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Abstract. We introduce the arctic matrix method for automatically
proving termination of term rewriting. We use vectors and matrices over
the arctic semi-ring: natural numbers extended with −∞, with the op-
erations “max” and “plus”. This extends the matrix method for term
rewriting and the arctic matrix method for string rewriting. In combi-
nation with the Dependency Pairs transformation, this allows for some
conceptually simple termination proofs in cases where only much more
involved proofs were known before. We further generalize to arctic num-
bers “below zero”: integers extended with −∞. This allows to treat some
termination problems with symbols that require a predecessor semantics.
The contents of the paper has been formally verified in the Coq proof
assistant and the formalization has been contributed to the CoLoR li-
brary of certified termination techniques. This allows formal verification
of termination proofs using the arctic matrix method. We also report on
experiments with an implementation of this method which, compared to
results from 2007, outperforms TPA (winner of the certified termination
competition for term rewriting), and in the string rewriting category is
as powerful as Matchbox was but now all of the proofs are certified.

1 Introduction

One method of proving termination is interpretation into a well-founded alge-
bra. Polynomial interpretations (over the naturals) are a well-known example of
this approach. Another example is the recent development of the matrix method
[17,7] that uses linear interpretations over vectors of naturals, or equivalently,
N-weighted automata. In [23,22] one of the authors extended this method (for
string rewriting) to arctic automata, i.e. on the max/plus semi-ring on {−∞} ∪
N. Its implementation in the termination prover Matchbox [21] contributed to
this prover winning the string rewriting division of the 2007 termination
competition [26].

The first contribution of the present work is a generalization of arctic termi-
nation to term rewriting. We use interpretations given by functions of the form
(x1, . . . , xn) �→ M0 + M1 · x1 + . . . + Mn · xn. Here, xi are (column) vector vari-
ables, M0 is a vector and M1, . . . , Mn are square matrices, where all entries are
arctic numbers, and operations are understood in the arctic semi-ring.
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Since the max operation is not strictly monotone in single arguments, we ob-
tain monotone interpretations only for the case when all function symbols are
at most unary, i.e. string rewriting. For symbols of higher arity, arctic inter-
pretations are weakly monotone. These cannot prove termination, but only top
termination, where rewriting steps are only applied at the root of terms. This is
a restriction but it fits with the framework of the dependency pairs method [2]
that transforms a termination problem to a top termination problem.

The second contribution is a generalization from arctic naturals to arctic in-
tegers, i.e. {−∞}∪Z. Arctic integers allow e.g. to interpret function symbols by
the predecessor function and this matches the “intrinsic” semantics of some ter-
mination problems. There is previous work on polynomial interpretations with
negative coefficients [14], where the interpretation for predecessor is also ex-
pressible using ad-hoc max operations. Using arctic integers, we obtain verified
termination proofs for 10 of the 24 rewrite systems Beerendonk/* from TPDB,
simulating imperative computations. Previously, they could only be handled by
the method of Bounded Increase [12].

The third contribution is that definitions, theorems and proofs (excluding
Section 5 with results on full termination) have been formalized with the proof
assistant Coq [25]. This extends previous work [19] and will become part of
the CoLoR project [4] that gathers formalizations of termination techniques and
employs them to certify termination proofs found automatically. In 2007, the
certified category of the termination competition was won by the termination
prover TPA [18] that uses CoLoR.

A method to search for arctic interpretations is implemented for the termi-
nation prover Matchbox. It works by transformation to a boolean satisfiability
problem and application of a state-of-the-art SAT solver (in this case, Minisat).
For several termination problems that could not be solved in last year’s certified
termination competition it finds proofs via arctic interpretations and the new
CoLoR version certifies them.

The paper is organized as follows. We present notation and basic facts on
rewriting and the arctic semi-ring in Section 2. Then in Section 3 we describe
what kind of functions we use for interpretation and in Section 4 we discuss the
appropriate ordering relations. We present arctic interpretations for termination
in Section 5, for top termination in Section 6 and the generalization to arctic
integers in Section 7. We report on the formal verification in Section 8 and on
performance of our implementation in Section 9. We present some discussion of
the method, its limitations and related work in Section 10 and we conclude in
Section 11.

2 Notation and Preliminaries

We follow the notation of [3] for term rewriting. The top one-step derivation re-
lation of a rewriting system R is denoted by

top→R and the full one-step derivation
relation is →R. We often abbreviate these by Rtop and R, respectively. A relation
→ is terminating if it does not admit infinite descending chains t0 → t1 → . . .,
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denoted as SN(→). For relations →1, →2, we define →1 / →2 by (→1) ◦ (→2)∗.
If SN(R/S), we say that R is terminating relative to S.

