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Preface

This volume contains the papers presented at RTA 2008: 19th International Con-
ference on Rewriting Techniques and Applications held July 15–17th in Hagen-
berg, Austria and organised by the Research Institute on Symbolic Computation.

There were 57 submissions. Each submission was reviewed by at least four
Programme Committee members. The committee decided to accept 30 papers.
The submission and Programme Committee work was organised through the
EasyChair system.

I thank the Programme Committee members for their very efficient work.
My special thanks to Temur Kutsia, Aart Middeldorp, Robert Nieuwenhuis and
Maribel Fernandez for their help and advice on many aspects of the RTA or-
ganisation and traditions. I would also like to thank RTA General Chair Bruno
Buchberger.

April 2008 Andrei Voronkov
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Hans Zantema (Technische Universiteit Eindhoven)

External Reviewers

Markus Aderhold
Maria Alpuente
Thorsten Altenkirch
Takahito Aoto

Emilie Balland
Richard Banach
Peter Baumgartner
Clara Bertolissi



VIII Organisation

Hariolf Betz
Gavin Bierman
Stefan Blom
Yohan Boichut
Iovka Boneva
Guillaume Bonfante
Thierry Boy de la Tour
Sander Bruggink
Serge Burckel
Sergiu Bursuc
Christophe Calves
Benjamin Carle
Jacques Chabin
Jeremie Chalopin
Witold Charatonik
James Cheney
Yannick Chevalier
Yuki Chiba
Olaf Chitil
Horatiu Cirstea
Evelyne Contejean
Veronique Cortier
Vincent Danos
Jeremy Dawson
Philippe de Groote
Fer-Jan de Vries
Stephanie Delaune
Kevin Donnelly
Dan Dougherty
Daniel Dougherty
Rachid Echahed
Steven Eker
Jörg Endrullis
Emmanuel Filiot
Severine Fratani
Laurent Fribourg
Carsten Fuhs
Thomas Genet
Clemens Grabmayer
Bernhard Gramlich
Yves Guiraud
Andrew Haas
Makoto Hamana
Michael Hanus
Hugo Herbelin

Nao Hirokawa
Clement Houtmann
Florent Jacquemard
Hélène Kirchner
Stefan Kahrs
Yukiyoshi Kameyama
Yevgeny Kazakov
Jeroen Ketema
Zurab Khasidashvili
Kentaro Kikuchi
Vladimir Klebanov
Adam Koprowski
Martin Korp
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Modular Termination of Basic Narrowing�

Maŕıa Alpuente, Santiago Escobar, and José Iborra

Universidad Politécnica de Valencia, Spain
{alpuente,sescobar,jiborra}@dsic.upv.es

Abstract. Basic narrowing is a restricted form of narrowing which con-
strains narrowing steps to a set of non-blocked (or basic) positions. Basic
narrowing has a number of important applications including equational
unification in canonical theories. Another application is analyzing ter-
mination of narrowing by checking the termination of basic narrowing,
as done in pioneering work by Hullot. In this work, we study the modu-
larity of termination of basic narrowing in hierarchical combinations of
TRSs, including a generalization of proper extensions with shared sub-
system. This provides new algorithmic criteria to prove termination of
basic narrowing.

1 Introduction

Narrowing [12] is a generalization of term rewriting that allows free variables
in terms (as in logic programming) and replaces pattern matching with syntac-
tic unification. Narrowing was originally introduced as a mechanism for solving
equational unification problems [15], hence termination results for narrowing
have been traditionally achieved as a by–product of addressing the decidabil-
ity of equational unification. Basic narrowing [15] is a refinement of narrowing
which restricts narrowing steps to a set of non-blocked (or basic) positions, and is
still complete for equational unification in canonical TRSs. Termination of basic
narrowing was first studied by Hullot in [15], where a faulty termination result
for narrowing was enunciated, namely the termination of all narrowing deriva-
tions in canonical theories when all basic narrowing derivations issuing from
the right–hand sides (rhs’s) of the rules terminate. This result was implicitly
corrected in [16], downgrading it to the more limited result of basic narrowing
termination (instead of ordinary narrowing) under the basic narrowing termi-
nation requirement for the rhs’s of the rules. The missing condition to recover
narrowing termination in [15] is to require that the TRS satisfies Réty’s maximal
commutation condition for narrowing sequences [23], as we proved1 in [2]. From
this result, we also distilled in [2] a syntactic characterization of TRSs where

� This work has been partially supported by the EU (FEDER) and Spanish MEC
project TIN2007-68093-C02-02, Integrated Action Hispano-Alemana A2006-0007,
the UPV grant 3249 PAID0607 and the UPV grant FPI-UPV 2006-01.

1 We also explicitly dropped in [2] the superfluous requirement of canonicity from
Hullot’s termination result, as cognoscenti tacitly do.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Alpuente, S. Escobar, and J. Iborra

termination of basic narrowing implies termination of narrowing, namely right-
linear TRSs that are either left-linear or regular and where narrowing computes2

only normalized substitutions.
The main motivation for this paper is proving termination of narrowing via

termination of basic narrowing. We present several criteria for modular ter-
mination of basic narrowing in hierarchical combinations of TRSs, including
generalized proper extensions with shared subsystem. By adopting the divide-
and-conquer principle, this allows us to prove (basic) narrowing termination in
a modular way, thus extending the class of TRSs for which termination of basic
narrowing (and hence termination of narrowing) can be proved. We assume a
standard notion of modularity, where a property ϕ of TRSs is called modular if,
whenever R1 and R2 satisfy ϕ, then their combination R1 ∪ R2 also satisfies
ϕ. Our modularity results for basic narrowing rely on a commutation result for
basic narrowing sequences that has not been identified in the related literature
before.

In [21], a modularity result for decidability of unification (via termination of
narrowing) in canonical TRSs is given. However, this result does not imply the
modularity of narrowing termination for a particular class of TRSs but rather
the possibility to define a terminating, modular narrowing procedure. Namely,
the result in [21] is as follows: given a canonical TRS R such that narrowing ter-
minates for R1 and R2 and R↓⊆ R1↓R2↓ (i.e. normalization with R = R1∪R2

can be obtained by first normalizing with R1 followed by a normalization with
R2), then there is a terminating and complete, modular narrowing strategy for
R. Any complete strategy can be used within the modular procedure given in
[21], including the basic narrowing strategy. As far as we know this is the only
previous modularity result in the literature that concerns the modular termina-
tion of basic narrowing.

After some preliminaries in Section 2, we study commutation properties of
basic narrowing derivations in Section 3. Section 4 recalls some standard notions
for modularity of rewriting and presents our main modularity results for the
termination of basic narrowing. In order to prove in Section 4.3 that termina-
tion of basic narrowing is modular for proper extensions [22], we first prove an
intermediate result: in Section 4.2 we prove that basic narrowing termination
is modular for a restriction of proper extensions called nice extensions [22]. In
Section 5 we generalize our results and prove modularity for a wider class of
TRSs called relaxed proper extensions. We conclude in Section 6. Proofs of all
results in this paper are included in [1].

2 Preliminaries

In this section, we briefly recall the essential notions and terminology of term
rewriting [9,20,24].
V denotes a countably infinite set of variables, and Σ denotes a set of func-

tion symbols, or signature, each of which has a fixed associated arity. Terms are
2 This includes some popular classes of TRSs, including linear constructor systems.
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viewed as labelled trees in the usual way, where T (Σ,V) and T (Σ) denote the
non-ground term algebra and the ground algebra built on Σ ∪V and Σ, respec-
tively. Positions are defined as sequences of positive natural numbers used to
address subterms of a term, with ε as the root (or top) position (i.e., the empty
sequence). Concatenation of positions p and q is denoted by p.q, and p < q is the
usual prefix ordering. Two positions p, q are disjoint, denoted by p ‖ q, if neither
p < q, p > q, nor p = q. Given S ⊆ Σ ∪ V , PosS(t) denotes the set of positions
of a term t that are rooted by function symbols or variables in S. Pos{f}(t) with
f ∈ Σ ∪ V will be simply denoted by Posf (t), and PosΣ∪V(t) will be simply
denoted by Pos(t). t|p is the subterm at the position p of t. t[s]p is the term t
with the subterm at the position p replaced with term s. By Var(s), we denote
the set of variables occurring in the syntactic object s. By x̄, we denote a tuple
of pairwise distinct variables. A fresh variable is a variable that appears nowhere
else. A linear term is one where every variable occurs only once.

A substitution σ is a mapping from the set of variables V into the set of terms
T (Σ,V), with a finite domain D(σ) and image I(σ). A substitution is repre-
sented as {x1/t1, . . . , xn/tn} for variables x1, . . . , xn and terms t1, . . . , tn. The
application of substitution θ to term t is denoted by tθ, using postfix notation.
Composition of substitutions is denoted by juxtaposition, i.e., the substitution
σθ denotes (θ ◦σ). We write θ|̀Var(s) to denote the restriction of the substitution
θ to the set of variables in s; by abuse of notation, we often simply write θ|̀s.
Given a term t, θ = ν [t] iff θ|̀Var(t) = ν|̀Var(t), that is, ∀x ∈ Var(t), xθ = xν. A
substitution θ is more general than σ, denoted by θ ≤ σ, if there is a substitution
γ such that θγ = σ. A unifier of terms s and t is a substitution ϑ such that
sϑ = tϑ. The most general unifier of terms s and t, denoted by mgu(s, t), is a
unifier θ such that for any other unifier θ′, θ ≤ θ′.

A term rewriting system (TRS) R is a pair (Σ,R), where R is a finite set of
rewrite rules of the form l → r such that l, r ∈ T (Σ,V), l �∈ V , and Var(r) ⊆
Var(l). We will often write just R or (Σ,R) instead of R = (Σ,R). Given
a TRS R = (Σ,R), the signature Σ is often partitioned into two disjoint sets
Σ = C � D, where D = {f | f(t1, . . . , tn) → r ∈ R} and C = Σ \ D. Symbols
in C are called constructors, and symbols in D are called defined functions. The
elements of T (C,V) are called constructor terms. We let Def(R) denote the set
of defined symbols in R. A rewrite step is the application of a rewrite rule to
an expression. A term s ∈ T (Σ,V) rewrites to a term t ∈ T (Σ,V), denoted by
s

p→R t, if there exist p ∈ PosΣ(s), l → r ∈ R, and substitution σ such that
s|p = lσ and t = s[rσ]p. When no confusion can arise, we omit the subscript
in →R . We also omit the reduced position p when it is not relevant. A term
s is a normal form w.r.t. the relation →R (or simply a normal form), if there
is no term t such that s →R t. A term is a reducible expression or redex if it
is an instance of the left hand side of a rule in R. A term s is a head normal
form if there are no terms t, t′s.t. s→∗

R t′ ε→R t. A TRS R is (→)-terminating
(also called strongly normalizing or noetherian) if there are no infinite reduction
sequences t1 →R t2 →R . . ..
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Narrowing is a symbolic computation mechanism that generalizes rewriting
by replacing pattern matching with syntactic unification. Many redundancies in
the narrowing algorithm can be eliminated by restricting narrowing steps to a
distinguished set of basic positions, which was proposed by Hullot in [15].

2.1 Basic Narrowing

Basic narrowing is the restriction of narrowing introduced by Hullot [15] which
is essentially based on forbidding narrowing steps on terms brought in by in-
stantiation. We use the definition of basic narrowing given in [14], where the
expression to be narrowed is split into a skeleton t and an environment part θ,
i.e., 〈t, θ〉. The environment part keeps track of the accumulated substitution
so that, at each step, substitutions are composed in the environment part, but
are not applied to the expression in the skeleton part, as opposed to ordinary
narrowing. For TRS R, l → r << R denotes that l → r is a fresh variant of a
rule in R, i.e., all the variables are fresh.

Definition 1 (Basic narrowing). [14] Given a term s ∈ T (Σ,V) and a sub-
stitution σ, a basic narrowing step for 〈s, σ〉 is defined by 〈s, σ〉 b

�p,R,θ 〈t, σ′〉
if there exist p ∈ PosΣ(s), l → r << R, and substitution θ such that θ =
mgu(s|pσ, l), t = (s[r]p), and σ′ = σθ.

Along a basic narrowing derivation, the set of basic occurrences of 〈t, θ〉 is
PosΣ(t), and the non–basic occurrences are PosΣ(tθ)−PosΣ(t). When p is not
relevant, we simply denote the basic narrowing relation by b

�R,θ. By abuse of
notation, we often relax the skeleton-environment notation for basic narrowing
steps, i.e., 〈s, σ〉 b

�R,θ 〈t, σ′〉, and use the more compact notation sσ
b
�R,θ

tσθ instead; but then suitable track of the basic positions along the narrowing
sequences is implicitly done.

We say that R is ( b
�)-terminating when every basic narrowing derivation

issuing from any term terminates. All modular termination results in this paper
are based on the following termination result for basic narrowing. It is essentially
Hullot’s basic narrowing termination result, where we have explicitly dropped
the superfluous requirement of canonicity [2].

Theorem 1 (Termination of Basic Narrowing). [15,2] Let R be a TRS. If
for every l → r ∈ R, all basic narrowing derivations issuing from r terminate,
then R is ( b

�)-terminating.

In the literature, this condition has been approximated by requiring that every
rhs of a rewrite rule is a variable, in [15], or a constructor term, in [21]. This
approximation has been generalized in [2] by requiring the rhs’s to be a rigid
normal form (rnf), i.e., unnarrowable.
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3 A Commutation Result for Basic Narrowing
Derivations

The commutation properties of ordinary narrowing were extensively studied by
Rety in [23]. We analyze here those of basic narrowing, in Rety’s style. First let
us recall the notion of antecedent of a position in a rewriting sequence [23].

Definition 2 (Antecedent of a position). [23] Let t
p→l→r t′ be a rewriting

step, v ∈ Pos(t), and v′ ∈ Pos(t′). Position v is an antecedent of v′ iff either

1. v ‖ p, i.e., v and p are disjoint, and v = v′, or
2. there exists an occurrence u′ ∈ Posx(r) of a variable x in r s.t. v′ = p.u′.w

and v = p.u.w, where u ∈ Posx(l) is an occurrence of x in l.

With the notations of the previous definition, we have:

1. t|v = t′|v′ ,
2. v′ may have no antecedent if v′ = p.u′ with u′ ∈ PosΣ(r), or if v′ < p,

This notion extends to a rewrite sequence by transitive closure of the rewriting
relation in the usual way. The notion of antecedent can also be extended to
narrowing sequences as follows.

Definition 3 (Narrowing antecedent of a position). [23] Let t
b
�∗

R,σ t′,
v ∈ Pos(t), and v′ ∈ Pos(t′). We say v is an antecedent of v′ iff v is an
antecedent of v′ in the rewrite sequence tσ →∗

R t′.

And note that now we have t|vσ = t′|v′ . In the following, we consider basic
narrowing derivations of the form

s
b
�p,g→d,σ t

b
�q,l→r,θ u (1)

and we are interested in the conditions that allow us to commute the first two
steps by first applying to s the rule l → r and then the rule g → d to the
resulting term. If the subterm t|q already exists in s, i.e., if q admits at least
one antecedent in s, the idea essentially consists in applying l → r to all the
antecedents of q, and then applying g → d to the resulting term. Let us give an
example for motivation.

Example 1. [23] Let us consider the following TRS R4:

R4 = { f(x, x) → x (r1) g(x, h(x)) → x (r2) }

and the basic narrowing derivation:

〈h(f(0, x), g(x, y)), {}〉 b
�p=1,r1,{x/0} 〈h(x, g(x, y)), {x/0}〉
b
�q=2,r2,{y/h(0)} 〈h(x, x), {x/0}〉.
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D0 D1

R0 R1

C0 C1

Dsh

Rsh

D0 D1

R0 R1

C0 C1

D0 C0
C1

D1
R0 R1

Dsh

Rsh

D0 D1

R0 R1

C0
C1

constructor sharing composable hierarchical combination GHC

Fig. 1. Standard modular combinations

The occurrences p and q are disjoint, therefore q has an antecedent in s at q′ = 2.
By first applying r2 at q′ = 2, and then r1 at p we get:

〈h(f(0, x), g(x, y)), {}〉 b
�q′=2,r2,{y/h(x)} 〈h(f(0, x), x), {}〉
b
�p=1,r1,{x/0} 〈h(x, x), {x/0}〉

The following result establishes that in a basic narrowing derivation, the an-
tecedent of a position is always in the skeleton part, and case 2 of Definition 2
cannot happen.

Lemma 1. Given a basic narrowing derivation t
b
�p,l→r,σ t′ b

�q′,g→d,θ u, if
q ∈ Pos(t) is an antecedent of q′, then q and p are necessarily disjoint, q′ is in
the skeleton, and q = q′.

Now we show that basic narrowing steps can be commuted under certain condi-
tions. This result is the basis for the modularity results of Section 5.

Proposition 1 (Commutation of Basic Narrowing). Let R be a TRS and

〈s, θ〉 b
�p,g→d,σ1

〈s[d]p, θσ1〉 b
�q,l→r,σ2

〈s[d]p[r]q , θσ1σ2〉 (2)

be a sequence of two basic narrowing steps s.t. q admits an antecedent in s. Then
(2) can be commuted to the following equivalent basic narrowing derivation:

〈s, θ〉 b
�q,l→r,σ3

〈s[r]q , θσ3〉 b
�p,g→d,σ4

〈s[r]q[d]p, θσ3σ4〉 (3)

where σ1σ2 = σ3σ4[s].

4 Modular Termination of Basic Narrowing

Let us recall some standard notions regarding modularity of rewriting, as defined
in [20], that will be used throughout the paper. Figure 1 shows diagramatic
renditions of these definitions.



Modular Termination of Basic Narrowing 7

disjoint. (Σ0,R0) and (Σ1,R1) are disjoint if they do not share symbols, that
is, Σ0 ∩Σ1 = ∅. Their union, called direct sum, is denoted R = R0 �R1.

constructor sharing. (D0 �C0,R0) and (D1 � C1,R1) are constructor sharing
if they do not share defined symbols, i.e., D0 ∩ D1 = ∅.

composable. Two systems (D0 � Dsh � C0,R0) and (D1 � Dsh � C1,R1) are
composable if D0 ∩ C1 = D1 ∩ C0 = ∅ and both systems share all the rewrite
rules that define every shared defined symbol, i.e., Rsh ⊆ R0 ∩ R1 where
Rsh = {l → r ∈ R0 ∪R1 | root(l) ∈ Dsh}.

hierarchical combination. A system R = R0 ∪ R1 is the hierarchical com-
bination (HC) of a base system (D0 � C0,R0) and an extension system
(D1 � C1,R1) iff D0 ∩ D1 = ∅ and C0 ∩ D1 = ∅.

generalized hierarchical combination. A system R = R0∪R1 is the gener-
alized hierarchical combination (GHC) of a base system (D0 �Dsh � C0,R0)
and an extension (D1 � Dsh � C1,R1) with shared subsystem (F , Rsh) iff
D0 ∩D1 = ∅, C0 ∩D1 = ∅, Rsh = R0 ∩R1 where Rsh = {l → r ∈ R0 ∪R1 |
root(l) ∈ Dsh}, and F = {f ∈ F | f occurs in Rsh}.

Roughly speaking, in a hierarchical combinationR = R0∪R1 the sets of function
symbols defined in R0 and R1 are disjoint, and the defined function symbols
of the base (R0) can occur in rules of the extension, but not viceversa. GHCs
generalize both HCs and composable systems.

As noted by [22], this classification of combinations of TRSs is straightfor-
wardly applicable to programming languages and incremental program develop-
ment. The modularity results of direct–sums can be used when two subsystems
are defined over different domains, e.g. the natural numbers and the Boolean
domain. The modularity results of constructor sharing unions can be used when
two subsystems define independent functions (none of the two systems use the
procedures defined in the other) over a common domain. HCs model the notion
of modules in programming languages. The following example borrowed from
[20] illustrates these notions.

Example 2. Consider the following TRSs:

R+ =

{
0 + y → y

s(x) + y → s(x + y) R− =

⎧⎨
⎩

0− s(y) → 0
x− 0→ x

s(x) − s(y) → x− y

R∗ =

{
0 ∗ y → 0

s(x) ∗ y → (x ∗ y) + y
Rpow =

{
pow(x, 0) → s(0)

pow(x, s(y)) → x ∗ pow(x, y)

Rapp =

{
nil++ys→ ys

(x : xs)++ys→ x : (xs++ys)

R+ and Rapp are disjoint, R+ and R− are constructor–sharing, R+ ∪ R∗ is
composable with R+ ∪ Rapp, and R∗ ∪ R+ is a HC where R∗ extends R+.
Lastly, the system R1 = Rpow ∪ R+ extends R0 = R∗ ∪ R+ in a GHC with
shared subsystem Rsh = R+.
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Note that constructor sharing systems generalize disjoint unions, and are
themselves generalized by both composable and HCs. Finally, these last two
notions are subsumed by GHCs.

4.1 Constructor–Sharing and Composable Unions

The following result is a direct consequence of Theorem 1.

Theorem 2 (Modularity of Constructor–Sharing Unions). Termination
of basic narrowing is modular for constructor–sharing systems.

This implies modularity for disjoint unions too, as in the following well-known
example.

Example 3 (Toyama). Let us consider Toyama’s example [25]:

R0 : f(0, 1, x) → f(x, x, x) R1 : g(x, y) → x g(x, y) → y

Basic narrowing trivially terminates on each system, since every rhs is clearly
unnarrowable. By Theorem 2, it also terminates for R0 ∪R1.

It is well known that Toyama’s example is not (→)-terminating. However, it is
innermost terminating. This shows that ( b

�)-termination does not entail (→)-
termination, which suggests that the modularity requirements for ( b

�)-
termination are less restrictive than those of (→)-termination. Actually, the
modularity properties of ( b

�)-termination are comparable to those of innermost
(→)-termination (see e.g. [20]). The next theorem extends the modularity of
( b
�)-termination to composable systems.

Theorem 3 (Modularity of Composable Unions). Termination of basic
narrowing is a modular property of composable systems.

In Section 4.3 we further extend this result up to generalized proper extensions
(GPE) [22], a fairly general restriction of HCs. To achieve this result, we proceed
as follows. First we prove in Section 4.2 the modularity for generalized nice
extensions (GNE) [22], a restriction of GPEs. Then, we apply a result from [22]
that relates GPEs to GNEs, which delivers the desired result.

In the remaining of this section we make use of the following notion.

Definition 4 (Dependency Relation �R). [22] For a TRS (D � C,R) the
dependency relation �R is the smallest preorder satisfying the condition f �R g
whenever there is a rewrite rule f(s1, . . . , sm) → r ∈ R and g(t1, . . . , tn) is a
subterm of r, with g ∈ D.

We often omit R from �R when it is clear from the context. We say that a
symbol f ∈ D depends on a symbol g ∈ D if f � g. Intuitively, f � g if the
evaluation of f involves a call to g after one or more rewrite steps.
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4.2 Nice Extensions

Nice extensions (NE) are a restriction of PEs introduced by Krishna Rao [22].
NEs are a useful intermediate notion, because it can be shown that every PE
can be modelled as a pyramid of NEs, which we do in Section 4.3.

Definition 5 (Split). Let (D � C,R) be a GHC of a base system (D0 � Dsh �
C0,R0) and the extension (D1 � Dsh � C1,R1). The set D1 of defined symbols
of R1 is split in two sets D0

1 and D1
1 where D0

1 contains all the symbols that
depend on function symbols from R0, i.e., D0

1 = {f ∈ D1 | ∃g ∈ D0, f �R g}
and D1

1 = D1 \ D0
1. We can then split R1 in two subsystems R0

1 and R1
1 as

R0
1 = {l → r ∈ R1 | root(l) ∈ D0

1} and R1
1 = {l → r ∈ R1 | root(l) ∈ D1

1}.

Definition 6 (Generalized Nice Extension). [22] Let R = R0 ∪ R1 be the
GHC of the extension (D1�Dsh�C1,R1) over the base (D0�Dsh�C0,R0). R1 is
a generalized nice extension (GNE) of R0 if, for every rewrite rule l → r ∈ R1,
and for every subterm s of r such that root(s) ∈ D0

1, s contains no function
symbol of D0 ∪D0

1 strictly below its root.

Figure 4 shows a diagramatic rendition of NEs, and an example can be found in
Example 4 later.

We identify a special set SR0∪R1 of terms that represent the right hand sides
of rules of the TRSs that can be obtained as GNEs. This allows us to prove
that basic narrowing w.r.t. R = R0 ∪ R1 terminates only if it terminates for
the terms in SR0∪R1 . Let us introduce the standard notion of context here. A
context is a term C with zero or more ‘holes’, i.e., the fresh constant symbol �.
If C is a context and t a list of terms, C[t] denotes the result of replacing the
holes in C by the terms in t.

Definition 7 (SR0∪R1 terms). Let (D � C,R) be the union of a base system
(D0�Dsh�C0,R0) and a GNE (D1�Dsh�C1,R1). Define the sets D0

1, D1
1, R0

1 and
R1

1 as in Definition 5. Let CC01 be the set of contexts of (C ∪D0 ∪Dsh∪D1
1). We

define SR0∪R1 as the set of all terms of the form C[s1, . . . , sn], where C ∈ CC01

and the following conditions hold:

1. for all i ∈ {1 · · ·n}, root(si) ∈ D0
1, and

2. si contains no function symbol of D0 ∪ D0
1 strictly below its root.

By definition, SR0∪R1 terms have the property that no R0
1 reduction step is

possible within the context C. Also, the set SR0∪R1 is closed under b
�R0∪R1 if

R1 is a GNE of R0.
The reader can check that the right hand sides of the rules in a GNE fulfill

the conditions above. In order to prove the ( b
�)-termination of a system, by

Theorem 1 it suffices to prove that derivations starting from the right hand
sides of the rules are finite. We prove in Section 5 the more general result that
derivations starting from SR0∪R1 terms are finite.

Corollary 1. Let R1 be a GNE over R0. Every basic narrowing derivation in
R0 ∪R1 starting from a term of SR0∪R1terminates.
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Now we can easily generalize this result to any term by applying Theorem 1.

Corollary 2. Termination of basic narrowing is modular for generalized nice
extensions.

4.3 Proper Extensions

In this section, we extend our previous modularity results from NEs to PEs,
by reusing a result from Krishna Rao that relates proper and generalized nice
extensions.

Definition 8 (Generalized Proper Extension). [22] Let R = R0∪R1 be the
GHC of a base system (D0�Dsh�C0,R0) and an extension (D1�Dsh�C1,R1).
Define the sets D0

1, D1
1, R0

1 and R1
1 as in Definition 5. R1 is a generalized proper

extension (GPE) of R0 if each rewrite rule l → r ∈ R0
1 satisfies that, for every

subterm t of r such that root(t) ∈ D0
1 and root(t) �R root(l), t contains no

function symbol of D0 ∪ D0
1 strictly below its root.

Figure 4 shows a diagramatic rendition of GPEs.

Example 4. Consider computing the factorial of a number in tail recursive style.

R! =

{ fact(x) → factacc(x, 1)
factacc(0, x) → x

factacc(s(y), x) → factacc(y, x ∗ s(y))
R∗ =

{
0 ∗ y → 0

s(x) ∗ y → (x ∗ y) + y

R! is a hierarchical extension of R∗, but it is not a PE (because of the 3rd rule).
On the other hand, the standard, non tail recursive presentation of factorial is
a PE, and moreover a NE.

To understand why non proper extensions can be troublesome for termination,
consider the following example.

Example 5. Consider the following TRSs, whose combination is hierarchical but
not proper:

R1 : {f(a) → f(b)} R0 : {b→ a}
There exists the following infinite basic narrowing derivation

f(a) b
� f(b) b

� f(a) b
� · · ·

produced by the nesting of a redex w.r.t. R0 inside the recursive call to f in the
rhs of the rule of R1.

PEs are less restrictive than NEs because they allow nesting of R0 functions only
as long as they do not occur inside a recursive definition, whereas NEs forbid
any function nesting. That is, every NE is also a PE, but not the other way
around. As stated before, we can model any GPE as a finite pyramid of one or
more GNEs. Essentially, the idea is similar to the modular decomposition of a
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TRS in [26]. What we do is to reduce a given PE to the canonical modular form,
a modular partition such that each of the individual modules cannot be split up.
In order to achieve this we employ the graph induced by the dependency relation
� on defined function symbols, and the rules corresponding to the symbols of
every strongly connected component become a module (i.e., a GNE).

Lemma 2. [22] Let R1 be a finite TRS such that it is a GPE of R0. Then R1

can be seen as a finite pyramid of GNEs.

We are now ready to give our final modularity result for termination of basic
narrowing in GPEs, which follows from the previous lemma and Corollary 2.

Corollary 3. Termination of basic narrowing is modular for generalized proper
extensions.

In the following section, by weakening some conditions of GPEs, we provide a
novel class of composition of TRSs called relaxed proper extensions for which
the modularity of basic narrowing termination still holds.

5 Relaxed Proper Extensions

Let us introduce the main idea behind our generalization of GPEs by means of
the following example.

Example 6. Consider the following TRS, an encoding3 of the exponentiation xy

and the exclusive or operators that are commonly used in the specification of
many cryptographic protocols [7,8], where the constructor symbol g is used as a
generator for the exponentiation.

R1 : exp(exp(g, X), Y ) → exp(g, X*Y )
R0 : X*X−1 → 1 X*1→ X 1*X → X

3 We are aware that this encoding is not complete since the exclusive or operator is
associative and commutative; nevertheless, the example is useful for motivation.
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Basic narrowing trivially terminates on each system separately, since every rhs
is clearly unnarrowable. However, their combination R = R0 ∪R1 is not a PE,
since the base defined symbol * appears below the extension defined symbol exp
in a recursive call. It is easy to see that basic narrowing indeed terminates in
R, because the outer function symbol exp in the recursive invocation occurring
in the right hand side of the rule of R1 is blocked forever. The following novel
notion of relaxed proper extension (RPE) captures this idea.

We introduce the notion of root-stable rigid normal form, which lifts to narrowing
the standard concept of head normal form. By abuse of notation, we apply this
notion, with no change, to basic narrowing.

Definition 9 (Root-Stable Rigid Normal Form). [2] A term s is a root-
stable rigid normal form (rs−rnf) w.r.t. R if either s is a variable or there are
no substitutions θ and θ′ and terms s′ and s′′ s.t. sθ >ε→∗

R s′ b
�ε,R,θ′ s′′.

Definition 10 (Generalized Relaxed Proper Extension). Let (D�C,R) be
a GHC of a base system (D0�Dsh�C0,R0) and the extension (D1�Dsh�C1,R1).
Define the sets D0

1, D1
1, R0

1 and R1
1 as in Definition 5. R1 is a generalized

relaxed proper extension (GRPE) of R0 if every rule in R0
1 satisfies the following

condition:

(H1) for each subterm t of r such that (a) root(t) ∈ D0
1, (b) t is not a rs−rnf,

and (c) root(t) �R root(l), t does not contain a function symbol of D0 ∪D0
1

strictly below its root.

Figure 4 shows a diagramatic rendition of GRPEs, and the reader can check that
the TRS of Example 6 is indeed a GRPE. In the following, we show that ( b

�)-
termination is modular for RPEs by showing first its modularity for GRNEs,
and then establishing a relation between GRPEs an GRNEs. The reasoning is
similar to the one followed in Section 4.3.

Definition 11 (Generalized Relaxed Nice Extension). Let (D�C,R) be a
GHC of a base system (D0�Dsh�C0,R0) and an extension (D1�Dsh�C1,R1).
Define the sets D0

1, D1
1, R0

1 and R1
1 as in Definition 5. R1 is a generalized

relaxed nice extension (GRNE) of R0 if it is a GRPE, and for every rewrite
rule l → r ∈ R1 the following condition holds:

(N1) for each subterm t of r such that t is not a rs−rnf and root(t) ∈ D0
1, t

contains no function symbol of D0 ∪ D0
1 strictly below its root.

We can extend SR0∪R1to precisely capture the right hand sides of GRNEs.

Definition 12 (Srs−rnf
R0∪R1

Terms). Let (D � C,R) be a GRNE of a base system
(D0�Dsh�C0,R0) and an extension (D1�Dsh�C1,R1). Define the sets D0

1, D1
1,

R0
1 and R1

1 as in Definition 5. We define Srs−rnf
R0∪R1

as the set of all terms of the
form C[s1, . . . , sn], where C is a context in (D∪C) and the following conditions
hold:
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1. no reduction is possible in R0
1 at a position within the context C,

2. for all i ∈ {1 · · ·n}, root(si) ∈ D0
1, si is not a rs−rnf, and

3. si contains no function symbol of D0 ∪ D0
1 strictly below its root.

Note that SR0∪R1 ⊆ Srs−rnf
R0∪R1

. The set Srs−rnf
R0∪R1

also enjoys the property of being

closed under b
�R0∪R1 in a GRNE.

Lemma 3. If t ∈ Srs−rnf
R0∪R1

and t
b
�R0∪R1,θ t′, then t′ ∈ Srs−rnf

R0∪R1
.

The rest of this section is devoted to extending Corollary 1 to the set Srs−rnf
R0∪R1

.
First, let us recall some general results on quasi–commutation of abstract
relations.

Definition 13 (Abstract Reduction System). An abstract reduction system
(ARS) is a structure A = (A, {→α| α ∈ I}) consisting of a set A and a set of
binary relations →α on A, indexed by a set I. We write (A,→1,→2) instead of
(A, {→α| α ∈ {1, 2}}).

Definition 14 (Quasi-commutation). [6] Let →0 and →1 be two relations on
a set S. The relation →1 quasi-commutes over →0 if, for all s, u, t ∈ S s.t. s→0

u→1 t, there exists v ∈ S s.t. s→1 v →∗
01 t, where →∗

01 is the transitive-reflexive
closure of →0 ∪ →1.

Theorem 4. [6] If the relations →0 and →1 in the ARS(S, →0, →1) are
strongly normalizing and →1 quasi-commutes over →0, the relation →0 ∪ →1 is
strongly normalizing too.

We now define an ARS with skeleton–environment pairs as elements, where the
skeletons come from the set Srs−rnf

R0∪R1
of terms, and the relationships →0 and →1

of the ARS are restrictions of basic narrowing.

Definition 15. Let R = R0∪R1 be a generalized relaxed nice combination. We
define the ARS A(R0,R1) = (Srs−rnf

R0∪R1
×Subst ,→0,→1), where the relations →0

and →1 are defined as follows. Let s = C[s0, . . . , sn] be a term in Srs−rnf
R0∪R1

. Then

1. 〈C[s0, . . . , sn], σ〉 →0 〈C′[s0, . . . , sn], θσ〉 if 〈C[s0, . . . , sn], σ〉 b
�R0∪R1

1,θ

〈C′[s0, . . . , sn], σθ〉 is a basic narrowing step given within the context C
2. 〈C[s0, . . . , sn], σ〉→1〈C[s0, . . . , si−1, s

′
i, si+1, . . . , sn], θσ〉 if 〈C[s0, . . . , sn], σ〉

b
�R1,θ 〈C[s0, . . . , si−1, s

′
i, si+1, . . . , sn], θσ〉 is a basic narrowing step given at

a subterm si, with i ∈ {0, . . . , n}.

The relation →1 ∪ →0 is exactly the basic narrowing relation over Srs−rnf
R0∪R1

. In
the following we establish that both →0 and →1 are terminating relations.

Lemma 4. Given the ARS A(R0,R1) of Definition 15, the relations →0 and
→1 are terminating if R0 and R1 are ( b

�)-terminating.
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We are now in a position to prove the quasi-commutation of the relation →1

over the relation →0 in the ARS A(R0,R1). The proof of this result relies on
Proposition 1.

Theorem 5. Given the ARS A(R0,R1) of Definition 15, the relation →1 quasi-
commutes over the relation →0.

Then, as a straightforward consequence of Theorem 4 and Theorem 5, we derive
the relaxed version of Corollary 1.

Corollary 4. Let R1 be a GRNE over R0. Every basic narrowing derivation in
R0 ∪R1 starting from a term of Srs−rnf

R0∪R1
terminates.

By Theorem 1, we obtain the desired modularity result for basic narrowing in
our generalization of GNEs.

Corollary 5. Termination of basic narrowing is modular for generalized relaxed
nice extensions.

We now study the connection between GRNEs and GRPEs, and extend the
results and proofs from [22] extending them to our generalized relaxed nice
extensions.

Lemma 5. Let R1 be a finite TRS such that it is a GRPE of R0. R1 can be
seen as a finite pyramid of GRNEs.

Finally, we are able to establish the most general result of the paper, which
follows directly from Corollary 5 and Lemma 5.

Corollary 6. Termination of basic narrowing is modular for generalized relaxed
proper extensions.

6 Conclusions

The completeness and termination properties of basic narrowing have been stud-
ied previously in landmark work [15,23,19]. Recently we have contributed to the
study of narrowing termination based on the termination of basic narrowing in
[2]. In this paper, we improve our characterization of basic narrowing termi-
nation by proving modular termination in several hierarchical combinations of
TRSs, including generalized proper extensions with shared subsystem.

Our main motivation for this work is proving termination of narrowing [15,2].
Narrowing has received much attention due to the different applications, such as
automated proofs of termination [5], execution of multiparadigm programming
languages [13,17], symbolic reachability [18], verification of cryptographic pro-
tocols [10], equational unification [15], equational constraint solving [3,4], and
model checking [11], among others. Termination of narrowing is, therefore, of
much interest to these applications.
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Abstract. We introduce a minimal language combining higher-order
computation and linear algebra. This language extends the λ-calculus
with the possibility to make arbitrary linear combinations of terms α.t+
β.u. We describe how to “execute” this language in terms of a few rewrite
rules, and justify them through the two fundamental requirements that
the language be a language of linear operators, and that it be higher-
order. We mention the perspectives of this work in the field of quantum
computation, whose circuits we show can be easily encoded in the cal-
culus. Finally we prove the confluence of the calculus, this is our main
result.

1 Motivations

The objective of this paper is to merge higher-order computation, be it ter-
minating or not, in its simplest and most general form (namely the untyped
λ-calculus) together with linear algebra in its simplest and most general form
also (we take just an oriented version of the axioms of vectorial spaces). We see
this as a platform for various applications, including quantum computation, each
of them probably requiring its own type systems. Next we develop the various
contexts in which this calculus may bring some decisive advances.

Quantum programming languages. There are two ways a quantum mechanical
system may evolve: according to a unitary transformation or under a measure-
ment. The former is often thought of as “purely quantum”: it is deterministic
and will typically be used to obtain quantum superpositions of base vectors.
The latter is probabilistic in the classical sense, and will typically be used to
obtain some classical information about a quantum mechanical system, whilst
collapsing the system to a mere base vector.

One may say that measurement-based models of quantum computation –
whether reliant upon teleportation[21], state transfer [23] or more astonishingly
graph states [24] – lie on one extreme, as they keep the “quantumness” to a min-
imum. A more balanced approach is to allow for both unitary transformations
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and quantum measurements. Such models can be said to formalize the exist-
ing algorithm description methods to a strong extent: they exhibit quantum
registers upon which quantum circuits may be applied, together with classical
registers and programming structures in order to store measurements results and
control the computation [25]. For this reason they are the more practical route
to quantum programming. Whilst this juxtaposition of “quantum data, clas-
sical control” has appeared ad-hoc and heterogeneous at first, functional-style
approaches together with linear type systems [26,2] have ended up producing
elegant quantum programming languages.

Finally we may evacuate measures altogether – leaving them till the end
of the computation and outside the formalism. This was the case for instance
in [28], but here the control structure remained classical. In our view, such a
language becomes even more interesting once we have also overcome the need for
any additional classical registers and programming structures, and aim to draw
the full consequence of quantum mechanics: “quantum data, quantum control”.
Quantum Turing Machines [6], for instance, lie on this other extreme, since the
entire machine can be in a superposition of base vectors. Unfortunately they are a
rather oblivious way to describe an algorithm. Functional-style control structure,
on the other hand, seem to merge with quantum evolution descriptions in a
unifying manner. The functional language we describe may give rise to a “purely
quantum” programming language, i.e. one which has no classical registers, no
classical control structure, no measurement and that allows arbitrary quantum
superpositions of base vectors – once settled the question of restricting to unitary
operators.

General computable linear operators, and the restriction to unitary. In our view,
the problem of formulating a simple algebra of higher order computable operators
upon infinite dimensional vector spaces was the first challenge that needed to
be met, before even aiming to have a physically executable language. In the
current state of affairs computability in vector spaces is dealt with matrices and
compositions, and hence restricted to finite-dimensional systems – although this
limitation is sometimes circumvented by introducing an extra classical control
structure e.g. via the notions of uniform circuits or linear types. The language
we provide achieves this goal of a minimal calculus for describing higher-order
computable linear operators in a wide sense. Therefore this work may serve as
a basis for studying wider notions computability upon abstract vector spaces.

The downside of this generality as far as the previously mentioned application
to quantum computation are concerned is that our operators are not restricted
to being unitary. A further step towards specializing our language to quantum
computation would be to restrict to unitary operators, as required by quantum
physics. There may be several ways to do so. A first lead would be to design
an a posteriori static analysis that enforces unitarity – exactly like typability is
not wired in pure lambda-calculus, but may be enforced a posteriori. A second
one would be to require a formal unitarity proof from the programmer. With a
term and a unitarity proof, we could derive a more standard representation of
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the operator, for instance in terms of an universal set of quantum gates [9]. This
transformation may be seen as part of a compilation process.

In its current state our language can be seen as a specification language for
quantum programs, as it possesses several desirable features of such a language:
it allows a high level description of algorithms without any commitment to a
particular architecture, it allows the expression of black-box algorithms through
the use of higher order functionals, its notation remains close to both linear alge-
bra and functional languages. The game is then be to prove that some quantum
program expressed in a standard way (as a composition of universal quantum
gates, say) is observationally equivalent to such a specification (a term of our
language) under the operational semantics given next.

Type theory, logics, models. In this article linearity is understood in the sense
of linear algebra, but a further aim to this research would be to investigate
connections with linear λ-calculus, i.e. a calculus which types are formulae of
linear logic [16]. The paper may also be viewed as part of a wave of probabilistic
extensions of calculi, e.g. [18,8]. Type theories for probabilistic extensions of
the λ-calculus such as ours or the recent [15] may lead to interesting forms
of quantitative logics. The idea of superposing λ-terms is also reminiscent of
several other works in λ-calculus, in particular Boudol’s parallel λ-calculus [7],
Ehrhard and Regnier’s differential λ-calculus [14,29] (although our scalars may
be arbitrary), Dougherty’s algebraic extension [13] for normalizing terms of the
λ-calculus.

The functions expressed in our language are linear operators upon the space
constituted by its terms. It is strongly inspired from [4] where terms clearly
form a vector space. However because it is higher-order, as functions may be
passed as arguments to other functions, we get forms of infinity coming into
the game. Thus, the underlying algebraic structure is not as obvious as in [4].
In this paper we provide the rules for executing the language in a consistent
fashion (confluence), but we leave open the precise nature of the model which
lies beneath.

Confluence techniques. A standard way to describe how a program is executed
is to give a small step operational semantic for it, in the form of a finite set
rewrite rules which gradually transform a program into a value. The main the-
orem proved in this paper is the confluence of our language. What this means
is that the order in which those transformations are applied does not affect the
end result of the computation. Confluence results are milestones in the study
of programming languages and more generally in the theory of rewriting. Our
proof uses many of the theoretical tools that have been developed for conflu-
ence proofs in a variety of fields (local confluence and Newman’s lemma; strong
confluence and the Hindley-Rosen lemma) as well as the avatar lemma for para-
metric rewriting as introduced in [3]. These are fitted together in an elaborate
architecture which may have its own interest whenever one seeks to merge a non-
terminating conditional confluent rewrite system together with a a terminating
conditional confluent rewrite system.
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Outline. Section 2 presents the designing principles of the language, Section 3
formally describes the linear-algebraic λ-calculus and its semantics. Section 4
shows that the language is expressive enough for classical and quantum com-
putations. These are the more qualitative sections of the paper. We chose to
postpone till Section 5 the proof of the confluence of the calculus, which is more
technical. This is our main result. Due to page number constraints, some proofs
are omitted in this extended abstract, we refer to the long version of the paper
[5], for the full proofs.

2 Main Features of the Language

We introduce a minimal language combining higher-order computation and lin-
ear algebra, i.e. we extend the λ-calculus with the possibility to make linear
combinations of terms α.t + β.u.

Higher-order. In quantum computing, many algorithms fall into the category
of “black-box” algorithms. I.e. some mysterious implementation of a function
f is provided to us which we call “oracle” – and we wish to evaluate some
property of f , after a limited number of queries to its oracle. For instance in
the Deutsch-Josza quantum algorithm, f is a function f : {false, true}n −→
{false, true} which is either constant (i.e. ∃c∀x[f(x) = c]) or balanced (i.e.
|{x such that f(x) = false}| = |{x such that f(x) = true}|), whose correspond-
ing oracle is a unitary transformation Uf : Hn+1

2 −→ Hn+1
2 such that Uf :

x ⊗ b �→ x ⊗ (b ⊕ f(x)), where Hn+1
2 stands for a tensor product of n + 1

two-dimensional Hilbert spaces, ⊗ is the tensor product and ⊕ just the addition
modulo two. Our aim is to determine whether f is constant or balanced, and it
turns out we can do so in one single query to its oracle. The algorithm works by
applying H⊗n+1

upon (false⊗n

⊗ true), then Uf , and then H⊗n+1
again, where

H⊗n+1
means applying the Hadamard gate on each of the n + 1 qubits. It is

clear from this example that a desirable feature for a linear-algebraic functional
language is to be able to express algorithms as a function of an oracle. E.g. we
may want to define

Dj1 ≡ λx ((H ⊗H) (x ((H ⊗H) (false⊗ true)))

so that Dj1 Uf reduces to (H ⊗H) (Uf ((H ⊗H) (false⊗ true))). More impor-
tantly even, one must be able to express algorithms, whether they are “black-
box” or not, independent of the size of their input. This is what differentiates
programs from fixed-size circuits acting upon finite dimensional vector spaces,
and demonstrates the ability to have control flow. The way to achieve this in
functional languages involves duplicating basic components of the algorithm an
appropriate number of times. E.g. we may want to define some Dj operator
so that (Djn)Uf reduces to the appropriate (Djn)Uf , where n is a natural
number.

Clearly the languages of matrices and circuits do not offer an elegant pre-
sentation for this issue. Higher-order appears to be a desirable feature to have
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for black-box computing, but also for expressing recursion and for high-level
programming.

Copying. We seek to design a λ-calculus, i.e. have the possibility to introduce
and abstract upon variables, as a mean to express functions of these variables.
In doing so, we must allow functions such as λx (x ⊗ x), which duplicate their
argument. This is necessary for expressiveness, for instance in order to obtain
the fixed point operator or any other form of iteration/recursion.

Now problems come up when functions such as λx (x ⊗ x) are applied to
superpositions (i.e. sums of vectors). Linear-algebra brings a strong constraint:
we know that cloning is not allowed, i.e. that the operator which maps any vector
ψ onto the vector ψ⊗ψ is not linear. In quantum computation this impossibility
is referred to as the “no-cloning theorem” [30]. Most quantum programming
language proposals so far consist in some quantum registers undergoing unitary
transforms and measures on the one hand, together with classical registers and
programming structures ensuring control flow on the other, precisely in order to
avoid such problems. But as we seek to reach beyond this duality and obtain a
purely quantum programming language, we need to face it in a different manner.

This problem may be seen as a confluence problem. Faced with the term
(λx (x ⊗ x)) (false + true), one could either start by substituting false + true
for x and get the normal form (false + true) ⊗ (false + true), or start by
using the fact that all the functions defined in our language must be linear
and get ((λx (x ⊗ x)) false) + ((λx (x ⊗ x)) true) and finally the normal form
(false⊗ false) + (true⊗ true), leading to two different results. More generally,
faced with a term of the form (λx t) (u+v), one could either start by substituting
u+v for x, or start by applying the right-hand-side linearity of the application,
breaking the confluence of the calculus. So that operations remain linear, it is
clear that we must start by developing over the + first, until we reach a base
vector and then apply β-reduction. By base vector we mean a term which does
not reduce to a superposition. Therefore we restrict the β-reduction rules to
cases where the argument is a base vector, as formalized later.

With this restriction, we say that our language allows copying but not cloning
[4,2]. It is clear that copying has all the expressiveness required in order to ex-
press control flow, since it behaves exactly like the standard β-reduction as long
as the argument passed is not in a superposition. This is the appropriate linear
extension of the β-reduction, philosophically it comprehends classical computa-
tion as a (non-superposed) sub-case of linear-algebraic/quantum computation.

The same applies to erasing: the term λxλy x expresses the linear operator
mapping the base vector bi ⊗ bj to bi. Again this is in contrast with other
programming languages where erasing is treated in a particular fashion whether
for the purpose of linearity of bound variables or the introduction of quantum
measurement.

Higher-order & copying. The main conceptual difficulty when seeking to let
our calculus be higher-order is to understand how it combines with this idea of
“copying”, i.e. duplicating only base vectors. Terms of the form (λx (xx)) (λx v)
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raise the important question of whether the λ-term λxv must be considered to
be a base vector or not. As we want higher-orderness in the traditional sense,
i.e. (λx t) (λy u) −→ t[λy u/x], abstractions must be the base vectors.

The eventual algebraic consequences of this notion of a privileged basis arising
only because of the higher-order level are left as a topic for further investigations.
An important intuition is that (λxv) is not the vector itself, but its classical
description, i.e. the machine constructing it – hence it is acceptable to be able
to copy (λxv) so long as we cannot clone v. The calculus does exactly this
distinction.

Infinities & confluence. It is possible, in our calculus, to define fixed point oper-
ators. For instance for each term b we can define the term

Yb =
(
(λx (b + (xx))

)(
λx (b + (xx)))

)
Then the term Yb reduces to b + Yb, i.e. the term reductions generate a com-
putable series of vectors (n.b+Yb)n whose “norm” grows towards infinity. This
was expected in the presence of both fixed points and linear algebra, but the
appearance of such infinities entails the appearance of indefinite forms, which we
must handle with great caution. Marrying the full power of untyped λ-calculus,
including fixed point operators etc., with linear-algebra therefore jeopardizes the
confluence of the calculus, unless we introduce some further restrictions.

Example 1. If we took an unrestricted factorization rule α.t+β.t −→ (α+β).t,
then the term Yb−Yb would reduce to (1+ (−1)).Yb and then 0. It would also
be reduce to b + Yb −Yb and then to b, breaking the confluence.

Thus, exactly like in elementary calculus ∞−∞ cannot be simplified to 0, we
need to introduce a restriction to the rule allowing to factor α.t+β.t into (α+β).t
to the cases where t is finite. But what do we mean by finite? Notions of norm
in the usual mathematical sense seem difficult to import here. In order to avoid
infinities we would like to ask that t be normalizable, but this is impossible to
test in general. Hence, we restrict further this rule to the case where the term
t is normal. It is quite striking to see how this restriction equates the algebraic
notion of “being normalized” with the rewriting notion of “being normal”. The
next two examples show that this indefinite form may pop up in some other,
more hidden, ways.

Example 2. Consider the term (λx ((x )− (x ))) (λy Yb) where is any base
vector, for instance false. If the term (x ) − (x ) reduced to 0 then this term
would both reduce to 0 and also to Yb −Yb, breaking confluence.

Thus, the term t we wish to factor must also be closed, so that it does not
contain any hidden infinity.

Example 3. If we took an unrestricted rule (t+u)v −→ (t v)+ (uv) the term
(λx (x ) − λx (x )) (λy Yb) would reduce to Yb −Yb and also to 0, breaking
confluence.

Thus we have to restrict this rule to the case where t + u is normal and closed.
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Example 4. If we took an unrestricted rule (α.u)v −→ α.(uv) then the term
(α.(x + y))Yb would reduce both to (α.x + α.y)Yb and to α.((x + y)Yb),
breaking confluence due to the previous restriction.

Thus we have to restrict this rule to the case where u is normal and closed.
This discussion motivates each of the restrictions (∗) − (∗ ∗ ∗∗) in the rules

below. These restrictions are not just a fix: they are a way to formalize vectorial
spaces in the presence of limits/infinities. It may come as a surprise, moreover,
that we are able to tame these infinities with this small added set of restric-
tions, and without any need for context-sensitive conditions, as we shall prove
in Section 5.

3 The Language

We consider a first-order language, called the language of scalars, containing at
least constants 0 and 1 and binary function symbols + and ×. The language of
vectors is a two-sorted language, with a sort for vectors and a sort for scalars,
described by the following term grammar:

t ::= x | λx t | (t t) | 0 | α.t | t + t

where α has the sort of scalars.
In this paper we consider only semi-open terms, i.e. terms containing vector

variables but no scalar variables. In particular all scalar terms will be closed.
As usual we write (t u1 ...un) for (...(t u1) ...un). Vectors appear in bold.

Definition 1 (The system S – scalar rewrite system). A scalar rewrite
system S is an arbitrary rewrite system defined on scalar terms and such that

– S is terminating and confluent on closed terms,
– for all closed terms α, β and γ, the pair of terms

• 0 + α and α, 0× α and 0, 1× α and α,
• α× (β + γ) and (α× β) + (α× γ),
• (α + β) + γ and α + (β + γ), α + β and β + α,
• (α× β)× γ and α× (β × γ), α× β and β × α

have the same normal forms,
– 0 and 1 are normal terms.

Examples of scalar rewrite systems for D and D[i,
√

2] are given in [4], where
D is the set of rational numbers whose denominators is a power of two, as this
is enough to express quantum computations. The same thing could be done for
Q or any finite extension of Q. Basically the notion of a scalar rewrite systems
lists the few basic properties that scalars are usually expected to have: neutral
elements, associativity of + etc. The following two definitions are standard for
rewriting modulo associativity and commutativity.
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Definition 2 (The relation −→XAC). We define the relation =AC as the con-
gruence generated by the associativity and commutativity axioms of the symbol +.
Let X be a rewrite system, we define the relation −→XAC as follows t −→XAC u
if there exists a term t′ such that t =AC t′, an occurrence p in t′, a rewrite rule
l −→ r in X and a substitution σ such that t′|p = σl and u =AC t′[p← σr]).

Definition 3 (The system L – vector spaces). Our small-step semantics is
defined by the relation −→ L AC where L is the system formed with the rules of
S and the union of four groups of rules E, F , A and B:

- Group E – elementary rules
u + 0 −→ u, 0.u −→ 0, 1.u −→ u, α.0 −→ 0,
α.(β.u) −→ (α× β).u, α.(u + v) −→ α.u + α.v,
- Group F – factorisation
α.u + β.u −→ (α + β).u, α.u + u −→ (α + 1).u, u + u −→ (1 + 1).u, (∗)
- Group A – application
(u + v) w −→ (u w) + (v w), w (u + v) −→ (w u) + (w v), (∗∗)
(α.u) v −→ α.(u v), v (α.u) −→ α.(v u), (∗ ∗ ∗)
0 u −→ 0, u 0 −→ 0,
- Group B – beta reduction
(λx t) b −→ t[b/x] (∗ ∗ ∗∗)
where + is an AC symbol. And:

(∗) the three rules apply only if u is a closed L-normal term.
(∗∗) the two rules apply only if u + v is a closed L-normal term.
(∗ ∗ ∗) the two rules apply only if u is a closed L-normal term.
(∗ ∗ ∗∗) the rule applies only when b is a “base vector” term, i.e. an abstraction
or a variable.

Notice that the restriction (∗), (∗∗) and (∗ ∗ ∗) are well-defined as the terms to
which the restrictions apply are smaller than the left-hand side of the rule.

Notice also that the restrictions are stable by substitution. Hence these con-
ditional rules could be replaced by an infinite number of non conditional rules,
i.e. by replacing the restricted variables by all the closed normal terms verifying
the conditions.

Finally notice how the rewrite system R = S ∪ E ∪ F ∪ A, taken without
restrictions, is really just an oriented version of the axioms of vectorial spaces,
as is further explained in [3]. Intuitively the restricted systems defines a notion
of vectorial space with infinities.
Normal forms. We have explained why abstractions ought to be considered
as “base vectors” in our calculus. We have highlighted the presence of non-
terminating terms and infinities, which make it impossible to interpret the cal-
culus in your usual vector space structure. The following result shows that ter-
minating closed terms on the other hand can really be viewed as superposition
of abstractions.
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Proposition 1 (Form of closed normal forms). A L-closed normal form is
either the null vector or of the form

∑
i αi.λx ti +

∑
i λxui where the scalars

are different from 0 and 1 and the abstractions are all distinct.

4 Encoding Classical and Quantum Computation

The restrictions we have placed upon our language are still more permissive
than those of the call-by-value λ-calculus, hence any classical computation can
be expressed in the linear-algebraic λ-calculus just as it can in can in the call-
by-value λ-calculus. For expressing quantum computation we need a specific
language of scalars, together with its scalar rewrite system. This bit is not diffi-
cult, as was shown in [4]. It then suffices to express the three universal quantum
gates H,Phase,Cnot, which we will do next.

Encoding booleans. We encode the booleans as the first and second projections, as
usual in the classical λ-calculus: true ≡ λxλy x, false ≡ λxλy y. Again, note
that these are conceived as linear functions, the fact we erase the second/first
argument does not mean that the term should be interpreted as a trace out or
a measurement.

Encoding unary quantum gates. For the Phase gate the naive encoding will not
work, i.e.

Phase �≡ λy
(
y (ei π

4 .true) false
)

since by bilinearity this would give Phase false −→∗ ei π
4 .false, whereas the

Phase gate is supposed to place an ei π
4 only on true. The trick is to use abstrac-

tion in order to retain the ei π
4 phase on true only (where is any base vector,

for instance false).

Phase ≡ λy
((

y λx (ei π
4 .true)λx false

) )

Now Phase true yields ei π
4 .true whereas Phase false yields false. This idea

of using a dummy abstraction to restrict linearity can be generalized with the
following construct: [t] ≡ λx t, whose effect is to associate a base vector [t] to
any state, and its converse: {t} ≡ t where is any base vector, for instance
false. We then have the derived rule {[t]} −→ t, thus {.} is a “left-inverse”
of [.], but not a ”right inverse”, just like eval and ′ (quote) in LISP. Note that
these hooks do not add anymore power to the calculus, in particular they do
not enable cloning. We cannot clone a given state α.t + β.u, but we can copy
its classical description [α.t + β.u]. For instance the function λx [x] will never
“canonize” anything else than a base vector, because of restriction (∗ ∗ ∗∗). The
phase gate can then be written

Phase ≡ λy
{
(y [ei π

4 .true]) [false]
}
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For the Hadamard gate the game is just the same:

H ≡ λy
{
y [
√

2
2

.(false + true)] [
√

2
2

.(false− true)]
}

Encoding tensors. In quantum mechanics, vectors are put together via the bi-
linear symbol ⊗. But because in our calculus application is bilinear, the usual
encoding of pairs does just what is needed.

⊗ ≡ λxλy λf
(
f x y

)
, π1 ≡ λxλy x, π2 ≡ λxλy y,⊗

≡ λf λg λx
(
⊗
(
f (π1 x)

) (
g (π2 x)

))

E.g. H⊗2 ≡
(⊗

HH
)
. From there on the infix notation for tensors will be used,

i.e. t⊗ u ≡ ⊗ t u, t
⊗

u ≡
⊗

t u.
The Cnot gate can be defined in a similar way.

Expressing the Deutsch-Josza algorithm parametrically. We can now express al-
gorithms parametrically. Here is the well-known simple example of the Deutsch
algorithm.

Dj1 ≡ λx

(
H⊗2

(
x
(
H⊗2

(
false⊗ true

))))

But we can also express control structure and use them to express the depen-
dence of the Deutsch-Josza algorithm with respect to the size of the input. En-
coding the natural number n as the Church numeral n ≡ λxλf (fn x) the term
(n H λy (H

⊗
y)) reduces to H⊗n+1

and similarly the term (n true λy (false⊗
y)) reduces to false⊗n

⊗ true. Thus the expression of the Deutsch-Josza algo-
rithm term of the introduction is now straightforward.

5 Confluence

The main theorem of this paper is the confluence of the systemL. We shall proceed
in two steps and prove first the confluence of the system R = S∪E∪F ∪A, i.e. the
system L minus the rule B. To prove the confluence of R we prove its termination
and local confluence. To be able to use a critical pair lemma, we shall use a well-
known technique, detailed in the Section 5.1, and introduce an extension Rext =
S∪E∪Fext∪A of the system R as well as a more restricted form of AC-rewriting.
This proof will proceed step by step as we shall prove first the local confluence of
the system S ∪E (Section 5.2) then that of S ∪E ∪ Fext (Section 5.2) and finally
that of S ∪ E ∪ Fext ∪ A (Section 5.3). The last step towards our main goal is to
show that the B‖ rule is strongly confluent on the term algebra, and commutes
with R∗, hence giving the confluence of L (Section 5.4).

To prove the local confluence of the system S ∪ E we shall prove that of
the system S0 ∪ E where S0 is a small avatar of S. Then we use a novel proof
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technique in order to extend from S0 to S, hereby obtaining the confluence of
S∪E. As the system R does not deal at all with lambda abstractions and bound
variables, we have, throughout this first part of the proof, considered λx as a
unary function symbol and the bound occurrences of x as constants. This way
we can safely apply known theorems about first-order rewriting.

5.1 Extensions and the Critical Pairs Lemma

The term ((a+b)+a)+c is AC-equivalent to ((a+a)+b)+c and thus reduces
to ((1 + 1).a + b) + c. However, no subterm of ((a + b) + a) + c matches u + u.
Thus we cannot restrict the application of a rewrite rule to a subterm of the
term to be reduced, and we have to consider all the AC-equivalents of this term
first. This problem has been solved by [22,19] that consider a simpler form of
application (denoted −→X,AC) and an extra rule (u + u) + x −→ (1 + 1).u + x.
Notice that now the term ((a + b) + a) + c has a subterm (a + b) + a that is
AC-equivalent to an instance of the left-hand-side of the new rewrite rule.

Definition 4 (The relation −→X,AC). Let X be a rewrite system, we define
the relation −→X,AC as follows t −→X,AC u if there exists an occurrence p in
t, a rewrite rule l −→ r in X and a substitution σ such that t|p =AC σl and
u =AC t[p← σr].

Definition 5 (The extension rules). (α.u + β.u) + x −→
(α+β).u+x, (α.u+u)+x −→ (α+1).u+x, (u+u)+x −→ (1+1).u+x (∗)
We call Fext the system formed by the rules of F and these three rules and Rext

the system S ∪ E ∪ Fext ∪A.

As we shall see the confluence of−→R AC is a consequence of that of−→(Rext),AC .
As usual we write t −→∗ u if and only if t = u or t −→ . . . −→ u. We also write
t −→? u if and only if t = u or t −→ u.

The notions of confluence, strong confluence, local confluence and critical pair
are as usual. We use the critical pair lemma and the following lemma that is a
consequence of the Theorems 8.9, 9.3 and 10.5 of [22].

Proposition 2. If −→Rext,AC is locally confluent and −→R AC terminates then
−→R AC is confluent.

Thus to prove the confluence of −→R AC we shall prove its termination and
the local confluence of −→Rext,AC .

5.2 Local Confluence of S ∪ E

Definition 6 (The rewrite system S0). The system S0 is formed by the rules
0 + α −→ α, 0× α −→ 0, 1× α −→ α, α× (β + γ) −→ (α× β) + (α × γ)
where + and × are AC symbols.

Proposition 3. The system S0 ∪ E is locally confluent.
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Proof. We check that all the critical pair close. This can be automatically done
using, for instance, the system CIME [10].

Definition 7 (Subsumption). A terminating and confluent relation S sub-
sumes a relation S0 if whenever t −→S0 u, t and u have the same S-normal
form.

Definition 8 (Commuting relations). Two relations X and Y are said to be
commuting if whenever t −→X u and t −→Y v, there exists a term w such that
u −→Y w and v −→X w.

Proposition 4 (The avatar lemma). [4] Let E, S and S0 be three relations
defined on a set such that:

– S is terminating and confluent;
– S subsumes S0;
– S0 ∪E is locally confluent;
– E commutes with S∗.

Then, the relation S ∪ E is locally confluent.

Proposition 5. For any scalar rewrite system S the system S ∪ E is locally
confluent.

5.3 Local Confluence and Confluence of R

Proposition 6. The system S ∪ E ∪ Fext is locally confluent.

Proof. This system is made of two subsystems : S ∪ E and Fext. To prove that
it is locally confluent, we prove that all critical pairs close. We used an AC-
unification algorithm to compute these critical pairs. If both rules used are rules
of the system S ∪E, then the critical pair closes by Proposition 5. We check the
43 other critical pairs by hand. The detail can be found in the long version of
the paper [5].

Proposition 7. The system R = S ∪E ∪ Fext ∪A is locally confluent.

Proof. Similar to above. See [5].

Proposition 8. The system R terminates.

Proposition 9. The system R is confluent.

5.4 The System L

We now want to prove that the system L is confluent. With the introduction
of the rule B, we lose termination, hence we cannot use Newman’s lemma [20]
anymore. Thus we shall use for this last part techniques coming from the proof
of confluence of the λ-calculus and prove that the relation −→‖

B is strongly
confluent. In our case as we have to mix the rule B with R we shall also prove
that it commutes with −→∗

R.
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Definition 9 (The relation −→‖
B). The relation −→‖

B is the smallest reflexive
congruence such that if u is a base vector, t −→‖

B t′ and u −→‖
B u′ then

(λx t) u −→‖
B t′[u′/x]

Proposition 10 (−→∗
R commutes with −→‖

B).
If t −→∗

R u and t −→‖
B v then there exists w such that u −→‖

B w and v −→∗
R

w.

Proposition 11 (Strong confluence of B‖).
If t −→‖

B u and t −→‖
B v then there exists w such that u −→‖

B w and v −→‖
B w.

Proposition 12 (Hindley-Rosen lemma). If the relations X and Y are
strongly confluent and commute then the relation X ∪ Y is confluent.

Theorem 1. The system L is confluent.

Proof. By Proposition 9, the relation −→R is confluent, hence −→∗
R is strongly

confluent. By Proposition 11, the relation −→‖
B is is strongly confluent. By

Proposition 10, the relations −→∗
R and −→‖

B commute. Hence, by proposition
12 the relation −→∗

R ∪ −→‖
B is confluent. Hence, the relation −→L is confluent.

6 Conclusion

Summary. When merging the untyped λ-calculus with linear algebra one faces
two different problems. First of all simple-minded duplication of a vector is a
non-linear operation (“cloning”) unless it is restricted to base vectors and later
extended linearly (“copying”). Second of all because we can express computable
but nonetheless infinite series of vectors, hence yielding some infinities and the
troublesome indefinite forms. Here again this is fixed by restricting the evaluation
of these indefinite forms, this time to normal vectors. Both problems show up
when looking at the confluence of the linear-algebraic λ-calculus.

The architecture of the proof of confluence seems well-suited to any non-trivial
rewrite systems having both some linear algebra and some infinities as its key
ingredients. Moreover the proof of confluence entails the following no-cloning
result: there is no term Clone such that for all term v, (Clone v) −→∗ (v⊗v).
Note that λxv on the other hand can be duplicated, because it is thought as
the (plans of) the classical machine for building v – in other words it stands for
potential parallelism rather than actual parallelism. As expected there is no way
to transform v into λxv in general; confluence ensures that the calculus handles
this distinction in a consistent manner.

Perspectives. The linear-algebraic λ-calculus merges higher-order computation
with linear algebra in a minimalistic manner. Such a foundational approach is
also taking place in [1] via some categorical formulations of quantum theory
exhibiting nice composition laws and normal forms, but no explicit states, fixed
point or the possibility to replicate gate descriptions yet. As for [1] although
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we have shown that quantum computation can be encoded in our language, the
linear-algebraic λ-calculus remains some way apart from a model of quantum
computation, because it allows evolutions which are not unitary. Establishing
formal connections with this categorical approach does not seem an easy matter
but is part of our objectives.

These connections might arise through typing. Typing is not only our next step
on the list in order to enforce the unitary constraint, it is actually the principal
aim and motivation for this work: we wish to extend the Curry-Howard isomor-
phism between proofs/propositions and programs/types to a linear-algebraic,
quantum setting. Having merged higher-order computation with linear-algebra
in a minimalistic manner, which does not depend on any particular type systems,
grants us a complete liberty to now explore different forms of this isomorphism.
For instance we may expect different type systems to have different fields of
application, ranging from fine-grained entanglement-analysis for quantum com-
putation, to opening connections with linear logic or even giving rise to some
novel, quantitative logics.

We leave as an entirely open problem the search for a model of the linear-
algebraic λ-calculus. One can notice already that the non-trivial models of the
untyped λ-calculus are all uncountable, and hence the setting cannot be that of
Hilbert spaces. This is also the reason why we have no provided a formal seman-
tics in terms of linear operators in this paper. We suspect that models of the
linear-algebraic λ-calculus will have to do with a C*-algebra endowed with some
added higher-order structure – and may have a mathematical interest of its own.
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Abstract. The notion of path is classical in graph theory but not di-
rectly used in the term rewriting community. The main idea of this work
is to raise the notion of path to the level of first-order terms, i.e. paths
become part of the terms and not just meta-information about them.
These paths are represented by words of integers (positive or negative)
and are interpreted as relative addresses in terms. In this way, paths can
also be seen as a generalization of the classical notion of position for the
first-order terms and are inspired by de Bruijn indexes.

In this paper, we define an original framework called Referenced Term
Rewriting where paths are used to represent pointers between subterms.
Using this approach, any term-graph rewriting systems can be simulated
using a term rewrite-based environment.

1 Introduction

The notion of position is of course central as soon as one deals with data struc-
tures. Absolute as well as relative positions are at the heart of algorithms ma-
nipulating data structures and their appropriate use and representation can lead
to very important differences in the complexity behavior and more generally in
the expression of the algorithms themselves. A typical example is the notion of
de Bruijn indexes for lambda-terms [10] that not only allows for an easier expres-
sion of data-structure manipulations, typically substitution, but also completely
changes the way the algorithm is designed, because in this case alpha-conversion
is useless.

The main idea of this paper is to make the notion of path first-class, i.e.
paths become part of the terms and not just meta-information about them.
Paths are defined as a generalization of positions and denote a relation from a
source position to a target one. A main difference with classical positions that
specify a subterm with respect to a global term is that the source position is not
necessarily the root.

The first contribution of the paper is to introduce the notion of referenced
terms to ground an extension of term rewriting where paths are used to express
references and thus to provide a natural way to add pointers in classical terms.
For instance, the term f(a, g(a)) where we want to make explicit the fact that the
subterm a is shared, will be represented as the referenced term f(a, g(-1 � -2 � 1)),
where -1 and -2 denote backward move from respectively the first subterm of g
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and the second subterm of f . The rational term g(g(g(. . .))) (a rational term is
a possibly infinite term with finitely many subterms, see [9]) is represented by
the referenced term g(-1).

Based on the formalization of paths and a notion of rewrite relation for ref-
erenced terms, a strong contribution of this paper is to establish a simulation
of term-graph rewriting by referenced term rewriting. Since this simulation is
completely based on standard first-order terms, another main interest of the
approach is to provide a safe and efficient way to represent and transform term-
graphs in a purely term-rewriting based language. Beside the theoretical interest,
this is very useful to implement program analysis tools where the representation,
the analysis, and the transformation of control-flow and data-flow graphs are cru-
cial. This new representation of terms generalizes standard first-order terms. It
requires us to carefully design this new notion of terms and its use to get syn-
tactic correctness. For instance, g(-1 � -1) makes no sense as such. Completeness
with respect to the standard notions of term and term-graph rewritings have also
to be established. This leads to an original and clean way for representing and
transforming graphs in a maximally shared rewrite-based environment, making
in particular possible the use of term rewriting strategies [15] for term-graph
rewriting.

The paper is organized as follows. In Section 2, we formalize the notion of
paths and referenced terms where paths are interpreted as pointers. Section 3
shows the relation between referenced terms and cyclic term-graphs as well as
the implementation that has been done in the Tom system. Section 4 presents
related work and Section 5 concludes. We refer to the long version of the paper [5]
for the omitted proofs.

2 Paths and Referenced Terms

We assume the reader to be familiar with the basic definitions of first-order
terms given, in particular, in [3]. We briefly recall or introduce notations for a
few concepts that will be used throughout this paper.

A signature F is a set of function symbols, each one associated to a natural
number by an arity function. T (F ,X ) is the set of terms built from a given
finite set F of function symbols and a denumerable set X of variables. symb(t)
is a partial function from T (F ,X ) to F , which associates to each term t its top-
symbol f ∈ F . The set of variables occurring in a term t is denoted by Var(t).
If Var(t) is empty, t is called a ground term and we note T (F) = T (F , ∅) the
set of ground terms. Given a set of terms T (F ,X ), a substitution σ is a function
from X to T (F), denoted σ = {x1 �→ t1, . . . , xk �→ tk} when its domain is
finite. Ran(σ) denotes its codomain. By abuse of notation, we mix up the term
a ∈ T (F) and the function symbol a ∈ F when the arity of a is 0.

In term rewriting, the concept of positions is used to denote a subterm in a
global term (i.e. the path from the root to this subterm). In this section, we
define the notion of path, which generalizes the notion of position by denoting a
path from a subterm to another one, and not only the path from the root to a
given subterm. Negative numbers designate bottom-up displacements



34 E. Balland and P.-E. Moreau

Definition 1 (Path). We denote P the set of words on Z \ {0}. We denote ε
the empty word, p1 � p2 the concatenation of two words p1 and p2 and |p| the
length of a word p. We denote P∗ the set P \ {ε}.

Example 1. ε, 1 � 3, and -2 � 1 � 3 are paths, elements of P .

The notion of path is oriented and corresponds to the route from a subterm to
another one. For example, considering the term f(a, b), the path -1 � 2 describes
how to reach the subterm b starting from a. The negative integer -1 denotes a
backward move from a to f , whereas 2 goes from f to b. The inverse of a path p
is denoted by p and can be calculated using the equations ε = ε and i � p = p � -i.
For example, -1 � 2 = -2 � 1.

Note that positions are a subset of paths (paths only composed of positive
integers). In the rest of the paper, they will be denoted by Greek letters ω, δ. The
empty word ε is also a position and is generally called the top-position because in
term-rewriting, positions are only interpreted from the root of the term. Given
two positions, we will denote by � the classical relation of prefixation between
two words (ω1 � ω2 if there exists a position p such that ω1 � p = ω2). The
subterm of t at position ω is denoted t|ω. The replacement at position ω of the
subterm t|ω by t′ is written t[t′]ω. The set of positions of t is denoted Pos(t).
Given two positions ωsrc and ωdest (for source and destination), note that the
path ωsrc �ωdest corresponds to a path connecting t|ωsrc

to t|ωdest
. We denote <P

the lexicographic order on positions. For example ε <P 1 and 1 � 2 <P 1 � 3.
If we want to use these paths to define term-graphs, it is necessary to con-

sider equivalence classes. Informally, two paths are equivalent if for every source
position, their target positions are equal. For example, paths 1 � 2 � -2 and 1 are
equivalent.

In the following we define the notion of canonical form as the smallest path
of this equivalence class. Moreover, when interpreting a negative integer as a
backward move from the i-th child to the father, we must ensure that if the
previous move in the word is positive, it leads to the same i-th child. For example,
the path 1 �-2 cannot be considered as valid because a move downward to its first
child is followed by a move backward from its second child. These observations
lead us to introduce the notion of well-formed paths, as well as a constant ⊥ for
representing ill-formed paths.

Definition 2 (Canonical path and path equivalence). The canonical form
of a path p ∈ P, denoted �p�, is obtained by maximal application of the rule
i � -i→ ε if i ∈ Z∗. Two paths p1 and p2 are said equivalent if �p1� = �p2�.

It is easy to show that the rule using to obtain canonical paths is confluent and
terminating.

Definition 3 (Well-formed path). We introduce a constant ⊥ for denoting
ill-formed paths. A path p ∈ P is well-formed if �p� �→∗

R ⊥ with R is defined by
the rule p � i � -j � p′ → ⊥ if i > 0, j > 0 and i �= j

Example 2. 1 � 2 � -2 and 2 � 3 � -3 � -2 � 1 are well-formed paths, but 1 � -2 is not.



Term-Graph Rewriting Via Explicit Paths 35

Note that positions can be seen as a subset of well-formed paths because they
correspond to paths only composed of positive integers. Note also that the inverse
preserves the well-formedness. On the other hand, the concatenation of two well-
formed paths does not always lead to a well-formed path: 1 is well-formed, -2 is
well-formed, but 1 � -2 is not.

From these definitions, we show how the notion of paths can be used to extend
an algebraic signature in order to represent referenced terms.

2.1 Referenced Terms

A referenced term is a term whose leaves may be a path, which denotes a refer-
ence to another subterm.

Definition 4 (Referenced terms). Given a set of symbols F and a set of
variables X such that F , X , P are disjoint, we denote by Tr(F ,X ) the set of
referenced terms T (F ∪ P ,X ), where the elements of P are symbols of arity 0.

Example 3. For F = {f, g, a}, a, g(-1), and g(f(a, -2 � 1)) are referenced terms,
elements of Tr(F). For any F and X , we have T (F ,X ) ⊂ Tr(F ,X ).

Definition 5 (Dereferencing). Given t ∈ Tr(F ,X ) and ω ∈ Pos(t):

deref(t, ω) =
{

�ω � symb(t|ω)� if symb(t|ω) ∈ P
ω otherwise.

We recall that symb(t) is a partial function from T (F ,X ) to F , which associates
to each term t its top-symbol f ∈ F . The operation deref(t, ω) returns the
position pointed by t|ω when symb(t|ω) ∈ P , and ω otherwise. For example,
deref(g(-1), 1) = ε, but deref(g(a), 1) = 1. Note that when ω � symb(t|ω) is
ill-formed, the result of deref(t, ω) is meaningless.

We now introduce a notion of valid referenced terms. The first condition en-
sures that the value returned by deref(t, ω) is a position of Pos(t), and thus
is a well-formed path. For example, deref(g(−2), 1) is not a valid term. The
second condition forbids pointers of pointers like in f(−1 � 2,−2 � 1). This last
requirement is introduced only for simplicity but is not mandatory in term-graph
simulation. Indeed, it could be interesting to consider such terms for modeling
imperative languages for example.

Definition 6 (Valid referenced terms). A term t ∈ Tr(F ,X ) is a valid
referenced term if ∀ω ∈ Pos(t) such that symb(t|ω) ∈ P we have:

– deref(t, ω) ∈ Pos(t),
– symb(t|deref(t,ω)) /∈ P∗.

We denote by Tvr(F ,X ) the set of valid referenced terms and Tvr(F) the set of
ground valid referenced terms.
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Empty paths (denoted ε) are allowed in valid referenced terms in order to deal
with degenerated cycles that can appear when applying a collapsing rule, e.g.
a rule of the form I(x) → x. In the term-graph rewriting formalism, a fresh
constant called black hole and denoted by • is generally introduced [2]. In our
context, it is not necessary since ε corresponds intuitively to this constant.

Example 4. The terms ε, g(-1), f(-1 � 2, a) and f(-1 � 2, ε) are valid, but g(3)
and f(-1 � 2, -2) are not. Terms corresponding to non-empty paths (1, -1 � 2,
etc.) are elements of Tr(F ,X ) but are not valid (i.e. /∈ Tvr(F ,X )). The term
t = f(-1 � 1 � -1, -2 � 3) is invalid because deref(t, 2) = �2 � -2 � 3� = 3 which is not
in Pos(t) = {ε, 1, 2}.

3 Term-Graph Rewriting

There exist different formalisations of term-graph rewriting, category-theory ori-
ented [14], equationally oriented [2,17] or implementation oriented [6]. The dif-
ference between terms and term-graphs is the notion of horizontal and vertical
sharing. In this section, we base our work on the equational framework intro-
duced in [2]. This well established framework allows the definition of possibly
cyclic term-graphs, using systems of recursion equations.

Definition 7 (System of recursion equations from [2]). Given a finite
set F of function symbols and a denumerable set X of variables, a system of
recursion equations is of the form {α1 | α1 = t1, . . . , αn = tn}, ∀i, j ∈ [1, n] αi ∈
X , αi �= αj, ti ∈ T (F ,X ) is of the form f(β1, . . . , βm), f ∈ F , ∀j ∈ [1,m] βj ∈
X . Moreover, ∀i ∈ [1, n] αi must be reachable from α1.

Given a system of recursion equations L, the root is denoted root(L) and corre-
sponds to the recursion variable α1. The set of equations is denoted set(L). A
variable α is said bound when it appears in the left-hand side of an equation. Oth-
erwise, α is free. Note that systems of recursion equations are considered modulo
renaming of the recursion variables. In Definition 7, the systems of recursion equa-
tions have been presented in flattened form (ti of the form f(β1, . . . , βm)) which
ensures the unicity of the representation of a term-graph (modulo renaming of
recursion variables). An example of term-graph is given in Figure 1.

α : f

β : g γ : f

root

Fig. 1. This cyclic term-graph corresponds to the system of recursion equations {α |
α = f(β, γ), β = g(α), γ = f(β, α)}. It contains horizontal sharing: α and γ share the
same subterm β; as well as vertical sharing: α is a subterm of both β and γ.
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Definition 8 (Equational term-graph rewriting [2]). Given a rewrite rule
composed of two systems of recursion equations L1 and L2 with the same root
(L1 and L2 are not necessarily in flattened form) and where the free variables
of L2 are included in the set of free variables of L1, a system of recursion equa-
tions L is rewritten into L′ by the rule L1 → L2 if there exists a variable sub-
stitution σ (Definition 4.1 of [2]) and a recursion equation α = t in L such
that set(σ(L1)) ⊆ set(L) and α = root(σ(L1)). root(L′) = root(L) and
set(L′) = set(L) \ {α = t} ∪ set(σ′(L2)) where σ′(L2) denotes σ(L2) in which
every bound variable (except the root) has been renamed using a fresh name. To
obtain from L′ a system as defined in Definition 7, equations corresponding to
unreachable bound recursion variables are removed and equations are flattened
(see [2] for more details). Degenerated cycles, i.e. equations of the form α = α
are replaced by α = •. In case of equations of type α = β, each occurrence of α
is substituted by β and the equation α = β is removed.

Example 5. Suppose we want to apply the rule {β1 | β1 = f(β2, β3)} → {β1 |
β1 = β2}, which corresponds to f(x, y) → x, on the following term-graph:

α1 : f

α2 : f α3 : f

α4 : a α5 : g

α6 : b

root

α1 : f

α2 : f α3 : f

α4 : a α5 : g

α6 : b

root

initial subject s final result s′

The initial term-graph is L = {α1 | α1 = f(α2, α3), α2 = f(α4, α5), α3 =
f(α6, α4), α4 = a, α5 = g(α6), α6 = b}. When applying the rule at position 1 (i.e.
on α2), we have σ = {β1 �→ α2, β2 �→ α4, β3 �→ α5} and α2 is the selected bound
variable. σ(L2) = {α2 = α4} (note that renaming with fresh variables is not
necessary in this case) and we get L′ = L \ {α2 = f(α4, α5)} ∪ σ(L2) as final re-
sult. This corresponds to the system {α1 | α1 = f(α4, α3), α3 = f(α6, α4), α4 =
a, α6 = b} after cleanup.

3.1 Referenced Term Equivalence

In order to simulate term-graphs with referenced terms, we need to establish
equivalence classes between valid referenced terms. For example, f(-1 � 2, a) and
f(a, -2 �1) should be equivalent. They both correspond to the term-graph rooted
by f whose two children correspond to the shared subterm a. To define the equiv-
alence, we introduce three intermediate functions that characterize relocation,
expansion and sharing.

The first one, called subterm relocation, is essential in the following. Given a
term t and two positions ω1, ω2, as illustrated in Figure 2, the relocation in t
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from ω1 to ω2, denoted t[ω1�ω2], returns the subterm t|ω1 where the references
contained in t|ω1 that point outside t|ω1 have been updated as if t|ω1 was moved
to the position ω2.

Definition 9 (Subterm relocation). Given t ∈ Tvr(F ,X ) and two posi-
tions ω1, ω2, we consider the subterm relocation t[ω1�ω2] defined such that
Pos(t[ω1�ω2]) = Pos(t|ω1) and ∀δ ∈ Pos(t|ω1):

symb(t[ω1�ω2]|δ) =

⎧⎨
⎩

�ω2 � δ � deref(t, ω1 � δ)� if symb(t|ω1�δ) ∈ P∗

and ω1 �� deref(t, ω1 � δ)
symb(t|ω1�δ) otherwise.

t

t[ω1�ω2]

ω1

ω2

ω
δ

δ

d = deref(t, ω)

Fig. 2. Given t and ω1, let us suppose that at position ω the subterm t|ω contains
a reference to the subterm d (i.e. d = deref(t, ω)). The relocation from ω1 to ω2

corresponds to an update of t|ω1 as if it was moved to ω2. To maintain the pointers to
the referenced terms, the paths stored in t|ω1 are updated. The result of this operation
is the updated subterm t|ω1 . For example, f(g(-1 � -1), a)[1�2] = g(-1 � -2).

The operation expansion noted exp consists in replacing all the sharing by du-
plication. Given a set of function symbols F , exp is a function from Tvr(F) to
T ∞(F ∪{ε}) where T ∞(F ∪{ε}) is the set of infinite terms over F ∪{ε} defined
as partial functions from the infinite set of positions to F ∪ {ε}. We denote ⊥
the undefined term represented by the empty function ∅ → F ∪ {ε}. See [8] for
more details.

Definition 10 (Expansion). Given t ∈ Tvr(F), we consider the chain {ti}i∈N

of terms of T ∞(F ∪ P) defined as follows:

– t0 = t
– tn+1 = tn[tn[deref(tn,ω)�ω]]ω

where ω is the smallest position of Pos(tn) such that symb(tn|ω) ∈ P∗

for the order defined as ω < ω′ if |ω| < |ω′| ∨ (|ω| = |ω′| ∧ ω <P ω′).

exp(t) ∈ T ∞(F) is defined as
⋃∞

i=0 t
′
i where t′i corresponds to ti where every path

p ∈ P∗ has been replaced by ⊥.

Proposition 1. Given t ∈ Tvr(F), exp(t) is a total function (i.e. total w.r.t. to
the arities, not totally defined over of the set of all positions. See [8] for details.
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Proof. By definition of the chain {ti}i∈N, exp(t) is a function. Moreover, as every
path is replaced by a subterm, exp(t) does not contain ⊥ and the symbol arities
are respected. � 

Example 6. The function exp replaces in a valid referenced term every reference
by the corresponding expanded subterm. exp(f(-1 � 2, a)) = exp(f(a, -2 � 1)) =
f(a, a) and exp(g(-1)) = g(g(g(. . .))). Note that in case of a cycle, the expanded
term corresponds to an infinite term. A non-trivial example is f(g(-1 �-1 �2), h(-1 �
-2 � 1)). In this case, we need to update paths at every application of the rule.
As the shared subterms are dependent, the result is infinite. We finally obtain
f(g(h(g(h(. . .)))), h(g(h(g(. . .))))).

Thus two equivalent referenced terms have the same expansion. However, this
condition is necessary but not sufficient because the two terms to compare must
also have a similar sharing. For example, f(a, a) is not equivalent to f(a, -2 � 1)
because a is not explicitly shared in the first one. For this, we introduce a third
relation called sharing which computes the set of shared positions.

Definition 11 (Sharing). Given t ∈ Tvr(F), we consider:

– share0(t) = {{ω, deref(t, ω)} | ω ∈ Pos(t) and symb(t|ω) ∈ P∗}
– sharen+1(t) = {{ω′ � q, q′} | {ω, ω′}, {ω � q, q′} ∈ sharen(t)}

The function share(t) is defined as
∞⋃

n=0

sharen(t).

Example 7. The function share computes the set of unordered pairs of positions.
For example, share(f(-1 � 2, a)) = {{1, 2}} and share(g(-1)) = {{1, ε}}. A non-
trivial example is f(g(-1 � -1 � 2), h(-1 � -2 � 1)). At the first step, share0(t) =
{{1, 2 � 1}, {2, 1 � 1}}. In this case, it is necessary to close the relation of sharing
with prefixes. We finally obtain the infinite set of related positions share(t) =
{{1, 2 �1}, {2, 1 �1}, . . . , {1 �(1 �1)∗, 2 �1 �(1 �1)∗}, {2 �(1 �1)∗, 1 �1 �(1 �1)∗}} (∗ denotes
the sublist repetition). This infinite result is due to the inter-dependency of the
two references.

Definition 12 (Equivalence). Two valid referenced terms t1, t2 are equivalent
(denoted by t1 ∼ t2) if share(t1) = share(t2) and exp(t1) = exp(t2).

3.2 Canonical Referenced Terms

For every equivalence class, we define a canonical form using <P , the lexico-
graphic order on positions.

Definition 13 (Canonical referenced terms). A valid referenced term t ∈
Tvr(F ,X ) is canonical if for every position ω ∈ Pos(t) such that symb(t|ω) ∈ P∗,
symb(t|ω) is a canonical path and deref(t, ω) <P ω.
We denote by Tg(F ,X ) the set of canonical referenced terms and Tg(F) the set
of ground canonical referenced terms.
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Example 8. The term f(a, -2 � 1) is canonical but f(-1 � 2, a) is not because
deref(f(-1 � 2, a), 1) = 2 (the position of the pointed subterm a) is not smaller
than 1.

To define the normalization function that returns the canonical form of any valid
referenced term, we introduce a swapping function that permutes two subterms
and updates all the paths contained in the global term in order to preserve
the sharing. First, we translate the two subterms. This relocation updates the
pointers from the subterms to the external context. To obtain a valid referenced
term, we still have to update every pointer from the outside to the subterms.

Definition 14 (Swapping). Given t ∈ Tvr(F ,X ) and two disjoint positions
ω1, ω2 (ω1 �� ω2 and ω2 �� ω1), we consider u = t[ω1�ω2], v = t[ω2�ω1], t′ =
t[v]ω1 [u]ω2 . The swapping in t of the subterms at position ω1 and ω2 is denoted
by t[ω1�ω2], and is defined such that ∀ω ∈ Pos(t′), we have:

symb(t[ω1�ω2]|ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�ω � ω2 � δ� if symb(t′|ω) ∈ P∗, ω �� ω1

and ∃δ s.t. deref(t′, ω) = ω1 � δ
�ω � ω1 � δ� if symb(t′|ω) ∈ P∗, ω �� ω2

and ∃δ s.t. deref(t′, ω) = ω2 � δ
symb(t′|ω) otherwise.

Example 9. f(a, b)[1�2] = f(b, a), f(g(-1 � -1 � 2), h(-1 � -2 � 1))[1�2] = f(h(-1 �
-1 � 2), g(-1 � -2 � 1)). A more complex example is the swap of a and b in t =
f(f(a, b), -2 � 1 � 2). In this case, the reference -2 � 1 � 2 has to be updated because
it has to reference b. Thus, the result is f(f(b, a), -2 � 1 � 1).

The swapping function preserves the notion of validity (Definition 6). Its com-
plexity is linear on the size of the term since in the worst case, all the references
in the term must be updated. In the following, we introduce a normalization
function that associates to every valid referenced term its canonical form.

Definition 15 (Normalization). We define � � : Tvr(F ,X ) → Tg(F ,X ) such
that given t ∈ Tvr(F ,X ), �t� is the normal form of t′ (t where every path is in
canonical form) with respect to the conditional rule: t′ → t′[ω�deref(t′,ω)] if ω <P
deref(t′, ω). The proof of this rule convergence can be found in [5].

Example 10. �a� = a, �f(-1�2, a)� = f(a, -2�1), and �f(g(-1�-1�2), h(-1�-2�1))� =
f(g(h(-1 � -1)), -2 � 1 � 1)

Note that the normalization is linear in the size of the term when the swapping
is applied in a leftmost-innermost way.

Proposition 2. ∀t ∈ Tvr(F ,X ), we have t ∼ �t�.

Proof. Given t ∈ Tvr(F ,X ), t′ is trivially equivalent to t and every rewriting
step of normalization preserves the two functions share(t) and exp(t). In fact,
the swapping between a pointer and its corresponding pointed subterm preserves
the sharing and as only references are updated, the expansion is the same. � 
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Proposition 3. ∀t1, t2 ∈ Tvr(F ,X ), we have: �t1� ∼ �t2� ⇔ �t1� = �t2�.

Proof. First, the proof that �t1� = �t2� ⇒ �t1� ∼ �t2� is trivial because as ∼ is an
equivalence relation and thus is reflexive. Secondly, we prove that �t1� ∼ �t2� ⇒
�t1� = �t2�. Suppose they are not equal, it means that there exists a shared
subterm at a position ω referenced at a position ω′ in �t1� and the contrary
in �t2�. As �t1�, �t2� are canonical, it implies that ω <P ω′ and ω′ <P ω which is
impossible due to the total order on positions. So �t1� = �t2�. � 

Theorem 1. ∀t1, t2 ∈ Tvr(F ,X ), we have: t1 ∼ t2 ⇔ �t1� = �t2�

Proof. Direct consequence of the propositions 2 and 3. � 

In practice, to verify that two terms are equivalent we compare their canonical
forms. It is simpler and more realistic than computing exp(t) and share(t),
which can be infinite.

3.3 Term-Graph Rewriting Using Canonical Referenced Terms

We introduce an original algorithm for implementing term-graph rewriting using
canonical referenced terms. By manipulating only canonical referenced terms, we
obtain a mapping one-to-one with term-graphs which makes easier the encoding
of matching and rewriting. In Figure 3 we present a set of rules (Tg-Matching),
which is a specialization of the syntactic pattern matching algorithm presented
in [16].

Decompose E ∧ f(p1, . . . , pn)�s,ω
δ f(t1, . . . , tn) ‖ Δ �→�→ E ∧

n̂

i=1

pi �s,ω�i
δ�i ti ‖ Δ ∪ {(δ, ω)}

Variable E ∧ x�s,ω
δ t ‖ Δ �→�→ E ‖ Δ ∪ {(δ, ω)}

Stability E ∧ π �s,ω
δ f(t1, . . . , tn) ‖ Δ �→�→ E ‖ Δ ∪ {(δ, ω)}

if (�δ � symb(π)�, ω) ∈ Δ

Dereferencing E ∧ p�s,ω
δ π ‖ Δ �→�→ E ∧ p�s,ω′

δ s|ω′ ‖ Δ ∪ {(δ, ω)}
where ω′ = �ω � symb(π)�

Fig. 3. We consider the set of rules Tg-Matching where E is a conjunction of con-
straints, Δ is a set of pairs, x is a variable (∈ X ), f is a symbol, element of ∈ F∪{ε}, (re-
member that ε corresponds to •), s, t, t1, . . . , tn are ground referenced term (∈ Tg(F)),
π is a non-empty path (symb(π) ∈ P∗), p is a pattern not reduced to a variable
(∈ Tg(F ,X ) \ X ), pi are patterns (∈ Tg(F ,X )), ∧ is the classical boolean connec-
tor, which is associative and commutative. Starting from a constraint l �s,ω

ε s|ω ‖ ∅,
the reduction leads either to 
 (the neutral element of ∧) or a conjunction of matching
constraints of the form p�s,ω

δ t, where δ and ω correspond to the positions of p and t
with respect to l and s (i.e. p = l|δ and t = s|ω). The context Δ corresponds to the set
of positions already visited. This set is necessary to correctly handle the case of cyclic
terms.



42 E. Balland and P.-E. Moreau

Definition 16 (Rule application). Given s ∈ Tg(F) and l, r ∈ Tg(F ,X ), the
rule l → r can be applied to subject s at position ω if l $s,ω

ε s|ω ‖ ∅ reduces
to % ‖ Δ by application of Tg-Matching.

Note that the algorithm given Figure 3 does not compute a substitution. More-
over, contrary to syntactic term matching algorithms, there is no rule for han-
dling variables that have multiple occurrences. The notion of non-linearity in
term rewriting should not be confused with the notion of non-linearity in term-
graph rewriting. The latter one corresponds to subterms sharing. For example,
{α | α = f(β, β)} denotes a term-graph where the two subterms of f are shared.
This does not match {α | α = f(β, γ), β = a, γ = a}. In our formalism, linear
term-rewriting is sufficient to simulate non-linear term-graph rewriting. For ex-
ample, the system of recursion equations {α | α = f(β, β)} can be encoded by
f(x,−2 � 1), where x appears only once.

Proposition 4. Given a subject s ∈ Tg(F), a pattern l ∈ Tg(F ,X ), a position
ω ∈ Pos(s), the reduction of l $s,ω

ε s|ω ‖ ∅ by Tg-Matching is convergent.

Proof. First, we prove the termination. We consider the lexicographic combina-
tion of prefix ordering on positions (�) and <P . This strict order is well-founded
because Pos(l)×Pos(s) is finite. Its multiset extension to

⊎
(p�s,ω

δ t)∈E(δ, ω) de-
creases at each application of Tg-Matching rules.

Secondly, proving the local confluence is trivial because there is no interference
between the rules. When two rules r1 and r2 can be applied on a subject t, we
obtain the same result t′ when applying r1 followed by r2 or r2 followed by r1.
As Tg-Matching terminates, local confluence implies convergence. � 

Definition 17 (Rewriting algorithm). Given t ∈ Tg(F) and l, r ∈ Tg(F ,X ):

– l and r are both linear.
– we denote by ωxl the position of the variable x in l.
– t is rewritten into t′ by the rule l → r if:

1. there exists a position ω such that the rule can be applied to t (following
the Definition 16),

2. t′ = �〈ṫ, ṙ〉[1�ω�2]�|1, where
〈 , 〉 is a fresh binary symbol,
ṫ corresponds to t where every path towards the position 1 �ω has been
replaced by a path towards the position 2,
ṙ is the ground term corresponding to r in which the occurrence of a
variable x (whose position is denoted by ωxr) is replaced by the path
�ωxr � -2 � deref(〈ṫ, r〉, 1 � ω � ωxl)�.

In this algorithm, no substitution is explicitly computed. Instead, the right-
hand side of the rule is instantiated by replacing every variable by paths to their
corresponding subterm in t|ω. The binary symbol 〈 , 〉 enables to connect it with
the global subject in a valid referenced term 〈ṫ, ṙ〉. By swapping the redex and
the right-hand side of the rule in 〈ṫ, ṙ〉[1�ω�2], the substitution is automatically
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applied. The main subtlety of the algorithm is to rebalance the whole term using
normalization. All the shared subterms in t|ω that must be conserved are moved
to the term and the unused part is left in the right part of 〈ṫ, ṙ〉[1�ω�2]. At
the end, the result of the rewrite step corresponds exactly to the left child of
�〈ṫ, ṙ〉[1�ω�2]�.

The complexity of the rewriting step is linear in the size of the global subject
because the complexity of the swapping and the normalization are linear.

Example 11. Suppose we want to apply the rule f(x, y) → f(y, x) on the subject
t = f(a, b). The rule is applied at top-position, therefore we have ωxl = 1,
ωyl = 2, ωxr = 2, ωyr = 1, ṫ = f(a, b) and ṙ = f(�ωyr � -2 � (1 � ε � ωyl)�, �ωxr �
-2 � (1 � ε � ωxl)�) = f(-1 � -2 � 1 � 2, -2 � -2 � 1 � 1). Starting from 〈f(a, b), ṙ〉, we get
〈f(a, b), ṙ〉[1�2] = 〈f(-1 � -1 � 2 � 2, -2 � -1 � 2 � 1), f(a, b)〉. When computing the
canonical form, we obtain �〈f(a, b), ṙ〉[1�2]� = 〈f(b, a), f(-1 � -2 �1 �1, -2 � -2 �1 �2)〉.
Finally, the result is �〈f(a, b), ṙ〉[1�2]�|1 = f(b, a) as expected.

The following example illustrates how collapsing rules are handled. Suppose
we want to apply the rule f(x) → x to the subject t = f(-1). Since -1 is a
path to the top of the redex, we have ṫ = f(-1 � -1 � 2). In a second step ṙ is
evaluated to ṙ = �-2 � deref(〈f(-1 � -1 � 2), x〉, 1 � 1)� = �-2 � 2� = ε and we get
〈f(-1 � -1 � 2), ε〉[1�2] = 〈ε, f(-1 � -2 � 1)〉 which is already normalized. The result
of the rewrite step is 〈ε, f(-1 � -2 � 1)〉|1 = ε in accordance with [2].

By applying the rule f(x, y) → x to the first subterm, this last example shows
what happens to pointers to subterms that disappear:

f2

a

b

g

f1

f3

〈 , 〉

f2

a

b

g

f1

f3

f2

a

b

g

f1

f3

〈 , 〉

f2

g

〈 , 〉

a

b

f3

f1

a

b

f3

f1

Initial subject 〈ṫ, ṙ〉 building Swapping Normalizing Result

In this example, the subterm g(b) is not preserved by the rule, therefore the
reference to b is replaced by a copy of the subterm.

Theorem 2. The set of ground canonical terms Tg(F) is closed under rewriting.

The proof of the Theorem 2 can be found in [5]. As the main result of the paper
we show in the next section that every term-graph can be represented by a
canonical referenced term and that term-graph rewriting (Definition 8) can be
simulated by the algorithm introduced in Definition 17.

3.4 Simulation of Term-Graph Rewriting

We introduce a function φ that translates any valid referenced term in Tvr(F ,X )
into a system of recursion equations (under the same set F and X ). For this
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purpose, we associate to every term t ∈ Tvr(F ,X ) a total function ψt from
Pos(t) to X defined as follows:

ψt(ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x if symb(t|ω) ∈ F ∪ {ε}
where x is a fresh variable

t|ω if t|ω ∈ X
ψt(ω′) if t|ω ∈ P∗

where ω′ = deref(t, ω)

Definition 18. Given a valid referenced term t ∈ Tvr(F ,X ), we define its rep-
resentation in systems of recursion equations by φ(t) = {α | Δ} where α = ψt(ε)
is the root, and Δ is a set of equation defined by:

Δ = {β = f(β1, . . . , βn) | ω ∈ Pos(t), β = ψt(ω), βi = ψt(ω � i),
symb(t|ω) = f ∈ F , arity(f) = n}

∪ {γ = • | ω ∈ Pos(t), γ = ψt(ω), symb(t|ω) = ε}

φ can be naturally extended to rules: φ(l → r) = φ(l) → φ(r).

Note that the equational representations of two equivalent valid referenced terms
are equal modulo renaming. Moreover, the φ function is surjective so every sys-
tem of recursion equations has an unique representation in Tg(F ,X ).

Theorem 3 (Rewrite step simulation). Given a canonical referenced term
t ∈ Tg(F) and a rule R, we can show that t→R t′ ⇔ φ(t) →φ(R) φ(t′).

Theorem 3 shows how to simulate term-graph rewriting using term-rewriting and
provides a technique for easily extending rule-based languages with term-graphs
and more generally with a notion of pointers. The proof can be found in [5].

Acyclic term graphs are widely used to obtain efficient term rewriting im-
plementation [13]. On the contrary, our goal is not to improve the efficiency of
term-rewriting engines but to offer a support for graph structure manipulation.
The main objective of such extensions is to perform static analysis by rewriting
control flow graphs or data-structures with pointers.

3.5 Integration in the Tom Language

As canonical referenced terms are terms, it is possible to extend in a non-intrusive
way any rule-based language in order to support term-graph rewriting. The pre-
sented formalism is implemented in Tom

1. For now, it is possible to automati-
cally generate from a signature the extended version for referenced terms where
the normalization is integrated. As the Tom terms are implemented with maxi-
mal sharing, so are the term-graphs. This part of the implementation is presented
in [4]. All the operations on paths have been also implemented. Thus users can
define a system of term-graph rules and it is automatically compiled in a basic

1 Available at http://tom.loria.fr
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Tom strategy based on the rewriting algorithm (Definition 17). These term-
graph rewriting rules can then be integrated in a more complex strategy using
Tom strategy combinators. As a consequence, all Tom features are available for
term-graphs.

4 Related Work

The notion of term graph has been intensively studied in the literature, in par-
ticular in [6], where a restricted form of acyclic term-graph has been used to rep-
resent terms with sharing. There is also a rich literature on modeling functional
languages [7,1]. This approach leads to efficient implementations of functional
languages or term rewriting engines, as in Clean, Elan, or Maude.

We are in a dual situation: we already have a very efficient term rewriting en-
gine. This implementation is based on the notion of maximally shared terms, in-
ternally represented by acyclic graphs. Such a representation is purely functional
and does not allow any side effect. This constraint makes the implementation
of graphs and term-graphs difficult. The contribution of the paper is to provide
a solution to represent and transform graphs in a functional environment. In
addition to reuse efficient term structures, a main advantage of using a classical
underlying term representation is to make possible the reuse of the notion of
term rewriting strategy [15] which allows control over how rules are applied.

The extension to cyclic term-graph rewriting has been studied and in par-
ticular linked up with rational term rewriting [9]. Especially, a mapping from
cyclic term-graph rewriting to rational parallel term rewriting can be defined.
In this context, it is often difficult to deal with graph homomorphism. In this
work, we choose to simulate term-graph rewriting as defined in [2] and to fa-
vor practical aspects. In this formalism, the matching corresponds to functional
bisimulation. As a consequence, the pattern g(-1) cannot be matched with the
subject g(g(-1 � -1)) at the root position even if they both represent the same
infinite term g(g(g(. . .))).

Moreover, the set of valid referenced terms where references are not inter-
preted as sharing but as oriented pointers (Definition 6) is to our knowledge
a new approach that can be interesting to study and simulate object-oriented
languages [11,12]. For example, it could be used to model garbage collection
algorithms. In the context of term-graph rewriting, an original approach is the
formalism presented in [12] where the right-hand side of the rules consists in a
set of actions on the pointers. The work presented in this paper is a first step
towards an implementation of such a formalism.

5 Conclusion

We have generalized the notion of term positions with term paths that are closely
related to the notion of path in graphs and to the concept of de Bruijn in-
dices [10]. By extending a signature with paths we obtained a new kind of terms
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called referenced terms which can contain pointers. This representation of point-
ers can be useful to model the semantics of imperative programming languages
for instance. In the second part of the paper, we introduced canonical referenced
terms to represent term-graphs. As in the case of de Bruijn indices, the inter-
est of this representation is to avoid problems of alpha conversion, compared to
representations with labels or variables. Another advantage is that contrary to
a recursion equation, the hierarchical structure of the term-graph is explicit be-
cause of its term representation. The last contribution of the paper is an original
algorithm that simulates cyclic term-graph rewriting using canonical referenced
terms. Thanks to pointers, the substitution can be applied in an unusual way,
using swapping between the redex and the right-hand side of the rule.

To conclude, this formalism opens promising perspectives in terms of program
transformation and code analysis. To the best of our knowledge, the integration
in the Tom language constitutes actually one of the most active and maintained
implementation of term-graph rewriting and thus provides a solid platform to
experiment graph transformations in a concise and expressive way.
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Abstract. Term rewriting systems are now commonly used as a mod-
eling language for programs or systems. On those rewriting based mod-
els, reachability analysis, i.e. proving or disproving that a given term
is reachable from a set of input terms, provides an efficient verification
technique. For disproving reachability (i.e. proving non reachability of a
term) on non terminating and non confluent rewriting models, Knuth-
Bendix completion and other usual rewriting techniques do not apply.
Using the tree automaton completion technique, it has been shown that
the non reachability of a term t can be shown by computing an over-
approximation of the set of reachable terms and prove that t is not in
the over-approximation. However, when the term t is in the approxima-
tion, nothing can be said.

In this paper, we improve this approach as follows: given a term t,
we try to compute an over-approximation which does not contain t by
using an approximation refinement that we propose. If the approximation
refinement fails then t is a reachable term. This semi-algorithm has been
prototyped in the Timbuk tool. We present some experiments with this
prototype showing the interest of such an approach w.r.t. verification on
rewriting models.

1 Introduction

In the rewriting theory, the reachability problem is the following: given a term
rewriting system (TRS) R and two terms s and t, can we decide whether s→∗

R t
or not? This problem, which can easily be solved on strongly terminating TRSs
(by rewriting s into all its possible reduced forms and compare them to t), is
undecidable on non terminating TRSs. There exists several syntactic classes
of TRSs for which this problem becomes decidable: some are surveyed in [12],
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more recent ones are [16,20]. In general, the decision procedures for those classes
compute a finite tree automaton recognising the possibly infinite set of terms
reachable from a set E ⊆ T (F) of initial terms, by R, denoted by R∗(E). Then,
provided that s ∈ E, those procedures check whether t ∈ R∗(E) or not. On
the other hand, outside of those decidable classes, one can prove s �→∗

R t using
over-approximations of R∗(E) [17,12] and proving that t does not belong to this
approximation.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by TRSs. Some of
the most successful experiments, using proofs of s �→∗

R t, were done on cryp-
tographic protocols [19,13,4] where protocols and intruders are described using
a TRS R, E represents the set of initial configurations of the protocol and t a
possible flaw. Some other have been carried out on Java byte code programs [2]
and in this context, R encodes the byte code instructions and the evolution of
the Java Virtual Machine (JVM), E specifies the set of initial configurations of
the JVM and t a possible flaw.

Then reachability analysis can prove the absence of flaws (if ∀s ∈ E : s �→∗
R t).

In [12], the method we propose to improve, given a TRS R, a set of terms E and
an abstraction function γ, a sequence of sets of terms Appγ

0 , App
γ
1 , . . . , App

γ
k is

built such that Appγ
0 = E and R(Appγ

i ) ⊆ Appγ
i+1. The role of the abstraction γ

is to define equivalence classes of terms and to allot each term to an equivalence
class. The computation stops when on the one hand, the number of equivalence
classes introduced by the abstraction function is bounded, and on the other
hand, each equivalence class is R−closed, i.e. when there exists N ∈ N such
that R(Appγ

N ) = Appγ
N . Then, Appγ

N represents an over-approximation of terms
reachable by R from E. The abstraction function γ should be well designed in
such a way that on one hand Appγ

N exists, and on the other hand t �∈ Appγ
N .

However, the main drawback of this technique based on tree automata, is that
if t �∈ R∗(E) then it is not trivial (when it is possible) to compute a such fix-
point over-approximation Appγ

N . Indeed, a high-level expertise in this technique
is required for defining a pertinent abstraction function. At the same time, it is
easy to define simple abstraction functions leading to inconclusive analyses. So,
the question is : Is it possible to obtain conclusive analyses starting from simple
abstraction functions? This problem becomes crucial when approximations are
used to prove security and safety properties and when a large community of
users is targeted.

This paper addresses this question and proposes a solution that automatically
attempts to show that a term t is not a term of R∗(E). We proceed as follows.
For a simple abstraction function γ, we compute a sequence Appγ

1 , . . . , App
γ
k

such that: either Appγ
k is a fix-point automaton whose language is an over-

approximation of reachable terms and t /∈ Appγ
k , or Appγ

k recognises t. For
the former, everything is fine and we are done. For the latter, we first detect
in the sequence Appγ

1 , . . . , App
γ
k where the abstraction function has been too

coarse. Second, we automatically refine γ, i.e., we fix γ in order to remove t
from the over-approximation. The construction of the sequence restarts from the
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problematic set Appγ
i with the refined abstraction function and so on. Moreover,

if the algorithm fails for finding the reason concerning the abstraction function
which makes t be in Appγ

k then the term t is a term in R∗(E).
Note that this solution is a semi-algorithm and it has been prototyped in the

Timbuk tool [14]. For a lack of space, the proofs of this paper are available at
http://lifc.univ-fcomte.fr/~kouchna/Kouchnarenko-english.html.

Layout of the paper The paper is organised as follows. After giving prelim-
inary notions on tree-automata and TRSs, we introduce in Section 2 the com-
pletion technique we want to improve. Section 3 presents the main contributions
concerning the refinement of abstraction functions, the backward completion for
the computation of the ancestors of a set of terms by rewriting. A semi-algorithm
including those both processes is also given. Finally, before concluding, Section 4
reports on experimental results showing the feasibility and the interest of the
proposed approach.

2 Preliminaries

2.1 Terms and TRSs

Comprehensive surveys can be found in [11,1] for term rewriting systems, and
in [9,15] for tree automata and tree language theory.

Let F be a finite set of symbols, associated with an arity function ar : F → N,
and let X be a countable set of variables. T (F ,X ) denotes the set of terms, and
T (F) denotes the set of ground terms (terms without variables). The set of
variables of a term t is denoted by Var(t). A substitution is a function σ from X
into T (F ,X ), which can be extended uniquely to an endomorphism of T (F ,X ).
A position p for a term t is a word over N. The empty sequence ε denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by Pos(t) = {ε} if t ∈ X and by Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤
n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t
at position p and t[s]p denotes the term obtained by replacement of the subterm
t|p at position p by the term s. We also denote by t(p) the symbol occurring
in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t) ⊆ Pos(t)
the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}. Thus
PosF(t) is the set of functional positions of t. A TRS R is a set of rewrite rules
l → r, where l, r ∈ T (F ,X ) and l �∈ X . A rewrite rule l → r is left-linear (resp.
right-linear) if each variable of l (resp. r) occurs only once within l (resp. r).
A TRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R is
left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation →R on terms whose reflexive transitive
closure is written →�

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→�

R t}. Symmetrically, the set ofR-ancestors
of a set of ground terms E is R−1�(E) = {s ∈ T (F) | ∃t ∈ E s.t. s→�

R t}.
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2.2 Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [15]. However, it is possible
to over-approximate it [12] using tree automata, i.e. a finite representation of
infinite (regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, of arity 0, called states such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalised transition). A transition is a
rewrite rule c → q, where c ∈ T (F ∪Q) is a configuration and q ∈ Q. A
normalised transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F ,
ar(f) = n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = 〈F ,Q,Qf , Δ〉, Qf ⊆ Q and Δ is a finite set of normalised
transitions.

The rewriting relation on T (F ∪Q) induced by the transition set Δ of A is
denoted →Δ. When Δ is clear from the context, →Δ is also written →A.

Definition 3 (Recognised language). The tree language recognised by A in
a state q is L(A, q) = {t ∈ T (F) | t →�

A q}. The language recognised by A is
L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it is recognised
by a tree automaton.

Let us now recall how tree automata and TRSs can be used for term reach-
ability analysis. Given a tree automaton A and a TRS R, the tree automata
completion algorithm proposed in [12] computes a tree automaton Ak

R such that
L(Ak

R) = R∗(L(A)) when it is possible (for the classes of TRSs where an exact
computation is possible, see [12]), and such that L(Ak

R) ⊇ R∗(L(A)) otherwise.
The tree automata completion works as follows. FromA = A0

R the completion
builds a sequenceA0

R,A1
R . . .Ak

R of automata such that if s ∈ L(Ai
R) and s→R t

then t ∈ L(Ai+1
R ). If there is a fix-point automaton Ak

R such that R∗(L(Ak
R)) =

L(Ak
R), then L(Ak

R) = R∗(L(A0
R)) (or L(Ak

R) ⊇ R∗(L(A)) if R is in no class
of [12]). To build Ai+1

R from Ai
R, a completion step is achieved. It consists of

finding critical pairs between →R and →Ai
R

. To define the notion of critical pair,
the substitution definition is extended to terms in T (F ∪Q). For a substitution
σ : X �→ Q and a rule l → r ∈ R such that Var(r) ⊆ Var(l), if there exists
q ∈ Q satisfying lσ →∗

Ai
R
q then lσ →∗

Ai
R
q and lσ →R rσ is a critical pair. Note

that since R and Ai
R are finite, there is only a finite number of critical pairs.

Thus, for every critical pair detected between R and Ai
R such that rσ �→∗

Ai
R

q,

the tree automaton Ai+1
R is constructed by adding a new transition rσ → q to

Ai
R. Consequently, Ai+1

R recognises rσ in q, i.e. rσ →Ai+1
R

q.

∗

lσ

Ai
R

R
rσ

q

∗

A
i+1

R
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However, the transition rσ → q is not necessarily normalised. Then, we use
abstraction functions whose goal is to define a set of normalised transitions
Norm such that rσ →∗

Norm q. Thus, instead of adding the transition rσ → q
which is not normalised, the set of transitions Norm is added to Δ, i.e., the
transition set of the current automaton Ai

R. Notice that the completion process
introduces new states. We give below a very general definition of abstraction
functions which allot a state in Q to each functional position of rσ. The role of
an abstraction function is to define equivalence classes of terms where one class
corresponds to one state in Q.

Definition 4 (Abstraction Function). An abstraction function γ is a func-
tion γ : ((R× (X → Q)×Q) �→ N∗) �→ Q such that γ(l → r, σ, q)(ε) = q.

Thus, given an abstraction function γ, the normalisation of a transition rσ → q
is defined as follows.

Definition 5 (γ−normalisation). Let γ be an abstraction function, Δ be a
transition set, l → r ∈ R with Var(r) ⊆ Var(l) and σ : X → Q such that lσ →∗

Δ

q. The γ−normalisation of the transition rσ → q, written Normγ(l → r, σ, q),
is defined by:

Normγ(l → r, σ, q) = {r(p)(βp.1, . . . , βp.n) → β |
p ∈ PosF(r),
β = γ(l → r, σ, q)(p)

βp.i =
{
σ(r(p.i)) if r(p.i) ∈ X
γ(l → r, σ, q)(p.i) otherwise.

Example 1 (Normalisation of a transition using an abstraction function).
Let A = 〈F ,Q,Qf , Δ〉 be the tree automaton such that F = {a, b, c, d, e, f, ω}
with ar(s) = 1 with s ∈ {a, b, c, d, e, f} and ar(ω) = 0, Q = {qb, qf , qω}, Qf =
{qf} and Δ = {ω → qω, b(qω) → qb, a(qb) → qf}. Thus, L(A) = {a(b(ω))}. Given
the TRSR = {a(x) → c(d(x)), b(x) → e(f(x))}, two critical pairs are computed:
a(qb) →∗

A qf , a(qb) →R c(d(qb)) and b(qω) →∗
A b(qω) →R e(f(qω)). Let γ be

the abstraction function such that γ(a(x) → c(d(x)), {x → qb}, qf)(ε) = qf ,
γ(a(x) → c(d(x)), {x → qb}, qf)(1) = qf , γ(b(x) → e(f(x)), {x → qω}, qb)(ε) =
qb and γ(b(x) → e(f(x)), {x→ qω}, qb)(1) = qb.

So, Normγ(a(x) → c(d(x)), {x → qb}, qf ) = {d(qb) → qf , c(qf ) → qf} and
Normγ(b(x) → e(f(x)), {x→ qω}, qb) = {f(qω) → qb, e(qb) → qb}.

Now we formally define what a completion step is.

Definition 6 (One Completion Step). Let A = 〈F ,Q,Qf , Δ〉 be a tree au-
tomaton, γ an abstraction function and R a left-linear TRS. We define a tree
automaton CR

γ (A) = 〈F ,Q′,Q′
f , Δ

′〉 with Q′ = {q | c→ q ∈ Δ′} (and Q ⊆ Q′),
Q′

f = Qf and Δ′ = Δ ∪
⋃

l→r∈R, σ:X �→Q, lσ→∗
Aq,rσ →∗

Aq Normγ(l → r, σ, q).

Example 2. Given A, R and γ of Example 1, performing one completion step
on A gives the automaton CR

γ (A) such that CR
γ (A) = 〈F ,Q,Qf , Δ

′〉 where
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Δ′ = Δ∪Normγ(a(x) → c(d(x)), {x→ qb}, qf)∪Normγ(b(x) → e(f(x)), {x→
qω}, qb) = {ω → qω, b(qω) → qb, a(qb) → qf , d(qb) → qf , c(qf ) → qf , f(qω) →
qb, e(qb) → qb}. Notice that CR

γ (A) is R-close, and in fact an over-approximation
ofR∗(L(A)) is computed. Indeed, the tree automaton CR

γ (A) recognises the term
a(e(e(f(ω)))) when R∗(L(A))={a(b(ω)), a(e(f(ω))), c(d(b(ω))), c(d(e(f(ω))))}.

Proposition 1 (Adaptation of [12, Theorem 1]). Let A be a tree automaton
and R be a TRS such that A is deterministic or R is left-linear, and for every
l → r ∈ R, Var(r) ⊆ Var(l). One has L(A) ∪ R(L(A)) ⊆ CR

γ (A), for any
abstraction function γ.

However, abstraction functions can be defined in such a way that only actu-
ally reachable terms are computed. We call this class of abstraction functions
(A,R)−exact abstraction functions.

Definition 7 ((A,R)−exact abstraction function). Let A = 〈F ,Q,Qf , Δ)
be a tree automaton and R be a TRS. Let Im(γ) = {q′ | ∃l → r ∈ R, ∃p ∈
PosF(r), p �= ε, ∃σ : X → Q . γ(l → r, σ, q)(p) = q′}. An abstraction function
γ is (A,R)−exact if γ is injective and Im(γ) ∩ Q = ∅.

By adapting the proof of Theorem 2 in [12] to the new class of abstractions, we
show that with such abstraction functions, only reachable terms are computed.

Proposition 2 ([12, Theorem 2]). Let A be a tree automaton and R be a
left-linear TRS such that A is deterministic or R is also right-linear. Let α be
an (A,R)−exact abstraction function. One has: CR

α (A) ⊆ R∗(L(A)).

Example 3 (Exact automaton with (A,R)−exact abstraction functions).
Let A, R be the tree automaton and the TRS from Example 1. Let α be the
(A,R)−abstraction function such that Normα(a(x) → c(d(x)), {x → qb}, qf ) =
{c(q1) → qf , d(qb) → q1} and Normα(b(x) → e(f(x)), {x→ qω}, qb) = {e(q2) →
qb, f(qω) → q2}. Note that q1 and q2 are not states of A. Then, CR

α (A) is the tree
automaton 〈F ,Q ∪ {q1, q2},Qf , Δ

′〉 where Δ′ = {ω → qω, b(qω) → qb, a(qb) →
qf , d(qb) → q1, c(q1) → qf , f(qω) → q2, e(q2) → qb}.

Figure 1 gives a graphical representation of Example 3 and Example 2 using
word automata. Indeed, considering the symbol ω as the empty word, the term
a(b(ω)) can be read as the word ab. The state qf of A becomes the initial state of
the word automaton, and qω is its final state. Note that we do not consider the
empty word ω in our representation. So, CR

γ (A) from Example 2 is represented
by the word automaton without non dashed transitions implying q1 and q2.
It recognises, for example, the word aeef because of the abstraction. Using
(A,R)−exact approximation function α gives CR

α (A), the word automaton in
Fig. 1 without dashed transitions.

We now give the general result in [12] saying that, if there exists a fix-point au-
tomaton, then its language contains all the terms actually reachable by rewriting,
at least.
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qf qb qω
a b
d

c
f

e

q1 q2

c d e f

Fig. 1. CR
γ (A) and CR

α (A) as simple
word automata

qf qb qω
a b
d

c

q5

e f

Fig. 2. Word automaton for CR
γDisc

Theorem 1 ([12, Theorem 1]). Let A and R be respectively a tree automa-
ton and a left-linear TRS. For any abstraction function, if there exists N ∈
N and N ≥ 0 such that (CR

γ )(N)(A) = (CR
γ )(N+1)(A), then R∗(L(A)) ⊆

L((CR
γ )(N)(A)).

3 Approximation Refinement

Let consider a tree automaton A, a TRS R and an abstraction function γ such
that there exists N ∈ N for which (CR

γ )(N)(A) = (CR
γ )(N+1)(A). Let Ap be a

tree automaton recognising a set of unwanted terms, i.e., we want that terms
to be unreachable. Let suppose that the intersection between the languages of
(CR

γ )(N)(A) and Ap is not empty; the method in [12] cannot conclude. In this
section we refine γ to show that: either a term recognised by Ap is actually
reachable by rewriting from a term in L(A), either all terms recognised by Ap are
actually unreachable. For the former, we present in Section 3.1 how to refine an
abstraction function when that function gives rise to the non-empty intersection.
For the latter, in Section 3.2, we describe the computation of the ancestors of
a set of terms by rewriting, using a completion on TRSs whose rewrite rules
are reversed. Then, in Section 3.3, the backward analysis is used for refining
abstraction functions when the assumptions in Section 3.1 are not satisfied.

3.1 Abstraction Refinement

In this section, A = 〈F ,Q,Qf , Δ〉 and AP are two tree automata, R is a TRS,
γ is an abstraction function and α is a (A,R)−exact abstraction function. The
tree automaton Ap recognises a set of forbidden terms. We assume that: (1)
L(CR

γ (A)) ∩ L(Ap) �= ∅, L(A) ∩ L(Ap) = ∅ and (2) L(CR
α (A)) ∩ L(Ap) = ∅. In

other words, these assumptions mean that the abstraction function is too coarse
since a term of L(Ap) is reachable using γ, while it is not with an exact com-
putation. So, it means that some transitions introduced by γ are problematic,
i.e., lead to the non-empty intersection. The following definition allows the re-
finement of a given abstraction function according to a given set of problematic
transitions.

Definition 8 (Refined abstraction function). Let lσ →R rσ, lσ →∗
A q be a

critical pair where q ∈ Q, l → r is a rewrite rule and σ a substitution from X
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into Q. Let Δ0 be a set of transitions. For any functional position p of r, the
refined abstraction function γΔ0 is built as follows:

γΔ0(l → r, σ, q)(p) def=
{
α(l → r, σ, q)(p) if Normγ(l → r, σ, q) ∩Δ0 �= ∅
γ(l → r, σ, q)(p) otherwise.

For the abstraction function γ (resp. α), we denote by Δγ (resp. Δα) the set of
transitions occurring in CR

γ (A) (resp.CR
α (A)) but not in A, and by Qγ (resp.

Qα) the set of states occurring in the transitions of Δγ (resp. Δα). The following
proposition claims that, given γ and A, we are able to refine γ in such a way
that no unwanted term is recognised by the tree automaton resulting from one
completion step on A when using R and the refined abstraction function.

Proposition 3 (Refined automaton existence). Considering assumptions
(1) and (2), there exists Disc ⊆ Δγ such that L(CR

γDisc
(A)) ∩ L(AP ) = ∅.

Example 4 (Refined Automaton). Let A, γ and α be respectively the tree au-
tomaton, the two abstraction functions defined in Example 3. In Sect. 2.2,
the word aeef is recognised by the word automaton representing CR

γ (A). Let
Disc ⊆ Δγ be a set of transitions such that Disc = {e(qb) → qb}. Indeed, this
transition gives rise to infinite terms of the form e∗(b(ω)) or e∗(f(ω)) (infinite
words of the form e∗b or e∗f). So, γDisc uses α and γ for normalising respectively
the transitions e(f(qω)) → qb and c(d(qb)) → qf . A word automaton representing
CR

γDisc
is given in Fig 2. Note that the word aeef is not recognised anymore.

For applying Proposition 3 in practice, it could be more efficient to fix only
problematic transitions instead of performing an exact completion step by taking
Disc = Δγ .

3.2 Backward Reachability Analysis by Completion

The backward analysis we expose in this section can be viewed as an exact
completion performed on an automaton A, using a TRS R whose rules have
been reversed and an (A,R)-exact abstraction function. Let Rt be a TRS built
from R in the following way: Rt = {r → l|l → r ∈ R}. So, for Rt, some rules
may not satisfy the conditions of Propositions 1 and 2, in particular that for each
l → r ∈ Rt, Var(r) ⊆ Var(l). This is why we extend the completion definition
in Section 2.2. Before, we establish the relation between Rt(E) and R−1(E) for
a given set of terms E ⊆ T (F).

Proposition 4. For every set of terms E ⊆ T (F), Rt(E) = R−1(E).

A consequence of this proposition is that (Rt)∗(E) = (R−1)∗(E). So, we can
now define the completion algorithm in order to analyse (R−1)∗(E). For a given
set of functional symbols F , we introduce a set of transitions T (q) reducing each
term of T (F) to the single state q. T (q) is built as follows: T (q) = {s→ q | s ∈
T (F), s = f(q1, . . . , qn), f ∈ F , ar(f) = n, n ≥ 0, and qi = q for i = 1 . . . n}.
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This set is useful for handling variables occurring in the right-hand side of a rule
but not in its left-hand side.

In the following definitions, a substitution is transformed according to a given
set of variables and a given state.

Definition 9. Let q be a state and Y ⊆ X . Given a substitution σ : X → Q and
x ∈ X ,

Chgq
Y (σ)(x) =

{
σ(x) if x ∈ Y
q otherwise.

In the remainder of this section we do not assume anymore that for each rule
l → r ∈ R, Var(r) ⊆ Var(l). Using Definition 9, Definition 10 extends the
completion algorithm for handling such TRSs.

Definition 10 (Backward Completion). Let A = 〈F ,Q,Qf , Δ〉 be a tree
automaton, γ an abstraction function and qall a state such that qall �∈ Q. Let
R be a left-linear TRS. We define a tree automaton KR

α (A) = 〈F ,Q′,Q′
f , Δ

′〉
where:

Δ′ =Δ∪
⋃

l→r∈R,lσ→∗
Aq,r(Chg

qall
Var(l)(σ)) →∗

Aq

(Normγ(l → r, Chgqall

Var(l)(σ), q))∪T (qall),

Q′ = {q | c→ q ∈ Δ′} and Q′
f = Qf .

Note that there is a particular processing for variables occurring in the right-
hand side of a rule which do not appear in its left-hand side. Indeed, each of
these variables is substituted by the special state qall because it is impossible
to determine terms substituting these variables. Actually, considering the set
T (qall) of transitions, qall is such that for each term t ∈ T (F), t →∗

T (qall)
qall.

So, for the rule f(x) → g(x, y), y is replaced by qall, i.e., f(x) → g(x, qall).
Roughly, we can say that a term of the form f(x) can be rewritten into g(x, t)
where t is any term of T (F).

Finally, using an (A,R)−exact abstraction function, we can perform a back-
ward analysis of the set of reachable terms thanks to the new backward comple-
tion given above.

Proposition 5 (Extension of Propositions 1 and 2). Let A be a tree
automaton, R be TRS and α be an abstraction function. Thus, one has:

1) if A is deterministic or R is left-linear: L(A) ∪R(L(A)) ⊆ L(KR
α (A));

2) if R is linear and α be an (A,R)−exact abstraction function: L(KR
α (A)) ⊆

R∗(L(A)).

3.3 Semi-algorithm

In Sect. 2.2, reachability analysis can be performed by computing either an
over-approximation of reachable terms with a fine tuned abstraction function
or an under-approximation using an (A,R)−exact abstraction function. The
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former may allow the proof of unreachability of terms and the latter may show
that terms are reachable. Nevertheless, using the completion algorithm of [12],
a choice must be done according to the kind of analysis we want to perform.

We propose in this section a new semi-algorithm which attempts to perform
both analyses automatically using abstraction refinement. More precisely, let A,
R, γ, α and Ap be respectively a tree automaton, a linear TRS, an abstraction
function, an (A,R)−exact abstraction function and a tree automaton recognising
a set of unwanted terms. A sequence of automaton A0, . . . ,Ak, where A0 = A, is
computed by completion until Ak where Ak is either a fix-point automaton such
that L(Ak)∩L(AP ) = ∅, or L(Ak)∩L(AP ) �= ∅. For the former, by Proposition
1 each term of L(AP ) is unreachable. For the latter, an exact completion step on
Ak−1 is performed using α (CR

α (Ak−1)). If L(CR
α (Ak−1))∩L(AP ) = ∅ then the

abstraction function γ has been too coarse at kth completion step. So, according
to Proposition 3, a new abstraction function γ′ is obtained by refining γ to ensure
that L(CR

γ′ (Ak−1)) ∩ L(AP ) = ∅. Otherwise, the backward analysis following
Proposition 5 is performed from AP in order to detect the completion step
which is guilty of this non-empty intersection. The completion step i is guilty if
L(Ai) ∩L((KR

α )(k−i)(AP )) �= ∅. As soon as the incriminated completion step is
detected, the abstraction function γ is refined and the completion restarts from
this completion step and using the new abstraction function, and so on. If no
completion step is guilty then R∗(L(A)) ∩ L(AP ) �= ∅.

In Algorithm 1 and for the remainder of this section, Ae denotes CR
α (A). Ai is

the ith element of the list aut list. Let aut list be a list of n elements [e1,. . . ,en],
aut list[i] denotes the sublist [e1,. . . ,ei] with i ≤ n. The function aut list::x adds
x at the end of the list aut list.

Algorithm 1 (Refinement semi-algorithm). Given R a linear TRS, A a
tree automaton, AP a tree automaton recognising a set of unwanted terms, γ an
abstraction function and α an (A,R)−exact abstraction function, CompRef (A,
R,AP , γ, α) is defined as follows:

Variables
Atemp

P := AP ;
aut list := [A;CR

γ (A)]; (* list of automata *)
i := 1 ; (* completion step number *)
result := true;
00 Begin
01 While (Ai �= Ai−1) and (result = true) do
02 If L(Ai) ∩ L(AP ) = ∅ then If the intersection is empty between
03 aut list := aut list:: CR

γ (Ai); L(Ai) and L(AP ) then a normal
04 i := i + 1; completion step is performed.
05 Else
06 status := L(CR

α (Ai−1)) ∩ L(AP ); While the intersection between L(Ae
i )

07 While (status �= ∅) and (i > 0) do and L(AP ) is not empty, and while
08 Atemp

P := KRt

α (Atemp
P ); i > 0, Definition 10 is used

09 i := i - 1; to compute a new automaton AP .
10 If i > 0 then
11 status := L(CR

α (Ai−1)) ∩ L(Atemp
P );
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12 EndIf
13 Done There are 2 cases to make while stop:
14 Atemp

P := AP ; - i = 0 (and L(Ae
i ) ∩ L(AP ) �= ∅).

15 If (i = 0) then In this case we can conclude that
16 result := false ; R∗(L(A0)) ∩ L(AP ) �= ∅;
17 Else - L(Ae

i ) ∩ L(AP ) = ∅ (and i ≥ 0).
18 Find Disc ⊆ Δi \Δi−1;
19 γ := γDisc In this case γ is refined and
20 aut list := aut list[i-1]::CR

γ (Ai); a completion step is performed.
21 EndIf
22 EndIf
23 Done
24 return result;
25 End

Theorems 2 shows that the semi-algorithm above is sound.

Theorem 2 (Soundness of Algorithm 1). If CompRef (A, R,AP , γ, α) =
true then R∗(L(A)) ∩ L(AP ) = ∅ else if CompRef (A, R,AP , γ, α) = false then
R∗(L(A)) ∩ L(AP ) �= ∅.

Proof. Algorithm 1 terminates when either a fix-point automaton is computed
or result = false. If result = false then line 16 has been executed. Moreover,
according to lines 7, 8, 9 and 11, R∗(L(A))∩L(AP ) �= ∅. Indeed, if i = 0 at line
9 then i has been equal to 1 either at line 6 (before entering in the while) or at
line 9 (at the previous iteration). Consequently, L(CR

α (A))∩L(Atemp
P ) �= ∅ since

i becomes 0 next, at line 9. Consequently, as Atemp
P represents (KRt

α )k(AP ),
according to Propositions 5 and 4, one deduces that R∗(L(A)) ∩ L(AP ) �= ∅.

If result = true and Ai is a fix-point automaton then line 15 has never been
executed. So, to break while at line 7, status needs to be ∅. So, there exist
n ∈ N and an abstraction function γ′ built from γ such that (CR

γ′ )(n)(A) =
(CR

γ′ )(n+1)(A). According to Proposition 1, L((CR
γ′ )(n)(A)) ⊇ R∗(L(A)). Conse-

quently, R∗(L(A)) ∩ L(AP ) = ∅.
The case when result = false and Ai is a fix-point automaton, reduces to the

first case handled in this proof.

Finally, Theorem 3 claims that our semi-algorithm is complete in the sense that
if an unwanted term is reachable then Algorithm 1 returns false.

Theorem 3 (Partial Completeness of Algorithm 1). If R∗(L(A))∩L(AP )
�= ∅ then CompRef (A, R,AP , γ, α) = false.

Proof. Suppose each time, at line 18 Disc is set such that Disc = Δi \ Δi−1.
Thus γ tends to behave as α. So, let γ be α. Since R∗(L(A)) ∩ L(AP ) �= ∅,
there exists n ∈ N and n > 0 such that L((CR

γ )(n)(A)) ∩ L(AP ) �= ∅ and
L((CR

γ )(n−1)(A)) ∩ L(AP ) = ∅. Consequently, in this setting, status at line 6 is
different from ∅ and i = n. Consequently, KRt

α (AP ) is computed. According to
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Propositions 2 and 5, one can deduce that L((CR
γ )(n−1)(A))∩L(KRt

α (AP )) �= ∅.
So, by a simple induction, one trivially obtains L((CR

γ )(0)(A))∩L((KRt

α )(n)(AP ))
�= ∅ that corresponds to the value stored in status at line 11 after n− 1 iteration
in the while at line 7. Since i = 1 and status�= ∅, a new iteration is performed.
Finally, i = 0 and status�= ∅. Thus, result is set to false, the while at line 1 is
broken and Alg. 1 returns false.

An advantage of our approach is that the abstraction function γ given as in-
put to CompRef does not require to be very pertinent. As explained at the very
beginning of this paper, it is very easy to generate abstraction functions leading
to inconclusive analyses. Our algorithm attempts to fix this kind of abstrac-
tion functions in order to perform an unreachability analysis. If the inconclusive
analysis is not of the abstraction function concern then our algorithm states
that some of the unwanted terms are actually reachable. This algorithm has
been prototyped in the Timbuk tool [14].

4 Experiments

Our abstraction refinement technique for completion has been applied for the
verification of a simple two processes counting system. The following TRS de-
scribes the behaviour of two processes each one equipped with an input list and
a FIFO. Each process receives a list of symbols ’+’ and ’−’ to count, as an input.
One of the processes, say P+, is counting the ’+’ symbols and the other one,
say P− is counting the ’−’ symbols. When P+ receives a ’+’, it counts it and
when it receives a ’−’, it adds the symbol to P−’s FIFO. The behaviour of P−
is symmetric. When a process’ input list and FIFO is empty then it stops and
gives the value of its counter.

