
Reversible Flowchart Languages and
the Structured Reversible Program Theorem

Tetsuo Yokoyama1, Holger Bock Axelsen2, and Robert Glück2

1 NCES, Graduate School of Information Science, Nagoya University
2 DIKU, Department of Computer Science, University of Copenhagen

yokoyama@nagoya-u.jp, funkstar@diku.dk, glueck@acm.org

Abstract. Many irreversible computation models have reversible coun-
terparts, but these are poorly understood at present. We introduce re-
versible flowcharts with an assertion operator and show that any
reversible flowchart can be simulated by a structured reversible flowchart
using only three control flow operators. Reversible flowcharts are r-
Turing-complete, meaning that they can simuluate reversible Turing ma-
chines without garbage data. We also demonstrate the injectivization of
classical flowcharts into reversible flowcharts. The reversible flowchart
computation model provides a theoretical justification for low-level ma-
chine code for reversible microprocessors as well as high-level block-
structured reversible languages. We give examples for both such
languages and illustrate them with a lossless encoder for permutations
given by Dijkstra.

1 Introduction

In the microprocessor industry, the circuit model, based on well-known logical
connectives such as OR and AND, reigns supreme. In recent years, however,
energy efficiency has become an increasing concern, since standard desktop pro-
cessors dissipate on the order of 100W of power, which must be removed as heat.
Lowering power consumption while increasing computing power is a non-trivial
obstacle for the microprocessor industry, and efforts to do this have involved
computer science, physics and engineering.

Non-standard models of computing have therefore received increased atten-
tion [17]. One such model is reversible computing, which is the only approach
known to date that can circumvent the hard, physical barrier to the energy
efficiency of irreversible computations (such as the ubiquitous NAND-gate).
This physical barrier, the von Neumann-Landauer limit, provides a strict lower
boundary to the energy dissipated as heat with every bit of information de-
stroyed, whence irreversibility. Reversible computing, as well as reversible pro-
gramming, are poorly understood at present. This is unfortunate, since a good
understanding of reversible computing is also essential for quantum computing,
in that every operation on a quantum state must be unitary, and therefore in-
vertible and reversible. Low-power CMOS and quantum computing are two of
the possible applications for the reversible computing model.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 258–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reversible Flowchart Languages 259

A reversible computing model allows deterministic time-invertible computa-
tions, in which not only the next computation state, but also the previous com-
putation state is determined uniquely by the current state. All computations
are forward and backward deterministic. Store updates are non-destructive. Al-
though there are several reversible computation models, such as reversible Tur-
ing machines [2] and invertible cellular automata [18], they are not sufficiently
program-oriented to relate theoretical considerations and recent practical devel-
opments [7,9].

Most modern programming languages are imperative, with block-structured
control flow operators (CFOs) such as if and while. Structured programs are
more readable and maintainable [6]. The theoretical foundation for structured
programming is the classic Structured Program Theorem from the 1960s [4,5],
which guarantees that any unstructured program can be written using only three
structured CFOs: sequence, selection and loop. The same property is desirable
for reversible programming languages, but it is not obvious that it should carry
over from classical computing models.

The main goal of the present paper is to provide the theoretical justification
for the design, translation and computational strength of high-level imperative
reversible languages, such as Janus [14,19,20], and low-level machine code for re-
versible architectures, such as the Pendulum microprocessor [9,1]. The flowchart
model is well suited for this purpose, as it accommodates both low-level aspects
such as jumps and high-level aspects such as structured control flow operators.

We identify three reversible CFOs that are sufficient for the definition of
a structured reversible flowchart language. We show that reversible flowcharts
are r-Turing-complete, in that they can simuluate reversible Turing machines
without garbage data. We show the injectivization of classical flowcharts into
reversible flowcharts, indicating that the latter are Turing-complete, if garbage
data necessary for the injectivity of the computed function are disregared. We
present examples of how programming languages based on reversible flowcharts
can be designed, along with two code examples.

2 Reversible Flowcharts

Flowcharts have been used extensively in the study of programming languages.
Most programming languages used today have a control flow, which can be
easily modeled by flowcharts, making the latter important analytical tools in
programming language theory (e.g., [4,5,10,12,15]).