We cite notation for monotone algebras [7]. A k-ary operation [f ] is monotone
with respect to a relation →, if it is monotone in each argument individually:
xi → x′

i implies [f ](x1, . . . , xi, . . . , xk) → [f ](x1, . . . , x
′
i, . . . , xk). A weakly mono-

tone algebra for a signature Σ is a Σ-algebra (A, [·]) with two relations >, �
such that > is well-founded, > · � ⊆ > and for every f ∈ Σ, the operation [f ]
is monotone with respect to �. Such an algebra is called extended monotone if
additionally each [f ] is monotone with respect to >. For terms �, r with variables
from a set X , we write [�] >α [r] to abbreviate [�, α] > [r, α] for every α : X → A.
Now we present a slight variant of the main theorem from [7], for proving relative
(top)-termination with monotone algebras:

Theorem 1. Let R, R′, S, S′ be TRSs over a signature Σ.

1. Let (A, [·], >, �) be an extended monotone algebra such that: [�] �α [r] for
every rule � → r ∈ R∪S and [�] >α [r] for every rule � → r ∈ R′ ∪S′. Then
SN(R/S) implies SN(R ∪ R′/S ∪ S′).

2. Let (A, [·], >, �) be a weakly monotone algebra such that: [�] �α [r] for every
rule � → r ∈ R ∪ S and [�] >α [r] for every rule � → r ∈ R′. Then
SN(Rtop/S) implies SN(Rtop ∪ R′

top/S). 	


A commutative semi-ring [13] consists of a carrier D, two designated elements
d0, d1 ∈ D and two binary operations ⊕, ⊗ on D, such that both (D, d0, ⊕) and
(D, d1, ⊗) are commutative monoids and multiplication distributes over addition:
∀x, y, z ∈ D : x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z).

One example of semi-rings are the natural numbers with the standard oper-
ations. We will need the arctic semi-ring (also called the max/plus algebra) [9]
with carrier AN ≡ {−∞} ∪ N, where semi-ring addition is the max operation
with neutral element −∞ and semi-ring multiplication is the standard plus op-
eration with neutral element 0 (x ⊗ y = −∞ if either x = −∞ or y = −∞). We
also consider these operations for arctic numbers below zero (ie. arctic integers),
that is, on the carrier AZ ≡ {−∞} ∪ Z.

For any semi-ring D, we can consider the space of linear functions (square
matrices) on n-dimensional vectors over D. These functions (matrices) again
form a semi-ring (though a non-commutative one), and indeed we write ⊕ and
⊗ for its operations as well.

A semi-ring is ordered [8] by ≥ if ≥ is a partial order compatible with the
operations: ∀x ≥ y, z : x ⊕ z ≥ y ⊕ z and ∀x ≥ y, z : x ⊗ z ≥ y ⊗ z.

The standard semi-ring of natural numbers is ordered by the standard ≥
relation. The semi-ring of arctic naturals and arctic integers is ordered by ≥,
being the reflexive closure of > defined as . . . > 1 > 0 > −1 > . . . > −∞. Note
that standard integers with standard operations form a semi-ring but it is not
ordered in this sense, as we have for instance 1 ≥ 0 but 1 ∗ (−1) = −1 �≥ 0 =
0 ∗ (−1).
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3 Max/Plus Linear Algebra

We consider vectors of arctic numbers. They form a monoid under component-
wise arctic addition. For arctic matrices we define arctic addition and multipli-
cation as usual. Square matrices form a non-commutative semi-ring with these
operations. E.g. the 3 × 3 identity matrix is

⎛
⎝

0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⎞
⎠

A square matrix M then maps a (column) vector x to a (column) vector M ⊗ x
and this mapping is linear: M ⊗ (x ⊕ y) = M ⊗ x ⊕ M ⊗ y. We use the following
shape of vector-valued functions of several vector arguments:

f(x1, . . . , xn) = f0 ⊕ f1 ⊗ x1 ⊕ . . . ⊕ fn ⊗ xn.

Here, xi are column vectors, f0 is a column vector and f1, . . . , fn are square
matrices. We call this an arctic linear function (with linear factors f1, . . . , fn

and absolute part f0).
Note that for brevity in all the examples we use the following notation for

such linear functions:

f(x1, . . . , xn) = f0 ⊕ f1x1 ⊕ . . . ⊕ fnxn.

