
Modular Termination of Basic Narrowing�

Maŕıa Alpuente, Santiago Escobar, and José Iborra

Universidad Politécnica de Valencia, Spain
{alpuente,sescobar,jiborra}@dsic.upv.es

Abstract. Basic narrowing is a restricted form of narrowing which con-
strains narrowing steps to a set of non-blocked (or basic) positions. Basic
narrowing has a number of important applications including equational
unification in canonical theories. Another application is analyzing ter-
mination of narrowing by checking the termination of basic narrowing,
as done in pioneering work by Hullot. In this work, we study the modu-
larity of termination of basic narrowing in hierarchical combinations of
TRSs, including a generalization of proper extensions with shared sub-
system. This provides new algorithmic criteria to prove termination of
basic narrowing.

1 Introduction

Narrowing [12] is a generalization of term rewriting that allows free variables
in terms (as in logic programming) and replaces pattern matching with syntac-
tic unification. Narrowing was originally introduced as a mechanism for solving
equational unification problems [15], hence termination results for narrowing
have been traditionally achieved as a by–product of addressing the decidabil-
ity of equational unification. Basic narrowing [15] is a refinement of narrowing
which restricts narrowing steps to a set of non-blocked (or basic) positions, and is
still complete for equational unification in canonical TRSs. Termination of basic
narrowing was first studied by Hullot in [15], where a faulty termination result
for narrowing was enunciated, namely the termination of all narrowing deriva-
tions in canonical theories when all basic narrowing derivations issuing from
the right–hand sides (rhs’s) of the rules terminate. This result was implicitly
corrected in [16], downgrading it to the more limited result of basic narrowing
termination (instead of ordinary narrowing) under the basic narrowing termi-
nation requirement for the rhs’s of the rules. The missing condition to recover
narrowing termination in [15] is to require that the TRS satisfies Réty’s maximal
commutation condition for narrowing sequences [23], as we proved1 in [2]. From
this result, we also distilled in [2] a syntactic characterization of TRSs where

� This work has been partially supported by the EU (FEDER) and Spanish MEC
project TIN2007-68093-C02-02, Integrated Action Hispano-Alemana A2006-0007,
the UPV grant 3249 PAID0607 and the UPV grant FPI-UPV 2006-01.

1 We also explicitly dropped in [2] the superfluous requirement of canonicity from
Hullot’s termination result, as cognoscenti tacitly do.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Alpuente, S. Escobar, and J. Iborra

termination of basic narrowing implies termination of narrowing, namely right-
linear TRSs that are either left-linear or regular and where narrowing computes2

only normalized substitutions.
The main motivation for this paper is proving termination of narrowing via

termination of basic narrowing. We present several criteria for modular ter-
mination of basic narrowing in hierarchical combinations of TRSs, including
generalized proper extensions with shared subsystem. By adopting the divide-
and-conquer principle, this allows us to prove (basic) narrowing termination in
a modular way, thus extending the class of TRSs for which termination of basic
narrowing (and hence termination of narrowing) can be proved. We assume a
standard notion of modularity, where a property ϕ of TRSs is called modular if,
whenever R1 and R2 satisfy ϕ, then their combination R1 ∪ R2 also satisfies
ϕ. Our modularity results for basic narrowing rely on a commutation result for
basic narrowing sequences that has not been identified in the related literature
before.

In [21], a modularity result for decidability of unification (via termination of
narrowing) in canonical TRSs is given. However, this result does not imply the
modularity of narrowing termination for a particular class of TRSs but rather
the possibility to define a terminating, modular narrowing procedure. Namely,
the result in [21] is as follows: given a canonical TRS R such that narrowing ter-
minates for R1 and R2 and R↓⊆ R1↓R2↓ (i.e. normalization with R = R1 ∪R2
can be obtained by first normalizing with R1 followed by a normalization with
R2), then there is a terminating and complete, modular narrowing strategy for
R. Any complete strategy can be used within the modular procedure given in
[21], including the basic narrowing strategy. As far as we know this is the only
previous modularity result in the literature that concerns the modular termina-
tion of basic narrowing.

After some preliminaries in Section 2, we study commutation properties of
basic narrowing derivations in Section 3. Section 4 recalls some standard notions
for modularity of rewriting and presents our main modularity results for the
termination of basic narrowing. In order to prove in Section 4.3 that termina-
tion of basic narrowing is modular for proper extensions [22], we first prove an
intermediate result: in Section 4.2 we prove that basic narrowing termination
is modular for a restriction of proper extensions called nice extensions [22]. In
Section 5 we generalize our results and prove modularity for a wider class of
TRSs called relaxed proper extensions. We conclude in Section 6. Proofs of all
results in this paper are included in [1].

2 Preliminaries

In this section, we briefly recall the essential notions and terminology of term
rewriting [9,20,24].

V denotes a countably infinite set of variables, and Σ denotes a set of func-
tion symbols, or signature, each of which has a fixed associated arity. Terms are
2 This includes some popular classes of TRSs, including linear constructor systems.

