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Abstract. We study tree languages that can be defined in Δ2. These are
tree languages definable by a first-order formula whose quantifier prefix is
∃∗∀∗, and simultaneously by a first-order formula whose quantifier prefix
is ∀∗∃∗, both formulas over the signature with the descendant relation.
We provide an effective characterization of tree languages definable in
Δ2. This characterization is in terms of algebraic equations. Over words,
the class of word languages definable in Δ2 forms a robust class, which
was given an effective algebraic characterization by Pin and Weil [11].

1 Introduction

We say a logic has a decidable characterization if the following decision problem
is decidable: “given as input a finite automaton, decide if the recognized language
can be defined using a formula of the logic”. Representing the input language by
a finite automaton is a reasonable choice, since many known logics (over words
or trees) are captured by finite automata.

This type of problem has been successfully studied for word languages. Ar-
guably best known is the result of McNaughton, Papert and Schützenberger [12,
9], which says that the following two conditions on a regular word language
L are equivalent: a) L can be defined in first-order logic with order and label
tests; b) the syntactic semigroup of L does not contain a non-trivial group. Since
condition b) can be effectively tested, the above theorem gives a decidable char-
acterization of first-order logic. This result demonstrates the importance of this
type of work: a decidable characterization not only gives a better understanding
of the logic in question, but it often reveals unexpected connections with alge-
braic concepts. During several decades of research, decidable characterizations
have been found for fragments of first-order logic with restricted quantification
and a large group of temporal logics, see [10] and [16] for references.

An important part of this research has been devoted to the quantifier al-
ternation hierarchy, where each level counts the alterations between ∀ and ∃
quantifiers in a first-order formula in prenex normal form. Formulas that have
n−1 alternations are called Σn if they begin with ∃, and Πn if they begin with ∀.
For instance, the word property “some position has label a” can be defined by a
� Work partially funded by the AutoMathA programme of the ESF, the PHC pro-

gramme Polonium, and by the Polish government grant no. N206 008 32/0810.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 233–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Σ1 formula ∃x. a(x), while the language a∗ba∗ can be defined by the Σ2 formula
∃x∀y. b(x) ∧ (y �= x ⇒ a(y)).

A lot of attention has been devoted to analyzing the low levels of the quantifier
alternation hierarchy. The two lowest levels are easy: a word language is definable
in Σ1 (resp. Π1) if and only if it is closed under inserting (removing) letters. Both
properties can be tested in polynomial time based on a recognizing automaton,
or semigroup. However, just above Σ1, Π1, and even before we get to Σ2, Π2,
we already find two important classes of languages. A fundamental result, due
to Simon [14], says that a language is defined by a boolean combination of
Σ1 formulas if and only if its syntactic monoid is J -trivial. Above the boolean
combination of Σ1, we find Δ2, i.e. languages that can be defined simultaneously
in Σ2 and Π2. As we will describe later on, this class turns out to be surprisingly
robust and it is the focus of this paper. Another fundamental result, due to Pin
and Weil [11], says that a regular language is in Δ2 if and only if its syntactic
monoid is in DA. The limit of our knowledge is level Σ2: it is decidable if a
language can be defined on level Σ2 [1, 11], but there are no known decidable
characterization for boolean combinations of Σ2, for Δ3, for Σ3, and upwards.

For trees even less is known. No decidable characterization has been found for
what is arguably the most important proper subclass of regular tree languages,
first-order logic with the descendant relation, despite several attempts. Similarly
open are chain logic and the temporal logics CTL, CTL* and PDL. However,
there has been some recent progress. In [5], decidable characterizations were
presented for some temporal logics, while Benedikt and Segoufin [2] character-
ized tree languages definable in first-order logic with the successor relation (but
without the descendant relation).

This paper is part of a program to understand the expressive power of first-
order logic on trees, and the quantifier alternation hierarchy in particular. The
idea is to try to understand the low levels of the quantifier alternation hierarchy
before taking on full first-order logic (which is contrary to the order in which word
languages were analyzed). We focus on a signature that contains the ancestor
order on nodes and label tests. In particular, there is no order between siblings.
As shown in [3], there is a reasonable notion of concatenation hierarchy for tree
languages that corresponds to the quantifier alternation hierarchy. Levels Σ1 and
Π1 are as simple for trees as they are for words. A recent unpublished result [8]
extends Simon’s theorem to trees, by giving a decidable characterization of tree
languages definable by a Boolean combination of Σ1 formulas. There is no known
characterization of tree languages definable in Σn for n ≥ 2.