Definition 2. – A number a ∈ A is called finite if a > −∞.
– A number a ∈ A is called positive if a ≥ 0.
– A vector x = (x1, . . . , xn) ∈ A

n is called finite if x1 is finite and it is called
positive if x1 is positive.

– A matrix M ∈ A
m×n is called finite if M1,1 is finite.

– A linear function f is called somewhere finite if ∃0 ≤ i ≤ n : finite(fi).
– A linear function f is called absolute positive if positive(f0). �

Example 3. Consider a linear function:

f(x, y) =
(

1 −∞
0 −∞

)
x ⊕

(
−∞ −∞
0 1

)
y ⊕

(
−∞
0

)

which is somewhere finite, as the upper-leftmost element of the matrix coefficient
of x is 1, which is finite. It is not absolute positive, as the constant vector has
−∞ on its first position.

Evaluation of this function on some exemplary arguments yields:

f(
(

−∞
0

)
,

(
1

−∞

)
) =

(
1 −∞
0 −∞

) (
−∞
0

)
⊕

(
−∞ −∞
0 1

) (
1

−∞

)
⊕

(
−∞
0

)
=

(
−∞
1

)
.

�

Lemma 4. For numbers, vectors, matrices:

– if a is finite and b arbitrary, then a ⊕ b is finite.
– if a is positive and b arbitrary, then a ⊕ b is positive.
– if a and b are finite, then a ⊗ b is finite. 	
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Lemma 5. For a linear function f :

1. if f is somewhere finite, then ∀x1, . . . , xn : (∀i : finite(xi)) ⇒
finite(f(x1, . . . , xn)).

2. if f is absolute positive, then ∀x1, . . . , xn : positive(f(x1, . . . , xn)). 	


4 Orders on Max/Plus

Arctic addition (i.e., the max operation) is not strictly monotone in single argu-
ments: we have e.g. 5 > 3 but 5 ⊕ 6 = 6 �> 6 = 3 ⊕ 6. It is, however, “half strict”
in the following sense: a strict increase in both arguments simultaneously gives a
strict increase in the result, e.g. 5 > 3 and 6 > 4 implies 5⊕6 > 3⊕4. Compared
to the standard matrix method, this special property of arctic addition requires a
somewhat different treatment of monotonicity. In several places where the stan-
dard matrix method needs just one strict inequality (among several non-strict
ones), the arctic matrix method needs all inequalities to be strict. There is one
exception: arctic addition is obviously strict if one argument is arctic zero, i.e.,
−∞. This explains the definition of � below. In this section, we consider arctic
integers.

Definition 6. – We write ≥ for reflexive closure of the standard ordering
. . . > 1 > 0 > −1 > . . . > −∞ and extend this notation component-wise to
vectors, matrices and linear functions.

– We write a � b if (a > b) ∨ (a = b = −∞), and we extend this notation
component-wise to vectors, matrices and linear functions. �

Note that �·≥ ⊆ �, which is required to apply the monotone algebra theorem.

Lemma 7. For arctic integers a, a1, a2, b1, b2,

– if a1 ≥ a2 ∧ b1 ≥ b2, then a1 ⊕ b1 ≥ a2 ⊕ b2 and a1 ⊗ b1 ≥ a2 ⊗ b2.
– if a1 � a2 ∧ b1 � b2, then a1 ⊕ b1 � a2 ⊕ b2.
– if b1 � b2, then a ⊗ b1 � a ⊗ b2. 	


The following lemma allows to establish order on results of two functions by
comparison of their coefficients. It is the arctic counter-part of the absolute-
positiveness criterion used for polynomial interpretations.

Lemma 8. For linear functions f, g with f ≥ g (resp. f � g), and for each
tuple of vectors x1, . . . , xn: f(x1, . . . , xn) ≥ g(x1, . . . , xn) (resp. f(x1, . . . , xn) �
g(x1, . . . , xn)). 	


Lemma 9. Every linear function f is monotone with respect to ≥.

Proof. For xi ≥ x′
i we have:

f0 ⊕ f1 ⊗ x1 ⊕ . . . fi ⊗ xi . . . ⊕ fn ⊗ xn ≥ f0 ⊕ f1 ⊗ x1 ⊕ . . . fi ⊗ x′
i . . . ⊕ fn ⊗ xn

using Lemma 7 lifted to vectors. 	
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5 Full Arctic Termination

In this section we present a method of using arctic matrices to prove full termi-
nation (as opposed to top termination, see Section 6). For some fixed dimension
d we choose the algebra over the domain, N×A

d−1
N

, that is over vectors of arctic
naturals where the first position of the vector is finite. The algebra is ordered
with � and the ordering is well-founded due to restriction to finite elements on
first vector positions. Function symbols are interpreted by linear arctic functions.

