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Abstract. Parser combinators are a popular technique among func-
tional programmers for writing parsers. They allow the definition of
parsers for string languages in a manner quite similar to BNF rules.
In recent papers we have shown that the combinator approach is also
beneficial for graph parsing. However, we have noted as well that certain
graph languages are difficult to describe in a purely functional way.

In this paper we demonstrate that functional-logic languages can be
used to conveniently implement graph parsers. Therefore, we provide a
direct mapping from hyperedge replacement grammars to graph parsers.
As in the string setting, our combinators closely reflect the building blocks
of this grammar formalism. Finally, we show by example that our frame-
work is strictly more powerful than hyperedge replacement grammars.

We make heavy use of key features of both the functional and the logic
programming approach: Higher-order functions allow the treatment of
parsers as first class citizens. Non-determinism and logical variables are
beneficial for dealing with errors and incomplete information. Parsers
can even be applied backwards and thus be used as generators or for
graph completion.

1 Introduction

Declarative languages are known to be exceptionally well-suited for building
string parsers. Among functional programmers, the probably most popular ap-
proach in this domain are parser combinators. Thereby, some primitive parsers
are defined that can be combined into more advanced parsers using a set of
powerful combinators. These combinators are higher-order functions that can be
used to make parsers resemble a grammar very closely [1,2].

Parser combinators integrate seamlessly into the rest of the program, hence the
full power of the host language can be used. Unlike parser generators as Yacc, no
extra formalism is needed to specify a grammar. Another benefit is that parsers
are first-class values within the language. For example, we can construct lists of
parsers or pass them as function parameters. The possibilities are only restricted
by the potential of the host language.

Due to these benefits we have started to carry over this approach to the do-
main of graph parsing recently [3,4]. Graph languages are widely-used nowadays,
e.g., for modeling and specification. For instance, we have specified visual lan-
guages [5] using so-called hyperedge replacement grammars [6]. There, graphs
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are used as a model for diagrams and a graph parser can be used to check
whether a given diagram is syntactically correct.

Hyperedge replacement grammars, HRG for short, are a well-known way of
describing languages of hypergraphs, i.e., graphs where edges are allowed to
visit an arbitrary number of nodes. Although restricted in power, this formalism
comprises several beneficial properties: It is context-free and still quite powerful.
Grammars are comprehensible, and reasonably efficient parsers can be defined
for practical languages (in general parsing is NP-complete, though). In this con-
text, rewriting means the replacement of a non-terminal hyperedge of a given
hypergraph with a new hypergraph that is glued to the remaining graph by
fusing particular nodes (cf. [6]).

In [4] we have discussed how HRGs can be translated to parsers using purely
functional combinators. The resulting parsers indeed closely resemble the gram-
mar. They are similar to top-down recursive descent parsers known from string
parsing where non-terminal symbols are mapped to functions. In addition, the
nodes actually visited by a particular non-terminal edge have to be given as func-
tion parameters to ensure the proper embedding of the graph the non-terminal is
replaced by. However, these parsers suffer from an inherent problem: Inner nodes
occurring in the right-hand side of a production are not known in advance, but
have to be guessed in order to establish a match. It is a nontrivial task to realize
this guessing efficiently in a purely functional language.

In contrast, logic languages excel at dealing with incomplete information.
Free variables can be introduced that are instantiated automatically in order
to find solutions. Backtracking is the default behavior and does not need to be
implemented by hand. Unfortunately, purely logic languages like Prolog do not
support the straightforward definition of higher-order functions like our combi-
nators. Thus, the “remaining input” would have to be passed more explicitly
resulting in a lot of boilerplate code.1

Having this in mind, graph parsing appears to be a domain asking for multi-
paradigm declarative programming languages [8]. Those are already known to
be well-suited for string parsing [9]. In the domain of graph parsing their benefits
stand out even more. The functional-logic framework of graph parser combina-
tors presented in this paper offers the following striking features:

• Straightforward translation of HRGs to reasonably efficient parsers.
• Application-specific results due to a powerful attribution concept.
• Usable context information. This allows the convenient description of several

languages that cannot be defined with a HRG.
• Robust against errors. Valid subgraphs can be extracted.
• Bidirectionality. Besides syntax analysis parsers can be used to construct or

complete graphs with respect to the language they describe.