The contribution of this paper is a decidable characterization of tree languages
definable in Δ2, i.e. definable both in Σ2 and Π2. As we signaled above, for word
languages the class Δ2 is well studied and important, with numerous equivalent
characterizations. Among them one can find [11, 15, 13, 7]: a) word languages
that can be defined in the temporal logic with operators F and F−1; b) word
languages that can be defined by a first-order formula with two variables, but
with unlimited quantifier alternations; c) word languages whose syntactic semi-
group belongs to the semigroup variety DA; d) word languages recognized by
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two-way ordered deterministic automata; e) a certain form of “unambiguous”
regular expressions.

It is not clear how to extend some of these concepts to trees. Even when nat-
ural tree counterparts exist, they are not equivalent. For instance, the temporal
logic in a) can be defined for trees—by using operators “in some descendant” and
“in some ancestor”. This temporal logic was studied in [4], however it was shown
to have an expressive power incomparable with that of Δ2. A characterization
of Δ2 was left as an open problem, one which is solved here.

We provide an algebraic characterization of tree languages definable in Δ2.
This characterization is effectively verifiable if the language is given by a tree
automaton. It is easy to see that the word setting can be treated as a special
case of the tree setting. Hence our characterization builds on the one over words.
However the added complexity of the tree setting makes both formulating the
correct condition and generalizing the proof quite nontrivial.

2 Notation

Trees, forests and contexts. In this paper we work with finite unranked ordered
trees and forests over a finite alphabet A. Formally, these are expressions defined
inductively as follows: If s is a forest and a ∈ A, then as is a tree. If t1, . . . , tn is
a finite sequence of trees, then t1 + · · ·+ tn is a forest. This applies as well to the
empty sequence of trees, which is called the empty forest, and denoted 0 (and
which provides a place for the induction to start). Forests and trees alike will
be denoted by the letters s, t, u, . . . When necessary, we will remark on which
forests are trees, i.e. contain only one tree in the sequence.

A set L of forests over A is called a forest language.
The notions of node, descendant and ancestor relations between nodes are

defined in the usual way. We write x < y to say that x is an ancestor or y or,
equivalently, that y is a descendant of x.

If we take a forest and replace one of the leaves by a special symbol �, we
obtain a context. Contexts will be denoted using letters p, q, r. A forest s can
be substituted in place of the hole of a context p, the resulting forest is denoted
by ps. There is a natural composition operation on contexts: the context qp
is formed by replacing the hole of q with p. This operation is associative, and
satisfies (pq)s = p(qs) for all forests s and contexts p and q.

When a is a letter, we will sometimes also write a for the context that has
one root with label a and a hole below. For instance, any tree with label a in
the root can be written as at, for some forest t.

We say a forest s is an immediate piece of a forest s′ if s, t can be decomposed
as s = pt and s′ = pat for some contexts p, some label a, and some forest t.
The reflexive transitive closure of the immediate piece relation is called the piece
relation. We write s 	 t to say that s is a piece of t. In other words, a piece of t
is obtained by removing nodes from t. We extend the notion of piece to contexts.
In this case, the hole must be preserved while removing the nodes. The notions
of piece for forests and contexts are related, of course. For instance, if p, q are
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contexts with p 	 q, then p0 	 q0. Also, conversely, if s 	 t, then there are
contexts p 	 q with s = p0 and t = q0. The figure below depicts two contexts,
the left one being a piece of the right one, as can be seen by removing the white
nodes.

??

We will be considering three types of languages in the paper: forest languages
i.e. sets of forests, denoted L; context languages, i.e. sets of contexts, denoted K,
and tree languages, i.e. sets of trees, denoted M .