The following theorem provides a termination criterion with such monotone
interpretations. A linear Σ-interpretation is an interpretation that associates
an arctic linear function [f ] with every f ∈ Σ. As noted at the beginning of
Section 4, “⊕” is not strictly monotone. Therefore, a function of the shape
f0 ⊕ f1 ⊗ x1 ⊕ . . . ⊕ fn ⊗ xn is monotone only if the ⊕ operation is essentially
redundant. This happens in the following cases.

Theorem 10. Let R, R′, S, S′ be TRSs over a signature Σ and [·] be a linear
Σ-interpretation with coefficients in AN. If:

– every function symbol has arity at most 1,
– for every constant f ∈ Σ, [f ]0 is finite,
– for every unary symbol f ∈ Σ, [f ]0 is the arctic zero vector and [f ]1 is finite,
– [�] ≥ [r] for every rule � → r ∈ R ∪ S,
– [�] � [r] for every rule � → r ∈ R′ ∪ S′ and
– SN(R/S).

Then SN(R ∪ R′/S ∪ S′).

Proof. By Theorem 1.1. Note that, by Lemma 8, [�] ≥ [r] (resp. [�] � [r]) implies
[�] ≥α [r] (resp. [�] �α [r]). So we only need to show that (N×A

d−1
N

, [·], �, ≥) is
an extended monotone algebra. The order � is well-founded on this domain as
with every decrease we get a decrease in the first component of the vector, which
differs from −∞. It is an easy observation that, due to the first three premises of
this theorem, such interpretations are monotone. Finally evaluation of interpre-
tations stays within the domain by Lemma 5.1 as every [f ] is somewhere finite
by assumption. 	


For symbols of arity n > 1 there is no arctic linear function that is monotone,
hence the arctic matrix method for full termination is only applicable for string
rewriting (plus constants). As such, it had been described in [22] and had been
applied by Matchbox in the 2007 termination competition. The following example
illustrates the method.

Example 11. The relative termination problem SRS/Waldmann/r2 is

{c a c → ε, a c a → a4 / ε → c4}.

In the 2007 termination competition, it had been solved by Jambox [6] via “self
labeling” and by Matchbox via essentially the following arctic proof.
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We use the following arctic interpretation

[a](x) =

⎛
⎝

0 0 −∞
0 0 −∞
1 1 0

⎞
⎠x ⊕

⎛
⎝

−∞
−∞
−∞

⎞
⎠ [c](x) =

⎛
⎝

0 −∞ −∞
−∞ −∞ 0
−∞ 0 −∞

⎞
⎠x ⊕

⎛
⎝

−∞
−∞
−∞

⎞
⎠

It is immediate that [c] is a permutation (it swaps the second and third compo-
nent of its argument vector), so [c]2 = [c]4 is the identity and we have [ε] = [c]4.
A short calculation shows that [a] is idempotent, so [a] = [a4]. We compute

[c a c](x) =

⎛
⎝

0 −∞ 0
1 0 1
0 −∞ 0

⎞
⎠ x [a c a](x) =

⎛
⎝

1 1 0
1 1 0
2 2 1

⎞
⎠x [a4](x) =

⎛
⎝

0 0 −∞
0 0 −∞
1 1 0

⎞
⎠x

and therefore [c a c] ≥ [ε] and [a c a] � [a4]. Note that indeed we have point-wise
� and the top left entries of matrices are finite. This allows to remove one strict
rule. The remaining strict rule can be removed by counting letters a. �

6 Arctic Top Termination

As explained earlier, there are no monotone linear arctic functions of more than
one argument. We therefore change our attention from proving full termination
to proving top termination. This fits with the Dependency Pairs method that
replaces a full termination problem with an equivalent top termination problem.

The domain, as in Section 5, is N × A
d−1
N

for some fixed dimension d and
we use the ordering relations � (strict) and ≥ (weak). The following theorem
allows us to prove top termination in this setting:

Theorem 12. Let R, R′, S be TRSs over a signature Σ and [·] be a linear Σ-
interpretation with coefficients in AN. If:

– for each f ∈ Σ, [f ] is somewhere finite,
– [�] ≥ [r] for every rule � → r ∈ R ∪ S,
– [�] � [r] for every rule � → r ∈ R′ and
– SN(Rtop/S).