Here is a possible rewrite specification of this system, given in the Timbuk
language, where S( , , , ) represents a configuration with a process P+, a pro-
cess P−, P+’s FIFO and P−’s FIFO. The term Proc( , ) represents a process
with an input list and a counter, add( , ) implements adding of an element
in a FIFO, and cons, nil, s, o are the usual constructors for lists and natural
numbers.
Ops

S:4 Proc:2 Stop:1 cons:2 nil:0 plus:0 minus:0 s:1 o:0 end:0 add:2
Vars x y z u c m n
TRS R1
add(x, nil) -> cons(x, nil)
add(x, cons(y, z)) -> cons(y, add(x, z))
S(Proc(cons(plus, y), c), z, m, n) -> S(Proc(y, s(c)), z, m, n)
S(Proc(cons(minus, y), c), u, m, n) -> S(Proc(y, c), u, m, add(minus, n))
S(x, Proc(cons(minus, y), c), m, n) -> S(x, Proc(y, s(c)), m, n)
S(x, Proc(cons(plus, y), c), m, n) -> S(x, Proc(y, c), add(plus, m), n)
S(Proc(x, c), z, cons(plus,m), n) -> S(Proc(x, s(c)), z, m, n)
S(x, Proc(z, c), m, cons(minus,n)) -> S(x, Proc(z, s(c)), m ,n)
S(Proc(nil, c), z, nil, n) -> S(Stop(c), z, nil, n)
S(x, Proc(nil, c), m, nil) -> S(x, Stop(c), m, nil)

The set of initial configurations of the system is described by the following
tree automaton, where each process has a counter initialised to 0 and has an
unbounded input list (with both ’+’ and ’−’) and with at least one symbol.
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Automaton A1
States q0 qinit qzero qnil qlist qsymb
Final States q0
Transitions
cons(qsymb, qnil) ->qlist cons(qsymb, qlist) -> qlist o -> qzero
Proc(qlist, qzero) -> qinit S(qinit, qinit, qnil, qnil) -> q0 nil -> qnil
plus -> qsymb minus -> qsymb

On this specification, we aim at proving that, for any input lists, there is no
possible deadlock. In this example, a deadlock is a configuration where a process
has stopped but there are still symbols to count in its FIFO. This property is
specified by a tree automaton Bad_state recognising a system for which one of
the two processes has stopped and whose FIFO is not empty.

Before computing an over-approximation of the reachable configurations of
the two processes and according to Def. 4, we give the simple abstraction func-
tion γ that satisfies the following property: Let σ1, σ2 be two substitutions from
X into Q such that σ1 �= σ2. Let l → r be a rule of the TRS R of the Tim-
buk specification. Then, for any state q and for each functional position p of
r, γ(l → r, σ1, q)(p) = γ(l → r, σ2, q)(p). With such an abstraction function,
the completion converges to a fix-point automaton A within 8 completion steps.
Unfortunately, the intersection between the tree automata A and Bad_state is
non-empty. No conclusion can be drawn since A is an over-approximation.

Using the abstraction refinement technique, the following scenario sets: Three
completion steps are performed and a non-empty intersection is found. So, the
backward analysis is run and finally reaches the initial tree automaton. In con-
clusion, there exists a deadlock for this system.

The problem found here can be fixed by adding an additional symbol: ’end’
which has to be added by process P+ to P− FIFO when P+ has reached the
end of its list, and symmetrically for P−. Then, a process can stop if and only
if it has reached the end of its list and if it has read the ’end’ symbol in its
FIFO. Then, the TRS of the previous specification is modified a little. For the
new specification, we use the same kind of abstraction function as in the first
experiment. Timbuk finds a fix-point automaton A′ within 9 completion steps.
Unfortunately, the intersection between the tree automata A′ and Bad_state
is non-empty anew. Using the abstraction refinement, Timbuk finds another fix-
point automaton A′′ whose language contains no term recognised by the tree au-
tomaton Bad_state. Consequently, we have managed to prove that the patched
system is actually deadlock free.

5 Conclusion

The paper describes a new approach for automatically generating abstraction-
based over-approximations guided by a set of unwanted terms. In the infi-
nite state system verification framework, our work can be considered as an
abstraction-based approach guided by a safety/security property which either
can conclude that a safety property is satisfied or can detect a violation of the
given property or may not terminate. The last point is not surprising since the
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reachability problem is undecidable on non terminating TRSs. Furthermore, in
[3], we show that in some cases, unreachable terms are in all computable over-
approximations. So, refinement may be unfruitful in the rewriting approximation
framework. However, our first experimental results are promising. Moreover, the
positive results obtained in the framework of security protocols and Java pro-
grams analysis, let us think that our refinement approach can work in practice
and then, can make the reachability analysis detailed in [12] available to a larger
community of users. More experimentations are needed to compare the tech-
nique in this paper and the abstraction technique in [5], and to determine our
interactive backward reachability analysis efficiency and pertinence on, e.g., Java
programs. In many system analyses, backward analysis provides better results
than forward analysis.

Related works. The notion of abstraction function presented in [12] is not
so far from the basic definition used in the framework of the abstraction-based
verification of infinite-state systems.

Abstraction refinement is already used to make the definition of a good ab-
straction function easier and, consequently, to make the system verification
easier. In [6], the CEGAR (Counterexample-Guided Abstraction Refinement)
paradigm has been summarised and a general algorithm consisting in refining
an abstraction function by analysing a spurious counterexample has been given.
Our work fits almost exactly with this framework.

In [8,7], the authors use abstraction refinement on Kripke structure and ACTL
specification. When an abstract counterexample is found, the corresponding con-
crete counterexample is computed. If it does not correspond to a path in the con-
crete model, it means that it is a spurious counterexample, and the abstraction
function is then refined to make the concrete model correspond to the given spec-
ification. The spurious counterexample analysis is done with a forward method.

In [18], an abstraction refinement method is used on transition systems for
verifying invariants with a technique combining model checking, abstraction and
deductive verification. Contrary to the three previous articles, the authors do not
consider liveness properties, and the spurious counterexample analysis is done
with a backward method. In [10], as part of predicate abstraction, predicates are
automatically discovered by analysing spurious counterexamples. The method
exposed in this paper is close to the above methods, but it works on different
data structures.

In the field of tree automata, [5] computes an over-approximation with the
help of an initial tree automata, tree transducers, and by merging states which
either recognise the same language for a given depth or satisfy a given predi-
cate. This merging is the origin of the over-approximation. A refinement can be
done either by increasing the depth or by extending the predicate with a spu-
rious counterexample. In our case, term rewriting systems are used instead of
transducers. Moreover, the states fusion is guided by a safety/security property
together with an abstraction function.



62 Y. Boichut et al.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Boichut, Y., Genet, T., Jensen, T., Le Roux, L.: Rewriting approximations for fast
prototyping of static analyzers. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533,
pp. 48–62. Springer, Heidelberg (2007)
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Abstract. We propose a reduction strategy for systems of rewrite rules
operating on term-graphs. These term-graphs are intended to encode
pointer-based data-structures that are commonly used in programming,
with cycles and sharing. We show that this reduction strategy is optimal
w.r.t. a given dependency schema, which intuitively encodes the “inter-
ferences” among the nodes in the term-graph. We provide a new way of
computing such dependency schemata.

1 Introduction

It is well-known that term-graph rewrite systems are non confluent in general,
even if we restrict ourselves to standard orthogonal systems. A system as simple
as f(x) → x, g(x) → x is non confluent when applied on a cyclic term-graph
α = f(g(α)) (two distinct normal forms exist: α = f(α) or α = g(α)). Things
get even worse if the rules are allowed to “physically” affect the term-graph by
relabeling some of its nodes or by redirecting some edges occurring in it, because
in this case two distinct functions may modify or access to the same nodes,
making the result obviously dependent on the evaluation ordering. Assume for
instance that we write a function insert that physically inserts an element at
the end of a list. We can call this function on the list α = [1, 2, 3] and on the
element length(α), where α points to the same (physical) list [1, 2, 3]. According
to the order in which the two functions length and insert are evaluated, we can
obtain either [1, 2, 3, 3] (if length is evaluated first, then the result inserted in the
list) or [1, 2, 3, 4] if we proceed in a “lazy” way, by inserting the element before
computing its value.

Obviously, functions of this kind, operating on pointer-based data-structures,
are ubiquous in programming, because they allow the programmer to avoid du-
plication of information, hence to reduce the amount of needed memory. For
instance, redirections are needed if one wants to define in-place algorithms for
reversing or sorting a list. Another well-known example is the Shorr-Waite al-
gorithm [11] which uses a link reversal technique to avoid the need for a stack
during the exploration of a graph.
� This work has been partly funded by the project ARROWS of the French Agence

Nationale de la Recherche.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 63–78, 2008.
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In [7] we proposed a solution to this problem (for constructor-based rewrite
rules). The idea is to fix a specific evaluation ordering, by assuming a given prior-
ity ordering (denoted by () among the nodes. Then the “strict” rewriting strat-
egy merely consists in reducing systematically the maximal node (according to
(). This strategy is deterministic (if the rewrite system is orthogonal) thus triv-
ially confluent. Of course it is not satisfactory since it may be inefficient (it can
be compared to purely imperative programs, or to a kind of “innermost” rewrit-
ing where the priority ordering replaces the subterm relation). It is only useful
as a way to define the semantics of the term-graph rewrite systems (namely
the expected normal forms), but should not be used in practice to compute the
values. Therefore we defined more flexible reduction strategies that are allowed
to reduce nodes that are non maximal w.r.t. ) but only under some particular
conditions which are strong enough to ensure that confluence is preserved.

In order to define these conditions, we introduced the notion of dependency
schema, which is a set of relations specifying, in some sense, which nodes interfere
with a given node in a term-graph (i.e., given a node α in a term-graph, which
nodes affect α and which nodes depend on α). We proved confluence of the
flexible strategy for a class of rewrite systems. A dependency schema needs not
to be provided by the user: we presented an algorithm to automatically compute
a dependency schema having the desired properties.

In the present paper we extend our results on two aspects. First, we introduce a
refined dependency schema, which is more powerful than the previous one, in the
sense that it provides a more precise approximation of the “ideal” interference
relation (which is non computable). Second, we propose a particular rewrite
strategy consisting in computing only the nodes that are – in some sense –
relevant for the considered term-graph. We show that this strategy is normalizing
(i.e. all the normal forms can be reached). Moreover, for a restricted class of
term-graph rewrite systems, this strategy is optimal, in the sense that it only
rewrites nodes that are really needed to obtain the normal form (i.e. they are
reduced in any derivation leading to the considered normal form). It should be
mentioned that optimality is defined here w.r.t. a particular dependency schema
(optimality in general is trivially impossible). The class of rules we consider is
not too restrictive because every inductively/strongly sequential rewrite system
(in the standard sense [9,10,8]) can be reduced to it.

Our work extends existing results for term rewrite systems [1] and graph
rewrite systems [4,5] for which optimal rewriting strategies are known since a
long time ago (for inductively/strongly sequential systems). We hope that it
provides a good theoretical basis for defining a programming language based on
term-graphs, that will offer similar features as rewrite-based languages such as
Haskell [12] (namely efficient, lazy reduction strategies) and in the same time will
be sufficiently expressive to allow the programmer to fully control the allocation
of memory when (and if) needed.

The rest of the paper is organized as follows. Section 2 defines the notion of
term-graphs and actions operating on them. Section 3 introduces the notion of
graph rewrite rules, dependency schemata, and defines rewriting relations based
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on them. We prove that the flexible rewriting relation is confluent for orthogonal
systems. The notions we use are slightly different (and much simpler than) from
the ones in [7], but the previous results are essentially the same1. Section 4
provides an example of a dependency schema, distinct from (and strictly more
powerful than) the one already proposed in [7]. Section 5 is the heart of the
paper: it contains the main new result, namely a reduction strategy which is
optimal for a particular class of rules (called elementary). Section 6 provides
simple examples of applications.

The reader can refer to [3] for additional references and comparisons with
existing works in the field.

2 Basic Definitions

2.1 Term-Graphs

We use the word “term-graph” to denote data-structures defined by a set of
nodes connected by labeled directed edges. Edges are assumed to be unique, i.e.
given a node α and a label a, there can be at most one edge starting from α and
labeled by a.

Formally, we assume given a set of nodes N , denoted by Greek letters, and a
set of features F , denoted by a, b, . . . Features may be seen as (partial) functions
from N to N , or as edge labels. F contains at least a special element l, which
will be used to denote the label (or head symbol) of the node α. We also assume
given a total ordering ) on N , called the priority ordering, and specifying the
order in which the nodes should be reduced (as explained in the Introduction).

Let P be a subset of N , called the set of predefined nodes. We use prede-
fined nodes mainly to encode function symbols: P contains a set of functions
Σ (denoted by f, g, h, . . .) divided into two disjoint sets of symbols: a set D of
defined symbols and a set C of constructors. Predefined nodes could also be used
to denote built-in values such as reals or integers.

Definition 1. A term-graph t is defined by a set of nodes N (t) ⊆ N \ P and
a function mapping each symbol a in F to a partial function at from N (t) to
N (t)∪P. If at(α) = β then we say that t contains an edge from α to β, labeled
by a, or that the feature a of α is β. We assume that lt(α) ∈ Σ if lt(α) is defined.

A rooted term-graph is a term-graph associated with a distinguished node α,
called the root of t and denoted by root(t).

For instance, a term f(a, x) (where x is a variable) is represented by a term-
graph t of root α s.t. N (t) = {α, β, δ}, lt(α) = f , lt(β) = a, 1t(α) = β, 2t(α) = δ.
The feature i where i ∈ N denotes the i-th argument of a function.
1 The differences are mainly due to the fact that in contrast to [7] we make no distinc-

tion between actions affecting the name of a node, and actions only redirecting its
edges. Consequently, the reduction strategies are less flexible, but on the other hand
this yields a much simpler and more intuitive framework. Moreover we also slightly
modify some of the definitions in order to properly handle non orthogonal rewrite
systems.
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We denote by dom(t) the set of nodes α s.t. at(α) is defined for at least one
feature a (the other nodes can be seen as variables).

Let t, s be two term-graphs. We write t ⊆ s iff t is included in s i.e. iff
N (t) ⊆ N (s) and at(α) = as(α), for every node α s.t. at(α) is defined.

2.2 N -Mappings

An N -mapping σ is a total function from N to N s.t. for every α ∈ P and for
every β ∈ N , σ(β) = α ⇔ α = β (predefined nodes are left unchanged and no
non predefined node can be mapped to a predefined node).

An N -mapping σ is said to be compatible with a term-graph t if for all α, β ∈
N (t) s.t. σ(α) = σ(β) and for all a ∈ F , if at(α) and at(β) are defined, then
σ(at(α)) = σ(at(β)).

In this case, σ(t) denotes the term-graph s defined as follows: N (s) def= {σ(α) |
α ∈ N (t)}, and as(σ(α)) def= σ(at(α)).

An N -mapping σ is said to be a renaming if it is injective and σ(α) * σ(β)
for any α * β. Note that by definition a renaming is compatible with any term-
graph t.

An N -relation � is a relation on the nodes of a term-graph which is inde-
pendent from the names of the nodes. Formally, it is a function mapping every
term-graph t to a relation �t on the nodes of t s.t. for every renaming η and for
every pair of nodes α, β occurring in t we have α �t β iff η(α) �η(t) η(β).

One of the simplest examples of an N -relation is the relation ≥t defined as the
smallest reflexive and transitive relation s.t. for all term-graphs t, for all a ∈ F
and for all α ∈ dom(at), we have α ≥t at(α) (α ≥t β iff there is a path from α
to β in t).

2.3 Actions

The definitions of actions and rewrite rules are close to the ones of [6,7], but
slightly simpler. An action has one of the following forms:

– an edge redirection/creation α+a β where α, β are nodes, a is a feature
and α �∈ P . This means that the value of a(α) is changed to β. This can be
viewed as an edge redirection: the edge starting from α and labeled by a is
redirected to point to β. The edge and nodes are created if they do not exist.
If a = l then we assume that β ∈ Σ.

– a global redirection α + β where α and β are nodes and α �∈ P . This
means that all edges pointing to α are redirected to β.

Note that predefined nodes cannot be redirected. The result of applying an action
ε to a term-graph t is denoted by ε[t] and is defined as the term-graph s s.t.:

– If ε = α +a β then N (s) def= N (t) ∪ {α, β}, as(α) def= β and for all features b

and all nodes γ we have bs(γ) def= bt(γ) iff a �= b or γ �= α.
– If ε = α+ β then N (s) def= N (t)∪{α, β} and for all features a and all nodes

γ, as(γ) def= β if at(γ) = α and as(γ) def= at(γ) otherwise.
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If ς is a finite sequence of actions, then ς[t] is defined inductively as follows:
ς[t] def= t if ς is empty and (ε; ς)[t] def= ς[ε[t]] (where ε is an action and ; denotes the
concatenation operator). N (ς) denotes the set of nodes occurring in ς. dom(ς)
denotes the set of nodes α s.t. ς contains an action of the form α+ β or α+a β.

2.4 A Linear Notation for Actions and Term-Graphs

For the sake of conciseness and readability, we introduce another notation for
denoting sequences of actions. They will be denoted as terms with labels.

The term α:f(a1 ⇒ β1:t1, . . . , an ⇒ βn:tn) will be used as an abbrevia-
tion for denoting the sequence of actions: (α +l f); (α +a1 β1); . . . ; (α +an

βn); τ1; . . . ; τn where τ1, . . . , τn are the sequences of actions corresponding to the
terms β1:t1, . . . , βn:tn, respectively. For instance, α:cons(car ⇒ β:0, cdr ⇒ γ:nil)
denotes the sequence: α +l cons;α +car β;α +cdr γ;β +l 0; γ +l nil. The
nodes α, β1, . . . , βn can be left unspecified, and in this case they are simply re-
placed by arbitrary nodes not occurring elsewhere: for instance cons(car ⇒ 0)
denotes a sequence of the form α +l cons;α +car β;β +l 0 where α, β are ar-
bitrarily chosen nodes. f(t1, . . . , tn) is syntactic sugar for f(1 ⇒ t1, . . . , n⇒ tn)
(where 1, . . . , n ∈ F).

The same notation can be used to denote term-graphs. Indeed, a term-graph
t can be described by giving a sequence of actions ς s.t. ς[∅] = t, where ∅ denotes
the empty graph (no nodes and no edges). For instance, α:a, which denotes the
action α +l a, will also denote a term-graph t s.t. N (t) = {α} where lt(α) = a
and bt(α) is undefined if b �= l. The term α denotes the term-graph reduced to
the unique node α, with no edges.

The operator “;”, used to denote composition of actions, is also used to denote
a union of term-graphs, for instance α:f(δ);β:g(δ) denotes a term-graph t of
nodes α, β, δ, s.t. lt(α) = f, lt(β) = g, 1t(α) = 1t(β) = δ. By convention, the
root of the term-graph is the first mentioned node. For instance root(t) = α.

β:g(δ);α:f(δ) and δ;β:g(δ);α:f(δ) both denote the same term-graph, but with
the roots β and δ respectively (note that the term-graphs may contain nodes
that are not reachable from the root).

3 Term-Graph Rewriting

Definition 2. (Rewrite Rule) A term-graph rewrite rule is an expression of the
form L→ R | φ where L is a rooted term-graph, R is a sequence of actions, and
φ is a conjunction of disequations between nodes

∧n
i=1 αi �= βi.

A graph rewrite system (GRS for short) is a set of rewrite rules.

A rule is said to be admissible iff the following conditions hold:

– For every node α occurring in L, we have root(L) ≥L α. Any node occurring
in the left-hand side must be reachable from the root2.

2 This is an important condition since otherwise the same rule could be applied in
several different ways at the same node, which would make the system trivially non
confluent in general.
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– We have lL(root(L)) ∈ D and for every node α �= root(L) if lL(α) is defined
then lL(α) ∈ C. The root is the only node that is labeled by a non constructor
symbol. This condition is usual in constructor-based rewrite systems.

– For every action α +l f in R s.t. f ∈ D, either α = root(L) or α does not
occur in L. Moreover if α + β ∈ R then β �∈ Σ. Only the created (new)
nodes are allowed to be labeled by a defined symbol3.

In the following we always assume that the rules are admissible
In practice, rather than writing the right-hand side as a sequence of actions,
we often prefer to use the linear notation introduced in Section 2.4 which is
clearer. For instance, we shall write α:a → α:f(a), instead of α:a → α +l

f ;α +1 β;β +l a. If this notation is used, then we always implicitly assume
that the root of the left-hand side is redirected to the root of the term-graph
denoted by the right-hand side. For instance, α:f(a) → β:g(b) denotes the rule:
α:f(a) → α + β;β +l g;β +1 γ; γ +l b (the action α + β is added at the
beginning of the sequence). Using these conventions any term rewrite rule (in
the usual sense) can be seen as a term-graph rewrite rule. These conventions
(as the ones in Section 2.4) are only introduced as syntactic sugar to make the
notations and examples clearer and easier to understand. They do not affect the
semantics.

A substitution (N -mapping) σ is said to be a solution of a conjunction of
disequations φ =

∧n
i=1(αi �= βi) iff for every i ∈ [1..n], σ(αi) �= σ(βi). The set of

solutions of φ is denoted by sol(φ).

Definition 3. Let ρ : L→ R | φ be a rule. A ρ-matcher for a term-graph t ( at
a node α ∈ N (t)) is an N -mapping σ compatible with L satisfying the following
conditions.

1. σ(L) ⊆ t, i.e. σ(L) must be a subgraph of t.
2. σ ∈ sol(φ) and α = σ(root(L)).
3. Let N be the set of nodes occurring in R but not in L. N corresponds to

the nodes that are created by the rewrite rule. σ maps the nodes in N to
pairwise distinct nodes not occurring in t s.t.:
– If β, γ are two nodes in N s.t. β ) γ then σ(β) ) σ(γ). This means that

the newly created nodes should be ordered as specified in the rewrite rule.
– For every node β occurring in t, and for every node γ in N , β ≺ σ(γ)

iff β ( α. This means that the newly created nodes inherit the priority
of the parent node α.

ρ-matchers can be easily computed using standard matching algorithms. If σ is
a ρ-matcher for t, where ρ = L→ R | φ, then we denote by ρσ[t] the term-graph
σ(R)[t] obtained by applying the sequence of actions σ(R) on t.

Let R be a GRS. Let t be a term-graph. We define the following relations
between nodes (implicitly depending on R):
3 This condition is not really restrictive since one can easily redirect an existing node

α to a new node β before relabeling it.
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– α �t β iff there is a rule ρ : L → R | φ ∈ R and a ρ-matcher σ at α s.t.
β ∈ σ(L). This means that a rule that depends on the node β is applicable
on α

– α +t β iff there is a rule ρ : L → R | φ ∈ R and a ρ-matcher σ at α s.t.
β ∈ dom(σ(R)). This means that a rule affecting β can be applied on α.

Example 1. Assume that R = {f(α:0, β:s(δ)) → β:2}. Let t = λ1:f(λ2:0, λ3:s
(λ4:s(λ5:0))). Then we have λ1 �t λ1, λ2, λ3, λ4 and λ2 ��tλ5 (since λ5 does not
occur in the part of t that is in the image of the left-hand side of the rule in R).
We have λ1 +t λ1, λ3 and λ1 �+t λ2, λ4, λ5.

Definition 4. Let R be a set of rewrite rules. An R-dependency schema is a
pair ξ = (+∗,�∗) of N -relations s.t. for every term-graph t, +∗

t ,�∗
t contain +t

and �t respectively.
Let ρ = L→ R | φ be a rule and let σ be a ρ-matcher for a term-graph t at α.

We write σ ��ξ
t β if α ≺ β and there exists a node γ s.t. either γ ∈ dom(σ(R))

and β �∗
t γ or γ ∈ N (σ(L)) and β +∗

t γ.

Informally, the intended meaning of α +∗
t γ is that the reduction of α may

affect the node γ, possibly after some reduction steps. α �∗
t γ means that the

value of the node α may depend on the value of γ. As we shall see, for both
relations, reduction should be taken into account (see Definition 5). For instance,
if length is the function defined as usual on lists (see the rules #1 and #2 below),
and t is the term α:length(cons(0, cons(1, cons(2, β)))), then we should have α�∗

t

β, although α ��tβ (the value of α depends on β, but only after some reduction
steps).

#1 : length(cons(α, β)) → s(length(β)) #2 : length(nil) → 0

σ ��ξ
t β expresses the fact that there is a potential “conflict” between the rule

ρ corresponding to σ and the node β (according to the considered dependency
schema): either ρ redirects a node γ on which β (possibly) depends, or ρ uses a
node γ which may be affected by β. From an intuitive point of view, γ may be
seen as a resource that is shared between ρ and β.

Let R be a rewrite system and let ξ be an R-dependency schema. A matcher
σ for t at a node α is said to be eligible if there is no node β in t s.t. σ ��ξ

t β. We
define the three following rewriting relations.

– t →R s iff there exist a rule ρ ∈ R and a ρ-matcher σ for t s.t. s = ρσ[t].
This is the basic rewriting relation, close in spirit to the one used for terms.
It is non confluent even if R is orthogonal [3] and even if all nodes only affect
themselves.

– t
�→R s iff there exist a rule ρ ∈ R and a ρ-matcher σ for t at a node α s.t.

s = ρσ[t] and if for every node β in t, we have α ) β or lt(β) ∈ C. This means
that the rules are applied only on maximal reducible nodes (according to the
ordering )). This relation is called strict rewriting. It is deterministic and
one can view strict rewrite systems as purely imperative programs, in the
sense that the order in which the actions are performed is entirely specified.
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– t
ξ→Rs iff there exist a rule ρ ∈ R and an eligible ρ-matcher σ for t at a node

α s.t. s = ρσ[t].
ξ→R is a rewriting relation that is more flexible than �→R but

as we shall see is also sufficiently strong to preserve confluence of orthogonal
systems. The basic idea is that a rule ρ may be applied on a non-maximal
node α only if ρ does not interfere with the reduction of the nodes β * α.

Obviously, we have �→R⊆
ξ→R ⊆→R. →R depends only on R, �→R depends on

R and *.
ξ→R depends on R,* and ξ. If α +∗

t β and α �∗
t β for every pair of

nodes (α, β) then
ξ→R coincides with �→R.

The following definition states additional semantic conditions on ξ that are
needed to ensure confluence.

Let t, s be two term-graphs s.t. t
ξ→Rs. Let α be a node in s and let β be the

node on which the rule is applied. We denote by α−
t→s the node defined as follows:

α−
t→s

def= α if α ∈ N (t) and α−
t→s

def= β otherwise. α−
t→s denotes the ancestor of

the node α.

Definition 5. An N -relation � is said to be invariant for an R-dependency
schema ξ if the following holds: if σ is an eligible ρ-matcher for t, s = ρσ[t] and
β �s γ then β−

t→s �t γ
−
t→s. An R-dependency schema ξ = (+∗,�∗) is invariant

if +∗,�∗ are invariant for ξ.

Of course, the above property cannot be checked automatically in general (see
Section 4 for syntactic criteria). The intuitive idea is that one cannot discover
new interferences during the derivation: if α, β are related at some point in the
derivation, then either α, β or their ancestors were already in relation before.

Examples
We provide some simple examples of rewriting rules (defined using the above
linear relation for the sake of conciseness and readability):

In situ append:
a1 : append(α:nil, β) → β; α� β % α is redirected to β
a2 : append(α:cons(β, δ), γ) → α; append(δ, γ) % Apply append on the tail

In situ increment of all the elements of a list:
i1 : inc(α:nil) → α i2 : inc(α:cons(β, δ)) → α; α�1 s(β); inc(δ)
In situ list reversal:
r1 : rev(α) → β:rev′(α,nil); α� β r2 : rev′(α:nil, β) → β
r3 : rev′(α:cons(β, δ), γ) → rev′(δ, α); α�2 γ

Check whether an element occurs in a (possibly circular) list
f1 : find(α, β)→ λ1:find′(α, β); λ2:clean(α)
f2 : find′(α, β:cons(α′, β′))→ find′(α, β′); β �l mark | α �= α′

f3 : find′(α,nil)→ false f4 : find′(α, cons(α, β))→ true
f5 : find′(α,mark(α′, β))→ false f6 : clean(α:nil)→ α
f7 : clean(α:cons(β, δ))→ α f8 : clean(α:mark(β, δ))→ clean(δ); α�l cons

The function find′(α, β) explores the list until α is found. The nodes are
marked in order to avoid looping. The function clean removes the marks. In this
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example, the ordering of the nodes in the right-hand side is crucial. We assume
that λ1 * λ2. Here are some examples of reductions (λ1, λ2, . . . are new nodes
created during the derivation):

append(α:cons(β, δ:nil), α) →a1 α:cons(β, δ:nil); λ1:append(δ, α) →a2 α:cons(β, α)

rev(α:cons(β1, δ:cons(β2, nil))) →r1 rev′(α:cons(β1, δ:cons(β2,nil)),nil)
→r3 rev′(δ:cons(β2,nil), α:cons(β1,nil))
→r3 rev′(nil, δ:cons(β2, α:cons(β1,nil)))
→r2 δ:cons(β2, α:cons(β1,nil))

Confluence is an important property from a programming point of view,
because it ensures that any object has a unique normal form (thus the defined
symbols encode functions).

We write t ≡ s iff there exists a renaming η for t s.t. η(t) = s.

Definition 6. A rewrite system is said to be weak orthogonal if for every pair
of distinct rules ρ : L → R | φ and π : L′ → R′ | ψ and for every N -mapping
σ ∈ sol(φ) ∩ sol(ψ) compatible with L,L′ s.t. σ(root(L)) = σ(root(L′)), we have
σ(R) = η(σ(R′)) for some renaming η s.t. η(α) = α for every node α occurring
in σ(L) or σ(L′).

Theorem 1. (Confluence of Weak Orthogonal Systems Modulo Renaming) Let
R be a weak orthogonal rewrite system. Let ξ be an invariant R-dependency

schema.
ξ→R

∗
∪ ≡ is confluent. Thus, if t

ξ

→∗Rs, t
�
→∗R s′ and if s, s′ are irre-

ducible (w.r.t.
ξ→R), then s ≡ s′.

4 An Example of an Invariant Dependency Schema

From a practical point of view, we want the relation
ξ→R to be as weak as

possible, thus the relations +∗ and �∗ must be as strong as possible. From a
purely theoretical point of view one could take the smallest invariant relations,
but of course these “ideal” relations are not computable. For instance, let R
be a GRS containing the rules f(α:0, 0) → α:1 and f(α:0, 1) → α, and let
t = β:f(α:0, s) where s is an arbitrary term-graph. If +∗ denotes the smallest
invariant dependency schema, then β +∗

t α iff s
�→R 0 (since the first rule is the

only one that affects α). Since s is arbitrary, +∗ is non computable.
In this section, we give an example of a tractable invariant dependency

schema. The provided relations are significantly stronger than the ones we pro-
posed in [3] or in [7]. For this purpose, we need to introduce additional definitions
and notations.

Let f be a function symbol. An f -rule is a rule L→ R | φ s.t. lL(root(L)) = f .
Let ρ = L→ R | φ be a rule. ≥ρ denotes the smallest transitive and reflexive

relation containing ≥L s.t. if α+a β ∈ R or α+ β ∈ R then α ≥ρ β. Intuitively,
α ≥ρ β states that an application of the rule ρ can create a path from α to β.
≥R denotes the smallest reflexive and transitive relation s.t. (f, a) ≥R (g, b)

if ρ = L → R | φ is an f -rule and if there exist three nodes α, β, δ s.t. α +l g
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and α +b δ are actions in R, δ ≥ρ β and aL(root(L)) ≥L β. Intuitively, this
means that the function f calls another function g and that, moreover, a node β
initially reachable from feature a of the node labeled by f may become reachable
from the feature b of g.

A rule L → R | φ is said to produce a side-effect on a feature a if dom(R)
contains a node α occurring in L but distinct from root(L), s.t. aL(root(L)) ≥L α.

An F -family of sets of function symbols (Ea)a∈F is said to be ≥R-closed iff
for all g ∈ Eb and for all f s.t. (f, a) ≥R (g, b), we have f ∈ Ea.
SE(R) is the smallest ≥R-closed F -family of function symbols s.t. if there

exists an f -rule producing a side-effect on a then f ∈ SE(R)a.

Definition 7. We denote by χ the dependency schema defined as follows.
χ = (+∗,�∗), where +∗

t ,�∗
t and ≥a

t are the smallest reflexive relations s.t.:

– If at(α) ≥t β and lt(α) ∈ D then α ≥a
t β.

– If α ≥a
t β, γ * α, γ +∗

t β and γ �∗
t δ then α ≥a

t δ.
– If α ≥a

t β for some feature a, then α �∗
t β.

– If lt(α) ∈ SE(R)a and α ≥a
t β then α+∗

t β.

Intuitively α ≥a
t β expresses the fact that α is labeled by a defined symbol and

that β is reachable (or may become reachable after some rewriting steps) from
the feature a of the node α. The first item corresponds straightforwardly to this
definition. The second item is slightly more complicated and states that β may
become reachable (at some point) if there exists a node γ that both affects a
node reachable from α (from feature a) and depends on β. Indeed, reducing the
node γ may create a path from α to β.

Using this relation, +∗ and �∗ are easy to define. The third item states that
α depends on a node β only if a path exists (or may be created) from a feature of
α to β. The fourth item states that α affects β only if α is labeled by a defined
symbol performing a side effect on a feature a and if β is reachable (or may
become reachable) from the feature a of α.

Example 2. Let R = {f(α, β) → g(β, α), g(s(α), s(β)) → g(α, β), g(α:0, β) →
β +l 0}. We have (f, 1) ≥R (g, 2) and (f, 2) ≥R (g, 1). g performs a side effect
on feature 2 (third rule) thus g ∈ SE(R)2 and f ∈ SE(R)1.

Let t = α:f(s(s(β)), s(s(β′))). We have α+∗
t β and α �+∗

t β′ (but α �∗
t β

′).

Given a term-graph t, it is easy to compute the relations +∗
t and �∗

t in χ (in
polynomial time w.r.t. the size of t).

Theorem 2. χ is an invariant dependency schema.

5 Needed Rewriting

This section is the most important part of the paper. We provide a reduction
strategy which is optimal (for a particular class of GRS) in the sense that the
only nodes that are reduced are needed, i.e. are reduced in every derivation to
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normal form4. Moreover, the length of the derivation is also minimal. This last
point makes an interesting difference with term rewrite systems in which this
property does not hold5. In order to formally define these notions, we need to
introduce additional definitions and notations.

Let R be a GRS, let ξ be an R-dependency schema. If t is a term-graph and
α ∈ N (t), we denote by [t]ξα the maximal term-graph included in t s.t. for every
node β ∈ dom([t]ξα) and for every γ ∈ N (t) s.t. γ * α or lt(α) �∈ D, we have
γ �+∗

t β.
Intuitively, [t]ξα denotes the part of the term-graph t that will surely not change

until α is reduced. Thus if there exists a node γ in t s.t. γ +∗
t β (i.e. “γ possibly

affects β”) for some node β ∈ dom(s) then α must be reduced before γ, which
is possible only if α is labeled by a defined symbol and α ) γ. The definition is
slightly different for constructor nodes (second subcondition) since in this case
α is never reduced.
Example 3. Let f, g be defined symbols and let s, s′, 0 be constructors. Assume
that f performs side effects on feature 1 and that g does not perform any side effect.

Let t = α:s(α′:g(s′(0)), β:s′(δ:s′(0))); γ:g(β);λ:f(δ). Then [t]χα = α:s(α′,
s′(δ)); s′(0). Notice that the argument of α′ remains in the term-graph (as a
disconnected subgraph s′(0)) but that the edges starting from α′ are removed.
Indeed, we have α′ +∗

t α′ and λ+∗
t δ (but γ �+∗

t β).

If t is a term-graph, we denote by t̂ the term-graph obtained from t by removing
all the nodes that are not reachable from the root. A term-graph t is said to be
a value if t̂ contains no defined symbols and if t̂ ⊆ [t]ξroot(t). This means that
the part of the term-graph that is reachable from the root cannot be affected
by a derivation (this implies in particular that t̂ contains no defined symbol, but
this condition is not sufficient, see Example 4).

Definition 8. Let R be a GRS and let ξ be an invariant R-dependency schema.
A node α is said to be ξ-needed for a term-graph t0 if for every sequence t0, . . . , tn
s.t. tn is a value and s.t. for every i ∈ [1..n] ti = ρσi

i [ti−1] for some rule ρi ∈ R
and some eligible ρi-matcher σi at a node βi, there exists i ∈ [1..n] s.t. βi = α.

It should be emphasized that neededness is relative to a given dependency
schema. Defining a needed rewriting strategy for the smallest possible depen-
dency schema ξ is obviously impossible, since ξ is non computable as soon as
side effects are possible as explained in Section 4 (even if we strongly restrict the
class of GRS).
4 Note that this notion of neededness implicitly assumes that rooted term-graphs are

considered and that one is only interested by the part of term-graph that is reachable
from the root. If the term-graphs are not rooted then obviously any node is needed
(since at least it defines its own value).

5 This is due to the fact that term-graph rewrite rules do not duplicate the terms. For
instance, if we apply the rule f(x)→ g(x, x) on the term f(t), we obtain a term like
g(α:t, α). t is not duplicated hence it will not have to be reduced twice. It should be
noticed that collapsing (i.e. the merging of identical subgraphs) is incorrect in our
context.
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The definition of the reduction strategy is more complicated than in the usual
case, because one has to handle the dependencies between the nodes. In the
standard case, the only node that can affect a given node α is α itself (no side-
effect). This is not the case here. Thus, a node may be needed even if it is non
reachable from the root.

Example 4. Let R def= {ρ : g(α:0) → α:1} and t = δ:c(β:0); γ:g(β), where δ is the
root (c is a constructor). γ is non reachable from δ, but it is obviously needed
for computing the normal form. The only applicable rule is ρ, yielding: δ:c(β:1).

Even if ξ is computable, defining a needed strategy is not easy as illustrated by
the following:

Example 5. R def= {ρ1 : f(s(α), β) → f(α, β), ρ2 : f(α:0, 0) → α:s(0), ρ3 :
f(α:0, 1) → α, π1 : g(β:s(α), 0) → β:0, π2 : g(β, 1) → β}.

Let t = α; γ:f(s(s(β:s(α:0))), s1); δ:g(β, s2) (the root is α). Assume that we
know that δ �+∗

t α. In order to decide whether γ is ξ-needed or not, we have to
evaluate one of the terms s1 or s2. If s1 → 1 then obviously γ �+∗

t α (since ρ2

will never be applicable). Similarly, if s2 → 0 then the link between γ and α is
cut by the rule π1, thus γ �+∗

t α. If s1 → 0 and s2 → 1 then we have γ +∗
t α.

But s1, s2 are not both needed if γ �+∗
t α.

We could overcome this problem by imposing very strong restrictions on the
considered GRS. However, we prefer to impose additional conditions on the
dependency schemata, which are not too restrictive, because they are satisfied
by the relations proposed in Section 4:

Definition 9. Let R be a GRS. An invariant R-dependency schema ξ is said
to be strongly invariant, if for every rule ρ = L→ R | φ ∈ R and for every pair
of term-graphs (t, s) s.t. s = ρσ[t] for some ρ-matcher σ at α, then for every
β, δ ∈ N (t) s.t. β �= α, β +∗

t δ (resp. β �∗
t δ) and β �+∗

s δ (resp. β ��∗
sδ) we have

α+∗
t δ. Moreover there exists a node γ ∈ dom(σ(R)) s.t. β �∗

t γ.

It is easy to see that the dependency schema χ introduced in Section 4 is strongly
invariant.

5.1 Relevancy

The definition of the strategy requires great care. For instance, one can-
not assume that any node affecting the root is needed. Consider the term:
α:0;β:g(α);β′:g(α). Then both β and β′ affect α (according to the previous
definitions), but only the maximal node (according to the priority ordering) is
actually needed for sure (the other one may actually be useless).

A rooted term-graph t is said to be a line if t̂ = t and if for every node α in t
there exists at most one feature a �= l s.t. at(α) is defined. s is said to be a line
of t if s is a line, s ⊆ t and root(t) = root(s).

Example 6. Let t = α:f(β:s(γ), λ:s(0)). The term-graphs s1 = α:f(1 ⇒ β:s(γ))
and s2 = α:f(2 ⇒ λ) are two lines of t. s1 is maximal, s2 is not.
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If t is a term-graph, R is a GRS, and ξ is an R-dependency schema, we denote
by 〈t〉ξα the maximal subgraph s of [t]ξα s.t. for every node β of s:

– Either α = root(t), lt(α) ∈ C and α ≥t β.
– Or there exists a rule L → R | φ ∈ R, a line l of L and a N -mapping

σ ∈ sol(φ) s.t. σ(root(L)) = α, σ(l) ⊆ t and β ∈ σ(l).

Intuitively, 〈t〉ξα denotes the part of [t]ξα that is currently “useful” w.r.t. the
GRS R (a node is useful either because it is reachable from the root or because
it occurs in the left hand side of a rewrite rule).

Example 7. Let t = β:f(α:s(α′:0), s(α′′:0)). LetR = {f(α:s, s(β:0)) → β}. Then
〈t〉ξβ = f(α, s(α′′)). The node α′ is useless.

Let α be a node. We denote by wξ(t, α) the set of nodes β of t s.t. β +∗
t α.

wξ(t, α) denotes the set of nodes that possibly affect α (w stands for “write”).

Definition 10. Let R be a GRS and let ξ be a strongly invariant dependency
schema. The set of nodes that are ξ-relevant in t is the smallest set of nodes α
s.t. lt(α) ∈ D and one of the following conditions holds:

1. Either there exist β, δ s.t. β ≺ α, β is either root(t) or ξ-relevant in t, δ is a
node in 〈t〉ξβ and α is the maximal node in wξ(t, δ). Intuitively, α is relevant,
because it affects a node δ which is useful for reducing β.

2. Or β is ξ-relevant, wξ(t, δ) = ∅ for every node δ in 〈t〉ξβ and there exists a
node λ in 〈t〉ξβ s.t. β +t λ, α * β and α �∗

t λ. α is relevant because since
it is of greater priority than β and since it depends on a node λ which is
affected by β, it prevents the reduction on β (by definition of

ξ→R).

Definition 11. (Needed Reduction Strategy) Let R be a GRS and let ξ be a

strongly invariant R-dependency schema. We write t
ξ
↪→Rs iff there exist a rule

ρ ∈ R and an eligible ρ-matcher σ for t at a ξ-relevant node α s.t. s = ρσ[t].

The next theorem shows that
ξ
↪→R is normalizing, and that the length of the

obtained derivations are minimal.

Theorem 3. Let R be a GRS. Let t be a term-graph and let ξ be a strongly
invariant R-dependency schema. Assume that there exists a sequence t1, . . . , tn

of term-graphs s.t. t1 = t, tn is a value and ti
ξ→Rti+1, for every i ∈ [1..n− 1].

There exists a sequence s1, . . . , sm s.t. s1 = t, sm is a value, ŝm = t̂n, m ≤ n

and si
ξ
↪→Rsi+1 for every i ∈ [1..m− 1].

5.2 Neededness

Now, we introduce a class of GRS for which the above strategy only reduces
needed nodes.
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We denote by L(t) the set of maximal (w.r.t. ⊆) lines of t. If ρ = L → R |
φ, π = G → D | ψ are two rules, we write ρ � π iff for every pair of lines
(l, l′) ∈ (L(L),L(G)) and for every N -mapping σ s.t. σ(l) ⊆ σ(l′), we have
σ(l) = σ(l′).

A set of rules R is said to be elementary if for every pair of rules ρ, π ∈ R we
have ρ � π (and π � ρ). This condition is easy to check. Intuitively, it expresses
the fact that the rules ρ and π potentially depend on the same set of nodes. For
instance, the system {f(α:s(α)) → 0, f(α′:s(β′)) → 1 | α′ �= β′} is elementary,
but {f(α:s(β), 0) → 0, f(α′:s(s(β′)), 1) → 1} is not (since the sequence α:s(β)
is strictly contained into α′:s(s(β′)), up to an adequate N -mapping).

Remark 1. The above condition may seem very restrictive. For instance, a GRS
as simple as {f(a, s(α)) → 0, f(b, α) → 1} is not elementary. However it can
easily be transformed into an elementary system: {f(a, α) → f ′(α), f(b, α) →
1, f ′(s(α)) → 0}. This process can be generalized: if we restrict ourselves to term
rewrite systems, it is obvious that any inductively sequential system (i.e. any sys-
tem having a definitional tree [2]) can be automatically transformed into an el-
ementary system. Thus our results apply to any strongly/inductively sequential
system [9,10], since these notions coincide for constructor-based rules [8]. Actu-
ally, the notion of elementary GRS can be seen as a generalization of the notion
of definitional tree (note that elementary GRS are not necessarily orthogonal).

Theorem 4. Let R be a GRS. Let ξ be a strongly invariant R-dependency
schema. If R is elementary, then every ξ-relevant node β for t is ξ-needed for t.

6 Examples

We apply the above needed rewriting strategy on the following examples, using
the dependency schema defined in Section 4. By convention, β1 * β2 * . . ..
Relevant nodes are marked with a box. The root is always the first mentioned
node in the term-graph.

We use the rules defined in Section 3 and the following ones6:

cadr : cadr(cons(α, cons(α′, β))) → α′ car : car(cons(α, β)) → α
nf2 : nf(s(δ), α:cons(α′, β)) → α;nf(δ, β) nf1 : nf(0, α:cons(β, δ)) → α:nil
+1 : plus(s(α), β) → plus(α, s(β)) +2 : plus(0, β) → β
l0 : l0(α:nil) → α:cons(0, λ:nil); l0(λ)

β3 :cadr(α:nil); β2:inc(α); β1 :l0(α)

→l0 β3 :cadr(α:cons(0, λ1:nil)); β2 :inc(α); λ2 :l0(λ1)

→i2 β3 :cadr(α:cons(s(0), λ1:nil)); λ3:inc(λ1); λ2 :l0(λ1)

→l0 β3 :cadr(α:cons(s(0), λ1:cons(0, λ4:nil))); λ3 :inc(λ1); λ5:l0(λ4)

→i2 β3 :cadr(α:cons(s(0), λ1:cons(s(0), λ4:nil))); λ6:inc(λ4); λ5:l0(λ4)

→cadr s(0); α:cons(s(0), λ1:cons(s(0), λ4:nil)); λ6:inc(λ4); λ5:l0(λ4)

6 cadr, car, plus and length are standard. If α is a list containing at least m elements,
then nf(m, α) is the list of the m first elements of α. l0 returns an infinite list of 0’s.



A Needed Rewriting Strategy for Data-Structures with Pointers 77

At this point the normal form is known: s(0). The remaining nodes are irrele-
vant. Note that the strict strategy diverges since the computation of l0(nil) does
not terminate (infinite list of 0’s). We provide a second example:

β4 :plus( β1 :car(δ:cons(s(0), cons(0,nil))), β3:length(δ)); β2:nf(β1, δ)

→car β4 :plus(γ:s(0), β3:length(δ:cons(γ, cons(0,nil)))); β2:nf(γ, δ)

→+1 β4 :plus(γ′:0, s(β3:length(δ:cons(γ:s(γ′), cons(0, nil)))));β2:nf(γ, δ)

→+2 β4:s( β3 :length(δ:cons(γ:s(0), cons(0,nil)))); β2 :nf(γ, δ)

→nf2 β4:s( β3 :length(δ:cons(γ:s(γ′:0), δ′:cons(0, nil))));λ1:nf(γ′, δ′)

→#1 β4:s(s( λ2 :length(δ′:cons(0, nil)))); λ1 :nf(γ′, δ′); δ:cons(γ:s(γ′:0), δ′)

→nf1 β4:s(s( λ2 :length(δ′:nil))); δ:cons(γ:s(γ′:0), δ′); 0; nil
→#2 β4:s(s(0)); δ

′:nil; δ:cons(γ:s(γ′:0), δ′); 0; nil

We obtain the normal form s(s(0)). Notice that the first + rule is applicable
although the first argument γ occurs behind the scope of the function nf because
nf does not perform side effects on its first argument. Thus β2 �+∗ γ. This would
not be the case with the dependency schema presented in [7].

7 Conclusion

We have presented a general framework for handling rewrite rules operating
on term-graphs (encoding pointer-based data-structures), which is simpler (but
similar to) the one presented in [7]. We have presented a new tractable way of
detecting interferences between the defined nodes in the considered term-graph
rewrite systems. Then we have provided a reduction strategy which is optimal
for a class of term-graph rewrite rules, w.r.t. both the length of the derivations
and the set of reduced nodes (only needed nodes are reduced). Our results ex-
tend the scope of declarative languages by allowing the programmer to define
algorithms that physically affect pointer-based data-structures (as in imperative
programming). Lazy reduction strategies can now be applied, similar to the ones
that were already known for terms (and used by rewrite-based languages such
as Haskell). From a practical side, we are now implementing a first prototype
of our approach. From a more theoretical point of view, it would be interesting
to extend these results to non constructor-based systems. This would require to
extend the notion of strong sequentiality to GRS.
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Abstract. An equational theory decomposed into a set B of equational
axioms and a set Δ of rewrite rules has the finite variant (FV) property
in the sense of Comon-Lundh and Delaune iff for each term t there is
a finite set {t1, . . . , tn} of →Δ,B-normalized instances of t so that any
instance of t normalizes to an instance of some ti modulo B. This is a very
useful property for cryptographic protocol analysis, and for solving both
unification and disunification problems. Yet, at present the property has
to be established by hand, giving a separate mathematical proof for each
given theory: no checking algorithms seem to be known. In this paper we
give both a necessary and a sufficient condition for FV from which we
derive an algorithm ensuring the sufficient condition, and thus FV. This
algorithm can check automatically a number of examples of FV known
in the literature.

1 Introduction

The finite variant (FV) property is a useful property of a rewrite theory R =
(Σ,B,Δ) with signature Σ, rewrite rules Δ, and equational axioms B introduced
by Comon-Lundh and Delaune in [2]. Very simply, it states the existence of a
finite set of pairs (ti, θi) for a given term t such that: (i) ti is the →Δ,B-normal
form of tθi, and (ii) for any normalized substitution ρ, the →Δ,B-normal form
of tρ is, up to B-equivalence, a substitution instance of some ti. Comon-Lundh
and Delaune list several important applications in [2], including formal reasoning
about cryptographic protocol security using constraints [3], and reducing disuni-
fication problems modulo Δ � B (when rules in Δ are viewed as equations) to
disunification problems modulo B.

We have studied in detail how, if a rewrite theory R = (Σ,B,Δ) is confluent,
terminating, and coherent modulo the axioms B, and has the FV property, one
can define an efficient narrowing strategy, which we call variant narrowing, to
obtain a finitary unification algorithm modulo Δ �B if a finitary B-unification
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algorithm exists [6]. We agree with Comon-Lundh and Delaune [2] that if an
efficient, dedicated Δ�B-unification algorithm is known, using the FV property
to generate unifiers is usually much less efficient. But such an efficient, dedi-
cated algorithm may not be known at all. Furthermore, for common equational
axioms such as AC, it is well-known that narrowing modulo AC almost never
terminates [2]. Typically it does not terminate even when R = (Σ,B,Δ) has
the FV property; yet, existence of a finite, complete set of narrowing-generated
unifiers is guaranteed by a bound on the depth of the narrowing tree that has to
be explored [6]. Therefore, we view the FV property as the basis of an attrac-
tive method for obtaining finitary unification algorithms in many cases where
no dedicated algorithm is known, and narrowing itself would almost certainly be
nonterminating and therefore would yield an infinitary algorithm.

For all the above reasons: for reasoning about cryptographic protocols, to solve
disunification problems, and, in our view, to solve also unification problems, it
would be very useful to be able to check in an effective way whether a given
rewrite theory R = (Σ,B,Δ) has the FV property. This is the main question
that we ask and we provide an answer for in this paper: is there an effective
algorithm that can ensure that R = (Σ,B,Δ) has the FV property?

We approach this main goal by stages. In Section 4, we give a necessary and
a sufficient condition for FV. The necessary condition, which we abbreviate to
FVNS is the absence of infinite variant-preserving narrowing sequences. The
sufficient condition is the conjunction of FVNS with a second condition which
we call variant-preservingness (VP). So we have a chain of implications

(FVNS ∧ VP) ⇒ FV ⇒ FVNS

This chain of implications then provides a useful division of labor for arriving
in Section 5 at the desired checking algorithms. Since checking FVNS and VP
ensures FV, we need algorithms checking both of these properties. It turns out
that, under mild conditions on B, VP is a decidable property, so we have an al-
gorithm for it. Instead, for FVNS we have a situation strongly analogous to what
happens with the use of the dependency pairs (DP) method [1] for termination
proofs: the DP method is sound and complete for termination, yet termination
is undecidable. The point, of course, is that one usually cannot compute the ex-
act dependency graph, but can nevertheless compute an estimated dependency
graph and use it in termination proofs. This analogy is not far-fetched at all,
since in fact we were inspired by the DP-method (in its “modulo” version as
developed by Giesl and Kapur in [7]) to develop a DP-like analysis of the theory
R = (Σ,B,Δ) from which we derive our desired algorithm for checking FVNS.

We discuss several examples of theories that have the FV property. In partic-
ular, we show that for all the examples presented in [2] that were there proved to
have the FV property by mathematical arguments given for each specific theory,
our checking method can automatically prove the FV property. In [5], we also
provide a method for disproving the FV property and show that all the examples
presented in [2] that were there disproved to have the FV property are automat-
ically disproved by our method. At the end of the paper we summarize our
contributions, and discuss future work and applications, including applications
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to the formal analysis of cryptographic protocols modulo equational properties.
All proofs can be found in [5].

2 Preliminaries

We follow the classical notation and terminology from [13] for term rewriting
and from [10,11] for rewriting logic and order-sorted notions. We assume an
S-sorted family X = {Xs}s∈S of disjoint variable sets with each Xs countably
infinite. TΣ(X )s is the set of terms of sort s, and TΣ,s is the set of ground terms
of sort s. We write TΣ(X ) and TΣ for the corresponding term algebras. For a
term t we write Var(t) for the set of all variables in t. The set of positions of a
term t is written Pos(t), and the set of non-variable positions PosΣ(t). The root
position of a term is Λ. The subterm of t at position p is t|p and t[u]p is the term
t where t|p is replaced by u. A substitution σ is a sorted mapping from a finite
subset of X , written Dom(σ), to TΣ(X ). The set of variables introduced by σ
is Ran(σ). The identity substitution is id. Substitutions are homomorphically
extended to TΣ(X ). The application of a substitution σ to a term t is denoted
by tσ. The restriction of σ to a set of variables V is σ|V . Composition of two
substitutions is denoted by σσ′. We call a substitution σ a renaming if there is
another substitution σ−1 such that σσ−1|Dom(σ) = id.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s �= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ) (see [11]). Throughout this paper we assume that TΣ,s �= ∅ for
every sort s. An equational theory (Σ,E) is a set of Σ-equations.

The E-subsumption preorder ≤E (or ≤ if E is understood) holds between
t, t′ ∈ TΣ(X ), denoted t ≤E t′ (meaning that t is more general than t′ modulo
E), if there is a substitution σ such that tσ =E t′; such a substitution σ is said
to be an E-match from t to t′. For substitutions σ, ρ and a set of variables V
we define σ|V =E ρ|V if xσ =E xρ for all x ∈ V ; σ|V ≤E ρ|V if there is a
substitution η such that (ση)|V =E ρ|V .

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUE(t = t′) is said to be
a complete set of unifiers of the equation t =E t′ away from W if: (i) each
σ ∈ CSUE(t = t′) is an E-unifier of t =E t′; (ii) for any E-unifier ρ of t =E t′

there is a σ ∈ CSUE(t = t′) such that σ|W ≤E ρ|W ; (iii) for all σ ∈ CSUE(t = t′),
Dom(σ) ⊆ (Var(t)∪Var (t′)) and Ran(σ)∩W = ∅. An E-unification algorithm is
complete if for any equation t = t′ it generates a complete set of E-unifiers. Note
that this set needs not be finite. A unification algorithm is said to be finitary
and complete if it always terminates after generating a finite and complete set
of solutions.

A rewrite rule is an oriented pair l → r, where l �∈ X , and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. The rewriting relation on TΣ(X ), written t →R t′ or
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t
p→R t′ holds between t and t′ iff there exist p ∈ PosΣ(t), l → r ∈ R and a

substitution σ, such that t|p = lσ, and t′ = t[rσ]p. The relation →R/E on TΣ(X )
is =E;→R; =E. Note that →R/E on TΣ(X ) induces a relation →R/E on TΣ/E(X )
by [t]E →R/E [t′]E iff t →R/E t′. The transitive closure of →R/E is denoted by
→+

R/E and the transitive and reflexive closure of →R/E is denoted by →∗
R/E .

We say that a term t is →R/E-irreducible (or just R/E-irreducible) if there is
no term t′ such that t→R/E t′.

For substitutions σ, ρ and a set of variables V we define σ|V →R/E ρ|V if there
is x ∈ V such that xσ →R/E xρ and for all other y ∈ V we have yσ =E yρ. A
substitution σ is called R/E-normalized (or normalized) if xσ is R/E-irreducible
for all x ∈ V . We say a rewrite step t

p→R/E s is normalized if the substitution
σ, s.t. t =E t′ and t′|p = lσ, is R/E-normalized.

We say that the relation →R/E is terminating if there is no infinite sequence
t1 →R/E t2 →R/E · · · →R/E · · · . We say that the relation →R/E is confluent if
whenever t→∗

R/E t′ and t→∗
R/E t′′, there exists a term t′′′ such that t′ →∗

R/E t′′′

and t′′ →∗
R/E t′′′. An order-sorted rewrite theory R = (Σ,E,R) is confluent

(resp. terminating) if the relation →R/E is confluent (resp. terminating). In a
confluent, terminating, order-sorted rewrite theory, for each term t ∈ TΣ(X ),
there is a unique (up to E-equivalence) R/E-irreducible term t′ obtained from
t by rewriting to canonical form, which is denoted by t→!

R/E t′ or t↓R/E (when
t′ is not relevant).

3 Narrowing and Variants

Since E-congruence classes can be infinite, →R/E-reducibility is undecidable in
general. Therefore, R/E-rewriting is usually implemented [9] by R,E-rewriting.
We assume the following properties on R and E:

1. E is regular, i.e., for each t = t′ in E, we have Var(t) = Var(t′), and sort-
preserving, i.e., for each substitution σ, we have tσ ∈ TΣ(X )s if and only if
t′σ ∈ TΣ(X )s, and all variables in Var(t) have a top sort.

2. E has a finitary and complete unification algorithm.
3. For each t→ t′ in R we have Var(t′) ⊆ Var(t).
4. R is sort-decreasing, i.e., for each t→ t′ in R, each s ∈ S, and each substitu-

tion σ, t′σ ∈ TΣ(X )s implies tσ ∈ TΣ(X )s.
5. The rewrite rules R are confluent and terminating modulo E, i.e., the relation
→R/E is confluent and terminating.

Definition 1 (Rewriting modulo). [14] Let R = (Σ,E,R) be an order-sorted
rewrite theory satisfying properties (1)–(5). We define the relation →R,E on
TΣ(X ) by t →R,E t′ iff there is a p ∈ PosΣ(t), l → r in R and substitution σ
such that t|p =E lσ and t′ = t[rσ]p.

Note that, since E-matching is decidable, →R,E is decidable. Notions such as
confluence, termination, irreducible terms, normalized substitution, and normal-
ized rewrite steps are defined in a straightforward manner for →R,E . Note that
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since R is confluent and terminating (modulo E), the relation →!
R,E is decid-

able, i.e., it terminates and produces a unique term (up to E-equivalence) for
each initial term t, denoted by t↓R,E. Of course t →R,E t′ implies t →R/E t′,
but the converse need not hold. To prove completeness of →R,E w.r.t. →R/E we
need the following additional coherence assumption; we refer the reader to [7]
for coherence completion algorithms.

6. →R,E is E-coherent [9], i.e., ∀t1, t2, t3 we have t1 →R,E t2 and t1 =E t3
implies ∃t4, t5 such that t2 →∗

R,E t4, t3 →+
R,E t5, and t4 =E t5.

Narrowing generalizes rewriting by performing unification at non-variable po-
sitions instead of the usual matching. The essential idea behind narrowing is
to symbolically represent the rewriting relation between terms as a narrowing
relation between more general terms.

Definition 2 (Narrowing modulo). (see, e.g., [9,12]) Let R = (Σ,E,R) be
an order-sorted rewrite theory satisfying properties (1)–(6). Let CSUE(u = u′)
provide a finitary, and complete set of unifiers for any pair of terms u, u′. The
R,E-narrowing relation on TΣ(X ) is defined as t

p,σ�R,E t′ (or σ� or �σ if p,R,E
are understood) if there is p ∈ PosΣ(t), a (possibly renamed) rule l → r in R
s.t. Var(l) ∩ Var(t) = ∅, and σ ∈ CSUE(t|p = l) such that t′ = (t[r]p)σ.

In the following, we introduce the notion of variant and finite variant property.

Definition 3 (Decomposition). [6] Let (Σ,E) be an order-sorted equational
theory. We call (Δ,B) a decomposition of E if E = B �Δ and (Σ,B,

−→
Δ) is an

order-sorted rewrite theory satisfying properties (1)–(6), where rules
−→
Δ are an

oriented version of Δ.

Example 1 (Exclusive Or). The following equational theory, denoted R⊕, is a
presentation of the exclusive or operator together with the cancellation equations
for public key encryption/decryption.

X⊕ 0 = X (1)
X⊕X = 0 (2)

X⊕X⊕Y = Y (3)

pk(K, sk(K,M)) = M (4)
sk(K, pk(K,M)) = M (5)

X⊕(Y⊕Z) = (X⊕Y )⊕Z (6)
X⊕Y = Y⊕X (7)

This equational theory (Σ,E) has a decomposition into Δ containing the ori-
ented version of equations (1)–(5) and B containing the last two associativity
and commutativity equations (6)–(7) for ⊕. Note that equations (1)–(2) are not
AC-coherent, but adding equation (3) is sufficient to recover that property.

We recall the notions of variant, finite variants, and the finite variant property
proposed by Comon and Delaune in [2].

Definition 4 (Variants). [2] Given a term t and an order-sorted equational
theory E, we say that (t′, θ) is an E-variant of t if tθ =E t′, where Dom(θ) ⊆
Var(t) and Ran(θ) ∩ Var(t) = ∅.
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Definition 5 (Complete set of variants). [2] Let (Δ,B) be a decomposition
of an order-sorted equational theory (Σ,E). A complete set of E-variants (up to
renaming) of a term t, denoted VΔ,B(t), is a set S of E-variants of t such that, for
each substitutionσ, there is a variant (t′, ρ) ∈ S and a substitution θ such that: (i) t′

is Δ,B-irreducible, (ii) (tσ)↓Δ,B =B t′θ, and (iii) (σ↓Δ,B)|Var(t) =B (ρθ)|Var (t).

Definition 6 (Finite variant property). [2] Let (Δ,B) be a decomposition of
an order-sorted equational theory (Σ,E). Then E, and thus (Δ,B), has the finite
variant (FV) property if for each term t, there exists a finite and complete set of
E-variants, denoted FVΔ,B(t). We will call (Δ,B) a finite variant decomposition
if (Δ,B) has the finite variant property.

Comon and Delaune characterize the finite variant property in terms of the
following boundedness property, which is equivalent to FV.

Definition 7 (Boundedness property). [2] Let (Δ,B) be a decomposition
of an order-sorted equational theory (Σ,E). (Δ,B) satisfies the boundedness
property (BP) if for every term t there exists an integer n, denoted by #Δ,B(t),
such that for every Δ,B-normalized substitution σ the normal form of tσ is
reachable by a Δ,B-rewriting derivation whose length can be bounded by n (thus

independently of σ), i.e., ∀t, ∃n, ∀σ s.t. t(σ↓Δ,B) ≤n−→Δ,B (tσ)↓Δ,B .

Theorem 1. [2] Let (Δ,B) be a decomposition of an order-sorted equational
theory (Σ,E). Then, (Δ,B) satisfies the boundedness property if and only if
(Δ,B) is a finite variant decomposition of (Σ,E).

Obviously, if for a term t, the minimal length of a rewrite sequence to the canon-
ical form of an instance tσ, with σ normalized, cannot be bounded, the theory
does not have the finite variant property. It is easy to see that for the addition
equations 0 + Y = Y , and s(X) + Y = s(X + Y ), the term t = X + Y , and the
substitution σn = {X �→ sn(0), Y �→ Y }, n ∈ N, this is the case, and therefore,
since FV ⇔ BP , the addition theory lacks the finite variant property.

We can effectively compute a complete set of variants in the following form.

Proposition 1 (Computing the Finite Variants). [6] Let (Δ,B) be a finite
variant decomposition of an order-sorted equational theory (Σ,E). Let t ∈ TΣ(X )
and #Δ,B(t) = n. Then, (s, σ) ∈ FVΔ,B(t) if and only if there is a narrowing
derivation t

σ�≤n
Δ,B s such that s is →Δ,B-irreducible and σ is →Δ,B-normalized.

Example 2. The equational theory from Example 1 has the boundedness prop-
erty. Thus, we use Proposition 1 to get the E-variants of t=M⊕sk(K, pk(K,M)).
As t →!

Δ,B 0 we have t
id�!

Δ,B 0. Therefore, (0, id) ∈ FVΔ,B(t) and it
is the only element of the complete set of E-variants as no more general
narrowing sequences are possible. For s = X ⊕ sk(K, pk(K,Y )) we get
(i) s

id�∗
Δ,B X ⊕ Y , (ii) s�∗

{X �→Z⊕U,Y �→U},Δ,B Z, (iii) s�∗
{X �→U,Y �→Z⊕U},Δ,B Z,
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(iv) s�∗
{X �→U⊕Z1,Y �→U⊕Z2},Δ,B Z1 ⊕ Z2, and (v) s�∗

{X �→U,Y �→U},Δ,B 0, so (X ⊕
Y, id), (Z, {X �→ Z ⊕ U, Y �→ U}), (Z, {X �→ U, Y �→ Z ⊕ U}), (Z1 ⊕ Z2, {X �→
U ⊕ Z1, Y �→ U ⊕ Z2}), and (0, {X �→ U, Y �→ U}), are the E-variants. As no
more general narrowing sequences are possible, these make up a complete set
of E-variants. Note that (iv) is an instance of (i) and it is not necessary for a
minimal and complete set of variants.

Example 3. Consider again Example 1. For this theory, narrowing clearly does
not terminate because Z1 ⊕ Z2 �{Z1 �→X1⊕Z′

1, Z2 �→X1⊕Z′
2},Δ,B Z ′

1 ⊕ Z ′
2 and this

can be repeated infinitely often. However, if we always assume that we are in-
terested only in a normalized substitution, which is the case, for any narrowing
sequence obtained in the previous form, there is a one-step rewriting sequence
that provides the same result. That is, given the narrowing sequence

Z1⊕Z2�{Z1�→X1⊕Z′
1,Z2�→X1⊕Z′

2},Δ,B Z ′
1⊕Z ′

2 �{Z′
1�→X′

1⊕Z′′
1 ,Z′

2�→X′
1⊕Z′′

2 },Δ,B Z ′′
1⊕Z ′′

2

and its corresponding rewrite sequence

X1 ⊕X ′
1 ⊕ Z ′′

1 ⊕X1 ⊕X ′
1 ⊕ Z ′′

2 →Δ,B X ′
1 ⊕ Z ′′

1 ⊕X ′
1 ⊕ Z ′′

2 →Δ,B Z ′′
1 ⊕ Z ′′

2

we can also reduce it to the same normal form using only one application of (3)
and the following normalized substitution ρ = {X �→ X1 ⊕X ′

1, Y �→ Z ′′
1 ⊕ Z ′′

2 }.
The trick is that rule (3) allows combining all pairs of canceling terms and thus
gets rid of all of them at once.

4 Sufficient and Necessary Conditions for FV

Deciding whether an equational theory has the finite variant property is a non-
trivial task, since we have to decide whether we can stop generating normalized
substitution instances by narrowing for each term. Intuitively, since the theory is
convergent, we only have to focus on normalized substitutions and, since it has
the boundedness property, we can compute the variants in a bottom-up manner.
Moreover, any rewrite sequence with a normalized substitution will be captured
by a narrowing sequence leading to the same variant (i.e., irreducible term). Our
algorithm for checking that an equational theory has the finite variant property
is based on two notions: (i) a new notion called variant–preservingness (VP)
that ensures that an intuitive bottom-up generation of variants is complete; and
(ii) that there are no infinite sequences when we restrict ourselves to such intu-
itive bottom-up generation of variants (FVNS). In what follows, we show that
(V P ∧ FV NS) ⇒ FV ⇒ FV NS.

Variant–preservingness (VP) ensures that we can perform an intuitive
bottom-up1 generation of variants. The following notion is useful.
1 Note that this is not the same as innermost narrowing nor innermost narrowing up

to some bound. Consider Example 5 where innermost narrowing does not terminate
for term c(f(X), X), since it looks for an innermost narrowing redex each time.
A bottom-up generation of invariants does terminate (see Proposition 1) providing
terms c(f(X), X) and c(X ′, f(X ′)). Even in the case of innermost narrowing with a
bound, it will miss the term c(f(X), X).
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Definition 8 (Variant–pattern). Let R = (Σ,E,R) be an order-sorted
rewrite theory satisfying properties (1)–(6). We call a term f(t1, . . . , tn) a
variant–pattern if all subterms t1, . . . , tn are →R,E-irreducible. We will say a
term t has a variant–pattern if there is a variant–pattern t′ s.t. t′ =E t.

It is worth pointing out that whether a term has a variant–pattern is decid-
able, assuming a finitary and complete E-unification procedure: given a term
t, t has a variant–pattern t′ iff there is a symbol f ∈ Σ with arity k and vari-
ables X1, . . . , Xk of the appropriate top sorts and there is a substitution θ ∈
CSUE(t = f(X1, . . . , Xk)) such that θ is normalized, where t′ = f(X1, . . . , Xk)θ.
In the case of a term t rooted by a free symbol, t has a variant–pattern if it is
already a variant–pattern, i.e., every argument of the root symbol must be irre-
ducible. And, in the case of a term t rooted by an AC symbol, we only have to
consider in the previous algorithm the same AC symbol at the root of t, instead
of every symbol.

Definition 9 (Variant–preserving). Let R = (Σ,E,R) be an order-sorted
rewrite theory satisfying properties (1)–(6). We say that the theory R is variant–
preserving (VP) if for any variant–pattern t, either t is →R,E-irreducible or there
is a normalized →R,E step at the top position.

Note that a theory can have the finite variant property even if it is not variant-
preserving.

Example 4. Consider the following equational theory f(a, b,X) = c, where sym-
bol f is AC and X is a variable. The narrowing relation �R,E terminates for any
term but the theory does not have the variant-preserving property, e.g., given
the term t = f(X,Y ) and any normalized substitution θ ∈ {X �→ f(an), Y �→
f(bn, Z)} for n ≥ 2, there is no normalized reduction for tθ. However, the theory
does have the boundedness property, and therefore FV, since for any term rooted
by f (which is the only non-constant symbol), its normal form can be obtained
in at most one step.

We characterize variant–preservingness in Section 5.1. A theory that already
has the variant–preserving property, if there is no infinite E-narrowing sequence,
clearly has the finite variant property. However, if infinite E-narrowing sequences
exist, a theory may still have the finite variant property.

Example 5. Consider the equational theory f(f(X)) = X , which is well-known
to be non-terminating for narrowing, i.e.,

c(f(X), X)�{X �→f(X′)},R,E c(X ′, f(X ′))�{X′ �→f(X′′)},R,E c(f(X ′′), X ′′) · · ·

When we consider all possible instances of term c(f(X), X) for normalized
substitutions, we obtain term c(f(X), X) itself and the sequence c(f(X), X)
�{X �→f(X′)},R,E c(X ′, f(X ′)). The theory does have the boundedness property,
and therefore FV, since for any term and a normalized substitution, a bound is
the number of f symbols in the term.
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Not all the narrowing sequences are relevant for the finite variant property, as
shown in the previous example, and thus we must identify the relevant ones.

Definition 10 (Variant–preserving sequences). Let R = (Σ,E,R) be an
order-sorted rewrite theory satisfying properties (1)–(6). A rewrite sequence
t0

p1→R,E t1 · · ·
pn→R,E tn is called variant–preserving if ti−1|pi has a variant–

pattern for i ∈ {1, . . . , n} and there is no sequence t0 →m
R,E t′m such that m < n

and tn =E t′m. A narrowing sequence t0
p1,σ1� R,E t1 · · ·

pn,σn� R,E tn, σ = σ1 · · ·σn,
is called variant–preserving if σ is →R,E-normalized and t0σ

p1→R,E t1σ · · ·
pn→R,E

tn is variant–preserving.

The set of variant–preserving sequences is not computable in general. However,
we provide sufficient conditions in Section 5.

Example 6. The infinite narrowing sequence of Example 5 is not variant–
preserving, since for any finite prefix of length greater than 1 the computed
substitution is non-normalized. The only variant-preserving sequences for term
c(f(X), X) are the term itself and the one-step sequence with substitution
{X �→ f(X ′)}.

Example 7. For Example 3, the narrowing sequence

Z1⊕Z2�{Z1�→X1⊕Z′
1,Z2 �→X1⊕Z′

2},R,E Z ′
1⊕Z ′

2 �{Z′
1�→X′

1⊕Z′′
1 ,Z′

2 �→X′
1⊕Z′′

2 },R,E Z ′′
1⊕Z ′′

2

is not a variant-preserving sequence, since the alternative rewrite sequence
X1 ⊕X ′

1 ⊕ Z ′′
1 ⊕X1 ⊕X ′

1 ⊕ Z ′′
2 →R,E Z ′′

1 ⊕ Z ′′
2 is shorter.

We prove that using variant–preserving sequences is sound and complete.

Theorem 2 (Computing with variant–preserving sequences). Let R =
(Σ,E,R) be an order-sorted rewrite theory satisfying properties (1)–(6) that
also has the finite variant property. Let t ∈ TΣ(X ) and #R,E(t) = n. Then,
(s, σ) ∈ FVR,E(t) if and only if there is a variant–preserving narrowing deriva-
tion t

σ�≤n
R,E s such that s is →R,E-irreducible.

The following result provides sufficient conditions for the finite variant property.

Theorem 3 (Sufficient conditions for FV). Let R = (Σ,E,R) be an
order-sorted rewrite theory satisfying properties (1)–(6). If (i) R is variant–
preserving (VP), and (ii) there is no infinite variant–preserving narrowing se-
quence (FVNS), then R satisfies the finite variant property.

Note that variant-preservingness is not a necessary condition for FV, as shown
in Example 4. However, the absence of infinite variant–preserving narrowing
sequences is a necessary condition for FV.

Theorem 4 (Necessary condition for FV). Let R = (Σ,E,R) be an order-
sorted rewrite theory satisfying properties (1)–(6). If there is an infinite variant–
preserving narrowing sequence, thenR does not satisfy the finite variant property.
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5 Checking the Finite Variant Property

In the following, we show that the variant-preserving property is clearly check-
able, in Section 5.1, but the absence of infinite variant-preserving narrowing
sequences is not computable in general, and we approximate such property, in
Section 5.2, by a checkable one using the dependency pairs technique of [7] for
the modulo case.

5.1 Checking Variant–Preservingness

The following class of equational theories is relevant. The notion of E-descendants
(given in [5]) is a straightforward extension of the standard notion of descendant
for rules. Given t =E s and p ∈ Pos(t), we write p\\s for the E-descendants of p
in s.

Definition 11 (Upper-E-coherence). Let R = (Σ,E,R) be an order-sorted
rewrite theory satisfying properties (1)–(5). We say R is upper-E-coherent if
for all t1, t2, t3 we have t1

p→R,E t2, t1 =E t3, p > Λ, and p\\t3 = ∅ implies that

for all p′ ≤ p such that p′\\t3 = ∅, there exist t′3, t4, t5 such that t1
p′

→R,E t′3,
t2 →∗

R,E t4, t′3 →∗
R,E t5, and t4 =E t5.

Assuming E-coherence, checking upper-E-coherence consists of taking term t for
each equation t = t′ ∈ E (or reverse), finding a position p ∈ Pos(t) s.t. p > Λ

and a substitution σ s.t. tσ|p is →R,E-reducible and then, let p = p1. · · · .pk, for
i ∈ {1, . . . , k− 1}, tσ|pi must be →R,E-reducible. In general, upper-E-coherence
implies E-coherence but not vice versa, as shown below.

Example 8. Let us consider the rewrite theory R = {g(f(X)) → d, a→ c} and
E = {g(f(f(a))) = g(b)}. For the term t = g(f(f(a))), subterm a is reducible,
t =E g(b), but subterms f(f(a)) and f(a) are not reducible and thus the theory
is not upper-E-coherent. However, the theory is trivially E-coherent because of
the use of symbol g at the top of both sides of the equation.

Now, we can provide an algorithm for checking variant–preservingness.

Theorem 5 (Checking Variant–preservingness). Let R = (Σ,E,R) be an
order-sorted rewrite theory satisfying properties (1)–(6) that is upper-E-coherent.
R has the variant–preserving property iff for all l → r, l′ → r′ ∈ R (possibly
renamed s.t. Var(l)∩Var(l′) = ∅) and for all X ∈ Var(l), the term t = lθ, where
θ = {X �→ l′} such that θ is an order-sorted substitution, satisfies that either
(i) t does not have a variant–pattern, or (ii) otherwise there is a normalized
reduction on t.

In [5], the variant-preservingness property for the exclusive or theory is proved.
The upper-E-coherence condition is necessary, as shown below.

Example 9. The theory of Example 8 satisfies the conditions of Theorem 5 but
it is not variant–preserving. That is, g(f(a)) does not have a variant–pattern.
However, g(b) is a variant–pattern, it is reducible, but it is not →R,E-reducible
with a normalized substitution.
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5.2 Checking Finiteness of Variant–Preserving Narrowing
Sequences

First, we need to extend the notion of defined symbol. An equation u = v is
called collapsing if v ∈ X or u ∈ X . We say a theory is collapse-free2 if all its
equations are non-collapsing.

Definition 12 (Defined Symbols for Rewriting Modulo Equations). [7]
Let R = (Σ,E,R) be an order-sorted rewrite theory with E collapse-free. Then
the set of defined symbols D is the smallest set such that D = {root(l) | l → r ∈
R} � {root(v) | u = v ∈ E or v = u ∈ E, root(u) ∈ D}.

In order to correctly approximate the dependency relation between defined sym-
bols in the theory, we need to extend the equational theory in the following
way.

Definition 13 (Adding Instantiations). [7] Given an order-sorted rewrite
theory R = (Σ,E,R), let InsE(R) be a set containing only rules of the form
lσ → rσ (where σ is a substitution and l → r ∈ R). InsE(R) is called an
instantiation of R for the equations E iff InsE(R) is the smallest set such that:
(a) R ⊆ InsE(R), (b) for all l → r ∈ R, all v such that u = v ∈ E or v = u ∈ E,
and all σ ∈ CSUE(v = l), there exists a rule l′ → r′ ∈ InsE(R) and a variable
renaming ν such that lσ =E l′ν and rσ =E r′ν.

Note that when E = ∅ or E contains only AC or C axioms, InsE(R) = R.
Dependency pairs are obtained as follows. Since we are dealing with the modulo
case, it will be notationally more convenient to use terms directly in dependency
pairs, without the usual capital letters for the top symbols.

Definition 14 (Dependency Pair). [1] Let R = (Σ,E,R) be an order-sorted
rewrite theory. If l → C[g(t1, . . . , tm)] is a rule of InsE(R) with C a context and
g a defined symbol in InsE(R), then 〈l, g(t1, . . . , tm)〉 is called a dependency
pair of R.

Example 10 (Abelian Group). This presentation of Abelian group theory, called
R∗ = (Σ,E,R), has been shown to satisfy the finite variant property in [2]. The
operators Σ are ∗ , ( )−1, and 1. The set of equations E consists of associativity
and commutativity for ∗. The rules R are:

x ∗ 1 → x (8)
1−1 → 1 (9)

x ∗ x−1 → 1 (10)
x−1 ∗ y−1 → (x ∗ y)−1 (11)

(x ∗ y)−1 ∗ y → x−1 (12)

x−1−1 → x (13)
(x−1 ∗ y)−1 → x ∗ y−1 (14)
x ∗ (x−1 ∗ y) → y (15)

x−1 ∗ (y−1 ∗ z) → (x ∗ y)−1 ∗ z (16)
(x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z (17)

2 Note that regularity does not imply collapse-free, e.g. equation 1 of Example 1 is
regular but also collapsing.
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The AC-dependency pairs for this rewrite theory are as follows. The other rules
not mentioned here do not give rise to an AC-dependency pair3.

(11)a: 〈x−1 ∗ y−1 , (x ∗ y)−1〉 (11)b: 〈x−1 ∗ y−1 , x ∗ y〉
(14)a: 〈(x−1 ∗ y)−1 , x ∗ y−1〉 (14)b: 〈(x−1 ∗ y)−1 , y−1〉
(16)a: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1 ∗ z〉 (16)b: 〈x−1 ∗ y−1 ∗ z , (x ∗ y)−1〉
(16)c: 〈x−1 ∗ y−1 ∗ z , x ∗ y〉 (12)a: 〈(x ∗ y)−1 ∗ y , x−1〉
(17)a: 〈(x ∗ y)−1 ∗ y ∗ z , x−1 ∗ z〉 (17)b: 〈(x ∗ y)−1 ∗ y ∗ z , x−1〉

The relevant notions are chains of dependency pairs and the dependency graph.

Definition 15 (Chain). [1] Let R = (Σ,E,R) be an order-sorted rewrite the-
ory. A sequence of dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of R is an R-chain
if there is a substitution σ such that tjσ →∗

R,E sj+1σ holds for every two con-
secutive pairs 〈sj , tj〉 and 〈sj+1, tj+1〉 in the sequence.

Definition 16 (Dependency Graph). [1] Let R = (Σ,E,R) be an order-
sorted rewrite theory. The dependency graph of R is the directed graph whose
nodes (vertices) are the dependency pairs of R and there is an arc (directed
edge) from 〈s, t〉 to 〈u, v〉 if 〈s, t〉〈u, v〉 is a chain.

As in the dependency pair technique [1], the variant–preserving chains are not
computable in general and an approximation must be performed. The notion
of connectable terms as defined in [1] can be easily extended to the variant–
preserving case, and the estimated dependency graph [1] can be computed using
the CAP and REN procedures [1]. We omit this in the paper for lack of space
but such an estimated dependency graph has been used in all examples.

Example 11. In [5], the dependency graph for Example 10 is shown. It was cre-
ated with AProVE. We see that there are self-loops on (11)b, (14)b, (16)a, (16)c
and (17)a. (11)a has a loop with (14)a, (14)a has a loop with (16)b, and so on.
It is a very highly connected graph.

In order to correctly approximate the bound for the finite variant property, we
include rules without defined symbols in their right-hand sides as extra depen-
dency pairs, that we call dummy.

Definition 17 (Dummy dependency pairs). Let R = (Σ,E,R) be an order-
sorted rewrite theory. If for a rule l → r ∈ R the right-hand side r does not
contain a defined symbol then 〈l, r〉 is a dummy dependency pair of R.

Example 12 (Abelian group variant–preserving dependency pairs). Building
upon the AC-dependency pairs computed in Example 10 we need to add these
dummy dependency pairs, to the set of dependency pairs from the prior example:

(8)a : 〈x ∗ 1 , x〉 (9)a : 〈1−1 , 1〉 (10)a : 〈x ∗ x−1 , 1〉
(13)a : 〈x−1−1

, x〉 (15)a : 〈x ∗ x−1 ∗ y , y〉
3 We have used the AProVE tool [8] to generate the dependency pairs. AProVE first

applies the coherence algorithm of [7] to this example which is unnecessary here and
thus we drop the dependency pairs created that way.
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Fig. 1. Variant–preserving dependency graph

Definition 18 (Cycle). [1] A nonempty set P of dependency pairs is called
a cycle if, for any two dependency pairs 〈s, t〉, 〈u, v〉 ∈ P, there is a nonempty
path from 〈s, t〉 to 〈u, v〉 and from 〈u, v〉 to 〈s, t〉 in the dependency graph that
traverses dependency pairs from P only.

As already demonstrated in the previous section, not all the rewriting (narrow-
ing) sequences are relevant for the finite variant property.

Definition 19 (Variant–preserving chain). Let R = (Σ,E,R) be an order-
sorted rewrite theory. A chain of dependency pairs 〈s1, t1〉〈s2, t2〉 · · · 〈sn, tn〉 of
R is a variant–preserving chain if there is a substitution σ such that σ is
→R,E-normalized and the following rewrite sequence obtainable from the chain
s1σ →R,E C1[t1]σ →∗

R,E C1[s2]σ →R,E C1[C2[t2]]σ →∗
R,E · · · →∗

R,E

C1[C2[· · ·Cn−1[sn]]]σ →R,E C1[C2[· · ·Cn−1[Cn[tn]]]]σ is variant–preserving.

The notions of a cycle, the dependency graph and the estimated dependency
graph are easily extended to the variant–preserving case. The following straight-
forward result approximates the absence of infinite narrowing sequences.

Proposition 2 (Checking Finiteness of the VP Narrowing sequences).
Let R = (Σ,E,R) be a variant–preserving, order-sorted rewrite theory. Let E
contain only linear, non-collapsing equations. If the estimated dependency graph
does not contain any variant–preserving cycle, then there are no infinite variant–
preserving narrowing sequences.

Note that the conditions that the axioms are non-collapsing and linear are nec-
essary for completeness of the dependency graph, we refer the reader to [7] for
explanations.

Example 13 (Abelian group variant–preserving dependency pair graph). We can
show the variant–preserving dependency graph of Example 12 in Figure 1. As
you can see in the picture, all the cycles have disappeared, because they involved
non-normalized substitutions, or terms without a variant–pattern, or could be
shortened.

Finally, we are able to provide an approximation result for the absence of infinite
variant–preserving narrowing sequences. Also, we are able to compute a bound
for each defined symbol thanks to a notion of rank.
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Definition 20 (Rank). The rank of a dependency pair p, denoted rankR,E(p),
is the length of the longest variant–preserving chain starting from p. For a
rule l → r ∈ R giving rise to dependency pairs dp1, dp2, . . . , dpn, its rank is
rankR,E(l → r) = (rankR,E(dp1)−1)+(rankR,E(dp2)−1)+. . .+(rankR,E(dpn)−
1) + 1. For a defined symbol f , its rank is rankR,E(f) = max{rankR,E(l → r) |
l → r ∈ R, root(l)=f}. For a term t, its rank is rankR,E(t)=Σf∈D(rankR,E(f)∗
#f (t)) where D is the set of defined symbols in R and #f (t) is the number of
appearances of f in t.

Any cycle in the variant–preserving dependency graph of course gives the rank
∞ to all dependency pairs involved in the cycle. For any symbol f it is obvious
that rankR,E(f) ≥ 1 iff f is a defined symbol.

Note that the dependency graph is not necessarily transitive for purposes of
rank calculation.

Example 14 (Abelian group variant–preserving dependency pair graph rank).
Consider again Example 13. The rank for the dependency pairs (17)a and (16)a
is 2, the rank of all other dependency pairs is 1. Note that (17)a has rank 2 as
according to Example 13 there is no variant–preserving chain of length 3 as in
this case the graph is not transitive. Thus the rank of rule (17) is 2, which means
that the rank of ∗ is 2 and the rank of −1 is 1. Thus the rank for any term t is
(#∗(t)× 2) + #−1(t).

In [5], we show VP for Abelian group and Diffie-Hellman, and the finite variant
property for Diffie-Hellman. The proof of our final result for this section is trivial
by Theorem 4, since if the rank of all symbols in the signature is finite, there are
no cycles in the estimated dependency graph and we know for sure that there is
no infinite variant-preserving rewrite sequence.

Theorem 6 (Approximation for the finite variant property). Let R =
(Σ,E,R) be a variant–preserving, order-sorted rewrite theory. Let E contain
only linear, non-collapsing equations. If for all defined symbols f we have that
rankR,E(f) is finite, then R has the finite variant property.

6 Conclusions

We have recalled Comon-Lundh and Delaune’s finite variant property (FV) and
summarized some of its applications. Our main two contributions have been: (i)
giving new necessary conditions and new sufficient conditions for FV; and (ii)
deriving from these conditions an algorithm for checking FV. To the best of our
knowledge, no such algorithms were known before. The algorithms can certainly
be improved. For example, more accurate ways of computing the effective de-
pendency graph will help the checking of FV. Regarding implementations, we
plan to implement these algorithms for frequently used equational axioms B
such as ∅, C, AC, and their combinations, so that they can be used in conjunc-
tion with the already-implemented variant narrowing algorithm described in [6]
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to derive finitary unification algorithms. This will provide a key component of
the Maude-NPA [4], a tool for the analysis of cryptographic protocols modulo
algebraic properties.
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Abstract. This paper defines an expressive class of constrained equa-
tional rewrite systems that supports the use of semantic data structures
(e.g., sets or multisets) and contains built-in numbers, thus extending
our previous work presented at CADE 2007 [6]. These rewrite systems,
which are based on normalized rewriting on constructor terms, allow the
specification of algorithms in a natural and elegant way. Built-in num-
bers are helpful for this since numbers are a primitive data type in every
programming language. We develop a dependency pair framework for
these rewrite systems, resulting in a flexible and powerful method for
showing termination that can be automated effectively. Various power-
ful techniques are developed within this framework, including a subterm
criterion and reduction pairs that need to consider only subsets of the
rules and equations. It is well-known from the dependency pair frame-
work for ordinary rewriting that these techniques are often crucial for a
successful automatic termination proof. Termination of a large collection
of examples can be established using the presented techniques.

1 Introduction

Term rewriting provides a powerful framework for specifying algorithms in the
form of rewrite systems that operate on data structures generated using con-
structors. Many algorithms operate on semantic data structures like finite sets,
multisets, or sorted lists (e.g., using Java’s collection classes or the OCaml ex-
tension Moca [3]). Constructors used to generate such data structures satisfy
certain properties, i.e., they are not free. For example, finite sets can be gener-
ated using the empty set, singleton sets, and set union. Set union is associative
(A), commutative (C), idempotent (I), and has the empty set as unit element
(U). Such semantic data structures can be modeled using equational axioms. For
sorted lists of numbers we also need to use arithmetic constraints on numbers
for specifying relations on constructors.

Building upon our earlier work [6], this paper introduces constrained equa-
tional rewrite systems which have three components: (i) R, a set of constrained
rewrite rules operating on semantic data structures, (ii) S, a set of constrained
rewrite rules on constructors, and (iii) E , a set of equations on constructors.
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Here, (ii) and (iii) are used for modeling semantic data structures where nor-
malization with S yields normal forms that are unique up to equivalence w.r.t.
E . The constraints for R and S are quantifier-free formulas from Presburger
arithmetic. Rewriting in a constrained equational rewrite system is done using a
combination of normalized rewriting [19] with validity checking of instantiated
constraints. Notice that the OCaml extension Moca [3] uses the same strategy
for semantic data structures. For a further generalization where the rules from
R are allowed to contain conditions in addition to constraints we refer to [7].

Example 1. This example shows a mergesort algorithm that takes a set and
returns a sorted list of the elements of the set. For this, sets are constructed
using ∅, 〈·〉 (a singleton set) and ∪, where we use the following sets S and E .

E = { x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z, x ∪ y ≈ y ∪ x }
S = { x ∪ ∅ → x, x ∪ x→ x }

The mergesort algorithm is given by the following constrained rewrite rules.
merge(nil, y) → y merge(x, nil) → x

merge(cons(x, xs), cons(y, ys)) → cons(y,merge(cons(x, xs), ys)) �x > y�
merge(cons(x, xs), cons(y, ys)) → cons(x,merge(xs, cons(y, ys))) �x �> y�

msort(∅) → nil msort(〈x〉) → cons(x, nil)
msort(x ∪ y) → merge(msort(x),msort(y))

If rewriting modulo E ∪ S (or E ∪ S-extended rewriting) is used with these
constrained rewrite rules, then the resulting rewrite relation does not terminate
since msort(∅) ∼E∪S msort(∅ ∪ ∅) →R merge(msort(∅),msort(∅)). ♦
An important property of constrained equational rewrite systems is termination.
While automated termination methods work well for establishing termination of
rewrite systems defined on free data structures, they do not easily extend to
semantic data structures. Dependency pair methods for showing termination
of AC-rewrite systems have been developed [17,20], and [9] generalized the de-
pendency pair method to equational rewriting under the restriction that the
equations are collapse-free (thus disallowing idempotency and unit elements),
regular (i.e., the same variables occur on both sides), and linear.

In this paper, we extend the dependency pair framework [11] to constrained
equational rewrite systems and present various termination techniques within
this framework. This paper is a significant improvement over [6] in two directions:

1. The rewrite relation is a strict generalization of the rewrite relation con-
sidered in [6] since numbers are built-in. The resulting class of rewrite sys-
tems is highly expressive since domain-specific knowledge about numbers is
available. This is helpful since most functional and imperative programming
languages include numbers as a primitive data type. This paper only allows
natural numbers, but an extension to integers is currently being developed.

2. Even if restricted to the rewrite relation considered in [6], the termination
techniques presented in this paper strictly generalize the corresponding tech-
niques presented in our earlier work since we present the following termina-
tion techniques that are not yet available in [6]:
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– Section 4.2 presents a subterm criterion in the spirit of [15], which is a
relatively simple yet surprisingly powerful termination technique.

– In Section 4.3 we show that a technique based on reduction pairs has to
consider only subsets of R, S, and E as determined by the dependen-
cies between function symbols. It is well-known from ordinary rewriting
[13,15] that this is often crucial for automatic termination proofs.

– Section 4.4 shows that polynomial interpretations with negative coeffi-
cients are applicable in this setting. We can thus also argue about ter-
mination due to a bounded increase, which is so far only possible for
innermost termination of ordinary rewriting [14].

This paper is organized as follows. In Section 2, the rewrite relation is de-
fined. In Section 3, we present a characterization of termination of constrained
equational rewrite systems that is based on dependency pairs, and we extend
the dependency pair framework to constrained equational rewriting. Section 4
discusses various termination techniques within this framework, including the
improvements discussed above. The proofs omitted from this paper can be found
in the full version [5], which also contains a large collection of examples.

2 Normalized Equational Rewriting with Constraints

We assume familiarity with the concepts and notations of term rewriting [2]. We
consider terms over two sorts, nat and univ, and we assume an initial signature
FPA = {0, 1,+} with sorts 0, 1 : nat and + : nat × nat → nat. Properties of
natural numbers are modelled using the set PA = {x+(y+z) ≈ (x+y)+z, x+y ≈
y+x, x+0 ≈ x} of equations. For each k ∈ N−{0}, we denote the term 1+. . .+1
(with k occurrences of 1) by k.

We then extend FPA by a finite sorted signature F . We omit stating the sorts
explicitly in examples if they can be inferred. In the following we assume that
all terms, contexts, context replacements, substitutions, rewrite rules, equations,
etc. are sort correct. For any syntactic construct c we let V(c) denote the set of
variables occurring in c. Similarly, F(c) denotes the function symbols occurring
in c. The root symbol of a term s is denoted by root(s). The root position of a
term is denoted by λ. For an arbitrary set E of equations and terms s, t we write
s →E t iff there exist an equation u ≈ v ∈ E , a substitution σ, and a position
p ∈ Pos(s) such that s|p = uσ and t = s[vσ]p. The symmetric closure of →E is
denoted by ./E , and the reflexive transitive closure of ./E is denoted by ∼E . For
two terms s, t we write s ∼>λ

E t iff s = f(s1, . . . , sn) and t = f(t1, . . . , tn) such
that si ∼E ti for all 1 ≤ i ≤ n, i.e., if equations are only applied below the root.

An atomic PA-constraint has the form % (truth), s 0 t (equality) or s > t
(greater) for terms s, t ∈ T (FPA,V). The set of PA-constraints is defined to be
the closure of the set of atomic PA-constraints under ¬ (negation) and ∧ (con-
junction). Validity (the constraint is true for all assignments) and satisfiability
(the constraint is true for some assignment) of PA-constraints are defined as
usual, where we take the set of natural numbers as universe of concern. We also
speak of PA-validity and PA-satisfiability. These properties are decidable [22].
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We consider constrained rewrite rules, which are ordinary rewrite rules to-
gether with a PA-constraint C, i.e., expressions of the form l → r�C� for
terms l, r ∈ T (F ∪ FPA,V) and a PA-constraint C such that root(l) ∈ F and
V(r) ⊆ V(l). In a rule l → r�%� the constraint % is omitted. For a set R of
constrained rewrite rules, the set of defined symbols is given by D(R) = {f | f =
root(l) for some l → r�C� ∈ R}. The set of constructors is C(R) = F − D(R).
Notice that according to this definition, the symbols from FPA are considered
to be neither defined symbols nor constructors.

Properties of non-free data structures are modeled using constructor equations
and constrained constructor rules. A constructor equation has the form u ≈
v with u, v ∈ T (C(R),V) such that u and v are linear and V(u) = V(v). A
constrained constructor rule is a constrained rewrite rule l → r�C� with l, r ∈
T (C(R),V).

Constructor equations and constrained constructor rules give rise to the fol-
lowing rewrite relation, which is based on extended rewriting [21] and requires
that the PA-constraint of the constrained constructor rule is PA-valid after being
instantiated by the matcher used for rewriting.

Definition 2 (Constructor Rewrite Relation, PA-based Substitutions).
Let E be a finite set of constructor equations and let S be a finite set of con-
strained constructor rules. Then s→PA‖E\S t iff there exist a rule l → r�C� ∈ S,
a position p ∈ Pos(s), and a PA-based substitution σ (i.e., σ(x) ∈ T (FPA,V)
for all variables x of sort nat) such that

(i) s|p ∼E∪PA lσ, (ii) Cσ is PA-valid, and (iii) t = s[rσ]p.

The reason for restricting substitutions to be PA-based is that then PA-
validity of the instantiated PA-constraint can be decided by a decision procedure
for PA-validity. We write s →>λ

PA‖E\S t iff s→PA‖E\S t at a position p �= λ, and

s→>λ
PA‖E\S

!→ t iff s reduces to t in zero or more →>λ
PA‖E\S steps such that t is a

normal form w.r.t. →>λ
PA‖E\S .

We combine constrained rewrite rules, constrained constructor rules, and con-
structor equations into a constrained equational system. These systems are a
strict generalization of the equational systems considered in [6] since they al-
low the use of PA-constraints. The system given in Example 1 is a constrained
equational system.

Definition 3 (Constrained Equational System (CESs)). A constrained
equational system (CES) has the form (R,S, E) for finite sets R of constrained
rewrite rules, S of constrained constructor rules, and E of constructor equations
such that

1. S is right-linear (i.e., r is linear for all l → r�C� ∈ S),
2. ∼E∪PA commutes over →PA‖E\S (i.e., the inclusion ∼E∪PA ◦ →PA‖E\S ⊆
→PA‖E\S ◦ ∼E∪PA is satisfied), and

3. →PA‖E\S is convergent modulo ∼E∪PA (i.e., →PA‖E\S is terminating and
the inclusion ←∗

PA‖E\S ◦ →∗
PA‖E\S ⊆ →∗

PA‖E\S ◦ ∼E∪PA ◦ ←∗
PA‖E\S is

satisfied).
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Here, the commutation property intuitively states that if s ∼E∪PA s′ and
s′ →PA‖E\S t′, then s →PA‖E\S t for some t ∼E∪PA t′. If S does not already
satisfy this property then it can be achieved by adding extended rules [21,9].

Some commonly used data structures and their specifications in our framework
are listed below, where 〈·〉 creates a singleton set or multiset, respectively. This
list should not be considered exhaustive, i.e., there are further semantic data
structures satisfying the conditions of Definition 3. The rule marked by “(∗)” is
needed to make ∼E∪PA commute over →PA‖E\S .

Constructors E S
Sorted nil, cons cons(x, cons(y, zs))
lists → cons(y, cons(x, zs))�x > y�

Multisets ∅, ins ins(x, ins(y, zs))
≈ ins(y, ins(x, zs))

Multisets ∅, 〈·〉,∪ x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z x ∪ ∅ → x
x ∪ y ≈ y ∪ x

Sets ∅, ins ins(x, ins(y, zs)) ins(x, ins(x, ys))→ ins(x, ys)
≈ ins(y, ins(x, zs))

Sets ∅, 〈·〉,∪ x ∪ (y ∪ z) ≈ (x ∪ y) ∪ z x ∪ ∅ → x x ∪ x→ x
x ∪ y ≈ y ∪ x (x ∪ x) ∪ y → x ∪ y (∗)

Sorted ∅, ins ins(x, ins(y, zs)
sets → ins(y, ins(x, zs))�x > y�

ins(x, ins(y, zs))
→ ins(x, zs)�x � y�

The rewrite relation corresponding to a CES is an extension of the normalized
rewrite relation used in [6], which in turn is based on [19]. Notice that the redex
is normalized by →>λ

PA‖E\S before the matcher σ is considered. Also notice that
the restriction to PA-based substitution enforces a kind of innermost rewriting
for function symbols with resulting sort nat.

Definition 4 (Rewrite Relation). Let (R,S, E) be a CES and let s, t be
terms. Then s

S→PA‖E\R t iff there exist a constrained rewrite rule l → r�C� ∈ R,
a position p ∈ Pos(s), and a PA-based substitution σ such that

(i) s|p →>λ
PA‖E\S

!→ ◦ ∼>λ
E∪PA lσ, (ii) Cσ is PA-valid, and (iii) t = s[rσ]p.

Example 5. Continuing Example 1 we illustrate S→PA‖E\R. Notice that we add
the rule (x ∪ x) ∪ y → x ∪ y to S as indicated in the table above. Con-
sider the term t = msort(〈1〉 ∪ (〈3〉 ∪ 〈1〉)) and the substitution σ = {x �→
〈3〉, y �→ 〈1〉}. We get t→>λ

PA‖E\S
!→ msort(〈1〉 ∪ 〈3〉) ∼>λ

E∪PA msort(x ∪ y)σ and

thus t
S→PA‖E\R merge(msort(〈3〉),msort(〈1〉)). Continuing the reduction of this

term for two more S→PA‖E\R steps yields merge(cons(3, nil), cons(1, nil)). Using
σ = {x �→ 3, xs �→ nil, y �→ 1, ys �→ nil} and the first rule for merge this
term reduces to cons(1,merge(nil, cons(3, nil)) because the instantiated constraint
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(x > y)σ = (3 > 1) is PA-valid. With one further S→PA‖E\R step we finally obtain
the term cons(1, cons(3, nil)). ♦

3 Dependency Pairs

In the following, we extend the dependency pair method in order to show termi-
nation of rewriting with CESs. The definition of a dependency pair is essentially
the well-known one [1], with the only difference that the dependency pair inher-
its the constraint of the rule that it is created from. As usual, we introduce a
signature F �, containing for each function symbol f ∈ D(R) the function symbol
f � with the same arity and sorts as f . For a term t = f(t1, . . . , tn) we denote the
term f �(t1, . . . , tn) by t�, and for a non-trivial context D = f(t1, . . . , E, . . . , tn)
(where E is also a context) the context f �(t1, . . . , E, . . . , tn) is denoted by D�.

Definition 6 (Dependency Pairs). Let (R,S, E) be a CES. The dependency
pairs of R are DP(R) = {l� → t��C� | t is a subterm of r with root(t) ∈ D(R)
for some l → r�C� ∈ R}.

In order to verify termination we rely on the notion of chains. Intuitively, a
dependency pair corresponds to a recursive call, and a chain represents a possible
sequence of calls in a reduction w.r.t. S→PA‖E\R. In the following we always
assume that different (occurrences of) dependency pairs are variable disjoint,
and we consider substitutions whose domain may be infinite. Additionally, we
assume that all substitutions have T (F ∪ FPA,V) as codomain.

Definition 7 ((Minimal) (P ,R,S, E)-Chains). Let (R,S, E) be a CES and
let P be a set of dependency pairs. A (possibly infinite) sequence of dependency
pairs s1 → t1�C1�, s2 → t2�C2�, . . . from P is a (P ,R,S, E)-chain iff there
exists a PA-based substitution σ such that tiσ

S→PA‖E\R→∗ ◦→>λ
PA‖E\S

!→ ◦ ∼>λ
E∪PA

si+1σ and the instantiated PA-constraint Ciσ is PA-valid for all i ≥ 1. The
above (P ,R,S, E)-chain is minimal iff tiσ does not start an infinite S→PA‖E\R-
reduction for any i ≥ 1.

Here, S→PA‖E\R→∗ corresponds to reductions occurring strictly below the root of tiσ

(notice that root(ti) ∈ F �), and →>λ
PA‖E\S

!→ ◦ ∼>λ
E∪PA corresponds to normalization

and matching before applying si+1 → ti+1�Ci� at the root position.

Example 8. This example is a variation of an example in [23], modified to op-
erate on sets and to use built-in natural numbers. Sets are modelled using the
constructors ∅ and ins as in Section 2 and the function nats is defined so that
nats(x, y) returns the set {z | x ≤ z ≤ y}.

inc(∅) → ∅ inc(ins(x, ys)) → ins(x + 1, inc(ys))
nats(0, 0) → ins(0, ∅) nats(0, y + 1) → ins(0, nats(1, y + 1))

nats(x + 1, 0) → ∅ nats(x + 1, y + 1) → inc(nats(x, y))
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We get four dependency pairs in DP(R).

inc�(ins(x, ys)) → inc�(ys) (1)
nats�(0, y + 1) → nats�(1, y + 1) (2)

nats�(x + 1, y + 1) → inc�(nats(x, y)) (3)
nats�(x + 1, y + 1) → nats�(x, y) (4)

Using the fourth dependency pair twice, we can construct the (DP(R),R,S, E)-
chain nats�(x + 1, y + 1) → nats�(x, y), nats�(x′ + 1, y′ + 1) → nats�(x′, y′) by
considering the PA-based substitution σ = {x→ 1, y → 1, x′ → 0, y′ → 0}. ♦
Using chains, we obtain the following characterization of termination. This is
the key result of the dependency pair approach. The proof is similar to the case
of ordinary rewriting and can be found in the full version of this paper [5].

Theorem 9. Let (R,S, E) be a CES. Then S→PA‖E\R is terminating if and only
if there are no infinite minimal (DP(R),R,S, E)-chains.

In the next section we present a number of techniques for showing absence of
infinite chains. In order to show soundness of these techniques independently,
and in order to obtain flexibility on the order in which these techniques are
applied, we follow the spirit of [11] and use a dependency pair framework for
the termination analysis of CESs. This framework operates on DP problems
(P ,R,S, E), where P is a finite set of dependency pairs and (R,S, E) is a CES.
DP problems are transformed using DP processors. Here, a DP processor is
a function that takes a DP problem as input and returns a finite set of DP
problems as output. The DP processor Proc is sound iff for all DP problems
(P ,R,S, E) with an infinite minimal (P ,R,S, E)-chain there exists a DP problem
(P ′,R′,S′, E ′) ∈ Proc(P ,R,S, E) with an infinite minimal (P ′,R′,S′, E ′)-chain.

For a termination proof of the CES (R,S, E) we now start with the initial DP
problem (DP(R),R,S, E) and recursively apply sound DP processors. If all re-
sulting DP problems have been transformed into the empty set, then termination
has been shown.

4 DP Processors

This section introduces various sound DP processors. Section 4.1 introduces the
estimated dependency graph, which determines which dependency pairs may
potentially follow each other in a chain. Section 4.2 presents a subterm criterion
in the spirit of [15]. The DP processor of Section 4.3 uses PA-reduction pairs
in order to remove dependency pairs. It makes use of the dependencies between
function symbols and thus needs to consider only subsets of R, S, and E . Finally,
Section 4.4 shows how polynomial interpretations with negative coefficients can
be used as PA-reduction pairs. The DP processors presented here are strictly
more powerful than the corresponding DP processors presented in our previous
work [6]. It is well-known from ordinary rewriting that the refined techniques
are often crucial for a successful automatic termination proof [13,15]. Additional
DP processors are presented in [5].
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4.1 Estimated Dependency Graphs

The DP processor introduced in this section decomposes a DP problem into
several independent DP problems. The processor relies on the notion of estimated
dependency graphs in order to determine which dependency pairs may potentially
follow each other in a chain. Estimated dependency graphs are also used in the
dependency pair method for ordinary rewriting [1].

To estimate whether the dependency pair s1 → t1�C1� may be followed by the
dependency pair s2 → t2�C2� in a chain, subterms of t1 which might be reduced
by S→PA‖E\R are abstracted by a fresh variable. Then it is checked whether the
term obtained from t1 in this way and s2 are E ∪ S ∪ PA-unifiable.

Definition 10 (Estimated Dependency Graphs). Let (P ,R,S, E) be a DP
problem. The estimated (P ,R,S, E)-dependency graph EDG(P ,R,S, E) has the
dependency pairs in P as nodes and there is an arc from s1 → t1�C1� to s2 →
t2�C2� iff cap(t1) and s2 are E ∪ S ∪ PA-unifiable with a PA-based unifier μ
such that s1μ and s2μ are normal forms w.r.t. →>λ

PA‖E\S and C1μ and C2μ are
PA-valid. Here, cap is defined by1

cap(x) =

{
x if x is a variable of sort nat
y if x is a variable of sort univ

cap(f(t1, . . . , tn)) =

{
f(cap(t1), . . . ,cap(tn)) if f �∈ D(R)
y if f ∈ D(R)

where y is the next variable in an infinite list y1, y2, . . . of fresh variables.

It can be shown that this estimate is correct, i.e., if s1 → t1�C1� may potentially
be followed by s2 → t2�C2� in a (P ,R,S, E)-chain, then there is a corresponding
arc in EDG(P ,R,S, E). Computing EDG is still hard in general and an imple-
mentation could use weaker estimates.

Notice that every infinite (P ,R,S, E)-chain contains an infinite tail that stays
within one strongly connected component (SCC) of EDG(P ,R,S, E), and it is
thus sufficient to prove the absence of infinite chains for all SCCs separately.

Example 11. Recall Example 8 and the dependency pairs (1)–(4). We obtain the
following estimated dependency graph EDG(DP(R),R,S, E).

(1)(2) (3)(4)

The graph contains two SCCs and it thus suffices to consider the DP problems
({(1)},R,S, E) and ({(2), (4)},R,S, E) separately. ♦
1 The full version of this paper [5] considers a slightly refined estimation based on the

function tcap to abstract subterms that might be reduced, where tcap is similar
to the function of the same name used for ordinary rewriting in [12].
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Theorem 12 (DP Processor Based on EDG). Let Proc be the DP processor
with Proc(P ,R,S, E) = {(P1,R,S, E), . . . , (Pn,R,S, E)}, where P1, . . . ,Pn are
the SCCs of EDG(P ,R,S, E).2 Then Proc is sound.

4.2 Subterm Criterion

The subterm criterion [15] is a relatively simple technique which is none the less
surprisingly powerful. In contrast to the DP processor introduced later in Section
4.3, it only needs to consider the dependency pairs in P and no rules from R
and S or equations from E when operating on a DP problem (P ,R,S, E). The
subterm criterion can thus be used to easily handle many DP problems that do
not require the more powerful DP processor introduced in Section 4.3.

For ordinary rewriting, the subterm criterion applies a simple projection [15]
which collapses a term f �(t1, . . . , tn) to one of its direct subterms.

Definition 13 (Simple Projections). A simple projection is a function π
that assigns to every f � ∈ F � with n arguments a position i ∈ {1, . . . , n}. The
function that maps f �(t1, . . . , tn) to tπ(f�) is also denoted by π.

For ordinary rewriting the subterm criterion works as follows [15]. If, after ap-
plying a simple projection, the right-hand side is a subterm of the left-hand side
for all dependency pairs, then all dependency pairs where this subterm relation
is strict may be deleted from a DP problem. Crucial for this is the fact that the
syntactic subterm relation � is well-founded.

Notice that the subterm relation modulo ∼E∪PA is not well-founded since PA
is collapsing. Thus, the subterm criterion in our framework uses more sophisti-
cated subterm relations, depending on the sorts of the terms. For terms from
T (FPA,V) we use a semantic subterm relation, which also makes use of the
constraints that are attached to the dependency pairs.

Definition 14 (Subterms for Sort nat). Let s, t ∈ T (FPA,V) and let C be a
PA-constraint. Then s�C��nat t�C� iff C ⇒ s > t is PA-valid and s�C��nat t�C�
iff C ⇒ s ≥ t is PA-valid.

For example, x�x ≥ y+1��naty�x ≥ y+1� since x ≥ y+1 ⇒ x > y is PA-valid.
If a term s has sort univ, then we take the subterm relation modulo ∼E∪PA.

Thus, if s, t are terms such that s has sort univ and t has sort univ or nat, then
t is a subterm of s iff there exist terms s′, t′ with s ∼E∪PA s′ and t′ ∼E∪PA t
such that t′ is a syntactic subterm of s′.

Definition 15 (Subterms for Sort univ). Let (R,S, E) be a CES and let s, t
be terms such that s has sort univ and t is arbitrary. Then t is a strict subterm
of s, written s�univ t, iff s ∼E∪PA ◦� ◦ ∼E∪PA t. The term t is a subterm of s,
written s �univ t, iff s �univ t or s ∼E∪PA t.

2 Notice, in particular, that Proc(∅,R,S ,E) = ∅.
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The relation �univ is not well-founded in general. Thus, in order to make this
relation well-founded, we require E to be size preserving. All data structures
given in Section 2 satisfy this property.

Definition 16 (Size Preserving). Let (R,S, E) be a CES. Then E is size
preserving iff |u| = |v| for all u ≈ v ∈ E, where |t| denotes the number of
function symbols in the term t.

Before formally stating a DP processor based on the subterm criterion we illus-
trate it on an example.

Example 17. Continuing Example 11 we need to handle the two DP problems
({(1)},R,S, E) and ({(2), (4)},R,S, E). For the first DP problem consider the
simple projection π(inc�) = 1. For (1) we get π(inc�(ins(x, ys))) = ins(x, ys) �univ

ys = π(inc�(ys)) and the only dependency pair can be removed from the DP
problem. For the second DP problem, apply the simple projection π(nats�) = 2.
Then we have π(nats�(0, y + 1)) = y + 1 �nat y + 1 = π(nats�(1, y + 1)) for (2)
and π(nats�(x+ 1, y + 1)) = y + 1 �nat y = π(nats�(x, y)) for (4). Thus, (4) can
be deleted and the resulting DP problem is handled by Theorem 12 since the
estimated dependency graph EDG({(2)},R,S, E) does not contain any SCCs. ♦

Theorem 18 (DP Processor Based on the Subterm Criterion). Let π
be a simple projection. Then Proc is sound, where Proc(P ,R,S, E) =

• {(P − P ′,R,S, E)}, if E is size preserving and P ′ ⊆ P such that
– π(s) �univ π(t) or π(s)�C� �nat π(t)�C� for all s→ t�C� ∈ P ′, and
– π(s) �univ π(t) or π(s)�C� �nat π(t)�C� for all s→ t�C� ∈ P − P ′.

• {(P ,R,S, E)}, otherwise.

4.3 PA-Reduction Pairs and Function Dependencies

PA-reduction pairs. The dependency pair framework for ordinary rewriting
makes heavy use of reduction pairs (	,*) [16]. If all dependency pairs are de-
creasing w.r.t. 	 ∪ *, then those decreasing w.r.t. * may be deleted from a DP
problem. Contrary to Section 4.2, the rewrite rules have to be considered for this
as well since (a certain subset of) R needs to be decreasing w.r.t. 	.

In our setting we can relax the requirement that 	 needs to be monotonic3.
We still require 	 to be F-monotonic, i.e., s 	 t implies D[s] 	 D[t] for all
contexts D over F ∪ FPA and all terms s, t ∈ T (F ∪ FPA,V). Monotonicity for
contexts with a symbol f � ∈ F � at its root is only required for positions where
a reduction with →PA‖E\S or S→PA‖E\R is possible. A similar observation was
already used in [1] for proving innermost termination of ordinary rewriting.

Definition 19 (f �-monotonic Relations). Let �� be a relation on terms and
let f � ∈ F �. Then �� is f �-monotonic at position i iff s �� t implies D�[s] �� D�[t]
for all contexts D = f(s1, . . . , si−1,
, si+1, . . . , sn) over F ∪ FPA and all terms
s, t ∈ T (F ∪ FPA,V).
3 A relation �� on terms is monotonic iff s �� t implies D[s] �� D[t] for all contexts D.
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When considering the DP problem (P ,R,S, E), the reduction pair needs to be
f �-monotonic at position i only if P contains a dependency pair of the form
s→ f �(t1, . . . , ti, . . . , tn)�C� where ti �∈ T (FPA,V). The reason for this is that no
instance of a term from T (FPA,V) can be reduced using S→PA‖E\R or →PA‖E\S
in a (P ,R,S, E)-chain since the substitution used for the chain is PA-based.
It thus suffices to require f �-monotonicity for all reducible positions, which are
determined by the DP problem under consideration.

Definition 20 (Reducible Positions). Let P be a set of dependency pairs and
let f � ∈ F �. Then the set of reducible positions is defined by RedPos(f �,P) =
{i | there exists s→ f �(t1, . . . , ti, . . . , tn)�C� ∈ P such that ti �∈ T (FPA,V)}.

Finally, reduction pairs need to satisfy a property that relates ./PA and 	
∩ 	−1.

Definition 21 (PA-compatible Relations). Let �� be a relation on terms.
Then �� is PA-compatible iff, for all terms s, t ∈ T (F∪FPA,V), s ./PA t implies
D[s] �� ∩ ��−1 D[t] for all contexts D over F ∪ FPA and D�[s] �� ∩ ��−1 D�[t]
for all contexts D �= 
 over F ∪ FPA.

Our notion of PA-reduction pairs depends on the DP problem under consider-
ation. It is similar to the notion of generalized reduction pairs [14] in the sense
that full monotonicity is not required. However, the generalized reduction pairs
of [14] are only applicable in the context of innermost termination of ordinary
rewriting.

Definition 22 (PA-reduction Pairs). Let (P ,R,S, E) be a DP problem and
let 	 and * be relations on terms such that * is well-founded, 	 is F-monotonic
and PA-compatible, and 	 is f �-monotonic at position i for all f � ∈ F � and all
i ∈ RedPos(f �,P). Then (	,*) is a PA-reduction pair for (P ,R,S, E) iff * is
compatible with 	, i.e., iff 	 ◦ * ⊆ * or * ◦ 	 ⊆ *. The relation 	 ∩ 	−1 is
denoted by ∼.

Section 4.4 shows how this definition allows the use of polynomial interpretations
with negative coefficients

Notice that we do not require 	 or * to be stable4. Indeed, stability for all
substitutions is not needed since we only need this property for certain PA-
based substitutions that can be used in (P ,R,S, E)-chains. These substitutions
are indirectly given by the constraints of the dependency pairs and rules that
are to be oriented.

Definition 23 (PA-reduction Pairs on Constrained Terms). Let (	,*)
be a PA-reduction pair. Let s, t be terms and let C be a PA-constraint. Then
s�C� 	 t�C� iff sσ 	 tσ for all PA-based substitutions σ such that Cσ is PA-
valid. s�C� * t�C� is defined analogously.

4 A relation �� is stable iff s �� t implies sσ �� tσ for all substitutions σ.
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Function Dependencies. The DP processor based on PA-reduction pairs
makes use of the observation that only certain subsets of R, S, and E need to
be considered. The corresponding result for ordinary rewriting is due to [13,15],
where it is also shown that the power of the corresponding DP processor is
strictly increased. The main idea is to show that each (P ,R,S, E)-chain can be
transformed into a sequence that only uses subsets R′ ⊆ R, S′ ⊆ S, and E ′ ⊆ E .
This sequence will not necessarily be a (P ,R,S, E)-chain in our setting, but this
is not needed for soundness. A complete proof of the technical result in this
section is given in the full version of this paper [5]. The subsets of R, S, and E
are based on the dependencies between function symbols. Similar definitions are
also used in [13,15].

Definition 24 (Function Dependencies). Let (P ,R,S, E) be a DP problem
where E is size preserving. For two function symbols f, g ∈ F let f �(P,R,S,E) g
iff (i) there exists a rule l → r�C� ∈ R ∪ S such that root(l) = f and g ∈ F(r),
or (ii) there exists an equation u ≈ v or v ≈ u in E such that root(u) = f and
g ∈ F(u ≈ v). Let Δ(P ,R,S, E) = FPA ∪ {g | f �∗

(P,R,S,E) g for some f ∈
F with resulting sort nat or some f ∈ F(rhs(P)) − F �}, where rhs(P) denotes
the set of right-hand sides of the dependency pairs in P.

Subsets Δ ⊆ F ∪ FPA give rise to subsets of R, S, and E in the obvious way.

Definition 25 (R(Δ), S(Δ), and E(Δ)). Let Δ ⊆ F ∪ FPA. For Q ∈ {R,S}
we define Q(Δ) = {l → r�C� ∈ Q | root(l) ∈ Δ} and we let E(Δ) = {u ≈ v ∈
E | root(u) ∈ Δ or root(v) ∈ Δ}.

Example 26. Continuing Example 11, recall the DP problems ({(1)},R,S, E)
and ({(2), (4)},R,S, E). These DP problems are hard to handle if all of R,S,
and E need to be considered. Using function dependencies we get Δ = FPA
for both DP problems. Thus, R, S, and E do not need to be considered at all
when handling these DP problems. Using the PA-reduction pair (	Pol ,*Pol)
based on a polynomial interpretation with Pol(inc�) = x1, Pol(ins) = x2 + 1,
Pol(nats�) = x2, Pol(0) = 0, Pol(1) = 1 and Pol(+) = x1 + x2, the DP problem
({(1)},R,S, E) is transformed into the trivial DP problem (∅,R,S, E), while
the DP problem ({(2), (4)},R,S, E) is transformed into ({(2)},R,S, E) whose
estimated dependency graph does not contain any SCCs. ♦

The following DP processor is based on PA-reduction pairs and function depen-
dencies. Again, recall that E is size preserving for all data structures given in
Section 2.

Theorem 27 (DP Processor Based on Function Dependencies). The
DP processor Proc is sound, where Proc(P ,R,S, E) =

• {(P − P ′,R,S, E)}, if (	,*) is a PA-reduction pair for (P ,R,S, E), E is
size preserving, P ′ ⊆ P, and Δ = Δ(P ,R,S, E) such that
– s�C� * t�C� for all s→ t�C� ∈ P ′,
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– s�C� 	 t�C� for all s→ t�C� ∈ (P − P ′) ∪R(Δ) ∪ S(Δ) ∪RΠ, and5

– u�%� ∼ v�%� for all u ≈ v ∈ E(Δ).6

• {(P ,R,S, E)}, otherwise.

If E is not size preserving a similar DP processor can be used which has to
consider all of R, S, and E . In this case, RΠ does not need to be oriented.

4.4 Generation of PA-Reduction Pairs

To take advantage of the relaxed requirements on monotonicity and stability
and in order to make use of the constraints attached to dependency pairs and
rules, we propose to use relations based on polynomial interpretations [18] with
polynomials containing coefficients from Z. A similar kind of polynomial inter-
pretations was used in [14] in the context of innermost termination of ordinary
rewriting. The polynomial interpretations with coefficients in Z used in [15] are
also similar but require the use of “max”, which makes reasoning about them
more complicated. Furthermore, the approach of [15] requires that rewrite rules
are treated like equations, which is very restrictive. Using our approach, rewrite
rules do not need to be oriented as equations.

A PA-polynomial interpretation maps

1. FPA to polynomials over N in the natural way, i.e., Pol(0) = 0, Pol(1) = 1,
and Pol(+) = x1 + x2,

2. F to polynomials over N where Pol(f) ∈ N[x1, . . . , xn] if f has arity n, and
3. F � to polynomials over Z where Pol(f �) ∈ Z[x1, . . . , xn] if f � has arity n.

This mapping is extended to terms by letting [x]Pol = x for all variables x ∈ V
and [f(t1, . . . , tn)]Pol = Pol(f)([t1]Pol , . . . , [tn]Pol) for all f ∈ F ∪ F �.
PA-polynomial interpretations generate relations on terms in the following

way. Here, ≥(Z,N) and >(Z,N) mean that the respective relation holds in the
integers for all instantiations of the variables by natural numbers.

Definition 28 (Relations *Pol and 	Pol). Let Pol be a PA-polynomial in-
terpretation. Then *Pol is defined by s *Pol t iff [s]Pol ≥(Z,N) 0 and [s]Pol >

(Z,N)

[t]Pol . Similarly, 	Pol is defined by s 	Pol t iff [s]Pol ≥(Z,N) [t]Pol .

The relations 	Pol and *Pol give rise to PA-reduction pairs, where f �-
monotonicity is translated into conditions on the polynomial Pol(f �).

Theorem 29. Let (P ,R,S, E) be a DP problem and let Pol be a PA-polynomial
interpretation. Then (	Pol ,*Pol) is a PA-reduction pair if Pol(f �) is weakly
increasing in all xi for which i ∈ RedPos(f �,P).

In order to show s�C� *Pol t�C� it suffices to show that C ⇒ [s]Pol ≥ 0 and
C ⇒ [s]Pol > [t]Pol are (Z,N)-valid, i.e., true in the integers for all instantia-
tions of the variables by natural numbers. While this is undecidable in general
5 Here, RΠ = {Π(x, y)→ x, Π(x, y)→ y} for a fresh function symbol Π.
6 This condition ensures uσ ∼ vσ for all PA-based substitutions σ.
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it is decidable if all polynomials are linear. Automatic generation of suitable
PA-polynomial interpretations is possible by adapting techniques developed for
ordinary polynomial interpretations based on solving non-linear Diophantine
constraints [4,8].

Example 30. One of the leading examples from [14] (obtained from the imper-
ative program while (x > y) { y = y + 1; }) can be given more elegantly
using built-in numbers. In this example we have E = S = ∅ and there is only a
single rewrite rule:

eval(x, y) → eval(x, y + 1) �x > y�

The only dependency pair is identical to this rule, but with eval replaced by
eval�. Since R(Δ) = ∅ we do not need consider the rewrite rule when applying
the DP processor of Theorem 27, i.e., it suffices to find a PA-reduction pair (	,*)
such that eval�(x, y)�x > y� * eval�(x, y + 1)�x > y�. For this, consider a PA-
polynomial interpretation with Pol(eval�) = x1−x2. We then have eval�(x, y)�x >
y� *Pol eval�(x, y + 1)�x > y� since x > y ⇒ x − y ≥ 0 and x > y ⇒ x − y >
x− (y + 1) are (Z,N)-valid. ♦

This example demonstrates that built-in numbers are useful for termination
proofs of imperative programs operating on numbers since the termination proof
is much simpler than the one given in [14]. A large collection of termination proofs
for imperative programs is given in the full version of this paper [5].

5 Conclusions and Future Work

We have presented the notion of constrained equational systems for modeling
algorithms. Constrained equational systems support semantic data structures
and contain built-in numbers. These systems are a strict generalization of the
equational systems presented in [6], which do no contain built-in numbers. Since
virtually all programming languages have numbers as a primitive data type this
extension is helpful for modeling algorithms. We have presented a dependency
pair framework for proving termination of constrained equational systems and
developed several DP processors within this framework. Most of these DP pro-
cessors are not available in our previous work [6], while it is well-known from
ordinary rewriting that the techniques employed in these DP processors are of-
ten crucial for a successful automatic termination proof [13,15]. The techniques
of this paper have been successfully used on a large collection of examples [5].

Termination is only one among several important properties of constrained
equational systems. We will study other properties as well, specifically conflu-
ence and sufficient completeness. Orthogonal to this we will investigate how the
rewrite relation can be generalized by considering other built-in theories, in par-
ticular integers instead of natural numbers. The proposed method has not been
implemented yet, but we believe that it can be easily implemented within a
termination tool like AProVE [10].
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19. Marché, C.: Normalized rewriting: An alternative to rewriting modulo a set of
equations. JSC 21(3), 253–288 (1996)
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Abstract. We present a new approach for termination proofs that uses
polynomial interpretations (with possibly negative coefficients) together
with the “maximum” function. To obtain a powerful automatic method,
we solve two main challenges: (1) We show how to adapt the latest de-
velopments in the dependency pair framework to our setting. (2) We
show how to automate the search for such interpretations by integrating
“max” into recent SAT-based methods for polynomial interpretations.
Experimental results support our approach.

1 Introduction

The use of polynomial interpretations [13] is standard in automated termination
analysis of term rewrite systems (TRSs). This is especially true for termination
proofs in the popular dependency pair (DP) framework [1,4,6,9] that is imple-
mented in most automated termination tools for TRSs.

A polynomial interpretation Pol maps every n-ary function symbol f to a
polynomial fPol over n variables x1, . . . , xn. The mapping is extended to terms by
defining [x]Pol = x for variables x and [f(t1, ..., tn)]Pol = fPol([t1]Pol, ..., [tn]Pol).
If Pol is clear from the context, we also write [t] instead of [t]Pol. Traditionally,
one uses polynomials with natural coefficients from N = {0, 1, 2, . . .}. Then
[t] ∈ N for every ground term t. For example, consider the interpretation Pol with
0Pol = 0, sPol = x1 + 1, and minusPol = x1. Then [minus(s(x), s(y))]Pol = x+ 1.

An interpretation Pol induces an order *Pol and quasi-order �Pol where
s *Pol t (s �Pol t) iff [s] > [t] ([s]  [t]) holds for all instantiations of vari-
ables with natural numbers. So with Pol above we have minus(s(x), s(y)) *Pol

minus(x, y). Recently, two extensions to integer polynomials were proposed:

(a) [7] used polynomial interpretations with integer coefficients where ground
terms could also be mapped to arbitrary integers. However, this approach
only works for analyzing innermost instead of full termination.

(b) [10] proposed interpretations of the form max(p, 0) where p is a polynomial
with integer coefficients. Thus, ground terms are still mapped to numbers
from N. So one could define minusPol = max(x1−x2, 0) which would result in
minus(s(x), s(y)) ≈Pol minus(x, y). Here ≈Pol denotes the equivalence rela-
tion associated with �Pol, where for any quasi-order � we have ≈ = � ∩ �.

� Supported by the DFG (Deutsche Forschungsgemeinschaft) under grant GI 274/5-2
and the FWF (Austrian Science Fund) project P18763.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 110–125, 2008.
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The drawback is that the approach of [10] was not easy to automate and
that it could only be combined with a weak version of the DP technique.

In this paper, we present a new approach which improves upon (a) and (b):
• It uses integer polynomials together with the function “max”, where ground

terms are only mapped to natural numbers, as in [10]. But in contrast to
[10], we permit arbitrary combinations of polynomials and “max”, e.g., “p+
max(q,max(r, s))” where p, q, r, s are integer polynomials. And in contrast
to [7], integer polynomials may be used for interpreting any function symbol.

• It uses the newest and most powerful version of the DP technique as in [7].
• In contrast to [7], it can also prove full instead of innermost termination.
• In contrast to [10], we show how to search for arbitrary polynomial interpre-

tations with “max” automatically in an efficient way using SAT solving.

After recapitulating the DP framework in Sect. 2, Sect. 3 extends it to handle
non-monotonic quasi-orders like integer polynomial orders with “max”. Sect. 4
shows how to search for such interpretations automatically using SAT solving.
Sect. 5 discusses our implementation in the provers AProVE [5] and TTT2 [17].

2 Dependency Pairs

For a TRS R, the defined symbols D are the root symbols of left-hand sides
of rules. All other function symbols are called constructors. For every defined
symbol f ∈ D, we introduce a fresh tuple symbol f � with the same arity. To ease
readability, we often write F instead of f �, etc. If t = f(t1, . . . , tn) with f ∈ D,
we write t� for f �(t1, . . . , tn). If � → r ∈ R and t is a subterm of r with defined
root symbol, then the rule �� → t� is a dependency pair of R. We denote the set
of all dependency pairs of R by DP(R).

Example 1. Consider the TRS SUBST from [8] and [18, Ex. 6.5.42]:

λ(x) ◦ y → λ(x ◦ (1 � (y ◦ ↑))) id ◦ x→ x 1 ◦ (x � y) → x

(x � y) ◦ z → (x ◦ z) � (y ◦ z) 1 ◦ id → 1 ↑ ◦ (x � y) → y

(x ◦ y) ◦ z → x ◦ (y ◦ z) ↑ ◦ id → ↑
The dependency pairs are

λ(x) ◦� y → x ◦� (1 � (y ◦ ↑)) (1)
λ(x) ◦� y → y ◦� ↑ (2)

(x � y) ◦� z → x ◦� z

(x � y) ◦� z → y ◦� z

(x ◦ y) ◦� z → x ◦� (y ◦ z)
(x ◦ y) ◦� z → y ◦� z

The main result of the DP framework states that a TRS R is terminating iff
there is no infinite minimal DP (R)-chain. For any set of dependency pairs P , a
minimal P-chain is a sequence of (variable renamed) pairs s1 → t1, s2 → t2, . . .
from P such that there is a substitution σ (with possibly infinite domain) where
tiσ →∗

R si+1σ and where all tiσ are terminating w.r.t. R.
The DP framework has several techniques (so-called DP processors) to prove

absence of infinite chains. Thm. 2 recapitulates one of the most important pro-
cessors, the so-called reduction pair processor. It uses reduction pairs (�,*) to
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compare terms. Here, � is a stable monotonic quasi-order and * is a stable well-
founded order, where � and * are compatible (i.e., * ◦ � ⊆ * or � ◦ * ⊆ *).

If P is the current set of dependency pairs,1 then the reduction pair processor
generates inequality constraints which should be satisfied by a reduction pair
(�,*). The constraints require that all DPs in P are strictly or weakly decreasing
and all usable rules U(P) are weakly decreasing. Then one can delete all strictly
decreasing DPs from P . Afterwards, the reduction pair processor can be applied
again to the remaining set of DPs (possibly using a different reduction pair).
This process is repeated until all DPs have been removed.

The usable rules include all rules that can reduce the terms in right-hand sides
of P when their variables are instantiated with normal forms. To ensure that
it suffices to regard only the usable rules instead of all rules in the reduction
pair processor, one has to demand that � is Cε-compatible, i.e., that c(x, y) � x
and c(x, y) � y holds for a fresh function symbol c [6,10]. This requirement is
satisfied by virtually all quasi-orders used in practice.2

Theorem 2 ([6,10]). Let (�,*) be a reduction pair where � is Cε-compatible.
Then the following DP processor Proc is sound (i.e., if there is no infinite min-
imal Proc(P)-chain, then there is also no infinite minimal P-chain):

Proc(P) =

{
P \ * if P ⊆ * ∪� and U(P) ⊆ �
P otherwise

For any function symbol f , let Rls(f) = {� → r ∈ R | root(�) = f}. For any
term t, the usable rules U(t) are the smallest set such that

U(f(t1, . . . , tn)) = Rls(f) ∪
⋃

�→r∈Rls(f)
U(r) ∪

⋃n

i=1
U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃

s→t∈P U(t).

Example 3. For the TRS of Ex. 1, we use the reduction pair (�Pol,*Pol) with

λPol = x1 + 1 �Pol = max(x1, x2)

◦Pol = ◦�
Pol = x1 + x2 1Pol = idPol = ↑Pol = 0

Then all (usable) rules and dependency pairs are weakly decreasing (w.r.t. �Pol).
Furthermore, the DPs (1) and (2) are strictly decreasing (w.r.t. *Pol) and can be
removed by Thm. 2. Afterwards, we use the following interpretation where the
remaining DPs are strictly decreasing and the rules are still weakly decreasing:

◦�
Pol = x1 �Pol = max(x1, x2) + 1
◦Pol = x1 + x2 + 1 λPol = 1Pol = idPol = ↑Pol = 0

Termination of SUBST cannot be proved with Thm. 2 using reduction pairs
based on linear polynomial interpretations, cf. [3]. Thus, this example shows the
1 For readability, we consider sets of DPs instead of DP problems [4]. This suffices to

present our new results, since the DP processors of this paper only modify the DPs.
2 An exception are equivalences like ≈, which are usually not Cε-compatible [10].
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usefulness of polynomial interpretations with “max”. Up to now, only restricted
forms of such interpretations were available in termination tools. For example,
already in 2004, TTT used interpretations like max(x1−x2, 0), but no tool offered
arbitrary interpretations with polynomials and “max” like max(x1, x2) + 1.

While SUBST’s original termination proof was very complicated [8], easier
proofs were developed later, using the techniques of distribution elimination
or semantic labeling [18]. Indeed, the only tool that could prove termination of
SUBST automatically up to now (TPA [12]) used semantic labeling.3 In contrast,
Ex. 3 shows that there is an even simpler proof without semantic labeling.

3 Termination with Integer Polynomials and “max”

Our aim is to use polynomial interpretations with integer polynomials, together
with the function “max”. More precisely, we want to use interpretations that
map n-ary function symbols to arbitrary functions from Nn → N. But Ex. 4
demonstrates that such interpretations may not be used in Thm. 2, since then
�Pol is not monotonic, and thus, (�Pol, *Pol) is not a reduction pair.

Example 4. Consider this non-terminating TRS (inspired by [7, Ex. 4]):

f(s(x), x) → f(s(x), round(x))
round(0) → 0 round(s(0)) → s(0)
round(0) → s(0) round(s(s(x))) → s(s(round(x)))

Here, round(x) evaluates to x if x is odd and to x or s(x) otherwise. We use the
interpretation Pol with FPol = x1 +max(x1−x2, 0), ROUNDPol = x1, 0Pol = 0,
and sPol = roundPol = x1 + 1, where F and ROUND are the tuple symbols for
f and round, respectively. Then all DPs are strictly decreasing and the usable
round-rules are weakly decreasing. So if we were allowed to use Pol in Thm. 2,
then we could remove all DPs and falsely prove termination.