Logic. The focus of this paper is the expressive power of first-order logic on
trees. A forest can be seen as a logical relational structure. The domain of the
structure is the set of nodes. The signature contains a unary predicate Pa for
each symbol a of A plus the binary predicate < for the ancestor relation. A
formula without free variables over this signature defines a set of forests, these
are the forests where it is true. We are particularly interested in formulas of low
quantifier complexity. A Σ2 formula is a formula of the form

∃x1 · · · xn ∀y1 · · · ym γ ,

where γ is quantifier free. Properties defined in Σ2 are closed under disjunction
and conjunction, but not necessarily negation. The negation of a Σ2 formula
is called a Π2 formula, equivalently this is a formula whose quantifier prefix is
∀∗∃∗. A forest property is called Δ2 if it can be expressed both by a Σ2 and a
Π2 formula.

The problem. We want an algorithm deciding whether a given regular forest
language is definable in Δ2.

Notice that the forest property of “being a tree” is definable in Δ2. The Σ2 for-
mula says there exists a node that is an ancestor of all other nodes, while the Π2
says that for every two nodes, there exists a common ancestor. Hence a solution
of the problem for forest languages also gives a solution for tree languages.

As noted earlier, the corresponding problem for words was solved by Pin and
Weil: a word language L is definable in Δ2 if and only if its syntactic monoid
M(L) belongs to the variety DA, i.e. it satisfies the identity

(mn)ω = (mn)ωm(mn)ω

for all m, n ∈ M(L). The power ω means that the identity holds for sufficiently
large powers (in different settings, ω is defined in terms of idempotent powers,
but the condition on sufficiently large powers is good enough here). Since one can
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effectively test if a finite monoid satisfies the above property (it is sufficient to
verify the power |M(L)|), it is decidable whether a given regular word language
is definable in Δ2. We assume that the language L is given by its syntactic
monoid and syntactic morphism, or by some other representation, such as a
finite automaton, from which these can be effectively computed.

We will show that a similar characterization can be found for forests; although
the identities will be more involved. For decidability, it is not important how the
input language is represented. In this paper, we will represent a forest language
by a forest algebra that recognizes it. Forest algebras are described in the next
section.

Basic properties of Σ2. Most of the proofs in the paper will work with Σ2
formulas. We present some simple properties of such formulas in this section.

Apart from defining forest languages, we will also be using Σ2 formulas to
define languages of contexts. To define a context language we use Σ2 formulas
with a free variable; such a formula is said to hold in a context if it is true when
the free variable is mapped to the hole of the context.

Fact 1. Let K be a context language, L a forest language, and M a tree lan-
guage. If these languages are all definable in Σ2, then so are:

1. For any letter a, the forest language KaL.
2. The forest language M ⊕ L. This is the set of forests t1 + t + t2 such t is a

tree in M , and the concatenation of forests t1 + t2 is in L.

Proof
We only do the proof for KaL. The formula places an existentially quantified
variable x on the node a, and then relativizes the formulas for languages K and
L to nodes that are, respectively, not descendants of x and descendants of x. �

3 Forest Algebras

Forest algebras were introduced by Bojańczyk and Walukiewicz as an algebraic
formalism for studying regular tree languages [6]. Here we give a brief summary
of the definition of these algebras and their important properties. A forest algebra
consists of a pair (H, V ) of finite monoids, subject to some additional require-
ments, which we describe below. We write the operation in V multiplicatively
and the operation in H additively, although H is not assumed to be commu-
tative. We accordingly denote the identity of V by � and that of H by 0. We
require that V act on the left of H . That is, there is a map (h, v) �→ vh ∈ H such
that w(vh) = (wv)h for all h ∈ H and v, w ∈ V. We further require that this
action be monoidal, that is, h·� = h for all h ∈ H, and that it be faithful, that is,
if vh = wh for all h ∈ H, then v = w. Finally we require that for every g ∈ H, V
contains elements (�+g) and (g+�) defined by (�+g)h = h+g, (g+�)h = g+h
for all h ∈ H.
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A morphism α : (H1, V1) → (H2, V2) of forest algebras is actually a pair (γ, δ)
of monoid morphisms such that γ(vh) = δ(v)γ(h) for all h ∈ H, v ∈ V. However,
we will abuse notation slightly and denote both component maps by α.

