

Lecture Notes in Computer Science 5126
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luca Aceto Ivan Damgård
Leslie Ann Goldberg
Magnús M. Halldórsson
Anna Ingólfsdóttir Igor Walukiewicz (Eds.)

Automata, Languages
and Programming

35th International Colloquium, ICALP 2008
Reykjavik, Iceland, July 7-11, 2008
Proceedings, Part II

13

Volume Editors

Luca Aceto
Magnús M. Halldórsson
Anna Ingólfsdóttir
Reykjavik University, School of Computer Science
Kringlan 1, 103 Reykjavík, Iceland
E-mail: {luca, mmh, annai}@ru.is

Ivan Damgård
University of Aarhus, Department of Computer Science, IT-Parken
Åbogade 34, 8200 Århus N, Denmark
E-mail: ivan@daimi.au.dk

Leslie Ann Goldberg
University of Liverpool, Department of Computer Science
Ashton Building, Liverpool L69 3BX, UK
E-mail: l.a.goldberg@liverpool.ac.uk

Igor Walukiewicz
Université de Bordeaux-1, LaBRI
351, Cours de la Libération, 33405 Talence cedex, France
E-mail: igw@labri.fr

Library of Congress Control Number: 2008930136

CR Subject Classification (1998): F, D, C.2-3, G.1-2, I.3, E.1-2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-70582-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70582-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12322992 06/3180 5 4 3 2 1 0

Preface

ICALP 2008, the 35th edition of the International Colloquium on Automata,
Languages and Programming, was held in Reykjavik, Iceland, July 7–11, 2008.
ICALP is a series of annual conferences of the European Association for Theo-
retical Computer Science (EATCS) which first took place in 1972. This year, the
ICALP program consisted of the established Track A (focusing on algorithms,
automata, complexity and games) and Track B (focusing on logic, semantics and
theory of programming), and of the recently introduced Track C (focusing on
security and cryptography foundations).

In response to the call for papers, the Program Committees received 477
submissions, the highest ever: 269 for Track A, 122 for Track B and 86 for Track
C. Out of these, 126 papers were selected for inclusion in the scientific program:
70 papers for Track A, 32 for Track B and 24 for Track C. The selection was
made by the Program Committees based on originality, quality, and relevance
to theoretical computer science. The quality of the manuscripts was very high
indeed, and many deserving papers could not be selected.

ICALP 2008 consisted of five invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented in
Track B and Track C together with the papers by the invited speakers Ran
Canetti (IBM T.J. Watson Research Center and MIT, USA) and Javier Esparza
(Technische Universität München, Germany). A companion volume includes all
contributed papers presented at the conference in Track A, together with the
papers by the invited speakers S. Muthukrishnan (Google, USA) and Bruno
Courcelle (Labri, Universitè Bordeaux, France). The program had an additional
invited lecture by Peter Winkler (Dartmouth, USA), which does not appear in
the proceedings.

The following workshops were held as satellite events of ICALP 2008:

ALGOSENSORS 2008 – 4th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks
CL&C 2008 – Second International Workshop on Classical Logic and Computation
FOCLASA 2008 – 7th International Workshop on the Foundations of Coordina-
tion Languages and Software Architectures
FIMN 2008 – Foundations of Information Management in Networks
FBTC 2008 – From Biology To Concurrency and Back
ICE 2008 – Interaction and Concurrency Experience
MatchUP 2008 – Matching Under Preferences - Algorithms and Complexity
MSFP 2008 – Second Workshop on Mathematically Structured Functional
Programming
PAuL 2008 – Third International Workshop on Probabilistic Automata and Logics
QPL/DCM 2008 – 5th Workshop on Quantum Physics and Logic and 4th Work-
shop on Development of Computational Models

VI Preface

SOS 2008 – 5th Workshop on Structural Operational Semantics
IMAGINE 2008 – Second International Workshop on Mobility, Algorithms and
Graph Theory in Dynamic Networks
DYNAMO 2008 – Second Training School on Algorithmic Aspects of Dynamic
Networks

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committees for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.

Thanks to the sponsors (CCP Games, Icelandair, IFIP TC1, Teymi) for their
support, and to Reykjavik University for hosting ICALP 2008. We are also grate-
ful to all members of the Organizing Committee in the School of Computer Sci-
ence and to the Facilities and Technical staff of Reykjavik University. Thanks to
Andrei Voronkov and Shai Halevi for writing the conference-management sys-
tems EasyChair and Web-Submission-and-Review software, which were used in
handling the submissions and the electronic PC meeting as well as in assisting
in the assembly of the proceedings.

May 2008 Luca Aceto
Ivan Damg̊ard

Leslie Ann Goldberg
Magnús M. Halldórsson

Anna Ingólfsdóttir
Igor Walukiewicz

Organization

Program Committee

Track A

Michael Bender, State University of New York at Stony Brook, USA
Magnus Bordewich, Durham University, UK
Lenore Cowen, Tufts University, USA
Pierluigi Crescenzi, Università di Firenze, Italy
Artur Czumaj, University of Warwick, UK
Edith Elkind, University of Southampton, UK
David Eppstein, University of California at Irvine, USA
Leslie Ann Goldberg, University of Liverpool, UK (Chair)
Martin Grohe, Humboldt-Universität zu Berlin, Germany
Giuseppe F. Italiano, Università di Roma “Tor Vergata”, Italy
Christos Kaklamanis, University of Patras, Greece
Peter Bro Miltersen, University of Aarhus, Denmark
Michael Mitzenmacher, Harvard University, USA
Ian Munro, University of Waterloo, Canada
Ryan O’Donnell, Carnegie Mellon University, USA
Dana Ron, Tel-Aviv University, Israel
Tim Roughgarden, Stanford University, USA
Christian Scheideler, Technische Universität München, Germany
Christian Sohler, University of Paderborn, Germany
Luca Trevisan, University of California at Berkeley, USA
Berthold Voecking, RWTH Aachen University, Germany
Gerhard Woeginger, Eindhoven University of Technology, The Netherlands

Track B

Parosh Abdulla, Uppsala University, Sweden
Luca de Alfaro, University of California, Santa Cruz, USA
Christel Baier, Technische Universität Dresden, Germany
Giuseppe Castagna, Université Paris 7, France
Rocco de Nicola, Università di Firenze, Italy
Javier Esparza, Technische Universität München, Germany
Marcelo Fiore, University of Cambridge, UK
Erich Grädel, RWTH Aachen, Germany
Jason Hickey, California Institute of Technology, USA
Martin Hofmann, Ludwig-Maximilians-Universität München, Germany
Hendrik Jan Hoogeboom, Leiden University, The Netherlands

VIII Organization

Radha Jagadeesen, DePaul University, USA
Madhavan Mukund, Chennai Mathematical Institute, India
Luke Ong, Oxford University, UK
Dave Schmidt, Kansas State University, USA
Philippe Schnoebelen, ENS Cachan, France
Igor Walukiewicz, Labri, Université Bordeaux, France (Chair)
Mihalis Yannakakis, Columbia University, USA
Wieslaw Zielonka, Université Paris 7, France

Track C

Christian Cachin, IBM Research Zürich, Switzerland
Jan Camenisch, IBM Research Zürich, Switzerland
Ivan Damg̊ard, University of Aarhus, Denmark (Chair)
Stefan Dziembowski, Università di Roma “La Sapienza”, Italy
Dennis Hofheinz, CWI Amsterdam, The Netherlands
Susan Hohenberger, Johns Hopkins University, USA
Yuval Ishai, Technion Haifa, Israel
Lars Knudsen, DTU Copenhagen, Denmark
Arjen Lenstra, EPFL Lausanne, Switzerland
Anna Lysyanskaya, Brown University, USA
Rafael Pass, Cornell University, USA
David Pointcheval, ENS Paris, France
Dominique Unruh, Saarland University, Germany
Serge Vaudenay, EPFL Lausanne, Switzerland
Bogdan Warinschi, Bristol University, UK
Douglas Wikström, KTH Stockholm, Sweden
Stefan Wolf, ETH Zürich, Switzerland

Organizing Committee

Luca Aceto, Reykjavik University (Conference Chair)
Bjarni V. Halldórsson, Reykjavik University (Workshop Co-chair)
Magnús M. Halldórsson, Reykjavik University (Conference Chair)
Anna Ingólfsdóttir, Reykjavik University (Conference Chair)
MohammadReza Mousavi, Eindhoven University of Technology (Workshop

Co-chair)

Sponsoring Institutions

CCP Games
Icelandair
IFIP TC1
Reykjavik University
Teymi

Organization IX

Referees

Michel Abdalla
Andreas Abel
Jiri Adamek
Ben Adida
Foto Afrati
Benjamin Aminof
Torben Amtoft
Vikraman Arvind
Eugene Asarin
Giuseppe Ateniese
Albert Atserias
Jean-Philippe Aumasson
Thomas Baignres
Steffen van Bakel
Vince Barany
Joerg Bauer
Nick Benton
Còme Berbain
Martin Berger
Lennart Beringer
Nathalie Bertrand
Puneet Bhateja
Henrik Björklund
Bruno Blanchet
Manuel Bodirsky
Mikolaj Bojanczyk
Benedikt Bollig
Michele Boreale
Joppe Bos
Charles Bouillaguet
Patricia Bouyer
Tomas Brazdil
Thomas Brihaye
Andrei Bulatov
Manuela Burojani
Thomas Bäck
Cristian S. Calude
Olivier Carton
Frank Cassez
Dario Catalano
Balder ten Cate
Rafik Chaabouni
Amine Chaieb
Supratik Chakraborty

Prakash Chandrasekaran
Krishnendu Chatterjee
Jan Chomicki
Evelyne Contejean
Scott Contini
Veronique Cortier
Arnaud Da Costa
Deepak D’Souza
Victor Dalmau
Mads Dam
Pierpaolo Degano
Giorgio Delzanno
Stephane Demri
Yuxin Deng
Alex Dent
Josee Desharnais
Dan Dougherty
Ross Duncan
Irène Durand
Stephen A. Edwards
Joost Engelfriet
Javier Esparza
John Fearnley
Serge Fehr
Jerome Feret
Anna Lisa Ferrara
Maribel Fernandez
Marc Fischlin
Matthias Fitzi
Riccardo Focardi
Wan Fokkink
Georg Fuchsbauer
Murdoch Gabbay
Fabio Gadducci
Tobias Ganzow
Juan Garay
Stephane Gaubert
Blaise Genest
Silvia Ghilezan
Giuseppe De Giacomo
Hugo Gimbert
Cinzia Di Giusto
Rob van Glabeek
Stefania Gnesi

Emmanuel Godard
Rodolfo Gomez
Michaela Goetz
Mikael Goldmann
Daniele Gorla
Nathaniel Gray
Gianluigi Greco
Matthew Green
Alain Griffault
Gary Griffing
Serge Grigorieff
Colas Le Guernic
Stefano Guerrini
Peter Habermehl
Serge Haddad
Esfandiar Haghverdi
Matthew Hague
Noomene Ben Henda
Monika Henzinger
Holger Hermanns
Thomas Hildebrandt
Jane Hillston
Peter Hines
Markus Holzer
Andreas Holzer
Haruo Hosoya
Nick Howgrave-Graham
Cătălin Hriţcu
Juraj Hromkovic
Emeline Hufschmitt
Radu Iosif
Ellen Jochemsz
Jan Johannsen
Lisa Kaati
Joost-Pieter Katoen
Stefan Kiefer
Eike Kiltz
Joachim Klein
Joost Kok
Pavel Krcal
Gunnar Kreitz
Manfred Kufleitner
Stefan Kugele
K. Narayan Kumar

X Organization

Michal Kunc
Alp Kupcu
Anna Labella
Yassine Lakhnech
Matthew R. Lakin
Martin Lange
François Laroussinie
S�lawomir Lasota
Axel Legay
Stephane Lengrand
Jerome Leroux
Martin Leucker
Ming Li
Leonid Libkin
Huijia Lin
Moses Liskov
Kamal Lodaya
Hans-Wolfgang Loidl
Sylvain Lombardy
Michele Loreti
Michael Luttenberger
Vadim Lyubashevsky
Sergio Maffeis
Mila Majster-

Cederbaum
Rupak Majumdar
Nicolas Markey
Paulo Mateus
Ralph Matthes
Krystian Matusiewicz
Alex May
Richard Mayr
Massimo Merro
Antoine Meyer
Christian Michaux
Dale Miller
Paul Morrissey
Francesco Zappa Nardelli
Frank Neven
Joachim Niehren
Damian Niwinski
David Noblet
Jakob Nordström
Aditya Nori
Alexander Okhotin
Vincent van Oostrom

Khaled Ouafi
Raphael Overbeck
Prakash Panangaden
Paritosh Pandya
Matthew Parkinson
Sylvain Pasini
Rafael Pass
Michael Østergaard

Pedersen
Paul Pettersson
Benjamin Pierce
Krzysztof Pietrzak
Jean-Eric Pin
Libor Polak
François Pottier
Bartosz Przydatek
Rosario Pugliese
Christophe Raffalli
George Rahonis
R. Ramanujam
Jean-François Raskin
Dominik Raub
Jason Reed
Renato Renner
Arend Rensink
Gwénaël Richomme
Tom Roeder
Sabina Rossi
Abhik Roychoudhury
Albert Rubio
Jacques Sakarovitch
Sylvain Salvati
Juraj Sarinay
Christian Schaffner
Christian Schallhart
Alan Schmitt
Gerardo Schneider
Stefan Schwoon
Ulrich Schöpp
Roberto Segala
Luc Segoufin
Helmut Seidl
Peter Sewell
Andrey Sidorenko
Jeremy Sproston
Srikanth Srinivasan

Ludwig Staiger
Martijn Stam
Sam Staton
Benjamin Steinberg
Thomas Streicher
S.P. Suresh
Gregoire Sutre
Paulo Tabuada
Alain Tapp
Stefano Tessaro
Denis Therien
Hayo Thielecke
Soren S. Thomsen
Tayssir Touili
Jan Tretmans
Dustin Tseng
Emilio Tuosto
Irek Ulidowski
Pawe�l Urzyczyn
Muthu

Venkitasubramaniam
Damien Vergnaud
Björn Victor
Aymeric Vincent
Walter Vogler
Martin Vuagnoux
Dirk Walther
Yongge Wang
Benne de Weger
Pascal Weil
Philipp Weis
Thomas Wilke
Erik Winfree
Christopher Wolf
Verena Wolf
James Worrell
Jörg Wullschleger
Shaofa Yang
Nina Yevtushenko
Nobuko Yoshida
Dae Hyun Yum
Gianluigi Zavattaro
Lisa Zhang
Vassilis Zikas

Table of Contents – Part II

Invited Lectures

Composable Formal Security Analysis: Juggling Soundness, Simplicity
and Efficiency . 1

Ran Canetti

Newton’s Method for ω-Continuous Semirings . 14
Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Track B: Logic, Semantics, and Theory of
Programming

Bounds

The Tractability Frontier for NFA Minimization . 27
Henrik Björklund and Wim Martens

Finite Automata, Digraph Connectivity, and Regular Expression
Size (Extended Abstract) . 39

Hermann Gruber and Markus Holzer

Leftist Grammars Are Non-primitive Recursive . 51
Tomasz Jurdziński

On the Computational Completeness of Equations over Sets of Natural
Numbers . 63

Artur Jeż and Alexander Okhotin

Distributed Computation

Placement Inference for a Client-Server Calculus . 75
Matthias Neubauer and Peter Thiemann

Extended pi-Calculi . 87
Magnus Johansson, Joachim Parrow, Björn Victor, and
Jesper Bengtson

Completeness and Logical Full Abstraction in Modal Logics for Typed
Mobile Processes . 99

Martin Berger, Kohei Honda, and Nobuko Yoshida

XII Table of Contents – Part II

Real-Time and Probabilistic Systems

On the Sets of Real Numbers Recognized by Finite Automata in
Multiple Bases . 112

Bernard Boigelot, Julien Brusten, and Véronique Bruyère

On Expressiveness and Complexity in Real-Time Model Checking 124
Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell

STORMED Hybrid Systems . 136
Vladimeros Vladimerou, Pavithra Prabhakar,
Mahesh Viswanathan, and Geir Dullerud

Controller Synthesis and Verification for Markov Decision Processes
with Qualitative Branching Time Objectives . 148

Tomáš Brázdil, Vojtěch Forejt, and Antońın Kučera

Logic and Complexity

On Datalog vs. LFP . 160
Anuj Dawar and Stephan Kreutzer

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 172
László Egri, Benôıt Larose, and Pascal Tesson

Non-dichotomies in Constraint Satisfaction Complexity 184
Manuel Bodirsky and Martin Grohe

Quantified Constraint Satisfaction and the Polynomially Generated
Powers Property (Extended Abstract) . 197

Hubie Chen

Words and Trees

When Does Partial Commutative Closure Preserve Regularity? 209
Antonio Cano Gómez, Giovanna Guaiana, and Jean-Éric Pin

Weighted Logics for Nested Words and Algebraic Formal Power
Series . 221

Christian Mathissen

Tree Languages Defined in First-Order Logic with One Quantifier
Alternation . 233

Miko�laj Bojańczyk and Luc Segoufin

Duality and Equational Theory of Regular Languages 246
Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin

Table of Contents – Part II XIII

Nonstandard Models of Computation

Reversible Flowchart Languages and the Structured Reversible
Program Theorem . 258

Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück

Attribute Grammars and Categorical Semantics . 271
Shin-ya Katsumata

A Domain Theoretic Model of Qubit Channels . 283
Keye Martin

Interacting Quantum Observables . 298
Bob Coecke and Ross Duncan

Reasoning about Computation

Perpetuality for Full and Safe Composition (in a Constructive
Setting) . 311

Delia Kesner

A System F with Call-by-Name Exceptions . 323
Sylvain Lebresne

Linear Logical Algorithms . 336
Robert J. Simmons and Frank Pfenning

A Simple Model of Separation Logic for Higher-Order Store 348
Lars Birkedal, Bernhard Reus, Jan Schwinghammer, and
Hongseok Yang

Verification

Open Implication . 361
Karin Greimel, Roderick Bloem, Barbara Jobstmann, and
Moshe Vardi

ATL* Satisfiability Is 2EXPTIME-Complete . 373
Sven Schewe

Visibly Pushdown Transducers . 386
Jean-François Raskin and Frédéric Servais

The Non-deterministic Mostowski Hierarchy and Distance-Parity
Automata . 398

Thomas Colcombet and Christof Löding

Analyzing Context-Free Grammars Using an Incremental SAT Solver . . . 410
Roland Axelsson, Keijo Heljanko, and Martin Lange

XIV Table of Contents – Part II

Track C: Security and Cryptography Foundations

Theory

Weak Pseudorandom Functions in Minicrypt . 423
Krzysztof Pietrzak and Johan Sjödin

On Black-Box Ring Extraction and Integer Factorization 437
Kristina Altmann, Tibor Jager, and Andy Rupp

Extractable Perfectly One-Way Functions . 449
Ran Canetti and Ronny Ramzi Dakdouk

Error-Tolerant Combiners for Oblivious Primitives 461
Bartosz Przydatek and Jürg Wullschleger

Secure Computation

Asynchronous Multi-party Computation with Quadratic
Communication . 473

Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek

Improved Garbled Circuit: Free XOR Gates and Applications 486
Vladimir Kolesnikov and Thomas Schneider

Improving the Round Complexity of VSS in Point-to-Point Networks . . . 499
Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan

How to Protect Yourself without Perfect Shredding 511
Ran Canetti, Dror Eiger, Shafi Goldwasser, and Dah-Yoh Lim

Two-Party Protocols and Zero-Knowledge

Universally Composable Undeniable Signature . 524
Kaoru Kurosawa and Jun Furukawa

Interactive PCP . 536
Yael Tauman Kalai and Ran Raz

Constant-Round Concurrent Non-malleable Zero Knowledge in the
Bare Public-Key Model . 548

Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti

Encryption with Special Properties/Quantum
Cryptography

Delegating Capabilities in Predicate Encryption Systems 560
Elaine Shi and Brent Waters

Table of Contents – Part II XV

Bounded Ciphertext Policy Attribute Based Encryption 579
Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai

Making Classical Honest Verifier Zero Knowledge Protocols Secure
against Quantum Attacks . 592

Sean Hallgren, Alexandra Kolla, Pranab Sen, and Shengyu Zhang

Composable Security in the Bounded-Quantum-Storage Model 604
Stephanie Wehner and Jürg Wullschleger

Various Types of Hashing

On the Strength of the Concatenated Hash Combiner When All the
Hash Functions Are Weak . 616

Jonathan J. Hoch and Adi Shamir

History-Independent Cuckoo Hashing . 631
Moni Naor, Gil Segev, and Udi Wieder

Building a Collision-Resistant Compression Function from
Non-compressing Primitives (Extended Abstract) . 643

Thomas Shrimpton and Martijn Stam

Robust Multi-property Combiners for Hash Functions Revisited 655
Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak

Public-Key Cryptography/Authentication

Homomorphic Encryption with CCA Security . 667
Manoj Prabhakaran and Mike Rosulek

How to Encrypt with the LPN Problem . 679
Henri Gilbert, Matthew J.B. Robshaw, and Yannick Seurin

Could SFLASH be Repaired? . 691
Jintai Ding, Vivien Dubois, Bo-Yin Yang,
Owen Chia-Hsin Chen, and Chen-Mou Cheng

Password Mistyping in Two-Factor-Authenticated Key Exchange 702
Vladimir Kolesnikov and Charles Rackoff

Affiliation-Hiding Envelope and Authentication Schemes with Efficient
Support for Multiple Credentials . 715

Stanis�law Jarecki and Xiaomin Liu

Author Index . 727

Table of Contents – Part I

Invited Lectures

Graph Structure and Monadic Second-Order Logic: Language
Theoretical Aspects . 1

Bruno Courcelle

Internet Ad Auctions: Insights and Directions . 14
S. Muthukrishnan

Track A: Algorithms, Automata, Complexity, and
Games

Complexity: Boolean Functions and Circuits

The Complexity of Boolean Formula Minimization 24
David Buchfuhrer and Christopher Umans

Optimal Cryptographic Hardness of Learning Monotone Functions 36
Dana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio,
Andrew Wan, and Hoeteck Wee

On Berge Multiplication for Monotone Boolean Dualization 48
Endre Boros, Khaled Elbassioni, and Kazuhisa Makino

Diagonal Circuit Identity Testing and Lower Bounds 60
Nitin Saxena

Data Structures

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 72
Yitong Yin

Constructing Efficient Dictionaries in Close to Sorting Time 84
Milan Ružić

On List Update with Locality of Reference . 96
Susanne Albers and Sonja Lauer

A New Combinatorial Approach for Sparse Graph Problems 108
Guy E. Blelloch, Virginia Vassilevska, and Ryan Williams