Modular Termination of Basic Narrowing 3

viewed as labelled trees in the usual way, where T (Σ, V) and T (Σ) denote the
non-ground term algebra and the ground algebra built on Σ ∪ V and Σ, respec-
tively. Positions are defined as sequences of positive natural numbers used to
address subterms of a term, with ε as the root (or top) position (i.e., the empty
sequence). Concatenation of positions p and q is denoted by p.q, and p < q is the
usual prefix ordering. Two positions p, q are disjoint, denoted by p ‖ q, if neither
p < q, p > q, nor p = q. Given S ⊆ Σ ∪ V , PosS(t) denotes the set of positions
of a term t that are rooted by function symbols or variables in S. Pos{f}(t) with
f ∈ Σ ∪ V will be simply denoted by Posf (t), and PosΣ∪V(t) will be simply
denoted by Pos(t). t|p is the subterm at the position p of t. t[s]p is the term t
with the subterm at the position p replaced with term s. By Var(s), we denote
the set of variables occurring in the syntactic object s. By x̄, we denote a tuple
of pairwise distinct variables. A fresh variable is a variable that appears nowhere
else. A linear term is one where every variable occurs only once.

A substitution σ is a mapping from the set of variables V into the set of terms
T (Σ, V), with a finite domain D(σ) and image I(σ). A substitution is repre-
sented as {x1/t1, . . . , xn/tn} for variables x1, . . . , xn and terms t1, . . . , tn. The
application of substitution θ to term t is denoted by tθ, using postfix notation.
Composition of substitutions is denoted by juxtaposition, i.e., the substitution
σθ denotes (θ ◦σ). We write θ|̀Var(s) to denote the restriction of the substitution
θ to the set of variables in s; by abuse of notation, we often simply write θ|̀s.
Given a term t, θ = ν [t] iff θ|̀Var(t) = ν|̀Var(t), that is, ∀x ∈ Var(t), xθ = xν. A
substitution θ is more general than σ, denoted by θ ≤ σ, if there is a substitution
γ such that θγ = σ. A unifier of terms s and t is a substitution ϑ such that
sϑ = tϑ. The most general unifier of terms s and t, denoted by mgu(s, t), is a
unifier θ such that for any other unifier θ′, θ ≤ θ′.

A term rewriting system (TRS) R is a pair (Σ, R), where R is a finite set of
rewrite rules of the form l → r such that l, r ∈ T (Σ, V), l �∈ V , and Var(r) ⊆
Var(l). We will often write just R or (Σ, R) instead of R = (Σ, R). Given
a TRS R = (Σ, R), the signature Σ is often partitioned into two disjoint sets
Σ = C � D, where D = {f | f(t1, . . . , tn) → r ∈ R} and C = Σ \ D. Symbols
in C are called constructors, and symbols in D are called defined functions. The
elements of T (C, V) are called constructor terms. We let Def(R) denote the set
of defined symbols in R. A rewrite step is the application of a rewrite rule to
an expression. A term s ∈ T (Σ, V) rewrites to a term t ∈ T (Σ, V), denoted by
s

p→R t, if there exist p ∈ PosΣ(s), l → r ∈ R, and substitution σ such that
s|p = lσ and t = s[rσ]p. When no confusion can arise, we omit the subscript
in →R . We also omit the reduced position p when it is not relevant. A term
s is a normal form w.r.t. the relation →R (or simply a normal form), if there
is no term t such that s →R t. A term is a reducible expression or redex if it
is an instance of the left hand side of a rule in R. A term s is a head normal
form if there are no terms t, t′s.t. s →∗

R t′ ε→R t. A TRS R is (→)-terminating
(also called strongly normalizing or noetherian) if there are no infinite reduction
sequences t1 →R t2 →R

4 M. Alpuente, S. Escobar, and J. Iborra

Narrowing is a symbolic computation mechanism that generalizes rewriting
by replacing pattern matching with syntactic unification. Many redundancies in
the narrowing algorithm can be eliminated by restricting narrowing steps to a
distinguished set of basic positions, which was proposed by Hullot in [15].

2.1 Basic Narrowing

Basic narrowing is the restriction of narrowing introduced by Hullot [15] which
is essentially based on forbidding narrowing steps on terms brought in by in-
stantiation. We use the definition of basic narrowing given in [14], where the
expression to be narrowed is split into a skeleton t and an environment part θ,
i.e., 〈t, θ〉. The environment part keeps track of the accumulated substitution
so that, at each step, substitutions are composed in the environment part, but
are not applied to the expression in the skeleton part, as opposed to ordinary
narrowing. For TRS R, l → r << R denotes that l → r is a fresh variant of a
rule in R, i.e., all the variables are fresh.

Definition 1 (Basic narrowing). [14] Given a term s ∈ T (Σ, V) and a sub-
stitution σ, a basic narrowing step for 〈s, σ〉 is defined by 〈s, σ〉 b

�p,R,θ 〈t, σ′〉
if there exist p ∈ PosΣ(s), l → r << R, and substitution θ such that θ =
mgu(s|pσ, l), t = (s[r]p), and σ′ = σθ.

Along a basic narrowing derivation, the set of basic occurrences of 〈t, θ〉 is
PosΣ(t), and the non–basic occurrences are PosΣ(tθ)−PosΣ(t). When p is not
relevant, we simply denote the basic narrowing relation by b

�R,θ. By abuse of
notation, we often relax the skeleton-environment notation for basic narrowing
steps, i.e., 〈s, σ〉 b

�R,θ 〈t, σ′〉, and use the more compact notation sσ
b
�R,θ

tσθ instead; but then suitable track of the basic positions along the narrowing
sequences is implicitly done.