Let A be a finite alphabet, and let us denote by HA the set of forests over A,
and by VA the set of contexts over A. Clearly (HA, VA) with forest substitution
as action, forms a forest algebra which we denote AΔ.

We say that a forest algebra (H, V ) recognizes a forest language L ⊆ HA if
there is a morphism α : AΔ → (H, V ) and a subset X of H such that L =
α−1(X). It is easy to show that a forest language is regular if and only if it is
recognized by a finite forest algebra [6].

Given any finite monoid M , there is a number ω(M) (denoted by ω when
M is understood from the context) such that for all element x of M , xω is an
idempotent: xω = xωxω. Therefore for any forest algebra (H, V ) and any element
u of V and g of H we will write uω and ω(g) for the corresponding idempotents.

Given L ⊆ HA we define an equivalence relation ∼L on HA by setting s ∼L s′

if and only if for every context x ∈ VA, hx and h′x are either both in L or both
outside of L. We further define an equivalence relation on VA, also denoted ∼L,
by x ∼L x′ if for all h ∈ HA, xh ∼L x′h. This pair of equivalence relations defines
a congruence of forest algebras on AΔ, and the quotient (HL, VL) is called the
syntactic forest algebra of L. Each equivalence class of ∼L is called a type.

We now extend the notion of piece to elements of a forest algebra (H, V ). The
general idea is that a context v ∈ V is a piece of a context w ∈ V if one can
construct a term (using elements of H and V ) which evaluates to w, and then
take out some parts of this term to get v.

Definition 2. Let (H, V ) be a forest algebra. We say v ∈ V is a piece of w ∈ V ,
denoted by v 	 w, if α(p) = v and α(q) = w hold for some morphism

α : AΔ → (H, V )

and some contexts p 	 q over A. The relation 	 is extended to H by setting
g 	 h if g = v0 and h = w0 for some contexts v 	 w.

4 Characterization of Δ2

In this section we present the main result of the paper: a characterization of Δ2
in terms of two identities.

Theorem 3
A forest language is definable in Δ2 if and only if its syntactic forest algebra
satisfies the following identities:

h + g = g + h (1)

vωwvω = vω for w 	 v (2)

Corollary 4. It is decidable whether a forest language can be defined in Δ2.
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Proof
We assume that the language is represented as a forest algebra. This represen-
tation can be computed based on other representations, such as automata or
monadic second-order logic.

Once the forest algebra is given, both conditions (1) and (2) can be tested in
polynomial time by searching through all elements of the algebra. The relation
	 can be computed in polynomial time, using a fixpoint algorithm as in [4]. �

Theorem 3 is stated in terms of forest languages, but as mentioned earlier, the
same result works for trees.

We begin with the easier implication in Theorem 3, that the syntactic forest
algebra of a language definable in Δ2 must satisfy the identities (1) and (2).
The first identity must clearly be satisfied since the signature only contains the
descendant relation. The other identity follows from the following claim, whose
proof is standard.

Lemma 5. Let ϕ be a formula of Σ2 and let p 	 q be two contexts. For n ∈ N

sufficiently large, forests satisfying ϕ are closed under replacing pnpn with pnqpn.

The rest of the paper contains the more difficult implication of Theorem 3.
We will show that if a language is recognized by a forest algebra satisfying
identities (1) and (2), then it is definable in Δ2.

Proposition 6. Fix a morphism α : AΔ → (H, V ), with (H, V ) satisfying (1)
and (2). For every h ∈ H, the forest language α−1(h) is definable in Σ2.

Before proving this Proposition, we show how it concludes the proof of Theo-
rem 3. The nontrivial part is showing that every forest language α−1(h) is also
definable in Π2, and not just Σ2, as the proposition says (the rest follows by
closure of Δ2 under boolean operations). But this is a consequence of finiteness
of H :

t ∈ α−1(h) ⇔ t �∈
⋂

g �=h

α−1(g) ,

since the intersection on the right-hand side is Σ2, and therefore non-membership
is a Π2 condition.

The rest of this section is devoted to showing Proposition 6. The proof is by
induction on two parameters: the first is the size of the algebra, and the second
is the position of h in a certain pre-order defined below. The second parameter
corresponds to a bottom-up pass through the forest, as the types h that are small
in the pre-order correspond to forests that are close to the leaves. Moreover, for
some types h in the bottom-up pass, we will need a nested induction, involving
a top-down pass.