Ex. 4 shows the reason for unsoundness when dropping the requirement of mono-
tonicity of �. Thm. 2 requires � � r for all usable rules � → r. This is meant
to ensure that all reductions with usable rules will weakly decrease the reduced
term (w.r.t. �). However, this only holds if the quasi-order � is monotonic. For
instance in Ex. 4, we have round(0) �Pol 0, but F(s(0), round(0)) ��Pol F(s(0), 0).

In [10], this problem was solved by requiring � ≈ r instead of � � r. Then such
rules are not just weakly decreasing but equivalent w.r.t. �. This requirement
is not satisfied in Ex. 4 as round(0) �≈Pol 0. In general, this equivalence even
has to be required for all rules � → r (not just the usable ones), since the
step from all rules to the usable rules in the proof of Thm. 2 also relies on the
monotonicity of �. Thus, up to now one had to apply the following reduction
pair processor when using non-monotonic reduction pairs. The soundness of this
processor immediately results from [4, Thm. 28] and [10, Thm. 23 and Cor. 31],
3 For the semantic labeling, TPA uses only a (small) fixed set of functions, including

certain fixed polynomials and the function “max”. So in contrast to our automation
in Sect. 4, TPA does not search for arbitrary combinations of polynomials and “max”.



114 C. Fuhs et al.

cf. [3].4 Here, a non-monotonic reduction pair (�,*) consists of a stable quasi-
order � and a compatible stable well-founded order *. But we do not require
monotonicity of � (and � does not have to be Cε-compatible either). However,
the equivalence relation ≈ associated with � must be monotonic.5

Theorem 5. Let (�,*) be a non-monotonic reduction pair. Then Proc is sound:

Proc(P) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P \ * if P ⊆ * ∪� and (a) or (b) holds:

(a) P ∪ U(P) is non-duplicating and U(P) ⊆ ≈
(b) R ⊆ ≈

P otherwise

However, demanding � ≈ r for the usable rules as in Thm. 5(a) is a very
strong requirement which makes the termination proof fail in many examples,
cf. Ex. 11 and 12. Therefore, as already suggested in [7], one should take into
account on which positions the quasi-order � is monotonically increasing resp.
decreasing. If a defined function symbol f occurs at a monotonically increasing
position in the right-hand side of a dependency pair, then one should require
� � r for all f -rules. If f is at a decreasing position, one requires r � �. Finally,
if f is at a position which is neither increasing nor decreasing, one requires � ≈ r.

To modify our definition of usable rules accordingly, we need a monotonicity
specification which specifies which arguments of a symbol have to be increasing
(“⇑”) or decreasing (“⇓”). Afterwards, we search for a (non-monotonic) reduction
pair that is compatible with the monotonicity specification.

Definition 6. A monotonicity specification is a mapping ν which assigns to
every function symbol f and every i ∈ {1, ..., arity(f)} a subset of {⇑,⇓}. A
reduction pair (�,*) is ν-compatible iff

• if ⇑ ∈ ν(f, i) then � is monotonically increasing on f ’s i-th argument, i.e.,
ti � si implies f(t1, ..., ti, ..., tn) � f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

• if ⇓ ∈ ν(f, i) then � is monotonically decreasing on f ’s i-th argument, i.e.,
ti � si implies f(t1, ..., ti, ..., tn) � f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

• if ν(f, i) = {⇑,⇓} then6 additionally � must be independent on f ’s i-th
argument, i.e., f(t1, ..., ti, ..., tn) ≈ f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

We call f ν-dependent on its i-th argument iff ν(f, i) �= {⇑,⇓}. The concept of
monotonicity can be extended to positions in a term where ν(t, ε) = {⇑} and
4 An alternative to Thm. 5(a) is presented in [10, Thm. 40] for reduction pairs (�Pol,
�Pol) based on polynomial interpretations. Here, “non-duplication of P ∪ U(P)” is
replaced by “Pol-right-linearity of P ∪ U(P)”. So for every right-hand side r there
must be a linear term r′ with r ≈Pol r′ where r′ differs from r only in the variables.

5 Triples like (≈, �,�) were called “reduction triples” in [10]. “Non-monotonic reduc-
tion pairs” are also related to the “general reduction pairs” in [7], but there � did
not have to be well founded. Consequently, the notion of stability was weakened too.

6 Note that this condition is implied by the first two conditions whenever � is total
on ground terms and whenever sσ � tσ for all ground substitutions σ implies s � t.
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ν(f(t1, ..., tn), i p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{⇑,⇓} if ν(f, i) = {⇑,⇓} or ν(ti, p) = {⇑,⇓}
{⇑} if ν(f, i) = ν(ti, p) = {⇑} or ν(f, i) = ν(ti, p) = {⇓}
{⇓} if either ν(f, i) = {⇑} and ν(ti, p) = {⇓}

or ν(f, i) = {⇓} and ν(ti, p) = {⇑}
∅ otherwise

A position p in a term t is called ν-dependent iff ν(t, p) �= {⇑,⇓}.
Definition 7 (General Usable Rules [7]). Let ν be a monotonicity specifi-
cation. For any TRS U , we define U{⇑,⇓} = ∅, U{⇑} = U , U{⇓} = U−1 = {r →
� | �→ r ∈ U}, and U∅ = U ∪U−1. For any term t, we define the general usable
rules GU(t) as the smallest set such that7

GU(f(t1, . . . , tn)) = Rls(f) ∪
⋃

�→r∈Rls(f)
GU(r) ∪

⋃n

i=1
GUν(f,i)(ti)

For a set of DPs P, we define GU(P) =
⋃

s→t∈P GU(t). Moreover, we let
Ucontr(t) be those rules of R that contributed to GU(t), i.e., Ucontr(t) = {�→r∈
R | �→r∈GU (t) or r→�∈GU(t)}. Similarly, Ucontr(P) =

⋃
s→t∈P Ucontr(t).8

Example 8. In Ex. 4, as FPol = x1 + max(x1 − x2, 0), �Pol is monotonically
decreasing on F’s second argument. So (�Pol,*Pol) is ν-compatible for the
monotonicity specification ν with ν(F, 2) = {⇓} and ν(F, 1) = ν(ROUND, 1) =
ν(s, 1) = ν(round, 1) = {⇑}. Due to ν(F, 2) = {⇓}, the general usable rules are
the reversed round-rules. Thus, we cannot falsely prove termination with Pol
anymore, since Pol does not make the reversed round-rules weakly decreasing;
for example, we have 0 ≺Pol round(0).

Our goal is to show that with the modified definition of usable rules above,
Thm. 2 can also be used for non-monotonic reduction pairs. However, this is not
true in general as shown by the following counterexample, cf. [10, Ex. 32].

Example 9. Consider the following famous TRS of Toyama [16]:

f(0, 1, x) → f(x, x, x) g(x, y) → x g(x, y) → y

We use a monotonicity specification ν with ν(F, 1) = {⇓}, ν(F, 2) = {⇑},
ν(F, 3) = {⇑,⇓} and a ν-compatible reduction pair (�Pol,*Pol) where FPol =
max(x2 − x1, 0), 0Pol = 0, and 1Pol = 1. The only DP is strictly decreasing and
there is no (general) usable rule. Hence, one would falsely conclude termination.

To obtain a sound criterion, we therefore impose certain requirements on all
rules �→ r ∈ P ∪ Ucontr. To this end, we need the following notions.

• A rule �→ r is ν-more monotonic (ν-MM) if variables occur at more mono-
tonic positions on the right-hand side than on the left-hand side. More pre-
cisely, for every ν-dependent position p of r with r|p = x there is a position
q of � such that �|q = x and ν(�, q) ⊆ ν(r, p). However, each position of � can
only be used once, i.e., for different positions p and p′ of r we must choose
different positions q and q′ of �. To define this notion formally, let Posν

x(t)
7 Note that GU(t) is no longer a subset of R. We nevertheless refer to GU(t) as “usable”

rules in order to keep the similarity to Thm. 2.
8 Ucontr are the “usable rules w.r.t. an argument filtering” from [6].
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be the set of all ν-dependent positions p of t with t|p = x. Then a rule �→ r
is ν-MM if for each variable x there is an injective mapping α from Posν

x(r)
to Posν

x(�) such that ν(�, α(p)) ⊆ ν(r, p) for all p ∈ Posν
x(r).

So for the right-hand side of the DP in Ex. 9, we have Posν
x(F(x, x, x)) =

{1, 2}. Hence, x would have to occur on at least two different ν-dependent
positions q and q′ in the left-hand side F(0, 1, x). Moreover, we would need
ν(F(0, 1, x), q) ⊆ ν(F(x, x, x), 1) = {⇓} and ν(F(0, 1, x), q′) ⊆ ν(F(x, x, x), 2)
= {⇑}. However, this DP is not ν-MM as Posν

x(F(0, 1, x)) = ∅.
• � → r is weakly ν-MM if for each x with Posν

x(�) �= ∅, there is an injective
mapping α from Posν

x(r) to Posν
x(�) such that ν(�, α(p)) ⊆ ν(r, p) for all

p ∈ Posν
x(r). So in contrast to ν-MM, now we also permit variables that

occur at dependent positions of r, but not at any dependent position of �.
Therefore, the DP of Ex. 9 is weakly ν-MM.

• � → r is ν-right-linear (ν-RL) if all variables occur at most once at a ν-
dependent position in r. Formally, � → r is ν-RL iff for all x ∈ V(r):
|Posν

x(r)| � 1. So the DP in Ex. 9 is not ν-RL since x occurs twice at
ν-dependent positions in the right-hand side.

A TRS is (weakly) ν-MM resp. ν-RL iff all its rules satisfy that condition.
We now extend the processor from Thm. 2 to non-monotonic reduction pairs.

Thm. 10 shows that to remove all strictly decreasing DPs, it is still sufficient if
the (general) usable rules are weakly decreasing, provided that P ∪ Ucontr(P)
satisfies ν-MM. Alternatively, one can also require weak ν-MM and ν-RL.

As shown in [7], if one only wants to prove innermost termination, then
Thm. 10 can be used even without the conditions (weak) ν-MM and ν-RL. How-
ever, we now extend this result to full termination. Of course, if P ∪ Ucontr(P)
is not (weakly) ν-MM resp. ν-RL and one wants to prove full termination with
a non-monotonic reduction pair, then one has to use Thm. 5 instead.

Theorem 10. Let ν be a monotonicity specification and let (�,*) be a ν-
compatible non-monotonic reduction pair. Then Proc is sound:9

Proc(P) =

⎧⎪⎪⎨
⎪⎪⎩
P \� if P ⊆ �∪ �, GU(P) ⊆ � , and one of (a) or (b) holds:

(a) P ∪ Ucontr(P) is ν-MM
(b) P ∪ Ucontr(P) is weakly ν-MM and ν-RL

P otherwise

Example 11. To modify Ex. 4 into a terminating TRS, we replace the f-rule by

f(s(x), x) → f(s(x), round(s(x)))

similar to [7, Ex. 9]. We use the monotonicity specification from Ex. 8. The
interpretation Pol from Ex. 4 is modified by defining roundPol = x1. Then
(�Pol, *Pol) is ν-compatible, all DPs are strictly decreasing, and the (general)
usable rules (i.e., the reversed round-rules) are weakly decreasing. Moreover, all
rules in P ∪ Ucontr(P) are ν-MM. Thus, by Thm. 10(a) we can transform the
initial DP problem P = DP (R) into P \*= ∅ and prove termination.
9 The proof can be found in [3].
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In contrast, this was not possible by the method of [10] which requires � ≈ r
for all usable rules. There is no (possibly non-monotonic) reduction pair that
satisfies round(0) ≈ 0 ≈ s(0) and F(s(x), x) * F(s(x), round(s(x))). The method
of [7] can only prove innermost termination of this example. However, this TRS
does not belong to a known class of TRSs where innermost termination implies
termination. So in fact, up to now all tools failed on this example.

Example 12. The following example illustrates Thm. 10(b):

p(0) → 0 minus(x, 0) → x
p(s(x)) → x minus(s(x), s(y)) → minus(x, y)

div(0, s(y)) → 0 minus(x, s(y)) → p(minus(x, y))
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))

log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))

We use a monotonicity specification ν with ν(s, 1) = ν(p, 1) = ν(minus, 1) =
ν(MINUS, 1) = ν(div, 1) = ν(DIV, 1) = ν(LOG, 1) = {⇑}, ν(minus, 2) = {⇓},
ν(P, 1) = ν(MINUS, 2) = ν(div, 2) = ν(DIV, 2) = ν(LOG, 2) = {⇑,⇓}, and the
interpretation pPol = max(x1−1, 0), minusPol = max(x1−x2, 0), 0Pol = PPol =
0, sPol = MINUSPol = divPol = LOGPol = x1 + 1, DIVPol = x1 + 2. Now
(�Pol,*Pol) is ν-compatible, all DPs except MINUS(x, s(y)) → MINUS(x, y) are
strictly decreasing, and the remaining DP and the usable p-, minus-, and div-rules
are weakly decreasing. In addition, all DPs and usable rules are weakly ν-MM
and ν-RL. Hence, by Thm. 10(b) we can remove all DPs except MINUS(x, s(y))→
MINUS(x, y). Afterwards, we use MINUSPol′ = x2 and sPol′ = x1 + 1 to delete
this remaining DP. (Now there are no usable rules.) Hence, termination is proved.

Note that here, Thm. 10(a) does not apply as the DP DIV(s(x), s(y)) →
DIV(minus(s(x), s(y)), s(y)) is not ν-MM: the first occurrence of y in the right-
hand side is at a non-increasing position, whereas the only occurrence of y in
the left-hand side is at a ν-independent, and thus increasing position.

The technique of [10] cannot handle the DP LOG(. . .) → LOG(div(. . .), . . .),
because it would have to find an interpretation which makes the div-rules equiva-
lent. In contrast, Thm. 10 only requires a weak decrease for the div-rules. Indeed,
all existing termination tools failed on this example.

4 Automation

The most efficient implementations to search for polynomial interpretations are
based on SAT solving [2]. However, [2] only handled the search for polynomial
interpretations with natural coefficients as well as interpretations of the form
max(p − n, 0) where p is a polynomial with natural coefficients and n ∈ N.
So we permitted interpretations like max(x1 − 1, 0), but not interpretations like
max(x1−x2, 0) (as needed in Ex. 11 and 12) or max(x1, x2) (as needed in Ex. 1).

We want to use SAT solvers to search for arbitrary interpretations using poly-
nomials and “max”. Compared to existing related approaches, there are two
challenges: the additional use of “max” in polynomial interpretations (Sect. 4.1)
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and the handling of non-monotonic quasi-orders and general usable rules
(Sect. 4.2).

4.1 Automating Polynomial Interpretations with “max”

We start with encoding the “classical” reduction pair processor of Thm. 2 as a
SAT problem. This is simpler than encoding Thm. 10, because in Thm. 2 we use
a monotonic reduction pair (�Pol,*Pol) and thus, the applicability conditions
and the usable rules U do not depend on a monotonicity specification. But in
contrast to our earlier encoding from [2], now Pol can be an interpretation that
combines polynomials and “max” arbitrarily.10

Definition 13 (max-polynomial). Let V be the set of variables. The set of
max-polynomials PM over a set of numbers M is the smallest set such that

• M ⊆ PM and V ⊆ PM

• if p, q ∈ PM , then p+ q ∈ PM , p− q ∈ PM , p ∗ q ∈ PM , and max(p, q) ∈ PM

At the moment, we only consider interpretations Pol that map every function
symbol to a max-polynomial over N that does not contain any subtraction “−”.
Obviously, then (�Pol,*Pol) is a Cε-compatible (monotonic) reduction pair.

To find such interpretations automatically, one starts with an abstract poly-
nomial interpretation. It maps each function symbol to a max-polynomial over
a set A of abstract coefficients. In other words, one has to determine the de-
gree and the shape of the max-polynomial, but the actual coefficients are left
open. For example, for the TRS of Ex. 1 we could use an abstract polynomial
interpretation Pol where �Pol = max(a1 x1 + a2 x2, a′

1 x1 + a′
2 x2), ↑Pol = b,

◦Pol = x1 + x2, etc.11 Here, a1, a2, a
′
1, a

′
2, b are abstract coefficients.

Now to apply the reduction pair processor of Thm. 2, we have to find an in-
stantiation of the abstract coefficients satisfying the following condition. Then all
dependency pairs that are strictly decreasing (i.e., [s]  [t] + 1) can be removed.

∧
s→t ∈ P

[s]Pol  [t]Pol ∧
∨

s→t ∈ P
[s]Pol  [t]Pol + 1 ∧

∧

→r ∈ U(P)

[�]Pol  [r]Pol (3)

Here, all rules in P ∪ U(P) are variable-renamed to have pairwise different vari-
ables. The polynomials [s]Pol, [t]Pol, etc. are again max-polynomials over A. So
with the interpretation Pol above, to make the last rule of Ex. 1 weakly decreas-
ing (i.e., ↑ ◦ (x � y) �Pol y) we obtain the inequality [↑ ◦ (x � y)]Pol  [y]Pol:

b + max(a1 x + a2 y, a
′
1 x + a′

2 y)  y (4)

We have to find an instantiation of the abstract coefficients a1, a2, . . . such
that (4) holds for all instantiations of the variables x and y. In other words, the
variables from V occurring in such inequalities are universally quantified.
10 Of course, in an analogous way, one can also integrate the “minimum” function and

indeed, we did this in our implementations.
11 Here we already fixed ◦’s interpretation to simplify the presentation. Our implemen-

tations use heuristics to determine when to use an interpretation with “max”.
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Several techniques have been proposed to transform such inequalities further
in order to remove such universally quantified variables [11]. However, the exist-
ing techniques only operate on inequalities without “max”. Therefore, we now
present new inference rules to eliminate “max” from such inequalities.

Our inference rules operate on conditional constraints of the form

p1  q1 ∧ . . . ∧ pn  qn ⇒ p  q (5)

Here, n  0 and p1, ..., pn, q1, ..., qn are polynomials with abstract coefficients
without “max”. In contrast, p, q are max-polynomials with abstract coefficients.

The first inference rule eliminates an inner occurrence of “max” from the
inequality p  q. If p or q have a sub-expression max(p′, q′) where p′ and q′ do
not contain “max”, then we can replace this sub-expression by p′ or q′ when
adding the appropriate condition p′  q′ or q′  p′ + 1, respectively.

I. Eliminating “max”

p1  q1 ∧ . . . ∧ pn  qn ⇒ . . . max(p′, q′) . . .

p1  q1 ∧ . . . ∧ pn  qn ∧ p′  q′ ⇒ . . . p′ . . . ∧
p1  q1 ∧ . . . ∧ pn  qn ∧ q′  p′ + 1 ⇒ . . . q′ . . .

if p′ and q′ do
not contain
“max”

Obviously, by repeated application of inference rule (I), all occurrences of
“max” can be removed. In our example, the constraint (4) is transformed into
the following new constraint that does not contain “max” anymore.

a1 x + a2 y  a′
1 x + a′

2 y ⇒ b + a1 x + a2 y  y ∧ (6)
a′
1 x + a′

2 y  a1 x + a2 y + 1 ⇒ b + a′
1 x + a′

2 y  y (7)

Since the existing methods for eliminating universally quantified variables
only work for unconditional inequalities, the next inference rule eliminates the
conditions pi  qi from a constraint of the form (5).12 To this end, we introduce
two new abstract polynomials p and q (that do not contain “max”). The polyno-
mial q over the variables x1, ..., xn is used to “measure” the polynomials p1, ..., pn

resp. q1, ..., qn in the premise of (5) and the unary polynomial p measures the
polynomials p and q in the conclusion of (5). We write q[p1, ..., pn] to denote the
result of instantiating the variables x1, ..., xn in q by p1, ..., pn, etc.

II. Eliminating Conditions

p1  q1 ∧ . . . ∧ pn  qn ⇒ p  q

p[p]− p[q]  q[p1, . . . , pn]− q[q1, . . . , qn]

if q and p do not contain “max”, p is
strictly monotonic, and q is weakly mono-
tonic

Here, the monotonicity conditions mean that x > y ⇒ p[x] > p[y] must hold
and similarly that x1  y1 ∧ . . . ∧ xn  yn ⇒ q[x1, . . . , xn]  q[y1, . . . , yn].

12 Such conditional polynomial constraints also occur in other applications, e.g., in the
termination analysis of logic programs. Indeed, we used a rule similar to inference
rule (II) in the tool Polytool for termination analysis of logic programs [15]. However,
Polytool only applies classical polynomial interpretations without “max”.
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To see why Rule (II) is sound, let p[p]−p[q]  q[p1, . . . , pn]−q[q1, . . . , qn] hold
and assume that there is an instantiation σ of all variables in the polynomials
with numbers that refutes p1  q1 ∧ . . . ∧ pn  qn ⇒ p  q. Now p1σ  q1σ ∧
... ∧ pnσ  qnσ implies q[p1, . . . , pn]σ  q[q1, . . . , qn]σ by weak monotonicity
of q. Hence, p[p]σ − p[q]σ  0. Since the instantiation σ is a counterexample
to our original constraint, we have pσ � qσ and thus pσ < qσ. But then strict
monotonicity of p would imply p[p]σ − p[q]σ < 0 which gives a contradiction.

If we choose13 the abstract polynomials p = c x1 and q = d x1 for (6) and
p = c′ x1 and q = d′ x1 for (7), then (6) and (7) are transformed into the following
unconditional inequalities. (Note that we also have to add the inequalities c  1
and c′  1 to ensure that p is strictly monotonic.)

c · (b + a1 x + a2 y)− c · y  d · (a1 x + a2 y)− d · (a′
1 x + a′

2 y) ∧ (8)
c′ · (b + a′

1 x + a′
2 y)− c′ · y  d′ · (a′

1 x + a′
2 y)− d′ · (a1 x + a2 y + 1) (9)

Of course, such inequalities can be transformed into inequalities with 0 on their
right-hand side. For example, (8) is transformed to

(c a1 − d a1 + d a′
1) x + (c a2 − c− d a2 + d a′

2) y + c b  0 (10)

Thus, we now have to ensure non-negativeness of “polynomials” over variables
like x, y, where the “coefficients” are polynomials over the abstract variables like
c a1 − d a1 + d a′

1. To this end, it suffices to require that all these “coefficients”
are  0 [11]. In other words, now one can eliminate all universally quantified
variables like x, y and (10) is transformed into the Diophantine constraint

c a1 − d a1 + d a′
1  0 ∧ c a2 − c− d a2 + d a′

2  0 ∧ c b  0

III. Eliminating Universally Quantified Variables
p0+p1 xe11

1 . . . xen1
n + · · ·+pk x

e1k
1 . . . x

enk
n  0

p0  0 ∧ p1  0 ∧ . . . ∧ pk  0

if the pi neither contain “max” nor
any variable from V

To search for suitable values for the abstract coefficients that satisfy the re-
sulting Diophantine constraints, one fixes an upper bound for these values. Then
we showed in [2] how to translate such Diophantine constraints into a satisfi-
ability problem for propositional logic which can be handled by SAT solvers
efficiently. In our example, the constraints resulting from the initial inequal-
ity (4) are for example satisfied by a1 = 1, a2 = 0, a′

1 = 0, a′
2 = 1, b = 0,

c = 1, d = 1, c′ = 1, d′ = 0. With these values, the abstract interpretation
max(a1 x1 + a2 x2, a

′
1 x1 + a′

2 x2) for � is turned into the concrete interpretation
max(x1, x2).

13 A good heuristic is to choose q = b1x1 + . . . + bnxn where all bi are from {0, 1} and
p = a · x1 where 1 � a � max(Σn

i=1bi, 1).
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4.2 Automating Thm. 10

Now we show how to automate the improved reduction pair processor of Thm. 10.
As before, our aim is to translate the resulting constraints into Diophantine
constraints and further into propositional satisfiability problems.

Again, we start with an abstract polynomial interpretation Pol. But since the
values for the abstract coefficients can now be from Z, we add the constraint

[f ]  0 for all function symbols f (11)

to ensure the well-foundedness of the resulting order. In the TRS of Ex. 12,
we could start with an abstract interpretation where minusPol = max(m1x1 +
m2x2,m0). Here, m0,m1,m2 are abstract coefficients which can later be instan-
tiated by integers. Thus, we obtain the constraint max(m1x1 + m2x2,m0)  0.

The challenge when automating Thm. 10 is that the general usable rules GU
and the conditions (weakly) ν-MM and ν-RL depend on the (yet unknown)
monotonicity specification ν, which itself enforces constraints on the quasi-order
�Pol that one searches for. Nevertheless, if one uses max-polynomial interpreta-
tions, then the search for reduction pairs can still be mechanized efficiently. More
precisely, we show how to encode all conditions of Thm. 10 as a formula which
is independent of ν. In other words, this formula only contains Diophantine and
Boolean variables. The latter are used to encode ν. The formula has the form

Orient ∧ Usable ∧
(
More ∨ (Wmore ∧Rlinear)

)
∧ Compat ∧Depend (12)

where Orient requires that the DPs and general usable rules are weakly decreas-
ing and at least one DP is strictly decreasing. Here, we use Boolean variables
that state which rules are usable and Usable ensures that these variables have the
correct values. More, Wmore, and Rlinear correspond to ν-MM, weak ν-MM,
and ν-RL, respectively. Compat requires that �Pol is ν-compatible. Finally, the
formula Depend computes the sets ν(t, p) from the monotonicity specification ν.

We start with defining Depend . To represent a monotonicity specification ν,
for every function symbol f of arity n and every 1 � i � n we introduce two
Boolean variables ⇑f,i and ⇓f,i which encode the set ν(f, i). So ⇑f,i is true iff
⇑ ∈ ν(f, i) and likewise for ⇓f,i. Depend is the conjunction of the following
formulas for every term t in P ∪U(P) and every position p of t. They introduce
two Boolean variables ⇑t,p and ⇓t,p to encode the sets ν(t, p) according to Def. 6.

⇑t,ε ⇔ true
⇑f(t1,...,tn),i p ⇔

(
⇑f,i ∧ ⇑ti,p

)
∨

(
⇓f,i ∧ ⇓ti,p

)
∨(

⇑f,i ∧ ⇓f,i

)
∨

(
⇑ti,p ∧ ⇓ti,p

)
⇓t,ε ⇔ false
⇓f(t1,...,tn),i p ⇔

(
⇑f,i ∧ ⇓ti,p

)
∨

(
⇓f,i ∧ ⇑ti,p

)
∨(

⇑f,i ∧ ⇓f,i

)
∨

(
⇑ti,p ∧ ⇓ti,p

)
Next we define Usable. We use two Boolean variables usf and usf for every

defined symbol f . Here, usf (resp. usf ) is true if the f -rules (resp. reversed f -
rules) are usable according to Def. 7. So whenever an f occurs at a non-decreasing
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position of a right-hand side of P then the f -rules are usable. Similarly, if f occurs
at a non-increasing position, then the reversed f -rules are usable. Moreover, if
(possibly reversed) f -rules are already usable then this may yield new usable
rules due to right-hand sides of f -rules. Here, one has to keep the direction of
the rules for non-decreasing positions and reverse the direction for non-increasing
positions. This gives rise to the following formula Usable.∧

s→t∈P, t|p=f(...), f defined

(¬⇓t,p ⇒ usf ) ∧ (¬⇑t,p ⇒ usf ) ∧

∧
�→r∈Rls(f), r|p=g(...), g defined

(
usf ⇒ (¬⇓r,p ⇒usg) ∧ (¬⇑r,p ⇒usg)

) ∧ (
usf ⇒ (¬⇓r,p ⇒usg) ∧ (¬⇑r,p ⇒usg)

)

With the Boolean variables usf and usf we can easily formalize that the
rules in P ∪ GU(P) are weakly decreasing and that at least one pair is strictly
decreasing. We obtain the following constraint Orient which is analogous to (3).∧

s→t∈P
[s]Pol  [t]Pol ∧

∨
s→t∈P

[s]Pol  [t]Pol + 1 ∧

∧
�→r∈R, f=root(�)

(
usf ⇒ [�]Pol  [r]Pol

)
∧

(
usf ⇒ [r]Pol  [�]Pol

)

To ensure that P ∪ Ucontr(P) is ν-RL, we interpret the Boolean values true
and false as 1 and 0. Then we express ν-RL as a Diophantine constraint which
we solve in the same way as the ones obtained from Orient later on. For any
variable x, any term t, and any set M ⊆ {⇑,⇓}, let #M

x (t) be a polynomial that
describes the number of occurrences of x in t at positions p where ν(t, p) = M .
Thus, #∅

x (t) =
∑

t|p=x(¬⇑t,p∧¬⇓t,p) and #{⇑}
x (t), #{⇓}

x (t), #{⇑,⇓}
x (t) are defined

accordingly. Moreover, #x(t) =
∑

t|p=x(¬⇑t,p ∨ ¬⇓t,p) encodes the number of
occurrences of x at dependent positions of t. Then the constraint Rlinear is:

∧
s→t∈P, x∈V(s)

#x(t)�1 ∧
∧


→r∈R, x∈V(
), f=root(
)

(
usf ∨ usf ⇒ #x(r)�1

)

More and Wmore ensure that P ∪ Ucontr(P) is (weakly) ν-MM. For every rule
� → r and every variable x at a ν-dependent position p of r, this variable must
also occur at a unique less monotonic “partner” position q of �. Thus, we could
require #∅

x (r) � #∅
x (�), #{⇑}

x (r) � #{⇑}
x (�), and #{⇓}

x (r) � #{⇓}
x (�). However,

these requirements would be too strong, because they ignore the possibility that
the “partner” position in � may also be strictly less monotonic than the one in
r. Therefore, for every rule � → r we introduce two new Diophantine variables
pt⇑x and pt⇓x which stand for the number of those positions p ∈ Posν

x(r) with
ν(r, p) = {⇑} (resp. ν(r, p) = {⇓}) where the “partner” position q ∈ Posν

x(�) is
non-monotonic (i.e., ν(�, q) = ∅). Then Wmore is the following formula:∧
s→t∈P, x∈V(t)

(
#x(s)1⇒ mm(s→ t, x)

)
∧
∧


→r∈R, x∈V(r), f=root(
)

(
(usf ∨ usf ) ∧#x(�)1⇒ mm(�→ r, x)

)
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where mm(� → r, x) is the following formula to encode ν-MM. Its first part
ensures that � contains enough non-monotonic occurrences of x to “cover” all
occurrences of x in r that have a non-monotonic “partner” position in �.

#∅

x (r)+pt⇑x +pt⇓x � #∅

x (�) ∧ #{⇑}
x (r) � pt⇑x+#{⇑}

x (�) ∧ #{⇓}
x (r) � pt⇓x+#{⇓}

x (�)

Now More results from Wmore by removing the premises “#x(·)  1”.
Compat ensures that whenever the Boolean variable ⇑f,i is true, then fPol

is a max-polynomial that is (weakly) monotonically increasing on its i-th argu-
ment (similarly for ⇓f,i). We express such monotonicity conditions by the partial
derivatives of fPol. If fPol is differentiable (i.e., fPol contains no “max”), then
�Pol is monotonically increasing on f ’s i-th argument iff ∂fPol

∂xi
 0 (similarly

for monotonic decrease). If fPol is a max-polynomial, then it is in general not
differentiable, but piecewise differentiable and continuous. Then

�Pol is monotonically increasing (resp. decreasing) on f ’s i-th argument iff
∂fPol

∂xi
 0 (resp. ∂fPol

∂xi
� 0) holds for all values where ∂fPol

∂xi
is defined.

For instance, max(x1−1, 2) is not differentiable at x1 = 3. We have ∂ max(x1−1,2)
∂x1

= 0 for x1 < 3 and ∂ max(x1−1,2)
∂x1

= 1 for x1 > 3. But as ∂ max(x1−1,2)
∂x1

 0 when-
ever it is defined, the function max(x1−1, 2) is indeed monotonically increasing.

Therefore we introduce a new function symbol derx for partial derivatives.
Here, derx(p) stands for ∂p

∂x whenever p is a function depending on x. However,
at the moment the expressions derx(p) are not “evaluated”. Thus, we can also
write derx(p) if p is not differentiable. Then, Compat is the conjunction of the
following constraints for all function symbols f and all 1 � i � arity(f):(

⇑f,i ⇒ derxi(fPol)  0
)

∧
(
⇓f,i ⇒ 0  derxi(fPol)

)
This is indeed sufficient to guarantee that (�Pol,*Pol) is ν-compatible. In

particular, ⇑f,i ∧ ⇓f,i now implies derxi(fPol) = 0, which ensures that �Pol is
independent on f ’s i-th argument. Thus, the third condition of Def. 6 is always
satisfied for quasi-orders like �Pol, cf. Footnote 6.

So to automate Thm. 10,14 we start with the constraint (12) instead of (3).
In addition, we need the constraints of the form (11). Then we again apply the
inference rules (I) - (III) in order to obtain Diophantine constraints.

However, now inequalities also contain “derx(p)” for max-polynomials p. Here,
we apply Rule (I) repeatedly in order to eliminate “max”. So by Rule (I), the
constraint derx1(max(m1x1 + m2x2,m0))  0 would be transformed into(

m1x1 + m2x2  m0 ⇒ derx1(m1x1 + m2x2)  0
)

∧(
m0  m1x1 + m2x2 + 1 ⇒ derx1(m0)  0

) (13)

14 The automation of Thm. 5 works as for Thm. 2. To automate the combination of
Thm. 5 and Thm. 10, one first generates the constraints for Thm. 10 and tries to
solve them. If one does not find a solution, one checks whether P ∪ U(P) is non-
duplicating. In this case, one uses Thm. 5(a) and otherwise, one uses Thm. 5(b).
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To eliminate “derx” afterwards, we need the following rule for partial derivation:

IV. Eliminating “der”
. . . derxi(p0 + p1 xe11

1 . . . xen1
n + · · ·+ pk xe1k

1 . . . xenk
n ) . . .

. . . p1 ei1 x
e11
1 . . . x

ei1−1
i . . . xen1

n + · · · + pk eik x
e1k
1 . . . x

eik−1
i . . . x

enk
n

if the pi neither con-
tain “max” nor any
variable from V

So in (13), one could replace derx1(m1x1 + m2x2) by m1 and derx1(m0) by 0.

5 Experiments and Conclusion

We showed how to use integer polynomial interpretations with “max” in termina-
tion proofs with DPs and developed a method to encode the resulting search prob-
lems into SAT. All our results are implemented in the systems AProVE and TTT2.
While AProVE and TTT2 were already the two most powerful termination provers
for TRSs at the International Competition of Termination Tools 2007 [14], our con-
tributions increase the power of both tools considerably without affecting their ef-
ficiency. More precisely, when using a time limit of 1 minute per example, AProVE
and TTT2 can now automatically prove termination of 15 additional examples from
the Termination Problem Data Base that is used for the competitions. Several
of these examples had not been proven terminating by any tool at the competi-
tions before. Moreover, AProVE and TTT2 now also succeed on all examples from
this paper (i.e., Ex. 1, 11, and 12), whereas all previous tools from the competi-
tions failed (with the exception of TPA that could already solve Ex. 1). Our ex-
periments also show the advantages over the earlier related contributions of [7,10]
which were already implemented in AProVE and TTT2, respectively. To run the
AProVE implementation via a web-interface and for further details, we refer to
http://aprove.informatik.rwth-aachen.de/eval/maxpolo.
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Abstract. Recently, the dependency pairs (DP) approach has been gen-
eralized to context-sensitive rewriting (CSR). Although the context-sen-
sitive dependency pairs (CS-DP) approach provides a very good basis for
proving termination of CSR, the current developments basically corre-
spond to a ten-years-old DP approach. Thus, the task of adapting all
recently introduced dependency pairs techniques to get a more powerful
approach becomes an important issue. In this direction, usable rules are
one of the most interesting and powerful notions. Actually usable rule
have been investigated in connection with proofs of innermost termina-
tion of CSR. However, the existing results apply to a quite restricted
class of systems. In this paper, we introduce a notion of usable rules that
can be used in proofs of termination of CSR with arbitrary systems. Our
benchmarks show that the performance of the CS-DP approach is much
better when such usable rules are considered in proofs of termination of
CSR.

Keywords: Dependency pairs, term rewriting, termination.

1 Introduction

During the last decade, the impressive advances in techniques for proving ter-
mination of rewriting (remarkably the dependency pairs approach [6,10,13,14])
have succeeded in solving termination problems that stood out of reach for a
long time. Roughly speaking, given a Term Rewriting System (TRS) R, the de-
pendency pairs associated to R give rise to a new TRS DP(R) which (together
with R) determines the so-called dependency chains whose finiteness character-
izes termination of R. The dependency pairs can be presented as a dependency
graph, where the absence of infinite chains can be analyzed by considering the
cycles in the graph. Basically, given a cycle C ⊆ DP(R) in the dependency graph,
we require l ) r for all rules in the TRS R, u ) v or u � v for all dependency
pairs u → v ∈ C and u � v for at least one u → v ∈ C. Here, ) is a stable
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and monotonic quasi-ordering on terms and � is a well-founded ordering; both
of them can be different for the different cycles in the dependency graph.

Termination problems with many rules require more time for getting an an-
swer. Even worse: since termination proofs are usually constrained to succeed
within a given (often short) time-out, the proof could get lost due to a lack of
time. For those reasons, techniques leading to increase the efficiency (and also
the power) of the dependency pairs method, like usable rules, appear like a key
issue. Usable rules U(R,C) ⊆ R are associated to a given cycle C of the depen-
dency graph for R. For particular (but widely used) classes of quasi-orderings
), we can restrict the comparisons l ) r to rules l → r in U(R,C) instead of
using R. Since U(R,C) is (usually) smaller than R, proofs of termination often
become easier in this way. Usable rules were introduced ten years ago by Arts
and Giesl for proving termination of innermost rewriting [5]. The adaptation of
the idea to (unrestricted) rewriting [14,17] took some years. A possible reason
for that is that the proof of soundness for the innermost and for the unrestricted
cases are totally different. The proof of soundness in [14,17] relies on a trans-
formation in which all infinite (minimal) rewrite sequences can be simulated
by using a restricted set of rules. This transformation was devised by Gramlich
for a completely different purpose [15]. Later, Urbain [24] used it (with some
modifications) to prove termination of rewriting modules. Finally, Hirokawa and
Middeldorp [17] and (independently) Thiemann et al. [14] combined this idea
with the idea of usable rules leading to an improved framework for proving
termination of rewriting.

In this paper, we extend the notion of usable rule to the recently introduced de-
pendency pairs approach for context-sensitive rewriting (CS-DPs [2,3]). Proving
termination of context-sensitive rewriting (CSR [18,20]) is an interesting prob-
lem with many applications in the fields of term rewriting and programming
languages (see [8,12,19,20,22] for further motivations). In CSR, a replacement
map (i.e., a mapping μ : F → ℘(N) satisfying μ(f) ⊆ {1, . . . , k}, for each k-ary
symbol f of a signature F) is used to discriminate the argument positions on
which the rewriting steps are allowed; rewriting at the topmost position is always
possible. The following example gives a first intuition of CSR and CS-DPs; full
details are given below.

Example 1. Consider the following TRS R borrowed from [7, Example 4.7.37].
The program zips two lists of integers into a single one but instead of pairing
the components it rather computes their quotients:

sel(0, cons(x, xs))→ x (1)

minus(x,0) → x (2)

quot(0, s(y))→ 0 (3)

zWquot(nil, x)→ nil (4)

zWquot(x, nil) → nil (5)

head(cons(x, xs))→ x (6)

sel(s(n), cons(x, xs))→ sel(n, xs) (7)

minus(s(x), s(y))→ minus(x, y) (8)

quot(s(x), s(y))→ s(quot(minus(x, y), s(y))) (9)

from(x)→ cons(x, from(s(x))) (10)

tail(cons(x, xs))→ xs (11)

zWquot(cons(x, xs), cons(y, ys))→ cons(quot(x, y),zWquot(xs, ys)) (12)
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with μ(cons) = {1} and μ(f) = {1, . . . , ar(f)} for all other symbols f ∈ F .
The set of CS-DPs of R is:

MINUS(s(x),s(y))→ MINUS(x, y)

QUOT(s(x),s(y))→ MINUS(x, y)

QUOT(s(x),s(y))→ QUOT(minus(x, y), s(y))

TAIL(cons(x, xs))→ xs

SEL(s(n), cons(x, xs)) → SEL(n, xs)

ZWQUOT(cons(x, xs),cons(y, ys)) → QUOT(x, y)

SEL(s(n), cons(x, xs)) → xs

Note that non-μ-replacing subterms in right-hand sides (e.g., from(s(x)) in rule
(10)) are not considered to build the CS-DPs. Also, in sharp contrast with
the unrestricted case, collapsing dependency pairs like TAIL(cons(x, xs)) → xs
(where the right-hand side is a variable) are introduced.

Regarding proofs of termination of innermost CSR, the straightforward adapta-
tion of usable rules to the context-sensitive setting only works for the so-called
conservative systems (see [4]) where collapsing dependency pairs do not occur.
In Section 3, we show that the standard adaptation does not work when proofs
of termination of CSR are attempted. In Section 4, we provide a general notion
of usable rules for proving termination of CSR. Although we follow the same
proof style, our proof of soundness differs from those in [14,15,17,24] in several
aspects that we clarify below. In Section 5, we prove that it is possible to use the
standard (simpler) notion of usable rules [14,17] in proofs of termination of CSR
for a restricted class of CS-TRSs: the strongly conservative systems. Section 6
provides experimental evaluations and Section 7 concludes. Complete proofs are
given in [16].

2 Preliminaries

We assume knowledge about standard definitions and notations for term rewrit-
ing (including dependency pairs) as given in, e.g., [23]. In the following, we
provide some definitions and notation on CSR [18,20] and CS-DPs [2,3].

Context-Sensitive Rewriting. Given a TRS R = (F , R), we consider the sig-
nature F as the disjoint union F = C � D of constructors symbols c ∈ C and
defined symbols f ∈ D where D = {root(l) | l → r ∈ R} and C = F − D. A
mapping μ : F → ℘(N) is a replacement map (or F -map) if ∀f ∈ F , μ(f) ⊆
{1, . . . , ar(f)} [18]. Let MF be the set of all F -maps (MR for the F -maps of a
TRSR = (F , R)). A binary relation R on terms in T (F ,X ) is μ-monotonic if tRs
implies f(t1, . . . , ti−1, t, . . . , tn)Rf(t1, . . . , ti−1, s, . . . , tn) for all f ∈ F , i ∈ μ(f),
and t, s, t1, . . . , tn ∈ T (F ,X ). The set of μ-replacing positions Posμ(t) of t ∈
T (F ,X ) is: Posμ(t) = {ε}, if t ∈ X and Posμ(t) = {ε}∪

⋃
i∈μ(root(t)) i.Pos

μ(t|i),
if t �∈ X . The set of μ-replacing variables of t is Varμ(t) = {x ∈ Var(t) | ∃p ∈
Posμ(t), t|p = x}. The μ-replacing subterm relation �μ is defined by t �μ s if
there is p ∈ Posμ(t) such that s = t|p. We write t�μs if t�μs and t �= s. We write
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t�
�μ
s to denote that s is a non-μ-replacing strict subterm of t: t�

�μ
s if there is

p ∈ Pos(t)−Posμ(t) such that s = t|p. We say that f ∈ F is a hidden symbol in
l → r ∈ R if there exists a term t ∈ T (F ,X ) s.t. r �

�μ
t and root(t) = f . We say

that a variable x is migrating in l → r ∈ R if x ∈ Varμ(r)−Varμ(l). In context-
sensitive rewriting (CSR [18]), we (only) rewrite terms at μ-replacing positions:
t μ-rewrites to s, written t ↪→μ s (or t ↪→R,μ s), if t

p→R s and p ∈ Posμ(t). A
TRS R is μ-terminating if ↪→μ is terminating. A term t is μ-terminating if there
is no infinite μ-rewrite sequence t = t1 ↪→μ t2 ↪→μ · · · . A pair (R, μ) (or triple
(F , μ, R)) where R = (F , R) is a TRS and μ ∈ MR is often called a CS-TRS.
We denote H(R, μ) (or just H, if there is no ambiguity) the set of all hidden
symbols in (R, μ).

Context-Sensitive Dependency Pairs. Given a TRS R = (F , R) = (C�D, R) and
μ ∈MR, the set of context-sensitive dependency pairs (CS-DPs) is DP(R, μ) =
DPF(R, μ) ∪ DPX (R, μ), where DPF (R, μ) and DPX (R, μ) are obtained as fol-
lows: let f(t1, . . . , tm) → r ∈ R and s ∈ T (F ,X ) be such that r �μ s. Then
(1) if s = g(s1, . . . , sn), for some g ∈ D, s1, . . . , sn ∈ T (F ,X ) and l �μ s, then
f �(t1, . . . , tm) → g�(s1, . . . , sn) ∈ DPF (R,μ); (2) if s = x ∈ Varμ(r) − Varμ(l),
then f �(t1, . . . , tm) → x ∈ DPX (R,μ). Here, f � and g� are new fresh symbols
(called tuple symbols) associated to the symbols f and g respectively. The CS-
DPs in DPX (R, μ) are called the collapsing CS-DPs. Let F � = F ∪{f � | f ∈ F}.
We extend μ ∈ MF into μ� ∈ MF� by μ�(f) = μ�(f �) = μ(f) for each f ∈ F .
As usual, for t = f(t1, . . . , tn) ∈ T (F ,X ), we write t� to denote the marked
term f �(t1, . . . , tn). Let T �(F ,X ) = {t� | t ∈ T (F ,X ) − X} be the set of
marked terms. We will also use the set P�(F ,X ) = T �(F ,X )× (T �(F ,X )∪X ).
Given t = f �(t1, . . . , tk) ∈ T �(F ,X ), we write t� to denote the unmarked term
f(t1, . . . , tk) ∈ T (F ,X ). As usual, capital letters denote marked symbols in
examples. A set of pairs P ⊆ P�(F ,X ) is decomposed into collapsing and non-
collapsing pairs (PX and PF , respectively): PX = {u → v ∈ P | v ∈ X} and
PF = P − PX .

Let R = (F , R) be a TRS, P ⊆ P�(F ,X ) and μ ∈ MF . An (R,P , μ�)-chain
is a finite or infinite sequence of pairs ui → vi ∈ P , for i ≥ 1 such that there is
a substitution σ satisfying both:

1. σ(vi) ↪→∗
R,μ� σ(ui+1), if ui → vi ∈ PF , and

2. if ui → vi = ui → xi ∈ PX , then there is si ∈ T (F ,X ) such that σ(xi) �μ si

and s�
i ↪→∗

R,μ� σ(ui+1).

where Var(vi) ∩ Var(uj) = ∅ for all i �= j (renaming if necessary). Let M∞,μ

be the set of minimal non-μ-terminating terms. Then, t ∈ M∞,μ if t is non-μ-
terminating and every strict μ-replacing subterm of t is terminating. We say that
an (R,P , μ�)-chain is minimal if for all i ≥ 1 σ(vi) (whenever ui → vi ∈ PF), s�

i

(whenever ui → vi ∈ PX ) are μ-terminating w.r.t. R. A CS-TRS R = (F , μ, R)
is μ-terminating if and only if there is no infinite minimal (R,DP(R, μ), μ�)-
chain. For finite CS-TRSs, the CS-DPs can be presented as a context-sensitive
dependency graph (CS-DG); there is an arc from u → v ∈ DPF (R, μ) to u′ →
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v′ ∈ DP(R, μ) if there is a substitution σ such that σ(v) ↪→∗
R,μ σ(u′); and, there

is an arc from u → v ∈ DPX (R, μ) to u′ → v′ ∈ DP(R, μ) if root(u′)� ∈ H.
We consider the strongly connected components in this graph. A μ-reduction
pair (),�) consists of a stable and weakly μ-monotonic quasi-ordering ), and
a stable and well-founded ordering � satisfying ) ◦ �⊆� or � ◦ )⊆�. From
now on, we assume that all CS-TRSs are finite.

3 Basic Usable Rules

Consider a set of pairs P and a CS-TRS (R, μ). Then, the set of usable rules is
the smallest set of rules from R which are needed to capture all the infinite min-
imal (R,P , μ�)-chains. The rules that are responsible for generating the chains
between pairs are those rules rooted by symbols that appear in the right-hand
side of the pairs below the root symbol. This concept is captured by the definition
of direct dependency [14,17,24]:

Definition 1 (Direct Dependency [14,17]). Given a TRS R = (F , R), we
say that f ∈ F directly depends on g ∈ F , written f �d g, if there is a rule
l → r ∈ R with f = root(l) and g occurs in r.

The set of defined symbols in a term t is DFun(t) = {f | ∃p ∈ Pos(t), f =
root(t|p) ∈ D}. Let �∗

d be the transitive and reflexive closure of �d. Then, we
have:

Definition 2 (Usable Rules [14,17]). For a set G of symbols we denote by
R | G the set of rewriting rules l → r ∈ R with root(l) ∈ G. The set U(R, t) of
usable rules of a term t is defined as R | {g | f �∗

d g for some f ∈ DFun(t)}. If
P is a set of dependency pairs then U(R,P) =

⋃
l→r∈P U(R, r).

The set U(R,P) can be used instead of R when looking for a reduction pair that
proves termination of R [14,17]. Let us now focus on CS-TRSs.

A first attempt to give a notion of usable rules for CSR is given in [4] (basic
usable rules) for proofs of innermost termination. The results in [4] show that the
straightforward generalization of Definition 2 to CSR (see Definition 4 below)
only applies to conservative CS-TRSs and cycles (of CS-DPs), that is, systems
having only conservative rules [22]: a rule l → r ∈ R is conservative if Varμ(r) ⊆
Varμ(l). First, we adapt Definition 1 to the CSR setting as follows:

Definition 3 (Basic μ-Dependency). Given a CS-TRS (F , μ, R), we say that
f ∈ F has a basic μ-dependency on g ∈ F , written f �d,μ g, if there is l → r ∈ R
with f = root(l) and g occurs in r at a μ-replacing position.

This leads to a straightforward extension of Definition 2. The set of μ-replacing
defined symbols in a term t is DFunμ(t) = {f | ∃p ∈ Posμ(t), f = root(t|p) ∈
D}. Then, we have1:

1 Note that, due to the focus on innermost CSR, [4, Def. 5] slightly differs from ours.
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Definition 4 (Basic Context-Sensitive Usable Rules). Let R = (F , R)
be a TRS and μ ∈ MR. The set UB(R, μ, t) of basic context-sensitive usable
rules of a term t is defined as R | {g | f �∗

d,μ g for some f ∈ DFunμ(t)},
where �∗

d,μ is the transitive and reflexive closure of �d,μ. If P ⊆ P�(F ,X ), then

UB(R, μ�,P) =
⋃

l→r∈P
UB(R, μ�, r).

Example 2. (Continuing Example 1) The cycles in the CS-DG are:

{SEL(s(n), cons(x, xs))→ SEL(n, xs)} (C1)

{MINUS(s(x), s(y))→ MINUS(x, y)} (C2)

{QUOT(s(x), s(y))→ QUOT(minus(x, y),s(y))} (C3)

Consider the cycle C3; then, UB(R, μ�, C3) contains the following rules:

minus(x, 0) → x minus(s(x), s(y)) → minus(x, y)

However, as we are going to see, and in sharp contrast with [4], Definition 4
does not lead to a correct approach for proving termination of CSR, even for
conservative TRSs.

Example 3. Consider the TRS R = {f(c(x), x) → f(x, x), b→ c(b)} [4] together
with μ(f) = {1, 2} and μ(c) = ∅. Note that (R, μ) is conservative (and innermost
μ-terminating, see [4]).

We have a single cycle C = {F(c(x), x) → F(x, x)}. According to Defini-
tion 4, we have no usable rules because F(x, x) contains no symbol in F . We
could wrongly conclude μ-termination of (R, μ), but we have the infinite mini-
mal (R, C, μ�)-chain F(c(b), b) → F(b, b) ↪→ F(c(b), b) → · · · .

In the following, we develop a correct definition of usable rules that can be
applied to arbitrary CS-TRSs.

4 Termination of CS-TRSs with Usable Rules

As shown in [14,17], considering the set of usable rules instead of all the rules suf-
fices for proving termination of (R,P)-chains (or P-minimal sequences in [17]).
In [14,17], an interpretation of terms as sequences of their possible reducts is
used2. The definition of the transformation requires adding new fresh (list con-
structor) symbols ⊥, g /∈ F and the (projection) rules g(x, y) → x, g(x, y) → y
(the π-rules). In this way, infinite minimal (R,P)-chains can be represented as
infinite (U(R,P) ∪ π,P)-chains. We recall here the interpretation definition.

Definition 5 (Interpretation [14,17]). Let R = (F , R) be a TRS and G ⊆ F .
Let > be an arbitrary total ordering over T (F � ∪ {⊥, g},X ) where ⊥ is a new
constant symbol and g is a new binary symbol. The interpretation IG is a mapping

2 This method goes back to [15].
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from terminating terms in T (F �,X ) to terms in T (F � ∪ {⊥, g},X ) defined as
follows:

IG(t) =

⎧⎨
⎩

t if t ∈ X
f(IG(t1), . . . , IG(tn)) if t = f(t1 . . . tn) and f /∈ G
g(f(IG(t1), . . . , IG(tn)), t′) if t = f(t1 . . . tn) and f ∈ G

where t′ = order ({IG(u) | t→R u})

order(T ) =
{
⊥, if T = ∅
g(t, order(T − {t})) if t is minimal in T w.r.t. >

The set of symbols G ⊆ F in Definition 5 is intended to represent the set of
‘non-usable symbols’, i.e., symbols which do not occur in the usable rules of the
considered set of pairs P . In rewriting, when considering infinite minimal (R,P)-
chains, we only deal with terminating terms overR. The interpretation in Defini-
tion 5 is defined only for terminating terms because non-terminating terms would
yield an infinite term which, actually, does not belong to T (F � ∪ {⊥, g},X ).

Similarly, we aim at defining a μ-interpretation IG,μ that allows us to associate
an infinite (U(R, μ�,P)∪π,P , μ�)-chain to each infinite minimal (R,P , μ�)-chain.
Actually, the main problem is that (R,P , μ�)-chains contain non-μ-terminating
terms in non-μ-replacing positions which are potentially able to reach μ-replacing
positions: subterms at a μ-replacing position are μ-terminating, but we do not
know anything about subterms at non-μ-replacing positions. Hence, we have to
define our μ-interpretation IG,μ both on μ-terminating and non-μ-terminating
terms. In [3], we have investigated the structure of infinite μ-rewriting sequences
issued from minimal non-μ-terminating terms. Intuitively, one of the main re-
sults in [3] states that terms at non-μ-replacing positions in the right-hand side
of the rules are essential to track infinite minimal (R,P , μ�)-chains involving
collapsing CS-DPs (see [3, Proposition 3.6]). These terms, by definition, are
formed by hidden symbols. This observation gives us the key to generalize Def-
inition 5 properly. Following Definition 5, a μ-terminating but non-terminating
term generates an infinite list. For this reason, IG (as a mapping from finite into
finite terms) is not defined for non-terminating terms.

Regarding our μ-interpretation, if we consider the rules headed by hidden
symbols as usable, then we are avoiding such infinite μ-interpretations of μ-
terminating terms. A non-μ-terminating term t (below a non-μ-replacing posi-
tion) is treated as if its root symbol does not belong to G, because if it occurs
in the (R,P , μ�)-chain at a μ-replacing position, then t �μ s and s� becomes
the next term in the chain. To simulate all possible derivations of the terms over
(R, μ) we also need to add to the system the π-rules. Our new μ-interpretation is:

Definition 6 (μ-Interpretation). Let R = (F , μ, R) be a CS-TRS, G ⊆ F be
such that G∩H = ∅. Let > be an arbitrary total ordering over T (F � ∪ {⊥, g},X )
where ⊥ is a new constant symbol and g is a new binary symbol (with μ(g) =
{1, 2}). The μ-interpretation IG,μ is a mapping from arbitrary terms in T (F �,X )
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to terms in T (F � ∪ {⊥, g},X ) defined as follows:

IG,μ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t if t ∈ X
f(IG,μ(t1), . . . , IG,μ(tn)) if t = f(t1 . . . tn) and f /∈ G

or t is non-μ-terminating
g(f(IG,μ(t1), . . . , IG,μ(tn)), t′) if t = f(t1 . . . tn) and f ∈ G

and t is μ-terminating

where t′ = order
(
{IG,μ(u) | t ↪→(R,μ) u}

)
order(T ) =

{
⊥, if T = ∅
g(t, order(T − {t})) if t is minimal in T w.r.t. >

The set G ⊆ F in Definition 6 corresponds to the set of non-usable symbols
as discussed below. Now, we prove that IG,μ is well-defined. The most impor-
tant difference (and essential in our proof) among our μ-interpretation and all
previous ones [14,15,17,24] is that IG,μ is well-defined both for μ-terminating or
non-μ-terminating terms.

Lemma 1. Let R = (F , R) be a TRS, μ ∈MF and let G ⊆ F −H. Then, IG,μ

is well-defined.

Now, we define an appropriate notion of direct μ-dependency. This is not straight-
forward as shown in the next example.

Example 4. Consider the following conservative non-μ-terminating CS-TRSR =
{a(x, y) → b(x, x), d(x, e) → a(x, x), b(x, c) → d(x, x), c → e} with μ(a) =
μ(d) = {1, 2}, μ(b) = {1} and μ(c) = μ(e) = ∅. The only cycle consists of the
dependency pairs C = {A(x, y) → B(x, x), D(x, e) → A(x, x), B(x, c) → D(x, x)}.

According to Definition 4, we have no basic usable rules because the right-
hand sides of the dependency pairs have no defined symbols. Since we do not
consider the rule c → e as usable, we would assume G = {a, b, c, d, e}. Then,
we cannot simulate the infinite minimal (R,P , μ�)-chain A(c, c) ↪→ B(c, c) ↪→
D(c, c) ↪→ D(c, e) ↪→ A(c, c) ↪→ · · · because we have:

s = IG,μ(A(c, c)) = A(g(c, g(e,⊥)), g(c, g(e,⊥))) ↪→ B(g(c, g(e,⊥)), g(c, g(e,⊥))) = t

The interpreted term g(c, g(e,⊥)) at the μ-replacing position 1 of s is ‘moved’
to a non-μ-replacing position 2 of t. Hence, we cannot reduce t on the second
argument of B to obtain the term B(g(c, g(e,⊥)), c) required for applying the
next CS-DP (B(x, c) → D(x, x)) which continues the previous (R,P , μ)-chain.

In order to avoid this problem, we modify Definition 3 to take into account
symbols occurring at non-μ-replacing positions in the left-hand sides of the rules.

Definition 7 (μ-Dependency). Given a CS-TRS R = (F , μ, R), we say that
f ∈ F directly μ-depends on g ∈ F , written f �d,μ g, if there is a rule l → r ∈ R
with f = root(l) and (1) g occurs in r at a μ-replacing position or (2) g occurs
in l at a non-μ-replacing position.
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Remarkably, condition (2) in Definition 7 is not very problematic in practice
because most programs are constructor systems, which means that no defined
symbols occur below the root in the left-hand side of the rules.

Now we are ready to define our notion of usable rules. The set of non-μ-
replacing defined symbols in a term t is NDFunμ(t) = {f | ∃p ∈ Pos(t) and p /∈
Posμ(t), f = root(t|p) ∈ D}.
Definition 8 (Context-Sensitive Usable Rules). Let R = (F , R) be a TRS,
μ ∈ MR, and P ⊆ P�(F ,X ). The set U(R, μ�,P) of context-sensitive usable
rules for P is given by U(R, μ�,P) = UH(R, μ) ∪

⋃
l→r∈P

UE(R, μ�, l → r).

where UE(R, μ, l → r) = R | {g | f �∗
d,μ g for some f ∈ DFunμ(r) ∪NDFunμ(l)}

UH(R, μ) = R | {g | f �∗
d,μ g for some f ∈ H}

Note that UE extends the notion of usable rules in Definition 2, by taking into
account not only dependencies with symbols on the right-hand sides of the rules,
but also with some symbols in proper subterms of the left-hand sides. We call
UE(R, μ) the set of extended usable rules. On the other hand, UH is the set of
usable rules corresponding to the hidden symbols. Now, we are ready to formulate
and prove our main result in this section.

Theorem 1. Let R = (F , R) be a TRS, P ⊆ P�(F ,X ), and μ ∈ MF . If there
exists a μ-reduction pair (	,�) such that U(R, μ�,P)∪ π ⊆	, P ⊆	 ∪ �, and

1. If PX = ∅, then P ∩ � �= ∅
2. If PX �= ∅, then �μ⊆	, and

(a) P ∩ � �= ∅ and f(x1, . . . , xk) 	 f �(x1, . . . , xk) for all f � in P, or
(b) f(x1, . . . , xk) � f �(x1, . . . , xk) for all f � in P.

Let P� = {u → v ∈ P | u � v}. Then there are no infinite minimal (R,P , μ�)-
chains whenever:

1. there are no infinite minimal (R,P \ P�, μ
�)-chains in in case (1) and in

case (2a).
2. there are no infinite minimal (R, (P \ PX ) \ P�, μ

�)-chains in case (2b).

Proof (Sketch). By contradiction. Assume that there exists an infinite minimal
(R,P , μ�)-chain A but there is no infinite minimal (R,P \P�, μ

�)-chains in case
(1) and (2a), or there is no infinite minimal (R, (P \PX )\P�, μ

�)-chains in case
(2b). We can assume that there is a P ′ ⊆ P such that A has a tail B where all
pairs are used infinitely often:

t1 ↪→∗
R,μ u1 →P′ ◦��

μ t2 ↪→∗
R,μ u2 →P′ ◦��

μ · · ·

where s ��
μ t for s ∈ T (F ,X ) and t ∈ T �(F ,X ) means that s �μ t�.

Let σ be a substitution, we denote by σIG,μ the substitution that assigns to
each variable x the term IG,μ(σ(x)) and let G be the set of defined symbols of
R\U(R, μ�,P). We show that after applying IG,μ we get an infinite (U(R, μ�,P)∪
π,P ′, μ�)-chain. All terms in the infinite chain are μ-terminating w.r.t. (R, μ).
We proceed by induction. Let i ≥ 1.
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– If we consider the step ui →P′ ◦��
μ ti+1, we have two possibilities:

1. There is l → r ∈ P ′
F , then we get:

IG,μ(ui) ↪→∗
π σIG,μ(l) →P′

F
σIG,μ(r) = IG,μ(r) = IG,μ(ti+1)

2. There is an l → x ∈ P ′
X , then we get:

IG,μ(ui) ↪→∗
π σIG,μ(l) →P′

X
σIG,μ(x) = IG,μ(σ(x))

and IG,μ(σ(x)) �μ IG,μ(t�i+1)

– If we consider ti ↪→∗
R,μ ui. We get IG,μ(ti) ↪→∗

U(R,μ�,P)∪π IG,μ(ui).

Therefore we get the infinite (U(R, μ�,P),P ′, μ�)-chain:

IG,μ(t1) ↪→∗
U(R,μ�,P)∪π IG,μ(u1)→P′ ◦�

�
μ IG,μ(t2) ↪→∗

U(R,μ�,P)∪π IG,μ(u2)→P′ · · ·

Using the premises of the theorem, by monotonicity and stability of 	, we
would have that IG,μ(ti) 	 IG,μ(ui) for all i ≥ 1. By stability of � (and of 	),
we have that IG,μ(ui)(	 ∪ �)IG,μ(ti+1) for all i ≥ 1 and IG,μ(ui) � IG,μ(ti+1)
for all j ∈ J for an infinite set J = {j1, . . . , jn, . . .} of natural numbers j1 < j2 <
. . . < jn < . . .. Now, since 	 ◦ �⊆� or � ◦ 	⊆�, we would obtain an infinite
sequence consisting of infinitely many �-steps. We obtain a contradiction to the
well-foundedness of �. � 

Remark 1. Notice that (as expected) U(R,P , μ�) = U(R,P), i.e., our usable
rules for CS-TRSs (R, μ) coincide with the standard definition (see Definition 2)
when μ = μ� is considered (here, μ�(f) = {1, . . . , ar(f)} for all symbols f ∈ F ,
i.e., no replacement restriction is associated to any symbol).

Thanks to Theorem 1, we do not need to make all rules in R compatible with
the weak component 	P of a reduction pair (	P ,�P) associated to a given set
of pairs P . We just need to consider U(R, μ�,P) (together with the π-rules).

Example 5. (Continuing Examples 1 and 2) Since H ∩D = {from, zWquot}, we
have that U(R, μ�, C1) is:

minus(x,0) → x

quot(0, s(y))→ 0

zWquot(nil, x)→ nil

zWquot(x, nil) → nil

minus(s(x), s(y))→ minus(x, y)

quot(s(x), s(y))→ s(quot(minus(x, y),s(y)))

from(x)→ cons(x, from(s(x)))

zWquot(cons(x, xs), cons(y, ys))→ cons(quot(x, y),zWquot(xs, ys))

According to Theorem 1, the following polynomial interpretation (computed by
mu-term [1,21]) shows the absence of infinite (R, C1, μ

�)-chains.

[s](x) = x + 1 [quot](x, y) = x + y [minus](x, y) = 0
[from](x) = 0 [sel](x, y) = 0 [zWquot](x, y) = x + y

[cons](x, y) = 0 [0](x, y) = 0 [nil](x, y) = 1
[SEL](x, y) = x



136 R. Gutiérrez, S. Lucas, and X. Urbain

Note that, if the rules for sel were present, we could not find a linear polynomial
interpretation for solving this cycle.

Remark 2. When considering Definition 8 (usable rules for CSR) and Definition
2 (standard usable rules), one can observe that, despite the fact that CSR is a
restriction of rewriting, we can obtain more usable rules in the context-sensitive
case. Examples 3 and 4 show that this is because rules associated to hidden
symbols that do not occur in the right-hand sides of the dependency pairs in
the considered cycle can play an essential role in capturing infinite μ-rewrite
sequences. Thus, for terminating TRSs R, it could be sometimes easier to find a
proof of μ-termination of the CS-TRS (R, μ) if we ignore the replacement map μ.

5 Improving Usable Rules

According to the discussion in Section 3, the notion of basic usable rules is not
correct even for conservative systems. Still, since UB(R, μ,P) is contained in
(and is usually smaller than) U(R, μ,P), it is interesting to identify a class of
CS-TRSs where basic usable rules can be safely used. Then, we consider a more
restrictive kind of conservative CS-TRSs: the strongly conservative CS-TRSs.

Definition 9. Let F be a signature, μ ∈ MF and t ∈ T (F ,X ). We denote
Var�μ(t) the set of variables in t occurring at non-μ-replacing positions, i.e.,
Var�μ(t) = {x ∈ Var(t) | t �

�μ
x}.

Definition 10 (Strongly Conservative). Let R be a TRS and μ ∈ MR. A
rule l → r is strongly conservative if it is conservative and Varμ(l) ∩ Var�μ(l) =
Varμ(r) ∩ Var�μ(r) = ∅; and R is strongly conservative if all rules in R are
strongly conservative.

Linear CS-TRSs trivially satisfy Varμ(l) ∩ Var�μ(l) = Varμ(r) ∩ Var�μ(r) = ∅.
Hence, linear conservative CS-TRSs are strongly conservative. Note that the
CS-TRSs in Examples 1 and 3 are not strongly conservative.

Theorem 2 below is the other main result of this paper. It shows that ba-
sic usable rules in Definition 4 can be used to improve proofs of termination of
CSR for strongly conservative CS-TRSs. As discussed in Section 4, if we con-
sider minimal (R,P , μ�)-chains, then we deal with μ-terminating terms w.r.t.
(R, μ). We know that any μ-replacing subterm is μ-terminating, but we do not
know anything about non-μ-replacing subterms. However, dealing with strongly
conservative CS-TRSs, we ensure that non-μ-replacing subterms cannot become
μ-replacing after μ-rewriting(s) above them. Hence, we develop a new basic μ-
interpretation I ′G,μ where non-μ-replacing positions are not interpreted. In con-
trast to I ′G,μ (but closer to IG) our new basic μ-interpretation is defined now for
μ-terminating terms only.

Definition 11 (Basic μ-Interpretation). Let (F , μ, R) be a CS-TRS and G ⊆
F . Let > be an arbitrary total ordering over T (F � ∪ {⊥, g},X ) where ⊥ is a new
constant symbol and g is a new binary symbol. The basic μ-interpretation I ′G,μ is
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a mapping from μ-terminating terms in T (F �,X ) to terms in T (F � ∪ {⊥, g},X )
defined as follows:

I ′G,μ(t) =

⎧⎨
⎩

t if t ∈ X
f(I ′G,μ,f,1(t1), . . . , I

′
G,μ,f,n(tn)) if t = f(t1 . . . tn) and f /∈ G

g(f(I ′G,μ,f,1(t1), . . . , I
′
G,μ,f,n(tn)), t′) if t = f(t1 . . . tn) and f ∈ G

where I ′G,μ,f,i(t) =

{
I ′G,μ(t) if i ∈ μ(f)

t if i /∈ μ(f)
t′ = order

(
{I ′G,μ(u) | t ↪→R,μ u}

)
order(T ) =

{
⊥, if T = ∅

g(t, order(T − {t})) if t is minimal in T w.r.t. >

It is easy to prove that the basic μ-interpretation is well-defined (finite) for all
μ-terminating terms.

Lemma 2. For each μ-terminating term t, the term I ′G,μ(t) is finite.

For the proof of our next theorem, we need some auxiliary definitions and results.

Definition 12. Let (R, μ) be a CS-TRS and σ be a substitution and let G ⊆ F .
We denote by σI′

G,μ
: T (F ,X ) → T (F ,X ) a function that, given a term t replaces

occurrences of x ∈ Var(t) at position p in t by either I ′G,μ(σ(x)) if p ∈ Posμ(t),
or σ(x) if p �∈ Posμ(t).

Proposition 1. Let (R, μ) be a CS-TRS and σ be a substitution and let G ⊆ F .
Let t be a term such that Varμ(t) ∩ Var�μ(t) = ∅. Let σI′

G,μ,t be a substitution
given by

σI′
G,μ,t(x) =

{
I ′G,μ(σ(x)) if x ∈ Varμ(t)
σ(x) otherwise

Then, σI′
G,μ,t(t) = σI′

G,μ
(t).

The following theorem shows that we can safely consider the basic usable rules
(with the π-rules) for proving termination of strongly conservative CS-TRSs.

Theorem 2. Let R = (F , R) be a TRS, P ⊆ P�(F ,X ), and μ ∈ MF . If P ∪
UB(R, μ�,P) is strongly conservative and there exists a μ-reduction pair (	,�)
such that UB(R, μ�,P) ∪ π ⊆ 	, P ⊆ 	, and P ∩ � �= ∅. Let P� = {u → v ∈
P | u � v}. Then there are no infinite minimal (R,P , μ�)-chains whenever there
are no infinite minimal (R,P \ P�, μ

�)-chains.

Proof (Sketch). By contradiction. Assume that there exists an infinite minimal
(R,P , μ�)-chain A but there is no infinite minimal (R,P \ P�, μ

�)-chains. We
can assume that there is a P ′ ⊆ P such that A has a tail B where all pairs are
used infinitely often:

t1 ↪→∗
R,μ u1 →P′ t2 ↪→∗

R,μ u2 →P′ · · ·
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After applying the basic μ-interpretation I ′G,μ we obtain an infinite (UB(R, μ�,P)
∪ π,P ′, μ�)-chain. Since all terms in the infinite (R,P ′, μ�)-chain are μ-
terminating w.r.t. (R, μ), we can indeed apply the basic μ-interpretation I ′G,μ.
Let i ≥ 1.

– If we consider the pair step ui →P′ ti+1 we can obtain the following sequence:

I ′G,μ(ui) ↪→∗
π σI′

G,μ
(l) ↪→∗

π σI′
G,μ

,r(l) →P′ σI′
G,μ

,r(r) = σI′
G,μ

(r) = I ′G,μ(ti+1)

– If we consider the rewrite sequence ti ↪→∗
R,μ ui. All terms in it are μ-

terminating, then we get I ′G,μ(ti) ↪→∗
UB(R,μ�,P)∪π I ′G,μ(ui).

So we obtain the infinite μ-rewrite sequence:

I ′G,μ(t1) ↪→∗
UB(R,μ�,P)∪π I ′G,μ(u1) ↪→∗

π ◦ →P′ I ′G,μ(t2) ↪→∗
UB(R,μ�,P)∪π · · ·

Using the premise of the theorem, it is transformed into an infinite sequence
consisting of 	 and infinitely many � steps. Using the stability condition, this
contradicts the well-foundedness of �. � 

Example 6. (Continuing Examples 1, 2 and 5) Cycle C1 is not strongly conserva-
tive, but cycles C2 and C3 are strongly conservative. Thus, we can use their basic
usable rules. Cycle C2 has no usable rules and we can easily find a polynomial
interpretation to show the absence of infinite minimal (R, C2, μ

�)-chains:

[s](x) = x + 1 [MINUS](x, y) = y

The basic usable rules UB(R, μ�, C3) for C3 are strongly conservative (see Ex-
ample 2). The following polynomial interpretation proves the absence of infinite
(R, C3, μ

�)-chains:

[0] = 0 [s](x) = x + 1 [minus](x, y) = x [QUOT](x, y) = x

Since we dealt with cycle C1 in Example 5, μ-termination of R is proved. Until
now, no tool for proving termination of CSR could find a proof for this R in
Example 1. Thanks to the results in this paper, which have been implemented
in mu-term, we can easily prove μ-termination of R now.

6 Experiments

The techniques described in the previous sections have been implemented as part
of the tool mu-term [1,21]. In order to make clear the real contribution of the
new technique to the performance of the tool, we have implemented three differ-
ent versions of mu-term: (1) a basic version without any kind of usable rules,
(2) a second version implementing the results about usable rules described in [4],
and (3) a final version that implements the usable rules described in this paper
(we do not use the notion in [4] even if the TRS is conservative and innermost
equivalent). Version (2) of mu-term proves termination of CSR as termination
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Table 1. Comparative among the three mu-term versions

Tool Version Proved Total Time Average Time

No Usable Rules 44/90 6.11s 0.14s

Innermost Usable Rules 52/90 11.75s 0.23s

Usable Rules 64/90 8.91s 0.14s

Table 2. Comparative over the 44 examples

Tool Version Proved Total Time Average Time

No Usable Rules 44/90 6.11s 0.14s

Innermost Usable Rules 44/90 5.03s 0.11s

Usable Rules 44/90 3.57s 0.08s

of innermost CSR when the TRS is orthogonal (see [4,11]), 37 systems, and as
termination of CSR without usable rules in the rest of cases. In order to keep
the set of experiments simple (but still meaningful), we only use linear interpre-
tations with coefficients in {0, 1}. The usual practice shows that this is already
quite powerful (see [9] for recent benchmarks in this sense). The benchmarks
have been executed in a completely automatic way with a timeout of 1 minute
on each of the 90 examples in the Context-Sensitive Rewriting subcategory of
the 2007 Termination Competition3. A complete report of our experiments can
be found in:

http://www.dsic.upv.es/∼rgutierrez/muterm/rta08/benchmarks.html

Table 1 summarizes our results. Our notion of usable rules works pretty well: we
are able to prove 20 more examples than without any usable rules, and 12 more
than with the restricted notion in [4]. Furthermore, a comparison over the 44
examples solved by all the three versions of mu-term, we see that version (3)
of mu-term is 43% faster than (1) and 27% faster than (2) (see Table 2).

7 Conclusions

We have investigated how usable rules can be used to improve termination
proofs of CSR when the (context-sensitive) dependency pairs approach is used
to achieve the proof. In contrast to [4], the straightforward extension of the stan-
dard notion of usable rules (called here basic usable rules, see Definition 4) does
not work for CSR even for the quite restrictive class of conservative (cycles of)
CS-TRSs. We have shown how to adapt the notion of usable rules for their use
with arbitrary CS-TRSs (Definition 8). Theorem 1 shows that the new notion
of usable rules can be used in proofs of termination of CS-TRSs. Here, although
the proof uses a transformation in the very same style than [14,17], the definition
of the transformation is quite different from the usual one in that it applies to
3 See http://www.lri.fr/∼marche/termination-competition/2007

http://www.dsic.upv.es/~rgutierrez/muterm/rta08/benchmarks.html
http://www.lri.fr/~marche/termination-competition/2007
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arbitrary terms, not only terminating ones. To our knowledge, this is the first
time that Gramlich’s transformation [15] is adapted and used in that way. We
have also introduced the notion of strongly conservative rule and CS-TRS (Def-
inition 10). Theorem 2 shows that basic usable rules can be used in proofs of
termination involving strongly conservative cycles and rules. Although we follow
the proof scheme in [14,17], a number of subtleties have to be carefully addressed
before getting a correct adaptation of the proof.

We have implemented our techniques as part of the tool mu-term [1,21]. Our
experiments show that usable rules are helpful to improve proofs of termination
of CSR. Regarding the previous work on usable rules for innermost CSR [4],
this paper provides a fully general definition which is not restricted to conser-
vative systems. Actually, as we show in our experiments, our framework is more
powerful in practice than trying to prove termination of CSR as innermost ter-
mination of CSR with the restricted notion of usable rules in [4]. Actually, our
results provide a basis for refining the notion of usable rules in the innermost
setting, thus hopefully allowing a generalization of the results in [4].

Finally, usable rules were an essential ingredient for mu-term in winning the
context-sensitive subcategory of the 2007 competition of termination tools.
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Abstract. In this paper, we study combining equational tree automata in
two different senses: (1) whether decidability results about equational tree
automata over disjoint theories E1 and E2 imply similar decidability results
in the combined theory E1 ∪ E2; (2) checking emptiness of a language ob-
tained from the Boolean combination of regular equational tree languages.
We present a negative result for the first problem. Specifically, we show
that the intersection-emptiness problem for tree automata over a theory
containing at least one AC symbol, one ACI symbol, and 4 constants is
undecidable despite being decidable if either the AC or ACI symbol is re-
moved. Our result shows that decidability of intersection-emptiness is a
non-modular property even for the union of disjoint theories. Our second
contribution is to show a decidability result which implies the decidability
of two open problems: (1) If idempotence is treated as a rule f(x, x)→ x
rather than an equation f(x, x) = x, is it decidable whether an AC tree au-
tomata accepts an idempotent normal form? (2) If E contains a single ACI
symbol and arbitrary free symbols, is emptiness decidable for a Boolean
combination of regular E-tree languages?

1 Introduction

Tree automata are a theoretical tool with applications in many areas, including
sufficient completeness of algebraic specifications [2, 7], protocol verification [4, 5],
type inference [3], and theorem proving [13]. Many different frameworks have been
proposed for addressing these applications as each framework must balance the of-
ten competing goals of expressive power and tractability of different operations. In
our own applications [6, 7], the most important properties are a decidable empti-
ness problem, and closure under Boolean operations and equational congruences.
Regular tree automata satisfy two of these properties, however they are not closed
under arbitrary equational congruences. For example, the set of terms equivalent
modulo associativity to a term in a regular tree language may not be a regular tree
language [16].

Many extensions to tree automata have been proposed to remedy this prob-
lem, including multitree automata [14], equational tree automata [16], and two-
way alternating equational tree automata [25]. These extensions allow one to
� Research supported by ONR Grant N00014-02-1-0715.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 142–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Combining Equational Tree Automata over AC and ACI Theories 143

recognize terms equivalent modulo an equational theory, however multitree au-
tomata are only defined for AC theories and the other frameworks lack closure
under Boolean operations. Due to this problem, propositional tree automata were
proposed in [9]. They are closed under both an equational theory and Boolean
operations — but have an undecidable emptiness problem.

A separate issue in equational tree automata is that few properties are decid-
able for arbitrary theories. Consequently, most work on equational tree automata
focuses on particular equational theories where one or more symbols satisfies
combinations of specific equations such as associativity (A), commutativity (C),
and idempotence (I). This restriction is unavoidable due to decidability issues,
but leaves open the question as to whether these results can be combined. For
example, tree automata over a theory EAC with an AC symbol and free symbols
are effectively closed under intersection [18], and tree automata over a theory
EACI with an ACI symbol and free symbols are also effectively closed under in-
tersection [24]. Does this imply that tree automata over the combined theory
EAC ∪ EACI are effectively closed under intersection as well?

Our first contribution is to show that tree automata over EAC ∪ EACI are not
effectively closed under intersection. Moreover, the intersection-emptiness prob-
lem, which is decidable for tree automata over EAC and EACI separately, is unde-
cidable for tree automata over the combined theory EAC ∪ EACI. We obtain this
result by showing that every alternating tree language [25] over a theory E can
be effectively expressed as the intersection of two regular tree languages over a
theory E ′ containing E and an additional ACI symbol. Since the emptiness prob-
lem for alternating AC-tree automata is undecidable [25], it follows that so is
intersection-emptiness for regular tree automata over EAC∪EACI. Since emptiness
is always decidable for regular equational tree automata, it follows that regular
tree automata over EAC ∪ EACI are not effectively closed under intersection.

Our result implies that both the decidability of intersection-emptiness and
effective closure under intersection are non-modular properties, even for disjoint
theories. Modularity is an important property to have, because it aids in the pro-
cess of decomposing complex problems into simpler parts which can be reasoned
about separately. For example, the Shostak [21] and Nelson-Oppen [15] combi-
nation methods have been fundamental to the development of general-purpose
theorem provers that combine the capabilities of many different decision proce-
dures. Given the importance of modularity, we decided to further analyze how
the interaction between the AC symbol and ACI symbol led to undecidability.

Our second contribution is to define a restricted class of tree automata over a
theory E with AC and ACI symbols which are closed under equational congru-
ences. We further show that the emptiness problem is decidable for the Boolean
closure of tree languages in that class — a problem which we call the propo-
sitional emptiness problem as it closely relates to the emptiness problem for
propositional tree automata. The tree automata in the restricted class we con-
sider are called AC-intersection free and subjects each ACI symbol + in E to one
of two constraints: (1) either the clauses in the automaton where + appears must
satisfy certain syntactic restrictions to avoid simulating the intersection clauses
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of alternating tree automata; or (2) the idempotence equation x + x = x in E
must be treated as a rewrite rule x+x→ x as in the tree automata with normal-
ization framework of [17]. In that framework, some of the equations in E may be
treated as rewrite rules in a confluent and terminating rewrite theory R. Rather
than computing the congruence closure of the tree language modulo E , terms are
first normalized by rewriting with R modulo the remaining equations E ′ ⊆ E ,
and then checked for membership in the underlying equational tree languages
L(A/E ′). Their framework has different semantics than standard equational tree
automata, but is often able to obtain better closure and decidability properties.

An important consequence of our second contribution is that it solves two
open problems: (1) We show that the emptiness problem is decidable for tree
automata with normalization over idempotence rules and AC equations. This
problem was mentioned in [17] and left unsolved. (2) We show that the proposi-
tional emptiness problem is decidable for equation tree automata over the theory
EACI containing a single ACI symbol and arbitrary free symbols. This problem is
interesting, because equational tree automata over EACI are not closed under com-
plementation [23]. Its decidability also has a further implication: propositional
emptiness is a non-modular property. Our earlier undecidability result implies
that propositional emptiness is undecidable for equational tree automata over
EAC ∪ EACI, while propositional emptiness is decidable for EAC [18].

One underlying goal in this work is to develop better tree automata techniques
for non-linear theories. This is important in applications such as sufficient com-
pleteness checking where existing techniques either do not support rewriting
modulo axioms [2] or are restricted to left-linear rewrite rules [7]. Although suf-
ficient completeness checking is undecidable in general for specifications with
non-linear rules and rewriting modulo AC [12], our decidability results show
that sufficient completeness is decidable modulo AC when every non-linear rule
in the specification has the form f(x, x) → r. It would be interesting to see if the
techniques presented here can be extended to other forms of non-linear rules.

This paper is organized as follows. In Section 2, we review basic concepts
from rewriting and tree automata. In Section 3, we show how alternating tree
languages can be expressed as the intersection of two regular tree languages.
In Section 4, we define a subclass of equational tree automata, which we call
AC-intersection free, and state a decidability result which solves the two open
problems discussed previously, and in Section 5, we present our algorithm for
showing the previous decidability result. Finally, we discuss related work and
suggest avenues for future research in Section 6. Some proofs have been omitted
due to space limitations and are available in [8].

2 Preliminary Definitions

We assume the reader is familiar with term rewriting as well as tree automata [1].

Equational and Rewrite Theories. An equational theory E = (F,E) consists
of a signature F together with a set of equations l = r with l, r ∈ TF (X). For
each term t ∈ TF (X), we let root(t) ∈ F denote the top-most symbol, and let [t]E
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denote the equivalence class of terms equal to t with respect to the equivalence
relation =E induced by E . We just write [t] for [t]E when the theory can be
inferred from the context, and we let TE denote the F -algebra whose universe
TE consists of the equivalence classes of TF formed by =E .

A rewrite theory R is a set of rewrite rules of the form l → r with l, r ∈ TF (X).
A term t ∈ TF (X) rewrites to u ∈ TF (X) modulo E , denoted t→R/E u if there
is rule l → r ∈ R, context C, and substitution θ such that t =E C[lθ] and
u =E C[rθ]. A term t is R/E-irreducible if it cannot be further rewritten. We
write t↓R/Eu if there is a term v ∈ TF (X) such that t→∗

R/E v and u→∗
R/E v. A

rewrite theoryR is terminating modulo E if→+
R/E is well-founded.R is confluent

if t →∗
R/E u and t →∗

R/E v implies u↓R/Ev. If R is terminating and confluent
modulo E , then for all t ∈ TF , there is an R/E-irreducible term t↓R/E ∈ TF

that is unique up to =E . We let CanR/E ⊆ TE denote the canonical term algebra
whose universe is the set of E-equivalence classes of R/E-irreducible terms.

In this paper, we restrict our attention to equational theories E only containing
axioms with the following forms:

(x + y) + z = x + (y + z) x + y = y + x x + x = x
associativity commutativity idempotence

Relative to an equational theory E , if a symbol f ∈ F does not appear in any of
the equations, we say it is a free symbol. If f ∈ F appears in associativity and
commutativity equations but no other equations, we say that it is an AC sym-
bol. Finally, if f ∈ F appears in associativity, commutativity, and idempotence
equations, we say that it is an ACI symbol. We shall restrict our attention to
equational theories where each symbol is a free, AC, or ACI symbol.

Tree Automata. We treat tree automata as collections of Horn clauses of
particular forms as in [25]. A regular E-tree automaton A is a finite set of Horn
clauses each with the form:

p(f(x1, . . . , xn))⇐ p1(x1), . . . , pn(xn) regular clause

where f ∈ F has arity n and p, p1, . . . , pn are elements of a finite set of unary
predicate symbols called the states of the automaton. In some definitions, tree
automata may also contain ε-clauses of the form p(x) ⇐ q(x), but these can
be eliminated without loss of expressive power. We write A/E . p(t) if p(t) is
entailed by the axioms in A ∪ E . For an equational theory E = (F,∅) with no
equations, we write A . p(t) for A/E . p(t).

We keep the acceptance condition separate from the automaton itself, and
since the automaton only recognizes languages that are closed modulo E , we
define languages as subsets of TE rather than TF . For each state p belonging to
A, the language recognized by p in A, denoted Lp(A/E) ⊆ TE , is defined by

Lp(A/E) = { [t] ∈ TE | A/E . p(t) }. (1)

One fundamental result from [25] about regular E-tree automata is:
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Theorem 1. For each theory E and regular E-tree automaton A,

A/E . p(t) ⇐⇒ (∃u ∈ [t]E)A . p(u).

For an arbitrary theory E , the class of languages recognized by regular E-tree
automata is closed under union, but not under intersection or complementation.
Motivated by this fact, an equational tree automata framework called proposi-
tional tree automata is introduced in [9] that is effectively closed under Boolean
operations in all theories. The key idea is to use a propositional formula rather
than a set of final states as the acceptance condition for defining the language rec-
ognized by the automaton. In this paper, we present an alternative formalization
that preserves the basic idea. Given a tree automaton A with states Q, we ex-
tend (1) from languages Lp(A/E) recognized by a state p to languages Lφ(A/E)
recognized by a propositional formula φ constructed from atomic predicates Q
and Boolean connectives ∧ and ¬:

Lφ1∧φ2(A/E) = Lφ1(A/E) ∩ Lφ2(A/E) L¬φ1(A/E) = TE \ Lφ1(A/E).

There are many decision problems that have been studied in the context of
tree automata. The membership problem for E is the problem of deciding for
an equivalence class [t] ∈ TE , E-tree automaton A and state p in A whether
[t] ∈ Lp(A/E). The emptiness problem for E is the problem of deciding for
an E-tree automaton A and state p whether Lp(A/E) = ∅. This problem is
decidable in linear time for an arbitrary theory E using Theorem 1 and standard
tree automata techniques [1]. The intersection-emptiness problem for E is the
problem of deciding for an E-tree automatonA and states p1, . . . , pn ofA whether
Lp1(A/E) ∩ · · · ∩ Lpn(A/E) = ∅. Finally, the propositional emptiness problem
for E is the problem of deciding for an E-tree automaton A with states Q and
propositional formula φ over atomic predicates Q whether Lφ(A/E) = ∅.

It is known that both the intersection-emptiness and propositional emptiness
problem is decidable for regular equational tree automata over a theory EAC

with AC and free symbols [16]. In contrast, both intersection-emptiness and
propositional emptiness are undecidable for regular equational tree automata
over a theory EA with associative and free symbols [18]. As an example of a tree
automata framework where intersection-emptiness is decidable and propositional
emptiness is undecidable, we refer the reader to the monotone AC tree automata
framework of [19].

3 Alternating Tree Automata

One extension to tree automata is the alternating tree automata framework
of [22] which was extended to the equational case in [25]. In a Horn-clause repre-
sentation, an alternating tree automaton is a tree automaton which in addition
to regular clauses, may also contain intersection clauses of the form:

p(x)⇐ p1(x), p2(x) intersection clause.



Combining Equational Tree Automata over AC and ACI Theories 147

Alternating E-tree automata are closed under both intersection and union, but
are not always closed under complementation. If E is the free theory, i.e., E =
(F,∅), then the class of languages recognized by alternating and regular au-
tomata coincide. However, this is often not the case for other theories. For ex-
ample, alternating AC-tree automata are strictly more powerful than regular
AC-automata. In particular, the emptiness problem is undecidable for alternat-
ing AC-tree automata [25].

Our first new result in this paper is to show that every alternating E-tree
language is isomorphic to the intersection of two regular E ′-tree languages where
E ′ is the theory obtained by adding a fresh ACI symbol ◦ to E .

Theorem 2. Let E = (F,E) and E ′ = (F ′, E′) be equational theories such that
E ′ contains the symbols and equations in E and adds a fresh ACI operator ◦.

Given an alternating E-tree automaton A with states Q, one can effectively
construct a regular E ′-tree automaton B containing the states Q and an additional
fresh state k such that

– For all p∈Q and t∈TF , A/E . p(t) ⇐⇒ B/E ′ . p(t).
– For all t∈TF ′ , B/E ′ . k(t) ⇐⇒ TF ∩ [t]E′ �= ∅.

Proof. Let B be the automaton containing the following clauses:

– B contains all of the clauses in A that are not intersection clauses;
– for each intersection clause p(x) ⇐ p1(x), p2(x) in A, B contains the clause

p(x1 ◦ x2) ⇐ p1(x1), p2(x2); and
– for each symbol f ∈ F with arity n, B contains the clause

k(f(x1, . . . , xn)) ⇐ k(x1), . . . , k(xn).

We first show that A/E . p(t) implies B/E ′ . p(t) for all p ∈ Q. Since B
contains all the clauses in A other than the intersection clauses, all we need to
show is that B∪E ′ entails each intersection clause q(x) ⇐ q1(x), q2(x) in A. This
is immediate, because B must contain the clause q(x1 ◦x2) ⇐ q1(x1), q2(x2), and
so B entails q(x ◦ x) ⇐ q1(x), q2(x). The theory E ′ contain the axiom x ◦ x = x,
and thus B ∪ E ′ entails q(x) ⇐ q1(x), q2(x).

We now show that B/E ′ . p(t) implies A/E . p(t) for all p ∈ Q. If B/E ′ .
p(t) then by Theorem 1, there is a term u ∈ TF ′ such that t =E′ u such that
B . p(u). We construct a term v ∈ TF such that u =E′ v and A/E . p(v). Since
t =E′ u =E′ v and neither t nor v contain the added symbol ◦, it is not difficult
to show that t =E v, and thus A/E . p(t).

We construct the term v ∈ TF from the proof that B . p(u) by analyzing
the proof bottom-up starting from the leaves. Each inference step that does not
use a clause containing the idempotence symbol ◦ has a direct corresponding
inference step using the clauses in A and can be handled easily. On the other
hand, given an inference step of the form

B . q1(u1) B . q2(u2)
B . q(u1 ◦ u2)
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with q(x1 ◦x2) ⇐ q1(x1), q2(x2) in B, we first observe that u1 =E′ u2 =E′ u1 ◦u2,
because u1 ◦ u2 is a subterm of u, and u is equivalent to t ∈ TF which does not
contain the symbol ◦. By induction, we know that for i ∈ [1, 2], there is a term
vi ∈ TF such that ui =E′ vi and A/E . qi(vi). As v1 =E′ u1 =E′ u2 =E′ v2 and
both v1 and v2 are in TF , it follows that v1 =E v2, and thus A/E . p2(v1). By
using the intersection clause p(x) ⇐ p1(x), p2(x) in A, it follows thatA/E . p(v1)
and thus we are done as v1 =E u1 =E u1 ◦ u2.

Finally, we show that B/E ′ . k(t) if and only if TF ∩ [t]E′ �= ∅ for all t ∈ TF ′ ,
by observing that B . k(u) iff u is in TF , and so by Theorem 1,

B/E ′ . k(t) ⇐⇒ (∃u∈ [t]E′) B . k(u) ⇐⇒ TF ∩ [t]E′ �= ∅.

� 

From this theorem, it follows that for each p ∈ Q, the languages Lp(A/E) and
Lp(B/E ′) ∩ Lk(B/E ′) are isomorphic with the bijective mapping

hp : [t]E ∈ Lp(A/E) �→ [t]E′ ∈ Lp(B/E ′) ∩ Lk(B/E ′).

Although this connection between alternating and regular languages seems
worth further study, our main interest in this result is that allows us to use
the result in [25] about the undecidability of emptiness for alternating AC-tree
automata to show that intersection-emptiness is undecidable for regular tree
automata over a theory E with both AC and ACI symbols.

Corollary 1. If E is an equational theory with at least 4 constants, an AC
symbol, and an ACI symbol, then the intersection-emptiness problem for regular
tree automata over E is undecidable.

Proof. Let EAC denote the equational theory obtained by removing the ACI sym-
bol from E . The theory EAC is torsion-free according to the definition in [25] with
regard to the 4 constants, and consequently the emptiness problem is undecid-
able for alternating EAC-tree automata by Prop. 11 in [25]. By Theorem 2, for
each alternating automaton A, we can construct a regular E-tree automaton B
such that Lp(A/EAC) = ∅ iff Lp(B/E) ∩ Lk(B/E) = ∅. � 

The theory E in the previous statement can be partitioned into disjoint theories
EAC and EACI where EAC contains the AC symbol and EACI contains the ACI
symbol and the constants are split freely between them. Intersection-emptiness
is decidable for both EAC [18] and EACI [24], but as the previous statement shows
it is undecidable for E = EAC ∪ EACI. It follows that intersection-emptiness is
a non-modular property for equational tree automata even for combinations of
disjoint theories.

4 AC-Intersection Free Tree Automata

Having shown that intersection-emptiness is undecidable in general for equa-
tional tree automata over a theory E with AC and ACI symbols, we have decided
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to search for a restricted subclass of equational tree automata over E for which
not only is intersection-emptiness decidable, but so is the propositional empti-
ness problem. Our search for this class began by trying to eliminate the main
culprit that led to the undecidability result in Cor. 1 — the ability of clauses
with ACI symbols to simulate the intersection clauses of an alternating AC-tree
automata.

The solution we have found is to subject each ACI symbol ◦ in E to one of two
constraints: (1) either the clauses in the automaton where ◦ appears must satisfy
certain syntactic restrictions explained below; or (2) the idempotence equation
x◦x = x in E must be treated as a rewrite rule x◦x → x as in the tree automata
with normalization framework of [17]. We first define the syntactic restrictions:

Definition 1. Let E be an equational theory E in which each symbol is AC, ACI,
or free. A regular E-tree automaton A is AC-intersection free iff for each clause
in A with the form p(x1 ◦ x2) ⇐ p1(x1), p2(x2) where ◦ ∈ F is an ACI symbol,
it is the case that for all q1, q2 ∈ Q, and AC or ACI symbols + �= ◦,

p1(x1 + x2) ⇐ q1(x1), q2(x2) ∈ A =⇒ p(x1 + x2) ⇐ q1(x1), q2(x2) ∈ A.

The intuition behind this definition is that if an intersection clause p(x) ⇐
p1(x), p2(x) is entailed by a clause p(x1 ◦ x2) ⇐ p1(x1), p2(x2) with an ACI
symbol ◦, then we can disregard it in considering terms whose root symbol is an
AC or ACI symbol + �= ◦. See our technical report [8] for further details.

One important observation is that AC-intersection free automata are closed
under disjoint unions — that is given two AC-intersection free E-tree automata
A and B such that the states have been renamed so that the states in A and
B are disjoint, the union E-tree automaton C = A ∪ B is also AC-intersection
free. Moreover, Lp(A/E) = Lp(C/E) for each state p in A, and Lq(B/E) =
Lq(C/E) for each state q in A. Since we will soon show that the propositional
emptiness problem is decidable for AC-intersection free automata, it follows that
the emptiness of an arbitrary Boolean combination of AC-intersection free tree
languages is decidable even if the languages are defined in different automata.

This syntactic restriction may be too strong in some applications, and so
we also study a different approach to handling idempotence equations that is
suggested by the tree automata with normalization framework of [17]. A tree
automaton with normalization (TAN) A is equipped with a rewrite system R
that is confluent and terminating modulo an equational theory E . A term t is
accepted by TAN A if its normal form [t↓R/E ] is in the underlying equational
tree language L(A/E). This framework borrows the fundamental idea in term
rewriting, namely that some of the equations in a theory E ′ are best handled
by orienting them as rewrite rules in a rewrite system R in a way so that R
is confluent and terminating modulo the remaining equations E ⊆ E ′. As R is
terminating and confluent modulo E , the language is closed with respect to both
the equations in E and the equations obtained from the rules in R.

Our interest in the TAN framework stems from the fact that if RI is a rewrite
system containing idempotence rules f(x, x) → x for some of the AC symbols in
a theory E with free, AC, and ACI symbols, then RI is confluent and terminating
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modulo E . This suggests that as an alternative to the restrictions in Def. 1, we
can treat some of the idempotence equations as rules, and still have a class of tree
automata closed modulo both the equations in E and the underlying equations
in RI. By handling the idempotence equations as rules, we avoid the problem
of simulating intersection clauses, because that simulation relies on applying
idempotence in the direction x→ x + x.

By requiring that each ACI symbol either satisfies the syntactic constraints
in the definition of AC-intersection free automata, or treats the idempotence
equation as a rule as in the tree automata with normalization approach, we
describe an algorithm in the next section whose correctness implies the following:

Theorem 3. Let E be a theory with free, AC, and ACI symbols, and let RI be
a set of rewrite rules which may contain an idempotence rule for any of the AC
symbols in E.

For each AC-intersection free E-tree automaton A, and propositional formula
φ over the states in A, the following problem is decidable:

Lφ(A/E) ∩ CanRI/E = ∅.

In other words, we can decide whether the language Lφ(A/E) contains an RI/E-
irreducible equivalence class [t] ∈ CanRI/E . This theorem simultaneously settles
two open questions:

The first open question is the emptiness problem for tree automata with nor-
malization over an equational theory EAC with free and AC symbols and a rewrite
system RI containing idempotence equations for the AC symbols in EAC. Specif-
ically, we want to decide whether CanRI/EAC ∩ Lp(A/EAC) = ∅ for each EAC-tree
automaton A and state p in A. The problem was mentioned in [17], but left
unsolved. Theorem 3 solves this problem, because EAC contains no ACI sym-
bols and thus every EAC-tree automaton is AC-intersection free. One observation
made in [17] is that the decidability of the emptiness problem for tree automata
with normalization only depends on the left hand sides of the rules in R. It
follows that if the emptiness problem is decidable when R contains idempotence
rules x+x → x, it is also decidable when R contains nilpotence rules x+x→ 0.

The second open question settled by Theorem 3 is the problem of deciding the
propositional emptiness of equational tree automata over a theory EACI with a
single ACI symbol and free symbols. This problem is interesting, because equa-
tional tree automata over EACI are not closed under complementation [23], and
so the propositional emptiness problem is not reducible to the regular emptiness
problem in this theory. Theorem 3 solves this problem, because EACI contains only
a single ACI symbol, and thus every EACI-tree automaton is AC-intersection free.
Solving the propositional emptiness problem also shows that both subsumption
(Lp(A/EACI) ⊆ Lq(B/EACI)) and universality (Lp(A/EACI) = TEACI) are decidable.
Both problems appear to be open. Additionally, since intersection-emptiness is
undecidable for equational tree automata over EAC ∪ EACI due to Cor. 1, it fol-
lows that propositional emptiness over EAC∪EACI is undecidable as well. However,
propositional emptiness is decidable for EAC [18] and implied to be decidable for
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EACI by Theorem 3. It follows that propositional emptiness is also a non-modular
property for the combination of disjoint theories.

5 Decision Procedure

In this section, we define an algorithm that solves the decision problem posed in
Theorem 3. Due to space limitations, we only present the algorithm here, and
not the complete correctness proof which is available in our technical report [8].

For this section, E = (F,E) denotes a theory in which each symbol is AC,
ACI, or free, RI denotes a rewrite system where the only axioms are idempotence
rules of the form x + x→ x for an AC symbol + ∈ F , and A denotes a regular
AC-intersection free E-tree automaton with states Q. It is sometimes useful to
treat all of the idempotence equations as rules. We let EAC ⊆ E denote the theory
containing only the AC equations in E , and we let R̂I denote the rewrite system
containing the rules in RI as well as a rule x+x→ x for each equation x+x = x
in E . R̂I is terminating and confluent modulo EAC, so for all RI/E-irreducible
terms t, u ∈ TF , t =E u iff t↓R̂I/EAC

=EAC u↓R̂I/EAC
. For all [t], [u] ∈ CanRI/E , we

say that [t] is a flattened subterm of [u], denoted [t] �flat [u], if either:

– u↓R̂I/EAC
=EAC f(u1, . . . , un) with f a free symbol and t↓R̂I/EAC

=EAC ui for
some i ∈ [1, n], or

– u↓R̂I/EAC
=EAC u1+· · ·+un with + an AC or ACI symbol, n ≥ 2, root(ui) �= +

for all i ∈ [1, n], and t↓R̂I/EAC
=EAC uj for some j ∈ [1, n].

Our algorithm is similar to the subset construction algorithm in [9] for check-
ing the propositional emptiness of equational tree automata over A and AC
symbols. For each [t] ∈ TE , the profile of [t], denoted profile([t]), is a pair that
contains all the information about [t] relevant to the algorithm.

Definition 2. Let profile : TE → F×P(Q) be the function such that:

profile([t]) = (root(t↓R̂I/EAC
), statesA/E([t])).

where statesA/E([t]) = { p ∈ Q | A/E . p(t) }.
Note that root(t↓R̂I/EAC

) is uniquely determined as EAC only contains associativity
and commutativity axioms which do not change the root symbol of a term. We
have shown in [9] how to compute statesA/E ([t]) when E contains A and AC
symbols.

For an automaton B with states Q′ over a theory E ′ = (F ′, E′) with free, A,
and AC symbols, we presented a semi-algorithm in [9] for constructing the set

det(B) = { (f, P ) ∈ F ′×P(Q′) | (∃[t] ∈ TE′) root([t]) = f ∧ statesB/E′([t]) = P }.

By computing this set, we can decide if Lφ(B/E ′) �= ∅ by checking for a profile
(f, P ) ∈ det(B) such that P |= φ where P |= φ is defined inductively:

P |=φ1 ∧φ2 iff P |=φ1 and P |=φ2 P |=¬φ iff P �|=φ P |= p iff p∈P
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For solving the problem in Theorem 3, this approach is inadequate for two
reasons: (1) We want to decide whether CanRI/E ∩ Lφ(A/E) = ∅ rather than
deciding whether Lφ(A/E) = ∅. (2) Both E and R may contain idempotence
axioms, and idempotence appears to require constructing a structure which in
addition to enable checking if there exists a term with a particular profile, also
enables checking how many distinct terms have that profile. We illustrate this
with an example. Let EACI be the theory containing an ACI symbol ◦ and con-
stants a, b, and c, and let B be the EACI-tree automaton with the rules:

p1(a) p1(b) p2(x1 ◦ x2) ⇐ p1(x1), p1(x2) p3(x1 ◦ x2) ⇐ p1(x1), p2(x2).

In this automaton, one can observe that

Lp2(B/EACI) = Lp3(B/EACI) = { [a], [b], [a ◦ b] },

and consequently Lp3∧¬p2(B/EACI) = ∅. Now consider the automaton B′ con-
taining the clauses in B and the additional clause p1(c). One can observe that
Lp3∧¬p2(B′/EACI) = { [a ◦ b ◦ c] }. The language Lp3∧¬p2(B′/EACI) is not empty,
because there are 3 distinct elements in Lp1(B′/EACI), whereas Lp1(B/EACI) only
contains 2 elements. If we generalize this idea, it is not difficult to show that for
any positive integer n ∈ N and tree automaton B over E with a state p, we can
construct a tree automaton B′

n over the theory E ′ containing E as well as a fresh
ACI symbol ◦ and a formula φn over the states in B′

n such that

Lφn(B′
n/E ′) �= ∅ ⇐⇒ |Lp(B/E)| ≥ n.

In this work, we construct the directed graph (DA,�A) where

DA = { d∈F×P(Q) | (∃[t]∈CanRI/E) profile([t]) = d },

and �A contains an edge d1 �A d2 iff there are [t], [u] ∈ CanRI/E such that
profile([t])= d1, profile([u])= d2, and [t] �flat [u]. The edge relation �A is used
in counting the number of equivalence classes with a given profile. To given an
example of the directed graph, in the automaton B′ described above:

DB′ =
{

(a, { p1, p2, p3 }), (b, { p1, p2, p3 }), (c, { p1, p2, p3 }), (◦, { p2, p3 }), (◦, { p3 })
}
,

and �B′ contains the following edges:

(a, { p1, p2, p3 }) �B′ (◦, { p2, p3 }) (a, { p1, p2, p3 }) �B′ (◦, { p3 })
(b, { p1, p2, p3 }) �B′ (◦, { p2, p3 }) (b, { p1, p2, p3 }) �B′ (◦, { p3 })
(c, { p1, p2, p3 }) �B′ (◦, { p2, p3 }) (c, { p1, p2, p3 }) �B′ (◦, { p3 })

Our approach is to incrementally construct (DA,�A). We start with the
empty graph (D0,�0) = (∅,∅) and apply inference rules to form increas-
ing larger subgraphs (D1,�1) ⊆ (D2,�2) ⊆ · · · ⊆ (DA,�A) until satura-
tion. This process terminates with a unique final graph as the size of DA is at
most |F | × 2|Q|, and the construction process is monotonic. Each profile graph
(D,�) ⊆ (DA,�A) can be viewed as representing the possibly infinite subset of
CanRI/E that is already explored:
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Definition 3. For each graph (D,�) ⊆ (DA,�A), let CanD,� denote the small-
est set containing each [t] ∈ CanRI/E if profile([t]E) ∈ D and for all [u] ∈ CanRI/E ,

[u] �flat [t] =⇒ [u] ∈ CanD,� ∧ profile([u]) � profile([t]).

Furthermore, for each d ∈ D, we let profile−1
D,�(d) denote the elements in CanD,�

with profile d, i.e., profile−1
D,�(d) = { [t] ∈ CanD,� | profile([t]) = d }.

In [8], we show that CanDA,�A = CanRI/E , and consequently the graph (DA,�A)
can be viewed as the graph where everyRI/E-irreducible term has been explored.

For each free symbol f ∈ F , we define a function statesf which computes the
states of a term f(t1, . . . , tn) when the states for each term ti are already known:

Definition 4. Given a free symbol f ∈F with arity n, we define the function
statesf : P(Q)n → P(Q) such that for P1, . . . , Pn ⊆ Q, statesf (P1, . . . , Pn) ⊆ Q
is the smallest set containing a state p∈Q if either:

– A contains p(f(x1, . . . , xn))⇐ p1(x1), . . . , pn(xn) with pi ∈Pi for i ∈ [1, n],
– or A contains p(x1 ◦ x2)⇐ p1(x1), p2(x2) with ◦ an ACI-symbol in E and

p1, p2 ∈ statesf (P1, . . . , Pn).

Similar to [9], we define a context free grammar G(+) for each AC or ACI
symbol + ∈ F . Intuitively, the grammar captures inferences in the automaton A
over flattened terms with the form t1 + · · ·+ tn where root(ti) �= + for i ∈ [1, n].

Definition 5. For an AC or ACI symbol +∈F , G(+) is the CFG grammar
with terminals Σ(+) = (F\{+})×P(Q), non-terminals Q, and production rules

G(+) = { p := p1p2 | p(x1 + x2) ⇐ p1(x1), p2(x2) ∈ A}
∪ { p := (f, P ) | (f, P ) ∈ Σ(+) ∧ p∈P }.

For each state p ∈ Q, we let Lp(G(+)) denote the language generated by p
using the rules in G(+). For each non-terminal p ∈ Q, there effectively exists a
Presburger formula ψG(+),p( x) with free variables  x = { xd }d∈Σ(+) whose models
M(ψG(+),p) ⊆ NΣ(+) equal the commutative image of Lp(G(+)) [20], i.e.,

M(ψG(+),p) = {#(w) | w ∈ Lp(G(+)) }.

where # : Σ(+)∗ → NΣ(+) maps each string to the vector counting the number
of occurrences of each letter in the string. We use ψG(+),p to define the formula
ψG(+),P which, as proven in [8], identifies terms whose profile is (+, P ). For each
AC symbol + ∈ F and each symbol ◦ ∈ F idempotent in E or R,

ψ+,P (�x)=
∧

p ∈ P

ψG(+),p(�x) ∧
∧

p ∈ Q\P

¬ψG(+),p(�x) ∧
∑

xd∈x

xd≥ 2

ψ◦,P (�x)=
∧

p ∈ P

(∃�y) �x � �y ∧ ψG(◦),p(�y) ∧
∧

p ∈ Q\P

¬(∃�y) �x� �y ∧ ψG(◦),p(�y) ∧
∑

xd∈x

xd≥ 2.

where  x �  y is the formula
∧

d∈Σ(+)

xd ≤ yd ∧ ((yd > 0) ⇒ (xd > 0)).
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Starting with the empty graph (D0, �0) = (∅, ∅), we freely apply either of the rules
below to construct (Di+1, �i+1) from (Di, �i) subject to the condition that a rule may
only be applied if the resulting graph (Di+1, �i+1) is distinct from (Di, �i). The rules
are applied until completion to obtain the graph (D∗, �∗).

choose free symbol f ∈ F and (f1, P1), . . . , (fn, Pn) ∈ Di

Di+1 := Di ∪ { (f, statesf (P1, . . . , Pn)) }
�i+1 := �i ∪ { ((fj , Pj), (f, statesf (P1, . . . , Pn))) | j ∈ [1, n] }

choose AC or ACI symbol + ∈F and P ⊆Q s.t. (∃�x) ψ+,P,Di,�i(�x)

Di+1 := Di ∪ { (f, P ) }
�i+1 := �i ∪ { (d, (f, P )) | d∈Di ∧ (∃�x) ψ+,P,Di,�i(�x) ∧ xd > 0}

where for each symbol ◦ ∈ F that is idempotent in E or R and each AC symbol + ∈ F
that is not idempotent in E or R, we let

ψ◦,P,Di,�i(�x) = ψ◦,P (�x) ∧
∧

d ∈ Σ(◦)\Di

xd = 0 ∧
∧

d ∈ Σ(◦) ∩ Di

xd ≤ cntDi,�i(d)

ψ+,P,Di,�i(�x) = ψ+,P (�x) ∧
∧

d ∈ Σ(+)\Di

xd = 0 ∧
∧

d ∈ Σ(+) ∩ Di
cntDi,�i

(d)= 0

xd = 0.

Fig. 1. Inference System for Constructing (D∗, �∗)

We next introduce a function cntD,� : D → N ∪ {ω } which for each graph
(D,�) ⊆ (DA,�A) and profile d ∈ D, returns an estimate of the number of
elements in CanRI/E with the profile d. Due to space constraints, we refer the
reader to [8] for the precise definition. The basic idea is to first check if d�+ d. If
so, profile−1

D,� may be finite. However, as shown in [8],
∣∣profile−1

DA,�A
(d)
∣∣ = ω, and

we let cntD,�(d) = ω. Otherwise d ��+ d, and cntD,�(d) is obtained by evaluating
cntD,� on smaller elements d′�d and using fundamental combinatoric properties
of sets and multisets. The fundamental requirement is that for each d ∈ D,

∣∣profile−1
D,�(d)

∣∣ ≤ cntD,�(d)≤
∣∣profile−1

DA,�A
(d)
∣∣ .

For correctness purposes, any value in the range is sufficient. The proof that our
procedure always shows emptiness only requires that cntD,�(d) is at most the
total number of elements in CanDA,�A with a profile d, while the proof that our
procedure always shows non-emptiness only requires that cntD,�(d) is at least
the number of explored elements in CanD,� with a profile d.

The algorithm for constructing the profile graph (D∗,�∗) is given Fig. 1. In
our technical report [8], we prove that (D∗,�∗) = (DA,�A), and thus

Theorem 4. The graph (DA,�A) is effectively constructable. � 

Theorem 3 can be as a corollary of this theorem as CanRI/E ∩Lφ(A/E) �= ∅ iff
∃(f, P ) ∈ DA such that P |= φ.
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6 Related Work and Conclusions
Our main contributions in this paper are: (1) We have shown that an alternating
equational tree language can be expressed as the intersection of two regular equa-
tional tree languages by adding a fresh ACI symbol to the theory. This implies
that intersection-emptiness is undecidable for regular equational tree automata
over a theory with both AC and ACI symbols. (2) We studied modularity in
equational tree automata and have shown that both intersection-emptiness and
propositional emptiness are non-modular properties even for disjoint theories. (3)
We presented a subclass of regular equational tree automata over theories with
AC and ACI symbols and have shown propositional emptiness is decidable for
that subclass. This result further implies that propositional emptiness is decid-
able for equational tree automata with one ACI symbol and tree automata with
normalization over a rewrite theory with idempotence rules and AC symbols.

One of our goals was to obtain decidability results over non-linear theories. In
this direction there are numerous papers on extending tree automata techniques to
better handle non-linearity in adding constraints to the automata rules [1, Chapter
4] as well as extending that idea to handle some equational theories [11]. The prob-
lem of deciding whether a non-equational tree language accepts an irreducible term
for any set of linear or non-linear rules was shown in [2], however the approach used
here is quite different. The technique of counting the number of distinct terms was
influenced by similar issues in deciding the emptiness of multitree automata [14],
and our realization thatPresburger arithmetic is useful in theACI casewas inspired
by the generalization of Parikh’s theorem to arbitrary Kleene algebras in [10].

Although we have solved two open problems, our work suggests additional
questions that are worth exploring, including: (1) Can we obtain positive mod-
ularity results by imposing stronger conditions on the theories such as linearity
or collapse-freeness? (2) Can the semi-decision procedure for the associative case
in [9] be extended to handle AC-intersection free automata over theories with
any combination of associativity, commutativity, and idempotence? (3) Although
ground reducibility modulo AC is undecidable in general for non-linear rules [12],
for what other non-linear rules is ground reducibility modulo AC decidable?

Acknowledgments. The authors would like to thank the referees for comments
which helped to improve the paper.
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Abstract. We consider rewriting systems for unranked ordered terms,
i.e. trees where the number of successors of a node is not determined by
its label, and is not a priori bounded. The rewriting systems are defined
such that variables in the rewrite rules can be substituted by hedges
(sequences of terms) instead of just terms. Consequently, this notion of
rewriting subsumes both standard term rewriting and word rewriting.

We investigate some preservation properties for two classes of lan-
guages of unranked ordered terms under this generalization of term
rewriting. The considered classes include languages of hedge automata
(HA) and some extension (called CF-HA) with context-free languages in
transitions, instead of regular languages.

In particular, we show that the set of unranked terms reachable from a
given HA language, using a so called inverse context-free rewrite system,
is a HA language. The proof, based on a HA completion procedure, reuses
and combines known techniques with non-trivial adaptations. Moreover,
we prove, with different techniques, that the closure of CF-HA languages
with respect to restricted context-free rewrite systems, the symmetric
case of the above rewrite systems, is a CF-HA language. As a conse-
quence, the problems of ground reachability and regular hedge model
checking are decidable in both cases. We give several counter examples
showing that we cannot relax the restrictions.

1 Introduction

In many applications the system states can be modeled by words or trees, sets
of configurations by word or tree languages and the transitions of the system
can be represented by rewrite rules. In this setting verifying whether a system
can enter a set of unsafe states can be expressed as a reachability problem. This
approach to the analysis of infinite-state systems requires the computation of the
closure of languages under rewrite rules or at least an over-approximation of this
closure. Since the usually considered languages are regular the approach is called
regular model checking [2,1]. Regular model checking has been quite successful
in protocol and hardware verification. For increasing the scope of regular model
checking it is therefore important to be able to derive new classes of languages
and rewrite systems such that the rewrite closure is computable.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 157–171, 2008.
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Unranked trees as well as ordered sequences of unranked trees called
hedges [13,14,5] are flexible structures that are quite appealing to represent XML
documents where the number of nodes can be modified, for instance when these
nodes correspond to database records. Unranked trees have also been employed
to model multithreaded recursive program configurations where the number of
parallel processes is unbounded [3,18]. Hedge-automata (HA) are considered now
as the natural model of automata for unranked trees. A hedge automaton is a
variation of tree automata for hedges. Given a hedge, a hedge automaton assigns
some state to a node whenever the sequence of states of the siblings belong to
some specified word language (sometimes called horizontal language).

Although regular model checking with languages for words and ranked trees
(where function symbols have fixed arity) has been widely investigated, very few
results are available for unranked trees and almost none exists on the computation
of exact reachability sets for HA languages.

In this paper we tackle the problem above by proving (Theorem 1) that we
can compute a HA for recognizing the rewrite closure of a language defined by a
given HA, for the class of rewrite systems with inverse context-free rules, which
are rules whose right-hand side is of type f(x) where x is a variable. Hence in
that case we can compute the exact reachability set from the initial one. The
rewriting notion that we consider here for unranked terms generalizes ranked
term rewriting and is close to the one that has been introduced by [22]. The idea
is that the variables in the rewrite rules can be substituted by hedges (sequences
of terms) instead of just terms. Moreover our results cannot be derived from
related ones on ranked terms (e.g. [15]) using encodings of unranked terms into
ranked ones (such as the First-Child-Next-Sibling encoding or the encoding used
in stepwise automata [4]). Relaxing the condition in the definition in the above
class of rewrite systems leads to counterexamples (Propositions 3–6).

We have also considered a more general class of automata for unranked ordered
trees, called CF-HA, where word context-free languages are used instead of regu-
lar ones at the horizontal level. We show (Theorem 2) that CF-HA are preserved
by rewrite closure using context-free rewrite rules. Context-free rewrite rules are
the symmetric case of inverse context-free rules, i.e. rules with left-hand-side
of the form f(x). Some additional restrictions are assumed for this result, they
cannot be relaxed as shown by the counter examples in Proposition 7–10.

Related works. Whether the rewrite closure of regular ranked trees languages
is regular too is a problem that has been addressed in [19,7,9,15,21,20,6]. An
important breakthrough of the proof in [15] (against former results) is that it
works for TRS which are not left-linear. H. Ohsaki introduces equational tree
automata for associative and commutative theories in [16] and study their clo-
sure properties for Boolean operations. T. Touili has studied the regular model
checking problem for HA [22]. She shows how to compute the image of a HA
language in one step of rewriting by a right-linear rewrite system. She also gives
a procedure to compute an over-approximation of the rewrite closure of a HA.
We rather compute exactly this closure for a class of non-linear rewrite systems.
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Our first main result (Theorem 1) can be viewed as a non trivial generalization
of both [15] and [22], with proof techniques extending both former constructions.

C. Löding and A. Spelten [11] compute exact rewrite closure of HA for exten-
sions of ground term rewriting and prefix word rewriting. These results cannot
be compared to ours since in our case variables (that can be substituted by
arbitrarily large hedges) allow non local hedge transformations.

There exists other rewriting notions like the top-down XML transforma-
tions [12] or the relabeling transducers of [18] but they do not cover our notion
since either they use specific hedge traversal strategies or they are structure-
preserving.

Layout of the paper. In Section 2 we introduce terms, hedges and the related
rewriting concepts. In particular we define hedge rewriting systems (HRS) and
context-free rewrite rules. In Section 3 we recall the hedge-automata classes HA
and CF-HA that we shall investigate. In Section 4 we show that the class of HA
languages, (i.e. recognized by HA) is preserved by rewrite closure for rewriting
systems containing rules that are inverse context-free. In Section 5 we show that
a class of context-free hedge rewrite systems preserves CF-HA languages. In both
Sections 4 and 5, we also exhibit some counter-examples obtained when trying
to relax the conditions on rules.

2 Hedge Rewriting

We consider a finite alphabet Σ and an infinite set of variables X . The set of
terms over Σ and X is T (Σ,X ) := X ∪

{
f(h)

∣∣ f ∈ Σ, h ∈ H(Σ,X )
}

and
the set H(Σ,X ) of hedges over Σ and X is the set of finite (possibly empty)
sequences of terms of T (Σ,X ). When h is empty, f() will be simply written f .
We will sometimes consider a term as a hedge of length one, i.e. consider that
T (Σ,X ) ⊂ H(Σ,X ). The sets of ground terms (terms without variables) and
ground hedges are respectively denoted T (Σ) and H(Σ). A hedge h ∈ H(Σ,X )
is called linear if every variable of X occurs at most once in h.

The set of variables occurring in a term t ∈ T (Σ,X ) is denoted var(t). A
substitution σ is a mapping from X to H(Σ,X ) of finite domain. The application
of a substitution σ to a hedge h ∈ H(Σ,X ), denoted hσ, is the homomorphic
extension of σ to H(Σ,X ), defined, for t1, . . . , tn ∈ T (Σ,X ), with n ≥ 0, by
(t1 . . . tn)σ := t1σ . . . tnσ and f(h)σ := f(hσ).

The set of positions Pos(t) of a term t ∈ T (Σ,X ) is a set of sequences of
positive integers. The empty sequence, denoted ε, is the root position of a term.
The subterm of t at position p, denoted t|p, is defined by f(t1 . . . tn)|ip := ti|p if
i ≤ n and, f(h)|ε := f(h). The replacement in t ∈ T (Σ,X ) of the subterm at
position p by t′ ∈ T (Σ,X ) is denoted t[t′]p. The depth of a term is the maximal
length of one of its positions.

A context is a linear hedge of H
(
Σ, {x}

)
, denoted C[x]. The application of a

context C[x] to a hedge h is defined by C[h] := C{x �→ h}.
A hedge rewriting system (HRS) is a set of rewrite rules of the form � → r

where � ∈ T (Σ,X ) \X and r ∈ T (Σ,X ) (� and r are respectively called lhs and
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rhs of the rule). The rewrite relation −−→R of an HRS R is the binary relation
on H(Σ,X ) defined by h −−→R h′ iff h = (t1 . . . tn), there exists i ≤ n, a position
p ∈ Pos(ti), a rule � → r ∈ R and a substitution σ such that ti|p = �σ and
h′ = t1 . . . ti−1ti[rσ]ti+1 . . . tn. The reflexive and transitive closure of −−→R is
denoted −−→∗R .

Example 1. With R = {g(x) → x}, −−→R associates to a term g(h) the hedge h of
its arguments. With R = {g(x) → g(axb)}, g(c) −−→∗R g(ancbn) for every n ≥ 0.

Given a set of terms L ⊆ T (Σ) and an HRS R, we note R∗(L) the set {t ∈
T (Σ) | ∃s ∈ L, s −−→∗R t}. We restrict to terms (instead of hedges) because we are
mainly interested in term languages below.

A rewrite rule � → r is called left-linear (resp. right-linear, linear) if � (resp.
r, both) is linear, left-ground (resp. right-ground) if � ∈ T (Σ) (resp. r ∈ T (Σ)),
collapsing if r ∈ var (�), it is called context-free if � = f(x) with x ∈ X (it
is not required that x ∈ var(r) however) and inverse context-free if r → � is
context-free, prefix (resp. postfix ) if r = g(t0 . . . tn x) (resp. r = g(x t0 . . . tn))
with x ∈ var(�) and no variable of � occurs in the terms t0, . . . , tn. A rewrite
system is said to have one of the above properties if all its rules have this property.

Example 2. We give a few applications of our rewrite rules in the vein of [22].
A context-free rule doc(x) → doc(axā) can be employed to introduce tags
in an XML document. An inverse context-free rule can be used to elimi-
nate comments doc(x comment y comment) → doc(x). Non left-linear in-
verse context-free rules are quite useful for processing list of items as in:
doc(todo x todo y done x done) → doc(y).

Note that hedge rewriting cannot be reduced to term rewriting through encod-
ing of unranked trees into ranked trees like the First-Child/Next-Sibling encod-
ing, or the encoding used in stepwise automata (see details in the companion
report [10]).

3 Hedge-Automata, Context-Free Hedge-Automata

We recall now the definition of hedge-automata [13] (denoted HA) and the less
known class of context-free hedge automata (denoted CF-HA) introduced in [17]
and where they are shown to recognize the closure of regular (ranked) tree lan-
guages modulo associativity.

A hedge automaton (resp. context-free hedge automaton) is a tuple A =
(Q,Σ,Qf , Δ) where Q is a finite set of states, Σ is an unranked alphabet, Qf ⊆ Q
is a set of final states, and Δ is a set of transitions of the form f(L) → q where
f ∈ Σ, q ∈ Q and L ⊆ Q∗ is a regular word language (resp. a context-free
word language). When Σ is clear from the context it is omitted in the tuple
specifying A.

We define the move relation between ground hedges in T (Σ∪Q) as follows: for
every terms t, t′ we have t −−→A t′ if there exists a context C[x] and a transition
f(L) → q in Δ such that t = C[f(q1 . . . qn)], q1 . . . qn ∈ L and t′ = C[q]. The
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relation −−→∗A is the transitive closure of −−→A . Following [22], we extend −−→A to
terms of T (Σ ∪ 2Q∗

) as follows: C
[
f(L1 . . . Ln)

]
−−→A C[q] if there exists a rule

f(L) → q in A such that L1 . . . Ln ⊆ L (in this definition, a lone state q is
considered as a singleton set {q}).

The language denoted by L(A, q) is the set of ground terms t ∈ T (Σ) such
that t −−→∗A q. A term is accepted by A if there is q ∈ Qf such that t ∈ L(A, q).
The language denoted by L(A) is the set of terms accepted by A.

It is know that for both classes of automata [13,17] membership and emptiness
problems are decidable. Moreover HA are closed under Boolean operations.

We call a HA or CF-HA A = (Q,Qf , Δ) normalized if for every f ∈ Σ and
every q ∈ Q, there is at most one transition rule f(Lf,q) → q in Δ. Every
HA (resp. CF-HA) can be transformed into a normalized HA (resp. CF-HA)
in polynomial time by replacing every two rules f(L1) → q and f(L2) → q by
f(L1 ∪ L2) → q.

A HA A = (Q,Qf , Δ) is called deterministic iff for all two transitions rules
f(L1) → q1 and f(L2) → q2 in Δ, either L1 ∩ L2 = ∅ or q1 = q2. It is called
complete if for all f ∈ Σ and and w ∈ Q∗, there exists at least one rule f(L) →
q ∈ Δ such that w ∈ L. When A is deterministic (resp. complete), for all t ∈
T (Σ), there exists at most (resp. at least) one state q ∈ Q such that t ∈ L(A, q).

Every HA can be completed by adding a sink state (and using the closure
properties of regular languages). A determinization procedure (with a subset con-
struction) which preserves completeness is described in Section 4.1 (see also [4]).

3.1 Epsilon- and Collapsing Transitions

We can extend HA and CF-HA with ε-transitions of the form q → q′, where
q and q′ are states, without augmenting the respective expressiveness of these
classes. We also consider the extensions of HA (resp. CF-HA), with collapsing
transitions of the form L → q where L is a regular (resp. CF) language and q
is a state. The move relation for the extended set of transitions is defined as for
HA and CF-HA for standard transition and by C[q1 . . . qk] −−→A C[q] if L → q is
a collapsing transition of A and q1 . . . qk ∈ L. Note that the collapsing transition
L→ q is never applied at the root position (i.e. the above context C cannot be
a variable) because HA and CF-HA are limited to the recognition of terms only
(and not hedges).

Unlike ε-transitions, collapsing transitions strictly extend HA in expressive-
ness. However, we show that they can be eliminated for CF-HA.

Proposition 1. For every extended HA or CF-HA with collapsing transitions
A, there exists a CF-HA A′ (without collapsing transitions) such that L(A′) =
L(A).

Proof. Assume that L→ q is a collapsing transition of A. Then we get a CF-HA
A′ such that L(A′) = L(A) by replacing every transition f(L1) → q1 by the
transition f(L2) → q1 where L2 is the context-free word language generated by
the grammar G2 as follows. We consider a context-free grammar G for L (resp.
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G1 for L1) with axiom X (resp. X1). The axiom of G2 is X1 and the set of
productions in G2 contains i) G[q ←− Xq] ∪ G1[q ←− Xq] i.e. the terminal q is
replaced by a non terminal Xq and ii) we add to these rules the production: Xq :=
q | X . We can iterate this construction to eliminate all collapsing transitions. � 

Proposition 2. There exists an extended HA with collapsing transitions whose
language is not a HA language.

Proof. Consider the extended HA A = ({q, qa, qb, qf}, {g, a, b, c}, {qf}, Δ) where

Δ = {c −→ q, a −→ qa, b −→ qb, g(q) −→ qf , qaqqb −→ q}

Its recognized language is {g(ancbn) | n ≥ 0} and this is not a HA language. � 

3.2 Decision Problems

The problem of ground reachability and ground joinability are to decide that,
given two ground terms s, t ∈ T (Σ) and a HRS R, whether, s −−→∗R t, respectively,
s −−→∗R ◦ ←−−∗R t.

Regular hedge model checking is the problem to decide, given two HA lan-
guages Linit and Lerr and a HRS R whether R∗(Linit) contains a term of Lerr.
Ground reachability is reducible to regular hedge model-checking. Indeed, given
s, t and R, s −−→∗R t iff R∗({s}) ∩ {t} �= ∅. Note also that if ground-reachability
(hence regular hedge model-checking) is undecidable for a class of HRS, then
R∗(L) is not recursive in general when R is in this class and L is a HA or
CF-HA. Indeed, by definition s −−→∗R t iff t ∈ R∗({s}).
4 Closure of Regular Hedge Automata Languages

In this section, we prove one result of preservation of HA language for a class
of HRS, and give several counter example showing that the restrictions defining
this class of HRS are necessary.

4.1 Inverse Context-Free Rewrite Rules

Theorem 1. The closure R∗(L) of a HA language L ⊆ T (Σ) under rewriting
by an inverse context-free HRS R is a HA language.

Proof. Let A = (Q,Qf , Δ) be a complete and normalized HA recognizing L.
We shall construct below a finite sequence of HA

(
Ai

)
0≤i≤h

whose last element
recognizes R∗(L). Our construction uses elements of [15] and [22], but it is
not a simple combination of both. Indeed, on one side we generalize [22] to an
unbounded number of rewriting steps, and on the other side we generalize [15]
to unranked tree languages. Both generalizations are non-trivial and require new
constructions and new conditions.
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For each f ∈ Σ, q ∈ Q, we note Lf,q the language in the transition (assumed
unique) f(Lf,q) → q ∈ Δ. We construct first from A a deterministic, complete
and normalized HA Ad = (Qd, Q

f
d, Δd) recognizing L. The HA Ad is obtained by

a subset construction, see e.g. [4], with Qd := 2Q, Qf
d := {s ∈ Qd | s ∩Qf �= ∅}

and Δd :=
{
f(Lf,s) → s

∣∣ f ∈ Σ, s ⊆ Q
}

where Lf,s :=
(⋂

q∈s Sf,q

)
\
(⋃

q/∈s Sf,q

)
and Sf,q =

{
s1 . . . sn ∈ Q∗

d

∣∣ ∃q1 ∈ s1, . . . , qn ∈ sn, q1 . . . qn ∈ Lf,q

}
1.

Next, following the approach of [22], we define first the set of languages of
Q∗

d that will be used in the transitions of the Ai’s constructed below. However,
we must consider here a bigger set than [22] in order to deal with non linear
variables in lhs of rules. Let L be the smallest set of subsets of Q∗

d such that

i. all Lf,s (for f ∈ Σ and s ∈ Qd) and Q∗
d are in L,

ii. if L ∈ L and u, v ∈ Q∗
d, then u−1 L v−1 ∈ L, where

u−1 L v−1 := {w ∈ Q∗
d | uwv ∈ L},

iii. if L1, L2 ∈ L then L1 ∩ L2 ∈ L,
iv. if L1, L2 ∈ L then L1 \ L2 ∈ L.

Note that the condition Q∗
d ∈ L in i together with iii and iv imply that L is also

closed under union (if L1, L2 ∈ L then L1 ∪ L2 ∈ L), by De Morgan’s Law.
Let us show that L is finite and that all its members are regular languages.

First, let us note that L1, the smallest set satisfying i and ii above, is a finite
set of regular languages of Q∗

d, since every Lf,q is regular by hypothesis. The
closure L2 of L1 under iii and then iv is also a finite set of regular languages.
The following lemma shows that L2 fulfills ii, i.e. that L2 = L.

Lemma 1. For all L1, L2 ⊆ Q∗
d, u1, u2, v1, v2, u, v ∈ Q∗, we have

u−1
(
u−1

1 L1 v
−1
1 ∩ u−1

2 L2 v
−1
2

)
v−1 = (u1u)−1 L1 (vv1)−1 ∩ (u2u)−1 L2 (vv2)−1,

u−1
(
u−1

1 L1 v
−1
1 \ u−1

2 L2 v
−1
2

)
v−1 = (u1u)−1 L1 (vv1)−1 \ (u2u)−1 L2 (vv2)−1.

Proof. The set in the left-hand-side of the first identity in Lemma 1 is A ={
� | u�v ∈ {�′ | u1�

′v1 ∈ L1 and u2�
′v2 ∈ L2}

}
, and the set in its right hand

side is B =
{
� | u1u�vv1 ∈ L1 and u2u�vv2 ∈ L2

}
. If � ∈ A, then u1u�vv1 ∈ L1

and u2u�vv2 ∈ L2, hence � ∈ B. Conversely, if � ∈ B, then u�v ∈ u−1
1 L1 v

−1
1 ∩

u−1
2 L2 v−1

2 , hence � ∈ A. The proof is very similar for the identity with the
complementation. � 
Let us now construct the HA A0, ...,Ah as announced. The set of states and
final states of each of these HA are respectively Qd and Qf

d. We give below an
iterative construction of the respective transition sets Δi, 0 ≤ i ≤ h.

Let Δ0 = Δd. Assume that Δi has been constructed and contains one tran-
sition f(Li

f,s) → s for every f ∈ Σ and s ∈ Qd; Δi+1 is obtained from Δi

as follows: choose (non deterministically) an inverse context-free rewrite rule
� → g(x) ∈ R, and a substitution τ : var(�) ∪ {x} → {L′ ∈ L | ∀s1 . . . sk ∈
L′, ∀j ≤ k, L(Ai, sj) �= ∅}, such that �τ −−→∗Ai

s′ ∈ Qd. Let L′ = xτ (note that
if the variable x does not occur in �, then L′ is an arbitrary language of L of
sequences of states reachable by Ai); Δi+1 is obtained as follows: for each s ∈ Qd,
1 Note that Sf,q and Lf,s are indeed regular languages, see [4].
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1. replace the rule g
(
Li

g,s

)
→ s by g

(
Li

g,s ∩ L′)→ s ∪ s′ and g
(
Li

g,s \ L′)→ s
2. after this operation, normalize the set of transition rules with the operation

described in Section 3 (page 161). (Note that if s′ ⊆ s then the normalization
merges the 2 rules and regenerate g

(
Li

g,s

)
→ s.)

The idea behind this construction is that if s′ is reachable from a lhs �τ of
rewrite rule, then the states in s′ must also be reachable from the corresponding
rhs g(xτ). Note that for all transitions g

(
L) → s produced by the algorithm, we

have L ∈ L (even after normalization), according to the closure properties of this
set. Since L and the set of states s is finite (no new state is added) this shows
that the construction terminates say with a HA Ah that will be denoted A∗.

