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Abstract. We present an efficient protocol for secure multi-party computation in
the asynchronous model with optimal resilience. For n parties, up to t < n/3 of
them being corrupted, and security parameter κ, a circuit with c gates can be se-
curely computed with communication complexity O(cn2κ) bits, which improves
on the previously known solutions by a factor of Ω(n). The construction of the
protocol follows the approach introduced by Franklin and Haber (Crypto’93),
based on a public-key encryption scheme with threshold decryption. To achieve
the quadratic complexity, we employ several techniques, including circuit ran-
domization due to Beaver (Crypto’91), and an abstraction of certificates, which
can be of independent interest.

1 Introduction

Secure multi-party computation. Secure multi-party computation (MPC) allows a set of
n parties (players) to evaluate an agreed function of their inputs in a secure way, where
security means that an adversary corrupting some of the parties, cannot achieve more
than controlling their inputs and outputs. In particular, the adversary does not learn the
inputs of the uncorrupted parties, and she cannot influence the outputs of the uncorrupted
parties, except by selecting the inputs of the corrupted players. We focus on asynchronous
communication, i.e., the messages in the network can be delayed for an arbitrary amount
of time (but eventually, all messages are delivered). As a worst-case assumption, we give
the ability of controlling the delay of messages to the adversary. Asynchronous commu-
nication models real-world networks, like the Internet, much better than synchronous
communication. However, it turns out that MPC protocols for asynchronous networks
are significantly more involved than their synchronous counterparts. One reason for this
is that a player in an asynchronous network waiting for a message cannot distinguish
whether the sender is corrupted and did not send the message, or the message was sent
but delayed in the network. This implies also that in a fully asynchronous setting it is im-
possible to consider the inputs of all uncorrupted players when evaluating the function
— inputs of up to t (potentially honest) players have to be ignored.

History and related work. The MPC problem was first proposed by Yao [26] and solved
by Goldreich, Micali, and Wigderson [18] for computationally bounded adversaries and
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by Ben-Or, Goldwasser, and Wigderson [5] and independently by Chaum, Crépeau, and
Damgård [12] for computationally unbounded adversaries. All these protocols consid-
ered a synchronous network with a global clock. The first MPC protocol for the asyn-
chronous model (with unconditional security) was proposed by Ben-Or, Canetti, and
Goldreich [4]. Extensions and improvements, still in the unconditional model, were
proposed in [6,24]. A great overview of asynchronous MPC with unconditional security
is given in [8]. The most efficient asynchronous protocol up to date [19] communicates
O(n3κ) bits per multiplication gate, where κ is a security parameter.

Contributions. We present an asynchronous MPC protocol, cryptographically secure
with respect to an active adversary corrupting up to t < n/3 players (this is optimal
in an asynchronous network). Once the inputs are distributed, the protocol requires
O(cMn2κ) bits of communication to evaluate a circuit with cM multiplication gates and
with security parameter κ. This improves on the communication complexity of the most
efficient optimally-secure asynchronous MPC protocol by a factor of Ω(n). The new
protocol, similarly as [19], uses the approach based on threshold encryption [17, 13],
but introduces several modifications, which result in both conceptual simplification and
improved efficiency. In particular, we use a notion of certificates, which greatly simplify
the description of the protocol on an abstract level.

2 Formal Model and Preliminaries

Notation. We use n to denote the number of players (i.e., parties) participating in the
MPC protocol, we use P1, . . . , Pn to denote the players, and we use P to denote the
set of all players. For an integer m > 0 we write [m] to denote the set {1, . . . , m}. Our
constructions are parametrized by a security parameter κ.

Communication Model. We consider an asynchronous communication network, with
point-to-point secure channels, but without guaranteed delivery of messages. An n-
player protocol is a tuple π = (P1, . . . , Pn, init), where each Pi is a probabilistic in-
teractive Turing machine, and init is an initialization function, used for the usual set-up
tasks, like initialization, setting up cryptographic keys, etc. The players communicate
over a network in which the delay between sending and delivery of a message is un-
bounded. We measure the communication complexity by the worst case number of bits
sent by the honest parties.

