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Abstract. We consider bounded versions of undecidable problems
about context-free languages which restrict the domain of words to some
finite length: inclusion, intersection, universality, equivalence, and am-
biguity. These are in (co)-NP and thus solvable by a reduction to the
(un-)satisfiability problem for propositional logic. We present such en-
codings — fully utilizing the power of incrementat SAT solvers — prove
correctness and validate this approach with benchmarks.

1 Introduction

Context-free grammars (CFG) and languages (CFL) have been used intensively
by computer scientists and linguists since Chomsky formalized them in 1956.
They have applications in compiler design, speech processing, bioinformatics,
static program analysis, XML processing, etc.

The word problem for CFGs is decidable in cubic time and quadratic space and
the Pumping Lemma for CFLs [I] provides a criterion by which the emptiness
problem becomes decidable as well. However, it has since long been known that
the following problems are undecidable: universality (given a CFG G over some
alphabet X, is L(G) = X*7?); inclusion, intersection, and equivalence (given two
CFG G; and G, is L(Gl) - L(G2)7 is L(G1) N L(GQ) = @7 and is L(Gl) =
L(G2)?)

Another very important undecidable problem is ambiguity — is there a word
which has at least two different parse trees w.r.t. a given CFG? After seeing little
progress for many years, this problem has recently attracted attention again [3Ig]
which is, e.g., due to its importance in compiler design and bioinformatics.

Due to decidability of the word problem these problems are all (co)-semi-
decidable through an enumeration of X*. Hence bounded versions of these prob-
lems become decidable. For example, the bounded universality problem is: given
a CFG G and a k € N, does L(G) contain all words of length < k? Since the
word problem is even decidable in polynomial time, they are in (co-)NP and can
therefore be solved by a polynomial reduction to (UN-)SAT, provided that k is
given in unary coding.
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The use of modern SAT solvers such as zChaff [6] has proved to be extremely
beneficial in areas like computer aided verification, Al planning, theorem prov-
ing, cryptanalysis, electronic design automation, etc. Here we show that, appar-
ently, formal language theory is also among them.

The observation about decidability of the above bounded problems is not
new although we are not aware of any work that exploits this idea thoroughly
in order to tackle the unbounded (and undecidable) problems. Here we present
optimized reductions of these bounded problems to SAT s.t. a SAT solver can find
witnesses, resp. counterexamples for these problems. The basis for the reduction
is the well-known CYK algorithm [9]. We generate propositional logic constraints
encoding which nonterminals may/must occur at certain positions in a CYK
parse table. A slightly different approach to encoding CYK parsing into SAT
has been independently discovered in [7]. However, the textbook version of CYK
is unsuitable since it requires the CFG to be in Chomsky Normal Form (CNF)
which may incur an exponential blow-up in the grammar. That would clearly be
counterproductive in the search for optimized reductions. We therefore develop
and use an optimized version of CYK which may be known in the community but
does not seem to have made it into the literature. When it comes to ambiguity, we
even must. Note that the transformation into CNF does not preserve ambiguity.
We therefore use a different normal form without these deficiencies.

The crucial difference between our symbolic encoding and an explicit execu-
tion of the CYK algorithm though, is the absence of an input word. This has to
be “guessed” by the SAT solver and the constraints will ensure (non)-inclusion
in the languages of some CFGs. Thus, we do not only get that the SAT formula
is satisfiable iff the language of the CFG, say, contains an ambiguous word of
length < k. The satisfying assignment also encodes this word as well as two
different parse trees.

Note that CYK tables are in some sense closed under extension “to the right”:
the triangular table of size (k + 1) x (k + 1) can be obtained from the one
of size k x k by adding a column of length k + 1. This is what makes incre-
mental SAT solving predestined for solving bounded CFL problems. If a wit-
ness/counterexample of size < k is not found, additional constraints for a greater
bound plus a few changes in the current constraints yield the new formula. In-
cremental SAT solvers maximally utilize information gathered in solving a SAT
instance to solve the next “bigger” but structurally very similar one. Such solvers
are therefore of particular interest for our setting.

