

NOCIC for all interfaces

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

N
um

be
r

of
 ty

pe
s

(lo
g)

NOD (log)

NOD for all types

Fig. 2. Frequency distributions for scalar metrics over entire corpus (log-log)

These distributions mean that most inheritance is shallow — although most classes
use inheritance, they are generally only a few levels down in the inheritance tree. Be-
cause of the skewed, truncated curve distributions, there will still be some classes that
are quite deep in the inheritance hierarchy, but this is bounded — the number of an-
cestors contributing to each class’ definition, and the depth of classes in the inheritance
tree, does not increase with program size.

The other graphs in figure 2 concern the “supplier” side of the inheritance relation-
ship, that is, how a class relates to other classes that inherit from it. The first supplier
graph, NOCCI, shows for each interface, the number of classes that implement that in-
terface (a partial complement to NOPC), while the second supplier graph, NOD, shows

680 E. Tempero, J. Noble, and H. Melton

the total number of types (classes and interfaces) that directly or transitively inherit
from that class or implement that interface (a complement to NOA).

These two supplier graphs show the classic signature of a power-law distribution:
a straight line on a log-log plot. In the centre of the data, a power law behaves quite
similarly to a truncated curve, so that, for example, 1,000 classes implement 2 inter-
faces, but only 100 classes implement 10 interfaces (NOCCI); or 10,000 types have
no descendants, 5,000 types have only one descendant, and around 100 types have 11
descendants (NOD). The key difference between a truncated curve and a power law
occurs on the right hand-side — while the absolute metric values in a truncated curve
distributions are, well, truncated, power laws are unbounded. This is visible towards
the bottom right of the NOCCI and NOD graphs, which show that the corpus contains
one or two classes with large values for these metrics, and in the maxima for the power
law metrics (279 for NOCCI, 1895 for NOD, both from eclipse, one of the largest
applications in our corpus).

Compared with normal distributions, power law distributions are counter-intuitive:
most classes are not used as suppliers in inheritance relationships, while a few classes
are used very commonly. Because power law distributions are unbounded, we can ex-
pect that as programs get larger, the numbers of implementations of popular interfaces
and the number of descendants of popular classes will grow without limit.

In general, these graphs confirm the results of our smaller and much more coarse-
grained study of general dependency topologies in software [21]: client relationships
are truncated curves, while supplier relationships are power laws. Specifically with re-
spect to inheritance, we see that most classes are defined using some form of inheritance
— either extending another class or implementing at least one interface. Although in-
heritance is used pervasively to help define classes, it is also shallow: we found no class
with more than ten parents, and very few with more twelve or thirteen ancestors (both
classes inherited from, or interfaces implemented). For programmers reading or writing
new class definitions, this means that they only need to consider a limited number of
classes to understand their new classes.

On the other hand, relatively few classes and interfaces participate in the definitions
of other types, but a few of those that do are used very widely indeed — this is the asym-
metry inherent in power law and truncated curve networks. For programmers learning
libraries or applications, this is good news: it means that there will be a few crucial
types that they need to understand in order to implement or subclass to extend appli-
cations, or to use libraries. Furthermore, querying codesets to find the most frequently
extended or implemented classes will likely be a good strategy to use when encoun-
tering an unfamiliar problem. On the other hand, for maintenance programmers, this
is mixed blessing. Most types do not participate in much inheritance as suppliers, so
they can be changed with little effect on the application. There will be some classes and
interfaces, however, that are used very widely throughout a program, and as the pro-
gram gets bigger (as more functionality, or more classes are added) these core classes
and interfaces will be used more and more often. Maintaining or extending such classes
or interfaces will be very difficult indeed, and only get harder as the size of programs
increases.

How Do Java Programs Use Inheritance? 681

5.2 Inheritance Summary Metrics

We now turn to the metrics that apply to whole applications. Figure 3 shows the DUI
and IF results. It shows the number of applications having a given measurement, re-
membering that a measurement is a proportion of some kind. Looking at figure 3, the
tallest bar (mode) for DUI is at 72% and has height 7, indicating that 7 applications had
72% of their types defined using inheritance in some way.