XVIII Table of Contents – Part I

Random Walks and Random Structures

How to Explore a Fast-Changing World . 121
Chen Avin, Michal Koucký, and Zvi Lotker

Networks Become Navigable as Nodes Move and Forget 133
Augustin Chaintreau, Pierre Fraigniaud, and Emmanuelle Lebhar

Fast Distributed Computation of Cuts Via Random Circulations 145
David Pritchard

Finding a Maximum Matching in a Sparse Random Graph in O(n)
Expected Time . 161

Prasad Chebolu, Alan Frieze, and Páll Melsted

Design and Analysis of Algorithms

Function Evaluation Via Linear Programming in the Priced Information
Model . 173

Ferdinando Cicalese and Eduardo Sany Laber

Improved Approximation Algorithms for Budgeted Allocations 186
Yossi Azar, Benjamin Birnbaum, Anna R. Karlin,
Claire Mathieu, and C. Thach Nguyen

The Travelling Salesman Problem in Bounded Degree Graphs 198
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and
Mikko Koivisto

Treewidth Computation and Extremal Combinatorics 210
Fedor V. Fomin and Yngve Villanger

Scheduling

Fast Scheduling of Weighted Unit Jobs with Release Times and
Deadlines . 222

C. Greg Plaxton

Approximation Algorithms for Scheduling Parallel Jobs: Breaking the
Approximation Ratio of 2 . 234

Klaus Jansen and Ralf Thöle

A PTAS for Static Priority Real-Time Scheduling with Resource
Augmentation . 246

Friedrich Eisenbrand and Thomas Rothvoß

Codes and Coding

Optimal Monotone Encodings . 258
Noga Alon and Rani Hod

Table of Contents – Part I XIX

Polynomial-Time Construction of Linear Network Coding 271
Kazuo Iwama, Harumichi Nishimura, Mike Paterson,
Rudy Raymond, and Shigeru Yamashita

Complexity of Decoding Positive-Rate Reed-Solomon Codes 283
Qi Cheng and Daqing Wan

Coloring

Computational Complexity of the Distance Constrained Labeling
Problem for Trees . 294

Jǐŕı Fiala, Petr A. Golovach, and Jan Kratochv́ıl

The Randomized Coloring Procedure with Symmetry-Breaking 306
Sriram Pemmaraju and Aravind Srinivasan

The Local Nature of List Colorings for Graphs of High Girth 320
Flavio Chierichetti and Andrea Vattani

Approximating List-Coloring on a Fixed Surface . 333
Ken-ichi Kawarabayashi

Randomness in Computation

Asymptotically Optimal Hitting Sets Against Polynomials 345
Markus Bläser, Moritz Hardt, and David Steurer

The Smoothed Complexity of Edit Distance . 357
Alexandr Andoni and Robert Krauthgamer

Randomized Self-assembly for Approximate Shapes 370
Ming-Yang Kao and Robert Schweller

Succinct Data Structures for Retrieval and Approximate Membership
(Extended Abstract) . 385

Martin Dietzfelbinger and Rasmus Pagh

Online and Dynamic Algorithms

Competitive Weighted Matching in Transversal Matroids 397
Nedialko B. Dimitrov and C. Greg Plaxton

Scheduling for Speed Bounded Processors . 409
Nikhil Bansal, Ho-Leung Chan, Tak-Wah Lam, and Lap-Kei Lee

Faster Algorithms for Incremental Topological Ordering 421
Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew,
Siddhartha Sen, and Robert E. Tarjan

XX Table of Contents – Part I

Dynamic Normal Forms and Dynamic Characteristic Polynomial 434
Gudmund Skovbjerg Frandsen and Piotr Sankowski

Approximation Algorithms

Algorithms for ε-Approximations of Terrains . 447
Jeff M. Phillips

An Approximation Algorithm for Binary Searching in Trees 459
Eduardo Laber and Marco Molinaro

Algorithms for 2-Route Cut Problems . 472
Chandra Chekuri and Sanjeev Khanna

The Two-Edge Connectivity Survivable Network Problem in Planar
Graphs . 485

Glencora Borradaile and Philip Klein

Property Testing

Efficiently Testing Sparse GF (2) Polynomials . 502
Ilias Diakonikolas, Homin K. Lee, Kevin Matulef,
Rocco A. Servedio, and Andrew Wan

Testing Properties of Sets of Points in Metric Spaces 515
Krzysztof Onak

An Expansion Tester for Bounded Degree Graphs . 527
Satyen Kale and C. Seshadhri

Property Testing on k-Vertex-Connectivity of Graphs 539
Yuichi Yoshida and Hiro Ito

Parameterized Algorithms and Complexity

Almost 2-SAT Is Fixed-Parameter Tractable (Extended Abstract) 551
Igor Razgon and Barry O’Sullivan

On Problems without Polynomial Kernels (Extended Abstract) 563
Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and
Danny Hermelin

Faster Algebraic Algorithms for Path and Packing Problems 575
Ioannis Koutis

Understanding the Complexity of Induced Subgraph Isomorphisms 587
Yijia Chen, Marc Thurley, and Mark Weyer

Table of Contents – Part I XXI

Graph Algorithms

Spanners in Sparse Graphs . 597
Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach

Distance Oracles for Unweighted Graphs: Breaking the Quadratic
Barrier with Constant Additive Error . 609

Surender Baswana, Akshay Gaur, Sandeep Sen, and
Jayant Upadhyay

All-Pairs Shortest Paths with a Sublinear Additive Error 622
Liam Roditty and Asaf Shapira

Simpler Linear-Time Modular Decomposition Via Recursive Factorizing
Permutations . 634

Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul

Computational Complexity

The Complexity of the Counting Constraint Satisfaction Problem 646
Andrei A. Bulatov

On the Hardness of Losing Weight . 662
Andrei Krokhin and Dániel Marx

Product Theorems Via Semidefinite Programming . 674
Troy Lee and Rajat Mittal

Sound 3-Query PCPPs Are Long . 686
Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah

Games and Automata

Approximative Methods for Monotone Systems of Min-Max-Polynomial
Equations . 698

Javier Esparza, Thomas Gawlitza, Stefan Kiefer, and Helmut Seidl

Recursive Stochastic Games with Positive Rewards 711
Kousha Etessami, Dominik Wojtczak, and Mihalis Yannakakis

Complementation, Disambiguation, and Determinization of Büchi
Automata Unified . 724

Detlef Kähler and Thomas Wilke

Tree Projections: Hypergraph Games and Minimality 736
Gianluigi Greco and Francesco Scarcello

XXII Table of Contents – Part I

Group Testing, Streaming, and Quantum

Explicit Non-adaptive Combinatorial Group Testing Schemes 748
Ely Porat and Amir Rothschild

Tight Lower Bounds for Multi-pass Stream Computation Via Pass
Elimination . 760

Sudipto Guha and Andrew McGregor

Impossibility of a Quantum Speed-Up with a Faulty Oracle 773
Oded Regev and Liron Schiff

Superpolynomial Speedups Based on Almost Any Quantum Circuit 782
Sean Hallgren and Aram W. Harrow

Algorithmic Game Theory

The Speed of Convergence in Congestion Games under Best-Response
Dynamics . 796

Angelo Fanelli, Michele Flammini, and Luca Moscardelli

Uniform Budgets and the Envy-Free Pricing Problem 808
Patrick Briest

Bayesian Combinatorial Auctions . 820
George Christodoulou, Annamária Kovács, and Michael Schapira

Truthful Unification Framework for Packing Integer Programs with
Choices . 833

Yossi Azar and Iftah Gamzu

Quantum

Upper Bounds on the Noise Threshold for Fault-Tolerant Quantum
Computing . 845

Julia Kempe, Oded Regev, Falk Unger, and Ronald de Wolf

Finding Optimal Flows Efficiently . 857
Mehdi Mhalla and Simon Perdrix

Optimal Quantum Adversary Lower Bounds for Ordered Search 869
Andrew M. Childs and Troy Lee

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 881
Lior Eldar and Oded Regev

Author Index . 893

Composable Formal Security Analysis:

Juggling Soundness, Simplicity and Efficiency

Ran Canetti�

IBM Research
canetti@csail.mit.edu

Abstract. A security property of a protocol is composable if it remains
intact even when the protocol runs alongside other protocols in the same
system. We describe a method for asserting composable security prop-
erties, and demonstrate its usefulness. In particular, we show how this
method can be used to provide security analysis that is formal, relatively
simple, and still does not make unjustified abstractions of the underlying
cryptographic algorithms in use. It can also greatly enhance the feasibil-
ity of automated security analysis of systems of realistic size.

1 Introduction

Security analysis of protocols is a slippery business. On the one hand, we want
to capture all “feasible attacks”. On the other hand, we want to allow those
protocols that do not succumb to attacks. Indeed, time and again attacks are
found against protocols that were thoroughly analyzed and sometime even de-
ployed and standardized (see e.g. [Ble98, Low96]). The situation is particularly
tricky when the analyzed protocol uses “cryptographic primitives”, namely algo-
rithms that guarantee certain behaviors only when the adversarial components
of system are computationally bounded.

A crucial first step in any rigorous security analysis is to devise an appropriate
mathematical model for representing protocols and formulating the desired se-
curity properties. Indeed, the analysis can only be meaningful to the degree that
the devised model and the formulated security requirements are meaningful.

Many models for analyzing security of protocols have been proposed over the
past few decades, each with its own advantages and drawbacks. Roughly, there
are two main analytical approaches, which differ in the way the cryptographic
primitives used by the protocol and their security properties are modeled. In
symbolic models, devised mainly within the formal analysis community, cryp-
tographic primitives are treated as abstract, or symbolic operations with rigid
interfaces that restrict the way in which the primitives can be used - and, more
importantly, the ways in which the primitives can be misused by adversarial
components. In a way, this models the cryptographic primitives in use as “ideal
� IBM T.J. Watson Research Center. Supported by NSF grant CFF-0635297 and US-

Israel Binational Science Foundation Grant 2006317.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Canetti

boxes” that provide “absolute security”. Quintessential examples of such mod-
els include the Dolev-Yao model [DY83], the BAN logic [BAN89], Spi-calculus
[AG97] and their many derivatives.

In contrast, computational models (such as those of [GM84, GMR89, BR93]
and many others) explicitly treat cryptographic constructs as algorithms, and
consider adversaries that have full access to the actual input and output strings
of these algorithms. In that respect, these models directly reflect the actual ca-
pabilities of adversaries in realistic systems. Here, meaningful formalizations of
security requirements have to be probabilistic. Furthermore, they have to incor-
porate computational bounds on the adversarial entities involved. In addition,
given the current state of the art in complexity theory, such analysis has to rely
on computational hardness assumptions.

These two analytical approaches provide a clear tradeoff: The symbolic ap-
proach is much simpler and easier to work with than the computational ap-
proach. Also, it is conceptually attractive since it allows for clear separation of
the analysis at the “protocol level” from the analysis of the underlying prim-
itives. However, at least a priori, the computational approach is the only one
that is sound; that is, it is the only approach that can actually provide security
guarantees for protocols in realistic settings.

A recent research program, initiated in [AR02] and followed in many works
since, is aimed at combining these two analytical approaches in a single model
that provides the best of both: Soundness together with the ability to argue
about protocols in a symbolic and mechanical way. A number of approaches have
been proposed to carry out this combination. This paper reviews one such ap-
proach, that builds on security models that provide a general security-preserving
composition guarantee. Specifically, the approach uses the universal composition
theorem [PW00, BPW04, Can01], which guarantees that a protocol that uses
an abstractly specified primitive can be securely “composed” with a protocol
that realizes this specification, “without bad side effects”. Here the symbolic
model would correspond to the protocol that uses the abstract primitive, and
the soundness would follow from the security preserving composition theorem.
See more details within.1

While the initial thrust of the above work is to argue the soundness of the
symbolic approach, there is an additional aspect here that we wish to high-
light. (Indeed, this aspect seems to have been overlooked by most works in that
area.) The symbolic approach, being dramatically simpler than the computa-
tional one, lends naturally to mechanization and automation of the analysis (see
e.g. [Mea96, MMS97, Bla03]). Still, traditional automated symbolic analysis is
feasible only for relatively small systems: the complexity of analysis is typically
exponential in the number of variables, parties, and protocol instances in the ana-
lyzed system (see e.g. [MS01]). In fact, when the protocol description and number

1 Our notion of “secure composition” differs from other notions of compositionality,
such as the one in, say, [DMP01], which is a more fine-grained approach for syn-
thesizing protocols from elementary instructions, and does not carry composition
theorems akin to the ones here.

Composable Formal Security Analysis 3

of instances is taken to be part of the input, the question whether a symbolic
protocol satisfies a certain property is NP-hard. When the number of protocol
instances is unbounded the question becomes undecidable [EG83, DLMS99].

Composable security can help overcome this complexity barrier in certain
systems of interest. Indeed, when asserting composable security properties, it
suffices to apply the symbolic analysis to small, single-instance systems. Security
of large composite systems would then follow from the composition theorem.

Organization. This paper is organized as follows. Section 2 briefly reviews
symbolic protocol analysis. Section 3 briefly reviews the universally composable
(UC) security framework. Section 4 reviews ways in which UC security has been
used to assert the soundness of symbolic analysis and to enable its efficient
automation. Section 5 concludes with some directions for further research.

Throughout, we do not attempt to give a broad survey of all relevant works.
Rather, the intention is to present the main ideas, concerns and challenges, as
seen by the author, in a way that is accessible to the non-expert. We apologize
for any misrepresentations and omissions.

2 Symbolic Analysis in a Nutshell

There are a number of approaches for formulating models for protocol analysis
where the cryptographic primitives are represented in an “idealized”, or abstract
way. Examples include the Dolev-Yao model [DY83], which essentially amounts
to formulating a protocol-dependent abstract algebra where security properties
translate to representability questions in the algebra (see, e.g. [Pau98, FHG98]);
the BAN logic [BAN89] where security properties are translated to assertions in
a protocol-dependent logic; or the spi-calculus [AG97] where security properties
are translated to observational equivalence assertions in an extension of the π-
calculus [Mil89]. Here we briefly sketch one of these approaches, namely the
Dolev-Yao model, which is relatively simple and self contained. (On the down
side, this model tends to be specific for a given class of tasks and protocols, and
has to be reformulated whenever the task or class of protocols changes.)

The Dolev-Yao model has several components. First, the model defines a sym-
bolic algebra. The atomic elements of the algebra represent primitive structures
such as party identifiers, public and secret keys for the cryptographic algorithms
in use, and random challenges (nonces).

Operations in the algebra represent the allowed usage of the cryptographic
primitives — both by the legitimate protocol parties and by adversarial enti-
ties. For instance, in the case of public key encryption the symbolic encryption
operation Enc takes a public key symbol ek and arbitrary symbol m (say, an
identifier or a nonce) to return a compound “ciphertext” symbol Encek(m). The
symbolic decryption operation Dec takes a private key symbol dk and a symbol
of the from Encek(m) where ek and dk are paired, and returns the symbol m.

Inputs, outputs, and protocol messages are represented as compound elements
in the algebra. That is, each message (compound element) represents a “parse
tree”, or the sequence of operations needed to obtain the compound element

4 R. Canetti

from elementary ones. The algebra is free: it admits no equalities other than
the identity. That is, each message has exactly one representation. In the above
example, for instance, this means that there is no way to retrieve the symbol
m (or gain any information on it) from Encek(m) without explicitly using the
special symbol dk.

Symbolic protocols are defined via a function from the sequence of messages
received so far to the next move, when a move consists of a message to be
transmitted or alternatively some local output. All inputs, outputs, and messages
are compound elements from the algebra.

The symbolic adversary is defined in two parts: its initial knowledge (a set of
symbolic messages), and the adversary operations it can use to deduce new mes-
sages from known ones. (These known messages consist of the initial knowledge
and the messages sent during the protocol execution.) The adversary operations
are bound by the operations specified in the algebra. Typically, these operations
are limited to the operations that represent the cryptographic primitives in use,
plus simple operations such as concatenation and de-concatenation.

The closure of a message (or a set of messages) is the set of all messages that
the adversary can potentially derive from the given message (or set). That is,
the closure operation defines the messages which the adversary can create and
transmit at any point.

A protocol execution in this model consists of a sequence of events where each
event consists of the delivery of an adversarially generated message to some
party, followed by the generation of new outgoing message, or a new local input,
by that party.

The trace of an execution is the sequence of these events. The security properties
of protocols are typically (but not always) predicates on sets of traces: A protocol
satisfies such a security property if the predicate is satisfied by the set of that
protocol’s possible (or valid) traces.

As discussed in the introduction, this model has two substantial limitations:
First, it does not provide any guarantees regarding the security of protocols
that use concrete algorithms to implement the abstract cryptographic primitives
postulated by the algebra. Second, mechanic verification of security properties
of protocols is intractable in general. We’ll see that both of these limitations can
be overcome by taking a compositional approach to security analysis.

3 Universally Composable Security

We turn to a brief review of the universally composable (UC) security frame-
work. (The first variant of the framework appears in [Can01]; some context and
related work are briefly discussed below). The framework takes the cryptographic
approach to protocol analysis; namely, the adversarial entities are given unre-
stricted access to the actual bits of the communication between parties. Also,
adversaries are taken to be computationally bounded and the security properties
are stated in probabilistic and asymptotic terms.

Composable Formal Security Analysis 5

In this setting, the framework provides a general way for specifying the secu-
rity requirements of cryptographic tasks, and asserting whether a given protocol
realizes the specification. A salient property of this framework is that it provides
strong composability guarantees: A protocol that meets a specification in isola-
tion continues to meet the specification regardless of the activity in the rest of
the network. We give here a very high level sketch of the framework, as well as
some motivation. See [Can01, Can06] for a more thorough treatment.

The trusted party paradigm. The underlying definitional idea (which orig-
inates in [GMW87], albeit very informally) proceeds as follows. To determine
whether a given protocol is secure for some cryptographic task, first envision an
ideal process for carrying out the task in a secure way. In the ideal process all
parties secretly hand their inputs to an external trusted party who locally com-
putes the outputs according to the specification, and secretly hands each party
its prescribed outputs. This ideal process can be regarded as a “formal specifi-
cation” of the security requirements of the task. (For instance, when the task
is to compute a joint function f of the local inputs of the parties, the trusted
party simply evaluates f on the inputs provided by the parties, and hands the
outputs back to the parties. If the function is probabilistic then the trusted party
also makes the necessary random choices.) The protocol is said to securely re-
alize a task if running the protocol amounts to “emulating” the ideal process
for the task, in the sense that any damage that can be caused by an adversary
interacting with the protocol can also happen in the ideal process for the task.

An attractive property of this approach is its generality: It seems possible
to capture the requirements of very different tasks by considering different sets
of instructions for the external trusted party. Another attractive property is
potential compositionality: It seems almost “built into the definitional approach”
that if a protocol successfully mimics the behavior of some trusted party then
any protocol that uses the protocol should continue to behave the same when
the protocol is replaced by the trusted party.

Still, substantiating this approach in a way that maintains its intuitive appeal
and materializes the potential generality and composability turns out to be non-
trivial. Indeed, several general frameworks for representing cryptographic proto-
cols and specifying the security requirements of tasks were developed over the
years, e.g. [GL90, MR91, Bea91, Can00, HM00, DM00, PW00, Can01, PMS03,
K06]. While all of these frameworks follow the above paradigm in one way or
another, they differ greatly in their expressibility (i.e., the range of security con-
cerns and tasks that can be captured), in the computational models addressed,
and in many significant technical details. They also support different types of
security-preserving composition theorems.

The basic formalism. Defining what it means for a protocol π to “securely
realize” a certain task is done in three steps, as follows. First, we formulate a
model for executing the protocol. This model consists of the parties running
π, plus two adversarial entities: the environment Z, which generates the inputs
for the parties and reads their outputs, and the adversary A, which reads the

6 R. Canetti

outgoing messages generated by the parties and delivers incoming messages to
the parties. The adversary and the environment can interact freely during the
protocol execution.

The adversary represents attacks against a single instance of the analyzed pro-
tocol. The environment represents “everything else that happens in the system,”
including both the the immediate users of the protocol, and other parties and
protocols. Letting A and Z interact freely during the computation represents
the continual information flow between an execution of a protocol and the rest
of the system. Indeed, this provision turns out to be critical for the universal
composition theorem to hold.

Next, we formulate the ideal process, in a straightforward way. Here the proto-
col participants simply pass their inputs to an additional, incorruptible trusted
party, who locally computes the desired outputs and hands them back to the
parties. The program run by the trusted party is called an ideal functionality and
is intended to capture the security and correctness specifications of the task. For
convenience, the ideal process with ideal functionality F is formulated as the
process of running a special protocol IF called the ideal protocol for F . That is,
in protocol IF the parties simply pass all inputs to the trusted party, and out-
put whatever information they obtain from the trusted party. Here the adversary
does not interact directly with the parties; instead, it interacts with F in a way
specified by F . The communication between the adversary and the environment
remains arbitrary.

Finally, we say that protocol π UC-emulates protocol φ if for any polytime
adversary A there exists a polytime adversary S such that no polytime en-
vironment Z can tell with non-negligible probability whether it is interact-
ing with an execution of π and adversary A, or alternatively with protocol φ
and adversary S. We say that π UC-realizes an ideal functionality F if it UC-
emulates the ideal protocol IF . Somewhat more formally, let execZ ,A, π =
{execZ,A,π(n, z)}n∈N,z∈{0,1}n denote the probability ensemble describing the
output of environment Z in an interaction with adversary A and protocol π
with security parameter n and external input z for Z. Then:

Definition 1. Protocol π UC-emulates protocol φ if for any polytime adversary
A there exists a polytime adversary S such that for any polytime environment
Z we have Prob(execZ,A,π = 1)− Prob(execZ,A,π = 1)| < ν(n), where ν is a
negligible function.

π UC-realizes an ideal functionality F if it UC-emulates the ideal protocol IF .

Very informally, the goal of the above requirement is to guarantee that any in-
formation gathered by the adversary A when interacting with π, as well as any
“damage” caused by A, could have also been gathered or caused by an adversary
S in the ideal process for F . Now, since the ideal process is designed so that no S
can gather information or cause damage more than what is explicitly permitted
in the ideal process for F , we can conclude that A too, when interacting with
π, cannot gather information or cause damage more than what is explicitly per-
mitted by F . In particular, the I/O behavior of the good parties in the protocol
execution is essentially the same as that of the ideal functionality; similarly, the

Composable Formal Security Analysis 7

information that Z learns from A can be generated (or, “simulated”) by S, who
is given only the information that it can learn legally from interacting with F .