This is clearly just a semi-decision procedure for the unbounded versions of
the considered problems. But it has distinct advantages over approximation ap-
proaches for ambiguity [3I8]. While the accuracy of answers given by those de-
pends on the quality of the approximation (that may produce false-positives),
our approach is only limited by time and available memory; the structure of the
produced formula does not pose any difficulty to the SAT solver. A report on
an empirical evaluation is included after some preliminary definitions, and the
presentation as well as exemplary correctness proofs of encodings for the above
problems. On the other hand, our approach is clearly not complete and not
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meant to replace approximation approaches to ambiguity. Instead, they could
also be combined, e.g. to provide a search for smallest witnesses to the problems
of horizontal and vertical ambiguity in [3] for instance.

2 Preliminaries

Let X be an alphabet. As usual, we write |w| for the length of a word w, X*
for the set of finite words over X, Y<F for {w € £* | |w| < k} for any k € N,
¢ for the empty word and uv or LL' to denote concatenation of words, sets,
languages, etc. If w = ay ... a, we write w*J for its subword a; ...a; of length
j—1i+1. A context-free grammar is a tuple G = (Ng, Y, Pg, S¢) where N¢ is
a finite set of non-terminals, X' is an alphabet, No N X = @), Sg € Ng is the
starting symbol and Pg C Ng x (Ng U X)* is a finite set of production rules.
We use infix notation A — « to denote (A, o) € Pg. As the size of G we define
Gl = [N+ X ., lal.

The derivation relation =¢C (NUX)T x (NUX)* is defined as « A3 =g avf3
iff A—~ e P foraB,ve (NUX)* Ae N. We will drop the index G if it
becomes clear from the context.

L(G) :={w € X* | S¢ =* w} is the language of G. An alternative way to
define the derivation of a word is via the existence of parse trees. We assume the
reader familiar with these fundamental concepts and refer to [4] for details.

A word w is ambiguous w.r.t. a CFG G, if there are two different parse trees for
w w.r.t. G. For a CFG G let amb(G) denote the set of words that are ambiguous
w.r.t. G. G itself is called ambiguous if amb(G) # 0.

In the following we will always assume the context-free languages under con-
sideration not to contain the empty word e. This is not a restriction but simplifies
the presentation.

Definition 1. A CFG is in binary normal form (2NF), if for all (A — «) € Pg
we have o € {e} UX UN U NN. It is acyclic if for all A # B € N we have,
if A =* B then B #* A. It is reduced if all nonterminals are reachable and

productive, i.e. for all A € N there are sentential forms «, 3 and a word w € X*
s.t. S =% aAf and A =* w.

Lemma 1. For every CFG G there is a CFG G’ in reduced acyclic 2NF, com-
putable in time O(|G|?) s.t. L(G) = L(G') and |G'| = O(|G]).

Lemma 2. Let G be an acyclic grammar. There exists a well-founded strict
partial order >C NZ, s.t. if A=* B and A # B then A > B.

3 The Encoding

The task is now to create propositional logic constraints from a CFG G and
a k € N that are satisfiable iff L(G) is (k-bounded) universal, ambiguous, etc.
Let G = (N, X, P,S) in reduced, acyclic 2NF and k be fixed. We use two kinds
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of propositional variables: X for every a € X and every 1 < i < k stating
that the i-th symbol of a witnessing word is a. An assignment to these variables
corresponds to the choice of a witness w. The other kind is X;f‘j and states that
nonterminal A derives the subword w7, Let P = {X{, X/ |[a€ ¥, A€ N,1 <
i < j < k}. In the following, n will denote an assignment of these variables to
{tt,ff}, and we write n(C) = tt if n satisfies all the constraints C under the
usual interpretation of the operators in propositional logic.

With incrementality in mind we define constraint sets w.r.t. some p,p’ s.t.
1 < p < p' < k. Intuitively, these contain the constraints for the columns
p,...,p of a CYK table. Note that they may use variables with indices below p.

Let & = {¢1,...,¢n} be an ordered set of propositional formulas. There is a
standard trick to state that at most one of them holds by introducing auxiliary
variables Y; for 1 <i <n+ 1.

One(®) = {(pi = ViAYiu))AN(Yi = Y1) | 1<i<n}

With this macro, we can easily state that each position in a witnessing word is
occupied by a unique symbol.

W(p.p) = { One({X{"|ac SHA \/ X | p<i<yp'}
acX

Lemma 3. For anyn, nOW(p,p’)) = tt iff there exists a unique sequence by, . . .,
by, s.t. n( X)) =tt iff by =a; for allp<i<p',a; €X.