1 Prolog provides Definite Clause Grammars, syntactic sugar to hide the difference
list mechanism needed to build efficient string parsers in logic languages. However,
a graph is not linearly structured, so this notation cannot be used here. Tanaka’s
Definite Clause Set Grammars [7] are not supported by common Prolog systems.
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This paper is organized as follows: In Sect. 2 we introduce HRGs. We continue
with the presentation of an excerpt from the actual framework implemented
in the functional-logic programming language Curry (Sect. 3). Thereafter, we
discuss the parsing of HRGs and provide some examples (Sect. 4). Finally, we
sketch the related work (Sect. 5) and conclude (Sect. 6).

2 Hypergraphs and HRGs

In this section we introduce hypergraphs, the notion of graphs our framework is
based on, and the HRG formalism [6].

Let C be a set of labels and type : C → IN a typing function for C. In
the following, a hypergraph H over C is a finite multiset of (hyper-)edges2 e =
(lab, ns), where lab ∈ C is an edge label and ns is a sequence of attachment
nodes such that type(lab) = |ns|, the length of the sequence. The nodes in ns are
called incident to (or visited by) the edge e. The position of a particular node n
in ns represents the so-called tentacle of e that n is attached to. Hence the order
of nodes in ns matters.

Note that our notion of hypergraphs is slightly more restrictive than the more
common definition given by [6], because we cannot directly represent isolated
nodes. Rather the nodes of H are implicitly given as the union of all nodes
incident to its edges. In fact, in many hypergraph application areas isolated nodes
simply do not occur. For example, in the context of visual languages, diagram
components can be represented by hyperedges, and nodes just represent their
connection points, i.e., each node is visited by at least one edge [5].

Throughout this paper we use structured flowcharts as a running example, i.e.,
flowcharts that have a unique entry and a unique exit point. In Fig. 1a a struc-
tured flowchart is given. Here, syntax analysis means to identify the represented
structured program (if any).

Flowcharts can be represented by hypergraphs that we call flowgraphs in the
following. In Fig. 1b the hypergraph model of the exemplary flowchart is given.
Edges are represented by a rectangular box marked with a particular label. For
instance, the statement n:=0 is mapped to an edge labeled “text”. The filled
black circles represent nodes that we have additionally marked with numbers. A
line between an edge and a node indicates that the node is visited by that edge.

The small numbers close to the edges are the tentacle numbers representing
the index of a particular node in ns. Without these numbers the image may be
ambiguous. For instance, the tentacle with number 0 of “text” edges always has
to be attached to the node the previous statement ends at whereas the tentacle
1 links the statement to its successor.

The language of flowgraphs can be described using a hyperedge replacement
grammar in a straightforward way. Formally, such a HRG G is a quadruple
G = (N, T, P, S) that consists of a set of non-terminals N ⊂ C, a set of terminals

2 We call hyperedges just edges and hypergraphs just graphs if it is clear from the
context that we are talking about hypergraphs.
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Fig. 1. An exemplary flowchart a) and its hypergraph representation b)

T ⊂ C with T ∩ N = ∅, a finite set of context-free productions P over N and a
start symbol S ∈ N .

The HRG for flowgraphs then can be defined as GFC = (NFC , TFC , PFC , FC)
where NFC = {FC, Stmts, Stmt}, TFC = {start, end, text, cond} and PFC con-
tains the productions given in Fig. 2a. The notation is similar to BNF rules as
known from string grammars. Nodes in a production act as variables. In order to
apply a production they have to be instantiated with nodes actually occurring
in the graph. We use labels to identify corresponding nodes.

As usual, a language defined by a HRG consists of all graphs whose edges
are labeled only with terminal labels and that can be derived in an arbitrary
number of steps from the start symbol. Given a HRG and a graph, a graph parser
constructs a derivation tree of this graph with respect to the grammar. This
can be done, for instance, in a way similar to the algorithm of Cocke, Younger
and Kasami well-known from string parsing. How this algorithm actually can
be adapted to HRGs is discussed in [10,5]. The (unique) derivation tree of the
exemplary flowgraph introduced in Fig. 1b is given in Fig. 2b. Its leaves represent
the terminal edges occurring in the graph whereas its inner nodes are marked
with non-terminal edge labels indicating the application of a production. The
direct descendants of an inner node represent the edges the non-terminal is
replaced by. Thereby, the numbers in parentheses identify the nodes actually
visited by the particular edge.