We say that R is (b
�)-terminating when every basic narrowing derivation

issuing from any term terminates. All modular termination results in this paper
are based on the following termination result for basic narrowing. It is essentially
Hullot’s basic narrowing termination result, where we have explicitly dropped
the superfluous requirement of canonicity [2].

Theorem 1 (Termination of Basic Narrowing). [15,2] Let R be a TRS. If
for every l → r ∈ R, all basic narrowing derivations issuing from r terminate,
then R is (b

�)-terminating.

In the literature, this condition has been approximated by requiring that every
rhs of a rewrite rule is a variable, in [15], or a constructor term, in [21]. This
approximation has been generalized in [2] by requiring the rhs’s to be a rigid
normal form (rnf), i.e., unnarrowable.

Modular Termination of Basic Narrowing 5

3 A Commutation Result for Basic Narrowing
Derivations

The commutation properties of ordinary narrowing were extensively studied by
Rety in [23]. We analyze here those of basic narrowing, in Rety’s style. First let
us recall the notion of antecedent of a position in a rewriting sequence [23].

Definition 2 (Antecedent of a position). [23] Let t
p→l→r t′ be a rewriting

step, v ∈ Pos(t), and v′ ∈ Pos(t′). Position v is an antecedent of v′ iff either

1. v ‖ p, i.e., v and p are disjoint, and v = v′, or
2. there exists an occurrence u′ ∈ Posx(r) of a variable x in r s.t. v′ = p.u′.w

and v = p.u.w, where u ∈ Posx(l) is an occurrence of x in l.

With the notations of the previous definition, we have:

1. t|v = t′|v′ ,
2. v′ may have no antecedent if v′ = p.u′ with u′ ∈ PosΣ(r), or if v′ < p,

This notion extends to a rewrite sequence by transitive closure of the rewriting
relation in the usual way. The notion of antecedent can also be extended to
narrowing sequences as follows.

Definition 3 (Narrowing antecedent of a position). [23] Let t
b
�∗

R,σ t′,
v ∈ Pos(t), and v′ ∈ Pos(t′). We say v is an antecedent of v′ iff v is an
antecedent of v′ in the rewrite sequence tσ →∗

R t′.

And note that now we have t|vσ = t′|v′ . In the following, we consider basic
narrowing derivations of the form

s
b
�p,g→d,σ t

b
�q,l→r,θ u (1)

and we are interested in the conditions that allow us to commute the first two
steps by first applying to s the rule l → r and then the rule g → d to the
resulting term. If the subterm t|q already exists in s, i.e., if q admits at least
one antecedent in s, the idea essentially consists in applying l → r to all the
antecedents of q, and then applying g → d to the resulting term. Let us give an
example for motivation.

Example 1. [23] Let us consider the following TRS R4:

R4 = { f(x, x) → x (r1) g(x, h(x)) → x (r2) }

and the basic narrowing derivation:

〈h(f(0, x), g(x, y)), {}〉 b
�p=1,r1,{x/0} 〈h(x, g(x, y)), {x/0}〉
b
�q=2,r2,{y/h(0)} 〈h(x, x), {x/0}〉.

6 M. Alpuente, S. Escobar, and J. Iborra

D0 D1

R0 R1

C0 C1

Dsh

Rsh

D0 D1

R0 R1

C0 C1

D0 C0

C1

D1
R0 R1

Dsh

Rsh

D0 D1

R0 R1

C0

C1

constructor sharing composable hierarchical combination GHC

Fig. 1. Standard modular combinations

The occurrences p and q are disjoint, therefore q has an antecedent in s at q′ = 2.
By first applying r2 at q′ = 2, and then r1 at p we get:

〈h(f(0, x), g(x, y)), {}〉 b
�q′=2,r2,{y/h(x)} 〈h(f(0, x), x), {}〉
b
�p=1,r1,{x/0} 〈h(x, x), {x/0}〉

The following result establishes that in a basic narrowing derivation, the an-
tecedent of a position is always in the skeleton part, and case 2 of Definition 2
cannot happen.

Lemma 1. Given a basic narrowing derivation t
b
�p,l→r,σ t′ b

�q′,g→d,θ u, if
q ∈ Pos(t) is an antecedent of q′, then q and p are necessarily disjoint, q′ is in
the skeleton, and q = q′.

Now we show that basic narrowing steps can be commuted under certain condi-
tions. This result is the basis for the modularity results of Section 5.

Proposition 1 (Commutation of Basic Narrowing). Let R be a TRS and

〈s, θ〉 b
�p,g→d,σ1

〈s[d]p, θσ1〉 b
�q,l→r,σ2

〈s[d]p[r]q , θσ1σ2〉 (2)

be a sequence of two basic narrowing steps s.t. q admits an antecedent in s. Then
(2) can be commuted to the following equivalent basic narrowing derivation:

〈s, θ〉 b
�q,l→r,σ3

〈s[r]q , θσ3〉 b
�p,g→d,σ4

〈s[r]q[d]p, θσ3σ4〉 (3)

where σ1σ2 = σ3σ4[s].