We will therefore simply write wg’p' for the unique wPP" induced by n. We
encode a derivation with the help of constraints R(p,p’) :=

j—1
{x = Vxr v Vx5 vVxliv ) Vahaxiag

A—a A—B A—BCor A—BC h=i
ifi=j A#£B A—CB
A#B,C=*e

|Ae N,p<i<j<p}

This encoding splits up the derivation of wi;j by non-terminal A into the follow-
ing four cases (marked by the big disjunctions): derivation of a single terminal,
two cases of single non-terminal derivations and the derivation of composites.
Note that pre-computing the set of all nonterminals C' s.t. C' =" € can be done
in time O(|G|). Tt is also a necessary preliminary step during the transformation
into 2NF. So far, R(p,p’) contains a bi-implication. However, for some prob-
lems, implications in one direction only will suffice. For example, when encod-
ing bounded emptiness, the «—-parts are unnecessary. In general, the —-parts
express soundness of the encoding and are used to express that something is
derivable; the «—-parts encode completeness and can be used to express that a
word is not derivable. We write R~ (p,p’) and R (p,p’) for the soundness, resp.
completeness parts only.

Lemma 4. Let k > 0, n be an assignment s.t. n(R~(1,k) UW(1,k)) = tt and
w = w},k Then for all A € Ng, all 1 <i < j <k we have: if n(X;flj) = tt then
A= whd,
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Proof. Suppose n(X;f‘j) = tt. We prove the claim by induction on j — ¢ where
we refer to the four different (big) disjunctions in R (1, k) as “blocks 1-4”.

Base case (i = j): Clearly, at least one variable from blocks 1-3 has to be
evaluated to tt. Block 4 evaluates to ff for ¢ = j.

1. n(X2) = tt. There must be a rule A — w’ and therefore A =* w?.

2. n(X}) = tt. We proceed by well-founded induction on >. Suppose for all
B < A, we have B =* w' if (X)) = tt. Because of the rule A — B we
also have A =* w'.

3. n(X}[) = t&. Analogous to (2).

Inductive case (i < j): Block 1 evaluates to £f for ¢ < j, so at least one
disjunct from blocks 2—4 has to evaluate to tt.

1. n(XZ%) = tt. Same as in the base case.
2. n(th) = n(X,?H’j) = tt (4). In particular, h, B,C exist and i < h < j.
Clearly h —i < j—iand j — (h+ 1) < j — i and therefore by induction
hypothesis B =* w"" and C =* w"*"J. As A — BC it follows that
A= whd, O

Lemma 5. Let k > 0, n be an assignment s.t. (R (1,k) UW(1,k)) = tt and
w = w},’k. Then for all A € Ng, all 1 < i < j <k we have: if A =* w"J then
n(ij) = tt.

Proof. Again, we prove this by induction on j — 4. Let w = w,,. In the base case
suppose A =* w'* = a. Thus, n(X?) = tt. Furthermore, there is a derivation
tree with root A and leaf front a. Clearly, whenever a node in this tree has two
successors labeled B and C then B =* € or C' =* ¢. Because of 2NF, a must be
generated by some rule B — a, and because of block 1 we have n(Xﬁ) =tt. A
separate induction on the height of the tree — using blocks 2-4 — shows that we
have n(X ZCZ) = tt for all predecessors of this B in this tree, including the root A.
The crucial insight to the applicability of this induction is the fact that in this
parse tree the node labels on the path from the root to the leaf a are strictly
decreasing w.r.t. > according to Lemma[2

Now assume j > i and A =* w®+J. Hence, we have a parse tree ¢ with root
A whose leaf front is w®J. For a node n in t we write w(n) for the subword of
w®J that constitutes of the leaf labels in the subtree under n. Furthermore, for
two words u, v we write u < v if u is a genuine subword of v.