We remark that the notion of UC emulation can be viewed as a relaxation of
the notion of observational equivalence of processes (see, e.g., [Mil89]); indeed,
observational equivalence essentially fixes the entire system outside the protocol
instances, whereas emulation allows the analyst to choose an appropriate simula-
tor that will make the two systems look observationally equivalent. In a way, this
relaxation allows the analyst to specify which properties of the analyzed protocol
are “salient” and which are “unimportant”, and thereby allow for many proofs
of security of cryptographic protocols to go through.

Universal composition. The following universal composition theorem holds in
this framework. Let π be a protocol that UC-emulates protocol φ, and let ρ be a
protocol that has access to (multiple instances of) φ. Let ρπ/φ be the “composed
protocol” which is identical to ρ except that inputs to φ are replaced by inputs
to π, and outputs from π are treated as outputs from φ. Then, protocol ρπ/φ

behaves in an indistinguishable way from the original ρ:

Theorem 1. Let ρ, π, φ be protocols such that π UC-emulates φ. Then ρπ/φ

UC-emulates ρ.

4 Composable Formal Security Analysis

Providing soundness. The idea underlying the use of security-preserving
protocol composition for asserting soundness of formal analysis is simple: Intu-
itively, the formal (or, symbolic) model appears to naturally correspond to a
model where protocols have access to a “trusted party”) that embodies the ab-
stract properties of the cryptographic primitives in use, just as in the definition
of UC realization. Thus, the universal composition theorem should imply that
any security property enjoyed by the symbolic protocol continues to be enjoyed
by the protocol even when the symbolic cryptographic primitive is replaced by
a concrete protocol that realizes the corresponding ideal functionality. This idea
was mentioned already in [PW00] with respect to their formalism (which bears
some significant similarities with the UC framework) and also in [Can01].

Substantiating this idea involves a number of steps. Specifically, one has to
carry out the following:

1. Formulate ideal functionalities, within the UC framework, that capture in an
abstract way the functionality and security properties of the cryptographic
primitives in use.

2. Devise concrete protocols that UC-realize the formulated functionalities.
3. Formulate a class (or, rather, a “programming language”) of concrete pro-

tocols that make use of (i.e., subroutine calls to) the formulated ideal func-
tionalities. (We call these protocol hybrid protocols, since they are a hybrid
of a concrete protocol with an abstract ideal functionality.)

4. Formulate a symbolic model that models the cryptographic primitives in use
in an abstract way, akin to the formulated ideal functionalities.

8 R. Canetti

5. Formulate a security property (goal) for the concrete protocols.
6. Formulate a translation of this property in the symbolic model, and a method

for asserting this property in the symbolic model.
7. Demonstrate that if a symbolic protocol satisfies the symbolic property

(within the symbolic model) then the corresponding hybrid protocol, within
the devised language, satisfies the corresponding concrete property.

Now, we can translate hybrid protocols to fully concrete ones by replacing the
ideal functionalities with the protocols that UC-realize them, and use the uni-
versal composition theorem to deduce that the fully concrete protocols enjoy the
same security properties enjoyed by the hybrid protocols.

A substantiation of these ideas, along the lines of the above sketch, is given in
[BPW03]. That work concentrates on protocols where the cryptographic primi-
tives in use are public-key encryption, digital signatures, and secure communica-
tion channels. They also provide symbolic constructs that correspond to the use
of random challenges, or nonces. (Indeed, these primitives are the ones addressed
by traditional symbolic models.)

Specifically, an ideal functionality is formulated, that provides the interface
expected from the above primitives, along with absolute security properties.
For instance, to model public-key encryption, the [BPW03] ideal functionality
provides an encryption interface, that takes a public key symbol and a message
and returns an abstract handle, and a decryption interface that takes a handle and
a decryption key symbol, and returns the message associated with the handle and
the corresponding encryption key - in case these are defined. (Else the decryption
interface returns an error symbol.) Digital signatures and secure channels are
modeled via handles in a similar way.

Next, [BPW03] show that their ideal functionality can be realized using known
cryptographic protocols. Specifically, any combination of an encryption scheme
that’s semantically secure against chosen ciphertext attacks [RS91, DDN00] with
a signature scheme that’s existentially unforgeable against chosen message at-
tacks, along with appropriate symmetric encryption and authentication schemes
(for obtaining secure communication channels), suffice.

This work opens the door for abstract security analysis of protocols that use
the above primitives. All there is to do is to write the protocol in a way that
uses the [BPW03] ideal functionality for all its cryptographic operations. Now,
the protocol becomes considerably simpler; in fact, in many cases it becomes
deterministic, akin to the symbolic (“Dolev-Yao”) model. Security of the corre-
sponding concrete protocol follows from the universal composition theorem, as
discussed above.

We note that the [BPW03] modeling does not formulate a dedicated abstract
model along the lines of the original Dolev-Yao analysis. Instead, even the ab-
stract protocols are defined and analyzed in the same cryptographic model in
which the full-fledged cryptographic protocols are. This forces the analyst to
either analyze the abstract protocol in a relatively complex model, or alterna-
tively simplify the model at the price of reduced generality in terms of expressing
realistic concerns and situations.

Composable Formal Security Analysis 9

Still, this approach has proven to be very useful, serving as a basis for ana-
lyzing a number of protocols, e.g. [Bac04, BP04, BD05, Bac06, BP06, BCJ+06].
The security properties asserted in these works are mainly mutual authentica-
tion and generation of a common secret key (“key exchange”), as well as other
properties such as transactional integrity in payment systems. Also, this work
has been the basis for semi-automated security analysis of protocols, using the
Isabelle theorem prover [SBB+06, Pau88].

Feasible mechanization and automation. So far, we have seen how to
perform symbolic (abstract) security analysis that provides security guarantees
even for fully concrete protocols. However, in spite of its apparent simplicity,
traditional symbolic analysis still has a serious shortcoming: As argued in the
introduction, performing such analysis in a fully mechanical (or, automated)
way is intractable, even for systems of moderate size. Consequently, we can
feasibly analyze in a fully mechanical way only systems of relatively small size.
In particular, we cannot directly analyze systems which consist of unboundedly
many concurrent protocol instances, even when all these instances are instances
of the same protocol.

Also here, composable security offers a natural solution: When coming to ana-
lyze security of a complex system, first de-compose the system to relatively small
components; then, use symbolic analysis to mechanically analyze the security of
each component; finally, use the composition theorem to re-compose the compo-
nents and deduce security properties of the whole system. In particular, when
coming to analyze a system which consists of an unbounded number of sessions
of the same protocol, it suffices to analyze a single session of this protocol, in
isolation.

Two main issues need to be addressed in order to make good of this approach,
when carrying out the steps described above: First, in order to be able to perform
the symbolic analysis separately in each component, independently of all other
components, the ideal functionality in Step 1 above needs to be “de-composable”
into multiple independent, simpler ideal functionalities, where each such simpler
functionality is used only within a single component.

Second, in order to be able to deduce a security property of the re-composed
system from the security of the individual components, the security properties
asserted by the symbolic analysis (see Step 6 above) needs to be phrased as com-
posable security properties. (In the UC framework, this means that the symbolic
security properties need to be translatable to assertions of UC-realizing some
ideal functionalities.)

A first attempt for coming up with a formalism that addresses the above
two concerns would be to try to use the [BPW03] formalism described above.
However, it turns out that this formalism does not address the first concern.
(Indeed, here it seems essential that all instances of all cryptographic algorithms
will reside within a single ideal functionality. See more discussion in [Can04]).
Furthermore, the security properties asserted within this formalism (see above
literature) are not composable; thus the second concern is not addressed either.

10 R. Canetti

We are thus motivated to look for alternative ways to substantiate the com-
posable approach to symbolic analysis, that will allow us to materialize the
prospective efficiency gains. Such an alternative approach is given in [CH04].
That work concentrates on protocols that use a single cryptographic primitive,
namely public-key encryption. As in [BPW03], an ideal functionality is presented
that captures the behavior of ideal encryption. Here, however, the formalism is
such that multiple instances of the ideal functionality can co-exist in the same
system where each instance represents encryption via a different set of keys.
(On a technical level, this change requires, among other things, abandoning
the convenient abstraction of “handles;” instead, the ideal functionality returns
“dummy ciphertexts”, which are strings generated by an adversarial computa-
tional entity without knowledge of the plaintext.) Still, it is shown in [CH04]
that any public-key encryption scheme that’s semantically secure against chosen
ciphertext attacks can be used to UC-realize the devised ideal functionality. This
addresses the first concern mentioned above.

The security properties asserted in [CH04] are the traditional ones: Mutual
Authentication and Key Exchange. However, in order to address the second con-
cern, these properties are formulated as composable security properties. Specif-
ically, in [CH04] a special-purpose symbolic algebra is devised for representing
the class of protocols considered. Next, symbolic Mutual Authentication and Key
Exchange properties are formulated. It it then shown that a symbolic protocol
satisfies the symbolic Mutual Authentication (resp., symbolic Key Exchange)
property if and only if the corresponding concrete protocol UC-realizes an ideal
Mutual Authentication (resp., Key Exchange) functionality.

To demonstrate the validity of their approach, [CH04] encode the devised
symbolic properties in the language of the ProVerif verification tool [Bla03], and
use it to automatically assert security of a systems consisting of an unbounded
number of concurrent instances of some variants of the Needham-Schroeder-Lowe
protocol. The analysis takes less than a second on a standard commodity laptop.
We remind the reader that directly analyzing such a system using traditional
means is undecidable.

We remark that [CH04] is strongly influenced by [MW04]. In fact, for the case
of mutual authentication [CH04] follows the approach of [MW04] quite closely.
However, [MW04] is not formulated within a composable framework and thus it
cannot provide the efficiency gains provided by [CH04].

5 Future Research

We are at the early stages of capitalizing on the potential of composable notions
of security in enabling sound automated analysis of complex systems. Directions
for further research include:

1. Widen the range of cryptographic primitives that can be modeled in an
abstract, symbolic, and composable way. In the same vein, widen the range
of security properties and tasks that can be asserted symbolically.

Composable Formal Security Analysis 11

2. Construct new tools (or, improve existing ones) to allow for efficient auto-
mated security analysis, capitalizing on the composable approach to analysis,
with the end goal being to perform fully automated security analysis of real-
life systems. An interesting challenge here is to mechanize the process of
de-composing a system to small components.

3. In a slightly different vein, it might be interesting to formulate and assert the
composability of security properties directly in a symbolic model, without
having to rely on the composability properties of the underlying computa-
tional framework.

Acknowledgements. I thank the program committee of ICALP 2008 for invit-
ing me to talk at the conference and for soliciting this paper. Special thanks is
also due to Oded Goldreich for his invaluable conceptual advice and direction.

References

[AG97] Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi
calculus. In: 4th ACM Conference on Computer and Communications Se-
curity, pp. 36–47 (1997), http://www.research.digital.com/SRC/abadi

[AR02] Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the com-
putational soundness of formal encryption). J. Cryptology 15(2), 103–127
(2002)

[Bac04] Backes, M.: A cryptographically sound Dolev-Yao style security proof of the
Otway-Rees protocol. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva,
R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 89–108. Springer, Heidelberg
(2004)

[Bac06] Backes, M.: Real-or-random key secrecy of the Otway-Rees protocol via a
symbolic security proof. Electr. Notes Theor. Comput. Sci. 155, 111–145
(2006)

[BAN89] Burrows, M., Abadi, M., Needham, R.: A logic for authentication. DEC
Systems Research Center Technical Report 39 (February 1990); Earlier ver-
sions in the Second Conference on Theoretical Aspects of Reasoning about
Knowledge, 1988, and the Twelfth ACM Symposium on Operating Systems
Principles (1989)

[BCJ+06] Backes, M., Cervesato, I., Jaggard, A.D., Scedrov, A., Tsay, J.-K.: Crypto-
graphically sound security proofs for basic and public-key Kerberos. In: Goll-
mann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 362–383. Springer, Heidelberg (2006)

[BD05] Backes, M., Dürmuth, M.: A cryptographically sound Dolev-Yao style secu-
rity proof of an electronic payment system. CSFW, 78–93 (2005)

[Bea91] Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum,
J. (ed.) CRYPTO 1991. LNCS, vol. 576. Springer, Heidelberg (1992)

[Bla03] Blanchet, B.: Automatic proof of strong secrecy for security protocols. In:
IEEE Security and Privacy Conference, pp. 86–102 (2003)

[Ble98] Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on
the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

http://www.research.digital.com/SRC/abadi

12 R. Canetti

[BP04] Backes, M., Pfitzmann, B.: A cryptographically sound security proof of the
Needham-Schroeder-Lowe public-key protocol. IEEE Journal on Selected
Areas in Communications 22(10), 2075–2086 (2004)

[BP06] Backes, M., Pfitzmann, B.: On the cryptographic key secrecy of the strength-
ened Yahalom protocol. SEC, 233–245 (2006)

[BPW03] Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic li-
brary with nested operations. In: 10th ACM CCS (2003),
http://eprint.iacr.org/2003/015/

[BPW04] Backes, M., Pfitzmann, B., Waidner, M.: A general composition theorem for
secure reactive systems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
336–354. Springer, Heidelberg (2004)

[BR93] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer,
Heidelberg (1994), http://www-cse.ucsd.edu/users/mihir/

[Can00] Canetti, R.: Security and composition of multi-party cryptographic proto-
cols. J. Cryptology 13(1) (2000)

[Can01] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145 (2001); Long version at IACR
Eprint Archive entry 2000/067

[Can04] Canetti, R.: Universally composable signature, certification, and authenti-
cation. CSFW. Long version at eprint.iacr.org/2003/239 (2004)

[Can06] Canetti, R.: Security and composition of cryptographic protocols: A tutorial.
SIGACT News 37(3&4) (2006); Available also at the Cryptology ePrint
Archive, Report 2006/465

[CH04] Canetti, R., Herzog, J.: Universally composable symbolic analysis of cryp-
tographic protocols (the case of encryption-based mutual authentication
and key-exchange). In: 3rd TCC, 2006. Full version at Cryptology ePrint
Archive, Report 2004/334 (2004)

[DDN00] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM Journal
on Computing 30(2), 391–437 (2000)

[DLMS99] Durgin, N.A., Lincoln, P.D., Mitchell, J.C., Scedrov, A.: Undecidability of
bounded security protocols. In: Workshop on Formal Methods and Security
Protocols (FMSP) (1999)

[DM00] Dodis, Y., Micali, S.: Secure computation. In: CRYPTO 2000 (2000)
[DMP01] Durgin, N.A., Mitchell, J.C., Pavlovic, D.: A compositional logic for protocol

correctness. SCFW (2001)
[DY83] Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transac-

tions on Information Theory 2(29) (1983)
[EG83] Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols.

In: 24th FOCS, pp. 34–39 (1983)
[FHG98] Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a secu-

rity protocol correct? In: IEEE Symposium on Security and Privacy (1998)
[GL90] Goldwasser, S., Levin, L.: Fair computation of general functions in presence

of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990.
LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299
(1984)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM Journal on Comput. 18(1), 186–208 (1989)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In:
19th Symposium on Theory of Computing (STOC), pp. 218–229 (1987)

http://eprint.iacr.org/2003/015/
http://www-cse.ucsd.edu/users/mihir/

Composable Formal Security Analysis 13

[HM00] Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in
secure multi-party computation. J. Cryptology 13(1), 31–60 (2000)

[K06] Küsters, R.: Simulation based security with inexhaustible interactive Turing
machines. In: 19th CSFW (2006)

[Low96] Lowe, G.: Breaking and fixing the Needham-Schröder public-key protocol
using CSP and FDR. In: 2nd International Workshop on Tools and Algo-
rithms for the construction and analysis of systems (1996)

[Mea96] Meadows, C.: The NRL protocol analyzer: An overview. J. Log. Pro-
gram. 26(2), 113–131 (1996)

[Mil89] Milner, R.: Communication and concurrency. Prentice Hall, Englewood
Cliffs (1989)

[MMS97] Mitchell, J.C., Mitchell, M., Stern, U.: Automated analysis of cryptographic
protocols using Murϕ. In: Proceedings, 1997 IEEE Symposium on Security
and Privacy, pp. 141–153 (1997)

[MR91] Micali, S., Rogaway, P.: Secure computation (abstract). In: McCurley, K.S.,
Ziegler, C.D. (eds.) Advances in Cryptology 1981 - 1997. LNCS, vol. 1440,
pp. 392–404. Springer, Heidelberg (1999)

[MS01] Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryp-
tographic protocol analysis. In: ACM Conference on Computer and Com-
munications Security (CCS) (2001)

[MW04] Micciancio, D., Warinschi, B.: Soundness of formal encryption in the pres-
ence of active adversaries. In: 1st TCC, pp. 133–151 (2004)

[Pau88] Paulson, L.C.: Isabelle: the next seven hundred theorem provers (system
abstract). In: 9th International Conf. on Automated Deduction. LNCS,
vol. 310, pp. 772–773. Springer, Heidelberg (1988),
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

[Pau98] Paulson, L.C.: The inductive approach to verifying cryptographic protocols.
Journal of Computer Security 6, 85–128 (1998)

[PMS03] Mitchell, J.C., Mateus, P., Scedrov, A.: Composition of cryptographic proto-
cols in a probabilistic polynomial-time process calculus. In: 14th CONCUR,
pp. 323–345 (2003)

[PW00] Pfitzmann, B., Waidner, M.: Composition and integrity preservation of se-
cure reactive systems. In: 7th ACM Conf. on Computer and Communication
Security (CCS), pp. 245–254 (2000)

[RS91] Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991.
LNCS, vol. 576. Springer, Heidelberg (1992)

[SBB+06] Sprenger, C., Backes, M., Basin, D.A., Pfitzmann, B., Waidner, M.: Cryp-
tographically sound theorem proving. CSFW, 153–166 (2006)

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

Newton’s Method for ω-Continuous Semirings�

Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Institut für Informatik, Technische Universität München, 85748 Garching, Germany
{esparza,kiefer,luttenbe}@model.in.tum.de

Abstract. Fixed point equations X = f (X) over ω-continuous semirings are a
natural mathematical foundation of interprocedural program analysis. Generic al-
gorithms for solving these equations are based on Kleene’s theorem, which states
that the sequence 0,f (0),f (f (0)), . . . converges to the least fixed point. How-
ever, this approach is often inefficient. We report on recent work in which we
extend Newton’s method, the well-known technique from numerical mathemat-
ics, to arbitrary ω-continuous semirings, and analyze its convergence speed in the
real semiring.

1 Introduction

In the last two years we have investigated generic algorithms for solving systems of
fixed point equations over ω-continuous semirings [15]. These semirings provide a
nice mathematical foundation for program analysis. A program can be translated (in
a syntax-driven way) into a system of O(n) equations over an abstract semiring, where
n is the number of program points. Depending on the information about the program
one wants to compute, the carrier of the semiring and its abstract sum and product op-
erations can be instantiated so that the desired information is the least solution of the
equations. Roughly speaking, the translation maps choice and sequential composition
at program level into the sum and product operators of the semiring. Procedures, even
recursive ones, are first order citizens and can be easily translated. The translation is
very similar to the one that maps a program into a monotone framework [16].

Kleene’s fixed point theorem applies to ω-continuous semirings. It shows that the
least solution μf of a system of equations X = f(X) is equal to the supremum
of the sequence (κ(i))i∈N of Kleene approximants given by κ(0) = 0 and κ(i+1) =
f(κ(i)). This yields a procedure (let’s call it Kleene’s method) to compute or at least
approximate μf . If the domain satisfies what is usually known as the ascending chain
condition, then the procedure terminates, because there exists an i such that κ(i) =
κ(i+1) = μf .

Kleene’s method is generic and robust: it always converges when started at 0, for any
ω-continuous semiring, and whatever the shape of f is. On the other hand, its efficiency
can be very unsatisfactory. If the ascending chain condition fails, then the sequence of
Kleene approximants hardly ever reaches the solution after a finite number of steps.
Another problem of the Kleene sequence arises in the area of quantitative program
analysis. Quantitative information, like average runtime and probability of termination

� This work was in part supported by the DFG project Algorithms for Software Model Checking.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 14–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Newton’s Method for ω-Continuous Semirings 15

(for programs with a stochastic component) can also be computed as the least solution
of a system of equations, in this case over the semiring of the non-negative real numbers
plus infinity. While in these analyses one cannot expect to compute the exact solution
by any iterative method (it may be irrational and not even representable by radicals),
it is very important to find approximation techniques that converge fast to the solution.
However, the convergence of the Kleene approximants can be extremely slow. An arti-
ficial but illustrative example is the case of a procedure that can either terminate or call
itself twice, both with probability 1/2. The probability of termination of this program is
given by the least solution of the equation X = 1/2 + 1/2X2. It is easy to see that the
least solution is equal to 1, but we have κ(i) ≤ 1− 1

i+1 for every i ≥ 0, i.e., in order to
approximate the solution within i bits of precision we have to compute about 2i Kleene
approximants. For instance, we have κ(200) = 0.9990.

Faster approximation techniques for equations over the reals have been known for a
long time. In particular, Newton’s method, suggested by Isaac Newton more than 300
years ago, is a standard efficient technique to approximate a zero of a differentiable
function. Since the least solution of X = 1/2 + 1/2X2 is a zero of 1/2 + 1/2X2−X ,
the method can be applied, and it yields ν(i) = 1 − 2−i for the i-th Newton approx-
imant. So i bits of precision require to compute only i approximants, i.e., Newton’s
method converges exponentially faster than Kleene’s in this case. However, Newton’s
method on the real field is by far not as robust and well behaved as Kleene’s method
on semirings. The method may converge very slowly, converge only when started at a
point very close to the zero, or even not converge at all [17].

So there is a puzzling mismatch between the current states of semantics and program
analysis on the one side, and numerical mathematics on the other. On ω-continuous
semirings, the natural domain of semantics and program analysis, Kleene’s method is
robust and generally applicable, but inefficient in many cases, in particular for quantita-
tive analyses. On the real field, the natural domain of numerical mathematics, Newton’s
method can be very efficient, but it is not robust.

We became aware of this mismatch two years ago through the the work of Etessami
and Yannakakis on Recursive Markov Chains and our work on Probabilistic Pushdown
Automata. Both are abstract models of probabilistic programs with procedures, and
their analysis reduces to or at least involves solving systems of fixed point equations.
The mismatch led us to investigate the following questions:

– Can Newton’s method be generalized to arbitrary ω-continuous semirings?
I.e., could it be the case that Newton’s method is in fact as generally applicable as
Kleene’s, but nobody has noticed yet?

– Is Newton’s method robust when restricted to the real semiring?
I.e., could it be the case that the difficult behaviour of Newton’s method disappears
when we restrict its application to the non-negative reals, but nobody has noticed
yet?