Security Model. We use the model of asynchronous protocols proposed by Canetti [9].
Formally our model for running a protocol is a hybrid model with a functionality init
for distributing initial cryptographic keys among the parties. We consider a poly-time
adversary, which can corrupt up to t < n/3 parties before the execution of the protocol,
i.e., we consider a static adversary, and corrupted parties are under full control of the
adversary. The adversary schedules the delivery of the messages arbitrarily, except that
it must eventually deliver all message sent be honest parties.

The security of a protocol is defined relative to an ideal evaluation of the circuit: for
any adversary attacking the protocol must exist a simulator which simulates the attack of
the adversary to any environment, given only an ideal process for evaluating the circuit.
The simulator has very restricted capabilities: It sees the inputs of the corrupted parties.
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Then it picks a subset W ⊆ [n] of the parties to be the input providers, s.t. |W| ≥ n− t.
The adversary determines the inputs of the corrupted parties. The input gates of Circ
belonging to the parties from W are assigned the inputs of the corresponding parties,
and the remaining input gates are assigned default values. Then Circ is evaluated and the
outputs of the corrupted parties are shown to the simulator, which must then simulate
the entire view of an execution of the protocol.

2.1 Cryptographic Primitives and Protocols

In the proposed MPC protocols we employ a number of standard primitives and sub-
protocols. We introduce the required notation and tools with their essential properties,
and then we point to the literature to example implementations.

Homomorphic Encryption with Threshold Decryption. We assume the existence of
a semantically secure public-key encryption scheme, which additionally is homomor-
phic and enables threshold decryption, as specified below.

Encryption and decryption. For an encryption key e and a decryption key d, let Ee : M×
R → C denote the encryption function mapping a plaintext x ∈ M and a randomness
r ∈ R to a ciphertext X ∈ C, and let Dd : C → M denote the corresponding decryption
function, where M, R, C are algebraic structures, as specified below. We require that M

is a ring ZM for some M > 1, and we use "·" to denote multiplication in M. We often
use capital letters to denote encryptions of the plaintexts denoted by the corresponding
lower-case letters. When keys are understood, we write E , D instead of Ee, Dd, and we
often omit the explicit mentioning of the randomness in the encryption function E .

Homomorphic property. We require that there exist (efficiently computable) binary
operations +, ∗, ⊕, such that (M, +), (R, ∗), (C, ⊕) are algebraic groups, and that Ee

is a group homomorphism, i.e. E (a, ra) ⊕ E (b, rb) = E (a + b, ra ∗ rb). We use A � B
to denote A⊕ (−B), where −B denotes the inverse of B in the group C. For an integer
a and B ∈ C we use a � B to denote the sum of B with itself a times in C.

Ciphertext re-randomization. For X ∈ C and r ∈ R we let Re(X, r) = X ⊕ Ee(0, r).
We use X ′ = Re(X) to denote X ′ = Re(X, r) for a uniformly random r ∈ R. We call
X ′ = Re(X) a re-randomization of X . Note that X ′ is a uniformly random encryption
of Dd(X).

Threshold decryption. We require a threshold function sharing of decryption Dd among
n parties, i.e. that for a construction threshold tD = t+1, there is a sharing (d1, . . . , dn)
of the decryption key d (where di is intended for party Pi), satisfying the following
conditions. Given the decryption shares xi = Di,di(X) for tD distinct decryption-key
shares di, it is possible to efficiently compute x such that x = Dd(X). When keys are
understood, we write Di(X) to denote the function computing decryption share of party
Pi for ciphertext X , and x = D(X, {xi}i∈I) to denote the process of combining the
decryption shares {xi}i∈I to a plaintext x.