Reversible flowcharts. A reversible flowchart F is a finite directed graph with
three kinds of nodes, each representing an atomic operation (Fig. 1): a step per-
forms an elementary operation on the store specified by a transition function a;
a test dispatches the control flow depending on the value of predicate e; and an
assertion is a join point that passes incoming control flow through, depending on
the value of predicate e. Computation in a flowchart proceeds sequentially along
the directed graph of F . A well-formed flowchart has exactly one entry and one
exit. An interpretation of a flowchart F consists of a domain X (e.g., a store)

260 T. Yokoyama, H.B. Axelsen, and R. Glück

� a � ��
��

�e
t

f

�

�

��

�

�

�
e

t

f

�

�
(a) Step (b) Test (c) Assertion

Fig. 1. Atomic operations of reversible
flowcharts

�a−1�
�

�

�

�

�

�
e

t

f

� ��
��

�e
t

f

�

�
(a) Step (b) Assertion (c) Test

Fig. 2. Inverted atomic operations of re-
versible flowcharts

and an appropriate association with the partial transition functions (a : X ⇀ X)
and the predicates (e : X → Bool).

The transition function a of each step must be locally invertible, defined as
having an inverse transition function a−1 that can be determined without refer-
ring to a’s context or location in a flowchart.

The assertion operator is also new (Fig. 1(c)): Predicate e must be true when
the control flow reaches the join point along the true-edge (labeled t) and false
when the control flow reaches the join point along the false-edge (labeled f);
otherwise, the operation is undefined. The operator is represented by a circle.

In classical flowcharts, the join points are not associated with a predicate and
there is no information about the incoming control flow. Classical join points
are sources of backward non–determinism, which break reversibility, as do non-
invertible transition functions. Reversible flowcharts remove these sources.

Structured reversible flowcharts. Similar to classical flowcharts, reversible
flowcharts allow unstructured control flow. Needless to say, it is easy to construct
incomprehensible “spaghetti code” with unstructured reversible flowcharts.

A structured control flow operator (structured CFO) has exactly one entry
and one exit. We define three structured reversible CFOs (Fig. 3): sequence,
selection, and loop. A block Bi is either a locally invertible step (as above) or
one of the three structured reversible CFOs. The latter can be nested any number
of times. The constructs are all symmetric. A structured reversible flowchart is
one constructed from locally invertible steps and structured reversible CFOs.
Structured control flow makes a program modular and easier to verify.

The selection corresponds to an irreversible if-statement but has an exit as-
sertion e2. The loop is repeated as long as test e1 and assertion e2 are false.
The loop corresponds to an irreversible while loop if B1 is empty and to an
irreversible do-while loop if B2 is empty. In either case, the assertion at the
loop entry and the test at the loop exit make the loop reversible.

Inverse flowcharts. Starting with a reversible flowchart, structured or un-
structured, the following method can be used to generate an inverse flowchart:
(1) change the direction of each arrow, (2) replace each transition function a
with its inverse a−1, and (3) replace each test by an assertion and each assertion
by a test (the predicate e remains unchanged).

Reversible Flowchart Languages 261

� B1 � B2 � ��
��

�e1

t

f

� B1
��

�

�

�
e2

t

f

�

� B2 �

�
�

�

�

�
e2

t

f

� B1
�

�
��

�e1
t

f�B2�

�

(a) Sequence (b) Selection (c) Loop

Fig. 3. Structured reversible CFOs

�B−1
2

�B−1
1

� ��
��

�e2

t

f

�B−1
1��

�

�

�
e1

t

f

�

�B−1
2

�

�
�

�

�

�
e1

t

f

�B−1
1�

�
��

�e2
t

f�B−1
2

�

�

(a) Sequence (b) Selection (c) Loop

Fig. 4. Inverted structured reversible CFOs

Fig. 2 shows the inverse of each atomic operator in Fig. 1, where a−1 is the
inverse transition function. Similarly, Fig. 4 shows the inverse of each CFO in
Fig. 3, where B−1 is the inverse flowchart of B.

The flowchart resulting from inversion is also reversible, whether structured
or unstructured. Inversion does not add or delete atomic operations or CFOs.
Repeating the inversion once more restores the original reversible flowchart. The
transformation is purely local and does not require global analyses or changes in
control flow beyond changing the direction of the arrows. The ease with which
reversible flowcharts are inverted is a unique property of this computation model
and makes it an attractive analytical tool for program complexity [13]. In gen-
eral, it is difficult to construct an inverse flowchart mechanically from a classical
flowchart. Clearly, programming reversible flowcharts is quite different from pro-
gramming classical flowcharts.