We can also show the following invariant: every Ai constructed in the algorithm
is deterministic, complete and normalized. Indeed, assume that Ai has these
properties. If s′ ⊆ s no transition is added and the invariant is trivially preserved;
hence we can assume now s′ �⊆ s. If another rule g

(
Li

g,s∪s′
)
→ s ∪ s′ was in

Δi it is merged with g
(
Li

g,s ∩ L′) → s ∪ s′ by normalization producing the
rule g

(
(Li

g,s ∩ L′) ∪ Li
g,s∪s′

)
→ s ∪ s′. Hence there is at most one Li+1

g,s∪s′ =
(Li

g,s ∩ L′) ∪ Li
g,s∪s′ such that g

(
Li+1

g,s∪s′) → s ∪ s′ ∈ Δi+1. Note also that there
is at most one Li+1

g,s = Li
g,s \ L′ such that g

(
Li+1

g,s ) → s ∈ Δi+1. It is easy to see
(from the fact that Ai is deterministic and normalized) that Li+1

g,s∪s′ , Li+1
g,s , and

Li+1
g,s′′ , for all s′′ �∈ {s, s′}, are pairwise disjoint, hence Ai+1 is deterministic. From

the facts that Ai is complete and that Li
g,s ∩ L′ and Li

g,s \ L′ form a partition
of Li

g,s, we deduce that Ai+1 is also complete.
We show in [10] that L(A∗) = R∗(L). Let us simply sketch the proof here for

space reasons.
The proof of the direction L(A∗) ⊆ R∗(L) relies on the following lifting lemma.

Lemma 2. For all i ≥ 0, t ∈ T (Σ,X ), σ : var (t) → H(Σ) and θ : var(t) → Q∗
d

such that for all x ∈ var (t), xσ and xθ have the same length, if tθ −−→∗Ai
s0 ∈ Qd,

and for all x ∈ var (t), all components (xθ)|j of xθ (state of Qd) and q ∈ (xθ)|j ,
there exists u ∈ L(Ai, q) such that u −−→∗R (xσ)|j , then for all q′ ∈ s0, there exists
v ∈ L(Ai, q

′) s. t. v −−→∗R tσ.

Lemma 2 is proved (see [10]) by induction on i, and, for the induction step,
by a second induction on the number of applications of a rule of Δi+1 \ Δi in
the reduction tθ −−−−→∗

Ai+1
s0. Intuitively, every such application corresponds to

a rewrite step in v −−→∗R tσ. Now, for the particular case of Lemma 2 where
t ∈ T (Σ), we have that if t −−→∗Ai

s0, for some i and s0 ∈ Qf
d, for all qf ∈ s0,

where qf is a final state of A, there exists u ∈ L(A, qf) ⊆ L(A) such that u −−→∗R t.
This terminates the proof of the direction L(A∗) ⊆ R∗(L).

For the direction L(A∗) ⊇ R∗(L), assume that t ∈ L(A) and that t −−→∗R t′.
We show in [10] that t′ ∈ L(Ai) for some i by induction on the length of the
rewrite sequence. � 

Corollary 1. Ground reachability, ground joinability and regular hedge model-
checking are decidable for inverse context-free HRS.
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We present in the next subsections (4.2–4.4) some counter examples showing
that relaxing the assumption on R in Theorem 1 invalidate the result.

4.2 Collapsing Rewrite Rules

Collapsing rules preserve regularity of term languages [15] when the function
symbols are ranked. Indeed, in this case, if R is left-linear and collapsing, a tree
automaton (TA) recognizing L can be completed into a TA recognizing R∗(L)
just by the iterated addition of ε-transitions of the form xτ → q when there is
� → x ∈ R and a substitution τ : var (�) → Q such that �τ −−→∗A q. When R is
just collapsing (not left-linear), the construction requires determinism and hence
is more complicated but the idea is the same [15].

In the case of unranked terms and HA, if we want to follow the principles of
the construction of Section 4.1, we need to add collapsing transitions and not
just ε-transitions. But the addition of collapsing transitions does not preserve
HA languages (Proposition 1). The following proposition shows that the above
construction is actually not possible for collapsing rewrite rules.

Proposition 3. R∗(L) is not a HA language in general when L is a HA lan-
guage and R is a linear collapsing HRS.

Proof. We use the principle of the construction in the proof of Proposition 1.
Let Σ = {f, g, a, b, c}, let L be the language of the HA

A =
(
{q, qa, qb, qf}, {qf}, {c→ q, a→ qa, b→ qb, g(qaqqb) → q, f(q) → qf}

)
and let R = {g(x) → x}. Assume that R∗(L) is a HA language. Its intersection
with the HA language {f(a∗cb∗)} is {f(ancbn) |n ≥ 0}. It is not a HA language.
This contradicts the fact that HA languages are closed under intersection. � 

Note that the completion of the above A, following the procedure in the proof
of Theorem 1, would add the collapsing transition qaqqb → q.

4.3 Flat Linear Rewrite Rules

In the case of ranked terms, it is known [15] that regularity of tree languages
is preserved under rewriting with systems with right-linear rules of the form
� → f(u1, . . . , un) where f has arity n and each ui (i ≤ n) is either a ground
term or a variable of var(�). We call such a rule flat if its lhs and rhs both have
depth one. Note that this class of TRS is not captured by the HRS of Theorem 1
(when restricted to ranked terms). The above regularity preservation result is
no longer true for unranked terms.

Proposition 4. R∗(L) is not a HA language in general when L is a a HA lan-
guage and R is a context-free, linear and flat HRS. Moreover, it can be assumed
that all the rules of R are prefix or postfix.
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Proof. Let us consider the context-free HRS R = {g(x) → g(axb)} of Example 1,
and the HA language L = {g(c)}. The language R∗(L) = {g(ancbn) | n ≥ 0}
is not HA. We can transform the above R into R′ = {g(x) → g′(ax), g′(y) →
g(yb)} whose rules are prefix or postfix (and linear) and which is such that
R′∗(L) ∩ T ({g, a, b}) = R∗(L). � 

Note that the language in the above proof is recognized by a CF-HA. We shall
show below (Theorem 2 in Section 5) that context-free HRS like the R above
preserve CF-HA languages.

We show now the stronger result that the closure of a HA language under
rewriting with a flat HRS, even linear, is neither HA, nor CF-HA and actually
not even recursive.

Proposition 5. R∗(L) is not recursive in general when L is a HA language and
R is a linear and flat HRS whose rules contain at most two variables.

Proof. We reduce the blank accepting problem for TM to ground reachability
for an HRS. Let M be a TM with a tape alphabet Γ and a state set S and let
Σ = Γ ∪S∪{g}. A configuration of M is represented by a term g(w) where w is
a word of Γ ∗SΓ ∗ (the position of the state symbol indicates the position of the
head of M and the rest represents the contents of the tape). We assume, wlog
unique blank initial and final configurations, respectively ci and cf . We consider
a HRS R containing one rule for each transition of M. For instance, R contains
a rule f(xasy) → f(xs′a′y) corresponding to a transition s, a → L, s′, a′ (with
s, s′ ∈ S and a, a′ ∈ Γ ) and f(xasby) → f(xa′bs′y) to the transition s, a→ R, s′.
The blank tape is accepted by M iff ci −−→∗R cf . � 

As a consequence, regular hedge model checking is undecidable for the HRS of
Proposition 5, according to the remarks in Section 3.2.

4.4 Rewrite Rules with Flat and One-Variable or Ground
Right-Hand-Sides

If we relax the inverse context-free condition, with only one variable allowed in
the rhs of rules, but possibly with two occurrences, both at depth 1, then the
result of Theorem 1, again, is not valid anymore.

Proposition 6. R∗(L) is not recursive in general when L is a HA language and
R is a HRS whose rhs of rules are ground or of the form d(xx).

We reduce in [10], the blank accepting problem for a TM to ground reachability
for a HRS with right-ground (but not left-linear) rules and a rule d(xx) → d′(xx).

5 Closure of Context-Free Hedge Automata Languages

It has been observed [8] that in several cases, one class of word rewrite system
preserves regularity and its symmetric class preserves context-free languages. In
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this section, we prove a similar result by showing that a restricted case of context-
free HRS, i.e. of the symmetric version of the systems considered in Section 4,
preserve CF-HA languages. We give next some counterexamples showing that
the restrictions are necessary for this result.

5.1 Linear Restricted Context-Free Rewrite Rules

We call a HRS R restricted context-free if it is context-free, and moreover, for
all rule f(x) → r ∈ R, x can occurs in r only at depth at most 1. Note that this
definition includes the case of collapsing rules f(x) → x.

Theorem 2. The closure R∗(L) of a CF-HA language L under rewriting by a
linear restricted context-free HRS R is a CF-HA language.

Proof. Let AL = (QL, Q
f
L, ΔL) be a normalized CF-HA recognizing L. We shall

construct an extended CF-HA A′ with collapsing transitions (see Section 3.1 for
the definition) recognizing R∗(L). The result follows then from Proposition 1.

First, let us construct for each rule f(x) → g(r1 . . . rn) ∈ R and every subterm
r �= x amongst r1, . . . , rn (let us denote rhs(R) the set of such subterms) a
CF-HA (with collapsing transitions) Ar = (Qr, ∅, Δr) characterizing the set of
ground instances of r. We have in Ar one state qu ∈ Qr for each non-variable
subterm u of r, and a universal state q∀ ∈ Qr. Below, for every subterm u of r, we
shall write qu to denote either the state qu if u is not a variable or q∀ otherwise.
The set of final states of Ar is left unspecified. It is indeed not relevant to our
purpose since Ar is only used as a part of the CF-HA A′ constructed below. The
transition set Δr contains one rule f(qu1 . . . qun) → qf(u1...un) for each subterm
f(u1 . . . un) of r (as specified above, qi is q∀ if ui is a variable and qi is a state
qui otherwise). It contains moreover one collapsing transition q∗∀ → q∀ and one
transition rule f(q∗∀) → q∀ for each f ∈ Σ. The states sets Qr and QL are
assumed pairwise disjoint. Let A := (Q,Qf

L, Δ) with

Q := QL �
⊎

r∈rhs(R)

Qr and Δ := ΔL �
⊎

r∈rhs(R)

Δr.

For each f ∈ Σ, q ∈ Q, let Lf,q be the context-free language in the transition
(assumed unique) f(Lf,q) → q ∈ Δ, and let Gf,q = (Q,Nf,q, If,q, Pf,q) be a CF
grammar generating Lf,q, with alphabet (set of terminal symbols) Q, set of non
terminal symbols Nf,q, axiom If,q ∈ Nf,q, and set of production rules Pf,q. The
sets of non-terminals Nf,q are assumed pairwise disjoint.

We complete the grammars Gf,q with new non-terminals I ′f,q and some sets
P ′

f,q of new production rules containing:

i. I ′f,q := If,q for all f ∈ Σ, q ∈ Q,
ii. I ′g,q := qr1 . . . qrnI

′
f,q qs1 . . . qsm for each rule f(x) → g(r1 . . . rnxs1 . . . sm) ∈

R, with n,m ≥ 0, and x /∈ var (r1, . . . , rn, s1, . . . , sm), and
iii. I ′g,q := qr1 . . . qrn (with n > 0), or I ′g,q := ε (with n = 0), for each rule

f(x) → g(r1 . . . rn) ∈ R with x /∈ var(r1, . . . , rn), if L(A, q)∩ f
(
H(Σ)

)
�= ∅.
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Note that in the cases ii and iii cover all the cases of linear restricted context-free
rewrite rules, except the collapsing rules.

Let N =
⋃

f∈Σ,q∈Q

(
Nf,q ∪ {I ′f,q}

)
and P =

⋃
f∈Σ,q∈Q

(Pf,q ∪ P ′
f,q).

Let us clean up these sets: if the language generated by a CF grammar(
Q,N, I ′f,q, P

)
is empty then we remove I ′f,q from N and all the productions

of P which contain I ′f,q . We iterate this operation, until there is no remaining
non-terminals generating an empty language in N (note that the construction
stops since we only remove non-terminals and productions). Let us note N ′ and
P ′ the sets of non-terminals and productions obtained. For each f ∈ Σ, q ∈ Q,
let G′

f,q =
(
Q,N ′, I ′f,q, P

′), and let L′
f,q be its language.

Finally, A′ = (Q,Qf
L, Δ

′) is obtained by the addition of collapsing transitions
corresponding to the collapsing rewrite rules in R

Δ′ =
{
f(L′

f,q) → q
∣∣ f ∈ Σ, q ∈ Q,L′

f,q �= ∅
}
∪ {L′

f,q → q | f(x) → x ∈ R}

We show in [10] that L(A′) = R∗(L(A)
)
.

The proof of the direction ⊆ is by induction on the number of application
of collapsing transitions other than q∗∀ → q∀ in a reduction by A′. For the base
case, we need to consider the occurrences of non-terminals I ′g,q in the derivations
with the grammars G′

f,q. Intuitively every occurrence of such I ′g,q corresponds to
a rewrite step with a context-free rule of R.

The proof of the direction⊇ is by induction on the length of a rewrite sequence
u −−→∗R t for u ∈ L(A). � 

Corollary 2. Reachability and regular hedge model-checking are decidable for
linear restricted context-free HRS.

Proof. The intersection of an CF-HA language and a HA languages is a CF-HA
language, and emptiness of CF-HA is decidable. � 

It is shown in [17] that the languages of CF-HA are closures of regular tree lan-
guages modulo associativity of one or several binary function symbols. Therefore,
the above results are also valid for these languages.

5.2 Linear Context-Free Rewrite Rules

Context-free HRS are named after context-free tree grammars, whose production
rules have the form N(x1, . . . , xn) → r where N is a non-terminal of arity n
(from a finite set N ), x1, . . . , xn ∈ X and r ∈ T

(
Σ∪N , {x1, . . . , xn}

)
. Note that

our definition of context-free HRS is restricted to unary non-terminals. However,
even for this case of unary non-terminals and right-linear rewrite rules, the result
of Theorem 2 cannot be generalized to context-free HRS.

Proposition 7. R∗(L) is not a CF-HA language in general when L is a CF-HA
language and R is a linear context-free HRS.
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Proof. Let us consider the context-free HRS: R = {f(x) → g(f(ax))} and let
L = {f(c)}. The set R∗(L) is

{
g(g(. . . g(︸ ︷︷ ︸

n

f(anc))))
∣∣ n ∈ N

}
.

Using a pumping argument, we can show that it is not a CF-HA language. � 

The above counter-example shows the importance for Theorem 2 of the condi-
tion, in the definition of restricted context-free HRS, that the variable x in a lhs
of rule occurs at a shallow position in the corresponding rhs.

5.3 Restricted Context-Free Rewrite Rules

If we keep the restricted context-free condition (the variable x in the lhs of a rule
occurs at a shallow position in the corresponding rhs) but we drop the linearity
condition, we also lose the CF-HA preservation result of Theorem 2.

Proposition 8. R∗(L) is not a CF-HA language in general when L is a CF-HA
language and R is a restricted context-free HRS.

Proof. Let R = {f(x) → f(xx)} and L = {f(a)}. We have that R∗(L) =
{f(an) | n = 2k, k ≥ 0} which is not a CF-HA language. Assume indeed that
this language is recognized by a CF-HA (Q,Qf , Δ). It means that Δ contains a
transition f(L) → q where L is a context-free language of words of Q∗ of length
2k, k ≥ 0. The image of L under the strictly alphabetic homomorphism which
translates every state q ∈ Q into a is context-free. As it is a one letter language,
it is also regular. But it is well known that this language {an | n = 2k, k ≥ 0} is
actually not regular. � 

5.4 Mixing Inverse CF and Restricted CF Rewrite Rules

We show now that the results of Theorems 1 and 2 cannot be combined. In other
terms, for some HRS containing both linear inverse context-free and restricted
context-free rules, the set of descendants of a HA language is not a HA language,
neither a CF-HA language and even not recursive.

Proposition 9. R∗(L) is not recursive in general when L is a HA language and
R is a HRS whose rules are either inverse context-free or restricted context-free
and contain only one variable.

Proof. We reduce the Post Correspondence Problem (PCP). Let us consider an
instance P =

{
〈ui, vi〉

∣∣ i ≤ n, ui, vi ∈ Γ ∗} of PCP on an finite alphabet Γ . The
problem is to find a sequence i1, . . . , ik ≤ n such that ui1 . . . uik

= vi1 . . . vik

LetR be an HRS containing a rule f0(x) → f0(ũixvi) for each pair 〈ui, vi〉 ∈ P
(ũi is the mirror image of ui), and two rules f0(axa) → f1(x) and f1(axa) →
f1(x) for each a ∈ Γ . We assume that f0, f1, and c are symbols not in Γ . We
have that f0(c) −−→∗R f1(c) iff P has a solution. � 

Moreover, as we have shown that context-free HRS do not preserve HA languages
(Proposition 4), the symmetric also holds for inverse-context-free HRS and CF-
HA languages.
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Proposition 10. R∗(L) is not recursive in general when L is a CF-HA lan-
guage and R is an inverse context-free HRS.

Proof. Let R1 be the subset of the context-free rewrite rules of the HRS of the
above proof of Proposition 9, and R2 be the subset of the other rules. Note that
R2 is an inverse context-free HRS.

By Theorem 2, L = R∗
1

(
{f0(c)}

)
is a CF-HA language. Like in the proof of

Proposition 9, we have that f1(c) ∈ R∗
2(L) iff the PCP has a solution. Hence,

because of the decidability of the membership problem for CF-HA, R∗
2(L) cannot

be a CF-HA language. � 

6 Conclusion

We have shown that HA and CF-HA languages are preserved by rewrite closure
for interesting classes of non ground hedge rewriting rules. These rules allow us
for instance to modify the structure of XML documents when processing them.
We plan to extend our results to non ordered unranked trees by considering
sheaves automata as in [5] or commutative hedge automata (see [3] for applica-
tion to process rewrite systems).

Regularity preservation has been studied in the case of ranked terms for trans-
ducing term rewriting system, i.e. rewrite rules corresponding to transducers
rules [20]. A generalization of such classes of TRS to hedge rewriting seems con-
ceptually close to XML transformations [12] and we plan to study the preserva-
tion of HA or CF-HA languages w.r.t. to such HRS.
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Abstract. For fully-extended, orthogonal infinitary Combinatory Re-
duction Systems, we prove that terms with perpetual reductions starting
from them do not have (head) normal forms. Using this, we show that

1. needed reduction strategies are normalising for fully-extended, or-
thogonal infinitary Combinatory Reduction Systems, and that

2. weak and strong normalisation coincide for such systems as a whole
and, in case reductions are non-erasing, also for terms.

1 Introduction

Infinitary higher-order rewrite systems extend infinitary TRSs (iTRSs) [1,2] with
bound variables and nestings. Their introduction invalidates the Strip Lemma.
Hence, new proof techniques are required to obtain confluence and normalisation
results. The latter of these are the subject of this paper.

Failure of the Strip Lemma was first observed by Kennaway et al. [3] in infini-
tary λ-calculus. To prove confluence modulo certain subterms for this system,
while avoiding the Strip Lemma, Kennaway et al. [3] and Kennaway and De Vries
[2] use resp. a non-collapsing variant of the β-rule and standard reductions. To
prove a similar confluence result for the infinite extension of Combinatory Reduc-
tion Systems (CRSs) [4], i.e. for infinitary CRSs (iCRSs) [5,6,7], Van Oostrom’s
technique of essential rewrite steps [8] was adapted.

Below we give an abstract formulation of Van Oostrom’s technique under the
name projection pairs. With the help of these pairs we show for fully-extended,
orthogonal iCRSs that terms with perpetual reductions starting from them, i.e.
reductions with an infinite number of root-steps, do not have (head) normal
forms — the known proofs for iTRSs by Kennaway et al. [1] and by Klop and
De Vrijer [9] do not carry over due to dependence on the Strip Lemma.

Using the above fact, we prove our main results: Needed reductions normalise
for fully-extended, orthogonal iCRSs and weak and strong normalisation coincide
for such systems as a whole and, in case of non-erasing reductions, also for terms.

Needed Reductions. Normalisation of needed reductions implies that any reduc-
tion strategy contracting only needed redexes, i.e. redexes a residual of which is
contracted in every reduction to normal form, yields a normal form. Hence, these
strategies are useful to obtain normal forms. We extend the classical result by
Huet and Lévy [10] who show the same for orthogonal TRSs. This also extends

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 172–186, 2008.
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identical results for orthogonal iTRSs by Kennaway et al. [1] and for orthogonal
higher-order systems by Glauert and Khasidashvili [11].

Uniform Normalisation. Uniform normalisation [12], i.e. the coincidence of weak
and strong normalisation, is special in the case of orthogonal iTRSs. As shown
by Klop and De Vrijer [9], the property holds without any restrictions. As such,
iTRSs behave different from TRSs, which need to be non-erasing [13].

However, the result for TRSs concerns terms and not systems. This result
does not carry over to iTRSs, as noted by Kennaway et al. [14] and by Klop and
De Vrijer [9]. Partial recovery is possible by considering non-erasing reductions
instead of non-erasing rules, as indicated by Kennaway et al. [14]. We extend both
this recovery and the result concerning systems to fully-extended, orthogonal
iCRSs.

Overview. We give some preliminaries in Sect. 2. In Sect. 3, normalisation is in-
troduced. Projection pairs are defined in Sect. 4 and used in Sect. 5 to obtain the
result regarding perpetual reductions. In Sects. 6 and 7 we prove normalisation
of needed reductions and uniform normalisation. We conclude in Sect. 8.

2 Preliminaries

We outline some basic facts concerning iCRSs; see [2,1,5,6,7] for more detailed
accounts. Throughout, we denote the first infinite ordinal by ω, and arbitrary
ordinals by α, β, γ, . . . . By N we denote the natural numbers including zero.

Terms and Substitutions. Let Σ be a signature with each element of finite
arity. Moreover, assume a countably infinite set of variables and, for each finite
arity, a countably infinite set of meta-variables — countably infinite sets suffice
given ‘Hilbert hotel’-style renaming.

Infinite terms are usually defined by metric completion [15,1,5]. Here, we give
the shorter, but equivalent, definition from [6]:

Definition 2.1. The set of meta-terms is defined by interpreting the following
rules coinductively, where s and s1, . . . , sn are again meta-terms:

1. each variable x is a meta-term,
2. if x is a variable, then [x]s is a meta-term,
3. if Z is an n-ary meta-variable, then Z(s1, . . . , sn) is a meta-term, and
4. if f ∈ Σ is n-ary, then f(s1, . . . , sn) is a meta-term.

The set of finite meta-terms, a subset of the set of meta-terms, is the set induc-
tively defined by the above rules. A term is a meta-term without meta-variables
and a context is a meta-term over Σ ∪ {
}.
We consider (meta-)terms modulo α-equivalence. A meta-term of the form [x]s
is called an abstraction; a variable x in s is called bound in [x]s. Meta-terms
with meta-variables only occur in rewrite rules; rewriting itself is defined over
terms. We have that Z(Z(. . .)), and Z([x]Z ′([y]Z(. . .))) are meta-terms. More-
over, [x]f(Z(x)) is a finite meta-term and [x]x is a finite term.
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The set of positions [5] of a meta-term s, denoted Pos(s), is a set of finite
strings over N, with each string denoting the ‘location’ of a subterm in s. If p
is a position of s, then s|p is the subterm of s at position p. The length of p is
denoted |p|. There exists a well-founded order < on positions: p < q iff p is a
proper prefix of q. The concatenation of positions p and q is denoted p · q.

A valuation [4], denoted σ̄, substitutes terms for meta-variables in meta-terms
and is defined by coinductively interpreting the rules of valuations for CRSs [5].
In CRSs, applying a valuation to a meta-term yields a unique term. This is not
the case for iCRSs [5]. To alleviate this problem, the set of meta-terms satisfying
the so-called ‘finite chains property’ is defined in [5]:

Definition 2.2. Let s be a meta-term. A chain in s is a sequence of (context,
position)-pairs (Ci[
], pi)i<α, with α ≤ ω, such that for each (Ci[
], pi) there
exists a term ti with Ci[ti] = s|pi and pi+1 = pi · q where q is the position of the
hole in Ci[
]. A chain of meta-variables in s is such that for each i < α it holds
that Ci[
] = Z(t1, . . . , tn) with tj = 
 for exactly one 1 ≤ j ≤ n.

The meta-term s is said to satisfy the finite chains property if no infinite
chain of meta-variables occurs in s.

Remark that 
 only occurs in Ci[
] if i + 1 < α, otherwise Ci[
] = s|pi .
The meta-term [x1]Z1([x2]Z2(. . . [xn]Zn(. . .))) e.g. satisfies the finite chains prop-
erty, while Z(Z(. . . Z(. . .))) does not. Finite meta-terms always satisfy the finite
chains property. The following is shown in [5]:

Proposition 2.3. Let s be a meta-term satisfying the finite chains property and
let σ̄ be a valuation. There is a unique term that is the result of applying σ̄ to s.

Rewriting. To define rewriting, recall that a pattern is a finite meta-term each
meta-variable of which has distinct bound variables as arguments and that a
meta-term is closed if all variables occur bound [4].

Definition 2.4. A rewrite rule is a pair of closed meta-terms (l, r), denoted
l → r, with l a finite pattern of the form f(s1, . . . , sn) and r satisfying the finite
chains property such that all meta-variables occurring in r also occur in l.

An infinitary Combinatory Reduction System (iCRS) is a pair C = (Σ,R)
with Σ a signature and R a set of rewrite rules.

Left-linearity and orthogonality are defined as for CRSs [4], by virtue of left-
hand sides of rewrite rules being finite. A rewrite rule is collapsing if the root
of its right-hand side is a meta-variable. Moreover, a pattern is fully-extended,
if, for each meta-variable Z and abstraction [x]s with an occurrence of Z in its
scope, x is an argument of that occurrence of Z; a rewrite rule is fully-extended
if its left-hand side is and an iCRS is fully-extended if all its rewrite rules are.

Definition 2.5. A rewrite step is a pair of terms (s, t) denoted s → t and
adorned with a context C[
], a rewrite rule l → r, and a valuation σ̄ such that
s = C[σ̄(l)] and t = C[σ̄(r)]. The term σ̄(l) is called an l → r-redex. It occurs
at position p and depth |p| in s, where p is the position of the hole in C[
].
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A position q of s occurs in the redex pattern of the redex at position p if q ≥ p
and if there does not exist a position q′ with q ≥ p · q′ such that q′ is the position
of a meta-variable in l.

Both σ̄(l) and σ̄(r) are well-defined, as left- and right-hand sides of rewrite rules
satisfy the finite chains property (left-hand sides because they are finite).

In addition to collapsing rewrite rules, a redex and a rewrite step are collapsing
if the employed rewrite rule is. Using rewrite steps, we define reductions:

Definition 2.6. A transfinite reduction with domain α > 0 is a sequence of
terms (sβ)β<α such that sβ → sβ+1 for all β + 1 < α. In case α = α′ + 1, the
reduction is closed and of length α′. In case α is a limit ordinal, the reduction
is open and of length α.

The reduction is weakly or Cauchy continuous if for every limit ordinal γ < α
it holds that sβ converges to sγ as β approaches γ from below. The reduction is
weakly or Cauchy convergent if it is weakly continuous and closed.

For each rewrite step sβ → sβ+1, let dβ denote the depth of the contracted
redex. The reduction is strongly continuous if it is weakly continuous and if, for
every limit ordinal γ < α, the depth dβ tends to infinity as β approaches γ from
below. The reduction is strongly convergent if strongly continuous and closed.

Consider the rules a→ a and f(Z) → g(f(Z)) and the term f(a). The following
reduction of length ω is both weakly and strongly continuous:

f(a) → f(a) → · · · → f(a) → · · · .

Extending the reduction with f(a) yields a weakly convergent reduction but not
a strongly convergent one. The reduction

f(a) → g(f(a)) → · · · → gn(f(a)) → · · · gω ,

also of length ω and where gω denotes g(g(. . . g(. . .))), is strongly convergent.
Reductions are ranged over by D, S, and T . We mostly consider strongly con-

vergent reductions: By s �α t, resp. s �≤α t, we denote a strongly convergent
reduction of length α, resp. of length at most α. By s � t, resp. s →∗ t, we
denote a strongly convergent reduction of arbitrary length, resp. of finite length.

Across strongly convergent reductions we assume that a position that occurs in
the redex pattern of a contracted redex does not have any descendants; likewise
for residuals [5]. We write P/(s � t) for the descendants of a set of positions
P ⊆ Pos(s) across a strongly convergent reduction s � t and U/(s � t) for the
residuals of a set U of subterms of s across s � t.

In the remainder we appeal to a number of properties of iCRSs. The first is
immediate by the proof of the compression property in [5].

Theorem 2.7 (Compression). For every fully-extended, left-linear iCRS, if
s �α t, then s �≤ω t. Moreover, if s �α t has a root-step, then does s �≤ω t.

Assuming orthogonality, let U be a set of redexes of a term s. A development of
U is a reduction s � t each step of which contracts a residual of a redex in U .
A development s � t is complete if U/(s � t) = ∅; in this case we also write
s⇒ t, where the arrow is adorned with U as needed. We have the following:
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Proposition 2.8 (See [6]). Let s be a term in an orthogonal iCRS. If U is a
set of redexes of s with a complete development s ⇒ t and if v is a redex of s,
then the following diagram exists:

s
v ��

U
��

t′

U/(s→vt′)

��
t

v/(s⇒t)
		 s′

A term s is hypercollapsing if for all s � t there exists a t � t′ such that t′ is
a collapsing redex. We write s ∼hc t if t can be obtained from s by replacing
hypercollapsing subterms in s by other hypercollapsing subterms. We have:

Theorem 2.9. Fully-extended, orthogonal iCRSs are confluent modulo ∼hc, i.e.
if s � s′ and t � t′ with s ∼hc t, then s′ � s′′ and t′ � t′′ with s′′ ∼hc t

′′.

The above is shown in [6] under assumption that rewrite rules have finite right-
hand sides; in [7] the result is extended to allow for infinite right-hand sides.

3 Weak and Strong Normalisation

We define (head) normal forms together with weak and strong normalisation.
Ample motivation for the definitions is given by Klop and De Vrijer [9].

Definition 3.1. A term s is a normal form if no redexes occur in s and a head
normal form if it is not reducible to a redex by a strongly convergent reduction.
In addition, s is weakly normalising if a strongly convergent reduction exists
from s to a normal form and s is strongly normalising if for all open strongly
continuous reductions starting in s there exists a term that extends the reduction
such that it becomes strongly convergent.

An iCRS is weakly normalising, resp. strongly normalising, if all terms are.

Consider again the rules a → a and f(Z) → g(f(Z)), introduced below Defini-
tion 2.6. The term f(a) is weakly normalising by the second reduction below the
definition; gω is a normal form. The term is not strongly normalising, as the first
reduction below the definition cannot be extended such that it becomes strongly
convergent. On the other hand, f(x) is strongly normalising, as the only open
strongly continuous reduction starting from it is

f(x) → g(f(x)) → · · · → gn(f(x)) → · · · ,

which extends to a strongly convergent reduction by adding gω.
The definition of weak normalisation is taken from finitary rewriting. To un-

derstand strong normalisation, consider the following proposition, which is im-
mediate by the fact that strongly convergent reductions have a finite number of
reduction steps at each depth [1,5]:

Proposition 3.2. An open strongly continuous reduction extends to a strongly
convergent one iff the number of reduction steps is finite at every depth.
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Hence, the definition of strong normalisation from finitary rewriting is relaxed:
A finite number of steps in total implies a finite number of steps at each depth.
Given that a term does not need to have a maximum depth in the current setting,
this seems a reasonable way to relax the definition.

As in the finite case, strong normalisation implies weak normalisation: To
start, remark that any strongly normalising term reduces to a head normal form,
otherwise it has an open strongly continuous reduction starting from it with an
infinite number of root-steps. Next, as the same holds for each subterm of the
head normal form, again by strong normalisation, iteration gives a term each
subterm of which is a head normal form, i.e. it gives a normal form.

4 Projection Pairs

We give an abstract formulation of Van Oostrom’s technique of essential rewrite
steps [8] and its adaptation to iCRSs [6,7]. This requires an auxiliary definition:

Definition 4.1. Let s and t be terms and P ⊆ Pos(s). The set P is a prefix set
of s if P is finite and if all prefixes of positions in P are also in P . Moreover, t
mirrors s in P , if for all p ∈ P it holds that p ∈ Pos(t) and root(t|p) = root(s|p).

Van Oostrom’s technique is a termination argument focusing on prefix sets P
and finite sequences of complete developments D, i.e. reductions D consisting
of a finite number of such developments. Given a prefix set P of the final term
of D, the defined measure assigns to D a tuple of natural numbers of the same
length as the sequence. In addition, a map is defined which, intuitively, given P
yields a prefix set of its initial term such that the function symbols that occur
at the positions in obtained prefix set are those ‘responsible’, across D, for what
occurs at the positions of P in the final term of D.

At the core of the technique lies a projection. Given a reduction step from
the initial term of D, which is called essential in case it occurs in the obtained
prefix of the initial term of D and inessential otherwise, the projection yields
a finite sequence of complete developments D′, starting in the term created by
the reduction step, such that the final term of D′ mirrors the final one of D
in P . The projection is such that the measure decreases in case of an essential
reduction step and stays equal otherwise, facilitating the termination argument.

Moving away from tuples, the measure and the map on prefixes can abstractly
be defined as follows:

Definition 4.2. Given a well-founded order ≺, a projection pair is a pair (μ, ε)
of maps over finite sequences of complete developments D and prefix sets P of
the final term of the chosen D such that:

– μP (D) maps to an element of the well-founded order ≺, and
– εP (D) maps to a prefix of the initial term of D,

and such that if D′ is a sequence of complete developments strictly shorter than
D with P ′ a prefix set of the final term of D′, then μP ′(D′) ≺ μP (D).

The map μ is the measure and ε is the map for prefix sets. The measure requires
a sequence that is strictly shorter than D to map to a smaller element in the
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well-founded order. Although of a technical nature, this property is easily ob-
tained in case tuples are used to define the well-founded order, as described
above, and the tuples are first compared length-wise and next lexicographically.

The existence of the projection mentioned above can now be formulated as
the soundness of a projection pair:
Definition 4.3. Let ≺ be a well-founded order. A projection pair (μ, ε) is sound
iff for each finite sequence of complete development D, prefix set P of the final
term of D, and s � t, with s the initial term of D, it holds that:
– if s � t consists of a single step contracting a redex u at a position in εP (D),

with no residual from u/D occurring at a position in P , then there exists a
D′ such that μP (D′) ≺ μP (D), and

– if s � t only contracts redexes at positions outside εP (D), then there exists
a D′ such that μP (D′) = μP (D) and εP (D′) = εP (D),

where in both cases D′ is a finite sequence of complete developments with initial
term t such that the final term of D′ mirrors the final one of D in P .
In the first clause the redex is essential and in the second clause all are inessen-
tial. Intuitively, the restriction in the first clause stating that no residual from
u/D occurs in P ensures that the projection preserves P . Together the clauses
formalise the intuition behind ε, i.e. that P only depends on positions in εP (D).
The map is constant for reductions contracting only redexes outside εP (D) and,
obviously, any term in such a reduction mirrors all the other terms in εP (D).

Remark 4.4. The first clause of Definition 4.3 deals neither with reductions
where residuals from u/D occur in P nor with infinite reductions. In the next sec-
tion, we deal with the first through the restriction on strictly shorter sequences
of complete developments and with the second through strong convergence.

This leaves to show that sound projection pairs actually exist. For fully-extended,
orthogonal iCRSs this is done in [6] in case all rewrite rules have finite right-hand
sides. In [7] the result is extended to iCRSs that allow for infinite right-hand
sides. The lengthy definitions from [6] and [7] are omitted here; the abstract
definitions suffice.

5 Perpetual Reductions

To show our main results, we prove that terms with perpetual reductions starting
from them do not have (head) normal forms. Except for the final lemma of this
section, the proofs in this section differ from the proofs for head normal forms
[1] and normal forms [9] of iTRSs, which depend on the Strip Lemma.

We assume fully-extended, orthogonal iCRSs. Perpetual reductions, not to be
mistaken for perpetual reduction strategies [16], are defined as in [1]:
Definition 5.1. A perpetual reduction is an open strongly continuous reduction
with an infinite number of root-steps.
Any perpetual reduction can be ‘compressed’ to one of length ω:
Lemma 5.2. Let s be a term. If there is a perpetual reduction starting from s,
then there also is a perpetual reduction of length ω starting from it.



On Normalisation of Infinitary Combinatory Reduction Systems 179

Proof. By definition, we may write a perpetual reduction starting from s as:

s = s0 � s′0 → s1 � s′1 → s2 � · · · ,
with s′i → si+1 a root-step and no root-steps occurring in si � s′i for each i ∈ N.

We inductively define a perpetual reduction of length ω:

s = t0 →∗ t′0 → t1 →∗ t′1 → t2 →∗ · · · ,
where for all i ∈ N we have that t′i → ti+1 is a root-step and ti →∗ t′i is finite
and without root-steps. First, define t0 = s0 = s. Next, assume we have defined
a term ti with ti � si. Compression of ti � si � s′i → si+1 yields a reduction
ti →∗ t′i → ti+1 �≤ω si+1 with t′i → ti+1 a root-step and ti →∗ t′i finite
and without root-steps. We thus obtain a perpetual reduction with the required
properties. � 
The following lemma, which projects perpetual reductions over single steps, is
the iCRS analogue of Proposition 17 in [9]. Its proof is the only in the current
paper explicitly dealing with nestings; in all other cases these are either ‘hidden’
by the current result or the use of projection pairs.

Lemma 5.3. Let s and t be terms with s→ t. If there is a perpetual reduction
starting from s, then there is a perpetual reduction starting from t.

Proof. Define s0 = s, t0 = t, and suppose u is the redex contracted in s→ t. By
Lemma 5.2, we may write the perpetual reduction starting from s0 as:

s0 →∗ s′0 → s1 →∗ s′1 → s2 →∗ · · · ,
where for all i ∈ N, we have that s′i → si+1 is a root-step and si →∗ s′i is finite
and without root-steps. By repeated application of Proposition 2.8, we obtain:

s0

u

��

∗ �� s′0

U ′
0

��

�� s1

U1

��

∗ �� s′1

U ′
1

��

�� s2

U2

��

∗ �� ·

��
t0 �� �� t′0 �� �� t1 �� �� t′1 �� �� t2 �� �� ·

Write Si for si →∗ s′i → si+1 →∗ · · · and Ti for ti � t′i � ti+1 � · · · . If we
can show for each i ∈ N that a root-step occurs in Ti, then an infinite number
of root-steps occur in T0, implying that the reduction is perpetual.

To show that a root-step occurs in Ti we distinguish two cases: (1) a root-step
occurs in Si not contracting a residual of u, and (2) all root-steps in Si contract
a residual of u. We deal with each of these cases in turn:

1. In this case there exists a root-step s′j → sj+1 with j ≥ i such that the con-
tracted redex, say v, is not a residual of u. Since U ′

j contracts only residuals
of u, we have by orthogonality that a residual of v occurs at the root of
t′j and that no other residuals of v occur in t′j . By construction, t′j � tj+1

contracts precisely all residuals of v. Hence, t′j � tj+1 is a root-step.
2. In this case, the infinite number of root-steps of Si each contract a residual

of u. Hence, all terms in Si have a chain of residuals of u at the root and
u is collapsing. All the chains are finite, as only a finitely many steps occur
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before each term and as right-hand sides of rewrite rules only allow for finite
chains of meta-variables.

Residuals of u cannot create further nestings of other residuals of u: This
requires a residual of u to occur on the path between the redex pattern and
a bound variable of another residual of u. Such a situation cannot occur by
definition of rewrite rules and valuations. Thus, for each step following si,
we have that each residual in the chain at the root of si has at most one
residual. Eventually, no residuals are left, as an infinite number of root-steps
occur in Si. Since the residuals always occur in a chain starting at the root,
the last residual is contracted by means of a root-step, say s′j → sj+1.

Suppose now that no redex contracted in si →∗ sj+1 has a residual
occurring at the root of one of the terms in ti � tj+1. As u is collapsing and
as each development of Uk and U ′

k contracts only residuals of u, which occur
in finite chains, it follows that a fixed function symbol occurs at the root of
each the terms in ti � tj+1. Moreover, as residuals of u cannot create further
nestings of other residuals of u, the fixed function symbol also occurs at the
root of sj+1, i.e. no residual of u occurs at the root of sj+1, contradiction.
Hence, a root-step occurs in ti � tj+1.

As required, we have that a root-step occurs in each Ti. Hence, T0 is a per-
petual reduction starting from t0 = t. � 

We next show that reduction to a redex is preserved if no root-steps occur. In
the proof we assume the existence of a sound projection pair (μ, ε), which is
possible in case of fully-extended, orthogonal iCRSs, as remarked in Sect. 4.

Lemma 5.4. If no root-steps occur in s � t and s reduces to a redex, then t
reduces to a redex.

Proof. Using ordinal induction, we show that every term sα in s � t reduces
to a redex by a finite sequence of complete developments Dα. Denote by Pα

the set of positions of the redex pattern at the root of the final term of Dα; to
facilitate the induction we also show for β ≤ α that either μPα(Dα) ≺ μPβ

(Dβ)
or μPα(Dα) = μPβ

(Dβ) and εPα(Dα) = εPβ
(Dβ).

For s0 = s, it follows by assumption that s0 reduces to a redex. In fact, by
strong convergence and compression, s0 reduces to a redex by a finite reduction
D0. As any finite reduction is a finite sequence of complete developments, where
each set of redexes is a singleton set, the result follows.

For sα+1 there are two cases, depending on the occurrence of a residual of u,
the redex contracted in sα → sα+1, at the root of the final term of Dα:

– If no residual of u occurs at the root of the final term of Dα, the result is
immediate by soundness of the pair (μ, ε) and the induction hypothesis.

– If a residual of u does occur at the root of the final term of Dα, a root-step
not contracting a residual of u occurs in Dα. Otherwise, no residual of u
occurs at the root of the final term of Dα, because sα → sα+1 is not a root-
step. Hence, there is a finite sequence D′

α of complete developments, strictly
shorter than Dα, that has a redex at the root of its final term which is not a
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residual of u. By definition of projection pairs, μP ′
α
(D′

α) ≺ μPα(Dα), where
P ′

α is the set of positions of the redex pattern at the root of the final term of
D′

α. The case in which no residual of u occurs at the root of the final term
of the complete development now applies and the result follows.

For sα, with α a limit ordinal, it follows by the induction hypothesis, strong
convergence, and the well-foundedness of ≺ that there exists a β < α such that
all steps in sβ � sα occur at positions outside εPβ

(Dβ). Hence, the result follows
by the second clause of Definition 4.3. � 

Using the above we can prove the result we are after, which generalises Propo-
sition 8.9 in [1] for head normal forms and Corollary 20 in [9] for normal forms:

Lemma 5.5. Let s be a term. If s has a perpetual reduction starting from it,
then s does not have a (head) normal form.

Proof. Assume a perpetual reduction starting from s and let s � t be arbitrary.
By compression and strong convergence, we may write s→∗ t′ �≤ω t, where all
root-steps occur in s→∗ t′. By repeated application of Lemma 5.3, there exists
a perpetual reduction starting from t′. Thus, t′ reduces to a redex. Since t′ � t
contains no root-steps, we have by Lemma 5.4 that t also reduces to a redex. As
s � t is arbitrary, it follows that s does not have a (head) normal form. � 

The reverse of the above lemma only holds for head normal forms: Suppose the
term s does not have a head normal form. Hence, each reduct of s reduces to a
redex. Repeatedly contracting the redexes obtained yields a perpetual reduction.

In case of normal forms consider the rule a→ a. The term f(a) does not have
a normal form, as the term reduces to itself, but no perpetual reduction starts
from the term either, as f(a) is a head normal form.

6 Needed Reductions

Assuming again fully-extended, orthogonal iCRSs, we show that needed reduc-
tions are normalising. We define needed redexes and reductions as in [1]:

Definition 6.1. A redex u in a term s is needed if in every strongly convergent
reduction from s to normal form some residual of u is contracted. A needed
reduction is a weakly continuous reduction contracting only needed redexes.

Non-neededness is due to the erasure of residuals. As in the finite case, this can be
the result of the absence of residuals after a certain rewrite step, while residuals
did occur earlier. In addition, a redex can also be ‘pushed out’ of a term by an
infinite reduction. To see this, consider the rules a → a and f(Z) → g(f(Z))
from Sect. 2. The a→ a-redex in the term f(a) can be ‘pushed out’ of the term
in the reduction to the normal form gω without contracting it.

We next proceed in two steps: First, we show that a term with a normal form
has a needed redex. Thereafter, we prove the actual result.

Existence of Needed Redexes. To prove that a term with a normal form
has a needed redex, we adapt a proof by Middeldorp [17], who shows for TRSs
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that a non-root-stable term has a root-needed redex. The proof deviates from
the one by Huet and Lévy [10] and its analogue for iTRSs by Kennaway et al.
[1]; it does not require the introduction of external redexes, although the redex
eventually identified in Lemma 6.4 has the property of being external.

We start by proving the iCRS analogues of Lemmas 3.3 and 4.2 in [17], where
we write s �̌ t in case all contracted redexes in s � t occur below the root.

Lemma 6.2. Let s �̌ s′ and t �̌ t′. If s ∼hc t, where it suffices to replace
hypercollapsing subterms below the root, then s′ �̌ s′′ and t′ �̌ t′′ with s′′ ∼hc t

′′,
where it also suffices to replace hypercollapsing subterms below the root.

Proof. Let s ∼hc t, where it suffices to replace hypercollapsing subterms be-
low the root. By assumption, s = f(s1, . . . , sn) �̌ f(s′1, . . . , s

′
n) = s′ and t =

f(t1, . . . , tn) �̌ f(t′1, . . . , t′n) = t′. Moreover, si ∼hc ti for all 1 ≤ i ≤ n. Hence, by
Theorem 2.9 it holds for all 1 ≤ i ≤ n that s′i � s′′i and t′i � t′′i with s′′i ∼hc t

′′
i .

The result follows by defining s′′ = f(s′′1 , . . . , s
′′
n) and t′′ = f(t′′1 , . . . , t

′′
n). � 

Lemma 6.3. Let s be a term. If s reduces to a redex, then the rule used to
contract the first such redex is independent of the reduction.

Proof. Suppose s reduces to a redex. We may assume that all rewrite steps
occur below the root, otherwise s reduces to a redex by a shorter reduction.
Let s �̌ σ̄1(l1) and s �̌ σ̄2(l2), where l1 and l2 are left-hand sides of rewrite
rules. By Lemma 6.2 and since s ∼hc s, there exist σ̄1(l1) �̌ t1 and σ̄2(l2) �̌ t2
with t1 ∼hc t2, where it is suffices to replace hypercollapsing subterms below
the root. Since a redex at the root cannot be destroyed by either replacing
hypercollapsing subterms below the root or contracting of redexes below the
root, by orthogonality and fully-extendedness, we have l1 = l2. � 
We now show the presence of needed redexes in terms with normal forms. The
proof is based on the one of Theorem 4.3 in [17], although the induction employed
there no longer applies as terms may be infinite:

Lemma 6.4. Let s be a term which is not a normal form. If s has a normal
form, then s has a needed redex.

Proof. Suppose s has a normal form. As s is not a normal form, there exists a
minimal position p in s such that s|p is not a head normal form. There are two
possibilities: either s|p is a redex or not.

If s|p is a redex, it is needed: By minimality of p, s|q is a head normal form
for each q < p. Hence, by orthogonality and fully-extendedness, residuals of s|p
cannot be erased or occur at increasingly greater depths in the reducts of s.

If s|p is not a redex, it reduces to one, otherwise s|p is a head normal form. By
Lemma 6.3, the rule used in the first redex to which s|p reduces is independent of
the reduction. Assume l is the left-hand side of this rule. Since s|p is not a redex,
there exists a non-root position q in the intersection of Pos(s|p) and the set of
positions in the redex pattern of l such that root(s|p·q) �= root(l|q) — if q would
be the root position, then s|p reduces to a redex by a shorter reduction. Consider
s|p·q. If s|p·q is a redex, then it is needed, otherwise we can reduce s to a normal
form without reducing s|p to a redex, which is impossible by minimality of p. If
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s|p·q is not a redex, then the argument for s|p can be repeated with p replaced by
p · q. Repeating the argument, a needed redex must eventually be encountered.
If not, then s|p is a head normal form, contradicting assumptions. � 

Normalisation. To prove that needed reductions are normalising, we need to
show that these reductions are strongly convergent for terms with normal forms.
To this end, we first prove the iCRS analogues of Theorem 8.10 and Corollary
8.11 in [1]: Reductions outside subterms without a head normal form are strongly
convergent and redexes in that do occur in such subterms are never needed.

Lemma 6.5. Reductions in which all contracted redexes occur outside subterms
without a head normal form are strongly convergent.

Proof (Sketch). Identical to the proof of Theorem 8.10 in [1]: A non-strongly
convergent reduction yields a subterm with a perpetual reduction starting from
it. By Lemma 5.5 this implies the subterm is without a head normal form. � 
Lemma 6.6. Let s be a term with a normal form. A redex in s which occurs in
a subterm without a head normal form is never needed.

Proof (Sketch). Identical to the proof of Corollary 8.11 in [1], employing the
previous lemma instead of Theorem 8.10 in [1]. � 
Our intermediate result is now easily obtained and is the iCRS analogue of
Corollary 8.12 in [1]:

Lemma 6.7. Let s be a term with a normal form. Every needed reduction start-
ing from s is strongly convergent.

Proof. By Lemma 6.6 no needed redexes occur in subterms without a head
normal form. Hence, the result follows by Lemma 6.5. � 
By the previous lemma and Lemma 6.4, we now immediately obtain:

Theorem 6.8. In fully-extended, orthogonal iCRSs, needed reductions of terms
with normal forms are strongly convergent and normalising.

Although needed reductions are countable, by definition of strong convergence,
no bound exists on the maximum length of such reductions. To see this, con-
sider the rule f(Z) → g(Z) and the term fω, i.e. f(f(. . . f(. . .))). Obviously, all
redexes in fω are needed with respect to the unique normal form gω. Assume
that δ is a bijection between any countable, infinite ordinal α and N and note
that for each depth there is precisely one position in fω. Define (sβ)β<α+1 with
s0 = fω and sα = gω such that sβ → sβ+1 contracts the redex at depth δ(β).
As δ is a bijection, all rewrite steps in the reduction (sβ)β<α+1 of length α exist
and by Proposition 3.2 the reduction is strongly convergent.

Remark 6.9. Needed reductions are not hypernormalising, i.e. if a finite number
of arbitrary steps occur between each step contracting a needed redex, then the
obtained reduction need not to be strongly convergent. This is contrary to the
finite higher-order case [8].

To see this, consider the rules a→ f(a), b→ b, and g(Z,Z ′) → Z. Moreover,
consider for each n ∈ N the term g(fn(a), b), where the root-redex and the
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a → f(a)-redex are needed, but where the b → b-redex is not. We have a
reduction contracting a needed redex in every other step:

g(a, b) → g(a, b) → g(f(a), b) → g(f(a), b) → · · ·
→ g(fn(a), b) → g(fn(a), b) → g(fn+1(a), b) → · · · ,

where the contracted redexes are underlined. The reduction is not strongly con-
vergent, as an infinite number of b redexes are contracted at a single depth.

Although hypernormalisation does not hold, not all is lost: Needed-fair reduc-
tions, i.e. reductions in which each needed redex that is a residual of another
needed redex is contracted within a finite number of steps, are normalising [7].

7 Uniform Normalisation

We next consider uniform normalisation of iCRSs, i.e. the coincidence of weak
and strong normalisation. Both the global and local variant are considered, i.e.
we consider both iCRSs as a whole and individual terms. As before, we assume
fully-extended, orthogonal iCRSs.
Global Uniform Normalisation. Like orthogonal iTRSs [9], fully-extended,
orthogonal iCRSs are uniformly normalising. To show this, we need the following
lemma, which is the iCRS analogue of Proposition 21 in [9] and whose proof is
identical to the proof of that proposition.

Lemma 7.1. If there exists an open strongly continuous reduction with an infi-
nite number of steps at a certain depth, then there exists a perpetual reduction.

We can now prove the iCRS analogue of Theorem 22 in [9]:

Theorem 7.2. A fully-extended, orthogonal iCRS is weakly normalising iff it is
strongly normalising.

Proof (Sketch). Identical to the proof of Theorem 22 in [9]: That strong nor-
malisation implies weak normalisation is explained on p. 177. For the reverse,
reason by contradiction, employing in turn Lemmas 7.1 and 5.5. � 
Local Uniform Normalisation. Uniform normalisation does not hold for
terms, even under assumption of non-erasure [14,9], i.e. assuming that all vari-
ables occurring on the left-hand sides of rules also occur on their right-hand
sides. This is contrary to TRSs [13]. That weak normalisation does not imply
strong normalisation is the result of iCRSs being both infinite and higher-order.

From the perspective of infinitary rewriting, failure is due to subterms being
‘pushed out’ of terms (see also Sect. 6). Given the non-erasing rules a → a and
f(Z) → g(f(Z)), it follows that f(a) reduces to the normal form gω, but re-
peatedly contracting the a→ a-redex in f(a) yields an open strongly continuous
reduction of length ω with an infinite number of reductions at a single depth.

From the perspective of higher-order rewriting, failure is due to erasure by
certain variables not occurring bound. Consider a → a and f([x]Z(x), Z ′) →
Z(Z ′). The term f([x]y, a) is weakly normalising, for we have f([x]y, a) → y,
where a is erased as x does not occur bound in [x]y. The term is not strongly
normalising; to see this, repeatedly contract the a→ a-redex in f([x]y, a).
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As observed by Kennaway et al. [14], albeit without a proof, uniform normal-
isation holds for terms in iTRSs if all possible reductions are non-erasing. The
same holds for iCRSs; to see this we first define non-erasing reductions:

Definition 7.3. A reduction s � t is non-erasing if for every every subterm s′|p
of term s′ in s � t either (1) a residual of s′|p occurs in t or (2) a descendant
of p occurs in, or is a variable bound by, the redex pattern of a redex contracted
in the suffix s′ � t of s � t.

Remark that the second condition applies to a specific residual of a subterm.
Any other residual must still satisfy either the first or second condition.

Strengthening the observation by Kennaway et al. [14] slightly, we obtain:

Theorem 7.4. In fully-extended, orthogonal iCRSs, weak and strong normali-
sation coincide for terms with only non-erasing reductions starting from them.

Proof (Sketch). That strong normalisation implies weak normalisation is ex-
plained on p. 177. For the reverse, reason by contradiction, employing in turn
Lemma 5.5 and Theorem 2.9. � 

It is in general undecidable if a term has only non-erasing reductions starting
from it. Hence, sufficient, decidable criteria are called for. In the case of iTRSs
an obvious criterion is the non-erasure of rules in combination with non-depth
increasingness, i.e. each variable occurring on the left-hand side of a rule also
occurs on its right-hand side and does so at depth lesser or equal depth.

The criterion no longer suffices for iCRSs. From above, consider the rules
a→ a and f([x]Z(x), Z ′) → Z(Z ′) and the term f([x]y, a). Both rules are non-
erasing and non-depth increasing, while f([x]y, a) is not uniformly normalising.

8 Conclusion

Using Van Oostrom’s technique of essential redexes [8], we showed that terms
with perpetual reductions starting from them do not have (head) normal forms.
As such, we avoided the use of the Strip Lemma, which is traditionally employed
[1,9], but which no longer holds in the higher-order case.

With the help of the above, we showed that needed reductions are normalising
for fully-extended, orthogonal iCRSs, extending the classical result by Huet and
Lévy [10] and similar ones for iTRSs by Kennaway et al. [1] and for higher-
order systems by Glauert and Khasidashvili [11]. We also proved that uniform
normalisation holds for these iCRSs and, in case of non-erasing reductions, also
for terms, extending results by Klop and De Vrijer [9] and Kennaway et al. [14].

A number of questions remain. For example, what is the relation between
strong normalisation in infinite systems — both iTRSs and iCRSs — and root-
stabilisation in finite systems [17]? What about weak orthogonality in the case
of needed reductions? And, in the case of uniform normalisation can fully-
extendedness be dropped or orthogonality be replaced by weak orthogonality?

The dissimilar definitions of finite and infinite reductions pose a problem in
the case of root-stabilisation. Fully-extendedness cannot be dropped in case of
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needed reductions, as Van Raamsdonk [18] already shows for finite systems. This
also implies that making the current theory more abstract might be difficult.
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Abstract. A reachability problem is a problem used to decide whether
s is reachable to t by R or not for a given two terms s, t and a term
rewriting system R. Since it is known that this problem is undecidable,
effort has been devoted to finding subclasses of term rewriting systems
in which the reachability is decidable. However few works on decidability
exist for innermost reduction strategy or context-sensitive rewriting.

In this paper, we show that innermost reachability and context-
sensitive reachability are decidable for linear right-shallow term rewriting
systems. Our approach is based on the tree automata technique that is
commonly used for analysis of reachability and its related properties.

1 Introduction

The reachability problem is a problem used to decide whether s is reachable to
t by R or not for a given two terms: s, t, and a term rewriting systems (TRS)
R. Since it is known that this problem is undecidable even if restricted to linear
TRS or to shallow TRS [7], effort has been made to find subclasses of TRSs in
which the reachability is decidable. Reachability properties for several subclasses
of TRSs have been proved to be decidable [2,6,10,11,3]. These results are based
on the more powerful property of effective preservation of regularity. We say
a rewrite relation effectively preserves regularity if it is possible to construct a
tree automaton (TA) which recognizes a set of terms reachable from some term
in the regular set defined by a given TA. It is easy to see that the reachability
property for TRSs is decidable if the TRSs effectively preserve regularity.

Innermost reduction, a strategy that rewrites innermost redexes, is used for
call-by-value computation. Context-sensitive reduction [8] is a strategy in which
rewritable positions are indicated by specifying arguments of function symbols.
For innermost reduction strategy, recently Godoy and Huntingford showed that
reachability and joinability with respect to innermost reduction for (possibly
non-linear) shallow TRSs are decidable [5]. In this case the proof method is
not based on tree automata techniques. This paper shows that innermost re-
duction and context-sensitive reduction effectively preserve regularity for linear
right-shallow term rewriting systems: hence, innermost reachability, innermost
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joinability, context-sensitive joinability and context-sensitive reachability are de-
cidable for this class.

2 Preliminary

Let F be a set of function symbols with fixed arity and X be an enumerable
set of variables. The arity of function symbol f is denoted by ar(f). Function
symbols with ar(f) = 0 are constants. The set of terms, defined in the usual way,
is denoted by T (F,X). A term is linear if no variable occurs more than once in
the term. The set of variables occurring in t is denoted by Var(t). A term t is
ground if Var(t) = ∅. The set of ground terms is denoted by T (F ).

A position in a term t is defined, as usual, as a sequence of positive integers,
and the set of all positions in a term t is denoted by Pos(t), where the empty
sequence ε is used to denote root position. The depth of a position p is denoted by
|p|. A term t is shallow if every variable occurs at depth 0 or 1 in t. The subterm
of t at position p is denoted by t|p, and t[t′]p represents the term obtained from
t by replacing the subterm t|p by t′.

A substitution σ is a mapping from X to T (F,X) whose domain Dom(σ) =
{x ∈ X | x �= σ(x)} is finite. We sometimes represent σ as {x1 �→ t1, . . . , xn �→
tn} where xi ∈ Dom(σ) and ti = σ(xi). The term obtained by applying a
substitution σ to a term t is written as tσ.

A rewrite rule is an ordered pair of terms in T (F,X), written as l → r, where
l �∈ X and Var(l) ⊇ Var(r). We say that variables x ∈ Var(l)\Var(r) are erasing.
A term rewriting system (over F ) (TRS) is a finite set of rewrite rules. Rewrite
relation −→

R
induced by a TRS R is as follows: s −→

R
t if and only if s = s[lσ]p, and

t = s[rσ]p for some rule l → r ∈ R, with substitution σ and position p ∈ Pos(s).
We call lσ redex. We sometimes write −→

R
p by presenting the position p explicitly.

A rewrite rule l → r is left-linear (resp. right-linear, linear, right-shallow) if l
is linear (resp. r is linear, l and r are linear, r is shallow). A TRS R is left-linear
(resp. right-linear, linear, right-shallow) if every rule in R is left-linear (resp.
right-linear, linear, right-shallow).

A tree automaton (TA) is a 4-tuple A = (F,Q,Qf , Δ) where Q is a finite set
of states, Qf (⊆ Q) is a set of final states, and Δ is a finite set of transition rules
of the forms f(q1, . . . , qn) → q or q1 → q where f ∈ F with ar(f) = n, and
q1, . . . , qn, q ∈ Q. We can regard Δ as a TRS over F ∪ Q. The rewrite relation
induced by Δ is called a transition relation denoted by −→

Δ
or −→A . We say that a

term s (∈ T (F )) is accepted by A if s ∗−→A q ∈ Qf . The set of all terms accepted
by A is denoted by L(A). We say A recognizes L(A). We use a notation L(A, q)
or L(Δ, q) to represent the set {s | s ∗−→A q}. A TA A is deterministic if s ∗−→A q

and s
∗−→A q′ implies q = q′ for any s ∈ T (F ). A TA A is complete if there exists

q ∈ Q such that s
∗−→A q for any s ∈ T (F ). A set T of terms is regular if there

exists a TA A such that T = L(A).
Let → be a binary relation on a set T (F ). We say s ∈ T (F ) is a normal

form (with respect to →) if there exists no term t ∈ T (F ) such that s → t. We
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use ◦ to denote the composition of two relations. We write ∗−→ for the reflexive
and transitive closure of →. We also write n−→ for the relation → ◦ · · · ◦ →
that is composed of n →’s. The set of reachable terms from a term in T is
defined by →[T ] = {t | s ∈ T, s

∗−→ t}. We say that a reduction → effectively
preserves regularity if a tree automata A∗ that satisfies L(A∗) = →[L(A)] can
be effectively constructed from an automata A. The reachability problem (resp.
joinability problem) with respect to → is a problem that decides whether s ∗−→ s′

(resp. s ∗−→ ◦ ∗←− s′) or not, for given terms s and s′.

Theorem 1 ([4]). Let → be a relation on terms that effectively preserves rec-
ognizability. Then both reachability and joinability properties with respect to →
are decidable.

3 Regularity Preservation for Innermost Reduction

We say a step rewrite s −→
R

p t is innermost if all proper subterms of s|p are
normal forms. We write −→

R in for the innermost rewrite relation induced by R.
This section shows that innermost reduction −→

R in effectively preserves reg-
ularity if R is a linear right-shallow TRS. In order to show the property, we
prepare a procedure Pin that inputs a TA A and a TRS R and outputs a TA
A∗, and show that A∗ recognizes a set −→

R in[L(A)]. The procedure almost follows
the procedure in [6]. The main difference is the construction of states. Each state
in the resulting automata consists of a pair of states. The first state originates in
the input automata and remembers a reachable set. The second state remembers
whether the corresponding terms are a normal form or not, which is necessary
because every proper subterm of the innermost redex must be a normal form.
First we show an example.

Example 2. Let R = {a → b, f(x) → g(x)} and A be a TA such that
L(A) = {f(a)} defined by a finite state {qfa}, and transition rules {a →
qa, f(qa) → qfa}. The procedure produces the following TA defined by final
states: Qf

∗ = {〈qfa, ua〉, 〈qfa, ub〉} and transition rules: Δ∗ = {a→ 〈qa, ua〉, b→
〈qa, ub〉, f(〈qa, ua〉) → 〈qfa, ua〉, f(〈qa, ub〉) → 〈qfa, ua〉, g(〈qa, ub〉) → 〈qfa, ub〉}.
Here ub is a state for normal forms.

The TA A∗ accepts terms f(a), f(b) and g(b) in −→
R in[{f(a)}], and does not

accept g(a). � 

We show the procedure Pin in Figure 1, where we use a notation RS(R) for the
set of all non-variable direct subterms of the right-hand sides of rules in TRS R:
that is, RS(R) = {ri �∈ X | l → f(r1, . . . , rn) ∈ R}. Note that RS(R) is a set of
ground terms if R is right shallow.

Example 3. Let us follow how procedure Pin works. Consider R and A in Ex-
ample 2.

In the initialization step, we have ΔRS = ∅, Qf
NF = {ub}, ΔNF = {a →

ua, b → ub, f(ua) → ua, f(ub) → ua, g(ua) → ua, g(ub) → ub}, Q∗ =
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Input TA A = 〈F, Q, Qf , Δ〉 and left-linear right-shallow TRS R over F .
Output TA A∗ = 〈F, Q∗, Qf

∗ , Δ∗〉 such that L(A∗) = −→
R in[L(A)] if R is right-

linear.
Step 1 (initialize) 1. Prepare a TA ARS = 〈F, QRS, Qf

RS, ΔRS〉 such that

Qf
RS = {qt | t ∈ RS(R)} and L(ARS, qt) = {t}.

2. Prepare a deterministic complete TA ANF = 〈F, QNF, Qf
NF, ΔNF〉 such

that
– L(ANF) is the set NFR (⊆ T (F )) of all ground normal forms
– L(ANF, q) �= ∅ for any q ∈ QNF.

3. Let
– k := 0
– Q∗ = (Q �QRS)×QNF

– Qf
∗ = Qf ×QNF

– Δ0 = {f(〈q1, u1〉, . . . , 〈qn, un〉)→ 〈q, u〉 |
f(q1, . . . , qn)→ q ∈ Δ �ΔRS, f(u1, . . . , un)→ u ∈ ΔNF}

Step 2 Let Δk+1 be transition rules produced by augmenting transition rules of
Δk by the following inference rules:

f(l1, ..., ln)→ g(r1, ..., rm) ∈ R, f(〈q1, u1〉, . . . , 〈qn, un〉)→ 〈q, u〉 ∈ Δk

g(〈q′
1, u

′
1〉, . . . , 〈q′

m, u′
m〉)→ 〈q, u′〉 ∈ Δk+1

if there exists θ : X → (Q �QRS)×Qf
NF such that

– liθ
∗−−→
Δk
〈qi, ui〉 and ui ∈ Qf

NF for all 1 ≤ i ≤ n,

– 〈q′
j , u

′
j〉 =

{
rjθ · · · rj ∈ X
〈qrj , u′′〉 · · · rj �∈ X, u′′ ∈ QNF

for all 1 ≤ j ≤ m, and

– g(u′
1, . . . , u

′
m) −−−→

ΔNF
u′.

and

f(l1, ..., ln)→ x ∈ R, f(〈q1, u1〉, . . . , 〈qn, un〉)→ 〈q, u〉 ∈ Δk

〈q′, u′〉 → 〈q, u′〉 ∈ Δk+1

if there exists θ : X → (Q �QRS)×Qf
NF such that

– liθ
∗−−→
Δk
〈qi, ui〉 for all 1 ≤ i ≤ n, and

– 〈q′, u′〉 = xθ.

Step 3 If Δk+1 = Δk then stop and set Δ∗ = Δk. Otherwise, k := k + 1, and go
to step 2.

Fig. 1. Procedure Pin

{qa, qfa} × {ua, ub}, Qf
∗ = {qfa} × {ua, ub}, Δ0 = {a → 〈qa, ua〉, f(〈qa, ua〉) →

〈qfa, ua〉, f(〈qa, ub〉) → 〈qfa, ua〉}.
The saturation steps stop at k = 1 and we have Δ1 = Δ0 ∪ {b →

〈qa, ub〉, g(〈qa, ub〉) → 〈qfa, ub〉}, Δ2 = Δ1 � 
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The procedure Pin eventually terminates at some k, because rewrite rules in R
and states Q∗ are finite, and hence, possible transitions rules are finite. Appar-
ently Δ0 ⊂ · · · ⊂ Δk = Δk+1 = · · · . A measurement of transitions of Δ∗ is
defined as ||s −−→

Δ0
t|| = 0 and ||s −−−−−−→

Δi+1\Δi

t|| = i + 1 for i ≥ 0. This is extended

on transition sequences as a multiset:

||s0 −−→Δ∗
s1 −−→Δ∗

· · · −−→
Δ∗

sn|| = {||si −−→Δ∗
si+1|| | 0 ≤ i < n}.

Now we can define an order � on transition sequences by Δ∗, which is necessary
in proofs.

α � β
def⇔ ||α|| >mul ||β||

where >mul is the multiset extension of > on N.

Proposition 4. (a) s
∗−→
Δ

q if and only if s ∗−−→
Δ0

〈q, u〉 for some u ∈ QNF.
(b) s

∗−−→
Δ∗

〈q, u〉 implies s
∗−−−→
ΔNF

u

Proof. Direct consequence of the construction of Δ0 and the completeness of
ANF. � 

Lemma 5. Let α : s[〈q, u〉]p ∗−−→
Δk

〈q′, u′〉. If k = 0 or u ∈ QNF \Qf
NF then there

exists v′ ∈ QNF such that β : s[〈q, v〉]p ∗−−→
Δk

〈q′, v′〉 and α 5 β for any v ∈ QNF.

Proof. If k = 0, it trivially holds from the construction of Δ0. We prove in the
case u ∈ QNF \Qf

NF by induction on steps n of transition s[〈q, v〉]p n−−→
Δk

〈q′, v′〉.
Since the lemma is trivial in the case n = 0, let n > 0. Then we have two cases
according to the form of the transition rule applied in the last step.

1. In the case that

s[〈q, u〉]p n−1−−−→
Δk

f(〈q1, u1〉, . . . , 〈qn, un〉) −−→
Δk

〈q′, u′〉, (1)

the position p can be represented as ip′ for 1 ≤ i ≤ n. Here ui �∈ Qf
NF

follows from u �∈ Qf
NF, Proposition 4 (b), and the construction of ΔNF. Since

αi : (s|i)[〈q, u〉]p′
∗−−→
Δk

〈qi, ui〉, we have βi : (s|i)[〈q, v〉]p′
∗−−→
Δk

〈qi, v
′′〉 and

αi 5 βi for some v′′ ∈ QNF by the induction hypothesis. Thus we have
s[〈q, v〉]p ∗−−→

Δk
f(. . . , 〈qi−1, ui−1〉, 〈qi, v

′′〉, 〈qi+1, ui+1〉, . . .)
(a) If the transition rule in the last step of (1) is in Δ0, we also have

f(. . . , 〈qi−1, ui−1〉, 〈qi, v
′′〉, 〈qi+1, ui+1〉, . . .) → 〈q′, v′〉 ∈ Δ0 from the

construction, where v′ is determined by f(. . . , ui−1, v
′′, ui+1, . . .) → v′ ∈

ΔNF.
(b) Otherwise we assume that the transition rule in the last step of (1)

is in Δk \ Δk−1 without loss of generality. It is known that the rule is
produced by the first inference rule in Step 2 and hence ri �∈ X ; otherwise
ui ∈ Qf

NF follows from 〈qi, ui〉 = riθ, which contradicts ui �∈ Qf
NF. Thus

f(. . . , 〈qi−1, ui−1〉, 〈qi, v
′′〉, 〈qi+1, ui+1〉, . . .) → 〈q′, v′〉 ∈ Δk \ Δk−1 and

α 5 β.
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2. In the case that s[〈q, u〉]p n−1−−−→
Δk

〈q1, u1〉 −−→
Δk

〈q′, u′〉, we can show the lemma
similarly to the previous case. � 

Lemma 6. Let R be left-linear and right-shallow. Then s
∗−−→
Δ∗

〈q, u〉 and s
n−→
R in

t imply t
∗−−→
Δ∗

〈q, u′〉 for some u′ ∈ QNF.

Proof. We present the proof in the case where n = 1. Let s
∗−−→
Δk

〈q, u〉 and
s = s[lσ]p −→R in s[rσ]p = t for some rewrite rule l → r ∈ R.

1. Consider the case where the rewrite rule is in the form f(l1, . . . , ln) →
g(r1, . . . , rm). Since this rewrite rule is left-linear, s

∗−−→
Δk

〈q, u〉 is

represented as s = s[f(l1σ, . . . , lnσ)]p
∗−−→
Δk

s[f(l1θ, . . . , lnθ)]p
∗−−→
Δk

s[f(〈q1, u1〉, . . . , 〈qn, un〉)]p −−→Δk
s[〈q′′, u′′〉]p

∗−−→
Δk

〈q, u〉 for some θ : X → Q∗.

Note that u′′ �∈ Qf
NF since s|p is not a normal form.

We have liθ
∗−−→
Δk

〈qi, ui〉, where ui ∈ Qf
NF since each liσ is a normal form. We

also have f(u1, . . . , un) ∗−−−→
ΔNF

u′′ by Proposition 4 (b). From the construction
of A∗, there exists a transition rule g(〈q′1, u′

1〉, . . . , 〈q′n, u′
m〉) → 〈q′′, v′〉 ∈

Δk+1 such that

〈q′j , u′
j〉 =

{
rjθ · · · rj ∈ X
〈qrj , v′′〉 · · · rj �∈ X where rj

∗−−→
Δ0

〈qrj , v′′〉

(a) For j such that rj ∈ X , we have li|p′ = rj for some i and p′. Hence
rjσ = li|p′σ

∗−−→
Δk

li|p′θ = rjθ = 〈q′j , u′
j〉.

(b) For j such that rj �∈ X , we have rjσ = rj since R is right-shallow, and
rj

∗−−→
Δ0

〈qrj , v′′〉 = 〈q′j , u′
j〉.

Therefore we have t = s[g(r1σ, . . . , rmσ)]p
∗−−→
Δk

s[g(〈q′1, u′
1〉, . . . , 〈q′m, u′

m〉)]p
−−−→
Δk+1

s[〈q′′, v′〉]p, and s[〈q′′, v′〉]p ∗−−→
Δk

〈q, u′〉 for some u′ ∈ QNF by Lemma 5.

2. In the case that the rewrite rule is in the form f(l1, . . . , ln) → x, we can
show the lemma similarly to the previous case. � 

Now we obtain the following lemma.

Lemma 7. If R be left-linear and right-shallow, then L(A∗) ⊇ −→
R in[L(A)].

Proof. Let s
∗−→
R in t and s

∗−→
Δ

q ∈ Qf . Then we have s
∗−−→
Δ0

〈q, u〉 ∈ Qf
∗ by

Proposition 4 (a). Hence t
∗−−→
Δ∗

〈q, u′〉 ∈ Qf
∗ by Lemma 6. � 

Lemma 8. Let Δ∗ be generated from a right-linear right-shallow TRS. Then
α : t ( ∗−−→

Δ0
◦ −−−−→

Δk+1
) 〈q, u′〉 implies s −→

R in t, β : s ∗−−→
Δk

〈q, u〉 and α � β for
some term s and u ∈ QNF.
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Fig. 2. The diagram of proof of lemma 6

Proof. Consider the case where the last transition rule applied in α is (in
the form of) g(〈q′1, u′

1〉, . . . , 〈q′m, u′
m〉) → 〈q, u′〉 and we assume that it is in

Δk+1 \ Δk without loss of generality. Then α can be represented as t =
g(t1, . . . , tm) ∗−−→

Δ0
g(〈q′1, u′

1〉, . . . , 〈q′m, u′
m〉) −−−−−−→Δk+1\Δk

〈q, u′〉, and the last transi-

tion rule applied is added by the first inference rule in the procedure. Hence there
exist f(l1, . . . , ln) → g(r1, . . . , rm) ∈ R, f(〈q1, u1〉, . . . , 〈qn, un〉) → 〈q, u〉 ∈ Δk,
and θ : X → (Q �QRS)×Qf

NF such that

– liθ
∗−−→
Δk

〈qi, ui〉 and ui ∈ Qf
NF,

– 〈q′j , u′
j〉 = rjθ if rj ∈ X ,

– q′j = qrj if rj �∈ X , and
– L(Δ0, xθ) �= ∅ for each erasing variable.

Hence, we have the following:

1. For j such that rj ∈ X , we have tj
∗−−→
Δ0

〈q′j , u′
j〉 = rjθ.

2. For j such that rj �∈ X , we have tj
∗−−−→
ΔRS

qrj hence tj = rj from the
construction of Δ0. Thus we have tj = rjθ since R is right-shallow.

Thus we have g(t1, . . . , tm) ∗−−→
Δ0

g(r1θ, . . . , rmθ) ∗−−→
Δ0

g(〈q′1, u′
1〉, . . . , 〈q′m, u′

m〉).
We define a substitution σ : Var(f(l1, . . . , ln)) → T (F ) as follows:

xσ =
{
tj · · · if there exists j such that rj = x
t′ · · · otherwise, choose an arbitral t′ such that t′ ∗−−→

Δ0
xθ,

where σ is well-defined from the right-linearity of rewrite rules. We can construct
β : f(l1, . . . , ln)σ ∗−−→

Δ0
f(l1, . . . , ln)θ ∗−−→

Δk
f(〈q1, u1〉, . . . , 〈qn, un〉) −−→

Δk
〈q, u〉,

where α � β. Since ui ∈ Qf
NF, each liσ is a normal form. Hence we have

f(l1, . . . , ln)σ −→
R in g(r1, . . . , rm)σ = g(t1, . . . , tm) = t. Therefore the lemma

of the case follows by taking s = f(l1, . . . , ln)σ.
For the case where the transition rule applied last in α is (in the form of)

〈q′, u′′〉 → 〈q, u′〉, the lemma can be shown as similar to the previous case. � 

Lemma 9. If R be right-linear and right-shallow, then L(A∗) ⊆ −→
R in[L(A)].
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Proof. From Proposition 4(a), it is enough to show the claim that α : t
∗−−→
Δ∗

〈q, u′〉 implies s
∗−→
R in t, and s

∗−−→
Δ0

〈q, u〉 for some s ∈ T (F ) and u ∈ QNF. We
prove it by induction on α with respect to �.

1. Consider the case where the last transition rule applied in α is (in the
form of) g(〈q′1, u′

1〉, . . . , 〈q′m, u′
m〉) → 〈q, u〉 ∈ Δk. Then α can be repre-

sented as t = g(t1, . . . , tm) ∗−−→
Δ∗

g(〈q′1, u′
1〉, . . . , 〈q′m, u′

m〉) −−→Δk
〈q, u〉. Since

α � (tj
∗−−→
Δ∗

〈q′j , u′
j〉), there exists sj for every j such that sj

∗−→
R in tj

and sj
∗−−→
Δ0

〈q′j , v′j〉 from the induction hypothesis. Here we have v′j ∈
QNF \ Qf

NF or sj = tj for each j since v′i ∈ Qf
NF implies that si is a nor-

mal form. Hence g(s1, . . . , sm) ∗−→
R in t and we have α′ : g(s1, . . . , sm) ∗−−→

Δ0

g(〈q′1, v′1〉, . . . , 〈q′m, v′m〉) −−→Δk
〈q, v〉 and α 5 α′ by applying Lemma 5 repeat-

edly to g(〈q′1, u′
1〉, . . . , 〈q′m, u′

m〉) −−→Δk
〈q, u〉.

If k = 0 then the claim trivially holds by letting s = g(s1, . . . , sm). Hence
let k > 0. Then we have β : s′ ∗−−−→

Δk−1
〈q, v′〉 with α′ � β and s′ −→

R in

g(s1, . . . , sm) for some s′ and v′ by Lemma 8. Since α � β, the claim of this
case follows from the induction hypothesis.

2. In the case where the last transition rule applied in α is (in the form of)
〈q′, u′〉 → 〈q, u〉 ∈ Δk, we can show the lemma similarly to the previous
case. � 

t = g(t1, . . . , tm)

g(s1, . . . , sm)

R

g(〈q′
1, u

′
1〉, . . . , 〈q′

m, u′
m〉)

∗
Δ∗

〈q, u′〉

Δ0

∗

∗
R

∗
Δ0

in

in
s′

〈q, v′〉

〈q, u〉s

Δk

∗
Rin

I.H.Lemma 8

Δk−1

∗

g(〈q′
1, v

′
1〉, . . . , 〈q′

m, v′
m〉) 〈q, v〉

I.H., Lemma 5

Δk

Fig. 3. The diagram of proof of lemma 9

We obtain the following theorems from Lemma 7, Lemma 9, and Theorem 1.

Theorem 10. Innermost reduction for linear right-shallow TRSs effectively
preserves regularity. Thus innermost reachability is a decidable property for lin-
ear right-shallow TRSs.
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4 Regularity Preservation for Context-Sensitive
Reduction

A context-sensitive rewrite relation is a subrelation of a rewrite relation in which
rewritable positions are indicated by specifying arguments of function symbols.
A mapping μ : F → P(N) is said to be a replacement map (or F -map) if
μ(f) ⊆ {1, . . . , ar(f)} for all f ∈ F . A context-sensitive term rewriting system
(CS-TRS) is a pair R = (R,μ) of a TRS and a replacement map. We say R
is an underlined TRS of R. The set of μ-replacing positions Posμ(t) (⊆ Pos(t))
is recursively defined: Posμ(t) = {ε} if t is a constant or a variable, otherwise
Posμ(f(t1, . . . , tn)) = {ε} ∪ {ip | i ∈ μ(f), p ∈ Posμ(ti)}. The rewrite relation
induced by a CS-TRS R is defined: s ↪−→R t if and only if s −→

R
p t and p ∈ Posμ(t).

Similarly to the previous section, this section shows that a context-sensitive
reduction ↪−→R effectively preserves recognizability if the underlined TRS R of R
is linear and right-shallow. In order to show the property, we prepare a procedure
Pcs that inputs a TA A and a CS-TRS R and outputs a TA A∗, and show that
L(A∗) = ↪−→R [L(A)].

The main idea is the introduction of an extra state q̃ for each state q. The
former state q̃ is used for accepting terms in ↪−→R [L(A, q)], while the latter state
q keeps accepting terms only in L(A, q).

Example 11. Let R = (R,μ) where R = {a → b, f(x) → g(x)} and μ(f) =
∅, μ(g) = {1}. Let A be a TA that recognizes {f(a)} defined by a final state
{qfa} and transition rules {a → qa, f(qa) → qfa}. The procedure produces the
following TA defined by final states: Qf

∗ = {q̃fa}, and transition rules: Δ∗ =
{a→ qa, a→ q̃a, f(qa) → qfa, f(qa) → q̃fa, b→ q̃a, g(q̃a) → q̃fa}.

The TA A∗ accepts terms f(a), g(a) and g(b) in ↪−→R [{f(a)}], and does not
accept f(b). � 

We show the procedure Pcs in Figure 4, where we use a notation Q̃ to represent
{q̃ | q ∈ Q}, and q∗ to represent either q or q̃.

Example 12. Let us follow how procedure Pcs works. Consider R and A in
Example 11.

In the initializing step, we have ΔRS = ∅ , Q∗ = {qa, qfa, q̃a, q̃fa}, Qf
∗ =

{q̃fa}, Δ0 = Δ ∪ {a→ q̃a, f(qa) → q̃fa}.
The saturation steps stop at k = 1, we have Δ1 = Δ0∪{b→ q̃a, g(q̃a) → q̃fa},

Δ2 = Δ1. � 

The procedure Pcs eventually terminates at some k, because rewrite rules in R
and states Q∗ are finite and hence possible transitions rules are finite. Apparently
Δ0 ⊂ · · · ⊂ Δk = Δk+1 = · · · .

We show several technical lemmas.

Proposition 13. If t ∗−−→
Δk

q ∈ Q �QRS, then t
∗−−→
Δ0

q.
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Input TA A = 〈F, Q, Qf , Δ〉 and right-shallow CS-TRS R = (R, μ) over F .
Output TA A∗ = 〈F, Q∗, Qf

∗ , Δ∗〉 such that L(A∗) = ↪−→R [L(A)], if R is linear.

Step 1 (initialize) 1. Prepare a TA ARS = 〈F, QRS, Qf
RS, ΔRS〉 that recog-

nizes RS(R) (the same as the procedure Pin). Here we assume Qf
RS =

{qt | t ∈ RS(R)} and L(ARS, qt) = {t}.
2. Let

– k := 0
– Q∗ = (Q �QRS) ∪ ( ˜Q �QRS)

– Qf
∗ = Q̃f

– Δ0 = Δ∪{q̃′ → q̃ | q′ → q ∈ Δ}

∪

⎧⎨
⎩f(pi, . . . , pn)→ q̃

∣∣∣∣∣
f(q1, . . . , qn)→ q ∈ Δ,

pi =

{
q̃i · · · if i ∈ μ(f),
qi · · · otherwise

⎫⎬
⎭

Step 2 Let Δk+1 be transition rules produced by augmenting transition rules of
Δk by following inference rules:

f(l1, . . . , ln)→ g(r1, . . . , rm) ∈ R f(q∗
1 , . . . , q∗

n)→ q̃ ∈ Δk

g(q′∗
1 , . . . , q′∗

m)→ q̃ ∈ Δk+1

if there exists θ : X → Q∗ such that

– liθ
∗−−→

Δk
q∗

i for all 1 ≤ i ≤ n,

– q′∗
j =

⎧⎪⎨
⎪⎩

p̃j · · · j ∈ μ(g), rj ∈ X, p∗
j = rjθ

p∗
j · · · j �∈ μ(g), rj ∈ X, p∗

j = rjθ
q̃rj · · · j ∈ μ(g), rj �∈ X
qrj · · · j �∈ μ(g), rj �∈ X

for all 1 ≤ j ≤ m

and

f(l1, . . . , ln)→ x ∈ R f(q∗
1 , . . . , q∗

n)→ q̃ ∈ Δk

q̃′ → q̃ ∈ Δk+1

if there exists θ : X → Q∗ such that

– liθ
∗−−→
Δk

q∗
i for all 1 ≤ i ≤ n, and

– q̃′ = p̃ where p∗ = xθ.

Step 3 If Δk+1 = Δk then stop and set Δ∗ = Δk; Otherwise k := k +1 and goto
step 2.

Fig. 4. Procedure Pcs

Proof. The proposition follows from the fact that transition rules having q ∈
Q �QRS on right-hand sides are in Δ or ΔRS. � 

Proposition 14. t
∗−−→
Δ0

q̃ ∈ ˜Q �QRS if and only if t ∗−−→
Δ0

q ∈ Q �QRS.

Proof. From construction of Δ0. � 
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Proposition 15. If t ∗−−→
Δk

q ∈ Q �QRS, then t
∗−−→
Δk

q̃.

Proof. Let t
∗−−→
Δk

q, then t
∗−−→
Δ0

q by Proposition 13. The lemma follows from
Proposition 14 and Δ0 ⊆ Δk. � 

Lemma 16. If t[t′]p
∗−−→
Δk

q̃ and p ∈ Posμ(t), then there exists q̃′ such that

t′ ∗−−→
Δk

q̃′ and t[q̃′]p
∗−−→
Δk

q̃.

Proof. We show the lemma by induction on the length n of transition sequence
α : t[t′]p

n−−→
Δk

q̃. Let t[t′]p
n−−→
Δk

q̃ and p ∈ Posμ(t).

1. If p = ε, then t = t′, and hence t′ ∗−−→
Δk

q̃ follows.
2. Consider the case p = ip′ for some i ∈ N. Then α can be represented as

t[t′]p = f(. . . , ti−1, ti[t′]p′ , ti+1, . . .)
n−1−−−→
Δk

f(. . . , q∗i−1, q
∗
i , q

∗
i+1, . . .) −−→

Δk
q̃.

Since ip′ = p ∈ Posμ(t), we have i ∈ μ(f). Hence q∗i = q̃i follows from
the construction of Δk.
By the induction hypothesis, there exists q̃′ such that t′ ∗−−→

Δk
q̃′ and

ti[q̃′]p′
∗−−→
Δk

q̃i. Here we have t[q̃′]p = f(. . . , ti−1, ti[q̃′]p′ , ti+1, . . .)
∗−−→
Δk

f(. . . , q∗i−1, q̃i, q
∗
i+1, . . .) −−→Δk

q̃. � 

The following lemma is obtained from the above propositions and lemmas.

Lemma 17. Let R be left-linear and right-shallow. Then s
∗−−→
Δ∗

q̃ and s
n
↪−→R t

imply t
∗−−→
Δ∗

q̃.

Proof. We present the proof in the case n = 1. Let s
∗−−→
Δk

q̃ and s = s[lσ]p ↪−→R
s[rσ]p = t for some rewrite rule l → r ∈ R, where p ∈ Posμ(s). We have a
transition sequence s

∗−−→
Δk

s[q̃′]p
∗−−→
Δk

q̃ by Lemma 16.

1. Consider the case where the rewrite rule is in the form f(l1, . . . , ln) →
g(r1, . . . , rm). Since this rewrite rule is left-linear, s

∗−−→
Δk

q̃ is represented

as s = s[f(l1σ, . . . , lnσ)]p
∗−−→
Δk

s[f(l1θ, . . . , lnθ)]p
∗−−→
Δk

s[f(q∗1 , . . . , q
∗
n)]p −−→Δk

s[q̃′]p
∗−−→
Δk

q̃ for some θ : X → Q∗. Here we have liθ
∗−−→
Δk

q∗i . From the
construction of A∗, there exists a transition rule g(q′∗1 , . . . , q′∗n ) → q̃′ ∈ Δk+1

such that

q′∗j =

⎧⎪⎪⎨
⎪⎪⎩

p̃j · · · j ∈ μ(g), rj ∈ X
p∗j · · · j �∈ μ(g), rj ∈ X
q̃rj · · · j ∈ μ(g), rj �∈ X
qrj · · · j �∈ μ(g), rj �∈ X

where p∗j = rjθ.
(a) For j such that rj ∈ X , we have li|p′ = rj for some i and p′. Hence

rjσ = li|p′σ
∗−−→
Δk

li|p′θ = rjθ = p∗j . Since we have rjσ
∗−−→
Δk

p̃j by

Proposition 15, we obtain rjσ
∗−−→
Δk

q′j
∗ in either case of q′∗j = p̃j or

q′∗j = pj .
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(b) For j such that rj �∈ X , we have rjσ = rj from the shallowness of rj

and also have rj
∗−−→
Δ0

qrj . Thus rjσ
∗−−→
Δ0

qrj . Since we have rjσ
∗−−→
Δ0

q̃rj

by Proposition 15, we obtain rjσ
∗−−→
Δk

q′j
∗ in either case of q′∗j = q̃rj or

q′∗j = qrj .
Therefore we have t = s[g(r1, . . . , rm)σ]p

∗−−→
Δk

s[g(q′∗1 , . . . , q′∗m)]p −−−→Δk+1
s[q̃′]p

∗−−→
Δk

q̃.
2. In the case where the rewrite rule is in the form f(l1, . . . , ln) → x, we can

show the lemma similarly to the previous case. � 

s = s[f(l1, . . . , ln)σ]p
∗
Δk

s[f(l1, . . . , ln)θ]p
∗
Δk

s[f(q∗
1 , . . . , q∗

n)]p
∗

Δk
s[q̃′]p

∗
Δk

t = s[g(r1, . . . , rm)σ]p s[g(q′∗
1 , . . . , q′∗

m)]p

∗ R Δk+1
∗

Δk

q̃↪

Fig. 5. The diagram of proof of lemma 17

Lemma 18. If R is left-linear and right-shallow then L(A∗) ⊇ ↪−→R [L(A)].

Proof. Let s
∗
↪−→R t and s

∗−→
Δ

q ∈ Qf . Since s
∗−−→
Δ0

q from construction of Δ0, we

have s
∗−−→
Δ0

q̃ by Proposition 15. Hence t
∗−−→
Δ∗

q̃ ∈ Qf
∗ by lemma17. � 

Lemma 19. Let Δ∗ be generated from linear right-shallow CS-TRS. Then

1. α : t = g(t1, . . . , tm) ∗−−→
Δ∗

g(q′∗1 , . . . , q′∗m) −−−−−−→
Δk+1\Δk

q̃ where tj
∗−−→

Δ0
q′∗j for all

j ∈ μ(g), or
2. α : t

∗−−→
Δ0

q̃′ −−−−−−→
Δk+1\Δk

q̃,

implies s ↪−→R t, β : s
∗−−→
Δ∗

q̃ and α � β for some term s.

Proof. Consider the first case. Since the last transition rule applied in α is in-
troduced by the first inference rule in the procedure, there exist f(l1, . . . , ln) →
g(r1, . . . , rm) ∈ R, f(q∗1 , . . . , q

∗
n) → q̃ ∈ Δk, and θ : X → Q∗ such that

– liθ
∗−−→

Δk
q∗i for all 1 ≤ i ≤ n,

– q′∗j =

⎧⎪⎪⎨
⎪⎪⎩

p̃j · · · j ∈ μ(g), rj ∈ X, p∗j = rjθ
p∗j · · · j �∈ μ(g), rj ∈ X, p∗j = rjθ
q̃rj · · · j ∈ μ(g), rj �∈ X
qrj · · · j �∈ μ(g), rj �∈ X

for all 1 ≤ j ≤ m, and

– L(Δ0, xθ) �= ∅ for each erasing variable x.

We have the following:

1. For j ∈ μ(g) such that rj ∈ X , we have q′∗j = p̃j and tj
∗−−→

Δ0
q′∗j . Hence we

have tj
∗−−→
Δ0

rjθ by Proposition 14.
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2. For j �∈ μ(g) such that rj ∈ X , we have tj
∗−−→
Δ∗

q′∗j = rjθ.

3. For j ∈ μ(g) such that rj �∈ X , we have tj
∗−−→

Δ0
q′∗j = q̃rj . Since tj

∗−−→
Δ0

qrj

by Proposition 14, we have tj = rj from the construction of Δ0. Therefore
tj = rjθ follows from right-shallowness.

4. For j �∈ μ(g) such that rj �∈ X , we have tj
∗−−→
Δ∗

q′∗j = qrj . Since tj
∗−−→
Δ0

qrj

by Proposition 13, we have tj = rj from the construction of Δ0. Therefore
tj = rjθ follows from right-shallowness.

Thus we have g(t1, . . . , tm) ∗−−→
Δ∗

g(r1θ, . . . , rmθ) ∗−−→
Δ0

g(q′∗1 , . . . , q′∗m).
We define a substitution σ : Var(f(l1, . . . , ln)) → T (F ) as follows:

xσ =
{
tj · · · if there exists j such that rj = x
t′ · · · otherwise, choose an arbitral t′ such that t′ ∗−−→

Δ0
xθ,

where σ is well-defined from the right-linearity of rewrite rules. We can construct
β : f(l1, . . . , ln)σ ∗−−→

Δ∗
f(l1, . . . , ln)θ ∗−−→

Δk
f(q∗1 , . . . , q

∗
n) −−→

Δk
q̃.

On the other hand, we have f(l1, . . . , ln)σ ↪−→R g(r1, . . . , rm)σ =
g(t1, . . . , tm) = t. Therefore the lemma of this case follows by taking
f(l1, . . . , ln)σ as s. Here α � β follows from the left-linearity of rewrite rules.

For the case where the transition rule applied last in α is (in the form of)
q̃′ → q̃ ∈ Δk+1 \ Δk, the lemma can be shown as similar to the previous
case. � 

Lemma 20. If R be linear and right-shallow, then L(A∗) ⊆ ↪−→R [L(A)].

Proof. Let t
∗−−→
Δ∗

q̃ ∈ Qf
∗ and the following claim holds:

α : t
∗−−→
Δ∗

q̃ implies s
∗−−→
Δ0

q̃ and s
∗
↪−→R t.

Then, we have s
∗−−→
Δ0

q̃ and s
∗
↪−→R t for some s. Hence s ∈ L(A) follows from

Proposition 14.
In the sequel, we prove the claim by induction on α with respect to �.

1. Consider the case that the last transition rule applied in α is (in the form of)
g(q′∗1 , . . . , q′∗m) → q̃ ∈ Δk. Then α can be represented as t = g(t1, . . . , tm) ∗−−→

Δ∗
g(q′∗1 , . . . , q′∗m) −−→

Δk
q̃.

(a) For j ∈ μ(g) such that q′∗j = q̃′j , there exists sj such that sj
∗
↪−→R tj and

sj
∗−−→
Δ0

q̃′j = q′∗j from the induction hypothesis, since α � (tj
∗−−→
Δ∗

q̃′j).
(b) For j �∈ μ(g) such that q′∗j = q̃′j , we take sj as tj .
(c) For j such that q′∗j = q′j , we have tj

∗−−→
Δ0

q′j = q′∗j by Proposition 14. We
take sj as tj.

Now we have g(s1, . . . , sm) ∗
↪−→R g(t1, . . . , tm) = t and α′ : g(s1, . . . , sm) ∗−−→

Δ∗

g(q′∗1 , . . . , q′∗m, ) −−→
Δk

q̃, where α 5 α′ and sj
∗−−→
Δ0

q′∗j for all j ∈ μ(g).
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In the subcase k = 0 we have no j that satisfies (b), since j ∈ μ(g) if and only
if q′∗j = q̃′j from the construction of Δ0. Thus every transition rule used in
α′ is in Δ0. Therefore the claim trivially holds by letting s = g(s1, . . . , sm).
In the subcase k > 0, we have s′ ↪−→R g(s1, . . . , sm) and β : s′ ∗−−→

Δ∗
q̃ for

some s′ such that α′ � β by Lemma 19. Therefore the claim holds by the
induction hypothesis since α � β.

2. In the case where the last transition rule applied in α is (in the form of)
q′∗ → q∗ ∈ Δk, we can show it similarly to the previous case. � 

t = g(t1, . . . , tm)

g(s1, . . . , sm) = g(r1, . . . , rm)σ

R

s′ s

g(r1, . . . , rm)θ

g(q′∗
1 , . . . , q′∗

m)
∗

Δ∗
q̃

Δk

∗ ∗

∗ Δ0

↩

R
↩

∗
R

↩

∗
Δ0

I.H.

∗ Δ∗

∗
Δ∗

Δ∗

I.H.
Lemma 19

Fig. 6. The diagram of proof of lemma 20

The following theorem is proved by lemma 18, lemma 20 and theorem 1.

Theorem 21. Context-sensitive reduction for linear right-shallow TRSs effec-
tively preserves recognizability. Thus context-sensitive reachability is decidable
for linear right-shallow TRSs.

5 Discussion

The authors think that the left-linear restriction for the context-sensitive case
will be removed by modifying the procedure Pcs similar to [11] if all variables
that occur in Pos(r) \ Posμ(r) are left-linear. For the innermost case, similar
modification may be possible. However, constructing ANF would be a barrier.
Using automata with an equality test between brothers [1] is a possible direction

On the other hand, removing the right-linearity restriction is impossible for
both cases, because there exists a counter example such as the following.

Example 22. For TRS R = {g(x) → f(x, x)} and a regular set G = {g(t) | t ∈
T ({a, h})}, −→

R
[G] = −→

R in[G] = {g(t), f(t, t) | t ∈ T ({a, h})} is not a regular. � 
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Abstract. We introduce the arctic matrix method for automatically
proving termination of term rewriting. We use vectors and matrices over
the arctic semi-ring: natural numbers extended with −∞, with the op-
erations “max” and “plus”. This extends the matrix method for term
rewriting and the arctic matrix method for string rewriting. In combi-
nation with the Dependency Pairs transformation, this allows for some
conceptually simple termination proofs in cases where only much more
involved proofs were known before. We further generalize to arctic num-
bers “below zero”: integers extended with −∞. This allows to treat some
termination problems with symbols that require a predecessor semantics.
The contents of the paper has been formally verified in the Coq proof
assistant and the formalization has been contributed to the CoLoR li-
brary of certified termination techniques. This allows formal verification
of termination proofs using the arctic matrix method. We also report on
experiments with an implementation of this method which, compared to
results from 2007, outperforms TPA (winner of the certified termination
competition for term rewriting), and in the string rewriting category is
as powerful as Matchbox was but now all of the proofs are certified.

1 Introduction

One method of proving termination is interpretation into a well-founded alge-
bra. Polynomial interpretations (over the naturals) are a well-known example of
this approach. Another example is the recent development of the matrix method
[17,7] that uses linear interpretations over vectors of naturals, or equivalently,
N-weighted automata. In [23,22] one of the authors extended this method (for
string rewriting) to arctic automata, i.e. on the max/plus semi-ring on {−∞}∪
N. Its implementation in the termination prover Matchbox [21] contributed to
this prover winning the string rewriting division of the 2007 termination
competition [26].

The first contribution of the present work is a generalization of arctic termi-
nation to term rewriting. We use interpretations given by functions of the form
(x1, . . . , xn) �→M0 + M1 · x1 + . . . + Mn · xn. Here, xi are (column) vector vari-
ables, M0 is a vector and M1, . . . ,Mn are square matrices, where all entries are
arctic numbers, and operations are understood in the arctic semi-ring.

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 202–216, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Since the max operation is not strictly monotone in single arguments, we ob-
tain monotone interpretations only for the case when all function symbols are
at most unary, i.e. string rewriting. For symbols of higher arity, arctic inter-
pretations are weakly monotone. These cannot prove termination, but only top
termination, where rewriting steps are only applied at the root of terms. This is
a restriction but it fits with the framework of the dependency pairs method [2]
that transforms a termination problem to a top termination problem.

The second contribution is a generalization from arctic naturals to arctic in-
tegers, i.e. {−∞}∪Z. Arctic integers allow e.g. to interpret function symbols by
the predecessor function and this matches the “intrinsic” semantics of some ter-
mination problems. There is previous work on polynomial interpretations with
negative coefficients [14], where the interpretation for predecessor is also ex-
pressible using ad-hoc max operations. Using arctic integers, we obtain verified
termination proofs for 10 of the 24 rewrite systems Beerendonk/* from TPDB,
simulating imperative computations. Previously, they could only be handled by
the method of Bounded Increase [12].

The third contribution is that definitions, theorems and proofs (excluding
Section 5 with results on full termination) have been formalized with the proof
assistant Coq [25]. This extends previous work [19] and will become part of
the CoLoR project [4] that gathers formalizations of termination techniques and
employs them to certify termination proofs found automatically. In 2007, the
certified category of the termination competition was won by the termination
prover TPA [18] that uses CoLoR.

A method to search for arctic interpretations is implemented for the termi-
nation prover Matchbox. It works by transformation to a boolean satisfiability
problem and application of a state-of-the-art SAT solver (in this case, Minisat).
For several termination problems that could not be solved in last year’s certified
termination competition it finds proofs via arctic interpretations and the new
CoLoR version certifies them.

The paper is organized as follows. We present notation and basic facts on
rewriting and the arctic semi-ring in Section 2. Then in Section 3 we describe
what kind of functions we use for interpretation and in Section 4 we discuss the
appropriate ordering relations. We present arctic interpretations for termination
in Section 5, for top termination in Section 6 and the generalization to arctic
integers in Section 7. We report on the formal verification in Section 8 and on
performance of our implementation in Section 9. We present some discussion of
the method, its limitations and related work in Section 10 and we conclude in
Section 11.

2 Notation and Preliminaries

We follow the notation of [3] for term rewriting. The top one-step derivation re-
lation of a rewriting system R is denoted by

top→R and the full one-step derivation
relation is→R. We often abbreviate these byRtop andR, respectively. A relation
→ is terminating if it does not admit infinite descending chains t0 → t1 → . . .,
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denoted as SN(→). For relations →1,→2, we define →1 /→2 by (→1) ◦ (→2)∗.
If SN(R/S), we say that R is terminating relative to S.

We cite notation for monotone algebras [7]. A k-ary operation [f ] is monotone
with respect to a relation →, if it is monotone in each argument individually:
xi → x′

i implies [f ](x1, . . . , xi, . . . , xk) → [f ](x1, . . . , x
′
i, . . . , xk). A weakly mono-

tone algebra for a signature Σ is a Σ-algebra (A, [·]) with two relations >,	
such that > is well-founded, > · 	 ⊆ > and for every f ∈ Σ, the operation [f ]
is monotone with respect to 	. Such an algebra is called extended monotone if
additionally each [f ] is monotone with respect to >. For terms �, r with variables
from a set X , we write [�] >α [r] to abbreviate [�, α] > [r, α] for every α : X → A.
Now we present a slight variant of the main theorem from [7], for proving relative
(top)-termination with monotone algebras:

Theorem 1. Let R,R′,S,S′ be TRSs over a signature Σ.

1. Let (A, [·], >,	) be an extended monotone algebra such that: [�] 	α [r] for
every rule �→ r ∈ R∪S and [�] >α [r] for every rule �→ r ∈ R′ ∪S′. Then
SN(R/S) implies SN(R∪R′/S ∪ S′).

2. Let (A, [·], >,	) be a weakly monotone algebra such that: [�] 	α [r] for every
rule � → r ∈ R ∪ S and [�] >α [r] for every rule � → r ∈ R′. Then
SN(Rtop/S) implies SN(Rtop ∪R′

top/S). � 

A commutative semi-ring [13] consists of a carrier D, two designated elements
d0, d1 ∈ D and two binary operations ⊕,⊗ on D, such that both (D, d0,⊕) and
(D, d1,⊗) are commutative monoids and multiplication distributes over addition:
∀x, y, z ∈ D : x⊗ (y ⊕ z) = (x ⊗ y)⊕ (x⊗ z).

One example of semi-rings are the natural numbers with the standard oper-
ations. We will need the arctic semi-ring (also called the max/plus algebra) [9]
with carrier AN ≡ {−∞} ∪ N, where semi-ring addition is the max operation
with neutral element −∞ and semi-ring multiplication is the standard plus op-
eration with neutral element 0 (x⊗ y = −∞ if either x = −∞ or y = −∞). We
also consider these operations for arctic numbers below zero (ie. arctic integers),
that is, on the carrier AZ ≡ {−∞} ∪ Z.

For any semi-ring D, we can consider the space of linear functions (square
matrices) on n-dimensional vectors over D. These functions (matrices) again
form a semi-ring (though a non-commutative one), and indeed we write ⊕ and
⊗ for its operations as well.

A semi-ring is ordered [8] by ≥ if ≥ is a partial order compatible with the
operations: ∀x ≥ y, z : x⊕ z ≥ y ⊕ z and ∀x ≥ y, z : x⊗ z ≥ y ⊗ z.

The standard semi-ring of natural numbers is ordered by the standard ≥
relation. The semi-ring of arctic naturals and arctic integers is ordered by ≥,
being the reflexive closure of > defined as . . . > 1 > 0 > −1 > . . . > −∞. Note
that standard integers with standard operations form a semi-ring but it is not
ordered in this sense, as we have for instance 1 ≥ 0 but 1 ∗ (−1) = −1 �≥ 0 =
0 ∗ (−1).
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3 Max/Plus Linear Algebra

We consider vectors of arctic numbers. They form a monoid under component-
wise arctic addition. For arctic matrices we define arctic addition and multipli-
cation as usual. Square matrices form a non-commutative semi-ring with these
operations. E.g. the 3× 3 identity matrix is⎛

⎝ 0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 0

⎞
⎠

A square matrix M then maps a (column) vector x to a (column) vector M ⊗ x
and this mapping is linear: M ⊗ (x⊕ y) = M ⊗ x⊕M ⊗ y. We use the following
shape of vector-valued functions of several vector arguments:

f(x1, . . . , xn) = f0 ⊕ f1 ⊗ x1 ⊕ . . .⊕ fn ⊗ xn.

Here, xi are column vectors, f0 is a column vector and f1, . . . , fn are square
matrices. We call this an arctic linear function (with linear factors f1, . . . , fn

and absolute part f0).
Note that for brevity in all the examples we use the following notation for

such linear functions:

f(x1, . . . , xn) = f0 ⊕ f1x1 ⊕ . . .⊕ fnxn.

Definition 2. – A number a ∈ A is called finite if a > −∞.
– A number a ∈ A is called positive if a ≥ 0.
– A vector x = (x1, . . . , xn) ∈ An is called finite if x1 is finite and it is called

positive if x1 is positive.
– A matrix M ∈ Am×n is called finite if M1,1 is finite.
– A linear function f is called somewhere finite if ∃0 ≤ i ≤ n : finite(fi).
– A linear function f is called absolute positive if positive(f0). 6

Example 3. Consider a linear function:

f(x, y) =
(

1 −∞
0 −∞

)
x⊕

(
−∞ −∞
0 1

)
y ⊕

(
−∞
0

)
which is somewhere finite, as the upper-leftmost element of the matrix coefficient
of x is 1, which is finite. It is not absolute positive, as the constant vector has
−∞ on its first position.

Evaluation of this function on some exemplary arguments yields:

f(

(
−∞
0

)
,

(
1
−∞

)
) =

(
1 −∞
0 −∞

)(
−∞
0

)
⊕
(
−∞ −∞
0 1

)(
1
−∞

)
⊕
(
−∞
0

)
=

(
−∞
1

)
.

�

Lemma 4. For numbers, vectors, matrices:

– if a is finite and b arbitrary, then a⊕ b is finite.
– if a is positive and b arbitrary, then a⊕ b is positive.
– if a and b are finite, then a⊗ b is finite. � 
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Lemma 5. For a linear function f :

1. if f is somewhere finite, then ∀x1, . . . , xn : (∀i : finite(xi)) ⇒
finite(f(x1, . . . , xn)).

2. if f is absolute positive, then ∀x1, . . . , xn : positive(f(x1, . . . , xn)). � 

4 Orders on Max/Plus

Arctic addition (i.e., the max operation) is not strictly monotone in single argu-
ments: we have e.g. 5 > 3 but 5⊕ 6 = 6 �> 6 = 3⊕ 6. It is, however, “half strict”
in the following sense: a strict increase in both arguments simultaneously gives a
strict increase in the result, e.g. 5 > 3 and 6 > 4 implies 5⊕6 > 3⊕4. Compared
to the standard matrix method, this special property of arctic addition requires a
somewhat different treatment of monotonicity. In several places where the stan-
dard matrix method needs just one strict inequality (among several non-strict
ones), the arctic matrix method needs all inequalities to be strict. There is one
exception: arctic addition is obviously strict if one argument is arctic zero, i.e.,
−∞. This explains the definition of + below. In this section, we consider arctic
integers.

Definition 6. – We write ≥ for reflexive closure of the standard ordering
. . . > 1 > 0 > −1 > . . . > −∞ and extend this notation component-wise to
vectors, matrices and linear functions.

– We write a + b if (a > b) ∨ (a = b = −∞), and we extend this notation
component-wise to vectors, matrices and linear functions. 6

Note that +·≥ ⊆ +, which is required to apply the monotone algebra theorem.

Lemma 7. For arctic integers a, a1, a2, b1, b2,

– if a1 ≥ a2 ∧ b1 ≥ b2, then a1 ⊕ b1 ≥ a2 ⊕ b2 and a1 ⊗ b1 ≥ a2 ⊗ b2.
– if a1 + a2 ∧ b1 + b2, then a1 ⊕ b1 + a2 ⊕ b2.
– if b1 + b2, then a⊗ b1 + a⊗ b2. � 

The following lemma allows to establish order on results of two functions by
comparison of their coefficients. It is the arctic counter-part of the absolute-
positiveness criterion used for polynomial interpretations.

Lemma 8. For linear functions f, g with f ≥ g (resp. f + g), and for each
tuple of vectors x1, . . . , xn: f(x1, . . . , xn) ≥ g(x1, . . . , xn) (resp. f(x1, . . . , xn) +
g(x1, . . . , xn)). � 

Lemma 9. Every linear function f is monotone with respect to ≥.

Proof. For xi ≥ x′
i we have:

f0 ⊕ f1 ⊗ x1 ⊕ . . . fi ⊗ xi . . .⊕ fn ⊗ xn ≥ f0 ⊕ f1 ⊗ x1 ⊕ . . . fi ⊗ x′
i . . .⊕ fn ⊗ xn

using Lemma 7 lifted to vectors. � 
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5 Full Arctic Termination

In this section we present a method of using arctic matrices to prove full termi-
nation (as opposed to top termination, see Section 6). For some fixed dimension
d we choose the algebra over the domain, N×Ad−1

N
, that is over vectors of arctic

naturals where the first position of the vector is finite. The algebra is ordered
with + and the ordering is well-founded due to restriction to finite elements on
first vector positions. Function symbols are interpreted by linear arctic functions.

The following theorem provides a termination criterion with such monotone
interpretations. A linear Σ-interpretation is an interpretation that associates
an arctic linear function [f ] with every f ∈ Σ. As noted at the beginning of
Section 4, “⊕” is not strictly monotone. Therefore, a function of the shape
f0 ⊕ f1 ⊗ x1 ⊕ . . . ⊕ fn ⊗ xn is monotone only if the ⊕ operation is essentially
redundant. This happens in the following cases.

Theorem 10. Let R,R′,S,S′ be TRSs over a signature Σ and [·] be a linear
Σ-interpretation with coefficients in AN. If:

– every function symbol has arity at most 1,
– for every constant f ∈ Σ, [f ]0 is finite,
– for every unary symbol f ∈ Σ, [f ]0 is the arctic zero vector and [f ]1 is finite,
– [�] ≥ [r] for every rule �→ r ∈ R ∪ S,
– [�] + [r] for every rule �→ r ∈ R′ ∪ S′ and
– SN(R/S).

Then SN(R∪R′/S ∪ S′).

Proof. By Theorem 1.1. Note that, by Lemma 8, [�] ≥ [r] (resp. [�] + [r]) implies
[�] ≥α [r] (resp. [�] +α [r]). So we only need to show that (N×Ad−1

N
, [·],+, ≥) is

an extended monotone algebra. The order + is well-founded on this domain as
with every decrease we get a decrease in the first component of the vector, which
differs from −∞. It is an easy observation that, due to the first three premises of
this theorem, such interpretations are monotone. Finally evaluation of interpre-
tations stays within the domain by Lemma 5.1 as every [f ] is somewhere finite
by assumption. � 

For symbols of arity n > 1 there is no arctic linear function that is monotone,
hence the arctic matrix method for full termination is only applicable for string
rewriting (plus constants). As such, it had been described in [22] and had been
applied by Matchbox in the 2007 termination competition. The following example
illustrates the method.

Example 11. The relative termination problem SRS/Waldmann/r2 is

{c a c → ε, a c a → a4 / ε→ c4}.

In the 2007 termination competition, it had been solved by Jambox [6] via “self
labeling” and by Matchbox via essentially the following arctic proof.
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We use the following arctic interpretation

[a](x) =

⎛
⎝0 0 −∞

0 0 −∞
1 1 0

⎞
⎠x⊕

⎛
⎝−∞−∞
−∞

⎞
⎠ [c](x) =

⎛
⎝ 0 −∞ −∞
−∞ −∞ 0
−∞ 0 −∞

⎞
⎠x⊕

⎛
⎝−∞−∞
−∞

⎞
⎠

It is immediate that [c] is a permutation (it swaps the second and third compo-
nent of its argument vector), so [c]2 = [c]4 is the identity and we have [ε] = [c]4.
A short calculation shows that [a] is idempotent, so [a] = [a4]. We compute

[c a c](x) =

⎛
⎝0 −∞ 0

1 0 1
0 −∞ 0

⎞
⎠ x [a c a](x) =

⎛
⎝1 1 0

1 1 0
2 2 1

⎞
⎠x [a4](x) =

⎛
⎝0 0 −∞

0 0 −∞
1 1 0

⎞
⎠x

and therefore [c a c] ≥ [ε] and [a c a] + [a4]. Note that indeed we have point-wise
+ and the top left entries of matrices are finite. This allows to remove one strict
rule. The remaining strict rule can be removed by counting letters a. �

6 Arctic Top Termination

As explained earlier, there are no monotone linear arctic functions of more than
one argument. We therefore change our attention from proving full termination
to proving top termination. This fits with the Dependency Pairs method that
replaces a full termination problem with an equivalent top termination problem.

The domain, as in Section 5, is N × Ad−1
N

for some fixed dimension d and
we use the ordering relations + (strict) and ≥ (weak). The following theorem
allows us to prove top termination in this setting:

Theorem 12. Let R,R′,S be TRSs over a signature Σ and [·] be a linear Σ-
interpretation with coefficients in AN. If:

– for each f ∈ Σ, [f ] is somewhere finite,
– [�] ≥ [r] for every rule �→ r ∈ R ∪ S,
– [�] + [r] for every rule �→ r ∈ R′ and
– SN(Rtop/S).

Then SN(Rtop ∪R′
top/S).

Proof. By Theorem 1.2; we need to show that (N× Ad−1
N

, [·],+,≥) is a weakly
monotone algebra. The proof is essentially the same as the proof of Theorem 10.
Note that now we only need a weakly monotone algebra and indeed by allowing
function symbols of arity > 1, we lose the strict monotonicity property. � 

Example 13. Consider the rewriting system secret05/tpa2:

f(s(x), y) → f(p(s(x)− y), p(y − s(x))), p(s(x)) → x,

f(x, s(y)) → f(p(x− s(y)), p(s(y)− x)), x− 0 → x,

s(x)− s(y) → x− y.
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It was solved in the 2007 competition by AProVE [11] using narrowing followed
by polynomial interpretations and by TTT2 [15] using polynomial interpretations
with negative constants.

After the DP transformation 9 dependency pairs can be removed using poly-
nomial interpretations leaving the essential two dependency pairs:

f�(s(x), y) → f�(p(s(x) − y), p(y − s(x)))

f�(x, s(y)) → f�(p(x− s(y)), p(s(y)− x))

Now the arctic interpretation

[f�(x, y)] =

(
−∞ −∞
−∞ −∞

)
x⊕

(
0 0
−∞ −∞

)
y ⊕

(
0
−∞

)
[0] =

(
3
3

)

[x− y] =

(
0 −∞
0 0

)
x⊕

(
−∞ −∞
0 0

)
y ⊕

(
0
0

)
[p(x)] =

(
0 −∞
0 −∞

)
x⊕

(
−∞
−∞

)

[f(x, y)] =

(
0 0
0 −∞

)
x⊕

(
2 0
0 −∞

)
y ⊕

(
0
−∞

)
[s(x)] =

(
0 0
2 1

)
x⊕

(
0
2

)

removes the second dependency pair as we have:

[f�(x, s(y))] =
(
−∞ −∞
−∞ −∞

)
x⊕

(
2 1
−∞ −∞

)
y ⊕

(
2
−∞

)

[f�(p(x− s(y)), p(s(y)− x))] =
(
−∞ −∞
−∞ −∞

)
x⊕

(
0 0
−∞ −∞

)
y ⊕

(
0
−∞

)

and it is weakly compatible with all the rules. The remaining dependency pair
can be removed by a standard matrix interpretation of dimension two. �

7 . . . Below Zero

We extend the domain of matrix and vector coefficients from AN (arctic naturals)
to AZ (arctic integers). This allows to interpret some function symbols by the
“predecessor” function x �→ x− 1, and so represents their “intrinsic” semantics.
This is the same motivation as the one for allowing polynomial interpretations
with negative coefficients [14].

We need to be careful though, as the relation + on vectors of arctic integers
is not well-founded.

Theorem 14. Let R,R′,S be TRSs over a signature Σ and [·] be a linear Σ-
interpretation with coefficients in AZ. If:

– for each f ∈ Σ, [f ] is absolute positive,
– [�] ≥ [r] for every rule �→ r ∈ R ∪ S,
– [�] + [r] for every rule �→ r ∈ R′ and
– SN(Rtop/S).

Then SN(Rtop ∪R′
top/S).
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Proof. The proof goes along the same lines as the proof of Theorem 12. Note
however that as we are working with integers now, to ensure that we stay within
the domain, we need a stronger assumption on interpretations; we get that prop-
erty by Lemma 5.2. � 

Example 15. Let us consider the Beerendonk/2.trs TRS from the TPDB [27],
consisting of the following six rules:

cond(true, x, y) → cond(gr(x, y), p(x), s(y)), gr(s(x), s(y)) → gr(x, y),
gr(0, x) → false, gr(s(x), 0) → true,

p(0) → 0, p(s(x)) → x

This is a straightforward encoding of the following imperative program

while x > y do (x, y) := (x-1, y+1);

which is obviously terminating. However this TRS posed a serious challenge for
the tools in the termination competition. Only AProVE could deal with this
system (as well as a number of others coming from such transformations from
imperative programs) using a specialized bounded increase method [12]. We
will now show a termination proof for this system using the arctic below zero
interpretations.

We begin by applying the dependency pair method and obtaining four depen-
dency pairs, three of which can be easily removed (for instance using standard
matrix or polynomial interpretations) leaving the following single dependency
pair:

cond�(true, x, y) → cond�(gr(x, y), p(x), s(y))

Now, consider the following arctic matrix interpretation:

[cond�(x, y, z)] = (0)x⊕ (0)y ⊕ (−∞)z ⊕ (0), [0] = (0),
[cond(x, y, z)] = (0)x⊕ (2)y ⊕ (−∞)z ⊕ (0), [false] = (0),

[gr(x, y)] = (−1)x⊕ (−∞)y ⊕ (0), [true] = (2),
[p(x)] = (−1)x⊕ (0), [s(x)] = (2)x⊕ (3).

With this interpretation we get a decrease for the dependency pair:

[cond�(true, x, y)] = ( 0)x⊕ (−∞)y ⊕ (2)

[cond�(gr(x, y), p(x), s(y))] = (−1)x⊕ (−∞)y ⊕ (0)

and all the original rules are oriented weakly. �

Remark 16. We discuss a variant that looks more liberal, but turns out to be
equivalent to the one given here. We cannot allow Z × Ad−1

Z
for the domain,

because it is not well-founded for +. So we can restrict the admissible range
of negative values by some bound c > −∞, and use the domain AZ≥c × Ad−1

Z
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where AZ≥c := {b ∈ AZ | b ≥ c}. Now to ensure that we stay within this
domain we would demand that the first position of the constant vector of every
interpretation is greater or equal than c.

Note however that this c can be fixed to 0 without any loss of generality as
every interpretation using lower values in those positions can be “shifted” up-
wards. For any interpretation [·] and arctic number d construct an interpretation
[·]′ by [t]′ := [t] ⊗ d. This is obtained by going from [f ] = f0 ⊕ f1x1 ⊕ . . . fkxk

to [f ]′ = f0 ⊗ d⊕ f1x1 ⊕ . . . fkxk. (A linear function with absolute part can be
scaled by scaling the absolute part.) � 

8 Certification

The certification has been carried out within the CoLoR library [4]: a library of ter-
mination techniques formalized in Coq. This library is then used by a tool Rain-
bow to transform termination proofs in the common termination proof format,
designed within the CoLoR project, to actual Coq proofs certifying termination.

The basis of this work was the certification of the matrix interpretations
method [19], which consists of formalizations of:

– a semi-ring structure,
– vectors and matrices over arbitrary semi-rings of coefficients,
– the monotone algebras framework and
– the matrix interpretation method.

The framework of monotone algebras was used without any changes at all.
Vectors and matrices were formalized for arbitrary semi-rings, however all the
results involving orders were developed for the usual orders on natural numbers,
as used in the matrix interpretations method. So the first step in the certification
process was to generalize the semi-ring structure to a semi-ring equipped with
two orders (>,≥) and to adequately generalize results on vectors and matrices.
Then the arctic semi-ring was developed in this setting.

As for the technique itself it has a lot in common with the technique of matrix
interpretations. Therefore the common parts were extracted to a module
MatrixBasedIntwhich was then specialized to the matrix interpretation method
(MatrixInt) and to a basis for arctic basedmethods (ArcticBasedInt),whichwas
narrowed down to the methods of arctic interpretations (ArcticInt) and arctic
below-zero interpretations (ArcticBZInt). This hierarchy is depicted in Figure 1.

Considering the extension of the proof format in Rainbow it was minimal. The
format for the matrix interpretation proofs was already developed in [19] and it
essentially requires to provide matrix interpretations for all the function symbols
in the signature. The format for arctic interpretations is the same except that:

– it indicates which matrix-based method is to be used, indicated by different
XML tags (as the common proof format of CoLoR is specified using XML
syntax),

– the entries of vectors and matrices are from a different domain.

The experimental data concerning certification results is presented in the fol-
lowing section.



212 A. Koprowski and J. Waldmann

MatrixBasedInt
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MatrixInt ArcticBasedInt
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ArcticInt ArcticBZInt

Fig. 1. Hierarchy of different matrix-based methods in CoLoR

9 Implementation

The implementation in Matchbox follows the scheme described in [7]. The con-
straint problem for the arctic interpretation is translated to a constraint problem
for matrices, for arctic numbers and, finally, for Boolean variables. This is then
solved by Minisat [5].

An arctic number is represented by a pair a = (b; v0, v1, . . . , vn) where b is
a Boolean value and v0, . . . , vn is sequence of Booleans (all numbers have fixed
bit-width). If b is 1, then a represents −∞, if b is 0, then a represents the binary
value of v0, . . . , vn.

To represent integers, we use two’s complement representation, i.e., the most
significant bit is the “sign bit”.

Note that implementation of max/plus operation is less expensive than stan-
dard plus/times: with a binary representation both max and plus can be com-
puted (encoded) with a linear size formula (whereas a naive implementation of
the standard multiplication requires quadratic size and asymptotically better
schemes do not pay off for small bit widths).

It is useful to require the following, for each arctic number a = (b, v): if the
infinity bit b is set, then v = 0. Then (b, v) ⊕ (b′, v′) = (b ∧ b′,max(v, v′)). For
(b, v)⊗ (b′, v′) we compute c = b∨ b′, u = (u0, . . . , un) = v + v′ and the result is
(c;¬c ∧ u0, . . . ,¬c ∧ un).

To represent arctic integers, we use a similar convention: if the infinity flag b
is set, we require that the number v represents the lowest value of its range.

The following table lists the numbers of certified proofs that we obtain with
DP transformation (without SCC decomposition, see below) and these matrix
methods: (s)tandard, (a)rctic, below (z)ero. For comparison, we give the cor-
responding numbers for last year’s winner of the (certified, where applicable)
termination competition.

problem set time s sa sz saz 2007 winner
975 TRS 1 min 361 376 388 389 TPA: 354

10 min 365 381 393 394
517 SRS 1 min 178 312 298 320 Matchbox: 337

10 min 185 349 323 354

Runs were executed on a single core of an Intel X5365 processor running at
3GHz. All proofs will be made available for inspection at the Matchbox web
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page [21]. In all cases we used standard matrices of dimension 1 and 2 to remove
rules before the DP transformation, and then matrix dimensions d from 1 up;
with numbers of bit width max(1, 4 − 7d/28), and a timeout of 5 + 2d seconds
for each individual attempt.

It should be noted that TPA 2007 additionally used (non-linear) polynomial
interpretations, and that Matchbox 2007 also used additional methods (e.g. RFC
match-bounds) and was running uncertified.

Here, we count only verified proofs, so we are missing about 3 to 5 proofs
where Coq does not finish in reasonable time. (This happened—for exactly the
same problems—also in 2007.)

To certify termination of string rewriting, we use the standard transformation
to a term rewriting system with all symbols unary. We do this for the original
system R as well as for the system reverse(R) = {reverse(l) → reverse(r) |
(l → r) ∈ R. It is obvious (though presently not included in CoLoR) that this
transformation preserves termination both ways. Half of the allotted time is
spent for each of R and reverse(R). This increases the score considerably (by
about one third).

The dependency pairs transformation is often combined with a decomposition
of the resulting top termination problem into independent subproblems; analyz-
ing strongly connected components of the estimated dependency graph [10].
Currently, CoLoR provides only a simple graph approximation by top symbols of
dependency pairs, but at the moment it is not efficient. Our current implementa-
tion therefore does not do decomposition. However, with only this simple graph
approximation, this does not decrease power: note that an interpretation that
removes rules from a maximal component in the DP graph (with no incoming
arrows) can be extended to the complete graph by assigning constant zero to all
top symbols not occurring in this component.

10 Discussion

Arctic naturals form a sub-semi-ring of arctic integers. So the question comes up
whether Theorem 14 subsumes Theorem 12. Note that the prerequisites for both
theorems are incomparable. Still there might be a method to construct from a
somewhere-finite interpretation (above zero) an equivalent absolute-positive in-
terpretation (below zero). We are not aware of any. Experience with implementa-
tion shows that it is useful to have both methods, especially for string rewriting.
Naturals are easier to handle than integers because they do not require signed
arithmetics. So typically we can increase the bit width or the matrix dimension
for naturals. Our implementation finds several proofs according to Theorem 12
where it fails to find a proof according to Theorem 14 and vice versa.

It is interesting to ask whether the preconditions of Theorems 10,12,14 can be
weakened. We discussed one variant in Remark 16. In general, a linear interpre-
tation [·] with coefficients in AN (AZ respectively) is admissible for a termination
proof if for each ground term t, the value [t] is finite (positive, respectively). This
is in fact a reachability problem for weighted (tree) automata. It is decidable for
interpretations on arctic naturals, but it is undecidable for arctic integers (follows
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from a result of Krob [20] on tropical word automata). In our setting, we do not
guess an interpretation and then decide whether it is admissible. Rather, we have
to formulate the decision algorithm as part of the constraint system for the in-
terpretation. Therefore we chose sharper conditions on interpretations that imply
finiteness (positiveness, respectively) and have an easy constraint encoding.

Another question is the relation of the standard matrix method with the arc-
tic matrix method(s). Performance of our implementation suggests that neither
method subsumes the other, but this may well be a problem of computing re-
sources, as we hardly reach matrix dimension 5 and bit width 3.

As for the relation to other termination methods (e.g. path orderings), the
only information we have is that arctic (and other) matrix methods can do non-
simple termination, while path orders and polynomial interpretations cannot;
and on the other hand, the arctic matrix method implies a linear bound on
derivational complexity (see below), which is easily surpassed by path orders
and other interpretations.

The full arctic termination method bounds lengths of derivations:

Lemma 17. For a rewriting system R that fulfils the requirements of Theo-
rem 10 for S = ∅, the derivational complexity of R is linear.

Proof. For a finite arctic vector x = (x1, . . . , xk), define |x| = max(x1, . . . , xk).
Then |x⊕ y| ≤ max(|x|, |y|) and |x⊗ yT | ≤ |x|+ |y|.
For a finite arctic matrix A of dimension k × k, define |A| = max{Ai,j | 1 ≤

i, j ≤ k}. Then |A⊗ x| ≤ |A|+ |x| and |A⊗B| ≤ |A|+ |B|.
For an interpretation [·] of some signature Σ, and any word w ∈ Σ∗, this

implies that |[w]| ≤ c · |w| where c = max{|[f ]| : f ∈ Σ}.
Now we remark that u →R v implies [u] + [v], and x + y implies |x| > |y|.

Thus the derivational complexity of R is linear: any derivation starting from u
has at most c · |u| steps. � 

This means that rewriting systems with higher derivational complexity (e.g.
quadratic: {ab→ ba}, or exponential {ab→ b2a}) do not admit an arctic termi-
nation proof. Note that both these systems admit a standard matrix proof.

It seems very difficult to combine this argument with the dependency pairs
transformation, as it can drastically alter (i.e., reduce) derivational complexity.

Example 18. The following rewriting system [16] has a derivational complexity
that is not primitive recursive:

{s(x) + (y + z) → x + (s(s(y)) + z), s(x) + (y + (z + w)) → x + (z + (y + w))}

and still it has, after DP transformation, an easy termination proof by “counting
symbols” [7]. Note however that arctic interpretations cannot count globally: to
compute the interpretation [f(t1, t2)], it is impossible to add values from subtrees
[t1], [t2], as we can only take the maximum of [t1], [t2]. Yet we find an arctic proof,
as follows. The given system is in fact an encoding of a length-preserving string
rewriting system on the infinite alphabet N. Both rules keep the right spine
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of terms (corresponding to the length of the simulated string) intact, so we can
remove dependency pairs that shrink it, using the interpretation [+](x, y) = y⊗1.
We are left with two dependency pairs (that directly correspond to the original
rules). They can be handled by [+](x, y) = x and [s](x) = x ⊗ 1. So instead of
numbers of symbols, we were just using path lengths. �

Arctic interpretations subsume quasi-periodic interpretations [24]. This has been
remarked in [22] for string rewriting and it easily extends to term rewriting.

Max/Plus polynomials have been used by Amadio [1] as quasi-interpretations
(i.e. functions are weakly monotone), to bound the space complexity of deriva-
tions. Proving termination directly was not intended.

11 Conclusions

We presented the arctic interpretations method for proving termination of term
rewriting. It is based on the matrix interpretation method [7] where the usual
plus/times operations on N are generalized to an arbitrary semi-ring, in this case
instantiated by the arctic semi-ring (max/plus algebra) on {−∞} ∪ N.

We also generalized this to arctic integers. This generalization allowed us
to solve 10 of Beerendonk/* examples that are difficult to prove terminating
and thus far could only be solved by AProVE with the Bounded Increase [12]
technique, dedicated to such class of problems coming from transformations from
imperative programs.

Our presentation of the theory is accompanied by a formalization in the Coq
proof assistant. By becoming part of the CoLoR project this formalization allows
us to formally verify termination proofs involving the arctic matrix method.
With this contribution CoLoR can now certify more than half of the systems
that could be proven terminating in the 2007 competition in term rewriting and
essentially all (and some more) systems in the string rewriting category.

We want to remark here that all performance data and all examples presented in
this paper were collected from problems of TPDB 2007, and we did not “cook up”
any special examples to show off the arctic method. The emphasis of these exam-
ples (in fact, of the whole paper) is not to provide termination proofs where none
were known before, but rather to provide certified (and often conceptually sim-
pler) termination proofs where only uncertified proofs were available up to now.
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Abstract. A totally ordered tree is a tree equipped with an additional
total order on its nodes. It provides a formal model for data that comes
with both a hierarchical and a sequential structure; one example for such
data are natural language sentences, where a sequential structure is given
by word order, and a hierarchical structure is given by grammatical rela-
tions between words. In this paper, we study monadic second-order logic
(MSO) for totally ordered terms. We show that the MSO satisfiability
problem of unrestricted structures is undecidable, but give a decision
procedure for practically relevant sub-classes, based on tree automata.

1 Introduction

A totally ordered tree is a tree equipped with an additional total order on its
nodes. It provides a formal model for data that comes with both a hierarchical
and a sequential structure. Depending on the application, the two structural
aspects may be more or less dependent on each other: the total order may be
obtained by a traversal of the tree, defined by a logic formula from tree relations,
or completely independent.

John

saw

a

tree

today

that

was

very

old

1 2 3 4 5 6 7 8 9

Fig. 1. A dependency structure

The research reported in this pa-
per is motivated by an application of
totally ordered trees in computational
linguistics, where they are used as for-
mal models for dependency structures.
A dependency structure is a represen-
tation of the syntactic structure of a
natural-language sentence in terms of
word-to-word dependencies, such as the dependency between a verb and its di-
rect object. Such dependencies impose a tree-shaped hierarchical structure onto
the words, while word order imposes a sequential structure. An example for a
dependency structure is given in Fig. 1. Dependency-based representations have
a long history in descriptive linguistics. Recently, they have received a lot of in-
terest for many computational tasks, such as information extraction [1], machine
translation [2], and, most prominently, data-driven parsing [3].

In this paper, we study monadic second-order logic (MSO) as a description
language for totally ordered terms (tots). Dependency structures can be under-
stood as special cases of tots, where the sibling order is induced by the total order.
Monadic second-order logic is generally useful in order to express properties of

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 217–231, 2008.
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graphs or trees [4,5,6,7]. Here we are particularly interested in lifting Doner,
Thatcher, and Wright’s theorem on the equivalent expressiveness of MSO and
tree automata for finite trees to tots [4,8]. This theorem has first been proved for
ground terms, and got extended to various kinds of trees and graphs of bounded
tree width [9,10,7].

The new problem that we are faced with, is to deal with the addition of a total
order to a finite term structure. The easy cases of this problem are those where
the total order is MSO-definable from the term structure: MSO for ground terms
is decidable, and thus MSO for ground terms with MSO-defined total orders is
decidable as well. In the first part of the paper, we prove that MSO for general
tots is not decidable. We show this by a reduction of the MSO satisfiability
problem for grids ; this problem is well-known to be undecidable (while first-
order logic of grids can encoded into Presburger arithmetics). In the second part
of the paper, we restrict the classes of models of MSO formulas to sets of tots
with bounded gap-degree [11]. This means that the descendant sets of nodes are
segmented into a bounded number of intervals in the total order. Our main
contribution is the result that MSO satisfiablity of sets of tots with bounded
gap-degree is decidable. To establish this, we introduce an algebraization for
these sets. This leads us to a notion of tree automaton for gap-bounded sets of
tots, which we show to have the same expressiveness as MSO.

Related work. Our algebraic perspective on automata goes back to the work
of Mezei and Wright from the 1960s [16]. It was generalized by Courcelle [17],
and applied to many kinds of trees, including unranked sibling-ordered trees as
they appear in the context of XML [18]. Courcelle has proposed two different
algebraizations for graphs [7] for which MSO can be reduced to finite automata.
Graphs of bounded tree or clique width belong to these algebras, so that MSO
satisfiability is decidable for them.

Dependency structures can be used to quantify the generative capacity of
many grammar formalisms for natural language [12]: they are more informative
than strings, but less formalism-specific than parse trees. The formal properties
of dependency structures and sets of such structures have been studied only
recently [12]. Automata for these structures define a notion of regularity. For
regular sets of dependency structures, there is a direct relation between the
gap-degree measure and string-generative capacity. In particular, regular sets
of dependency structures with gap-degree 0 correspond exactly to the context-
free languages, and regular sets of structures with gap-degree at most 1 and an
additional property called well-nestedness give the string languages generated
by Lexicalized Tree Adjoining Grammars (TAGs). More generally, every string
language obtained from a regular set of dependency structures with bounded
gap-degree is semilinear and can be recognized in polynomial time. Without gap
restrictions, parsing quickly becomes NP-hard [13]. Recent work has shown that
most dependency structures required for the analysis of natural language have
a small gap-degree [15]. However, not all natural languages can be described by
sets of dependency structures with bounded gap-degree; counterexamples have
been given for Czech [14].
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(c) swapping c and d, e

Fig. 2. Three total orders for the tree a(b(c), d(e))

2 Totally Ordered Terms

We start by introducing totally ordered terms, and MSO for their description.
We make use of the following auxiliary notions and notations: The set of positive
natural numbers is denoted by N. Given some n ∈ N, we write [n] for the set
{1, . . . , n}. A signature Σ is a non-empty, finite set of function symbols σ, each
equipped with a fixed, non-negative arity, denoted by ar(σ). The set of (ground)
terms over Σ is the smallest set TΣ such that if σ is a symbol of arity m and for
each i ∈ [m], ti ∈ TΣ, then σ(t1, . . . tm) ∈ TΣ . The set of nodes of a term t ∈ TΣ

is a set of addresses in N∗: the root node of t is addressed by the empty word ε,
and the ith child of the node π is addressed by the extended address πi:

nod(σ(t1, . . . , tm)) = {ε} ∪ { iπ ∈ N∗ | i ∈ [m], π ∈ nod(ti) } .

A linearization of a finite set A is a word in A∗ in which each element of A
occurs exactly once. We note that the set of linearizations of A is isomorphic to
the set of total orders on A in an obvious way.