Security. We require the usual security of the threshold cryptosystem, cf. [13], and in
particular require that there exists an efficient two-party zero-knowledge protocol for
proving the correctness of decryption shares.
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Digital Signatures. We assume the existence of a digital signature scheme unforge-
able against an adaptive chosen message attack. For a signing key s and a verifica-
tion key v, let Signs : {0, 1}∗ → {0, 1}κ denote the signing function, and let Verv :
{0, 1}∗ × {0, 1}κ → {0, 1} denote the verification function, where Verv(x, σ) = 1
indicates that σ is a valid signature on the message x. We write Signi/Veri to denote the
signing/verification operation of party Pi.

Threshold Signatures. We assume the existence of a threshold signature scheme,
which is unforgeable against an adaptive chosen message attack. For a signing key s
and a verification key v, let Ss : {0, 1}∗ → {0, 1}κ denote the signing function, and let
Vv : {0, 1}∗ × {0, 1}κ → {0, 1} denote the verification function, where Vv(m, σ) = 1
indicates that σ is a valid signature on m.

Threshold signing. We require that there exists a threshold sharing of Ss among n
parties, i.e. that for a given signing threshold tS, 1 < tS ≤ n, there exists a sharing
(s1, . . . , sn) of the signing key s (where si is intended for Pi), such that given signature
shares σi = Si,si(x) for tS distinct signing-key shares si, it is possible to efficiently
compute a signature σ satisfying Vv(x, σ) = 1. We will always have tS = n − t. When
keys are understood, we use Si(x) to denote the function computing Pi’s signature
share for the message x, and σ = S (x, {σi}i∈I) to denote the process of combining
the signature shares {σi}i∈I to a signature σ.

Security. The scheme should be unforgeable against adaptive chosen message attack
when the adversary is given (tS −1) signing-key shares, and we require that there exists
an efficient two-party zero-knowledge protocol for proving the correctness of signature
shares.

Byzantine Agreement. We require a Byzantine Agreement (BA) protocol: Each Pi

has input vi ∈ {0, 1} and output wi ∈ {0, 1}, where: Termination: If all honest parties
enter the BA, then the BA eventually terminates. Consistency: Upon termination the
outputs of all honest players are equal, i.e. wi = w for some w ∈ {0, 1}. Validity: If all
honest parties have input vi = w, then the output is w.

Cryptographic Assumptions & Instantiations of Tools. All the above tools can be
instantiated in the standard (random oracle devoid) model using known results from [23,
16, 14, 13, 3, 25, 22, 7]. For details see [20].

3 Certificates

In order to achieve robustness we require every party to prove (in zero-knowledge) the
correctness of essentially every value she provides during the protocol execution. To im-
plement this process efficiently we introduce certificates, which are used for certifying
the truth of claims. Any party can verify the correctness of a certificate locally, without
any interaction. Moreover, a certificate should provide no other information than the
truth of the claim. Finally, a party can convince any other party about the truth of the
corresponding claim by sending the certificate. More formally, we say that a bit-string
α is a certificate for claim m if there exits a publicly known, efficiently computable
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verification procedure V , such that the following conditions are satisfied, except with
negligible probability: if V (α, m) = 1 then claim m is true (soundness), and α gives
no other information than the truth of the claim m (zero-knowledge). Moreover we re-
quire completeness, i.e. the ability of generating certificates for true claims needed in
our protocols, like for example:

(i) «Pi knows the plaintext of Xi» (iii) «the plaintext of Xi is in the set {0, 1, 2}»
(ii) «Xi is the unique input of Pi» (iv) «at least n − t parties have received Xi»

If X is some value, and α is a certificate for some claim m about X (e.g., claim (iii)
above), then we say that X is a value certified (by α) for claim m.

We often require also that the certificates for correctness/validity of some data X im-
ply also uniqueness of the data, i.e. that it is not possible to obtain two valid certificates
for two different values for the same claim. This can be achieved by assigning unique
identifiers to every gate, every wire and every step in the protocols, and requiring that
the identifiers are parts of the claims, e.g. «Xi is input of Pi for wire id», and that parties
participate in construction of at most one certificate for a particular claim. Occasionally,
to clarify the issues, we explicitly specify the identifiers, but for simplicity the use of
identifiers is usually implict.

