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Abstract. We propose a new cryptographic primitive, called extractable per-
fectly one-way (EPOW) functions. Like perfectly one-way (POW) functions,
EPOW functions are probabilistic functions that reveal no information about their
input, other than the ability to verify guesses. In addition, an EPOW function, f ,
guarantees that any party that manages to compute a value in the range of f
“knows” a corresponding preimage.

We capture “knowledge of preimage” by way of algorithmic extraction. We
formulate two main variants of extractability, namely non-interactive and inter-
active. The noninteractive variant (i.e., the variant that requires non-interactive
extraction) can be regarded as a generalization from specific knowledge assump-
tions to a notion that is formulated in general computational terms. Indeed, we
show how to realize it under several different assumptions. The interactive-
extraction variant can be realized from certain POW functions.

We demonstrate the usefulness of the new primitive in two quite different set-
tings. First, we show how EPOW functions can be used to capture, in the standard
model, the “knowledge of queries” property that is so useful in the Random Or-
acle (RO) model. Specifically, we show how to convert a class of CCA2-secure
encryption schemes in the RO model to concrete ones by simply replacing the
Random Oracle with an EPOW function, without much change in the logic of the
original proof. Second, we show how EPOW functions can be used to construct 3-
round ZK arguments of knowledge and membership, using weaker knowledge as-
sumptions than the corresponding results due to Hada and Tanaka (Crypto 1998)
and Lepinski (M.S. Thesis, 2004). This also opens the door for constructing 3-
round ZK arguments based on other assumptions.

1 Introduction

The Random Oracle methodology [15,4] consists of two steps. The first step involves
designing a protocol and proving security in an idealized model called the Random
Oracle (RO) model. In the RO model, all parties have oracle access to a public random
function, O. The oracle answers are uniform and independent with only one constraint,
specifically, that all answers to the same query are identical. The second step involves
“moving” the protocol from this idealized model to the real world. This is done by
“replacing” the RO with a cryptographic hash function such as SHA1 [16] or MD5
[26]. In other words, every oracle call is replaced by a function call to some publicly
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known cryptographic hash function. This transformation is known as an instantiation of
Random Oracles.

Although the first step of the RO methodology is rigorous, the second step remains
a heuristic for the most part. While most results in this area provide proofs in the RO
model, they lack even informal justification as to why the instantiated protocols may
be secure. Such justification is of dire need given the fact that the RO methodology is
not sound in general. Specifically, it was shown that there are schemes secure in the
RO model without any secure instantiations [9,24,17]. Furthermore, there exist natu-
ral primitives that are realizable in the RO model but can not be realized at all in the
standard model, regardless of the computational assumptions used [25].

Given the general impossibility results mentioned above, one may resort to consid-
ering a proof in the RO model as a “stepping stone” towards a proof in the standard
model. However, there is a severe flaw with this point of view: When it comes to secu-
rity properties, proofs in the RO model use the Random Oracle somewhat like a Swiss
Army knife. Random Oracles satisfy many cryptographic properties including collision
resistance (it is hard to find two queries with the same RO answer), uniformity (the an-
swer to any query is uniformly distributed), unpredictability or correlation intractability
[9], programmability [25] and knowledge of queries (any machine that computes O(q)
“knows” q). Furthermore, works that use the RO methodology do not often highlight the
specific properties of Random Oracles that are used or needed for the current proof. This
makes translating a proof from the RO model to the standard model a harder task. And
indeed, proofs in the RO model usually follow different lines from the corresponding
ones in the standard model. This is contrary to the intuition behind the RO methodol-
ogy, which is to use the randomness in the RO model to come up with simple proofs
and then replace the Random Oracle by an appropriate function while maintaining the
overall proof structure.