3 A Basic Combinator-Framework for Graph Parsing

We now introduce the framework as realized in the functional-logic programming
language Curry3. As we progress, we briefly review some important aspects of
Curry to make this paper self-contained.

3 http://www.informatik.uni-kiel.de/∼curry/report.html

http://www.informatik.uni-kiel.de/~curry/report.html
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Fig. 2. Flowgraphs, a) grammar and b) sample derivation tree

Curry is a declarative multi-paradigm language combining interesting features
from both functional and logic programming [8]. The Curry syntax is very close
to Haskell4. The main addition are free (logic) variables in conditions and right-
hand sides of defining rules. A Curry program consists of definitions of functions
and data types on which these functions operate. Functions are defined by con-
ditional equations with constraints in the conditions. They are evaluated lazily
and can be called with partially instantiated arguments, a feature we make use
of heavily. Function calls with free variables are evaluated by a possibly non-
deterministic instantiation of the required arguments, i.e. arguments whose val-
ues are necessary to decide the applicability of a rule. This mechanism is called
narrowing [11].

The following Curry code introduces the basic data structures for representing
graphs. For the sake of simplicity, we represent nodes by integer numbers and
edge labels by strings (although we do not rely on any particular type at all).
Corresponding to the definition in Sect. 2 we declare a graph as a list of labeled
edges each with its incident nodes. The actual order of edges does not matter.

type Node = Int
type Edge = (String, [Node])
type Graph = [Edge]

The flowgraph given in Fig. 1b can be represented as follows using the previous
declarations:

ex = [("start",[1]),("text",[1,2]),("cond",[2,7,3]),("cond",[3,4,5]),
("text",[4,6]),("text",[5,6]),("text",[6,2]),("end",[7])]

4 http://www.haskell.org/onlinereport/

http://www.haskell.org/onlinereport/
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Next, we provide the declaration of the type Grappa representing a graph
parser. This type is parameterized over the type res of the result. Graph parsers
are (non-deterministic) functions from graphs to pairs consisting of the parsing
result and the graph that remains after successful parser application. In con-
trast to Haskell, we do not have to deal with parsing errors and backtracking
explicitly (no need for “lists of successes”). Instead, similar to [9], we rely on the
non-deterministic notion of functions inherent to functional-logic programming
languages like Curry.

type Grappa res = Graph -> (res, Graph)

We proceed by defining some important primitives for the construction of
graph parsers. Given an arbitrary value, pSucceed always succeeds returning
this particular value as a result. In contrast, eoi (end of input) only succeeds
if the graph is already completely consumed. In this case, as a result we simply
return (), the only value of the so-called unit type. Note that in Curry it does
not need to be stated explicitly that eoi fails on non-empty input – the absence
of a rule is enough.

pSucceed::res -> Grappa res eoi::Grappa ()
pSucceed v g = (v, g) eoi [] = ((), [])

An especially important primitive parser is edge. It only succeeds if the given
edge e is part of the particular graph g. It is implemented in a logic programming
style making use of an equational constraint indicated by =:=.

edge::Edge -> Grappa ()
edge e g | g=:=(g1++e:g2) = ((), g1++g2)

where g1, g2 free

A constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are reducible to
unifiable terms. Here, this means that the edge e indeed is contained in the graph
g. In this case, the edge has to be consumed. This is realized by returning just
g1++g2 as the remaining graph.5 Note that, in contrast to Prolog, free variables
like g1 and g2 need to be declared explicitly (to make their scopes clear).

