
Delegating Capabilities in Predicate Encryption
Systems

Elaine Shi1 and Brent Waters2

1 Carnegie Mellon University
2 SRI International

Abstract. In predicate encryption systems, given a capability, one can
evaluate one or more predicates on the plaintext encrypted, while all
other information about the plaintext remains hidden. We consider the
role of delegation in such predicate encryption systems. Suppose Alice
has a capability, and she wishes to delegate to Bob a more restrictive
capability allowing the decryption of a subset of the information Alice
can learn about the plaintext encrypted. We formally define delegation in
predicate encryption systems, propose a new security definition for dele-
gation, and give an efficient construction supporting conjunctive queries.
The security of our construction can be reduced to the general 3-party
Bilinear Diffie-Hellman assumption, and the Bilinear Decisional Diffie-
Hellman assumption in composite order bilinear groups.

1 Introduction

In traditional public key encryption a user creates a public and private key
pair where the private key is used to decrypt all messages encrypted under
that public key. Traditional public key encryption allows “all-or-nothing” ac-
cess to the encrypted data: the private key owner can decrypt everything; and
any party without the private key learns nothing about the data encrypted. Re-
cently, cryptographers have proposed a new notion of encryption called predicate
encryption [5,9,8,21,1,7,17] (also referred to as searching on encrypted data). In
predicate encryption, the private key owner can compute a capability that allows
one to evaluate predicates on the encrypted data. Capabilities can be regarded
as partial decryption keys that release partial information about the plaintext
encrypted in a controlled manner.

For example, imagine a network audit log collection effort similar to the one
mentioned in the recent work[21]. Suppose different Internet Service Providers
(ISPs) contribute network audit logs to an untrusted repository. The audit logs
will later be used to study network intrusions and worms. Due to privacy con-
cerns, the ISPs encrypt their audit logs before submitting them to the repository,
and only a trusted authority has the private key to search the logs. Now suppose
there has been an outbreak of a new network worm. An auditor (e.g., a research
institute) has been asked to study the behavior of the worm and propose counter-
measures. The auditor can now request the authority for a capability that allows

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 560–578, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Delegating Capabilities in Predicate Encryption Systems 561

the decryption of suspicious log entries, e.g., flows satisfying the following char-
acteristic: (port ∈ [p1, p2]) ∧ (time ∈ last month). Meanwhile, the privacy of
all other log entries are still preserved.

In predicate encryption, it is often important for a user holding a capability
(or a set of capabilities) to generate another capability that is more restrictive
than the ones she currently holds. For example, suppose that Carnegie Mellon
University has the capability to decrypt all log entries satisfying characteristics
of the SQL Slammer worm. Now the university may ask a specific group of re-
searchers to study the SQL Slammer worm originating from an IP address range.
To do this, the head of the university can create a more restrictive capability that
can decrypt all log entries having the worm characteristic, and originating from
this IP range. We say that a predicate encryption system allows for delegation
if a user can create capabilities more restrictive than the one she currently owns
and if she can do this operation autonomously; that is, without interacting with
an authority.

In this paper, we study delegation in predicate encryption systems. We pro-
pose new security definitions of delegation, and a delegateable predicate encryp-
tion scheme supporting conjunctive queries. In the remainder of this section,
we first give an overview of related work, and then explain our approach and
contributions.

1.1 Related Work

From traditional public-key encryption to predicate encryption. While traditional
public-key encryption is sufficient for applications where there is a one to one
association between a particular user and a public key, several applications will
demand a finer-grained and more expressive decryption capabilities. Shamir [20]
provided the first vision for finer-grained encryption systems by introducing
the concept of Identity-Based Encryption (IBE). In an IBE system, a party
encrypts a message under a particular public key and associates the ciphertext
with a given string or “identity”. A user can obtain a private key, that is derived
from a master secret key, for a particular identity and can use it to decrypt any
ciphertext that was encrypted under his identity.

Since the realization of the first Identity-Based Encryption schemes by Boneh
and Franklin [6] and Cocks [13], there have been a number of new crypto-systems
that provided increasing functionality and expressiveness of decryption capabil-
ities. In Attribute-Based Encryption systems [2,12,15,18,19] a user can receive
a private capability that represents complex access control policies over the at-
tributes of an encrypted record. Other encryption systems, including keyword
search (or anonymous IBE) [1,5,7,8,9,17,21] systems, allow for a capability holder
to evaluate a predicate on the the encrypted data itself and learn nothing more.
We henceforth refer to such encryption systems as predicate encryption. Pred-
icate encryption represents a significant breakthrough in the sense that access
to the encrypted data is no longer “all-or-nothing”; a user with a predicate
capability is able to learn partial information about encrypted data.

562 E. Shi and B. Waters

Delegation. The concept of delegation was first introduced in this context by
Horwitz and Lynn [16] in the form of Hierarchical Identity-Based Encryption
(HIBE) [4,14,16]. In an HIBE scheme both private keys and ciphertexts are as-
sociated with ordered lists of identities. A user with a given hierarchical identity
is able to decrypt any ciphertext where his identity is a prefix of the ciphertext’s
identity; moreover, a user is able to delegate by creating any other private key
with for which his identity is a prefix. For example, a user in charge of the UC
Davis domain with a private key for edu:ucdavis can delegate to the computer
science department a private key for edu:ucdavis.cs. Since then, the introduc-
tion of HIBE the principle of delegation has been applied to other access control
systems such as attribute-based encryption systems [15].

1.2 Delegation in Predicate Encryption

In this paper, we examine the problem of delegating capabilities in the more
general context of predicate encryption systems [1,5,8,9,17,21,23]. Apart from
the aforementioned network audit log example, delegation in predicate encryp-
tion can also be useful in other scenarios. For example, suppose Alice has the
capability to decrypt all email labeled with “To:alice@yahoo.com”. If Alice
plans to go on vacation over the next two weeks she might want to delegate to
her assistant the ability to read all of her incoming emails, but only over this
period. To do this, Alice can create a more restrictive capability that can de-
crypt all such messages that are sent the next two weeks. In another example,
suppose Alice’s email gateway has the capability to decrypt certain labels of the
email and makes forwarding decisions accordingly. For example, emails label as
“urgent” by her boss should be sent to her pager; emails from her family should
be forwarded to her home computer, etc. The email gateway might want to in-
stall similar filtering capabilities on an upstream gateway for cost saving reasons,
however, this gateway might be a less trusted device; and Alice may only wish
to have the upstream gateway classify emails as “urgent” and ”non-urgent” and
give preference in forwarding the urgent emails.