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

N
um

be
r

of
 a

pp
lic

at
io

ns

DUI measurement

DUI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100

N
um

be
r

of
 a

pp
lic

at
io

ns

IF measurement

IF

Fig. 3. Frequency distributions for DUI and IF

The striking feature of the DUI results is that the lowest is 29% (mvnforum), and
that is very much an outlier. The next smallest value is 49% (openxchange, quilt).
The median is 74%, that is, half the applications in our study have 74% or more of their
user-defined types defined using some form of inheritance. For IF, the minimum was
2% (ireport,rssowl), the maximum was 39% (scala), the median was 17%, and
mode was at 14% (9 applications).

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

CCDUI

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

CIDUI

 0

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

IIDUI

Fig. 4. Frequency distributions for CCDUI, CIDUI, and IIDUI

A class contributes to the DUI measurement by either extending another class or
implementing an interface. The first is measured by CCDUI and the second by CIDUI.
An interface contributes to DUI only by extending another interface (IIDUI). Their

682 E. Tempero, J. Noble, and H. Melton

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

CCIF

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

CIIF

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

IIIF

Fig. 5. Frequency distributions for CCIF, CIIF, and IIIF

 0

 5

 10

 15

 20

 0 20 40 60 80 100

SLCCDUI

 0

 5

 10

 15

 20

 0 20 40 60 80 100

TPCCDUI

 0

 5

 10

 15

 20

 0 20 40 60 80 100

UDCCDUI

Fig. 6. Frequency distributions for SLCCDUI, TPCCDUI, and UDCCDUI

frequency distributions are shown in figure 4. For CCDUI, the minimum value is 14%
(mvnforum), the median is 52%, the maximum is 91% (jparse), and the mode is
43% (6). For CIDUI, the minimum is 2% (fitjava), the median 34% , the maximum
76% (scala), and the mode 41% (5). Generally a lower proportion of classes inherit
from an interface than extend another class. For IIDUI the minimum is 3% (roller), the
median is 21% (ganttproject, xalan, hibernate, lucene), the maximum is
99% (scala), and the mode is at 27% (5).

 0

 5

 10

 15

 20

 0 20 40 60 80 100

SLCIDUI

 0

 5

 10

 15

 20

 0 20 40 60 80 100

TPCIDUI

 0

 5

 10

 15

 20

 0 20 40 60 80 100

UDCIDUI

Fig. 7. Frequency distributions for SLCIDUI, TPCIDUI, and UDCIDUI

Considering figure 4, we can see that there was a wide distribution in the use of in-
heritance to define classes and interfaces across our corpus. So it is not the case that the
distribution in figure 3 is due to (for example) just classes implementing interfaces, but
each of CC, CI, and II relationships make significant contributions. In fact, applications

How Do Java Programs Use Inheritance? 683

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

SLIIDUI

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

TPIIDUI

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

UDIIDUI

Fig. 8. Frequency distributions for SLIIDUI, TPIIDUI, and UDIIDUI

generally have a lower proportion of classes implementing interfaces than classes ex-
tending classes, and interfaces extending interfaces is lower still (note that a class both
extending another class and implementing one or more interfaces will show in both the
CCDUI and CIDUI results).

A type contributes to the IF measurement by either being an interface that is imple-
mented (CIIF) or extended (IIIF) or a class that is extended (CCIF). Their frequency
distributions are shown in figure 5. We see that rarely are more than 20% of either
classes or interfaces extended, and most of the time more than 80% of interfaces are
implemented. The latter is somewhat surprising — we would expect that if an interface
is created then it would be implemented, but this is true for only 15 of the applications.
One possible explanation is that some interfaces are only extended, hence it is worth
looking at how many children an interface has (NOCI). The lowest CIIF value is 9%
for openoffice, but recall that openoffice had the largest NOCI value.

A class can extend either a standard library class (SLCCDUI), a third-party class
(TPCCDUI), or a user-defined class (UDCCDUI). Figure 6 shows their distributions. It
would appear that most of the CCDUI distribution can be explained by the UDCCDUI
distribution, that is, by and large, classes that extend another class tend to extend user-
defined classes. Figures 7 and 8 shows the distributions for the CI and II relationships.