Definition 1. A totally ordered term (tot) over Σ is a pair τ = 〈t, w〉 where
t ∈ TΣ is a term, and w is a linearization of nod(t).

The set of all tots over Σ is denoted by TOTΣ . Three examples for tots are
visualized in Fig. 2; each of them provides a different linearization for the same
term a(b(c), d(e)). Solid edges depict the term structure, dotted lines project
nodes to their position in the linearization. In Fig. 2a, the nodes of a(b(c), d(e))
are ordered by the preorder traversal of the underlying term structure. The two
examples in Fig. 2b and 2c are derived by swapping c with e and d, e, respectively.

In the following, we often identify a term t ∈ TΣ with a relational struc-
ture 〈nod(t) ; ( :σ)σ∈Σ〉: for each m-ary symbol σ ∈ Σ, this structure provides
a labelling relation :σ with arity m + 1. Given a node π ∈ nod(t), labelling
π :σ(π1, . . . , πn) holds if and only if π is labelled by σ in t. A tot τ = (t, w) can
be viewed as a relational structure that extends the structure corresponding to t
by the total order ( that is represented by the linearization w.

Monadic second-order logic (MSO) for tots is defined as usual. Let Vars be
a set that contains infinitely many node variables x, y, z ∈ Vars , and infinitely
many set variables X,Y, Z ∈ Vars . The formulas of MSO for tots are the follow-
ing, where σ ∈ Σ is a function symbol of arity m:

φ, φ′ ::= x :σ(x1, . . . , xm) | x ( y | x ∈ X | φ ∧ φ′ | ¬φ | ∃x. φ | ∃X.φ
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These formulas are interpreted in the usual Tarskian style in the relational struc-
tures corresponding to tots. Given a tot τ = (t, w) and a variable assignment
α : Vars → nod(t), we write τ, α |= φ if and only if the formula φ evaluates to true
in τ under the assignment α, and τ |= φ if τ, α |= φ holds for any assignment α.

MSO formulas with n free node variables over the signature Σ define n-ary
relations for all tots over Σ. Most basically, we can define node equality (=),
equality-or-precedence ((), and the child relation �:

x � y =def

∨
σ∈Σ

∨
1≤i≤m=ar(σ) ∃x1, . . . , xm. y = xi ∧ x :σ(x1, . . . , xm)) .

The dominance relation �∗ of a term is the reflexive, transitive closure of �,
and thus definable in MSO.1 This is in contrast to first-order logic, where the
dominance relation is usually added to the relational structure. Let C ⊆ TOTΣ

be a set of tots over Σ. The MSO-satisfiability problem of C is the problem to
decide whether ∃ τ ∈ C. τ |= φ, where φ is some closed MSO formula.

3 Undecidability of MSO Satisfiability

We now present our first technical result, which is valid for all signatures Σ with
at least one binary function symbol and one constant.

Theorem 1. MSO satisfiability for the class of all tots over Σ is undecidable.

For the proof, we make use of a simple tool to obtain undecidability results
for graph-like structures. Let m,n ∈ N. The grid of dimensions m × n is the
structure

Gm,n = 〈[m]× [n] ;nextEast ,nextSouth〉 , where
nextEast = { 〈〈i, j〉, 〈i′, j′〉〉 | i′ = i + 1, j′ = j } and

nextSouth = { 〈〈i, j〉, 〈i′, j′〉〉 | i′ = i, j′ = j + 1 } .

We can view a grid as an (m×n)-matrix in which we can navigate along columns
(using the relation nextEast) and rows (using nextSouth). The square grid of
size m is the grid of dimensions m×m. The following result is standard:

Fact [7]. The MSO satisfiability problem of every class of graphs that contains
infinitely many square grids is undecidable.

To make use of this result to prove Theorem 1, we show how to encode grids as
tots (Proposition 1), and that every closed MSO formula interpreted on grids
can be translated into a closed MSO formula interpreted on tots that has the
same models modulo encoding (Proposition 2).

Without loss of generality, we use the signatureΣ = {cons, ◦, nil} with ar(cons)
= 2, ar(◦) = 1, and ar(nil) = 0, and employ the following naming scheme for
nodes: for 0 ≤ i and 1 ≤ j,

πi,j = if i = 0 then 1j−1 else 1j−121i−1 .

1 To see this, note that x dominates all elements of the set Y , where Y is the least set
satisfying the equation Y = {x} ∪ { z | ∃ y. y ∈ Y → y � z }.
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Fig. 3. The encoding of the square grid G3,3. The solid lines represent the term
structure; the dashed lines visualize the relation nextSouth .

The encoding of the general grid Gm,n is the tot �Gm,n� = 〈tm,n, wm,n〉, where

tm,n = if n = 1 then cons(nil, ◦m(nil)) else cons(tm,n−1, ◦m(nil))
wm,n = π0,1 · · ·π0,n · π0,n+1 · π1,1 · · ·π1,n · · ·πm+1,1 · · ·πm+1,n

For illustration, Fig. 3 shows the tot that encodes the square grid G3,3. We will
use the nodes that are labelled with the constructor ◦ (i.e., the nodes of the
form πi,j , i ∈ [m], j ∈ [n]) as representatives for the entries of the grid proper.

The following MSO-defined sets are of general interest for the axiomatization
of grid encodings. We use definitions by formulas with free set variables that
may be parametrized by a free node variable x, so that the corresponding sets
are parametrized by the node value of x.

FirstChild (x) = { y | x : ◦(y) } ∪ { y | ∃ z. x : cons(y, z) }
SecondChild (x) = { y | ∃ z. x : cons(z, y) } , Root = { x | Father(x) = ∅ }

Father (x) = { y | x ∈ FirstChild (y) } ∪ { y | x ∈ SecondChild(y) }
Succ(x) = { y | x ≺ y, ¬∃ z. x ( z ( y } , Cons ={ x | x:cons(_,_) } ,

Grid = { x | x : ◦(_) } , Nil = { x | x : nil } .

We note that, since ( is a total order, Succ is an injective partial function. The
cons-labelled nodes provide the backbone of the tot; they ‘glue’ the lines of the
grid together. The north of the grid is its first line; the south is its last line.

Backbone = (Root ∪ FirstChild (Backbone))−Nil
LastBackbone = { x ∈ Backbone | FirstChild(x) ⊆ Nil }

North = (SecondChild (Root) ∪ FirstChild (North)) ∩Grid
South = (SecondChild (LastBackbone) ∪ FirstChild(South)) ∩Grid

Recursive definitions are interpreted with respect to least fixed points, which
is expressible in MSO, as is the reflexive-transitive closure of a relational image
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S(x), denoted by S(x)∗. We next define sets of nodes by MSO formulas that
permit us to navigate through the grid:

NextEast(x) = { y ∈ Grid ∩ FirstChild (x) | x ∈ Grid }
NextSouth(x) = { y ∈ Grid ∩ Succ(x) | x ∈ Grid − South }

The anchor of a node x is the (uniquely determined) closest node on the back-
bone that dominates x. The anchors allow us to navigate along a grid’s rows.

Anchor (x) = { y ∈ Backbone | x ∈ FirstChild ∗(SecondChild (y)) }
NextRow(x) = { y ∈ Grid | FirstChild (Anchor(x)) = Anchor (y) }

PreviousRow (x) = { y ∈ Grid | FirstChild (Anchor(y)) = Anchor(x) }

We can now axiomatize the class of grid encodings in MSO:

(A1) The backbone consists of the nodes labelled with cons.
Backbone = Cons

(A2) For every node in the grid that does not lie in the south, taking the next
step in the total order takes us to the next row.
∀x ∈ Grid − South. ∃ y ∈ NextRow(x).Succ(x) = {y}

(A3) Dually, every node in the grid that does not lie in the north can be reached
from a node in the previous row.
∀x ∈ Grid −North. ∃ y ∈ PreviousRow (x).Succ(y) = {x}

(A4) The root node occupies the first position in the total order.
¬∃x.Succ(x) = Root

(A5) Every step to the first child of a cons node is a step in the total order.
∀x ∈ Cons .Succ(x) = FirstChild (x)

(A6) The nil node terminating the backbone immediately precedes the north-
western corner of the grid.
Succ(FirstChild (LastBackbone)) = SecondChild (Root)

(A7) The total order propagates along the rows of the grid.
∀x, y.Succ(Father (x)) = Father(y) =⇒ Succ(x) = {y}

(A8) When being in the south, the next step with the total order leads to the
first element of the next column eastwards.
∀x ∈ North.Succ(NextSouth∗(x) ∩ South) = FirstChild(x)

Proposition 1. Every encoded grid satisfies the axioms A1–A8. Conversely,
every tot that satisfies these axioms is a grid encoding.

Proof. To verify that encoded grids satisfy the axioms A1–A8 is straightforward;
here we show the converse. Let τ = (t, w) be a tot such that τ |= A1 ∧ · · · ∧A8.
We show that there exists a grid Gm,n such that τ = �Gm,n�. Axiom A1 asserts
that Backbone = Cons , which implies that t has the following form, where
ti = ◦mi(nil) for some mi ≥ 0: t = cons(t1, cons(t2, . . . cons(tn, nil) . . .)).
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We have to show that all terms ti have the same length in order to prove that
t = tm,n. This property is less obvious since it depends on the total order among
the nodes. For n = 0, it follows that t = nil, and there is nothing to show, so we
can assume n ≥ 1. The form of t implies that Backbone = { π0,j | j ∈ [n] },

North = { πi,1 | i ∈ [m1] } , and South = { πi,n | i ∈ [mn] } .

Lemma 1. m1 = · · · = mn

We first show that |t1| ≤ |tj | for all j ∈ [n] by induction on n. The case n = 1 is
trivial. For the case n > 1, it suffices to show that |tn−1| ≤ |tn|. This follows from
Axiom A2, which asserts that for each node π in tn−1, there exists a node π′

in tn such that Succ(π) = {π′}, and from the observation that Succ is total for
all nodes of t1 by Axiom A4, functional and injective. Dually, using Axiom A3,
we can show that |tj | ≤ |t1| for all j ∈ [n]. Consequently, |t1| = · · · = |tn|.

It remains to show that w is indeed the total order that is imposed on the
encoded grid. The following series of Lemmas together with Axiom A4 establishes
that the total order on t is uniquely determined by the axioms. Since the order
in the grid translation satisfies these axioms, it must be equal to this order.

Lemma 2. ∀ j ∈ [n].Succ(π0,j) = {π0,j+1} and Succ(π0,n+1) = {π1,1}

Since for each j ∈ [n], the node π0,j is a cons node, the first half of the claim
is stated in Axiom A5. The successor of π0,n+1 follows from Axiom A6 in com-
bination with the observation that SecondChild (Root) �= {π1,1}; this is so since
Root ⊆ Cons by Axiom A6, and n ≥ 1.

Lemma 3. ∀ i ∈ [m]. ∀ j ∈ [n− 1].Succ(πi,j) = {πi,j+1}

We show that Succ(Father(πi,j)) = Father (πi,j+1), and from this deduce the
claim by Axiom A7. The proof proceeds by induction on i. In the case that
i = 1, using the definition of Father and Lemma 2, we see that

Succ(Father (π1,j)) = Succ(π0,j) = {π0,j+1} = Father(π1,j+1) .

For i > 1, we may assume that Succ(πi−1,j) = {πi−1,j+1}. Thus,

Succ(Father(πi,j)) = Succ(πi−1,j) = {πi−1,j+1} = Father (πi,j+1) .

Lemma 4. ∀ i ∈ [m].Succ(πi,n) = {πi+1,1}

We start by proving the following auxiliary claim by induction on j:

∀ j ∈ [n]. ∀ i ∈ [m].NextSouth∗(πi,j) ∩ South = {πi,n}

For j = n, this is obvious, given that πi,n ∈ South. For j < n, we may assume
that NextSouth∗(πi,j+1)∩South = {πi,n}. Moreover, πi,j ∈ Grid−South, which,
by definition of NextSouth, implies that NextSouth(πi,j) = Succ(πi,j). Thus,

NextSouth∗(πi,j) ∩ South = NextSouth∗(NextSouth(πi,j)) ∩ South

=NextSouth∗(Succ(πi,j))∩South Lemma 3= NextSouth∗(πi+1,j)∩South = {πi,n} .
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�nextEast(x, y)�0 = y ∈ NextEast(x) �∀ x.ψ�0 = ∀ x ∈ Grid . �ψ�0

�nextSouth(x, y)�0 = y ∈ NextSouth(x) �∀X. ψ�0 = ∀X ⊆ Grid . �ψ�0

�x ∈ X�0 = x ∈ X ∩Grid �ψ ∧ ψ′�0 = �ψ�0 ∧ �ψ′�0

�¬ψ�0 = ¬�ψ�0

Fig. 4. Encoding MSO of grids into MSO of tots: the compositional part

Instantiating Axiom A8 with πi,1 ∈ North, we see that

Succ(NextSouth∗(πi,1) ∩ South) = FirstChild(πi,1) = {πi+1,1} .

Since NextSouth∗(πi,1)∩South = {πi,n} by the auxiliary claim above, this implies
that Succ(πi,n) = {πi+1,1}.
Together with Axiom A4, the preceding Lemmas establish that Succ(π)
is uniquely determined for all π �= πm,n. This ends the proof of
Proposition 1. 


Proposition 1 states that we can define the encodings of grids using MSO for
tots. We now show how to express MSO formulas for grids using MSO formulas
for tots. The translation of a closed MSO formula ψ for grids is as follows:

�ψ� =def ∃Grid∃NextSouth∃NextEast∃ . . . . (Defs ∧A1 ∧ · · · ∧A8 ∧ �ψ�0)

where �ψ�0 is given in Fig. 4, and Defs contains the above definitions for all
occuring set variables, all of which are existentially quantified in the outermost
quantifier prefix.

Proposition 2. For every closed formula ψ from the set of all MSO formulas
over grids and every grid G, ψ |= G implies that �ψ� |= �G�.

Proving this proposition from Proposition 1 is routine, since it is largely inde-
pendent of the particularities of the encoding. Note however that the proposition
does not hold for formulas with free variables. For these, quantification would
need to be restricted to nodes in Grid , and exclude nodes in Cons ∪ Nil .

4 Bounded Gap-Degree

Given the undecidability of the MSO satisfiability problem for the class of un-
restricted tots, we are interested in restricted classes for which decidability can
be obtained. A family of such classes that is relevant for applications in compu-
tational linguistics is obtained from the gap-degree measure [11,12].

Let τ be a tot, and let π, π1, π2 be nodes of τ . The set of descendants of π,
denoted by desc(π), is the set of all nodes π′ ∈ nod(t) such that π �∗ π′. The
interval with endpoints π1 and π2, denoted by [π1, π2], is the set of all nodes
π′ ∈ nod(τ) such that π1 ( π′ ( π2. Note that for terms ordered by a pre-order
traversal, each descendant set forms an interval. In the general case, though, a
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descendant set desc(π) may be partitioned into a sequence of (maximal) inter-
vals, which we call the segments of π. We define MSO formulas y1 ≡x y2 stating
that y1 and y2 belong to the same segment of x:

y1 ≡x y2 =def ∀ z. (y1 ( z ( y2 ∨ y2 ( z ( y1) → x �∗ z

This formula defines an equivalence relation ≡π on the descendant set desc(π)
with the property that each equivalence class forms a (maximal) interval. We
call such a relation a segmentation.

Definition 2. Let τ be a tot, and let π be a node of τ . The gap-degree of π,
deg(π), is defined as the index of the relation ≡π, minus one. The gap-degree
of τ , deg(τ), is the maximum among the gap-degrees of its nodes. A set L of
tots is gap-bounded, if there is a constant gL such that deg(τ) ≤ gL, for every
τ ∈ L.

The tot in Fig. 2a has gap-degree 0, while those in Figs. 2b and 2c have gap-
degree 1. In Figs. 2b and Figs. 2c, the node b has two segments ({b} and {c});
in Fig. 2a, it has only one ({b, c}).

Lemma 5. The gap-degree of the tot �Gn,n� is n + 1.

This Lemma shows that our undecidability proof fails when we restrict the mod-
els of our MSO formulas to classes of tots that are gap-bounded. Even better,
this restriction implies decidability:

Theorem 2. The MSO satisfiability problem of every gap-bounded class of tots
is decidable.

The remainder of this paper is concerned with the proof of this result. To do
so, we establish a link between MSO for gap-bounded classes of tots on the one
hand, and an algebraic notion of automata on the other.

5 Segmented Tots and Subtots

We develop a notion of ‘substructure’ for tots that will serve as intermediate re-
sults when constructing tots algebraically. They may be little more general than
tots, in that their linearisations may be segmented, so we call them segmented
tots.

For illustration, let us reconsider the tot in Fig. 2c. Its first subterm is b(c).
The linearization of the nodes of this subterm is segmented into two parts, while
leaving a gap between the b-node and the c node, into which external nodes may
be plugged, such as the nodes of d(e) when reconstructing the original tot.

A k-segmented linearization over a finite set A is a k-tuple 〈w1, . . . , wk〉 of non-
empty words over A such that w1 · · ·wk forms a linearization. Every k-segmented
linearization w defines a total ordering ( on A, which satisfies a1 ( a2 if a1

occurs left of a2 in w. In addition, it defines an equivalence relation ≡ on A,
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such that a1 ≡ a2 if they occur in the same segment of w. The segments of w are
the equivalence classes of ≡, so that the index of ≡ is k. The equivalence classes
form intervals with respect to the total ordering, i.e.:

a1 ≡ a2 ⇒ ∀ a. (a1 ( a ( a2 ∨ a2 ( a ( a1) → a1 ≡ a ≡ a2

Conversely, every pair of total ordering ( on A and an equivalence relation ≡ on
A of index k that satisfy the above condition define an k-segmented linearization
on A.

Definition 3. A k-segmented tot over a signature Σ is a pair 〈t, w〉 where t is
a term over Σ and w a k-segmented linearization of nod(t).

The relational structure corresponding to a segmented tot (t, w) is the structure
〈nod(t) ;(,≡, ( :σ)σ∈Σ〉; it provides the total ordering ( and the equivalence
relation ≡ defined by w and the labeling predicates. The MSO of segmented
tots is the MSO with symbols for all these relations and interpreted over these
relational structures.

Substructures of segmented tots can now be defined by extending the notion
of subterms. Let τ = 〈t, w〉 be a segmented tot and node π ∈ nod(t). The set
desc(π) is segmented by the relation ≡π, which is defined by an MSO formula
with three free variables:

y1 ≡x y2 =def y1 ≡ y2 ∧ ∀ z. (y1 ( z ( y2 ∨ y2 ( z ( y1) → x �∗ z .

This means that segments of desc(π) are either separated by nodes of τ external
to desc(π) or by the segmentation of τ .

Let t|π the subterm of t at node π, i.e., t|ε = t and σ(t1, . . . , tm)|iπ = ti|π,
where i ∈ [m] = ar(σ). Recall that nod(t|π) = { π′ | ππ′ ∈ nod(t) }. The subtot
of τ at π is given by the subterm t|π and the segmented linearization of its nodes
induced by ≡π and (. The of gap-degree of a segmented tot τ is one less then
the maximal number of segments of its subtots τ|π.

6 Segmented Words

We introduce segmented words and define operators for them that will be useful
for the algebraization of tots. Let A be a set and k a natural numbers.

A k-segmented word over A is a k-tuple of non-empty words over A. The posi-
tions of a k-segmented word ψ = 〈a1

1 · · ·an1
1 , . . . , a1

k · · · a
nk

k 〉 are pairs of natural
numbers: pos(ψ) = { 〈i, j〉 | i ∈ [k], j ∈ [ni] }. The set of positions is totally or-
dered by the lexicographic order, i.e. 〈i′, j′〉 < 〈i, j〉 iff i′ < i or i′ = i∧ j′ < j. It
is partitioned into k classes by the equivalence 〈i′, j′〉 ≡ 〈i, j〉 iff i′ = i. For every
a ∈ A, the relation Qa ⊆ pos(ψ) contains all positions 〈i, j〉 where a occurs, i.e.,
aj

i = a.
We now define operators for k-segmented words, where we assume k ∈ [l]

for a fixed natural number l. Let W (k) be the set of k-segmented words over A.
We define a multi-sorted algebra S with domains W (1), . . . ,W (l); the functions
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of this algebra are defined by segmented words. Each function first shuffles the
segments of its arguments into a new segmented word, and then fuses adjacent
segments to arrive at a segmented word with at most l segments. To make this
formal, we need three auxiliary notions: The multiplicity of a letter a ∈ A in a
segmented word ψ over A is the number of positions 〈i, j〉 ∈ pos(ψ) such that
〈i, j〉 ∈ Qa. A multiset over a finite set B is a function μ : B → N. A k-segmented
linearization of of a multiset μ is a k-segmented word ψ over B such that for all
b ∈ B, the multiplicity of b in ψ is μ(b).

Let k ∈ [l] and m ∈ N, and k1, . . . , km ∈ [l]. Every k-segmented linearization
ψ ∈ ([m]+)k of the multiset { i �→ ki | i ∈ [m] } defines an operator ψS of type:

ψS : W (k1)× · · · ×W (km) →W (k) .

To give a definition of this function, let the occurrence number occ(i, j) ∈ N of
a position 〈i, j〉 ∈ pos(ψ) with 〈i, j〉 ∈ Qa be the number of positions 〈i′, j′〉 ∈
pos(ψ) such that 〈i′, j′〉 ≤ 〈i, j〉 and 〈i′, j′〉 ∈ Qa. If ψ=〈a1

1 · · · an1
1 , . . . , a1

k · · · a
nk

k 〉,
then the application of the function ψS to segmented words Si ∈ W (ki), i ∈ [m],
is defined as

ψS (〈S1
1 , . . . , S

k1
1 〉, . . . , 〈S1

m, . . . , Skn
m 〉) = 〈T 1

1 · · ·T n1
1 , . . . , T 1

k · · ·T nk

k 〉 ,

where T j
i = S

occ(i,j)
aj

i

. Note that, for each i ∈ [k], T 1
1 · · ·T ni

1 ∈ A+ is a concate-

nation of ni words, while 〈S1
1 , . . . , S

ki
1 〉 ∈ W (ki) is a ki-tuple. The number of

functions of S is infinite as long as we do not bound the maximal arity m ∈ N.
Furthermore, S does not contain any constant, so it is useless standalone.

7 Algebra of Segmented Tots

For the algebraization of tots, we fix a signature Σ of function symbols and a gap
bound l ∈ N. For all k ∈ N let T (k) ⊆ TOTΣ be the set of tots over Σ with k
segments. We define a multi-sorted algebra T with domains T (1), . . . , T (l).

For every tot τ = 〈t, w〉 in T (k), let term(τ) = t and seg(τ) = w. The algebra
T provides operations of type 〈σ, ψ〉T : T (k1)×· · ·×T (km) → T (k) for all σ ∈ Σ
of arity m, k-segmentation ψ of the multiset {0 �→ 1} ∪ { i �→ ki | i ∈ [m] }, and
k, k1, . . . , km ∈ [l]. Specifically, we define the value 〈σ, ψ〉T (τ1, . . . , τn) = τ as
follows:

term(τ) = σ(term(τ1), . . . term(τn))

seg(τ) = ψS ((ε), pfx1(seg(τ1)), . . . , pfxn(seg(τn))) ,

where pfxi is the function that takes a sequence of nodes and prefixes every node
in this sequence by the address i. This algebra has a finite number of functions,
whose maximal arity is bounded by the maximal arity in Σ. The constants of
this algebra are of the form 〈σ, 〈1〉〉, where σ is a constant in Σ.
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Proposition 3. Let k ∈ [l]. For every tot τ ∈ Tk, there exist a symbol σ ∈ Σ
ar(σ) = m, natural numbers k1, . . . , km ∈ [l], a k-segmentation ψ of the multiset
{0 �→ 1} ∪ { i �→ ki | i ∈ [m] }, and tots τ1 ∈ Tk1 , . . . , τm ∈ Tkm such that
τ = 〈σ, ψ〉T (τ1, . . . , τm).

This means that every k-segmented tot can be constructed from the operators
of the algebra T if k ∈ [l]. For instance, the tot in Fig. 2b is equal to:

〈a, 〈0121〉〉T (〈b, 〈0, 1〉〉T (〈c, 〈0〉〉T ), 〈d, 〈10〉〉T (〈e, 〈0〉〉T )) .

The substructure at b, i.e., the first child of the root, has gap-degree 1. This is
reflected by the segmented word 〈0, 1〉 whose comma matches the gap.

Proof. Let τ = (t, w), where t = σ(t1, . . . , tn) for some σ ∈ Σ, and t1, . . . , tn ∈
TΣ. For all i ∈ [k], let ki be the number of segments of τ |i, so that

pfxi(seg(τ |i)) = 〈S1
i , . . . , S

ki

i 〉

for some ki ∈ [l] and S1
i , . . . , S

ki

i ∈ nod(t)+. Furthermore, let k0 = 1 and S1
0 = ε.

The set nod(t) is partitioned into segments Sj
i , where 0 ≤ i ≤ n and j ∈ [ki].

The segmented linearization w of τ must be of the following form, where T j
i =

S
occ(i,j)
aj

i

:

seg(τ) = 〈T 1
1 · · ·T n1

1 , . . . , T 1
k · · ·T nk

k 〉 .
This holds, since each segment of seg(τ) must be a concatenation of words of Sj

i s
due to convexity, and since the segments of the same substructure must appear
in their original order. Let

ψ = 〈a1
1 · · · an1

1 , . . . , a1
k · · · ank

k 〉 .
It then follows that τ = 〈σ, ψ〉T (τ |1, . . . , τ |n). 

The decomposition of segmented tots does not need to be unique; for example,

〈a, 〈011〉〉T (〈a, 〈0, 1〉〉T (〈b, 〈0〉〉T )) = 〈a, 〈01〉〉T (〈a, 〈01〉〉T (〈b, 〈0〉〉T )) .

Both expressions describe the same tot with term a(a(b)) and the node order
ε ( 1 ( 11. In the first expression, the subtot of the first child is artificially
split into two subsequent segments, which are then fused without insertion of
nodes into the gap. On the right, this artificial split is avoided. It is not difficult
to see that every segmented tot can be constructed in a unique manner, when
disallowing immediate repetitions in constructors ψ, i.e. segments in N∗iiN∗,
for every i ∈ N. Let T ′ be the restriction of T to operators (σ, ψ) without
immediate repetitions in ψ.

Theorem 3. The algebra of k-segmented tots T ′ is isomorphic to a [k]-sorted
term algebra TΔ.

Proof (Sketch). The multi-sorted signature Δ contains all symbols (σ, ψ) of type
k1 × · · · × km → k, where σ ∈ Σ has arity m, and ψ is a k-segmentation of the
multiset {0 �→ 1} ∪ { i �→ ki | i ∈ [m] } without immediate repetitions. The
interpretation function �·�T ′

: TΔ → T ′ is a homomorphism, which is onto by
Proposition 3, and one-to-one since immediate repetitions are forbidden.
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8 Automata for Segmented Tots

We define automata for the algebra of segmented tots T ′ as automata for the
multi-sorted term algebra TΔ. Since well-sorted terms over Δ are recognizable,
we can use standard tree automata that recognized languages of well-sorted
terms.

We call a set of segmented tots L ⊆ T ′ with bounded gap-degree recognizable,
if and only if the corresponding set of term encodings { t ∈ TΔ | tT ′ ∈ L } is rec-
ognizable by a tree automaton. Standard results on tree automata [8] show that
recognizable set of segmented tots are closed under union, intersection, comple-
mentation and projection. Note also, that the set of all tots (i.e., segmented tots
without gaps) is recognizable

Theorem 4. A gap-bounded set of segmented tots is MSO-definable if and only
if it is recognizable. The transformations from formulas to automata and back
are effective.

Proof. The transformation of automata for TΔ into MSO for segmented tots
needs to express the rules of the automata. This works as usual, except that
one has to express the operators 〈σ, ψ〉T ′

in the MSO of segmented tots. This is
straightforward.

The transformation of MSO formulas to automata works as for Thatcher and
Wright’s theorem [4]: Boolean connectives and monadic second-order quantifiers
are mapped to the closure operators for union, complementation and projection.
What remains to show is that we can construct automata that check the atomic
predicates x ( y and x ≡ y. The fundamental insight in this construction is
that it suffices to remember, by means of the state information that the tree
automaton provides, for each node π, in which segments of the subtot τ |π the
nodes α(x), α(y) occur (if any). Based on this information, the question whether
α(x) ≺ α(y) can be decided by looking at the label 〈σ, ψ〉 at π: if α(x) occurs
in the jxth segment of the ixth substructure of τ |π , and α(y) occurs in the jyth
segment of the iyth substructure, then α(x) ≺ α(y) iff the jxth occurrence of
the symbol ix precedes the jyth occurrence of the symbol iy; if α(x) or α(y)
does not occur in some substructure, but equals π, then the relevant occurrence
is the (single) occurrence of the symbol 0 in ψ. A similar argument holds for
the case α(x) ≡ α(y). As long as the number of gaps (and hence, the number of
segments) in a tot is bounded, the required state set is of bounded size.

One perhaps surprising consequence of this Theorem is that total orders of MSO-
defined sets of tots with bounded gap-degree are always definable by MSO over
terms without the order. Given a term t ∈ TΣ, variables x1, x2 and nodes π, π′ ∈
nod(t), let t ∗ [x �→ π, y �→ π′] ∈ TΣ×2{x,y} be the tree obtained from t by
annotating all its nodes by the set of variables that are mapped to it. Similarly,
we define τ ∗ [x �→ π, y �→ π′] ∈ TOTΣ×2{x,y} to be the tot 〈term(τ) ∗ [x �→
π, y �→ π′], seg(τ)〉 in which the variable assignment is annotated.
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Corollary 1. Let φ be a closed MSO formula for tots in TOTΣ with bounded
gap degree. Then the following term language { term(τ) ∈ TΣ | τ |= φ } is regular
as well as { term(τ) ∗ [x �→ α(x), y �→ α(y)] ∈ TΣ×2{x,y} | τ |= φ }.

Proof. The set L1 = { τ ∈ TOTΣ | τ |= φ } is an MSO defined set of tots over
Σ. Let A1 be an tree automaton over Δ that recognizes { s ∈ TΔ | sT ∈ L1 }
according to Theorem 4. The projection A1 to Σ recognizes { term(τ) ∈ TΣ | τ ∈
L1 } as required, where the rules of the projected automaton B1 are as follows:

〈σ, ψ〉(p1, . . . , pm) → p ∈ Rules(A1)
σ(〈p1, ψ1〉, . . . , 〈pm, ψm〉) → 〈p, ψ〉 ∈ Rules(B1)

For the second statement, let L2 = { τ ∗ [x �→ α(x), y �→ α(y)] ∈ TOTΣ×2{x,y} |
τ, α |= φ ∧ x ( y } and automaton A2 recognize { s ∈ TΔ×2{x,y} | sT ∈ L2 }
according to Theorem 4. The projection A2 to Σ × 2{x,y} recognizes the second
term language of the corollary { term(τ) ∗ [x �→ α(x), y �→ α(y)] ∈ TΣ×2{x,y} |
τ, α |= φ∧ x ( y) }, where the projection automaton B2 has the following rules:

〈〈σ, ψ〉, V 〉(p1, . . . , pm) → p ∈ Rules(A2)
〈σ, V 〉(〈p1, ψ1〉, . . . , 〈pn, ψm〉) → 〈p, ψ〉 ∈ Rules(B2)

Final remark. We have shown that the MSO satisfiability problem for tots with
bounded gap-degree is decidable, while the general case is undecidable. A ques-
tion that we need to leave unanswered for now is whether the first-order satisfi-
ability problem of general tots is decidable in contrast to the case of MSO.
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Abstract. Orthogonal diagrams represent decompositions of isometries of �n

into symmetries and rotations. Some convergent (that is noetherian and confluent)
rewrite system for this structure was introduced by the first author. One of the
rules is similar to Yang-Baxter equation. It involves a map h : ]0� �[3

� ]0� �[3.
In order to obtain the algebraic properties of h, we study the confluence of crit-

ical peaks (or critical pairs) for our rewrite system. For that purpose, we introduce
parametric diagrams describing the calculation of angles of rotations generated
by rewriting. In particular, one of those properties is related to the tetrahedron
equation (also called Zamolodchikov equation).

Keywords: critical pair, diagram rewriting, orthogonal matrix, Zamolodchikov.

1 Introduction

Diagrams are widely used for computation in various fields of mathematics and physics,
such as category theory, knot theory, proof theory, quantum electrodynamics, relativity.
Formally, a diagram is an element of the free 2-monoid (or strict monoidal category)
generated by some 2-computad (or 2-polygraph). See for instance [Str76] or [Bur93].
See also [Gui06b] for an application of 3-polygraphs to proof theory.

Typical examples are boolean circuits, which are interpreted in the category of sets
with cartesian product, and quantum circuits, which are interpreted in the category of
(complex) vector spaces with tensor product. Here, we consider orthogonal diagrams,
which are interpreted in the category of (real) vector spaces with direct sum.

The starting point of our study is Euler decomposition of 3-dimensional rotations,
which can be generalized to a canonical decomposition of n-dimensional isometries.
This decomposition is similar to the well-known decomposition of permutations into
transpositions of type (i i�1), and it is also related to the decomposition of invertible
matrices into elementary ones, which is given by Gauss algorithm. See [Laf03].

It happens that our canonical decompositions are the normal forms for a convergent
rewrite system. In that case, confluence follows immediately from the uniqueness of our
decomposition. Nevertheless, it makes sense to study the confluence of critical peaks.
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informatiques (INVAL, ANR-05-BLAN-0267).

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 232–245, 2008.
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Indeed, one of our rules is not given by explicit formulas. In fact, such formulas exist,
but they are not very nice. Moreover, they define some operation h : ]0� �[3 � ]0� �[3,
for which diagrams are more suitable than formulas.

The confluence of our critical peaks yields identities between parametric diagrams.
Such a parametric diagram is interpreted by some partial map � : ]0� �[p � ]0� �[q.
Therefore, we get an axiomatic description of h. We do not know whether h is uniquely
determined by those identities.

It is important to notice that diagram rewriting is more complicated than word or
term rewriting. Because of the interchange law, which expresses an essential property
of parallel composition, a finite rewrite system may generate infinitely many conflicts.
It happens that, in certain cases, this infinity of conflicts can be reduced to a finite list.
See [Laf03] for such examples. See also [Gui06a] for a study of termination in the
framework of diagram rewriting.

Originally, this study was motivated by the following question: What is the algebraic
theory of quantum circuits? Those circuits are built with unary and binary gates. There
are two kinds of unary gates, which are interpreted by the following unitary matrices:�

cos� � sin�
sin� cos�

�
�

�
ei� 0
0 e�i�

�
�

These matrices satisfy identities which are similar to those for 3-dimensional rota-
tions. See [Ran07]. This corresponds to a well-known relation between groups SU2

and O3.
Of course, the two theories are of di�erent natures: In the case of quantum circuits,

parallel composition corresponds to tensor product�, whereas in the case of orthogonal
diagrams, it corresponds to direct sum �. Therefore, we cannot ensure that our study
of orthogonal diagrams will help us to understand the algebraic theory of quantum
circuits.

Here are some other motivations:

– There are potential applications in physics or in robotics.
– Orthogonal matrices play a central role in mathematics, and they provide a nice

example of diagram rewriting system.
– There are interesting connections between rewriting and homology, where critical

peaks play a crucial role. See [Laf07]. This should extend to diagram rewriting.

2 Rotations of 3

The matrix of an isometry is an orthogonal matrix. Such a matrix has determinant �1.
If it is 1, the isometry is a rotation. In particular, the following matrices correspond to
rotations of respective axes Ox and Oz in �3:

Rx
� �

����������
1 0 0
0 cos� � sin�
0 sin� cos�

���������� � Rz
� �

����������
cos� � sin� 0
sin� cos� 0

0 0 1

���������� �

R
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Theorem 1. (Euler angles)
Any 3-dimensional rotation matrix can be decomposed as follows: R � Rx

�Rz
�
Rx
�S where

�� �� �� � [0� �[ and S is the identity or an axial symmetry. Moreover, this decomposition
is unique if the second angle is nonzero. Otherwise, the decomposition reduces to Rx

�S .

Proof. Consider a rotation matrix R �

����������
a � �
b � �
c � �

����������.

– Let � � [0� �[ be the angle between vectors

�
�1
0

�
and

�
b
c

�
. Then R � Rx

�

����������
a � �

b� � �

0 � �

����������.

– Similarly, we get � � [0� �[ such that R � Rx
�Rz

�

����������
u 0 0
0 � �
0 � �

���������� with u � �1.

– Finally, we get � � [0� �[ such that R � Rx
�R

z
�
Rx
�

����������
u 0 0
0 v 0
0 0 w

���������� with u� v�w � �1.

Moreover uvw � det R � 1. Hence the last matrix S is an axial symmetry. If b � c � 0,
the first two steps are skipped. Q.E.D.

This decomposition is called the (left) canonical decomposition of R. It is standard if
�� �� � � 0 and S � Id. In that case, �� �� � are called the Euler angles of the rotation.

By exchanging Ox and Oz, we get the notions of right canonical decomposition and
of right standard decomposition.

Lemma 1. The canonical decomposition of a rotation matrix is standard if and only if
its lower left coeÆcient and its upper right coeÆcient are positive.

Proof. The decomposition is standard if and only if �� �� � � 0 and u � v � w � 1.
Moreover, the lower left coeÆcient a and the upper right coeÆcient b are:

a � u sin � sin ��
b � w sin � sin��

Since �� �� � � [0� �[, we have a� b � 0 if and only if �� �� � � 0, and u � w � 1. Since
uvw � det R � 1, this means that the decomposition is standard. Q.E.D.

There is a similar lemma for the right canonical decomposition. Hence, we get:

Corollary 1. The left canonical decomposition of a rotation matrix is standard if and
only if its right canonical decomposition is standard.
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Notation: We write �� �� � � ��� ��� �� whenever the standard right decomposition with
angles �� �� � corresponds to the left decomposition with angles ��� ��� ��.

3 Orthogonal Diagrams

We introduce orthogonal diagrams. A diagram on n wires is interpreted as an isometry
of �n

� ��� � ��� or, equivalently, as an orthogonal n	n matrix. Diagrams are oriented
in the following way: inputs at the top and outputs at the bottom.

There are two kinds of gates, which represent isometries in low dimension:

opposite gate rotation gate

�

for � � ]0� �[

The first one is interpreted by scalar �1 and the second one by the following matrix:

R� �

�
cos� � sin�
sin� cos�

�
�

Compositions of diagrams are interpreted as follows:

– Let A and B be diagrams respectively with n and m wires, interpreted by orthogonal
matrices MA and MB. Their parallel composition is the following diagram:

� � �

� � �

A B

� � �

� � �

C

It is interpreted by the matrix MC � MA � MB �

�
MA 0
0 MB

�
.

– If n � m, the sequential composition of A and B is the following diagram:

B

� � �

A

� � �

C

� � �

It is interpreted by the matrix MC � MAMB (corresponding to B followed by A).
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Remark: The identity on � is represented by a wire. Hence, the matrix Idi � MA � Id j

is represented by the following diagram:

� � �
i � � �

� � �

� � �
j

A

Definition 1. Canonical diagrams are defined by induction on the number of wires:

– A canonical diagram on 1 wire is:

or

– If n � 0, the general form of a canonical diagram on n wires is given in Figure 1,
where C1 and Cn�1 are canonical diagrams, and 0 
 k 
 n � 1.

Theorem 2. Any isometry of �n can be represented by a unique canonical diagram.

Proof. By induction on n, using the same method as for Theorem 1. Q.E.D.

Note that, even for n � 3, this result is more general than Theorem 1, since it applies to
isometries, not only to rotations.

Remark: A canonical diagram contains no sub-diagram of the following form:

�

�

� �

�

�

�

or or oror

In fact, the converse holds: it is a consequence of Lemma 4, which is proved later.
We consider the rewrite system � given in Figure 2. Note that the left members of

those rewrite rules are the above diagrams.

Lemma 2. If a diagram D reduces to D�, then D and D� have the same interpretation.

Proof. It is obvious for the first rule. The next cases are checked by easy computation.
For instance: �

1 0
0 �1

� �
cos� � sin�
sin� cos�

�
�

�
cos(� � �) � sin(� � �)
sin(� � �) cos(� � �)

� �
�1 0
0 1

�
�

�
cos(� � �) � sin(� � �)
sin(� � �) cos(� � �)

� �
cos� � sin�
sin� cos�

�
�

�
�1 0
0 �1

�
�
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�
cos � � sin �
sin � cos �

� �
cos� � sin�
sin� cos�

�
�

�
cos(� � �) � sin(� � �)
sin(� � �) cos(� � �)

�
�

For the last rule, this holds by definition of �. Q.E.D.

Cn�1C1
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Fig. 1. General form of a canonical diagram
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Fig. 2. Rules for orthogonal diagrams

We say that a gate B is immediately above a gate A if an output of B is connected to an
input of A. By transitive closure, we get the notion of gate above A.
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gates above A

B

A

B

A

gate immediately above A

For each diagram on n wires we define a vector (p1� � � � � pn� q) as follows:

– pi is the number of occurrences of binary gates having an input on wire i;
– q � 
A��( f (A) � 1), where � is the set of occurrences of unary gates and f (A) is

the number of occurrences of binary gates above A.

For instance, f (A) � 3 and f (B) � 0 in the above diagram: The vector is (1� 2� 3� 2� 5).

Lemma 3. � is noetherian.

Proof. The left lexicographic order on vectors defines a termination ordering. Q.E.D.

Lemma 4. Every orthogonal diagram D reduces to a unique canonical diagram 	D.

Proof. By double induction on the number n of wires and the number m of gates.
If m � 0, then D is canonical. Otherwise, it consists of some diagram D� with n

wires and m � 1 gates, followed by some gate A. By induction hypothesis, D� reduces
to a canonical diagram 	D�. Hence, D reduces to 	D� followed by A.

Now there are several configurations, depending on the type and the position of A:

– if A is an unary gate, there are three cases: see Figure 3;
– if A is a binary gate, there are four cases: see Figure 4.

After reduction, we obtain a new diagram, where some unary gate may appear just
below C1 and some (unary or binary) gate may appear just below Cn�1. The first one
can always be eliminated using the first rule, and the second one can be eliminated by
applying the induction hypothesis for n � 1 wires.

Uniqueness follows from Theorem 2 and Lemma 2. Q.E.D.

To sum up, we have proved the following result:

Theorem 3. � is convergent. In other words, it is noetherian and confluent.

4 Critical Peaks

We consider an abstract version � of �, where ]0� �[ is replaced by an abstract set P.
For that purpose, we need some partition P2

� �0  ��  �� and four maps:

f : P � P� g� : �� � P� g� : �� � P� h : P3 � P3�
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Fig. 3. Configurations for a unary gate
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Fig. 5. Critical peaks

Notation: We write � � � if (�� �) � �0, � � � if (�� �) � ��, and � � � if (�� �) � ��.
The gates are the same as for �, except that parameters belong to P. We have one

rule in dimension 1, five in dimension 2, and one in dimension 3:

�
�

� f (�)

�

�

�

if � � �

��

��

���

�
�

�

�

�

�

�

�

�
g�(�� �)

if � � � if � � �

�
� f (�)

if (��� ��� ��) � h(�� �� �)

g�(�� �)
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Note that the system � corresponds to the particular case where P � ]0� �[ and:

� � � if � � � � �� � � � if � � � 	 �� � � � if � � � � ��

f (�) � � � �� g�(�� �) � � � �� g�(�� �) � � � � � ��

h(�� �� �) � (��� ��� ��) if (�� �� �) � (��� ��� ��)�

The question is: what are the abstract properties of those maps that make � confluent?
Those abstract properties will be expressed by means of parametric diagrams, which
are interpreted as partial maps corresponding to calculations on parameters. Those new
diagrams are built with the following gates:

f
g� g� h

The first one is interpreted by the predicate � � �. The other ones are interpreted by the
corresponding (partial) maps. We shall omit labels in parametric diagrams.

Note that � is noetherian by the same argument as for Lemma 3. Moreover, a dia-
gram is irreducible when it is canonical. See Figure 1.

Definition 2. A peak is given by two distinct (one-step) reductions of the same diagram.

For instance, the peaks of Figure 5 are symbolized by diagrams with circled redexes.

Theorem 4. The following statements are equivalent:

1. � is confluent;
2. the peaks of Figure 5 are confluent;
3. the maps f , g�, g�, and h satisfy the identities of Figures 7 and 8.

Proof. The peaks of Figure 5 are called critical peaks.
Clearly, the confluence of � implies the confluence of all critical peaks. Conversely,

assume D reduces in one step to distinct diagrams. If the two rules apply to disjoint
sub-diagrams of D, then the peak is trivially confluent. Otherwise, we have an overlap
of redexes and there are two cases:

– if at least one of the rules is in dimension 1 or 2, the conflict appears in Figure 5;
– if both rules are in dimension 3, we get a global conflict of the following form:

� � �

� � �

C
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Fig. 6. Construction of parametric diagrams (three examples)
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Fig. 7. Parametric identities 1

Here, C stands for an arbitrary diagram. Although C is not involved in the reductions,
it cannot be eliminated. In fact, it suÆces to consider the cases where C is canonical.
Then, we use interchange to reduce the study to the following peaks:

The first two peaks appear in Figure 5. Finally, the third case contains a smaller peak,
and similarly for the last one. Hence, they can be omitted. See appendix A of [Laf03].
So we have 1 � 2.
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Fig. 8. Parametric identities 2 (the three examples of figure 6 are circled)

Now, assume that all peaks of Figure 5 are confluent. In each case, we get two re-
ductions leading to the same diagram. Each reduction yields a parametric diagram rep-
resenting calculation on parameters, and both must give the same result. Hence, we get
an identity between the two parametric diagrams.
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Three examples are given in Figure 6: In each case, calculations have been drawn
over reductions to show how the corresponding parametric diagrams are built. There is
one critical peak in dimension 1 which yields a trivial identity between empty diagrams.
Moreover, some critical peaks in dimension 2 yield several identities because there are
several cases to consider according to the conditions satisfied by the parameters.

By a careful analysis, we get the list of identities of Figures 7 and 8. Conversely, if
those identities are satisfied, then all critical peaks are confluent. So we have
2 � 3. Q.E.D.

5 Conclusion

The identities of Figure 7 are those which do not involve h. In the case of orthogonal
diagrams, they are trivially satisfied. For instance, the first one says that � is associative.
The second one is pointless, because if we assume that � � � � �, then both sides of the
identity are undefined, since for instance, we cannot have � � � � � 	 � and � � � � �.

Hence, we are mainly interested in the identities of Figure 8, which express the
algebraic properties of h. For instance, the last one comes from the critical peak in
dimension 4. The confluence of this critical peak, which is also the last example of
Figure 6, is strongly related to Zamolodchikov equation. See [Cra04] or [Str95].

There are many identities of Figure 8. In the future, we plan to reduce this list by
using undirected parametric diagrams, which represent predicates rather than partial
maps.
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[Ran07] Rannou, P.: Théorie algébrique des circuits quantiques, circuits orthogonaux, et cir-
cuits paramétriques. Master thesis (2007)

[Str76] Street, R.: Limits indexed by category-valued 2-functors. Journal of Pure and Applied
Algebra 8, 149–181 (1976)

[Str95] Street, R.: Higher categories, strings, cubes and simplex equations. Applied Categori-
cal Structures 3, 29–77 & 303 (1995)



Nominal Unification

from a Higher-Order Perspective�

Jordi Levy1 and Mateu Villaret2

1 Artificial Intelligence Research Institute (IIIA),
Spanish Council for Scientific Research (CSIC), Barcelona, Spain

http://www.iiia.csic.es/~levy
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Abstract. Nominal Logic is an extension of first-order logic with equal-
ity, name-binding, name-swapping, and freshness of names. Contrarily to
higher-order logic, bound variables are treated as atoms, and only free
variables are proper unknowns in nominal unification. This allows “vari-
able capture”, breaking a fundamental principle of lambda-calculus. De-
spite this difference, nominal unification can be seen from a higher-order
perspective. From this view, we show that nominal unification can be
reduced to a particular fragment of higher-order unification problems:
higher-order patterns unification. This reduction proves that nominal
unification can be decided in quadratic deterministic time.

1 Introduction

Nominal Logic is a version of first-order many-sorted logic with equality and
mechanisms for renaming via name-swapping, for name-binding, and for fresh-
ness of names. It also provides a new-quantifier [GP99], to modeling name
generation and locality. It was introduced at the beginning of this decade by
Pitts [Pit01,Pit03]. These first works have inspired a sequel of papers where bind-
ings and freshness are introduced in other topics, like equational logic [CP07],
rewriting [FG05,FG07], unification [UPG03,UPG04], Prolog [CU04,UC05].

This paper is concerned with Nominal Unification [UPG03,UPG04], an exten-
sion of first-order unification where terms can contain binders and unification is
performed modulo α-equivalence. Moreover, (first-order) variables (unknowns)
are allowed to “capture” bound variables (atoms). [UPG03,UPG04] describe a
sound and complete, but inefficient (exponential), algorithm for nominal unifi-
cation. Later this algorithm was extended to deal with the new-quantifier and
locality in [FG05]. In [CF07] there is a description of a direct but exponential
implementation in Maude, and a polynomial implementation in OCAML based
on termgraphs.
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The use of α-equivalence and binders in nominal logic immediately suggests
to view nominal unification from a higher-order perspective, the one that we
adopt in this paper. Some intuitions about this relation are already roughly
described in [UPG04]; and in [Che05] there is a reduction from higher-order
pattern unification to nominal unification (here we prove the opposite reduction).

The main benefit of nominal logic, compared to a higher-order logic, is that
it allows the use of binding and α-equivalence without the other difficulties
associated with the λ-calculus. In particular, with respect to unification, we
have that nominal unification is unitary (most general unifiers are unique) and
decidable [UPG03,UPG04], whereas higher-order unification is undecidable and
infinitary [Luc72,Gol81,Lev98,LV00].

In this paper we fully develop the study of nominal unification from the
higher-order view. We show that full higher-order unification is not needed but
only a fragment: Higher-order Pattern Unification [Mil91,Nip93,Qia96]. This
subclass of problems were proposed by Miller [Mil91]. Contrarily to general
higher-order unification, higher-order pattern unification is decidable and uni-
tary [Mil91,Nip93]. Moreover, the problem can be solved in linear time [Qia96].
All this will lead us to show how to reduce nominal unification to higher-order
pattern unification, and to conclude its decidability in quadratic time as well as
the uniqueness of most general unifiers.

From a higher-order perspective, nominal unification can be seen as a variant
of higher-order unification where:

1. variables are all first-order typed, and constants are of order at most three
(therefore, nominal unification is a fragment of second-order unification),

2. unification is performed modulo α-equivalence, instead of the usual α and
β-equivalence,

3. instances of variables (unknowns) are allowed to capture bound variables
(atoms), contrarily to the standard higher-order definition, and

4. apart from the usual term-equality predicate, we use a “freshness” predicate
a# t with the intended meaning: bound variable a does not occur free in the
instance of term t.

The first requirement does not suppose a difficulty. On the contrary, in the reduc-
tion to higher-order unification we will add capturable variables as arguments of
free variables. The fact that original variables do not have arguments will allow
us to reduce nominal unification to higher-order pattern unification.

The second requirement is not a difficulty, either. As all variables are first-
order typed, their instantiation can not introduce β-redexes, and β-reduction is
not really necessary.

The third requirement is the key point that makes nominal unification an in-
teresting subject of research. Variable capture is always a trouble spot. Roughly
speaking, the main idea of this paper is to translate (first-order) nominal vari-
ables to higher-order variables with the list of bound variables that it can “cap-
ture” as arguments. This implies that the arguments of free variables will be
lists of pairwise distinct bound variables, hence higher-order patterns.
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The fourth requirement can also be overcome by translating freshness predi-
cates into equality predicates.

We structure the paper as follows: after some preliminaries in Section 2, in
Section 3, we illustrate by examples the main ideas of the reduction at the same
time that we show the main features of nominal unification. In Section 4 we
show how to translate a nominal unification problem into a higher-order patterns
unification problem, and we prove that this translation is effectively a quadratic
time reduction in Section 5. In Section 6 we conclude.

2 Preliminaries

2.1 Nominal Unification

In nominal logic we talk about variables and atoms. Only variables may be in-
stantiated, and only atoms may be bounded. They roughly correspond to the
higher-order notions of free and bound variables, respectively, but are considered
as completely different entities. Therefore, contrarily to the higher-order perspec-
tive, the distinction between free and bound variables does not only depend on
the occurrences, i.e. in the existence of a binder above them.

In nominal signatures we have sorts of atoms (typically ν) and sorts of data
(typically δ) as disjoint sets. Atoms (typically a, b, . . .) have one of the sorts of
atoms. Variables, also called unknowns, (typically X,Y, . . .) have a sort of atom
or sort of data, i.e. of the form ν | δ. Nominal function symbols (typically f, g, . . .)
have an arity of the form τ → δ, where δ is a sort of data and τ is a sort given
by the grammar τ ::= ν | δ | τ×τ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ .

Nominal terms (typically t, u, . . .) are given by the grammar:

t ::= 〈t1, t2〉 | ft | a | a.t |π ·X
where f is a function symbol, a is an atom, π is a permutation (finite list of
swappings), and X is a variable. They are called respectively pairs, application,
atom, abstraction and suspension. For simplicity, we do not consider the unit
value.

A swapping (a b) is a pair of atoms of the same sort. The effect of a swapping
over an atom is defined by (a b) · a = b and (a b) · b = a and (a b) · c = c, when
c �= a, b. For the rest of terms the extension is straightforward, in particular,
(a b) · (c.t) =

(
(a b) ·c

)
.
(
(a b) · t

)
. A permutation is a (possibly empty) sequence of

swappings. Its effect is defined by (a1 b1) . . . (an bn)·t = (a1 b1)·
(
(a2 b2) . . . (an bn)·

t
)
. Notice that every permutation π naturally defines a bijective function from

the set of atoms to the sets of atoms, that we will also represent as π. Suspensions
are uses of variables with a permutation of atoms waiting to be applied once the
variable is instantiated.

A nominal unification problem (typically P ) is a set of equations of the form
t

?≈ u or a# ?t. A freshness environment (typically ∇) is a list of pairs a#X
stating that the instantiation of X cannot capture a.

A solution of a nominal problem is given by a substitution σ and a freshness
environment∇. Substitutions are like in first-order logic, and allow atom capture,
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for instance [X �→ a]a.X = a.a. Formally, the pair 〈∇, σ〉 solves P if, ∇ .
a#σ(t), for equations a# ?t ∈ P , and ∇ . σ(t) ≈ σ(u), for equations t ?≈ u ∈ P .
The predicates ≈ and # are defined in [UPG03,UPG04] by means of a theory.
Their intended meanings are:∇ . a# t holds if, for every substitution σ avoiding
the atom captures forbidden by ∇, a is not free in σ(t); ∇ . t ≈ u holds if, for
every substitution σ avoiding the atom captures forbidden by ∇, t and u are
α-convertible.

2.2 Higher-Order Pattern Unification

In higher-order signatures we have types constructed from a set of basic types
(typically α, . . .) using the grammar τ ::= α | τ → τ , where → is associative to
the right).

λ-terms are built using the grammar t ::= x | c |λx.t | t1 t2, where x is a variable
and c is a constant. Other standard concepts of λ-calculus, like free variables
(noted FV ), bound and free occurrences of variables, α-conversion, β-reduction,
η-long β-normal form, substitutions, most general unifiers, etc. are defined as
usual (see [Dow01]). The domain of a substitution σ is denoted by Dom(σ), and
we say that X occurs in σ if X occurs free in σ(Y ) for some Y ∈ Dom(σ).

A higher-order pattern is a simply typed λ-term where, when written in nor-
mal form, all free variable occurrences are applied to lists of pairwise distinct
bound variables. Higher-order pattern unification is the problem of deciding if
there exists a unifier for a set of equations t ?= u between higher-order patterns.
The most general unifiers of a pattern unification problem is unique (up to free
variable renaming). Moreover, it instantiates variables by higher-order patterns.
There is an algorithm that finds these unifiers, if exist, in linear time [Qia96].

3 Four Examples

In order to describe the reduction of nominal unification to higher-order pattern
unification, we will use the unification problems proposed in [UPG03,UPG04] as
a quiz.

Example 1. The nominal equation

a.b.〈X1, b〉
?≈ b.a.〈a,X1〉

has no nominal unifiers. Notice that, although unification is performed modulo
α-equivalence, as far as we allow atom capture, we can not α-convert terms
before instantiating them. Therefore, this problem is not equivalent to

a.b.〈X1, b〉
?≈ a.b.〈b,X1〉

which is solvable, and must be α-converted as

a.b.〈X1, b〉
?≈ a.b.〈b, (a b) ·X1〉

Recall that (a b) · X1 means that, after instantiating X1 with a term that
possibly contain a or b, we have to exchange these variables.
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According to the ideas exposed in the introduction, we have to replace every
occurrence of X1 by X ′

1 a
′ b′, since a, b is the list of atoms (bound variables) that

can be captured. We get1:

λa′.λb′.〈X ′
1 a

′ b′ , b′〉 ?= λb′.λa′.〈a′ , X ′
1 a

′ b′〉
Since this is a higher-order unification problem, we can α-convert one of the
sides of the equation and get:

λa′.λb′.〈X ′
1 a

′ b′ , b′ 〉 ?= λa′.λb′.〈b′ , X ′
1 b

′ a′〉
which is unsolvable, like the original nominal equation.

Example 2. The nominal equation

a.b.〈X2, b〉
?≈ b.a.〈a,X3〉

is solvable. Its translation is

λa′.λb′.〈X ′
2 a

′ b′ , b′〉 ?= λb′.λa′.〈a′ , X ′
3 a

′ b′〉
The most general unifier of this higher-order pattern unification problem is

X ′
2 �→ λx.λy.y

X ′
3 �→ λx.λy.x

Now, taking into account that the first argument corresponds to the bound
variable a′, and the second one to b′, we can reconstruct the most general nominal
unifier as:

X2 �→ b
X3 �→ a

Example 3. In some cases, there are interrelationships between the instances of
variables that make reconstruction of unifiers more difficult. This is shown with
the following nominal equation:

a.b.〈b,X4〉
?≈ b.a.〈a,X5〉

that is solvable. Its translation results on:

λa′.λb′.〈b′ , X ′
4 a

′ b′〉 ?= λb′.λa′.〈a′ , X ′
5 a

′ b′〉
and its most general unifier is:2

X ′
4 �→ λx.λy.X ′

5 y x

This higher-order unifier can be used to reconstruct the nominal unifier

X4 �→ (a b) ·X5

The swapping (a b) comes from the fact that the arguments of X ′
5 and the

lambda abstractions in front have a different order.

1 In this example we allow the use of the binary constant 〈 , 〉 in λ-calculus for pairs.
Later on we will describe formally the translation algorithm and how pairs are really
translated.

2 The unifier X ′
5 �→ λx.λy.X ′

4 y x is equivalent modulo variable renaming. In this case
we obtain the also equivalent nominal unifier X5 �→ (a b) ·X4.
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Example 4. The solution of a nominal unification problem is not just a substitu-
tion, but a pair (∇, σ) where σ is a substitution and ∇ is a freshness environment
imposing some restrictions on the atoms that can occur free in the fresh variables
introduced by σ. The nominal equation

a.b.〈b,X6〉
?≈ a.a.〈a,X7〉

has as solution

σ = [X6 �→ (b a) ·X7]
∇ = {b#X7}

where the freshness environment is not empty and requires instances of X7 to
not contain (free) occurrences of b. Let us see how this is reflected when we
translate the problem into a higher unification problem. The translation of the
equation using the translation algorithm results on:

λa′.λb′.〈b′ , X ′
6 a

′ b′〉 ?= λa′.λa′.〈a′ , X ′
7 a

′ b′〉 (1)

After a convenient α-conversion we get

λa′.λc′.〈c′ , X ′
6 a

′ c′〉 ?= λa′.λc′.〈c′ , X ′
7 c

′ b′〉
The most general unifier is again unique:

X ′
6 �→ λx.λy.X8 y b

′

X ′
7 �→ λx.λy.X8 x y

Nevertheless, in this case we cannot reconstruct the nominal unifier. Moreover,
by instantiating the free variable b′, we get other (non-most general) higher-order
unifier without nominal counterpart. The translation does not work in this case
because b′ occurs free in the right hand side of (1). We translate both atoms
and unknowns as variables. Occurrences of unknowns become free occurrences
of variables, and occurrences of atoms, if are bounded, become bound occur-
rences of variables. Therefore, in most cases, after the translation the distinction
atom/unknown become a distinction free/bound variable. However, if atoms are
not bounded, as in this case, they are translated as free variables, hence are
instantiable, whereas atoms are not instantiable.

To avoid this problem, we have to ensure that any occurrence of an atom is
translated as a bound variable occurrence. This is easily achievable if we add
binders in front of both sides of the equation. Therefore, the correct translation
of this problem is:

λa′.λb′.λa′.λb′.〈b′ , X ′
6 a

′ b′〉 ?= λa′.λb′.λa′.λa′.〈a′ , X ′
7 a

′ b′〉
where two new binder λa′.λb′ have been introduced in front of both sides of the
equation. The most general unifier is now:

X ′
6 �→ λx.λy.X ′

8 y
X ′

7 �→ λx.λy.X ′
8 x

This can be used to reconstruct the nominal substitution:
X6 �→ (a b) ·X8

X7 �→ X8
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As far as X ′
8 x is translated back as X8, and X ′

8 x does not uses the second
argument (the one corresponding to b), we have to add a supplementary condi-
tion ensuring that X8 does not contain free occurrences of b. This results on the
freshness environment {b#X8}. Then, X ′

8 y is translated back as (a b) ·X8.

4 The Translation Algorithm

In this Section we formalize the translation algorithm. We transform nominal
unification problems into higher-order unification problems. Both kinds of prob-
lems are expressed using distinct kinds of signatures. In nominal unification we
have sorts of atoms and sorts of data. In higher-order this distinction is no
longer necessary, and we will have a base type (typically ν′ and δ′) for every sort
of atoms ν or sort of data δ. We give a sort to types translation function that
allows us to translate any sort into a type.

Definition 1. The translation function is defined on sorts inductively as fol-
lows.

�δ� = δ′

�ν� = ν′

�τ1 × τ2� = (�τ1� → �τ2� → %) → %
�τ1 → τ2� = �τ1� → �τ2�
�〈ν〉τ� = ν′ → �τ�

where %, δ′ and ν′ are base types.

Remark 1. The translation function for terms depends on all the atoms occur-
ring in the nominal unification problem. We assume that there exists a fixed,
finite and ordered list of atoms 〈a1, . . . , an〉 used in the problem. This seems to
contradict the assumption of a countably infinite set of atoms for every sort.
However, this does not imply a loss of generality as far as every nominal uni-
fication problem only contains a finite set of atoms, and its solutions can be
expressed without adding new atoms (see Lemma 5). From now on, we will
consider this list given and fixed.

For every function symbol f, . . ., we will use a constant with name f ′, . . .. Nom-
inal atoms a, b . . . are translated as (bound) variables, with the names a′, b′, . . ..
The lack of distinction between sorts of atoms and data, after the translation,
forces us to ensure that the translation of every atom occurrence will correspond
to a bounded occurrence of variable. For every variable (unknown) X,Y, . . ., we
will use a (free) variable with name X ′, Y ′, . . .. Trivially, atom abstractions a.t
are translated as lambda abstractions, and data f t as applications. The trans-
lation of suspensions π · X is more complicated, as far as it gets rid of atom
capture.

Definition 2. Let 〈a1, . . . , an〉 be an ordered list of atoms occurring in the nom-
inal unification problem. The translation function from nominal terms with a
freshness environments ∇ into λ-terms is defined inductively as follows.
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�〈t1, t2〉�∇ = λp.p �t1�∇ �t2�∇
�a�∇ = a′

�f t�∇ = f ′ �t�∇
�a.t�∇ = λa′.�t�∇
�π ·X�∇ = X ′ (π · b1)′ . . . (π · bm)′ where bj #X �∈ ∇, for j = 1, . . . ,m

where, if a : ν is an atom, then a′ : �ν� is a bound variable, if f : τ is a
function symbol, then f ′ : �τ� is a constant, and if X : τ is a variable, then
〈b1, . . . , bm〉 ⊆ 〈a1, . . . , an〉 is the sublist of atoms such that bj #X �∈ ∇ and
X ′ : �ν1� → . . .→ �νm� → �τ� is a free variable and bj : νj.3

Lemma 1. Let ∇ be a freshness environment.
For every nominal term t of sort τ , the λ-term �t�∇ has type �τ�.
Therefore, �t�∇ is a well-typed λ-term, for every nominal term t.

Proof. The proof is simple by structural induction on t. The only point that mer-
its a more detailed explanation is the case of suspensions. Since ai : νi, X : τ ,
and X ′ : �νi1� → · · · → �νim� → �τ�, we have �X�∇ = X ′�ai1�∇ . . . �aim�∇ : �τ�.
When X is affected by a swapping (aij aik

) we also have �(aij aik
) · X�∇ =

X ′�ai1�∇ . . . �aij−1 �∇�aik
�∇�aij+1�∇ . . . �aik−1�∇�aij �∇�aik+1�∇ . . . �aim�∇ : �τ�

because the suspension is not a valid nominal term unless aij and aik
belong to

the same sort. The same applies to arbitrary permutations. � 

Example 5. Given the nominal term a.b.c.(c a)(a b) ·X , after applying the sub-
stitution [X �→ 〈〈a, b〉, c〉] we get the instantiation a.b.c.〈〈b, c〉, a〉. Let 〈a, b, c〉
be the (ordered) list of atoms of our problem. The translation of the term and
its instantiation results into λa′.λb′.λc′.X ′b′c′a′ and λa′.λb′.λc′.λp.p(λp.p b′c′)a′,
respectively. There is a λ-substitution [X ′ �→ λa′.λb′.λc′.λp.p(λp.p a′b′)c′] that
when applied to the translation of the original term results into the translation
of its instantiation. Graphically this can be represented as the commutation of
the following diagram, and is proved in general in Lemma 4.

a.b.c.(c a)(a b) ·X [X �→ 〈〈a, b〉, c〉] � a.b.c.〈〈b, c〉, a〉

λa′.λb′.λc′.X ′b′c′a′

� �

� [X ′ �→ λa′.λb′.λc′.λp.p(λp.p a′b′)c′]� λa′.λb′.λc′.λp.p(λp.p b′c′)a′

� �

�

As we have said nominal unification problems contains two kinds of judgments:
freshness equations like a# ?t, and equality equations like t

?≈ u. Equality equa-
tions are trivially translated as higher-order unification problems, adding some
λ-bindings in front of both terms to ensure that all occurrences of atoms are
translated as bounded occurrences of variables. Freshness equations a# ?t are
translated as equations of the form Y

?≈ t where Y is a fresh variable that will
not be able to capture free occurrences of a.
3 Notice that bj and π · bj are of the same sort.
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Definition 3. Let 〈a1, . . . , an〉 be an ordered list of atoms occurring in the nom-
inal unification problem. The translation function is defined on nominal problems
inductively as follows

�{ai # ?t} ∪ P � = {λa′
1. . . . .λa′

n.Y ′a′
1 . . . a′

i−1 a′
i+1 . . . a′

n
?= λa′

1. . . . .λa′
n.�t�∅} ∪ �P �

�{t ?≈ u} ∪ P � = {λa′
1. . . . .λa′

n.�t�∅
?= λa′

1. . . . .λa′
n.�u�∅} ∪ �P �

where Y ′ is a fresh variable with the appropriate type.

Remark 2. Alternatively to Definition 3, we could decompose freshness equa-
tions into simple pieces until we get a freshness environment, and use it in the
translation of the equality equations. This would result into the following induc-
tive definition.

�{a # ?〈t1, t2〉} ∪ P � = �{a # ?t1, a# ?t2} ∪ P �

�{a # ?b} ∪ P � = �P � if a �= b

�{a # ?f t} ∪ P � = �{a # ?t} ∪ P �
�{a # ?b.t} ∪ P � = �{a # ?t} ∪ P � if a �= b

�{a # ?a.t} ∪ P � = �P �

�{a # ?π ·X} ∪ P � = �{π−1 · a# X} ∪ P �

�∇∪ P � = �P �∇ if for all {a # ?t} ∈ ∇, t is a variable

�{t ?≈ u} ∪ P �∇ = {λa′
1. . . . .λa′

n.�t�∇
?= λa′

1. . . . .λa′
n.�u�∇} ∪ �P �∇

However, in this case, the type of the free variables X ′ would depend on the
freshness equations, and we would have problems to define the translation of a
substitution that would have to instantiate such variables. Therefore, for sim-
plicity we opt for Definition 3.

Lemma 2. Given a nominal unification problem P , its translation �P � is a
higher-order pattern unification problem.
Moreover, the size of �P � is bounded by the square of the size of P .

Finally, we have to translate solutions of nominal unification problems.

Definition 4. Let 〈a1, . . . , an〉 be an ordered list of atoms occurring in the nom-
inal unification problem. The translation function is defined on solutions of nom-
inal unification problems inductively as follows.

�〈∇, σ〉� =
⋃

X∈Dom(σ)

[
X ′ �→ λa′

1. · · ·λa′
n.�σ(X)�∇

]

Remark 3. Notice that, if P contains freshness equations, then the set of free
variables of �P � is bigger than the set of unknowns in P (we have a new free
variable, called Y ′, for every freshness equation). However, σ and �〈∇, σ〉� have
equivalent domains. This would imply that, if 〈∇, σ〉 is a solution of P , we will
have to extend �〈∇, σ〉�, by instantiating also the variables Y ′, to get a unifier of
�P �. If we had translated nominal unification problems as described in Remark 2,
we would obtain a pattern unification problem with equivalent sets of variables.
But, we would lose simplicity in other proofs.

We start by proving the following two technical lemmas.
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Lemma 3. For any freshness environment ∇, nominal terms t, u, and atom a,
we have

1. ∇ . a# t if, and only if, a′ �∈ FV (�t�∇), and
2. ∇ . t ≈ u if, and only if, �t�∇ =α �u�∇.

Proof. The first statement can be proved by routine induction on t and its
translation. Notice that atoms are translated “nominally” into variables and
that the binding structure is also identically translated, hence, the freshness of an
atom a corresponds to the free occurrence of its variable counterpart a′. We here
only comment the case t = π ·X , in this case, �π ·X�∇ = X ′(π ·a1)′ . . . (π ·am)′,
where ai #X /∈ ∇, for any i ∈ {1..m}. Therefore, we can establish the following
sequence of equivalences∇ . a#π·X iff π−1·a#X ∈ ∇ iff π−1·a �∈ {a1, . . . , am}
iff a �∈ {π ·a1, . . . , π ·am} iff a′ �∈ FV (X ′(π ·a1)′ . . . (π ·am)′) iff a′ �∈ FV (�π ·X�).

The proof of the second statement can be done by induction on the equivalence
t ≈ u. We only comment the equivalence between suspensions: π · X ≈ π′ ·X .
Notice that, π ·X ≈ π′ ·X if, and only if, for all atoms a such that π · a �= π′ · a,
we have a#X ∈ ∇. This condition is equivalent to: the bound variables (π · a)′
and (π′ ·a)′ are passed as a parameter to X ′ in �π ·X�∇ and �π′ ·X�∇ only when
π · a = π′ · a. Finally, this condition is equivalent to �π ·X�∇ = �π′ ·X�∇. � 

Lemma 4. For any freshness environment ∇, nominal terms t, and nominal
substitution σ, we have �〈∇, σ〉�(�t�∅) = �σ(t)�∇.4

Proof. Again this lemma can be proved by structural induction on t. We only
sketch the suspension case. Let t = π ·X . We have the equalities:

�〈∇, σ〉�(�π ·X�∅) = [. . . , X ′ �→ λa′
1 . . . λa′

n . �σ(X)�∇, . . .](X ′(π · a1)
′ . . . (π · an)′)

= (λa′
1 . . . λa′

n . �σ(X)�∇)(π · a1)
′ . . . (π · an)′

= �[a1 �→ π · a1, . . . , an �→ π · an]σ(X)�∇
= �π · σ(X)�∇
= �σ(π ·X)�∇ � 

From these two lemmas we can prove the following result and corollary.

Theorem 1. For any freshness environment ∇, nominal unification problem P ,
and nominal substitution σ, we have that:
〈∇, σ〉 solves the nominal unification problem P , if, and only if, there exists

an extension of �〈∇, σ〉�, for the variables of �P � not occurring in P , that solves
the pattern unification problem �P �.

Proof. The pair 〈∇, σ〉 solves P iff

∇ . ai #σ(t) for all ai # ?t ∈ P

∇ . σ(t) ≈ σ(u) for all t ?≈ u ∈ P

By Lemma 3 this is equivalent to:

a′ �∈ FV (�σ(t)�∇) for all a# ?t ∈ P

�σ(t)�∇ =α �σ(u)�∇ for all t ?≈ u ∈ P

4 When we write = between λ-terms, we mean that they are αβη-equivalent, i.e. that
have the same η-long β-normal form.
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By Lemma 4 this is equivalent to:

a′
i �∈ FV (�〈∇, σ〉��t�∅) for all ai # ?t ∈ P

�〈∇, σ〉��t�∅ = �〈∇, σ〉��u�∅ for all t ?≈ u ∈ P

Since we avoid variable capture, this is equivalent to:[
Y ′ �→ λa′

1 . . . a′
i−1a

′
i+1 . . . a′

n.�〈∇, σ〉��t�∅

](
λa′

1 . . . a′
n.Y ′a′

1 . . . a′
i−1 a′

i+1 . . . a′
n

)
?=

?= �〈∇, σ〉�
(
λa′

1 . . . a′
n.�t�∅

)
for all ai # ?t ∈ P

�〈∇, σ〉�
(
λa′

1. . . . .λa′
n.�t�∅

)
?= �〈∇, σ〉�

(
λa′

1. . . . .λa′
n.�u�∅

)
for all t

?≈ u ∈ P

Finally, this means that the following extension solves �P �.

σ′ = �〈∇, σ〉� ∪
⋃
Y ′

[Y ′ �→ λa′
1. . . . .λa

′
i−1.λa

′
i+1. . . . .λa

′
n.�〈∇, σ〉��t�∅ ]

� 
Corollary 1. If the nominal unification problem P is solvable, then the higher-
order pattern unification problem �P � is solvable.

5 The Reverse Translation

Notice that Theorem 1 is not enough to prove that, if �P � is solvable, then P is
solvable. We still have to prove that if �P � is solvable, then for some solution σ′

of �P � we can build a nominal solution 〈∇, σ〉 of P . This is the main objective of
this section. Taking into account that �P � is a higher-order pattern unification
problem, and that these problems are unitary, we will prove something stronger:
if �P � is solvable, then �σ′�−1 is defined for some most general unifier σ′ of �P �.

In the following example we note that in the solution of pattern unification
problems it is important to save names of bound variables.

Example 6. Consider the nominal problem a.X
?≈ a.f (b.Y ). Its translation

is λa′.λb′.λa′.X ′ a′ b′ ?= λa′.λb′.λa′.f ′ (λb′.Y ′ a′ b′). An α-conversion results in
λa′.λb′.λc′.X ′ c′ b′ ?= λa′.λb′.λc′.f ′ (λd′.Y ′ c′ d′) and it shows that the param-
eters of X ′ and Y ′ are in fact different. A most general solution is [X ′ �→
λc′.λb′.f ′(λd′.Y ′ c′ d′)]. Since Y is translated as Y ′ a′ b′, we have to translate back
Y ′ c′ d′ as (a c)(d b) · Y . And, since [X �→ t] is translated as [X ′ �→ λa′.λb′.�t�∇],
we have to translate back [X ′ �→ λc′.λb′.�t�∇ as [X �→ (a c) · t]. Therefore, our
pattern unifier can be translated back as [X �→ (a c)·f(d.(a c)(d b)·Y )]. However,
the list of atoms is fixed as the list of atoms occurring in the problem, therefore,
we know how to translate a and b as a′ and b′ and vice versa, but we do not
know how to translate back c′ and d′ (here it is done introducing new atoms).

To avoid the problem discussed in the previous example, we will be cautious
with the α-conversions. Lemma 5 justifies why we can avoid the use of other
atoms but the ones occurring in the original nominal problem. Lemma 6 will be
also necessary, and also describes some properties of pattern unifiers.

Lemma 5. For any solvable pattern unification problem, there exists a most
general unifier that does not use other names and types for bound variables than
the ones already used in the problem.



Nominal Unification from a Higher-Order Perspective 257

Proof. It can be proved by inspection of the transformations rules in
[Mil91,Nip93], that describe a sound and complete algorithm for pattern unifica-
tion. These transformations introduce fresh variables and new lambda binders.
However, the names of the new bound variables can always be chosen to coincide
with names of already existing bound variables with the same type. � 

Lemma 6. For every pattern unification problem P and most general unifier σ,
if X occurs free in σ, then for every type of an argument of X, there exists a
variable Y in P with an argument of the same type, and there exists a variable
Z in P with the same return type as X.

Proof. Like for the previous lemma, we can analyze the transformations rules in
[Mil91,Nip93]. It can be seen that when we introduce a fresh variable with type
τ1 → . . . → τn → τ0, there exist already another variable with type τ ′

1 → . . . →
τ ′
m → τ ′

0, such that {τ1, . . . , τn} ⊆ {τ ′
1, . . . , τ

′
m} and τ0 = τ ′

0. The only exception
is in rigid-flexible pairs (imitation rule), where fresh variables not satisfying these
properties are introduced. But it is easy to see that they always disappear from
the solution. � 

Even using a solution of the higher-order pattern unification problem with a
restricted use of names of bound variables, we still have some freedom to select
the unifier �σ′�−1. This is reflected in the way we translate back applications of
free variables, i.e. in the definition of the list of variable indices LX′ for every
free variable X ′.

Definition 5. Let 〈a1, . . . , an〉 be the fixed list of atoms. For every free variable
X ′ : τ1 → . . . τm → τ0 we define the list of indexes of atoms LX′ = 〈i1, . . . im〉
such that aij has sort �τj�

−1, 5 for j = 1, . . . ,m, and we also define the corre-
sponding freshness environment ∇X′ = {ai #X | i �∈ LX′}.

Definition 6. Let 〈a1, . . . , an〉 be the fixed list of atoms. The back-translation
function is defined on λ-terms in η-long β-normal form as follows:

�λp. p t1 t2�
−1 = 〈�t1�−1, �t2�

−1〉 if p : τ1 → τ2 → %
�a′�−1 = a
�f ′ t�−1 = f �t�−1

�λa′.t�−1 = a . �t�−1 if a′ is base typed

�X ′ a′
j1
. . . a′

jm
�−1 =

(
ai1 · · · aim

aj1 · · · ajm

)
·X where LX′ = 〈i1, . . . im〉

and {aj1 , · · · , ajm} ⊆ {a1, . . . , an}
where a′ is a bound variable with name a, f ′ is the constant associated to the
function symbol f , either X ′ is the free variable associated to X, or if X ′ is a
fresh variable then X is a fresh unknown, and the permutation is supposed to be
decomposed in terms of transpositions (swappings).

5 Notice that Lemma 6 ensures that, even for the introduced fresh variables, for every
type τj there exists at least one atom aij satisfying aij : �τj�

−1. Notice also that for
every X ′, we freely choose one among many possible lists LX′ .
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Notice that the back-translation function is not defined for all λ-terms, even for
all higher-order patterns. In particular, �λx.t�−1 is not defined when x is not
base typed nor returns something of type %, or �x t�−1 is not defined when x is
a bound variable.

Definition 7. The back-translation function is defined on substitutions induc-
tively as follows.

�σ′�−1 =

〈 ⋃
X′∈Dom(σ′)

X′:ν′
1→...→ν′

n→δ′

[
X �→ �σ′(X ′) a′

1 . . . a
′
n�−1

]
,

⋃
Z′ occurs in σ′

∇Z′

〉

Notice that the back-translation only translates those instantiations affecting
variables with type ν′

1 → . . .→ ν′
n → δ′. When σ′ is a unifier of a problem �P �,

then it contains in Dom(σ′) variables X ′ associated to a nominal variable X ,
that satisfies this condition, and variables Y ′ resulting from the translation of
freshness equations, that do not satisfy the condition because they have type
ν′
1 → . . . → ν′

i−1 → ν′
i+1 → . . . → ν′

n → δ′. These second type of variables have
not back-translation and do not occur in the domain of �σ′�−1.

Example 7. The nominal unification problem

P = {a.a.X ?≈ c.a.X , a.b.X
?≈ b.a.(a b) ·X , a# ?X}

is translated as
�P � = { λa′.λb′.λc′.λa′.λa′. X ′ a′ b′ c′ ?= λa′.λb′.λc′.λc′.λa′. X ′ a′ b′ c′ ,

λa′.λb′.λc′.λa′.λb′. X ′ a′ b′ c′ ?= λa′.λb′.λc′.λb′.λa′. X ′ b′ a′ c′ ,
λa′.λb′.λc′. Y ′ b′ c′ ?= λa′.λb′.λc′. X ′ a′ b′ c′}

The pattern unifier is

σ′ = [X ′ �→ λa′.λb′.λc′. Z ′ b′ , Y ′ �→ λb′.λc′. Z ′ b′]

Fixed 〈a, b, c〉 as the fixed list of atoms, and taking LZ′ = 〈2〉, the nominal
solution is

〈∇, σ〉 = �σ′�−1 = 〈{a#Z, c#Z} , [X �→ Z]〉
They satisfy the relation

σ′ = �〈∇, σ〉� ∪ [Y ′ �→ λb′.λc′. Z ′ b′]

Notice that a and b are of the same sort. Therefore, we could take LZ′ = 〈1〉.
Then, we would obtain another “equivalent” nominal unifier:

〈∇, σ〉 = �σ′�−1 = 〈{b#Z, c#Z} , [X �→ (a b) · Z]〉

Lemma 7. For every λ-substitution σ′, if �σ′�−1 exists, then ��σ′�−1� is exten-
sible to σ′.

Proof. Straightforward from the definition of � � and � �−1. � 

Lemma 8. For every nominal unification problem P , if the pattern unification
problem �P � is solvable, then it has a most general unifier σ′ such that �σ′�−1 is
defined.
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Proof. By Lemma 5, there exists a most general unifier that does not use bound
variables with other names and types than the ones already used in the original
problem. This ensures that we can always translate back bound variables a′ as
the atom with the same name a. For the same reason, in all λ-expressions λx.t
the bound variable x will have type τ1 → τ2 → % (for pairs) or base type ν′

i,
which will ensure that its translation back is possible.

By Lemma 6, since all free variables in the original problem �P � have type of
the form ν1 → . . .→ νn → δ, all free variables in the unifier will have type of the
form X ′ : νii → . . .→ νim → δ. This ensures the existence of LX′ = {i1, . . . , im},
as well as the translation back of suspensions.

Finally, we will never be forced to translate back terms of the form at1 . . . tm
where a is a bound variable, because in �P �, hence in σ′, all bound variables are
base typed. � 

Theorem 2. For every nominal unification problem P , if the pattern unification
problem �P � is solvable, then P is solvable.

Proof. By Lemma 8, if �P � is solvable then there exist a most general unifier σ′ of
such that 〈∇, σ〉 = �σ′�−1 is defined. By Lemma 7, we have �〈∇, σ〉� is extensible
(by instantiating all the variables of �P � not corresponding to any variable in
P ) to σ′, which solves �P �. Hence, by Theorem 1, 〈∇, σ〉 solves P . � 

Corollary 2. Nominal Unification is quadratic reducible to Higher-Order Pat-
tern Unification.

Nominal Unification can be decided in quadratic deterministic time.

6 Conclusion

The paper describes a precise quadratic reduction from Nominal Unification to
Higher-order Pattern Unification. This helps to better understand the semantics
of the nominal binding and permutations in comparison with λ-binding and
α-conversion. Moreover, using the result of linear time decidability for Higher-
Order Patterns Unification [Qia96], we prove that Nominal Unification can be
decided in quadratic time. It seems not difficult to prove that the translation and
the back-translation function that we present transform most general nominal
unifiers into most general higher-order patter unifiers and vice versa.
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Abstract. Parser combinators are a popular technique among func-
tional programmers for writing parsers. They allow the definition of
parsers for string languages in a manner quite similar to BNF rules.
In recent papers we have shown that the combinator approach is also
beneficial for graph parsing. However, we have noted as well that certain
graph languages are difficult to describe in a purely functional way.

In this paper we demonstrate that functional-logic languages can be
used to conveniently implement graph parsers. Therefore, we provide a
direct mapping from hyperedge replacement grammars to graph parsers.
As in the string setting, our combinators closely reflect the building blocks
of this grammar formalism. Finally, we show by example that our frame-
work is strictly more powerful than hyperedge replacement grammars.

We make heavy use of key features of both the functional and the logic
programming approach: Higher-order functions allow the treatment of
parsers as first class citizens. Non-determinism and logical variables are
beneficial for dealing with errors and incomplete information. Parsers
can even be applied backwards and thus be used as generators or for
graph completion.

1 Introduction

Declarative languages are known to be exceptionally well-suited for building
string parsers. Among functional programmers, the probably most popular ap-
proach in this domain are parser combinators. Thereby, some primitive parsers
are defined that can be combined into more advanced parsers using a set of
powerful combinators. These combinators are higher-order functions that can be
used to make parsers resemble a grammar very closely [1,2].

Parser combinators integrate seamlessly into the rest of the program, hence the
full power of the host language can be used. Unlike parser generators as Yacc, no
extra formalism is needed to specify a grammar. Another benefit is that parsers
are first-class values within the language. For example, we can construct lists of
parsers or pass them as function parameters. The possibilities are only restricted
by the potential of the host language.

Due to these benefits we have started to carry over this approach to the do-
main of graph parsing recently [3,4]. Graph languages are widely-used nowadays,
e.g., for modeling and specification. For instance, we have specified visual lan-
guages [5] using so-called hyperedge replacement grammars [6]. There, graphs

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 261–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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are used as a model for diagrams and a graph parser can be used to check
whether a given diagram is syntactically correct.

Hyperedge replacement grammars, HRG for short, are a well-known way of
describing languages of hypergraphs, i.e., graphs where edges are allowed to
visit an arbitrary number of nodes. Although restricted in power, this formalism
comprises several beneficial properties: It is context-free and still quite powerful.
Grammars are comprehensible, and reasonably efficient parsers can be defined
for practical languages (in general parsing is NP-complete, though). In this con-
text, rewriting means the replacement of a non-terminal hyperedge of a given
hypergraph with a new hypergraph that is glued to the remaining graph by
fusing particular nodes (cf. [6]).

In [4] we have discussed how HRGs can be translated to parsers using purely
functional combinators. The resulting parsers indeed closely resemble the gram-
mar. They are similar to top-down recursive descent parsers known from string
parsing where non-terminal symbols are mapped to functions. In addition, the
nodes actually visited by a particular non-terminal edge have to be given as func-
tion parameters to ensure the proper embedding of the graph the non-terminal is
replaced by. However, these parsers suffer from an inherent problem: Inner nodes
occurring in the right-hand side of a production are not known in advance, but
have to be guessed in order to establish a match. It is a nontrivial task to realize
this guessing efficiently in a purely functional language.

In contrast, logic languages excel at dealing with incomplete information.
Free variables can be introduced that are instantiated automatically in order
to find solutions. Backtracking is the default behavior and does not need to be
implemented by hand. Unfortunately, purely logic languages like Prolog do not
support the straightforward definition of higher-order functions like our combi-
nators. Thus, the “remaining input” would have to be passed more explicitly
resulting in a lot of boilerplate code.1

Having this in mind, graph parsing appears to be a domain asking for multi-
paradigm declarative programming languages [8]. Those are already known to
be well-suited for string parsing [9]. In the domain of graph parsing their benefits
stand out even more. The functional-logic framework of graph parser combina-
tors presented in this paper offers the following striking features:

• Straightforward translation of HRGs to reasonably efficient parsers.
• Application-specific results due to a powerful attribution concept.
• Usable context information. This allows the convenient description of several

languages that cannot be defined with a HRG.
• Robust against errors. Valid subgraphs can be extracted.
• Bidirectionality. Besides syntax analysis parsers can be used to construct or

complete graphs with respect to the language they describe.

1 Prolog provides Definite Clause Grammars, syntactic sugar to hide the difference
list mechanism needed to build efficient string parsers in logic languages. However,
a graph is not linearly structured, so this notation cannot be used here. Tanaka’s
Definite Clause Set Grammars [7] are not supported by common Prolog systems.
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This paper is organized as follows: In Sect. 2 we introduce HRGs. We continue
with the presentation of an excerpt from the actual framework implemented
in the functional-logic programming language Curry (Sect. 3). Thereafter, we
discuss the parsing of HRGs and provide some examples (Sect. 4). Finally, we
sketch the related work (Sect. 5) and conclude (Sect. 6).

2 Hypergraphs and HRGs

In this section we introduce hypergraphs, the notion of graphs our framework is
based on, and the HRG formalism [6].

Let C be a set of labels and type : C → IN a typing function for C. In
the following, a hypergraph H over C is a finite multiset of (hyper-)edges2 e =
(lab, ns), where lab ∈ C is an edge label and ns is a sequence of attachment
nodes such that type(lab) = |ns|, the length of the sequence. The nodes in ns are
called incident to (or visited by) the edge e. The position of a particular node n
in ns represents the so-called tentacle of e that n is attached to. Hence the order
of nodes in ns matters.

Note that our notion of hypergraphs is slightly more restrictive than the more
common definition given by [6], because we cannot directly represent isolated
nodes. Rather the nodes of H are implicitly given as the union of all nodes
incident to its edges. In fact, in many hypergraph application areas isolated nodes
simply do not occur. For example, in the context of visual languages, diagram
components can be represented by hyperedges, and nodes just represent their
connection points, i.e., each node is visited by at least one edge [5].

Throughout this paper we use structured flowcharts as a running example, i.e.,
flowcharts that have a unique entry and a unique exit point. In Fig. 1a a struc-
tured flowchart is given. Here, syntax analysis means to identify the represented
structured program (if any).

Flowcharts can be represented by hypergraphs that we call flowgraphs in the
following. In Fig. 1b the hypergraph model of the exemplary flowchart is given.
Edges are represented by a rectangular box marked with a particular label. For
instance, the statement n:=0 is mapped to an edge labeled “text”. The filled
black circles represent nodes that we have additionally marked with numbers. A
line between an edge and a node indicates that the node is visited by that edge.

The small numbers close to the edges are the tentacle numbers representing
the index of a particular node in ns. Without these numbers the image may be
ambiguous. For instance, the tentacle with number 0 of “text” edges always has
to be attached to the node the previous statement ends at whereas the tentacle
1 links the statement to its successor.

The language of flowgraphs can be described using a hyperedge replacement
grammar in a straightforward way. Formally, such a HRG G is a quadruple
G = (N,T, P, S) that consists of a set of non-terminals N ⊂ C, a set of terminals

2 We call hyperedges just edges and hypergraphs just graphs if it is clear from the
context that we are talking about hypergraphs.
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Fig. 1. An exemplary flowchart a) and its hypergraph representation b)

T ⊂ C with T ∩N = ∅, a finite set of context-free productions P over N and a
start symbol S ∈ N .

The HRG for flowgraphs then can be defined as GFC = (NFC , TFC , PFC ,FC)
where NFC = {FC, Stmts, Stmt}, TFC = {start, end, text, cond} and PFC con-
tains the productions given in Fig. 2a. The notation is similar to BNF rules as
known from string grammars. Nodes in a production act as variables. In order to
apply a production they have to be instantiated with nodes actually occurring
in the graph. We use labels to identify corresponding nodes.

As usual, a language defined by a HRG consists of all graphs whose edges
are labeled only with terminal labels and that can be derived in an arbitrary
number of steps from the start symbol. Given a HRG and a graph, a graph parser
constructs a derivation tree of this graph with respect to the grammar. This
can be done, for instance, in a way similar to the algorithm of Cocke, Younger
and Kasami well-known from string parsing. How this algorithm actually can
be adapted to HRGs is discussed in [10,5]. The (unique) derivation tree of the
exemplary flowgraph introduced in Fig. 1b is given in Fig. 2b. Its leaves represent
the terminal edges occurring in the graph whereas its inner nodes are marked
with non-terminal edge labels indicating the application of a production. The
direct descendants of an inner node represent the edges the non-terminal is
replaced by. Thereby, the numbers in parentheses identify the nodes actually
visited by the particular edge.

3 A Basic Combinator-Framework for Graph Parsing

We now introduce the framework as realized in the functional-logic programming
language Curry3. As we progress, we briefly review some important aspects of
Curry to make this paper self-contained.

3 http://www.informatik.uni-kiel.de/∼curry/report.html

http://www.informatik.uni-kiel.de/~curry/report.html
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Fig. 2. Flowgraphs, a) grammar and b) sample derivation tree

Curry is a declarative multi-paradigm language combining interesting features
from both functional and logic programming [8]. The Curry syntax is very close
to Haskell4. The main addition are free (logic) variables in conditions and right-
hand sides of defining rules. A Curry program consists of definitions of functions
and data types on which these functions operate. Functions are defined by con-
ditional equations with constraints in the conditions. They are evaluated lazily
and can be called with partially instantiated arguments, a feature we make use
of heavily. Function calls with free variables are evaluated by a possibly non-
deterministic instantiation of the required arguments, i.e. arguments whose val-
ues are necessary to decide the applicability of a rule. This mechanism is called
narrowing [11].

The following Curry code introduces the basic data structures for representing
graphs. For the sake of simplicity, we represent nodes by integer numbers and
edge labels by strings (although we do not rely on any particular type at all).
Corresponding to the definition in Sect. 2 we declare a graph as a list of labeled
edges each with its incident nodes. The actual order of edges does not matter.

type Node = Int
type Edge = (String, [Node])
type Graph = [Edge]

The flowgraph given in Fig. 1b can be represented as follows using the previous
declarations:

ex = [("start",[1]),("text",[1,2]),("cond",[2,7,3]),("cond",[3,4,5]),
("text",[4,6]),("text",[5,6]),("text",[6,2]),("end",[7])]

4 http://www.haskell.org/onlinereport/

http://www.haskell.org/onlinereport/
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Next, we provide the declaration of the type Grappa representing a graph
parser. This type is parameterized over the type res of the result. Graph parsers
are (non-deterministic) functions from graphs to pairs consisting of the parsing
result and the graph that remains after successful parser application. In con-
trast to Haskell, we do not have to deal with parsing errors and backtracking
explicitly (no need for “lists of successes”). Instead, similar to [9], we rely on the
non-deterministic notion of functions inherent to functional-logic programming
languages like Curry.

type Grappa res = Graph -> (res, Graph)

We proceed by defining some important primitives for the construction of
graph parsers. Given an arbitrary value, pSucceed always succeeds returning
this particular value as a result. In contrast, eoi (end of input) only succeeds
if the graph is already completely consumed. In this case, as a result we simply
return (), the only value of the so-called unit type. Note that in Curry it does
not need to be stated explicitly that eoi fails on non-empty input – the absence
of a rule is enough.

pSucceed::res -> Grappa res eoi::Grappa ()
pSucceed v g = (v, g) eoi [] = ((), [])

An especially important primitive parser is edge. It only succeeds if the given
edge e is part of the particular graph g. It is implemented in a logic programming
style making use of an equational constraint indicated by =:=.

edge::Edge -> Grappa ()
edge e g | g=:=(g1++e:g2) = ((), g1++g2)

where g1, g2 free

A constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are reducible to
unifiable terms. Here, this means that the edge e indeed is contained in the graph
g. In this case, the edge has to be consumed. This is realized by returning just
g1++g2 as the remaining graph.5 Note that, in contrast to Prolog, free variables
like g1 and g2 need to be declared explicitly (to make their scopes clear).

In Fig. 3 we provide some important parser combinators. They are defined
in a fairly standard way (cf., e.g., [2,9,12]). The choice operator <|> takes two
parsers and succeeds if either the first or the second one succeeds. In fact, it is a
special case of the standard Curry operator (?)::a->a->a. Two parsers can also
be combined via <*>, the successive application where the result is constructed
by function application (as in [12]).6 The second parser thereby starts with the
input the first parser has left. For convenience we also define *> and <* that
5 (++) is the standard operator for list concatenation. In contrast, (:) is the list

constructor that can be used to add a single element to the front of a list.
6 In previous versions of the framework [3,4] we have composed parsers using monads

to make use of context. This does not seem to be necessary with the functional-logic
approach as we see later. In fact, type classes are not supported in Curry yet.
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(<|>)::Grappa res -> Grappa res -> Grappa res
p1 <|> _ = p1
_ <|> p2 = p2

(<*>)::Grappa (res1->res2) -> Grappa res1 -> Grappa res2
(p1 <*> p2) g = case p1 g of

(pv, g’) -> case p2 g’ of
(qv, g’’) -> (pv qv, g’’)

(<*)::Grappa res1 -> Grappa res2 -> Grappa res1
p <* q = (\x _ -> x) <$> p <*> q
(*>)::Grappa res1 -> Grappa res2 -> Grappa res2
p *> q = (\_ x -> x) <$> p <*> q

(<$>)::(res1->res2) -> Grappa res1 -> Grappa res2
f <$> p = pSucceed f <*> p
(<$)::res1 -> Grappa res2 -> Grappa res1
f <$ p = const f <$> p

Fig. 3. Standard parser combinators

throw away one of the results. Finally, the parser transformers <$> and <$ can
be used to either apply a function to the result of a parser or to just replace it
by another value.

On top of these basic combinators we can define various other useful combina-
tors. For instance, we provide the combinator many to deal with simple repetition
(the graph equivalent to the Kleene star) as:

many::Grappa a -> Grappa [a]
many p = pSucceed []
many p = (:) <$> p <*> many p

This definition can be read as: “many p always succeeds returning nothing
([]). It may also succeed by applying p, and thereafter many p again. In this case
their results are combined using the list constructor (:).” Note, however, that
this definition causes a lot of backtracking. In the string setting a combinator
for simple repetition normally returns n + 1 different results where n is the
number of successive occurrences of p at the beginning of the string. If a
graph contains n occurrences of p, altogether

∑n
i=0

(
n
i

)
i! results are possible,

since any number of occurrences can be chosen in any order. It is possible to
disregard “redundant” results by using encapsulated search, but this way we lose
some nice properties of our parsers. The problem with many is not inherent to
our graph parsing approach, though. In fact, many is only needed to parse HR
languages, which contain either highly disconnected graphs, or graphs which
have vertices with high degree – both properties are known to be indicators for
high parsing complexity [10].
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We provide another typical combinator that we need later. The combinator
chain1Betw p (n1,n2) can be used to identify a non-empty chain of graphs
that can be parsed with p. This chain has to be anchored between the nodes n1
and n2. Later we also need a parser exactChain1Betw that forces this chain to
be of a particular length. We omit its declaration, since it can be defined very
similar to chain1Betw:7

chain1Betw::((Node,Node)->Grappa a) -> (Node,Node) -> Grappa [a]
chain1Betw p (n1,n2) = (:[]) <$> p (n1,n2)
chain1Betw p (n1,n2) = (:) <$> p (n1,n) <*> chain1Betw p (n,n2)

where n free

chain1Betw can be conveniently defined, because we do not need to know the
inner node n in advance. We simply define it as a free variable, which can be
instantiated according to the Curry narrowing semantics. Representing graph
nodes as free variables actually is a functional-logic design pattern [13] that we
here exploit in a novel way.

4 Parsing of HRGs

In this section we provide a direct mapping from HRGs to parsers based on
the previously introduced framework. We exemplify the translation by means of
the grammar given in Fig. 2a. We further provide some additional examples to
demonstrate interesting properties of our parsers.

In Fig. 4 the parser for flowgraphs is presented. The type annotations are
just for convenience and can also be omitted. For each non-terminal edge label
l we have defined a parser function that takes a tuple of nodes (n1, ..., nk) as
a parameter such that k = type(l). For each production over l we insert a new
function body. Each terminal edge in the right-hand side of the production is
matched and consumed using the primitive parser edge, each non-terminal one is
translated to a call of the function representing this non-terminal. A free variable
is introduced for each inner node of a production.

In contrast to string parsing the order of parsers in a successive composition
via *> is not that important as long as left recursion is avoided. Nevertheless,
the chosen arrangement might have an impact on the performance. Usually, it
is advisable to deal with the terminal edges first.

Parsers defined in such a way are quite robust. For instance, they ignore
redundant components, i.e., those just remain at the end. However, complete
input consumption can be enforced easily by a subsequent application of eoi.
Thus, instead of fc we can use the extended parser fc <* eoi.
7 Actually, chain1Betw = exactChain1Betw k where k free, i.e., we can also define
chain1Betw in terms of exactChain1Betw.
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fc::Grappa ()
fc = edge ("start", [sn]) *> stmts (sn,en) *> edge ("end", [en])

where sn, en free

stmts::(Node,Node) -> Grappa ()
stmts (n1,n2) = stmt (n1,n2)
stmts (n1,n2) = stmt (n1,n) *>

stmts (n,n2)
where n free

stmt::(Node,Node) -> Grappa ()
stmt (n1,n2) = edge ("text", [n1,n2])
stmt (n1,n2) = edge ("cond", [n1,nno,nyes]) *>

stmts (nno,n2) *> stmts (nyes,n2)
where nno, nyes free

stmt (n1,n2) = edge ("cond", [n1,n2,nbody]) *>
stmts (nbody,n1)
where nbody free

Fig. 4. A parser for flowgraphs

One problem is still left with our flowgraph parser: As it is, it accepts too
many graphs. Further conditions have to be enforced to ensure correctness [6]:

• identification condition: matches have to be injective, i.e., involved nodes
have to be pairwise distinct.

• dangling edge condition: there must not be other edges in the remaining
graph visiting inner nodes of a match.

Fig. 5. Violation of identification condition
and dangling edge condition

For instance, the flowgraphs shown
in Fig. 5 can also be parsed success-
fully with the parser given in Fig. 4
although they are no members of the
language defined by GFC . In the con-
text of visual languages it often is
convenient to relax the dangling edge
condition (cf. [5]). This allows for eas-
ier specifications. However, from a
theoretical point of view, this is not
satisfactory. In fact, both conditions
can be ensured by additional checks.
For instance, we can use inequality constraints on node variables to ensure that
they are pairwise distinct, i.e., that a particular match is injective. However,
these constraints cannot be globally set, but rather have to be added to the
parsers for every single production making them less readable.

Semantics
So far we only have checked if the given graph is, or at least contains, a valid
flowgraph. However, a major benefit of the combinator approach is that
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language-specific results can be computed in a flexible way [2,14]. Say, we want
to map a flowgraph to its underlying program represented by the recursively
defined type Program:

type Program = [Stmt]
data Stmt = Text | IfElse Program Program | While Program

We do not provide the complete mapping here. Rather we use the translation
of the branching production as an example to show how easily parsers can be
enriched with attribution.

stmt::(Node,Node) -> Grappa Stmt
stmt (n1,n2) = edge ("cond", [n1,nno,nyes]) *>

IfElse <$> stmts (nno,n2) <*> stmts (nyes,n2)
where nno, nyes free

The result type has to be changed to Stmt. Further, we can use the combi-
nator <$> to directly construct a statement from the two subprograms. Note
that in Curry (as in Haskell) the data constructor IfElse is implicitly typed
Program->Program->Stmt. In this situation we can make the parser definition
even more concise, because stmts now really is just chain1Betw stmt.

Not just a Parser
Parsing is not the only thing we can do with these functions. We can also apply
them backwards to construct graphs of the language. For instance, we can enu-
merate all graphs in the language up to a particular size. As a result we know
that there are only 2 flowgraphs (up to isomorphism) of size 4, 6 of size 5 and
21 of size 6.

We can further use the parser to perform a kind of auto-completion. Say,
the edge text(1,2) in the graph given in Fig. 1b is missing, such that the
flowgraph is not a member of the language anymore. We can try inserting an
edge e as a free variable and see how e is instantiated by the parser. For our
example we get several possible completions. For instance, we could add an edge
start(2). However, there is only one completion that consumes the whole input:
text(1,2), the one we deleted.

This approach could be the starting point for the realization of advanced
error correction for graphs. For the error correction of strings a sophisticated
and powerful Haskell parser combinator framework has already been proposed
[12]. However, a functional-logic approach may be more understandable and
easier to adapt to graphs. Such graph completion could be very useful in order
to realize powerful content assist for graph grammar based diagram editors like
the ones generated with DiaGen [5].

In certain cases we can also perform the mapping of semantics back to a
graph, e.g., given a particular program we can construct a corresponding flow-
graph. Thereby, nodes are not instantiated, but left as free variables. Indeed the
particular node numbers do not matter as long as equal nodes can be identified.
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s (n1,n2) =
edge ("a", [n1,n3]) *>
edge ("b", [n4,n5]) *>
edge ("c", [n5,n6]) *>
(+1) <$> a (n3,n4,n6,n2)
where n3, n4, n5, n6 free

s (n1,n2) =
edge ("a", [n1,n3]) *>
edge ("b", [n3,n4]) *>
edge ("c", [n4,n2]) *>
pSucceed 1
where n3, n4 free

a (n1,n2,n3,n4) =
edge ("a", [n1,n5]) *>
edge ("b", [n6,n2]) *>
edge ("c", [n3,n7]) *>
(+1) <$> a (n5,n6,n7,n4)
where n5, n6, n7 free

a (n1,n2,n3,n4) =
edge ("a", [n1,n5]) *>
edge ("b", [n5,n2]) *>
edge ("c", [n3,n4]) *>
pSucceed 1
where n5 free

Fig. 6. Graph grammar a) and corresponding parser b) for the graph language akbkck

Another Example: akbkck

We give another example to demonstrate that the readability of a language
description can also be improved by using graph parser combinators.

In a string setting the language {akbkck|k > 0} is not context-free. In contrast,
there is a context-free string generating hypergraph grammar that defines a cor-
responding graph language [6,15]. A hypergraph grammar is string generating, if
all graphs in its language have a linear structure, i.e., are a chain of directed edges;
below we provide the graph representation of the string “aabbcc” as an example.

The grammar for the graph language akbkck as introduced in [6] is given in
Fig. 6a. It is quite complex and hard to grasp despite the structural simplicity of
the language. In Fig. 6b a nearly straightforward translation of this grammar to
a parser is given. We only have added some attribution to compute the particular
value of k.

With our framework much more readable descriptions are possible. One of
them is given below. Basically it states that there have to be two nodes n3 and
n4 and a number k > 0 such that there is a chain of k “a”-edges between n1 and
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n3, a chain of k “b”-edges between n3 and n4 and finally a chain of k “c”-edges
between n4 and n2.8

abc (n1,n2) = exactChain1Betw k (dirEdge "a") (n1,n3) *>
exactChain1Betw k (dirEdge "b") (n3,n4) *>
exactChain1Betw k (dirEdge "c") (n4,n2) *>
pSucceed k
where k, n3, n4 free

The crucial point of this solution is that logic variables like k can be used to
share results across parsers. This way context information can be exploited. This
approach enables us to not only describe languages more conveniently, but also to
describe languages that cannot be defined with a HRG at all. For instance, there
is no HRG for Sierpinski triangles that are regular, i.e. equally deep unfolded.9 In
contrast, this can easily be done in our system just by introducing an additional
parameter depth.

Performance

The operational semantics of Curry is based on an optimal evaluation strategy.
As an extension to lazy functional programming its behavior is demand-driven.
Thus, it ensures optimal evaluation on well-defined classes of programs [11].
However, in [6] it is proved that there are (even context-free) graph languages
where parsing is NP-complete. These languages, of course, cannot be parsed
with our combinators efficiently. Most practically relevant languages, however,
are quite efficient to parse.

To give an impression we provide some performance data for the language
akbkck in Fig. 7. The measurement has been executed on standard hardware
using the Münster Curry Compiler10. We see that the more readable parser abc
is even more efficient. Both parsers have a polynomial runtime behavior (mainly
because the first node of the string graph is not known in advance). Since our
parsers follow a top-down approach with backtracking we cannot completely
avoid that partial results are computed more than once. Bottom-up parsers,
which exploit dynamic programming techniques are usually more efficient.

Note, however, that the presented framework has not been optimized with
respect to performance. For instance, a more efficient graph representations could
be used, e.g., as a mapping String->[[Node]] so that all edges with a particular
label can be queried much faster.

A good thing with parser combinators is that performance optimizations spe-
cific to the particular graph language can be incorporated easily. For instance, a
basic improvement for flowgraphs would be to first decompose the given graph

8 We make use of the primitive dirEdge lab (n1,n2) = edge (lab, [n1,n2]) to
make the combinator exactChain1Betw directly applicable.

9 However, this can be realized with a special kind of parallel replacement mechanism
as described in [16].

10 http://danae.uni-muenster.de/∼lux/curry/

http://danae.uni-muenster.de/~lux/curry/
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Fig. 7. Performance comparison of both parsers for the language akbkck

into connected components and apply the parser to each of them successively.
We provide the combinator connComp::Grappa a->Grappa [a] for this task.
So, for a broad range of languages, we can start with a parser, which is easy to
build and read, and which can be further improved if necessary. Providing addi-
tional information also can boost performance, e.g., if we know the first node in
our language of string graphs, both parsers need less than a second for k = 80.

And even backwardly applied as generators our parsers are reasonably effi-
cient. Compared to other graph transformation tools [17] they seem to be in the
center-field. For instance, we have generated a Sierpinski triangle of generation
11 with nearly 200.000 edges in about a minute.

5 Related Work

In principle our graph parser combinators are quite similar to conventional string
parser combinators like [2,14,9] to name just a few. Many ideas can be carried
over straightforwardly. The main differences emerge from the non-linear struc-
ture of graphs and the appearance of nodes as connection points between tokens.

From all parser combinator approaches the UU library [12] is special in the
sense that it probably provides the most powerful mechanisms to correct all
kinds of errors in strings. There, a parser does never fail, but rather constructs
a minimal sequence of correction steps. We have shown how our library can be
used for restricted kinds of error handling. Redundant edges, for instance, may
just remain at the end. This is already quite powerful, since in contrast to strings
graphs are sets of components, i.e., there is no particular order imposed. Thus, it
does not matter where the redundant components are placed. Furthermore, due
to its logic nature, we can conveniently deal with errors that are fixable by em-
bedding additional edges. However, other correction actions like edge relabeling
or the gluing of distinct nodes cannot be computed in such a convenient manner.

Another interesting related observation is that parsing of visual languages can
be modeled (and even executed) in linear logic [18], a resource-oriented refine-
ment of classical logic. For instance, in [19] the embedding of constraint multiset
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grammars into linear logic is discussed. However, it seems that hypergraph pars-
ing can be modeled even more straightforwardly. Here, the edges of a hypergraph
can be mapped to facts that can be fed into a parser via so-called linear implica-
tion (�). During the proof the parser consumes these facts and at the end none
of them must be left. For instance, to parse a simple flowgraph using Lolli [20]
we can write (start 1, text 1 2, end 2) -o fc. The combinators presented
in this paper also hide the remaining resources from the user. But their major
benefit is the flexibility they can be applied with.

Also related are approaches to parsing of particular, restricted kinds of graph
grammar formalisms. For instance, in [15] an Earley parser for string generating
graph languages has been proposed. The diagram editor generator DiaGen [5]
incorporates an HRG parser that is an adaptation of the algorithm of Cocke,
Younger and Kasami. And the Visual Language Compiler-Compiler VLCC [21] is
based on the methodology of positional grammars that allows to parse restricted
kinds of flex grammars (which are essentially HRGs) even in linear time. These
approaches have in common that a restricted graph grammar formalism can be
parsed efficiently. However, they cannot be generalized straightforwardly to a
broader range of languages like our combinators.

6 Conclusion

In this paper we have discussed functional-logic graph parser combinators, an ex-
tensible framework supporting the flexible construction of special-purpose graph
parsers even for (some) context-sensitive graph languages. It has turned out that
functional-logic languages are exceptionally well-suited for graph parsing.

In particular we have demonstrated that hyperedge replacement grammars
can be mapped to parsers straightforwardly. We have also noted that these gram-
mars are sometimes not the most readable means to describe graph languages;
several graph languages cannot even be defined with a HRG at all. In contrast,
using our framework we can easily define readable parsers for languages like the
string graphs akbkck or regular Sierpinski triangles. The resulting parsers are
sufficiently efficient for many practical graph languages.

Functional-logic parsers can also be applied backwards. This way they can be
used to enumerate a graph language or for graph-completion. Since graphs are
well-suited as a model for visual languages, such graph-completion can be very
beneficial in the context of diagram editors. We plan to connect our framework
with the diagram editor generator DiaGen [5] to provide powerful content assist
to the user.
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Abstract. In this paper we study context dependent interpretations, a
semantic termination method extending interpretations over the natural
numbers, introduced by Hofbauer. We present two subclasses of con-
text dependent interpretations and establish tight upper bounds on the
induced derivational complexities. In particular we delineate a class of
interpretations that induces quadratic derivational complexity. Further-
more, we present an algorithm for mechanically proving termination of
rewrite systems with context dependent interpretations. This algorithm
has been implemented and we present ample numerical data for the as-
sessment of the viability of the method.

1 Introduction

In order to assess the complexity of a (terminating) term rewrite system (TRS
for short) it is natural to look at the maximal length of derivation sequences,
as suggested by Hofbauer and Lautemann in [1]. To be precise, let R denote a
finitely branching and terminating TRS over a finite signature. The derivational
complexity function with respect to R (denoted as dcR) relates the length of
the longest derivation sequence to the size of the initial term. For direct termi-
nation techniques it is often possible to infer an upper bound on dcR(n) from
the termination proof of R, cf. [1,2,3,4,5]. (Currently it is unknown how to es-
timate the derivational complexity of a TRS R, if termination of R has been
shown via transformation methods like the dependency pair method or semantic
labelling, but see [4,6] for partial results in this direction.) For example lin-
ear derivational complexity can be verified by the use of automata techniques:
linear match-bounded TRSs induce linear derivational complexity, see [5]. Un-
fortunately such a feasible growth rate is not typical. Already termination proofs
by polynomial interpretations imply a double-exponential upper bound on the
derivational complexity, cf. [1]. In both cases the upper bounds are tight.

However, the tightness of the mentioned bounds does not imply that the upper
bounds are always optimal. In particular polynomial interpretations typically
overestimate the derivational complexity. In [7] Hofbauer introduced so-called
context dependent interpretations as a remedy. These interpretations extend tra-
ditional interpretations by introducing an additional parameter. The parameter
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changes in the course of evaluating a term, which makes the interpretation de-
pendent on the context. The crucial advantage is that context dependent inter-
pretations typically improve the induced bounds on the derivational complexity
of TRSs. Furthermore this technique allows the handling of non-simple termi-
nating systems. (See [7] and Section 2 for further details.)

In this paper, we establish theoretical and practical extensions of Hofbauer’s
approach. As theoretic contributions, we present two subclasses of context depen-
dent interpretations, i.e., we introduce Δ-linear and Δ-restricted interpretations.
We show that Δ-linear interpretations induce exponential derivational complex-
ity, while Δ-restricted interpretations induce quadratic derivational complexity.
Furthermore, we provide examples showing that these bounds are tight. In [7] it
is shown that context dependent interpretations are expressive enough to show
termination of TRSs that are not simply terminating. We improve upon this
and show that Δ-restricted interpretations suffice here. On the practical side,
we design an algorithm that automatically searches for Δ-linear interpretations
and Δ-restricted interpretations, which shows that the technique can be mech-
anised. This answers a question posed by Hofbauer in [7]. The procedure has
been implemented and we provide ample numerical data to assess its viability.
TRSs with polynomial derivational complexity appear to be of special interest.
Thus, we finally compare the applicability of our method to other termination
techniques that also induce polynomial derivational complexity.

The remainder of this paper is organised as follows. In the next section we
recall basic notions and starting points of this paper. In Section 3 we introduce
the class of Δ-linear interpretations and describe the algorithm that mechanises
the search for Δ-linear and Δ-restricted interpretations. In Section 4, we obtain
the mentioned results on the derivational complexities induced by either of these
interpretations. Furthermore, we show in this section that already Δ-restricted
interpretations allow the treatment of non-simple terminating TRSs. Section 5
provides experimental data and finally in Section 6 we conclude and mention
future work.

2 Context Dependent Interpretations

We assume familiarity with the basics of term rewriting, see [8,9]. Knowledge
of context dependent interpretations [7] will be helpful. Below we recall the
basic results from the latter paper in a slightly different, but equivalent way,
compare [7,10]. See [7] for the motivation and intuition underlying the introduced
concepts.

Let F be a finite signature, let V be a set of variables and let R denote a
terminating TRS over F . The induced relation →R is assumed to be finitely
branching. We simply write → for →R if R is clear from context. The derivation
length of a term t with respect to R is defined as follows: dlR(t) = max{n |
∃u t →n u}. The derivational complexity (with respect to R) is defined as:
dcR(n) = max{dlR(t) | |t| � n}, where |t| denotes the size of t, i.e., the number
of symbols of t as usual. (For example the size of the term f(a, x) is 3.) We
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say the derivational complexity of R is linear, quadratic, double-exponential,
if dcR(n) is bounded by a linear, quadratic, double-exponential function in n,
respectively. A context dependent F-algebra (CDA for short) C is a family of
F -algebras over the reals parametrised by a set D ⊆ R+ of positive reals. A
CDA C associates to each function symbol f ∈ F of arity n, a collection of n+1
mappings: fC : D × (R+

0 )n → R+
0 and f i

C : D → D for all 1 � i � n. As usual
fC is called interpretation function, while the mappings f i

C are called parameter
functions. In addition C is equipped with a set {>Δ| Δ ∈ D} of proper orders,
where we define: z >Δ z′ if and only if z − z′  Δ.

Let C be a CDA and let a Δ-assignment denote a mapping: α : D×V → R+
0 .

We inductively define a mapping [α,Δ]C from the set of terms into the set R+
0

of non-negative reals:

[α,Δ]C(t) :=

{
α(Δ, t) if t ∈ V
fC(Δ, [α, f1

C (Δ)]C(t1), . . . , [α, fn
C (Δ)]C(tn)) if t = f(t1, . . . , tn) .

We fix some notational conventions: Due to the special role of the additional
variable Δ, we often write fC [Δ](z1, . . . , zn) instead of fC(Δ, z1, . . . , zn). Further-
more, we usually denote the evaluation of t as [α,Δ](t), if the respective algebra
is clear from context.

We say that a CDA C is Δ-monotone if for all Δ ∈ D and for all a1, . . . , an, b ∈
R+

0 with ai >fi
C(Δ) b for some i ∈ {1, . . . , n}, we have

fC [Δ](a1, . . . , ai, . . . , an) >Δ fC [Δ](a1, . . . , b, . . . , an) .

Note that if all interpretation functions fC [Δ] are weakly monotone with respect
to the standard ordering on R+

0 , then validity of the inequalities

fC [Δ](z1, . . . , zi + f i
C(Δ), . . . , zn)− fC [Δ](z1, . . . , zi, . . . , zn)  Δ ,

suffices in order to conclude Δ-monotonicity of C, cf. [7].
A CDA C is compatible with a TRS R (or R is compatible with C) if for

every rewrite rule l → r ∈ R, every Δ ∈ D, and any assignment α: [α,Δ](l) >Δ

[α,Δ](r) holds.

Example 1 ([7]). As running example, we consider the TRS R1 with the single
rewrite rule a(b(x)) → b(a(x)). We assume D = R+. The following interpretation
and parameter functions

aC [Δ](z) = (1 + Δ)z a1
C(Δ) =

Δ

1 + Δ

bC [Δ](z) = z + 1 b1
C(Δ) = Δ ,

define a CDA C that is Δ-monotone and compatible with R1, compare [7].

Theorem 2 ([7]). Let R be a TRS and suppose that there exists a Δ-monotone
and compatible CDA C. Then R is terminating and

dlR(t) � inf
Δ∈D

[α,Δ](t)
Δ

(1)

holds for all terms t ∈ T (F ,V).



Proving Quadratic Derivational Complexities 279

The next example clarifies the impact of Theorem 2, compare [7].

Example 3. Consider the TRS R1 together with the CDA C in Example 1. Sup-
pose c ∈ F is a constant and cC [Δ] = 0. We assert D = R+. Then we obtain
[α,Δ](an(bm(c))) = (1 + Δn)m and hence:

inf
Δ>0

[α,Δ](an(bm(c)))
Δ

= inf
Δ>0

( 1
Δ

+ n
)
m = nm  dlR1(a

n(bm(c))) .

Furthermore, an easy inductive argument reveals: dlR1(an(bm(c))) = nm.
Hence with respect to the term an(bm(c)), compatibility with C entails an opti-
mal upper bound on the derivation length of R1. This is also true for all ground
terms. A proof of infΔ>0

[α,Δ](t)
Δ = dlR1(t) for all t ∈ T (F) can be found in [7].

Definition 4. A Δ-quotient is an expression of the form

Δ

a + bΔ
,

where a, b ∈ N and either a > 0 or b > 0. A Δ-quotient d is nontrivial, if d �= Δ.

Lemma 5. Let d1, d2 be Δ-quotients and let d = d1[Δ := d2] denote the result
of substituting d2 for Δ in d1. Then d is a Δ-quotient.

As usual a polynomial P in the variables z1, . . . , zn (over the reals) is a fi-
nite sum

∑m
i=1 ciz

i1
1 . . . zin

n . To accommodate Δ-quotients we slightly generalise
polynomials.

Definition 6. An extended monomial M in the variables Δ and z1, . . . , zn is a
finite product c ·

∏
i vi such that c is an integer and vi is xn, x ∈ {Δ, z1, . . . , zn}

or vi is a Δ-quotient. The integer c is called the coefficient and the expression vi

a literal. Finally, an extended polynomial P over Δ ∈ D and z1, . . . , zn ∈ R+
0

is a finite sum
∑

i Mi of extended monomials Mi (in Δ and z1, . . . , zn).

Note that the coefficients of an extended polynomial are integers. If the context
clarifies what is meant, we will drop the qualifier “extended”. Examples 1 and 3
as well as the examples studied in [7] suggest a restricted notion of context
dependent algebras. This is the subject of the next definition.

Definition 7. A polynomial context dependent interpretation of F is a CDA
(C, {>Δ| Δ ∈ D}) satisfying the following properties:

– the interpretation function fC is an extended polynomial,
– the parameter set D equals R+, and
– for each f ∈ F the parameter functions f i

C are Δ-quotients.

Lemma 8. Let C denote a polynomial context dependent interpretation, let α be
a Δ-assignment, and let t be a term. Then [α,Δ](t) is an extended polynomial.

Proof. The lemma is a direct consequence of the definitions and Lemma 5. � 
Remark 9. Hofbauer showed in [7] that for any monotone polynomial interpreta-
tion compatible with a TRS R, there exists a polynomial context dependent in-
terpretation which is Δ-monotone and compatible withR and induces at least the
sameupper boundon thederivational complexityas thepolynomial interpretation.
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3 Automated Search for Context Dependent
Interpretations

One approach to find context dependent interpretations (semi-)automatically
was already mentioned in Hofbauer’s paper [7]. A given polynomial interpreta-
tion is suitably lifted to a context dependent interpretation such that monotonic-
ity and compatibility are preserved, but the upper bound on the derivational
complexity is often improved. Unfortunately, experimental evidence suggests
that the applicability of this heuristics is limited, if one is interested in auto-
matically finding complexity bounds, see Section 5 for further details. However,
the standard approach for automatically proving termination via polynomial
interpretations as stipulated by Contejean et al. [11] can be adapted. The de-
scription of this adaption is the topic of this section. We restrict the form of
parametric interpretations that we consider.

Definition 10. A (parametric) Δ-linear interpretation is a polynomial context
dependent interpretation C whose interpretation functions and parameter func-
tions have the following form:

fC(Δ, z1, . . . , zn) =
n∑

i=1

a(f,i)zi +
n∑

i=1

b(f,i)ziΔ + cfΔ + df

f i
C(Δ) =

Δ

a(f,i) + b(f,i)Δ

where the occurring coefficients are supposed to be natural numbers. For a para-
metric Δ-linear interpretation, a(f,i), b(f,i), cf , and df (f ∈ F , 1 � i � n) are
called coefficient variables.

Note that for any Δ-linear interpretation, we have a(f,i) > 0 or b(f,i) > 0 (f ∈ F ,
1 � i � n): Any Δ-linear interpretation is a polynomial context dependent
interpretation by definition. And hence the parameter functions have to be Δ-
quotients, cf. Definition 7. Moreover the coefficients a(f,i), b(f,i) are used in the
interpretation function and the parameter functions. This is necessary for the
correctness of Lemma 12 below.

Example 11. Consider the TRS R1 from Example 1. The parametric interpre-
tation and parameter functions have the form:

aC [Δ](z) = az + bzΔ+ cΔ + d a1
C(Δ) =

Δ

a + bΔ

bC [Δ](z) = ez + fzΔ+ gΔ + h b1
C(Δ) =

Δ

e + fΔ
.

The following lemma is a direct consequence of the definitions.

Lemma 12. Let C be an Δ-linear interpretation. Then C is Δ-monotone.

Due to Lemma 12, in order to prove termination of a given TRS R, it suffices to
find a Δ-linear interpretation compatible with R. This observation is reflected
in the following definition.
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Definition 13. Let R be a TRS and let C be a parametric Δ-linear interpreta-
tion. The compatibility constraints of R with respect to C are defined as

CC(R, C) ={[α,Δ](l)− [α,Δ](r) −Δ  0 | l → r ∈ R}∪
∪ {a(f,i) + b(f,i) − 1  0 | f ∈ F , 1 � i � ar(f)} .

Here ar(f) denotes the arity of f and α refers to a symbolic Δ-assignment:
Expressions of the form [α,Δ](x) for x ∈ V remain unevaluated.

While the first half of CC(R, C) represents compatibility with R, the second set
of constraints guarantees that the denominators of the occurring Δ-quotients
are different from 0. Thus any solution to CC(R, C), instantiating coefficients
with natural numbers, represents a polynomial context dependent interpretation
compatible with R.

Example 14. Consider the (parametric) CDA C from Example 11 and set Δ1 =
a1
C(Δ) and Δ2 = b1

C(Δ). Let α1 = [α,Δ2[Δ := Δ1]](x) and let α2 = [α,Δ1[Δ :=
Δ2]](x). Then the constraint [α,Δ](a(b(x)))− [α,Δ](b(a(x)))−Δ  0 becomes:(

aeα1 + afα1Δ1 + agΔ1 + beα1Δ + bfα1Δ1Δ + bgΔ1Δ + (bh + c)Δ+

+ah + d
)
−
(
aeα2 + beα2Δ2 + ceΔ2 + afα2Δ + bfα2Δ2Δ + cfΔ2Δ+

+(df + g)Δ + de + h
)
−Δ  0 .

For all constraints (P  0) ∈ CC(R, C), P is an extended polynomial, cf.
Lemma 8. It is easy to see how an extended polynomial (over Δ, z1, . . . , zn) is
transferable into a (standard) polynomial (over Δ, z1, . . . , zn): Multiply (symbol-
ically) with denominators of (nontrivial) Δ-quotients till all (nontrivial)
Δ-quotients are eliminated. This simple procedure is denoted as A. Correctness
and termination of the procedure follow trivially.

Definition 15. Let R be a TRS and let C be a parametric Δ-linear interpreta-
tion. The polynomial compatibility constraints of R with respect to C are defined
as follows: PCC(R, C) := {P ′  0 | P  0 ∈ CC(R, C) and P ′ := A(P )}.

Example 16. Consider the constraint P  0 depicted in Example 14. To apply
the algorithm A we first have to symbolically multiply with the expression a+bΔ
and later with e+ fΔ. The resulting constraint P ′  0 (with the polynomial P ′

in the “variables” Δ, α1, and α2) has the form:(
(b2ef + bf2)α1Δ

3 + (2abef + af2 + b2e2 + bef)α1Δ
2

+(2abe2 + a2ef + aef)α1Δ + (a2e2)α1

)
−
(
(abf2 + b2f)α2Δ

3 + (a2f2 + 2abef + abf + b2e)α2Δ
2

+(2a2ef + abe2 + aeb)α2Δ + (a2e2)α2

)
+
(
(b2fh− bdf2 − bf)Δ3

+(2abfh+ b2eh + bdf − adf2 − 2bdef − bfh− be− af)Δ2

+(a2fh+ 2abeh+ adf + bde− 2adef − afh− bde2 − beh− ae))Δ

+(a2eh+ ade− ade2 − aeh)
)

 0 .
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We obtain PCC(R1, C) = {P ′  0, a + b − 1  0, e + f − 1  0}, where the last
two constraints reflect that all denominators of Δ-quotients are non-zero.

Let P  0 be a constraint in PCC(R, C) such that n distinct symbolic assign-
ments [α, d](x) occur in P (x ∈ V , d a Δ-quotient). (In Example 16 two sym-
bolic assignments occur: α1 and α2.) Then P is conceivable as a polynomial in
Z[Δ, z1, . . . , zn]. It remains to verify that (a suitable instance of) P is positive,
i.e., we have to prove that P (Δ, z1, . . . , zn)  0 for any values Δ > 0, zi  0. This
is achieved by testing for absolute positivity instead of positivity, compare [11].

A polynomial P is absolutely positive if P has non-negative coefficients only. A
parametric polynomial P is called absolutely positive if there exists an instance
P ′ of P such that P ′ is absolutely positive. Clearly any absolutely positive poly-
nomial is positive. Thus for a given constraint P  0 ∈ PCC(R, C) it suffices to
find instantiations of the coefficient variables such that all coefficients are natu-
ral numbers. This is achieved through the construction of suitable Diophantine
inequalities over the coefficients.

Lemma 17. Let R be a TRS and let C denote a parametric Δ-linear interpre-
tation. If for all P  0 ∈ PCC(R, C), P is absolutely positive then there exists
an instantiation of C compatible with R.

Proof. If P is absolutely positive, there exist natural numbers that can be sub-
stituted to the coefficient variables in P such that the resulting polynomial P ′

is absolutely positive and thus positive. By definition this implies that the con-
straints in CC(R,V) are fulfilled. We define an instantiation C′ of C by applying
the same substitution to the coefficient variables in C. Then C′ is compatible
with R. � 
As an immediate consequence of Lemmata 12, 17, and Theorem 2 we obtain the
following theorem.

Theorem 18. Let R be a TRS and let C denote a parametric Δ-linear inter-
pretation. Suppose for all P  0 ∈ PCC(R, C), P is absolutely positive. Then R
is terminating and property (1) holds for D = R+.

It is easy to see that the Diophantine inequalities induced by Example 16 cannot
be solved, if the symbolic assignments α1 and α2 are treated as different variables.
This motivates the next definition.

Definition 19. Given a TRS R and a Δ-linear interpretation C, the equality
constraints of R with respect to C are defined as follows:

EC(R, C) = {(a + bΔ)− (c + dΔ) = 0 | Property (∗) is fulfilled}

(∗) There exists P  0 ∈ PCC(R, C), x ∈ V such that [α, d1](x) and [α, d2](x)
occur in P and d1 = Δ

a+bΔ �= Δ
c+dΔ = d2.

Example 20. Consider Example 16. Property (∗) is applicable to the Δ-quotients
d1, d2 in the Δ-assignments α1 = [α, d1] and α2 = [α, d2] as

d1 =
Δ

ae + (be + f)Δ
�= Δ

ae + (af + b)Δ
= d2 .
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Thus the constraint (ae+(be+f)Δ)− (ae+(af+ b)Δ) = 0 occurs in EC(R1, C).
This is the only constraint in EC(R1, C).

Let P  0 ∈ PCC(R, C), assume the equality constraints in EC(R, C) are fulfilled
and assume we want to test for absolute positivity of P . By assumption distinct
symbolic assignments can be treated as equal, which may change the coefficients
we need to consider in P . This is expressed by writing P  0 ∈ PCC(R, C) ∪
EC(R, C). Furthermore, we call a parametric polynomial a zero polynomial if
there exists an instance P ′ of P such that P ′ = 0.

Corollary 21. Let R be a TRS and let C denote a parametric Δ-linear inter-
pretation. Suppose for all P  0 (P = 0) ∈ PCC(R, C)∪EC(R, C), P is absolutely
positive (P is a zero polynomial). Then R is terminating and property (1) holds
for D = R+.

Corollary 21 opens the way to efficiently search for CDAs: Finding a Δ-monotone
and compatible CDA C amounts to solving the Diophantine constraints in
PCC(R, C)∪EC(R, C). It is well-known that solvability of Diophantine constraints
is undecidable [12]. However, there is an easy remedy for this: we restrict the
domain of the coefficient variables to a finite one.

Example 22. Consider the TRS R1 from Example 1 and the Δ-linear interpreta-
tion C from Example 11. Applying the above described algorithm, the following
Diophantine (in)equalities need to be solved.

b2ef + bf2 − abf2 − b2f  0 abe2 + a2ef + aef − 2a2ef − aeb  0

b2fh− bdf2 − bf  0 a2eh + ade− ade2 − aeh  0
a + b− 1  0 e + f − 1  0

be + f − af − b = 0 af2 + b2e2 + bef − a2f2 − abf − b2e  0

2abfh+ b2eh + bdf − adf2 − 2bdef − bfh− be− af  0

a2fh + 2abeh+ adf + bde− 2adef − afh− bde2 − beh− ae  0 .

Here the constraints a + b− 1  0, e + f − 1  0 guarantee that the denomina-
tors of occurring Δ-quotients are positive, and the equality be + f − af − b = 0
expresses the equality constraint in EC(R1, C). Our below discussed implemen-
tations of the algorithm presented in this section find the following satisfying
assignments for the coefficient variables fully automatically:

a = b = e = h = 1 c = d = f = g = 0 .

4 Derivational Complexities Induced by Polynomial
Context Dependent Interpretations

In this section we show that the derivational complexity induced by Δ-linear
interpretations is exponential and that this bound is tight. Furthermore, we
introduce a restricted subclass of Δ-linear interpretations that induces (tight)
quadratic derivational complexity.
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Recall the TRS R1 considered in Example 1. This TRS belongs to a family of
TRSs Rk for k > 0: a(b(x)) → bk(a(x)) and it is not difficult to see that for k  2
the derivational complexity of Rk is exponential. In [7] Δ-linear interpretations
Ck were introduced such that

inf
Δ>0

[α,Δ]Ck
(t)

Δ
= dlRk

(t) ,

holds for any ground term. I.e., for all k > 0 there exist Δ-linear interpretations
that optimally bound the derivational complexities ofRk. This triggers the ques-
tion whether we can find such context dependent interpretations automatically.
The next example answers this question affirmatively, for k = 2.1

Example 23. Consider the TRSs R2: a(b(x)) → b(b(a(x))).2 To find a Δ-linear
interpretation, we employ the same parametric interpretation C, as in Exam-
ple 11 and build the set of constraints CC(R2, C) and consecutively the polyno-
mial compatibility constraints PCC(R2, C) together with the equality constraints
EC(R2, C). We only state the (automatically) obtained interpretation and param-
eter functions:

aC [Δ](z) = (2 + 2Δ)z a1
C(Δ) =

1
2 + 2Δ

bC [Δ](z) = z + 1 b1
C(Δ) = Δ .

As a consequence of Example 23 we see the existence of TRSs, compatible with
Δ-linear interpretations, whose derivational complexity function is exponential.
Moreover, we have the following lemma.

Lemma 24. Let C denote a Δ-linear interpretation and let K denote the maxi-
mal coefficient occurring in C. Further let t be a ground term, α a Δ-assignment
and Δ > 0. Then [α,Δ](t) � (K + 2)|t|(Δ + 1).

Proof. Straightforward induction on t. � 

Theorem 25. Let R be a TRS and let C denote a Δ-linear interpretation com-
patible with R. Then R is terminating and dcR(n) = 2O(n). Moreover there
exists a TRS R such that dcR(n) = 2Ω(n).

Proof. The proof of the upper bound follows the pattern of the proof of Theo-
rem 29 below. To show that this upper bound is tight, we consider the TRS R2

from Example 23. It is easy to see that dcR2(n) = 2Ω(n) holds. � 

In order to establish a termination method that induces polynomial derivational
complexity, we restrict the class of Δ-linear interpretations.

1 The answer remains positive for k = 3. Detailed experimental evidence and
additional information on the considered constraints are available at http://
cl-informatik.uibk.ac.at/∼aschnabl/experiments/cdi/

2 This is Example 2.50 in Steinbach and Kühler’s collection [13].

http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/
http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/
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Definition 26. A Δ-restricted interpretation is a Δ-linear interpretation. In
addition we require that for the interpretation functions and parameter functions

fC(Δ, z1, . . . , zn) =
n∑

i=1

a(f,i)zi +
n∑

i=1

b(f,i)ziΔ + cfΔ + df

f i
C(Δ) =

Δ

a(f,i) + b(f,i)Δ
,

we have a(f,i) ∈ {0, 1} for all 1 � i � n.

Example 27. Consider the TRS R1 from Example 1. The assignment of coeffi-
cient variables as defined in Example 22 induces a Δ-restricted interpretation.

Lemma 28. Let C denote a Δ-restricted interpretation with coefficients a(f,i),
b(f,i), cf , df (f ∈ F , 1 � i � ar(f)) and we set

M := max({cf , df | f ∈ F} ∪ {1})
N := max({b(f,i) | f ∈ F , 1 � i � ar(f)} ∪ {1}) .

Further let t be a ground term, α a Δ-assignment and let Δ > 0. Then [α,Δ](t) �
M(|t|+ N |t|2Δ).

Proof. We proceed by induction on t. As t ∈ T (F), the evaluation is independent
of the assignment. Hence we write [Δ](t) instead of [α,Δ](t). If t = f ∈ F , then

[Δ](t) = cfΔ + df � M(Δ + 1) � M(|t|+ N |t|2Δ) .