In light of the above discussion, it is interesting to identify specific properties of
Random Oracles that are essential for the security of specific protocols. Once these
properties are identified, it may then be possible to capture them with concrete func-
tions that can be used to replace Random Oracles. Such an approach motivated the
introduction of perfectly one-way (POW) functions in [7] as functions that capture the
hiding property of Random Oracles and are then used to instantiate Random Oracles in
a semantically-secure encryption scheme.1 In another attempt, Boldyreva and Fischlin
[6] introduce a strong variant of pseudorandom generators geared towards instantiating
OAEP.

However, attempts at direct instantiation of encryption schemes secure against cho-
sen ciphertext attacks (IND-CCA2) in the RO model have failed. It seems that one
main problem is to translate a central property of Random Oracles, namely knowledge
of queries, to the standard model. This property proves essential for the security proof
in the RO model but it has not been previously formalized and captured by concrete
functions.

1.1 Our Work

We formalize the “knowledge of queries” property mentioned above and cast it on a
concrete object in the standard model. We call the new object an extractable perfectly

1 Informally, POW functions are probabilistic functions that hide all partial information about
the input.
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one-way (EPOW) function. Then, we use EPOW functions not only to instantiate such
schemes but also use a proof of security that follows similar logic as the original proof.
The intended goal in this instantiation is not to try to achieve a more efficient construc-
tion than the existing ones in the literature but rather identify and realize the needed
properties of the random oracle so that the proof of security remains the same in the
standard model in both its logic and simplicity. In addition, we show that EPOW func-
tions are useful in other contexts. We go into more detail shortly.

Extractable perfectly one-way functions. In the RO model, the knowledge of queries
property means that any machine that computes an RO answer, O(q), “knows” q. Even
though such a property is easy to formalize and satisfy in the RO model if the range
of O is sparse, defining it in the standard model while maintaining hiding properties is
tricky. Towards this end, we build on the notion of perfect one-wayness presented in [7]
to introduce a new class of functions called extractable perfectly one-way (EPOW)
functions. These are functions that hide all information about the input but any machine
that computes a valid image, “knows” a corresponding preimage. We also require a
similar property to hold with respect to auxiliary information which may include other
images. The corresponding statement is any machine that computes a new valid image,
even in the presence of other images, knows a corresponding preimage. Although using
extractability with a weaker hiding property may be sufficient for certain applications,
it is of particular interest when combined with POW functions since it gives a better
approximation of the properties expected from a Random Oracle.

From one angle, extractability can be interpreted as saying that the only way to pro-
duce a point in the range of this function is by taking a point in the input domain
and then applying the algorithm that computes this function to the input. From another
perspective, an EPOW function is an obfuscation of a point function [1,30] with the
additional property that the original source program, that computes the point function
in the clear, can be extracted from the view of any potentially adversarial obfuscator.
This property can in fact be defined with respect to any function family.

We define two variants of EPOW functions, namely noninteractive and interactive.
Noninteractive extraction is captured by the existence of a (nonblackbox) preimage
extractor. In more detail, every adversary, that tries to output a point in the range, has
a corresponding extractor that gets the view of the adversary and outputs a preimage.
We emphasize that the extractor gets the view of the adversary including any private
random coins. The interactive variant is described later on.

On the relation between noninteractive EPOW functions and NIZK. Superficially,
EPOW functions resemble noninteractive zero-knowledge (NIZK) arguments of knowl-
edge [29,28] in that an image can be viewed as a proof of preimage knowledge. How-
ever, EPOW functions and NIZK arguments of knowledge differ in several ways. First,
NIZK secrecy, i.e., zero knowledge, holds over the choices of the Common Reference
String (CRS) while EPOW functions require secrecy to hold without a CRS. Second,
EPOW functions are not required to have efficient verification, that is deciding whether
a given point belongs to the range of the function. (Not to be confused with the veri-
fication requirement on POW functions, where it is easy to check that a given output
is an image of a given input.) We mention that our noninteractive EPOW constructions
satisfy a weaker form of verification, which seems to be needed for the ZK applica-
tion but not for our Random Oracle instantiation. On the other hand, our interactive
EPOW constructions are not known to satisfy this form of verification. Third, NIZK
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arguments of knowledge require a universal blackbox extractor to recover a witness
with the help of auxiliary information about the CRS. On the other hand, EPOW func-
tions only require a nonblackbox extractor for every adversary. However, this extractor
has to recover a preimage from the view of the adversary without any extra informa-
tion that is not given to the adversary. The latter formulation may better capture our
intuition about knowledge because it clearly demonstrates that an adversary “knows” a
preimage by recovering it from its view alone.