The answer to both questions is essentially affirmative, and has led to a number of
papers [5, 4, 14, 6]. In this note we present the results, devoting some attention to those

16 J. Esparza, S. Kiefer, and M. Luttenberger

examples and intuitions that hardly ever reach the final version of a conference paper
due to the page limit.

2 From Programs to Fixed Point Equations on Semirings

Recall that a semiring is a set of values together with two binary operations, usually
called sum and product. Sum and product are associative and have neutral elements 0
and 1, respectively. Moreover, sum is commutative, and product distributes over sum.
The natural order relation � on a semiring is defined by setting a � a + d for every d.
A semiring is naturally ordered if � is a partial order.

An ω-continuous semiring is a naturally ordered semiring extended by an infinite
summation-operator

∑
that satisfies some natural properties. In particular, for every

sequence (ai)i≥0 the supremum sup{
∑

0≤i≤k ai | k ∈ N} w.r.t. � exists, and is equal
to
∑

i∈N ai [15].
We show how to assign to a procedural program a set of abstract equations by means

of an example. Consider the (very abstractly defined) program consisting of three pro-
cedures X1, X2, X3, and associate to it a system of equations. For our discussion it is
not relevant which is the main procedure. The flow graphs of the procedures are shown
in Figure 1. For instance, procedure X1 can either execute the abstract action b and
terminate, or execute a, call itself recursively, and, after the call has terminated, call
procedure X2.

proc X3

f

g

h

call X3

proc X2

dc

call X2 e

call X1

call X1call X2

proc X1

call X2

a

bcall X1

Fig. 1. Flowgraphs of three procedures

We associate to the program the following three abstract equations 1

X1 = a ·X1 ·X2 + b

X2 = c ·X2 ·X3 + d ·X2 ·X1 + e (1)

X3 = f ·X1 · g + h

where + and · are the abstract semiring operations, and {a, b, . . . , h} are semiring val-
ues. Notice that we slightly abuse language and use the same symbol for a program
action and its associated value.

1 One for each procedure. A systematic translation from programs to equations yields one vari-
able and one equation for each program point. We have not done it in order to keep the number
of equations small.

Newton’s Method for ω-Continuous Semirings 17

2.1 Some Semiring Interpretations

Many interesting pieces of information about our program correspond to the least so-
lution of the system of equations over different semirings.2 For the rest of the section
let Σ = {a, b, . . . , h} be the set of actions in the program, and let σ denote an arbitrary
element of Σ.

Language interpretation. Consider the following semiring. The carrier is 2Σ
∗

(i.e., the
set of languages over Σ). A program action σ ∈ Σ is interpreted as the singleton lan-
guage {σ}. The sum and product operations are union and concatenation of languages,
respectively. We call it language semiring over Σ. Under this interpretation, the system
of equations (1) is nothing but the following context-free grammar:

X1 → aX1X2 | b
X2 → cX2X3 | dX2X1 | e
X3 → fX1g | h

The least solution of (1) is the triple (L(X1), L(X2), L(X3)), where L(Xi) denotes
the set of terminating executions of the program with Xi as main procedure, or, in
language-theoretic terms, the language of the associated grammar with Xi as axiom.

Relational interpretation. Assume that an action σ corresponds to a program instruction
whose semantics is described by means of a relation Rσ(V, V ′) over a set V of program
variables (as usual, primed and unprimed variables correspond to the values before and
after executing the instruction). Consider now the following semiring. The carrier is
the set of all relations over V, V ′. The semiring element σ is interpreted as the rela-
tion Rσ . The sum and product operations are union and join of relations, respectively,
i.e., (R1 · R2)(V, V ′) = ∃V ′′R1(V, V ′′) ∧ R2(V ′′, V ′). Under this interpretation, the
i-th component of the least solution of (1) is the summary relation Ri(V, V ′) containing
the pairs V, V ′ such that if procedure Xi starts at valuation V , then it may terminate at
valuation V ′.

Counting interpretation. Assume we wish to know how many as, bs, etc. we can
observe in a (terminating) execution of the program, but we are not interested in the
order in which they occur. In the terminology of abstract interpretation [2], we abstract
an execution w ∈ Σ∗ by the vector (na, . . . , nh) ∈ N|Σ|, where na, . . . , nh are the
number of occurrences of a, . . . , h in w. We call this vector the Parikh image of w. We
wish to compute the vector (P (X1), P (X2), P (X3)) where P (Xi) contains the Parikh
images of the words of L(Xi). It is easy to see that this is the least solution of (1) for the

following semiring. The carrier is 2N|Σ|
. The i-th action of Σ is interpreted as the sin-

gleton set {(0, . . . , 0, 1, 0 . . . , 0)} with the “1” at the i-th position. The sum operation
is set union, and the product operation is given3 by

U · V = {(ua + va, . . . , uh + vh) | (ua, . . . , uh) ∈ U, (va, . . . , vh) ∈ V } .

2 This will be no surprise for the reader acquainted with monotone frameworks or abstract in-
terpretation, but the examples will be used throughout the paper.

3 Abstract interpretation provides a general recipe to define these operators.

18 J. Esparza, S. Kiefer, and M. Luttenberger

Probabilistic interpretations. Assume that the choices between actions are stochastic.
For instance, actions a and b are chosen with probability p and (1 − p), respectively.
The probability of termination is given by the least solution of (1) when interpreted
over the following semiring (the real semiring) [8, 9]. The carrier is the set of non-
negative real numbers, enriched with an additional element ∞. The semiring element
σ is interpreted as the probability of choosing σ among all enabled actions. Sum and
product are the standard operations on real numbers, suitably extended to ∞ – if we
are instead interested in the probability of the most likely execution, we just have to
reinterpret the sum operator as maximum.

As a last example, assume that actions are assigned not only a probability, but also a
duration. Let dσ denote the duration of σ. We are interested in the expected termination
time of the program, under the condition that the program terminates (the conditional
expected time). For this we consider the following semiring. The elements are the set
of pairs (r1, r2), where r1, r2 are non-negative reals or ∞. We interpret σ as the pair
(pσ, dσ), i.e., the probability and the duration of σ. The sum operation is defined as
follows (where to simplify the notation we use +e and ·e for the operations of the
semiring, and + and · for sum and product of reals)

(p1, d1) +e (p2, d2) =
(

p1 + p2,
p1 · d1 + p2 · d2

p1 + p2

)

(p1, d1) ·e (p2, d2) = (p1 · p2, d1 + d2)

One can easily check that this definition satisfies the semiring axioms. The i-th compo-
nent of the least solution of (1) is now the pair (ti, ei), where ti is the probability that
procedure Xi terminates, and ei is its conditional expected time.

3 Fixed Point Equations

Fix an arbitrary ω-continuous semiring with a set S of values. We define systems of
fixed point equations and present Kleene’s fixed point theorem.

Given a finite set X of variables, a monomial is a finite expression

a1X1a2 · · · akXkak+1

where k ≥ 0, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X . A polynomial is an expression
of the form m1 + . . . + mk where k ≥ 0 and m1, . . . ,mk are monomials.

A vector is a mapping v that assigns to every variable X ∈ X a value denoted by
vX or vX , called the X-component of v. The value of a monomial m = a1X1a2 · · ·
akXkak+1 at v is m(v) = a1vX1a2 · · · akvXk

ak+1. The value of a polynomial at v
is the sum of the values of its monomials at v. A polynomial induces a mapping from
vectors to values that assigns to v the vector f(v). A vector of polynomials is a map-
ping f that assigns a polynomial fX to each variable X ∈ X ; it induces a mapping
from vectors to vectors that assigns to a vector v the vector f(v) whose X-component
is fX(v). A fixed point of f is a solution of the equation X = f(X).

It is easy to see that polynomials are monotone and continuous mappings w.r.t. �.
Kleene’s theorem can then be applied (see e.g. [15]), which leads to this proposition:

Newton’s Method for ω-Continuous Semirings 19

Proposition 3.1. A vector f of polynomials has a unique least fixed point μf which is
the �-supremum of the Kleene sequence given by κ(0) = 0, and κ(i+1) = f(κ(i)).

4 Newton’s Method for ω-Continuous Semirings

We recall Newton’s method for approximating a zero of a differentiable function, and
apply it to find the least solution of a system of fixed point equations over the reals.
Then, we present the generalization of Newton’s method to arbitrary ω-continuous
semirings we obtained in [5]. We focus on the univariate case (one single equation
in one variable), because it already introduces all the basic ideas of the general case.

Given a differentiable function g : R → R, Newton’s method computes a zero of g,
i.e., a solution of the equation g(X) = 0. The method starts at some value ν(0) “close
enough” to the zero, and proceeds iteratively: given ν(i), it computes a value ν(i+1)

closer to the zero than ν(i). For that, the method linearizes g at ν(i), i.e., computes the
tangent to g passing through the point (ν(i), g(ν(i))), and takes ν(i+1) as the zero of the
tangent (i.e., the x-coordinate of the point at which the tangent cuts the x-axis).

We formulate the method in terms of the differential of g at a given point v. This is
is the mapping Dg|v : R → R that assigns to each x ∈ R a linear function, namely
the one corresponding to the tangent of g at v, but represented in the coordinate system
having the point (v, g(v)) as origin. If we denote the differential of g at v by Dg|v ,
then we have Dg|v(X) = g′(v) · X (for example, if g(X) = X2 + 3X + 1, then
Dg|3(X) = 9X). In terms of differentials, Newton’s method starts at some ν(0), and
computes iteratively ν(i+1) = ν(i) + Δ(i), where Δ(i) is the solution of the linear
equation Dg|ν(i)(X)+g(ν(i)) = 0 (assume for simplicity that the solution of the linear
system is unique).

Computing a solution of a fixed point equation f(X) = X amounts to computing
a zero of g(X) = f(X)−X , and so we can apply Newton’s method. Since for every
real number v we have Dg|v(X) = Df |v(X)−X , the method for computing the least
solution of f(X) = X looks as follows:

Starting at some ν(0), compute iteratively

ν(i+1) = ν(i) + Δ(i) (2)

where Δ(i) is the solution of the linear equation

Df |ν(i)(X) + f(ν(i))− ν(i) = X . (3)

So Newton’s method “breaks down” the problem of solving a non-linear system f(X)
= X into solving the sequence (3) of linear systems.

4.1 Generalizing Newton’s Method

In order to generalize Newton’s method to arbitrary ω-continuous semirings we have to
overcome two obstacles. First, differentials are defined in terms of derivatives, which
are the limit of a quotient of differences. This requires both the sum and product opera-
tions to have inverses, which is not the case in general semirings. Second, Equation (3)
contains the term f(ν(i))− ν(i), which again seems to be defined only if the sum oper-
ation has an inverse.

20 J. Esparza, S. Kiefer, and M. Luttenberger

The first obstacle. Differentiable functions satisfy well-known algebraic rules with re-
spect to sums and products of functions. We take these rules as the definition of the
differential of a polynomial f over an ω-continuous semiring.

Definition 4.1. Let f be a polynomial in one variable X over an ω-continuous semiring
with carrier S. The differential of f at the point v is the mapping Df |v : S → S
inductively defined as follows for every a ∈ S:

Df |v(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if f ∈ S
a if f = X

Dg|v(a) · h(v) + g(v) · Dh|v(a) if f = g · h∑
i∈I Dfi|v(a) if f =

∑
i∈I fi(a) .

On commutative semirings, like the real semiring, we have Df |v(a) = f ′(v) · a for all
v, a ∈ S, where f ′(v) is the derivative of f . This no longer holds when product is not
commutative. For a function f(X) = a0Xa1Xa2 we have

Df |v(a) = a0 · a · a1 · v · a2 + a0 · v · a1 · a · a2.

The second obstacle. It turns out that the Newton sequence is well-defined if we choose
ν(0) = f(0). More precisely, in [5] we guess that this choice will solve the problem,
define the Newton sequence, and then prove that the guess is correct. The precise guess
is that this choice implies ν(i) � f(ν(i)) for every i ≥ 0. By the definition of �, the
semiring then contains a value δ(i) such that f(ν(i)) = ν(i) + δ(i). We can replace
f(ν(i))− ν(i) by any such δ(i). This leads to the following definition:

Definition 4.2. Let f be a polynomial in one variable over an ω-continuous semiring.
The Newton sequence (ν(i))i∈N is given by:

ν(0) = f(0) and ν(i+1) = ν(i) + Δ(i) (4)

where Δ(i) is the least solution of

Df |ν(i)(X) + δ(i) = X (5)

and δ(i) is any element satisfying f(ν(i)) = ν(i) + δ(i).

Notice that for arbitrary semirings the Newton sequence is not unique, since we may
have different choices for δ(i).

The definition can be easily generalized to the multivariate case. Fix a set X =
{X1, . . . , Xn} of variables. Given a multivariate polynomial f , we define the differen-
tial of f at the vector v with respect to the variable X by almost the same equations as
above:

DXf |v(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if f ∈ S or f ∈ X \ {X}
aX if f = X

DXg|v(a) · h(v) + g(v) ·DXh|v(a) if f = g · h∑
i∈I DXfi|v(a) if f =

∑
i∈I fi .

Then the differential of f at the vector v is defined as Df |v = DX1f |v + · · ·+DXnf |v.
Finally, for a vector of polynomials f we set Df |v = (DfX1 |v , . . . ,DfXn |v).

Newton’s Method for ω-Continuous Semirings 21

Definition 4.3. Let f : V → V be a vector of polynomials. The Newton sequence
(ν(i))i∈N is given by:

ν(0) = f(0) and ν(i+1) = ν(i) + Δ(i), (6)

where Δ(i) is the solution of

Df |ν(i)(X) + δ(i) = X . (7)

and δ(i) is any vector satisfying f(ν(i)) = ν(i) + δ(i).

Theorem 4.4. Let f : V → V be a vector of polynomials. For every ω-continuous
semiring and every i ∈ N:

– There exists at least one Newton sequence, i.e., there exists a vector δ(i) such that
f(ν(i)) = ν(i) + δ(i);

– κ(i) � ν(i) � f (ν(i)) � μf = supj κ(j).

5 Newton’s Method on Different Semirings

In this section we Introduce the main results of our study of Newton’s method [5,4,14,
6] by focusing on three representative semirings: the language, the counting, and the
real semiring. We first show that the Newton approximants of the language semiring

call X

call X

b

proc X

a

Fig. 2. Flowgraph of a recursive
program with one procedure

are the context-free languages of finite index, a notion
extensively studied in the 60s [20,11,19,12]. We then
explain how the algebraic technique for solving fixed
point equations over the counting semiring presented
by Hopkins and Kozen in [13] is again nothing but
a special case of Newton’s method. Finally, we show
that in the real semiring Newton’s method is just as
robust as Kleene’s.

We present the results for the three semirings with
the help of an example. Consider the recursive pro-
gram from the introduction that can execute action a
and terminate, or action b, after which it recursively
calls itself twice, see Figure 2. Its corresponding

abstract equation is
X = a + b ·X ·X (8)

We solve this equation in the three semirings, point out some of its peculiarities, and
then introduce the general results.

5.1 The Language Semiring

Consider the language semiring with Σ = {a, b}. Recall that the product operation is
concatenation of languages, and hence non-commutative. So we have

22 J. Esparza, S. Kiefer, and M. Luttenberger

Df |v(X) = bvX + bXv. It is easy to show that when sum is idempotent the def-
inition of the Newton sequence can be simplified to

ν(0) = f(0) and ν(i+1) = Δ(i), (9)

where Δ(i) is the least solution of

Df |ν(i)(X) + f(ν(i)) = X . (10)

For the program of Figure 2 Equation (10) becomes

bν(i)X + bXν(i)

︸ ︷︷ ︸
Df |

ν(i)(X)

+ a + bν(i)ν(i)

︸ ︷︷ ︸
f(ν(i))

= X . (11)

Its least solution, and by (9) the i+1-th Newton approximant, is a context-free language.
Let G(i) be a grammar with axiom S(i) such that ν(i) = L(G(i)). Since ν(0) = f(0),
the grammar G(0) contains one single production, namely S(0) → a. Equation (11)
allows us to define G(i+1) in terms of G(i), and we get:

G(0) = {S(0) → a}
G(i+1) = G(i) ∪ {S(i+1) → a | bXS(i) | bS(i)X | bS(i)S(i)}

and it is easy to see that in this case L(G(i)) �= L(G(i+1)) for every i ≥ 0.
It is well known that in a language semiring, context-free grammars and vectors of

polynomials are essentially the same, so we identify them in the following.
We can characterize the Newton approximants of a context-free grammar by the

notion of index, a well-known concept from the theory of context-free languages [20,
11, 19, 12]. Loosely speaking, a word of L(G) has index i if it can be derived in such a
way that no intermediate word contains more than i occurrences of variables.

Definition 5.1. Let G be a grammar, and let D be a derivation X0 = α0 ⇒ · · · ⇒
αr = w of w ∈ L(G), and for every i ∈ {0, . . . , r} let βr be the projection of αr

onto the variables of G. The index of D is the maximum of {|β0|, . . . , |βr|}. The index-
i approximation of L(G), denoted by Li(G), contains the words derivable by some
derivation of G of index at most i.

Finite-index languages have been extensively investigated under different names by
Salomaa, Gruska, Yntema, Ginsburg and Spanier, among others [19,12,20,11](see [10]
for historical background). In [4] we show that for a context-free grammar in Chomsky
normal form, the Newton approximants coincide with the finite-index approximations:

Theorem 5.2. Let G be a context-free grammar in CNF with axiom S and let (ν(i))i∈N

be the Newton sequence associated with G. Then
(
ν(i))S = Li+1(G) for every i ≥ 0.

In particular, it follows from Theorem 5.2 that the (S-component of the) Newton se-
quence for a context-free grammar G converges in finitely many steps if and only if
L(G) = Li(G) for some i ∈ N.

Newton’s Method for ω-Continuous Semirings 23

5.2 The Counting Semiring

Consider the counting semiring with a = {(1, 0)} and b = {(0, 1)}. Since the sum
operation is union of sets of vectors, it is idempotent and Equations (9) and (10) hold.
Since the product operation is now commutative, Equation (10) becomes

b · ν(i) ·X + a + b · ν(i) · ν(i) = X . (12)

By virtue of Kleene’s fixed point theorem the least solution of a linear equation X =
u ·X + v over an ω-continuous semiring is given by the supremum of the sequence

v, v + uv, v + uv + uuv, . . .

i.e. by (
∑

i∈N ui) · v = u∗ · v, where ∗ is Kleene’s iteration operator. The least solution
Δ(i) of Equation (12) is then given by

Δ(i) = (b · ν(i))∗ · (a + b · ν(i) · ν(i))

and we obtain:

ν(0) = a = {(1, 0)}
ν(1) = (b · a)∗ · (a + b · a · a)

= {(n, n) | n ≥ 0} · {(1, 0), (2, 1)}
= {(n + 1, n) | n ≥ 0}

ν(2) = ({(n, n) | n ≥ 1})∗ · ({(1, 0)} ∪ {(2n + 2, 2n + 1) | n ≥ 0})
= ({(n, n) | n ≥ 0})∗ · ({(1, 0)} ∪ {(2n + 2, 2n + 1) | n ≥ 0})
= {(n + 1, n) | n ≥ 0}

So the Newton sequence reaches a fixed point after only one iteration.
It turns out that the Newton sequence always reaches a fixed point in the counting

semiring. This immediately generalizes to any finitely generated commutative idempo-
tent ω-continuous semiring as we simply can opt not to evaluate the products and sums.
More surprisingly, this is even the case for all semirings where sum is idempotent and
product is commutative. This was first shown by Hopkins and Kozen in [13], who in-
troduced the sequence without knowing that it was Newton’s sequence (see [5] for the
details). Hopkins and Kozen also gave an O(3n) upper bound for the number of itera-
tions needed to reach the fixed point of a system of n equations. In [5] we reduced this
upper bound from O(3n) to n, which is easily shown to be tight.

Theorem 5.3. Let f be a vector of n polynomials over a commutative idempotent ω-
continuous semiring. Then μf = ν(n), i.e., Newton’s method reaches the least fixed
point after n iterations.

We have mentioned above that the least solution of X = u ·X + v is u∗ · v. Using this
fact it is easy to show that the Newton approximants of equations over commutative
semirings can be described by regular expressions. A corollary of this result is Parikh’s
theorem, stating that the Parikh image of a context-free language is equal to the Parikh

24 J. Esparza, S. Kiefer, and M. Luttenberger

image of some regular language [18]. To see why this is the case, notice that a context-
free language is the least solution of a system of fixed point equations over the language
semiring. Its Parikh image is the least solution of the same system over the counting
semiring. Since Newton’s method terminates over the counting semiring, and Newton
approximants can be described by regular expressions, the result follows.

Notice that we are by no means the first to provide an algebraic proof of Parikh’s
theorem. A first proof was obtained by Aceto et al. in [1], and in fact the motivation
of Hopkins and Kozen for the results of [13] was again to give a proof of the theorem.
Our results in [5] make two contributions: first, the aesthetically appealing connection
between Newton and Parikh, and, second, an algebraic algorithm for computing the
Parikh image with a tight bound on the the number of iterations.

We conclude the section with a final remark. The counting semiring is a simple
example of a semiring that does not satisfy the ascending chain condition. Kleene’s
method does not terminate for any program containing at least one loop. However,
Newton’s method always terminates!

5.3 The Real Semiring

Consider again Equation (8), but this time over the real semiring (non-negative real
numbers enriched with ∞) and with a = b = 1/2. We get the equation

X = 1/2 + 1/2 ·X2 (13)

which was already briefly discussed in the introduction. We have Df |v(X) = v ·X , and
a single possible choice for δ(i), namely δ(i) = f(ν(i))−ν(i) = 1/2+1/2 (ν(i))2−ν(i).
Equation (5) becomes

ν(i) X + 1/2 + 1/2 (ν(i))2 − ν(i) = X

with Δ(i) = (1− ν(i))/2 as its only solution. So we get

ν(0) = 1/2 ν(i+1) = (1 + ν(i))/2

and therefore ν(i) = 1 − 2(i+1). The Newton sequence converges to 1, and gains one
bit of accuracy per iteration, i.e., the relative error is halved at each iteration.

In [14,6] we have analyzed in detail the convergence behaviour of Newton’s method.
Loosely speaking, our results say that Equation (13) is an example of the worst-case
behaviour of the method.