Delegation in predicate encryption poses a unique set of challenges; and is
typically harder to realize than delegation in Identity-Based Encryption (IBE).
This is due to the fact that in an IBE system, a user is able to access an encrypted
message if and only if his private key identity matches the ciphertext identity,
but the ciphertext identity itself is not hidden. In contrast, predicate encryption
systems such as anonymous IBE hides the “identity” of the ciphertext itself.
In fact, one can equivalently regard the “identity” as part of the data to be
encrypted; and the query predicates are directly evaluated over the encrypted
data itself. In practice, this means that it is typically much more difficult to
realize delegation in predicate encryption systems. For instance, in anonymous
HIBE systems one needs to be careful that the delegation components themselves
cannot be used to answer queries.

Another difficulty in building delegation into encryption systems is that pre-
vious definitions for security of HIBE appear to be incomplete. In the existing
definitions of HIBE security, the attacker plays a game where he receives all

Delegating Capabilities in Predicate Encryption Systems 563

all of his private key queries directly from the HIBE authority; however this
does not accurately model an adversary’s view in a real system. In a real sys-
tem an adversary might get the private key edu:ucdavis.cs directly from an
authority or it might choose to get it from a user with the key edu:ucdavis. In
general, private keys received directly from the authority and delegated private
keys may have different distribution or forms. For example, in the Gentry and
Silverberg [14] and Boneh and Boyen HIBE [3] schemes if a HIBE private key of
depth � is received directly from an authority, the authority will create � newly
random elements of Z

∗
p in creating the key; however, if the key is generated by

another user only one new degree of randomness will be added and the rest will
be in common with the previous key. As a result, in the security game, we should
not assume in general that delegated keys have the same distribution as keys
directly computed by the authority.

Our Approach. We first set out to create a general framework and definitions
for delegation in predicate encryption systems. In order to do this we create
a general definition that accounts for how predicate capabilities were created.
In particular, our definition allows for the adversary to make queries both for
capabilities that are created by an authority and for capabilities delegated by
users. The adversary may then ask for some subset of these capabilities to be
revealed to him.

Using our new definition we set out to realize delegation in an expressive
predicate encryption system by extending the Hidden Vector Encryption (HVE)
system of Boneh and Waters [8] to allow for delegation. In order to realize
security under our new definition we apply two new techniques.

First, we need to make sure that the additional delegation components do not
compromise the security of our scheme. We enforce this by “tying” the delega-
tion components of a key to the restrictions of the original key itself. Second, we
have the challenge that in the previous HVE techniques of Boneh and Waters [8],
the simulator typically creates key that are “completely random” in the sense that
they have the same distribution as those coming directly from the authority; how-
ever our security definition demands that the keys reflect the distribution of del-
egation steps specified by the adversary. In order to overcome this we modify the
basic scheme such that the distribution of the keys is hidden from a computation-
ally bounded adversary. We show that no adversary can tell whether any key was
delegated as he specified or came directly from the authority. After applying this
hybrid step we can then proceed to use a simulation that is similar to the previ-
ous ones. We believe that our approach is novel in that it is the first instance of a
computational game over the private keys in a capability oriented crypto-system.

Finally, we provide a more efficient realization of Anonymous HIBE, which
can be seen as a special case of our delegateable HVE scheme. Our Anonymous
HIBE scheme has the property that private keys are O(D) in size for a system
that allows hierarchies of depth D. Our private key space efficiency can be viewed
as a direct result of our corrected definition as the previous scheme of Boyen and
Waters required O(D2) to make all delegated keys have the same distribution
as those that came directly from the authority.

564 E. Shi and B. Waters

2 Definitions

In this section, we introduce the notion of delegation in predicate encryption
systems and provide a formal definition of security.

In a predicate encryption system, some user, Alice, creates a public key and
a corresponding master key. Using her master key, Alice can compute and hand
out a token to Bob, such that Bob is able to evaluate some function1, f , on
the plaintext that has been encrypted. Meanwhile, Bob cannot learn any more
information about the plaintext, apart from the output of the function f .

In this paper, we consider the role of delegation in predicate encryption sys-
tems. Suppose Alice (the master key owner) has given Bob tokens to evaluate
a set of functions f1, f2, . . . , fm over ciphertexts. Now Bob wishes to delegate
to Charles the ability to evaluate the functions {f1 + f2, f3, f4} over the cipher-
text. Charles should not be able to learn more information about the plaintext
apart from the output of the functions {f1 + f2, f3, f4}. For example, although
Charles can evaluate f1 + f2, he should not be able to learn f1 or f2 separately.
In general, Bob may be interested in delegating any set of functions that is more
restrictive than what he is able to evaluate with his tokens. Delegation can also
happen more than a single level. For example, after obtaining a token from Bob
for functions {f1 + f2, f3, f4}, Charles may now decide to delegate to his friend
David a token to evaluate f3 · f4.

2.1 Definition

We now formally define delegation in predicate encryption systems that captures
the above notion.

Let X = (x1, x2, . . . , x�) ∈ {0, 1}� denote a plaintext. Without loss of general-
ity, assume that we would like to evaluate from the ciphertext boolean functions
(a.k.a. predicates) on X . Functions that output multiple bits can be regarded as
concatenation of boolean functions. Let F denote the set of all boolean functions
from {0, 1}� to {0, 1}, i.e., F := {f

∣
∣ f : {0, 1}� → {0, 1}}.

A token allows one to evaluate from the ciphertext a set of functions on X .
Let G = {g1, g2, . . . , gm} ⊆ F denote a collection of functions (also referred to as
a function family). We use the notation closure(G) to denote the set of functions
mapping {0, 1}� to {0, 1} that can be evaluated from {g1(X), g2(X), . . . , gm(X)},
i.e.,

closure(G) =
{

f ′ : {0, 1}� → {0, 1}
∣
∣
∣
∣

f ′(X) = h(g1(X), g2(X), . . . , gm(X)), where h : {0, 1}m → {0, 1}
}

Given a token to evaluate a function family G ⊆ F from a ciphertext, we
have sufficient information to evaluate any function in closure(G) (assuming un-
restricted computational power). A party with a token for a function family G
may be interested in delegating to a friend the ability to evaluate a subset of
closure(G). In other words, any subset of closure(G) can be used to define a token
more restrictive than a token for the function family G.
1 Although we focus on functions that are predicates in our solutions, we use the more

general term of functions in this discussion and our formal definitions.