Constructing certificates. Certificates can be implemented in a simple way using any
signature scheme (Sign, Ver): a certificate α for claim m is just a set of at least n − t
correct signatures: α := {σi}i∈I , where |I| ≥ n − t and each σi is a signature of party
Pi on message m. To create short certificates we employ a threshold signature scheme
(S , V ) with a threshold tS = n − t (cf. Sect. 2.1). To construct a certificate α valid for
«some claim» a party collects tS correct signature shares σj = Sj(«some claim») from
different parties, and combines them to a signature α = S («some claim», {σj}j∈J ),
where |J | ≥ tS . Any party knowing the corresponding public verification key v can
verify α using the algorithm V . Depending on the context, we use different methods
for creating certificates:

bilateral proofs: if Pi needs to certify knowledge of some value, or validity of some
NP-statement (cf. examples (i) and (iii), respectively), we will use 2-party zero-
knowledge proofs: Pi bilaterally proves a claim m in zero-knowledge to every
Pj , who then, upon successful completion of the proof, sends to Pi a signature
share σj = Sj(m) with a proof of correctness of the share, and Pi combines
the correct shares to get a certificate αi. We say then that “Pi constructs certifi-
cate αi for «some claim» by bilateral, zero-knowledge proofs”, denoted as αi :=
certifyzkp(«some claim»).

protocol-driven: For other claims, like (iv) and (ii), Pi also constructs a certificate αi

from a set of n − t signature shares σj , but this time Pj sends σj not in response
to a bilateral proof, but based on the current context of execution, as required by
the protocol. In this case we just say “Pi constructs certificate αi for «some claim»”
and write αi := certify(«some claim»). 1

1 Note that the signed messages can be different from the actual claim being certified, e.g, each
Pj could provide a signature share for the message «I have seen Xi», and a complete signature
on such a message can be interpreted as a certificate for (iv).
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An adversary corrupting up to t players can never obtain sufficiently many signature
shares: In the case of bilateral proofs an honest party never signs an incorrect claim,
hence the adversary can collect at most t < n − t shares. In the protocol-driven case,
the soundness depends on the actual claim being certified, but it will be clear from the
context. Note that the threshold n − t implies that n − 2t honest parties must sign to
create a certificate, which ensures uniqueness.

4 The New Protocol

Our protocol needs that the encryption key of a public-key encryption scheme is pub-
licly known, while the corresponding decryption key is shared among all the players.
Given such a setup the evaluation of a circuit proceeds as follows. First the parties
provide their inputs as ciphertexts of the encryption scheme. Then they cooperate to
evaluate the circuit gate-by-gate: given encryptions of inputs of a gate, parties compute
an encryption of the corresponding output of the gate, while maintaining privacy of the
intermediate values. Finally, after an encryption of the output gate is computed, parties
decrypt this encryption to learn the output. The robustness against corrupted parties is
achieved with help of certificates, which are used to certify the correct execution of the
protocol.

Intuitively, the efficiency gain stems from a combination of a ballanced distribution
of work, with the so-called circuit-randomization technique due to Beaver [1]. In this
technique the multiplication of two encrypted values is performed using a pre-generated
random triple, which in our case consists of three ciphertexts (U, V, W ) containing
secret random plaintexts u, v, w ∈ M, satisfying u · v = w. Due to homomorphic
encryption, given such a triple and two ciphertexts A, B containing plaintexts a, b, we
compute a ciphertext C of c = a · b by publicly decrypting A + U and B + V , and by
using the following identity

a · b = (a + u) · (b + v) − (a + u) · v − u · (b + v) + w . (1)

Main Protocol — A High-level Overview. The protocol proceeds in four stages, a
precomputation stage, an input stage, an evaluation stage, and a termination stage. We
briefly summarize the goal of each stage:

– Precomputation stage: Players generate random triples.