3 The Structured Reversible Program Theorem

Nowadays, it is easy to forget that the uses and benefits of structure in high-level
programming languages were controversial. From a computational viewpoint,
this debate was effectively closed by the Structured Program Theorem [4], which
showed that structured and unstructured flowcharts have the same expressive
power. Thus, the useful ancillary benefits of structured high-level languages,
including their increased readability and being much easier to reason about, had
no computational weaknesses.

The same question is relevant to the reversible computation paradigm. Re-
versible computing is sufficiently different from standard computational models

262 T. Yokoyama, H.B. Axelsen, and R. Glück

entry

A0

� x1^= true �
�

�

�

�
x1

t

f

� A1
�

�
��

�xn
t

f�

� xn^= true � exit

Fig. 5. Flowchart A0 with main loop

that it is unclear whether results from classical (backward non-deterministic)
computing carry over to the reversible paradigm.1 Indeed, none of the classic
constructions (and therefore proofs) apply because they lead to classical irre-
versible flowcharts. While it may be intuitively obvious that structure is also
“free” in reversible programming, this must be proven.

Theorem 1 (Structured Reversible Program Theorem). For any well-
formed reversible flowchart F , a functionally equivalent structured reversible
flowchart A0, with at most a single reversible loop, can be constructed.

Proof. Let F be a well-formed reversible flowchart and n be the number of
edges in F . Let the domain of the transition functions and predicates of F be X .
Below we construct a functionally equivalent structured reversible flowchart A0
over a trivial extension of X . For this, we label every edge in F uniquely by li
(1 ≤ i ≤ n). Without loss of generality, label the entry edge l1, the exit edge ln,
and the two incoming edges of any assertion li and li+1.

The main idea of the proof is as follows. Each node and its incoming edges
is translated to a structured equivalent. A main loop simulates the control flow
of F one node at a time, by keeping track of which edge the execution follows
in F . This edge state is modeled by adding a fresh Boolean variable xi for each
edge li to the domain X . The initial and final value of each xi is false. The
edge state is called i if xi is true and all other xj ’s are false. Thus, if in F the
control flow is at edge li, then the edge state in A0 should be i. The edge state is
changed from i to j by using an injective transition function Pi,j that executes
xi^= true; xj^= true.2 In F this corresponds to moving from edge li to edge lj .

First, generate the main loop in Fig. 5 for entry edge l1 and exit edge ln.
Flowchart A0 is a reversible loop between an initial and a final step. The ini-
tial step sets x1 to true. If test xn is true the loop ends; otherwise, the loop
continues. The path back to assertion x1 is a skip operation.

Then build the structured reversible flowcharts Ai (0 < i < n) by the rules
in Fig. 6, where the atomic operation with incoming edge li (or li and li+1) in
1 As an example, given a bounded store (i.e. a finite number of possible configura-

tions), computations cannot be guaranteed to terminate for classical flowcharts. This
is not true in reversible computing, where a bounded store is sufficient to obtain
termination for well-formed reversible flowcharts.

2 xi^= true is shorthand for xi:= xi ⊕ true, where ⊕ is logical exclusive-or. This is
an injective (reversible) step.

Reversible Flowchart Languages 263

li � a � lj =⇒

Ai

��
��

�xi

t

f

� a �Pi,j
�

�Ai+1 �

�

�

�

�
xj

t

f

�

li ��
��

�e
t

f

� lj

� lk

=⇒

Ai

��
��

�xi

t

f

��
��

�e
t

f

�Pi,j
�

�Pi,k
�

�

�

�

�
e

t

f
�

�Ai+1 �

�

�

�

�
xj ∨ xk

t

f

�

li
��

�

�

�
e

t

f

� lj

li+1 �

=⇒

Ai

Ai+1

��
��

�xi

t

f

�Pi,j

�

���
�� ��

��xi+1

t

f

�Pi+1,j

�

�Ai+2
�

�

�

�

�
xj ∧ ¬e

t

f

�

�

�

�

�
xj ∧ e

t

f

�

Fig. 6. Unstructured operations transformed into structured reversible flowcharts Ai

the left column is translated into the flowchart Ai in the right column. A dashed
box Aj inside Ai stands for a well-formed flowchart simulating the execution of
control flow along an edge lj over exactly one node.