Delegating Capabilities in Predicate Encryption Systems 565

A Delegateable Predicate Encryption (DPE) scheme consists of the following
(possibly randomized) algorithms.

Setup(1λ). The Setup algorithm takes as input a security parameter 1λ, and
outputs a public key PK and a master secret key MSK.

Encrypt(PK, X). The Encrypt algorithm takes as input a public key PK and a
plaintext X = (x1, x2, . . . , x�) ∈ {0, 1}�; and outputs a ciphertext CT.

GenToken(PK, MSK, G). The GenToken algorithm takes as input a public key
PK, master secret key MSK, and a set of boolean functions G ⊆ F . It outputs
a token for evaluating the set of functions G from a ciphertext.

Query(PK, TKG , CT, f). The Query algorithm takes as input a public key PK,
a token TKG for the function family G, a function f ∈ G, and a ciphertext
CT. Suppose CT is an encryption of the plaintext X ; the algorithm outputs
f(X).

Delegate(PK, TKG , G′). The Delegate algorithm takes as input a public key PK,
a token for the function family G ⊆ F , and G′ ⊆ closure(G). It computes a
token for evaluating the function family G′ on a ciphertext.

Remark 1. We note that the above definition captures delegation in predicate
encryption systems in the broadest sense. In a predicate encryption system, we
would like to maximize the expressiveness of delegation; however, one should not
be able to delegate beyond what she can learn with her own tokens. Otherwise,
the security of predicate encryption would be broken.

Since we care about being able to perform expressive delegations, we can judge a
system by its expressiveness, e.g., what types of functions one can evaluate over
the ciphertext, and what types of delegations one can perform. Our vision is to
design a predicate encryption system that supports a rich set of queries and del-
egations. As an initial step, we restrict ourselves to some special classes of func-
tions. At the time of writing this paper, the most expressive predicate encryption
system (without delegation) we know of supports conjunctive queries [8]. How-
ever, soon after this writing, Katz, Sahai and Waters propose a novel predicate
encryption system supporting inner product queries [17].

2.2 Security

To define the security for delegation in predicate encryption, we describe a query
security game between a challenger and an adversary. This game formally cap-
tures the notion that the tokens reveal no unintended information about the
plaintext. In this game, the adversary asks the challenger for a number of to-
kens. For each queried token, the adversary gets to specify its path of derivation:
whether the token is directly generated by the root authority, or delegated from
another token. If the token is delegated, the adversary also gets to specify from
which token it is delegated. The game proceeds as follows:

Setup. The challenger runs the Setup algorithm, and gives the adversary the
public key PK.

566 E. Shi and B. Waters

Query 1. The adversary adaptively makes a polynomial number of queries of
the following types:
– Create token. The adversary asks the challenger to create a token for a

set functions G ⊆ F . The challenger creates a token for G without giving
it the adversary.

– Create delegated token. The adversary specifies a token for function family
G that has already been created, and asks the challenger to perform a
delegation operation to create a child token for G′ ⊆ closure(G). The
challenger computes the child token without releasing it to the adversary.

– Reveal token. The adversary asks the challenger to reveal an already
created token for function family G.

Note that when token creation requests are made, the adversary does not
automatically see the created token. The adversary only sees a token when
it makes a reveal token query.

Challenge. The adversary outputs two strings X∗
0 , X∗

1 ∈ {0, 1}� subject to the
following constraint:
For any token revealed to the adversary in the Query 1 stage, let G denote
the function family corresponding to this token. For all f ∈ G, f(X∗

0) =
f(X∗

1).
Next, the challenger flips a random coin b, and encrypts X∗

b . It returns the
ciphertext to the adversary.

Query 2. Repeat the Query 1 stage. All tokens revealed in this stage must
satisfy the same condition as above.

Guess. The adversary outputs a guess b′ of b. The advantage of an adversary
A in the above game is defined to be AdvA = | Pr[b = b′] − 1/2|.

Definition 1. We say that a delegateable predicate encryption system is secure
if for all polynomial-time adversaries A attacking the system, its advantage AdvA
is a negligible function of λ.

Selective Security. We also define a weaker security notion called selective se-
curity. In the selective security game, instead of submitting two strings X∗

0 , X∗
1

in the Challenge stage, the adversary first commits to two strings at the be-
ginning of the security game. The rest of the security game proceeds exactly as
before. The selective security model has appeared in various constructions in the
literature [10,11,3,8,9,21], since it is often easier to prove security in the selective
model.

We say that a delegateable predicate encryption system is selectively secure
if all polynomial time adversaries A have negligible advantage in the selective
security game.

Remark 2. We note that our security definition is complete in the sense that in
the query phase, the adversary gets to specify, for each queried token, its path of
derivation: whether the token is generated by the root authority, or from whom
the token has been delegated. Previously when researchers studied delegation in
identity-based encryption systems, (e.g., Hierarchical Identity-Based Encryption

Delegating Capabilities in Predicate Encryption Systems 567

uzyx

T0 a1 a2 a3 a4 a5 a6

Fig. 1. A simple example of predicate encryption similar to the one described in
BW06 [8]

(HIBE) [4], Anonymous Hierarchical Identity-Based Encryption (AHIBE) [9]),
the security game was under-specified: the adversary does not get to specify from
whom each queried token is delegated. One way to interpret this is to assume that
all tokens are generated from the same probability distribution. For example, the
AHIBE [9] work uses this approach. While this allows us to prove the security of
these systems, it is in fact an overkill. This motivates our new security definition
for delegation. Under the new security definition, the delegated token need not
be picked from the same probability distribution as the non-delegated tokens. In
fact, we show that the ability to capture such nuances in our security definition
allows us to construct a simpler AHIBE scheme with smaller private key size.