 0

 20

 40

 60

 80

 100

1.1
1.2

1.3
1.4

1.4.1
1.5

1.5.1
1.5.2

1.5.3.1

1.5.4
1.6.0

1.6.2
1.6.5

M
ea

su
re

m
en

t

Version

ant DUI breakdown

DUI
CCDUI
CIDUI
IIDUI

Fig. 9. DUI and its breakdown for 13 versions
of ant

 0

 20

 40

 60

 80

 100

2.0.1.0

2.0.3.0

2.0.3.2

2.0.4.0

2.0.4.2

2.0.7.0

2.0.8.0

2.0.8.2

2.0.8.4

2.1.0.0

2.1.0.2

2.1.0.4

2.2.0.0

2.2.0.2

2.3.0.0

2.3.0.2

2.3.0.4

M
ea

su
re

m
en

t

Version

azureus DUI breakdown

DUI
CCDUI
CIDUI
IIDUI

Fig. 10. DUI and its breakdown for 17 versions
of azureus

684 E. Tempero, J. Noble, and H. Melton

 0

 20

 40

 60

 80

 100

1.0
2.0

2.0.1
2.0.2

2.1
2.1.1

2.1.2
2.1.3

3.0
3.0.1

3.0.2
3.1

3.1.2

M
ea

su
re

m
en

t

Version

eclipse DUI breakdown

DUI
CCDUI
CIDUI
IIDUI

Fig. 11. DUI and its breakdown for 13 ver-
sions of eclipse

 0

 20

 40

 60

 80

 100

2.0.1.0

2.0.3.0

2.0.3.2

2.0.4.0

2.0.4.2

2.0.7.0

2.0.8.0

2.0.8.2

2.0.8.4

2.1.0.0

2.1.0.2

2.1.0.4

2.2.0.0

2.2.0.2

2.3.0.0

2.3.0.2

2.3.0.4

M
ea

su
re

m
en

t

Version

azureus CCDUI breakdown

CCDUI
SLCCDUI
TPCCDUI
UDCCDUI

Fig. 12. CCDUI and its breakdown for 17
versions of azureus

 0

 20

 40

 60

 80

 100

2.0.1.0

2.0.3.0

2.0.3.2

2.0.4.0

2.0.4.2

2.0.7.0

2.0.8.0

2.0.8.2

2.0.8.4

2.1.0.0

2.1.0.2

2.1.0.4

2.2.0.0

2.2.0.2

2.3.0.0

2.3.0.2

2.3.0.4

M
ea

su
re

m
en

t

Version

azureus CIDUI breakdown

CIDUI
SLCIDUI
TPCIDUI
UDCIDUI

Fig. 13. CIDUI and its breakdown for 17
versions of azureus

 0

 20

 40

 60

 80

 100

2.0.1.0

2.0.3.0

2.0.3.2

2.0.4.0

2.0.4.2

2.0.7.0

2.0.8.0

2.0.8.2

2.0.8.4

2.1.0.0

2.1.0.2

2.1.0.4

2.2.0.0

2.2.0.2

2.3.0.0

2.3.0.2

2.3.0.4

M
ea

su
re

m
en

t

Version

azureus IF breakdown

IF
CCIF
CIIF
IIIF

Fig. 14. IF and its breakdown for 17 ver-
sions of azureus

5.3 Longitudinal

Another view of our data is to consider how the various metrics change over time
for an application. Figures 9, 10, and 11 show DUI and its breakdown (CCDUI,
CIDUI, IIDUI) on one chart each for ant, azureus, and eclipse respectively.
What is particularly interesting about these figures is how consistent the values are,
especially given the changes in size of the three applications: the number of user-
defined types for ant goes from 102 for ant-1.1 to 1014 for ant-1.6.5, for
azureus it is from 163 for azureus-2.0.1.0 to 2130 for azureus-2.3.0.4,
and for eclipse it is from 6522 for eclipse SDK-1.0-win32 to 19674 for
eclipse SDK-3.1.2-win32.

Figures 12 and 13 show the longitudinal views of CCDUI and CIDUI for azureus.
We note that the x-axis is not a linear scale, and that generally the size (in number
of types) of azureus increases over the period shown. For example, for SLCCDUI,
the earliest version has 15 classes whereas the latest has 42, so the absolute number

How Do Java Programs Use Inheritance? 685

has increased but the proportion is declining. On the other hand, UDCCDUI shows
a marked increase, from 8%, 13 out 158 (version 2.0.1.0) to 27%, 647 out of 2410
(version 2.3.0.4).