5 Bottom-Up Phase

We now define the pre-order on H , which is used in the induction proof of
Proposition 6. We say that a type h is reachable from a type g, and denote this
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by g � h, if there is a context v ∈ V such that h = vg. If h and g are mutually
reachable from each other, then we write h ∼ g. Note that ∼ is an equivalence
relation. A type h is said to be maximal if h can be reached from all types
reachable from h.

The proof of Proposition 6 is by induction on the size of the algebra (H, V )
and then on the position of h in the reachability pre-order. The two parameters
are ordered lexicographically, the most important parameter being the size of
the algebra. As far as h is concerned, the induction corresponds to a bottom-up
pass, where types close to the leaves are treated first.

Let then h ∈ H be a type. By induction, using Proposition 6, for each g � h
with g �∼ h, we have a Σ2 formula defining the language of forests of type g. (The
case when there are no such types g corresponds to the induction base, which
is treated the same way as the induction step.) In this section we will use these
formulas to produce a Σ2 formula defining those forests s such that α(s) = h.

In the following, we will be using two sets:

stabV (h) = {v : vh ∼ h} ⊆ V stabH(h) = {g : g + h ∼ h} ⊆ H .

The main motivation for introducing this notation is that equation (2) implies
that they are both submonoids of V and H , respectively.

Lemma 7. The sets stabV (h), stabH(h) only depend on the ∼-class of h. In
particular, both sets are submonoids (of V and H, respectively).

Proof
We prove the Lemma for stabV (h), the case of stabH(h) being similar. We need
to show that if h ∼ h′ then stabV (h) = stabV (h′). Assume v ∈ stabV (h). Then
vh ∼ h. Hence we have u1, u2, u3 such that h = u1vh, h = u2h

′ and h′ = u3h.
This implies that h′ = u3u1vu2h

′ and therefore h′ = (u3u1vu2)ωh′. From (2) we
have that

h′ = (u3u1vu2)ωh′ = (u3u1vu2)ωv(u3u1vu2)ωh′ = (u3u1vu2)ωvh′ .

Hence h′ is reachable from vh′. Since vh′ is clearly reachable from h′, we get
h ∼ h′ and v ∈ stabV (h′). �

Recall now the piece order 	 on H from Definition 2, which corresponds to
removing nodes from a forest. We say a set F ⊆ H of forest types is closed under
pieces if h 	 g ∈ F implies h ∈ F . A similar definition is also given for contexts.
Another consequence of equation (2) is:

Lemma 8. Both stabV (h), stabH(h) are closed under pieces.

Proof
We consider only the case of stabV (h), the case of stabH(h) being similar. From
the definition of piece we need to show that if u ∈ stabV (h) and u′ 	 u then
u′ ∈ stabV (h). By definition we have a context v such that h = vuh. We are
looking for a context w such that wu′h = h. From h = vuh we get h = (vu)ωh.
Hence by (2) we have h = (vu)ωu′(vu)ωh = (vu)ωu′h as desired. �
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We now consider two possible cases: either h belongs to stabH(h), or it does not.
In the first case we will conclude by induction on the size of the algebra while
in the second case we will conclude by induction on the partial order �. These
are treated separately in Sections 5.1 and 5.2, respectively.

5.1 h �∈ stabH(h)

For v ∈ V , we write Kv for the set of contexts of type v. For g ∈ H , we write
Lg for the set of forests of type h. For g ∈ H and F ⊆ H , we write LF

g for the
set of forests t of type h that can be decomposed as t = t1 + . . . + tn, with each
ti a tree with of type in F .

Let G be the set of forest types g such that h is reachable from g but not
vice-versa. By induction assumption, each language Lg is definable in Σ2, for
g ∈ G. Our goal is to give a formula for Lh.

Lemma 9. A forest has type h if and only if it belongs to LG
h or a language

KuaLG
g , with uα(a)g = h and u ∈ stabV (h).