In Fig. 3 we provide some important parser combinators. They are defined
in a fairly standard way (cf., e.g., [2,9,12]). The choice operator <|> takes two
parsers and succeeds if either the first or the second one succeeds. In fact, it is a
special case of the standard Curry operator (?)::a->a->a. Two parsers can also
be combined via <*>, the successive application where the result is constructed
by function application (as in [12]).6 The second parser thereby starts with the
input the first parser has left. For convenience we also define *> and <* that
5 (++) is the standard operator for list concatenation. In contrast, (:) is the list

constructor that can be used to add a single element to the front of a list.
6 In previous versions of the framework [3,4] we have composed parsers using monads

to make use of context. This does not seem to be necessary with the functional-logic
approach as we see later. In fact, type classes are not supported in Curry yet.
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(<|>)::Grappa res -> Grappa res -> Grappa res
p1 <|> _ = p1
_ <|> p2 = p2

(<*>)::Grappa (res1->res2) -> Grappa res1 -> Grappa res2
(p1 <*> p2) g = case p1 g of

(pv, g’) -> case p2 g’ of
(qv, g’’) -> (pv qv, g’’)

(<*)::Grappa res1 -> Grappa res2 -> Grappa res1
p <* q = (\x _ -> x) <$> p <*> q
(*>)::Grappa res1 -> Grappa res2 -> Grappa res2
p *> q = (\_ x -> x) <$> p <*> q

(<$>)::(res1->res2) -> Grappa res1 -> Grappa res2
f <$> p = pSucceed f <*> p
(<$)::res1 -> Grappa res2 -> Grappa res1
f <$ p = const f <$> p

Fig. 3. Standard parser combinators

throw away one of the results. Finally, the parser transformers <$> and <$ can
be used to either apply a function to the result of a parser or to just replace it
by another value.

On top of these basic combinators we can define various other useful combina-
tors. For instance, we provide the combinator many to deal with simple repetition
(the graph equivalent to the Kleene star) as:

many::Grappa a -> Grappa [a]
many p = pSucceed []
many p = (:) <$> p <*> many p

This definition can be read as: “many p always succeeds returning nothing
([]). It may also succeed by applying p, and thereafter many p again. In this case
their results are combined using the list constructor (:).” Note, however, that
this definition causes a lot of backtracking. In the string setting a combinator
for simple repetition normally returns n + 1 different results where n is the
number of successive occurrences of p at the beginning of the string. If a
graph contains n occurrences of p, altogether

∑n
i=0

(
n
i

)
i! results are possible,

since any number of occurrences can be chosen in any order. It is possible to
disregard “redundant” results by using encapsulated search, but this way we lose
some nice properties of our parsers. The problem with many is not inherent to
our graph parsing approach, though. In fact, many is only needed to parse HR
languages, which contain either highly disconnected graphs, or graphs which
have vertices with high degree – both properties are known to be indicators for
high parsing complexity [10].
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We provide another typical combinator that we need later. The combinator
chain1Betw p (n1,n2) can be used to identify a non-empty chain of graphs
that can be parsed with p. This chain has to be anchored between the nodes n1
and n2. Later we also need a parser exactChain1Betw that forces this chain to
be of a particular length. We omit its declaration, since it can be defined very
similar to chain1Betw:7

chain1Betw::((Node,Node)->Grappa a) -> (Node,Node) -> Grappa [a]
chain1Betw p (n1,n2) = (:[]) <$> p (n1,n2)
chain1Betw p (n1,n2) = (:) <$> p (n1,n) <*> chain1Betw p (n,n2)

where n free

chain1Betw can be conveniently defined, because we do not need to know the
inner node n in advance. We simply define it as a free variable, which can be
instantiated according to the Curry narrowing semantics. Representing graph
nodes as free variables actually is a functional-logic design pattern [13] that we
here exploit in a novel way.

4 Parsing of HRGs

In this section we provide a direct mapping from HRGs to parsers based on
the previously introduced framework. We exemplify the translation by means of
the grammar given in Fig. 2a. We further provide some additional examples to
demonstrate interesting properties of our parsers.

In Fig. 4 the parser for flowgraphs is presented. The type annotations are
just for convenience and can also be omitted. For each non-terminal edge label
l we have defined a parser function that takes a tuple of nodes (n1, ..., nk) as
a parameter such that k = type(l). For each production over l we insert a new
function body. Each terminal edge in the right-hand side of the production is
matched and consumed using the primitive parser edge, each non-terminal one is
translated to a call of the function representing this non-terminal. A free variable
is introduced for each inner node of a production.

In contrast to string parsing the order of parsers in a successive composition
via *> is not that important as long as left recursion is avoided. Nevertheless,
the chosen arrangement might have an impact on the performance. Usually, it
is advisable to deal with the terminal edges first.