Figure 14 shows the IF results and the breakdown for azureus. IF shows an initial
increase and then an apparent convergence to 19%. CCIF ends up holding steady at 4%
from about version 2.0.7.0, but that version has 860 classes and the final version has
2410. As a general rule we would expect all interfaces to be implemented (CIIF). As
we noted earlier, reasons for this not to be the case include interfaces that exist only to be
extended by others, or dead code. In this case only around 90% of interfaces are directly
implemented, but there were only 5 in the earliest version and 492 (444 implemented)
in the latest. As there are 492 interfaces and 2410 classes in the latest version, giving
2902 types overall, the fact that 444 are implemented accounts for 15% overall, or most
of the IF measurement (19%). However, from the IIIF data we find that 35 interfaces
appear not be used at all.

6 Discussion

Our study has revealed several interesting features about the way inheritance is actually
used in practice in Java programs. We find the DUI results particularly interesting: as
presented in section 5.2, around three-quarters of user-defined classes use some form
of inheritance in at least half the applications in our corpus. We expected to see much
lower proportions of types using some form of inheritance. Our first thought on seeing
these results was that the high values could be due to heavy use of interfaces, or perhaps
significant use of frameworks from the standard API or third party libraries. Refinement
of our measurements (figures 4 and 6) show that neither are the case, instead the most
common (but by no means the predominant) form of inheritance is classes extending
other user-defined classes.

One possible explanation of our observations is that some amount of the inheritance
we see is “bad inheritance” in some sense. It could be that there is so much advice
around advocating avoiding inheritance where possible because it is mainly being used
inappropriately. We cannot rule this out, although various checks we performed on the
accuracy of our tool involved looking at the source code, and these casual observations
did not reveal anything obviously wrong with the use of inheritance we saw, and our
corpus is made up of well-known applications mostly written by professional Java pro-
grammers. So we interpret our data to mean that defining most classes by inheritance is
accepted practice in Java programming.

Our observations thus provide a useful benchmark for managers of Java program-
mers — applications with significantly less than 75% of types defined using inheritance,
or more than 17% are inherited from, or in other ways significantly differ from what we
have observed, are applications that probably need investigation.

While a large proportion of types are defined using inheritance, rarely are more than
20% of classes or interfaces extended. While we have not shown the figures here, it also
turns out that the proportion of interfaces is rarely more than 20% of the total types,
and usually around 10%. This points towards a significant fan-out in the inheritance
relationships, and the NOC category of scalar metrics supports this view.

686 E. Tempero, J. Noble, and H. Melton

We have noted the NOC frequency distributions appear to have a classic power-law
shape we have seen in other software relationships [22,21]. If the NOC metrics do have
a power-law distribution, then it follows that the larger the application, the larger the
NOC values we will see, and statistical measures such as mean and standard deviations
will have no useful purpose. This may explain why our NOC results are so different
from the previously published data — our study is so much larger.

Other distributions such as the NOD and NOP categories also appear to be power-
laws (although the NOP could be an artifact due to the small number of data points).
We have also noted the appearance of the “truncated curve” distribution (figure 2) we
have observed in dependency metrics in a previous study [21].

Examination of the longitudinal results also reveals a surprising feature, namely how
constant the use of inheritance is across application evolution and application size.
While 3 data points is hardly a strong trend, the fact that any exist is noteworthy. There is
no obvious reason for why such consistency should occur. Given the significant changes
in size (for example ant grows an order of magnitude across the versions we studied),
it seems unlikely that it is due to something about the delivered functionality, as the de-
livered functionality will have changed significantly. It is possible that this application
is biased by some feature of its problem domain, or the programming style used by the
development team, however it is equally likely that this level of use of inheritance is
simply a standard feature of accepted Java programming practice.

Another interesting feature is how much the component parts of DUI vary despite
DUI itself being so constant. For example in azureus (figure 10) the proportion
of classes implementing interfaces noticeably increases and then decreases without a
change in DUI and without similar differences in the proportion of classes or interfaces
using inheritance.

Looking at the breakdown of CCDUI for azureus (figure 12) we see that the pro-
portion of classes extending other user-defined classes steadily increases while the pro-
portion extending standard library or third-party classes steadily decreases, while (not
shown in the figure) the overall size of azureus grows (although we again note that
the x-axis is not a linear scale). This suggests that applications become more inwards
looking as they age, relying on their own definitions. If externally-provided functional-
ity is required (by inheritance), it may be more likely to be accessed via user defined
classes that either themselves inherit or delegate to external code.