To characterize it, we use the term linear convergence, a notion from numerical anal-
ysis that states that the number of bits obtained after i iterations depends linearly on i. If
‖μf − v‖ / ‖μf‖ ≤ 2−i (in the maximum-norm), we say that the approximation v of
μf has (at least) i bits of accuracy . Newton’s method converges linearly provided that
f has a finite least fixed point and is in an easily achievable normal form (the polyno-
mials have degree at most 2, and μf is nonzero in all components). More precisely [6]:

Theorem 5.4. Let f be a vector of n polynomials over the real semiring in the above
mentioned normal form. Then Newton’s method converges linearly: there exists a tf ∈
N such that the Newton approximant ν(tf+i·(n+1)·2n) has at least i bits of accuracy.

Theorem 5.4 is essentially tight. Consider the following family of equation systems.

Newton’s Method for ω-Continuous Semirings 25

X1 = 1/2 + 1/2 ·X2
1

X2 = 1/4 ·X2
1 + 1/2 ·X1X2 + 1/4 ·X2

2

... (14)

Xn = 1/4 ·X2
n−1 + 1/2 ·Xn−1Xn + 1/4 ·X2

n

Its least solution is (1, . . . , 1). We show in [14,6] that at least i ·2n−1 iterations of New-
ton’s method are needed to obtain i bits. More precisely, we show that after i · 2n−1

iterations no more than i · 2n−1 bits of accuracy have been obtained for the first com-
ponent (cf. the convergence behaviour of (13) above) and that the number of accurate
bits of the (k + 1)-th component is at most one half of the number of accurate bits of
the k-th component, for all k < n. This implies that for the n-th component we have
obtained at most i bits of accuracy.

This example exploits the fact that Xk depends only on the Xl for l ≤ k ≤ n.
In fact, Theorem 5.4 can be substantially strengthened if f is strongly connected. More
formally, let a variable X depend on Y if Y appears in fX . Then, f is said to be strongly
connected if every variable depends transitively on every variable. For those systems we
show that Newton’s method gains 1 bit of accuracy per iteration after the “threshold” tf
has been reached. In addition (and even more importantly from a computational point
of view) we can give bounds on tf [6]:

Theorem 5.5. Let f be as in Theorem 5.4, and, additionally, strongly connected. Fur-
ther, let m be the size of f (coefficients in binary). Then i bits of accuracy are attained
by ν(n2n+2m+i). This improves to ν(5n2m+i), if f(0) is positive in all components.

In [7], a recent invited paper, we discuss equation systems over the real semiring, the
motivation and complexity of computing their least solutions, and our results [14, 6]
on Newton’s method for the real semiring in more detail. We present an extension of
Newton’s method on polynomials with min and max operators in [3].

6 Conclusion

We have shown that the two questions we asked in the introduction have an affirmative
answer. Newton’s method, a 300 years old technique for approximating the solution of a
system of equations over the reals, can be extended to arbitrary ω-continuous semirings.
And, when restricted to the real semiring, the pathologies of Newton’s method—no con-
vergence, or only local and slow convergence—disappear: the method always exhibits
at least linear convergence.

We like to look at our results as bridges between numerical mathematics and the
foundations of program semantics and program analysis. On the one hand, while nu-
merical mathematics has studied Newton’s method in large detail, it has not payed much
attention to its restriction to the real semiring. Our results indicate that this is an inter-
esting case certainly deserving further research.

On the other hand, program analysis relies on computational engines for solving sys-
tems of equations over a large variety of domains, and these engines are based, in one
way or another, on Kleene’s iterative technique. This technique is very slow when work-
ing on the reals, and numerical mathematics has developed much faster ones, Newton’s

26 J. Esparza, S. Kiefer, and M. Luttenberger

method being one of the most basic. The generalization of these techniques to the more
general domains of semantics and program analysis is an exciting research program.

References

1. Aceto, L., Ésik, Z., Ingólfsdóttir, A.: A fully equational proof of Parikh’s theorem. Informa-
tique Théorique et Applications 36(2), 129–153 (2002)

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)

3. Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative methods for monotone systems
of min-max-polynomial equations. In: Aceto, L., et al. (eds.) ICALP 2008, Part II. 5126,
vol. 5126, Springer, Heidelberg (2008)

4. Esparza, J., Kiefer, S., Luttenberger, M.: An extension of Newton’s method to ω-continuous
semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp.
157–168. Springer, Heidelberg (2007)

5. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commutative semi-
rings. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 296–307. Springer,
Heidelberg (2007)

6. Esparza, J., Kiefer, S., Luttenberger, M.: Convergence thresholds of Newton’s method for
monotone polynomial equations. In: Proceedings of STACS, pp. 289–300 (2008)

7. Esparza, J., Kiefer, S., Luttenberger, M.: Solving monotone polynomial equations. In: Pro-
ceedings of IFIP TCS 2008. Springer, Heidelberg (to appear, 2008)

8. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. In:
LICS 2004. IEEE Computer Society, Los Alamitos (2004)

9. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

10. Fernau, H., Holzer, M.: Conditional context-free languages of finite index. In: New Trends
in Formal Languages, pp. 10–26 (1997)

11. Ginsburg, S., Spanier, E.: Derivation-bounded languages. Journal of Computer and System
Sciences 2, 228–250 (1968)

12. Gruska, J.: A few remarks on the index of context-free grammars and languages. Information
and Control 19, 216–223 (1971)

13. Hopkins, M.W., Kozen, D.: Parikh’s theorem in commutative Kleene algebra. In: Logic in
Computer Science, pp. 394–401 (1999)

14. Kiefer, S., Luttenberger, M., Esparza, J.: On the convergence of Newton’s method for mono-
tone systems of polynomial equations. In: Proceedings of STOC, pp. 217–226. ACM, New
York (2007)

15. Kuich, W.: Their Relevance to Formal Languages and Automata. In: Handbook of Formal
Languages, ch.9. Semirings and Formal Power Series, vol. 1, pp. 609–677. Springer, Hei-
delberg (1997)

16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg
(1999)

17. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables.
Academic Press, London (1970)

18. Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13(4), 570–581 (1966)
19. Salomaa, A.: On the index of a context-free grammar and language. Information and Con-

trol 14, 474–477 (1969)
20. Yntema, M.K.: Inclusion relations among families of context-free languages. Information

and Control 10, 572–597 (1967)

The Tractability Frontier for NFA Minimization�

Henrik Björklund and Wim Martens

TU Dortmund
henrik.bjoerklund@udo.edu,

wim.martens@udo.edu

Abstract. We essentially show that minimizing finite automata is NP-
hard as soon as one deviates from the class of deterministic finite au-
tomata. More specifically, we show that minimization is NP-hard for all
finite automata classes that subsume the class that is unambiguous, al-
lows at most one state q with a non-deterministic transition for at most
one alphabet symbol a, and is allowed to visit state q at most once in a
run. Furthermore, this result holds even for automata that only accept
finite languages.

1 Introduction

The regular languages are immensely important, not only in theoretical com-
puter science, but also in practical applications. When using regular languages
in practice, the developer is often faced with a trade-off between the descriptive
complexity and the complexity of optimization. Concretely, it has been known
for a long time that there are regular languages for which non-deterministic
automata (NFAs) can provide an exponentially more succinct description than
deterministic finite automata (DFAs) [13]. On the other hand, many decision
problems that are solvable in polynomial time for DFAs, i.e., equivalence, inclu-
sion, and universality, are computationally hard for NFAs.

The choice of a representation mechanism can therefore be crucial. If the set of
regular languages used in an application is relatively constant, membership tests
are the main language operations, and economy of space is an issue, NFAs are
probably the right choice. If, on the other hand, the languages change frequently,
and inclusion or equivalence tests are frequent, DFAs may be more attractive.

Since both NFAs and DFAs have their disadvantages, a lot of effort has been
spent on trying to find intermediate models, i.e., finite automata that have some
limited form of non-determinism. A rather successful intermediate model is the
class of unambiguous finite automata (UFAs).1 While in general still being ex-
ponentially more succinct than an equivalent DFA for the same language, static
analysis questions such as inclusion and equivalence can be solved in PTIME on
UFAs [17]. However, UFAs do not allow for tractable state minimization [11].
Therefore, the question whether there are good intermediate models between

� This work was supported by the DFG Grant SCHW678/3-1.
1 An automaton is unambiguous if it has at most one accepting run for each word.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 27–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

28 H. Björklund and W. Martens

DFAs and NFAs needs to be revisited for state minimization. The main result
of this paper is that, probably, no such good models exist. Even the tiniest bit
of non-determinism makes the minimization problem NP-hard.

Minimizing unrestricted NFAs is PSPACE-complete [18] and every undergrad-
uate computer science curriculum teaches its students how to minimize a DFA in
polynomial time. The minimization problem for automata with varying degrees
of non-determinism was studied in a seminal paper by Jiang and Ravikumar in
1993 [11]. Among other results, they thoroughly investigated the minimization
problem for UFAs. They showed the following.

– Given a UFA, finding the minimal equivalent UFA is NP-complete.
– Given a DFA, finding the minimal equivalent UFA is NP-complete.
– Given a DFA, finding the minimal equivalent NFA is PSPACE-complete.

Minimization problems have even been studied for automata with unary alpha-
bets; see, e.g., [10,5].

Recently, Malcher [12] improved on the results of Jiang and Ravikumar in
the sense that he showed that finite automata with quite a small amount of
non-determinism are hard to minimize. More precisely, he showed the following:

(a) Minimization is NP-complete for automata that can non-deterministically
choose between a fixed number of initial states, but are otherwise determin-
istic.

(b) Minimization is NP-complete for non-deterministic automata with a con-
stant number of computations for each string.2

Whereas Malcher made significant progress in showing that minimization is hard
for non-deterministic automata, he was not yet able to solve the entire question.
Therefore, he states the question whether there are relaxations of the determin-
istic automata model at all for which minimization is tractable as an important
open problem. In this respect, he mentions the class of automata with at most
two computations for each string and the two classes (a) and (b) above with
the added restriction of unambiguousness as important remaining cases. In the
present paper, we settle these open questions and provide a uniform NP-hardness
proof for all classes of automata mentioned above.

In brief, we define a class δNFA of automata that are unambiguous, have at
most two computations per string, and have at most one state q with two out-
going a-transitions, for at most one symbol a. Then, we show that minimization
is NP-hard for all classes of finite automata that include δNFAs, and show that
these hardness results can also be adapted to the setting of unambiguous au-
tomata that can non-deterministically choose between two start states, but are
deterministic everywhere else. This solves the open cases mentioned by Malcher.
On the other hand, there are relaxations of the deterministic automaton model
that allow tractable minimization. We show that, if we add to the definition of

2 Actually, he showed this for automata with constant branching, which is slightly
different from the number of computations; see Section 2.1.

The Tractability Frontier for NFA Minimization 29

δNFAs that each word should have at most one rejecting computation, mini-
mization becomes tractable again. However, the minimal automata in this class
are the DFAs, so this class is not likely to be very useful in practice.

Other related work. An overview of state and transition complexity of NFAs
can be found in [15]. Known results about the trade-off between amount of non-
determinism and descriptional complexity are surveyed in [2]. The problems
of producing small NFAs from regular expressions has been considered in [9,16].
There has also been some work on approximating minimal NFAs [3,4,6], basically
showing that approximation is very hard. The work of Hromkovic et al. [8] about
measuring non-determinism in finite automata will be relevant to us in Section 2.
Since the minimization problem for NFAs is hard, the bisimulation minimization
problem has also been considered; see, e.g., [14,1].

Due to space restrictions, some proofs and parts of proofs have been omitted,
and will appear in the full version of the paper.

2 Preliminaries

By Σ we always denote a finite alphabet. A (non-deterministic) finite automaton
(NFA) over Σ is a tuple A = (States(A),Alpha(A),Rules(A), init(A),Final(A)),
where States(A) is its finite set of states, Alpha(A) = Σ, init(A) ∈ States(A)
is its initial state, Final(A) ⊆ States(A) is its set of final states, and Rules(A)
is a set of transition rules of the form q1

a→ q2, where q1, q2 ∈ States(A) and
a ∈ Σ. The size of an automaton is |States(A)|, i.e., its number of states. A
finite automaton is deterministic if, for each q1 ∈ States(A) and a ∈ Alpha(A),
there is at most one q2 ∈ States(A) such that q1

a→ q2 ∈ Rules(A). By DFA we
denote the class of deterministic finite automata.

A run, or computation, r of A on a word w = a1 · · · an ∈ Σ∗ is a string
q1 · · · qn ∈ States(A)∗ such that init(A) a1→ q1 ∈ Rules(A) and, for each i =
1, . . . , n− 1, qi

ai+1→ qi+1 ∈ Rules(A). The run is accepting if qn ∈ Final(A). The
language of A is the set of words w such that there exists an accepting run of A
on w. A finite automaton A is unambiguous if, for each string w, there exists at
most one accepting run of A on w.

Let N1 and N2 be two classes of NFAs. We say that N1 ⊆ N2 if each automa-
ton in N1 also belongs to N2. For example, DFA ⊆ NFA.

2.1 Notions of Non-determinism

We recall some standard measures of non-determinism in a finite automaton.
For a state q and an alphabet symbol a, the degree of non-determinism of a
pair (q, a), denoted by degree(q, a) is the number k of different states q1, . . . , qk
such that, for all 1 ≤ i ≤ k, q

a→ qi ∈ Rules(A). We say that A has degree
of non-determinism k, denoted by degree(A) = k, if degree(q, a) ≤ k for every
(q, a) ∈ States(A) × Alpha(A), and there is at least one pair (q, a) such that
degree(q, a) = k.

30 H. Björklund and W. Martens

The branching of an automaton is intuitively defined as the maximum prod-
uct of the degrees of non-determinism over states in a possible run. Formally, the
branching of A on a word w = a1 · · · an is branchA(w) = max{Πn

i=1degree(qi−1,
ai) | q1 · · · qn is a run of A on a1 · · · an, and init(A) = q0}. The branching of A,
denoted branch(A), is max{branchA(w) | w ∈ L(A)} if this quantity is defined,
and otherwise∞.

Hromkovic et al. [8] define three measures non-determinism for a finite au-
tomaton A: advice(A), computations(A), and ambig(A). These measures are de-
fined as follows: advice(A) is the maximum number of non-deterministic choices
during any computation of A, computations(A) is the maximum number of dif-
ferent computations of A on any word,3 and ambig(A) is the maximum number
of different accepting computation of A on any word. For the formal definitions
of these concepts, we refer to [8].

2.2 A Notion of Very Little Non-determinism

Next we define the notion of a δNFA. The intuition is that such an automaton
should allow only a very small amount of non-determinism.

Definition 1. A δNFA is an NFA A with the following properties

– A is unambiguous;
– branch(A) ≤ 2; and
– there is at most one pair (q, a) such that degree(q, a) = 2.

For δNFAs, we have that degree(A) ≤ 2, advice(A) ≤ 1, computations(A) ≤
2, and ambig(A) = 1. Notice that any of degree(A) = 1, advice(A) = 0, or
computations(A) = 1 implies that A is deterministic. Also, ambig(A) = 1 is the
minimum value possible for any automaton that accepts at least one string.

2.3 The Minimization Problem

We define the minimization problem in two flavors. For two classes of finite au-
tomata N1 and N2 the N1 → N2 minimization problem is the following problem.
Given a finite automaton A in N1 and an integer k, does there exist a finite au-
tomaton B in N2 of size at most k such that L(A) = L(B)? For a class N of
finite automata, the minimization problem for N is then simply the N → N
minimization problem.

Suppose that the N1 → N2 minimization problem is hard for a complexity
class C, and let N3 be a class of automata such that N1 ⊆ N3. Then the
N3 → N2 minimization problem is also trivially hard for C. However, assuming
that N1 → N2 is hard for C and that N2 ⊆ N3, there is, as far as we know,
no general argument that also makes the N1 → N3 minimization problem hard
for C, as finding a small N3 automaton might be easier than finding a small N2

automaton in general.4 Therefore, we will prove directly that minimization is
NP-hard for all classes of automata between δNFAs and NFAs.
3 Hromkovic et al. wrote leaf(A) instead of computations(A).
4 This is also why, e.g., Malcher explicitly proves NP-hardness for minimizing various

classes of automata that are included in one another (Lemmas 3 and 11 in [12]).

The Tractability Frontier for NFA Minimization 31

2.4 Are δNFAs the Closest Possible to Determinism?

Before we give more intuition about this question, we first note that there are in
fact two incomparable notions of determinism for finite automata: determinism
and reverse determinism.5 Both classes can be efficiently minimized by the same
algorithm, modulo a simple pre- and post-processing step for reverse determin-
istic automata. We view these two classes as the two possible “optima” in the
spectrum of determinism, as they arise very naturally from the fact that one can
either read strings from left to right or from right to left. From now on, we only
consider the proximity of δNFAs to (left-to-right deterministic) DFAs.

We believe that one can always think of more and more exotic notions of
non-determinism that come closer and closer to DFAs.6 We provide an example
here. Define the class C to be the class of δNFAs with the additional condition
that, for each word w, there can be at most one rejecting computation of A
on w. (Thus, for each w, there can be at most two runs — one accepting and
one rejecting.) This notion of non-determinism lies strictly between DFAs and
δNFAs (DFA ⊆ C ⊆ δNFA).

Consider the minimization problem for C and let A be an arbitrary automa-
ton in C. We will argue that the minimal C-automaton for L(A) is a DFA.
Suppose that A is not a DFA. Let q and a be the unique state and label so
that degree(q, a) = 2. Let q1 and q2 be the two states such that q

a→ q1 and
q

a→ q2 are in Rules(A). Let w be an arbitrary string that leads A to state q.
By definition of C, A must accept every string of the form waw′, where w′ is
an arbitrary word in Alpha(A)∗. (If waw′ would be rejected, then there would
be two rejecting runs, one over q1 and one over q2.) Therefore, we can make A
strictly smaller by merging the two states q1, q2 to q3, making q3 a final state,
and adding loop transitions to q3 for each alphabet symbol. Moreover, by this
operation, A becomes deterministic. Hence, every automaton A in C that is not
a DFA can be rewritten as a smaller DFA. This means that, in the class C, the
minimal automata are the DFAs. In particular, this also puts the minimization
problem for C into PTIME.

From the above it is clear that δNFAs are certainly not the closest possible
to determinism that one can get. Rather, it is the closest class to DFAs we were
able to find that takes advantage of the succinctness of nondeterminism in a
nontrivial way.

Our NP-hardness result for the minimization of δNFAs therefore puts the
tractability frontier precisely between δNFAs and the above mentioned class C;
two classes that are extremely close to one another.

3 Minimizing Non-deterministic Automata is Hard

The main result of this section is the following.

5 The latter is the class for which the inverted transitions are deterministic.
6 One could, for instance, take the class of DFAs and add a single NFA.

32 H. Björklund and W. Martens

Theorem 2. Let N be a class of finite automata. If δNFA ⊆ N then DFA → N
minimization is NP-hard.

Corollary 3. For each class N of finite automata such that δNFA ⊆ N , the
minimization problem for N is NP-hard.

We start by formally defining the decision problems that are of interest to us,
and then sketch an intuitive overview of our proof. Given an undirected graph
G = (V,E) such that V is its set of vertices and E ⊆ V × V is its set of edges,
we say that a set of vertices V C ⊆ V is a vertex cover of G if, for every edge
(v1, v2) ∈ E, V C contains v1, v2, or both.

If B and C are finite collections of finite sets, we say that B is a set basis for
C if, for each c ∈ C, there is a subcollection Bc of B whose union is c. We say
that B is a normal set basis for C if, for each c ∈ C, there is a pairwise disjoint
subcollection Bc of B whose union is c. We say that B is a separable normal set
basis for C if B is a normal set basis for C and B can be written as a disjoint
union B1 � B2 such that, for each c ∈ C, the subcollection Bc of B contains at
most one element from B1 and at most one from B2.

The following decision problems are considered in this paper. Vertex Cover
asks, given a pair (G, k) where G is a graph and k is an integer, whether there
exists a vertex cover of G of size at most k. Set Basis, Normal Set Basis, and
Separable Normal Set Basis ask, given a pair (C, s) where C is a finite collection
of finite sets and s is an integer, whether there exists a set basis, resp., normal
set basis, resp., separable normal set basis for C containing at most s sets.

The proof of Theorem 2 proceeds in several steps. First, we provide a slightly
modified version of a known reduction from Vertex Cover to Normal Set Basis
(Lemma 4 in [11]), showing that the latter problem is NP-hard. Second, we
proceed to show that the set I of instances of Normal Set Basis obtained through
this reduction has a number of interesting properties (Lemma 5). In particular,
we show that if such an instance has a set basis of a certain size s, then it also
has a normal set basis of size s. Third, we show that the the Normal Set Basis
problem, for instances in I reduces to minimization for δNFAs (Lemma 6).

The statement of Theorem 2 says that given a DFA, finding the minimal
equivalent automaton in class N is NP-hard, for any class of finite automata
that contains the δNFAs. As argued in Section 2.3, using a DFA instead of a
δNFA as input of the problem strengthens the statement. Also, showing that
DFA → δNFA is NP-hard doesn’t immediately imply that DFA → N is hard
for every N that contains all δNFAs. To show that this is actually the case,
we prove that for the languages obtained in our reduction, the minimal NFAs
are precisely one state smaller than the minimal δNFAs (Lemma 6). For these
languages, the minimization problem for δNFAs and for NFAs is essentially the
same problem.

We revisit a slightly modified reduction which is due to Jiang and Raviku-
mar [11], as our further results rely on a construction in their proof.

Lemma 4 (Jiang and Ravikumar [11]). Normal Set Basis is NP-complete.

The Tractability Frontier for NFA Minimization 33

c4
ij

xi

yi

yj xjci cj

c5
ij

c2
ij

c1
ij

c3
ij

aij

bij

dij

eij

Fig. 1. The constructed sets ci, cj , c
1
ij , . . . , c

5
ij in the proof of Lemma 4

Proof (Sketch). Obviously, Normal Set Basis is in NP. Indeed, given an input
(C, s) for Normal Set Basis, the NP algorithm simply guesses a collection B
containing at most s sets, guesses the subcollections Bc for each c ∈ C, and
verifies whether the sets Bc satisfy the necessary conditions.

We give a reduction from Vertex Cover to Normal Set Basis but omit the
correctness proof. Given an input (G, k) of Vertex Cover, where G = (V,E) is
a graph and k is an integer, we construct in LOGSPACE an input (C, s) of
Normal Set Basis, where C is a finite collection of finite sets and s is an integer.
In particular, (C, s) is constructed such that G has a vertex cover of size at most
k if and only if C has a normal set basis containing at most s sets.

For a technical reason which will become clear in later proofs, we assume
without loss of generality that k < |E| − 3. Notice that, under this restriction,
Vertex Cover is still NP-complete under LOGSPACE reductions. Indeed, if k ≥
|E| − 3, Vertex Cover can be solved in LOGSPACE by testing all possibilities
of the at most 3 vertices which are not in the vertex cover, and verifying that
there does not exist an edge between 2 of these 3 vertices.