If on the other hand t = f(t1, . . . , tn), then

[Δ](t) =
∑

i

(afi + bfiΔ)[f i
C(Δ)](ti) + cfΔ + df (2)

�
∑

i

(afi + bfiΔ)
(
M(|ti|+ N |ti|2

Δ

afi + bfiΔ

)
+ cfΔ + df (3)

=
∑

i

(
(afi + bfiΔ)M |ti|+ MN |ti|2Δ

)
+ cfΔ + df (4)

�
∑

i

(
(1 + NΔ)M |ti|+ MN |ti|2Δ

)
+ M(Δ + 1) (5)

�
∑

i

|ti|
(
(1 + NΔ)M + MN(|t| − 1)Δ

)
+ M(Δ + 1) (6)

= (|t| − 1)
(
(1 + NΔ)M + MN(|t| − 1)Δ

)
+ M(Δ + 1) (7)

= M
(
(|t| − 1)(1 + NΔ) + N(|t| − 1)2Δ + (Δ + 1)

)
(8)

� M(|t|+ N |t|2Δ) . (9)

In line (3) we employ the induction hypothesis, in (6) we use |ti| � |t| − 1 and
for (9) a simple calculation reveals: (|t|−1)(1+NΔ)+NΔ(|t|−1)2 +(Δ+1) =
|t|+ N |t|2Δ + Δ−N |t|Δ � |t|+ N |t|2Δ. � 
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Theorem 29. Let R be a TRS and let C denote a Δ-restricted interpretation
compatible with R. Then R is terminating and dcR(n) = O(n2). Moreover there
exists a TRS R such that dcR(n) = Ω(n2).

Proof. By Theorem 2 R is terminating and by Lemma 28, there exists K ∈ N,
such that for any ground term t: [Δ](t) � K(|t|+ K|t|2Δ) � K2|t|2(Δ + 1) and
hence

dlR(t) � inf
Δ>0

[Δ](t)
Δ

� inf
Δ>0

K2|t|2(Δ + 1)
Δ

= K2|t|2 .

We obtain dlR(t) = O(|t|2) for any t ∈ T (F ,V) and thus dcR(n) = O(n2). The
tightness of the bound follows by Example 1. � 

By definition the constant employed in Theorem 29 depends only on the em-
ployed interpretation functions. Moreover this dependence is linear. In conclud-
ing this section, we want to stress that Δ-restricted interpretation are even strong
enough to handle non-simple terminating TRSs.

Example 30 ([7]). Consider the TRS R with the one rule a(a(x)) → a(b(a(x))).
By applying the algorithm described in Section 3, we find the below given Δ-
restricted interpretation C automatically:

aC [Δ](z) = 2zΔ + 2 bC [Δ](z) = zΔ a1
C(Δ) =

1
2

b1
C(Δ) = 1 .

By Theorem 18, C is compatible with R. Hence Theorem 29 implies that the
derivational complexity of R is (at most) quadratic.

5 Experimental Results

In this section we describe the programs cdi1, cdi2, and cdi3. These programs pro-
vide search procedures for context dependent interpretations. The program cdi1
implements the heuristics of Hofbauer in [7], mentioned in Section 3 above. On
the other hand, programs cdi2 and cdi3 implement the algorithm presented in
Section 3 and incorporate constraint solvers for Diophantine (in)equalities. The
program cdi1 searches for Δ-linear interpretations, while cdi2 and cdi3 can search
for Δ-linear and Δ-restricted interpretations. We summarise further differences
below:

cdi1 Firstly, the program searches for a polynomial interpretation compatible
with a TRS R. This interpretation is then lifted to a polynomial context
dependent interpretation C as follows: Coefficients of the form k + 1 are
replaced by k + Δ. Finally Mathematica

3 is invoked to verify that the
resulting CDA C is Δ-monotone and compatible with R.

cdi2 This programs employs a constraint propagation procedure to solve the Dio-
phantine constraints in PCC(R, C) ∪ EC(R, C). Essentially the implementa-
tion follows the technique suggested in [11].

3 http://www.wolfram.com/products/mathematica/

http://www.wolfram.com/products/mathematica/
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cdi3 The Diophantine (in)equalities in PCC(R, C)∪EC(R, C) are translated into
propositional logic and suitable assignments are found by employing a SAT
solver, in our case MiniSat4. The implementation follows ideas presented
in [14] and employs the plogic library of TTT2.

5

The implementation of the transformation steps as described in Section 3, is the
same for cdi2 and cdi3. The programs cdi1, cdi2, and cdi3 are written in OCaml6

(and parts of cdi1 in C). All three programs are fairly small: cdi1 consists of
about 2000 lines of code, while cdi2 and cdi3 use roughly 3000 lines of code
each.In Table 1 we summarise the comparison between the different programs
cdi1, cdi2, and cdi3. The numbers in the third line of the table refer to the number
of bits maximally used in cdi3 to encode coefficients. Correspondingly for cdi2 we
used 32 as strict bound on the coefficients. We are interested in automatically
verifying the complexity of terminating TRSs. Consequentially, as testbed we
employ those 957 TRSs from the version 4.0 of the Termination Problem Data
Base (TPDB for short) that can be shown terminating with at least one of the
tools that participated in the termination competition 2007.7 The presented tests
were performed single-threaded on a 2.40 GHz Intel® Core™ 2 Duo with 2 GB
of memory. For each system we used a timeout of 60 seconds, the times in the
tables are given in milliseconds.

Table 1. 957 terminating TRSs

cdi1 cdi2 cdi3

Δ-linear Δ-restr. Δ-linear Δ-restricted Δ-linear
2 3 4 5 2 3 4 5

# success 19 61 62 83 86 86 86 82 82 82 83
average time - 3132 3595 3652 4041 4008 3986 5496 4981 5010 5527
# timeout - 276 782 144 189 222 238 525 687 751 797

Observe that the heuristic proposed in [7] is not suitable as an automatic
procedure. (We have not indicated the time spent by cdi1 as the timing is in-
comparable to the stand-alone approach of cdi2 or cdi3.) With respect to the
comparison between cdi2 and cdi3, the latter outperforms the former, if at least
2 bits are used. Perhaps surprisingly the performance of cdi2 and cdi3 on Δ-
restricted and Δ-linear is almost identical. This can be explained by the strong
impact of larger bounds for the coefficients a(f,i) (f ∈ F , 1 � i � ar(f)) in the
complexity of the issuing Diophantine (in)equalities. However, for both programs
cdi2 and cdi3, the stronger technique gains one crucial system: Example 23.

4 http://minisat.se/
5 http://colo6-c703.uibk.ac.at/ttt2/
6 http://www.caml.inria.fr/
7 These 957 systems and full experimental evidence can be found at http://
cl-informatik.uibk.ac.at/∼aschnabl/experiments/cdi/

http://minisat.se/
http://colo6-c703.uibk.ac.at/ttt2/
http://www.caml.inria.fr/
http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/
http://cl-informatik.uibk.ac.at/~aschnabl/experiments/cdi/
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Table 2. Termination Methods as Complexity Analysers

SL TTTbox cdi3—Δ-restricted cdi
+—Δ-restricted

# success 41 125 86 87
average time 20 577 3986 3010
# timeout 0 225 238 237

Table 2 relates existing methods that induce polynomial derivational complex-
ities of TRSs to cdi3. SL refers to strongly linear interpretations, i.e., only inter-
pretation functions of the form fA(x1, . . . , xn) =

∑
i xi + c, c ∈ N are allowed.

Clearly compatibility with strongly linear interpretations induces linear deriva-
tional complexity. Secondly, TTTbox refers to the implementation of the match-
bound technique as in [15]: Linear TRSs are tested for match-boundedness,
non-linear, but non-duplicating TRSs are tested for match-raise-boundedness.
This technique again implies linear derivational complexity. (Employing [16] (as
in [5]) one sees that any match-raise bounded TRS has linear derivational com-
plexity. Then the claim follows from Lemma 8 in [15].) Note that the restriction to
non-duplicating TRS is harmless, as any duplicating TRS induces at least expo-
nential derivational complexity. No further termination methods that induce at
most polynomial derivational complexities for TRSs have previously been known.
In particular related work on implicit complexity (for example [17,18,19,20,21])
does not provide methods that induce polynomial derivational complexities, even
if sometimes the derivation length can be bounded polynomially, if the set of start
terms is suitably restricted. Finally cdi+ denotes our standard strategy: First,
we search for a strongly linear interpretation. If such an interpretation cannot
be found, then a Δ-restricted interpretation is sought (with 5 bits as bound).

Some comments on the results reported in Table 2: By definition the set of
TRSs compatible with a strongly linear interpretation is a (strict) subset of those
treatable with cdi+. On the other hand the comparison between TTTbox and cdi+

(or cdi3) may appear not very favourable for our approach. However, cdi+ (and
cdi3) can handle TRSs that cannot be handled by TTTbox. More precisely with
respect to Δ-restricted interpretations cdi+ (and cdi3) can handle 38 (37) TRSs
that cannot be handled with TTTbox. For instance the following example can
only be handled with cdi+ (and cdi3).

Example 31. Consider the following rewrite system R+,-. (This is Example 2.11
in Steinbach and Kühler’s collection [13].)

0+y → y 0−y → x s(x)−s(y) → x−y
s(x)+y → s(x+y) x−0 → x

It is easy to see that R+,- is compatible with the following (automatically gen-
erated) Δ-restricted interpretation C.

−C [Δ](x, y) = x + y + 3yΔ + 2Δ 0C[Δ] = 0
+C [Δ](x, y) = x + y + xΔ + Δ sC[Δ](x) = x + 2 ,
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with parameter functions: −1
C(Δ) = +2

C(Δ) = s1C(Δ =)Δ, −2
C(Δ) = Δ

1+3Δ , and
+1

C(Δ) = Δ
1+Δ . Due to Theorem 29 we conclude quadratic derivational complex-

ity, while the standard polynomial interpretation would only allow to conclude
an exponential upper bound. Note that the deduced quadratic derivational com-
plexity provides an optimal upper bound.

Another issue is the high average yes time (and the higher number of timeouts)
of cdi3 and cdi+ in relation to existing techniques. Although a closer look reveals
that the total times spent by TTTbox and cdi+ (or cdi3) is relatively equal, an
improvement of the efficiency of the introduced tools seems worthwhile.

Remark 32. Note that cdi+ in conjunction with TTTbox can automatically verify
that 163 TRSs in the testbed are of at most quadratic derivational complexity.
Put differently more than 10% of all 1381 TRSs (and more than a third of the 445
non-duplicating TRSs) in version 4.0 of the TPDB are of quadratic derivational
complexity.

6 Conclusion

In this paper we have presented two subclasses of context dependent interpreta-
tions, and established tight upper bounds on the induced derivational complexi-
ties. More precisely, we have delineated two subclasses: Δ-linear and Δ-restricted
context dependent interpretations that induce exponential and quadratic
derivational complexity, respectively. Further, we introduced an algorithm for
mechanically proving termination of rewrite systems with context dependent
interpretations. As a consequence we established a technique to automatically
verify quadratic derivational complexity of TRSs. Finally, we reported on differ-
ent implementations of this algorithm and presented numerical data to compare
these implementations with existing methods that allow to automatically verify
polynomial derivational complexity of TRSs.

We believe the here presented approach can be extended further. A start-
ing point for future work would be to decide whether it is possible to define
additional subclasses of context dependent interpretations inducing polynomial
derivational complexities that grow faster than quadratic. One possible approach
is to drop the restriction to integer coefficients and thus generalise the notion
of polynomial context dependent interpretations. By Tarski’s quantifier elimi-
nation method, such an extension turns the undecidable positivity problem for
Diophantine (in)equalities into a decidable problem. Further research will clarify
the impact of this extension. A crucial problem in practical considerations is the
known ineffectivity of quantfier elimination, see for example [22].

References

1. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)



290 G. Moser and A. Schnabl

2. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105, 129–140 (1992)

3. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path orderings imply multiply recursive derivation lengths. TCS 139, 355–362
(1995)

4. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Hermann,
M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 75–89. Springer,
Heidelberg (2006)

5. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. IC 205, 512–534 (2007)

6. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Proc. 4th IJCAR. Springer, Heidelberg (accepted for publication,
2008)

7. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Mid-
deldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 108–121. Springer, Heidelberg
(2001)

8. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

9. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

10. Schnabl, A.: Context Dependent Interpretations. Master’s thesis, Universität Inns-
bruck (2007), http://cl-informatik.uibk.ac.at/∼aschnabl/
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Abstract. Tree automata modulo associativity and commutativity ax-
ioms, called AC tree automata, accept trees by iterating the transition
modulo equational reasoning. The class of languages accepted by mono-
tone AC tree automata is known to include the solution set of the in-
equality x × y  z, which implies that the class properly includes the
AC closure of regular tree languages. In the paper, we characterize more
precisely the expressiveness of monotone AC tree automata, based on
the observation that, in addition to polynomials, a class of exponential
constraints (called monotone exponential Diophantine inequalities) can
be expressed by monotone AC tree automata with a minimal signature.
Moreover, we show that a class of arithmetic logic consisting of mono-
tone exponential Diophantine inequalities is definable by monotone AC
tree automata. The results presented in the paper are obtained by apply-
ing our novel tree automata technique, called linearly bounded projection.

1 Introduction

When reasoning about system properties of complex software automatically,
analysis tools are often required to deal with arithmetic constraints together
with system transitions. Safety-critical software used in automobiles, airplanes,
and spacecrafts are examples whose internal transitions are triggered according
to whether a certain arithmetic condition is satisfied. Hybrid automata ([8]) is a
typical framework that provides a formalism for modeling such hybrid systems.
However, interesting decision problems about hybrid automata are undecidable
in most cases.

Equational tree automata were proposed in [17] as an extension of tree au-
tomata, in which equational reasoning is allowed at each transition step. The
idea of the transition modulo equivalence looks simple, but the flexibility intro-
duced in the framework turns out to define an enriched classification of formal
tree languages. It is known that tree automata are closely related to context-
free grammars: the leaf language of trees accepted by a regular tree automaton
is a context-free language, and conversely, the set of derivation trees generated
by a context-free grammar is a tree language accepted by a regular tree au-
tomaton [20]. But therefore, tree encoding by regular tree automata is no longer
powerful enough to express linear arithmetic. On the other hand, tree automata
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with associativity and commutativity (AC) axioms are expressive enough to en-
code Presburger formulas. In fact, there are several papers discussing, based on
equational tree automata or a related framework, how to embed linear arithmetic
feature in XML type checking [4] and query processing [2].

Tree automata with AC axioms are called AC tree automata (AC-TA for
short). Depending on which types of transition rules are equipped, we distin-
guish two classes of AC-TA ([17]): regular AC tree automata and monotone
AC tree automata. The former is allowed to have transition rules of the form
f(α1, . . . , αn) → β or α → β. The latter class may additionally have rules of the
form f(α1, . . . , αn) → f(β1, . . . , βn). One can easily observe that monotone AC

tree automata are a super-class of regular AC tree automata, though it is not
obvious that the language hierarchy of the two classes is strict. Indeed, in the
absence of AC axioms, the additional type of transition rules does not increase
the expressive power of tree automata.

In [15], however, Ohsaki et al. showed that tree languages accepted by mono-
tone AC tree automata are not closed under complement. This implies that the
class of monotone AC tree automata is a proper super-class of regular AC tree
automata, as tree languages accepted by regular AC tree automata are closed
under all Boolean operations. They also showed that there exists a monotone
AC tree automaton whose accepted language L satisfies t ∈ L iff |t|a × |t|b  |t|c
∧|t|d = 1 ∧ |t|e = 2, where |t|a denotes the number of occurrences of a constant a
in a tree t. This example reveals that monotone AC tree automata are a candidate
framework for representing non-linear arithmetic constraints.

The goal of this paper is to investigate the expressive power of monotone
AC tree automata. Although the closure properties of this class have been stud-
ied extensively [15,17], little is known about the expressiveness. So we devote
our attentions to the problem of defining the class of arithmetic reducible to
monotone AC tree automata. Arithmetic constraints of particular interest in
the paper are of the form of E(xn)  L(xn), such that E(xn) is an arithmetic
expression formed of non-negative integers, first-order variables, addition, multi-
plication, and exponentiation. The right-hand side L(xn) is a linear polynomial
with integer coefficients. We call the above constraint a monotone exponential
Diophantine inequality. And a formula consisting of monotone exponential Dio-
phantine inequalities is called a monotone exponential Diophantine formula. The
syntax of the formulas is given later.

The paper is organized as follows. The remainder of the section reviews some
background and related work. The next section introduces equational tree au-
tomata. The previous results and related properties are also presented. In Sec-
tion 3, we demonstrate two monotone AC tree automata for multiplication and
exponentiation. That is, we define an AC-TA Amult

E such that Amult
E accepts a tree

t if and only if |t|a×|t|b  |t|c. Similarly, we define Aexp
E such that Aexp

E accepts a
tree t if and only if |t||t|ba  |t|c. Unlike the monotone AC tree automaton shown
in the previous paper [15], Amult

E does not require extra symbols to interpret
|t|a × |t|b  |t|c. In Section 4, we discuss a decidable sub-class of exponential
Diophantine formulas. In particular, we show through tree automata techniques
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that the satisfiability of monotone Diophantine formulas is decidable, in con-
trast to the undecidability of Hilbert’s 10th problem for non-negative solutions.
In Section 5, we show that every monotone exponential Diophantine inequal-
ity is monotone AC tree automata definable. This means that one can construct
a monotone AC tree automaton over a minimal signature whose accepted lan-
guage M satisfies t ∈ M iff E(|t|a1 , . . . , |t|an)  L(|t|a1 , . . . , |t|an). Our proof is
based on a special projection, called a linearly bounded projection. This result is
not an immediate consequence of the previous observation that x × y  z and
xy  z are monotone AC-TA definable. For instance, x3  z is equivalent to
∃y(x2  y∧x×y  z ); however, we do not know whether the class of monotone
AC tree automata is closed under projection in general. Finally, in Section 6, we
conclude the paper by summarizing the results and remaining questions.

1.1 Related Work

Given a signature F that contains only an AC symbol ⊗ and constants, one
can regard Petri nets as ground AC rewriting systems over the signature F . A
configuration of a net N is a tree t over F , such that |t|a is the number of tokens
on a place a of N . In the setting, transition of N with the configuration t is
performed by ground AC rewrite rules. For instance, the transition consuming
“a token on the place a and another token on b” and producing “two tokens on
a and a token on c” is represented by the rewrite rule a ⊗ b → a ⊗ a ⊗ c. For
an initial configuration t0 of the net N , the set of all reachable trees from t0 is
called a reachability set.

Monotone AC tree automata over the above signature F are a sub-class of
Petri nets. So far we do not know whether Petri nets are properly more expressive
than monotone AC tree automata, but it is worth investigating a reasonable sub-
class of Petri nets for automated reasoning purposes. In fact, the membership
problem for monotone AC tree automata is PSPACE-complete, while the upper
bound complexity of its Petri net counterpart (the reachability problem) is not
known. In [7] Hack showed that for a given polynomial P (xn) with non-negative
integer coefficients, there effectively exists a Petri net such that the projection
of its reachability set onto the first n + 1 places is {(x1, . . . , xn, y) | P (xn)  y}.
This observation is, however, not directly applied to the case of monotone AC

tree automata, because the transition rules of monotone AC tree automata are
more restricted than those of Petri nets.

2 Preliminaries

We assume the reader is familiar with term rewriting [1] and tree automata [3].
An equational theory is a pair E = (F, E) of a signature F (a finite set of function
symbols, each with an associated unique arity) and a finite set E of orientation-
sensitive axioms over function symbols in F possibly with some variables. The
binary relation →E induced by E is the rewrite relation, i.e. s →E t if there exist
an axiom l ≈ r in E, a context C[ ] and a substitution σ such that s = C[lσ] and
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t = C[rσ]. The equivalence closure and the reflexive-transitive of →E are denoted
=E and →∗

E , respectively. For a binary function symbol f ∈ F , the associativity
axiom is written as f(f(x, y), z) ≈ f(x, f(y, z)), and the commutativity axiom
is f(x, y) ≈ f(y, x). The associative and commutative theory (AC-theory) is
an equational theory whose axioms are the associativity and commutativity for
some of the binary function symbols.

A (monotone) equational tree automaton (ETA) is a 4-tuple (E , Q, Qfin, Δ),
that consists of an equational theory E , a finite set Q of states disjoint from
symbols in F , a subset Qfin of Q, and a finite set Δ of transition rules whose
shapes are in the following forms:

(Regular) (Epsilon) (Monotone)

f(α1, . . . , αn) → β1 α1 → β1 f(α1, . . . , αn) → f(β1, . . . , βn)

such that f ∈ F , arity(f) = n and α1, . . . , αn, β1, . . . , βn ∈ Q. State symbols
occurring at different positions, αi, αj or βi, βj (i �= j), in transition rules can
be the same. In the paper we write AE to denote an ETA A equipped with an
equational theory E .

The move relation →AE is the equational rewrite relation of AE , that is,
s →AE t iff s =E C[l] and t =E C[r] for a transition rule l → r in Δ and
a context C[ ]. A tree t is accepted by AE if t ∈ TF and t →∗

AE
α for some

α ∈ Qfin, and the set of trees accepted by AE is denoted L(AE ) in the paper.
A tree language accepted by AE is called E-monotone. In particular, if E is the
AC-theory, the accepted tree language is called AC-monotone.

Proposition 1 ([15,17]). The class of monotone AC-TA is effectively closed
under union and intersection, but is not closed under complement. Moreover,
the membership and emptiness problems are decidable, but the inclusion problem
is undecidable. � 

If transition rules in Δ of AE are all in the regular form, AE is called a regular
ETA. A regular ETA with the AC-theory E is a regular AC-TA. A tree language
accepted by the regular ETA (resp. the regular AC-TA) is called E-regular (AC-
regular). If E is the free theory (E = ∅), a regular ETA is called, as is followed
by customary, a regular tree automaton, and a tree language accepted by the
regular tree automaton is called regular. The above definition of “regularity”
(regular tree automata and regular tree languages) is identical to the standard
notion, e.g. found in [3].

Leaves of a tree t, denoted leaf(t), are the sequence in left-to-right order of
constants occurring in the tree: leaf(f(t1, . . . , tn)) = leaf(t1) · · · leaf(tn) if n  1;
leaf(a) = a, otherwise. The leaf language associated to a tree language L is the
set of leaves obtained from L. The commutative image of a tree language L is
the commutative closure of a leaf language of L. Parikh mapping ΨF ([18]) is
the mapping from tree languages to the commutative image of the languages:
Given a tree language L whose signature F contains the set of constants F0 =
{ a1, . . . , ak }, then ΨF (L) = { (|t|a1 , . . . , |t|ak

) | ∃t ∈ L }. A subset of vectors in
Nk is linear if the set is { v | ∃x1, . . . , xn ∈ N : v = c+x1v1+ · · ·+xnvn } for some
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vectors c, v1, . . . , vn in Nk. We call the vector expression c + x1v1 + · · · + xnvn

a non-negative vector addition system1 (NNVAS). The finite union of linear sets
is a semi-linear set. By definition, every linear set is non-empty. However, the
empty set is semi-linear, being the union of zero linear sets. A finite subset of
vectors is also semi-linear, while the finite subset is not linear if it contains more
than one element.

The Parikh image ΨF (L) of a regular tree language L is effectively semi-
linear, meaning that: Given a regular tree automaton A, one can construct a
finite sequence of NNVAS’s V1, . . . , Vn (n  0) such that the union of linear sets
generated by V1, . . . , Vn coincides with ΨF (L(A)).

We introduce the two special operations for subsets of vectors. The i-th pro-
jection pri of a subset W of Nk (1 � i � k) is the mapping from Nk to Nk−1

such that pri(W ) = { (v(1), . . . , v(i−1), v(i+1), . . . , v(k)) | ∃v ∈ W }. Similarly,
the i-th cylindrification cyi of W is the mapping from Nk to Nk+1 such that
cyi(W ) = { (v(1), . . . , v(i − 1), x, v(i), . . . , v(k)) | ∃v ∈ W, x ∈ N }. Here we
denote v(i) for the i-th element of a vector v.

Proposition 2 ([6]). The class of semi-linear sets is effectively closed under
Boolean operations, projection, and cylindrification. Moreover, the emptiness
(and thus, the membership and inclusion problems also) are decidable. � 

Using the property, one can show that the class of AC-regular tree languages
is closed under Boolean operations. Similarly, Dal Zilio and Lugies for mul-
titree automata [4,13] and Verma and Goubault-Larrecq for two-way AC-tree
automata [21] showed that their equationally extended tree automata enjoy the
closure properties of Boolean operations.

As the benefit from the closure properties of Boolean operations and the pos-
itive decidability results, several fundamental decision problems are translated
to language problems in the class of regular AC-TA. Satisfiability of monadic
second-order logic with Presburger arithmetic (Presburger MSO) [19] is one of
the examples.

What about then the class of monotone AC-TA?

3 Monotone AC Tree Automata for Multiplication and
Exponentiation

Hereafter in the following sections, we consider a special class of monotone AC-
TA over a flat signature. A signature F is flat if F consists of one AC symbol f
and constants only. We write F0 for the set of all constants in F . So F = {f}∪F0.

Ohsaki et al. showed in [15] that there exists a monotone AC-TA whose lan-
guage L over F satisfies ΨF (L) = { (x, y, z, 1, 2) ∈ N5 | x×y  z ∧ x+y+z > 0 }.
The class of regular AC-TA or the related automata does not satisfy this prop-
erty due to the expressiveness limited by linear arithmetic. This example thus
reveals that there exists the strict hierarchy between monotone AC-TA and reg-
ular AC-TA.
1 Vector addition systems (e.g. [12]) are equipped with vectors v1, . . . , vn from Zk.
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F : f a b c

E : f( f(x, y ), z ) ≈ f( x, f( y, z )) f( x, y ) ≈ f( y, x )

Δ1 : a→ λ b→ λ f(λ, λ)→ λ

Δ2 : a→ α b→ β c→ γ β → β1 β1 → β2 β2 → δ f(α, δ)→ δ

f(α, β1)→ f(α1, β1) f(α1, γ)→ α2 f(α2, β2)→ f(α, β2) f(β2, β)→ β1

Q : α α1 α2 β β1 β2 γ δ λ

Qfin : λ, δ

Fig. 1. Amult = (E ,Q, Qfin, Δ1 ∪Δ2) and E = (F, E)

In this section, we show that there exist monotone AC tree automata Amult
E

and Aexp
E such that

ΨF (L(Amult
E )) = { (x, y, z) ∈ N3 | x× y  z ∧ x + y + z > 0 }

ΨF (L(Aexp
E )) = { (x, y, z) ∈ N3 | xy  z ∧ x + y > 0 }

Note that the condition x + y + z > 0 is necessary since our tree encoding does
not allow to have a tree whose Parikh image is (0, 0, 0).

In the previous paper ([15]), it was unknown whether there is an automaton
with a minimal signature (i.e., an automaton without any extra constants). As
far as we know, it was also unknown whether there exists a monotone AC tree
automaton for exponentiation even when extra symbols are allowed.

3.1 AC Tree Automaton for “x × y  z ”

Lemma 1. Let F = {f, a, b, c} with one AC-symbol f and three constants a, b, c.
There exists a monotone AC-TA Amult

E over F such that

ΨF (L(Amult
E )) = { (x, y, z) ∈ N3 | x× y  z ∧ x + y + z > 0 }.

� 

Our example is exhibited in Fig. 1. Based on case analysis of the number of
occurrences of c, the AC-TA Amult = (E , Q, Qfin, Δ1∪Δ2) is defined as the union
of the two automata Amult

1 = (E , {λ}, {λ}, Δ1) and Amult
2 = (E , Q − {λ}, Qfin −

{λ}, Δ2).
If |t|c = 0, obviously t →∗

Δ1/E λ, and thus Amult
1 E accepts t. Otherwise |t|c > 0,

we observe for the recursive computation that |t|a×|t|b  |t|c iff |t|c = m×|t|a+n
for some m, n such that 0 � m < |t|b and 0 < n � |t|a. That means, a tree
t = f(ax, by, cz) with x × y  z is considered to be the tree with the following
leaves:

f( ax, b, b, cx, . . . , b, cx︸ ︷︷ ︸
m × (b,cx)

, by−m−1, cn ).
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f( a
x, b

y, c
z )

∗

∗

∗

∗

0 � i � m

a→ α, b→ β, β → β1, c→ γ

(2)

(1)

f(β2, β)→ β1, β1 → β2, β2 → δ

f( αx, β1, β, γx, · · · , β, γx

� �� �

(m− i) × (β,γx)

, βy−m−1, γn )

f( αx, β2, βy−m−1 )

f( αx, δ )

Fig. 2. A derivation of f( a
x, b

y, c
z)

Here f(ax, by, cz) represents that it has x occurrences of the constant a, y occur-
rences of b, and z occurrences of c, respectively.

Regarding the derivation from f(ax, by, cz), we have the two properties

(1) f(αx, β1, γ
n ) →∗

Δ2/E f(αx, β2 ) if n � x,

(2) f(αx, β1, γ
n, β ) →∗

Δ2/E f(αx, β1 ) if n � x.

The derivation in the property (1) is obtained from f(αx, β1, γ
n) by applying

f(α, β1) → f(α1, β1) and f(α1, γ) → α2 repeatedly n times, and then by applying
β1 → β2 and f(α2, β2) → f(α, β2). Furthermore, when n � x, we have

f(αx, β1, γ
n, β ) →∗

Δ2/E f(αx, β2, β ) →Δ2/E f(αx, β1 )

that is the derivation in the property (2). According to this second property, t =
f(ax, by, cz) reaches f(αx, β1, β

y−m−1, γn) by Δ2/E . Thus, by the first property,
t reaches f(αx, β2, β

y−m−1). That means, we have the derivation

t →∗
Amult

2 E
f(αx, βy, γz) →∗

Amult
2 E

f(αx, β1, β
y−m−1, γn) →∗

Amult
2 E

f(αx, β2, β
y−m−1).

Since f(β2, β) →∗
Amult

E
β2 and β2 →Amult

E
δ, the derivation from t reaches the final

state δ :

f(αx, β2, β
y−m−1) →∗

Amult
2 E

f(αx, β2) →∗
Amult

2 E
f(αx, δ) →∗

Amult
2 E

δ.

Therefore, every tree t over F = { f, a, b, c } is accepted if |t|a × |t|b  |t|c. The
derivation from t to f(αx, δ) by Amult

2 E is illustrated in Fig. 2.
See Appendix A.1 in [10] for the completeness proof of Amult

E .
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3.2 AC Tree Automaton for Exponentiation

Let us first illustrate the AC tree automaton Asqr = (E , Q, {λ, δ}, Δ1 ∪Δ2) that
accepts {t | 2|t|a  |t|b}.

Δ1 : a → λ f(λ, λ) → λ

Δ2 : a → α b → β b → δ α → γ1 γ1 → γ3

f(β, γ1) → f(β1, γ2)

f(β, γ2) → γ1

}
(1)

f(β1, γ3) → f(β, γ3)

f(α, γ3) → γ1

}
(2)

f(β, γ3) → δ

f(α, δ) → δ

}
(3)

Regarding the above transition rules, we note that for every t ∈ TF , if |t|b = 0,
t is accepted by Asqr

E using the transition rules in Δ1; otherwise, t is accepted by
the rules in Δ2. If |t|a = 0 and |t|b = 1, it is obvious. If |t|a > 0, the derivation
from t to δ by Δ2 is illustrated in Fig. 3.

The derivation in Fig. 3. is separated to the three phases: First, a, b in t are
replaced by α, β, and one of α’s is replaced by γ1. This is for initializing the com-
putation. Next, we apply the computation for “reducing by half” the number of
occurrences of β. At most the half of β’s are replaced by β1, and the same num-
ber of β’s are removed. This transition is performed by applying the rules in (1).
In the third phase, β1’s are replaced back to β’s by the rule f(β1, γ3) → f(β, γ3)
in (2). Therefore, we have the derivation

f(αm, γ1, β
n ) →∗

Asqr
E

f(αm, γ3, β
n−k) such that 0 � k � 1

2
n.

If n− k = 1, the transition rule f(β, γ3) → δ in (3) is applied to f(αm, γ3, β
n−k),

and the remaining α’s are eliminated by using the rule f(α, δ) → δ. Otherwise,
f(α, γ3) → γ1 is applied for iterative computation, and it restarts the computa-
tion from the reduction-by-half phase.

Generalizing the above observation, we obtain the next lemma.

Lemma 2. Let F = {f, a, b, c} with one AC-symbol f and three constants a, b, c.
There exists a monotone AC-TA Aexp

E over F such that

ΨF (L(Aexp
E )) = { (x, y, z) ∈ N3 | xy  z ∧ x + y > 0 }

Proof. Appendix A.2 in [10]. � 

4 Monotone Exponential Diophantine Formulas

An arithmetic constraint over a finite set of variables x1, . . . , xn (n  0) is an
exponential Diophantine formula if the formula is in D of the following syntax:

D ::= A | ¬(D ) | D ∨D | D ∧D

A ::= ∃xi (D ) |
∑
i∈I

aixi  b | xi × xj  xk | x
xj

i  xk

such that ai, b ∈ Z for all i ∈ I. If a formula ψ does not contain an atomic
formula x

xj

i  xk, ψ is simply called a Diophantine formula.
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f( a
x, b

y )

∗

∗

∗

a→ α, b→ β, α→ γ1

(1)

(2)

f( αx−1, γ1, βy )

f( αx−1, γ1, βy−2k, βk
1 ) (0 � k � 1

2y)

f( αx−2, γ1, βy−k )

Fig. 3. Three phases in the derivation from f( a
x, b

y )

A formula ψ is satisfiable if there exists an assignment θ to free-variables in ψ
such that ψθ is true. Similarly, ψ is valid if ψθ is true for any assignment θ. For
instance, the formula x  1 is satisfiable but not valid, because (x  1){x �→ 0}
is not true. In the paper we write [[ψ ]]N for the set of all solution vectors of ψ,
that is, v ∈ [[ ψ ]]N iff v ∈ Nn and ψ{x1 �→ v(1), . . . , xn �→ v(n)} is true. Note that
ψ is satisfiable iff [[ ψ ]]N �= ∅; ψ is valid iff [[ ψ ]]N = Nn.

A formula ψ is logically equivalent to φ, denoted ψ ⇔ φ, if for every assign-
ment θ to free-variables in formulas, ψθ is true iff φθ is true. Obviously, ⇔ is an
equivalence relation. See the reference, e.g. [9], for more logical background.

We define a new class of arithmetic constraints.

A formula ψ is monotone if none of the negative sub-formulas ¬(φ) of ψ

contains an atomic formula of the form xi × xj  xk or x
xj

i  xk.

For instance, x2  y is logically equivalent to the formula ∃z(x× z  y ∧ x 
z ). However, there is no monotone (exponential) Diophantine formula equivalent
to x2 = y, because every formula equivalent to x2 = y has a negative sub-formula
containing a non-linear constraint, e.g. (x2  y) ∧ ∃z(¬(x2  z) ∧ (z = y + 1)).

Next we define arithmetic expressions over variables x1, . . . , xn (n  0).

E(xn) ::= a | xi | E(xn) + E(xn) | E(xn)× E(xn) | E(xn)E(xn)

where a ∈ N. Elements in E(xn) are called exponentials. We write P (xn) in-
stead of E(xn) for a polynomial with non-negative integer coefficients. A linear
polynomial (with arbitrary integer coefficients) is denoted L(xn).

Note that for every E(xn) and L(xn), one can find a monotone exponential
Diophantine formula equivalent to E(xn)  L(xn), because:
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E1(xn) + E2(xn)  y ⇔ ∃z1, ∃z2(E1(xn)  z1 ∧ E2(xn)  z2 ∧ z1 + z2  y)

E1(xn)× E2(xn)  y ⇔ ∃z1, ∃z2(E1(xn)  z1 ∧ E2(xn)  z2 ∧ z1 × z2  y)

E1(xn)E2(xn)  y ⇔ ∃z1, ∃z2(E1(xn)  z1 ∧ E2(xn)  z2 ∧ zz2
1  y)

Given a polynomial P (xn) with arbitrary integer coefficients, the question
[[ P (xn) = 0 ]]N

?= ∅ (Hilbert’s 10th problem for non-negative solutions) is
undecidable [14]. Therefore, the satisfiability question for (exponential) Diophan-
tine formulas is undecidable.

A formula ψ is linear Diophantine, on the other hand, if every atomic formula
of ψ is a linear constraint

∑
i∈I aixi  b such that ai, b ∈ Z for all i ∈ I. In the

literature a linear Diophantine formula is often called a Presburger formula. The
solution set of a given Presburger formula is effectively semi-linear. And thus,
the satisfiability of Presburger formulas is decidable [5].

Every linear Diophantine formula is monotone, but a monotone Diophantine
formula may not be linear. Moreover, x2 = y is not a monotone formula, while
the formula is Diophantine. So we have the following relation among the classes
of arithmetic constraints:

Presburger � monotone Diophantine � Diophantine

The following decidability result follows immediately from the results of the
previous section and the closure properties of monotone AC tree automata.

Theorem 1 (Satisfiability). Satisfiability of monotone exponential Diophan-
tine formulas is decidable.

Proof. We observe that ∃x (ψ) ∨ φ ⇔ ∃x (ψ ∨ φ) and ∃x (ψ) ∧ φ ⇔ ∃x (ψ ∧ φ)
if x does not freely occur in φ. This implies that given a monotone exponential
Diophantine formula δ, one can move existential quantifiers outside of δ, so that
δ is logically equivalent to a formula ∃x (ψ) for some ψ in S.

S ::= x× y  z | xy  z | C | S ∧ S | S ∨ S

Here C ranges over the set of Presburger formulas. By Lemmas 1 and 2 and
Proposition 1, one can construct AE such that ΨF (L(AE )) = [[ ψ ]]N − 0. Obvi-
ously, ∃x (ψ) is satisfiable if and only if L(AE ) �= ∅ or 0 is a solution of ψ. By
Proposition 2, L(AE ) �= ∅ is decidable. Moreover, the question if 0 is a solution
of ψ is decidable. Therefore, the satisfiability of ∃x (ψ) is so. � 

5 Linearly Bounded Projection and Definable Formulas

In this section, we focus on the main question, that is, the expressiveness of
monotone AC tree automata relative to the first-order theory of arithmetic.

According to the examples in Section 3 (Lemmas 1 and 2), the class of tree
languages accepted by monotone AC tree automata includes the solution sets of
x × y  z and xy  z. We generalize this result, so that the class covers more
complex arithmetic constraints, such as (x2 + y)x  z.

A formula ψ is monotone AC-TA definable if there effectively exists a mono-
tone AC-TAAE over a flat signature F such that the Parikh image of the accepted
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language is the set of all solution vectors except zero, i.e. ΨF (L(AE )) = [[ φ ]]N−0.
In the following of the section, we attempt to characterize the expressive power
of monotone AC tree automata in comparison with the class of arithmetic for-
mulas. In particular, we show that every formula in the following sub-class of
monotone exponential Diophantine formulas is monotone AC-TA definable.

M ::= E(xn)  L(xn) | C | M ∨M | M ∧M

As appeared previously, C ranges over the set of Presburger formulas.

Remark 1. Our discussion in the sequel does not lose generality, though 0 is
excluded in the above definition. Indeed, there are several ways to deal with
the zero vector in tree automata. For instance, one can introduce the special
constant 0̇ such that the solution set [[φ ]]N contains 0 iff AE accepts 0̇. Note that
the notion of definability is invariant in the treatment of 0.

We note that the class of languages of regular AC-TA over a flat signature
(which is a commutative context-free grammar in formal languages) coincides
with the class of solution sets of Presburger formulas, called Presburger sets, [5].
For Petri nets, the set {(x1, . . . , xn, y) | P (xn)  y} is a Petri net language
if P (xn) is a polynomial with non-negative integer coefficients [7], while the
transition rules of monotone AC tree automata are more restricted.

According to the above observation about regular AC-TA together with the
fact that the class of monotone AC-TA subsumes regular AC-TA and is closed
under union and intersection (Proposition 1), we have the following lemma.

Lemma 3. Every Presburger formula is monotone AC-TA definable. Moreover,
if formulas ψ1 and ψ2 are monotone AC-TA definable, so are ψ1∧ψ2 and ψ1∨ψ2.

� 
As noted in the proof of Theorem 1, every monotone exponential Diophantine
formula is logically equivalent to some formula ∃x(ψ ) such that ψ is a monotone
AC-TA definable formula. Therefore, the definability of monotone exponential
Diophantine formulas could follow immediately if the class of monotone AC-TA

were closed under projection. However, it is unknown so far whether the class
of monotone AC-TA is closed under arbitrary projection.

Our key observation is that the language class of monotone AC-TA is closed
under a special projection, called linearly bounded projection, discussed below.
It turns out that the linearly bounded projection suffices to show that the above
sub-class M of monotone exponential Diophantine formulas is monotone AC-TA

definable.

Lemma 4 (Linearly Bounded Projection: special case). Given a mono-
tone AC-TA AE over a flat signature F containing constants a and b, one can
construct a monotone AC-TA BE over F − {a} such that

L(BE) = { u | ∃t ∈ L(AE) : |t|a � |t|b and |t|c = |u|c for all c ∈ F0 − {a} }.
Namely, if a formula ψ is monotone AC-TA definable, so is ∃x (x � y ∧ ψ ).

Proof (Outline). We suppose, without loss of generality, that A=(E , Q1, {γ}, Δ1)
such that Δ1 contains no transition rule for a, b except a → α and b → β. The set
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Q2 of state symbols of BE are the union of Q1 and the set {M ∈ mul(Q1) | |M | �
2 } of multisets of Q1 whose size is at most 2. (Here, mul(S) stands for the set of
multisets of a set S.) Moreover, to distinguish multisets from sets, we write {{·}}
to denote a multiset, and � for the multiset union. The set Δ2 of transition rules
of BE consists of rules from (Δ1 − { a → α, b → β }) ∪ { b → {{α, β}}, b → {{β}} }
and the rules defined below:

M � {{p}}→ M � {{q}} if p →∗
AE

q

{{p, q}}→ {{r}} if f(p, q) →∗
AE

r

f(M � {{p}}, q) → M � {{r}}
f(M � {{p}}, {{q}}) → M � {{r}}

f(M � {{p}}, N � {{q}}) → f(M � {{r}}, N) (N �= ∅)
{{p, q}}→ {{r, s}} if f(p, q) →∗

AE
f(r, s)

f(M � {{p}}, q) → f(M � {{r}}, s)
f(M � {{p}}, N � {{q}}) → f(M � {{r}}, N � {{s}})

such that p, q, r, s ∈ Q1.
Let BE be the automaton equipped with the above Q2 and Δ2 such that

the final states are γ and {{γ}}. For instance, the transition move C[a, b] →AE

C[α, b] →AE C[α, β] is simulated in BE by the single transition D[b] →BE

D[{{α, β}}]. It is not difficult to show that for all t ∈ TF and u ∈ TF−{a}, if

– |t|a � |t|b
– |u|c = |t|c for all c ∈ F0 − {a},

then AE accepts t iff there exists a derivation u →∗
BE

γ or u →∗
BE
{{γ}}. � 

This lemma can be generalized as follows.

Lemma 5 (Linearly Bounded Projection). If L(xn) is a linear polyno-
mial with non-negative integer coefficients, every monotone AC-TA AE over the
flat signature F = {f}∪{a}∪{b1, . . . , bn} can be transformed to BE over F −{a}
such that

L(BE) = { u | ∃t ∈ L(AE) : |t|a � L(|t|b1 , . . . , |t|bn) and |t|bi = |u|bi for all i }.

Proof. Appendix A.3 in [10]. � 

The following theorem is an immediate consequence.

Theorem 2. Let L(yn) be a linear polynomial (with integer coefficients) such
that free-variables yn in L do not contain x. Then, if ψ is monotone AC-TA
definable, so is ∃x (x � L(yn) ∧ ψ ). � 

Let us demonstrate the linearly bounded projection as a tool for translating
exponential constraints by monotone AC tree automata.

Example 1. Consider the super-exponential inequality xxx  y. This constraint
is equivalent to ( x = 1 ∧ 1  y ) ∨ ∃z (x  2 ∧ xz  y ∧ xx  z). Let ψ be
the formula x  2 ∧ xz  y ∧ xx  z. Then ψ is monotone AC-TA definable
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(Lemma 2). Note that the definability of xx  y follows from Theorem 2, meaning
that, xx  y is logically equivalent to ∃w (w � x ∧ xw  y ∧ w  x ) and the
sub-formula xw  y ∧ w  x is monotone AC-TA definable.

Observe that x  2 implies xz  z. Thus we have

∃z (ψ) ⇔ ∃z ( z � y ∧ ψ ) ∨ ∃z ( z  y ∧ ψ )
⇔ ∃z ( z � y ∧ ψ ) ∨ ∃z ( z  y ∧ x  2 ∧ xx  z)
⇔ ∃z ( z � y ∧ ψ ) ∨ (x  2 ∧ xx  y )

The left sub-formula ∃z ( z � y ∧ψ ) is monotone AC-TA definable (Theorem 2),
and the right sub-formula is so according to the above observation. Therefore,
xxx  y is monotone AC-TA definable. � 

It is not difficult to generalize the technique we have used in the example, so
that we state the next lemma. See Appendix A.4 in [10] for a proof.

Lemma 6. Every monotone exponential Diophantine inequality E(xn)  L(xn)
is monotone AC-TA definable. � 

Accordingly, we have the main result of the paper.

Theorem 3 (Definability of exponential Diophantine formulas). Every
arithmetic constraint in M of the following syntax is monotone AC-TA definable:

M ::= E(xn)  L(xn) | C | M ∨M | M ∧M

where C denotes a Presburger formula. � 

Remark 2. We have the following inclusion of formulas:

quantifier-free monotone
exponential Diophantine � M �

monotone
exponential Diophantine

For the left (strict) inclusion, we consider x2 + yx  z in M . This constraint
requires ∃-quantifiers when it is expressed as an exponential Diophantine for-
mula. For the right strict inclusion, consider ∃z (z3  y ∧ x  z + 1), which is
equivalent to (x−1)3  y∧x  1. It does not belong to M , since the co-efficient
of x2 is negative.

6 Concluding Remarks

In the paper we have discussed the expressiveness of monotone AC-TA. First
we demonstrated in Lemmas 1 and 2 that the non-linear inequalities x × y  z
and xy  z over natural numbers are interpretive by monotone AC-TA. These
examples also refine the previous results in [15]. Next we proposed the class of
monotone exponential Diophantine formulas, which is a decidable fragment of
exponential Diophantine formulas (Theorem 1). Using the transformation by lin-
early bounded projection, we have shown that every monotone exponential Dio-
phantine inequality E(xn)  L(xn) is monotone AC-TA definable (Lemma 6),
and therefore, a sub-class of monotone exponential Diophantine formulas is
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monotone AC-TA definable (Theorem 3). As an example of the main result, we
have presented that the super-exponential xxx  y is monotone AC-TA definable.

The definability results in terms of monotone AC-TA obtained in the paper
are based on our original technique, Linearly Bounded Projection. Due
to the unsolved question about the closedness under projection of AC-monotone
tree languages, this special projection plays an essential role overall in the paper.

As a remark of this projection, one can apply it for showing that x× y  z is
monotone AC-TA definable, using the previous result ([15]) that x×y  z ∧ u =
1 ∧ v = 2 is monotone AC-TA definable, because x×y  z is logically equivalent
to ∃u, v (u � 1 ∧ v � 2 ∧ x × y  z ∧ u = 1 ∧ v = 2 ). This is an alternative
proof for Lemma 1.

There are two interesting questions remaining open:
1. Closedness under projection: Exponential monotone Diophantine formulas

are monotone AC-TA definable if the class of monotone AC-TA is closed
under projection. Moreover, under the same condition, one can show that
the language classes of Petri nets and monotone AC-TA are identical, which
seems to be negatively observed, without a clear proof, in [11].

As we have seen in the paper, using linearly bounded projection, one can
eliminate a certain type of ∃-quantifiers in the formulas. Moreover, it may be
possible to transform every monotone exponential Diophantine formula into an
equivalent formula formed of linearly bounded monotone AC-TA definable sub-
formulas. If so, regardless of the answer to the above question 1, one can have
the positive answer to the definability question about monotone exponential Dio-
phantine formulas—whether every monotone exponential Diophantine formula
is monotone AC-TA definable. Furthermore, the validity of monotone exponen-
tial Diophantine formulas is an interesting question, though the decidability of
the universality problem of monotone AC-TA is not known.

2. Complete characterization of monotone AC-TA: The definability theorem
for exponential Diophantine formulas (Theorem 3) appeals that this class of
formulas is related to monotone AC-TA. However, we do not know exactly
which class of the arithmetic can be the counterpart of monotone AC-TA.

One can observe that the class of monotone AC-TA is a proper sub-class
of monotone A-TA. Monotone A-TA are the class of ETA whose axioms are
associativity only [16]. This hierarchy stems from the observation that every
monotone AC-TA can be simulated by a monotone A-TA which additionally has
transition rules f(α, β) → f(β, α) for all states α, β instead of the commutativity
axioms of f . Tree languages accepted by monotone A-TA are closely related to
context-sensitive languages, which is a sub-class of primitive recursive sets. Thus,
monotone AC-TA may relate to the first-order theory of arithmetic with a certain
type of, e.g. monotonic, primitive recursions.

Acknowledgments. The authors would like to thank Jun-ichi Abo for partici-
pating in our discussions with enthusiasm. The completeness proof of Lemma 1
is partly owing to him. We also thank for many fruitful comments from four
anonymous reviewers.
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Abstract. The decreasing diagrams technique is a complete method to
reduce confluence of a rewrite relation to local confluence. Whereas pre-
vious presentations have focussed on the proof the technique is correct,
here we focus on applicability. We present a simple but powerful general-
isation of the technique, requiring peaks to be closed only by conversions
instead of valleys, which is demonstrated to further ease applicability.

1 Introduction

The decreasing diagrams technique [1,2] is a method to reduce the problem
of showing confluence of a rewrite relation to showing its local confluence. In
exchange for localisation, the confluence diagrams need to be decreasing with
respect to some labelling. The method is complete in the sense that any (count-
able) confluent rewrite relation can be equipped with such a labelling. But by
undecidability of confluence completeness also entails that finding such a la-
belling is hard. The goal of this paper is to ease the latter, thus enhancing
applicability of the technique. We try to achieve this in two ways.

First, in Sect. 3, we relax the local confluence constraint. Instead of requiring
that for every pair of diverging steps a pair of reductions exists such that the
resulting diagram is decreasing, we show it suffices that a conversion exists such
that the resulting diagram is decreasing, by analogy with the way in which
Winkler & Buchberger’s confluence criterion [3, Lemma 3.1] relaxes Newman’s
Lemma [4, Theorem 3].

Next, in Sect. 4, we provide heuristics for finding appropriate labellings, illus-
trated by many examples from the literature, ranging from abstract rewriting
via term rewriting and λ-calculi to process algebra.

In the examples we use results from the literature. Other than that, we as-
sume only basic rewriting knowledge, which is recapitulated in Sect. 2. That
section serves also to recapitulate from [1,2] the core of the decreasing diagrams
technique. Those not yet familiar with that technique are advised to consult one
of its textbook accounts [5,6] first.
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2 Preliminaries

A rewrite relation is a binary relation on a set of objects. To stress we are
interested in the direction of rewrite relations we use arrow-like notations like
→, *, , and � to denote them. For a rewrite relation →, we inductively define
an object a to be terminating, if for all objects b such that a → b, b is terminating.
The rewrite relation → is terminating if all its objects are. For a rewrite relation
denoted by an arrow-like notation →, its converse is denoted by the converse ←
of the notation. We denote the union of two rewrite relations by the union of
their notations, e.g. �� denotes � ∪ �, and ↔ denotes ← ∪→, the symmetric
closure of →. We use → ·  to denote the composition of → and , and →=

and →+ to denote respectively the reflexive and transitive closure of →. To
denote the reflexive–transitive closure of →, i.e. its ‘repetition’, we employ the
‘repetition’ � of its notation. When both ,� are defined, we abbreviate  ∪�
to →. Further notions and notations will be introduced on a by-need basis. We
now state the decreasing diagrams theorem, illustrating it by means of a running
example.

Definition 1. A pair (, �) of rewrite relations commutes if �� · �� ⊆ �� · ��,
and commutes locally if � · � ⊆ �� · ��. A rewrite relation → is confluent if
(→,→) commutes, and locally confluent if (→,→) commutes locally.

Example 1. A rewrite relation is confluent if locally confluent and terminating.

The decreasing diagrams technique generalises this example, that is, Newman’s
Lemma, by weakening the termination assumption to decreasingness.

Definition 2. A pair ((�)�∈L, (�m)m∈M ) of families of rewrite relations is de-
creasing if the union L ∪ M of their sets L,M of labels comes equipped with a
terminating and transitive rewrite relation *. A pair of rewrite relations (, �) is
decreasing, if  =

⋃
�∈L �, � =

⋃
m∈M �m for such a decreasing pair of families,

such that for all �∈L,m∈M , �� ·�m ⊆ ���� ·�=
m ·���{�,m} ·���{�,m} ·�=

� ·���m

(see Fig. 1), where �N = {n∈L∪M | ∃k∈N k * n}, and �n abbreviates �{n}.

==

m�

��

�{�, m} �{�, m}

�m

�m

Fig. 1. Decreasingness

A family (→�)�∈L of rewrite relations is decreasing if ((→�)�∈L, (→�)�∈L) is.
A rewrite relation → is decreasing, if (→,→) is.
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Example 2. A rewrite relation → on A as in Example 1 is decreasing: The fam-
ily (→a)a∈A, with →a defined as → with domain restricted to {a}, and with
the set of labels A ordered by →+, is decreasing by the assumption that → is
terminating. Clearly → =

⋃
a∈A →a, and as for any peak b ←a a →a c, there is

a valley between b and c by local confluence and since for any object, i.e. label,
d in this valley it trivially holds a →+ d, we conclude to decreasingness of →.

Theorem 1 ([1]). A pair of rewrite relations commutes if it is decreasing. A
rewrite relation is confluent if it is decreasing.

Proof. We recapitulate the core of the proof in [1] for easy adaptation later on.
Instead of proving commutation one proves the stronger property:

(∗) Every peak b ��σ ·��τ c can be completed by a valley b ��τ ′ · ��σ′ c, into
a so-called decreasing diagram, i.e. such that |στ ′| (mul |σ| � |τ | )mul |τσ′|.

where |σ| is the lexicographic maximum measure of the string of labels σ, i.e. the
multiset inductively defined by: |ε| = ∅ and |�σ| = [�]� |σ|−��, and *mul is the
(terminating) multiset extension of the (terminating) relation * on the labels.

For such a peak, completability into a decreasing diagram is proved by *mul -
induction on its measure |σ| � |τ |. The proof being trivial in case either of the
reductions in the assumption is empty, the interesting cases are seen to be of
shape ��σ · �� · �m · ��τ , for which one concludes by the following three steps
corresponding to the three components of Fig. 2:

τ ′′

& (Local)

σ′
τ ′

� m

σ τ

(Decrease) & IH

(Compose) &
(Decrease) & IH

Assumption

Fig. 2. Decreasing ⇒ Commutes

1. by the decreasingness assumption on (, �) the local peak �� · �m can be
completed by a valley ��τ ′ · ��σ′ yielding a decreasing diagram by (Local);

2. by the induction hypothesis, which applies by (Decrease) and (1), the peak
��σ′ ·��τ can be completed by a valley ��τ ′′ ·��σ′′ into a decreasing diagram;
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3. by the induction hypothesis, which applies by (Decrease) and (Compose) ap-
plied to (1),(2), the peak ��σ ·��τ ′ ·��τ ′′ , can be completed into a decreasing
diagram, which by another application of (Compose) proves the result;

where the following facts haven been used for diagrams Di with i∈{1, 2}, where
a diagram Di consists of a peak ��σi ·��τi completed by a valley ��τ ′

i
· ��σ′

i
:

(Local) If D1 is a local diagram, i.e. if its peak is of shape �� · �m for some
labels �,m, then D1 is decreasing if and only if its valley is of shape ���� ·
�=

m ·���{�,m} · ���{�,m} · �=
� · ���m [1, Proposition 2.3.16].

(Decrease) If D1 is a non-empty decreasing diagram, i.e. if its reduction ��τ1

is not empty, then filling the peak ��σ1 · ��τ1 · ��τ2 with D1 decreases the
measure, i.e. |σ1| � |τ1τ2| *mul |σ′

1| � |τ2| [1, Lemma 2.3.19].
(Compose) If diagrams D1,D2 are decreasing and can be composed, i.e. if
their respective reductions ��σ′

1
and ��σ2 coincide, then this composition,

consisting of the peak ��σ1 ·��τ1 ·��τ2 completed by the valley ��τ ′
1
·��τ ′

2
·��σ′

2
,

is decreasing again [1, Lemma 2.3.17]. � 

Example 3. Theorem 1 applied to Example 2 yields a proof of Example 1.

Remark 1. Conversely, any countable confluent relation is decreasing [1, Corol-
lary 2.3.30]. It is an open problem whether countability can be dropped, and
also whether any pair of commuting relations, countable or not, is decreasing.

Theorem 1 provides a method to prove properties stronger than commutation.

Theorem 2. Let P be a property of diagrams which is closed under composition
(defined as in the proof of Theorem 1). If (, �) is a decreasing pair of rewrite
relations such that every local peak can be completed into a decreasing diagram
having property P , then every peak can be so completed.

Proof. Require the diagram in (∗) in the proof of Theorem 1 to satisfy P . � 

Example 4. Consider the property P expressing that in a diagram D with peak
b � a � c and valley b � d � c, its ‘left-reduction’ a � b � d is not longer
than its ‘right-reduction’ a � b � d. As P is preserved under composition of
diagrams, it suffices under the assumptions of Newman’s Lemma to check that P
holds for all local diagrams. If it does, then all maximal reductions from a given
object end in the same normal form, reached in the same number of steps [7].

Example 5. The strict commutation property expressing that in a diagram with
peak b �� a �� c and valley b �� d �� c, if a �� c is non-empty then so is b �� d,
is easily seen to be preserved under composition. Hence, it suffices to verify that
local decreasing diagrams are strict.

3 Conversion

We generalise the decreasing diagrams technique as presented in the previous
section, by allowing local peaks to be completed by conversions instead of valleys.
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Definition 3. A pair of rewrite relations (, �) is decreasing with respect to
conversions, if  =

⋃
�∈L �, � =

⋃
m∈M �m for a decreasing pair of families

((�)�∈L, (m)m∈M ) such that for all �∈L,m∈M , �� ·�m ⊆ ��∗
�� ·�=

m · ��∗
�{�,m} ·

�=
� · ��∗

�m. A rewrite relation → is decreasing with respect to conversions, if
(→,→) is.

=

� m

��

�{�, m}

�m
m �=

Fig. 3. Decreasingness with respect to conversions

Decreasingness is illustrated in Fig. 3, where, to avoid clutter, arrowheads in the
conversions have been elided. We will henceforth refer to decreasingness in the
sense of Definition 2 as decreasing with respect to valleys, abbreviated to ♦, and
we abbreviate decreasingness in the present sense of Definition 3 to :.

Example 6. Let → be a terminating rewrite relation such that for every local
peak b ← a → c the objects b and c are convertible below a, i.e. b = a1 ↔
. . . ↔ an = c with a →+ ai for all 1 ≤ i ≤ n. From Example 2 we already
know that labelling steps by their source and ordering the labels by →+ yields
a decreasing labelling, and it is easy to see that the requirement that every local
peak b ← a → c be convertible below a, entails that the rewrite relation → is
decreasing with respect to conversions for this labelling.

Theorem 3. A pair of rewrite relations commutes if it is decreasing with respect
to conversions, and idem for confluence of a single rewrite relation.

Proof. We adapt the proof of Theorem 1, keeping the same invariant and in-
duction. Observe that the only difference arises in case the peak is of shape
b ��σ b′ �� · m c′ τ c for some � ∈ L,m ∈M . By the assumption that (, �)
is decreasing with respect to conversions, the local peak b′ �� · m c′ can be
transformed into b′ ��∗

�� ·�=
m · ��∗

�{�,m} · �=
� · ��∗

�m c′, see (1) in Fig. 4. We
show decreasingness with respect to valleys, by transforming the conversion into
a valley of shape b′ ���� ·�=

m ·���{�,m} · ���{�,m} · �=
� · ���m c′, and conclude.

First observe that if the peak of a decreasing diagram consists only of labels in
�M then so does its valley. Thus by repeatedly applying the induction hypoth-
esis, the peaks in the conversions ��∗

��,��∗
�m can be transformed into valleys

smaller than �,m, yielding b′ ���� · ���� ·�=
m · ��∗

�{�,m} · �=
� ·���m · ���m c′,
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�{�, m}

� m

�{�, m}

�m��

�m�� �m

b′ c′

d

�{�, m}

(1)

(2) (2)

(3)

(4)

(3)
m �

�m��

�{�, m}

Fig. 4. Decreasing with respect to conversions ⇒ Commutes

see (2) in Fig. 4. Applying the induction hypothesis to the peaks ���� · �=
m

and �=
� · ���m gives by analogous reasoning, valleys of shapes ���� · �=

m ·
���{�,m} · ���{�,m} and ���{�,m} · ���{�,m} · ·�=

� · ���m, see (3) in Fig. 4, giving
b′ ���� ·�=

m · ��∗
�{�,m} · �=

� · ���m c′. Finally, repeatedly applying the induction
hypothesis to the peaks in the conversion ��∗

�{�,m} transforms it into a valley
���{�,m} d ���{�,m}, see (4) in Fig. 4, resulting in a decreasing diagram with
respect to valleys. � 

Example 7. Theorem 3 applied to Example 6 yields Winkler & Buchberger’s
result [3, Lemma 3.1] stating that any terminating rewrite relation such that the
targets of any local peak are convertible below its source, is confluent.

Remark 2. It would be interesting to see whether the proofs of confluence by
decreasing diagrams as presented in [8,9] can be adapted in a similar way.

Observe that from the proof of Theorem 3 it follows that, for any given labelling,
decreasingness with respect to valleys is equivalent to decreasingness with respect
to conversions, Although equivalent, the latter is in principle easier to check: one
‘just’ has to find an appropriate conversion instead of an appropriate valley for
each local peak ←� ·→m. Of course, the ‘search space’ for conversions is in general
much larger than for valleys. To keep searching feasible nonetheless, observe first
that one only needs to search (forward or backward) rewrite steps having labels
smaller than or equal to � or m, and second that one may opt to linearly bound
the amount of time spent on searching decreasing conversions by that spent on
valleys, where the latter restriction is complete by the observation above. That
searching for conversions instead of valleys can be advantageous is witnessed by
the following example, where searching conversions for all local peaks takes time
linear in n whereas searching for valleys takes quadratic time.

Example 8. Consider for every natural number n, the confluent rewrite relation
given by bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1.
Completing a local peak bi ← ai → ci by a valley takes time n − i, whereas
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completing it by a conversion takes constant time, say 4. This proves our claim
since

∑n
i=1 n− i is quadratic in n and

∑n
i=1 4 is linear.

Remark 3. In his dissertation Geser argues [10, p. 38] that checking for valleys is
less complex than checking for conversions. The above shows on the contrary that
both can be combined fruitfully without changing the worst case O-behaviour.
Whether such combinations are useful, i.e. less complex on average, in practice
or in theory, for all or some labellings, remains to be investigated.

Like Theorem 1, also Theorem 3 provides a method to prove properties stronger
than commutation. However, compared to Theorem 2, the property now has to
apply to all conversion diagrams, i.e. diagrams consisting of a peak completed
by a conversion instead of a valley, and be closed not only under composition,
but also under filling a peak of the conversion by another conversion diagram.

Theorem 4. Let P be a property of conversion diagrams which is closed. If
(, �) is a decreasing pair of rewrite relations such that every local peak can be
completed into a decreasing diagram with respect to conversions, having property
P , then every peak can be completed into a decreasing diagram with respect to
valleys, having property P .

Proof. Load the induction hypothesis in the proof of Theorem 3 with P . � 
We generalise Examples 4 and 5 to conversion diagrams.

Example 9. Consider the property P expressing that the distance d(D) of the
diagram D with peak b � a � c and conversion b ↔∗ c, is not positive, where
d(D) is the integer defined as the number of forward steps (→) minus the number
of backward steps (←) on the cycle a � b ↔∗ c � a. The property P is
closed, since the distance of a conversion diagram obtained by ‘glueing’ two such
diagrams together is the sum of their distances (note that shared steps contribute
oppositely). Hence under the assumptions of Winkler & Buchberger’s Lemma it
suffices to verify that P holds for local conversion diagrams. If it does, then all
maximal reductions from a given object end in the same normal form, reached
in the same number of steps, generalizing Example 4.

Example 10. Strictness as in Example 5 can easily be extended to a closed prop-
erty of conversion diagrams, by requiring in a diagram with peak b �� a �� c and
conversion b ��∗ c, if a �� c is non-empty then b ��∗ c contains some �-step.
Again, it suffices to verify that local decreasing conversion diagrams are strict.

4 Application

We apply the results of the previous section, providing heuristics for finding
decreasing labellings along the way. First, we present the ‘self-labelling’ heuristic
and show that it can be used to deal with several known commutation and
confluence results for abstract rewrite relations. More generally, we cover and
systematise all such results in [6, Chapter 1] and [11]. Finally, we present the
‘rule-labelling’ and ‘self-duplication’ heuristics and show they can be used to
deal with commutation and confluence problems in term rewriting.
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4.1 Abstract Rewriting

The labelling employed in case of Newman’s Lemma and Winkler & Buchberger’s
Lemma (Examples 2 and 6) may seem like sorcery, but is in fact an instance of
a general idea: self-labelling. Let us try to explain this by showing what fails
if one would try to devise a decreasing labelling in case of Kleene’s standard
counterexample to the implication ‘local-confluence ⇒ confluence’.

Fig. 5. Failure of local confuence (commutation) ⇒ confluence (commutation)

Example 11. Consider the rewrite relation → given by b ← a � a′ → c. Since
every local peak can be completed by means of a valley, e.g. b ← a → a′ can
be completed by means of b ← a ← a′, the rewrite relation is locally confluent.
However it is not confluent, as e.g. the peak b ← a → a′ → c cannot be com-
pleted. Fig. 5 (left) illustrates what goes wrong when trying a proof of confluence
for this peak by means of tiling: the tiling process never terminates so does not
lead to a completed confluence diagram. The (green) curved downward arrow,
intersecting steps all of shape a ↔ a′, shows how such an infinite regress must
transfer to an infinitely decreasing sequence of labels, preventing the construc-
tion of a decreasing labelling. Vice versa, in case of Newman’s Lemma such an
infinite decreasing sequence of labels cannot occur since it would, by concate-
nating the a ↔ a′-steps intersected by the arrow, immediately transfer into an
infinite →-reduction, contradicting the assumed termination of →.

Remark 4. In [12] it is noted that the commuting version of Kleene’s counterex-
ample, Fig. 5 (right), plays a similar obstructive rôle in process algebra in proving
similarity: Taking  as reduction, 0 � a �

� τ.a � 0 witnesses that despite � being
a weak simulation modulo transitivity, it is not contained in weak similarity.

The example suggests one may transfer termination of a (rewrite) relation on
the objects, to a decreasing labelling by means of the following heuristic:

(H1: Self-labelling) Given a terminating relation on the objects, try using steps
(or objects) themselves as labels, ordered by the transitive closure of the
relation, and label a step a → b by itself (or its source a or target b).

One may think that this heuristic is so much geared towards Newman’s Lemma
that it doesn’t apply to any other interesting cases. But in fact it was inspired



314 V. van Oostrom

by self-labelling as used in proving termination by means of monotone algebras,
and below we will see several other important instances of this heuristic.

We proceed by systematically treating all the abstract confluence and com-
mutation results by analysis of local peaks as found in [6, Chapter 1] and [11]
and some more. On the one hand, the systematisation is based on relating re-
sults based on decreasing valleys and conversions (the rows in Fig. 6) for a given
labelling. On the other hand, it is based on the different trace patterns which
arise when labelling the diagrams (the columns in Fig. 6). On the gripping hand,
we relate commutation to confluence results (the tables below).

Unqualified references in tables are to [6, Chapter 1].

�(v)

♦(i) ♦(ii) ♦(iii)

�(i) �(ii) �(iii) �(iv)

♦(iv) ♦(v)

Fig. 6. Valleys (top) vs. conversions (bottom) for various trace patterns

Trace patterns [8,9,6] as displayed in Fig. 6 are the patterns obtained by trac-
ing each label in the conclusion of a decreasing (valley or conversion) diagram
back to a label in its hypothesis (the peak), which is either the same (the thick
arrows in the figure) or greater (the thin lines) in concordance with the require-
ments imposed by decreasingness. E.g. Fig. 6 :(i) displays the general trace
pattern for decreasing conversions of Theorem 3, and the patterns to its right
are special cases of interest to us.

Example 12. Consider the labelling src which labels each step a → b by its
source as a →a b. Then, if → is terminating, we may order the labels via the
transitive closure →+, giving rise to a decreasing labelling. The trace pattern
corresponding to the commutation version of Newman’s Lemma (Example 2) is
Fig. 6 ♦(ii), and the one corresponding to the commutation version of Winkler
& Buchberger’s Lemma (Examples 6) is Fig. 6 :(ii). This, together with cor-
responding references to [6], is summarised in Table 1. Note that →+ could be
replaced by any transitive and terminating relation * such that → ⊆ *, as in
the usual presentation of Winkler & Buchberger’s result.
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Table 1. Source self-labelling with termination of →

src confluence commutation

♦ (Theorem 1.2.1) Newman (Exercise 1.3.2) folklore

% (Exercise 1.3.12) Winkler & Buchberger new?

Table 2. The empty order ∅

∅ confluence commutation

♦ = % (Theorem 1.2.2(iii)) Hindley & Rosen folklore

Example 13. Any family can be made decreasing simply by equipping it with
the empty order. However, a local peak �� · �m can then only be turned into a
decreasing diagrams by means of �=

m · �=
� , so decreasing valleys (Fig. 6 ♦(iii))

and conversions (Fig. 6 :(iii)) coincide, yielding Table 2. For a singleton set of
labels the result (subcommutativity implies confluence) goes back to [4].

Based on the previous two examples one could be led to believe the decreasing
diagrams technique is just the ‘sum of Newman’s Lemma and the Lemma of
Hindley–Rosen’. The following examples show it is much more powerful than a
simple ‘sum’; it is also our second instance of the self-labelling heuristic.

Example 14. Consider the labelling tgt which labels each step a → b by its tar-
get as a →b b. If the relation � relative to �, defined by �/� = �� · � · ��, is
terminating, then ordering the labels via the transitive closure (�/�)+ gives a
decreasing labelling. If we also require that only smaller labels be used, then to
have decreasing valleys coincides with strict commutation (see Example 5), to
have decreasing conversions with quasi-commutation, i.e. � · � ⊆ � · ��∗, and
trace patterns are as in Fig. 6(iv), since labelling b � a � c yields b �b a �c c.
Since b �/� c, if c is greater than some label, b is so as well. Although the re-
quirement that labels be smaller allows to reduce ([6, Exercise 1.3.19] Bachmair
& Dershowitz) termination of �/� to that of � as in the usual presentation of
these results, cf. Table 3, it is not a necessary requirement. To wit, b � a � c  b
is decreasing although c b b is equal to not smaller than a b b, with trace
pattern as in Fig. 6 ♦(v). For confluence this result is not interesting as →/←
is never terminating, for non-empty →.

Example 15. Extending Example 13, a pair (, �) can be made decreasing by
letting  be stronger than �, i.e. by ordering  above �. A local peak � ·� can

Table 3. Target self-labelling with termination of �/�

tgt commutation

♦ (Exercise 1.3.15) Geser

% [10, Sect. 3.3] Geser
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Table 4. The stronger-than order  � �

 � � confluence commutation

♦ = % (Exercise 1.3.11) Huet (Exercise 1.3.6) Hindley

be completed into a decreasing valley or conversion (only) by means of �� · �=,
its trace pattern being a special case of Fig. 6 ♦(v). Interestingly, of the ensuing
results in Table 4, Huet’s result that strong confluence, i.e. ← ·→ ⊆ � ·←=,
implies confluence, is more recent than Hindley’s that strong commutation, i.e.
� · � ⊆ �� · �=, implies commutation, despite being an instance. In fact, also
Staples’ later result [6, Exercise 1.3.7] that �� ·� ⊆ �� · �� implies commutation
is seen to be an instance of Hindley’s result, noting that ∗ = = = .

Whereas stronger-than as in the previous example orders one family above an-
other, requests as in the next example orders within families.

Example 16. If both ,� are {1, 2}-labelled families and all diagrams are decreas-
ing with respect to 1 * 2, then 1 requests 2. The reason for this terminology
becomes clear when considering the most general shapes concrete decreasing di-
agrams, say for decreasing valleys, may have: �1 ·�1 ⊆ ��2 ·�=

1 ·��2 ·��2 ·�=
1 ·��2

with trace pattern ♦(i), or �1 · �2 ⊆ ��2 · ��2 · �=
1 or its symmetric version

�2 ·�1 ⊆ �=
1 · ��2 · ��2 both with trace pattern ♦(v), or �2 ·�2 ⊆ �2 · �2 with

trace pattern ♦(iii); for commutation a 1-step may request 2-steps to find the
common reduct, but not the other way around. This generalises the classical
notion of request as employed in the results of Table 5, strengthening these.

Table 5. Requests for ordering 1 � 2 within a family {1, 2}

1 � 2 confluence commutation

♦ (Exercise 1.3.8) Rosen & Staples new?

% (Exercise 1.3.10) van Oostrom new?

A third instance of the self-labelling heuristic is obtained by noting that in the
commuting version of Example 12, it is in fact not necessary to have termination
of  ∪ �, but termination of + · �+ suffices; translated to Fig. 5 (right) this
reads: It suffices that there’s no infinite zigzag, alternating  and � reductions.

Example 17. If (, �) commutes locally and + ·�+ is terminating, then (, �)
commutes [12, Corollary 4.6]. To see this, consider the stp-labelling which labels
a step of either type, say, a  b, by itself as a a�b b, which is ordered above a
step of the other type c �c�d d if b � c. Note that the stp-labelling is decreasing
since an infinite decreasing sequence of labels would entail an infinitely zigzagging
reduction, contradicting termination of + ·�+. As a local peak b �a�b a �a�c c
can by assumption be completed by a commuting valley the steps of which are
either reachable by a zig from b or a zag from c, we conclude.
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Variations on this example like e.g. [12, Lemma 4.5] are easily accomodated by
our techniques as well, and even in a modular way by choosing an appropriate
property to load the induction in Theorem 2.

The above examples cover the results in [6, Chapter 1], which in turn subsume
those in [11], except for [11, Exercise 2.0.8(11)] which we deal with now.

Example 18. Let → = ∪� and consider the labelling pred which may label any
step a → b as a →c,i b, where c is any predecessor of a, i.e. c � a, and i is set to
1 for a backward step and to 2 for a forward step. If /� is terminating, then
the lexicographic product of (/�)+ and 1 * 2 gives a decreasing labelling. We
verify by case analysis that then the combination of  being locally confluent
and � being non-splitting, i.e. ← ·� ⊆ � ·←=, results in decreasing diagrams:

for a peak �a,1 · b,2, local confluence of  yields a valley  · �� the steps of
which can be labelled simply by their sources to result in a decreasing diagram;

for a peak �a,1 · �b,2, non-splittingness of � yields a valley � ·←=, which
after labelling the steps in � by their source and the ←-step as ←a,1, results in
a decreasing diagram;

a peak �a,1 · b,2 is dealt with symmetric to the previous case;
for a peak �a,1 · �b,2 non-splittingness of � yields a valley � ·←=, which

after labelling as in the second item except for labelling the steps of � up to
and including the first -step (if any) as →a,2, results in a decreasing diagram.

Although a bit more involved this labelling and case analysis directly cover the
Full Localisation Lemma, the most complex (p.71–73) confluence result in [10],
stating → = ∪� is confluent, if /� is terminating and → is locally confluent,
with the condition that in case a local peak b ← a � c needs to be completed
by a valley of shape b � d ←+ a′ � c then a (/�)+ a′.

Remark 5. The final two examples both are covered by the original decreasing
diagrams technique. It would be interesting to consider their conversion versions.

4.2 Term Rewriting

We show the usefulness of the rule-labelling heuristic in first- or higher-order
term rewriting systems.

(H2: Rule-labelling) Try labelling steps by the rule applied.

Example 19. Consider the TRS with rules [13, Example 2]: (1) nats→0:inc(nats),
(2) inc(x : y)→ s(x) : inc(y), (3) hd(x : y)→ x, (4) tl(x : y)→ y, (5) inc(tl(nats))→
tl(inc(nats)). The rule-labelling heuristic which labels every step by the rule
applied, yields, by left- and right-linearity of the rules, that ←i ·→j ⊆→=

j ·←=
i

for all i, j∈{1, . . . , 5} and non-overlapping steps. The only critical pair arises from
the local peak tl(inc(nats)) ←5 inc(tl(nats)) →1 inc(tl(0 : inc(nats))) which can be
completed by tl(inc(nats)) →1 tl(inc(0 : inc(nats))) →2 tl(s(0) : inc(inc(nats))) →4

inc(inc(nats)) ←4 inc(tl(0 : inc(nats))). As the latter diagram can be easily made
decreasing, e.g. by ordering 5 * 1, 2, 4, we conclude confluence.

More generally, for any finite left- and right-linear term rewriting system, it is
decidable whether the rule-labelling entails decreasingness, simply by trying all
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possible orderings of the rules,1 refuting the claim of [13, Footnote 1] that this
requires ‘careful and smart design choices’. Of course, this does not allow to deal
with non-right-linear rules:

Example 20. Consider the TRS with rules [13, Example 1]: (1) g(a) → f(g(a)),
(2) g(b) → c, (3) a → b, (4) f(x) → h(x, x), (5) h(x, y) → c. Since the TRS is
not right-linear, the above observation does not apply. In particular, the rule-
labelling cannot work as rule 4 can self-duplicate, consider e.g. the term f(f(c))!
Still, it is easy to find a decreasing labelling noting the duplicated variable has on
the right-hand side less f -symbols above it than on its left-hand side: labelling
steps by first the number of f -symbols above it and then the rule, and ordering
these lexicographically by first > and then * given by 3 * 2, 4, 5 does the job.

The trick in the example fails if variables occur ‘deeper’ in the right-hand side
than in the left-hand side of a rule. Even in such cases the heuristic might be
applicable, by solving the problem of self-duplication by brute force:

(H3: Self-duplication) First try to separate out self-duplicating rules, and then
switch for these to ‘multi’ steps in which an arbitrary number of redexes for
that rule may be contracted.

This technique may be applied to prove confluence of orthogonal term rewriting
systems, but also of some term rewriting systems with critical pairs, as is nicely
illustrated in the following example.

Extending Bloo and Rose’s λx-calculus with explicit substitutions, with a rule
encoding the substitution lemma of the λ-calculus, yields the λxc-calculus.

Theorem 5. The following CRS [6, Chapter 11]) for λxc-calculus is confluent.

(λy.X(y))Y → X(y)[y:=Y ]
X [y:=Y ] → X

y[y:=Y ] → Y

(X1(y)X2(y))[y:=Y ] → (X1(y)[y:=Y ])(X2(y)[y:=Y ])
(λx.X(y))[y:=Y ] → λx.X(y)[y:=Y ]

X(y, z)[y:=Y (z)][z:=Z] → X(y, z)[z:=Z][y:=Y (z)[z:=Z]]

Proof. It will turn out handy to split the set of rules as follows. The first rule is
the Beta-rule, the next four are the x-rules, and the final rule is the c-rule.

Let ◦→Beta denote the contraction of any number of Beta-redexes, let →x

denote contracting an arbitrary (possibly garbage collecting) x-redex, and let
◦→c denote a c-reduction which is a prefix of contracting all c-redexes in the
term (see [14]). To show confluence of λxc, it then suffices to prove confluence of
these relations, since →λxc ⊆ ◦→Beta ∪→x ∪ ◦→c ⊆ �λxc. In the rest of the proof,
the three types of rules are referred to simply as Beta, x, and c. It suffices to
show that they are decreasing with respect to the order * given by Beta * c * x,
1 This is analogous to the way one may proceed when checking whether a TRS is

terminating via recursive path orders.
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using the src-labelling with respect to (terminating) x-reduction to order x-steps
among each other. Distinguish cases on the types of the rules in a local peak.

– If both are Beta, then the result follows from Beta being linear orthogonal,
in the sense that a common reduct is found in either zero or one Beta-steps
on both sides.

– If s ←x t ◦→Beta r, then s →x · ◦→Beta q and r ◦→c q in case the x-step overlaps
one of the Beta-redexes, and s ◦→Beta q �x r otherwise.

– Beta is orthogonal to c, and they commute in a single step on either side.
– If both are x, a common reduct is found in at most two further x-steps having

smaller sources.
– If s ←x t ◦→c r, then s �x · ◦→c q �x r in case the x-step overlaps one of

the c-redexes (needing a number of garbage collection steps). Otherwise the
steps simply commute (c may duplicate x, but not vice versa).

– If both rules are c, a common reduct is found in at most one further c-step,
which holds since the c-rule is an instance of self-distributivity [14]. � 

Note that a common reduct is found in an amount of work which is linear in
the diverging steps, measuring each step by the number of steps performed by
it. This is not that good, but still better than always reducing to x-normal form
as is done in proofs relying on the so-called interpretation method.

5 Conclusion

We have improved upon our earlier decreasing diagrams technique. It was shown
that in many cases it is not difficult to find a labelling showing decreasingness.
The heuristics presented could be a stepping stone for constructing an automatic
confluence prover.

We conclude by noting that the generalization does straightforwardly extend
to Ohlebusch’s confluence by decreasing diagrams modulo an equivalence relation
results [5, Chapter 2].
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Abstract. The paper proposes a variation of simulation for checking
and proving contextual equivalence in a non-deterministic call-by-need
lambda-calculus with constructors, case, seq, and a letrec with cyclic
dependencies. It also proposes a novel method to prove its correctness.
The calculus’ semantics is based on a small-step rewrite semantics and
on may-convergence. The cyclic nature of letrec bindings, as well as non-
determinism, makes known approaches to prove that simulation implies
contextual preorder, such as Howe’s proof technique, inapplicable in this
setting. The basic technique for the simulation as well as the correctness
proof is called pre-evaluation, which computes a set of answers for every
closed expression. If simulation succeeds in finite computation depth,
then it is guaranteed to show contextual preorder of expressions.

1 Introduction and Related Work

The construction of compilers and the compilation of programs in higher level,
expressive programming languages is an important process in computer science
that is a highly sophisticated engineering task. Unfortunately there remains a gap
between theory and practice. Usually compilers incorporating lots of complicated
transformations and optimizations are built with only a partial knowledge about
correctness issues. This gap increases with the number of features, such as higher-
order functions, concurrency, store, and system- or user-interaction. The ability
to reason about program equivalence in the presence of non-determinism opens
a door to a rigorous handling of these features.

We study these issues using a call-by-need lambda-calculus L with data struc-
tures and non-determinism that in addition has letrec allowing cyclic binding de-
pendencies. This may have applications for concurrent Haskell [Pey03, PGF96],
and also for other functional programming languages [Han96].

Our language L comes with a rewrite semantics (a small-step semantics) that
is more appropriate to investigate non-determinism than a big-step semantics,
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since it explicitly models interleaving and atomicity. On top of the operational
semantics we define a contextual semantics with may-convergence, which is max-
imal, since all expressions that cannot be distinguished by observations are iden-
tified.

This follows an approach pioneered in [Plo75] of considering two small-step
rewrite relations in a calculus: a normal order reduction which represents evalu-
ation of a term by some evaluation engine, such as an interpreter, and transfor-
mation steps performed by a compiler to optimize a program. The latter steps
may include reductions from the calculus as well as other transformations. The
goal is to prove contextual equivalence of the original and the transformed ex-
pressions, i.e. that any transformation step performed anywhere in a term does
not change the term’s convergence behavior.

Unfortunately the approach in [Plo75] cannot be applied to systems with
cyclic dependencies (such as letrec) or with non-determinism, since it requires
confluence of transformations which fails in such systems (see [AW96]). Some
alternative approaches include restrictions on cyclic substitution [AK97] or con-
sidering terms up to infinite unwindings of cycles [AB02].

Investigations of correctness (also called meaning-preservation) for a call-by-
value system of mutually recursive components with applications to modules
and linking were undertaken in [MT00, Mac02] where a proof method based
on diagrams called lift and project was introduced. The diagram approach was
later extended and generalized in [WDK03] in an abstract setting. Another
approach based on multihole contexts was used for a call-by-name system of
mutually recursive components in [Mac07]. However, the diagram-based and
context-based approaches above require that all normal-order reductions pre-
serve behavior of a term, which is not the case for (choice)-reductions. Contex-
tual equivalence for non-deterministic call-by-need calculi was investigated in
[KSS98, SSS07a, SSSS08] using the method of forking and commuting diagrams,
and in [MSC99] using abstract machine-reductions.

An important tool to prove contextual equivalence of concrete expressions
is simulation-based (it is also called applicative simulation) since it allows to
show contextual equivalence of expressions s, t based only on the analysis of the
reductions of s, t, in contrast to the definition, which requires checking reduction
in infinitely many contexts. This method was used for variants of lambda calculi,
see e.g [Abr90, How89, Gor99]. An extension of simulation to a non-deterministic
call-by-need calculus was investigated in [Man04] (and generalized in [SSM07]),
where Howe’s [How89, How96] proof technique is extended to call-by-need non-
determinism by using an intermediate approximation calculus. Unfortunately,
these proof methods based on the approach of Howe appear not to be adaptable
to call-by-need non-deterministic calculi with letrec, since cyclic dependencies
cannot be treated: the proof technique of Howe fails in a subtle way.

In this paper we propose a method of finite simulation, i.e., a simulation with
a finite depth, and prove its correctness by a new proof technique that uses
approximations. The simulation method constructs a set of answer-terms for a
given expression. These sets are then compared for various closed expressions
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in order to show contextual equivalence. An answer is either an abstrac-
tion or an constructor-expression, built from constructors, Ω, and abstrac-
tions, such as partial lists. Consider the two (non-convertible) expressions s, t
where s = repeat True is a nonending list and t is recursively defined by
t = choice ⊥ (Cons True t). The latter will evaluate, depending on the choices,
to ⊥, (Cons True ⊥), (Cons True (Cons True ⊥)), . . . . The expressions s, t
are equivalent w.r.t. observational equivalence based on may-convergence. Our
simulation method permits to show their equivalence solely on the basis of the
(approximative) answers that can be derived from each expression.

The proof of validity of the proposed method for our calculus L (see section 2)
requires several steps. The first step is to investigate the correctness of several
reductions and transformations in L. Note that the normal-order reduction in the
language L treats chains of variable-variable bindings as transparent for several
reductions. This is crucial for constructing correctness proofs which otherwise
may not even be possible, since the measures for inductions are insufficient. A
context lemma and standardization of reductions are proved. The second step is a
transfer from L to the calculus LS (see section 4), which has the same contextual
equivalence as L, but simpler reduction rules, e.g. variable-variable bindings are
now opaque. The third step (see Sections 5 – 7) is to define the computation of
answers from a closed expression, and to prove criteria for contextual equivalence
on the basis of the answer sets. We also provide a method to analyze contextual
equivalence and preorder of answers. In particular, we show that abstractions
can be compared based on applying them to all closed answers or to Ω. As an
application of this technique, we show that choice (see Section 8) has useful
algebraic properties, such as idempotency, commutativity and associativity, for
all expressions, including open ones.

Missing proofs can be found in [SSM08].

2 The Calculus L

2.1 Syntax and Reductions of the Functional Core Language L

We define the calculus L consisting of a language L(L), its reduction rules, the
normal order reduction strategy, and contextual equivalence. L is the calculus
considered in [SSSS04] and an extension by choice of the one in [SSSS08].
The rules of the calculus limit copying of abstractions and prohibit copying of
constructor expressions, thus limiting the level of complexity of proofs. There
are finitely many types, and for every type T there are finitely many, say #(T ),
constants called constructors cT,i, i = 1, . . . ,#(T ), each with an arity ar(cT,i) ≥
0. The syntax for expressions E is as follows:

E ::= V | (c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . Alt#(T )) | (E1 E2)
(choice E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)

Alt ::= (Pat → E) Pat ::= (c V1 . . . Var(c))

where E,Ei are expressions, V, Vi are variables, and c denotes a constructor.
Expressions (caseT . . .) have exactly one alternative for every constructor of type
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T . We assign the names application, abstraction, constructor application, seq-
expression, case-expression, or letrec-expression to the expressions (E1 E2),
(λV.E), (c E1 . . . Ear(c)), (seq E1 E2), (caseT E Alt1 . . . Alt#(T )), (letrec V1 =
E1, . . . , Vn = En in E), respectively. A value v is defined as either an abstraction
or a constructor application (with any subexpressions).

We assume that variables Vi in letrec-bindings are all distinct, that the
bindings can be interchanged, and that there is at least one binding. letrec
is recursive, i.e., the scope of xj in (letrec x1 = E1, . . . , xj = Ej , . . . in E)
is E and all expressions Ei. Free and bound variables in expressions and α-
renaming are defined using the usual conventions. The set of free variables in t
is denoted as FV (t). For simplicity we use the distinct variable convention, i.e.,
all bound variables in expressions are assumed to be distinct, and free variables
are distinct from bound variables. The reduction rules are assumed to implicitly
rename bound variables in the result by α-renaming if necessary. We will use
some obvious abbreviations of the syntax. E.g. {xi = xi+1}n

i=m abbreviates xm =
xm+1, . . . , xn = xn+1.

Definition 2.1. The class C of all contexts is defined as the set of expressions
C from L, where the symbol [·], the hole, is a predefined context, treated as an
atomic expression, such that [·] occurs exactly once in C.

Given a term t and a context C, we will write C[t] for the expression con-
structed from C by plugging t into the hole, i.e, by replacing [·] in C by t, where
this replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 2.2 (Reduction Rules of the Calculus L). The (base) reduction
rules for the calculus and language L are defined in figures 1 and 2, where the
labels S, V are to be ignored in this subsection, but will be used in subsection
2.2. The abbreviation Env means a set of bindings. The reduction rules can be
applied in any context. Several reduction rules are denoted by their name prefix,
e.g. the union of (llet-in) and (llet-e) is called (llet). The union of (llet), (lcase),
(lapp), (lseq) is called (lll).

Reductions (and transformations) are denoted using an arrow with super
and/or subscripts: e.g. llet−−→. Transitive closure of reductions is denoted by a
+, reflexive transitive closure by a ∗. E.g. ∗−→ is the reflexive, transitive closure
of →.

2.2 Normal Order Reduction and Contextual Equivalence

The normal order reduction strategy of the calculus L is a call-by-need strategy,
which is a call-by-name strategy adapted to sharing. The labeling algorithm in
figure 3 will detect the position to which a reduction rule is applied according
to the normal order. It uses the labels: S (subterm), T (top term), V (visited),
W (visited, no copy-target). For a term s the labeling algorithm starts with sT ,
where no other subexpression in s is labeled, and exhaustively applies the rules
in figure 3. The algorithm may terminate with a failure if a relabeling occurs, and
otherwise with success, which indicates a potential normal-order redex, usually
as the direct superterm of the S-marked subexpression.
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(lbeta) ((λx.s)S r)→ (letrec x = r in s)

(cp-in) (letrec x1 = vS , {xi = xi−1}mi=2, Env in C[xV
m])

→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[v])
where v is an abstraction

(cp-e) (letrec x1 = vS , {xi = xi−1}mi=2, Env , y = C[xV
m] in r)

→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[v] in r)
where v is an abstraction

(llet-in) (letrec Env1 in (letrec Env2 in r)S)
→ (letrec Env1,Env2 in r)

(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)
→ (letrec Env1,Env2, x = sx in r)

(lapp) ((letrec Env in t)S s)→ (letrec Env in (t s))
(lcase) (caseT (letrec Env in t)S alts)→ (letrec Env in (caseT t alts))

(seq-c) (seq vS t)→ t if v is a value
(seq-in) (letrec x1 = vS , {xi = xi−1}mi=2, Env in C[(seq xV

m t)])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[t]) if v is a value

(seq-e) (letrec x1 = vS , {xi = xi−1}mi=2, Env , y = C[(seq xV
m t)] in r)

→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[t] in r) if v is a value
(lseq) (seq (letrec Env in s)S t)→ (letrec Env in (seq s t))
(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t

Fig. 1. Reduction rules, part a

Definition 2.3 (Normal Order Reduction of L). Let t be an expression.
Then a single normal order reduction step no−→ is defined by first applying the
labeling algorithm to t. If the labeling algorithm terminates successfully, then one
of the rules in figures 1 and 2 has to be applied, if possible, where the labels S, V
must match the labels in the expression t. The normal order redex is defined as
the subexpression to which the reduction rule is applied.

Definition 2.4. A reduction context R is any context, such that its hole will be
labeled with S or T by the labeling algorithm. A surface context, denoted as S,
is a context where the hole is not contained in an abstraction. An application
surface context, denoted as AS, is a surface context where the hole is neither
contained in an abstraction nor in an alternative of a case-expression.

Note that the normal order redex is unique, and that a normal-order reduction
is unique with the only exception of (choice).

A weak head normal form (WHNF) is either a value v or an expression
(letrec Env in v), or (letrec x1 = (c

−→
t ), {xi = xi−1}m

i=2,Env in xm).

Definition 2.5. A normal order reduction sequence is called an evaluation if the
last term is a WHNF. For a term t, we write t↓ iff there is an evaluation starting
from t. We also say that t is converging (or terminating). Otherwise, if there
is no evaluation of t, we write t⇑. A specific representative of non-converging



326 M. Schmidt-Schauss and E. Machkasova

(case-c) (caseT (ci
−→
t )S . . . ((ci

−→y )→ t) . . .)→ (letrec {yi = ti}ni=1 in t)
where n = ar(ci) ≥ 1

(case-c) (caseT cS
i . . . (ci → t) . . .)→ t if ar(ci) = 0

(case-in) letrec x1 = (ci
−→
t )S , {xi = xi−1}mi=2, Env

in C[caseT xV
m . . . ((ci

−→z ) . . .→ t) . . .]
→ letrec x1 = (ci

−→y ), {yi = ti}ni=1, {xi = xi−1}mi=2, Env
in C[(letrec {zi = yi}ni=1 in t)]

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-in) letrec x1 = cS

i , {xi = xi−1}mi=2, Env in C[caseT xV
m . . . (ci → t) . . .]

→ letrec x1 = ci, {xi = xi−1}mi=2, Env in C[t] if ar(ci) = 0

(case-e) letrec x1 = (ci
−→
t )S , {xi = xi−1}mi=2,

u = C[caseT xV
m . . . ((ci

−→z )→ r1) . . . ], Env in r2

→ letrec x1 = (ci
−→y ), {yi = ti}ni=1, {xi = xi−1}mi=2,

u = C[(letrec z1 = y1, . . . , zn = yn in r1)], Env in r2

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-e) letrec x1 = cS

i , {xi = xi−1}mi=2, u = C[caseT xV
m . . . (ci → r1) . . .], Env in r2

→ letrec x1 = ci, {xi = xi−1}mi=2 . . . , u = C[r1], Env in r2

if ar(ci) = 0

Fig. 2. Reduction rules, part b

expressions is Ω := (λz.(z z)) (λx.(x x)), i.e. Ω⇑. For consistency with our
earlier work (e.g. [SSS07b]) the must-divergence notation ⇑ is used.

As an example for normal-order reduction, some reductions of Ω:
(λz.(z z)) (λx.(x x))

no,lbeta−−−−−→ (letrec z = λx.(x x) in (z z))
no,cp−−−→ (letrec z =

λx.(x x) in ((λx′.(x′ x′)) z))
no,lbeta−−−−−→ (letrec z = λx.(x x) in (letrec x1 =

z in (x1 x1)))
no,llet−−−−→ (letrec z = λx.(x x), x1 = z in (x1 x1)) −−→ . . ..

Definition 2.6 (contextual preorder and equivalence). Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t]↓
s ∼c t iff s ≤c t ∧ t ≤c s

By standard arguments, we see that ≤c is a precongruence and that ∼c is
a congruence, where a precongruence ≤ is a preorder on expressions, such that
s ≤ t ⇒ C[s] ≤ C[t] for all contexts C, and a congruence is a precongruence
that is also an equivalence relation.

3 Correctness of Reductions and Transformations

Theorem 3.1. All the reductions (viewed as transformations) in the base calcu-
lus L with the exception of (choice) maintain contextual equivalence, i.e., when-
ever t

a−→ t′, with a ∈ {cp, lll, case, seq, lbeta}, then t ∼c t′. The same holds for
all transformations in figure 4. Moreover, s choice−−−−→ t implies t ≤c s.
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(letrec Env in t)T → (letrec Env in tS)V

(s t)S∨T → (sS t)V

(seq s t)S∨T → (seq sS t)V

(caseT s alts)S∨T → (caseT sS alts)V

(letrec x = s,Env in C[xS ]) → (letrec x = sS ,Env in C[xV ])
(letrec x = s, y = C[xS], Env in t) → (letrec x = sS , y = C[xV ], Env in t)

if C[x] �= x

(letrec x = s, y = xS,Env in t) → (letrec x = sS , y = xW ,Env in t)
The labeling rules can be applied in any context

Fig. 3. Labeling algorithm for L

We define non-reduction transformations in Figure 4. Some transformations have
two or more forms, e.g. (ve1) and (ve2). The side condition for (abs2) guarantees
finiteness of (abs2) sequences. The transformations are used later either for the
pre-evaluation or to aid correctness proofs.

Proposition 3.2. The expression Ω is the least element w.r.t. ≤c, and for every
closed expression s with s⇑, the equation s ∼c Ω holds.

We summarize correctness of transformations and decreasing property of (choice)
in the standardization result, which shows that reduction sequences can be stan-
dardized using normal-order reduction.

Theorem 3.3 (Standardization). If t
∗−→ t′ where t′ is a WHNF and the

sequence ∗−→ consists of any reduction from L in figures 1 and 2 and of transfor-
mation steps from figure 4, then t↓.

4 A Simpler Calculus

We define a simpler calculus LS that is used to produce a set of values of any
closed expression. It is formulated such that a so-called pre-evaluation can be
defined and shown to be a correct tool to prove contextual preorder and contex-
tual equivalence of expressions in almost the same way as the simulation method
would do it. The calculus LS does not use variable-binding chains for reduction
steps, and permits also copying expressions of the form (c x1 . . . xn), where xi

are variables. Such expressions are called cv-expression.
The rules of the calculus LS are defined in figure 6. We use labels S, T, V

indicating the normal order redex The labeling algorithm in 5 starts with tT ,
where no subexpression of t is labeled, and uses the rules exhaustively, which
can be applied in any context.

An LS-WHNF is defined as v or (letrec Env in v), where v is an abstraction
or a cv-expression. It is easy to see that every LS-WHNF is also an L-WHNF,
and that for every L-WHNF t, there is an LS-WHNF t′ with: t

LS ,no,∗−−−−−→ t′ using
only (abs), (lll), and (cp).



328 M. Schmidt-Schauss and E. Machkasova

(ve1) (letrec x = y, x1 = t1, . . . , xn = tn in r)→ (letrec x1 = t′
1, . . . , xn = t′

n in r′)
where t′

i = ti[y/x], r′ = r[y/x], n ≥ 0 and if x �= y
(ve2) (letrec x = y in s)→ s[y/x] if x �= y

(abs1) (letrec x = c
−→
t ,Env in s)→ (letrec x = c −→x , {xi = ti}ar(c)i=1 ,Env in s)

where ar(c) ≥ 1 and for 1 ≤ i ≤ ar(c) xi ∈ FV (Env)
(abs2) (c t1 . . . tn)→ (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))

where at least one of ti is not a variable

(cpcx-in) (letrec x = c
−→
t ,Env in C[x])

→ (letrec x = c −→y , {yi = ti}ar(c)i=1 ,Env in C[c −→y ])

(cpcx-e) (letrec x = c
−→
t , z = C[x],Env in t)

→ (letrec x = c −→y , {yi = ti}ar(c)i=1 , z = C[c −→y ],Env in t)
(gc1) (letrec {xi = si}ni=1,Env in t)→ (letrec Env in t)

if for all i : xi does not occur in Env nor in t
(gc2) (letrec {xi = si}ni=1 in t)→ t if for all i : xi does not occur in t
(ucp1) (letrec Env , x = t in S[x])→ (letrec Env in S[t])
(ucp2) (letrec Env , x = t, y = S[x] in r)→ (letrec Env , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t]

where in the (ucp)-rules, x has at most one occurrence in S[x] and no
occurrence in Env , t, r; and S is a surface context

(cpbot1) (letrec x = Ω,Env in C[x])→ (letrec x = Ω,Env in C[Ω])
(cpbot2) (letrec x = Ω, y = C[x],Env in r)→ (letrec x = Ω, y = C[Ω],Env in r)

Fig. 4. Transformations in L calculus

(letrec x = s,Env in C[xS]) → (letrec x = sS,Env in C[xV ])
(letrec x = s, y = C[xS ],Env in r) → (letrec x = sS, y = C[xV ],Env in r)

if C �= [.]
The rules for (letrec Env in t)T , (s t), (seq s t) and (case s alts) are as for L

Fig. 5. Labeling rules of LS

Using diagrams and an induction on the length of a reduction sequence, the
equivalence is shown in [SSM08]:

Theorem 4.1. Let s be an expression. Then s↓LS
⇔ s↓L.

5 Pre-evaluation of Expressions

In the following we will use the technical observation that during a normal-
order reduction of t we can trace the bindings xi = ri of a closed subexpression
r = (letrec x1 = r1, . . . , xn = rn in s′) of t, if r occurs on the surface of t.
The application of this observation in proofs allows us to draw several nice and
important conclusions.

We will use evaluation in LS to reduce closed expressions in all possible ways,
where reduction takes place in surface contexts. The intention is to have a means
to compare closed expressions by their sets of results, even perhaps infinite sets.
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(cp-in) (letrec x = vS ,Env in C[xV ])→ (letrec x = v, Env in C[v])
where v is an abstraction or a cv-expression

(cp-e) (letrec x = vS ,Env , y = C[xV ] in r)→ (letrec x = v,Env , y = C[v] in r)
where v is an abstraction or a cv-expression

(abs) (c t1 . . . tn)S∨T → (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))
if (c t1 . . . tn) is not a cv-expression

(lbeta), (seq-c), (case), (choice), (lll) are as in L

Fig. 6. Reduction rules of LS

We use the additional constant � (called stop) in order to indicate stopped
reductions. Its semantical value is ⊥, but it is clearer if there is a notational
distinction between them.

Definition 5.1. A pseudo-value is an expression built from �, constructors,
and abstractions, and an answer is a pseudo-value not equal to �.

We show the intention of the pre-evaluation by an example. The idea is to
first obtain by reduction all possible WHNFs, and then to apply normal-order
reductions locally to the bindings. Since this in general does not terminate, we
stop the reduction at any point and then fill the results into the in-expression: the
bindings that are cv-expressions or abstractions are copied sufficiently often into
the in-expression. Due to recursive bindings, this may also be a non-terminating
process that has to be stopped. We strip away the top letrec-environment and
replace the occurrences of the previously let-bound variables by �.

Example 5.2. The expression (letrec x = (Cons True x) in x) has the following
resulting answers: (Cons � �), (Cons True �), (Cons � (Cons True �)),
(Cons True (Cons True �)), . . . .

The approximation reduction A−→ is based upon LS-reduction:

Definition 5.3. Let s be a closed expression. We define the approximation re-
duction A−→as follows:
Then s

A−→ v holds for some closed answer v iff there is a reduction starting from
(letrec x = s in x) to v using the following intermediate steps.

1. (letrec x = s in x) ∗−→ s′ using an LS-evaluation to a WHNF s′. Continu-
ing from s′, we perform any number of LS-reductions in application surface
contexts (non-deterministically), where the target variables of (cp) are also
in application surface contexts.

2. Perform any number of copy-reductions into the “in”-expression. Here the
target variable of (cp) may be in any context C.

3. The last step is to remove the top-letrec-environment, and to replace all
remaining let-bound variables in the “in”-expression by �. The resulting ex-
pression is now either � or one of the desired answers v.

The set of answers reachable from s by this procedure is defined as ans(s).
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Lemma 5.4. Let s be a closed expression and v ∈ ans(s). Then v ≤c s.

Proof. This follows from the correctness of the transformations proved in the
previous sections, from decreasingness of (choice) (see Theorem 3.1) and from
the fact that � ∼c Ω is the least element w.r.t. ≤c (see Proposition 3.2). �

Now we prove that sufficiently many answers are reached by these reductions.

Theorem 5.5. Let R be a reduction context, s be a closed expression such that
R[s]↓. Then there is an answer v with (letrec x = s in x) A−→ v, such that
R[v]↓. Note that s ∼c (letrec x = s in x) (see Theorem 3.1).

Proof. In the proof we always refer to the calculus LS .
Let R be a reduction context and s be a closed expression. Let Red be a normal-
order reduction of R[(letrec x = s in x)] no−→ r1 . . .

no−→ rn, where rn is a
WHNF, and n is the number of normal-order reductions. In every expression of
Red , the bindings inherited from x = s can be identified in every ri by labeling
them with †. Thus we label letrec-bound variables and the bound expression in
surface positions that are derived from s. An important invariant is that for all
†-labeled bindings yi = ai, and all free variables y in ai, y is also a †-labeled
variable, which follows by induction on the length of the reduction from the
fact that s is closed. If a WHNF w of R[(letrec x = s in x)] is reached, then
from the WHNF we can gather all the †-labeled bindings in the top level letrec
environment of w, and construct the expression s′ := (letrec Env in x), where
we denote x1 = s1, . . . , xm = sm by Env and where x1 = x for convenience. Now
we compute one possible answer v from s′ as required by our claim as follows.
We perform n+1 of the following macro-copy-steps within the environment Env
into the “in”-expression:

One step consists of replacing all occurrences of xi by si in the “in”-expression
(initially x) for all xi = si in Env s.t. si is an abstraction or a cv-expression. We
do this in parallel for every letrec-bound variable, which is the same as applying
the substitution σ that is formed from Env . This is repeated n+1 times. The last
step is to remove the top-environment, and to replace all letrec-bound variables
in the in-expression by �. This may produce either �, or the desired answer v,
and we have s′ A−→ v according to Definition 5.3. Since we assumed that a WHNF
is reached, and s was in a reduction context before, it is not possible that only �
is reached, since the initial variable x was in a reduction context and there must
be at least one normal-order copy into x. Thus at least one of the macro-copy
steps will replace x by a constructor-expression or an abstraction.

Now we have to show that R[v]↓. We start by rearranging the normal-order
reduction Red of R[(letrec x = s in x)], such that all the reductions that are
within the †-labeled Env are performed first, i.e., R[(letrec x = s in x)] ∗−→
R[s′] no,∗−−−→ rn. It is easy to see that the R[(letrec x = s in x)] ∗−→ R[s′] starts
with an LS-normal-order reduction to a WHNF, since x is “demanded” first.
The subsequent reductions remain in application surface positions. The reduction
R[s′]

no,∗−−−→ rn is normal-order, and has length at most n. The reduction sequence
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Red is a mixture of reduction steps within †-labeled components, or reduction
steps that modify the non-†-labeled components. All reductions are in surface
contexts. Hence the †-reductions can be shifted to the left over non-†-reductions,
since they are independent.

Now we focus on R[s′]
no,∗−−−→ rn of length at most n. We have to show that

for s′ ∗−→ v, we also have R[v]
no,∗−−−→ u, where u is a WHNF. The term v and its

descendents can be represented using φ≥k, which is defined as follows: φ≥k(r)
denotes r modified by the following operations: first k applications of σ are
performed (the substitution corresponding to the s-environment Env), then
any number of (cp)-steps using Env and variables in r as target variables, and
as a final step [�/xi]-replacements in r for all let-bound variables in Env . Now

we have to show that (φ≥n+1R[s′])↓. The steps
no,a←−−− .

φ≥k−−→ can be switched,

i.e. replaced by
φ≥k−1−−−−→ .

ρ,∗←−−, where ρ = {(no, a), (abs), (lll), (cp), (cpbot), (ve)}.
Using this commutation, it is easily shown by induction that, finally, we obtain a
WHNF that is the result of a macro-copy reduction using φ≥i, where i ≥ 1. The
argument now is that the replaced positions do not contribute to the WHNF w,
hence it remains a WHNF after applying φ≥1. This means there is a reduction
sequence R[v] ∗−→ w′, where w′ is a WHNF. Finally, the standardization theorem
3.3 shows that R[v]↓. �

6 Least Upper Bounds and Sets of Answers

Definition 6.1. Let W be a set of expressions, and let t be an expression. Then
t is a lub of W iff ∀u ∈ W : u ≤c t, and for every s with ∀u ∈ W : u ≤c s, it is
t ≤c s.

The expression t is called a contextual lub (club) of W , iff for all contexts
C: C[t] is a lub of {C[r] | r ∈ W}. The notation is t ∈ club(W ). An expression
t is called a linear club (lclub) of W if the set W is a ≤c-ascending chain of
expressions. The notation is t ∈ lclub(W ). The set of all t such that t ∈ lclub(A)
for some A ⊆W is denoted as sublclub(W ).

Example 6.2. The following ≤c-ascending chain λx1.Ω, λx1, x2.Ω,
. . .λx1, . . . , xn.Ω has Y K as lclub, which is equivalent to the value λx.(Y K).
The combinators are defined as Y = λf.(λx.f(x x)) (λx.f(x x)), and
K = λx, y.x.

Easy arguments show that the following holds:

Lemma 6.3. For any closed expression s: s ∼c Ω iff ans(s) = ∅. Otherwise, if
s �∼c Ω, then s ∈ club(ans(s)).

This yields an immediate criterion for contextual preorder:

Corollary 6.4. Let s, t be closed expressions. If for all w ∈ ans(s) we also have
w ≤c t, then s ≤c t.
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The following useful sufficient condition immediately follows from the corollary:

Theorem 6.5. Let s, t be closed expressions. If for all v ∈ ans(s) there is some
w ∈ sublclub(ans(t)) with v ≤c w, then s ≤c t.

Note that a simplistic subset-condition for answer-sets is insufficient for s ≤c t:

Example 6.6. Let s := λx.Y K, f z := choice z (letrec u = f z in λx.u) and
t := f Ω, where an explicit definition of f is f = Y (λg.λz.choiceΩ (letrec u =
g z in λx.u)). Then for every v ∈ ans(t), we have v <c s. However, it is easy
to see that s ∼c t, since λx.Y K is the club of the ascending chain of values in
ans(t).

The following is obvious using contexts:

Proposition 6.7. (c s1 . . . sn) ≤c (c t1 . . . tn) ⇔ si ≤c ti for all i.

7 Criteria for Abstractions

Besides the trivial method to compare two abstractions λx.s and λx.t by α-
equivalence, perhaps combined with other correct transformations, we give a
stronger condition for λx.s ≤c λx.t that is based on applying the abstractions to
all possible pseudo-value arguments not using the criteria for all contexts. The
following is proved in [SSM08].

Lemma 7.1. [Context Lemma for Closing Reduction Contexts] Let s, t be ex-
pressions. Then s ≤c t iff for all reduction contexts R: if R[s], R[t] are closed
and R[s]↓, then also R[t]↓,

In a pseudo-value environment Env every bound term is a (closed) pseudo-value.

Proposition 7.2. Let s, t be two expressions. Then s ≤c t iff for all pseudo-
value environments Env: if (letrec Env in s), (letrec Env in t) are closed
then (letrec Env in s) ≤c (letrec Env in t).

Proof. In order to show the non-trivial direction, we will use Lemma 7.1. Let R
be a reduction context such that R[s], R[t] are closed and such that R[s]↓. It is no
restriction to assume that R[·] is of the form (letrec Env1,Env2 in R′[·]), where
Env1 binds all the variables in FV (s, t), and (letrec Env1 in [·]) is closed. Since
s′ := (letrec Env1,Env2 in R′[s])↓, there is a normal-order reduction Red of
s′. In the same way as in the proof of Theorem 5.5, we can evaluate all bindings
in Env1 first, obtaining Env ′

1 such that s′′ := (letrec Env ′
1,Env2 in R′[s])↓.

The environment Env ′
1 will be further modified into Env ′′

1 as follows: every
binding x = r, where r is not an abstraction and not a cv-expression is
changed into x = �. Again we have s(3) := (letrec Env ′′

1 ,Env2 in R′[s])↓,
since the �-bindings do not influence the normal-order reduction. Let n
be the length of a normal-order reduction of s(3). We further modify Env ′′

1

into Env (3)
1 by applying the substitution σ corresponding to Env ′′

1 at least
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n times to the environment, and then replacing all remaining occurrences
of variables by �. Similar as in the proof of Theorem 5.5, we argue that
(letrec Env (3)

1 ,Env2 in R′[s])↓. Using the knowledge about correct transfor-
mations, it can be proved using induction that (letrec Env (3)

1 ,Env2 inR′[s]) ∼c

(letrec Env (3)
1 ,Env2 in R′[(letrec Env (3)

1 in s)]), hence
(letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in s)])↓.

Now we argue the reverse way for t: By the assumption, we
have (letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in s)]) ≤c

(letrec Env (3)
1 ,Env2 in R′[(letrec Env (3)

1 in t)]), hence
(letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in t)])↓. The same argument

as above shows that also (letrec Env (3)
1 ,Env2 in R′[t])↓. Since � ∼c ⊥ is the

≤c-least element, and (cp) does not change the ∼c equivalence class, we also
have (letrec Env ′′

1 ,Env2 in R′[t])↓. Since (letrec Env ′′
1 ,Env2 in R′[t]) can be

reached from (letrec Env1,Env2 in R′[t]) by reductions that only decrease by
≤c due to Theorem 3.1, we finally have (letrec Env1,Env2 in R′[t])↓. Since R
was arbitrary, we can apply Lemma 7.1 and obtain that s ≤c t �

Theorem 7.3. λx.s ≤c λx.t iff for all pseudo-values v: (λx.s) v ≤c (λx.t) v.

Proof. Follows from Proposition 7.2, since (λx.s) v ∼c (letrec x = v in s) �

8 Finite Simulation Method and Examples

Now we have several criteria to prove s ≤c t for closed expressions s, t.

1. If ans(s) ⊆ ans(t), then s ≤c t.
2. If for every v ∈ ans(s), there is some w ∈ ans(t) with v ≤c w, then s ≤c t.
3. If for every v ∈ ans(s), there is some w ∈ ans(t) with v ≤c w or some

w ∈ sublclub(ans(t)) with v ≤c w, then s ≤c t.
4. if s = c s1 . . . sn, t = c t1 . . . tn, and si ≤c ti for all i, then s ≤c t.
5. if s = λx.s′, t = λx.t′, and for all pseudo-values v: s v ≤c t v, then s ≤c t.

The following (non-effective) procedure is a prototype of “finite simulation”
for testing two closed expressions s, t whether they are in a relation s ≤c t:

1. Compute the answer-sets ans(s) and ans(t).
2. For every value v ∈ ans(s), find a value w ∈ ans(t) such that v ≤c w.
3. For the v ≤c w-test, use the following tests, recursively:

(a) If v = (c s1 . . . sm), w = (c t1 . . . tm), make sure that vi ≤c wi for all i.
(b) If v = λx.s′, w = λx.t′, make sure that for all pseudo-values a:

(v a) ≤c (w a), again using this procedure.

If answers-sets are finite, the recursion depth is bounded, and all the involved
tests are decidable, the procedure becomes effective. Proving s ∼ t for expres-
sions s, t can be done by checking s ≤c t and t ≤c s.
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Example 8.1. Let s := repeat True, t := Y (λa.choice Ω (Cons True a) where
repeat := Y (λr.λx.Cons x (r x)). Then s can be reduced to the answers
(Cons True (Cons True (. . . (Cons True Ω)))) and t can be reduced to the same
answers, where we use � ∼c Ω. This implies that s ∼c t.

Example 8.2. Finite simulation can distinguish expressions that differ only
by sharing: Let s := (letrec x = choice True False in λy.x) and
let t = λy.(letrec x = choice True False in x). These expres-
sions are contextually different, using the context C[·] := (letrec z =
[·] in if (z ⊥) then (if (z ⊥) then True else ⊥) else True). The answer-
sets are: ans(t) = {t}, ans(s) = {λy.True, λy.False}.

Example 8.3. We are able to prove idempotency, commutativity and associativ-
ity for choice as a binary operator or all expressions, and hence these identities
can be used as program transformation using Proposition 7.2: For instance,
for commutativity: every pseudo-value environment Env that closes s and t, we
consider (letrec Env in choice s t) and (letrec Env in choice t s). The first
step of the approximation is the choice-reduction. Then the right and left hand
side have the same set of answers, hence they are equivalent, which follows from
Corollary 6.4. The same can be done for the other identities.

9 Conclusion and Further Research

We have shown that in a call-by-need non-deterministic lambda calculus with
letrec, where the proof method of Howe fails to prove correctness of co-inductive
simulation, the correctness of finite simulation can be established as a tool with
almost the same practical power. Further research is to adapt and extend the
methods to an appropriately defined simulation, and to investigate an extension
of the tools and methods to a combination of may- and must-convergence.
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Abstract. In 2006 Jambox, a termination prover developed by Endrullis,
surprised the termination community by winning the string rewriting di-
vision and almost beating AProVE in the term rewriting division of the
international termination competition. The success of Jambox for strings
is partly due to a very special case of semantic labeling. In this paper we
integrate this technique, which we call root-labeling, into the dependency
pair framework. The result is a simple processor with help of which TTT2

surprised the termination community in 2007 by producing the first au-
tomatically generated termination proof of a string rewrite system with
non-primitive recursive complexity (Touzet, 1998). Unlike many other
recent termination methods, the root-labeling processor is trivial to au-
tomate and completely unsuitable for producing human readable proofs.

1 Introduction

Semantic labeling is a complete method for proving the termination of term
rewrite systems (TRSs), introduced by Zantema [24]. It transforms a given TRS
into a termination equivalent TRS by labeling function symbols based on their
semantics. The challenge when applying and automating semantic labeling is to
choose the labeling functions in such a way that the resulting TRS is easier to
prove terminating. Koprowski and Zantema [13,15] showed how this can be done
when algebras over the natural numbers are used together with the lexicographic
path order to deal with the resulting infinite TRSs over infinite signatures. In
[14] Koprowski and Middeldorp combined predictive labeling—a version of se-
mantic labeling with less constraints [11]—with dependency pairs and modeled
the search space as a SAT problem.

A very special version of semantic labeling for string rewrite systems (SRSs),
due to Johannes Waldmann (Jörg Endrullis, personal communication), in which
the semantic and labeling components are completely determined by the SRS at
hand was used by Matchbox/SatELite [23] and Jambox [4] in the string rewriting
division of the 2006 international termination competition1 with remarkable suc-
cess. This special version, which we call root-labeling, is extended to TRSs in this
paper. More importantly but equally straightforward, we present root-labeling

� This research is supported by FWF (Austrian Science Fund) project P18763.
1 www.lri.fr/~marche/termination-competition/2006/

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 336–350, 2008.
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as a processor in the dependency pair framework [8,19]. Due to this new root-
labeling processor, in 2007 TTT2 [16] could prove the termination of exactly one
SRS that had eluded all termination tools (many of which use highly specialized
techniques for SRSs) before, resulting in the first automatic termination proof of
an SRS whose derivational complexity is not primitive recursive (Touzet [21]).

The remainder of this paper is organized as follows. In the next section we
recall basic definitions and results concerning semantic labeling and dependency
pairs. In Section 3, semantic labeling is specialized to root-labeling. Incorporating
dependency pairs is the topic of Section 4 and in Section 5 we present our main
example in some detail. Experimental results are presented in Section 6 and we
conclude in Section 7 with suggestions for future research.

2 Preliminaries

We assume basic knowledge of term rewriting [2,18]. Let R be a TRS over a
signature F and let A = (A, {fA}f∈F) be an F -algebra. Let V be the set of
variables. We say that A is a model of R if [α]A(l) = [α]A(r) for every rule
l → r ∈ R and every assignment α : V → A. A labeling � for A consists of sets of
labels Lf for every f ∈ F together with mappings �f : An → Lf for every n-ary
function symbol f ∈ F with Lf �= ∅. The labeled signature Flab consists of n-ary
function symbols fa for every n-ary function symbol f ∈ F and label a ∈ Lf

together with all function symbols f ∈ F such that Lf = ∅. The mapping
�f determines the label of the root symbol f of a term f(t1, . . . , tn) based on
the values of the arguments t1, . . . , tn. For every assignment α : V → A the
mapping labα : T (F ,V) → T (Flab,V) is inductively defined as follows: labα(t) = t
if t is a variable, labα(f(t1, . . . , tn)) = f(labα(t1), . . . , labα(tn)) if Lf = ∅, and
labα(f(t1, . . . , tn)) = fa(labα(t1), . . . , labα(tn)) if Lf �= ∅ where a denotes the
label �f([α]A(t1), . . . , [α]A(tn)). The labeled TRS Rlab over the signature Flab

consists of the rewrite rules labα(l) → labα(r) for all rules l → r ∈ R and
assignments α : V → A.

Theorem 1 (Zantema [24]). Let R be a TRS. Let the algebra A be a non-empty
model of R and let � be a labeling for A. The TRS R is terminating if and only
if the TRS Rlab is terminating. � 

Example 2 ([24]). Consider the TRS R (Toyama [22]) consisting of the single
rule f(a, b, x) → f(x, x, x). To ease the termination proof, we label function
symbol f such that its occurrence on the left gets a different label from the
one on the right. This is achieved by taking the algebra A with carrier {0, 1}
and interpretations aA = 0, bA = 1, fA(x, y, z) = 0 for all x, y, z ∈ {0, 1},
together with La = Lb = ∅, Lf = {0, 1} and �f(x, y, z) = 0 if x = y and
�f(x, y, z) = 1 if x �= y. The algebra A is a model of R and Rlab consists of
the rule f1(a, b, x) → f0(x, x, x). Termination of Rlab is obvious as there are no
dependency pairs.

A stronger version of semantic labeling is obtained by equipping the carrier of
the algebra and the label sets with a well-founded order such that all algebra
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functions and all labeling functions are weakly monotone in all coordinates.
The model condition is then weakened to [α]A(l)  [α]A(r) for every rule
l → r ∈ R and every assignment α : V → A. Further, all rules of the form
fa(x1, . . . , xn) → fb(x1, . . . , xn) with a, b ∈ Lf such that a > b have to be added
to Rlab in order to obtain a sound transformation (Zantema [24]). This version
of semantic labeling is capable of transforming any terminating TRS into a TRS
whose termination proof is particularly simple, see [17]. This result is however
only of theoretical interest. Recent variants inspired by the need for automation
are presented in [11,20].

The dependency pair method [1] is a powerful approach for proving termi-
nation of TRSs. It is used in most termination tools for term rewriting. The
dependency pair framework [8,19] is a modular reformulation and improvement
of this approach. We present a simplified version which is sufficient for our pur-
poses. Let R be a TRS over a signature FR. The signature FR is extended with
symbols f � for every symbol f ∈ {root(l) | l → r ∈ R}, where f � has the same
arity as f . In examples we write F for f �. If t ∈ T (F ,V) with root(t) defined
then t� denotes the term that is obtained from t by replacing its root symbol
with root(t)�. If l → r ∈ R and t is a subterm of r with a defined root symbol
that is not a proper subterm of l then the rule l� → t� is a dependency pair of
R. The set of dependency pairs of R is denoted by DP(R). A DP problem is a
pair of TRSs (P ,R) such that symbols in F � = {root(l), root(r) | l → r ∈ P}
do neither occur in R nor in proper subterms of the left and right-hand sides
of rules in P . Writing FP for the signature of P , the signature FR ∪ (FP \ F �)
is denoted by F . The problem (P ,R) is said to be finite if there is no infinite
sequence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · such that all terms t1, t2, . . . are

terminating with respect to R. Such an infinite sequence is said to be minimal.
Here the ε in ε−→P denotes that the application of the rule in P takes place at the
root position. The main result underlying the dependency pair approach states
that a TRS R is terminating if and only if the DP problem (DP(R),R) is finite.

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem
as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a
set returned by a DP processor are finite then the initial DP problem is finite.
Complete DP processors, which are those processors with the property that if
one of the returned DP problems is not finite then the original DP problem is
not finite, can be used to prove non-termination.

3 Plain Root-Labeling2

The challenge when implementing semantic labeling is to find an appropriate
carrier and suitable interpretation and labeling functions such that the labeled

2 As stated in the introduction, the results in this section for SRSs are due to Johannes
Waldmann; they are mentioned in [26].
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system is easier to prove terminating. This issue has been addressed in several
recent papers ([13,15,14]).

In the special version of semantic labeling defined in this section, everything
is fixed. This has the disadvantage of reducing the power of semantic labeling
significantly but the advantage of making automation a trivial issue.

Definition 3. Let R be a TRS over a signature F . The algebra AF has carrier
F and interpretation functions fAF (x1, . . . , xn) = f for every n-ary f ∈ F and
all x1, . . . , xn ∈ F . The labeling � is defined as follows: Lf = Fn if the arity n of
f is at least 1 and Lf = ∅ otherwise, and �f (x1, . . . , xn) = (x1, . . . , xn) for all
f with Lf �= ∅ and all x1, . . . , xn ∈ F . In examples we write x1 for (x1). The
resulting labeled TRS Rlab is denoted by Rrl.

Example 4. Consider the TRS R from Example 2, extended with the two rules
c → a and c → b. The TRS Rrl consists of the six rules

f(a,b,a)(a, b, x) → f(a,a,a)(x, x, x) f(a,b,c)(a, b, x) → f(c,c,c)(x, x, x) c → a

f(a,b,b)(a, b, x) → f(b,b,b)(x, x, x) f(a,b,f)(a, b, x) → f(f,f,f)(x, x, x) c → b

and is terminating because there are no dependency pairs. The TRS R, however,
admits an infinite rewrite sequence starting from the term f(a, b, c).

The problem in the previous example is that AF is not a model of R. In order
to solve this problem we close every rule l → r where l and r have different root
symbols under flat contexts, before performing the root-labeling operation.

Definition 5. Let R be a TRS over a signature F . The rules in Rp = {l → r ∈
R | root(l) = root(r)} are root-preserving. The rules in Ra = R \ Rp are root-
altering. The set {f(x1, . . . , xi−1, 
, xi+1, . . . , xn) | f ∈ F has arity n  1 and
1 � i � n} of flat contexts is denoted by FC. The flat context closure of R is
defined as FC(R) = Rp ∪ {C[l] → C[r] | l → r ∈ Ra and C ∈ FC}.

Example 6. For the TRS R from Example 4, the TRS FC(R) consisting of the
rules

f(a, b, x) → f(x, x, x) f(c, x, y) → f(a, x, y) f(c, x, y) → f(b, x, y)
f(x, c, y) → f(x, a, y) f(x, c, y) → f(x, b, y)
f(x, y, c) → f(x, y, a) f(x, y, c) → f(x, y, b)

is obtained. Note that like R, FC(R) is non-terminating for f(a, b, c).

Lemma 7. The transformation FC(·) on TRSs is termination preserving and
reflecting, i.e., R is terminating if and only if FC(R) is terminating.

Proof. By construction, every rewrite step in FC(R) can be simulated by a
rewrite step in R. This proves the “only if” direction. For the “if” direction we
reason as follows. Suppose R is not terminating. Then there exists an infinite
sequence t1 →R t2 →R · · · . Let C ∈ FC be an arbitrary flat context. Since
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rewriting is closed under contexts, we obtain C[t1] →R C[t2] →R · · · . We claim
that this sequence is a rewrite sequence in FC(R). Fix i  1 and consider the step
C[ti] →R C[ti+1]. Let l → r ∈ R be the employed rewrite rule. We distinguish
two cases.

1. If l → r is root-preserving then l → r belongs to FC(R) and the result is
clear.

2. Suppose l → r is root-altering. If the rule was applied below the root position
in ti →R ti+1, then ti →FC(R) ti+1 by applying the rule C′[l] → C′[r] for
the flat context C′ ∈ FC uniquely determined by the function symbol in
ti directly above the redex and the position of the redex. Formally, if π·j
is the redex position in ti then C′ = f(x1, . . . , xj−1, 
, xj+1, . . . , xn) with
f = root(ti|π). Hence also C[ti] →FC(R) C[ti+1]. If the rule l → r was
applied at the root position in ti →R ti+1 then C[ti] →FC(R) C[ti+1] by
applying the rule C[l] → C[r] ∈ FC(R).

So C[t1] →FC(R) C[t2] →FC(R) · · · and thus FC(R) is non-terminating. � 

To pave the way for the developments in the next section, we need the observation
that Lemma 7 remains true if we allow an arbitrary extension G of the signature
F of R when building flat contexts. We write FCG when we want to make the
signature of the flat contexts clear.

Theorem 8. The transformation FC(·)rl on TRSs is termination preserving
and reflecting, i.e., R is terminating if and only if FC(R)rl is terminating.

Proof. According to Lemma 7, termination of R is equivalent to termination of
FC(R). By construction, all rules in FC(R) are root-preserving. Hence AF is a
model for FC(R) and Theorem 1 yields the termination equivalence of FC(R)
and FC(R)rl. Combining the two equivalences yields the desired result. � 

We conclude this section with two more examples. A string rewrite system (SRS)
is a TRS over a signature consisting of unary function symbols. We write strings
a(b(c(x))) as abc (the variable is implicit).

Example 9. Consider the SRSR = {aa → aba}. Since the rule is root-preserving,
FC(R) = R. The SRS FC(R)rl consists of the two rules aaaa → abbaaa and
aaab → abbaab, and is terminating because its rules are oriented from left to
right by the polynomial interpretation [aa](x) = x + 1 and [ab](x) = [ba](x) = x.

Example 10. Consider the TRS R (teparla3.trs) consisting of the two rules
f(y, f(x, f(a, x))) → f(f(a, f(x, a)), f(a, y)) and f(x, f(x, y)) → f(f(f(x, a), a), a).
None of the tools participating in the 2007 international competition could prove
its termination. Like in the preceding example we have R = Rp and hence
FC(R) = R. The TRS FC(R)rl consists of the following eight rules

f(a,f)(y, f(a,f)(x, f(a,a)(a, x))) → f(f,f)(f(a,f)(a, f(a,a)(x, a)), f(a,a)(a, y))
f(f,f)(y, f(a,f)(x, f(a,a)(a, x))) → f(f,f)(f(a,f)(a, f(a,a)(x, a)), f(a,f)(a, y))
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f(a,f)(y, f(f,f)(x, f(a,f)(a, x))) → f(f,f)(f(a,f)(a, f(f,a)(x, a)), f(a,a)(a, y))
f(f,f)(y, f(f,f)(x, f(a,f)(a, x))) → f(f,f)(f(a,f)(a, f(f,a)(x, a)), f(a,f)(a, y))

f(a,f)(x, f(a,a)(x, y)) → f(f,a)(f(f,a)(f(a,a)(x, a), a), a)
f(a,f)(x, f(a,f)(x, y)) → f(f,a)(f(f,a)(f(a,a)(x, a), a), a)
f(f,f)(x, f(f,a)(x, y)) → f(f,a)(f(f,a)(f(f,a)(x, a), a), a)
f(f,f)(x, f(f,f)(x, y)) → f(f,a)(f(f,a)(f(f,a)(x, a), a), a)

and can be proved terminating by the 2007 competition versions of AProVE [7],
Jambox, and TTT2.

4 Root-Labeling with Dependency Pairs

The performance of Jambox and Matchbox/SatELite [23] in the 2006 international
termination competition revealed that root-labeling is a powerful transformation
on SRSs. So it is not a surprise that other tools adopted this technique, too. In
2007, MultumNonMulta [12] and Torpa [25] followed suit. So did TTT2, with one
important difference: the combination with dependency pairs.

In the previous section we defined root-labeling as a transformation on TRSs.
In order to benefit from the numerous termination techniques that are available
in connection with the dependency pair framework, it is worthwhile to extend
root-labeling to dependency pair problems. (For the same reason, in [14] semantic
labeling with respect to quasi-models is extended to dependency pair problems.)
In this section we present two different approaches that achieve this.

In the first approach, which is the one implemented in the 2007 competition
version of TTT2, the insertion of a fresh unary function symbol below depen-
dency pair symbols ensures that the strict separation of rules in P and in R is
maintained.

Definition 11. Let (P ,R) be a DP problem. Let FR be the signature of R and
let FP be the signature of P. We denote {root(l), root(r) | l → r ∈ P} by F �

and FR ∪ (FP \ F �) by F . Let : be a fresh unary function symbol. The func-
tion block inserts : between the root symbol f and the arguments t1, . . . , tn of
a term f(t1, . . . , tn) with n  1: block(t) = t if t is a variable or a constant
and block(t) = f(:(t1), . . . ,:(tn)) if t = f(t1, . . . , tn) with n  1. We de-
fine FC1(P ,R) as the pair (block(P),FC1(R)) where block(P) = {block(l) →
block(r) | l → r ∈ P} and FC1(R) = FCF∪{�}(R).

Lemma 12. The pair FC1(P ,R) is a DP problem.

Proof. The set {root(l), root(r) | l → r ∈ block(P)} coincides with F � and
function symbols in F � do occur neither in FC1(R) (as F � ∩ (F ∪ {:}) = ∅)
nor in proper subterms of terms in block(P). � 

Lemma 13. The DP problem (P ,R) is finite if and only if the DP problem
FC1(P ,R) is finite.
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Proof. First assume that (P ,R) is not finite. Then there exists a minimal se-
quence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · . We may assume without loss of

generality that all function symbols occurring at non-root positions belong to
F . (By replacing all maximal proper subterms with a root symbol that belongs
to F � by the same variable, we obtain a minimal sequence that satisfies this
property.) We claim that

block(s1)
ε−→block(P) block(t1) →∗

FC1(R) block(s2)
ε−→block(P) block(t2) →∗

FC1(R) · · ·

is a minimal sequence with respect to FC1(P ,R). Fix i  1. By construction of
block(P), the step si

ε−→P ti gives rise to the step block(si)
ε−→block(P) block(ti).

Next we consider the sequence ti →∗
R si+1. Let s →R t be an arbitrary step

in this sequence, using the rewrite rule l → r ∈ R at position π. Since π > ε
we may write s = F (u1, . . . , un) and t = F (u1, . . . , uj−1, vj , uj+1, . . . , un) with
uj →R vj and π  j. If l → r is root-preserving then l → r ∈ FC1(R) and thus
uj →FC1(R) vj , which implies :(uj) →FC1(R) :(vj). Similar as in the proof
of Lemma 7, if l → r is root-altering then we obtain :(uj) →FC1(R) :(vj) by
using an appropriate flat context from FCF when π > j and the flat context
:(
) when π = j. So in all cases we have :(uj) →FC1(R) :(vj) and hence
also block(s) →FC1(R) block(t). Since the step s →R t was an arbitrary step
in the sequence ti →∗

R si+1, we obtain block(ti) →∗
FC1(R) block(si+1). Next we

show that block(ti) is terminating with respect to FC1(R). By construction of
FC1(R), every application of a rule in FC1(R) can be performed by a rule in
R. Hence if block(ti) is not terminating with respect to FC1(R) then block(ti)
is not terminating with respect to R and this implies in turn that ti is not
terminating with respect to R as : does not appear in the rules of R. This,
however, contradicts the minimality of the initial sequence s1

ε−→P t1 →∗
R s2

ε−→P
t2 →∗

R · · · . It follows that the sequence displayed above is a minimal sequence
with respect to FC1(P ,R). Therefore, FC1(P ,R) is not finite, which concludes
the proof of the “if” direction.

For the “only if” direction, suppose that

s1
ε−→block(P) t1 →∗

FC1(R) s2
ε−→block(P) t2 →∗

FC1(R) · · ·

is a minimal sequence with respect to FC1(P ,R). Let the mapping unblock erase
all occurrences of : from terms:

unblock(t) =

⎧⎪⎨
⎪⎩

t if t is a variable,
unblock(t1) if t = :(t1),
f(unblock(t1), . . . , unblock(tn)) if t = f(t1, . . . , tn) with f �= :.

Using similar reasoning as in the “if” direction, we easily obtain

unblock(s1)
ε−→P unblock(t1) →∗

R unblock(s2)
ε−→P unblock(t2) →∗

R · · ·

To show minimality, suppose that unblock(ti) is non-terminating with respect to
R. Using the special structure of ti, it readily follows that ti is non-terminating
with respect to R and with respect to FC1(R). The latter provides the desired
contradiction. � 



Root-Labeling 343

When applying root-labeling to FC1(P ,R), it is not useful to label the root
symbols of block(P), since identical symbols will always have identical labels
consisting solely of :’s. This is reflected in the following definition.

Definition 14. Let (P ,R), F �, F , and : be as in Definition 11. The first root-
labeling transformation FC1(P ,R)rl is defined as the pair (block(P)rl,FC1(R)rl)
with Lf = ∅ if f ∈ F � or if f is a constant in F and Lf = Fn if f ∈ F ∪ {:}
has arity n  1, and fAF∪F�∪{�}

(x1, . . . , xn) = g for every f ∈ F � and arbitrary
but fixed g ∈ F �.

The modification of the algebraAF∪F�∪{�} in the last line of the above definition
ensures that the model condition is trivially satisfied for the rules in P . Hence
these rules need not be closed under flat contexts, even if they are root-altering.

Theorem 15. The DP problem (P ,R) is finite if and only if the DP problem
FC1(P ,R)rl is finite.

In other words, the mapping (P ,R) �→ {FC1(P ,R)rl} is a sound and complete
DP processor.