We note that the largest application in our study (netbeans, 19666 classes and
1830 interfaces) only has one maximum scalar measurement, and several different ap-
plications of quite different sizes are represented in the maximum scalar metric mea-
surements. This suggests that our metrics are not simply measuring application size
(at least as measured by number of types), but are actually capturing other features of
programming style or practice.

There are many other points of interest in the data we have collected that we do not
have space to discuss. But for example, we mentioned earlier interfaces that are neither
implemented nor extended (NOCI measurement of 0). There are in fact over 2000 such
interfaces. Some provide only constants, some indicate variation points of frameworks,
and some seem to be just dead code. This raises the question as to how much dead code

How Do Java Programs Use Inheritance? 687

is being distributed. We also wonder what other peculiarities we might find in our data,
and in other kinds of similar measurements that could be made of code.

The most likely threat to the validity of our conclusions is the corpus we used, which
consists entirely of successful open-source Java applications, many of small to medium
size. Our results do apply to at least these applications, many of which (openoffice,
eclipse, ant) are some of the most used Java programs worldwide. It does however
raise the question as to whether our results indicate something specific to the open-
source development model. We note that the few other similar studies that have been
published [11,7,8,9,12,13,16] generally indicate different results, although their small
size, the lack of data they present, the lack of clarity about what they are measuring, and
the coarse granularity of their metrics makes it difficult to tell. In the scientific tradition,
we hope we have provided sufficient details about our corpus and metrics to allow other
researchers to replicate our study: independent replication will give the best grounds to
claim generalisability.

7 Conclusions

Like all programming language designs, Java is an experiment. Unlike most language
designs, the general adoption of Java, and the resulting widespread availability of sub-
stantial “real-world” Java programs means that we are finally able to evaluate that ex-
periment, in ways that are simply not possible for most other languages.

In this paper, we have introduced a new structured suite of metrics to evaluate, quanti-
tatively, how Java programs use inheritance. More importantly, we have applied these and
some more traditional “scalar” metrics in a large-scale empirical study. We believe such
studies are important to establishing and understanding trends in software development.

Our results show surprisingly high levels of use of inheritance in defining types, with
about 3 out of 4 types in our study being defined using inheritance in one form or other.
In contrast, most types make only a small contribution to other definitions via inheri-
tance; however a few types will be very well used, being inherited or implemented by
many other classes or interfaces. We have also seen evidence that levels of inheritance
are somewhat constant over the lifetime of an application. Our corpus study indicates
that an apparently high use of inheritance is a characteristic of accepted Java program-
ming practice.

The overarching methodological contribution implied by our results is that metrics
for inheritance must distinguish between classes and interfaces, and between extends
and implements relationships. To do otherwise obscures important data about program
structure, because our results show that different kinds of inheritance are used in dif-
ferent ways. Furthermore, distinguishing between user code and “other” code (both
standard libraries or third party components) is also important to give a true picture of
the use of inheritance. So far, our results show that programmers treat standard libraries
and third-party code in the same way — at least as far as inheritance is concerned —
while user-defined classes are treated differently, primarily by being used more often to
define other user-defined classes.

We emphasise that we make no claims as to whether our results are indicative of
“good design”. Without reliable data about such things as development effort, presence

688 E. Tempero, J. Noble, and H. Melton

of faults, and other quality attributes, we cannot make such an assessment. As others be-
fore us have observed, gathering such data is crucial to understanding the impact of such
things as inheritance structure on software quality. The contribution of this research is
a crucial prerequisite to doing such studies: first, being able to understand and measure
the various uses of inheritance in Java programs in a well-founded manner; and second,
being able to use those measures to quantify the accepted Java programming practice.

There are many directions this work can take. We have collected, but have not yet
analysed, data on the use of nested classes, including static nested classes, in inheritance
relationships. Java also distinguishes abstract from concrete classes, and it would be
interesting to determine how they are used. Others have discussed examining the num-
ber of methods inherited, and other such “internal” inheritance relationships [23,12].
Steimann has identified various roles that interfaces can play, and extending his study
to our corpus may prove interesting [24]. As we noted at the end of the previous sec-
tion, independent replication of our results would give more support for generalisation
across other Java programs. Replication of our studies in other OO languages would
help determine how much our results depend on features Java, and how much they are
in some sense intrinsic to object-orientation.