– Input stage: Each player provides an encryption of his input to every other player,
and the players agree on a set of input providers.

– Evaluation stage: Players evaluate the circuit gate-by-gate, by executing concur-
rently subprotocols for every gate of the circuit.

– Termination stage: Executed concurrently to the evaluation stage, this stage ensures
that every player eventually receives the output(s) and terminates.

Strictly speaking, the presented protocol is limited to the evaluation of deterministic
circuits, but can be easily extended also to randomized circuits [20].
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The Circuit. For the clarity of presentation we assume that every party provides exactly
one input, and that the outputs are public, but this is without loss of generality [19]. The
function to be computed is given as a circuit Circ over the plaintext space M of the
homomorphic encryption scheme in use. The circuit is a set of labeled gates, where a
label G uniquely identifies the gate. The full description of a gate is a tuple (G, . . .),
where the parameters after the label depend on the type and the position of the gate. We
denote by G the set of all gate labels of Circ, and we use v : G → M ∪ {⊥} to refer
to the values of gates, i.e., v(G) denotes the value of gate G. Each gate has one of the
following types:

input gate: (G), consisting only of its label G = (Pi, input), where v(G) is equal to
xi, the input value provided by player Pi.

linear gate: (G, linear, a0, a1, G1, . . . , al, Gl), where l ≥ 0, a0, . . . , al ∈ M are con-
stants, and v(G) = a0 +

∑l
j=1 aj · v(Gj).

multiplication gate: (G, mul, G1, G2), where v(G) = v(G1) · v(G2).
output gate: (G, output, G1), where v(G) = v(G1) is an output value of Circ.

Dictionary. Throughout the computation each party Pi maintains a dictionary Γi : G →
C ∪ {⊥}, containing Pi’s view on the intermediate values (encryptions) in the circuit.
Initially Γi(G) =⊥ for all labels from G. If Γi(G) = X �=⊥, then from Pi’s point of
view evaluation of gate G was completed, and X is a ciphertext encrypting the value
v(G). We say then that Pi has accepted X for G. Honest parties will agree on accepted
ciphertexts, allowing us to define a common map Γ . Furthermore, for all input gates
Γ (G) = X will be an encryption of the input that the party supplying input to that gate
intended to deliver, except for at most t parties, where X might be an encryption of a
default value. This is allowed by the security model.

Random Triples. Each party Pi maintains also a mapping Δi assigning to each mul-
tiplication gate a random triple generated during the precomputation stage, Δi : G →
C × C × C ∪ {⊥}. Initially Δi(G) =⊥, for all gates G and all j ∈ [n]. If Δi(G) =
(U, V, W ) �=⊥, then Pi will use this triple for evaluating gate G. The honest parties Pi

and Pj will have Δi = Δj .

5 Subprotocols Used by the Main Protocol

Below we present subprotocols of the main protocol. First we present a protocol SELECT,
which is a basic subprotocol used both in the precomputation and input stages. Then we
describe the subprotocols for the main stages.

Selecting Values. Protocol SELECT is used for selecting values provided by the players
during the computation. It is parametrized by a condition ϕ (like e.g. «Xi is Pi’s valid
input»), which has to be satisfied for each input to the protocol, and certified by an
appropriate certificate. We require that ϕ implies uniqueness, i.e., that every party can
obtain a corresponding certificate valid for ϕ for at most one input value used in any
execution of SELECT.

The protocol proceeds as follows (cf. Fig. 1): First Pi distributes its input (Xi, αi)
to all parties, and then constructs and distributes a certificate of distribution βi, which
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Protocol SELECT(ϕ), code for Pi: given input Xi with a certificate αi valid for condition ϕ(i)
initialize sets Ai, Ai, Ci as empty, then execute the following rules concurrently:
DISTRIBUTION:

1. send (Xi, αi) to all parties.
2. construct and send to all parties βi := certify(«we hold Pi’s input Xi»)

GRANT CERTIFICATE OF DISTRIBUTION: Upon first (Xj , αj) from Pj with αj valid for ϕ(j):
add j to Ai, add (Xj , αj) to Ai, and send σi :=Signi(«we hold Pj’s input Xj») to Pj .