2.3 A Simple Example

To help understand the above definition, we give a simple example similar to that
in the BW06 paper [8]. As shown by Figure 1, suppose the point X encrypted
takes on integer values between 0 and T . Given a, b ∈ [0, T], let fa,b denote the
function that decides whether X ∈ [a, b]:

fa,b(X) =

{

1 X ∈ [a, b]
0 o.w.

In Figure 1, we mark three disjoint segments [a1, a2], [a3, a4] and [a5, a6]; and four
points x, y, z, u. Suppose Alice has a token for functions {fa1,a2 , fa3,a4 , fa5,a6}.
This allows her to evaluate the following three predicates: whether a1 ≤ X ≤ a2,
a3 ≤ X ≤ a4, and a5 ≤ X ≤ a6. Alice can now distinguish between ciphertexts
Encrypt(PK, x) and Encrypt(PK, y); but she cannot distinguish between cipher-
texts Encrypt(PK, y) and Encrypt(PK, z).

Suppose now Alice performs a delegation, and computes a child token for the
function g(X) = fa1,a2(X)∨fa3,a4(X). Suppose that Bob receives this delegated
token from Alice. Now Bob is able to decide whether (a1 ≤ X ≤ a2) ∨ (a3 ≤
X ≤ a4); this is a subset of information allowed by Alice’s token. Given this new
token, Bob can decide whether X falls inside these two ranges, but he cannot
decide between the cases whether X ∈ [a1, a2] or X ∈ [a3, a4]. For example, Bob
can distinguish between the ciphertexts Encrypt(PK, x) and Encrypt(PK, u), but
he cannot distinguish between the ciphertexts Encrypt(PK, x) and
Encrypt(PK, y).

568 E. Shi and B. Waters

3 Delegateable Hidden Vector Encryption (dHVE)

We propose a primitive called delegateable hidden vector encryption (dHVE),
where we add delegation to the HVE construction proposed in BW06 [8]. This
is an interesting special case to the general definition given in Section 2.1, and
represents an initial step towards our bigger vision of enabling expressive queries
and delegations in predicate encryption systems.

3.1 Delegateable HVE Overview (dHVE)

In our dHVE system, plaintexts consists of multiple “fields”. For example, a
plaintext can be the tuple (IP, port, time, length). A token corresponds to a
conjunction of a subset of these fields: we can fix a field to a specific value, make
a field “delegateable”, or choose not to include a field in a query. For example,
the query (IP = ?) ∧ (port = 80) ∧ (time = 02/10/08) fixes the values of the
port and time fields, and makes the IP field delegateable. The length field
is not included in the query. A party in possession of this token can fill in any
appropriate value for the delegateable field IP, however, she cannot change the
values of the fixed field or delete them from the query, nor can she add in the
missing field length to the query. We now give formal definitions for the above
notions.

Let Σ denote a finite alphabet and let ?, ⊥ denote two special symbols not in
Σ. Define Σ?,⊥ := Σ ∪ {?, ⊥}. The symbol ? denotes a delegateable field, i.e.,
a field where one is allowed to fill in an arbitrary value and perform delegation.
The symbol ⊥ denotes a “don’t care” field, i.e., a field not involved in some
query. Typically, if a query predicate does not concern a specific field, we call
this field a “don’t care” field. In the aforementioned example, (IP = ?)∧(port =
80)∧ (time = 02/10/08), the IP field is a delegateable field, length is a “don’t
care” field, and the remaining are fixed fields.

Plaintext. In dHVE, our plaintext is composed of a message M ∈ {0, 1}∗ and �
fields, denoted by X = (x1, x2, . . . , x�) ∈ Σ�. The Encrypt algorithm takes as
input a public key PK, a pair (X, M) ∈ {0, 1}∗ × Σ�, and outputs a ciphertext
CT.

Tokens. In dHVE, a token allows one to evaluate a special class of boolean
functions on the fields X ∈ Σ�. We use a vector σ = (σ1, σ2, . . . , σ�) ∈ (Σ?,⊥)�

to specify a set of functions being queried. Given σ, let W(σ) denote the indices
of all delegateable fields, let D(σ) denote the indices of all “don’t care” fields,
and let S(σ) denote the indices of the remaining fixed fields. In the following,
we use the notation [�] to denote the set {1, 2, . . . , �}.

W(σ) := {i
∣
∣ σi = ?}, D(σ) := {i

∣
∣ σi = ⊥}

S(σ) := {i
∣
∣ σi ∈ Σ} = [�]\ (W(σ) ∪ D(σ))

Delegating Capabilities in Predicate Encryption Systems 569

Let σ = (σ1, σ2, . . . , σ�) ∈ (Σ?,⊥)�, σ specifies the following function family
Cσ on the point X = (x1, . . . , x�) encrypted:

Cσ :=

⎧

⎨

⎩

(
∧

i∈W ′

(xi = ai)

)

∧

⎛

⎝
∧

j∈S(σ)

(xj = σj)

⎞

⎠
∣
∣ W ′ ⊆ W(σ), ∀i ∈ W ′, ai ∈ Σ

⎫

⎬

⎭

(1)
In other words, given a token for σ, the family Cσ denotes the set of functions

we can evaluate from a ciphertext. For the delegateable fields, we can fill in any
appropriate value, but we cannot change or delete any of the fixed fields or add
a “don’t care” field to the query. In addition, if any function in Cσ evaluates to
1, one would also be able to decrypt the payload message M.

Remark 3. The family Cσ is a set of conjunctive equality tests, where we can fill
in every delegateable field in σ with a value in Σ or “don’t care”. In particu-
lar, we fill in fields in W ′ with appropriate values in σ, and for the remaining
delegateable fields W(σ) − W ′, we fill them with “don’t care”. If σ has no del-
egateable field, then the set Cσ contains a single function. This is exactly the
case considered by the original HVE construction, where each token allows one
to evaluate a single function from a ciphertext.

Delegation. In dHVE, Alice, who has a token for σ, can delegate to Bob a
subset of the functions she can evaluate: 1) Alice can fill in delegateable fields
(i.e., W(σ)) with a value in Σ or with the “don’t care” symbol ⊥; 2) Alice can
also leave a delegateable field unchanged (with the ? symbol). In this case, Bob
will be able to perform further delegation on that field.

Definition 2. Let σ = (σ1, σ2, . . . , σ�), σ′ = (σ′
1, σ

′
2, . . . , σ

′
�) ∈ Σ�

?,⊥. We say
that σ′ ≺ σ, if for all i ∈ S(σ) ∪ D(σ), σ′

i = σi.

Note that σ′ ≺ σ means that from TKσ we can perform a delegation operation
and compute TKσ′ . In addition, if σ′ ≺ σ, then Cσ′ ⊆ Cσ, i.e., TKσ′ allows one
to evaluate a subset of the functions allowed by TKσ.