Then SN(Rtop ∪ R′
top/S).

Proof. By Theorem 1.2; we need to show that (N × A
d−1
N

, [·], �, ≥) is a weakly
monotone algebra. The proof is essentially the same as the proof of Theorem 10.
Note that now we only need a weakly monotone algebra and indeed by allowing
function symbols of arity > 1, we lose the strict monotonicity property. 	


Example 13. Consider the rewriting system secret05/tpa2:

f(s(x), y) → f(p(s(x) − y), p(y − s(x))), p(s(x)) → x,

f(x, s(y)) → f(p(x − s(y)), p(s(y) − x)), x − 0 → x,

s(x) − s(y) → x − y.
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It was solved in the 2007 competition by AProVE [11] using narrowing followed
by polynomial interpretations and by TTT2 [15] using polynomial interpretations
with negative constants.

After the DP transformation 9 dependency pairs can be removed using poly-
nomial interpretations leaving the essential two dependency pairs:

f�(s(x), y) → f�(p(s(x) − y), p(y − s(x)))

f�(x, s(y)) → f�(p(x − s(y)), p(s(y) − x))

Now the arctic interpretation

[f�(x, y)] =
(

−∞ −∞
−∞ −∞

)
x ⊕

(
0 0

−∞ −∞

)
y ⊕

(
0

−∞

)
[0] =

(
3
3

)

[x − y] =
(

0 −∞
0 0

)
x ⊕

(
−∞ −∞
0 0

)
y ⊕

(
0
0

)
[p(x)] =

(
0 −∞
0 −∞

)
x ⊕

(
−∞
−∞

)

[f(x, y)] =
(

0 0
0 −∞

)
x ⊕

(
2 0
0 −∞

)
y ⊕

(
0

−∞

)
[s(x)] =

(
0 0
2 1

)
x ⊕

(
0
2

)

removes the second dependency pair as we have:

[f�(x, s(y))] =
(

−∞ −∞
−∞ −∞

)
x ⊕

(
2 1

−∞ −∞

)
y ⊕

(
2

−∞

)

[f�(p(x − s(y)), p(s(y) − x))] =
(

−∞ −∞
−∞ −∞

)
x ⊕

(
0 0

−∞ −∞

)
y ⊕

(
0

−∞

)

and it is weakly compatible with all the rules. The remaining dependency pair
can be removed by a standard matrix interpretation of dimension two. �

7 . . . Below Zero

We extend the domain of matrix and vector coefficients from AN (arctic naturals)
to AZ (arctic integers). This allows to interpret some function symbols by the
“predecessor” function x �→ x − 1, and so represents their “intrinsic” semantics.
This is the same motivation as the one for allowing polynomial interpretations
with negative coefficients [14].

We need to be careful though, as the relation � on vectors of arctic integers
is not well-founded.

Theorem 14. Let R, R′, S be TRSs over a signature Σ and [·] be a linear Σ-
interpretation with coefficients in AZ. If:

– for each f ∈ Σ, [f ] is absolute positive,
– [�] ≥ [r] for every rule � → r ∈ R ∪ S,
– [�] � [r] for every rule � → r ∈ R′ and
– SN(Rtop/S).

Then SN(Rtop ∪ R′
top/S).
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Proof. The proof goes along the same lines as the proof of Theorem 12. Note
however that as we are working with integers now, to ensure that we stay within
the domain, we need a stronger assumption on interpretations; we get that prop-
erty by Lemma 5.2. 	


Example 15. Let us consider the Beerendonk/2.trs TRS from the TPDB [27],
consisting of the following six rules:

cond(true, x, y) → cond(gr(x, y), p(x), s(y)), gr(s(x), s(y)) → gr(x, y),
gr(0, x) → false, gr(s(x), 0) → true,

p(0) → 0, p(s(x)) → x

This is a straightforward encoding of the following imperative program

while x > y do (x, y) := (x-1, y+1);

which is obviously terminating. However this TRS posed a serious challenge for
the tools in the termination competition. Only AProVE could deal with this
system (as well as a number of others coming from such transformations from
imperative programs) using a specialized bounded increase method [12]. We
will now show a termination proof for this system using the arctic below zero
interpretations.