Proof. According to Lemma 13 finiteness of (P ,R) is equivalent to finiteness of
FC1(P ,R). The latter is equivalent to finiteness of FC1(P ,R)rl. The proof is
standard. Starting from a minimal sequence in FC1(P ,R), a minimal sequence
in FC1(P ,R)rl is obtained by applying labα to every term in the sequence in
FC1(P ,R), where α assigns an arbitrary element of F to every variable. Con-
versely, a minimal sequence in FC1(P ,R)rl is transformed into a minimal se-
quence in FC1(P ,R) by simply erasing all labels. � 

In the second approach for incorporating root-labeling into the dependency pair
framework, we preserve the model condition by closing the rules of R also under
flat contexts with a root symbol from F �. To avoid problems by mixing up
dependency pair symbols with symbols of R, those additional closure rules are
moved to the first component of dependency pair problems.

Definition 16. Let (P ,R), F �, and F be as in Definition 11. Let FC2(P ,R)
be the pair (P ∪ FCF�(Ra),FCF(R)). The second root-labeling transformation
FC2(P ,R)rl is defined as the pair (Prl ∪ FCF�(Ra)rl,FCF(R)rl) with Lf = ∅ if
f is a constant in F ∪ F � and Lf = Fn if f ∈ F ∪ F � has arity n  1, and
fAF∪F� (x1, . . . , xn) = g for every f ∈ F � and arbitrary but fixed g ∈ F �.

It is obvious that the pair FC2(P ,R) is a DP problem.

Lemma 17. The DP problem (P ,R) is finite if and only if the DP problem
FC2(P ,R) is finite.

Proof. We abbreviate P ∪ FCF�(Ra) to FC2(P). Assume that (P ,R) is not
finite. Hence there exists a minimal sequence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · .
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Without loss of generality we assume that all function symbols occurring at
non-root positions belong to F . We claim that

s1
ε−→P t1 →∗

FCF (R)∪FCF� (Ra)
s2

ε−→P t2 →∗
FCF (R)∪FCF� (Ra)

· · ·

is a minimal sequence with respect to FC2(P ,R). Fix i  1. We obviously
have si

ε−→P ti. Let s →R t be an arbitrary step in the sequence ti →∗
R si+1,

using the rewrite rule l → r ∈ R at position π. Since π > ε we may write
s = F (u1, . . . , un) and t = F (u1, . . . , uj−1, vj , uj+1, . . . , un) with uj →R vj

and π  j. If l → r is root-preserving then l → r ∈ FCF(R) and thus
s →FCF (R) t. Similar as in the proof of Lemma 7, if l → r is root-altering
and π > j then we obtain uj →FCF (R) vj and thus s →FCF (R) t by using an
appropriate flat context from FCF . If π = j then s →FCF� (Ra) t by using the
flat context F (x1, . . . , xj−1, 
, xj+1, . . . , xn) ∈ FCF� . So in all cases we have
s →FCF (R)∪FCF� (Ra) t. Hence the sequence displayed above exists. By pinpoint-
ing the steps from P ∪ FCF�(Ra), this sequence can be written as

s1
ε−→FC2(P) t′1 →∗

FCF (R) s′2
ε−→FC2(P) t′2 →∗

FCF (R) · · ·
where for every i  1 there exists a j  i such that ti = t′j . We need to
show that every t′j is terminating with respect to FCF(R). Let j  1. We
distinguish two cases. If t′j = ti for some i then t′j is terminating with respect
to R, due to the minimality of the initial sequence in (P ,R). According to
Lemma 7, more precisely the extension of Lemma 7 mentioned in the paragraph
after the proof, t′j is terminating with respect to FCF (R). In the other case we
have ti →∗

FCF (R)∪FCF� (Ra)
t′j for some i. If t′j is not terminating with respect to

FCF (R) then it is also not terminating with respect to FCF∪F�(R) and hence ti
is not terminating with respect FCF∪F�(R). This contradicts Lemma 7 because
ti is terminating with respect to R, due to minimality. This concludes the proof
of minimality. We conclude that FC2(P ,R) is not finite, which settles the “if”
direction.

For the “only if” direction, suppose that

s1
ε−→FC2(P) t1 →∗

FCF (R) s2
ε−→FC2(P) t2 →∗

FCF (R) · · ·
is a minimal sequence with respect to FC2(P ,R). Without loss of generality
we assume that symbols from F � occur exclusively at root positions. Using the
termination equivalence of FCF (R) and FCF∪F�(R), which is a consequence of
Lemma 7, and the fact that every ti is terminating with respect to FCF (R), it
follows that this sequence contains infinitely many steps in P . Since every rule
in FCF∪F�(R) is simulated by a rule in R, the sequence is a sequence in (P ,R).
After dropping the (possibly empty) initial steps using rules from Ra, we obtain
a sequence in (P ,R) which is easily shown to be minimal. � 
Theorem 18. The DP problem (P ,R) is finite if and only if the DP problem
FC2(P ,R)rl is finite.

Proof. According to Lemma 17 finiteness of (P ,R) is equivalent to finiteness of
FC2(P ,R). The equivalence of the latter with finiteness of FC2(P ,R)rl follows
as in the proof of Theorem 15. � 
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5 Touzet’s SRS

The first approach detailed in the preceding section, FC1(·)rl, was implemented
and incorporated into the 2007 competition version of TTT2. Together with lin-
ear polynomial interpretations with coefficients from {0, 1} and standard de-
pendency pair refinements (usable rules with argument filtering [9], recursive
SCC [10]), TTT2 could automatically prove termination of z090.srs, which is
an example from Touzet [21] of a simply terminating SRS whose derivational
complexity is not primitive recursive. This prompted Johannes Waldmann to
write

“ I find this astonishing: (link to url omitted)
To my knowledge, this would be the first automatic proof
for an SRS with non-primitive-recursive complexity ”

on the termtools3 mailing list (7 June 2007).
The SRS T consists of the rules

bu → bs sbs → bt tb → bs ts → tt

sb → bsss su → ss tbs → utb tu → ut

and simulates the following process on fixed-length lists of natural numbers (s
denotes successor and b separates numbers):

( · · · , n + 1, m, · · · ) → ( · · · , n, m + 3, · · · )
( · · · , n + 1, m + 1, k, · · · ) → ( · · · , n, k, m + 1, · · · )

Moreover, the function

φ : (x, y) �→ max { z | ( y + 1,

2x+1︷ ︸︸ ︷
0, · · · , 0 ) →∗ (

2x+1︷ ︸︸ ︷
0, · · · , 0, z + 1 ) }

dominates the Ackermann function (Touzet [21]), which proves that the deriva-
tional complexity of T is not primitive recursive. The (simple) termination of T
is shown in [21] by a complicated ad-hoc argument.

Below we present some details of the termination proof generated by TTT2.
The SRS T has the following 17 dependency pairs:

Bu → Bs (1) Sb → S (6) Su → S (10) Tbs → B (14)
Bu → S (2) Sbs → Bt (7) Tb → Bs (11) Ts → Tt (15)
Sb → Bsss (3) Sbs → T (8) Tb → S (12) Ts → T (16)
Sb → Sss (4) Su → Ss (9) Tbs → Tb (13) Tu → T (17)
Sb → Ss (5)

In the first step of the proof, the ensuing DP problem (DP(T ), T ) is subjected
to the interpretations [B](x) = [S](x) = [T](x) = [s](x) = [t](x) = [u](x) =

3 http://lists.lri.fr/pipermail/termtools/
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x and [b](x) = x + 1. which causes the pairs (3)–(8), (11), (12), (14) to be
eliminated. The eight remaining dependency pairs give rise to three SCCs: {(1)},
{(9), (10)}, and {(13), (15)–(17)}. The first two are easily handled. The last one
is the problematic one. Dependency pairs (15) and (16), subsequently followed
by pair (17), are removed by using the following interpretations (and considering
the induced usable rules):

– [T](x) = [u](x) = x, [b](x) = [t](x) = 0, and [s](x) = x + 1,
– [T](x) = x, [u](x) = x + 1, and [b](x) = [s](x) = [t](x) = 0.

The remaining DP problem ({(13)}, T ) is very resistant against automatic ter-
mination proof methods, even though it has just one dependency pair. This is
the point where root-labeling comes into play. Since Ta contains five of the eight
rules of T , the second component of the flat context closure

FC1({(13)}, T ) = ({T:bs → T:b},FC{b,s,t,u,�}(T ))

consists of 28 rewrite rules. As there are four symbols in the carrier for the
labeling step, FC1({(13)}, T )rl = (P ,R) with 112 rules in R, which the reader
will be spared, and P consisting of the rules

T:bbssb → T:bbb (a) T:bbsst → T:bbt (c)
T:bbsss → T:bbs (b) T:bbssu → T:bbu (d)

Rule (a) is eliminated as it is not part of any SCC. By counting function symbols,
the 112 rules in R are successively reduced to 104 (:s is counted), 92 (:t is
counted), and 78 (us is counted) rules. Now all rules of R that hindered the
automatic orientation of the rules (b)–(d) were removed and the termination
proof of T is concluded by using the following interpretations:

[ss](x) = [st](x) = [su](x) = x + 1
[T](x) = [:b](x) = [bs](x) = [bt](x) = [bu](x) = x

[bb](x) = [sb](x) = [ss](x) = [st](x) = [su](x) = [tb](x) = [ts](x)
= [tt](x) = [tu](x) = [ub](x) = [ut](x) = [uu](x) = 0

Inspired by the success of TTT2 on Touzet’s SRS, Hans Zantema announced on
the termtools mailing list (16 August 2007) a much simpler example of a simply
terminating SRS whose derivational complexity is not primitive recursive:

ab → baa abb → bc ca → ac cb → bb

This SRS can be automatically proved terminating by Torpa [25] (and several
other tools as well), without using root-labeling.

6 Experiments

Extensive tests were conducted to evaluate the usefulness of the root-labeling
processors. We used the rewrite systems in version 4.0 of the Termination
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Table 1. Experimental results for SRSs

FC1(·)rl FC2(·)rl FC2(·)∗
rl

P(1) 25 (1.12) 94 ( 2.30) 98 (2.31) 119 (3.03)
P(1) with usable rules 37 (0.06) 112 ( 1.84) 118 (2.32) 138 (3.00)
P(2) 49 (0.63) 144 ( 4.14) 148 (4.05) 172 (6.84)
P(2) with usable rules 57 (0.53) 155 ( 4.01) 169 (4.40) 188 (6.33)
P(1;2) 50 (0.80) 160 ( 3.40) 165 (3.36) 198 (5.28)
P(1;2) with usable rules 57 (3.35) 171 ( 3.10) 183 (3.54) 209 (4.92)
M(2,1) with usable rules 87 (0.73) 181 ( 3.61) 181 (4.12) 193 (4.36)
M(3,1) with usable rules 109 (2.99) 151 (10.67) 158 (7.98) 163 (7.50)

total number of proofs 118 214 220 241

Problems Data Base,4 extended with the secret systems of the 2007 termina-
tion competition, which amount to 1381 TRSs and 724 SRSs. All tests were
performed on a workstation equipped with an Intel R© PentiumTM M processor
running at a CPU rate of 2 GHz on 1 GB of system memory and with a time
limit of 60 seconds.

Our results for SRSs are summarized in Table 1. Numbers in parentheses
indicate the average time (in seconds) to prove termination. For every entry in
the table the dependency pair framework with common processors based on an
estimation of the dependency graph, the recursive SCC algorithm [10], and the
rule removal processor [8] (which in the case of P(1) amounts to counting certain
function symbols) together with some reduction pair processor are used. Different
rows in the table correspond to different reduction pair processors based on
polynomial (P) and matrix (M) interpretations. For polynomial interpretations
the numbers in parentheses indicate how many bits are used for coefficients
in the SAT-encoding described in [6]. Rows with P(1;2) indicate that 2 bits
are used only when no progress can be made with 1 bit. This is faster (and
thus more powerful) than P(2). For matrix interpretations [5] the first number
in parentheses provides the dimension of the matrices and the second number
denotes the number of bits used for the matrix elements in the SAT-encoding.
In rows containing ‘with usable rules’ the respective processor is used to orient
the usable rules of R with respect to the implicit argument filtering obtained
from the 0 coefficients in the interpretations [9], as opposed to all rules of the R
component of a DP problem (P ,R).

In columns FC1(·)rl and FC2(·)rl the two root-labeling processors are executed
as soon as the processors described in the preceding paragraph no longer make
progress. In the final column an optimization of the FC2(·)rl processor is used
which takes effect when root-labeling an already labeled SRS is attempted. This
is described at the end of this section and goes back to the implementation of
root-labeling in Jambox. We now comment on the obtained data.

– First of all, when increasing the number of bits for polynomial or matrix in-
terpretations, it can happen that systems which can be proved using smaller

4 www.lri.fr/~marche/tpdb
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Table 2. Experimental results for TRSs

FC1(·)rl FC2(·)rl

P(1) with usable rules 549 (0.16) 636 (0.61) 631 (0.39)
P(2) with usable rules 584 (0.52) 663 (0.92) 665 (0.93)
M(2,1) with usable rules 666 (0.57) 697 (0.91) 700 (0.88)
M(3,1) with usable rules 662 (1.58) 680 (1.94) 684 (2.05)
M(2,2) with usable rules 648 (2.17) 664 (2.62) 668 (2.74)
M(3,2) with usable rules 608 (4.29) 613 (4.49) 614 (4.51)

total number of proofs 686 716 719

values, are no longer handled due to a timeout in the SAT solver (in our case
Minisat [3]).

– Due to the nature of root-labeling, every run that does not succeed to prove
termination results in a timeout or a memory overflow.

– On first sight it seems that FC2(·)rl is strictly stronger than FC1(·)rl. How-
ever, what is not apparent from the table is that for every row there are a
number of systems which can be proved terminating using FC1(·)rl but not
using FC2(·)rl. These numbers are 1, 1, 5, 2, 4, 2, 9, and 6 (top to bottom).

Our results for TRSs are summarized in Table 2. Most of the remarks for
SRSs also hold for TRSs. The optimization for SRSs detailed below is however
not implemented for TRSs (which is apparent from the missing fourth column).

We conclude this experimental section with a brief description of the op-
timized root-labeling processor FC2(·)∗rl. During the execution of FC1(·)rl and
FC2(·)rl, function symbols of an already labeled DP problem do not have struc-
ture, which entails that both closure under flat contexts as well as the actual
root-labeling steps create many more new rules due the increased size of the
labeled signature. The implementation of plain root-labeling for SRSs in Jambox
reduces the number of new rules by using the original signature in subsequent
root-labeling steps. This is best explained on a concrete example. When labeling
the rule abba → acca, the unlabeled rule ab → ac is closed under flat contexts

aab → aac bab → bac cab → cac

and subsequently labeled by propagating all one symbol extensions (aa, ab, ac)
of the original starting assignment a, resulting in the nine rules:5

aabababaa → aacacacaa aabababab → aacacacab aabababac → aacacacac

babababaa → bacacacaa babababab → bacacacab babababac → bacacacac

cabababaa → cacacacaa cabababab → cacacacab cabababac → cacacacac

With FC2(·)rl we would obtain at least sixteen rules. Although the numbers in
Table 1 may suggest otherwise, FC2(·)∗rl does not subsume FC2(·)rl. For instance,
5 The transformation FC2(·)∗

rl is easily formalized, starting from the F-algebra AF×F
in Definition 3 with fAF×F (a, b) = (f, a).
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three (x02.srs, z108.srs, and z114.srs) of the 181 systems in the FC2(·)rl
entry of the row ‘M(2,1) with usable rules’ are not included in the 193 systems
in the FC2(·)∗rl entry.

7 Summary and Future Work

In this paper we introduced the technique of root-labeling for TRSs into the
dependency pair framework, resulting in two different root-labeling processors.
Touzet’s example showed the usefulness of these processors for SRSs. Although
root-labeling is trivial to automate, further research is needed to determine when
to apply it. Besides, it is unclear whether one of the two introduced processors
is (at least in theory) strictly stronger than the other. As explained in the ex-
perimental section, the current implementation in TTT2 applies root-labeling as
soon as the other processors do not make progress. In particular, we never undo
the effect of root-labeling. Since the root-labeling processors are always appli-
cable, the DP problems quickly grow too large. This is especially a problem for
TRSs, where a single application of root-labeling typically blows up the system.
A related problem is the possibility to verify the correctness of the produced
termination proofs.

Acknowledgments. We are grateful to Johannes Waldmann for inventing root-
labeling (for string rewrite systems) and for drawing our attention to the ter-
mination proof of z090.srs that TTT2 produced during the 2007 international
termination competition. Without these contributions, this paper would not have
been written. Discussions with Jörg Endrullis and Johannes Waldmann improved
our results.
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Abstract. We propose a new (Noetherian) induction schema to reason on equali-
ties and show how to integrate it into implicit induction-based inference systems.
Non-orientable conjectures of the form lhs = rhs and their instances can be
soundly used as induction hypotheses in rewrite operations. It covers the most
important rewriting-based induction proof techniques: i) term rewriting induc-
tion if lhs = rhs is orientable, ii) enhanced rewriting induction if lhs and rhs
are comparable, iii) ordered rewriting induction if the instances of lhs = rhs are
orientable, and iv) relaxed rewriting induction if the instances of lhs = rhs are
not comparable. In practice, it helps to automatize the (rewrite-based) reasoning
on a larger class of non-orientable equalities, like the permutative and associativ-
ity equalities.

1 Introduction

Since the publication of the seminal paper of Knuth and Bendix on completion [12],
rewriting has become a difficult to circumvent tool in the automation of reasoning
on equalities. Today, modern theorem provers incorporate sophisticated rewriting tech-
niques for replacing equals by equals.

The most common rewrite operations rest on term rewrite systems (TRS), represent-
ing sets of orientable equalities, also known as rewrite rules. The equalities are oriented
according to well-founded orderings that, in addition, ensure the termination of the
rewriting process. On the other hand, well-founded orderings are paramount to estab-
lish the soundness of induction principles. Lankford [13] was among the first to remark
that the (ordered) saturation process during completion-like rewriting procedures con-
tains induction reasoning. He called this kind of induction ‘inductionless’; compared to
conventional (explicit) induction, the tests for identifying the equalities that may serve
as induction hypotheses are embodied in the proof method.

Other rewrite-based, this time goal-oriented, proof techniques fall in the category of
‘implicit induction’. Equalities from TRSs are distinguished from the equalities to be
proved, called conjectures. In a proof step, a conjecture from the current proof state is
replaced by a (potentially empty) set of new conjectures. Starting with the term rewrit-
ing induction proof technique proposed by Reddy [14], the states from any derivation
(or proof) contain not only conjectures, but also previously processed equalities, called
premises in [16]. Some new conjectures are resulted from the rewriting with rules from
i) TRS and/or ii) smaller instances of orientable premises and conjectures from the

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 351–365, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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current state, considered as induction hypotheses. Ordered rewriting induction [4] im-
proves the previous technique since it allows the use of non-orientable induction hy-
potheses as long as they simplify conjectures. Recent improvements are the enhanced
and incremental rewriting induction [1] as a solution to prove equivalent-sides equali-
ties, like many associativity/commutativity equalities.

In this paper, we propose a new Noetherian induction schema that allows for relaxed
rewriting [7] to deal with non-orientable equalities: compared to incremental rewriting
induction techniques, some instances of a processing conjecture can be soundly used as
(explicit) induction hypotheses during the current step, even if they are not smaller or
have incomparable sides. The Noetherian induction schema is based on a well-founded
ordering defined over terms and can be seamlessly integrated into implicit induction
inference systems.

The paper is organised in 6 sections, as follows: after the introduction of the basic no-
tions and notations in Section 2, we reproduce and analyse in Section 3 the iRI system,
an incremental rewriting induction inference system from [1]. The relaxed rewriting
and the new induction schema are introduced in Section 4 and integrated into iRI. The
resulted system is then shown sound using a methodology based on the instantiation of
the inference system A, that allowed in the past to build and analyse several ordered
saturation-based and implicit induction inference systems [16,17,18]. A abstracts the
computation and points out the conjectures and premises to be considered as induction
hypotheses in any proof step. The soundness property states that A preserves particu-
lar minimal false conjectures (counterexamples) in any A-derivation. To achieve this, it
implements the Fermat’s ‘Descente Infinie’ (DI) induction principle [19] using formula-
based well-founded orderings. Compared to other similar systems, A provides maximal
sets of induction hypotheses at every derivation step. In Section 5, we describe the im-
plementation of the induction schema into a recent version of the SPIKE prover [5].
Finally, we prove its soundness and compare its performances w.r.t. iRI when proving,
for example, some permutative equalities. The last section gives the conclusions and
outlines the directions for future work.

2 Preliminaries

Most of the notions and notations from this section are standard; some related to iRI
and A are imported from [1] and [18], respectively. For details on term rewriting, the
reader may consult [3].

Terms and substitutions. We denote by F and V the set of (arity-fixed) function sym-
bols and (universally quantified) variables, respectively, and by T (F ,V) the set of terms
over them. V (t) represents the set of variables of the term t. A term is ground if it has
no variables. New terms can be obtained by replacing variables from existing terms
with terms, by means of mappings from variables to terms called substitutions. Given
a substitution σ, the term tσ is an instance of the term t. If s and t are two terms, we
denote by mgu(s, t) their most general unifier. The subterm s of a (non-variable) term t
is identified by its position p, denoted by t[s]p. ε is the head position of a term. If p �= ε
in t[s]p, then s is a strict subterm of t. t |p is the subterm of t at the position p and t[s]
indicates that s is a subterm of t.
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Orderings over terms. The reflexive transitive closure, transitive closure, equivalence

closure and the inverse of a binary relation → are denoted by
∗→,

+→,
∗↔ and →−1,

respectively. The composition of two binary relations A and B is represented by A ◦B.
Given two binary relations→i and →j , →i/j abbreviates

∗↔j ◦ →i ◦ ∗↔j .
A quasi-ordering ≥ is a reflexive and transitive binary relation. The equivalent part

∼ of a quasi-ordering≥ is defined by x ∼ y iff x ≥ y and y ≥ x. Its strict part >, called
ordering, is denoted by x > y iff x ≥ y and y �≥ x. A binary relation R is stable by
substitution if whenever sR t then (sσ)R (tσ) for any substitution σ. A quasi-ordering
≥ defined over the elements of a nonempty set A is well-founded if any nonempty
subset of A contains a minimal element. Moreover, it is stable if its strict and equivalent
parts are stable. A reduction ordering is a transitive and irreflexive relation that is well-
founded, stable by substitution and stable by context (i.e. sR t implies u[s]Ru[t]). The
reduction quasi-orderings ), have their strict (*) and equivalent (≈) parts stable by
context and substitution; moreover, * has to be a reduction ordering. We write s � t if
s is a strict subterm of t and t * s. We consider simplification quasi-orderings ) as
reduction quasi-orderings satisfying the subterm property, i.e. t * s whenever s is a
strict subterm of t. Two terms s and t are incomparable, denoted by s *≺ t, if neither
s * t, nor t * s, nor s ≈ t, otherwise they are comparable. ≡ is the syntactic identity
of terms.

Rewriting. The formulas of interest in the paper are equalities of the form s = t, where
s and t are two terms. The equality s = t is equivalent-sides if s ≈ t, incomparable
if s *≺ t, and permutative if s can be obtained from t by permuting variables. It can
be transformed into the rewrite rule s → t if s * t. A term rewriting system (TRS)
is a set of rewrite rules. The rewrite relation of a TRS R is denoted by s →R t. We
say that a term s is in R-normal form if there is no t such that s →R t, otherwise s
is R-reducible. Any equality that can be transformed into a rewrite rule is orientable,
otherwise it is non-orientable. Given a substitution σ, an equality s = t and a term
l such that l[sσ]u, a rewrite operation replaces l[sσ]u by l[tσ]u. Examples of rewrite
operations are: the ordered rewriting [4] if sσ * tσ, and the relaxed rewriting [7] if
sσ *≺ tσ.

Substitutions can also be applied to equalities: (s = t)σ is defined as sσ = tσ.

Orderings over formulas. Generally, if ≤ is a quasi-ordering over formulas, we de-
note by Φ≤φ (resp. Φ<φ and Φ∼φ) the set {ψγ | ψ ∈ Φ, γ a substitution and ψγ ≤
(resp. < and ∼)φ} of instances of formulas from a set Φ that are ‘smaller or equal’
to (resp. ‘smaller than’ and ‘equivalent’ to) a formula φ. A reduction quasi-ordering
over terms can be extended to a quasi-ordering over equalities, denoted by ≤e, by com-
paring the multisets of their sides using the multiset extension of ≺ [11]. We write
s = t <e l = r if {s, t} ≺≺ {l, r}, where ≺≺ is the multiset extension of ≺ as follows.
Given two multisets A1 and A2, we write A1 ≺≺ A2 if, after eliminating pairwisely
the equivalent terms from A1 and A2, for each term from A1 there exists a greater term
in A2. In addition, s = t ∼e l = r if the sets {s, t} and {l, r} are empty after elim-
inating pairwisely from A1 and A2 the equivalent terms. It can be shown that ≤e is a
well-founded and stable by substitution quasi-ordering if ( is, too.
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Inductive theorems. s = t is an inductive theorem of a TRS R, denoted by R |=ind

s = t, if for any of its ground (i.e. variable-free) instances (s = t)σ, we have sσ
∗↔R

tσ. A ground equality is a counterexample if it is not an inductive theorem. s = t
is false and denoted by R �|=ind s = t if it contains (i.e. one of its instances is) a
counterexample.

In this paper, we will consider inductive theorems of constructor-based TRS; in
this case, F is the disjoint union between the set of defined functions symbols D
and the set of constructor symbols C. D represents the set of root symbols of the lhs
of rewrite rules from the TRS and T (C,V) denotes the set of constructor terms. A
constructor substitution replaces variables with constructor terms. A set of instances
{sσ1 = tσ1, . . . , sσn = tσn}, denoted by Ψ(s = t), is a cover set of s = t if for
any ground constructor substitution τ , there is a ground constructor substitution τ ′ and
i ∈ [1..n] for which (s = t)τ ≡ (s = t)σiτ

′. Such instances are also called cover-
instances and the corresponding substitutions cover-substitutions. A term of the form
f(c1, . . . , cn), where f ∈ D and c1, . . . , cn are constructor terms, is basic. The set of
basic subterms of a term s is denoted by B(s). The lhs of the rewrite rules from a TRS
are expected to be basic. A TRS R is quasi-reducible if no basic ground term is in
R-normal form.

Noetherian induction for equalities. Inductive theorems can be proved by induction-
based proof techniques, as those based on Noetherian induction [9], according to in-
duction schemas. Given an equality s = t, Ψ(s = t) one of its cover sets and ≺ a well-
founded ordering over terms, an induction schema can be defined as follows: s = t is
an inductive theorem of a TRS R if, for any cover-instance sσ = tσ from Ψ(s = t), we
haveR∪Θ |=ind (s = t)σ, where Θ is the set of instances (s = t)θ such that sθ ≺ sσ.
The elements of Θ are Noetherian induction hypotheses.

Reasoning systems. An inference system consists of a set of inference rules that ver-
ify whether a set of (quantifier-free first order) formulas, called conjectures, are con-
sequences of another set of (quantifier-free first order) formulas, called axioms. The
inference rules define transitions between two states containing conjectures in which
the application of an inference rule replaces one conjecture with a set of new conjec-
tures. A derivation is built by successive applications of inference rules.

3 Rewriting Induction Inference Systems

Recently, Aoto [1] proposed several extensions of the rewriting induction (RI, for short),
firstly introduced by Reddy in [14] under the name of term rewriting induction, as a so-
lution to rewrite non-orientable equalities with previously processed orientable equali-
ties. In this section, we firstly present the most powerful of his inference systems, iRI,
reproduced in Fig. 1 and based on incremental rewriting induction, then discuss some
of its drawbacks.

W.r.t. [14], equivalent-sides equalities are also stored in iRI-states and rewriting oper-
ations with them are allowed. More exactly, (E,H,G) is an iRI-state, where E is the set
of current conjectures, while H and G are two sets of previously processed conjectures
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EXPAND: (E ∪ {s = t}, H, G) &iRI (E ∪Expdu(s, t), H ∪ {s→ t}, G)
if u ∈ B(s), s � t

EXPAND2: (E ∪ {s = t}, H, G) &iRI (E ∪Expd2u,v(s, t), H, G ∪ {s = t})
if u ∈ B(s), v ∈ B(t), s ≈ t

SIMPLIFY: (E ∪ {s = t}, H, G) &iRI (E ∪ {s′ = t}, H, G)
if s→(R∪H)/G s′

SIMPLIFY2: (E ∪ {s = t}, H, G) &iRI (E ∪ {s′ = t}, H, G)

if s
∗↔R∪L s′, s ( s′

DELETE: (E ∪ {s = t}, H, G) &iRI (E, H, G)

if s
∗↔G t

DELETE2: (E ∪ {s = t}, H, G) &iRI (E, H, G)

if s
∗↔R∪L t

Fig. 1. iRI - an incremental RI system

containing orientable and equivalent-sides equalities, respectively. The iRI system al-
lows for rewriting with lemmas, denoted by L, which are previously proved conjec-
tures. An iRI-proof of a set of conjectures E is an iRI-derivation that starts with the
state (E, ∅, ∅) and ends in a ‘current conjecture’-free state. iRI has been shown sound
(see Theorem 2 in [1]): if R is a quasi-reducible TRS, E a set of conjectures for which
there exists an iRI-proof, then all conjectures in E are inductive theorems of R. The
reduction quasi-ordering ) must be compatible with R, i.e. R ⊆*. The preservation
property of minimal counterexamples is an alternative solution to show soundness when
the ordering over conjectures is well-founded: by contradiction, let’s assume that there
is a proof of a false conjecture using an inference system satisfying this property. So,
there is a counterexample and therefore a minimal counterexample in the derivation.
On the other hand, by the preservation property, such a minimal counterexample is ex-
pected to be found in the set of conjectures from the last proof state. Even if we will not
show here that iRI itself satisfies the ‘preservation’ property, we will do it for a variant
of iRI in the next section.

The last four iRI-rules in Fig. 1 apply as long as rewriting operations or equal-by-
equal replacements with equivalent-sides equalities can be performed. When none of
them apply, the iRI-derivations may still continue if some variables of the conjectures
are instantiated by applying one of the first two rules. The instantiation process is based
on unification, as described by the functions Expd and Expd2:

Expdu(s, t) := {s[r]σ = tσ | s ≡ s[u], σ is mgu(u, l), l → r ∈ R, l : basic}
Expd2u,v(s, t) :=

⋃
{Expdvσ(tσ, s′) | s′ = tσ ∈ Expdu(s, t)}

The function Expd returns the equalities resulted from the narrowing operations
with R-rules on its first argument. Expd2 performs a second narrowing operation, this
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time on the instances of the second argument computed by Expd. Thanks to the quasi-
reducibility property of R, it can be shown that the set of mgu-resulted instances of
s = t from the definition of Expdu(s, t) (and implicitly those in Expd2u,v(s, t), too)
are cover sets of s = t (see Lemma 1 and Lemma 2 from [1]).

A major drawback of iRI is its restriction to treat only the equivalent-sides equal-
ities from the class of non-orientable R-irreducible equalities. It is therefore impor-
tant to find reducible quasi-orderings that transform non-orientable conjectures into
equivalent-sides equalities. In [1], the recursive path ordering (rpo) [10] is used to han-
dle the commutativity equalities but not the associativity equalities, while the lexico-
graphic path ordering (lpo) is used to handle the associativity equalities but not the
commutativity equalities. Another consequence of this restriction is the need for chang-
ing the kind of such orderings during successive proofs. For example, the iRI-proof of
the commutativity of the multiplication over the naturals requires as lemmas the (previ-
ously proved) commutativity and associativity properties of the addition over the natu-
rals. Therefore, during the proof of the lemmas, the ordering should change from lpo to
rpo (or vice-versa, depending on which lemma is firstly proved). Notice that it is gener-
ally difficult to find a reduction quasi-ordering that simultaneously orients the axioms
and makes comparable the side terms of an arbitrary equality conjecture. Sometimes it
is even impossible, as shown by the following example.

Example 1. Let’s consider the reverse rev2 and length len functions over lists:

len(Nil) = 0 (1)

len(Cons(x, l)) = S(len(l)) (2)

rev2(Nil, l) = l (3)

rev2(Cons(a, l), l′) = rev2(l, Cons(a, l′)) (4)

and the conjecture len(rev2(x, y)) = len(rev2(y, x)). We will show that there is
no reduction quasi-ordering that simultaneously orients the axiom (4) from left to
right and makes the conjecture an equivalent-sides equality.1 By contradiction, assume
that there is such a reduction quasi-ordering ). Since ≈ is stable by substitution, we
have len(rev2(Cons(a,Nil), Nil)) ≈ len(rev2(Nil, Cons(a,Nil))) by instantiat-
ing the conjecture with the substitution {x �→ Cons(a,Nil), y �→ Nil}. For recursive
and lexicographic path orderings, this is possible only if rev2(Cons(a,Nil), Nil) ≈
rev2(Nil, Cons(a,Nil)). On the other hand, * is also stable by substitution, so
rev2(Cons(a,Nil), Nil) * rev2(Nil, Cons(a,Nil)), by instantiating (4) with the
substitution {l �→ Nil, l′ �→ Nil}. ♦

4 Proving Incomparable Equalities

In the following, we introduce a Noetherian induction-based technique that instantiates
variables from a given conjecture e and allows to (ordered or relaxed) rewrite some of
its R-reduced instances with (instances of) e.

1 A similar example has been given by Frank Pfenning in a private communication.
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4.1 The Noetherian Induction-Based Technique

The idea behind the proposed technique is to choose one side of an equality conjecture
s = t, w.l.o.g. be the lhs, and rewrite R-reduced cover-instances of s = t with
instances of s = t representing Noetherian induction hypotheses. More exactly, if
(s = t)θ is the Noetherian induction hypothesis for the cover-instance (s = t)σ, we
allow to replace sθ with tθ into any R-reduced equality derived from (s = t)σ. Both
the R-reduction and replacement operations should happen on the lhs of the equalities
in order to guarantee that sθ ≺ sσ. Formally, if (s = t)σ is a cover-instance of s = t,
the function ρ(sσ = tσ) assigns one equality from the set

{a′ = b′ | tσ ∗→R b′ and either sσ
+→R a1[sθ]u and a1[tθ]u

∗→R a′, or sσ
∗→R a′}.

The technique is captured by the function Φ, which applies the function ρ on any ele-
ment from the cover set Ψ(s = t) of s = t:

Φ(s = t) := {ρ(a = b) | a = b ∈ Ψ(s = t)}

We can show that Φ(s = t) and s = t are inductivelyR-equivalent:

Theorem 1. Let R be a quasi-reducible TRS and ) a simplification quasi-ordering
such thatR ⊆*. Then R |=ind s = t iff for any equality e ∈ Φ(s = t), R |=ind e.

The technique allows for i) term rewriting induction if s * t, ii) enhanced and incre-
mental rewriting induction when, in addition, the case s ≈ t is accepted, iii) ordered
rewriting induction if sθ * tθ, and iv) relaxed rewriting induction when sθ and tθ are
not comparable. Unusually, it allows to replace sθ by tθ even if sθ ≺ tθ.

Example 2. Let us assume a simplification quasi-ordering ( that orients from left to
right the axiomsR of plus, defining the addition over the naturals:

plus(0, x) = x (5)

plus(S(x), y) = S(plus(x, y)) (6)

For example, let ≺ be the rpo with status, based on the precedence >F over the func-
tion symbols plus >F S >F 0, and assume that plus has a multiset status. Then,
the conjecture (s = t ≡) plus(x, plus(y, z)) = plus(y, plus(x, z)) is incompara-
ble but the function Φ can be applied using the cover set {plus(0, plus(y, z)) =
plus(y, plus(0, z)), plus(S(xs), plus(y, z)) = plus(y, plus(S(xs), z))} to yield two
equalities:

1. the cover-instance plus(0, plus(y, z)) = plus(y, plus(0, z)) is R-reduced by (5),
firstly on the lhs, then on the rhs, to yield plus(y, z) = plus(y, z);

2. when σ is {x �→ S(xs)}, (sσ = tσ ≡) plus(S(xs), plus(y, z)) =
plus(y, plus(S(xs), z)) is R-reduced on the both sides by (6) to
S(plus(xs, plus(y, z))) = plus(y, S(plus(xs, z))). The underlined term is
a θ-instance of the lhs of the conjecture when θ is {x �→ xs}. The relaxed rewriting
operation will produce S(plus(y, plus(xs, z))) = plus(y, S(plus(xs, z))).
Notice that sθ ≺ sσ. ♦

In the next section, we will detail its integration into the iRI system.
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4.2 Integration into the iRI Inference System

The first step towards the integration of any induction reasoning over incomparable
equalities in iRI is to store incomparable equalities inside the iRI-states. Instead of
adding a new component to the iRI-states, we will mix them with the equalities from the
H and G components into only one H component. Its elements are called premises.2

The set of rewrite rules (resp. the equivalent-sides equalities) fromH is denoted byH→

(resp. H≈).
We define two derived operations, ΦExpd and ΦExpd2, based on Expd and Expd2,

respectively:

ΦExpd(s = t) := {ρ(a = b) | a = b ∈ Expdu(s, t), u ∈ B(s)} and

ΦExpd2(s = t) := {ρ(a = b) | a = b ∈ Expd2u,v(s, t), u ∈ B(s), v ∈ B(t)}.

The new system, integrating them and denoted by iRI′, is depicted in Fig. 2. The
substitution θ from EXPAND′ and EXPAND2′ may be used optionally by ΦExpd and
ΦExpd2, respectively. When a ≡ a′ and b ≡ b′, these two iRI-rules represent EXPAND′

and EXPAND2′ in the (E,H) state form; in this case, the cover-substitution σ from the
definition of EXPAND′ is the mgu substitution used in the definition ofExpd to compute
a = b. The applicability condition (a′ ≡)a = b(≡ b′) <e (s = t)σ holds because
b ≡ tσ and a ≺ sσ (since sσ →R a). On the other hand, the substitution σ from the
definition of EXPAND2′ is the composition of the mgu substitutions used to instantiate
successively the lhs and rhs of s = t when computing a = b by Expd2. Again, a
similar reasoning can prove that (a′ ≡)a = b(≡ b′) <e (s = t)σ′. The next rules are
the equivalent representation of the corresponding iRI-rules in the (E,H) state form,
excepting the rules SIMPLIFY′ and DELETE′. They allow to rewrite with equivalent-
sides premises only if their instances used during the rewriting process are smaller
or equal than the processed conjecture. Otherwise, one can derive unsound inference
systems, as presented in Fig. 2 from [1].

An iRI′-proof of a set E of conjectures starts with (E, ∅) and ends in a conjecture-
free state.

Example 3 (iRI′-proof based on Example 2). In [1], the iRI-proof of the conjecture
plus(x, plus(y, z)) = plus(y, plus(x, z)) requires two additional lemmas. However,
a completely automatic proof can be done with an Expd-based variable instantiation
schema, using the iRI′ system instead.

As in Example 2, EXPAND′ instantiates the variable x and yields two conjectures: i)
plus(y, z) = plus(y, z), which is smaller than the cover-instanceplus(0, plus(y, z)) =
plus(y, plus(0, z)), and ii) S(plus(y, plus(xs, z))) = plus(y, S(plus(xs, z))). No-
tice that both the last conjecture and the corresponding θ-instance (recall that θ is
{x �→ xs} in Example 2) are smaller than the cover-instance plus(S(xs), plus(y, z)) =
plus(y, plus(S(xs), z)), too.

The identity can be eliminated either by DELETE′ or DELETE2′. The rule EXPAND′

is again applied on the last conjecture, which is orientable: plus(y, S(plus(xs, z))) →
S(plus(y, plus(xs, z))). The variable y is instantiated this time:

2 We will show later that they have the same properties as the A-premises (see Section 4.3).
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1. σ is {y �→ 0}: plus(0, S(plus(xs, z))) = S(plus(0, plus(xs, z))) is R-reduced
by (5) on the both sides to the identity S(plus(xs, z)) = S(plus(xs, z));

2. σ is {y �→ S(ys)}: plus(S(ys), S(plus(xs, z))) = S(plus(S(ys), plus(xs, z)))
is R-reduced by (6) on its both sides to S(plus(ys, S(plus(xs, z)))) =
S(S(plus(ys, plus(xs, z)))). The underlined term is an instance of the lhs of the
remaining conjecture, so it will be replaced by its corresponding rhs to yield another
identity. In both cases, it can be easily noticed that the applicability conditions of
EXPAND′ are satisfied.

Finally, the two identities are deleted to obtain an empty set of conjectures. ♦

In the following, we will prove the soundness of the iRI′ inference system, i.e. that the
initial set of conjectures of any iRI′-proof are inductive consequences of the axioms,
using a ‘Descente Infinie’ (DI, for short) induction-based approach.

EXPAND′: (E ∪ {s = t}, H) &iRI′
(E ∪ ΦExpd(s = t), H ∪ {s = t}),

if for any new conjecture a′ = b′ computed with θ (optional) and σ:
(s = t)θ <e (s = t)σ (optional) and (a′ = b′) <e (s = t)σ

EXPAND2′: (E ∪ {s = t}, H) &iRI′
(E ∪ ΦExpd2(s = t), H∪ {s = t}),

if for any new conjecture a′ = b′ computed with θ (optional) and σ:
(s = t)θ <e (s = t)σ (optional) and (a′ = b′) <e (s = t)σ

SIMPLIFY′: (E ∪ {s = t}, H) &iRI′
(E ∪ {s′ = t}, H)

if s→(R∪H→)/H≈
≤es=t

s′

SIMPLIFY2′: (E ∪ {s = t}, H) &iRI′
(E ∪ {s′ = t}, H)

if s
∗↔R∪L s′, s ( s′

DELETE′: (E ∪ {s = t}, H) &iRI′
(E, H)

if s
∗↔H≈

≤es=t
t

DELETE2′: (E ∪ {s = t}, H) &iRI′
(E, H)

if s
∗↔R∪L t

Fig. 2. iRI′ - the iRI-system extended to reason on incomparable equalities

4.3 The DI Induction-Based Soundness Proving Approach

The DI inference systems implement the Fermat’s DI induction principle in order to
prove inductive theorems [17]. Their soundness is ensured by the existence of a well-
founded and stable by substitution quasi-ordering over the formulas. It guarantees that
whenever there is a false formula in the states of a derivation, there is also a minimal
(w.r.t. the quasi-ordering) counterexample. A DI inference system is sound if the mini-
mal counterexamples are preserved in the derivations.
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In [16], we proposed an abstract DI inference system, denoted by A, that al-
lows for automatic reasoning. It defines explicitly the set of induction hypotheses
at any derivation step, only with information gathered from the current state. In or-
der to do this, the states of a derivation are allowed to contain not only conjectures
but also previously processed conjectures not containing minimal counterexamples,
called premises. Therefore, a DI inference rule of an inference system P has the form
(E ∪ {φ}, H) .P (E ∪ Φ,H ′), where E, {φ}, Φ and H,H ′ are sets of conjectures
and premises, respectively; φ is the processed conjecture, Φ the set of new conjectures,
and H ′ is H ∪ {φ} if φ does not contain minimal counterexamples, otherwise is H .

ADDPREMISE

(E ∪ {φ}, H) .A (E ∪ Φ, H ∪ {φ})
if {φ} �(H, E) Φ

SIMPLIFY

(E ∪ {φ}, H) .A (E ∪ Φ, H)
if {φ} �(H∪E, ∅) Φ

Fig. 3. The A-inference system

The soundness is ensured if, whenever
a processed conjecture contains a minimal
counterexample, there is a conjecture in
the next state that contains an equivalent
(w.r.t. the quasi-ordering) minimal coun-
terexample. Formally, we denote by Ax
the set of axioms. Then, φ is allowed to be
replaced by Φ in the rule (E∪{φ}, H) .P

(E ∪ Φ,H ′) if Ax ∪ C1
≤φγ ∪ C2

<φγ ∪
Φ≤φγ |=ind φγ, for any ground instance
φγ, i.e. when Φ is a (general labelled)

contextual cover set (CCS for short) of φ in the context (C1, C2) [16]. The formulas from
the context are instances of formulas from the current state, in our case E and H . Partic-
ular CCSs can be labelled differently and non-exclusively: i) cover set3 if C1 = C2 = ∅,
ii) strict if Φ<φγ instead of Φ≤φγ , and iii) empty if Φ = ∅. As can be noticed from the
CCS’s definition, the formulas from C1

≤φγ and C2
<φγ are allowed to deduce φγ, even if

they are false or not yet proved to be true. They play the role of induction hypotheses.
Contexts can be compared: a context C1 = (C11, C12) is smaller or equal to (or included
into) another context C2 = (C21, C22) if (C11

≤φ ∪ C12
<φ) ⊆ (C21

≤φ ∪ C22
<φ), for any ground

formula φ. The ‘contextually cover’ relation can be extended to sets of conjectures:
Ψ �C (resp. �C ) Φ iff Φ is a general (resp. strict) CCS of any φ ∈ Ψ in the context
C. The contexts are defined by the inference rules of A.

A simplified and sound version of A [17] is given in Fig. 3. It consists of two infer-
ence rules. ADDPREMISE adds the processed conjecture to the set of premises if the set
of new conjectures Φ is a strict CCS in the context (H,E). SIMPLIFY does not allow
such addition but, in exchange, the set of new conjectures is a general CCS and the
context is bigger.

A is at the heart of a methodology to analyse the soundness of concrete DI infer-
ence systems. Mainly, an inference system P is sound if it is an instance of A, i.e.
any P -rule p is an instance of an A-rule r. To show this, we have to i) represent the
P -derivation states under the form of (E,H), ii) identify the reasoning techniques that
may build P -CCSs, iii) identify the label and context of each P -CCS, and iv) verify the
label matching for each P -CCS of p and that their context is included into that of the

3 Notice that this notion of cover set generalises that introduced in Section 3. From now on, we
will use this notion, unless otherwise stated.
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corresponding CCSs from r. Only the strict P -CCS and the empty P -CCSs can match
strict A-CCSs, and any P -CCS can match general A-CCSs.

4.4 Soundness Proof and Sound Extensions of iRI′

The soundness of iRI′ is the consequence of the theorem that shows iRI′ as an A-
instance.

Theorem 2 (iRI′ as A-instance). Any iRI′-rule is an instance of an A-rule.

Corollary 1. Let R be a quasi-reducible TRS and ) a simplification quasi-ordering
such that R ⊆*. Then, the minimal counterexamples are persistent in any iRI′-
derivation starting with an empty set of premises.

Proof: According to Theorem 1 from [17], the minimal counterexamples are persistent
in any A-derivation starting with an empty set of premises. This is also true for iRI′,
since iRI′ is an instance of A, according to Theorem 2. �

Theorem 3 (soundness of iRI′). Let R be a quasi-reducible TRS and ) a simplifica-
tion quasi-ordering such that R ⊆*. For any iRI′-proof (E, ∅) .iRI′

. . . .iRI′
(∅,H),

we have R |=ind e for any e ∈ E.

Proof: By contradiction, assume an iRI′-proof (E, ∅) .iRI′
. . . .iRI′

(∅,H) such that
there exists e ∈ E withR �|=ind e. The conjectures encountered along the proof contain
a minimal counterexample which, according to Corollary 1, is persistent. On the other
hand, the proof finishes with an empty set of conjectures. �
The instantiation result allows for sound extensions of iRI′: the strict cover sets built
by the expand rules may be generalized to any strict CCS having the context (H, E)
allowed by ADDPREMISE. For example, the R-rewrite operations→R can be replaced
by →R∪(H∪E)→ in the definitions of ΦExpd and ΦExpd2. Similarly, the other rules
can use induction hypotheses from the context (H ∪ E, ∅) as SIMPLIFY instances: the
applicability conditions for SIMPLIFY′, SIMPLIFY2′, DELETE′ and DELETE2′ can be
relaxed to s →(R∪(E∪H)→)/(E∪H)≈

≤es=t
s′, s ∗↔R∪L∪(E∪H)≈

≤es=t
s′ with s ) s′,

s
∗↔(E∪H)≈

≤es=t
t and s

∗↔R∪L∪(E∪H)≈
≤es=t

t, respectively.

The applicability condition for the EXPAND2 and EXPAND2′ rules, (a′ = b′) <e

(s = t)σ, can also be relaxed to (a′ = b′) ≤e (s = t)σ if the current conjecture is
no longer added to the set of premises. The resulted (compactly written) two rules:

SIMPEXPD(2): (E ∪ {s = t}, H) .iRI′
(E ∪ ΦExpd(2)(s = t), H),

if for any new conjecture a′ = b′ computed with θ (optional) and σ:
(s = t)θ <e (s = t)σ (optional) and (a′ = b′) ≤e (s = t)σ

can be easily proved as instances of A-SIMPLIFY. Therefore, the extended iRI′

integrating them is sound.
In practice, it may happen that the applicability conditions related to EXPAND2

and EXPAND2′ be too restrictive. In the extreme case when they are not satisfied, our
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induction-based technique can still be used if the set of premises becomes empty, as
follows:

RESETPREMISES(2): (E ∪ {s = t}, H) .iRI′
(E ∪ ΦExpd(2)(s = t), ∅)

Theorem 4 (soundness of the extended iRI′). The iRI′ system extended with the
RESETPREMISES(2) rules is sound.

The systems iRI and (the extensions of) iRI′ are not refutationally complete. For exam-
ple, the derivation of app(xs, ys) = app(ys, xs) (see [1] for the definition of app) is
blocked when dealing with a derived constructor conjecture of the form cons(x, . . .) =
cons(y, . . .). They lack mechanisms for identifying and refuting false constructor
conjectures.

5 Implementation into the SPIKE Inference System

SPIKE [7,2,5] is a DI induction-based theorem prover adapted for automated reasoning
on conditional theories. It has been successfully used to verify real-size applications like
the JavaCard Platform [5] and a non-trivial telecommunications algorithm [15]. It in-
tegrates powerful reasoning techniques, based on (conditional) rewriting, subsumption
and decision procedures.

Previous versions of SPIKE have already proved non-orientable equalities, like the
commutativity of the addition over naturals [7]. However, as [1] points out, SPIKE [7,6]
failed to prove other interesting non-orientable equalities, for example the commutativ-
ity of the multiplication over naturals. To augment even more its proving power and de-
gree of automation, we have integrated the proposed induction-based technique into the
most recent version of SPIKE [5]. GENERATE, the only inference rule that deals with
variable instantiations, computes by unification (from the mgus) and simultaneously the
cover-substitutions and the corresponding rewrite rules that simplify the cover-instances
of the processed conjecture. When dealing with unconditional equational conjectures,
the heuristics for instantiating variables are a mixture between the instantiation schemes
of EXPAND′ and EXPAND2′.

In SPIKE, we have added a new rule that integrates our induction-based technique.
It employs the variable instantiation schema of GENERATE and, therefore, implements
both EXPAND′ and EXPAND2′ rules; more exactly, the heuristics decide which of the
two rules to be used for a given conjecture. Their applicability conditions have been
implemented such that the induction technique becomes more ‘inductionless’ for par-
ticular cases. Mainly, we took into account the definition of <e, the stability by sub-
stitution and subterm properties of (. Firstly, we conclude that whenever Noetherian

induction hypotheses are applied, i) sσ * sθ since sσ
+→R a[sθ], and ii) tσ ) b′

since tσ
∗→R b′. As shown in Table 1, for the particular case when s * t, the appli-

cability conditions (s = t)θ <e (s = t)σ and (a′ = b′) <e (s = t)σ are implicitly
verified since {sθ, tθ, a′, b′} ≺≺ {sσ}. Similarly, when sθ * tθ or sθ ≈ tθ, we have
{sθ, tθ, a′} ≺≺ {sσ}. Finally, when sθ *≺ tθ, the condition (s = t)θ <e (s = t)σ is sat-
isfied whenever either tθ ≺ sσ or tθ ≺ tσ, while the condition (a′ = b′) <e (s = t)σ
holds if either a′ ≺ sσ or a′ ≺ tσ. We are interested to keep a′ as small as possible



Combining Rewriting with Noetherian Induction 363

Table 1. The EXPAND(2)′ applicability conditions for particular cases

Case \ Condition (s = t)θ <e (s = t)σ (a′ = b′) <e (s = t)σ

s � t Verified Verified
sθ � tθ or sθ ≈ tθ Verified Verified
sθ �≺ tθ tθ ≺ sσ or tθ ≺ tσ a′ ≺ sσ or a′ ≺ tσ

in order to satisfy the condition (a′ = b′) <e (s = t)σ; in the implementation, the

rewriting operations
+→R and

∗→R are performed up to normalization.
The new inference system has been tested on several conjectures, most of them un-

successfully attempted by previous versions of SPIKE. For lack of space, in Table 2,
we have compared the SPIKE and iRI proofs only on some non-trivial permutative
equalities from [1] (the boxed equalities in the table). The first conjecture has been
proved completely automatically while the second requires only one lemma (which can
be proved completely automatically, too). The last one failed to be proved by the old
version of SPIKE, mainly because its inference system is not able to rewrite with un-
orientable premises in simplification steps, thus producing proof divergence. In the new
version, it needs two lemmas: i) the first conjecture and ii) a new equality that needs
the first conjecture as lemma. Compared to iRI, SPIKE used only one (rpo) ordering
for all proofs. The prover and the full SPIKE specification of these examples and other
permutative and associativity equalities can be found at the SPIKE section of the web
page http://lita.sciences.univ-metz.fr/˜stratula.

Table 2. Comparison between the lemmas used in some iRI and SPIKE proofs

iRI lemmas SPIKE lemmas

plus(x, plus(y, z)) = plus(y, plus(x, z))

plus(x, y) = plus(y, x) no lemmas
plus(x, plus(y, z)) = plus(plus(x, y), z)

sum(app(xs, ys)) = sum(app(ys,xs))

plus(x, y) = plus(y, x) plus(x, S(y)) = S(plus(x, y))
plus(x, plus(y, z)) = plus(plus(x, y), z)

times(x, y) = times(y, x)

plus(x, y) = plus(y, x) plus(x, plus(y, z)) = plus(y, plus(x, z))
plus(x, plus(y, z)) = plus(plus(x, y), z) times(x,S(y)) = plus(x, times(x, y))

The SPIKE inference system has already been represented as an instance of A
in [16]. The augmented inference system is therefore sound because the new rule be-
haves as either EXPAND′ or EXPAND2′ (recall that both of them have been proved
instances of ADDPREMISE in the proof of Theorem 2). As shown for previous ver-
sions, SPIKE can also refute conjectures under the conditions explained in [16]. The
new rule can safely replace GENERATE without affecting the refutational completeness
property because it always succeeds, as GENERATE does, on conjectures containing
basic non-ground terms when dealing with quasi-reducible TRSs.
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6 Conclusions and Future Work

We have proposed a new Noetherian induction technique to reason on (pure) equa-
tional logic, adapted for DI inference systems. It instantiates variables of equalities
and allows to rewrite their instances using any existing rewriting technique. We have
advantageously integrated it into the iRI incremental rewriting induction inference sys-
tem. The resulted system, iRI′, was able to produce more automated proofs on some
concrete examples in a setting that no longer requires that i) the non-orientable conjec-
tures be considered as equivalent-sides equalities, and ii) the proof orderings change in
successive proofs. To prove its soundness, the iRI′ system has been represented as an
instance of the abstract system A. This witnesses that the rewriting induction systems
are members of the DI family of inference systems, like those based on implicit induc-
tion and saturation. Therefore, they share the same underlying logical principles. The
instantiation result also allowed for some easy and sound iRI′ extensions.

We have also integrated the proposed induction technique into SPIKE and imple-
mented it. The resulted system was tested on the conjectures presented in the conclusion
part of [1]. The proofs of some of them successfully performed completely automati-
cally or with a higher degree of automation than the iRI-proofs. Thanks to the generality
of the DI induction-based approach, we expect that these results be applicable to other
implicit induction and saturation-based systems [18].

Rewriting with non-orientable equalities is a common and successful technique spe-
cific to Noetherian, explicit induction-based provers like ACL2, RRL and CLAM. Its
integration into explicit induction schemes is made easier because there is a priori no or-
dering restriction over the resulted conjectures. On the other hand, DI-based techniques
are sometimes more effective (see [8] for a comparison between different proofs of the
Gilbreath card trick problem done with SPIKE and some explicit induction provers),
mainly because they do not require any hierarchy between the intermediate lemmas
to be proved and, therefore, manage better the inductive hypotheses. From this point
of view, the presented work is a step forward to combining the advantages of the two
approaches.

An interesting direction for future work is to study the conditions for the sound re-
placement of the induction schema used by our technique with different Noetherian
induction schemas such that the applicability conditions of rules like EXPAND(2)’
and SIMPEXPD(2) be satisfied and, in another direction, to study its applicability to
arbitrary (quantifier-free first order) formulas. We also intend to study the unsound in-
tegrations of Noetherian induction schemas into RESETPREMISES(2)-like rules. How-
ever, such rules have to be employed parsimoniously because all the current premises,
representing potential induction hypotheses in the implicit induction setting, are lost.
Therefore, we intend to identify the cases when current premises can be soundly saved.
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Abstract. We present the first method to disprove innermost termina-
tion of term rewrite systems automatically. To this end, we first develop
a suitable notion of an innermost loop. Second, we show how to detect in-
nermost loops: One can start with any technique amenable to find loops.
Then our novel procedure can be applied to decide whether a given loop
is an innermost loop. We implemented and successfully evaluated our
method in the termination prover AProVE.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore,
much effort has been spent on developing and automating powerful techniques
for showing (innermost) termination of TRSs. An important application area
for these techniques is termination analysis of functional programs. Since the
evaluation mechanism of functional languages is mainly term rewriting, one can
transform functional programs into TRSs and prove termination of the resulting
TRSs to conclude termination of the functional programs [9]. Although “full”
rewriting does not impose any evaluation strategy, this approach is sound even
if the underlying programming language has an innermost evaluation strategy.

But in order to detect bugs in programs, it is at least as important to prove
non-termination of programs or of the corresponding TRSs. Here, the evalua-
tion strategy cannot be ignored, because a non-terminating TRS may still be
innermost terminating. Thus, in order to disprove termination of programming
languages with an innermost strategy, it is important to develop techniques to
disprove innermost termination of TRSs automatically.

Only a few techniques for showing non-termination of TRSs have been intro-
duced so far [7,12,17,18,20]. Nevertheless, there already exist several tools that
are able to prove non-termination of TRSs automatically by finding loops (e.g.,
AProVE [8], Jambox [5], Matchbox [23], NTI [20], TORPA [24], TTT [14]). But up
to now, all of these techniques and tools only disprove full and not innermost
termination. So they can only be applied to disprove innermost termination if
the TRS belongs to a known class where termination and innermost termination
coincide [11]. In this paper, we demonstrate how to extend all of these techniques
such that they can be directly used for disproving innermost termination for any
� Supported by the Deutsche Forschungsgemeinschaft (DFG) under grant GI 274/5-2.
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kind of TRS. For instance, this is needed for the following program where the
resulting TRS is not confluent and hence, does not fall into a known class where
innermost and full termination are the same.

Example 1 (Factorial function). The following ACL2 program [15] computes the
factorial function where x is increased from 0 to y− 1 and in every iteration the
result is multiplied by 1 + x.

(defun factorial (y) (fact 0 y))
(defun fact (x y)

(if (== x y)
1
(× (+ 1 x) (fact (+ 1 x) y))))

Using a translation to TRSs suggested by [22], we obtain the following TRS R
where the rules (5)− (12) are needed to handle the built-in functions of ACL2.

factorial(y) → fact(0, y) (1)
fact(x, y) → if(x == y, x, y) (2)

if(true, x, y) → suc(0) (3)
if(false, x, y) → suc(x) × fact(suc(x), y) (4)

0 + y → y (5)
suc(x) + y → suc(x + y) (6)

0 × y → 0 (7)
suc(x) × y → y + (x × y) (8)

x == y → chk(eq(x, y)) (9)
eq(x, x) → true (10)

chk(true) → true (11)
chk(eq(x, y)) → false (12)

Here, it is crucial to use innermost instead of full rewriting. Otherwise, it
would always be possible to rewrite s == t →R chk(eq(s, t)) →R false, i.e.,
terms like 0 == 0 could then be evaluated to both true and false. In contrast,
for innermost rewriting one has to apply rule (10) first if s and t are equal.

Note that in this TRS, s == t is indeed evaluated to false whenever s and
t are any terms that are syntactically different. This is essential to model the
semantics of ACL2 correctly, since here there are – like in term rewriting – no
types. At the same time, all functions in ACL2 must be “completely defined”.

So to perform non-termination proofs for languages like ACL2, we need a way to
disprove innermost termination. This problem is harder than disproving termi-
nation since one has to take care of the evaluation strategy.

In this paper we investigate looping reductions. These are specific kinds of in-
finite reductions which can be represented in a finite way. To disprove innermost
termination of TRSs, we develop an automatic method which in case of success,
presents the innermost loop to the user as a counterexample.

For the TRS of Ex. 1, there is indeed an innermost loop. It corresponds to
the non-terminating reduction of the ACL2 program when calling fact(n,m) for
natural numbers n > m. The reason is that the first argument is increased over
and over again, and it will never become equal to m.

The paper is organized as follows. In Sect. 2, we extend the notion of a loop to
innermost rewriting. Then as the main contribution of the paper, we describe a
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novel decision procedure in Sect. 3 which detects whether a loop for full rewriting
is still a loop in the innermost case. How to combine our work with dependency
pairs is discussed in Sect. 4. Finally, Sect. 5 summarizes our results and describes
their empirical evaluation with the termination prover AProVE.

2 Loops

We only regard finite signatures and TRSs and refer to [2] for the basics of
rewriting. An obvious approach to find infinite reductions is to search for a term
s which rewrites to a term t containing an instance of s, i.e., s →+

R t = C[sμ]
for some context C and substitution μ. The corresponding infinite reduction is

s→+
R C[sμ] →+

R C[Cμ[sμ2]] →+
R C[Cμ[Cμ2[sμ3]]] →+

R . . .

Equivalently, one can also represent it as an infinite reduction w.r.t. →+
R ◦�,

where � is the weak subterm relation:

s→+
R ◦� sμ→+

R ◦� sμ2 →+
R ◦� sμ3 →+

R ◦� . . . (�)

Here, for every sμn the same rules are applied at the same positions to obtain
sμn+1. A reduction of the form s →+

R t � sμ is called a loop and a TRS which
admits a loop is called looping.

Example 2. The TRS of Ex. 1 admits the following loop where s = fact(x, y)
and μ = {x/suc(x)}.

s→R if(x == y, x, y)
→R if(chk(eq(x, y)), x, y)
→R if(false, x, y)
→R suc(x) × fact(suc(x), y)
� fact(suc(x), y)
= sμ

Clearly, a naive search for looping terms is very costly. Therefore, in current non-
termination provers the techniques of forward closures [3,18], unfoldings [20],
ancestor graphs [17], forward- or backward-narrowing [7], and overlap closures
[12] are used, where all these techniques are special forms of overlap closures. As
all mentioned techniques essentially perform narrowing steps, one can modify
them by also allowing narrowings into variables. This is proposed in [7] and [20].
For example, the loop of the TRS {f(x, y, x, y, z) → f(0, 1, z, z, z), a→ 0, a → 1}
of [25] cannot be detected by overlap closures if one does not permit narrowings
into variables. Nevertheless, most of these techniques are able to detect the loop
of Ex. 2. Another alternative to detect loops (at least for string rewriting) could
be based on specialized unification procedures, cf. [4].

However, if one does not consider full rewriting but innermost rewriting, then
loopingness does not imply non-termination,1 since the innermost rewrite rela-
tion i→R is not stable under substitutions. More precisely, one should not define
1 As usual, a TRS is innermost non-terminating iff there is a (possibly non-ground)

term starting an infinite innermost reduction.
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any TRS with a reduction s i→+
R ◦� sμ to be “innermost looping”, because then

an “innermost looping” TRS could still be innermost terminating as shown by
Ex. 3. The reason is that s i→+

R ◦� sμ does not imply sμ i→+
R ◦� sμ2. And even

if sμ i→+
R ◦� sμ2 is true, then it could be that later on for some larger n there

is no reduction sμn i→+
R ◦� sμn+1.

Example 3. Consider the TRS R consisting of the following rules.

f(g(x)) → f(g(g(x)))
g(g(g(x))) → a

This TRS would be “innermost looping” according to the definition discussed
above, e.g., f(g(x)) →R f(g(g(x))) = f(g(x)){x/g(x)}, but it is innermost termi-
nating. The reason is that the first rule is applicable at most twice. Afterwards,
one has to use the second rule and no reduction is possible afterwards.

To solve this problem, one might define that a TRS R is “innermost looping” iff
there are a term s and a substitution μ such that sμn i→+

R ◦� sμn+1 for every
natural number n. A similar definition was already used in [7, Footnote 6]. Then
indeed, innermost loopingness implies innermost non-termination. However, the
following example shows that this definition does not correspond to a loop in
the intuitive way where the reduction sμn i→+

R ◦� sμn+1 always has the same
form and length. Consequently, it would be undecidable whether a known loop
is also an innermost loop.

Example 4. Consider the TRS R with the following rules.

f(x, y) → f(suc(x), g(h(x, 0)))
h(suc(x), y) → h(x, suc(y))

g(h(x, y)) → j(y)

R is “innermost looping”, as for s = f(suc(x), g(h(x, 0))) and μ = {x/suc(x)}
there is the following reduction for every n ∈ IN.

sμn = f(sucn+1(x), g(h(sucn(x), 0)))
i→n

R f(sucn+1(x), g(h(x, sucn(0))))
i→R f(sucn+1(x), j(sucn(0)))
i→R f(sucn+2(x), g(h(sucn+1(x), 0)))
= sμn+1

The problem is that the form and the length of the reduction from sμn to sμn+1

depend on n. Therefore, with this definition of “innermost looping”, it is not
even semi-decidable whether a known loop is an innermost loop.

To see this, recall that it is not semi-decidable whether a (computable) func-
tion j over the naturals is total. Since term rewriting is Turing-complete, we can
assume that there are confluent rules which compute j by innermost rewriting.
But then we can add the three rules of R and totality of j is equivalent to the
question whether the reduction above is an innermost loop, since we obtain an
innermost loop iff all terms j(sucn(0)) are innermost terminating.
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So the problem with the requirement sμn i→+
R ◦� sμn+1 is that for every n,

the reduction from sμn to sμn+1 may be completely different. In contrast, in the
infinite reduction (�) that corresponds to a loop for full rewriting, the reductions
from sμn to sμn+1 always have the same form. For every n, one can apply exactly
the same rules in exactly the same order at exactly the same positions. Hence,
one only has to give the reduction s→+

R t�sμ. Then one immediately knows how
to continue for sμ, sμ2, . . . . This gives rise to our final definition of “innermost
looping”.

Definition 5 (Innermost Looping TRS). A TRS R is innermost looping
iff there are a substitution μ, a number m ≥ 1, terms s1, . . . , sm, t, rules �1 →
r1, . . . , �m → rm ∈ R, and positions p1, . . . , pm such that for all n ∈ IN all steps
in the following looping reduction2 are innermost steps.

s1μ
n →�1→r1,p1 s2μ

n →�2→r2,p2 . . . smμn →�m→rm,pm tμn � s1μ
n+1 (��)

Note that (��) is the same as the looping reduction in (�), which is just written
down in a more detailed way. Hence, one can represent an innermost loop in the
same way as a loop for termination: by just giving the reduction s1 →R s2 →R
. . . sm →R t � s1μ, i.e., s1 →+

R t � s1μ.

3 Detecting Innermost Loops

It is clear that with Def. 5, every innermost looping TRS is innermost non-
terminating. Moreover, there exist several techniques and tools to find ordinary
loops (for full rewriting). Such loops are good starting points when searching for
innermost loops because an innermost loop is a loop which satisfies the additional
requirements of Def. 5. The only remaining problem is to check whether such an
ordinary loop is also an innermost loop.

Example 6. Consider the looping reduction of Ex. 2. To check whether this is an
innermost loop we have to check for μ = {x/suc(x)} and for all n ∈ IN whether
the corresponding steps are innermost steps when instantiating the terms with
μn. The problem in this example is the reduction if(chk(eq(x, y)), x, y)μn →R
if(false, x, y)μn at position 1 since the redex contains the subterm eq(x, y)μn

which might not be a normal form for some n due to rule eq(x, x) → true.

In the remainder of this section we will show the main result that it is decidable
whether a given loop is an innermost loop. For example, it will turn out that
the loop in Ex. 2 is an innermost loop whereas the one of Ex. 3 is not. We show
this result in 4 steps, corresponding to the sections 3.1− 3.4.

3.1 From Innermost Loops to Redex Problems

Note that (��) is an innermost loop iff every direct subterm of every redex siμ
n|pi

is in normal form. Since a term t is in normal form iff t does not contain a redex
w.r.t. R, we can reformulate the question about innermost loopingness in terms
of so-called redex problems.
2 Here, →
→r,p denotes a rewrite step with the rule �→ r at position p.
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Definition 7 (Redex, Matching, and Identity Problems). Let s and � be
terms, let μ be a substitution (with finite domain). Then a redex problem is
a triple (s |� �, μ), a matching problem is a triple (s � �, μ), and an identity
problem is a triple (s 	 �, μ).

A redex problem (s |� �, μ) is solvable iff there are a position p, a substitution
σ, and an n ∈ IN such that sμn|p = �σ. A matching problem is solvable iff there
are a substitution σ and an n ∈ IN such that sμn = �σ. An identity problem is
solvable iff there is an n ∈ IN such that sμn = �μn.

Theorem 8 (Setting up Redex Problems). In the reduction (��) all steps
are innermost steps iff for all direct subterms s of the si|pi and all left-hand sides
� of rules from R, the redex problem (s |� �, μ) is not solvable.

Proof. Some reduction siμ
n →�i→ri,pi u is not an innermost step iff for some

direct subterm s of si|pi , the term sμn is not in normal form, since siμ
n|pi =

si|piμ
n. (Note that even for n = 0 we have a reduction at position pi in (��).

Hence, pi is a position of si and moreover, si|pi cannot be a variable. Thus,
the “direct subterms of si|pi” are indeed properly defined.) Equivalently, there
are some rule � → r and position p such that sμn|p = �σ. But then the redex
problem (s |� �, μ) is solvable. � 

Example 9. The loop of Ex. 2 is an innermost loop iff for μ = {x/suc(x)} all
redex problems (s |� �, μ) are not solvable where s is from the set {x, y, eq(x, y),
false} of direct subterms of redexes in the loop and � is a left-hand side of R.

The loop of Ex. 3 is an innermost loop iff both (g(x) |� f(g(x)), μ′) and
(g(x) |� g(g(g(x))), μ′) are not solvable where μ′ = {x/g(x)}.

To find out whether a redex problem (s |� �, μ) is solvable, we search for three
unknowns: the position p, the substitution σ, and the number n. We will now
eliminate these unknowns one by one and start with the position p. This will
result in matching problems. Then in a second step we will further transform
matching problems into identity problems where only the number n is unknown.
Finally, we will present an algorithm to decide identity problems. Therefore, at
the end of this section we will have a decision procedure for redex problems, and
thus also for the question whether a given loop is an innermost loop.

3.2 From Redex Problems to Matching Problems

To start with simplifying a redex problem (s |� �, μ) into a finite disjunction of
matching problems, note that since the position p can be chosen freely within any
of the terms s, sμ, sμ2, . . . , it is not feasible to just try out all possibilities. But
the following theorem shows that it is indeed possible to reduce redex problems to
finitely many matching problems. Essentially, it states that it suffices to consider
all subterms of s and all subterms of terms that are introduced by μ. Here, V
is the set of all variables and for any term t, V(t) is the set of its variables and
Pos(t) is the set of its positions.
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Theorem 10 (Solving Redex Problems). Let (s |� �, μ) be a redex problem.
Let W =

⋃
i∈IN V(sμi). Then (s |� �, μ) is solvable iff � is a variable or if one

of the matching problems (u � �, μ) is solvable for some non-variable subterm u
of a term in {s} ∪ {xμ | x ∈ W}.
Proof. If � is a variable then the redex problem is obviously solvable, so let � /∈ V .
We consider both directions separately.

First, let (u � �, μ) be solvable, i.e., there are σ and n such that uμn = �σ.
If u is a subterm of s, i.e., u = s|p for some p, then sμn|p = s|pμn = uμn = �σ
proves that (s |� �, μ) is solvable. Otherwise, if u is a subterm of some xμ with
x ∈ W then there is some i such that x ∈ V(sμi). Hence, there is a position p
such that sμi+1|p = u. Again, sμi+1+n|p = uμn = �σ proves that (s |� �, μ) is
solvable.

For the other direction of the equivalence we assume that (s |� �, μ) is solvable,
so let sμn|p = �σ for some p, σ, and n. If p ∈ Pos(s) and s|p /∈ V , then we are
done as the matching problem (u � �, μ) for the corresponding subterm u = s|p
is obviously solvable.

Otherwise, there must be an 0 ≤ i < n such that p ∈ Pos(sμi+1) with
sμi+1|p /∈ V (as � /∈ V) and either sμi|p ∈ V or p /∈ Pos(sμi). In both cases
there must be a variable x and a position p′ such that x ∈ V(sμi) ⊆ W and
xμ|p′ = sμi+1|p. We choose the non-variable subterm u = xμ|p′ of xμ. Then
indeed the matching problem (u � �, μ) is solvable since

uμn−(i+1) = xμ|p′μn−(i+1) = sμi+1|pμn−(i+1) = sμn|p = �σ. � 

Note that the set W is a subset of the finite set V(s) ∪
⋃

x∈Dom(μ) V(xμ). Thus,
one can compute W by adding V(sμi) for larger and larger i until one reaches
an i where the set does not increase anymore. Hence, Thm. 10 can easily be
automated.

Example 11. We use Thm. 10 for the redex problems of Ex. 9. We first consider
the redex problems resulting from the loop of Ex. 2. Since there are no new
variables occurring when applying μ we obtain W = {x, y}. Thus, the loop is
an innermost loop iff none of the matching problems (s� �, μ) is solvable where
s is now chosen from {suc(x), eq(x, y), false}. (So the variables x, y do not have
to be regarded anymore, but now one has to consider the new term suc(x) from
the substitution.)

In the same way, the loop of Ex. 3 is an innermost loop iff none of the matching
problems (g(x) � f(g(x)), μ′) and (g(x) � g(g(g(x))), μ′) is solvable.

3.3 From Matching Problems to Identity Problems

Now the question remains whether a given matching problem is solvable. This
amounts to detecting the matcher σ and the unknown number n. Our next aim
is to reduce this problem to a conjunction of identity problems, i.e., to eliminate
the need to search for matchers σ. However, we first have to generalize the notion
of matching problems (s��, μ) which contain one pair of terms s�� to matching
problems which allow a set of pairs of terms.
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Definition 12 (General Matching Problem). A general matching problem
(M, μ) consists of a set M of pairs {s1��1, . . . , sk ��k} together with a substitu-
tion μ. A general matching problem (M, μ) is solvable iff there are a substitution
σ and an n ∈ IN such that for all 1 ≤ j ≤ k the equality sjμ

n = �jσ is valid.
If M only contains one pair s� � then we identify (M, μ) with (s� �, μ), and

if μ is clear from the context we write M as an abbreviation for (M, μ).

We now give a set of four transformation rules which either detect that a matching
problem is not solvable (indicated by ⊥), or which transform a matching problem
into solved form. Here, a (general) matching problem ({s1 � �1, . . . , sk � �k}, μ)
is in solved form iff all �1, . . . , �k are variables. Once we have reached a matching
problem in solved form, it is easily possible to translate it into identity problems.

Definition 13 (Transformation of Matching Problems). We define the
following transformation ⇒ on general matching problems. If (M, μ) is a general
matching problem with M = M′ � {s � �} where � /∈ V, and if Vincr = {x ∈ V |
there is some n ∈ IN with xμn /∈ V} is the set of increasing variables, then

(i) M⇒ {s′μ � �′ | s′ � �′ ∈M}, if s ∈ Vincr

(ii) M⇒⊥, if s ∈ V \ Vincr

(iii) M⇒⊥, if s = f(. . . ), � = g(. . . ), and f �= g
(iv) M⇒M′ ∪ {s1 � �1, . . . , sk � �k}, if s = f(s1, . . . , sk), � = f(�1, . . . , �k)

Rule (iv) just decomposes terms and Rule (iii) handles a symbol-clash. These
rules are standard for classical matching algorithms. However, if the left-hand
side is a variable x and the right-hand side is not, then a matching problem
may still be solvable. If x is increasing then we just have to apply μ until a
new symbol is produced on the left-hand side. This is done by Rule (i) and
will be illustrated in more detail when solving the matching problems of the
loop in Ex. 3. However, if x is not increasing then the matching problem is not
solvable since xμn will always remain a variable. Hence, ⊥ is obtained by Rule
(ii). The following theorem shows that every matching problem (s� �, μ) can be
automatically reduced to a finite conjunction of identity problems.

Theorem 14 (Solving Matching Problems). Let (M, μ) be a general
matching problem.

(i) The transformation rules of Def. 13 are confluent and terminating.
(ii) If M⇒⊥ then M is not solvable.
(iii) If M⇒M′ with M′ �= ⊥, then M is solvable iff M′ is solvable.
(iv) M is solvable iff M ⇒∗ M′ for some matching problem M′ = {s1 �

x1, . . . , sk � xk} in solved form, such that for all i �= j with xi = xj the
identity problem (si 	 sj , μ) is solvable.

Proof. (i) To prove confluence one can show that ⇒ is strongly confluent by
a simple case analysis.
To show termination of ⇒ first note that no transformation rule increases
the size of the terms in the right-hand sides of a matching problem. Thus,
Rule (iv) can only be applied finitely often. But since every sequence of
transformations with Rule (i) eventually triggers an application of Rule
(iii) or (iv), Rule (i) cannot be used infinitely often either.
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(ii) If M⇒⊥ due to Rule (iii) then s� � ∈M with s = f(. . . ) and � = g(. . . )
where f �= g. But then for every n ∈ IN the terms sμn = f(. . . ) and
�σ = g(. . . ) are different. Hence, M is not solvable.
If M ⇒ ⊥ due to Rule (ii) then x � � ∈ M with x ∈ V \ Vincr and
� = f(. . . ). But since x is not an increasing variable we know that xμn ∈ V
for all n ∈ IN. Thus, the terms xμn and �σ = f(. . . ) are different for all n.
Hence, M is not solvable.

(iii) We first consider Rule (i) for M = {s1 � �1, . . . , sk � �k}.

M is solvable
iff ∃σ, n : s1μ

n = �1σ ∧ · · · ∧ skμ
n = �kσ

iff ∃σ′, n : s1μ
n+1 = �1σ

′ ∧ · · · ∧ skμ
n+1 = �kσ

′ (as si ∈ V for some i)
iff M′ = {s1μ � �1, . . . , skμ � �k} is solvable

For Rule (iv) the result follows from the fact that f(s1, . . . , sk)μn = f(�1,
. . . , �k)σ iff siμ

n = �iσ for all 1 ≤ i ≤ k.
(iv) If M is solvable then due to (ii) and (iii), M cannot be transformed to ⊥.

So let M′ be a normal form of M w.r.t. ⇒. Then, obviously M′ has the
form {s1 � x1, . . . , sk � xk} and M′ is solvable due to (iii). Thus, there are
a substitution σ and a number n such that for all 1 ≤ i ≤ k the equality
siμ

n = xiσ is valid. Hence, for all i �= j with xi = xj the identity problem
(si 	 sj , μ) is solvable.
For the other direction let M⇒∗ M′ = {s1 � x1, . . . , sk � xk} where for
every i �= j with xi = xj there is some nij with siμ

nij = sjμ
nij . Let n be

the maximum of all nij . Then, obviously siμ
n = sjμ

n for all these i and
j. We define σ = {x1/s1μ

n, . . . , xk/skμ
n}. First note that σ is well defined

by construction. But as then siμ
n = xiσ is valid for all 1 ≤ i ≤ k we know

that M′ is solvable. Using (iii) we finally conclude that M is solvable. � 

Example 15. We illustrate the transformation rules by continuing Ex. 11.
For the loop of Ex. 2 we can reduce all but one matching problem to ⊥ by

Rule (iii). Only the matching problem (eq(x, y) � eq(x, x), μ) is transformed by
Rule (iv) into its solved form {x � x, y � x}. Hence, by Thm. 14 the loop is an
innermost loop iff the identity problem (x 	 y, μ) is not solvable.

For the loop of Ex. 3, we had to find out whether (g(x) � g(g(g(x))), μ′) is
solvable. Applying Rule (iv) yields (x � g(g(x)), μ′). Since x is an increasing
variable for μ′, we now have to apply Rule (i) and obtain (g(x) � g(g(x)), μ′) as
xμ′ = g(x). Repeated application of Rules (iv) and (i) results in the solved form
(x � x, μ′). Hence, by Thm. 14 the matching problem (g(x) � g(g(g(x))), μ′) is
solvable as no identity problems are created. Thus, we have detected that the
loop of Ex. 3 is not an innermost loop.

3.4 Deciding Identity Problems

Note that for left-linear TRSs, identity problems are never created, since there
the right-hand sides of a general matching problem are always variable disjoint.
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Input: An identity problem (s 	 t, μ).
Output: “Yes”, if the identity problem is solvable, and “No”, if it is not.

(i) While μ contains a cycle of length n > 1 do μ := μn.
(ii) S := ∅
(iii) If s = t then stop with result “Yes”.
(iv) If there is a shared position p of s and t such that s|p = f(. . . ) and t|p =

g(. . . ) and f �= g then stop with result “No”.
(v) If there is a shared position p of s and t such that s|p = x, t|p = g(. . . ), and

x is not an increasing variable then stop with result “No”.
Repeat this step with s and t exchanged.

(vi) If there is a shared position p of s and t such that s|p = x, t|p = y, x �= y,
and x, y /∈ Dom(μ) then stop with result “No”.

(vii) Add the triple (x, p, t|p) to S for all shared positions p of s and t such that
x = s|p �= t|p where x is an increasing variable.
Repeat this step with s and t exchanged.

(viii) If (x, p1, u1) ∈ S and (x, p2, u2) ∈ S where
(a) u1 and u2 are not unifiable or where
(b) u1 = u2 and p1 < p2,
then stop with result “No”.

(ix) s := sμ, t := tμ
(x) Continue with Step (iii).

Fig. 1. An algorithm to decide solvability of identity problems

However, in order to handle also non-left-linear TRSs, it remains to give an
algorithm which decides solvability of an identity problem.3 This algorithm is
presented in Fig. 1, and we now explain its steps one by one.

First we replace the substitution μ by μn such that μn does not contain cycles.
Here, a substitution δ contains a cycle of length n iff δ = {x1/x2, x2/x3, . . . ,
xn/x1, . . . } where the xi are pairwise different variables. Obviously, if δ contains
a cycle of length n then in δn all variables x1, . . . , xn do not belong to the domain
any more. Thus, Step (i) terminates and afterwards, μ does not contain cycles
of length 2 or more.

Note that the identity problem (s 	 t, μ) is solvable iff (s 	 t, μn) is solvable.
Hence, after Step (i) we still have to decide solvability of (s 	 t, μ) for the
modified μ. The advantage is that now μ has a special structure. For all x ∈
Dom(μ), either x is an increasing variable or for some n the term xμn is a variable
which is not in Dom(μ). For such substitutions μ, the terms s, sμ, sμ2, . . . finally
become stationary at each position, i.e., for every position p there is some n such
that either all terms sμn|p, sμn+1|p, sμn+2|p, . . . are of the form f(. . . ), or all
these terms are the same variable x /∈ Dom(μ). Therefore, it is possible to define

3 It could also be possible to express identity problems as primal unification problems
and to use an algorithm for primal unification [13] instead. But then one would have
to extend the results of [13] to allow arbitrary dependencies of function symbols.
Moreover, our algorithm has the advantage of being very easy to implement.



376 R. Thiemann, J. Giesl, and P. Schneider-Kamp

sμ∞ as the (possibly infinite) term where root(sμ∞|p) = f iff root(sμn|p) = f
for some n, and sμ∞|p = x iff there is some n such that sμm|p = x for all m ≥ n.

If the identity problem is solvable then there is some n such that sμn = tμn

which will be detected in Step (iii). The reason is that with Steps (ix) and (x)
one iterates over all pairs (s, t), (sμ, tμ), (sμ2, tμ2), . . . .

If the identity problem is not solvable, then this could be due to a stationary
conflict, i.e., sμ∞ �= tμ∞. Then the identity problem is unsolvable since sμn =
tμn would imply sμ∞ = tμ∞. If the terms sμ∞ and tμ∞ differ, then there is
some position p such that the symbols at position p in sμ∞ and tμ∞ differ, or
sμ∞|p is a variable and tμ∞|p is not a variable (or vice versa), or both sμ∞|p
and tμ∞|p are different variables. Recall that the terms s, sμ, sμ2, . . . and the
terms t, tμ, tμ2, . . . finally become stationary. Hence, if we choose n high enough,
then the conflict at position p can already be detected by inspecting sμn|p and
tμn|p. Thus, then one of three cases in Steps (iv)–(vi) will hold.

With the steps described up to now, we can detect all solvable identity
problems and all identity problems which are not solvable due to a station-
ary conflict. However, there remain other identity problems which are not solv-
able, but which do not have a stationary conflict. As an example consider
(x 	 y, {x/f(x), y/f(y)}). Then sμ∞ = f(f(f(. . . ))) = tμ∞ but this identity
problem is not solvable since xμn = fn(x) �= fn(y) = yμn for all n ∈ IN. We call
such identity problems infinite.

The remaining steps (ii), (vii), and (viii) are used to detect infinite identity
problems. In the set S we store sub-problems (x, p, u) such that whenever the
identity problem is solvable, then xμm = uμm must hold for some m to make
the terms sμn and tμn equal at position p.

We give some intuition why the two abortion criteria in Step (viii) are correct.
For (viii–a), note that if u1 and u2 are not unifiable then xμm cannot be both
u1μ

m and u2μ
m, which means that the sub-problems (x, p1, u1) and (x, p2, u2)

(resp. (x 	 u1, μ) and (x 	 u2, μ)) are not solvable. For (viii–b), in order to make
xμm equal to u1μ

m, we again produced the same problem at a lower position.
Then the original identity problem is again not solvable, since this repeated
generation of the same sub-problem would continue forever. As usual, p1 < p2

denotes that position p1 is strictly above p2.
The following theorem shows that all answers of the algorithm are indeed

correct and it also shows that it always returns an answer. The termination
proof is quite involved since we have to show that the criteria in Step (viii)
suffice to detect all infinite identity problems.

Theorem 16 (Solving Identity Problems). The algorithm in Fig. 1 to de-
cide solvability of identity problems is correct and it terminates.

Proof. One can easily show that in the k-th iteration, S is the following set Sk.

Sk = {(x, p, u) | x ∈ Vincr ∧ x �= u ∧ ∃m ≤ k :
(sμm|p = x ∧ u = tμm|p) ∨ (tμm|p = x ∧ u = sμm|p)}

Since the correctness of Steps (i)–(vi) was already illustrated in the explana-
tion of the algorithm, we only prove the correctness of Step (viii) formally. So
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let (x, p1, u1) and (x, p2, u2) be elements of some Sk. Hence, there exist m1 ≤ k
and m2 ≤ k such that w.l.o.g. for both i = 1 and i = 2, we have sμmi |pi = x and
tμmi |pi = ui where x is a variable with x �= ui. If the identity problem (s 	 t, μ)
is not solvable then there is nothing to show. Otherwise, there is some n with
sμn = tμn. Since sμmi |pi = x �= ui = tμmi |pi , we know that n > mi for both i.
Hence, we can conclude the following equalities for both i ∈ {1, 2}:

xμn−mi = sμmi |piμ
n−mi = sμn|pi = tμn|pi = tμmi |piμ

n−mi = uiμ
n−mi (13)

Assume that we have applied (viii–a) and the algorithm wrongly returned
“No”. This directly leads to a contradiction since by (13), u1μ

n = xμn = u2μ
n

proves that u1 and u2 are unifiable.
Now assume that we applied (viii–b) and wrongly obtained “No”. W.l.o.g. let

p1 < p2. Since sμm1 |p1 is the variable x, we must apply μ at least one more time
to obtain a term with the position p2 and thus, m1 < m2. As xμn−m1 = u1μ

n−m1

by (13), there must be some smallest number n′ ≤ n such that xμn′−m1 =
u1μ

n′−m1 is valid. From x �= u1 we conclude n′ > m1 and from sμn′ |p1 =
xμn′−m1 = u1μ

n′−m1 = tμn′ |p1 we derive that also the subterms sμn′ |p2 of
sμn′ |p1 and tμn′ |p2 of tμn′ |p1 are identical. Again, n′ > m2 must hold and we
obtain xμn′−m2 = u2μ

n′−m2 . But this is a contradiction to the minimality of n′

since u1 = u2 and n′ −m2 < n′ −m1.
To prove termination, we have already argued in the explanation of the algo-

rithm why we can detect all solvable identity problems and all those problems
which have a stationary conflict. So it remains to prove that all infinite problems
can be detected. To this end, we start with three observations on infinite identity
problems, i.e., unsolvable identity problems (s 	 t, μ) where sμ∞ = tμ∞.

First, if (s 	 t, μ) is infinite then (sμ 	 tμ, μ) is infinite as well.
Second, if (s 	 t, μ) is infinite then there is no position p where (s|p 	 t|p, μ)

has a stationary conflict (i.e., s|pμ∞ �= t|pμ∞). Otherwise there would also be a
stationary conflict for (s 	 t, μ) which contradicts the infinity of (s 	 t, μ).

And third, whenever (s 	 t, μ) is infinite then there is some position p such
that s|p �= t|p, at least one of the terms s|p or t|p is an increasing variable, and
(s|pμ 	 t|pμ, μ) is infinite, too. This can be proved as follows. Let p be one of
the longest (i.e., lowest) shared positions of s and t such that (s|p 	 t|p, μ) is not
solvable. (Such positions must exist since (s 	 t, μ) is not solvable.) Due to the
second observation we know that (s|p 	 t|p, μ) again is infinite. Moreover, using
the maximality of p we conclude that at least one of the terms s|p or t|p is a
variable. Since (s|p 	 t|p, μ) is infinite, this variable must be increasing. Finally,
by the first observation, (sμ|p 	 tμ|p, μ) is infinite as well.

Now we show that if there were an infinite run of the algorithm, we would
insert an infinite number of triples into S where the corresponding positions p0,
p0 p1, p0 p1 p2, . . . are getting longer and longer: Since (s 	 t, μ) is infinite, due
to the third observation there is a position p0 such that a triple (x0, p0, s|p0)
or (x0, p0, t|p0) is added to S. Moreover, (sμ|p0 	 tμ|p0 , μ) is infinite. Hence,
again using the third observation we obtain a position p1 such that (sμ|p0μ|p1 	
tμ|p0μ|p1 , μ) = (sμ2|p0p1 	 tμ2|p0p1 , μ) is infinite where sμ2|p0p1 and tμ2|p0p1 are
different terms, one of them being an increasing variable x1. Thus, again the



378 R. Thiemann, J. Giesl, and P. Schneider-Kamp

corresponding triple (x1, p0 p1, sμ|p0 p1) or (x1, p0 p1, tμ|p0 p1) is added to S. By
iterating this reasoning, we obtain the desired infinite sequence of triples in S.

As there exist only finitely many increasing variables, there must be some
x which occurs infinitely often in this sequence. Thus, we obtain an infinite
subsequence (x, p0 . . . pi1 , ui1), (x, p0 . . . pi2 , ui2), . . . where i1 < i2 < . . . and
p0 . . . pi1 < p0 . . . pi2 < . . . . Due to Kruskal’s tree theorem [16], there must be
some ij and ik such that ij < ik and uij is embedded in uik

. If uij = uik
then

this is a contradiction to an infinite run of the algorithm since then the criterion
in Step (viii–b) would hold and the algorithm would be stopped. Otherwise,
uij is strictly embedded in uik

. But then uij cannot be unified with uik
since

the embedding relation is stable under substitutions. Hence in that case, the
criterion in Step (viii–a) will stop the algorithm. � 

Example 17. We illustrate the algorithm with the identity problem (x 	 y, μ)
where μ = {x/f(y, u0), y/f(z, u0), z/f(x, u0), u0/u1, u1/u0}.

As μ contains a cycle of length 2 we replace μ by μ2 = {x/f(f(z, u0), u1),
y/f(f(x, u0), u1), z/f(f(y, u0), u1)}. Since xμ∞ = f(f(f(. . . , u1), u0), u1) = yμ∞,
we know that the problem is either solvable or infinite. Hence, the criteria in
Steps (iv)–(vi) will never apply. We start with s = x and t = y. Since the terms
are different we add (x, ε, y) and (y, ε, x) to S. In the next iteration we have
s = f(f(z, u0), u1) and t = f(f(x, u0), u1). Again, the terms are different and
we add (x, 11, z) and (z, 11, x) to S. The next iteration yields the new triples
(y, 1111, z) and (z, 1111, y), and after having applied μ three times, we obtain
the two last triples (x, 111111, y) and (y, 111111, x). Then due to the criterion
(viii–b), the algorithm terminates with “No”.

By simply combining all theorems of Sect. 3, we finally obtain a decision proce-
dure which solves the question whether a loop is also an innermost loop.

Corollary 18 (Deciding Innermost Loops). For every loop

s1 →R s2 →R . . .→R sm →R t � s1μ

of a TRS R, it is decidable whether that loop is also an innermost loop.

Example 19. In Ex. 15 we observed that the loop of Ex. 2 is an innermost loop iff
(x 	 y, μ) is not solvable where μ = {x/suc(x)}. We apply the algorithm of Fig. 1
to show that this identity problem is not solvable. Hence, we show that the loop
is an innermost loop and thus, the TRS of Ex. 1 is not innermost terminating.

Since μ only contains cycles of length 1, we skip Step (i). So, let s = x and
t = y. Then none of the steps (iii)–(vi) is applicable. Hence, we add (x, ε, y) to
S and continue with s = suc(x) and t = y. Then, in Step (v) the algorithm is
stopped with the answer “No” due to a stationary conflict.

4 Integration into the Dependency Pair Framework

In [7], we showed that in order to find loops automatically, it is advantageous to
use the dependency pair framework [1,6,10] because of a reduced search space.
There are two main reasons for this: First, one can drop the contexts when
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looking for loops, i.e., one can drop the � in “→+
R ◦�” and will still be able to

detect every looping TRS [7, Thm. 23]. Second and more important, by using
dependency pairs one can often prove termination of large parts of the TRS, and
hence only has to search for loops for a small subsystem of the original TRS.

While the results of this paper have only been presented for TRSs, it is easy
to extend our notion of “innermost looping” (Def. 5) to DP problems – the basic
data structure within the dependency pair framework. Then the methods of
Sect. 3 can again be used to decide whether a looping DP problem is innermost
looping. Moreover, one can extend [7, Thm. 23] to the innermost case, i.e., a TRS
is innermost looping iff the corresponding DP problem is innermost looping. The
details of these extensions can be found in [21, Chapter 8].

5 Conclusion

To prove non-termination of innermost rewriting, we first extended the notion of
a loop to the innermost case. An innermost loop is an innermost reduction with
a strong regularity which admits the same infinite reduction as an ordinary loop
does for full rewriting. Afterwards, we developed a novel procedure to decide
whether a given loop is also an innermost loop. Our procedure can be combined
with any method to detect loops for full rewriting, regardless whether it directly
searches for loops of the TRS or whether it performs this search within the
dependency pair framework.

We have implemented our procedure in combination with dependency pairs
in our termination prover AProVE [8] which already featured a method to de-
tect loops, cf. [7]. Note that while proving the soundness and the termination
of our novel decision procedure is non-trivial, the procedure itself is very easy
to implement. To evaluate its usefulness empirically, we tested it on the ter-
mination problem data base (TPDB). This is the collection of examples used
in the annual International Competition of Termination Tools [19]. Currently,
the TPDB contains 129 TRSs where at least one tool has been able to dis-
prove termination in the competition in 2007. With the results of this pa-
per, AProVE now also disproves innermost termination for 93 of these TRSs
(where we use a time limit of 1 minute per example). In contrast, we are not
aware of any other existing tool for disproving innermost termination. The
fact that from the remaining 36 TRSs at least 30 are innermost terminat-
ing demonstrates the power of our approach. Moreover, of course AProVE can
also disprove innermost termination of Ex. 1. Concerning efficiency, the check
whether a loop that was found is also an innermost loop needs less than 8
seconds in total for all TRSs of the TPDB. For further details on our experi-
ments and to run this new version of AProVE via a web interface, we refer to
http://aprove.informatik.rwth-aachen.de/eval/decidingLoops.
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Abstract. S-expression rewriting systems were proposed by the author
(RTA 2004) for termination analysis of Lisp-like untyped higher-order
functional programs. This paper presents a short and direct proof for
the fact that every finite S-expression rewriting system is terminating if
it is compatible with a recursive path relation with status. By considering
well-founded binary relations instead of well-founded orders, we give a
much simpler proof than the one depending on Kruskal’s tree theorem.

1 Introduction

An important syntactical method to prove termination of a first-order term
rewriting system is the one using recursive path orders [1,4,5,8,16] relying on
Kruskal’s tree theorem [9]. Higher-order rewriting systems are rewriting sys-
tems to accommodate higher-order functions and several syntactical methods
for proving termination of them are presented [7,10,11,15,17].

In the previous paper [17] the author proposed Lisp-like untyped higher-order
rewriting systems without λ-abstraction, called S-expression rewriting systems,
and proved that every finite S-expression rewriting system is terminating if it
is compatible with a lexicographic path order, by using the notion of the sim-
plification order based on Kruskal’s tree theorem. However, our proof in [17] is
neither direct nor simple because of unbounded-variadic and higher-order feature
of S-expressions, and it is not easy to extend it to more expressive orders like
recursive path orders with lexicographic and multiset status.

The purpose of this paper is to present a short and direct proof for the main
result in [17] and to extend it to recursive path relations with lexicographic and
multiset status on S-expressions. Like modern proofs in Buchholz [2], Dawson
and Goré [3], Goubault-Larrecq [6], Jouannaud and Rubio [7], our termination
proof does not use Kruskal’s tree theorem, and it uses well-founded binary rela-
tions instead of well-founded orders as in Goubault-Larrecq [6], Mellies [12]. Thus
the recursive path relation is not required to be well-ordered nor transitive for
proving well-foundedness. Our proof technique is based on Goubault-Larrecq’s
work [6] in which he presents a general termination proof of abstract recursive
path relations, independent on term-structure. However, since Goubault-Larrecq
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[6] defines the recursive path relation as the greatest fixed point of the monotonic
operator by the co-induction principle, his proof of the stability does not work
for the least fixed point. We modify his proof for treating the recursive path
relation defined by the induction principle in common use and for adapting it to
unbounded-variadic and higher-order feature of S-expressions.

The remainder of this paper is organized as follows. After a preliminary sec-
tion, in Section 3 we give a general termination proof of abstract recursive path
relations. Section 4 studies lexicographic path relation on S-expressions and dis-
cusses termination of S-expression rewriting systems compatible with lexico-
graphic path relations. Section 5 extends our result to recursive path relations
with lexicographic and multiset status on S-expressions.

2 Preliminaries

We mainly follow the notation of [1,16,17]. Let C be a (finite or infinite) set
of constants, denoted by f, g, h, · · · , and V a countably infinite set of variables,
denoted by x, y, z, · · · , α, β, γ, · · · , where C ∩ V = φ.

The set S(C,V) of terms, called symbolic expressions (S-expressions for short)
[17], is recursively defined by: (i) C∪V ⊆ S(C,V), and (ii) (s1 s2 · · · sn) ∈ S(C,V)
for s1, · · · , sn ∈ S(C,V) (n ≥ 0). Terms are denoted by s, t, r, · · · . The set of
variables in a term t is denoted by V(t).

A substitution θ is a mapping from V into S(C,V). Substitutions are extended
into homomorphisms from S(C,V) into S(C,V). Following common usage, we
write tθ instead of θ(t).

Consider an extra constant 
 called a hole. Then C ∈ S(C ∪ {
},V) is called
a context. We use the notation C[ ] for the context containing precisely one hole,
and C[t] denotes the result of placing a term t in the hole of C[ ]. We use the
notation (· · · t · · · ) for C[t] if C[ ] = (s1 · · · sk−1 
 sk+1 · · · sn). A term s is called
a subterm of t if t = C[s] and an immediate subterm if t = (· · · s · · · ).

A rewrite rule is a pair 〈l, r〉 of terms such that l /∈ V and V(r) ⊆ V(l).
We write l → r for 〈l, r〉. A S-expression rewriting system (SRS for short) R
is a set of rewrite rules [17]. The rewrite rules of a SRS R define a reduction
relation →R on S(C,V) as follows: t →R s if and only if there exist a rewrite
rule l → r ∈ R, a context C[ ] and a substitution θ such that t = C[lθ] and
s = C[rθ]. A SRS R is terminating if there exists no infinite reduction sequence
t0 →R t1 →R t2 →R · · · .

Example 1 (SRS). The higher-order function map is presented by the following
SRS R, where map, cons, nil, plus, s, 0 are constants and α, x, y variables.

R

⎧⎪⎪⎨
⎪⎪⎩

(map α nil) → nil
(map α (cons x y)) → (cons (α x) (map α y))
((plus (s x)) y) → (s ((plus x) y))
((plus 0) y) → y

Then we have the reduction sequence:
(map (plus (s 0)) (cons (s 0) (cons (s (s 0)) nil))) +→R
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(cons (s (s 0)) (map (plus (s 0)) (cons (s (s 0)) nil))) +→R
(cons (s (s 0)) (cons (s (s (s 0))) nil)). 


Let * be a binary relation on S(C,V). For short, we write ≺ for its inverse, ) for
its reflexive closure, *+ for its transitive closure, *∗ for its transitive-reflexive
closure, *n for its n-fold composition.

A term t ∈ S(C,V) is strongly normalizing with respect to * if there is
no infinite decreasing sequence t = t0 * t1 * t2 * · · · . SN(*) is the set of
all terms that are strongly normalizing with respect to *. * is well-founded if
SN(*) = S(C,V). A binary relation * is well-founded on a term set T ⊆ S(C,V)
if there is no infinite decreasing sequence t0 * t1 * t2 * · · · on T .

A binary relation * is monotonic if s * t implies (· · · s · · · ) * (· · · t · · · ) (i.e.,
closed under context), and it is stable if s * t implies sθ * tθ (i.e., closed under
substitution).

A binary relation * is called a rewrite relation if it is monotonic and stable. A
SRS R is compatible with a binary relation * if l * r for every rule l → r ∈ R.
It is easy to show that a SRS R is terminating if and only if it is compatible
with a well-founded rewrite relation.

3 Termination Theorem

Goubault-Larrecq [6] gives a general constructive termination proof of abstract
recursive path relations. We adapt his general proof to recursive path relations
on S-expressions. Our termination proof is non-constructive, different from [6],
but simpler.

Let *,*Λ, � be three binary relations on S(C,V) and � well-founded. Assume
that * has the following property [6].

Property 1. s * t if and only if
(P1) ∃u.[s � u ∧ u ) t], or
(P2) ∀u.[t � u⇒ s * u] ∧ s *Λ t.

Let SN(*) = { s | ∀u � s. u ∈ SN(*)} and a term set S ⊆ S(C,V) be closed
with respect to � (i.e., if s ∈ S and s� t then t ∈ S). Inspired by Ferreira [5] we
say that *Λ is a term lifting on S (with respect to * and �) if *Λ is well-founded
on SN(*)∩S. (Note that in [5] a term lifting is defined as a specific lifting, i.e.,
*Λ is well-founded on first order terms if * is well-founded on their arguments.
Our definition is essentially equivalent to that in [5] if � means the immediate
subterm relation.) Then we have the following termination theorem.

Theorem 1 (Well-Foundedness). Let *Λ be a term lifting on S. Then * is
well-founded on S.

Proof. We prove the claim by contradiction. The proof is similar to a minimal
bad sequence argument [14]. Suppose * is not well-founded on S and consider
a minimal infinite sequence s0 * s1 * s2 * · · · on S with respect to � in the
following sense:
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(i) if s0 � t then t is strongly normalizing with respect to *;
(ii) if si+1 � t and si * t then t is strongly normalizing with respect to *.

We show that every sk * sk+1 satisfies (P2). Suppose s0 * s1 satisfies (P1).
Then u ) s1 for some u � s0; contradicting minimality of the infinite sequence
on S. Thus s0 * s1 must satisfy (P2). Suppose s0 * s1 * s2 * · · · * sk (k > 0)
satisfy (P2) and sk * sk+1 satisfies (P1). Then u ) sk+1 for some u � sk.
Since sk−1 * sk satisfies (P2), we have sk−1 * u ) sk+1; again contradicting
minimality of sk.

We next show every sk in SN(*) ∩ S. Suppose sm �∈ SN(*) ∩ S. Then we
have some u� sm such that u is not in SN(*). Since sm−1 * sm satisfies (P2),
sm−1 * u. Thus we have an infinite sequence s0 * s1 * s2 * · · · * sm−1 * u · · · ;
contradicting minimality of sm.

Since every sk * sk+1 satisfies (P2), we have an infinite sequence s0 *Λ s1 *Λ

s2 *Λ · · · . It contradicts the assumption that *Λ is well-founded on SN(*)∩S.



Lemma 1 (Monotonicity). Let � be the immediate subterm relation defined
as (· · ·u · · · ) � u. Assume that if s * t then (· · · s · · · ) *Λ (· · · t · · · ). Then the
relation * is monotonic, i.e., s * t implies (· · · s · · · ) * (· · · t · · · ).

Proof. Let s * t. From the assumption we have (· · · s · · · ) *Λ (· · · t · · · ). Thus,
in order to obtain (· · · s · · · ) * (· · · t · · · ) by (P2), we show that for every u,
(· · · t · · · )�u implies (· · · s · · · ) * u. Let (· · · t · · · )�u. If u �= t then (· · · s · · · )�u.
Since u ) u, we have (· · · s · · · ) * u by (P1). If u = t then s * u. Thus we have
(· · · s · · · ) � s * u. By (P1), it holds that (· · · s · · · ) * u. 


Lemma 2 (Subterm). s �+ t implies s * t.

Proof. By induction on n ≥ 1 we prove the claim that s �n t implies s * t.
Base step: Let s � t. Then, by (P1) and t ) t, we have s * t. Induction step:
Let s � u �n t. From induction hypothesis it follows that u * t. By (P1), we
have s * t. (Note that the claim holds without the assumption that � is the
immediate subterm relation.) 


We say that a term pair 〈s, t〉 ∈ S(C,V) is stable with respect to * if s * t
implies sθ * tθ for every substitution θ. A term pair set P ⊆ S(C,V)2 is stable
with respect to * if every 〈s, t〉 ∈ P is stable with respect to *. ST (*) denotes
the set of all term pairs that are stable with respect to *. Thus, * is stable
(i.e., closed under substitution) if and only if ST (*) = S(C,V)2. We define
〈s, t〉 �2 〈s′, t′〉 as s � s′, t � t′ and 〈s, t〉 �= 〈s′, t′〉; �2 as its inverse. It is clear
that �2 is well-founded. Let ST (*) = { 〈s, t〉 | ∀〈u, v〉�2 〈s, t〉. 〈u, v〉 ∈ ST (*)}.

Lemma 3 (Stability). Let � be the immediate subterm relation defined as
(· · ·u · · · ) � u. Let P ⊆ S(C,V)2 be closed with respect to �2. Assume that
ST (*) ∩ P is stable with respect to *Λ (i.e., every 〈s, t〉 ∈ ST (*) ∩ P is stable
with respect to *Λ) and that s * x implies s�+ x for every variable x. Then P
is stable with respect to *.
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Proof. We prove the claim by contradiction. Suppose P is not stable with respect
to* and consider a minimal 〈s, t〉 ∈ P with respect to �2 such that 〈s, t〉�∈ST (*).
Then there exist some θ such that s * t and sθ �* tθ. If t = x ∈ V then by the
assumption we have s�+x. Since � is the immediate subterm relation, sθ�+xθ.
From Lemma 2 it follows that sθ * xθ; contradiction. Thus we suppose t �∈ V .
If s * t satisfies (P1) then s� u and u ) t for some u. Since � is the immediate
subterm relation, we have sθ � uθ. From minimality of 〈s, t〉 and 〈s, t〉�2 〈u, t〉,
〈u, t〉 is stable with respect to *. Thus uθ ) tθ. By (P1) we have sθ * tθ;
contradiction. If s * t satisfies (P2) then t � u implies s * u for every u and
s *Λ t. Let tθ � v. Since t is not a variable, there exists some t′ such that t � t′

and v = t′θ. From (P2), t � t′ implies s * t′. From minimality of 〈s, t〉 and
〈s, t〉�2 〈s, t′〉, 〈s, t′〉 is stable with respect to *; we have sθ * t′θ = v. Thus it
follows that tθ � v implies sθ * v for every v. From minimality of 〈s, t〉, 〈s, t〉
is in ST (*) ∩ P . Thus, from the assumption, sθ *Λ tθ. By (P2), it follows that
sθ * tθ; contradiction. 


Remark. Goubault-Larrecq [6] proves the stability of * under the weaker con-
dition that *Λ is stable whenever * is stable, but * is defined as the greatest
fixed point of the monotonic operator induced from (P1) and (P2) (See Remark
4 in [6]). Thus his proof does not work for * recursively defined as the least fixed
point in common use, differently from ours.

4 Lexicographic Path Relation

In this section we discuss lexicographic path relation on S-expressions and prove
termination of finite S-expression rewriting systems compatible with lexico-
graphic path relations. Thanks to the abstract results presented in the previous
section, our proof is much simpler than that in [17]. For a binary relation * on
S(C,V), *lex denotes the lexicographic extension of *. The lexicographic path
relation on S(C,V) is defined as follows [17].

Definition 1 (Lexicographic Path Relation). Let > be a well-founded re-
lation on C. The lexicographic path relation *lp on S(C,V) is recursively defined
as follows: s*lpt if and only if

(L0) s, t ∈ C and s > t , or
(L1) s = (s1 · · · sm) (m ≥ 1) and ∃si. si )lp t, or
(L2) t = (t1 · · · tn) (n ≥ 0) and ∀ti. s *lp ti, and either
(L2-1) s ∈ C, or
(L2-2) s = (s1 · · · sm) (m ≥ 1) and 〈s1, · · · , sm〉 *lex

lp 〈t1, · · · , tn〉.

Note that the lexicographic path relation *lp is not well-founded due to
unbounded-variadic feature of S-expressions; for example, we can have the in-
finite descending sequence (1)*lp(0 1)*lp (0 0 1) *lp (0 0 0 1)*lp · · · if 0 < 1.
The problem arises from the fact that lexicographic sequences of unbounded size
are not well-founded. To overcome this difficulty we introduce the notion of the
maximum degree of terms.
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The maximum degree d(t) of a term t ∈ S(C,V) is defined by: (i) d(t) = 0 for
t ∈ C ∪ V , and (ii) d(t) = max{n, d(t1), · · · , d(tn)} for t = (t1 · · · tn) (n ≥ 0).
The set of terms having the maximum degree not more than p is defined by
Sp(C,V) = {t | d(t) ≤ p}.

Theorem 2. The lexicographic path relation *lp is well-founded on Sp(C,V)
for every p ≥ 0, and it is monotonic and stable.

Proof. Let � be the immediate subterm relation. From the definition of *lp it
is obvious that s*lpx implies s �+ x for every variable x. We define s *Λ

lp t
as (L0) s, t,∈ C and s > t, or (L2-1) s ∈ C and t = (t1 · · · tn) (n ≥ 0), or
(L2-2) s = (s1 · · · sm) (m ≥ 1), t = (t1 · · · tn) (n ≥ 0) and 〈s1, · · · , sm〉 *lex

lp

〈t1, · · · , tn〉. Then *lp obviously satisfies Property 1. Monotonicity and stability
of *lp directly follow from Lemma 1 and Lemma 3 by taking P = S(C,V)2

respectively. Thus, it remains to prove well-foundedness of *lp on Sp(C,V). From
Theorem 1, it is enough to show that *Λ

lp is actually a term lifting on Sp(C,V)
with respect to *lp and �, i.e., it is well-founded on SN(*lp)∩Sp(C,V). Suppose
*Λ

lp is not well-founded on SN(*lp)∩Sp(C,V) and consider an infinite sequence
s0 *Λ

lp s1 *Λ
lp s2 *Λ

lp · · · on SN(*lp) ∩ Sp(C,V). Since > is well-founded on
C, there exists some k such that for every i ≥ k, si *Λ

lp si+1 satisfies (L2-2).
Thus, we have an infinite sequence 〈sk,1, · · · , sk,n〉*lex

lp 〈sk+1,1, · · · , sk+1,n′〉*lex
lp

〈sk+2,1, · · · , sk+2,n′′〉*lex
lp · · · where all si,j are in SN(*lp) and n, n′, n′′, · · · ≤

p. However, since *lp on the set of all si,j is well-founded, its lexicographic
extension over the sequences of length bounded by p is well-founded. Thus, we
get a contradiction. 

A SRS R is bounded [17] if for any infinite reduction sequence t0 →R t1 →R
t2 →R t3 →R · · · there exists some natural number p such that d(ti) ≤ p.

Lemma 4. Every finite SRS R is bounded.

Proof. Let t0 →R t1 →R t2 →R t3 →R · · · be an infinite reduction sequence and
let c = max{d(r) | l → r ∈ R}. Consider a reduction s →R t where s = C[lθ],
t = C[rθ] and l → r ∈ R. Then we have d(t) = d(C[rθ]) =
max{d(C[ ]), d(r), d(xθ) | x ∈ V(r)} ≤
max{d(C[ ]), d(l), d(r), d(xθ) | x ∈ V(r)} ≤
max{d(C[lθ]), d(r)} =max{d(s), d(r)} ≤
max{d(s), c}. Thus it holds that d(ti+1) ≤ max{d(ti), c} for every i ≥ 0. By
taking p = max{d(t0), c} we conclude the claim. 

Theorem 3. Let R be a finite SRS compatible with a lexicographic path rela-
tion *lp. Then R is terminating.

Proof. The claim follows from Theorem 2 and Lemma 4. 

By replacing Conditions (L2), (L2-1) and (L2-2) in Definition 1 of *lp with
Conditions (L2-a), (L2-b) and (L2-c), we obtain the following practical definition
in [17], which is a bit easier to apply. It is easy to show that the two definitions
of *lp are equivalent.
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Definition 2 (Lexicographic Path Relation). Let > be a well-founded re-
lation on C. The lexicographic path relation *lp on S(C,V) is recursively defined
as follows: s*lpt if and only if

(L0) s, t,∈ C and s > t , or
(L1) s = (s1 · · · sm) (m ≥ 1) and ∃si. si )lp t, or
(L2-a) s ∈ C, t = (t1 · · · tn) (n ≥ 0) and ∀ti. s *lp ti, or
(L2-b) s = (s1 · · · sm), t = (t1 · · · tn) (m > n ≥ 0),
and s1 = t1, · · · , sn = tn, or
(L2-c) s = (s1 · · · sm), t = (t1 · · · tn) (m,n ≥ 1)
and ∃i. s1 = t1, · · · , si−1 = ti−1, si*lpti, s*lpti+1, · · · , s*lptn.

Now we verify termination of S-expression rewriting systems by Theorem 3.
Various higher-order rewriting systems in the literature [7,10,11,15] are naturally
expressed in SRSs and termination of them is easily proven as that of SRSs
without using the notion of type. In the following examples, we denote variables
acting as higher-order variables by α, β, γ, · · · in distinction from x, y, z, · · · for
readability.

Example 2 (map). Let C = {map, cons, nil} with map > cons > nil and con-
sider the following SRS R.

R
{

((map α) nil) → nil
((map α) (cons x y)) → (cons (α x) ((map α) y))

For the first rule ((map α) nil)*lpnil is trivial by the subterm property. For
the second rule we have (i) (map α)*lpcons by (L1) because map*lpcons by
(L0), (ii) ((map α) (cons x y))*lp(α x) by (L2-c) because (map α)*lpα and
((map α) (cons x y))*lpx by the subterm property, and (iii) ((map α) (cons x y))
*lp ((map α) y) by (L2-c) because (cons x y)*lpy by the subterm property. From
(i), (ii) and (iii) we have ((map α) (cons x y))*lp(cons (α x) ((map α) y)) by
(L2-c). Thus R is terminating since it is compatible with *lp. 


In the above example, map is represented as a currying notation ((map s) t) by
the extra parentheses as in [10,17], instead of the usual flat notation (map s t).
This currying is necessary for guaranteeing the compatibility with *lp because
of (map α (cons x y)) */lp (cons (α x) (map α y)) for the flat notation of the
second rewrite rule. For a currying-transformation technique to strengthen the
power of the lexicographic path relation, see [17].

Example 3 (maplist). Let C = {fmap, cons, nil} with fmap > cons > nil and
consider the following SRS R.

R
{

((fmap nil) x) → nil
((fmap (cons α β)) x) → (cons (α x) ((fmap β) x))

Then R is terminating since it is compatible with *lp. 


Example 4 (twice). Let C = {twice, dapply} with twice > dapply and consider
the following SRS R.
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R
{

((dapply α β) x) → (α (β x))
(twice α) → (dapply α α)

Then R is terminating since it is compatible with *lp. 


Example 5 (applylist). Let C = {lapply, cons, nil} with lapply > cons > nil and
consider the following SRS R.

R
{

((lapply nil) x) → x
((lapply (cons α β)) x) → (α ((lapply β) x))

Then R is terminating since it is compatible with *lp. 


Example 6 (recursor). Let C = {rec, s, 0} with rec > s > 0 and consider the
following SRS R.

R
{

((rec α x) 0) → x
((rec α x) (s y)) → (α (s y) ((rec α x) y))

Then R is terminating since it is compatible with *lp. 


5 Recursive Path Relation with Status

In this section we discuss the recursive path relation with status on S-expressions,
which is a higher-order extension of the well-known one on the first-order terms
[1,5,8,13,16]. For a binary relation * on S(C,V), *mul denotes the multiset
extension of *. We assume a status (function) τ as a mapping from S(C,V) to
{lex,mul}. Then, the recursive path relation with status on S(C,V) is defined
as follows.

Definition 3 (Recursive Path Relation with Status). Let > be a well-
founded relation on C. The recursive path relation *rp with status on S(C,V) is
recursively defined as follows: s*rpt if and only if

(R0) s, t,∈ C and s > t , or
(R1) s = (s1 · · · sm) (m ≥ 1) and ∃si. si )rp t, or
(R2) t = (t1 · · · tn) (n ≥ 0) and ∀ti. s *rp ti, and either
(R2-1) s ∈ C, or
(R2-2) s = (s1 · · · sm) (m ≥ 1) and t = (), or
(R2-3) s = (s1 · · · sm) and t = (t1 · · · tn) (m,n ≥ 1), and
(a) s1 *rp t1, or
(b) s1 = t1 and 〈s2, · · · , sm〉*τ(s1)

rp 〈t2, · · · , tn〉.

Theorem 4. The recursive path relation *rp with status is well-founded on
Sp(C,V) for every p ≥ 0, and it is monotonic.

Proof. Let � be the immediate subterm relation and s *Λ
rp t defined as (R0)

s, t,∈ C and s > t, or (R2-1) s ∈ C and t = (t1 · · · tn) (n ≥ 0), or (R2-2) s =
(s1 · · · sm) (m ≥ 1) and t = (), or (R2-3a) s = (s1 · · · sm), t = (t1 · · · tn) (m,n ≥
1) and s1 *rp t1, or (R2-3b) s = (s1 · · · sm), t = (t1 · · · tn) (m,n ≥ 1), s1 =
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t1 and 〈s2, · · · , sm〉*τ(s1)
rp 〈t2, · · · , tn〉. Then *rp obviously satisfies Property 1.

Monotonicity of *rp directly follows from Lemma 1. Thus, it remains to prove
well-foundedness of *rp on Sp(C,V). From Theorem 1, it is enough to show that
*Λ

rp is well-founded on SN(*rp)∩Sp(C,V). Suppose *Λ
rp is not well-founded on

SN(*rp) ∩ Sp(C,V) and consider an infinite sequence s0 *Λ
rp s1 *Λ

rp s2 *Λ
rp · · ·

on SN(*rp) ∩ Sp(C,V). Since > is well-founded on C, there exists some k such
that for every i ≥ k, si *Λ

rp si+1 satisfies (R2-3). Thus, we have an infinite
sequence (sk,1 · · · sk,n)*rp(sk+1,1 · · · sk+1,n′)*rp(sk+2,1 · · · sk+2,n′′)*rp · · · ,
where all si,j are in SN(*rp), n, n′, n′′, · · · ≤ p and sk,1 )rpsk+1,1 )rp sk+2,1

)rp · · · . Thus there exists some q ≥ k such that sq,1 = sq+1,1 = sq+2,1 = · · · .
Then, we have an infinite sequence 〈sq,1, · · · , sq,m〉 *τ(sq,1)

rp 〈sq+1,1, · · · , sq+1,m′〉
*τ(sq,1)

rp 〈sq+2,1, · · · , sq+2,m′′〉 *τ(sq,1)
rp · · · . However, since *rp on the set of all

si,j is well-founded, its lexicographic (multiset) extension over the sequences of
length bounded by p is well-founded. Thus, we get a contradiction. 


We note that the recursive path relation *rp with status on S(C,V) is not
stable due to higher-order feature of S-expressions, different from the one on the
first-order terms. For example, assume that τ(x) = lex, τ(0) = mul, and let
s = (x 1 0 0), t = (x 0 1 1). Then s*rpt but tθ*rpsθ when θ = [x := 0]. This
problem arises whenever status τ is not trivial, i.e., τ(x) �= τ(u) for some term
u. However, stability of all term pairs is not necessary for proving termination
of a SRS R; indeed, it is enough to guarantee that R is stable with respect to
*rp. Hence, we present criteria for stability of R.

For status τ , we define (s1 · · · sm)*τ
rp(t1 · · · tn) (m,n ≥ 1) by (R2-3b) s1 = t1

and 〈s2, · · · , sm〉*τ(s1)
rp 〈t2, · · · , tn〉.

Lemma 5 (Stability of *rp). Let � be the immediate subterm relation and
P ⊆ S(C,V)2 closed with respect to �2. Let ST (*rp)∩P be stable with respect
to *τ

rp. Then P is stable with respect to *rp.

Proof. From the definition of *lp it is obvious that s*rpx implies s�+x for every
variable x. Similarly to the proof of Theorem 4, we define *Λ

rp as (R0), (R2-1),
(R2-2), (R2-3a), or (R2-3b). Then the claim directly follows from Lemma 3. 


For a term pair set Q ⊆ S(C,V)2, we define the closure of Q with respect to �2

as Q∗ = { 〈s, t〉 | 〈u, v〉�∗
2〈s, t〉 for some 〈u, v〉 ∈ Q }.

Theorem 5. Let R be a finite SRS compatible with a recursive path relation
with status τ . Let ST (*rp) ∩ R∗ be stable with respect to *τ

rp. Then R is
terminating.

Proof. The claim follows from Theorem 4 and Lemma 5. 


We say status τ is stable on a term set S ⊆ S(C,V) if for every s ∈ S, τ(s) = τ(sθ)
for any θ. The head term of s = (s1 · · · sm) (m ≥ 1) is denoted by hd(s) = s1.
For Q ⊆ S(C,V)2 we define Heq(Q) = { hd(s) | 〈s, t〉 ∈ Q and hd(s) = hd(t) }.
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Corollary 1. Let R be a finite SRS compatible with a recursive path relation
with status τ . Let status τ be stable on Heq(R∗). Then R is terminating.

Proof. The claim follows from Theorem 5. 


Example 7 (folding: adapted from [11]). Let C = {sum, prod, fold, ∗, +, s, 0,
cons, nil} with sum, prod > fold > ∗ > + > s > 0 > cons > nil and consider
the following SRS R.

R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((fold α x) nil) → x
((fold α x) (cons y z)) → (α y ((fold α x) z))
sum→ (fold + 0)
prod→ (fold ∗ (s 0))
(+ 0 y) → y
(+ (s x) y) → (s (+ y x))
(∗ 0 y) → 0
(∗ (s x) y) → (+ y (∗ y x))

Note that R is not compatible with *lp because (+ (s x) y) */lp (s (+ y x)) and
(∗ (s x) y) */lp (+ y (∗ y x)). We take status τ as τ(t) = mul if t = +, ∗ and
τ(t) = lex otherwise. Then it is easily shown that R is compatible with *rp. As
Heq(R∗) = {(fold α x), fold, ∗,+, s}, τ is stable on Heq(R∗). From Corollary 1,
it follows that R is terminating. 


Example 8 (sorting: adapted from [7]). Let C = {asort, dsort, sort, ins, max,
min, s, 0, cons, nil} with asort, dsort > sort > ins > max,min > s > 0 >
cons > nil and consider the following SRS R.

R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((sort α β) nil) → nil
((sort α β) (cons x y)) → ((ins α β) ((sort α β) y) x)
((ins α β) nil y) → (cons y nil)
((ins α β) (cons x z) y) → (cons (α x y) ((ins α β) z (β x y)))
(max x x) → x
(max 0 y) → y
(max x 0) → x
(max (s x) (s y)) → (s (max y x))
(min x x) → x
(min 0 y) → 0
(min x 0) → 0
(min (s x) (s y)) → (s (min y x))
(asort z) → ((sort min max) z)
(dsort z) → ((sort max min) z)

Since (max (s x) (s y)) */lp (s (max y x)) and (min (s x) (s y)) */lp (s (min y x)),
R is not compatible with *lp. We take status τ as τ(t) = mul if t = max,min
and τ(t) = lex otherwise. Then, R is compatible with *rp. As Heq(R∗) =
{(sort α β), sort, (ins α β), ins, cons,max,min, s}, τ is stable on Heq(R∗). Thus,
from Corollary 1, it follows that R is terminating. 
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Abstract. Fine-grained reformulation of the lambda calculus is expected
to solve several difficulties with the notion of substitutions—definition, im-
plementation and cost properties. However, previous attempts including
those using explicit substitutions and those using Interaction Nets were
not ideally simple when it came to the encoding of the pure (as opposed
to weak) lambda calculus. This paper presents a novel, fine-grained, and
highly asynchronous encoding of the pure lambda calculus using LMNtal,
a hierarchical graph rewriting language, and discusses its properties. The
major strength of the encoding is that it is significantly simpler than pre-
vious encodings, making it promising as an alternative formulation, rather
than just the encoding, of the pure lambda calculus. The membrane con-
struct of LMNtal plays an essential role in encoding colored tokens and
operations on them. The encoding has been tested using the publicly avail-
able LMNtal implementation.

1 Introduction

The λ-calculus and λ-terms play fundamental roles not only in functional lan-
guages but in the treatment of variable binding and scoping that appear in
various formalisms including programming languages, mathematics and logic.

The core of the λ-calculus is β-reduction, (λx.M)N → M [x �→ N ], but the
definition of substitutions used here is far from simple and provoked various
alternative formulations. In particular, “to replace all the free occurrences of x
by copies of N” does not necessarily reflect actual implementation, which may
share the representation of N whenever possible but must sometimes make copies
of N (e.g., when applying another λ-term to N).

One of the formalisms aiming at the precise representation of the λ-calculus is
the λσ-calculus [1], which provides two syntactic categories, λ-terms and explicit
substitutions, and gives rewrite rules to both.

Another approach to formalizing the λ-calculus is to adopt graph represen-
tation of λ-terms; a bound variable can most naturally be represented as an
edge (or a hyperedge) that connects the defining and applied occurrences of the
same variable. Most previous work in this approach adopted Interaction Nets
[6] to represent and manipulate graphs ([7][9][10][12], to name a few). Many of
the encodings of the λ-calculus into Interaction Nets pursued optimal sharing

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 392–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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or efficiency, and resulted in more or less involved representation of λ-terms to
achieve the objective. One notable exception is the encoding by Sinot [12], which
addressed the simplicity of the encoding, but it focused on the weak λ-calculus
that did not evaluate the body of λ-abstractions. Indeed, as KCLE [10] suggests,
encoding of the pure calculus can be much less concise (in terms of the number
of rules involved) than the encoding of the weak calculus. Weak λ-calculi may
be appropriate for the foundations of functional languages, but the applications
of the λ-calculus as a whole call for strong (or pure) λ-calculi as well.

This raises one question: Is there any concise graph-based encoding of the
pure λ-calculus? There can be several criteria for conciseness, but the number
of rewrite rules is clearly important and sufficiently objective. With Interaction
Nets, YALE [9] proposes a relatively simple solution but still needed to simu-
late “boxes” for scope management. So the next question is: To obtain a more
concise encoding (appropriate, say, for an undergraduate text), what additional
constructs should be included to the graph rewriting framework?

The purpose and the contribution of this paper are to give a concrete answer
to these questions by proposing a fine-grained and highly nondeterministic en-
coding of the pure λ-calculus (with open terms) and discussing its properties.
Specifically, the paper employs LMNtal [14], a hierarchical graph rewriting lan-
guage that uses logical variables to represent connectivity and membranes to
represent hierarchy. LMNtal shares some of the ideas (such as membranes) with
Chemical Abstract Machine (CHAM) [3], but it is better considered as extend-
ing Interaction Nets with membranes that can enclose graph nodes, rewrite rules
and other membranes. To the best of the author’s knowledge, work on the encod-
ing of the λ-calculus into CHAM (such as [3]) dealt with lazy or weak calculus,
and hence has little technical relation to the present work unlike encodings into
Interaction Nets.

LMNtal aims at a substrate language of various computational models, espe-
cially those for concurrency, and the π-calculus and the ambient calculus have
been encoded before [15]. An implementation is publicly available on the web1.
The membrane construct of LMNtal provides powerful functionalities such as the
copying of the graph structure enclosed by a membrane, but our encoding uses
membranes only to represent and manipulate fresh local names, called colors,
so that each rewrite step can be executed in (almost) constant amortized time.
Thus our encoding is not too specific to a particular graph rewriting framework;
rather, it is to give insights on what constructs are necessary or useful for concise
encoding.

A graph representation was employed also in the graph reduction system
[13] for combinators. This approach avoids difficulties arising from scoping by
focusing on a form of closed reduction and compiling λ-terms into combinator
expressions, but it cannot be regarded as a direct formulation of the operational
semantics of the λ-calculus.

Our method decomposes graph copying into microsteps that may proceed
asynchronously with β-reductions. Our method shares its granularity and asyn-

1 http://www.ueda.info.waseda.ac.jp/lmntal/
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(process) P ::= 0 | p(X1, . . . ,Xm) | P,P | {P} | T :- T

(process template) T ::= 0 | p(X1, . . . ,Xm) | T,T | {T} | T :- T
| @p | $p[X1, . . . ,Xm|A] | p(*X1, . . . ,*Xn)

(residual) A ::= [] | *X

Fig. 1. Syntax of LMNtal

(E1) 0,P ≡ P (E2) P,Q ≡ Q,P (E3) P,(Q,R) ≡ (P,Q),R

(E4) P ≡ P [Y/X] if X is a local link of P

(E5) P ≡ P ′ ⇒ P,Q ≡ P ′,Q (E6) P ≡ P ′ ⇒ {P} ≡ {P ′}

(E7) X =X ≡ 0 (E8) X =Y ≡ Y =X

(E9) X =Y , P ≡ P [Y/X] if P is an atom and X occurs free in P

(E10) {X =Y , P} ≡ X =Y , {P} if exactly one of X and Y occurs free in P

(R1)
P −→ P ′

P,Q −→ P ′,Q
(R2)

P −→ P ′

{P} −→ {P ′}
(R3)

Q ≡ P P −→ P ′ P ′ ≡ Q′

Q −→ Q′

(R4) {X =Y ,P} −→ X =Y , {P} if X and Y occur free in {X =Y ,P}

(R5) X =Y , {P} −→ {X =Y ,P} if X and Y occur free in P

(R6) Tθ,(T :- U) −→ Uθ,(T :- U)

Fig. 2. Structural congruence and reduction relation of LMNtal

chrony with the λσ-calculus, though they employ very different representations
of λ-terms. Since each of the proposed rewrite rules is simple and well-motivated,
the proposed method is expected to serve not only as an encoding but as a fine-
grained reformulation of the pure λ-calculus.

2 LMNtal: A Hierarchical Graph Rewriting Language

This section briefly introduces the hierarchical graph rewriting model and lan-
guage LMNtal. For further details and a diverse range of related work of LMNtal,
the readers are referred to [14].

2.1 Syntax

The syntax of LMNtal is given in Fig. 1, where two syntactic categories, link
names (denoted by X) and atom names (denoted by p), are presupposed.

Being a model of concurrency, LMNtal uses the terms (hierarchical) graphs
and processes interchangeably. 0 is an inert process, p(X1, . . . ,Xm) (m ≥ 0)
is an atom with the arity (valency) m, P,P is parallel composition, {P} is a
cell formed by enclosing P by a membrane { }, and T :- T is a rewrite rule.
The built-in, binary atom name = represents a connector for interconnecting its
argument links.
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Occurrences of a link name represent endpoints of a one-to-one link between
atoms. For this purpose, each link name in a process P is allowed to occur at most
twice (Link Condition). A link whose name occurs only once in P is called a free
link of P . Links may cross membranes and connect atoms located at different
“places” of the membrane hierarchy.

Process templates on the both sides of rewrite rules allow process contexts,
rule contexts, and aggregates [14]. Here we only describe process contexts used
in our encoding. A process context, denoted $p[X1, . . . ,Xm|A] (m ≥ 0), is to
match “the rest of the processes” (except rewrite rules) within the membrane
in which it appears. The arguments specify what free link names may or must
occur. X1, . . . , Xm are the link names that must occur free in $p. When the
residual A is of the form ∗X , links other than X1, . . . , Xm may occur free, and
∗X stands for the sequence of those optional free links. When A is of the form
[], no other free links may occur.

Rewrite rules must observe several syntactic conditions so that the Link Con-
dition is preserved in the course of program execution [14]. Most importantly,
link names in a rewrite rule must occur exactly twice, and each process context
must occur exactly once at the toplevel of distinct cells in the LHS of a rule.
There are no constraints on the number of occurrences of a process context on
the RHS of a rule, but our encoding belongs to the most standard case where
each process context occurs exactly once in the RHS.

2.2 Operational Semantics

The operational semantics of LMNtal (Fig. 2) consists of structural congruence
defined by (E1)–(E10) and the reduction relation defined by (R1)–(R6). (E4)
stands for α-conversion. (E9)–(E10) are the interaction rules between atoms/cells
and connectors.

Computation proceeds by rewriting processes using rules collocated in the
same place of the nested membrane structure. (R1)–(R3) are standard structural
rules, while (R4)–(R5) are the mobility rules of =. The central rule of LMNtal is
(R6), in which θ is to map process contexts into actual processes.

2.3 Syntactic Conventions

LMNtal provides several syntactic conventions to allow concise description of
processes, of which our encoding shown in the next section uses the following:

1. +(X) can be written as +X , where + is a unary atom.
2. p(s1, . . . , sm−1, X), q(t1, . . . , tk−1, X, tk+1, . . . , tn) (atoms connected by the

link X occurring as the final argument of p) can be written as q(t1, . . . , tk−1,
p(s1, . . . , sm−1), tk+1, . . . , tn).

3. When a process context of the form $p[|*X] occurs exactly twice in a rule
(i.e., once in the RHS), they both can be abbreviated to $p.

4. Each rule may be prefixed by a rule name and two @’s (Fig. 4).
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A notable consequence of the above convention is that a process (f(A,B,L),
g(L)) can be written as f(A,B,g) and as g(f(A,B)). Furthermore, (f(A,B,L),
g(L)) can be expanded to (f(A,B,L),g(M),L=M) or (f(A,B,L),g(M),M=L) by
(E9), from which we obtain f(A,B)=g and g=f(A,B), respectively. They all stand
for the same graph consisting of a ternary atom and a unary atom connected
by a single link. The connector = is heavily used as the symbol representing
interconnection (rather than equality) between atoms.

3 Encoding the λ-Calculus into LMNtal

Now we describe our encoding of the λ-calculus into hierarchical graph rewriting.
Our starting point was the encoding into Interaction Nets. Interaction Nets is
a non-hierarchical graph rewriting formalism with strong syntactic conditions,
and LMNtal can be considered as a model and a language that extends Interac-
tion Nets by alleviating their syntactic conditions and introducing the notions
of membranes and contexts. Of various encodings into Interaction Nets, Sinot’s
encoding [12] is one of the simplest in the sense that it dispenses with the ex-
plicit management of free variables in each λ-abstraction. However, the method
is to compute weak head normal forms (terms of the form xM0 . . .Mn (n ≥ 0)
or λx.M , where M and Mi are not necessarily in normal form) and the compu-
tation is serialized using a control token navigating over the λ-graph. Our goal,
in contrast, is to encode the basic reduction semantics of the pure λ-calculus,
preserving and manifesting nondeterminism inherent in the formalism.

First of all, we define the encoding from a λ-term L into an LMNtal process.
The result must have exactly one free link (say R), which is connected to the
atom referring to L. So the translation function T receives as arguments the
λ-term L and the free link name R.

– When L is a variable x, it is represented as a unary atom with the name x
which is connected to R via a binary atom fv indicating a free variable:

T (x,R) def= fv(x,R) (= R = fv(x)).

– When L is a λ-abstraction λx.M , let k (≥ 0) be the number of free oc-
currences of x in M , and T ′(M,R,R1, . . . , Rk) be a process obtained from
T (M,R) by removing all unary atoms x and their tags fv and changing
them into free links R1, . . . , Rk. Then

T (λx.M,R) def= lambda(R0, R
′, R), T ′(M,R′, R1, . . . , Rk),

connect[R0, R1, . . . , Rk] ,

where connect[R0, R1, . . . , Rk] is a process with free links R0, R1, . . . , Rk

defined as follows:

connect[R0]
def= rm(R0)

connect[R0, R1]
def= R0 =R1

connect[R0, R1, . . . , Rn]def=cp(R1, R
′
0, R0), connect[R′

0, R2, . . . , Rn] (n≥2).
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Fig. 3. Graph representation of the Church numeral 2

– When L is an application MN :

T (MN,R) def= apply(R1, R2, R), T (M,R1), T (N,R2) .