In summary, we introduce delegateable fields to the original HVE construc-
tion. We use the notation σ ∈ Σ�

?,⊥ to specify a function family. Given TKσ, one
can perform a set of conjunctive equality tests (defined by Equation (1)) from
the ciphertext. One may also fill in the delegateable fields in σ with any value
in Σ ∪ {⊥} and compute a child token for the resulting vector. The child token
allows one to evaluate a subset of the functions allowed by the parent token.

Example. Suppose the trusted authority T issues to A a token for σA = (I1, I2, ?,
?, ⊥, ⊥, . . . , ⊥). This token allows A to evaluate the following functions from the
ciphertext:

– (x1 = I1) ∧ (x2 = I2)
– ∀I3 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)
– ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x4 = I4)
– ∀I3, I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

570 E. Shi and B. Waters

Later, suppose A delegates to B the following token: σB = (I1, I2, I3, ?, ⊥,
⊥, . . . , ⊥), where I3 ∈ Σ. Note that this allow B to evaluate the following
functions:
– (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)
– ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

Clearly, a token for σB releases a subset of information allowed by σA. Mean-
while, B is able to further delegate on the x4 field.

3.2 dHVE Definition

We now give a formal definition of dHVE.

Setup(1λ). The Setup algorithm takes as input a security parameter 1λ, and
outputs a public key PK and a master secret key MSK.

Encrypt(PK, X, M). The Encrypt algorithm takes as input a public key PK, a
pair (X, M) ∈ Σ� × {0, 1}∗; and outputs a ciphertext CT.

GenToken(PK, MSK, σ). The GenToken algorithm takes as input a public key
PK, master secret key MSK, and a vector σ ∈ (Σ?,⊥)�. It outputs a token for
evaluating the set of conjunctive queries Cσ from a ciphertext.

Delegate(PK, TKσ, σ′). The Delegate algorithm takes as input a public key PK,
a token TKσ for the vector σ, and another vector σ′ ≺ σ. It outputs a
delegated token TKσ′ for the new vector σ′.

Query(PK, TKσ, CT, σ′). The Query algorithm takes as input a public key PK, a
token TKσ for the vector σ, a ciphertext CT, and a new vector σ′ satisfying
the following conditions: (1) σ′ ≺ σ; (2) σ′ does not contain delegatable
fields, that is, such a σ′ specifies a single conjunctive query (denoted fσ′)
over the point X encrypted. The algorithm outputs fσ′(X); in addition, if
fσ′(X) = 1, it also outputs the message M.

Remark 4. We note that in comparison to the general definition given in Sec-
tion 2, in dHVE, we add a payload message M ∈ {0, 1}∗ to the plaintext. Mean-
while, the conjunctive queries in dHVE are functions on the attributes X ∈ Σ�,
but not the payload M. Additionally, if a query matches a point X encrypted,
one can successfully decrypt the payload message using the corresponding to-
ken. It is not hard to show that the above formalization for dHVE is captured
by the general definition given in Section 2: We can regard (M, X) as an entire
bit-string, and decrypting the payload M can be regarded as evaluating a con-
catenation of bits from the bit-string (M, X). We choose to define dHVE with a
payload message to be consistent with the HVE definition in BW06 [8].

Selective security of dHVE. We will prove the selective security of our dHVE
construction. We give the formal selective security definition below. The full
security definition for dHVE can be found in the Appendix.

– Init. The adversary commits to two strings X∗
0 , X∗

1 ∈ Σ�.
– Setup. The challenger runs the Setup algorithm and gives the adversary the

public key PK.

Delegating Capabilities in Predicate Encryption Systems 571

– Query 1. The adversary adaptively makes a polynomial number of “create
token”, “create delegated token” or “reveal token” queries. The queries must
satisfy the following constraint: For any token σ revealed to the adversary,
let Cσ denote the set of conjunctive queries corresponding to this token.

∀TKσ revealed, ∀f ∈ Cσ : f(X∗
0) = f(X∗

1) (2)

– Challenge. The adversary outputs two equal length messages M0 and M1
subject to the following constraint:
For any token σ revealed to the adversary in the Query 1 stage, let Cσ

denote the set of conjunctive queries corresponding to this token.

∀TKσ revealed : if ∃f ∈ Cσ, f(X∗
0) = f(X∗

1) = 1, then M0 = M1 (3)

The challenger flips a random coin b and returns an encryption of (Mb, Xb)
to the adversary.

– Query 2. Repeat the Query 1 stage. All tokens revealed in this stage must
satisfy constraints (2) and (3).

– Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined to be AdvA =
| Pr[b = b′] − 1/2|. We say that a dHVE construction is selectively secure if for
all polynomial time adversaries, its advantage in the above game is a negligible
function of λ.

Observation 1. Anonymous Hierarchical Identity-Based Encryption (AHIBE)
is a special case of the above defined dHVE scheme.

AHIBE is very similar to the dHVE definition given above. The only difference
is that in AHIBE, the function family queried is Cσ, where σ has the special
structure such that S(σ) = [d] where d ∈ [�], W(σ) = [d + 1, �], and D(σ) = ∅.
In fact, we show that the new security definition and the techniques we use to
construct dHVE can be directly applied to give an AHIBE scheme with shorter
private key size. While the previous AHIBE scheme by Boyen and Waters require
O(D2) private key size, our new construction has O(D) private key size, where
D is the maximum depth of the hierarchy. We refer readers to the Appendix for
details of the construction.

4 Background on Pairings and Complexity Assumptions

Our construction relies on bilinear groups of composite order n = pqr, where
p, q and r are distinct large primes. We assume that the reader is familiar with
bilinear groups. More background on composite order bilinear groups can be
found in the Appendix.

Our construction relies on two complexity assumptions: the bilinear Diffie-
Hellman assumption (BDH) and the generalized composite 3-partyDiffie-Hellman
assumption (C3DH). Although our construction only requires bilinear groups whose

572 E. Shi and B. Waters

order is the product of three primes n = pqr, we state our assumptions more gener-
ally for bilinear groups of order n where n is the product of three or more primes.