Given enough data, it is often possible to find some kind of pattern, and we certainly
have plenty of data. Nevertheless we suggest that the patterns we have observed are
indeed an indication of significant structures in software design, and faithfully capture
large-scale aspects of the use of inheritance in accepted Java programming practice. In
other words, we have shown how Java programs use inheritance.

Acknowledgements

We would like to thank the anonymous referees for their comments and suggestions for
improving this paper and the suggestions for new studies.

References

1. Taivalsaari, A.: On the notion of inheritance. Comp. Surv. 28(3), 438–479 (1996)
2. Meyer, B.: Reusability: the case for object-oriented design. IEEE Software, 50–64 (March

1987)
3. Snyder, A.: Inheritance and the development of encapsulated software components. In: Re-

search Directions in Object Oriented Programming, pp. 165–188. MIT Press, Cambridge
(1987)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley Publish-
ing Company, One Jacob Way, Reading, Massachusetts 01867 (1994)

5. Johnson, R.E., Foote, B.: Designing reusable classes. Journal of Object-Oriented Program-
ming (June/July 1988)

6. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, 2nd
edn. Addison-Wesley, Reading (2004)

7. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating inheritance depth on the
maintainability of object-oriented software. Empirical Software Engineering 1(2), 109–132
(1996)

How Do Java Programs Use Inheritance? 689

8. Cartwright, M.: An empirical view of inheritance. Information and Software Technology 40,
795–799 (1998)

9. Harrison, R., Counsell, S., Nithi, R.: Experimental assessment of the effect of inheritance on
the maintainability of object-oriented systems. Journal of Systems and Software 52, 173–179
(2000)

10. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design. In: ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pp. 197–211 (1991)

11. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

12. Manel, D., Havanas, W.: A study of the impact of C++ on software maintenance. In: Interna-
tional Conference on Software Maintenance, pp. 63–69 (1990)

13. Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., Russo, B.: An empirical exploration of the
distributions of the Chidamber and Kemerer object-oriented metrics suite. Empirical Softw.
Engg. 10(1), 81–104 (2005)

14. Collberg, C., Myles, G., Stepp, M.: An empirical study of Java bytecode programs. Softw.
Pract. Exper. 37(6), 581–641 (2007)

15. Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of metrics for object-oriented soft-
ware: an exploratory analysis. IEEE Trans. Software Engineering 24(8), 629–639 (1998)

16. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

17. Briand, L.C., Daly, J., Porter, V., Wüst, J.K.: A comprehensive empirical validation of design
measures for object-oriented systems. In: METRICS 1998: Proceedings of the 5th Interna-
tional Symposium on Software Metrics, pp. 246–257. IEEE Computer Society Press, Los
Alamitos (1998)

18. Kitchenham, B., Pfleeger, S.L., Fenton, N.: Towards a framework for software measurement
validation. IEEE Trans. Softw. Eng. 21(12), 929–944 (1995)

19. Melton, H., Tempero, E.: An empirical study of cycles among classes in Java. Empirical
Software Engineering 12(4), 389–415 (2007)

20. Qualitas Research Group: Qualitas corpus (June 2007),
http://www.cs.auckland.ac.nz/∼ewan/corpus/

21. Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton, H., Tempero,
E.: Understanding the shape of Java software. In: Cook, W. (ed.) ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Portland, OR, U.S.A, October 2006, pp. 397–412 (2006)

22. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry in OO programs. Commun.
ACM 48(5), 99–103 (2005)

23. Benlarbi, S., Melo, W.L.: Polymorphism measures for early risk prediction. In: ICSE 1999:
Proceedings of the 21st international conference on Software engineering, pp. 334–344.
IEEE Computer Society Press, Los Alamitos (1999)

24. Steimann, F., Mayer, P.: Patterns of interface-based programming. Journal of Object Tech-
nology 4(5), 75–94 (2005),
http://www.jot.fm/issues/issue 2005 07/article1

Appendix A: Metric Summaries

Scalar Metrics

These metrics provide measurements for individual types in alphabetical order. In these
definitions, A is an ancestor of X if, A is not Object and there is a path from X to A

690 E. Tempero, J. Noble, and H. Melton

where all the vertices, with the possible exception of A, are user-defined types, and D
is a descendent of Y if there is a path from D to Y.