Parsers defined in such a way are quite robust. For instance, they ignore
redundant components, i.e., those just remain at the end. However, complete
input consumption can be enforced easily by a subsequent application of eoi.
Thus, instead of fc we can use the extended parser fc <* eoi.
7 Actually, chain1Betw = exactChain1Betw k where k free, i.e., we can also define
chain1Betw in terms of exactChain1Betw.
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fc::Grappa ()
fc = edge ("start", [sn]) *> stmts (sn,en) *> edge ("end", [en])

where sn, en free

stmts::(Node,Node) -> Grappa ()
stmts (n1,n2) = stmt (n1,n2)
stmts (n1,n2) = stmt (n1,n) *>

stmts (n,n2)
where n free

stmt::(Node,Node) -> Grappa ()
stmt (n1,n2) = edge ("text", [n1,n2])
stmt (n1,n2) = edge ("cond", [n1,nno,nyes]) *>

stmts (nno,n2) *> stmts (nyes,n2)
where nno, nyes free

stmt (n1,n2) = edge ("cond", [n1,n2,nbody]) *>
stmts (nbody,n1)
where nbody free

Fig. 4. A parser for flowgraphs

One problem is still left with our flowgraph parser: As it is, it accepts too
many graphs. Further conditions have to be enforced to ensure correctness [6]:

• identification condition: matches have to be injective, i.e., involved nodes
have to be pairwise distinct.

• dangling edge condition: there must not be other edges in the remaining
graph visiting inner nodes of a match.

Fig. 5. Violation of identification condition
and dangling edge condition

For instance, the flowgraphs shown
in Fig. 5 can also be parsed success-
fully with the parser given in Fig. 4
although they are no members of the
language defined by GFC . In the con-
text of visual languages it often is
convenient to relax the dangling edge
condition (cf. [5]). This allows for eas-
ier specifications. However, from a
theoretical point of view, this is not
satisfactory. In fact, both conditions
can be ensured by additional checks.
For instance, we can use inequality constraints on node variables to ensure that
they are pairwise distinct, i.e., that a particular match is injective. However,
these constraints cannot be globally set, but rather have to be added to the
parsers for every single production making them less readable.

Semantics
So far we only have checked if the given graph is, or at least contains, a valid
flowgraph. However, a major benefit of the combinator approach is that
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language-specific results can be computed in a flexible way [2,14]. Say, we want
to map a flowgraph to its underlying program represented by the recursively
defined type Program:

type Program = [Stmt]
data Stmt = Text | IfElse Program Program | While Program

We do not provide the complete mapping here. Rather we use the translation
of the branching production as an example to show how easily parsers can be
enriched with attribution.

stmt::(Node,Node) -> Grappa Stmt
stmt (n1,n2) = edge ("cond", [n1,nno,nyes]) *>

IfElse <$> stmts (nno,n2) <*> stmts (nyes,n2)
where nno, nyes free

The result type has to be changed to Stmt. Further, we can use the combi-
nator <$> to directly construct a statement from the two subprograms. Note
that in Curry (as in Haskell) the data constructor IfElse is implicitly typed
Program->Program->Stmt. In this situation we can make the parser definition
even more concise, because stmts now really is just chain1Betw stmt.

Not just a Parser
Parsing is not the only thing we can do with these functions. We can also apply
them backwards to construct graphs of the language. For instance, we can enu-
merate all graphs in the language up to a particular size. As a result we know
that there are only 2 flowgraphs (up to isomorphism) of size 4, 6 of size 5 and
21 of size 6.

We can further use the parser to perform a kind of auto-completion. Say,
the edge text(1,2) in the graph given in Fig. 1b is missing, such that the
flowgraph is not a member of the language anymore. We can try inserting an
edge e as a free variable and see how e is instantiated by the parser. For our
example we get several possible completions. For instance, we could add an edge
start(2). However, there is only one completion that consumes the whole input:
text(1,2), the one we deleted.

This approach could be the starting point for the realization of advanced
error correction for graphs. For the error correction of strings a sophisticated
and powerful Haskell parser combinator framework has already been proposed
[12]. However, a functional-logic approach may be more understandable and
easier to adapt to graphs. Such graph completion could be very useful in order
to realize powerful content assist for graph grammar based diagram editors like
the ones generated with DiaGen [5].