Note that |w®7| > 2, and — because of 2NF - leaves in this tree have a direct
predecessor n that can only have a single successor. Therefore, for each such n
we have w(n) < w. Note that w(ng) = w"+ for ng the root of t. Hence, there
must be a highest (closest to the root) node n in this tree, that is labeled with
some B € N¢ and has two successors ny and ng labeled with some C| resp. D,
s.t. w(ng) < w(n) = w(ng) and w(ng) < w(n) = w(ng). Hence, w(ny) = w'"
and w(ny) = w't!J for some i < h < j. But then we have C =* w"",
D =* w"*1J and, by hypothesis, n(X5,) = n(Xpy, ;) = t&. Since B — CD
we have n(Xi%) = tt by block 4. Finally, the path from the node labeled B to
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Re(p,p')
c Ra (p,p')  Rapp) Ra(pp) Rep.p)
bINCLg. ¢ X X
bUNIV¢ X
bISECT ¢ v X X
bEQUIV¢. ¢ X X X X

Fig. 1. How to use the R-constraints

the root A must be strictly increasing w.r.t. < again, and an induction on its
length eventually shows n(ij) = tt using blocks 1-3. O

3.1 Constraints for Particular Problems

We will now assemble the above constraints in order to obtain encodings of the
following problems. Let G, G’ be CFG and k > 0.

— Bounded Inclusion (bINCL): does Yw € Y<F 1w € L(G) = w € L(G")
hold?

— Bounded Universality (bUNIV): is X<F C L(G)?

— Bounded Intersection (bISECT): is there a w € £¥ N L(G) N L(G")?

— Bounded Equivalence (bEQUIV): does Yw € X<F : w € L(G) & w € L(G")
hold?

For those that take two CFG G, G’ as input we write Rg to clarify which CFG
the constraints refer to.

The following is not hard to prove using the fact that the word problem for a
CFG can be solved in polynomial time. Note that bounded ambiguity is missing.
It will be treated separately below.

Proposition 1. For wunarily encoded k € N, the problems bINCL,
bUNIV, bEQUIV are in co-NP, and bISECT is in NP.

All of these encodings have a similar structure: they take some form of the R-
constraints plus a single problem specific one constraining the grammar’s starting
symbols. We therefore define

Clp,p") = W p') U Re(p,p') U Selp,p)

for C € {bINCL, bUNIV, bISECT, bEQUIV}. The R-parts can be obtained from
the table in Fig.[Il The S-part is always a single constraint S¢ := {\/i;p Te(5)}
with

. Sar .
Thnew () i= X759 A=X)§ Thounv (j) = ~ X715

. S .
Tisecr(f) = X35 A XS Thequiv(j) i= X7§ < =X
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We write bINCL(p) for bINCL(1, p), etc. The following theorem confirms the in-
troductory statement about the reductions from these bounded problems to SAT
being polynomial. Its proof is straight-forwardly based on standard techniques
for obtaining conjunctive normal form and therefore not presented here.

Proposition 2. Let G,G’ be CFGs, k > 0. For any set of constraints C € {
bINCL (%), bUNIV (k), bISECT (k ), bEQUIV (k) } there is an equivalent propo-

sitional formula ®¢ in conjunctive normal form over O(|Ng U Ng/| - k%) many
variables s.t. |Pc| = O((|G| + |G'|) - k3).

We will prove correctness of one of these reductions, namely for bINCL. The
others are proved in a similar way.

Theorem 1. Let G,G" be CFGs in reduced acyclic 2NF, k > 0. Then
bINCLg ¢ (k) is satisfiable iff there is a w € X=F s.t. w € L(G) \ L(G").
1,k

n
1.k

Proof. (=) Suppose 7 is a satisfying evaluation of bINCLg ¢ (1, k). Let w = w
according to Lemma [Bl We will show that there is a ¥’ < k s.t. Sg =* w
and Sgr #* w'* . Let k" be the least j s.t. n(ijc) = tt and n(ij') = ff. Tts
existence is guaranteed by the specific constraints for bINCL. The rest follows
immediately from Lemmas B and

(<) W.l.o.g we assume that the counterexample w is of minimal length k, i.e.
that bINCLg ¢ (k') is unsatisfiable for any k' < k. We construct an evaluation
n of bINCL¢ ¢/ (1, k) as follows.

NXH =t iff w'=a  p(X[) =16 iff A="w™

for all A € Nog U Ngr, 1 <i < j <k. A simple inspection of the constraints in
bINCL(k) shows that they are all fulfilled by 7. O

Theorem 2. Let G, G’ be CFGs in 2NF, k > 0. Then we have

— bUNIV¢(k) is satisfiable iff there is a w € X<F s.t. w ¢ L(G).