(1) A step with transition function a is executed in the translated flowchart
only if the state is i. The state is then changed to j and xj becomes true,
simulating the control flow over the step. If the state is not i, then Ai+1 is entered.
By the unique numbering of edges, after executing Ai+1 the state cannot be j,
so an assertion of xj is sufficient to distinguish between the two possibilities.

(2) A test is similar to a step. Pi,j and Pi,k change variables xi, xj and xk.
Thus, the value of predicate e in the test and the assertion must be the same, and
depending on e the edge state is set to either j or k. By an argument analogous
to the step case, the assertion xj ∨ xk is sufficient to distinguish this from Ai+1.

(3) Edges li and li+1 of an assertion are translated simultaneously, so Ai

contains Ai+1 and Ai+2. Predicate e differentiates between the two possibilities.
Finally, for well-formedness, we insert a dummy step An (e.g., an identity

step) although it is never reached in a computation. The structured reversible
flowchart A0 generated by the rules in Fig. 5 and 6 thus simulates the execution
of every step, test and assertion in the flowchart F . ��

264 T. Yokoyama, H.B. Axelsen, and R. Glück

The proof is constructive, and shows that a structured reversible flowchart can
be constructed from an arbitrary reversible flowchart with exactly the same func-
tionality. Thus, from a computational viewpoint, structured and unstructured
flowcharts are equally powerful, even in the reversible computing paradigm. The
proof was inspired by Cooper’s global proof sketch [5], but was more involved.

4 r-Turing Completeness of Reversible Flowcharts

At first glance, reversible flowcharts may not seem as powerful as their classical
counterparts, which do not require assertions and allow any transformation on
the store in steps.

First, we shall demonstrate that reversible flowcharts with unbounded space
are Turing-complete, provided that the generation of garbage data, extraneous
data needed for reversibility, is ignored. This can be accomplished by injectivizing
classical flowcharts (i.e., with irreversible join points and non-injective steps),
which are Turing-complete, into reversible flowcharts with the same functionality.
Such an injectivization effectively changes the type of the computed function: if
the classical flowchart F computes function f : X → Y, then the injectivized
flowchart will compute a function fg : X → Y × G, where G is some domain
of garbage data, necessary to guarantee that fg is an injective function. While
injectivization works for any computable function, it is not necessary for the
large and important class of injective, computable functions.3

Second, we show that reversible flowcharts are r-Turing-complete, meaning
that they can compute the same functions as reversible Turing machines cleanly,
i.e. without the generation of garbage data. In other words, if a reversible Turing
machine (RTM) computes the injective function f : X → Y , then f is com-
putable without garbage data in reversible flowcharts (and by Thm. 1, in struc-
tured flowcharts). Since RTMs can cleanly compute any injective, computable
function [3,13], so can reversible structured and unstructured flowcharts.

Theorem 2 (Injectivization of Classical Flowcharts). For any well-formed
classical flowchart F , a reversible flowchart Fh with the same functionality mod-
ulo the accumulation of garbage data can be constructed.

Proof. As shown above, the irreversibility of classical flowchart is due to irre-
versible steps (non-injective transformations) and join points without assertions.
To translate a classical flowchart into a reversible flowchart, the store will be ex-
tended with a history stack h to record the information required to reconstruct
the previous computation state. The stack is associated with the two standard
operations push and pop, which are inverse to each other. The operation top
is used to check the top element of the stack. A join point is injectivized as
follows.

3 A classical computation example is lossless audio codecs. Every operation on a quan-
tum state in a quantum computer must be unitary, and therefore injective.

Reversible Flowchart Languages 265

Irreversible
join point

�� �
�

=⇒

� push true h ��

�

	

top h

t

f

�

� push false h �

Reversible
join point

The injectivization of steps is similar: assume that every step is an assignment
x := e, which overwrites x with the value of expression e. Replace every step with
one computing push x h; x ^= e, which saves the original value of x on h. The
resulting reversible flowchart Fh is an injectivized version of F . ��

Corollary 1 (Input Embedding). The input embedding fi : x �→ (f(x), x)
of the function f computed by a classical flowchart F can be computed by a
reversible flowchart Fi.