In certain cases we can also perform the mapping of semantics back to a
graph, e.g., given a particular program we can construct a corresponding flow-
graph. Thereby, nodes are not instantiated, but left as free variables. Indeed the
particular node numbers do not matter as long as equal nodes can be identified.
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s (n1,n2) =
edge ("a", [n1,n3]) *>
edge ("b", [n4,n5]) *>
edge ("c", [n5,n6]) *>
(+1) <$> a (n3,n4,n6,n2)
where n3, n4, n5, n6 free

s (n1,n2) =
edge ("a", [n1,n3]) *>
edge ("b", [n3,n4]) *>
edge ("c", [n4,n2]) *>
pSucceed 1
where n3, n4 free

a (n1,n2,n3,n4) =
edge ("a", [n1,n5]) *>
edge ("b", [n6,n2]) *>
edge ("c", [n3,n7]) *>
(+1) <$> a (n5,n6,n7,n4)
where n5, n6, n7 free

a (n1,n2,n3,n4) =
edge ("a", [n1,n5]) *>
edge ("b", [n5,n2]) *>
edge ("c", [n3,n4]) *>
pSucceed 1
where n5 free

Fig. 6. Graph grammar a) and corresponding parser b) for the graph language akbkck

Another Example: akbkck

We give another example to demonstrate that the readability of a language
description can also be improved by using graph parser combinators.

In a string setting the language {akbkck|k > 0} is not context-free. In contrast,
there is a context-free string generating hypergraph grammar that defines a cor-
responding graph language [6,15]. A hypergraph grammar is string generating, if
all graphs in its language have a linear structure, i.e., are a chain of directed edges;
below we provide the graph representation of the string “aabbcc” as an example.

The grammar for the graph language akbkck as introduced in [6] is given in
Fig. 6a. It is quite complex and hard to grasp despite the structural simplicity of
the language. In Fig. 6b a nearly straightforward translation of this grammar to
a parser is given. We only have added some attribution to compute the particular
value of k.

With our framework much more readable descriptions are possible. One of
them is given below. Basically it states that there have to be two nodes n3 and
n4 and a number k > 0 such that there is a chain of k “a”-edges between n1 and
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n3, a chain of k “b”-edges between n3 and n4 and finally a chain of k “c”-edges
between n4 and n2.8

abc (n1,n2) = exactChain1Betw k (dirEdge "a") (n1,n3) *>
exactChain1Betw k (dirEdge "b") (n3,n4) *>
exactChain1Betw k (dirEdge "c") (n4,n2) *>
pSucceed k
where k, n3, n4 free

The crucial point of this solution is that logic variables like k can be used to
share results across parsers. This way context information can be exploited. This
approach enables us to not only describe languages more conveniently, but also to
describe languages that cannot be defined with a HRG at all. For instance, there
is no HRG for Sierpinski triangles that are regular, i.e. equally deep unfolded.9 In
contrast, this can easily be done in our system just by introducing an additional
parameter depth.

Performance

The operational semantics of Curry is based on an optimal evaluation strategy.
As an extension to lazy functional programming its behavior is demand-driven.
Thus, it ensures optimal evaluation on well-defined classes of programs [11].
However, in [6] it is proved that there are (even context-free) graph languages
where parsing is NP-complete. These languages, of course, cannot be parsed
with our combinators efficiently. Most practically relevant languages, however,
are quite efficient to parse.

To give an impression we provide some performance data for the language
akbkck in Fig. 7. The measurement has been executed on standard hardware
using the Münster Curry Compiler10. We see that the more readable parser abc
is even more efficient. Both parsers have a polynomial runtime behavior (mainly
because the first node of the string graph is not known in advance). Since our
parsers follow a top-down approach with backtracking we cannot completely
avoid that partial results are computed more than once. Bottom-up parsers,
which exploit dynamic programming techniques are usually more efficient.

Note, however, that the presented framework has not been optimized with
respect to performance. For instance, a more efficient graph representations could
be used, e.g., as a mapping String->[[Node]] so that all edges with a particular
label can be queried much faster.

A good thing with parser combinators is that performance optimizations spe-
cific to the particular graph language can be incorporated easily. For instance, a
basic improvement for flowgraphs would be to first decompose the given graph

8 We make use of the primitive dirEdge lab (n1,n2) = edge (lab, [n1,n2]) to
make the combinator exactChain1Betw directly applicable.