On the relation between noninteractive EPOW functions and other knowledge assump-
tions. From another angle, extractable functions look similar to other knowledge as-
sumptions such as the knowledge of exponent (KE) assumption [12,20] and the proof
of knowledge (POK) assumption [23]. In fact, we view extractable functions as an ab-
straction away from specific knowledge assumptions, much like a one-way function is
an abstraction of specific one-way assumptions, such as the discrete logarithm (DL)
assumption. In other words, the DL assumption gives us a one-way function but it may
even give us more, e.g., a one-way permutation in certain group or certain algebraic
properties. However, we abstract away from these particularities and identify the essen-
tial property needed. Likewise, we use extractable functions as a step towards capturing
the abstract knowledge assumption - it provides a relatively simple primitive that is de-
fined only in terms of its general computational properties, that seems to be useful in a
number of places, and that can be realized by a number of different assumptions. (We
show later that either the KE or the POK assumption, when combined with a hardness
assumption such as the DDH assumption, is sufficient for constructing EPOW func-
tions).

On the constructions. We give three simple constructions of EPOW functions. The first
one uses a POW function and a “strong” notion of NIZK proof of preimage knowledge.
In addition, we provide another construction from the POW construction in [7] and the
KE assumption. At a high level, the KE assumption guarantees preimage extraction,
while hiding can be based on a strong variant of the DDH assumption. The third con-
struction is similar to the second one but it uses the POK assumption (with the same
DDH assumption mentioned above). However, none of these constructions satisfies all
of our requirements (see [8] for more details). Thus, we turn our attention to EPOW
functions with interactive extraction.

Interactive EPOW Functions. These are POW functions with interactive extraction. In-
formally, interactive extraction means that if a party interacts consistently with a chal-
lenger, then it “knows” a preimage. Interaction between the prover and the challenger
is restricted to Arthur-Merlin games. Furthermore, the messages sent by the prover are
restricted to images of the interactive EPOW function. For instance, in a 3-round game
of this type, the prover computes hashes of the preimage using different random coins
for the EPOW function, H, chosen by the challenger. In more detail, the prover sends
y = Hk(x, r0) in the first round, the challenger then responds with a uniform string,
r1, and the prover sends the corresponding image, Hk(x, r1), in the last round. Here,
extractability means that if the images in the first and third round share a common
preimage, then the prover knows it. Similar to the noninteractive setting, knowledge of
preimage is captured by the existence of a preimage extractor.

We show how to transform POW functions to interactive EPOW functions. Infor-
mally, our transformation imposes a structure on the new function so that a preimage
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can be recovered from any two “related” images. For clarity, consider a toy construction
to recover the first bit only. Specifically, if H is the old POW function and x is the input,
then H

′ is defined as H ′
k(x, (r1, r2)) = Hk((x, 1), r1), Hk((x, x1), r2), where x1 is the

first bit of x. To recover x1, the extractor asks the prover to compute H ′
k(x, (r1, r2)),

then it rewinds the protocol, and forces the prover to compute H ′
k(x, (r′1, r1)) using

the same r1 as before. Note that x1 can be recovered (by simple comparison) from
Hk((x, 1), r1) and Hk((x, x1), r1) computed in the first and second game respectively.

We remark that a slightly weaker notion of interactive EPOW functions can be con-
structed from any POW function and a corresponding Σ-protocol [5,11] for proving
preimage knowledge.