4 Modular Termination of Basic Narrowing

Let us recall some standard notions regarding modularity of rewriting, as defined
in [20], that will be used throughout the paper. Figure 1 shows diagramatic
renditions of these definitions.

Modular Termination of Basic Narrowing 7

disjoint. (Σ0, R0) and (Σ1, R1) are disjoint if they do not share symbols, that
is, Σ0 ∩ Σ1 = ∅. Their union, called direct sum, is denoted R = R0 � R1.

constructor sharing. (D0 � C0, R0) and (D1 � C1, R1) are constructor sharing
if they do not share defined symbols, i.e., D0 ∩ D1 = ∅.

composable. Two systems (D0 � Dsh � C0, R0) and (D1 � Dsh � C1, R1) are
composable if D0 ∩ C1 = D1 ∩ C0 = ∅ and both systems share all the rewrite
rules that define every shared defined symbol, i.e., Rsh ⊆ R0 ∩ R1 where
Rsh = {l → r ∈ R0 ∪ R1 | root(l) ∈ Dsh}.

hierarchical combination. A system R = R0 ∪ R1 is the hierarchical com-
bination (HC) of a base system (D0 � C0, R0) and an extension system
(D1 � C1, R1) iff D0 ∩ D1 = ∅ and C0 ∩ D1 = ∅.

generalized hierarchical combination. A system R = R0 ∪R1 is the gener-
alized hierarchical combination (GHC) of a base system (D0 � Dsh � C0, R0)
and an extension (D1 � Dsh � C1, R1) with shared subsystem (F , Rsh) iff
D0 ∩ D1 = ∅, C0 ∩ D1 = ∅, Rsh = R0 ∩ R1 where Rsh = {l → r ∈ R0 ∪ R1 |
root(l) ∈ Dsh}, and F = {f ∈ F | f occurs in Rsh}.

Roughly speaking, in a hierarchical combination R = R0∪R1 the sets of function
symbols defined in R0 and R1 are disjoint, and the defined function symbols
of the base (R0) can occur in rules of the extension, but not viceversa. GHCs
generalize both HCs and composable systems.

As noted by [22], this classification of combinations of TRSs is straightfor-
wardly applicable to programming languages and incremental program develop-
ment. The modularity results of direct–sums can be used when two subsystems
are defined over different domains, e.g. the natural numbers and the Boolean
domain. The modularity results of constructor sharing unions can be used when
two subsystems define independent functions (none of the two systems use the
procedures defined in the other) over a common domain. HCs model the notion
of modules in programming languages. The following example borrowed from
[20] illustrates these notions.

Example 2. Consider the following TRSs:

R+ =

{
0 + y → y

s(x) + y → s(x + y) R− =

⎧⎨
⎩

0 − s(y) → 0
x − 0 → x

s(x) − s(y) → x − y

R∗ =

{
0 ∗ y → 0

s(x) ∗ y → (x ∗ y) + y
Rpow =

{
pow(x, 0) → s(0)

pow(x, s(y)) → x ∗ pow(x, y)

Rapp =

{
nil++ys → ys

(x : xs)++ys → x : (xs++ys)

R+ and Rapp are disjoint, R+ and R− are constructor–sharing, R+ ∪ R∗ is
composable with R+ ∪ Rapp, and R∗ ∪ R+ is a HC where R∗ extends R+.
Lastly, the system R1 = Rpow ∪ R+ extends R0 = R∗ ∪ R+ in a GHC with
shared subsystem Rsh = R+.

8 M. Alpuente, S. Escobar, and J. Iborra

Note that constructor sharing systems generalize disjoint unions, and are
themselves generalized by both composable and HCs. Finally, these last two
notions are subsumed by GHCs.

4.1 Constructor–Sharing and Composable Unions

The following result is a direct consequence of Theorem 1.

Theorem 2 (Modularity of Constructor–Sharing Unions). Termination
of basic narrowing is modular for constructor–sharing systems.

This implies modularity for disjoint unions too, as in the following well-known
example.

Example 3 (Toyama). Let us consider Toyama’s example [25]:

R0 : f(0, 1, x) → f(x, x, x) R1 : g(x, y) → x g(x, y) → y

Basic narrowing trivially terminates on each system, since every rhs is clearly
unnarrowable. By Theorem 2, it also terminates for R0 ∪ R1.

It is well known that Toyama’s example is not (→)-terminating. However, it is
innermost terminating. This shows that (b

�)-termination does not entail (→)-
termination, which suggests that the modularity requirements for (b

�)-
termination are less restrictive than those of (→)-termination. Actually, the
modularity properties of (b

�)-termination are comparable to those of innermost
(→)-termination (see e.g. [20]). The next theorem extends the modularity of
(b
�)-termination to composable systems.

Theorem 3 (Modularity of Composable Unions). Termination of basic
narrowing is a modular property of composable systems.

In Section 4.3 we further extend this result up to generalized proper extensions
(GPE) [22], a fairly general restriction of HCs. To achieve this result, we proceed
as follows. First we prove in Section 4.2 the modularity for generalized nice
extensions (GNE) [22], a restriction of GPEs. Then, we apply a result from [22]
that relates GPEs to GNEs, which delivers the desired result.