— bISECT ¢ ¢ (k) is satisfiable iff there is a w € X<F s.t. w € L(G) N L(G").

— bEQUIVg (k) is satisfiable iff there is a w € X<F s.t. w € L(G) \ L(G")
orw € L(G")\ L(G).

A counterexample for the universality problem could therefore be found by
iteratively checking the constraint sets bUNIV(1), bUNIV(2), ... for satisfia-
bility. Note that bUNIV(k + 1) contains many constraints already present in
bUNIV (k). In fact, for all of the above problems we have the following relation.
Let 0 < k < K.

CK) = (k) \ |J Selp.p)) U Clk+1,K) U Sc(k+1,K)
1<p<p’'<k

Hence, these constraints support incrementality in the sense that the wider range
Y=k can be checked by modifying the constraints for the smaller range X<F.
Furthermore, the increase need not take place in steps of size 1 only.
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3.2 Ambiguity

We define the bounded ambiguity problem bAMB for a grammar G in reduced
acyclic 2NF and a £ > 1 in a non-obvious way: is there a nonterminal A € Ng
and a word v € X=F s.t. v has at least two different parse trees with roots labeled
A that differ in a node on level 17

Note that a word w is ambiguous in the original sense w.r.t. a grammar
G iff it has two different parse trees that differ in a node (determined by the
derived subword under that node and the node’s label) which is not the root.
Therefore, these trees must have a subtree each with equally labeled roots and
equal derived subwords that differ on level 1. In other words, a derivation for w
derives a subword v from a nonterminal A by using two different rules for A or
using one rule in two different ways.

By not looking for ambiguous words, but ambiguous subwords, found wit-
nesses explain the reason for ambiguity more clearly. For example, if the exam-
ined grammar was an ambiguous one for Java, then the witness may not be a
whole Java program but just an ambiguous Java expression. Furthermore, this
definition of bounded ambiguity allows for much more compact encodings. Fi-
nally, if a CFG is reduced, i.e. all terminals are reachable and productive then
we have the following property: if (v, A) is an instance of bAMB for a CFG G
as defined above, then there is an ambiguous w € L(G) s.t. w = uwvz for some
u,z € X*. The converse direction holds trivially. Thus, bounded ambiguity in
our sense is just a more detailed description of bounded ambiguity as one may
expect it.

Proposition 3. The problem bAMB is solvable in NP for unarily encoded k € N.

Before we can present the encoding we need to reconsider the transformation of a
CFG into reduced acyclic 2NF. Remember that acyclicity is necessary for the R-
constraints to be correct. However, it requires the removal of productions of the
form A — A after replacing nonterminals with equivalence class representants
in the construction of Lemma [Tl But then the transformation does not preserve
ambiguity anymore, because such a cyclic rule can be its cause.

Definition 2. An extended CFG is a tuple G = (N, X, P, S, M, E) like a CFG
with £ C M C N called the ambiguously nullable nonterminals and the am-
biguous nonterminals. The notions of language, derivability, 2NF, acyclicity, re-
ducedness etc. are defined as for a CFG. However, we define amb(G) = {w |
there are two different parse trees for w, or there is one parse tree containing a
nonterminal A € M }.

Then we can reformulate Lemma [I] for the new purpose as follows.

Lemma 6. For every CFG G there is an extended CFG G’ in acyclic and re-
duced 2NF, computable in time O(|G|?) s.t. L(G') = L(G), and |G'| = O(|G|).
Moreover, we have amb(G') = amb(G), and A € E iff there are two different
parse trees with root A and leaf front e.
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Proof. Let G = (N, X, P,S) be a CFG. It can be reduced and transformed into
2NF in time O(|G|). Define G’ := (N, ¥, P,S, M, E) as the canonical factori-
sation of G under the equivalence relation A ~ B iff A =* B =* A. l.e. its
non-terminals are equivalence classes A under this relation, and the production
rules of G’ are canonically derived from those in G. It should be clear that G’
is also reduced. Let F consist of all A that can derive € in at least two different
ways. This can be computed in time O(|G’|). Define M := EU{A | A =+ A}.
Note that M can be computed in time O(|G|?). In order to make G’ acyclic,
simply remove all productions of the form A — A.