ECHO CERTIFICATE OF DISTRIBUTION: Upon (Xj , βj) with βj valid for
«we hold Pj’s input Xj» and j �∈ Ci: add j to Ci and send (Xj , βj) to all parties.

SELECTION: If |Ci| ≥n−t, stop executing all above rules and proceed as follows:

1. send (Ai, Ai) to all parties.
2. collect a set {(Aj , Aj)}j∈J of (n − t) well-formed (Aj , Aj); let Bi :=

⋃
j∈J Aj and

Bi :=
⋃

j∈J Aj

3. enter n Byzantine Agreements (BAs) with inputs v1 . . . vn, where vj = 1 iff j ∈ Bi.
4. let w1, . . . , wn be the outputs of the BAs; let W := {j ∈ [n]| wj = 1}.
5. ∀ j ∈ Bi ∩ W: send (Xj , αj) ∈ Bi to all parties.
6. collect and output (W, {(Xj , αj)}j∈W).

Fig. 1. Protocol SELECT(ϕ)

proves that Pi has distributed (Xi, αi) to at least n − t parties. When a party collects
n− t certificates of distribution, she knows that at least n− t parties have their certified
inputs distributed to at least n − t parties. So, at least n − t parties had their certified
inputs distributed to at least (n−t)−t ≥ t+1 honest parties. Hence, if all honest parties
echo the certified inputs they saw and collect n − t echoes, then all honest parties will
end up holding the certified input of the n − t parties, which had their certified inputs
distributed to at least t + 1 honest parties. These n − t parties will eventually be the
input providers. To determine who they are, n Byzantine Agreements are run.

Precomputation Stage. The goal of this stage is the generation of certified random
triples. The corresponding protocol GEN-TRIPLES uses two subprotocols: protocol
SELECT presented above, and protocol ONE-TRIPLE for generating a single random triple
in a computation lead by one of the parties.2 Given these two sub-protocols, we proceed
as follows (Fig.5): first every party generates its own random triple using ONE-TRIPLE,
and then uses this triple as input to SELECT, in which parties agree on at least (n − t)
triples.

In protocol ONE-TRIPLE we need to generate certified, encrypted random values un-
known to any party, so first we present a sub-protocol RANDOM (Fig. 3), which achieves
exactly that. Given (U, α) output by RANDOM, king Pk can extend it to a random triple
using ONE-TRIPLE, see Fig. 4. Note that when computing a certificate βi for the claim
«Pi knows vi in Vi, and Wi is a randomization of vi � U» the variables Pi, Vi, Wi, and U

2 In the ONE-TRIPLE protocol one party, say Pk , plays the role of a leader (called king) who with
help of other players (called slaves), generates Pk’s own random triple (U (k), V (k), W (k))
together with a certificate σ(k) certifying the triple’s correctness.
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To generate cM random triples and reach agreement on them, parties proceed as follows:

1. Every party Pk, k ∈ [n] starts as a king for 	 = �cM/(n − t)� in-
stances of ONE-TRIPLE(id, k) protocol to generate 	 certified random triples
(U (k,s), V (k,s), W (k,s); σ(k,s)), s = 1, . . . , 	 (all parties play roles of slaves to help the
king in Pk’s instances)

2. All parties start SELECT, where party Pi uses as its input the triples
(U (i,s), V (i,s), W (i,s); σ(i,s)) generated in the previous step. When SELECT ter-
minates, parties have agreed on a set of at least 	(n − t) ≥ cM valid triples
{(U (j), V (j), W (j))}j∈J .