Proof. Given a classical flowchart F computing f , (1) obtain a injectivized re-
versible flowchart Fh computing fh : x �→ (f(x), h), where h is the garbage
(history) induced by Thm. 2. (2) Invert Fh to obtain F−1

h which computes
f−1

h : (f(x), h) �→ x. (3) Construct Fi, which executes Fh, copies the values
of all output variables into fresh variables, and executes F−1

h . This rolls back
the execution of Fh, clearing the history stack and restoring the initial values of
all variables used by Fh. Flowchart Fi returns both the original input and the
output of executing flowchart F , and therefore computes fi. ��

RTMs are usually defined using quadruple rules [2,16], instead of the more com-
mon quintuple rules. A quadruple TM is defined by a finite set of states Q, a
finite set of symbols S, and a finite set of symbol rules 〈q1, s1, s2, q2〉 and shift
rules 〈q1, /, d, q2〉. A symbol rules says that in state q1 with the tape head reading
symbol s1, write s2 and change into state q2. A shift rule says that in state q1,
move the tape head in the direction d ∈ {−, 0, +} (left, stay, right) and change
into state q2. For a TM to be reversible there must be both forward determinism
(in the usual sense) and backward determinism. A quadruple TM is backward de-
terministic iff for any pair of distinct quadruples 〈q1, t1, t2, q2〉 and 〈q′1, t′1, t′2, q′2〉,
if q2 = q′2 then t1 �= /, t′1 �= / and t2 �= t′2.

Theorem 3 (r-Turing completeness). Any reversible Turing machine can
be simulated cleanly (without added garbage) by reversible flowcharts.

Proof. The configuration of a Turing machine can be simulated as follows. q is a
variable whose value is the current state, s holds the symbol under the tape head
and l and r are stacks holding the left and right portions of the tape relative to
the tape head, respectively.4

For a given RTM, assume that qs and qf are the start and finish states, re-
spectively, and that the transition rules are numbered R1 to Rn. Each transition
rule Ri is translated into a functionally equivalent reversible flowchart Ci ac-
cording to the rules shown in Fig. 8. The helper function Qq1,q2 consist of the

4 For convenience we assume the stacks are infinitely deep. Finite stacks will work as
well, although care must be taken to maintain reversibility.

266 T. Yokoyama, H.B. Axelsen, and R. Glück

entry � q ^= qs �
�

�

�

�
q=qst

f

� C1
�

�
��

�q=qf t

f�

� q ^= qf � exit

Fig. 7. Flowchart C0 with main loop for RTM simulation

〈q1, s1, s2, q2〉
⇓

��
�

�
�

�
�

�
�q=q1
∧

s=s1

t

f

� Qq1,q2
� Ss1,s2

�

� Ci+1 �

�

�

�

q=q2
∧

s=s2

t

f

�

〈q1, /, d, q2〉
⇓

��
�

�
�

�
�

�
�

q = q1

t

f

� Qq1,q2
� Md

�

� Ci+1 �

�

�

�

q = q2

t

f

�

Fig. 8. Translation of RTM transition rules Ri into reversible flowcharts Ci

step q ^= q1 ; q ^= q2. This changes q’s value from q1 to q2 reversibly, simulating
changing the state of the RTM from q1 to q2. Ss1,s2 is entirely analogous for the
symbol variable s. The step Md simulates moving the head in direction d. For
example, M+ is defined (reversibly) as push s l; pop s r. In the translation
of both rule types, if rule Ri did not apply (enforced by the test predicate),
control flows into Ci+1, the translation of rule Ri+1. Upon return from Ci+1,
backward determinism of the RTM ensures that the given assertions are suffi-
cient to differentiate between the two cases. In the translation of the final rule
Rn, a dummy step is inserted in place of Cn+1. Execution of C1 thus simulates
the application of exactly the rule implied by the (simulated) configuration of
the RTM.

C1 can be embedded in a reversible loop C0 that executes C1 repeatedly,
starting in state qs until the final state qf is reached (Fig. 7). C0 thus computes
the same function as the RTM, without the generation of garbage data. ��

5 Reversible Flowchart Programming Languages

The reversible flowchart computation model provides a theoretical justification
for low-level unstructured machine code (e.g., for a reversible microprocessor) as
well as for high-level block-structured reversible languages. We give two program-
ming languages as examples for both types and illustrate them with a garbage-
free implementation of a lossless encoder for permutations given by Dijkstra [8].