In the remaining of this section we make use of the following notion.

Definition 4 (Dependency Relation �R). [22] For a TRS (D � C, R) the
dependency relation �R is the smallest preorder satisfying the condition f �R g
whenever there is a rewrite rule f(s1, . . . , sm) → r ∈ R and g(t1, . . . , tn) is a
subterm of r, with g ∈ D.

We often omit R from �R when it is clear from the context. We say that a
symbol f ∈ D depends on a symbol g ∈ D if f � g. Intuitively, f � g if the
evaluation of f involves a call to g after one or more rewrite steps.

Modular Termination of Basic Narrowing 9

4.2 Nice Extensions

Nice extensions (NE) are a restriction of PEs introduced by Krishna Rao [22].
NEs are a useful intermediate notion, because it can be shown that every PE
can be modelled as a pyramid of NEs, which we do in Section 4.3.

Definition 5 (Split). Let (D � C, R) be a GHC of a base system (D0 � Dsh �
C0, R0) and the extension (D1 � Dsh � C1, R1). The set D1 of defined symbols
of R1 is split in two sets D0

1 and D1
1 where D0

1 contains all the symbols that
depend on function symbols from R0, i.e., D0

1 = {f ∈ D1 | ∃g ∈ D0, f �R g}
and D1

1 = D1 \ D0
1. We can then split R1 in two subsystems R0

1 and R1
1 as

R0
1 = {l → r ∈ R1 | root(l) ∈ D0

1} and R1
1 = {l → r ∈ R1 | root(l) ∈ D1

1}.

Definition 6 (Generalized Nice Extension). [22] Let R = R0 ∪ R1 be the
GHC of the extension (D1�Dsh�C1, R1) over the base (D0�Dsh �C0, R0). R1 is
a generalized nice extension (GNE) of R0 if, for every rewrite rule l → r ∈ R1,
and for every subterm s of r such that root(s) ∈ D0

1, s contains no function
symbol of D0 ∪ D0

1 strictly below its root.

Figure 4 shows a diagramatic rendition of NEs, and an example can be found in
Example 4 later.

We identify a special set SR0∪R1 of terms that represent the right hand sides
of rules of the TRSs that can be obtained as GNEs. This allows us to prove
that basic narrowing w.r.t. R = R0 ∪ R1 terminates only if it terminates for
the terms in SR0∪R1 . Let us introduce the standard notion of context here. A
context is a term C with zero or more ‘holes’, i.e., the fresh constant symbol �.
If C is a context and t a list of terms, C[t] denotes the result of replacing the
holes in C by the terms in t.

Definition 7 (SR0∪R1 terms). Let (D � C, R) be the union of a base system
(D0�Dsh�C0, R0) and a GNE (D1�Dsh�C1, R1). Define the sets D0

1, D1
1, R0

1 and
R1

1 as in Definition 5. Let CC01 be the set of contexts of (C ∪D0 ∪Dsh ∪D1
1). We

define SR0∪R1 as the set of all terms of the form C[s1, . . . , sn], where C ∈ CC01
and the following conditions hold:

1. for all i ∈ {1 · · ·n}, root(si) ∈ D0
1, and

2. si contains no function symbol of D0 ∪ D0
1 strictly below its root.

By definition, SR0∪R1 terms have the property that no R0
1 reduction step is

possible within the context C. Also, the set SR0∪R1 is closed under b
�R0∪R1 if

R1 is a GNE of R0.
The reader can check that the right hand sides of the rules in a GNE fulfill

the conditions above. In order to prove the (b
�)-termination of a system, by

Theorem 1 it suffices to prove that derivations starting from the right hand
sides of the rules are finite. We prove in Section 5 the more general result that
derivations starting from SR0∪R1 terms are finite.

Corollary 1. Let R1 be a GNE over R0. Every basic narrowing derivation in
R0 ∪ R1 starting from a term of SR0∪R1terminates.

10 M. Alpuente, S. Escobar, and J. Iborra

Now we can easily generalize this result to any term by applying Theorem 1.

Corollary 2. Termination of basic narrowing is modular for generalized nice
extensions.

4.3 Proper Extensions

In this section, we extend our previous modularity results from NEs to PEs,
by reusing a result from Krishna Rao that relates proper and generalized nice
extensions.

Definition 8 (Generalized Proper Extension). [22] Let R = R0∪R1 be the
GHC of a base system (D0 �Dsh �C0, R0) and an extension (D1 �Dsh �C1, R1).
Define the sets D0

1, D1
1, R0

1 and R1
1 as in Definition 5. R1 is a generalized proper

extension (GPE) of R0 if each rewrite rule l → r ∈ R0
1 satisfies that, for every

subterm t of r such that root(t) ∈ D0
1 and root(t) �R root(l), t contains no

function symbol of D0 ∪ D0
1 strictly below its root.

Figure 4 shows a diagramatic rendition of GPEs.

Example 4. Consider computing the factorial of a number in tail recursive style.