We begin by applying the dependency pair method and obtaining four depen-
dency pairs, three of which can be easily removed (for instance using standard
matrix or polynomial interpretations) leaving the following single dependency
pair:

cond�(true, x, y) → cond�(gr(x, y), p(x), s(y))

Now, consider the following arctic matrix interpretation:

[cond�(x, y, z)] = (0)x ⊕ (0)y ⊕ (−∞)z ⊕ (0), [0] = (0),
[cond(x, y, z)] = (0)x ⊕ (2)y ⊕ (−∞)z ⊕ (0), [false] = (0),

[gr(x, y)] = (−1)x ⊕ (−∞)y ⊕ (0), [true] = (2),
[p(x)] = (−1)x ⊕ (0), [s(x)] = (2)x ⊕ (3).

With this interpretation we get a decrease for the dependency pair:

[cond�(true, x, y)] = ( 0)x ⊕ (−∞)y ⊕ (2)

[cond�(gr(x, y), p(x), s(y))] = (−1)x ⊕ (−∞)y ⊕ (0)

and all the original rules are oriented weakly. �

Remark 16. We discuss a variant that looks more liberal, but turns out to be
equivalent to the one given here. We cannot allow Z × A

d−1
Z

for the domain,
because it is not well-founded for �. So we can restrict the admissible range
of negative values by some bound c > −∞, and use the domain AZ≥c × A

d−1
Z
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where AZ≥c := {b ∈ AZ | b ≥ c}. Now to ensure that we stay within this
domain we would demand that the first position of the constant vector of every
interpretation is greater or equal than c.

Note however that this c can be fixed to 0 without any loss of generality as
every interpretation using lower values in those positions can be “shifted” up-
wards. For any interpretation [·] and arctic number d construct an interpretation
[·]′ by [t]′ := [t] ⊗ d. This is obtained by going from [f ] = f0 ⊕ f1x1 ⊕ . . . fkxk

to [f ]′ = f0 ⊗ d ⊕ f1x1 ⊕ . . . fkxk. (A linear function with absolute part can be
scaled by scaling the absolute part.) 	


8 Certification

The certification has been carried out within the CoLoR library [4]: a library of ter-
mination techniques formalized in Coq. This library is then used by a tool Rain-
bow to transform termination proofs in the common termination proof format,
designed within the CoLoR project, to actual Coq proofs certifying termination.

The basis of this work was the certification of the matrix interpretations
method [19], which consists of formalizations of:

– a semi-ring structure,
– vectors and matrices over arbitrary semi-rings of coefficients,
– the monotone algebras framework and
– the matrix interpretation method.

The framework of monotone algebras was used without any changes at all.
Vectors and matrices were formalized for arbitrary semi-rings, however all the
results involving orders were developed for the usual orders on natural numbers,
as used in the matrix interpretations method. So the first step in the certification
process was to generalize the semi-ring structure to a semi-ring equipped with
two orders (>, ≥) and to adequately generalize results on vectors and matrices.
Then the arctic semi-ring was developed in this setting.

As for the technique itself it has a lot in common with the technique of matrix
interpretations. Therefore the common parts were extracted to a module
MatrixBasedIntwhich was then specialized to the matrix interpretation method
(MatrixInt) and to a basis for arctic basedmethods (ArcticBasedInt),whichwas
narrowed down to the methods of arctic interpretations (ArcticInt) and arctic
below-zero interpretations (ArcticBZInt). This hierarchy is depicted in Figure 1.

Considering the extension of the proof format in Rainbow it was minimal. The
format for the matrix interpretation proofs was already developed in [19] and it
essentially requires to provide matrix interpretations for all the function symbols
in the signature. The format for arctic interpretations is the same except that:

– it indicates which matrix-based method is to be used, indicated by different
XML tags (as the common proof format of CoLoR is specified using XML
syntax),

– the entries of vectors and matrices are from a different domain.

The experimental data concerning certification results is presented in the fol-
lowing section.
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MatrixBasedInt

����������
����������

MatrixInt ArcticBasedInt

�����������
���������

ArcticInt ArcticBZInt

Fig. 1. Hierarchy of different matrix-based methods in CoLoR

9 Implementation

The implementation in Matchbox follows the scheme described in [7]. The con-
straint problem for the arctic interpretation is translated to a constraint problem
for matrices, for arctic numbers and, finally, for Boolean variables. This is then
solved by Minisat [5].

An arctic number is represented by a pair a = (b; v0, v1, . . . , vn) where b is
a Boolean value and v0, . . . , vn is sequence of Booleans (all numbers have fixed
bit-width). If b is 1, then a represents −∞, if b is 0, then a represents the binary
value of v0, . . . , vn.

To represent integers, we use two’s complement representation, i.e., the most
significant bit is the “sign bit”.