1.2 Applications

Using EPOW functions to instantiate Random Oracles in Encryption Schemes. As men-
tioned before, POW functions are used in [7] to capture and realize CPA-security of the
encryption scheme in [4]. However, this is not sufficient for CCA2-security as POW
functions may not guarantee extractability. So, an EPOW function provides the missing
link, namely extractability, for replacing a Random Oracle by a POW function. Here,
we use EPOW functions to instantiate the second encryption scheme in [4] (recalled
shortly), and translate the proof to the standard model in a straightforward way. This
scheme uses a trapdoor permutation, M , and two Random Oracles, O1, O2, to encrypt
a message, m, as c = (M(r), O1(r)⊕m, O2(r, m)), where r is uniform. At a high level,
it is CCA2-secure because the hiding property of Random Oracles gives us semantic se-
curity while knowledge of queries gives us knowledge of plaintext (the latter property
is what enables proving CCA2-security). Thus, if we replace the Random Oracle by an
EPOW function in the previous scheme we get a CCA2-secure encryption scheme in
the standard model. This scheme can be either noninteractive or 3-round depending on
whether the EPOW function is noninteractively or interactively extractable.

This approach can be utilized to realize other encryption schemes in the RO model.
In particular, we show how to instantiate some schemes that provably cannot be instan-
tiated using the standard instantiation prescribed in the RO methodology [9,24], where
each RO query is replaced with a call to a specific function. Thus, the aforementioned
instantiation is different from the standard one and does not contradict the impossibility
results mentioned above. A detailed presentation of this result appears in [8].

On the connection to other approaches and CCA2 schemes. We remark that generic
transformations from any semantically-secure scheme to a CCA2-secure one have been
studied before [14,27]. Also, the KE assumption has been used to prove that certain en-
cryption schemes are plaintext-aware, which when coupled with semantic security gives
CCA-secure schemes [3,13]. Moreover, Katz [22] used the notion of proofs of plaintext
knowledge to construct efficient 3-round CCA2-secure schemes. We emphasize that
the contributions of this work are not in giving better or more efficient constructions
than existing ones in the literature, but rather in the methodology of replacing Random
Oracles as described above.

Using EPOW functions to construct 3-round ZK protocols. We give one more appli-
cation of EPOW functions in the context of Zero-Knowledge (ZK) systems. Current
3-round ZK arguments and proofs use strong and very specific number theoretic as-
sumptions [20,21,23,3]. On the other hand, we construct 3-round ZK arguments of
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knowledge and membership assuming only the existence of a variant of EPOW func-
tions and noninteractive witness-indistinguishable (WI) arguments [2,19]. This allows
for abstracting from specific number theoretic assumptions and opens the door for bas-
ing 3-round ZK arguments on other assumptions sufficient for constructing this variant
of EPOW functions. On the one hand, the existence of EPOW functions is an assump-
tion that is stated in general computational terms without resorting to specific algebraic
constructs. On the other hand, the assumption seems rather basic and in particular less
specific than current knowledge assumptions.

As a concrete example, we use our second EPOW construction to build such ZK ar-
guments. We remark that the KE assumption used here is weaker than the correspond-
ing knowledge assumptions used for constructing 3-round ZK arguments in [20,21,3].
Specifically, we eliminate the need for the second KE assumption in [21] and later up-
dated in [3]. We note that both simulation and extraction are nonblackbox.

Organization. We introduce and define extractable functions in Section 3. We then
highlight one noninteractive and one interactive constructions in Sections 4 and 5. The
last two sections discuss applications to Random Oracle instantiation and 3-round ZK
protocols, respectively. A more detailed presentation, common definitions, and proofs
appear in [8].