3. Every party Pi initializes its mapping Δi, using the triples from the previous step in some
pre-agreed order.

Fig. 2. Protocol GEN-TRIPLES for generating random triples

To generate for king Pk a certified random ciphertext (U, α), with α valid for «U : 1st part of
triple id(k)» parties proceed as follows:

GENERATION: code for every Pi:

1. pick random ui ∈ M and compute Ui := E (ui)
2. construct βi = certifyzkp(«Pi knows ui in Ui»)
3. compute σi := Signi(«Ui : component of 1st part of triple id(k)»)
4. send (Ui, βi, σi) to Pk:

CONSTRUCTION: code for Pk:

1. collect a set Sid(k) := {(Ui, βi, σi)}i∈Iid(k) , |Iid(k)| ≥ t + 1, with each βi valid for «Pi

knows ui in Ui»,
and each σi valid for «Ui : component of 1st part of triple id(k)».

2. send Sid(k) to all parties; each Pi computes U :=
⊕

i∈Iid(k)
Ui, and helps to construct α

in the next step.
3. construct α := certify(«U : 1st part of triple id(k)»).
4. output (U, α).

Fig. 3. Protocol RANDOM(id, k) for generating a certified random value for king Pk

are replaced by the actual values they stand for, but vi stays as a literal, since it is just a
name for the plaintext from Vi.

On the use of Byzantine Agreement. The protocol GEN-TRIPLES uses n BAs (as it in-
vokes SELECT) and generates n − t random triples. To implement multiplication of
encrypted values via circuit randomization (cf. Fig. 6), we need one random triple per
multiplication gate. A straightforward solution would be to use � = 
cM/(n − t)� runs
of GEN-TRIPLES, but this would lead to O(cM ) invocations of BA. To avoid this, we run
� invocations of ONE-TRIPLE in parallel, using only one invocation of SELECT. In partic-
ular, in the second step of GEN-TRIPLE each Pi uses all � triples as its input to SELECT.
Since SELECT returns a set of at least (n − t) inputs, we obtain an agreement on cM

random triples with only n BAs, which is independent of the circuit size.
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To generate for Pk a certified random triple (U, V, W ;β), with β valid for «(U, V, W ): correct
triple id(k)» parties proceed as follows:

REQUEST: code for Pk:

1. run RANDOM(id, k) to generate (U, α), with α valid for «U : 1st part of triple id(k)», and
send (U, α) to all parties.

REPLY: code for every Pi:

1. wait for (U,α) from Pk

2. compute Vi := E (vi) and Wi = R(vi � U) for a random vi ∈ M

3. construct βi := certifyzkp(«Pi knows vi in Vi, and Wi is a randomization of vi � U»)
4. compute σi := Signi(«(Vi, Wi) : part of triple id(k)»)
5. send (Vi, Wi; βi, σi) to Pk

CONSTRUCTION: code for Pk:

1. collect Tid(k) := {(Vi, Wi; βi, σi)}i∈Iid(k) , with each σi valid for «(Vi, Wi) : part of triple
id(k)», and each βi valid for «Pi knows vi in Vi, and Wi is a randomization of vi � U»
|Iid(k)| ≥ t + 1.

2. send Tid(k) to all parties; each Pi computes V :=
⊕

i∈Iid(k)
Vi, W :=

⊕
i∈Iid(k)

Wi, and

helps to construct β in the next step.

3. construct β := certify(«(U,V, W ): correct triple id(k)»).

4. output (U, V, W ;β).

Fig. 4. Protocol ONE-TRIPLE(id, k) for generating a random triple for king Pk

Input stage code for Pi: given an input xi ∈ M do the following:

1. compute Xi := E (xi) and construct αi := certifyzkp(«Xi is Pi’s valid input») (every
party Pj helps to construct at most one αi, for each Pi ∈ P).

2. enter execution of SELECT protocol with input (Xi, αi).
3. output value(s) returned by SELECT.