Note that implementation of max/plus operation is less expensive than stan-
dard plus/times: with a binary representation both max and plus can be com-
puted (encoded) with a linear size formula (whereas a naive implementation of
the standard multiplication requires quadratic size and asymptotically better
schemes do not pay off for small bit widths).

It is useful to require the following, for each arctic number a = (b, v): if the
infinity bit b is set, then v = 0. Then (b, v) ⊕ (b′, v′) = (b ∧ b′, max(v, v′)). For
(b, v) ⊗ (b′, v′) we compute c = b ∨ b′, u = (u0, . . . , un) = v + v′ and the result is
(c; ¬c ∧ u0, . . . , ¬c ∧ un).

To represent arctic integers, we use a similar convention: if the infinity flag b
is set, we require that the number v represents the lowest value of its range.

The following table lists the numbers of certified proofs that we obtain with
DP transformation (without SCC decomposition, see below) and these matrix
methods: (s)tandard, (a)rctic, below (z)ero. For comparison, we give the cor-
responding numbers for last year’s winner of the (certified, where applicable)
termination competition.

problem set time s sa sz saz 2007 winner
975 TRS 1 min 361 376 388 389 TPA: 354

10 min 365 381 393 394
517 SRS 1 min 178 312 298 320 Matchbox: 337

10 min 185 349 323 354

Runs were executed on a single core of an Intel X5365 processor running at
3GHz. All proofs will be made available for inspection at the Matchbox web
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page [21]. In all cases we used standard matrices of dimension 1 and 2 to remove
rules before the DP transformation, and then matrix dimensions d from 1 up;
with numbers of bit width max(1, 4 − �d/2�), and a timeout of 5 + 2d seconds
for each individual attempt.

It should be noted that TPA 2007 additionally used (non-linear) polynomial
interpretations, and that Matchbox 2007 also used additional methods (e.g. RFC
match-bounds) and was running uncertified.

Here, we count only verified proofs, so we are missing about 3 to 5 proofs
where Coq does not finish in reasonable time. (This happened—for exactly the
same problems—also in 2007.)

To certify termination of string rewriting, we use the standard transformation
to a term rewriting system with all symbols unary. We do this for the original
system R as well as for the system reverse(R) = {reverse(l) → reverse(r) |
(l → r) ∈ R. It is obvious (though presently not included in CoLoR) that this
transformation preserves termination both ways. Half of the allotted time is
spent for each of R and reverse(R). This increases the score considerably (by
about one third).

The dependency pairs transformation is often combined with a decomposition
of the resulting top termination problem into independent subproblems; analyz-
ing strongly connected components of the estimated dependency graph [10].
Currently, CoLoR provides only a simple graph approximation by top symbols of
dependency pairs, but at the moment it is not efficient. Our current implementa-
tion therefore does not do decomposition. However, with only this simple graph
approximation, this does not decrease power: note that an interpretation that
removes rules from a maximal component in the DP graph (with no incoming
arrows) can be extended to the complete graph by assigning constant zero to all
top symbols not occurring in this component.

10 Discussion

Arctic naturals form a sub-semi-ring of arctic integers. So the question comes up
whether Theorem 14 subsumes Theorem 12. Note that the prerequisites for both
theorems are incomparable. Still there might be a method to construct from a
somewhere-finite interpretation (above zero) an equivalent absolute-positive in-
terpretation (below zero). We are not aware of any. Experience with implementa-
tion shows that it is useful to have both methods, especially for string rewriting.
Naturals are easier to handle than integers because they do not require signed
arithmetics. So typically we can increase the bit width or the matrix dimension
for naturals. Our implementation finds several proofs according to Theorem 12
where it fails to find a proof according to Theorem 14 and vice versa.

It is interesting to ask whether the preconditions of Theorems 10,12,14 can be
weakened. We discussed one variant in Remark 16. In general, a linear interpre-
tation [·] with coefficients in AN (AZ respectively) is admissible for a termination
proof if for each ground term t, the value [t] is finite (positive, respectively). This
is in fact a reachability problem for weighted (tree) automata. It is decidable for
interpretations on arctic naturals, but it is undecidable for arctic integers (follows
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from a result of Krob [20] on tropical word automata). In our setting, we do not
guess an interpretation and then decide whether it is admissible. Rather, we have
to formulate the decision algorithm as part of the constraint system for the in-
terpretation. Therefore we chose sharper conditions on interpretations that imply
finiteness (positiveness, respectively) and have an easy constraint encoding.