DITCCUD. Length of path from a class and consisting only of extends edges to the
first non user-defined class other than Object, or one less than the length of the
path that ends with Object.

DITIIUD. Length of path from an interface and consisting only of extends edges to
the first non user-defined class.

NOACCUD. Number of ancestors a class has (extends edges only).
NOAIIUD. Number of ancestors an interface has (extends edges only).
NOAUD. Number of all ancestors a type has (both implements and extends

edges).
NOCCC. Number of classes inheriting from a given class (via extends edges).
NOCCI. Number of classes implementing a given interface (via implements

edges).
NOCII. Number of interfaces inheriting from a given interface (via extends edges).
NOCI. Total number of classes that implement a given interface and interfaces that

extend that interface (both implements and extends edges).
NODCC. Number of descendants a class has (extends edges only).
NODII. Number of descendants an interface has (implements edges only).
NOD. Number of all descendants a type has (both implements and extends

edges).
NOPCI. Number of interface parents a class has (via implements edges).
NOPC. Number of parents a class has (both classes and interfaces).
NOPI. Number of parents an interface has (via extends edges).

Summary Metrics

These metrics provide measurements over an application. The first set (given in alpha-
betical order) do not consider the source of the types participating in a given relation
(see the table below for that).

CCDUI. The proportion of user-defined classes that extend some other class.
CCIF. The proportion of user-defined classes extended by some other (user-defined)

class.
CIDUI. The proportion of user-defined classes that implement some other interface.
CIIF. The proportion of user-defined interfaces implemented by some (user-defined)

class.
DUI. The proportion of types Defined Using Inheritance, that is, those types that either

implement an interface or extend another type other than Object, or, the propor-
tion of types that occupy a child end of an edge in the inheritance DAG.

IF. The proportion of types Inherited From, that is, those types that are either extended
or implemented, or, the proportion of types that occupy a parent end of an edge in
the inheritance DAG.

IIDUI. The proportion of user-defined interfaces that extend some other interface.
IIIF. The proportion of user-defined interfaces extended by some other (user-defined)

interface.

How Do Java Programs Use Inheritance? 691

The table below lists the most refined summary metrics. Each row is one of the 7
relationships identified (whether it is extends or implements is implied by the
combination of kinds of type). The columns show the two directions of the relationship.
The cells of the “using” relation have the metrics in the order of: using Standard Library,
using Third Party, or using User Defined.

Defined Using Inheritance Inherited From
(Using) (Used)

Class-Class SLCCDUI, TPCCDUI, UDCCDUI CCIF
Class-Interface SLCIDUI, TPCIDUI, UDCIDUI CIIF
Interface-Interface SLIIDUI, TPIIDUI, UDIIDUI IIIF
Interface-Annotation SLIADUI, TPIADUI, UDIADUI IAIF
Enum-Interface SLEIDUI, TPEIDUI, UDEIDUI EIIF
Exception-Interface SLExIDUI, TPExIDUI, UDExIDUI ExIIF
Exception-Exception SLExExDUI, TPExExDUI, UDExExDUI ExExIF