We begin by defining some notation. We use the notation GG to denote the
group generator algorithm that takes as input a security parameter λ ∈ Z

>0,
a number k ∈ Z

>0, and outputs a tuple (p, q, r1, r2, . . . , rk, G, GT , e) where
p, q, r1, r2, . . . , rk are k + 2 distinct primes, G and GT are two cyclic groups
of order n = pq

∏k
i=1 ri, and e : G

2 → GT is the bilinear mapping function. We
use the notation Gp, Gq, Gr1, . . . , Grk

to denote the respective subgroups of order
p, q, r1, . . . , rk of G. Similarly, we use the notation GT,p, GT,q, GT,r1 , . . . , GT,rk

to denote the respective subgroups of order p, q, r1, . . . , rk of GT .

The bilinear Diffie-Hellman assumption. We review the standard Bilinear
Diffie-Hellman assumption, but in groups of composite order. For a given group
generator GG define the following distribution P (λ):

(p, q, r1, . . . , rk, G, GT , e) R← GG(λ, k), n ← pq
∏k

i=1 ri,

gp
R← Gp, gq

R← Gq, h1
R← Gr1 , . . . , hk

R← Grk

a, b, c
R← Zn

Z̄ ←
(

(n, G, GT , e), gq, gp, h1, h2, . . . , hk, ga
p , gb

p, gc
p

)

T ← e(gp, gp)abc

Output (Z̄, T)

Define algorithm A’s advantage in solving the composite bilinear Diffie-Hellman
problem as cBDH AdvGG,A(λ) :=

∣
∣Pr[A(Z̄, T) = 1] − Pr[A(Z̄, R) = 1]

∣
∣, where

(Z̄, T) R← P (λ) and R
R← GT,p. We say that GG satisfies the composite bilin-

ear Diffie-Hellman assumption (cBDH) if for any polynomial time algorithm A,
cBDH AdvGG,A(λ) is a negligible function of λ.

The generalized composite 3-party Diffie-Hellman assumption. We also
rely on the composite 3-party Diffie-Hellman assumption first introduced by
Boneh and Waters [8]. For a given group generator GG define the following
distribution P (λ):

(p, q, r1, . . . , rk, G, GT , e) R← GG(λ, k), n ← pq
∏k

i=1 ri,

gp
R← Gp, gq

R← Gq, h1
R← Gr1 , . . . , hk

R← Grk

R1, R2, R3
R← Gq, a, b, c

R← Zn

Z̄ ←
(

(n, G, GT , e), gq, gp, h1, h2, . . . , hk, ga
p , gb

p, gab
p · R1, gabc

p · R2
)

T ← gc
p · R3

Output (Z̄, T)

Define algorithmA’s advantage in solving the generalized composite 3-partyDiffie-
HellmanproblemforGGasC3DHAdvGG,A(λ):=

∣
∣Pr[A(Z̄, T)=1]−Pr[A(Z̄, R)=1]

∣
∣,

where (Z̄, T) R← P (λ) and R
R← G. We say that GG satisfies the composite 3-party

Diffie-Hellman assumption (C3DH) if for any polynomial time algorithm A, its ad-
vantage C3DHAdvGG,A(λ) is a negligible function of λ.

Delegating Capabilities in Predicate Encryption Systems 573

The assumption is formed around the intuition that it is hard to test for Diffie-
Hellman tuples in the subgroup Gp if the elements have a random Gq subgroup
component.

Remark 5. Consider bilinear groups of order n = pqr, where p, q and r are
three distinct primes. In the above generalized composite 3-party Diffie-Hellman
assumption, whether to call a prime p, q or r is merely a nominal issue. So
equivalently, we may assume that it is hard to test for Diffie-Hellman tuples in
the subgroup Gp, if each element is multiplied by a random element from Gr

instead of Gq.

5 dHVE Construction

We construct a dHVE scheme by extending the HVE construction by Boneh and
Waters [8] (also referred to as the BW06 scheme). One of the challenges that we
have to overcome is how to add delegation in anonymous IBE systems. We note
that delegation is easier in non-anonymous IBE systems, such as in HIBE [4].
In the HIBE construction [4], the public key contains an element corresponding
to each attribute, and the delegation algorithm can use these elements in the
public key to rerandomize the tokens. In anonymous systems, however, as the
encryption now has to hide the attributes as well, we have extra constraints on
what information we can release in the public key. This makes delegation harder
in anonymous settings.

5.1 Construction

In our construction, the public key and the ciphertext are constructed in a way
similar to the BW06 scheme. However, we use a new trick to reduce the number of
group elements in the ciphertext asymptotically by one half. Our token consists
of two parts, a decryption key part denoted as DK and a delegation component
denoted as DL. The decryption key part DK is similar to that in the BW06
scheme. The delegation component DL is more difficult to construct, since we
need to make sure that the delegation component itself does not leak unintended
information about the plaintext encrypted.

We will use Σ = Zm for some integer m. Recall that Σ?,⊥ := Σ ∪ {?, ⊥},
where ? denotes a delegateable field, and ⊥ denotes a “don’t care” field.

Setup(1λ). The setup algorithm first chooses random large primes p, q, r > m
and creates a bilinear group G of composite order n = pqr, as specified in
Section 4. Next, it picks random elements

(u1, h1), . . . , (u�, h�) ∈ G
2
p , g, v, w, w ∈ Gp , gq ∈ Gq, gr ∈ Gr

and an exponent α ∈ Zp. It keeps all these as the secret key MSK.
It then chooses 2� + 3 random blinding factors in Gq:

(Ru,1, Rh,1), . . . , (Ru,�, Rh,�) ∈ Gq and Rv, Rw, Rw ∈ Gq.

574 E. Shi and B. Waters

For the public key, PK, it publishes the description of the group G and the
values

gq, gr, V = vRv, W = wRw, W = wRw, A = e(g, v)α,

(
U1 = u1Ru,1, H1 = h1Rh,1

. . .
U� = u�Ru,�, H� = h�Rh,�

)

The message space M is set to be a subset of GT of size less than n1/4.
Encrypt(PK, X ∈ Σ�, M ∈ M ⊆ GT). Assume that Σ ⊆ Zm. Let X = (x1, . . . ,

x�) ∈ Z
�
m. The encryption algorithm first chooses a random ρ ∈ Zn and ran-

dom Z, Z0, Zφ, Z1, Z2, . . . , Z� ∈ Gq. (The algorithm picks random elements
in Gq by raising gq to random exponents from Zn.) Then, the encryption
algorithm outputs the ciphertext:

CT =
(

C̃ = MAρ, C = V ρZ, C0 = W ρZ0, Cφ = W
ρ
Zφ,

⎛

⎜
⎜
⎝

C1 = (Ux1
1 H1)ρZ1,

C2 = (Ux2
2 H2)ρZ2,

.