Another question is the relation of the standard matrix method with the arc-
tic matrix method(s). Performance of our implementation suggests that neither
method subsumes the other, but this may well be a problem of computing re-
sources, as we hardly reach matrix dimension 5 and bit width 3.

As for the relation to other termination methods (e.g. path orderings), the
only information we have is that arctic (and other) matrix methods can do non-
simple termination, while path orders and polynomial interpretations cannot;
and on the other hand, the arctic matrix method implies a linear bound on
derivational complexity (see below), which is easily surpassed by path orders
and other interpretations.

The full arctic termination method bounds lengths of derivations:

Lemma 17. For a rewriting system R that fulfils the requirements of Theo-
rem 10 for S = ∅, the derivational complexity of R is linear.

Proof. For a finite arctic vector x = (x1, . . . , xk), define |x| = max(x1, . . . , xk).
Then |x ⊕ y| ≤ max(|x|, |y|) and |x ⊗ yT | ≤ |x| + |y|.
For a finite arctic matrix A of dimension k × k, define |A| = max{Ai,j | 1 ≤

i, j ≤ k}. Then |A ⊗ x| ≤ |A| + |x| and |A ⊗ B| ≤ |A| + |B|.
For an interpretation [·] of some signature Σ, and any word w ∈ Σ∗, this

implies that |[w]| ≤ c · |w| where c = max{|[f ]| : f ∈ Σ}.
Now we remark that u →R v implies [u] � [v], and x � y implies |x| > |y|.

Thus the derivational complexity of R is linear: any derivation starting from u
has at most c · |u| steps. 	


This means that rewriting systems with higher derivational complexity (e.g.
quadratic: {ab → ba}, or exponential {ab → b2a}) do not admit an arctic termi-
nation proof. Note that both these systems admit a standard matrix proof.

It seems very difficult to combine this argument with the dependency pairs
transformation, as it can drastically alter (i.e., reduce) derivational complexity.

Example 18. The following rewriting system [16] has a derivational complexity
that is not primitive recursive:

{s(x) + (y + z) → x + (s(s(y)) + z), s(x) + (y + (z + w)) → x + (z + (y + w))}

and still it has, after DP transformation, an easy termination proof by “counting
symbols” [7]. Note however that arctic interpretations cannot count globally: to
compute the interpretation [f(t1, t2)], it is impossible to add values from subtrees
[t1], [t2], as we can only take the maximum of [t1], [t2]. Yet we find an arctic proof,
as follows. The given system is in fact an encoding of a length-preserving string
rewriting system on the infinite alphabet N. Both rules keep the right spine



Arctic Termination . . . Below Zero 215

of terms (corresponding to the length of the simulated string) intact, so we can
remove dependency pairs that shrink it, using the interpretation [+](x, y) = y⊗1.
We are left with two dependency pairs (that directly correspond to the original
rules). They can be handled by [+](x, y) = x and [s](x) = x ⊗ 1. So instead of
numbers of symbols, we were just using path lengths. �

Arctic interpretations subsume quasi-periodic interpretations [24]. This has been
remarked in [22] for string rewriting and it easily extends to term rewriting.

Max/Plus polynomials have been used by Amadio [1] as quasi-interpretations
(i.e. functions are weakly monotone), to bound the space complexity of deriva-
tions. Proving termination directly was not intended.

11 Conclusions

We presented the arctic interpretations method for proving termination of term
rewriting. It is based on the matrix interpretation method [7] where the usual
plus/times operations on N are generalized to an arbitrary semi-ring, in this case
instantiated by the arctic semi-ring (max/plus algebra) on {−∞} ∪ N.

We also generalized this to arctic integers. This generalization allowed us
to solve 10 of Beerendonk/* examples that are difficult to prove terminating
and thus far could only be solved by AProVE with the Bounded Increase [12]
technique, dedicated to such class of problems coming from transformations from
imperative programs.

Our presentation of the theory is accompanied by a formalization in the Coq
proof assistant. By becoming part of the CoLoR project this formalization allows
us to formally verify termination proofs involving the arctic matrix method.
With this contribution CoLoR can now certify more than half of the systems
that could be proven terminating in the 2007 competition in term rewriting and
essentially all (and some more) systems in the string rewriting category.

We want to remark here that all performance data and all examples presented in
this paper were collected from problems of TPDB 2007, and we did not “cook up”
any special examples to show off the arctic method. The emphasis of these exam-
ples (in fact, of the whole paper) is not to provide termination proofs where none
were known before, but rather to provide certified (and often conceptually sim-
pler) termination proofs where only uncertified proofs were available up to now.
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