Appendix B: Applications from Qualitas Corpus

We believe it is important to provide as complete information as possible regarding
the applications used in our study, although space constraints cramp our presentation
somewhat. The format is application name-version id.
aglets-2.0.2, ant-1.6.5, antlr-2.7.6, aoi-2.2, argouml-0.20, axion-1.0-M2,
azureus-2.3.0.4, c jdbc-2.0.2, colt-1.2.0, columba-1.0, compiere-251e, derby-10.1.1.0,
displaytag-1.1, drawswf-1.2.9, drjava-20050814, eclipse SDK-3.1.2-win32,
exoportal-v1.0.2, findbugs-1.0.0, fitjava-1.1, fitlibraryforfitnesse-20050923,
freecol-0.6.0, freecs-1.2.20060130, galleon-1.8.0, ganttproject-1.11.1,
geronimo-1.0-M5, glassfish-9.0-b15, gt2-2.2-rc3, heritrix-1.8.0, hibernate-3.1-rc2,
hsqldb-1.8.0.4, htmlunit-1.8, infoglue-2.3Final, informa-0.6.5, ireport-0.5.2, itext-1.4,
ivatagroupware-0.11.3, j ftp-1.48, jag-5.0.1, jaga-1.0.b, james-2.2.0,
jasperreports-1.1.0, javacc-3.2, jboss-4.0.3-SP1, jchempaint-2.0.12, jedit-4.2,
jeppers-20050607, jetty-5.1.8, jfreechart-1.0.1, jgraph-5.9.2.1, jhotdraw-6.0.1,
jmeter-2.1.1, joggplayer-1.1.4s, jparse-0.96, jrat-0.6, jrefactory-2.9.19, jspwiki-2.2.33,
jtopen-4.9, jung-1.7.1, junit-4.1, log4j-1.2.13, lucene-1.4.3, luxor-1.0-b9,
megamek-2005.10.11, mvnforum-1.0-ga, nekohtml-0.9.5, netbeans-5.5-beta,
openjms-0.7.7-alpha-3, openoffice-2.0.0, openxchange-0.8.0.6, oscache-2.3-full,
pmd-3.3, poi-2.5.1, proguard-3.6, quartz-1.5.2, quickserver-1.4.7, quilt-0.6-a-5,
roller-2.1.1-incubating, rssowl-1.2, sablecc-3.1, sandmark-3.4, scala-1.4.0.3,
sequoiaerp-0.8.2-RC1-all-platforms, servicemix-3.0-SNAPSHOT, soot-2.2.3,
springframework-1.2.7, squirrel sql-2.4, struts-1.2.9, tomcat-5.5.17, trove-1.1b5,
webmail-0.7.10, xalan-j 2 7 0, xerces-2.8.0, xmojo-5.0.0.

Author Index

Adl-Tabatabai, Ali-Reza 129
Ahnn, Jong Hoon 463
Aksit, Mehmet 180
Aldrich, Jonathan 260
Artzi, Shay 542
Aspinall, David 27

Bacon, David F. 76
Banerjee, Anindya 387
Bergmans, Lodewijk 180
Besson, Frédéric 642
Bierman, Gavin 235
Birman, Ken 463
Brucker, Achim D. 438

Cacho, Nélio 207
Cameron, Nicholas 2
Chin, Brian 566
Coelho, Roberta 207

Dash, Alokika 490
Daynès, Laurent 335
Demsky, Brian 490
Dolev, Danny 463
Drossopoulou, Sophia 2, 412

Ernst, Erik 2
Ernst, Michael D. 542, 616

Ferrari, Fabiano 207
Francalanza, A. 412

Ĝırba, Tudor 592
Garcia, Alessandro 207
Gray, Kathryn E. 52
Guerraoui, Rachid 1

Havinga, Wilke 180
Hessellund, Anders 285
Hirzel, Martin 309
Honda, Kohei 516
Hormati, Amir 76
Hu, Raymond 516
Huang, Shan Shan 76

Jacobsen, Hans-Arno 362
Jagannathan, Suresh 129
Jensen, Thomas 642

Kim, Sunghun 542
Krintz, Chandra 335
Kulesza, Uirá 207

Leavens, Gary T. 155
Lienhard, Adrian 592
Lucena, Carlos 207

Malayeri, Donna 260
Melton, Hayden 667
Menon, Vijay 129
Millstein, Todd 566
Müller, P. 412
Mycroft, Alan 104

Naumann, David A. 387
Nierstrasz, Oscar 592
Noble, James 235, 667

Ostrowski, Krzysztof 463

Parkinson, Matthew 235

Quinonez, Jaime 616

Rabbah, Rodric 76
Rajan, Hridesh 155
Rashid, Awais 207
Rosenberg, Stan 387

Sestoft, Peter 285
Ševč́ık, Jaroslav 27
Shpeisman, Tatiana 129
Soman, Sunil 335
Srinivasan, Sriram 104
Summers, A.J. 412

Tempero, Ewan 667
Tschantz, Matthew S. 616
Turpin, Tiphaine 642

694 Author Index

von Staa, Arndt 207

Welc, Adam 129

Wolff, Burkhart 438

Yoshida, Nobuko 516

Zhang, Charles 362
Zhang, Chengliang 309
Ziarek, Lukasz 129