C� = (Ux�
� H�)ρZ�

⎞

⎟
⎟
⎠

)

Remark 6. We note that the ciphertext size is cut down by roughly a half
when compared to the BW06 construction [8]. Therefore, our construction
immediately implies an HVE scheme with asymptotically half the ciphertext
size as the original BW06 construction.

GenToken(PK, MSK, σ ∈ Σ�
?,⊥). The token generation algorithm will take as

input the master secret key MSK and an �-tuple σ = (σ1, . . . , σ�) ∈ Σ�
?,⊥. The

token for σ consists of two parts: (1) a decryption key component denoted
as DK, and (2) a delegation component denoted DL.
– The decryption key component DK is composed in a similar way to the

original HVE construction [8]. Recall that S(σ) denotes the indices of the
fixed fields, i.e., indices j such that σj ∈ Σ. Randomly select γ, γ ∈ Zp

and tj ∈ Zp for all j ∈ S(σ). Pick random Y, Y0, Yφ ∈ Gr and Yj ∈ Gr for
all j ∈ S(σ). Observe that picking random elements from the subgroup
Gr can be done by raising gr to random exponents in Zn. Next, output
the following decryption key component:
DK =

(

K = gαwγwγ
∏

j∈S(σ)(u
σj

j hj)tj Y, K0 = vγY0, Kφ = vγYφ, ∀j ∈ S(σ) : Kj = vtj Yj

)

– The delegation component DL is constructed as below. Recall that W(σ)
denotes the set of all indices i where σi = ?. Randomly select Yi,u, Yi,h ∈
Gr. For each i ∈ W(σ), for each j ∈ S(σ) ∪ {i}, randomly select
si,j ∈ Zp, Yi,j ∈ Gr. For each i ∈ W(σ), randomly select γi, γi ∈ Zp,
Yi,h, Yi,u, Yi,0, Yi,φ ∈ Gr. Next, output the following delegation compo-
nent DLi for coordinate i.

∀i ∈ W(σ) : DLi =

(

Li,h = h
si,i

i wγiwγi
∏

j∈S(σ)(u
σj

j hj)si,j Yi,h, Li,u = u
si,i

i Yi,u

Li,0 = vγiYi,0, Li,φ = vγiYi,φ, ∀j ∈ S(σ) ∪ {i} : Li,j = vsi,j Yi,j

)

Remark 7. Later, suppose we want to delegate on the kth field by fixing it
to I ∈ Σ. To do so, we will multiply LI

k,u to Lk,h, resulting in something
similar to the decryption key DK (except without the gα term). Observe that

Delegating Capabilities in Predicate Encryption Systems 575

the Li,h terms encode all the fixed fields (i.e., S(σ)). This effectively restricts
the use of the delegation components, such that they can only be added on
top of the fixed fields, partly ensuring that the delegation components do
not leak unintended information.

Delegate(PK, σ, σ′). Given a token for σ ∈ Σ�
?,⊥, the Delegate algorithm com-

putes a token for σ′ ≺ σ. Without loss of generality, we assume that σ′ fixes
only one delegateable field of σ to a symbol in Σ or to ⊥. Clearly, if we
have an algorithm to perform delegation on one field, then we can perform
delegation on multiple fields. This can be achieved by fixing the multiple
delegateable fields one by one.
We now describe how to compute TKσ′ from TKσ. Suppose σ′ fixes the kth

coordinate of σ. We consider the following two types of delegation: 1) the
kth coordinate is fixed to some value in the alphabet Σ, and 2) the kth

coordinate is set to ⊥, i.e., it becomes a “don’t care” field.
Type 1: σ′ fixes the kth coordinate of σ to I ∈ Σ, and the remaining coordinates

of σ remain unchanged. In this case, S(σ′) = S(σ) ∪ {k}, and W(σ′) =
W(σ)\{k}. (Recall that S(σ) denotes the set of indices j where σj ∈ Σ,
and W(σ) denotes the set of delegateable fields of σ.)

Step 1: Let (DK, DL) denote the parent token. Pick a random exponent μ ∈
Zn and rerandomize the delegation component DL by raising every
element in DL to μ. Denote the rerandomized delegation component
as:

∀i ∈ W(σ) : D̂Li =

(

L̂i,h = Lμ
i,h, L̂i,u = Lμ

i,u,

L̂i,0 = Lμ
i,0, L̂i,φ = Lμ

i,φ, ∀j ∈ S(σ) ∪ {i} : L̂i,j = Lμ
i,j

)

In addition, compute a partial decryption key component with the
kth coordinate fixed to I:
pDK =

(

T = L̂I
k,uL̂k,h, T0 = L̂k,0, Tφ = L̂k,φ, ∀j ∈ S(σ′) : Tj = L̂k,j

)

The partial decryption key pDK is formed similarly to the decryption
key DK, except that pDK does not contain the term gα.

Step 2: Compute |W(σ′)| rerandomized versions of the above. For all i ∈
W(σ′), randomly select τi ∈ Zn, and compute:

pDKi =
(

Γi = T τi, Γi,0 = T τi

0 , Γi,φ = T τi

φ , ∀j ∈ S(σ′) : Γi,j = T τi

j

)

Step 3: We are now ready to compute the decryption key component DK′

of the child token. DK′ is computed from two things: 1) DK, the de-
cryption key component of the parent token and 2) pDK, the partial
decryption key computed in Step 1. In particular, pDK is the partial
decryption key with the kth field fixed; however, as pDK does not
contain the gα term, we need to multiply appropriate components of
pDK to those in DK.