2 Preliminaries

A function, μ, is called negligible if it decreases faster than any inverse polynomial.
Formally, for any polynomial p, there exists an Np such that, for all n ≥ Np: μ(n) <

1
p(n) . We reserve μ to denote negligible functions. A distribution is called well-spread
if it has superlogarithmic min-entropy, i.e., maxkPr[Xn = k] is a negligible function
in n. A probabilistic function family is a set of efficient probabilistic functions having
common input and output domains. Formally, Hn = {Hk}k∈Kn is a function family
with key space Kn and randomness domain Rn if, for all k ∈ Kn, Hk : In × Rn →
On. A probabilistic function family has public randomness if for all k, Hk(x, r) =
r, H ′

k(x, r) for some deterministic function H ′
k. A family ensemble is a collection of

function families, i.e., H = {Hn}n∈N. An uninvertible function, f , with respect to a
well-spread distribution, X, is an efficiently computable function that is hard to invert on
X. Formally, for any PPT, A, Pr[x ← Xn, A(f(x)) = x] < μ(n). If f is uninvertible
with respect to any well-spread distribution, then it is called uninvertible.

Perfectly One-way Probabilistic Functions. A perfectly one-way (POW) function is a
probabilistic function that satisfies collision resistance and hides all information about
its input. Due to its probabilistic nature, such a function is coupled with an efficient
verification scheme that determines whether a given string is a valid hash of some
given input [10].

One formulation of information hiding requires hardness of indistinguishability be-
tween hashes of the same input and hashes of different inputs [10], where the former
is taken from a well-spread distribution and the latter inputs are uniform and indepen-
dent. We also consider the presence of auxiliary information, which is represented as
an uninvertible function of the input. A notable special case of indistinguishability is
pseudorandomness, i.e., hashes of the same input are indistinguishable from uniform.
Moreover, the statistical version of both definitions can be obtained by dropping the
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requirements of auxiliary information and efficiency of the adversary. The formal defi-
nitions appear in [8].

3 Extractable Functions

An extractable function is one for which any machine that “computes” a point in the
range, “knows” a corresponding preimage. As a starting point, we can formulate this no-
tion by requiring any efficient machine that computes an image without auxiliary input
to “know” a preimage. Although, this requirement seems reasonable, it is not sufficient
for applications where auxiliary information is present. On the other hand, formulating
this notion in the presence of auxiliary information is tricky. As a toy example, A can
be a machine that receives an image as an input and copies it to its output. Moreover,
A may still receive an image hidden in its auxiliary input in a subtle way but can be ef-
ficiently extracted from it. Yet, we do not think that this captures our intuition because
A does not really compute the function, rather it decodes the image syntactically from
its input. Thus, we need a meaningful way of telling apart “copying” an image from
“computing” an image.

Following [18], we consider two types of auxiliary information. The first one, called
independent auxiliary information, consists of auxiliary information computed be-
fore a function is sampled from a family ensemble, H. We stress that this input is in-
dependent of the particular function currently used. This prevents hiding images in this
type of input. The second type, called dependent auxiliary information, is restricted
to images under H. This is a restricted form of dependent auxiliary information but it is
sufficient for our applications. Given these two types of inputs, we require that no ad-
versary can come up with a new image without knowing a corresponding preimage. We
capture knowledge of a preimage by requiring for every A, that computes a new image,
a corresponding extractor, KA, that has access to the private input of A and computes
a preimage. We emphasize that KA has to compute the preimage from the view of A
without any additional information.

For clarity, we first formalize this notion in the presence of independent auxiliary
information alone before addressing the general case.

Definition 1. Let H = {Hn}n∈N be any verifiable family ensemble (with verifier VH).
Then, H is called noninteractively extractable if for any PPT, A (with private random
coins denoted by rA), and polynomial, p, there exists a PPT, KA, such that for any
auxiliary information, z:

Pr[k ← Kn, y = A(k, z, rA), x ← KA(k, z, rA) : VH(x, y) = 1 or (∀x′, VH(x′, y) �= 1)]

> 1 − 1
p(n)

− μ(n).