R! =

{ fact(x) → factacc(x, 1)
factacc(0, x) → x

factacc(s(y), x) → factacc(y, x ∗ s(y))
R∗ =

{
0 ∗ y → 0

s(x) ∗ y → (x ∗ y) + y

R! is a hierarchical extension of R∗, but it is not a PE (because of the 3rd rule).
On the other hand, the standard, non tail recursive presentation of factorial is
a PE, and moreover a NE.

To understand why non proper extensions can be troublesome for termination,
consider the following example.

Example 5. Consider the following TRSs, whose combination is hierarchical but
not proper:

R1 : {f(a) → f(b)} R0 : {b → a}
There exists the following infinite basic narrowing derivation

f(a) b
� f(b) b

� f(a) b
� · · ·

produced by the nesting of a redex w.r.t. R0 inside the recursive call to f in the
rhs of the rule of R1.

PEs are less restrictive than NEs because they allow nesting of R0 functions only
as long as they do not occur inside a recursive definition, whereas NEs forbid
any function nesting. That is, every NE is also a PE, but not the other way
around. As stated before, we can model any GPE as a finite pyramid of one or
more GNEs. Essentially, the idea is similar to the modular decomposition of a

Modular Termination of Basic Narrowing 11

C0D0
C1

D1D0
1 D1

1

R0R1

l → C[f(t̄)]

��

��

�⊆ ∈ ⊆

Fig. 2. Nice exten-
sion

C0D0
C1

D1D0
1 D1

1

R0R1

l → C[f(t̄)]

��

��

∈

�

⊆

Fig. 3. Proper exten-
sion

C0D0
C1

D1D0
1 D1

1

R0R1

l → C[f(t̄)
|{z}

]

��

��

∈

�

⊆

¬¬¬ rs−rnf

Fig. 4. Relaxed Proper
extension

TRS in [26]. What we do is to reduce a given PE to the canonical modular form,
a modular partition such that each of the individual modules cannot be split up.
In order to achieve this we employ the graph induced by the dependency relation
� on defined function symbols, and the rules corresponding to the symbols of
every strongly connected component become a module (i.e., a GNE).

Lemma 2. [22] Let R1 be a finite TRS such that it is a GPE of R0. Then R1
can be seen as a finite pyramid of GNEs.

We are now ready to give our final modularity result for termination of basic
narrowing in GPEs, which follows from the previous lemma and Corollary 2.

Corollary 3. Termination of basic narrowing is modular for generalized proper
extensions.

In the following section, by weakening some conditions of GPEs, we provide a
novel class of composition of TRSs called relaxed proper extensions for which
the modularity of basic narrowing termination still holds.

5 Relaxed Proper Extensions

Let us introduce the main idea behind our generalization of GPEs by means of
the following example.

Example 6. Consider the following TRS, an encoding3 of the exponentiation xy

and the exclusive or operators that are commonly used in the specification of
many cryptographic protocols [7,8], where the constructor symbol g is used as a
generator for the exponentiation.

R1 : exp(exp(g, X), Y) → exp(g, X*Y)
R0 : X*X−1 → 1 X*1 → X 1*X → X

3 We are aware that this encoding is not complete since the exclusive or operator is
associative and commutative; nevertheless, the example is useful for motivation.

12 M. Alpuente, S. Escobar, and J. Iborra

Basic narrowing trivially terminates on each system separately, since every rhs
is clearly unnarrowable. However, their combination R = R0 ∪ R1 is not a PE,
since the base defined symbol * appears below the extension defined symbol exp
in a recursive call. It is easy to see that basic narrowing indeed terminates in
R, because the outer function symbol exp in the recursive invocation occurring
in the right hand side of the rule of R1 is blocked forever. The following novel
notion of relaxed proper extension (RPE) captures this idea.

We introduce the notion of root-stable rigid normal form, which lifts to narrowing
the standard concept of head normal form. By abuse of notation, we apply this
notion, with no change, to basic narrowing.

Definition 9 (Root-Stable Rigid Normal Form). [2] A term s is a root-
stable rigid normal form (rs−rnf) w.r.t. R if either s is a variable or there are
no substitutions θ and θ′ and terms s′ and s′′ s.t. sθ

>ε→∗
R s′ b

�ε,R,θ′ s′′.

Definition 10 (Generalized Relaxed Proper Extension). Let (D�C, R) be
a GHC of a base system (D0�Dsh�C0, R0) and the extension (D1�Dsh�C1, R1).
Define the sets D0

1, D1
1, R0

1 and R1
1 as in Definition 5. R1 is a generalized

relaxed proper extension (GRPE) of R0 if every rule in R0
1 satisfies the following

condition:

(H1) for each subterm t of r such that (a) root(t) ∈ D0
1, (b) t is not a rs−rnf,

and (c) root(t) �R root(l), t does not contain a function symbol of D0 ∪ D0
1

strictly below its root.

Figure 4 shows a diagramatic rendition of GRPEs, and the reader can check that
the TRS of Example 6 is indeed a GRPE. In the following, we show that (b

�)-
termination is modular for RPEs by showing first its modularity for GRNEs,
and then establishing a relation between GRPEs an GRNEs. The reasoning is
similar to the one followed in Section 4.3.