9 However, this can be realized with a special kind of parallel replacement mechanism
as described in [16].

10 http://danae.uni-muenster.de/∼lux/curry/

http://danae.uni-muenster.de/~lux/curry/
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Fig. 7. Performance comparison of both parsers for the language akbkck

into connected components and apply the parser to each of them successively.
We provide the combinator connComp::Grappa a->Grappa [a] for this task.
So, for a broad range of languages, we can start with a parser, which is easy to
build and read, and which can be further improved if necessary. Providing addi-
tional information also can boost performance, e.g., if we know the first node in
our language of string graphs, both parsers need less than a second for k = 80.

And even backwardly applied as generators our parsers are reasonably effi-
cient. Compared to other graph transformation tools [17] they seem to be in the
center-field. For instance, we have generated a Sierpinski triangle of generation
11 with nearly 200.000 edges in about a minute.

5 Related Work

In principle our graph parser combinators are quite similar to conventional string
parser combinators like [2,14,9] to name just a few. Many ideas can be carried
over straightforwardly. The main differences emerge from the non-linear struc-
ture of graphs and the appearance of nodes as connection points between tokens.

From all parser combinator approaches the UU library [12] is special in the
sense that it probably provides the most powerful mechanisms to correct all
kinds of errors in strings. There, a parser does never fail, but rather constructs
a minimal sequence of correction steps. We have shown how our library can be
used for restricted kinds of error handling. Redundant edges, for instance, may
just remain at the end. This is already quite powerful, since in contrast to strings
graphs are sets of components, i.e., there is no particular order imposed. Thus, it
does not matter where the redundant components are placed. Furthermore, due
to its logic nature, we can conveniently deal with errors that are fixable by em-
bedding additional edges. However, other correction actions like edge relabeling
or the gluing of distinct nodes cannot be computed in such a convenient manner.

Another interesting related observation is that parsing of visual languages can
be modeled (and even executed) in linear logic [18], a resource-oriented refine-
ment of classical logic. For instance, in [19] the embedding of constraint multiset
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grammars into linear logic is discussed. However, it seems that hypergraph pars-
ing can be modeled even more straightforwardly. Here, the edges of a hypergraph
can be mapped to facts that can be fed into a parser via so-called linear implica-
tion (�). During the proof the parser consumes these facts and at the end none
of them must be left. For instance, to parse a simple flowgraph using Lolli [20]
we can write (start 1, text 1 2, end 2) -o fc. The combinators presented
in this paper also hide the remaining resources from the user. But their major
benefit is the flexibility they can be applied with.

Also related are approaches to parsing of particular, restricted kinds of graph
grammar formalisms. For instance, in [15] an Earley parser for string generating
graph languages has been proposed. The diagram editor generator DiaGen [5]
incorporates an HRG parser that is an adaptation of the algorithm of Cocke,
Younger and Kasami. And the Visual Language Compiler-Compiler VLCC [21] is
based on the methodology of positional grammars that allows to parse restricted
kinds of flex grammars (which are essentially HRGs) even in linear time. These
approaches have in common that a restricted graph grammar formalism can be
parsed efficiently. However, they cannot be generalized straightforwardly to a
broader range of languages like our combinators.

6 Conclusion

In this paper we have discussed functional-logic graph parser combinators, an ex-
tensible framework supporting the flexible construction of special-purpose graph
parsers even for (some) context-sensitive graph languages. It has turned out that
functional-logic languages are exceptionally well-suited for graph parsing.

In particular we have demonstrated that hyperedge replacement grammars
can be mapped to parsers straightforwardly. We have also noted that these gram-
mars are sometimes not the most readable means to describe graph languages;
several graph languages cannot even be defined with a HRG at all. In contrast,
using our framework we can easily define readable parsers for languages like the
string graphs akbkck or regular Sierpinski triangles. The resulting parsers are
sufficiently efficient for many practical graph languages.

Functional-logic parsers can also be applied backwards. This way they can be
used to enumerate a graph language or for graph-completion. Since graphs are
well-suited as a model for visual languages, such graph-completion can be very
beneficial in the context of diagram editors. We plan to connect our framework
with the diagram editor generator DiaGen [5] to provide powerful content assist
to the user.
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