Fig. 5. The input stage code for Pi holding input xi ∈ M

Input Stage. The protocol is presented in Fig. 5. When providing (encrypted) inputs,
the parties are required to prove plaintext knowledge for their encryptions, to ensure
independence of the inputs. To cope with the inherent problems of the asynchronous
setting we use a protocol SELECT to agree on inputs from at least (n−t) input providers,
whose private inputs will be used in the actual computation. For the remaining inputs
the default values will be used.

Computing Linear Gates. Due to the homomorphic property of encryption, linear
gates are computed locally, without interaction: after Pi accepts encryptions of inputs to
a gate (G, linear, a0, G1, a1, . . . , Gl, al), i.e. when Γi(Gu) �=⊥, for u = 1 . . . l, then Pi
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Party Pi evaluating a multiplication gate (G, mul, G1, G2):

1. wait until A := Γi(G1) �=⊥, B := Γi(G2) �=⊥, and (U,V, W ) := Δi(G) �=⊥
2. compute X := A ⊕ U and Y := B ⊕ V
3. compute decryption shares and corresponding validity proofs: xi := Di(X), βi :=

certifyzkp(«xi is valid») yi := Di(Y ), γi := certifyzkp(«yi is valid»); send (xi, βi) and
(yi, γi) to all parties

4. collect sets X := {(xj , βj)} and Y := {(yj , γj)}, each containing tD correct decryption
shares, with corresponding validity proofs.

5. compute plaintexts x := D(X, X ) and y := D(Y,Y).
6. compute Z := E (x · y, r0) for a public constant r0, and set Γi(G) := Z � (x � V ) � (y �

U) ⊕ W

Fig. 6. Code for Pi evaluating a multiplication gate

Party Pi evaluating an output gate (G, output, G1):

1. wait until Γi(G1) = C �=⊥
2. compute a decryption share ci := Di(C) & a certificate δi := certifyzkp(«ci is valid»);

send (ci, δi) to every Pj

3. collect a set T = {(cj , δj)} of tD decryption shares for C, with corresponding validity
certificates δj

4. compute c := D(C, T )
5. compute and send to all parties a signature share σi,G = Si(«The value of G is c»), to-

gether with a certificate of its correctness, ξi,G := certifyzkp(«σi,G is correct»)
6. collect a set {σi,G, ξi,G}i∈I of tS certified signature shares and compute ζG =

S (x, {σi}i∈I) valid for «The value of G is c»
7. mark G as decrypted

Fig. 7. Code for player Pi evaluating an output gate

computes Γi(G) := A0 ⊕
(⊕l

u=1(aj � Γi(Gu))
)

, where A0 is a “dummy” encryption

of a0, computed using fixed, public random bits.

Computing Multiplication Gates. The multiplication protocol (Fig. 6) is based on a
trick by Beaver [1]. Essentially, this trick reduces the problem of multiplication to two
decryptions and a few linear operations (cf. eq. (1)).

Output Stage. When Pi completes the computation of a gate (G, output, G1) (i.e.
when Γi(G) = C �=⊥), but the gate has not been decrypted yet, then Pi sends a de-
cryption share ci of C to all parties, along with a certificate for the correctness of the
share. Every Pj collects sufficiently many certified decryption shares, and uses them to
decrypt the output. Subsequently the parties construct a certificate ζG, which certify-
ing that the decrypted output value is correct. With such a certificate any party Pi can
convince any other party about the correctness of the output.
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Termination Stage. Essentially, every Pi waits until he receives or computes the de-
crypted output value with a correctness certificate, and echoes this certified output to all
parties before terminating (see [20] for details).

Summary. The main result of this paper is summarized in the theorem below. The
analysis leading to this theorem is presented in the full version [20].

Theorem 1. Assuming the cryptographic primitives from Sect. 2.1, there exists a pro-
tocol allowing n parties connected by an asynchronous network to securely evaluate
any circuit in the presence of a poly-time adversary actively corrupting up to t < n/3
parties. The bit complexity of the protocol is O((cI + cM + cO)n2κ), where cI , cM ,
cO denote the number of input, multiplication, and output gates, respectively, and κ is
a security parameter.
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