Note that we allow a noticeable extraction error. The constructions from the KE or POK
assumption have a negligible error. However, the error in our interactive constructions
is not known to be negligible. So, for uniformity, we adopt the weaker notion.

There are two possible ways to introduce dependent auxiliary information into Def-
inition 1. One can allow this auxiliary information to be images of any input while the
more restrictive way forces the images to correspond to inputs chosen from well-spread
distributions. Even though the former is more general, the latter is sufficient for our
applications. Thus, we use the latter notion in this work. The formal definitions are not
presented here due to space constraints.
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Interactive extraction. In the interactive setting, we force an adversary, A, to compute
not only one image but a large fraction of the images of x (recall, the function is proba-
bilistic). We say that if A can do so, then x is extractable. We achieve the first property
by forcing A to use random coins for the probabilistic function that are chosen by an
external challenger. In more detail, we define a 3-round game between A and a chal-
lenger (or knowledge extractor). 2 At the end of the game, if the interaction is consistent
(we say shortly what this means) then extraction is possible.

The game starts with A sending an image, y0. The challenger sends uniform strings,
r1, ..., rn, and A has to answer with images, y1, ..., yn, using r1, ..., rn as random coins
for H. We call an interaction consistent if there is a common preimage, x, of y0, ..., yn

with r1, ..., rn as random coins for the last n images. We then say H is interactively ex-
tractable if for any adversary that plays this game consistently, there is a corresponding
extractor that recovers a common preimage of y0, ..., yn. We also allow A to receive an
auxiliary input that can depend, in an arbitrary way, on the choice of the function from
the ensemble, H.

4 A Noninteractive EPOW Construction

Before we present the EPOW construction, we show a simpler construction that
achieves extractability but satisfies a weaker notion of computational hardness, namely
one-wayness. Both constructions use the KE assumption to satisfy extractability. Infor-
mally, the KE assumption says that it is hard to compute, on input p, q, g, ga, a pair of
elements (gr, gra) without knowing r, where p and q are primes, p = 2q + 1, and g is a
generator for the quadratic residue group modulo p. This assumption can be formulated
with or without independent auxiliary information (it can be shown that it does not hold
with respect to auxiliary information that depends on (p, q, g, ga)).

Note that the KE and discrete-log (DL) assumptions imply that the family ensem-
ble, F = {{fp,q,g,ga}(p,q,g,ga)∈PQGAn

}n∈N, where fp,q,g,ga(x) = gx, (ga)x, is an
extractable one-way (EOW) family ensemble. We strengthen the previous construc-
tion into a POW function by masking x with a uniform element r as in [7]. Formally,
Hp,q,g,ga(x, r) = gr, gar, grx, garx.

Preimage extraction. If the KE assumption holds without auxiliary information then
for any PPT, A, that outputs a valid image (gr, gar, grx, garx), there are two PPT, K1
and K2, such that K1 extracts r and K1 extracts rx. Consequently, H is extractable.
Moreover, if the KE assumption holds with respect to auxiliary information, then H

is extractable with respect to independent auxiliary information. However, H is not
extractable in the presence of dependent auxiliary information. Note that extraction
occurs here with negligible error.

Information hiding. The secrecy of this construction is similar to that of the correspond-
ing one in [7], specifically Hp,q,g(x, r) = gr, grx. In particular, secrecy of both con-
structions is based on a stronger version of the DDH assumption. Informally, ga, gb, gab

is indistinguishable from ga, gb, gz where a is drawn from a well-spread distribution
instead of uniform. However, these secrecy notions differ in two ways. First, the [7]

2 In the full version of the paper, we define a 2-round version. However, realizing this notion
seems to require stronger assumptions.
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construction is pseudorandom while this one is an indistinguishable POW function.
Second, secrecy in [7] holds for a randomly chosen function while we use secrecy that
holds for any function. While the former is sufficient in some applications, such as Ran-
dom Oracle instantiation in encryption schemes, the latter is needed in the ZK protocol
(Section 7). Consequently, following [20], the DDH assumption used here is assumed
to hold for any (p, q, g) instead of a randomly chosen one.