Definition 11 (Generalized Relaxed Nice Extension). Let (D�C, R) be a
GHC of a base system (D0 �Dsh �C0, R0) and an extension (D1 �Dsh �C1, R1).
Define the sets D0

1, D1
1, R0

1 and R1
1 as in Definition 5. R1 is a generalized

relaxed nice extension (GRNE) of R0 if it is a GRPE, and for every rewrite
rule l → r ∈ R1 the following condition holds:

(N1) for each subterm t of r such that t is not a rs−rnf and root(t) ∈ D0
1, t

contains no function symbol of D0 ∪ D0
1 strictly below its root.

We can extend SR0∪R1to precisely capture the right hand sides of GRNEs.

Definition 12 (Srs−rnf
R0∪R1

Terms). Let (D � C, R) be a GRNE of a base system
(D0�Dsh �C0, R0) and an extension (D1�Dsh �C1, R1). Define the sets D0

1, D1
1,

R0
1 and R1

1 as in Definition 5. We define Srs−rnf
R0∪R1

as the set of all terms of the
form C[s1, . . . , sn], where C is a context in (D ∪ C) and the following conditions
hold:

Modular Termination of Basic Narrowing 13

1. no reduction is possible in R0
1 at a position within the context C,

2. for all i ∈ {1 · · ·n}, root(si) ∈ D0
1, si is not a rs−rnf, and

3. si contains no function symbol of D0 ∪ D0
1 strictly below its root.

Note that SR0∪R1 ⊆ Srs−rnf
R0∪R1

. The set Srs−rnf
R0∪R1

also enjoys the property of being

closed under b
�R0∪R1 in a GRNE.

Lemma 3. If t ∈ Srs−rnf
R0∪R1

and t
b
�R0∪R1,θ t′, then t′ ∈ Srs−rnf

R0∪R1
.

The rest of this section is devoted to extending Corollary 1 to the set Srs−rnf
R0∪R1

.
First, let us recall some general results on quasi–commutation of abstract
relations.

Definition 13 (Abstract Reduction System). An abstract reduction system
(ARS) is a structure A = (A, {→α| α ∈ I}) consisting of a set A and a set of
binary relations →α on A, indexed by a set I. We write (A,→1,→2) instead of
(A, {→α| α ∈ {1, 2}}).

Definition 14 (Quasi-commutation). [6] Let →0 and →1 be two relations on
a set S. The relation →1 quasi-commutes over →0 if, for all s, u, t ∈ S s.t. s →0
u →1 t, there exists v ∈ S s.t. s →1 v →∗

01 t, where →∗
01 is the transitive-reflexive

closure of →0 ∪ →1.

Theorem 4. [6] If the relations →0 and →1 in the ARS(S, →0, →1) are
strongly normalizing and →1 quasi-commutes over →0, the relation →0 ∪ →1 is
strongly normalizing too.

We now define an ARS with skeleton–environment pairs as elements, where the
skeletons come from the set Srs−rnf

R0∪R1
of terms, and the relationships →0 and →1

of the ARS are restrictions of basic narrowing.

Definition 15. Let R = R0 ∪R1 be a generalized relaxed nice combination. We
define the ARS A(R0, R1) = (Srs−rnf

R0∪R1
×Subst , →0, →1), where the relations →0

and →1 are defined as follows. Let s = C[s0, . . . , sn] be a term in Srs−rnf
R0∪R1

. Then

1. 〈C[s0, . . . , sn], σ〉 →0 〈C′[s0, . . . , sn], θσ〉 if 〈C[s0, . . . , sn], σ〉 b
�R0∪R1

1,θ

〈C′[s0, . . . , sn], σθ〉 is a basic narrowing step given within the context C
2. 〈C[s0, . . . , sn], σ〉→1〈C[s0, . . . , si−1, s

′
i, si+1, . . . , sn], θσ〉 if 〈C[s0, . . . , sn], σ〉

b
�R1,θ 〈C[s0, . . . , si−1, s

′
i, si+1, . . . , sn], θσ〉 is a basic narrowing step given at

a subterm si, with i ∈ {0, . . . , n}.

The relation →1 ∪ →0 is exactly the basic narrowing relation over Srs−rnf
R0∪R1

. In
the following we establish that both →0 and →1 are terminating relations.

Lemma 4. Given the ARS A(R0,R1) of Definition 15, the relations →0 and
→1 are terminating if R0 and R1 are (b

�)-terminating.

14 M. Alpuente, S. Escobar, and J. Iborra

We are now in a position to prove the quasi-commutation of the relation →1
over the relation →0 in the ARS A(R0,R1). The proof of this result relies on
Proposition 1.

Theorem 5. Given the ARS A(R0,R1) of Definition 15, the relation →1 quasi-
commutes over the relation →0.

Then, as a straightforward consequence of Theorem 4 and Theorem 5, we derive
the relaxed version of Corollary 1.

Corollary 4. Let R1 be a GRNE over R0. Every basic narrowing derivation in
R0 ∪ R1 starting from a term of Srs−rnf

R0∪R1
terminates.

By Theorem 1, we obtain the desired modularity result for basic narrowing in
our generalization of GNEs.

Corollary 5. Termination of basic narrowing is modular for generalized relaxed
nice extensions.

We now study the connection between GRNEs and GRPEs, and extend the
results and proofs from [22] extending them to our generalized relaxed nice
extensions.