Proof
Let t be a forest of type h, and choose s a subtree of t that has type equivalent
to h, but no subtree with a type equivalent to h. If such s does not exist, then t
belongs to LG

h as a concatenation of trees with type in G. By minimality, s must
belong to some set aLG

g . Let p be the context such that t = ps. Since the type
of s is equivalent to h, and the type of t is h, then the type u of p belongs to
stabV (α(s)) which is the same as stabV (h) by Lemma 7. �

In Lemmas 10 and 11, we will show that the languages Ku and LG
g above can

be defined in Σ2. To be more precise, we only give an over-approximation ϕG
g

of the language LG
g , however all forests in the over-approximation have type g,

which is all we need. Proposition 6 then follows by closure of Σ2 under finite
union and Fact 1.

We begin by giving the over-approximation of LG
g .

Lemma 10. For any type g ∈ H, there is a formula ϕG
g of Σ2 such that:

– Any forest LG
g satisfies ϕG

g ; and
– Any forest satisfying ϕG

g has type g.

Proof
The proof of the lemma is in two steps. In the first step, we introduce a condition
(*) on a forest t, and show that: a) any forest in LG

g satisfies (*); and b) any
forest satisfying (*) has type g. Then we will show that condition (*) can be
expressed in Σ2.

(*) For some m ≤ n, the forest t can be decomposed, modulo commu-
tativity, as the concatenation t = t1 + · · · + tn of trees t1, . . . , tn, with
types g1, . . . , gn, such that
1. g1 + · · · + gm = g.
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2. Each type from G is represented at most ω times in g1, . . . , gm.
3. If a tree s is a piece of tm+1 + · · ·+ tn, then α(s) 	 gi holds for some

type gi that occurs ω times in the sequence g1, . . . , gm.

We first show that condition (*) is necessary. Let t1, . . . , tn be all the trees
in a forest t, and let g1, . . . , gn ∈ G be the types of these trees. Without loss of
generality, we may assume that trees are ordered so that for some m, each type
of gi with i > m already appears ω times in g1, . . . , gm. It is not hard to see that
identity (2) implies aperiodicity of the monoid H , i.e.

ω · f = ω · f + f for all f ∈ H . (3)

In particular, it follows that g = g1 + · · · + gm since all of gm+1, . . . , gn are
swallowed by the above. It remains to show item 3 of condition (*). Let then s
be the piece of a tree ti with i > m. We get the desired result since the type of
ti already appears in g1, . . . , gm.

We now show that condition (*) implies α(t) = g. Let then m ≤ n and
t = t1 + · · · + tn be as in (*). We will show that for any j > m, we have
g + gj = g, which shows that the type of t is g. By item 3, gj 	 gi holds for
some some type gi that occurs ω times in the sequence g1, . . . , gm. By (3), we
have g = g + gi = g + ω · gi. It therefore remains to show that ω · gi + gj = ω · gi:

ω · gi + gj = ω · gi + gj + ω · gi =
(� + gi)ω(� + gj)(� + gi)ω0 = (� + gi)ω0 = ω · gi

In the above we have used identity (2). Note that the requirement in (2) was
satisfied, since gj 	 gi implies � + gj 	 � + gi.

It now remains to show that forests satisfying condition (*) can be defined in
Σ2. Note that m cannot exceed |G| · ω, and therefore there is a finite number of
cases to consider for g1, . . . , gm. Fix some sequence g1, . . . , gm. The only nontriv-
ial part is to provide a Σ2 formula that describes the set of forests tm+1 + . . .+tn
that satisfy item 3 of condition (*). From this construction, the formula for (*)
follows by closure of Σ2 under finite union and ⊕ (recall Fact 1), as well as the
assumption that each type in G can be defined in Σ2.

In order to define forests as in item 3 we use a Π1 formula that forbids the
appearance of certain pieces of bounded size inside tm+1 + · · ·+ tn. Let F be the
types in g1, . . . , gm that appear at least ω times. We claim that a sequence of
trees tm+1 + · · · + tn satisfies item 3 if and only if it satisfies item 3 with respect
to pieces s that have at most |H ||H| nodes. The latter property can be expressed
by a Π1 formula. The reason for this is that, thanks to a pumping argument,
any tree has a piece that has the same type, but at most |H ||H| nodes. �

Lemma 11. For any u ∈ stabV (h), the context language Ku is definable in Σ2.