Reversible Flowchart Languages 267

Grammar of reversible language RL
p ::= b+

b ::= l: k a∗ j
a ::= x ^= e;

k ::= from l;
| if e from l else l;
| entry;

j ::= goto l;
| if e goto l else l;
| exit;

Grammar of structured reversible language SRL
p ::= b
a ::= x ^= e;

b ::= a
| b b
| if e then b else b fi e
| from e do b loop b until e

Expressions
e ::= c | x | o e · · · e
o ::= + | * | · · ·

Syntax Domains
p ∈ Prog
b ∈ BasicBlock

a∈ Assign
e ∈ Expr

j ∈ Jump
c ∈ Const

k ∈ From
x ∈ Var

l ∈ Label
o ∈ Op

Fig. 9. A family of reversible flowchart languages

The encoder implements an injective function. The decoder can be obtained from
the encoder using the straightforward inversion of Sec. 2, and vice versa.

Unstructured Reversible Language. A program written in the unstructured
reversible language RL is a sequence of basic blocks. A block consists of a label,
an unconventional from construct, a sequence of assignments, and a jump. A
jump may be unconditional (goto l), conditional (if e goto l1 else l2), or the
exit from the program (exit). The values of all variables are initially zero. The
syntax is shown in Fig. 9.

An assignment is a C-like exclusive-or assignment (x ^= e), where variable x
must not occur in expression e. This syntactic constraint makes the assignment
self-inverse. In general, any reversible update can be used as assignment operator
to the language (e.g., the C-like assignment operators += and -=; see Sec. 2).

A from construct is an unconditional assertion (from l) that the control flow
always comes from block l, a conditional assertion (if e from l1 else l2) that
the control flow comes from block l1 when predicate e is true and from block l2
otherwise, or the entry of the program (entry). This construct makes the control
flow of programs backward deterministic. Well-formed programs contain exactly
one entry and one exit.

Structured Language. A program written in the structured reversible lan-
guage SRL consists of one, possibly nested block. A block is an assignment,
a sequence of blocks, a conditional (if e1 then b1 else b2 fi e2), or a loop
(from e1 do b1 loop b2 until e2). They textually represent the reversible struc-
tured CFOs of Fig. 3. The syntax is shown in Fig. 9, with operational semantics
rules omitted for space reasons.

Example: permutation-to-code. Consider the problem of translating an ar-
ray x[] of length n, containing a permutation of the numbers 0, . . . , n−1, into an
array where each index entry i counts the number of elements in x[] smaller than
x[i] preceding the occurrence x[i] in x[]. For example, given the input permu-
tation x[]={2,0,3,1,5,4}, we obtain the encoded array x[]={0,0,2,1,4,4}.

268 T. Yokoyama, H.B. Axelsen, and R. Glück

This is a fine program inversion example described by Dijkstra, who used an
irreversible guarded commands language to write this program [8,11].

The structured reversible program in SRL is shown below in the left column.
The right column shows the inverted program: a decoder that reconstructs the
original permutation. Note that the encoder and decoder take the same number
of steps on the corresponding input/output and that their space consumption is
identical (due to the assumption that atomic step += and its inverse -= consume
equal execution time and space). For simplicity, we use the reversible update
operators += and -=, which can be simulated by ^= and auxiliary variables.

from k=n
loop k-=1

from j=0
loop if x[j]>x[k]

then x[j]-=1
fi x[j]>=x[k]
j+=1

until j=k
j-=k

until k=0

⇐⇒
program
inversion

from k=0
loop j+=k

from j=k
loop j-=1

if x[j]>=x[k]
then x[j]+=1
fi x[j]>x[k]

until j=0
k+=1

until k=n

The same program can be expressed in the unstructured reversible language
RL. The program can easily be inverted (omitted due to lack of space.)

l0: entry;
goto l1;

l1: if k=n from l0 else l7;
k-=1;
goto l2;

l2: if j=0 from l1 else l6;
goto l3;

l3: from l2;
if x[j]>x[k] goto l4 else l5;

l4: from l3;
x[j]-=1;
goto l5;

l5: if x[j]>=x[k] from l4 else l3;
goto l6;

l6: from l5;
j+=1;
if j=k goto l7 else l2;

l7: from l6;
j-=k;
if k=0 goto l8 else l1;

l8: from l7;
exit;

Admittedly, both RL and SRL are small reversible programming languages.
Their purpose is theoretical: to model unstructured control flow of low-level
reversible machine code with jumps and register updates, high-level reversible
languages with structured control flow and assignments and the clean translation
and interpretation of these languages within the reversible computing paradigm
(e.g., garbage-free reversible self-interpretation [20]).