Formally, let V = {v1, . . . , vn}. For each i = 1, . . . , n, define ci to be the set
{xi, yi} which intuitively corresponds to the node vi. Let (vi, vj) be in E with
i < j. To each such edge we associate five sets as follows:

c1ij := {xi, aij , bij}, c4ij := {xj , eij , aij}, and
c2ij := {yj, bij , dij}, c5ij := {aij , bij , dij , eij}.
c3ij := {yi, dij , eij},

Figure 1 contains a graphical representation of the constructed sets ci, cj , c
1
ij , . . . ,

c5ij for some (vi, vj) ∈ E. Then, define

C := {ci | 1 ≤ i ≤ n} ∪ {ctij | (vi, vj) ∈ E, i < j, and 1 ≤ t ≤ 5}

and s := n + 4|E| + k. Notice that the collection C contains n + 5|E| sets.
Obviously, C and s can be constructed from G and k in polynomial time.

It can be shown that G has a vertex cover of size at most k if and only if C
has a (separable) normal set basis containing at most s sets. �

34 H. Björklund and W. Martens

The next lemma now follows from the proof of Lemma 4. It shows that C has
a set basis containing s sets if and only if C has a separable normal set basis
containing s sets for any input (C, s) in I. Of course, the latter property does
not hold for the set of all possible inputs for the normal set basis problem.

Lemma 5. There exists a set of inputs I for Normal Set Basis, such that

(1) Normal Set Basis is NP-complete for inputs in I;
(2) for each (C, s) in I, C contains every set at most once and s < |C| − 3;
(3) for each (C, s) ∈ I, the following are equivalent:

(a) C has a set basis containing s sets.
(b) C has a separable normal set basis containing s sets.

(4) for each (C, s) in I, each solution B for (C, s) writes at least two sets of C
as a union of at least two sets in B.

Proof. The set I is obtained by applying the reduction in Lemma 4 to inputs
(G, k) of Vertex Cover such that k ≤ |E| − 3. This immediately shows (1) and
(2). We continue by proving the other cases.
(3) The direction from (b) to (a) is trivial. For the other direction the full proof
of Lemma 4 actually shows that if G has a vertex cover of size k, then C has a
separable normal set basis containing s sets. Conversely, if C has a normal set
basis containing at most s sets, then G has a vertex cover of size k. This would
imply that C also has a separable normal set basis containing s sets.

Hence, we still need to prove that, if C has a set basis of at most s sets,
then C also has a normal set basis containing at most s sets. Let (C, s) be an
instance in I, i.e., there is an n ∈ N and E ⊆ {(i, j) | 1 ≤ i < j ≤ n} such that
C = {ci | 1 ≤ i ≤ n} ∪ {crij | (i, j) ∈ E ∧ 1 ≤ r ≤ 5}, and suppose C has a set
basis B = {b1, . . . , bs} of size s. We construct a normal set basis for C of size s.

Suppose that there is an i such that B contains both {xi} and {xi, yi}. Then
we can replace {xi, yi} with {yi} and still have a set basis for C, since ci is the
only set in C of which {xi, yi} is a subset. Therefore, we can assume without loss
of generality that B either contains {xi, yi} or {xi} and {yi}, but never both
{xi, yi} and {xi} (or, symmetrically, {xi, yi} and {yi}).

Suppose there are 1 ≤ i < j ≤ n and 1 ≤ r ≤ 4 such that crij cannot be
formed as a disjoint union of sets from B. Without loss of generality, we may
assume that r = 1, i.e., crij = c1ij = {xi, aij , bij}, since all other cases follow by
symmetry. Since there are no disjoint sets from B whose union is c1ij , there must
be two different sets b1 and b2 in B that are subsets of cij and contain precisely
two elements each. At least one of these subsets must contain xi. Assume w.l.o.g.
that this set is b1. No subset of size two of c1ij that contains xi is a subset of any
set of C other than c1ij . This means that we can replace b1 with b1− b2 in B and
still have a set basis of size at most s. Thus we can assume that for any i, j and
any r ∈ {1, . . . , 4}, the set crij can be formed as a union of disjoint sets from B.

The only remaining case is if there are 1 ≤ i < j ≤ n such that c5ij cannot be
formed as a disjoint union of sets from B. Let Bij be a subset of B such that
the union of the sets in Bij is c5ij . We can assume that Bij is inclusion free, i.e.,
there are no two sets in Bij such that one is a subset of the other. If Bij has four

The Tractability Frontier for NFA Minimization 35

members, then we can replace Bij with the four singletons and still have a set
basis of size s, so we can assume that Bij has at most three members. Suppose
there is a set b in Bij such that b is not a subset of any set in C other than c5ij .
Then we can replace b with b − (

⋃
b′∈Bij−{b} b

′) in B and still have a set basis
of size at most s. Thus we can assume that each member of Bij is a subset of
some set from C other that c5ij . In particular, this means that each member of
Bij has at most two elements. If we take three different subsets of c5ij with at
most two elements, that are also subsets of other sets from C than c5ij , then at
least two of them are disjoint; see Figure 1. Let these two disjoint sets be b1

and b2. If b1 and b2 both contain two elements, we can replace Bij with {b1, b2}.
Thus we can assume that there are at most two sets in Bij with two elements.
Furthermore, these two sets must overlap. This means that we can assume that
Bij has exactly three members, two with two elements and one singleton.

Without loss of generality, we may assume that Bij = {{aij , bij}, {bij, dij},
{eij}}. All other cases are symmetrical. We may also assume that neither {aij}
nor {bij} belong to B. (If {aij} belongs to B then we can replace {aij , bij}
by {bij} in Bij , and if {bij} belongs to B we can replace {bij, dij} by {dij}in
Bij .) This means that in order to form c1ij either {xi}, {xi, aij}, {xi, bij}, or
{xi, aij , bij} must be a member of B. If it is not {xi}, we can replace it with
{xi}, since none of the other sets is a subset of any other set in C than c1ij . But
if {xi} ∈ B we can also assume that {yi} ∈ B. To form c3ij , B must, apart from
{yi} and {eij}, contain some subset of c3ij that contains dij . Since we have both
{yi} and {eij} in B, we may replace this subset with {dij}. Once we have {dij}
in B, we can replace {bij , dij} by {bij} in B and still have a set basis for C of
size at most s, one that can form c5ij as a union of disjoint members.

In summary, we have shown that from any set basis for C of size s we can
form a normal set basis for C of size at most s.
(4) One simply has to observe that a normal set basis writing at most one set
of C as a union of at least two sets must contain at least |C| sets, and hence
cannot be a solution for (C, s). �

The proof of the following lemma is partly inspired by the proof of Theorem 3.1
of [11], but we significantly strengthen it for our purposes.

Lemma 6. There exists a set of regular languages L such that

(1) DFA → δNFA minimization is NP-complete for DFAs accepting L and
(2) for each L ∈ L, the size of the minimal NFA for L is equal to the size of the

minimal δNFA for L, minus 1.

Proof (Sketch). The NP upper bound is immediate, as equivalence testing for
unambiguous finite automata is in PTIME [17]. We can guess a δNFA of suffi-
ciently small size and test in PTIME whether it is equivalent to the given δNFA.

For the lower bound, we reduce from Separable Normal Set Basis. To this end,
let (C, s) be an input of Separable Normal Set Basis. Hence, C is a collection of
n sets and s is an integer. According to Lemma 5, we can assume without loss of
generality that (C, s) ∈ I, that is, C has a separable normal set basis containing

36 H. Björklund and W. Martens

s sets if and only if C has a normal set basis of size s. Moreover, we can assume
that s < n− 3.

We construct in LOGSPACE a δNFA A and an integer � such that the fol-
lowing are equivalent:

– C has a separable normal set basis of size at most s.
– There exists a δNFA Nδ for L(A) of size at most �.
– There exists an NFA N for L(A) of size at most �− 1.

The δNFA A accepts the language {acb | c ∈ C and b ∈ c}, which is a finite
language of strings of length three.

Formally, let C = {c1, . . . , cn} and ci = {bi,1, . . . , bi,ni}. Then, A is de-
fined over Alpha(A) = {a} ∪

⋃
1≤i≤n{ci, bi,1, . . . , bi,ni}. The state set of A is

States(A) = {q0, q
′
0, q1, . . . , qn, qf}, and the initial and final state sets of A are

q0 and qf , respectively. The transitions Rules(A) are formally defined as follows:

– q0
a→ q′0;

– for every i = 1, . . . , n, q′0
ci→ qi; and

– for every i = 1, . . . , n and j = 1, . . . , ni, qi
bi,j→ qf .

Finally, define � := s + 4.
Obviously, A and � can be constructed from C and s using logarithmic space.

Observe that due to Lemma 5, C contains every set at most once, and hence
does not contain ci = cj with i �= j. Hence, A is a minimal DFA for L(A).

We now show that,

(a) if C has a separable normal set basis containing at most s sets, then there
exists a δNFA Nδ for L(A) of size at most � and an NFA N for L(A) of size
at most �− 1;

(b) if there exists a δNFA Nδ for L(A) of size at most � then C has a separable
normal set basis containing at most s sets; and

(c) if there exists an NFA N for L(A) of size at most �−1 then C has a separable
normal set basis containing at most s sets.

(a) Assume that C has a separable normal set basis containing s sets. We con-
struct a δNFA Nδ for L(A) of size � = s + 4.

Let B = {r1, . . . , rs} be the separable normal set basis for C containing s sets.
Also, let B1 and B2 be disjoint subcollections of B such that each element of C
is either an element of B1, an element of B2, or a disjoint union of an element
of B1 and an element of B2.

To describe Nδ, we first fix the representation of each set c in C as a disjoint
union of at most one set in B1 and at most one set in B2. Say that each basic
member of B in this representation belongs to c.

We define the state set of Nδ as States(Nδ) = {q0, q1, q2, qf}∪{ri ∈ B1}∪{ri ∈
B2}. The transition rules of Nδ are defined as follows. First, Rules(Nδ) contains
the non-deterministic transitions q0

a→ q1 and q0
a→ q2. Furthermore, for every

i = 1, . . . , n, j = 1, . . . , s, and m = 1, 2, Rules(Nδ) contains the rule

The Tractability Frontier for NFA Minimization 37

– qm
ci→ rj , if rj ∈ Bm and rj belongs to ci; and

– rj
b→ qf , if rj ∈ Bm and b ∈ rj .

Notice that the size of Nδ is |B|+ 4 = s + 4 = �. By construction, we have that
L(Nδ) = L(A). It can be shown that Nδ is a δNFA.
(b) This part of the proof is omitted.
(c) It can be shown that an NFA for L(A) of size at most � − 1 gives rise to a
set basis of size s. From Lemma 5, it now follows that C also has a separable
normal set basis containing at most s sets. �
Theorem 2 now follows from the proof of Lemma 6.

Until now, our results focused on classes of finite automata that can accept
all regular languages. Our proof shows that this is not even necessary, as the
NP-hard instances we construct only accept strings of length tree. Therefore, we
also have the following Corollary.

Corollary 7. Let δNFAfinite be the class of δNFAs that accept only finite lan-
guages. Let N be class of finite automata. If δNFAfinite ⊆ N then the DFA → N
minimization problem is NP-hard.

4 Succinctness and Uniqueness

As mentioned in the introduction, when a developer selects a description mech-
anism for regular languages, she faces a trade-off between succinctness and com-
plexity of minimization. The following proposition shows that in the case of
δNFAs, the succinctness bought at the price of NP-completeness is limited.

Proposition 8. For every δNFA of size n, there is an equivalent DFA of size
O(n2).

On the other hand, if we were to remove the branch(A) ≤ 2 condition in the
definition of δNFAs, then there would be an exponential gain in succinctness.
This is witnessed by the standard family of languages (a+ b)∗a(a+ b)n for n ≥ 0
that shows that NFAs are exponentially more succinct than DFAs in general.
The canonical NFA for this language is unambiguous and has only one pair (q, a)
for which degree(q, a) = 2.

Proposition 9. The minimal δNFA for a regular language is not unique.

5 Automata with Multiple Initial States

Throughout the paper, to simplify definitions, we have assumed that finite au-
tomata have a unique start state. As we mentioned in the Introduction, the
minimization problem for finite automata that can non-deterministically choose
between multiple initial states, but are otherwise deterministic, has also been
studied [7,12].

Proposition 10. Minimization is NP-hard for unambiguous finite automata
that have at most two initial states but are otherwise deterministic.

Together with Theorem 2 this solves all the open cases mentioned by Malcher [12].

38 H. Björklund and W. Martens

References

1. Abdulla, P., Deneux, J., Kaati, L., Nilsson, M.: Minimization of non-deterministic
automata with large alphabets. In: CIAA, pp. 31–42 (2006)

2. Goldstine, J., Kappes, M., Kintala, C., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. Univ. Comp. Sci-
ence 8(2), 193–234 (2002)

3. Gramlich, G., Schnitger, G.: Minimizing NFAs and regular expressions. JCSS 73(6),
908–923 (2007)

4. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006)

5. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: LATA, pp. 261–272 (2007)

6. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT
2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

7. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Automata, Languages, and Combinatorics 6(4), 453–466 (2001)

8. Hromkovic, J., Karhumäki, J., Klauck, H., Schnitger, G., Seibert, S.: Measures of
nondeterminism in finite automata. In: Welzl, E., Montanari, U., Rolim, J.D.P.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 199–210. Springer, Heidelberg (2000)

9. Hromkovic, J., Schnitger, G.: Comparing the size of NFAs with and without epsilon-
transitions. TCS 380(2), 100–114 (2007)

10. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal
NFAs over unary alphabet. Int. J. Found. Comp. Science 2, 163–182 (1991)

11. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. Siam J. Comp. 22(6),
1117–1141 (1993)

12. Malcher, A.: Minimizing finite automata is computationally hard. TCS 327(3),
375–390 (2004)

13. Meyer, A., Fischer, M.J.: Economy of descriptions by automata, grammars, and
formal systems. In: FOCS, pp. 188–191. IEEE, Los Alamitos (1971)

14. Paige, R., Tarjan, R.: Three parition refinement algorithms. Siam J. Comp. 16,
973–989 (1987)

15. Salomaa, K.: Descriptional complexity of nondeterministic finite automata. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 31–
35. Springer, Heidelberg (2007)

16. Schnitger, G.: Regular expressions and NFAs without epsilon-transitions. In: Du-
rand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer,
Heidelberg (2006)

17. Stearns, R.E., Hunt III., H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. Siam J.
Comp. 14(3), 598–611 (1985)

18. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time: Preliminary
report. In: STOC, pp. 1–9. ACM, New York (1973)

Finite Automata, Digraph Connectivity, and
Regular Expression Size

(Extended Abstract)

Hermann Gruber1 and Markus Holzer2

1 Institut für Informatik, Ludwig-Maximilians-Universität München,
Oettingenstraße 67, D-80538 München, Germany

gruberh@tcs.ifi.lmu.de
2 Institut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany
holzer@in.tum.de

Abstract. Recently lower bounds on the minimum required size for the
conversion of deterministic finite automata into regular expressions and
on the required size of regular expressions resulting from applying some
basic language operations on them, were given by Gelade and Neven [8].
We strengthen and extend these results, obtaining lower bounds that are
in part optimal, and, notably, the presented examples are over a binary
alphabet, which is best possible. To this end, we develop a different, more
versatile lower bound technique that is based on the star height of regular
languages. It is known that for a restricted class of regular languages, the
star height can be determined from the digraph underlying the transition
structure of the minimal finite automaton accepting that language. In
this way, star height is tied to cycle rank, a structural complexity measure
for digraphs proposed by Eggan and Büchi, which measures the degree
of connectivity of directed graphs.

1 Introduction

One of the most basic theorems in formal language theory is that every regular
expression can be effectively converted into an equivalent finite automaton, and
vice versa [16]. While algorithms accomplishing these tasks have been known for
a long time, there has been a renewed interest in these classical problems during
the last few years. For instance, new algorithms for converting regular expressions
into finite automata outperforming classical algorithms have been found only
recently, as well as a matching lower bound of Ω(n · log2 n) on the number of
transitions required by any equivalent nondeterministic finite automaton (NFA).
The lower bound is, however, only attained for growing alphabet size, and a
better algorithm is known for constant alphabet size, see [26] for the current
state of the art.

In contrast, much less is known about the converse direction, namely of con-
verting finite automata into regular expressions. Apart from the fundamental

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 39–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 H. Gruber and M. Holzer

Table 1. Comparing the lower bound results for conversion problems of deterministic
finite automata (DFA) and regular expressions (RE), where ∩ denotes intersection,
¬ complementation, and x the shuffle operation on formal languages. Entries with a
bound in Θ(·) indicate that the result is best possible, i.e., refers to a lower bound
matching a known upper bound.

Conversion Gelade and Neven [8] this paper with |Σ| = 2

planar DFA to RE1 — 2Θ(
√

n) [Thm. 11]

DFA to RE 2Ω(
√

n/ log n) for |Σ| = 4 2Θ(n) [Thm. 16]
RE ∩RE to RE 2Ω(

√
n) for |Σ| = O(n) 2Ω(n) [Cor. 8]

RE x RE to RE — 2Ω(n) [Cor. 9]

¬RE to RE 22Ω(n)
for |Σ| = 4 22Ω(

√
n log n)

[Thm. 10]

nature of the problem, some applications lie in control flow normalization, in-
cluding uses in software engineering such as automatic translation of legacy
code [20]. All known algorithms covering the general case of infinite languages
are based on the classical ones, which are compared in the survey [25]. The
drawback is that all of these (structurally similar) algorithms return expressions
of size 2O(n) in the worst case, and Ehrenfeucht and Zeiger exhibit a family
of languages over an alphabet of size n2 for which this exponential blow-up is
inevitable [6]. These examples naturally raise the question whether a size blow-
up of 2Ω(n) can also occur for constant alphabet size, a question posed in [7].
One of the main results in this paper is a positive answer to this question, even
in the case of a binary alphabet; note that the conversion problem becomes
polynomial for unary languages [7]. Currently, there are not many lower bound
techniques for regular expression size. A notable exception is the technique used
in the above mentioned work [6], which however requires, in its original version,
a largely growing alphabet. Recently, a variation of Ehrenfeucht and Zeiger’s
method was used in [8] to get similar but weaker lower bounds on the conver-
sion problem for small alphabets. The above mentioned question, however, was
left open. A technique based on communication complexity that applies only for
finite languages, is proposed in [10]. They give an optimal bound of nΘ(logn) for
the conversion problem in the case of finite languages.

Independently of [8], we take a different direction, by relating the descrip-
tional complexity of regular languages (alphabetic width) to their structural
complexity (star height). The star height is a structural complexity measure of
regular languages that has been intensively studied in the literature for more
than 40 years, see [11,15] for a recent treatment. Determining the star height
can be in some cases reduced to the easier task of determining the cycle rank
of a certain digraph. The latter concept is related to the cycle rank of digraphs,
a digraph connectivity measure defined by Eggan and Büchi [5] in the 1960s.
Since measuring the connectivity of digraphs is a very active research area, see,
1 The lower bound result on the conversion of planar deterministic finite automata to

regular expressions holds for |Σ| = 4.

Finite Automata, Digraph Connectivity, and Regular Expression Size 41

e.g., [1,2,14,22], and as we feel that cycle rank is a interesting concept in its own
right, we summarize and further develop the theory of cycle rank. For a more
thorough treatment, including all proofs and comparison to some other recently
proposed measures we refer to [9]. These connections turn out to be fruitful,
allowing not only for proving a tight lower bound on the problem of convert-
ing finite automata into regular expressions, but also for giving reasonably good
lower bounds for the alphabetic width of some basic regular language operations,
namely intersection, complement, and shuffle. In this way, we independently im-
prove on and extend the recently obtained results in [8]—we summarize and
compare the obtained results in Table 1.

2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [12].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the al-
phabet Σ, including the empty word ε. The length of a word w is denoted by |w|,
where |ε| = 0. A (formal) language over the alphabet Σ is a subset of Σ∗.

The regular expressions over an alphabet Σ are defined recursively in the usual
way:2 ∅, ε, and every letter a with a ∈ Σ is a regular expression; and when r1

and r2 are regular expressions, then (r1 + r2), (r1 · r2), and (r1)∗ are also regular
expressions. The language defined by a regular expression r, denoted by L(r), is
defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, L(r1 + r2) = L(r1)∪L(r2),
L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)∗. The size or alphabetic width of a
regular expression r over the alphabet Σ, denoted by alph(r), is defined as the
total number of occurrences of letters of Σ in r. For a regular language L, we
define its alphabetic width, alph(L), as the minimum alphabetic width among
all regular expressions describing L.

It is well known that regular expressions and finite automata are equally pow-
erful, i.e., for every regular expression one can construct an equivalent (determin-
istic) finite automaton and vice versa. Finite automata are defined as follows:
A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q

is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. The language accepted by the finite automaton A is defined as
L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where δ is naturally extended to a func-
tion Q×Σ∗ → 2Q. A nondeterministic finite automaton A = (Q,Σ, δ,Q0, F) is
deterministic, for short a DFA, if |δ(q, a)| ≤ 1, for every q ∈ Q and a ∈ Σ. In
this case we simply write δ(q, a) = p instead of δ(q, a) = {p}. Two (determinis-
tic or nondeterministic) finite automata are equivalent if they accept the same
language.
2 For convenience, parentheses in regular expressions are sometimes omitted and the

concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: concatenation is performed before union, and star before both
product and union.

42 H. Gruber and M. Holzer

In the remainder of this section we fix some basic notions from graph theory.
A directed graph, or digraph, G = (V,E) consists of a finite set of vertices V
with an associated set of edges E ⊆ V ×V . An edge whose start and end vertex
are identical is called a loop. If G has no loops, then G is called loop-free. If the
edge relation of G is symmetric, then G is an undirected graph, or simply graph.
It is often convenient to view the set of edges of an undirected graph as a set of
unordered pairs {u, v}, with u and v in V . Only if there is no risk of confusion,
for an undirected graph G, we refer to the set { {u, v} | (u, v) ∈ E } as the set
of edges of G, and, abusing notation, denote it by E. A digraph H = (U,F) is a
subdigraph, or simply subgraph, of a digraph G = (V,E), if U ⊆ V and for each
edge (u, v) ∈ F with u, v ∈ U , the pair (u, v) is an edge in E. A subgraph H is
called induced, if furthermore for each edge (u, v) ∈ E with u, v ∈ U , the pair
(u, v) is also an edge in F . In the latter case, H is referred to as the subgraph of
G induced by U , and denoted by G[U]. When removing a set of vertices U , or a
single vertex u, from G, it is often handy to write G − U and G − u to denote
the induced subgraphs G[V \ U] and G[V \ {u}], respectively.