To prove this lemma, we will use a more general result, Proposition 12, stated
below. The proof of this Proposition will appear in the journal version of this
paper. We say a tree t is a subtree of a context p if t is the subtree of some node
in p that is not an ancestor of the hole.
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Proposition 12. Let F ⊆ H be a set of forest types definable in Σ2 that is
closed under pieces. For any u ∈ V , there is a Σ2 formula that defines the set of
contexts with type u that have no subtree of type outside F .

Proof (of Lemma 11)
Let F = stabH(h). The result will follow from Proposition 12 once we show
that a context in Ku cannot have a subtree outside F , and that F satisfies the
conditions in the proposition.

By Lemma 8, the set F = stabH(h) is closed under pieces. We now show
that F ⊆ G, and therefore each type in F is definable in Σ2. To the contrary,
if F would contain a type outside G, i.e. a type reachable from h, then by
closure under pieces it would also contain h, contradicting our assumption on
h �∈ stabH(h). Finally, each subtree t of a context in stabV (h) is a subtree—and
therefore also a piece—of a tree in stabH(h) = F . �

5.2 h ∈ stabH(h)

Lemma 13. If h ∈ stabH(h) then (stabH(h), stabV (h)) is a forest algebra.

Proof
We need to show that the two sets are closed under all operations.

stabV (h)stabV (h) ⊆ stabV (h)
stabH(h) + stabH(h) ⊆ stabH(h)

� + stabH(h) ⊆ stabV (h)
stabV (h)stabH(h) ⊆ stabH(h)

The first two of the above inclusions follow from Lemma 7. The third follows
straight from the definition of stab. For the last inclusion, consider v ∈ stabV (h)
and g ∈ stabH(h). We need to show that vg ∈ stabH(h). This means showing
that vg+h ∼ h. Since we have g+h ∼ h and vh ∼ h we have u, u′ ∈ V such that
h = u(g + h) and h = u′vh. Hence h = u′vu(g + h) and vg 	 h. We conclude
using Lemma 8 and the fact that h ∈ stabH(h). �

We have two subcases depending whether (stabH(h), stabV (h)) is a proper sub-
algebra of (H, V ) or not.

Assume first that h is not maximal. Hence there exists a type g reachable
from h but not vice-versa. Let u be a context such that g = uh. It is clear that u
is not in stabV (h). Therefore (stabH(h), stabV (h)) must be a proper subalgebra
of (H, V ), as we have that stabV (h) � V . Furthermore, this algebra contains
all pieces of h; so it still recognizes the language α−1(h); at least as long as the
alphabet is reduced to include only letters that can appear in h. We can then use
the induction assumption on the smaller algebra to get the Σ2 formula required
in Proposition 6.

If h is maximal then the algebra is not proper and we need to do more work.
The Σ2 formula required in Proposition 6 is obtained by taking v = � in the
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proposition below. The proof of this proposition introduces a pre-order on V and
is done by induction using that pre-order simulating a top-down process. The
details are omitted here and will appear in the journal version of this paper.

Proposition 14. Fix a morphism α : AΔ → (H, V ), a context type v ∈ V and
a maximal forest type h. The following forest language is definable in Σ2:

{t : vα(t) = h}

6 Discussion

Apart from label tests, the signature we have used contains only the descendant
relation. What about other predicates? For instance, if we add the lexicographic
order on nodes, we lose commutativity g + h = h + g, although the remain-
ing identity (2) remains valid. Is the converse implication true, i.e. can every
language whose algebra satisfies (2) be defined by a Δ2 formula with the lexico-
graphic and descendant order? What is the expressive power of Δ2 in the other
signatures, with predicates such as the closest common ancestor, next sibling or
child?

Probably the most natural continuation would be an effective characterization
of Σ2. Note that this would strenghten our result: a language L is definable in
Δ2 if and only if both L and its complement are definable in Σ2. We conjecture
that, as in the case for words [1], the characterization of Σ2 requires replacing
the equivalence in (2) by a one-sided implication, which says that a language
definable in Σ2 is closed under replacing vω by vωwvω , for w 	 v.
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3. Bojańczyk, M.: Forest expressions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 146–160. Springer, Heidelberg (2007)
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