Bound variables are encoded into LMNtal links, but because of the Link
Condition of LMNtal, bound variables not occurring exactly twice requires the
branching or termination of links. We employ a unary atom rm (remove) to ter-
minate unused bound variables and a ternary atom cp (copy) to bifurcate links.
The encoding of a bound variable with more than two occurrences forms a tree of
cp’s, but the form of the tree does not count for our encoding and its properties.
For example, a combinator I = λx.x is represented as

lambda(X,X,Result) (= Result = lambda(X,X))

where Result is the free link name representing the result. The Church encodings
of natural numbers, λfx.fnx (n ≥ 0), can be represented as

0: lambda(rm,lambda(X,X),Result)
1: lambda(F,lambda(X,apply(F,X)),Result)
2: lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X))),Result)

and so on, where ‘@’ in Fig. 3 stands for apply and the arrowheads indicate the
atoms’ first arguments and the ordering of arguments.

Figure 4 shows a complete set of rules that encodes the pure λ-calculus using
our λ-term representation. As will be discussed later in this section, only eight
of those rules are essential.

The first rule, beta, performs “bare” β-reduction, that is, performs parameter
passing without copying the argument even when it is referenced more than once.

Rule beta alone is sufficient if all formal parameters are used exactly once;
otherwise we need reaction rules for the atoms cp and rm (13 rules following
beta) to destroy or copy graph structures incrementally. The final three rules
are for the color management of cp’s described next.

The ternary cp’s in λ-terms are first converted to quaternary cp’s by Rule
c2c. The additional third argument is to distinguish between cp’s with different
origins when copying nested λ-abstractions. The additional information is called
a color after the Petri Net terminology. Each color is represented using an LM-
Ntal cell, where links entering the same cell are interpreted as referring to the
same color.
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� �
beta@@ H=apply(lambda(A, B), C) :- H=B, A=C.

l_c@@ lambda(A,B)=cp(C,D,L), {+L,$q} :-

C=lambda(E,F), D=lambda(G,H), A=cp(E,G,L1), B=cp(F,H,L2),

{{+L1},+L2,sub(S)}, {super(S),$q}.

a_c@@ apply(A,B)=cp(C,D,L), {+L,$q} :-

C= apply(E,F), D= apply(G,H), A=cp(E,G,L1), B=cp(F,H,L2),

{+L1,+L2,$q}.

c_c1@@ cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},+L2,$q} :- A=C, B=D, {{$p},$q}.

c_c2@@ cp(A,B,L1)=cp(C,D,L2), {{+L1,$p},$q}, {+L2,top,$r}

:- C=cp(E,F,L3), D=cp(G,H,L4), {{+L3,+L4,$p},$q},

A=cp(E,G,L5), B=cp(F,H,L6), {+L5,+L6,top,$r}.

f_c@@ fv($u)=cp(A,B,L), {+L,$q} :- unary($u) |

A=fv($u), B=fv($u), {$q}.

l_r@@ lambda(A,B)=rm :- A=rm, B=rm.

a_r@@ apply(A,B)=rm :- A=rm, B=rm.

c_r1@@ cp(A,B,L)=rm, {+L,$q} :- A=rm, B=rm, {$q}.

c_r2@@ cp(A,B,L)=rm, {{+L,$p},$q} :- A=rm, B=rm, {{$p},$q}.

c_r3@@ A=cp(B,rm,L), {+L,$p} :- A=B, {$p}.

c_r4@@ A=cp(rm,B,L), {+L,$p} :- A=B, {$p}.

r_r@@ rm=rm :- .

f_r@@ fv($u)=rm :- unary($u) | .

promote@@ {{},$p,sub(S)}, {$q,super(S)} :- {$p,$q}.

c2c@@ A=cp(B,C) :- A=cp(B,C,L), {+L,top}.

gc@@ {top} :- .

� �
Fig. 4. The LMNtal encoding of the pure λ-calculus

Colors form tree-shaped partial order. Color cells in the parent-child relation-
ship are interconnected by a link terminated by a unary super atom on one end
and a sub on the other. Colors without parents hold a nullary top instead of a
sub. Figure 5 represents a tree of colors with one top color and two subordinate
sibling colors. Each quaternary cp is given a top color initially. Rule c2c creates
an independent top color cell for each cp, but whether to merge top color cells
or not does not affect the correctness of our encoding.

Graph copying starts when links representing formal and actual parameters
are interconnected and a cp on the formal side meets lambda, apply, or fv. When
cp meets apply, it copies the partner, splits itself, and proceeds to the copying
of the apply’s two arguments, but the color of the split cp’s remains unchanged
(Rule a_c). When cp meets lambda, it copies the partner and splits itself in the
same manner, but the split cp’s are made to have a fresh, subordinate color (Rule
l_c). The cell {+L,$q} on the LHS of l_c stands for the current color and is
inherited as {super(S),$q} on the RHS ($q stands for incident links from other
cp’s). The RHS creates another color cell {{+L1},+L2,sub(S)} referred to by the
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Fig. 6. Reaction rules for cp atoms

color links of the new cp’s. In a color cell, a cp atom moving anticlockwise (in the
representation of Fig. 3) from the x side of a λ-term λx.M is distinguished from
a cp moving clockwise from the M side by letting the former’s color link enter
a nested membrane inside the color cell. A clockwise cp and an anticlockwise
cp (hereafter denoted as cp+ and cp− for exposition) are considered to have
positive and negative polarities, respectively. Figure 5 shows a graph structure
consisting of a cp+ with a top color, a cp+ and a cp− with a subordinate color,
and two cp+’s and a cp− with another subordinate color.

As can be seen from the Church numerals example, the link representing the
bound variable of a λ-abstraction is either terminated by rm or is split using
zero or more cp+’s and connected to some places in the body. Accordingly, each
cp− will eventually meet, and is annihilated by, either a rm or a cp+ with the
same color (possibly after crossing and copying cp+’s with the top color). When
a cp− meets a cp+ with the top color, it copies the partner using c_c2, splits
itself, and proceeds.

In contrast, a cp+ may not meet a cp− with the same color, because it may
escape the scope of the λ-abstraction through a link representing nonlocal vari-
ables. The color of a cp+ that has escaped must be changed back to the original
parent color. This is done using promote, which merges some color into its par-
ent color when all the cp−’s of that color disappear. The cell {{},$p,sub(S)}
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on the LHS represents a color that has no incident links from cp−’s, while the
cell {$p,$q} on the RHS represents a single, fused color.

Rule promote is applied asynchronously; it is not necessarily applied imme-
diately after all cp−’s of some color disappear. However, the delay of promote
simply delays the reaction between cp+’s and cp−’s (using c_c1 and c_c2), and
does not cause wrong reactions by affecting the applicability of other rules.

Figure 6 depicts rewrite rules related to cp’s, where the difference of colors is
shown using suffixes for simplicity and the suffix 0 indicates the topmost color.

Of the remaining rules, f_c copies global free variables. This rule contains
an side condition, unary($u), that specifies that the first argument of fv is
connected to some unary atom, which will be copied in the RHS because $u
occurs twice there. Rules l_r, a_r, c_r1, c_r2, r_r, and f_r are to delete any
partner that an rm may encounter. c_r3 and c_r4 are to remove a cp with one
branch terminated by an rm. Rule gc is to delete a topmost color not referenced
any more.

Most previous encodings into Interaction Nets used two kinds (i.e., two colors)
of copying tokens. Two colors sufficed in [12] because it did not evaluate bodies of
λ-abstractions. YALE and KCLE computed normal forms, but did so by explic-
itly managing nonlocal variables, which added certain complexity. Although not
for computing normal forms, Lang’s encoding [8] employed many colors, where
colors were represented as sequences of fresh names. Color comparison was based
on whether one color was a prefix of the other, whose efficient implementation
was yet to be studied. Lamping’s optimal sharing [7] also employed many col-
ors (called levels), and further employed tokens called croissants and brackets
(both coming with many colors as well) to achieve sharing and complicated level
management. Our encoding pursues the simplicity of the rewrite system: Color
hierarchy implemented using membranes lead to a rewrite system that added
only a few rules to the rules for handling all possible pairs of atoms that may
encounter.

Our rewrite system could be slimmed down further. Rule c2c can be dispensed
with by starting with colored cp atoms. Furthermore, Rules l_r, a_r, c_r1,
c_r3, c_r4, r_r, f_r (i.e., all rules involving rm except c_r2), plus gc are just
for garbage collection and tidying up the tree of cp’s, and could be dispensed
with. (Rule c_r2 cannot be removed because it kills cp−’s whose numbers are
counted.) This leaves us only eight essential rules, beta, l_c, a_c, c_c1, c_c2,
f_c, c_r2 and promote, which suffice for the full evaluation (without the need
of any further ‘read-back’) of colored λ-term representation.

3.1 An Example

Of numerous examples we have run using our LMNtal system, the exponentia-
tion of Church numerals seems to be an important test of λ-calculus encodings
because the encoding of mn, λmn.nm, is extremely simple and yet involves ex-
ponential amount of graph copying. It is important also because it requires the
evaluation of the bodies of λ-abstractions.
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� �
N=n(2) :- N=lambda(cp(F0,F1),lambda(X,apply(F0,apply(F1,X)))).

N=n(3) :- N=lambda(cp(F0,cp(F1,F2)),

lambda(X,apply(F0,apply(F1,apply(F2,X))))).

result=apply(apply(apply(apply(n(2),n(2)),n(3)),fv(s)),fv(0)).

H=apply(fv(s), fv(I)) :- int(I) | H=fv(I+1).

� �
Fig. 7. Church numerals and their exponentiation

The program in Fig. 7 reduces to result=fv(81) (81 = 322
). As illustrated

in the example, the encoding into LMNtal allows δ-reduction rules, namely rules
for rewriting free names such as s and 0, to be added to the pure λ-calculus.

4 Properties of the Encoding

The encoding described above decomposes β-reduction into many small mi-
crosteps that allow asynchronous, out-of-order execution. The adequacy of the
encoding is therefore not obvious; recall that the confluence and termination
of the λσ-calculus was not obvious, either [4][11]. Furthermore, because of the
asynchrony, the “meaning” of an intermediate state of graph reduction broken
into microsteps is far from obvious. To address the above problems, we interpret
hierarchical graphs using λ-terms with extended binder syntax and establish the
properties of the encoding through well-known properties of the λ-calculus.

One might wonder why we translate graphs back to (extended) λ-terms rather
than leveraging the properties of LMNtal and of the rules in Fig. 4. However,
LMNtal itself is not equipped with strong properties such as confluence (unlike
Interaction Nets) because they may limit the expressive power of LMNtal as a
unifying computational model. Indeed, using the experimental model-checking
mode of our LMNtal implementation, we have found that the evaluation of 22

contains 940 reachable states and two final states, while 23 contains 63118 reach-
able states and three final states. These numbers demonstrate the highly nonde-
terministic and asynchronous nature of our encoding. Of course, the above final
states are identical up to the associativity and commutativity of cp (Section 3).

Henceforth we refer to extended λ-terms as λγδ-terms.

4.1 λγδ-Terms

The purpose of extending the syntax of λ-terms here is to be able to distin-
guish between copied and shared subterms. Rather than taking the λσ-calculus
approach, we take an approach (similar in spirit to the one found in [5]) of
enriching binders of the λ-calculus and restricting the use of each binder.

Specifically, we employ several binder symbols that are semantically equivalent
to λ but have different roles and restrictions. First, we continue to use λ to
construct λ-abstractions, but allows the bound variable x of λx.M to occur free
in M exactly once. Instead, we introduce a new binder γ to represent sharing,
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namely intervening cp’s. In the following, we interpret each γ to represent a cp
with some color. When colors matter, we distinguish between γ’s using ‘ ′ ’s and
write γ0 for a γ with the top color. By (γx.M)N we mean a term in which the
two places indicated by the free x’s share the term N , while as usual, we mean
by M [x �→ N ] a term obtained by replacing the two free x’s by copies of N . To
be an interpretation of cp, γx.M must have exactly two free occurrences of x in
M , and conversely, when a bound variable occurs twice or more in a body, they
must be bound by one or more γ’s.

For instance, λf.λx.f(fx) is represented either as λf.(γf ′.λx.f ′(f ′x))f or
as λf.λx.(γf ′.f ′(f ′x))f . This example indicates that there may be more than
one right place of γ, but we regard two λγδ-terms representing the same graph
structure as structurally equivalent (written ≡λγδ), that is, convertible in zero
steps in either direction. Formally, ≡λγδ enjoys (as in the λ-calculus with let):

L((γx.M)N) ≡λγδ (γx.LM)N (x /∈ fv(L)) (1)
((γx.L)N)M ≡λγδ (γx.LM)N (x /∈ fv(M)) (2)
�y.(γx.M)N ≡λγδ (γx.�y.M)N (x �≡ y and � is any binder) (3)

Another binder we need is δ to discard a bound variable, which corresponds
to rm. For instance, λf.λx.x is represented as λf.(δf ′.λx.x)f or λf.λx.(δf ′.x)f .
Due to space limitations, this paper focuses on γ and cp; the treatment of δ and
rm is analogous and much simpler. Likewise, we omit reactions involving global
free variables, which is even more straightforward.

We define another equivalence relation,≡λ. M1 ≡λ M2 means �(M1) ≡ �(M2),
where �(M) stands for a λ-term obtained by a sequence of β-reductions that
eliminate any binder (including γ and δ) except λ. For instance, λf.(δf ′.λx.x)f
≡λ λf.λx.(δf ′.x))f because both are reduced to the same λ-term, λf.λx.x.

4.2 Relating Reduction Relations and λγδ-Terms

This section illustrates how our rewrite rules in Fig. 4 can be interpreted as the
rewriting of λγδ-terms.

First, the β-reduction of the λ-calculus directly gives a λγδ representation of
Rule beta of Fig. 4:

(λx.M)N � M [x �→ N ] . (4)

We use � to mean the reduction relation between encoded graphs (rather than
the reduction relation over λ-terms they represent). Because x is supposed to
occur exactly once in M , the occurrence conditions of the bound variables of
any λ-term containing (λx.M)N as a subterm is preserved.

Rule a_c expresses interaction between cp and application, and its λγδ repre-
sentation varies depending on how many upper-level binders the copied subterm
refers to. When an application MN is a closed term, Rule a_c corresponds to
the rewriting

(γy.L)(MN) � (γm.γn.L[y �→ mn])MN . (5)
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Fig. 8. Copying λx.M

Note that the order of the two γ’s in the RHS is inessential and that the RHS
is equivalent (modulo ≡λγδ) to (γn.γm.L[y �→ mn])NM . The RHS of (5) is
regarded as the result of copying the toplevel of application only. Since both m
and n occur twice in L after rewriting, the occurrence condition of γ is preserved.

Rule l_c copies a term containing λ-abstractions, so its λγδ representation is
far less obvious. Again we start with cases without upper-level binders:

(γy.L)(λx.M) � (γ′g.L[y �→ λx.gx])(γ ′x.M) . (6)

This represents the copying of the binding constructor, λ, of λx.M . The body
M is still shared by the two copies, but the two bound variables of the two λ-
abstractions must be connected to the bound variable x in the original M via a
cp with a fresh color. The resulting configuration is represented using the pair of
γ′ and γ′, where γ′ stands for a cp with a fresh color immediately beneath γ in
the color ordering, while γ′ (to be used with γ′) stands for the pair of x (occurring
exactly once in M) and M . Thus, when the argument of γ′ is of the form γ′x.M ,
it means that M is shared by two λ-abstractions, and the whole term stands for
a graph in which two cp’s with the same color and inverse polarities are inserted
at the result side and the x side of M as shown in Fig. 8. The free variables of
M other than x in Fig. 8 stand for global free variables or variables bound at
upper levels ((6) is the case where there are no such variables).

When a reaction using a_c or l_c occurs within the (still) shared part of
a λ-abstraction being copied, we must handle the bound variable of that λ-
abstraction properly. For instance, the λγδ representation of an l_c reaction
that copies the second λ of λx.λz.M (whose first λ has already been copied) is
represented as

(γ′g.L[y �→ λx.gx])(γ ′x.λz.M) � (γ′′g.L[y �→ λx.λz.gxz])(γ′x.γ′′z.M). (7)

where the γ′ stands for the pair of x and λz.M containing x as the sole free
variable. In general, more γ’s will be used to represent the copying of deeply
nested λ-abstractions, but the full inductive definition that generalizes (6) and
(7) is omitted here.
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When applying a_c inside a λ-abstraction being copied and x occurs in M or
N (but not both) of λx.MN , we have either of the following:

(γ′g.L[y �→ λx.gx])(γ ′x.MN) � (γ′mn.L[y �→ λx.(mx)n])(γ ′x.M)N (8)
(γ′g.L[y �→ λx.gx])(γ ′x.MN) � (γ′mn.L[y �→ λx.m(nx)])M(γ ′x.N). (9)

When x occurs free in both M and N , the λγδ representation of the applica-
tion takes the form γ′x.(γ0x.MN)x, where the γ0 represents cp to feed x into
both M and N . This case requires temporary translation to a combinator form,
and we allow this λγδ-term to be written also as AS(γ′x.M)(γ ′x.N) (i.e., they
are considered equivalent modulo ≡λγδ), where S is the standard S-combinator
λmn.γ0x.(mx)(nx) that corresponds to cp for distributing x to M and N , and A
is λsmn.smn that corresponds to apply. Then we allow the four “components”,
A, S, (γ′x.M), and (γ′x.N), to be brought independently by repeatedly using
the equivalence

(γy.L)(MN) ≡λγδ (γm.γn.L[y �→ mn])MN (10)

which we apply only when M and N are the components of a combinator rep-
resentation (cf. (5) for real apply). As a consequence, we have

(γ′g.L[y �→ λx.gx])(γ ′x.(γ0x.MN)x) ≡λγδ

(γ′asmn.L[y �→ λx.asmnx])AS(γ′x.M)(γ′x.N)

and finally Rule a_c for this (awkward) case is represented as

(γ′a.L)A � L[a �→ A] . (11)

(The copying of S (for cp) will be discussed later.)
The λγδ representation of Rule c_c1 to handle the annihilation of cp’s is

written as
(γ′g.M)(γ′x.x) � M [g �→ I] (12)

where I stands for the identity combinator. The LHS stands for the pair of a
cp+ and a cp− with the same color, which both disappear on the RHS. The
I combinator corresponds to the LMNtal connector = and annihilates itself as
connectors do.

Rule c_c2 to deal with the reaction of a cp− and a toplevel cp+ is another
case where a combinator representation should be employed, and is considered
dual to a_c:

(γ′s.M)S � M [s �→ S]. (13)

Finally, the λγδ representation of promote for updating the colors of binders is
written as

γ′x.M � γx.M (14)

where the color of γ′ is immediately beneath the color of γ. According to the
semantics of promote, this rule is applicable only when there is no term of the
form γ′x.M inside the λγδ-term being evaluated.
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4.3 Properties

Now we are in a position to give several properties of our encoding through the
reduction relations given in the previous subsection.

We say that a graph (and a λγδ-term representing the graph) is in a cp-normal
form (representing a λ-term M) if it is equivalent, modulo the associativity and
commutativity of cp, to the result of translating M using the translation function
T (Section 3).

Because the reduction of a λ-term may not terminate, we cannot expect the
termination of our graph rewriting in general. However, we can establish the
termination of graph rewriting in the absence of beta.

Proposition 1 Suppose a graph in a cp-normal form is rewritten finitely many
times using the rules in Fig. 4 and then using any rules except beta after that.
Then the rewriting terminates with a cp-normal form.

Proof. See Appendix. 


Proposition 2 Suppose M −→ M ′ (in the λ-calculus) and let a λγδ-term G
be a cp-normal form representing M . Then there exists a cp-normal form G′

representing M ′ such that G �∗ G′.

Proof. Use beta (i.e., (4)) once to rewrite the β-redex in G corresponding to the
β-redex of M to obtain G′′, and then use the rules other than beta to obtain a
λγδ-term G′ representing its cp-normal form. It is easy to check that each rewrite
rule in Section 4.2, except (4) for β-reduction, rewrites a λγδ-term L to L′ such
that L ≡λ L′. Therefore G′′ ≡λ G′. It is also easy to check that �(G′′) = M ′.
Therefore G′ is a cp-normal form representing M ′. 


Theorem 3 (completeness) Suppose M0 −→∗ Mn (in the λ-calculus), and
let G0 be a cp-normal form representing M0. Then there is a Gn in a cp-normal
form representing Mn such that G0 �∗ Gn .

Proof. By repeated application of Proposition 2. 


Theorem 4 (confluence modulo) Suppose G0 is in a cp-normal form, G0 �∗

G1, and G0 �∗ G2. Then there exists a λ-term M ′ and λγδ-terms G3, G4 such
that G1 �∗ G3, G2 �∗ G4 and both G3 and G4 are cp-normal forms represent-
ing M ′.

Proof. We first reduce G1 and G2 using rules other than (4) to obtain their
cp-normal forms G′

1 and G′
2, which must represent some λ-terms N and N ′,

respectively. From the confluence property of the λ-calculus, there exists an M ′

satisfying N −→∗ M ′ and N ′ −→∗ M ′. Along the reduction paths from N to M ′

and from N ′ to M ′, apply Proposition 2 repeatedly to obtain cp-normal forms
representing M ′. 
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Theorem 5 (preservation of strong normalization) Suppose a λ-term M
is strongly normalizing (i.e., does not have infinite reduction sequences). Then
a λγδ-term in a cp-normal form representing M is strongly normalizing in the
λγδ-calculus.

Proof. First we discuss the cases not involving rm. Suppose the λγδ-term has an
infinite reduction sequence. Because reduction without Rule beta is terminating
(Proposition 1), an infinite sequence must have infinite applications of beta. Let
G � G′ be the ith application of beta. This reduction may be done in a shared
part (i.e., N ′ of the form (γx.N)N ′) or elsewhere, but in any case there are λγδ-
terms L and L′ such that (i) L is a cp-normal form of G, (ii) L′ is a cp-normal
form of G′, and (iii) �(L) →k �(L′) for some k (≥ 1) determined by the degree
of sharing. This contradicts the assumption of strong normalization.

Therefore an infinite reduction sequence should contain at least one applica-
tion of beta that “activates” rm, i.e., derives a λγδ-term L containing (δx.N)N ′.
Let L′ be L with (δx.N)N ′ replaced by N . Either N ′ or L′ should have an infi-
nite reduction sequence. However, both �(N ′) and �(L′) are strongly normalizing
in the λ-calculus with the maximum length of reductions strictly less than that
of the original λ-term. Therefore the same argument does not apply to N ′ or L′

indefinitely. 


Theorem 6 (soundness) Suppose G �∗ G′. Then �(G) −→∗ �(G′).

Proof Sketch. By an argument analogous to the first half of the proof of Theo-
rem 5. 

Thus we have made sure that our encoding is quite well-behaved.

Finally, a brief comment on the cost of each reduction. By using a stack
to maintain initial atoms and atoms newly created by rewriting, we can achieve
O(1) amortized time complexity for all the rewrite rules of Fig. 4 except the three
rules that compare or fuse colors: c_c1, c_c2 and promote. The three rules are
essentially operations on sets for which the well-known UNION-FIND algorithm
can achieve almost constant (inverse Ackermann) amortized time complexity.

5 Discussions and Conclusion

This paper described an encoding of the pure λ-calculus into hierarchical graph
encoding and showed that it had many desirable properties. The proposed rewrite
rules allow highly asynchronous and concurrent execution of parameter passing,
incremental copying, and scope control using color hierarchy. The set of rules we
have proposed consists of just eight essential rules, plus rules for tidying up and
initial coloring, and allows graphical understanding. This makes it promising as
an alternative formulation, rather than just the encoding, of the pure λ-calculus.
The encoding has been implemented and tested using LMNtal. To justify our
encoding, we introduced λγδ-terms with additional binders, and illustrated how
intermediate states of graph rewriting could be interpreted as λγδ-terms. The
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λγδ interpretation of graphs made it rather straightforward to show the ade-
quacy of our encoding.

The key idea of our encoding was the color management of copy tokens,
where the “colors” are essentially local names and local names are essentially
equivalence classes of local name occurrences. In other words, we have shown
how a very generic notion of local names can be smoothly integrated into graph
rewriting and contributes to its expressive power. Although LMNtal doesn’t
feature an explicit construct for local names, it allows us to encode local name
and their operations that consist of

1. ordering between names,
2. checking of name equality,
3. detection of garbage names (names with no references), and
4. fusion of two names,

all of which were essential in our encoding but not all of which may be available
in other computational models featuring local name creation.
This paper focused on the pure λ-calculus with no particular reduction strategies.
It is a subject of future work to achieve the sharing of computation. Previous
work on optimal sharing and optimal reduction is quite sophisticated, and there
remains a broad spectrum between optimality and simplicity.
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A Appendix

Proposition 1. Suppose a graph in a cp-normal form is rewritten finitely many
times using the rules in Fig. 4 and then using any rules except beta after that.
Then the rewriting terminates with a cp-normal form.

Proof Sketch. Let ak denote the kth argument of an atom a. We first establish
invariant properties on how cp’s are connected to other atoms:

(i) cp+
3 is connected only to fv3, lambda3, apply3, lambda1, cp−3 , cp+

1 or cp+
2 .

(ii) cp−3 is connected only to apply1, apply2, lambda2, cp−1 , cp−2 or cp+
3 .

Clearly a graph in a cp-normal form satisfies these two properties, and it is easy
to see that each rewrite rule preserves them.

Reactions involving a cp+ starts when a β-reduction eliminates an atom
lambda connected to cp+

3 somewhere in a graph. Then the cp+ descends the tree
formed by apply, lambda, and fv until it is annihilated by fv or meets no more
apply’s or lambda’s. This descent is eventually finished because β-reduction is
not performed except in the first n steps, at that stage the depth of the tree is
fixed.

When the descent of a cp+ terminates, because of the invariant, cp+
3 is con-

nected either to lambda1, cp−3 , cp+
1 or cp+

2 . Because cp+
3 and cp−3 either cross

each other or annihilate themselves, any remaining cp+
3 ends up with connected

to lambda1, cp+
1 or cp+

2 .
A cp+ entering the left branch of lambda is changed to cp−, but because the

links from the left branch of lambda are connected to its right branch via cp,
lambda or apply, the cp− will eventually meet a cp+ with the same color and
disappears. This implies also that all the newly created colors will be changed
back to their parent colors and eventually become the top color.

Therefore, the reaction involving cp’s will terminate, and when it terminates,
all the cp+

3 ’s will have the top color and will be connected to lambda1, cp+
1 or

cp+
2 , satisfying the cp-normal form condition. 
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Abstract. Powerful proof techniques, such as logical relation arguments, have
been developed for establishing the strong normalisation property of term-
rewriting systems. The first author used such a logical relation argument to es-
tablish strong normalising for a cut-elimination procedure in classical logic. He
presented a rather complicated, but informal, proof establishing this property. The
difficulties in this proof arise from a quite subtle substitution operation, which im-
plements proof transformation that permute cuts over other inference rules. We
have formalised this proof in the theorem prover Isabelle/HOL using the Nominal
Datatype Package, closely following the informal proof given by the first author
in his PhD-thesis. In the process, we identified and resolved a gap in one cen-
tral lemma and a number of smaller problems in others. We also needed to make
one informal definition rigorous. We thus show that the original proof is indeed a
proof and that present automated proving technology is adequate for formalising
such difficult proofs.

1 Introduction

Proofs about syntax are often not very deep; rather the difficulties arise from the huge
amount of details. Human reasoners seem to be ill-equipped to cope with such amounts
of details. This observation is based on the experience obtained with a formalisation
[18] of a paper on LF by Harper and Pfenning [6]. Their paper contained many informal
proofs spread over more than 30 pages. The formalisation revealed a gap in one of the
proofs and a small number of minor lacunae in others. Also in the present paper we
describe a formalisation of an informal 20-page proof given by the first author [14] (see
also [17]). This proof claims to establish a strong normalisation result of cut-elimination
in classical logic. However, this formalisation, too, uncovers a number of errors in the
informal proof, including one that required to restate two central lemmas.

In the literature there are numerous informal proofs for the termination of various
cut-elimination procedures. One of the main applications of these procedures is to en-
sure consistency of sequent-calculi, that means that there is no proof for the sequent
. ⊥. Gentzen [5] was the first who proved in this way the consistency of a sequent-
calculus for intuitionistic and classical logic. Most of such cut-elimination procedures,
including Gentzen’s original, are weakly normalising, i.e., they employ a particular
cut-elimination procedure strategy. While for establishing consistency a weakly nor-
malising procedure is usually sufficient, if one wants to do computations with sequent
proofs then strong normalisation is a more useful property. One reason for this is that

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 409–424, 2008.
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cut-elimination in classical logic is not confluent and therefore one might reach differ-
ent cut-free proofs by reducing cuts in a different order or applying different reduction
rules.

For the purpose of calculating the collection of all cut-free proofs reachable from
a classical proof, the first author introduced in [14,17] a strongly normalising proce-
dure for cut-elimination. Note that simply taking an unrestricted version of Gentzen’s
cut-elimination procedure, that is removing the strategy, leads to infinite reduction se-
quences. Therefore the strongly-normalising cut-elimination procedure in [14,17] uses
Gentzen’s original rules for logical cuts, but modifies the rules for commuting cuts. (An
instance of the cut-rule is said to be a logical cut when both cut-formulae are intro-
duced by axioms or logical inference rules; otherwise the cut is said to be a commuting
cut.) An interesting feature of this procedure is that it allows commuting cuts to pass
over other cuts. It achieves strong normalisation by restricting the rules for commuting
cuts so that they must “transport” in one step a commuting cut to all places where the
corresponding cut-formula is introduced (Gentzen defined for this process local reduc-
tion rules, which only rewrite neighboring inference rules in a proof). As a result one
ends up with a quite general reduction system for cut-elimination: for example it can
simulate β-reduction in the λ-calculus [14].

Unfortunately, the generality of the reduction system means also that strong normal-
isation is much more difficult to prove. Our proof establishing this property is based
on symmetric reducibility candidates [2], a powerful proof technique from the term-
rewriting literature. To present the proof in a convenient form, sequent proofs are an-
notated with terms and the cut-elimination procedure is defined as a term-rewriting
system. In particular, the proof transformation for commuting cuts is expressed as a
special sort of proof substitution.

The disadvantage of using terms is that in order to deal with them in a convenient
manner they nearly always need to be quotiented modulo α-equivalence—for exam-
ple in order to have capture-avoiding substitution being definable as a total function.
However, this quotienting makes (formal) reasoning much harder: inductions and re-
cursions over the structure of α-equated terms are not immediately defined concepts;
that means one has to spend some effort to derive them (in contrast with unquotient, or
raw, terms where these concepts are for “free”). Moreover function definitions need to
respect α-equivalence. This precludes, for example, the definition of the function that
returns the immediate subterms of an α-equated term [15]. When working with such
terms, one also often employs an informal variable convention [3] without giving a
proper justification for its validity. By using this convention, one does not consider truly
arbitrary bound variables, as required by the induction principles, but rather bound vari-
ables about which various freshness assumptions are made. Such reasoning is in general
however unsound (see [16] for an example).

In informal “pencil-and-paper” proofs such problems are usually ignored. While this
is harmless in easy proofs of simple properties, in difficult ones ignoring such problems
carries the danger of overlooking errors (see [8, Page 16] for one overlooked by Kleene).
Since the proof given by the first author for the strong-normalisation property is quite
difficult and since a number of researchers have built their results directly on the strong-
normalisation property (for example the lemuridæ system [4] and the typed version of
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the X -calculus [20]) or adapted the same proof-technique to other rewrite systems [21],
it seems prudent to reconsider whether the original informal proof is actually a proof.

The Nominal Datatype Package [19] provides an infrastructure for reasoning con-
veniently about datatypes with a built-in notion of α-equivalence: it allows to specify
such datatypes, provides appropriate recursion combinators and derives strong induc-
tion principles that have the usual variable convention already built-in. The latter comes
with safeguards that make the variable convention a safe reasoning principle.

The main contribution of this paper is a complete formalisation of a difficult strong
normalisation proof.1 This formalisation uncovers a number of errors in the informal
proof and makes one informal definition from the infromal proof more rigorous. The
techniques used for the latter are applicable also in other calculi where non-trivial op-
eration need to be defined over terms with involving binders. In the formalisation we
also encounter some difficulties with a standard formulation for notion of strong nor-
malisation. The rest of the paper is organised as follows: Sec. 2 reviews the informal
proof, that is the definitions for terms, typing-rules and cut-elimination reductions given
in [14,17]. The details about the formalisation are given in Sec. 3; Sec. 4 concludes and
gives suggestions for further work.

2 Sequent Proofs and Cut-Elimination

The main idea behind the cut-elimination procedure presented in [14,17] is to transport
one subderivation of a commuting cut to the place(s) where the cut-formula is intro-
duced. To specify this operation, we used terms to annotate sequent proofs, whose in-
ference rules are inspired by Kleene’s sequent calculus G3a [7] and the sequent calculus
G3c of [13]. These terms encode the structure of a proof and are defined as:

M,N ::= Ax(x, a) Axiom
| Cut(〈a〉M, (x)N) Cut
| AndR(〈a〉M, 〈b〉N, c) And-R
| Andi

L((x)M, y) And-Li (i = 1, 2)
| OriR(〈a〉M, b) Or-Ri (i = 1, 2)
| OrL((x)M, (y)N, z) Or-L
| ImpR((x)〈a〉M, b) Imp-R
| ImpL(〈a〉M, (x)N, y) Imp-L

(1)

where x, y, z are taken from a set of names and a, b, c from a set of co-names. We use
round brackets to signify that a name becomes bound and angle brackets that a co-name
becomes bound.

Our sequents, or typing judgements, are of the form Γ � M � Δ, where Γ is a left-
context, M a term and Δ a right-context. The inference rules for those typing judge-
ments are given in Fig. 1. One distinguishing feature of this term-calculus is that the
structural rules, weakening and contraction, are completely implicit in the form of the
inference rules. Thus we regard contexts as sets of (label,formula)-pairs, as in type the-
ory, and not as multisets, as in LK or LJ. A label is either a name (for left-contexts) or
a co-name (for right-contexts).

1 Available at http://isabelle.in.tum.de/nominal .
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x : B, Γ � Ax(x, a) � Δ, a : B

x : Bi, Γ � M � Δ

y : B1∧B2, Γ � And
i
L((x)M, y) � Δ

∧Li

Γ � M � Δ, a : B Γ � N � Δ, b : C

Γ � AndR(〈a〉M, 〈b〉N, c) � Δ, c : B∧C
∧R

x : B, Γ � M � Δ y : C, Γ � N � Δ

z : B∨C, Γ � OrL((x)M, (y)N, z) � Δ
∨L

Γ � M � Δ, a : Bi

Γ � Or
i
R(〈a〉M, b) � Δ, b : B1∨B2

∨Ri

Γ � M � Δ, a : B x : C, Γ � N � Δ

y : B⊃C, Γ � ImpL(〈a〉M, (x)N, y) � Δ
⊃L

x : B, Γ � M � Δ, a : C

Γ � ImpR((x)〈a〉M, b) � Δ, b : B⊃C
⊃R

Γ1 � M � Δ1, a : B x : B, Γ2 � N � Δ2

Γ1, Γ2 � Cut(〈a〉M, (x)N) � Δ1, Δ2
Cut

Fig. 1. The inference, or typing, rules of our sequent calculus.

To see how our terms encode sequent proofs, suppose a sequent . . . A . B . . . can
be proved. Then in our judgments, A and B have labels (say x : A and a : B), and
M would be an encoding of the proof of . . . A . B . . ., with these labels, so denoted
. . . x :A � M � a :B . . . Then, where the sequent proof is extended further downwards,
x : A and a : B might disappear from the contexts. At the point where they disappear,
the corresponding proof-term includes the binding (x) or 〈a〉 , reflecting the fact that
the choice of label (x or a) is not relevant to the proof as a whole.

To form contexts we have the following conventions: a context can only include a sin-
gle association for each name (similarly for co-names); a comma in a conclusion stands
for the set union and a comma in a premise stands for the disjoint set union. Consider
for example the ⊃R-rule. This rule introduces the (co-name,formula)-pair b : B⊃C in
the conclusion, and consequently, b is a free co-name in the term ImpR((x)〈a〉M, b).
However, b can already be free in the subterm M , in which case b :B⊃C belongs to Δ.
Thus the conclusion of the ⊃R-rule is of the form

Γ � ImpR((x)〈a〉M, b) � Δ⊕ b :B⊃C

where ⊕ denotes set union. Note that x : B and a : C in the premise are not part of the
conclusion because they are intended to become bound. Hence the premise must be of
the form

x :B ⊗ Γ � M � Δ⊗ a :C

where ⊗ denotes disjoint set union. Our cut-rule requires that two contexts are joined
on each side of the conclusion. Thus we take this rule to be of the following form:

Γ1 Δ1 ⊗ a :B x :B ⊗ Γ2 Δ2

Γ1 ⊕ Γ2 Δ1 ⊕Δ2
Cut
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Next we focus on the cut-elimination rules. For this consider the following logical
cut:

Γ1 Δ1, B Γ1 Δ1, C

Γ1 Δ1, B∧C
∧R

B,Γ2 Δ2

B∧C, Γ2 Δ2

∧L1

Γ1, Γ2 Δ1, Δ2
Cut

where we omitted for better readability the labels and term-annotations. We expect this
cut to reduce to

Γ1 Δ1, B B, Γ2 Δ2

Γ1, Γ2 Δ1, Δ2
Cut .

However because of our implicit treatment of the structural rules, some care is needed:
we have to ensure that the cut-formula B∧C does not occur in Δ1 or Γ2. If it does,
then we have not a logical cut, but a commuting cut. In order to distinguish between
both kinds of cuts, we introduce the notion when a term introduces freshly a name or
a co-name (this corresponds to the usual definition of a main formula in an inference
rule).

Definition 1. A term, M , introduces the name z or co-name c, if and only if M is of
the form

for z: Ax(z, c)
Andi

L((x)S, z)
OrL((x)S, (y)T , z)
ImpL(〈a〉S, (x)T , z)

for c: Ax(z, c)
AndR(〈a〉S, 〈b〉T , c)
OriR(〈a〉S, c)
ImpR((x)〈a〉S, c)

A term freshly introduces a name, if and only if none of its proper subterms introduces
this name. In other words, the name must not be free in a proper subterm. Similarly for
co-names.

Armed with this definition we can state the cut-reduction rules for dealing with logical
cuts (they correspond to Gentzen’s rules for logical cuts):

Definition 2 (Reductions for Logical Cuts, i = 1, 2)

Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b), (y)And
i
L((x)N, y))−−→Cut(〈ai〉Mi, (x)N)

if AndR(〈a1〉M1, 〈a2〉M2, b) and And
i
L((x)N, y) freshly introduce b and y, resp.

Cut(〈b〉Or
i
R(〈a〉M, b), (y)OrL((x1)N1, (x2)N2, y))−−→Cut(〈a〉M, (xi)Ni)

if Or
i
R(〈a〉M, b) and OrL((x1)N1, (x2)N2, y) freshly introduce b and y, resp.

Cut(〈b〉ImpR((x)〈a〉M, b), (z)ImpL(〈c〉N, (y)P , z))
−−→Cut(〈a〉Cut(〈c〉N, (x)M), (y)P ) or
−−→Cut(〈c〉N, (x)Cut(〈a〉M, (y)P ))

if ImpR((x)〈a〉M, b) and ImpL(〈c〉N, (y)P , z) freshly introduce b and z, resp.

Cut(〈a〉M, (x)Ax(x, b))−−→M [a �→b] if M freshly introduces a

Cut(〈a〉Ax(y, a), (x)M)−−→M [x �→y] if M freshly introduces x
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In this definition we use M [a �→ b] to stand for capture-avoiding renaming of a to b in
M (similarly M [x �→y] for names).

The definition of the reduction rules for dealing with commuting cuts is more subtle.
Consider the following proof (where again we left out the labels and annotations):

π1

⎧⎪⎨
⎪⎩ A B⊃C, A•

A, B C, A•

A B⊃C, A
⊃R

A∨A B⊃C, A
∨L

A	 D, A A	 D, A

A D, A∧A
∧R

A	, E A A	, E A

A, E A∧A
∧R

A, D⊃E A∧A
⊃L

⎫⎪⎬
⎪⎭ π2

A∨A, D⊃E B⊃C, A∧A
Cut

The cut-formulaA is neither a main formula in the inference rule ∨L, nor in⊃L (on the
term-level that means that the terms for π1 and π2 do not freshly introduce the name
and co-name corresponding for A). Therefore the cut is a commuting cut. In π1 the
cut-formula is a main formula in the axioms marked with a bullet; in π2, respectively,
in the axioms marked with a star. Eliminating the cut in the proof above means to
either transport the derivation π2 to the places marked with a bullet and “cut it against”
the corresponding axioms, or to transport π1 and “cut it against” the axioms marked
with a star. In both cases the derivation being transported is duplicated. We realise
these operations with two symmetric forms of substitution, which we shall write as
P{x := 〈a〉Q} and S{b := (y)T}.

Whenever such a substitution is “next” to a term in which the cut-formula is intro-
duced, then the substitution becomes an instance of the Cut-term constructor. In the
following two examples we shall write {σ} and {τ} for the substitutions {c := (x)P}
and {x := 〈b〉Q}, respectively.

AndR(〈a〉M, 〈b〉N, c){σ} = Cut(〈c〉AndR(〈a〉M{σ}, 〈b〉N{σ}, c), (x)P )
ImpL(〈a〉M, (y)N, x){τ} = Cut(〈b〉Q, (x)ImpL(〈a〉M{τ}, (y)N{τ}, x))

In the first term the formula labelled with c is the main formula and in the second the
one labelled with x. So in both cases the substitutions “expand” to cuts, and in addition,
the substitutions are pushed inside the subterms. This is because there might be several
occurrences of c and x: both labels need not have been freshly introduced. We are left
with specifying the cases where the name or co-name that is being substituted for is
not a label of the main formula. In these cases the substitutions are pushed inside the
subterms or vanish in case of the axioms. Fig. 2 gives all clauses for the cases where a
cut expands and the clauses for when a substitution is pushed inside the terms. We do
not need to worry about inserting contraction rules when a term is duplicated, since our
contexts are sets of labelled formulae, and thus contractions are made implicitly.

There is one point worth mentioning about the clauses marked with � in Fig. 2.
Although these clauses are not needed for strong normalisation, they are needed to
have the property

M{x := 〈a〉P}{b := (y)Q} = M{b := (y)Q}{x := 〈a〉P}

for b not free in 〈a〉P and x not free in (y)Q. This property is crucial in our strong
normalisation proof. However, this property does not hold for a slightly simpler defi-
nition of the substitution operation where the lines marked with � are deleted and the

first two clauses are replaced by Ax(x, c){c := (y)P} def= P [y �→ x] and Ax(y, a){y :=
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def

def

def

def

def

def

def

def

def

def

Otherwise we push the substitution inside the subterms

def

def

def

def

def

def

def

def

Fig. 2. Definition of the substitution operation. This operation is used in the cut-reduction dealing
with commuting cuts. For more details see [14,17].

〈c〉P} def= P [c �→ a]. This simpler definition corresponds to the more familiar method
how cuts are eliminated. A consequence of the lines marked with �, as we shall see, is
that calculations and properties involving substitution are quite subtle.

However, we are now in a position to complete the definition of our cut-elimination
procedure by stating how commuting cuts reduce, namely:

Definition 3 (Reductions for Commuting Cuts)

Cut(〈a〉M, (x)N) −−→ M{a := (x)N} if M does not freshly introduce a, or
−−→ N{x := 〈a〉M} if N does not freshly introduce x

and close the reduction relation under term-formation. The important properties of this
cut-elimination procedure are subject-reduction and strong normalisation.

Theorem 1 (Subject Reduction and Strong Normalisation [14,17])

• If Γ � M � Δ and M −−→M ′ then Γ � M ′ � Δ.
• If Γ � M � Δ then M is strongly normalising w.r.t. −−→ .
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3 The Formalisation of the Strong Normalisation Proof

In this section we describe the formalisation of the strong normalisation proof. While
the informal description of this proof is already quite detailed—the details are spread
over more than 20 pages in [14], we found that several subtle points were overlooked,
one central lemma is faulty and has to be restated, and a definition has to be made
rigorous.

The definition of the terms given in (1) and formulae (which we omitted in this pa-
per) pose no problem for the Nominal Datatype Package, as it was designed to deal with
such definitions. From the definition of terms, the package derives automatically a weak
and a strong structural induction principle (the strong one has the variable convention
already built in [19]), and provides a recursion combinator for defining functions over
the structure of the terms [15]. With this combinator, it is easy to define the capture-
avoiding renaming functions M [a �→ b] and M [x �→ y], although these definitions re-
quire that several proof-obligations are discharged by the user (the proof-obligations
ensure that the renaming-functions preserve α-equivalence).

The typing-system rules given in Fig. 1 can also be formalised with ease, except
that we have chosen to represent typing-context as (label,formula)-lists rather than sets.
This requires that we add appropriate validity and freshness-constraints to the inference
rules. A context is defined to be valid provided no name or co-name occurs twice. This
can be stated with the rules:

valid([])
a # Δ valid(Δ)
valid ((a : B) ::Δ)

x # Γ valid(Γ )
valid ((x : B) ::Γ )

where a # Δ (similarly x # Γ ) stands for a being fresh for Δ (i.e. not occurring in
Δ). Using this definition and freshness, the axiom and ∧R-rules, for example, look in
the formalisation as follows:

valid(Γ ) valid(Δ) (x : B) ∈ Γ (a : B) ∈ Δ

Γ � Ax(a, b) � Δ

Γ � M � (a : B) ::Δ Γ � N � (b : C) ::Δ
a # Δ b # Δ Δ′ ≈ (c : B∧C) ::Δ valid (Δ′)

Γ � AndR(〈a〉M, 〈b〉N, c) � Δ′ ∧R

where ≈ stands for two lists being equal if regarded as sets.
Most of the effort during the formalisation we had to invest in defining the sub-

stitution operation and proving associated lemmas. One reason for this is that the in-
formal definition given in Fig. 2 makes from a formal point of view only little sense.
For example, merging the two clauses given for {c := (x)P} and the term-constructor
AndR(〈a〉M, 〈b〉N, d) into an if -statement (as is required in a formal definition by re-
cursion over the structure of terms) leads to:

AndR(〈a〉M, 〈b〉N, d){c := (x)P} def=
if c = d

then Cut(〈d〉AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d), (x)P )
else AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d)



Revisiting Cut-Elimination: One Difficult Proof Is Really a Proof 417

where the “true”-branch corresponds to the case where the substitution expands to a
cut, and the “false”-branch where the substitution is just pushed inside the subterms M
and N . The obvious problem is that we attempt to push a substitution under binders
(in this example the binders are 〈a〉 and 〈b〉 ). This is only possible provided a and b
do not occur freely in the term P . Hence we have to restrict the clause with suitable
preconditions, namely:

provided a # P and b # P then

AndR(〈a〉M, 〈b〉N, d){c := (x)P} def=
if c = d

then Cut(〈d〉AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d), (x)P )
else AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d)

Since we define substitution over α-equivalence classes, we still obtain a total function
with this restriction in place. The hope is that we can always rename AndR(〈a〉M, 〈b〉N,
d) appropriately so that the preconditions are met. However, this is futile for the proof
substitution operation, because in the “true”-branch also the (free) co-name d is bound
with the scope of P—and we cannot rename (potentially) free co-names in a term with-
out violating α-equivalence. The way out is to choose in the “true”-branch explicitly a
fresh co-name d′ and define the clause formally as

provided a # P and b # P then

AndR(〈a〉M, 〈b〉N, d){c := (x)P} def
=

if c = d
then fresh (λd′.Cut(〈d′〉AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d′), (x)P ))

else AndR(〈a〉(M{c := (x)P}), 〈b〉(N{c := (x)P}), d)

using the fresh function defined in [10]. Space constraints prevent us to give more de-
tails about this function here, except that this function characterises when a construction
that picks a fresh (co-)name is independent of which fresh (co-)name is chosen. While
this clause (and similar ones for the other term-constructors) give us the properties
we expect from the substitution operation (which defines cut-reductions), the corre-
sponding definition leads to quite complicated proofs. One reason is that in the “true”-
branches we need to find a fresh (co-)name so that the fresh function provides us with
the desired result. At the moment this has to be done by hand, as the Nominal Datatype
Package provides only little help for dealing conveniently with the fresh functions.

Having properly defined the substitution operation, we can prove facts about how
substitutions interact; for example the following form of the substitution lemma is
needed in several places in the proof:

Lemma 1 (Some Substitution Lemmas)

• If x # P then M{x := 〈c〉Ax(y, c)}{y := 〈c〉P} = M{y := 〈c〉P}{x := 〈c〉P}
• If x # (y)Q then M{x := 〈a〉P}{b := (y)Q} = M{b := (y)Q}{x := 〈a〉(P{b := (y)Q})}

where the first one is needed in the proof of the second (note that in the second x # (y)Q
stands for x = y or x # Q). We prove such lemmas using the strong structural induction
principle for terms, as this minimises the need for renaming bound names and co-names.
Still these proofs require some considerable effort due to the sheer number of cases that
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need to be analysed. In order to appreciate the difficulties involving the substitution
operation for terms, note that the symmetric property for the first part of the lemma,
namely

M{y := 〈c〉P}{x := 〈c〉Ax(y, c)} = M{y := 〈c〉P}{x := 〈c〉P}

does not hold. The formalisation of properties about substitution requires approximately
20% of the formalisation code.

In comparison with the definition of the substitution operation, the definition of the
cut-reduction relation is relatively simple. It relies on the auxiliary notions for when a
term freshly introduces a name or co-name; for example

fin(Ax(z, a), z)
z # (x)M z # (y)N

fin(OrL((x)M, (y)N, z), z)

and so on for the notion of freshly introducing a name (similarly fic for freshly intro-
ducing a co-name). The formal definition of the cut-reductions look then as follows (the
first two are examples for logical cuts; the last for a commuting cut):

fic(M,a)
Cut(〈a〉M, (x)Ax(x, b))−−→M [a �→b]

fic(AndR(〈a1〉M1, 〈a2〉M2, b), b) fin(And1
L((x)N, y), y)

Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b), (y)And1
L((x)N, y))−−→Cut(〈a1〉M1, (x)N)

¬fic(M,a)
Cut(〈a〉M, (x)N)−−→M{a := (x)N}

In addition to those rules we specified in the formalisation a slew of congruence rules,
such as:

M −−→M ′

AndR(〈a〉M, 〈b〉N, c)−−→AndR(〈a〉M ′, 〈b〉N, c)

N −−→N ′

AndR(〈a〉M, 〈b〉N, c)−−→AndR(〈a〉M, 〈b〉N ′, c)

These rules were not explicitly mentioned in the informal proof. For the cut-reductions
and fin (similarly fic) we need to establish the lemma:

Lemma 2. If M −−→M ′ and fin(M,x) then fin(M ′, x).

This is relatively easy to prove by a strong induction over M −−→M ′. We next es-
tablish important properties characterising the interactions between cut-reductions and
substitution:

Lemma 3

• M{x := 〈c〉Ax(y, c)}−−→ ∗M [x �→y]
• M{c := (x)Ax(x, d)}−−→ ∗M [c �→d]
• If M −−→M ′ then M{σ}−−→ ∗M ′{σ}.
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The first two properties are by strong structural inductions over M ; the third is by strong
induction over the reduction M −−→M ′. All proofs require many case distinctions and
rely on additional proofs relating substitutions and the inductively defined predicates fin
and fic. The third property in this lemma is interesting insofar as it is quite un-intuitive
considering a similar property for capture avoiding substitution in the lambda-calculus.2

In the informal proof [14,17], this lemma was stated and proved as:

Lemma 4 (Faulty). If M −−→M ′ then either M{σ}=M ′{σ} or M{σ}−−→M ′{σ}.

The case where M{σ} = M ′{σ} was correctly analysed. It involves reductions of the
form

Cut(〈a〉M, (x)Ax(x, b))−−→M [a �→b]

with M being of the form Ax(y, a) and {σ} being {y := 〈c〉P}. In this case M{y := 〈c〉P}
is defined as Cut(〈c〉P , (x)Ax(x, b)), and M ′{y := 〈c〉P} as Ax(y, b){y := 〈c〉P}, which
in turn is defined as Cut(〈c〉P , (y)Ax(y, b)). Both terms are equal by α-equivalence.

However, the case where M{σ} needs more than one reduction to reach M ′{σ} was
overlooked! Such a case occurs with logical cuts, for example

Cut(〈b〉AndR(〈a1〉M1, 〈a2〉M2, b),(z)And1
L((x)N, z))−−→Cut(〈a1〉M1,(x)N )

with the proviso that M1 is of the form Ax(y, a1). In this case the left-hand side M{σ}
is

Cut(〈b〉AndR(〈a1〉Cut(〈c〉P , (y)Ax(y, a1)), 〈a2〉M2{σ}, b),(z)And1
L((x)N{σ}, z))

which in a single step reduces to

Cut(〈a1〉Cut(〈c〉P , (y)Ax(y, a1)),(x)N{σ})

and in possibly more than one step reduces to

Cut(〈a1〉P [c �→a1],(x)N )

which in turn is equal to M ′{σ}. Since in the formalisation we have to go through every
case one by one, such cases cannot be overlooked there. Fortunately, the proof of the
more general lemma goes through. Fortunately, also, the more general property does
not destroy the overall proof: the next lemma (Lem. 7 below) that uses this lemma can
be modified to deal with the many step-reduction sequence.

Next the informal proof considered the notion for a term being strongly normalising.
This notion was stated as all reductions sequences starting from a term must be finite.
As the formal definition of a term M being strongly normalising we used the inductive
definition:

∀M ′.M −−→M ′ implies M ′ ∈ SN

M ∈ SN (2)

This is a standard definition used in many formalisations. Two interesting phenomena
arose however with this definition. One was that in the informal proof we stated in a
passing (one-sentence) remark that the strong normalisation is preserved under renam-
ings, namely

2 In the λ-calculus the property is if M −−→ βM ′ then M{σ}−−→ βM ′{σ}.
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Lemma 5. If M ∈ SN then M [a �→b] ∈ SN and also M [x �→y] ∈ SN .

This lemma is “obvious” because renaming cannot create any new redexes, or cuts
(unlike the proof substitution which might create new cuts). Surprisingly, however, this
fact caused us a lot of frustration in the formalisation and resulted in slightly more than
10%(!) of the formalisation code. The problem is that we know by induction hypothesis
that (∀M ′.M −−→M ′ implies M ′ ∈ SN). We can further assume that for an M ′,
M [a �→ b] reduces to M ′, and we have to show that M ′ ∈ SN . To do so, we have to
analyse how M [a �→b] reduces w.r.t. M . As a result we have to show a fact:

Lemma 6. If M [a �→ b]−−→M ′, then there exists an M0 such that M ′ = M0[a �→ b]
and M −−→M0.

Its proof needs to analyse all the term constructors and all the applicable reductions.
This is extremely laborious. The problem is independent of our calculus and would
also arise in the λ-calculus. The fact that the lemma is “obvious”, but its proof is hard,
seems to indicate that the definition shown in (2) is not the right definition for estab-
lishing Lemma 5. We have however not seen any better formal definition for strong
normalisation in the term-rewriting literature.

Finally the informal proof establishes that all typable terms are strongly normalising.
Surprisingly the symmetric candidates �(B)� and �〈B〉� defined for this part of the proof
do not create any difficulties (the corresponding definitions are therefore omitted here,
see [14,17]). We show that the candidates are closed under reductions

Lemma 7 (Reduction Preserves Candidates)

• If 〈a〉M ∈ �〈B〉� and M −−→ ∗M ′, then 〈a〉M ′ ∈ �〈B〉�.
• If (x)M ∈ �(B)� and M −−→ ∗M ′, then (x)M ′ ∈ �(B)�.

In comparison with the informal proof, however, the assumptions in this lemma had to
be strengthened to deal with many-step reductions (i.e. −−→ ∗) because of the flaw in
the third part of Lemma 3. However, this generalisation does not affect the structural
induction over B that is employed to establish Lemma 7. Now we can show how the
candidates imply the property of strong normalisation, namely

Lemma 8

• If 〈a〉M ∈ �〈B〉�, then M ∈ SN ;
• If (x)M ∈ �(B)�, then M ∈ SN .

The last difficult lemma spells out the conditions when a cut is strongly normalising,
namely:

Lemma 9. If M,N ∈ SN and 〈a〉M ∈ �〈B〉�, (x)N ∈ �(B)� then

Cut(〈a〉M, (x)N) ∈ SN .

The informal proof of this lemma is inspired by a technique of Prawitz [11]. It pro-
ceeds by induction over a lexicographically ordered induction value of the form (δ, μ, ν)
where δ is the size of the cut-formula B; μ and ν are the longest reductions sequences
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starting from M and N . Because of the assumptions that M ∈ SNand N ∈ SN , the
informal proof claims without proof that these maximal lengths must be finite and the
induction therefore is sensible.

Here arises, however, the second problem with the definition of strong normalisation
shown in (2): while this claim is indeed true for the reduction system at hand, it is not
true in general. The reason is that a strongly normalising term does not need to have
an upper bound for the longest reduction sequence: consider the term M that reduces
in one step to the normal form M1, but also in two steps to the normal form M2 and
so on for any n. For this term we have that every reduction sequence starting from M
is finite, but there is no upper bound for the length of the longest reduction sequence
starting from M . This problem does not arise in our reduction system, because −−→
is only finitely branching. Together with the König’s lemma one can then infer that
a longest reduction sequence indeed exists for every strongly normalising term. The
problem with this argument, however, is that establishing that −−→ is only finitely
branching is far from trivial and also a formalisation of König’s lemma is not readily
available in Isabelle.

We were able to completely avoid the work involved with this argument by perform-
ing a well-founded induction, not on the triple using the longest reduction sequence,
but directly on the predicate SN (which is well-founded). This change in the induction
value does not require any changes to the other arguments in the proof. Though we had
to supply details for cases which were not present in the informal proof and which were
not like the other cases that were shown.

The final proof builds up a closing substitution for a well-typed term Γ � M � Δ
and shows that M is strongly normalising under this closing substitution. While all
these proofs involving candidates are quite laborious, they do not contain any surprises
(except the point about the length of the longest reduction sequence of a strongly nor-
malising term). Therefore we omit all details about them. The formalisation is part of
the Nominal Datatype Package and can be downloaded from

http://isabelle.in.tum.de/nominal

4 Conclusion

We have described a formalisation of an informal proof establishing the strong-normali-
sation property of the cut-elimination procedure for classical logic given in [14,17]. Be-
sides confirming that the informal proof is really a proof (all errors can be fixed), the
purpose of this paper is to convey the point that such formalisations are feasible and
the formal proving techniques are within reach of being useful in “everyday” reasoning
(The distribution of the Nominal Datatype Package contains a number of other formal-
isations from a wide range of topics). The formalisation of the strong-normalisation
proof was still quite demanding. However, given that the time formalising the informal
proof (which was however already quite detailed) is roughly equal to the time finding
and writing down this informal proof, then this additional effort seems more than ac-
ceptable to us. The additional time spent with formalising the proof ensures that no
case is overlooked and that the definitions are rigorous. Also, having a formalisation of
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the proof allows one to “play” with the definitions. This is in contrast with an informal
proof where it is rather impractical to change any definition, since checking that the
change does not affect the proof is “equal” to re-doing the proof. In contrast, we hope
to be able to improve in the future upon the problems we encountered with the defi-
nition of strong normalisation. Once we find a more convenient alternative definition
for strong normalisation, we can just re-run the formalisation and quickly focus on the
places where the proof might break with the new definition.

Our formalisation is at the moment the biggest single-file formalisation in the whole
Isabelle distribution. Its size is slightly more than 770 KByte. It took us approximately
5 person-weeks to complete the formalisation (including finding fixes for all the prob-
lems). The big size and speed with which the formalisation was completed is due to the
fact that in cut-elimination proofs many cases are repetitive and only differ in details.
So we were often able to complete one case and then cut-and-paste this case in place of
the other cases. The copied code then often only needed tweaking to deal with slightly
different assumptions and proof-obligations. The formalisation needs approximately 14
minutes to check on a standard laptop. Our work is now used for benchmarking Is-
abelle and also has proved to be a very useful testcase for any new features that are
implemented in Isabelle.

The Nominal Datatype Package has been invaluable for proving properties about
terms involving simple, lambda-calculus-like binders (our terms annotated to sequent-
proofs are only slightly more complicated than the λ-terms annotated to natural
deduction proofs). We note that de-Bruijn indices can be used in principle for such
formalisations involving α-equated terms; but also note practical difficulties when sev-
eral kinds of binders need to be treated and some binders even occur iterated in term-
constructors (like in our ImpR). In our opinion, a proof on the scale that we have done
here employing de-Bruijn indices is not feasible, because of the complications arising
from our substitution operation. Twelf, a system that provides an infrastructure for rea-
soning about higher-order abstract syntax—another existing technique for dealing with
binders, seems not yet streamlined enough to deal conveniently with logical relation
arguments on the scale that are used in the informal proofs above (See [12] for an ap-
proach about how to perform logical relation arguments in Twelf). The formalisation
of a weakly normalising cut-elimination procedure done by Pfenning [9] using higher-
order abstract syntax in Twelf does not seem to scale to our strong normalisation proof,
as it is impossible to define our notion of symmetric reducibility candidates in Twelf.
Also our proof is substantially more complex than the proof underlying the formalisa-
tion by Pfenning (he considers only weak normalisation). Aydemir et al. have reported
recently [1] that a locally nameless representation for terms with binders has been very
useful in formalising informal proofs from programming language theory. We have not
yet been able to thoroughly compare their results with ours and do not know how their
results scale to our quite difficult proof. For example, what helped us to avoid mistakes
in our formalisation was that names and co-names have different type. As a result the
type-system will immediately complain whenever we mixed up these names. It remains
to be seen whether a locally nameless representation of terms can be defined so that
formalisations have a similar convenience.
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The most annoying aspect in our formalisation is the lack of automated support for
dealing with the fresh function. Finding an appropriate fresh name or co-name that
meets the conditions can be easily automated. However the verification of the conditions
associated with the fresh function seems hard to automate. This and comparing our work
with the one by Aydemir et al. we leave as future work.

Acknowledgements. The first author thanks Jeremy Dawson and Michael Norrish who
gave helpful hints to formalise Lemma 9. Markus Wenzel and Stefan Berghofer stream-
lined Isabelle to cope with the size of the formalisation.
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1. Aydemir, B., Charguéraud, A., Pierce, B.C., Pollack, R., Weirich, S.: Engineering Formal
Metatheory. In: Proc. of the 35rd Symposium on Principles of Programming Languages
(POPL), pp. 3–15. ACM, New York (2008)

2. Barbanera, F., Berardi, S.: A Symmetric Lambda Calculus for “Classical” Program Ex-
traction. In: Hagiya, M., Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 495–515.
Springer, Heidelberg (1994)

3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1981)

4. Brauner, P., Houtmann, C., Kirchner, C.: Principles of Superdeduction. In: Proc. of the 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 41–50 (2007)

5. Gentzen, G.: Untersuchungen über das logische Schließen I and II. Mathematische Zeit-
schrift 39, 176–210, 405–431 (1935)

6. Harper, R., Pfenning, F.: On Equivalence and Canonical Forms in the LF Type Theory. ACM
Transactions on Computational Logic 6(1), 61–101 (2005)

7. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)
8. Kleene, S.C.: Disjunction and Existence Under Implication in Elementary Intuitionistic For-

malisms. Journal of Symbolic Logic 27(1), 11–18 (1962)
9. Pfenning, F.: Structural Cut Elimination. Information and Computation 157(1–2), 84–141

(2000)
10. Pitts, A.: Alpha-Structural Recursion and Induction. Journal of the ACM 53, 459–506 (2006)
11. Prawitz, D.: Ideas and Results of Proof Theory. In: Proceedings of the 2nd Scandinavian

Logic Symposium. Studies in Logic and the Foundations of Mathematics, vol. 63, pp. 235–
307. North-Holland, Amsterdam (1971)
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Reduction Under Substitution

Jörg Endrullis and Roel de Vrijer

VU Vrije Universiteit Amsterdam

Abstract. The Reduction-under-Substitution Lemma (RuS), due to van
Daalen [Daa80], provides an answer to the following question concerning
the lambda calculus: given a reduction M [x := L] � N , what can we
say about the contribution of the substitution to the result N . It is related
to a not very well-known lemma that was conjectured by Barendregt in
the early 70’s, addressing the similar question as to the contribution of
the argument M in a reduction FM � N . The origin of Barendregt’s
Lemma lies in undefinablity proofs, whereas van Daalen’s interest came
from its application to the so-called Square Brackets Lemma, which is used
in proofs of strong normalization.

In this paper we compare various forms of RuS. We strengthen RuS to
multiple substitution and context filling and show how it can be used to
give short and perspicuous proofs of undefinability results. Most of these
are known as consequences of Berry’s Sequentiality Theorem, but some
fall outside its scope. We show that RuS can also be used to prove the
sequentiality theorem itself. To that purpose we give a further adaptation
of RuS, now also involving “bottom” reduction rules, sending unsolvable
terms to a bottom element and in the limit producing Böhm trees.

1 Introduction

The Reduction-under-Substitution Lemma (RuS) addresses the following ques-
tion concerning the λ-calculus: given a reduction M [x := L] � N , what is the
contribution of the substitution to the result N? Or, equivalently: how much
of N can be produced already by M , independently of the substitution? The
answer to the second question will turn out to be: a prefix of N . Thus there is
a natural inverse correspondence with the so-called prefix property, cf. [BKV00]
or [Ter03], Ch. 8.

RuS was formulated by Diederik van Daalen [Daa80] as a slightly strengthened
version of an observation of Barendregt [Bar74], addressing the same questions
as to the contribution of the argument M in a reduction FM � N . We will
study Barendregt’s Lemma (BL) in Section 2. Because of its more general form,
van Daalen’s formulation allowed for an easier and more elegant proof than BL.
RuS found its way into Barendregt’s book on the λ-calculus [Bar84], where it
ended up as Exercise 15.4.8. This literally seemed to be the end of the story, as
subsequently little more attention has been paid in the literature to either BL
or RuS. Unjustly so, as we hope to make clear in this paper.

The origin of Barendregt’s Lemma lies in undefinability. In accordance, Ex-
ercise 15.4.8 in [Bar84] is employed there as one of two methods to obtain the

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 425–440, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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undefinability of Church’s δ (using a particular encoding of numerals), the other
method using a Böhm-out technique. In [Vri87] Barendregt’s Lemma was used
for a quick proof of the undefinability of surjective pairing in the λ-calculus,
which was one of the early results of Barendregt in [Bar74], there proved using
the technique of underlining.

Van Daalen’s interest in reduction under substitution derived from the fact
that it implied the so-called Square Brackets Lemma (SqBL), a structural lemma
on the contribution of a substitution in a reduction to abstractor form. The
SqBL was the key to van Daalen’s new and original method for proving strong
normalization. Use has been made of this method in [Daa80], [Lév75], [Bar84],
Ch. 14, and [Oos97]. It is also discussed in [Vri07], to which we refer for a detailed
historical account of Barendregt’s Lemma and reduction under substitution.

The aim of this paper is twofold. First, to give a cogent exposition of reduction
under substitution. Thereto the first two sections are explanatory in character.
The second goal is to explore the potential of RuS for producing new insights,
proof methods and results in the λ-calculus, starting by generalizing RuS to
multiple subsitution, and later also extending it to filling holes in contexts. The
essential difference is that hole filling may introduce variables that are captured
by a binder, whereas substitution may not.

We will present new elementary proofs of undefinability results that are some-
times presented as applications of Berry’s Sequentiality Theorem (BST),
[Ber78, Ber79], [Bar84]. BST is in terms of Böhm trees, and therefore it is intrinsi-
cally infinitary, whereas RuS is just a structural observation on finite reductions.
We also use RuS to prove the Perpendicular Lines Theorem for open terms with
respect to β-conversion, thereby confirming a conjecture from [BS99]. Finitary
proofs of classic undefinability results have also been obtained in [BKOV99]. In
Section 5 we will briefly discuss the relation to our approach.

We will also pay attention to the issue of sequentiality itself. In Section 7
we first prove a new sequentiality result that is purely in terms of β-reduction.
Then we tackle the original BST, adapting RuS to cover also the Böhm-reduction
rules, sending unsolvable terms to a bottom element and in the limit producing
Böhm trees. We note that some of our results fall outside the scope of BST.

1.1 Outline

In Section 2 we start out by a discussion of Barendregt’s Lemma. We illustrate
the use of BL by giving short proofs for the undefinability of surjective pairing
in the λ-calculus and for the Genericity Lemma. We generalize the Genericity
Lemma to a form that is not implied by BST.

Then in Section 3 the Reduction-under-Substitution Lemma (RuS) is intro-
duced and its relation to Barendregt’s Lemma indicated. The use of RuS is
illustrated by the Square Brackets Lemma.

A proof of RuS will be given in Section 4, at the same time generalizing it to
multiple substitutions.

Then in Section 5 a couple of undefinability results are presented, related to
the sequential nature of the λ-calculus.
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In Section 6 we indicate how our analysis can be extended from substitutions
to subterms within an arbitrary context. As an application we prove a form of
the Perpendicular Lines Theorem.

Finally in Section 7 we turn to the theme of sequentiality. First a new se-
quentiality result is established as a corollary to RuS and then we use RuS in
an analysis of Berry’s Sequentiality Theorem.

We conclude by assessing our results in Section 8, giving links to relevant
related work and pointing out possible lines for further research.

1.2 Preliminaries

We are concerned with the pure λ-calculus, with which we assume familiarity. We
adopt the notations and conventions of the standard text [Bar84]. In particular,
we use → to denote one-step β-reduction, � for the reflexive, transitive closure
of →, and = for β-convertibility. Moreover, ≡ stands for syntactive equivalence
modulo α-conversion.

For terms t, s and a position p in t we use t|p for the subterm of t at position
p, and t[s]p denotes the result of replacing the subterm at position p in t by s.
The empty context is denoted by [ ]. Note that in particular C[[ ]]p denotes the
result of placing a hole at position p in the context C.

2 Barendregt’s Lemma

At the end of [Bar72], a handwritten note of Henk Barendregt on the undefin-
ability of Church’s δ in combinatory logic (CL), one finds a statement that seems
to be added just as an afterthought. It is not widely known, probably just by a
group of insiders, who refer to it as Barendregt’s Lemma (BL). We quote [Bar72]
verbatim:

Theorem 12. If CL . FM � N , then there are subterm occurrences Ai of
N such that CL . Fx � N ′ where N ′ is the result of substituting xNi for the
subterm occurrence Ai and such that CL . [x/M ]N ′ � N .

Proof. Same method as the proof of 9.

Here “Same method as the proof of 9” refers to the method used earlier in the
manuscript, an intricate syntactic analysis using the technique of underlining.

We will now give a rendering of BL for the λ-calculus that is in several aspects
somewhat more explicit.

First, the prefix that remains invariant in passing from N ′ to N can be
specified as a multi-hole context C (with 0 or more holes!), such that we have
N ≡ C[A1, . . . , An] and N ′ ≡ C[xN1, . . . , xNn], with n ≥ 0.

Secondly, the notation xNi should be elucidated. Define an x-vector as a
term of the form xP1 . . . Pk (k ≥ 0). Then what is meant is that each xNi is an
x-vector, that is, a term xNi ≡ xNi,1 . . . Ni,ki .

Thirdly, we can be more specific about the reduction N ′[x := M ] � N . It
takes place below the prefix C, so it can be divided into reductions (xNi)[x :=
M ] � Ai. Making this explicit rules out syntactic accidents.
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Lemma 1 (Barendregt’s Lemma). Let FM � N and let x be a variable not
occurring in F . Then there are a term N ′, an n-hole context C (with n ≥ 0), x-
vectors B1, . . . , Bn and terms A1, . . . , An, such that Fx � N ′ ≡ C[B1, . . . , Bn],
Bi[x := M ] � Ai (1 ≤ i ≤ n) and N ≡ C[A1, . . . , An]. See Fig. 1.

Proof. In the next section we will see that this lemma follows immediately from
Lem. 6, the Reduction-under-Substitution Lemma. � 

The lemma is depicted in Fig. 1, where we use the notations B∗
i ≡ Bi[x := M ]

and Bi �→ B∗
i .

Fx � N ′ ≡ C[B1, . . . , Bn]
�→ · · · �→

C[B∗
1 , . . . , B

∗
n]

�

· · ·

�

C[A1, . . . , An] ≡ N

Fig. 1. Barendregt’s Lemma, pictorial

Heuristically, BL describes the contribution of the argument M to the result N
in a reduction FM � N . Namely, the result N can be decomposed in two parts:

(i) A prefix C of N that is independent of M .
(ii) Subterm occurrences Ai, immediately below C, that depend on M in an

essential way, namely as reducts of x-vectors in which M has been substi-
tuted for x.

We now give two typical applications of Barendregt’s Lemma.

2.1 Undefinability of Surjective Pairing

A surjective pairing would consist of a triple of lambda terms D,D1, D2, such
that for arbitrary M,N we have:

D1(DMN) = M D2(DMN) = N D(D1M)(D2M) = M

The undefinability of surjective pairing in the λ-calculus is the central result of
[Bar74], where it is proved via underlining. Here we present the short proof from
[Vri87] using Barendregt’s Lemma.

We recall the notion of terms of order 0, see [Bar84], 17.3.2-3.

Definition 2. A term Z has order 0 if it does not reduce to a term in abstraction
form, that is if ¬∃P : Z � λx.P
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For a term Z of order 0 we have the following implication:

ZM1 . . .Mp � N ⇒ N ≡ Z ′M ′
1 . . .M

′
p, Z � Z ′, Mi � M ′

i (1)

The paradigmatic example of a term of order 0 is Ω ≡ (λx.xx)λx.xx, and in this
case we even have the stronger implication:

ΩM1 . . .Mp � N ⇒ N ≡ ΩM ′
1 . . .M

′
p, Mi � M ′

i (2)

The same holds for the case that Z is a variable or an x-vector.

Theorem 3. In the λ-calculus a surjective pairing does not exist.

Proof. Assume there were D,D1, D2 satisfying the equations for surjective pair-
ing. Define F ≡ λx.D(D1Ω)(D2x). Then FΩ = D(D1Ω)(D2Ω) = Ω and hence
by the Church–Rosser Theorem the terms FΩ and Ω have a common reduct,
which can only be Ω itself. So FΩ � Ω and BL can be applied to yield an N ′

with the ascribed properties (taking M ≡ N ≡ Ω). Since for Ω we have (2), one
easily verifies that there are only two possibilities for N ′, namely either N ′ ≡ Ω
or N ′ ≡ x. We investigate both cases.

Case 1 N ′ ≡ Ω. Then Fx � Ω and so Fx = Ω and by substitutivity of
conversion FM = Ω for an arbitrary term M . So for any M we have D2M =
D2(D(D1Ω)(D2M)) = D2(FM) = D2Ω and hence for arbitrary N we have N =
D2(DNN) = D2Ω. It follows that all terms are equal, contradicting consistency
of the λ-calculus.

Case 2 N ′ ≡ x. Then Fx � x and so Fx = x and we have FM = M for an
arbitrary term M . Hence D1M = D1(FM) = D1(D(D1Ω)(D2M)) = D1Ω for
any M . From this a contradiction is derived in the same way as in Case 1. � 

2.2 Genericity

The following theorem is due to Barendregt [Bar84]. As far as we know the
observation that it follows from Barendregt’s Lemma is new.

Theorem 4 (Genericity). If FΩ = I, then Fx = I.

Proof. Apply BL to a reduction FΩ � I, which exists according to the Church–
Rosser Theorem. We get the following situation.

Fx � N ′ ≡ C[. . . , xM1 . . .Mp, . . .]�→

C[. . . , ΩM∗
1 . . .M∗

p , . . .]�

C[. . . , ΩM ′
1 . . .M

′
p, . . . ] ≡ I

Since the term I contains no occurrence of Ω, the context C must have zero
holes, hence N ′ ≡ C ≡ I. It follows that Fx = I. � 
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By inspecting the proof one sees that the Genericity Lemma can be generalized
to arbitrary order-zero terms, if they do not occur in the result of the reduction.

Theorem 5 (Generalized Genericity). If FZ � N for a term Z of order
zero and Z �� S for all subterms S of N , then Fx = N .

Proof. Applying BL to a reduction FZ � N , we get the following situation.
Since the term Z is of order zero and does not rewrite to any subterm of N , the
context C must have zero holes, hence C ≡ N . It follows that Fx = N . � 

It is interesting to note that, in contrast with the original Thm. 4, this gener-
alized Genericity Theorem does not follow from Berry’s Sequentiality Theorem.
An example of an application of Thm. 5 that is not in the scope of Berry’s Se-
quentiality Theorem can be obtained by taking Z and N to be both unsolvable
terms, e.g. Z ≡ ΩΩ and N ≡ Ω. If F (ΩΩ) = Ω, then Fx = Ω by Thm. 5, but
the Böhm trees of Z as well as N are just ⊥.

3 Reduction Under Substitution

Barendregt’s Lemma can be cast in a different way, in terms of substitution
instead of function application. This is the form that originates with Diederik van
Daalen [Daa80] and that found its way into the book [Bar84], as Exercise 15.4.8.
It is slightly stronger than BL and easier to prove.

M � N ′ ≡ C[B1, . . . , Bn]

�→ · · · �→

C[B∗
1 , . . . , B

∗
n]

�

· · ·

�

C[A1, . . . , An] ≡ N

Fig. 2. Reduction under substitution, pictorial

Lemma 6 (Reduction under Substitution). Let M [x := L] � N . Then
there are a term N ′, an n-hole context C (with n ≥ 0), x-vectors B1, . . . , Bn and
terms A1, . . . , An, such that M � N ′ ≡ C[B1, . . . , Bn], Bi[x := L] � Ai for all
1 ≤ i ≤ n and N ≡ C[A1, . . . , An]. See Fig. 2.

Proof. In Sec. 4 we will prove the Reduction-under-Substitution Lemma for mul-
tiple substitution, Thm. 13, of which the present form is just a special case. � 

So the proof will be postponed, but we already point out that Lem. 1 immediately
follows from Lem. 6 by taking Fx for M and M for L.

It should be remarked that the context C and the x-vectors Bi are in general
not unique. Consider for example M ≡ xzx with the substitution [x := λy.y]
together with the reduction M [x := λy.y] � z(λy.y). Then we have



Reduction Under Substitution 431

(i) M � C1[B1] with C1 ≡ [ ], B1 ≡ xzx, B∗
1 � z(λy.y)

(ii) M � C2[B2, B3] with C2 ≡ [ ][ ], B2 ≡ xz, B3 ≡ x, B∗
2 � z, B∗

3 � λy.y

In the second factorization the context C2 shows more of the stucture of the
result z(λy.y) than C1 does, namely that it is an application term. We call C2

finer than C1, and C1 coarser, C1 � C2.
Van Daalen’s interest in the substitution variant of BL was because of the

Square Brackets Lemma, which he used in his proof of strong normalization.1

Lemma 7 (Square Brackets Lemma). Let M [x := L] � λy.P . Then we
have one of the following two cases.

1. M � λy.P ′ for a P ′ such that P ′[x := L] � P
2. M � xQ and (xQ)[x := L] � λy.P

Proof. The prefix C found by Lem. 6 can either be of the form λy.C′ or it must
be the empty context. If C ≡ λy.C′ then N ′ ≡ λy.P ′ for some P ′ and we are in
Case 1. If C ≡ [ ] then N ′ is an x-vector and we are in Case 2. � 

It is noted in [Daa80] that the lemma can be generalized to situations where the
outer shape of the reduct is not an abstraction. In [Oos97] a similar lemma is
stated for arbitrary patterns, the generalization is called there “Invert”.

4 Reduction Under Multiple Substitution

We now prove the Reduction-under-Substitution Lemma for multiple substitu-
tions. Throughout this section, and in some of the following ones, we will work
with a fixed substitution [x := L] with x = x1, . . . , xm and L = L1, . . . , Lm

(m ≥ 0). We tacitly assume that no lambdas binding the variables xi are used
(this can always be achieved by α-renaming), so that occurrences of x1, . . . , xm

will always be free.
The following definition sums up some technical notions and convenient no-

tations (some of which we already used in the previous sections).

Definition 8

1. An x-vector is a term of the form xiP1 . . . Pk with 1 ≤ i ≤ m and k ≥ 0.
2. M∗ denotes M [x := L].
3. M �→ N when N ≡M∗.
4. C � M if context C is a prefix of term (or context) M .
5. C � M if C � M , x1, . . . , xm �∈ FV (C) and M ≡ C[B1, . . . , Bn] for some

x-vectors Bi.
6. M �C C[A1, . . . , An] if C � M as in 5 and moreoverB∗

i � Ai for i = 1, ..., n
7. M � N if there exists a context C such that M �C N

1 Why “square brackets”? The lemma analyses the contribution of the substitution
in a reduction to an abstraction term. In the notation of Automath square brackets
were used to denote lambda abstraction.
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Lemma 9. We have M � N if and only if one of the following four cases
applies:

(i) M is an x-vector with M∗ � N
(ii) M ≡ N ≡ y for some variable y with y �≡ x1,. . . ,y �≡ xm

(iii) M ≡M1M2 and N = N1N2 with M1 � N1 and M2 � N2

(iv) M ≡ λy.M ′ and N ≡ λy.N ′ with M ′ � N ′

As a consequence, if M �C N then M |p �C|p N |p for every position p in C.

Proof. Follows directly from the definition. � 

Lemma 10. Let C � M and C′ � M with C′ � C, then �C ⊆ �C′ .

Proof. Let Bi, B′
j be x-vectors such that M ≡ C[B1, . . . , Bn] ≡ C′[B′

1, . . . , B
′
n′ ].

Then C[B∗
1 , . . . , B

∗
n] ≡ C′[B′∗

1 , . . . , B′∗
n′ ] since x1, . . . , xm �∈ FV (C)∪FV (C′) and

all occurrences of x1, . . . , xm are free. Now �C ⊆ �C′ follows since the B∗
i are

disjoint, and each of them is a subterm of some B′∗
j . � 

Lemma 11. If y �≡ x1,. . . ,y �≡ xm, then

M � M ′, N � N ′ ⇒M [y := N ] � M ′[y := N ′] .

Proof. Let σ be shorthand for [y := N ], σ′ for [y := N ′] and σ∗ for [y := N∗].
We use induction over the structure of M according to Lem. 9:

(i) If M is an x-vector, then Mσ is and (Mσ)∗ ≡M∗σ∗ since y �≡ x1, . . . , xm.
From M∗ � M ′ and N∗ � N ′ follows M∗σ∗ � M ′σ′ and Mσ � M ′σ′.

(ii) If M ≡M ′ ≡ z for a variable z with z �≡ x1, . . . , xm, then either z ≡ y and
Mσ ≡ N � N ′ ≡M ′σ′, or z �≡ y and Mσ ≡ z � z ≡M ′σ′.

(iii) If M ≡M1M2 and M ′ ≡M ′
1M

′
2 with Mi � M ′

i , then Miσ � M ′
iσ

′ by IH
and since Mσ ≡M1σ(M2σ) and M ′σ′ ≡M ′

1σ
′(M2σ

′) we get Mσ � M ′σ′.
(iv) If M ≡ λz.M1 and M ′ ≡ λz.M ′

1 with M1 � M ′
1, then either z ≡ y and

Mσ ≡M � M ′ ≡M ′σ′, or z �≡ y, Mσ ≡ λz.M1σ �IH λz.M ′
1σ

′ ≡M ′σ′.
� 

Lemma 12. � · � ⊆ � · �

Proof. By induction it suffices to show � · → ⊆ → · �. Let M � N → O, then
there are a context C, x-vectors Bi and terms Ai such that: M ≡ C[B1, . . . , Bn],
Bi �→ B∗

i � Ai for all 1 ≤ i ≤ n, N ≡ C[A1, . . . , An], and a step ρ : N → O at
position p. Note that M∗ �C N where �C means that all steps are below C.

Assume ρ is entirely in C. Then we have M |p ≡ (λy.M1)M2 → M1[y := M2]
and N |p ≡ (λy.N1)N2 → N1[y := N2] ≡ O|p with M1 �C|p11 N1, M2 �C|p2 N2

by Lem. 9. Hence M1[y := M2] �C′ N1[y := N2] for some context C′ by Lem. 11.
Let M ′ ≡M [M1[y := M2]]p then M →M ′ �C[C′]p O.

If ρ is below C, then it is contained in one of the x-vectors Bi and ‘absorbed’
by �, that is, M �C O. Finally if ρ is neither in C nor below C, then C|p ≡ [ ]C′.
Then M |p is an x-vector since C � M and therefore M |p1 is an x-vector. Hence
C[[ ]]p � M and �C ⊆ �C[[ ]]p by Lem. 10. Observe that ρ is below C[[ ]]p, a
case that we have already considered, M �C[[ ]]p O. � 
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Theorem 13 (RuS). If M∗ � N , then M � C[B1, . . . , Bn] �C N for some
context C and x-vectors B1, . . . , Bn. See Fig. 2.

Proof. Follows from M � M∗ � N and an application of Lem. 12. � 

5 Undefinability Proofs

In this section we use reduction under substitution to give new proofs of some
well-known consequences of Berry’s Sequentiality Theorem.

Given x = x1, . . . , xm, we define the following notions relative to this choice
of variables, that are assumed to be free.

Definition 14. An occurrence of xi in M is leading if M contains no xj-vector
of the form xjP such that the occurrence of xi is in P . A variable xi is leading
if it has a leading occurence. LV (M) denotes the set of leading variables in M .

Lemma 15. For terms M , N we have

(i) If at least one of the variables x1, . . . , xm occurs in M , then LV (M) �= ∅.
(ii) If C � M and M ≡ C[y1P1, . . . , ynPn], then LV (M) ⊆ {y1, . . . , yn}.
(iii) If M � N , then LV (N) ⊆ LV (M).

Proof. (i) Take an outermost occurrence of xiP , then xi ∈ LV (M).
(ii) Directly from the definition together with the fact that x1, . . . , xn �∈ FV (C).
(iii) Note that if a variable xi is leading in a term M [y := N ] then it must

have been leading in M or N and hence in (λy.M)N . The claim follows by
closure under contexts and induction on the reduction length. � 

We start by showing the undefinability of Gustave’s function.

Theorem 16. There is no lambda term G such that:

G 01x = x G 1x0 = x Gx01 = x

Proof. We employ RuS with M ≡ Gxyz and x = x, y, z. We have G 01Ω = Ω
and G 01Ω � Ω by confluence. By RuS there exists Nz with M � Nz � Ω. If
z is leading variable in Nz, then Nz ≡ z, otherwise every �-reduct of Nz would
contain Ω at a non-root position. But if Nz ≡ z then we would have G 1x0 � 0.
Hence z �∈ LV (Nz) and likewise there exist Nx and Ny with M � Nx, M � Ny

and x �∈ LV (Nx), y �∈ LV (Ny). By confluence Nx, Ny and Nz have a common
reduct N with LV (N) = ∅ and then by Lem. 15 none of the variables x, y, z
occur in N . Therefore we obtain ∀L : M [x := L] � N [x := L] ≡ N , and hence
x = G 01x = N = G 01y = y, contradicting consistency of the λ-calculus. � 

Remark 1. For a variant of Gustave’s function where x is replaced by Z ranging
over all closed terms the proof stays valid. For a variant where the right-hand
sides are closed terms A, B, C we refer to the Perpendicular Lines Theorem
(Thm. 22).
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It is interesting to note that Thm. 16 is obtained in [BKOV99] by a differ-
ent argument, involving an analysis of residuals along head reductions. Their
Lemma 5.2, on the undefinability of a general form of the G of Thm. 16, can be
proved by our method in the same way as Thm. 16. The undefinability of the
other two variants of G mentioned in this remark are not covered by Lemma 5.2
in [BKOV99].

Before continuing we state a few lemmas that capture the common essence of
the following undefinability results. Fig. 3 illustrates Lem. 17 and 18 applied to
“parallel or” (Por). If xi is substituted by Ω in M and M rewrites to a normal
form, then xi cannot have been leading in M . If such a reduction exists for every
xi then all M [x := L] (and hence all reducts) are convertible for arbitrary L.

Por xy

� C1[x �P1, . . . , x �Pn] C2[y �Q1, . . . , y �Ql] �

N

�

x := �
y := Ω

x := Ω
y := �

Fig. 3. Lem. 17 and Lem. 18 at the example of “parallel or”

Lemma 17. If for i = 1, . . . ,m there exist Ni with M = Ni and xi �∈ LV (Ni),
then there exists an N such that LV (N) = ∅ and ∀L: M [x := L] � N .

Proof. By confluence the terms M , N1, . . . , Nm have a common reduct N and by
Lem. 15(iii) we have LV (N) ⊆ LV (N1) ∩ . . . ∩ LV (Nm) = ∅. So by Lem. 15(i)
the variables x1, . . . , xm do not occur in N . Hence for arbitrary L we have
M [x := L] � N [x := L] ≡ N . � 

Lemma 18. If for i = 1, . . . ,m there are normal forms Ni and Li with Li
i ≡ Ω

such that M [x := Li] � Ni, then N1 ≡ . . . ≡ Nm and ∀L: M [x := L] � N1.

Proof. Let i ∈ {1, . . . ,m} arbitrary. An application of RuS to M [x := Li] �
Ni yields that there exist a term N ′

i , a context C and x-vectors B1, . . . , Bn such
that M � N ′

i ≡ C[B1, . . . , Bn] �C Ni. None of the Bj ’s can be an xi-vector.
For suppose it were, then every reduct of B∗

j and hence also Ni would contain
Ω, contradicting Ni being a normal form. We conclude by Lem. 15(ii) that xi �∈
LV (N ′

i). Since iwas arbitrary,by Lem. 17 there exists anN such that ∀L : M [x :=
L] � N . Hence N1 = . . . = Nm. By confluence and the fact that allNi are normal
forms we get M � N1 ≡ . . . ≡ Nm. � 
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5.1 Undefinability of “Parallel or”

We can now show the undefinability of “parallel or”.

Theorem 19. There are no lambda terms Por and normal forms % �≡ ⊥ s.t.:

Por%x = % Por x% = % Por⊥⊥ = ⊥

Proof. Assume that Por exists, we consider M ≡ Por xy with x = x, y. Since
Por Ω% � % and Por %Ω � %, we get ∀L : Por xy[x := L] � % by Lem. 18.
Then in particular F⊥⊥ � % �≡ ⊥ contradicting the assumption. � 

The following is a variant of “parallel or” from [Bar84], that is also undefinable.

Theorem 20. There is no lambda term F s.t. for arbitrary closed M,N :

FMN = I if M or N is solvable
FMN = Ω otherwise

Proof. Assuming there is such an F , we consider M ≡ Fxy with x = x, y. Since
FΩI � I and FIΩ � I, we get ∀L : Fxy[x := L] � I by Lem. 18. Then in
particular FΩΩ � I �≡ Ω contradicting the assumption. � 

6 Extension to Context Filling

We extend reduction under multiple substitution to context filling; the difference
being that variables of the arguments might get bound.

Corollary 1. Let C[L1, . . . , Lm] � N . Let x = x1, . . . , xm be fresh variables.
For i = 1, . . . ,m let yi be a vector consisting of all variables that are bound at
the i-th hole of C. Then there are a context D, x-vectors B1, . . . , Bn and terms
A1, . . . , An, such that:

C[x1y1, . . . , xmym] � D[B1, . . . , Bn]

�→ · · · �→

[x1 := λy1.L1, . . . , xm := λym.Lm]

D[B∗
1 , . . . , B

∗
n]

�

· · ·

�

D[A1, . . . , An] ≡ N

Proof. Let σ be shorthand for [x1 := λy1.L1, . . . , xm := λym.Lm] and we define
M ≡ C[x1y1, . . . , xmym]. Then clearly Mσ � C[L1, . . . , Lm] � N . As a con-
sequence of Reduction under Multiple Substitution there exist a context D and
x-vectors B1,. . . ,Bn such that: M � D[B1, . . . , Bn] �C N . � 

Lemma 21. If for i = 1, . . . ,m there are a term Ni with z �∈ Ni and terms Li

with Li
i ≡ z such that C[Li] = Ni, then ∀L: C[L] = N1 = . . . = Nm.

Proof. After an application of Thm. 1 the proof continues analogously to the
proof of Lem. 18, from z �∈ Ni follows that no Bj is an xi-vector. � 
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6.1 Perpendicular Lines Theorem

The Perpendicular Lines Theorem is a result from [Bar84], Ch. 14, stated there in
terms of Böhm equivalence, together with a suggestion to extend it to β-equality.
In [BS99] a counterexample is given to PPL with respect to β-equality, which,
however, concerns the variant where the equations are only required to hold for
substitutions of a closed term for the variable z. They added a suggestion to try
to use [Bar84], Exercise 15.4.8, for the open variant. Indeed, it turns out that
we can use RuS to prove the following theorem.

Theorem 22 (PPL). Assume that for lambda terms Mij , Ni with z �∈ Ni:

C[M11,M12, . . . ,M2n−1, z] = N1

C[M21,M22, . . . , z,M2n] = N2
...

...
...

C[z,Mn2,Mn3, . . . ,Mnn] = Nn

Then

– N1 = N2 = . . . = Nn = N
– For all Z1, . . . , Zn we have C[Z] = N

Proof. Follows from an application of Lem. 21 to the above equations. � 

7 Sequentiality

Berry’s Sequentiality Theorem (BST) is about Böhm trees and these can be
obtained as infinite normal forms with respect to β-reduction extended with
the Böhm reduction rules. To be able to deal with this we will have to adapt
the Reduction-under-Substitution Lemma to this extended notion of reduction.
But before doing so, we formulate a strictly finitary sequentiality result for β-
reduction alone. We give the version for multiple substitution, but a functional
and a context-filling version can be straightforwardly derived.

Theorem 23. Let M [x := L] � N with x = x1, . . . xm. Then N can be written
as N ≡ C[A1, . . . , An] in such a way that:

1. The prefix C is independent of the substitution, that is, for any P=P1, . . . Pm

we have M [x := P ] � C[. . .].
2. Each Ai depends on exactly one of the substituted terms Lj in the sense that

at the position of Ai any term B can be realized by an appropiate replacement
Q of Lj, regardless of the choice of the other substituted terms. That is,

(∀i)(∃j)(∀B)(∃Q)(∀P ) : Pj ≡ Q ⇒ M [x := P ] � C[. . . , B, . . .]
where 1 ≤ i ≤ n, 1 ≤ j ≤ m and with B at position i of C.

Proof. This is an immediate consequence of RuS, Thm. 6. If Bi is an x-vector
xjK1 . . .Kk then Q can be chosen as λy1 . . . yk.B. � 
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Undefinability results like the ones mentioned earlier can also be obtained by
applying this new sequentiality theorem.

Now we turn to BST. We consider Λ(⊥), the λ-calculus enriched with the
constant ⊥ (bottom). The Böhm rewrite relation →β⊥ = →β ∪ →⊥ on Λ(⊥)
consists of β-reduction →β together with →⊥ defined by:

⊥M → ⊥ λy.⊥ → ⊥ u→ ⊥ if u is an unsolvable

For �β⊥ we have to adapt the definition of x-vector. Let x = x1, . . . , xm. The
set of x-clusters is inductively defined as follows:

– x1, . . . , xm are x-clusters
– if B is an x-cluster and M ∈ Λ(⊥) a term, then BM is an x-cluster
– if B is an x-cluster and y �≡ x1,. . . ,y �≡ xm, then λy.B is an x-cluster

Note that for every x-cluster B we have B[x := ⊥] �β⊥ ⊥. We tacitly assume
that all occurrences of the variables x1, . . . , xm are free.

We adapt the notation from Def. 8 to Böhm reduction by exchanging �β⊥,
�β⊥, �β⊥ and x-clusters for �, �, � and x-vectors, respectively. Likewise we
obtain lemmas 9⊥-11⊥ for �β⊥ identical to Lem. 9-11 for �. In order to lift
Lem. 12 to Böhm reduction, the proof has to be adopted and extended.

Lemma 24. � · �β⊥ ⊆ �β⊥ · �

Proof. By induction �β⊥ · →β⊥ ⊆ �β⊥ · �β⊥ suffices. Let M �β⊥ N →β⊥
O, then there are a context C, x-clusters Bi and terms Ai such that: M ≡
C[B1, . . . , Bn], Bi �→ B∗

i �β⊥ Ai for all 1 ≤ i ≤ n, N ≡ C[A1, . . . , An], and a
step ρ : N →β⊥ O at position p. The case of β-steps ρ is analogous to the proof
of Lem. 12.

Hence let ρ be a ⊥-step according to one of the three ⊥-rules: (i) ρ : ⊥M → ⊥,
(ii) ρ : λy.⊥ → ⊥, or (iii) ρ : u→ ⊥ if u is an unsolvable.

If ρ is below C, then it is contained in one of the x-clusters Bi and ‘absorbed’
by �β⊥, that is, M �β⊥,C O. Therefore assume ρ is not below C.

First we consider the ⊥-rules (i) and (ii). If the redex pattern of ρ is entirely
in C, then we have M →β⊥ M [⊥]p �β⊥,C[⊥]p O. Otherwise ρ is neither in C
nor below C, that is, ρ is overlapping in-between. Then in case of (i) C|p ≡ [ ]C′

and (ii) C|p ≡ λy.[ ]. In both cases it follows that M |p is an x-cluster since M |p1

is an x-cluster. Then we are done since C[[ ]]p �β⊥ M , �β⊥,C ⊆ �β⊥,C[[ ]]p by
Lem. 10⊥ and ρ is now below C[[ ]]p.

The remaining case is ⊥-rule (iii) with redex position in C. Note that if U �
U ′ and U ′ is unsolvable then U is unsolvable. Thus M∗|p is unsolvable; either
M |p is unsolvable, then M →β⊥ M [⊥]p �β⊥,C[⊥]p O, or the head reduction
sequence M |p � M ′ yields a term M ′ having an xi as head. Then M ′ is an
x-cluster with M ′ �β⊥,[ ] ⊥, hence M � M [M ′]p �β⊥,C[[ ]]p O. � 

Theorem 25. Let M [x := L] �β⊥ N . Then there exist an n-hole context C,
x-clusters B1, . . . , Bn and terms A1, . . . , An, such that M �β⊥ C[B1, . . . , Bn],
Bi[x := L] �β⊥ Ai for all 1 ≤ i ≤ n, and N ≡ C[A1, . . . , An].
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Proof. The statement of the theorem is equivalent to M∗ �β⊥ N ⇒ M �β⊥
· �β⊥ N , which follows from M �β⊥ M∗ �β⊥ N and an application of Lem. 24.

Theorem 26. Let M [x := ⊥, . . . ,⊥] �β⊥ N with x = x1, . . . xm. Then N can
be written as N ≡ C[A1, . . . , An] in such a way that:

1. The prefix C is independent of the substitution, that is, for any P=P1, . . . Pm

we have M [x := P ] � C[. . .].
2. Each Ai depends on exactly one of the substituted terms ⊥ in the sense that:

– A refinement of the corresponding ⊥ to a free variable will give rise to a
reduction to C[. . . , A′

i, . . .] where A′
i ��β⊥ ⊥, regardless of the choice of

the other substituted terms. That is,
(∀i)(∃j)(∀P ) : Pj ≡ x ⇒ M [x := P ] �β⊥ C[. . . , A′

i, . . .], A′
i ��β⊥ ⊥

– At the position of Ai a ⊥ can be realized regardless of the choice of the
other substituted terms. That is,

(∀i)(∃j)(∀P ) : Pj ≡ ⊥ ⇒ M [x := P ] �β⊥ C[. . . ,⊥, . . .]

Proof. This is an immediate consequence of Thm. 25, noting that an xi-cluster
with ⊥ substituted for xi rewrites to ⊥. � 

Berry’s Sequentiality Theorem can be derived as a corollary of Thm. 26 in the
following way.

Let M ≡ C[⊥, . . . ,⊥] and let B be the Böhm tree of M . For arbitrary depths
d ∈ N there exists a reduction M �β⊥ N such that N is in �β⊥-normal form up
to depth d; then N coincides with B up to depth d. An application of Thm. 26 to
M ≡ (C[x1, . . . , xm])[x := ⊥, . . . ,⊥] �β⊥ N yields N ≡ D[A1, . . . , An]. For all
Ai above depth d we have Ai ≡ ⊥, since they are x-clusters with ⊥ substituted
for the leading variable in normal form. Now a ⊥ in the Böhm tree B above
depth d is either (a) one of the Ai or (b) it is in the context D. In case (b) the ⊥
is independent from all substituted ⊥’s, and will be at this position in the Böhm
tree of every C[L] for arbitrary L. In case (a) the Ai depends on exactly one of
the substituted ⊥’s from the input. If this ⊥ is refined to a free variable, then the
Böhm tree will no longer have a ⊥ at this position. On the other hand, refining
all other ⊥’s from M will not affect the ⊥ in the Böhm tree at this position.

8 Concluding Remarks

On intuitive grounds it seems plausible that there is an “inverse” correspondence
of Barendregt’s Lemma and the reported properties of reduction under substi-
tution with the notions of tracing and origin tracking, and especially with the
prefix property, see [BKV00]. This relation was already indicated in [BKV00]
and, with the SqBL in the place of BL, also in [Oos97] and [Ter03], Sec. 8.6.
It would be interesting to investigate this correspondence in more detail and to
compare the techniques of dynamic labelling used in tracing and origin track-
ing with the special underlining techniques that were employed in [Bar72] and
[Bar74].
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It seems likely that reduction under substitution can contribute to a better
understanding of sequentiality, a direction that merits further investigation. The
same holds for the connection with work on stability, semi-standardization and
factorization, see e.g. [GK94], [Mel97, Mel98] and [Ter03], Ch. 8.

Although we didn’t need it in order to obtain a sequentiality result concerning
the, potententially infinite, Böhm tree of the output, it might be possible to prove
also an infinitary version of RuS. This is an objective of further investigation.
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Abstract. We investigate the property SN
∞ being the natural concept

related to termination when considering term rewriting applied to infi-
nite terms. It turns out that this property can be fully characterized by
a variant of monotone algebras equipped with a metric. A fruitful special
case is obtained when the algebra is finite and the required metric prop-
erties are obtained for free. It turns out that the matrix method can be
applied to find proofs of SN

∞ based on these observations. In this way
SN

∞ can be proved fully automatically for some interesting examples
related to combinatory logic.

1 Introduction

Rewriting terms is a natural underlying concept in programming. Some programs
generate infinite data represented by infinite terms. Moreover, many recursive
specifications like t = f(t) have interpretations as infinite terms but not as finite
terms. So as argued in [7,6,10] it is natural to consider rewriting infinite terms
and investigate its behavior.

For infinite terms the usual notion of termination, defined to be the non-
existence of an infinite reduction, does not make sense. As soon as terms t, u
satisfying t → u exist and there is at least one symbol of arity > 1, then we can
make an infinite term in which the term t occurs infinitely often, allowing an
infinite reduction in which these occurrences of t are reduced to u one by one.

Instead the natural notion is convergence of infinite reductions, meaning that
every fixed position is affected only finitely often. This is explained in more detail
in [10]; the abstract notion already goes back to [5]. As in [10,5] this notion is
denoted by SN∞.

In this paper we further investigate this notion. First in Section 2 we define
infinite terms and investigate SNω being the variant of SN∞ restricted to re-
ductions of length ω. It turns out that SNω is equivalent to the property that
every ω-reduction has only finitely many root steps. Next in Section 3 we give
an if-and-only-if-characterization of SNω by means of weakly monotone algebra
provided with a metric. In Section 4 we extend SNω to SN∞ by also involving
transfinite reduction lengths. It turns out that SN∞ and SNω are equivalent if all
left hand sides of the rules are both linear and finite, exactly the same condition

A. Voronkov (Ed.): RTA 2008, LNCS 5117, pp. 441–455, 2008.
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as required for decidability whether a rule is applicable. In Section 5 we see how
the metric properties are obtained for free in case the monotone algebra is finite.
Finally, in Section 7 we see how such finite monotone algebras proving SN∞

can be found by matrix interpretations. In this way existing implementations
for proving termination by matrix interpretations based on SAT solving can be
reused for automatically proving SN∞. We give an example of such a proof found
for the rule for the combinator δ in combinatory logic.

2 Preliminaries

Intuitively, a term (both finite and infinite) is defined by saying which symbol is
on which position. Here a position p ∈ N∗ is a sequence of natural numbers. In
order to be a proper term, some requirements have to be satisfied as indicated
in the following definition. Here we write ⊥ for undefined, and every symbol f
has an arity ar(f) ∈ N.

Definition 1. A (possibly infinite) term over a signature Σ is defined to be a
map t : N∗ → Σ ∪ {⊥} such that

– the root t(ε) of the term t is defined, so t(ε) ∈ Σ, and
– for all p ∈ N∗ and all i ∈ N we have

t(pi) ∈ Σ ⇐⇒ t(p) ∈ Σ ∧ 1 ≤ i ≤ ar(t(p)).

We write T∞(Σ) for the set of all terms over Σ.

An alternative equivalent definition of T∞(Σ) can be given based on co-algebra,
but for the results in this paper we do not need this co-algebraic view.

A position p ∈ N∗ satisfying t(p) ∈ Σ is called a position of t. The usual
notion of finite term coincides with a term in this setting having finitely many
positions.

For f ∈ Σ with ar(f) = n and n terms t1, . . . , tn we write f(t1, . . . , tn) for the
term t defined by t(ε) = f , t(ip) = ti(p) for every p ∈ N∗ and i = 1, . . . , n, and
t(ip) = ⊥ if i �∈ {1, . . . , n}.

On terms there is a natural metric in which terms are closer in the metric
if their difference is deeper. More precisely, the distance d(t, u) between two
distinct terms t, u is defined to be 2−k, where k is the least number such that
there is a position p ∈ N∗ of length k such that t(p) �= u(p). For equal terms
terms the distance is defined to be 0.

Generalizing rewriting over finite terms, we define an infinitary term rewrite
system (TRS) to be a set of rewrite rules. Here a rewrite rule � → r is a pair
(�, r) ∈ T∞(Σ ∪ X )2, where X is a fresh set of symbols called variables, all
having arity 0. For effectively computing rewrite steps it is natural to require
that � is finite and linear, but for the general concept there is no need for these
restrictions. In earlier texts like [6,8] finiteness was included and linearity was
excluded as part of the definition.
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We define a substitution to be a map σ : X → T∞(Σ ∪ X ). For a term t the
term tσ is obtained from t by replacing every occurrence of a variable x by σ(x),
more precisely, for p ∈ N∗ we have

tσ(p) =

⎧⎨
⎩

t(p) if t(p) ∈ Σ
σ(t(p0))(p1) if p = p0p1 and t(p0) ∈ X
⊥ otherwise.

For a TRS R, two terms t, u and p ∈ N∗ satisfying t(p) ∈ Σ we write t →R,p u
if there is a rule � → r in R and a substitution σ such that

– t(pq) = (�σ)(q) and u(pq) = (rσ)(q) for every q ∈ N∗, and
– t(q) = u(q) for every q ∈ N∗ not having p as a prefix.

Alternatively an equivalent inductive definition of →R,p can be given:

– �σ →R,ε rσ for every rule � → r in R and every substitution σ,
– if t →R,p u then f(. . . , t, . . .) →R,ip f(. . . , u, . . .) for every symbol f , where

t and u are in the i−th position of f and the other arguments of f remain
unchanged.

The step t →R,p u is called a rewrite step at position p; we write t →R u if a
position p in t exists such that t →R,p u. A step t →R,ε u at position ε is called
a root step.

As mentioned in the introduction, instead of termination it is more natural
to consider SN∞, representing convergence of all infinite reductions with respect
to the metric d. In this section and the next we focus on the variant SNω in
which the infinite reductions do not have length exceeding ω, shortly indicated
as ω-reductions. One reason for doing so is that this is simpler: for the ω version
we do not need convergence requirements for smaller limit ordinals. In Section
4 we extend our results to reduction lengths of arbitrary ordinals. In particular
we will see that SNω and SN∞ coincide if all left hand sides of the rules are
both finite and linear. Since these conditions are also required for decidability
of whether a rule is applicable, these are very natural conditions in the setting
of infinitary rewriting, making it reasonable to focus on SNω.

A characterizing property of SNω is that for every ω-reduction and every
position after a finite initial part of the reduction this particular position is not
affected any more. Here by ’affected’ we refer to the redex position, independent
whether the symbol on this position changes or not. In [6] this is called strong
convergence. Since this characterization does not refer to the metric, and is
consistent with [10], we choose this as the definition of SNω.

Definition 2. A TRS R is defined to satisfy SNω(R) if for every ω-reduction
t1 →R,p1 t2 →R,p2 t3 →R,p3 · · · and for every p ∈ N∗ there are only finitely
many i such that pi is a prefix of p.

The notions termination and SNω are incomparable as the following two exam-
ples show. In the examples we use x, y, z for variables.
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Example 1. For a unary symbol f we define the infinite term t by t(1n) = f
for all n ≥ 0, and undefined otherwise. This term t satisfies t = f(t). As a
consequence, the terminating TRS R consisting of the single rule f(x) → x does
not satisfy SNω(R) since t →R,ε t.

Example 2. The non-terminating TRS R consisting of the single rule f(x) →
g(f(x)) satisfies SNω(R). Intuitively this is because every step forces next redexes
to be deeper; a formal proof easily follows from Theorem 5 later in this paper,
by choosing 1 > ⊥ and [f ](x) = 1, [g](x) = ⊥ for all x.

Example 3. In [10] it was claimed that the non-terminating TRS R from combi-
natory logic consisting of the single S-rule a(a(a(S, x), y), z) → a(a(x, z), a(y, z))
satisfies SNω(R), both for finite and infinite terms. However, this is not true
when allowing infinite terms. Define the infinite terms t, u by t = a(S, t) and
u = a(u, u). Then we have

a(a(a(S, t), u), u) →R,ε a(a(t, u), a(u, u)) = a(a(a(S, t), u), u).

Just like for termination it is straightforward to define a local version of SNω

depending on an initial term of a reduction. However, for termination practically
all techniques only apply for the global version requiring termination for all
initial terms. Since we want to link SNω with termination techniques, we do not
elaborate on local SNω.

The following theorem is a straightforward extension of a similar well-known
result for finite terms.

Theorem 1. For a TRS R the property SNω(R) holds if and only if every ω-
reduction contains at most finitely many root steps.

Proof. The ‘only if’-part is trivial. For the ‘if’-part we assume that every ω-
reduction contains at most finitely many root steps. We have to prove that for
every p ∈ N∗ and for every ω-reduction t1 →R,p1 t2 →R,p2 t3 →R,p3 · · · there are
only finitely many i such that pi is a prefix of p. We do this by induction on the
length k of p. Given such a reduction, by the assumption we know it contains
only finitely many roots steps. So there is an N such that pi is non-empty for
all i > N . So there is f ∈ Σ of arity, say, n, such that for all i > N we can write
ti = f(ti,1, . . . , ti,n), where for all i > N and all j = 1, . . . , n we have ti,j = ti+1,j

or ti,j →R,q ti+1,j where pi = jq. For values j where the latter case occurs
infinitely often, by the induction hypothesis we conclude that for only finitely
many of these steps the length of q is < k. The total number of remaining steps
in the reduction is finite. Hence for only finitely many values of i the length of
pi is ≤ k, from which the claim easily follows. � 

3 Monotone Algebras

A standard way to prove termination is by interpreting terms in a well-founded
order. It turns out that the notion of monotone algebra ([11,12]) gives an if-
and-only-if-characterization of termination. Now we wonder whether something
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similar exists for SNω. A crucial difference with earlier settings is that now
we allow infinite terms that should be interpreted in the monotone algebras.
One way to deal with this is the following. An infinite term can be seen as
the limit of a sequence of finite terms, where each finite term is obtained by
truncating the original infinite term. Now to have a well-defined interpretation
of the infinite term we require that the sequence of interpretations of the finite
terms has a limit. One way to formally deal with limits makes use of a metric,
i.e., a symmetric map d : A × A → R≥0 satisfying the triangle inequality and
d(a, b) = 0 if and only if a = b. We assume that d is a metric on A.

Definition 3. A sequence a1, a2, . . . in A is said to converge with limit a if for
every ε > 0 there exists N such that d(a, ai) < ε for every i > N . In this case
we write limi→∞ ai = a.

A map f : An → A is called continuous if for any n converging sequences
ai,1, ai,2, . . . for i = 1, . . . , n the sequence f(a1,1, . . . , an,1), f(a1,2, . . . , an,2), . . .
also converges and limi→∞ f(a1,i, . . . , an,i) = f(limi→∞ a1,i, . . . , limi→∞ an,i).

We will characterize SNω in terms of a variant of weakly monotone algebras. So
first we recall the notion of weakly monotone algebras from [2,3].

Definition 4. A Σ-algebra (A, [·]) is defined to consist of a non-empty set A,
and for every f ∈ Σ a function [f ] : An → A, where n is the arity of f . This
function [f ] is called the interpretation of f .

An operation [f ] : An → A is monotone with respect to a binary relation →
on A if for all ai, bi ∈ A for i = 1, . . . , n with ai → bi for some i and aj = bj for
all j �= i we have [f ](a1, . . . , an) → [f ](b1, . . . , bn).

A weakly monotone Σ-algebra (A, [·], >, 	) is a Σ-algebra (A, [·]) equipped
with two relations >, 	 on A such that

– > is well-founded;
– > · 	 ⊆ > ⊆ 	;
– for every f ∈ Σ the operation [f ] is monotone with respect to 	.

For a Σ-algebra (A, [·]) and a map α : X → A the evaluation [t, α] of a finite
term t is defined inductively by

[x, α] = α(x), [f(t1, . . . , tn), α] = [f ]([t1, α], . . . , [tn, α])

for f ∈ Σ and x ∈ X . For a ground term t (not containing variables) [t, α] does
not depend on α and is shortly written as [t].

In order to deal with SNω infinite terms should also be interpreted. We choose
to consider this as the limit of the finite terms obtained by truncation. In order
to define truncation we fix a constant c ∈ Σ; if Σ does not contain constants
then we add it. Write |p| for the length of a string p. For a (possibly infinite)
term t its truncation trunc(t, n) on level n is defined by

trunc(t, n)(p) =

⎧⎨
⎩

t(p) if |p| < n
c if |p| = n and t(p) ∈ Σ
⊥ otherwise.
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Theorem 2. Let R be a TRS over Σ of which both � and r are finite for all rules
� → r. Then SNω(R) holds if and only if there is a weakly monotone Σ-algebra
(A, [·], >, 	) provided with a metric d for which

– [�, α] > [r, α] for every rule � → r in R and every α : X → A, and
– for every f ∈ Σ the operation [f ] is continuous, and
– for every infinite ground term t the sequence [trunc(t, n)] converges for n →

∞.

Before proving Theorem 2 we give two lemmas. We say that a Σ-algebra (A, [·])
provided with a metric d is a metric algebra if

– for every f ∈ Σ the operation [f ] is continuous, and
– for every infinite ground term t the sequence [trunc(t, n)] converges.

For a ground term t we write [t] = limn→∞[trunc(t, n)]; note that for finite
ground terms t we now have two equivalent definitions of [t].

Lemma 1. For a metric algebra (A, [·], d), a symbol f ∈ Σ of arity k and ground
terms t1, . . . , tk we have [f(t1, . . . , tk)] = [f ]([t1], . . . , [tk]).

Proof. Using the definition of [·] and continuity we obtain

[f(t1, . . . , tk)] = limn→∞[trunc(f(t1, . . . , tk), n)]
= limn→∞[trunc(f(t1, . . . , tk), n + 1)]
= limn→∞[f(trunc(t1, n), . . . , trunc(tk, n))]
= limn→∞[f ]([trunc(t1, n)], . . . , [trunc(tk, n)])
= [f ](limn→∞[trunc(t1, n)], . . . , limn→∞[trunc(tk, n)])
= [f ]([t1], . . . , [tk]). � 

Lemma 2. For a metric algebra (A, [·], d), a finite term t and a ground substi-
tution σ we have [tσ] = [t, α] for α : X → A defined by α(x) = [xσ].

Proof. We apply induction on t. If t ∈ X then [tσ] = α(t) = [t, α]. In the
remaining case we have t = f(t1, . . . , tk) for some f ∈ Σ of arity k ≥ 0. Then
we obtain

[tσ] = [f(t1σ, . . . , tkσ)]
= [f ]([t1σ], . . . , [tkσ]) (by Lemma 1)
= [f ]([t1, α], . . . , [tk, α]) (by the induction hypothesis)
= [f(t1, . . . , tk), α]
= [t, α] � 

Now we are ready to give the proof of Theorem 2.

Proof. (Theorem 2)
For the ‘only if’-part we assume SNω(R) and have to construct an appropriate
algebra. We choose A = T∞(Σ), and [f ](t1, . . . , tn) = f(t1, . . . , tn). As the
metric we define d(t, u) to be 2−k for t �= u, where k is the least number such
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that there is a position p such that |p| = k and t(p) �= u(p), and d(t, t) = 0.
We define > = →∗

R · →R,ε · →∗
R and 	 = →∗

R. Now we prove all requirements.
Assume > admits an infinite decreasing sequence. By definition this is an →R-
ω-reduction containing infinitely many →R,ε steps, contradicting SNω(R) by
Theorem 1. So > is well-founded. The property > · 	 ⊆ > ⊆ 	 holds by
definition. Monotonicity of [f ] with respect to 	 is immediate from the definition
of rewriting. So we checked the conditions of a weakly monotone algebra; we still
have to check the three conditions of the theorem. If α : X → A then using our
definition of A = T∞(Σ) we obtain [�, α] = �α →R,ε rα = [r, α], so [�, α] > [r, α].
From the definition of the metric it is easy to check that a sequence of terms
ti converges to a term t if and only if for every n there exists N such that
trunc(ti, n) = trunc(t, n) for all i > N . From this observation both continuity of
[f ] and convergence of [trunc(t, n)] = trunc(t, n) easily follows.

Conversely for the ‘if’-part we assume a weakly monotone algebra (A, [·], >, 	)
with the given properties, and we have to prove SNω(R). Assume not, then by
Theorem 1 there is an ω-reduction t1 →R t2 →R t3 →R · · · containing infinitely
many root steps. By applying a ground substitution on the reduction, we may
assume that all ti are ground terms. For a root step t →R,ε u we have that
t = �σ and u = rσ for some rule � → r and some ground substitution σ.
Defining α : X → A by α(x) = [xσ] we obtain by Lemma 2:

[t] = [�σ] = [�, α] > [r, α] = [rσ] = [u].

Since >⊆	 we conclude that [t] 	 [u] for every root step t →R,ε u. Since [f ] is
monotone with respect to 	 for every f ∈ Σ, we conclude from the inductive
definition of →R that [t] 	 [u] for every step t →R u. So in the ω-reduction
t1 →R t2 →R t3 →R · · · we have [ti] > [ti+1] for all infinitely many roots steps
ti →R,ε ti+1, and [ti] 	 [ti+1] for all other steps ti →R ti+1. Repeatedly applying
> · 	 ⊆ > removes all ’	’-steps in this sequence after the first ’>’ giving rise to
an infinite decreasing >-sequence, contradicting well-foundedness of >. � 

4 Transfinite Reductions

Until now we focused on SNω regarding infinite reductions of length ω. In this
section we investigate what happens if we allow transfinite reductions: infinite
reductions of higher ordinals. For any ordinal α an infinite α-sequence {tβ}β<α

of terms is a reduction if tβ →R tβ+1 for every β < α. Such a reduction is
called strongly continuous if for every limit ordinal β < α it holds that the
reduction depth of step tγ →R tγ+1 tends to infinity if γ approaches β from
below. A reduction is called strongly convergent if the same holds for every limit
ordinal β ≤ α. Note that every ω-reduction is strongly continuous since no limit
ordinal β < ω exists. As in [10] R is defined to satisfy SN∞ if in every strongly
continuous reduction every (finite) position is affected only finitely often; stated
equivalently: every strongly continuous reduction is strongly convergent. Similar
to Theorem 1 we obtain
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SN∞ holds if and only if every strongly continuous reduction contains
only finitely many root steps.

Example 4. Let R be the TRS consisting of the three rules

a → s(a), b → s(b), f(x, x) → f(a, b).

Then R allows a strongly continuous reduction of length ω×ω having infinitely
many root steps by repeating

f(a, b) →ω f(sω, b) →ω f(sω, sω) → f(a, b).

So R does not satisfy SN∞.
Next assume R allows a reduction of length ω having infinitely many root

steps. Then between two consecutive root steps there are only finitely many
steps. Since an s-symbol at the root never can be removed by rewriting, both
these root steps should be applications of the last rule:

f(t, t) →ε f(a, b) →∗ f(u, u) →ε f(a, b).

Since →∗ represents finitely many steps u should be both of the shape sn(a) and
sm(b), contradiction.

So R satisfies SNω.

Similar to Theorem 2 we obtain the following theorem, in which the fourth item
appears to achieve [t, α] 	 [u, α] for t rewriting to u in infinitely many steps.

Theorem 3. Let R be a TRS over Σ for which both � and r are finite for all
rules � → r. Then SN∞(R) holds if and only if there is a weakly monotone
Σ-algebra (A, [·], >, 	) provided with a metric d for which

– [�, α] > [r, α] for every rule � → r in R and every α : X → A, and
– for every f ∈ Σ the operation [f ] is continuous, and
– for every infinite ground term t the sequence [trunc(t, n)] converges for n →

∞, and
– if ai ∈ A for i = 1, 2, 3, . . . and ai 	 ai+1 for all i and ai converges for

i → ∞, then a1 	 limi→∞ ai.

Proof. (sketch)
The proof is a modification of the proof of Theorem 2. For the ‘only if’-part
we again choose A = T∞(Σ), and [f ](t1, . . . , tn) = f(t1, . . . , tn), and the same
metric. We choose > = →#

R · →R,ε · →#
R and 	 = →#

R , where →#
R is defined

by t →#
R u if and only if there is a strongly convergent reduction from t to u of

length α for any ordinal α.
For the ‘if’-part we observe that in a strongly continuous reduction containing

infinitely many root steps, the reduction between two consecutive root steps is
of the shape t →#

R u. Here we need the last condition to conclude [t] 	 [u], for
the rest the proof is the same as for Theorem 2. � 
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As was pointed out by Clemens Grabmayer for proving equivalence of SN∞(R)
and SNω(R) in case all left hand sides of R are linear and finite we need the
following known variant of the compression lemma (Theorem 12.7.1 in [6]). The
proof can be given along the same lines as the proof of the original compression
lemma given there. For any ordinal α we write t →α u if there is a strongly
convergent reduction from t to u of length α.

Lemma 3. Let R be a TRS over Σ of which � is both linear and finite for all
rules � → r. Let t →α u be any infinite strongly convergent reduction containing
at least one root step. Then there is a finite number n, an ordinal β ≤ ω and
two terms t′, t′′ such that t →n t′ →ε t′′ →β u.

Theorem 4. Let R be a TRS over Σ of which � is both linear and finite for all
rules � → r. Then SN∞(R) and SNω(R) are equivalent.

Proof. The direction SN∞(R) ⇒ SNω(R) is trivial. For the other direction as-
sume that SNω(R) holds and SN∞(R) does not hold. Then there is a strongly
continuous reduction

t1 →α1 u1 →ε t2 →α2 u2 →ε t3 →α3 u3 →ε · · ·

Applying Lemma 3 to t1 →α1 u1 →ε t2 yields t1 →n1 t′1 →ε t′′1 →β t2. Next we
apply Lemma 3 to t′′1 →β t2 →α2 u2 →ε t3 yielding t′′1 →n2 t′2 →ε t′′2 →β t3.
Repeating this process yields the ω-reduction

t1 →n1 t′1 →ε t′′1 →n2 t′2 →ε t′′2 →n3 t′3 →ε t′′3 · · ·

containing infinitely many root steps, contradicting SNω(R). � 

The proof of this theorem is essentially the same as the proof of Lemma 5.2
in [9].

5 Finite Algebras

In the original monotone algebra approach for proving termination of rewriting
finite terms, all monotone algebras are infinite since finite algebras do not allow
non-trivial strictly monotone operations. Surprisingly, for proving SN∞ by our
adjusted monotone algebra approach, finite algebras are useful and often provide
non-trivial proofs.

The first observation is that in finite algebras satisfying some mild conditions
on > and 	 all requirements involving the metric are obtained for free.

Theorem 5. Let R be a TRS over Σ of which both � and r are finite for all
rules � → r. Let (A, [·], >, 	) be a weakly monotone Σ-algebra satisfying

– A is finite,
– 	 is transitive,
– if a 	 b for a, b ∈ A then either a > b or a = b,
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– ⊥ ∈ A, and a 	 ⊥ for all a ∈ A, and
– [�, α] > [r, α] for every rule � → r in R and every α : X → A.

Then SN∞(R) holds.

Proof. On the algebra (A, [·], >, 	) we define the discrete metric defined by
d(a, a) = 0 for all a ∈ A and d(a, b) = 1 for all a, b ∈ A, a �= b. For this
metric we will prove that

– for every f ∈ Σ the operation [f ] is continuous, and
– for every infinite ground term t the sequence [trunc(t, n)] converges for n →

∞, and
– if ai ∈ A for i = 1, 2, 3, . . . and ai 	 ai+1 for all i and ai converges for i → ∞,

then a1 	 limi→∞ ai.

Then by Theorem 3 we have proved the theorem.
For proving the first item choose f ∈ Σ of arity k and k converging sequences

ai,1, ai,2, . . . for i = 1, . . . , k. Due to the definition of the discrete metric we obtain
that for every i there is some Ni such that ai,n = ai,m for every n, m > Ni. Let
N be the maximum of N1, . . . , Nk. Then ai,n = ai,m for all n, m > N and all i.
Hence the sequence f(a1,1, . . . , ak,1), f(a1,2, . . . , ak,2), . . . converges too and

lim
i→∞

f(a1,i, . . . , ak,i) = f( lim
i→∞

a1,i, . . . , lim
i→∞

ak,i).

Hence [f ] is continuous.
For proving the second item we need a constant c ∈ Σ for the definition of

trunc. We choose this constant c to be a fresh one, add it to Σ and define [c] = ⊥.
Now we prove by induction on n that [trunc(t, n + 1)] 	 [trunc(t, n)] for every
n ∈ N. For n = 0 this holds since [trunc(t, 0)] = [c] = ⊥ and a 	 ⊥ for all a ∈ A.
For the induction step write t = f(t1, . . . , tk). Then using monotonicity of [f ]
and the induction hypothesis we obtain

[trunc(t, n + 1)] = [f(trunc(t1, n), . . . , trunc(tk, n))]
= [f ]([trunc(t1, n)], . . . , [trunc(tk, n)])
	 [f ]([trunc(t1, n− 1)], . . . , [trunc(tk, n− 1)])
= [f(trunc(t1, n− 1), . . . , trunc(tk, n− 1))]
= [trunc(t, n)].

Due to the condition of the theorem for every n ∈ N we either have [trunc(t, n+
1)] > [trunc(t, n)] or [trunc(t, n + 1)] = [trunc(t, n)]. Assume that ’>’ happens
infinitely often. Then due to finiteness of A we obtain a cycle [trunc(t, n)] > · · · >
[trunc(t, m)] = [trunc(t, n)], contradicting well-foundedness. Hence [trunc(t, n +
1)] > [trunc(t, n)] occurs only finitely often while for all other n we have [trunc
(t, n + 1)] = [trunc(t, n)], hence the sequence [trunc(t, n)] converges for n → ∞.

It remains to prove a1 	 limi→∞ ai if ai 	 ai+1 for all i and ai converges for
i → ∞. Since A is finite we conclude that limi→∞ ai = an for some n, the rest
follows since 	 is transitive. � 
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Example 5. The fixpoint combinator Y is a constant. Combined with the binary
application operator a there is only one rewrite rule a(Y, x) → a(x, a(Y, x)).
Choose A = {0, 1, 2, 3} with > being the usual order and 	=≥, and [Y ] = 3,
and

[a](3, 3) = 2,
[a](3, x) = 1 for x < 3,
[a](x, y) = 0 for x < 3 and all y.

All requirements of Theorem 5 are easily checked, proving SN∞ of this rewrite
rule.

6 Marking Symbols

When playing around with this kind of interpretation we observe that strict
inequality [�, α] > [r, α] is often quite a strong requirement. In fact it is only
required for root steps; for non-root steps it is sufficient to require [�, α] 	 [r, α].
Therefore we now borrow a syntactic trick from the dependency pair method [1]
to be able to distinguish between these two kinds of steps: we mark root symbols
of the left hand sides and right hand sides of the rules. This only works if all
right hand sides have a root symbol: the TRS should be non-collapsing, i.e., no
right hand side of a rule is a single variable. This is not a serious restriction:
for any collapsing rule C[x, . . . , x] → x one easily builds an infinite reduction
starting in t defined by t = C[t, . . . , t] containing infinitely many root steps. So
all TRSs satisfying SN∞ are non-collapsing.

For a non-collapsing TRS R over Σ we extend Σ to Σ# by adding a fresh
symbol f# for every f ∈ Σ occurring as the root symbol of a right hand side
or left hand side of a rule in R. For all such f we define ar(f#) = ar(f). For
a non-variable term t = f(t1, . . . , tn) over Σ we define t# = f#(t1, . . . , tn). We
define

R# = {�# → r# | � → r ∈ R},
so R# is obtained from R by marking the root symbols of all left hand sides and
right hand sides.

The corresponding monotone algebra may be two-sorted now, as in [2,3]. More
precisely, the algebra consists of two sets A and A#. On the set A we have a
relation 	 and on the set A# we have a well-founded relation >. For every f ∈ Σ
of arity n we have [f ] : An → A as before, monotone with respect to 	. For the
fresh symbols f# we have [f#] : An → A#, with the monotonicity requirement

if for all ai, bi ∈ A for i = 1, . . . , n with ai 	 bi for some i and aj = bj

for all j �= i we have [f#](a1, . . . , an) ≥ [f#](b1, . . . , bn), where ≥ is the
union of > and =.

For a term t over Σ and α : X → A we keep the definition of [t, α] ∈ A as before,
and we have the obvious definition of [t#, α] ∈ A#.

Theorem 6. For proving SNω or SN∞ for a non-collapsing TRS by Theorem
2, Theorem 3 or Theorem 5, the signature Σ may be extended to Σ# and the
algebra may be two-sorted as presented above, while the requirement
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– [�, α] > [r, α] for every rule � → r in R and every α : X → A

is replaced by

– [�, α] > [r, α] for every rule � → r in R# and every α : X → A,
– [�, α] 	 [r, α] for every rule � → r in R and every α : X → A.

Proof. In the ‘if’-part of the proof of Theorem 2 we replace every term t in the
assumed infinite reduction by t#. In this way the R-reduction is transformed to
an R ∪ R#-reduction in which all R#-steps are at the root and all R-steps are
below the root. Since the R-steps are not root steps the corresponding require-
ment weakened to [�, α] 	 [r, α]. The rest of the proofs of the three theorems
remain unchanged. � 

Example 6. As in Example 5 we consider the single rewrite rule

a(Y, x) → a(x, a(Y, x)).

Choose A = {0, 1} and A# = {0, 1, 2} with > and 	=≥ as usual, and

[Y ] = 1,
[a](x, y) = 0 for all x, y,
[a#](x, y) = x + y for all x, y.

We have
[a(Y, x), α] = 0 = [a(x, a(Y, x)), α],

[a#(Y, x), α] = α(x) + 1 > α(x) = [a#(x, a(Y, x)), α].

All other requirements of Theorem 5 and Theorem 6 are easily checked too,
proving SN∞.

Example 7. The TRS consisting of the four rules

a(f(a(x))) → f(x), f(b) → g(b), g(x) → a(g(a(x))), g(a(x)) → f(x)

satisfies SN∞ but this can not be proved by Theorem 5, not even with its
marked version as in Theorem 6. Assume it can, then there exists n > k sat-
isfying [an(b)] = [ak(b)]. For every m we have a reduction am(f(am(b))) →+

am(f(am−1(b))) containing a root step. Applying this n− k times and marking
yields

[a#an−1fan(b)] > [a#an−1fak(b)] = [a#an−1fan(b)],

contradiction.

7 Matrix Interpretations

An interesting instance of monotone algebras is given by matrix interpretations
[2,3], in which the algebra elements are vectors over the natural numbers. It
turns out that for an interesting class of matrix interpretations the set of vectors
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involved can be restricted to a finite algebra which by Theorem 5 and Theorem
6 applies for proving SN∞.

Fix a dimension d. We choose A = Nd. The relation 	 on A is defined by

(v1, . . . , vd) 	 (u1, . . . , ud) ⇐⇒ vi ≥ ui for i = 1, 2, . . . , d.

We choose A# = N with the usual order >. For the interpretation [f ] of a
symbol f ∈ Σ of arity n ≥ 0 we choose n matrices F1, F2, . . . , Fn over N, each
of size d× d, and a vector f ∈ Nd, and define

[f ](v1, . . . , vn) = F1v1 + · · ·+ Fnvn + f

for all v1, . . . , vn ∈ A. One easily checks that [f ] is monotone with respect to 	.
For the interpretation [f#] of a marked symbol f# corresponding to f of arity
n ≥ 0 we define

[f#](v1, . . . , vn) = f1v1 + · · ·+ fnvn + cf

for n row vectors f1, . . . , fn over N of size d, and a constant cf ∈ N. Here
fivi denotes the inner product, corresponding to matrix multiplication of a row
vector by a column vector.

A square matrix F is called strict upper triangular if Fij = 0 for i, j satisfying
i ≥ j. So the main diagonal and everything below is zero.

Theorem 7. Let R be a non-collapsing TRS over a finite signature Σ. Let an
interpretation in the above setting be given satisfying

– All matrices Fi are strict upper triangular,
– [�, α] > [r, α] for every rule � → r in R# and every α : X → A,
– [�, α] 	 [r, α] for every rule � → r in R and every α : X → A.

Then SN∞(R).

Proof. (sketch) To define A we start by the zero vector = ⊥ and [c] for all
constants c, and close this set by application of [f ] for all f ∈ Σ. For strict-upper-
triangular matrices B1, . . . , Bd, where d is the dimension, one easily proves that
B1 × · · · × Bd is the zero matrix. As a consequence, for a ground term t the
value of [t] does not depend on symbols in the term t deeper than d. Since the
signature is finite we conclude that there are only finitely many vectors in Nd

that can be written as [t] for a ground term t. As a consequence, the resulting
closure A is a finite set of vectors. Choose A# to be the finite set of numbers
obtained by applying the operations [f#] on these finitely many vectors. In this
way we have a corresponding algebra on which Theorem 5 and Theorem 6 apply
for proving SN∞. � 

Strict-upper-triangularity is essential: the single rule f(f(x)) → f(x) does not
satisfy SN∞, while [f ](x) = x+1, [f#](x) = x satisfies all requirements of Theo-
rem 7 in dimension d = 1 except for strict-upper-triangularity of F1 = (1). Note
that in dimension 1 this requirement states that all [f ] are constant.
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Example 8. We consider the combinator δ of which the behavior is given by the
single rewrite rule

a(a(δ, x), y) → a(y, a(x, y)).

This combinator is used as a building block for constructing new fixpoint com-
binators: if Y is a fixpoint combinator then by Y δx → δ(Y δ)x → x(Y δx) we see
that Y δ is a fixpoint combinator too. To get a feeling for this rule, write d1 = δ
and di = a(δ, di−1) for i > 0, omit the application a as usual, and observe that
the term d2d2 = a(a(δ, δ), a(δ, δ)) admits an infinite reduction

d2d2 → d2d3 → d3d4 → d4(d2d4) → (d2d4)(d3(d2d4)) → · · ·

for which the first four steps are all root steps. For applying Theorem 7 we choose
d = 2 and

[δ] =
(

0
1

)
, [a](x, y) =

(
0 1
0 0

)
· x +

(
0 1
0 0

)
· y,

[a#](x, y) =
(
1 0
)
· x +

(
1 1
)
· y.

For α(x) = (x1, x2) and α(y) = (y1, y2) we have

[a(a(δ, x), y), α] =
(

y2

0

)
= [a(y, a(x, y)), α],

and

[a#(a(δ, x), y), α] = 1 + x2 + y1 + y2 > y1 + x2 + y2 = [a#(y, a(x, y)), α],

proving SN∞.
It turns out that the implicit finite monotone algebra used in this proof con-

sists of

A = {
(

0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
2
0

)
}, A# = {0, 1, 2, 3, 4}.

In particular, |A#| − 1 is an upper bound on the number of root steps that can
occur in any reduction. As we observed that a(a(δ, δ), a(δ, δ)) admits an infinite
reduction starting by four root steps, in this example this upper bound is sharp.

To find this type of proofs for SN∞ we have to find values of the matrix entries in
such a way that the requirements hold. This requires only a minor modification
of the existing search engines for finding matrix interpretations based on SAT
solving: only the strict-upper-triangularity requirement has to be added. In fact
the above proof for the δ combinator was found by entering the corresponding
dependency pair problem in the web interface of AProVE [4] and inspecting
that the matrix interpretation found by AProVE satisfies the extra strict-upper-
triangularity requirement.
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8 Conclusions

The property SN∞ is the natural concept related to termination when consid-
ering rewriting infinite terms. We gave a full characterization by weakly mono-
tone algebras equipped with a metric. We applied this by modifying the matrix
method to find proofs of SN∞ via finite weakly monotone algebras. This provides
the first method to prove SN∞ automatically. Unfortunately, comparing this to
other methods fails since other methods do not yet exist.
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