5 Construction of Interactive EPOW Functions

The construction presented here is based on hardness assumptions and achieves both
interactive extraction and perfect one-wayness. However, it does not achieve perfect
one-wayness with auxiliary information. A second construction that satisfies the latter
property appears in the full version of the paper.

The idea behind both constructions is to have pairs of related images satisfy the
property that it is easy to compute a preimage if both of them are available. In more
detail, we identify for every r, a related r̂, such that O(x, r), O(x, r̂) reveals x. However,
O(x, r), O(x, r̂) is unlikely to appear in a single execution of the extraction game. So,
the extractor can recover a preimage by sending r in the second round of the game to
get O(x, r), rewinding A, and then sending r̂ to get O(x, r̂). More details appear after
the construction.

Construction 1. Let H = {Hn}n∈N and G = {Gn}n∈N be two family ensembles.
Denote by O = {On}n∈N the family ensemble defined as:

Ok=(k1,k2,k3)(x, (r1
0 , r2

0 , r
3
0 , r1..., rn, rG)) =

r2
0 , r

3
0 , Hk1(x, r1

0), Hk2(t1, r1), ..., Hk2(tn, rn), Gk3 (x, rG),

where for all i, ti = Hk(x, r2
0) if xi = 1, and ti = H(x, r3

0) otherwise.

Primage extraction. For simplicity, and to see why Construction 1 is extractable assume
that A receives only a single challenge, rO , in the second round of the extraction game.
Informally, K tries to make A output two “related” hashes that allows it to recover x. In
more detail, K sends r1

0, r2
0 , r

3
0 , r1, ..., rn to A in the first execution of the game, where

all strings are uniform. K then rewinds A and starts a new game. In the second game,
K sends u1

0,r
1
0, u3

0, u1, ..., un, where u1
0, u

3
0, u1, ..., un are chosen uniformly but r1

0 (the
string in bold font) is the same as the one used in the first interaction. If A answers both
challenges consistently, then K can recover x. This is so because the message in the last
round of the first game contains t = Hk1(x, r1

0) in the clear, while the message in the
last round in the second game contains Hk2(t, ui) if and only if the ith bit of x is 1.
We remark that the technical proof requires that H satisfies a strong form of collision
resistance. The formal definition and proof of extraction appears in the full version of
the paper.

Information hiding. This construction uses two functions, H and G, instead of one due
to the properties needed to prove perfect one-wayness and extractability. Specifically,
our proof of perfect one-wayness uses the assumption that H is statistically perfectly
one-way. On the other hand, extractability assumes that H satisfies strong collision re-
sistance. Currently, we do not know of any class of functions that satisfies this require-
ment except statistically binding functions. However, no single function can be both
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statistically pseudorandom (hiding) and statistically binding. Therefore, we use two
functions. We assume that G is strongly collision resistant, e.g., statistically binding, so
that O is strongly collision resistance and consequently extractable. On the other hand,
H is assumed to be a statistically POW function. Therefore, if G is computationally
perfectly one-way with auxiliary information (it is sufficient that the auxiliary informa-
tion be only a statistically hiding function), then O is a computationally POW function.
We emphasize that O is a POW function but not necessarily with respect to auxiliary
information. In the full version of the paper, we modify the construction to meet this
requirement based on a strong POW assumption.

6 Instantiating the Second Encryption Scheme of [4]

We use EPOW functions to instantiate Random Oracles in the second encryption
scheme of [4] while maintaining a similar proof of security. Extractable POW functions
allow us to do so because they capture two properties of Random Oracles essential for
the original proof, namely, pseudorandomness and knowledge of queries.

The original scheme uses a family ensemble of trapdoor permutations, M, with key
space PKn and trapdoor SKn, and two random oracles O1 and O2. The encryption of
a message, m, is c = Mpk(q), O1(q) ⊕ m, O2(m, q), where q is uniform.