It is not hard to see that amb(G’) C amb(G) holds. For the converse direction,
assume that ¢; # t, are two parse trees for some w w.r.t. G. Let ; and #5 result
from them by replacing every node label A with A and collapsing edges of
the form A — A. Note that these are parse trees for w wr.t. G'. If & # 1o
then w € amb(G"). Otherwise, if #; = 5 then either they coincide because of
a collapsed edge in some t;. In this case, £; must contain some A e M and
therefore w € amb(G’). Or there are nodes with labels A and B in 1 and ¢5 that
get mapped to the same node A in t1, i.e. A ~ B and therefore Ae M. o

We are now ready to describe the SAT encoding of bounded ambiguity. As above,
we assume a macro Two(®) which, for an ordered set @ of propositional formulas,
is satisfiable iff there is an assignment satisfying at least two formulas out of @.
It can easily be constructed by introducing at most 2 - |®| 4+ 2 new variables, c.f.
the construction of One above.

Let G be an extended CFG in reduced, acyclic 2NF. The W-constraints remain
the same. Since “having two different parse trees” entails being derivable, we also
add the R™ constraints defined above. Finally, we simply have to state that there
is a nonterminal which forms the root of the parse (sub)tree which is either an
ambiguous nonterminal or to which two different productions apply.

bAMB(k, k') = W(k, k') U R~ (k, k') U
k/

IV (VS v VESGAXE) v (XA Two(Pay) )}

=k A€Mc AEBCer A€Nc\Mg
A#B,C€Eg

where
Pa; ={X{; | A= a€{B, BC,CB} with C =" ¢}

U{X{ | A—aandj=1}

U{X? AXP ;| A-BC1<h<j}
encodes all the different productions that can be made at the root labeled A of
a parse tree for a word of length j. Again, let bAMB(k) := bAMB(1, k). It is
not difficult to see that the encoding of this problem supports incrementality as
well. In each increment, the W- and R -constraints remain, the other one has
to be deleted, etc.

Lemma [0 together with an argument similar to that in the proof of Thm. [I]
yields correctness of the encoding.
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Theorem 3. Let G be a CFG in 2NF, k > 0. Then bAMB(k) is satisfiable iff
there are u,v,z € X* s.t. wvz € L(G), |v] < k and there are two different parse
trees for w that differ on level 1 of the subtree for v.

Proposition 4. Let G be a CFG, k > 0. Then bAMB(k) can be equivalently
translated into a propositional formula @ in conjunctive normal form over
O(|Ng| - k?) many variables s.t. |®| = O(|G| - k3).

4 Comparison

A prototype implementation of the reduction approach (cfganalyzer) has been
implemented for all 5 bounded problems mentioned above. It is written in OCaml
3.09.3, uses zChaff version 2007.03.12 as a linked-in incremental SAT solver and
is available online[]

Of the problems discussed here, ambiguity is the one to which most attention
has been paid and for which a number of tools is available. These basically split
up into three different approaches: (1) brute-force ambiguity detection, (2) LRR
detection and (3) language approximation.

(1) Brute-force ambiguity detection systematically generates parse trees of a
certain maximal size and looks for double appearances of the derived words.
Ambiguous words which exceed the bound are not found — as in our approach.
The crucial difference though is the use of a high-performance SAT solver as a
back-end. While brute-force ambiguity detectors need to generate all parse trees
for a certain bound one-by-one, our reduction covers all parse trees for that
bound at once, and it is up to the SAT solver to find two in its solution space.
In terms of complexity: we use a polynomial reduction to an NP-problem while
(1) is an exponential reduction to a problem in P (finding equal strings in lists).
The performance discrepancies between derivation generators and cfganalyzer
can be seen by comparing Fig. 2] to the results of AMBER in [2]; cfganalyzer is
more than 1000 times faster on subwords of the same size as words in e.g. the
Pascal grammar and capable of pushing the bounds to & = 25 in reasonable time
where AMBER is already at 100.000 sec for k = 17.