We recall the definitions of some other important concepts related to walks
and reachability. A subgraph H = (U,F) of G is strongly connected, if for every
vertices u and v, both u is reachable from v and v is reachable from u. A strongly
connected subgraph H is called nontrivial if H has at least one edge, otherwise it
is called trivial. Note that every trivial strongly connected subgraph has at most
one vertex, but if G is not loop-free, it also has nontrivial strongly connected
subgraphs with only one vertex. A set of vertices ∅ ⊂ C ⊆ V is a strongly
connected component if G[C] is strongly connected, but for every proper superset
C′ ⊃ C, the induced subgraph G[C′] is not strongly connected.

3 Star Height of Regular Languages and Cycle Rank of
Digraphs

3.1 Definitions and Early Results

For a regular expression r over Σ, the star height, denoted by h(r), is a structural
complexity measure inductively defined by: h(∅) = h(ε) = h(a) = 0, h(r1 · r2) =
h(r1+r2) = max (h(r1), h(r2)), and h(r∗1) = 1+h(r1). The star height of a regular
language L, denoted by h(L), is then defined as the minimum star height among
all regular expressions describing L. We will later establish a relation between
star height and alphabetic width of regular languages. This relation will allow
us to reduce the task of proving lower bounds on alphabetic width to the one of
proving lower bounds on star height.

First, we call to attention a structural complexity measure for digraphs in-
timately related to the star height of regular languages, called the cycle rank,
suggested by Eggan and Büchi in the course of investigating the star height of
regular languages [5].

Definition 1. The cycle rank of a directed graph G = (V,E), denoted by cr(G),
is inductively defined as follows: (1) If G is acyclic, then cr(G) = 0. (2) If G is

Finite Automata, Digraph Connectivity, and Regular Expression Size 43

strongly connected, then cr(G) = 1 + minv∈V {cr(G − v)}, where G − v denotes
the graph with the vertex set V \ {v} and appropriately defined edge set. (3) If G
is not strongly connected, then cr(G) equals the maximum cycle rank among all
strongly connected components of G.

In the following, we will be sometimes concerned with the cycle rank of the di-
graph underlying the transition structure of finite automata, so for a given finite
automaton A, let its cycle rank, denoted by cr(A), be defined as the cycle rank
of the underlying graph. The following relation between cycle rank of automata
and star height of regular languages became known as Eggan’s Theorem [5]:

Theorem 2 (Eggan’s Theorem). The star height of a regular language L
equals the minimum cycle rank among all nondeterministic finite automata ac-
cepting L.

The star height of a regular language appears to be a more difficult concept
than alphabetic width, see, e.g., [11,15]. In light of this consideration, proving
lower bounds on alphabetic width via lower bounds on star height appears to be
trading a hard problem for an even harder one. But early research on the star
height problem established a subclass of regular languages for which the star
height is determined more easily, namely the family of bideterministic regular
languages, which are defined as follows: A regular language L is bideterministic if
there exists a deterministic finite automaton A with a single final state such that
a deterministic finite automaton accepting the reversed language LR is obtained
from A by reverting the direction of each transition and exchanging the roles
of the initial and final state. The star height of bideterministic languages was
shown to be computable in [18], building on earlier work which was, however,
published only later in [19]:

Theorem 3 (McNaughton’s Theorem). Let L be a bideterministic language,
and let A be the minimal trim, i.e., without a dead state, deterministic finite au-
tomaton accepting L. Then h(L) = cr(A).

In fact, the minimality requirement in the above theorem is not needed, since
every bideterministic finite automaton in which all states are useful is already
a trim minimal deterministic finite automaton. Here, a state is useful if it is
both reachable from the start state, and from which the final state is reachable
from it.

In order to relate star height to alphabetic width, and to find lower bound
techniques for the cycle rank, we study the latter concept in more detail. First,
we establish a basic fact about cycle rank, which is used throughout the fol-
lowing sections. The second part of the following statement is found in [19,
Theorem 2.4.], and the other part is established by an easy induction:

Lemma 4. Let G = (V,E) be a digraph and let U ⊆ V . Then we have the
inequalities cr(G) − |U | ≤ cr(G − U) ≤ cr(G), where G − U denotes the graph
with vertex set V \ U and appropriately defined edge set. ��

44 H. Gruber and M. Holzer

3.2 Cycle Rank Via Cops and Robbers

The characterization of cycle rank in terms of some “game against the graph”
was already suggested in [19]. We give a modern formulation in terms of a cops
and robber game. This characterization provides a useful tool in proving lower
bounds on the cycle rank of specific families of digraphs. Moreover, many other
digraph connectivity measures proposed recently admit a characterization in
terms of some cops and robber game; this allows to compare the cycle rank with
these other measures.

The cops and strong visible robber game, defined in [14], is given as follows:
Let G = (V,E) be a digraph. Initially, the cops occupy some set of X ⊆ V
vertices, with |X | ≤ k, and the robber is placed on some vertex v ∈ V \X . At
any time, some of the cops can reside outside the graph, say, in a helicopter.
In each round, the cop player chooses the next location X ′ ⊆ V for the cops.
The stationary cops in X ∩ X ′ remain in their positions, while the others go
to the helicopter and fly to their new position. During this, the robber player,
knowing the cops’ next position X ′ from wire-tapping the police radio, can run
at great speed to any new position v′, provided there is both a (possibly empty)
directed path from v to v′, and a (possibly empty) directed path back from v′

to v in G−(X∩X ′), i.e., he has to avoid to run into a stationary cop, and to run
along a path in and to stay in the same strongly connected component of the
remaining graph induced by the non-blocked vertices. Afterwards, the helicopter
lands the cops at their new positions, and the next round starts, with X ′ and v′

taking over the roles of X and v, respectively. The cop player wins the game if
the robber cannot move any more, and the robber player wins if the robber can
escape indefinitely.

The immutable cops variant of the above game restricts the movements of the
cops in the following way: Once a cop has been placed on some vertex of the
graph, he has to stay there forever. The hot-plate variant of the game restricts
the movements of the robber in that he has to move along a nontrivial path in
each move—even if the path consists only of a self-loop. These games are robust
in the sense that small variations of rules, such as letting the robber player begin,
or allowing only the placement of one cop at a time, do not alter the number of
required cops. Also note that at most one additional cop is needed if we drop the
hot-plate restriction. The following theorem gives a characterization of the cycle
rank in terms of such a game. Due to space constraints, the proof is omitted.

Theorem 5. Let G be a digraph and k ≥ 0. Then k cops have a winning strategy
for the immutable cops and hot-plate strong visible robber game if and only if the
cycle rank of G is at most k, i.e., cr(G) ≤ k. ��

4 Lower Bounds on Regular Expression Size

Now we have developed enough tools to derive lower bounds on alphabetic width
in terms of star height.

Theorem 6. Let L ⊆ Σ∗ be a regular language. Then alph(L) ≥ 2
1
3 (h(L)−1)−1.

Finite Automata, Digraph Connectivity, and Regular Expression Size 45

Proof. Let r be a regular expression over Σ of alphabetic width n = alph(L).
Then the construction given in [13] shows how to transform this expression into
an equivalent nondeterministic finite automaton A with ε-transitions having at
most n+1 states. It is not hard to see that the digraph underlying the transition
structure of the constructed automaton has undirected treewidth at most 2. With
a graph separator technique, we show the following claim:

Let G be a digraph with n vertices and undirected treewidth at most k.
Then cr(G) ≤ 1 + (k + 1) · logn.

We argue as follows: First, we lift some notions and results concerning graph
separators known for undirected graphs (see, e.g., [21]), to the case of digraphs:
Let G = (V,E) be a digraph and let U ⊆ V be a set of vertices. A set of
vertices S is a weak separator for U if every strongly connected component of
G[U \S] contains at most 1

2 |U | vertices. For real numbers 0 ≤ k ≤ |V |, let s(G, k)
denote the maximum of the size of the smallest weak separator for U , where the
maximum is taken over all subsets U of size at most k of V . The weak separator
number of G, denoted by s(G), is defined as s(G, |V |).

Next we prove the following relation: Let G = (V,E) be a digraph with n ≥ 1
vertices. Then

cr(G) ≤ 1 +
∑

0≤k≤log n−1

s
(
G,

n

2k
)
. (1)

The proof proceeds by induction on n. In the case n = 1, we have s(G) = 0,
and the sum in the statement of the lemma is empty, as desired. The induction
step is as follows: By definition of weak separator number, G has a weak sep-
arator S of size at most s(G,n). Let C1, C2, . . . , Cp be the strongly connected
components of G− S. Each of these has cardinality at most n

2 . With Lemma 4,
we obtain

cr(G) ≤ |S|+ max
1≤i≤p

cr(Ci) ≤ s
(
G,

n

20

)
+ max

1≤i≤p
cr(Ci).

Since for each k ≤ n and for each strongly connected component Ci obviously
holds s(Ci, k) ≤ s(G, k), we have by induction hypothesis

max
1≤i≤p

cr(Ci) ≤ 1 +
∑

0≤k≤log(n/2)−1

s

(

G,
n/2
2k

)

= 1 +
∑

1≤k≤log n−1

s
(
G,

n

2k
)
,

where the right hand side is obtained by simply shifting the summation index.
By putting the two inequalities together, the proof of Inequality (1) is completed.

This establishes a relation between cycle rank and weak separator number,
namely cr(G) ≤ 1 + s(G) · logn, if G is a digraph with n vertices. Moreover, it is
known from [24] that digraphs with undirected treewidth at most k have weak
separator number at most k + 1, thus establishing our claim. Thus, we obtain
cr(A) ≤ 1+3 log(n+1). Finally, the proof is completed by using Theorem 2. ��

This bound is almost tight: Define the language Ln inductively by L0 = ε and
Li = (a · Li−1 · b)∗, for i > 0. Then alph(Ln) is clearly at most 2n, but it is

46 H. Gruber and M. Holzer

known from [19] that h(L2k) = k, for each k ≥ 1. In contrast, there cannot
exist an upper bound on the alphabetic width in terms of star height, since all
finite languages have star height 0, but there are only finitely many languages
of bounded alphabetic width.

4.1 Lower Bounds on Alphabetic Width of Language Operations

As a first application of Theorem 6, we exhibit a family of languages over a
binary alphabet that shows that several natural operations on regular languages
such as complement, intersection and shuffle cannot be supported efficiently
by regular expressions; most notably, complementation can require an almost
doubly-exponential blow-up in regular expression size. These languages have an
appealingly simple structure, and their star height was already studied, although
not completely determined, in the very first paper on star height of regular
languages [5].

Theorem 7. For m,n ∈ N, define Km = {w ∈ {a, b}∗ | |w|a ≡ 0 mod m }
and Ln = {w ∈ {a, b}∗ | |w|b ≡ 0 mod n }. Then we have h(Km ∩ Ln) = m, if
m = n, and h(Km ∩ Ln) = min(m,n) + 1, otherwise.

Proof. The stated upper bound on the star height is proved already in [5, Corol-
lary 2, pp. 394f.], so it remains to show a matching lower bound. It is straightfor-
ward to construct deterministic finite automata with m (n, respectively) states
describing the languages Km and Ln, respectively. By applying the standard
product construction on these automata, we obtain a deterministic finite au-
tomaton A accepting the language Km ∩ Ln. It is not hard to see that this
automaton is a minimal trim deterministic finite automaton, and furthermore
that it is bideterministic. Therefore Theorem 3 shows h(Km ∩ Ln) = cr(A).

The digraph underlying automaton A is the directed discrete (m × n)-torus
arising from the Cartesian graph product of two directed cycles, whose entan-
glement was determined by similar means in [2]. We give a lower bound on the
cycle rank of this digraph using the game characterization given in Theorem 5.
By symmetry, assume the torus has m rows and n columns, with m ≤ n. At
any stage of the game, we call a row (column, respectively) free, if each of the
vertices in the row (column, respectively) is neither yet occupied, nor announced
to be occupied in the current move of the cops. In the kth move of the cops,
there are at least m− k free rows and n− k free columns. As long as k < m, the
robbers’ strategy is to reside on the subgraph induced by the rows and columns
that are currently free. For k < m, each free row or column is strongly connected
itself, and each pair of free columns is strongly connected to each other via the
(nonempty) set of free rows. The strategy always yields a valid game position,
and this already shows the desired lower bound in the case m = n. In the case
m > n, as soon as the last free row is threatening to be occupied, the robber can
still flee to one of the remaining free columns. Thus an additional cop is needed,
since each free column itself forms a nontrivial strongly connected subgraph,
even though the columns are no longer strongly connected to each other. ��

Finite Automata, Digraph Connectivity, and Regular Expression Size 47

Together with Theorem 6, we immediately obtain some results about the alpha-
betic width of operations on regular languages. The classical way to extend the
syntax of regular expressions is to allow intersection, thus obtaining the semi-
extended regular expressions, or to allow also complement, resulting in extended
regular expressions. It is known that semi-extended regular expressions can be
exponentially more succinct even than nondeterministic finite automata, and
hence than ordinary regular expressions. The former fact no longer holds if the
number of occurrences of the intersection operator is bounded. But for regular
expressions, already a single intersection operation can infer a huge blow-up in
the needed description size:

Corollary 8. For every m ≥ n, there exist languages Km and Ln over a binary
alphabet with alph(Km) ≤ m and alph(Ln) ≤ n, such that alph(Km ∩ Ln) =
2Ω(n). ��

This improves a lower bound independently obtained in [8]. Another language
operation is the shuffle of two languages, which naturally arises in modeling the
interleaving of the action traces of two processes. The shuffle of two languages L1

and L2 over alphabet Σ is {w ∈ Σ∗ | w ∈ x x y for some x ∈ L1 and y ∈ L2 },
where the shuffle of two words x and y is defined as the set of all words of the form
x1y1x2y2 . . . xnyn, where x = x1 . . . xn, y = y1 . . . yn with xi, yi ∈ Σ∗, for 1 ≤
i ≤ n and n ≥ 1, and is denoted by x x y. While the shuffle operation preserves
regularity, it is known that regular expressions extended with the shuffle operator
can be exponentially more succinct than regular expressions—in fact, the same
holds for nondeterministic finite automata [17]. As with intersection, a similar
blow-up can be caused already by a single application of the shuffle operator
(which cannot be deduced from an argument solely based on automaton size).
Namely, the language from Theorem 7 can be written as (am)∗ x (bn)∗.

Corollary 9. For every m ≥ n, there exist languages Lm and Ln over a binary
alphabet with alph(Km) ≤ m and alph(Ln) ≤ n, such that alph(Km x Ln) =
2Ω(n). ��

For numbers n that have many distinct prime factors, the language {a, b}∗ \
(Kn∩Ln), where Kn and Ln are defined as in Theorem 7, can be expressed very
succinctly by a regular expression using a kind of Chinese Remainder Represen-
tation. In this way, we obtain for the complementation operation a lower bound
that is roughly doubly exponential, even for binary alphabets, thus complement-
ing a result given in [8] for 4-symbol alphabets—the proof is omitted due to lack
of space:

Theorem 10. There exists an infinite family of languages Ln over a binary
alphabet Σ with alph(Ln) ≤ n, such that alph(Σ∗ \ Ln) = 22Ω(

√
n log n)

. ��

4.2 A Lower Bound for Converting DFAs into Regular Expressions

From the results in the previous chapter, it can be deduced that there are very
simple examples of languages over a binary alphabet for which a blow-up in

48 H. Gruber and M. Holzer

size of 2Ω(
√
n) is inevitable when converting from an n-state deterministic finite

automaton to an equivalent regular expression. Next, we can show that this
bound can even be reached for planar deterministic finite automata, first studied
in [4], thus complementing a corresponding algorithmic result from [7] with an
optimal lower bound—again, the proof has to be omitted, but we note that the
transition structure of the witness DFA are undirected grid graphs.

Theorem 11. For alphabet size |Σ| ≥ 4, there is an infinite family of lan-
guages Ln over alphabet Σ acceptable by n-state planar deterministic finite au-
tomata, such that alph(Ln) ≥ 2Ω(

√
n). ��

The obvious question is now if a lower bound of 2Ω(n) can be reached over a
constant alphabet, when starting with non-planar deterministic finite automata.
The rest of this section is devoted to a proof of this fact.

By Theorem 5, the cycle rank of an undirected graph G, i.e., a symmetric
digraph, can be described in terms of the immutable cops and strong visible
robber game. Note that in this case every connected component of size at least
two is also a nontrivial strongly connected component. The greedy strategy for
the robber player is to choose in each step the largest connected component he
can reach in the remaining graph. We will identify a class of graphs in which the
greedy strategy is particularly successful, namely expander graphs.

Definition 12. Let G = (V,E) be an undirected graph. For a subset U ⊂ V ,
the boundary of U , denoted by δU , is defined as δU = { v ∈ V \ U | {u, v} ∈
E for some u ∈ U }. An (undirected) d-regular graph G = (V,E) with n vertices
is called a (n, d, c)-expander, for c > 0, if each subset U ⊂ V of vertices satisfies
|δU | > c · |U |, if |U | < n/2 and |δU | ≥ c · (n− |U |), if |U | ≥ n/2.

A now standard probabilistic argument, originally from [23], shows that expander
graphs are the rule rather than the exception among d-regular graphs, for all
d ≥ 3.

Theorem 13 (Pinsker). There exists a fixed c > 0 such that for any d ≥ 3
and even integer n, there is an (n, d, c)-expander, which is furthermore d-edge-
colorable.3

The proof of the following theorem is similar to that of [3, Theorem 4], where it
was shown that each directed expander graph contains a long directed path.

Theorem 14. Let G be a (n, d, c)-expander with n ≥ 3. Then the cycle rank
of G is at least c

d+1 (n− 1), i.e., cr(G) ≥ c
d+1 (n− 1). ��

The next lemma shows that such a graph, equipped with an edge coloring, can be
easily converted into a bideterministic finite automaton that accepts a language
of large star height and uses only the edge colors as input alphabet.
3 That is, one can assign to its edges d colors such that no pair of incident edges

receives the same color.

Finite Automata, Digraph Connectivity, and Regular Expression Size 49

Lemma 15. For every d-edge colorable, connected undirected graph G with n ver-
tices of cycle rank k, there exists an n-state deterministic finite automaton A over
a d-symbol alphabet such that the star height of L(A) is k.

Proof. Let G = (V,E) be such a graph, with V = {1, 2, . . . , n}. and maximum
degree d, equipped with an edge coloring c : E → {0, 1, . . . , d} such that no pair
of incident edges receives the same color. Given this colored graph, we construct
a deterministic finite automaton over the alphabet Σ = {a1, a2, . . . , ad} with
state set V , start and single final state v0 ∈ V (arbitrary), and whose transition
relation is defined as follows: δ(p, ai) = q if the colored graph G has an i-colored
edge {p, q}. It is not hard to see that this automaton is a trim bideterministic
automaton, and therefore minimal. Furthermore, its underlying digraph is sym-
metric, and its undirected version is isomorphic to G. By Theorem 3, the star
height of L(A) equals k. ��

For the main theorem of this section we need the existence of a suitable ho-
momorphism that preserves star height. The existence of reasonably economic
binary encodings with this property have been already conjectured in [5], and
their existence was proved constructively in [19]: Let Σ = {a1, a2, . . . , ad} be
a finite alphabet, d ≥ 1, and let ϕ : Σ∗ → {a, b}∗ be the homomorphism de-
fined by ϕ(ai) = aibd−i+1, for i = 1, 2, . . . , d. Then for every regular language
L ⊆ Σ∗ the star height of L equals the star height of ϕ(L). Then Lemma 15 and
Theorems 6, 13, and 14 can be combined with the above presented star height
preserving homomorphism to give the following theorem.

Theorem 16. For alphabet size |Σ| ≥ 2, there is an infinite family of lan-
guages Ln over alphabet Σ acceptable by deterministic finite automata with at
most n states, such that alph(Ln) = 2Ω(n). ��

This gives an affirmative answer to “Open Problem 3” in [7], which asked whether
such a family of languages exists, over some constant alphabet.

References

1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

2. Berwanger, D., Grädel, E.: Entanglement—A measure for the complexity of di-
rected graphs with applications to logic and games. In: Baader, F., Voronkov, A.
(eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg
(2005)

3. Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths and
cycles. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004)

4. Book, R.V., Chandra, A.K.: Inherently nonplanar automata. Acta Informatica 6,
89–94 (1976)

5. Eggan, L.C.: Transition graphs and the star height of regular events. Michigan
Mathematical Journal 10, 385–397 (1963)

50 H. Gruber and M. Holzer

6. Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. Journal
of Computer and System Sciences 12(2), 134–146 (1976)

7. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results
and open problems. Journal of Automata, Languages and Combinatorics 10(4),
407–437 (2005)

8. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. In: Albers, S., Weil, P. (eds.) Symposium on Theoretical Aspects of
Computer Science. Dagstuhl Seminar Proceedings, vol. 08001, pp. 325–336. IBFI
(2008)

9. Gruber, H., Holzer, M.: Finite automata, digraph connectivity and regular expres-
sion size. Technical report, Technische Universität München (December 2007)

10. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using
communication complexity. In: Amadio, R. (ed.) Foundations of Software Science
and Computation Structures. LNCS, vol. 4962, pp. 273–286. Springer, Heidelberg
(2008)

11. Hashiguchi, K.: Algorithms for determining relative star height and star height.
Information and Computation 78(2), 124–169 (1988)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

13. Ilie, L., Yu, S.: Follow automata. Information and Computation 186(1), 140–162
(2003)

14. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Jour-
nal of Combinatorial Theory, Series B 82(1), 138–154 (2001)

15. Kirsten, D.: Distance desert automata and the star height problem. RAIRO –
Theoretical Informatics and Applications 39(3), 455–509 (2005)

16. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies. Annals of Mathematics Studies,
pp. 3–42. Princeton University Press, Princeton (1956)

17. Mayer, A.J., Stockmeyer, L.J.: Word problems – This time with interleaving. In-
formation and Computation 115(2), 293–311 (1994)

18. McNaughton, R.: The loop complexity of pure-group events. Information and Con-
trol 11(1/2), 167–176 (1967)

19. McNaughton, R.: The loop complexity of regular events. Information Sciences 1,
305–328 (1969)

20. Morris, P.H., Gray, R.A., Filman, R.E.: Goto removal based on regular expressions.
Journal of Software Maintenance 9(1), 47–66 (1997)

21. Nešetřil, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)

22. Obdržálek, J.: Dag-width: Connectivity measure for directed graphs. In: ACM-
SIAM Symposium on Discrete Algorithms, pp. 814–821. ACM Press, New York
(2006)

23. Pinsker, M.S.: On the complexity of a concentrator. In: Annual Teletraffic Confer-
ence, pp. 318/1–318/4 (1973)

24. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309–322 (1986)

25. Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré,
J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer,
Heidelberg (2006)

26. Schnitger, G.: Regular expressions and NFAs without ε-transitions. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer, Hei-
delberg (2006)

Leftist Grammars Are Non-primitive Recursive�

Tomasz Jurdziński

Institute of Computer Science, University of Wroc�law, Poland
tju@ii.uni.wroc.pl

Abstract. Leftist grammars were introduced by Motwani et. al. [7], as
a tool to show decidability of the accessibility problem in certain gen-
eral protection systems. It is shown that the membership problem for
languages defined by leftist grammars is non-primitive recursive. There-
fore, by the reduction of Motwani et. al., the accessibility problem in the
appropriate protection systems is non-primitive recursive as well.