Lemma 5. Let R1 be a finite TRS such that it is a GRPE of R0. R1 can be
seen as a finite pyramid of GRNEs.

Finally, we are able to establish the most general result of the paper, which
follows directly from Corollary 5 and Lemma 5.

Corollary 6. Termination of basic narrowing is modular for generalized relaxed
proper extensions.

6 Conclusions

The completeness and termination properties of basic narrowing have been stud-
ied previously in landmark work [15,23,19]. Recently we have contributed to the
study of narrowing termination based on the termination of basic narrowing in
[2]. In this paper, we improve our characterization of basic narrowing termi-
nation by proving modular termination in several hierarchical combinations of
TRSs, including generalized proper extensions with shared subsystem.

Our main motivation for this work is proving termination of narrowing [15,2].
Narrowing has received much attention due to the different applications, such as
automated proofs of termination [5], execution of multiparadigm programming
languages [13,17], symbolic reachability [18], verification of cryptographic pro-
tocols [10], equational unification [15], equational constraint solving [3,4], and
model checking [11], among others. Termination of narrowing is, therefore, of
much interest to these applications.

Modular Termination of Basic Narrowing 15

References

1. Alpuente, M., Escobar, S., Iborra, J.: Modular termination of basic narrowing.
Technical Report DSIC-II/04/08, Universidad Politécnica de Valencia (2007)

2. Alpuente, M., Escobar, S., Iborra, J.: Termination of Narrowing revisited. Theo-
retical Computer Science (to appear, 2008)

3. Alpuente, M., Falaschi, M., Gabbrielli, M., Levi, G.: The semantics of equational
logic programming as an instance of CLP. In: Logic Programming Languages, pp.
49–81. The MIT Press, Cambridge (1993)

4. Alpuente, M., Falaschi, M., Levi, G.: Incremental Constraint Satisfaction for Equa-
tional Logic Programming. Theoretical Computer Science 142(1), 27–57 (1995)

5. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sci. 236(1-2), 133–178 (2000)

6. Bachmair, L., Dershowitz, N.: Commutation, transformation, and termination. In:
Proc. of the 8th Int’l Conf. on Automated Deduction, January 1986, pp. 5–20
(1986)

7. Comon-Lundh, H.: Intruder Theories (Ongoing Work). In: Walukiewicz, I. (ed.)
FOSSACS 2004. LNCS, vol. 2987, pp. 1–4. Springer, Heidelberg (2004)

8. Cortier, V., Delaune, S., Lafourcade, P.: A Survey of Algebraic Properties used in
Cryptographic Protocols. Journal of Computer Security 14(1), 1–43 (2006)

9. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical
Computer Science, vol. B, pp. 244–320. Elsevier Science, Amsterdam (1990)

10. Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for
the NRL Protocol Analyzer and its Meta-Logical Properties. TCS 367 (2006)

11. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using
narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer,
Heidelberg (2007)

12. Fay, M.: First-Order Unification in an Equational Theory. In: Fourth Int’l Conf.
on Automated Deduction, pp. 161–167 (1979)

13. Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming 19&20, 583–628 (1994)

14. Hölldobler, S. (ed.): Foundations of Equational Logic Programming. LNCS,
vol. 353. Springer, Heidelberg (1989)

15. Hullot, J.-M.: Canonical Forms and Unification. In: Bibel, W. (ed.) CADE 1980.
LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)

16. Hullot, J.-M.: Compilation de Formes Canoniques dans les Théories q́uationelles.
Thése de Doctorat de Troisième Cycle. PhD thesis, Université de Paris Sud, Orsay
(France) (1981)

17. Meseguer, J.: Multiparadigm logic programming. In: Kirchner, H., Levi, G. (eds.)
ALP 1992. LNCS, vol. 632, pp. 158–200. Springer, Heidelberg (1992)

18. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to verification of cryptographic protocols. HOSC, 123–160 (2007)

19. Middeldorp, A., Hamoen, E.: Completeness Results for Basic Narrowing. J. of
Applicable Algebra in Engineering, Comm. and Computing 5, 313–353 (1994)

20. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)
21. Prehofer, C.: On Modularity in Term Rewriting and Narrowing. In: Jouannaud,

J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 253–268. Springer, Heidelberg (1994)
22. Krishna Rao, M.R.K.: Modular proofs for completeness of hierarchical term rewrit-

ing systems. Theoretical Computer Science (January 1995)

16 M. Alpuente, S. Escobar, and J. Iborra

23. Réty, P.: Improving Basic Narrowing Techniques. In: Lescanne, P. (ed.) RTA 1987.
LNCS, vol. 256. Springer, Heidelberg (1987)

24. TeReSe (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge
(2003)

25. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting
systems. Inf. Process. Lett. 25(3), 141–143 (1987)

26. Urbain, X.: Modular & incremental automated termination proofs. Int. J. Approx.
Reasoning 32(4), 315–355 (2004)

	Modular Termination of Basic Narrowing
	Introduction
	Preliminaries
	Basic Narrowing

	A Commutation Result for Basic Narrowing Derivations
	Modular Termination of Basic Narrowing
	Constructor--Sharing and Composable Unions
	Nice Extensions
	Proper Extensions

	Relaxed Proper Extensions
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