Informally, this scheme is IND-CCA2 because it is IND-CPA and the decryption
oracle does not help the adversary, A. In more detail, without access to the decryption
oracle, A has a negligible advantage because M is one-way. On the other hand, any
valid decryption query, c1, c2, c3, that A makes must be preceded by two Random Or-
acle queries, Msk(c1) and Msk(c1), O1(Msk(c1)) ⊕ c2. However, if A makes any of
these two queries it can compute the plaintext on its own without the decryption oracle.

Interactive instantiation. In the interactive setting, each oracle query is replaced by a
call to a function, H. Moreover, to encrypt a message, m, E sends a hash of a uniform
string, q, in the first round. D responds by sending random strings r1, ..., rn. In the last
round, E sends n hashes of q using r1, ..., rn as random coins for H. E also sends the
ciphertext of m using the original scheme (with H in place of the Random Oracle) with
the same q as the one used in the first round. We note that the first two messages are
independent of the plaintext and thus can be sent ahead of time.

The idea behind this instantiation is to make use of interaction to verify that the
sender actually knows q. This utilizes the fact that H satisfies interactive preimage ex-
traction. So that any adversary communicating with the decryption oracle knows what
the plaintext is. Hence, the decryption oracle does not really help the adversary. There-
fore, IND-CCA2 can be reduced to IND-CPA. Since this scheme can be shown to be
IND-CPA, it is IND-CCA2 in the interactive setting.

Noninteractive instantiation. A similar relation can be drawn between the existence of
noninteractive EPOW functions and noninteractive instantiation of this scheme. Specif-
ically, if M is a trapdoor permutation and H is an extractable (with dependent auxil-
iary information) and pseudorandom POW function with public randomness, then the
scheme, E(m, pk′ = (pk, k1)) = r1, Mpk(q), y ⊕ m, Hk1(q, m, r2), where
Hk1(q, r1) = r1, y, is IND-CCA2.3

3 The construction in Section 4 is an indistinguishable POW function but is not known to be
pseudorandom. Realizing the latter requirement with noninteractive extraction remains open.
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7 Overview of the 3-Round Zero-Knowledge Protocol

EPOW functions can also be used to construct3-round ZK argument systems. Such func-
tions allow us to do so because of their knowledge and secrecy properties. Informally, the
protocol starts with the prover sending an EPOW function. The verifier responds with a
corresponding image of a uniform string. The protocol ends with the prover sending a
noninteractive witness-indistinguishable (WI) proof that either the theorem is true or the
prover “knows” a preimage of the verifier’s message. Intuitively, this protocol is sound
because the verifier’s message completely hides its preimage. Thus, the (polynomially-
bounded) prover does not “know” a preimage. Consequently, if the verifier accepts the
conversation then by the soundness property of the WI proof, the theorem has to be true.
On the other hand, this protocol is zero-knowledge because the verifier “knows” a preim-
age of its message. In other words, a simulator can use the extractor for the EPOW func-
tion to recover a preimage and produce a WI proof using this preimage as a witness. In
more detail, the simulator sends a random EPOW function in the first round. The verifier
responds with an image under this function, and the simulator uses the extractor to recover
a corresponding preimage, and then uses it as a witness in computing the noninteractive
WI proof.

We emphasize that when using the construction of Section 4 in the above ZK pro-
tocol, we do not use any algebraic property of the discrete log in a direct way. This
opens the door for basing 3-round ZK arguments on assumptions other than the KE
assumption as long as such assumptions prove sufficient for constructing such EPOW
functions.

We remark that using EPOW functions with arbitrary small but noticeable extraction
failure probability gives weak simulation, i.e., simulation fails with arbitrary small but
noticeable probability. On the other hand, if an EPOW function, such as construction of
Section 4, has negligible extraction error then simulation succeeds overwhelmingly.
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ments and remarks.
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