(2) LRR or LR-regularity is a generalisation of the well-known LR (k) gram-
mar classes [B]. Instead of a k-symbol lookahead, an LRR parser considers regular
equivalence classes on the remaining input and reports parsing conflicts. LRR
detectors rely on the fact that every LRR-grammar is unambiguous and simply
check a given grammar for this property. But since not every unambiguous gram-
mar is LRR this method is of course also incomplete. Although being relatively
fast, common LR(k) parsers such as yacc often reveal little about the causes
of conflicts. Another positive effect of our approach is that it does always offer
a detailed report on the cause of the ambiguity upon termination, i.e. provides
two parsetrees for the ambiguous subword.

! http://www.tcs.ifi.1lmu.de/ "mlange/cfganalyzer,
We would also like to thank Harri Haanp#i (TKK) and Anders Mgller (Arhus) for
kindly providing us with benchmark CFGs.
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(3) Methods of the third kind usually are complete but not sound by over-
approximating the grammar. False-positives can occur because the language of the
approximated grammar is a superset of the original one. Examples are the ACLA
framework [3] or Schmitz’s method [8]. Our approach does not easily compare to
those since it is an under-approximation: it is sound, and complete only in the
sense that it produces no spurious reports. It does however not terminate on unam-
biguous inputs. Hence, the situation is dual to that of the over-approximation ap-
proaches which can reliably report unambiguity. Because of this duality these two
approaches combine well: a reported potential ambiguity of an over-approximation
tool may be confirmed as a fact by cfganalyzer and a seemingly non-terminating
run of it can be verified as unambiguous by such a tool.

To measure the performance of cfganalyzer it was run on 81 ambiguous
grammars from bioinformatics, ambiguous variants of programming languages
as well as on a larger number of toy examples from [2]. Note that unambiguous
ones are meaningless benchmarks here. Crucial for the performance of the tool on
ambiguous examples is of course the size of the grammar as it directly influences
the bound k up to which witnesses are found before the SAT solver runs out
of memory. Their number of rules varies between 3 and 862 (in 2NF). Most
grammars have less than 200 rules, but among the 13 grammars with number of
rules above 200, there are such prominent examples as C (413 rules), SML (304),
Pascal (337), Elsa C+4 (862) and SQL (202). Fig. [ gives an overview of the
performance on these in relation to the witness size & for ambiguous subwords.
All ambiguities in the given grammars were confirmed by cfganalyzer.

We have also examined cfganalyzer’s performance on the bounded equiva-
lence problem. It not only is the most difficult of the other problems but it also
has obvious applications in CFG design whenever one grammar serves as a spec-
ification and another as an implementation, and one wants to ensure that they
generate the same language. The following scenario provides a nice test suite. At
Helsinki University of Technology, students are given veral descriptions of CFLs

sec

1 1 i L L L L
5 10 15 20 25

Fig. 2. Ambiguity detection of subwords with length &
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and their task is to come up with CFGs which generate them. An automatized
homework grading system has collected approx. 2000 student submissions for
40 different CFLs. Currently, unequivalence is only tested by sampling random
words and checking that they are in both or neither of the two languages.

For running qualitatively better tests — cfganalyzer will not miss counterex-
amples up to the given bound unlike the testing approach — we have checked each
of the 2000 grammars against all the sample solutions over the same alphabet
(which of course makes the equivalence test fail for a large percentage). First, a
coarse mapping of the submissions to the solution grammars was made, sorting
out all submissions which were inequivalent to all solutions within a bound of
k < 15 already (less than 0.1s in most tests). The remaining 251 grammars which
potentially matched a solution were given a more thorough check by setting the
maximum bound up to k& = 50. Checking this range took on average 23.41s which
is well below the time it would take to test all |X|%* — 1 words of length upto
50. This confirms cfganalyzer’s feasibility and usefulness in set-ups that have
to deal with CFGs in an automatic fashion.

5 Conclusion

The previous section shows that undecidable problems of CFLs can be (under-)
approximated by bounding the search space of witnesses / counterexamples and
using an incremental SAT solver for finding them. This approach is sound and
“complete upto termination”: it does not yield false-positives but, while unam-
biguity for example cannot be proved but only insinuated by the lack of found
witnesses. This complements other work on ambiguity detection, in particular
over-approximations which are complete — they can prove unambiguity — but
not sound. The prototype implementation cfganalyzer shows feasibility of this
approach: it has found ambiguity of large real-world grammars in short time. It
also shows that this approach by far outperforms other existing and comparable
approaches, e.g. under-approximations like the brute-force enumeration of parse
trees of bounded length.
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