6 Conclusion

We introduced the concept of reversible flowcharts, and showed that structured
and unstructured reversible flowcharts are equally expressive. We demonstrated
an injection of classical flowcharts, and proved the r -Turing completeness of

Reversible Flowchart Languages 269

reversible flowcharts. The work presented here is part of a larger effort on the
development of reversible programming systems, e.g. [1,7,9,19,20]. The results
of this paper can be guidelines in designing new structured and unstructured
reversible programming languages, independent of actual implementation.

Acknowledgments. An abstract of this paper was presented at the informal,
unrefereed 18th Nordic Workshop on Programming Theory, 2006. Part of this
work was supported by CREST, JST; and the FIRST research school.

References

1. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Computer Science - Theory and Applications. Proceed-
ings. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Com-
put. 18(4), 766–776 (1989)

4. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only
two formation rules. Communications of the ACM 9(5), 366–371 (1966)

5. Cooper, D.C.: Böhm and Jacopini’s reduction of flow charts. Communications of
the ACM 10(8), 463–473 (1967)

6. Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R. (eds.): Structured Programming. Aca-
demic Press, London (1972)

7. De Vos, A., Van Rentergem, Y.: Reversible computing: from mathematical group
theory to electronical circuit experiment. In: 2nd Conf. on Computing Frontiers,
pp. 35–44. ACM Press, New York (2005)

8. Dijkstra, E.W.: Program inversion. In: Bauer, F.L., Broy, M. (eds.) Program Con-
struction: Intl. Summer School. LNCS, vol. 69, pp. 54–57. Springer, Heidelberg
(1978)

9. Frank, M.P.: Reversibility for Efficient Computing. PhD thesis. MIT, Cambridge
(1999)

10. Gomard, C.K., Jones, N.D.: Compiler generation by partial evaluation: a case
study. Structured Programming 12, 123–144 (1991)

11. Gries, D.: The Science of Programming, ch.21: Inverting Programs, Texts and
Monographs in Computer Science. Springer, Heidelberg (1981)

12. Hatcliff, J.: An introduction to online and offline partial evaluation using a simple
flowchart language. In: Hatcliff, J., Mogensen, T., Thiemann, P. (eds.) Partial
Evaluation. Practice and Theory. LNCS, vol. 1706, pp. 20–82. Springer, Heidelberg
(1999)

13. Jacopini, G., Mentrasti, P., Sontacchi, G.: Reversible Turing machines and polyno-
mial time reversibly computable functions. SIAM Journal on Discrete Mathemat-
ics 3(2), 241–254 (1990)

14. Lutz, C.: Janus: a time-reversible language. Letter written to Landauer, R. (1986),
http://www.cise.ufl.edu/∼mpf/rc/janus.html

15. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)
16. Morita, K., Yamaguchi, Y.: A universal reversible Turing machine. In: Durand-

Lose, J., Margenstern, M. (eds.) Machines, Computations, and Universality. Pro-
ceedings. LNCS, vol. 4664, pp. 90–98. Springer, Heidelberg (2007)

http://www.cise.ufl.edu/~mpf/rc/janus.html

270 T. Yokoyama, H.B. Axelsen, and R. Glück

17. Munakata, T.: Beyond silicon: New computing paradigms. Special issue. Commu-
nications of the ACM 50(9), 30–72 (2007)

18. Toffoli, T.: Computation and construction universality of reversible cellular au-
tomata. J. Comput. Sys. Sci. 15, 213–231 (1977)

19. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: 5th Conf. on Computing Frontiers, pp. 43–54. ACM Press, New York
(2008)

20. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation. Proceedings,
pp. 144–153. ACM Press, New York (2007)

	Reversible Flowchart Languages and the Structured Reversible Program Theorem
	Introduction
	Reversible Flowcharts
	The Structured Reversible Program Theorem
	r-Turing Completeness of Reversible Flowcharts
	Reversible Flowchart Programming Languages
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