To compute DK′, first, randomly select Y ′, Y ′
0 , Y ′

φ ∈ Gr. For all
j ∈ S(σ′), randomly select Y ′

j ∈ Gr. Now output the following DK′:
DK′ =

(
K ′ = KTY ′, K ′

0 = K0T0Y
′
0 , K ′

φ = KφTφY ′
φ, K ′

k = TkY ′
k, ∀j ∈ S(σ) : K ′

j = KjTjY
′
j

)

576 E. Shi and B. Waters

Step 4: We now explain how to compute the delegation component DL′ of
the child token. DL′ is composed of a portion DL′

i for each i ∈ W(σ′).
Moreover, each DL′

i is computed from two things: 1) D̂Li as computed
in Step 1 and 2) pDKi as computed in Step 2.
Follow the steps below to compute DL′. For each i ∈ W(σ′), ran-
domly select Y ′

i,h, Y ′
i,u, Y ′

i,0, Y
′
i,φ from Gr. For each i ∈ W(σ′), for

each j ∈ S(σ) ∪ {i, k}, pick at random Y ′
i,j from Gr. Compute the

delegation component DL′ of the child token as below:

∀i ∈ W(σ′) : DL′
i =

⎛

⎜
⎝

L′
i,h = L̂i,hΓiY

′
i,h, L′

i,u = L̂i,uY ′
i,u

L′
i,0 = L̂i,0Γi,0Y

′
i,0, L′

i,φ = L̂i,φΓi,φY ′
i,φ,

L′
i,i = L̂i,iY

′
i,i, L′

i,k = Γi,kY ′
i,k, ∀j ∈ S(σ) : L′

i,j = L̂i,jΓi,jY
′
i,j

⎞

⎟
⎠

Type 2: We now go on to explain how to perform a Type 2 delegation. Suppose
σ′ fixes the kth coordinate of σ to ⊥. In this case, S(σ′) = S(σ), and
W(σ′) = W(σ)\{k}. The child token is formed by removing the part
DLk from the parent token:

TKσ′ = (DK, DL\{DLk})

Remark 8. It is not hard to verify that delegated tokens have the correct
form, except that their exponents are no longer distributed independently
at random, but are correlated with the parent tokens. In the proof in the
Appendix, we show that Type 1 delegated tokens “appear” (in a compu-
tational sense) as if there were generated directly by calling the GenToken
algorithm, that is, with exponents completely at random. This constitutes
an important idea in our security proof.

Query(PK, TKσ, CT, σ′). A token for σ ∈ Σ�
?,⊥ allows one to evaluate a set of

functions Cσ defined by Equation (1) from the ciphertext. Let σ′ ≺ σ and
assume σ′ has no delegateable fields. Then σ′ represents a single function fσ′

(a conjunctive equality test), and the Query algorithm allows us to evaluate
fσ′ over the ciphertext.

To evaluate fσ′ from the ciphertext using TKσ, first call the Delegate
algorithm to compute a decryption key for σ′. Write this decryption key in
the form DK = (K, K0, Kφ, ∀j ∈ S(σ′) : Kj). Furthermore, parse the

ciphertext as CT =
(

C̃, C, C0, Cφ, ∀j ∈ � : Cj

)

.

Now use the same algorithm as the original HVE construction to perform
the query. First, compute

M ← C̃ · e(C, K)−1 · e(C0, K0)e(Cφ, Kφ)
∏

j∈S(σ′)

e(Cj , Kj) (4)

If M �∈ M, output 0, indicating that fσ′ is not satisfied. Otherwise, output
1, indicating that fσ′ is satisfied and also output M. We explain why the
Query algorithm is correct in the Appendix.

Delegating Capabilities in Predicate Encryption Systems 577

5.2 Security of Our Construction

Theorem 1. Assuming that the bilinear Diffie-Hellman assumption and the
generalized composite 3-party Diffie-Hellman assumptions hold in G, then the
above dHVE construction is selectively secure.

We now explain the main techniques used in the proof; however, we defer the
detailed proof to the Appendix. In our main construction, delegated tokens
have certain correlations with their parent tokens. As a result, the distribution
of delegated tokens differ from tokens generated freshly at random by calling
the GenToken algorithm. A major technique used in the proof is “token indis-
tinguishability”: although delegated tokens have correlations with their parent
tokens, they are in fact computationally indistinguishable from tokens freshly
generated through the GenToken algorithm. (Strictly speaking, Type 1 dele-
gated tokens are computationally indistinguishable from freshly generated to-
kens.) This greatly simplifies our simulation, since now the simulator can pretend
that all Type 1 tokens queried by the adversary are freshly generated, without
having to worry about their correlation with parent tokens. Intuitively, the above
notion of token indistinguishability relies on the C3DH assumption: if we use a
random hiding factor from Gr to randomize each term in the token, then DDH
becomes hard for the subgroup Gp.

Acknowledgement

We would like to thank John Bethencourt and Jason Franklin for helpful sug-
gestions and comments. We also would like to thank the anonymous reviewers
for their helpful reviews.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy (2007)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

578 E. Shi and B. Waters

7. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of FOCS (2007)

8. Boneh, D., Waters, B.: A fully collusion resistant broadcast trace and revoke system
with public traceability. In: ACM Conference on Computer and Communication
Security (CCS) (2006)

9. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer,
Heidelberg (2006)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: EUROCRYPT, pp. 255–271 (2003)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

12. Chase, M.: Multi-authority attribute based encryption. In: TCC, pp. 515–534
(2007)

13. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Proceedings of the 8th IMA International Conference on Cryptography and Cod-
ing, London, UK, pp. 360–363. Springer, Heidelberg (2001)

14. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501. Springer, Heidelberg (2002)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM conference on Computer and
communications security (CCS) (2006)

16. Horwitz, J., Lynn, B.: Towards hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg (2002)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Eurocrypt (to appear, 2008)

18. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: CCS 2006: Proceedings of the 13th ACM conference on Computer and
communications security (2006)

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Proceedings
of Crypto (1984)

21. Shi, E., Bethencourt, J., Chan, T.-H.H., Song, D., Perrig, A.: Multi-dimension
range query over encrypted data. In: IEEE Symposium on Security and Privacy
(May 2007)

22. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damgaard, I., Goldberg, L.A., Halldorsson, M.M., Ingolfsdottir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125. Springer, Heidelberg (2008),
http://sparrow.ece.cmu.edu/∼elaine/docs/delegation.pdf

23. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy (2000)

Appendix

Due to limit of space, please refer to the online full version of this paper for the
appendix [22].

http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf

	Delegating Capabilities in Predicate Encryption Systems
	Introduction
	Related Work
	Delegation in Predicate Encryption

	Definitions
	Definition
	Security
	A Simple Example

	Delegateable Hidden Vector Encryption (dHVE)
	Delegateable HVE Overview (dHVE)
	dHVE Definition

	Background on Pairings and Complexity Assumptions
	dHVE Construction
	Construction
	Security of Our Construction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