1 Introduction

A protection system is a set of policies that prescribes the ways in which ob-
jects interact with each other in a computer system. By objects we mean users,
processes or other entities. Interactions can include access rights, information
sharing privileges and other mechanisms. The accessibility problem for a pro-
tection system is formulated in the form “Can object p gain (illegal) access to
object q by a series of legal moves (as prescribed by the policy)?”. A formal
treatment of accessibility was first presented by Harrison, et. al. [3] who showed
that the accessibility problem is undecidable for a general access-matrix model.
This result prompted a broad research on trade-offs between expressibility and
verifiability in protection systems. We consider the model proposed in [2,8] in
the context of Java virtual worlds, called here the Saraswat’s model. The ac-
cessibility problem is decidable for the Saraswat’s model, which was obtained
by relating this problem to the intersection problem for leftist grammars [7].
Further refinement and applications of this model are presented in [9].

Leftist grammars can be characterized in terms of rules of the form ab → b
and c → dc, where a, b, c, d belong to the finite alphabet Σ. A fixed symbol
x ∈ Σ is called the final symbol and a word w ∈ Σ∗ belongs to the language
defined by the grammar G iff there exists a derivation which starts with wx and
ends with x. Observe that each leftist grammar is actually a semi-Thue system
with leftist rewriting rules.

It is known that the membership problem problem for leftist grammars is de-
cidable [7]. The result from [7] implies also that any lower bound for complexity of
the membership problem for leftist grammars induces the same lower bound for
the accessibility problem in the restricted variant of the Saraswat’s model (up to
a polynomial factor). Simplicity of leftist grammars led to the conjecture that the
actual complexity of the membership problem is small [7]. As shown in [6,1], quite

� Partially supported by MNiSW grant number N206 024 31/3826, 2006-2008.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 51–62, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 T. Jurdziński

natural restrictions imply context-freenes or even regularity of languages defined
by leftist grammars. However, it has been shown that the membership problem
for general leftist grammars is PSPACE-hard [4]. In this paper, we strengthen this
result in the following way. We prove that, if a grammar and an input word form
the input for the problem, the membership problem is non-primitive recursive. In
the case that a grammar is fixed, we show that, for each primitive recursive func-
tion f , there exists a grammar Gf such that the membership problem for Gf is not
in space O(f(n)), where n is the length of an input word.

In Section 2 we provide basic definitions and notations. In Sections 3 and 4 we
show how leftist grammars can “compute” certain families of functions related
to the Ackermann’s function. In Section 5, we present the main result of the
paper. Finally, concluding remarks are presented in Section 6. Because of the
page limit not all proofs are given in the paper. For a complete and detailed
presentation we refer to the technical report [5].

2 Definitions

Throughout the paper λ denotes the empty word, N denotes the set of non-
negative integers. For a word x, |x|, x[i] and x[i, j] denote the length of x, the
ith symbol of x and the factor x[i] · · ·x[j] respectively, where 0 < i ≤ j ≤ |x|.
Moreover, let [i, j] = {l ∈ N | i ≤ l ≤ j}, let i%j be equal the remainder of the
division i/j and let ī = 1 − i for i ∈ [0, 1]. Furthermore, we identify regular
expressions with languages defined by them.

We say that sets A0, . . . , As form the partition A = (A0, . . . , As) of the set
A =

⋃s
i=0 Ai iff Ai �= ∅ and Ai∩Aj = ∅ for each i, j ∈ [0, s], i �= j. A word w ∈ A∗

is an alternating word with respect to the partition A if w is a subword of a
word from the language (A+

0 A+
1 · · ·A+

s)∗. Note that, if s = 1 then each word over
A is an alternating word wrt A. Let w be an alternating word wrt to A. Then,
the “alternation measure” ‖w‖A is equal to 0 if w = λ, ‖w‖A = 1 if w ∈ A+

i

for i ∈ [0, s], and ‖w‖A = ‖w2‖A + 1 if w = w1w2 for w1 ∈ A+
i , i ∈ [0, s], and

w2 ∈ A+
(i+1)%2A

∗. If w is not an alternating word wrt A, ‖w‖A is not defined.

2.1 Leftist Grammars

A leftist grammar G = (Σ,P, x) consists of a finite alphabet Σ, a final symbol
x ∈ Σ, and a set of production rules P of the following two types,

ab→ b (Delete Rule), c→ dc (Insert Rule)

where a, b, c, d ∈ Σ. We denote the above productions as b
del→ a and c

ins→ d.
We say that u ⇒G v (or shortly u ⇒ v) is a derivation step for u, v ∈ Σ∗, if
u = u1yu2 and v = u1zu2 such that y → z is a production rule in P . A sequence
of derivation steps u1 ⇒ u2 ⇒ . . . ⇒ um is called a derivation. Finally, the
language of G is defined to be L(G) = {w ∈ Σ∗ |wx ⇒∗ x}. The membership
problem for a fixed leftist grammar G = (Σ,P, x) is, given a word w ∈ Σ∗ as

Leftist Grammars Are Non-primitive Recursive 53

an input, to decide whether w ∈ L(G). The variable membership problem is,
given a word w ∈ Σ∗ and a leftist grammar G = (Σ,P, x) as an input, to decide
whether w ∈ L(G).

We think of symbols as objects which can insert/delete other symbols and can
be inserted/deleted in a derivation. In order to simplify notations, we identify
the particular occurrence of a symbol a with its value a.

We say that the symbol b in a delete rule ab → b is active. Similarly, the
symbol c is active in an insert rule c → dc. Let u ⇒ v, where u = u1yu2 and
v = v1zv2 such that y → z is a production rule in P . Then, we say that the
rightmost symbol of the prefix u1y of u1yu2 is active in the derivation step
u ⇒ v. Though it might be the case that the choice of the active symbol for a
step u⇒ v is not unique, one can avoid this ambiguity [6]. So, we assume that
the active symbol can be determined uniquely for each derivation step.

We say that d is a descendant of b with respect to a derivation U if (b, d)
belongs to the reflexive and transitive closure of the relation

{(e, f) | vew ⇒ vfew is a derivation step in U for v, w ∈ Σ∗, e, f ∈ Σ}.

Let G = (Σ,P, x) be a leftist grammar, where Σ = {ai}ri=1. The insert graph
of G is G(Σ,E), where E = {(ai, aj) | (ai → ajai) ∈ P}. Similarly, the delete
graph of G is G(Σ,E), where E = {(ai, aj) | (ajai → ai) ∈ P}.

Let Del(a) = {b | b del→ a} for a ∈ Σ and G = (Σ,P, x), and let Del(A) for
A ⊆ Σ be

⋃
a∈A Del(a). That is, Del(a) is the set of in-neighbors of a in the

delete graph of G. A set A ⊆ Σ is homogeneous if a is not active in any
production rule of G for each a ∈ A, and Del(a) = Del(b) for each a, b ∈ A.

A derivation u1 ⇒ u2 ⇒ . . .⇒ um is a leftmost derivation if each symbol
from ui located to the left of the symbol active in ui ⇒ ui+1 is not active in
ui ⇒∗ um for every i ∈ [1,m− 1]. For each u, v ∈ Σ∗ such that u ⇒∗

G v, there
exists a leftmost derivation which starts with u and ends with v [6].

We say that a word u eliminates a word w ∈ Σ+ in a derivation z1wuz2 ⇒∗

z′, if all elements of w are not active in this derivation, and all elements of w
are deleted by the elements of u and their descendants. Moreover, we say that
u ∈ Σ+ is able to eliminate v ∈ Σ+ if there exists a derivation vu ⇒∗ v′,
where u eliminates v. Observe that if u is able to eliminate v, then u is able to
eliminate v′ for each v′ obtained from v by deleting some symbols of v.

Definition 1 (Greedy derivation). A derivation U ≡ (u1 ⇒ u2 ⇒ · · · ⇒ um)
is greedy if the following conditions are satisfied:

(a) U is a leftmost derivation;
(b) if uj = zbav for a, b ∈ Σ, j ∈ [1,m − 1] and the grammar contains the

production a
del→ b, then a is active in at least one step of uj ⇒∗ um;

(c) there is no derivation step uav ⇒ ubav in U such that b does not eliminate
any element of u during U .

It is known that there exists a greedy derivation wx⇒∗
G x for each leftist gram-

mar G and w ∈ L(G) [4]. So, we consider only greedy derivations.
For a grammar G, let size of G, |G|, be equal to the size of its alphabet.

54 T. Jurdziński

2.2 Ackermann’s Function

For a function f : N → N, let f (0)(n) = n and f (l)(n) = f(f (l−1)(n)) for each
n ∈ N and l ≥ 1. Let the functions φp : N → N be defined as follows:

φ2(n) = 2 · n for n > 0,
φp(n) = φ

(n)
p−1(1) for p > 2 and n > 0.

Moreover, let φp(0) = 1 for each p ≥ 2. One of possible definitions of Acker-
mann’s function is Ack(n) = φn(3), see [10]. We define inverse functions (φ−1

p)p≥2

as
φ−1
p (m) := min{n |φp(n) ≥ m}.

Notice that φ−1
p (m) = n if and only if (φ−1

p−1)(n)(m) = 1 for p > 2. Moreover,
observe that φps are monotone, i.e., φp(n + 1) ≥ φp(n) for n ≥ 0.

It is well-known that Ack(n) dominates any primitive recursive function of n.

3 Expansion

Our first goal is to build a grammar which somehow “computes” the function
φp for p ∈ N. The idea is as follows. Let I (the “input alphabet”) and O (the
“output alphabet”) be disjoint finite sets and let g �∈ I ∪ O. Given a word
w ∈ I∗, g is able to eliminate w only in a derivation wg ⇒∗ w′g, such that
w′ ∈ O∗ and |w′| = φp(|w|). Due to limitations of leftist grammars, the following
definition is more complicated than the above scenario. In particular, the result
of a “computation” is approximate in such a way that |w′| might be larger than
φp(|w|), but not smaller. Moreover, numbers are identified with the alternation
measures of words, not with their lengths.

Definition 2. Let I, B, O, F and {g} be disjoint, finite and nonempty sets of
symbols and let I = (I0, I1), O = (O0, O1) be partitions of I and O, respectively.
Moreover, let the following conditions be satisfied in a grammar G:

1. For each v ∈ B+ and w ∈ I∗, there exists a derivation vwg ⇒∗ v′w′g in
which g eliminates vw, such that v′ ∈ F+, w′ ∈ O+ and ‖w′‖O = φp(‖w‖I).

2. Let v ∈ B∗, w ∈ I∗ such that |vw| > 0 and let U ≡ (vwg ⇒∗ zg) be a greedy
derivation in which g eliminates vw. If z ∈ (F ∪O)∗, then z = v′w′g, where
v′ ∈ F+, w′ ∈ O+ and ‖w′‖O ≥ φp(‖w‖I).

3. Del(B) ⊆ F , the elements of Del(B) are able to eliminate only the elements
of B and g is not able to eliminate the elements of Del(B).

4. The sets I0, I1 and B are homogeneous in G.

Then, we say that G satisfies p-expansion wrt I, B, O, F and {g}, we denote
this fact by exp(I, B,O, F, g).

The statement 1. of the above definition corresponds to the property that it is
possible to “compute” the function φp precisely, while the second statement de-
notes the property that each “computation” is such that the result is not smaller

Leftist Grammars Are Non-primitive Recursive 55

than the actual value of the function φp. The subalphabets B (the “border al-
phabet”) and F (the “frontier alphabet”) are introduced for technical reasons.
Their roles are essential in the inductive construction in Lemma 2. The third
statement of Def. 2 guarantees that g is not able to eliminate the elements of
I ∪ O which appear to the left of a symbol from B. This property helps in the
proof that the inductive construction from Lemma 2 works.

For G satisfying exp(I, B,O, F, g), we use the notation I(G) = I, B(G) = B,
O(G) = O, and F (G) = F . According to Def. 2 (statement 4), the construction
of a grammar satisfying p-expansion is independent of I and B. Therefore, if
I, B do not matter, we denote p-expansion by EXp(O, F, g).
Given I, B and a partition I = (I0, I1) of I, we build a grammar Gφ2 with the
following production rules:

(i) g
ins→ ai for i ∈ {0, 2} (vi) a3

ins→ f1

(ii) g
ins→ a′0 (vii) fj

ins→ f for j ∈ [0, 1]
(iii) a′0

ins→ f (viii) fj
del→ f1−j for j ∈ [0, 1]

(iv) ai
ins→ a(i+1)%4 for i ∈ [0, 3] (ix) fj

del→ ı for j ∈ [0, 1], ı ∈ Ij

(v) a1
ins→ f0 (x) f

del→ b for b ∈ B

where a′0, aj , fi, g �∈ I ∪B for each i ∈ [0, 1] and j ∈ [0, 3].

Lemma 1. The grammar Gφ2 satisfies ex2(I, B,O, F, g), where O = (O0, O1),
F = {f0, f1, f}, O0 = {a0, a

′
0, a2}, and O1 = {a1, a3}.

The idea of the proof of Lemma 1 is based on the following observations:

– each greedy derivation in which g and its descendants are active corresponds
to a path in the insert graph of Gφ2 which starts with g, and goes either
through a′0 or through one of the cycles a0a1a2a3, a2a3a0a1 (possibly many
times);

– the cycle a0a1a2a3 (a2a3a0a1) describes the fact that the factor a3a2a1a0

(a1a0a3a2) is added to the left of g and each subword from I∗1 I
∗
0 (I∗0 I∗1 ,

respectively) can be deleted (see the productions (v), (vi), (ix), and (viii)).

Lemma 2. Assume that a grammar Gφp satisfies EXp(Ô, F̂ , ĝ). Then, one can
build a grammar Gφp+1 of size at most 5|Gφp | which satisfies EXp+1(O, F, g) for
some sets of symbols O, F , {g} and a partition O = (O0, O1) of O.

Proof. Let G0, . . . ,G3 be copies of the grammar Gφp such that:

– Gj satisfies EXp(Ôj , F̂j , ĝj), where Ôj = (Ôj,0, Ôj,1) is a partition of Ôj for
j ∈ [0, 3],

– Σj ∩ Σl = ∅ for j �= l, where Σk is the set of symbols accessible from ĝk in
the insert graph of Gk.

The partition I(Gj) and the set B(Gj) for j ∈ [0, 3] are as follows:

I(Gj) = Îj := Ô(j+1)%2, and B(Gj) = B̂j := F̂(j+1)%2.

56 T. Jurdziński

That is,

Gj satisfies exp(Ô(j+1)%2, F̂(j+1)%2, Ôj , F̂j , ĝj) (e(j))

for j ∈ [0, 3]. So, the “output” subalphabet of the subgrammar Gj for j ∈ [0, 1]
is the “input” subalphabet of G(j+1)%2 and G2+(j+1)%2 (see Figure 1). Given
disjoint nonempty sets I, B and a partition I = (I0, I1) of I, the grammar Gφp+1

is obtained by combining G0, . . . ,G3, adding new symbols g, f0, f1, f2, and f3

to the alphabet and the following production rules (see Figure 1):

(i) e
ins→ fj for each e ∈ Del(B̂j) ∩ F̂j , j ∈ [0, 3]

(ii) fj
del→ ı for each ı ∈ Ij , j ∈ [0, 1]

(iii) fj
del→ ı for each ı ∈ B, j ∈ [2, 3]

(iv) fj
del→ fl for each j ∈ [0, 3], l = (j + 1)%2

(v) g
ins→ ĝj for each j ∈ [0, 3]

(vi) g
del→ ĝj for each j ∈ [0, 3]

Our goal is to show that Gφp+1 defined in this way satisfies

exp+1(I, B, O, F̂2 ∪ F̂3 ∪ {f2, f3}, g),

where O = (O0, O1) is a partition of O := Ô2∪Ô3, Ok = Ô2,k∪Ô3,k for k ∈ [0, 1].
The correctness of the above construction is based on the following observa-

tions:

– since ĝj is able to eliminate elements of Ij and ĝj is not able to eliminate
elements of I1−j for j ∈ [0, 1], it is necessary to apply G0 and G1 alternately;

– each application of Gj deleting the element of Ij requires that the sequence
over Ô1−j following the element of Ij is deleted as well; however, since
I(Gj) = O(G1−j), this subderivation replaces a sequence y ∈ Ô∗1−j with
y′ ∈ Ô∗j such that ‖y′‖Ôj

≥ φp(‖y‖Ô1−j
).

Below, we prove the lemma formally by checking whether Gφp+1 satisfies the
statements of Def. 2.

First, observe that the statements 3 and 4 of Def. 2 hold for Gφp+1 by the fact
that Del(B) = {f2, f3} and by the constraints of (iii).

Next, we show that the stat. 1 of Def. 2 holds for Gφp+1 . Let v ∈ B+, w ∈ I∗

and let w = w1 · · ·wn, where wl ∈ I+
l%2 for each l ∈ [1, n], i.e. ‖w‖I = n.

Below, we describe a derivation U ≡ (vwg ⇒∗ v′w′g) which consists of the
stages Un, Un−1, . . . , U1, U0 such that the stage Uk for k > 0 applies the produc-
tions (i)-(vi) and the productions of the grammar Gk%2. Moreover, G0 applies
G2 or G3, wk is deleted in Uk for k > 0 and v is deleted in U0. W.l.o.g., as-
sume that we are going to eliminate a supersequence vwv′n of vw in U , where
v′n ∈ fn%2F̂n%2. The following algorithm describes the derivation U :

Leftist Grammars Are Non-primitive Recursive 57

Ô0

F̂0

Del(F̂1)

Ô1

F̂1

Del(F̂0)

Ô3

F̂3

Del(F̂0)

Ô2

F̂2

Del(F̂1)

G0

G1

G2

G3

f3 f0 f1 f2

ins ins ins ins

del del

I0 I1

B

del del

del del del

ĝ3 ĝ0 ĝ1 ĝ2ĝ0

g

Ô2 ∪ Ô3

F̂2 ∪ F̂3 ∪ {f2, f3}

g

I

B

Gφi+1

Fig. 1. An illustration for the construction of Gφi+1 . An edge labeled by a grammar G,
going from the box [g1,O, F] to the box [g2, I, B] denotes that exi(g1, I, B,O, F).

1. w′n := λ, v′n := fn%2a for some a ∈ F̂n%2;
2. For k = n, n− 1, . . . , 2, 1 do

w1 · · ·wkv
′
kw
′
kg ⇒∗

(v),ind.ass.,(i),(iv),(ii),(vi) w1 · · ·wk−1v
′
k−1w

′
k−1g,

where v′j ∈ fj%2F̂
+

j%2
, w′j ∈ Ô∗

j%2
for j ∈ [0, n], and ‖w′k−1‖Ôk%2

=

φp(‖w′k‖Ô
k%2

) = φ
(n−k+1)
p (0), by the assumption e(k%2) on page 56.

3. Apply G2 in order to eliminate v:

vv′0w
′
0g ⇒∗

ind.ass. vf1v
′′w′′g ⇒∗

(i,iv) vf2v
′′w′′g ⇒∗

(iii) f2v
′′w′′g = v′w′g

where f2v
′′ = v′ ∈ f2F̂

+
2 ⊂ F+, w′ = w′′ ∈ Ô+

2 and

‖w′‖Ô2
= φp(‖w′0‖Ô1

) = φp(φ(n)
p (0)) = φ(n)

p (1).

Finally, we have obtained a derivation vwg ⇒∗ vv′0w
′
0g ⇒∗ v′w′g, where v′ ∈ F+,

w′ ∈ O+ and ‖w′‖O = φp+1(‖w‖I). This shows that the grammar Gφp+1 satisfies
the statement 1 of Definition 2. (It is easy to build a similar derivation for the
case that wj ∈ I+

j%2
for each j; then, we use G3 instead of G2 in step 3.)

The final step is to show that the statement 2 of Def. 2 holds for Gφp+1 . Let

U ≡ (vwg ⇒∗ z′g),

where v ∈ B∗, w ∈ I∗, |vw| > 0, and g eliminates vw in U . Moreover, assume that

z′ ∈ (O ∪ F)∗ = (Ô2 ∪ Ô3 ∪ F̂2 ∪ F̂3 ∪ {f2, f3})∗ (1)

w = w1 · · ·wn, where wk ∈ I+
k%2 for each k ∈ [1, n] and n is even. (2)

58 T. Jurdziński

As before, one can split U into stages Um, Um−1, . . . , U0 such that each stage
applies the productions (i)-(vi) and one of the grammars G0, . . . ,G3. Moreover,
each two consecutive stages apply different grammars from G0, . . . ,G3. Observe
that

– ĝ2 and ĝ3 are not able to eliminate the elements of I;
– ĝ2 (ĝ3, resp.) and its descendants insert a word which contains the elements

that cannot be eliminated by ĝ0, ĝ1 and ĝ3 (ĝ0, ĝ1, and ĝ2, resp.).

The second of these observations implies that none of the grammars G0, G1, G3

(G0, G1, and G2, resp.) can be applied after G2 (G3, resp.) is applied. Therefore,
Uj uses the productions of G0 or G1 for j > 0 and U0 uses G2 or G3. That is,
w ∈ I+ is deleted in Um, . . . , U1 and v ∈ B∗ is deleted in U0. Thus, let

vwg = zmg ⇒∗
Um

zm−1g ⇒∗
Um−1

· · · ⇒∗
U1

z0g ⇒∗
U0

z′g,

i.e., Uj ≡ (zjg ⇒∗ zj−1g) for j > 0 and U0 ≡ (z0g ⇒∗ z′). Moreover, let
F̂k := F̂k ∪ {fk} for k ∈ [0, 3]. We make use of the following claim.

Claim 3. Let U ≡ (vwg = zmg ⇒∗
Um

zm−1g ⇒∗
Um−1

· · · ⇒∗
U1

z0g ⇒∗
U0

z′g) be
a derivation in which g eliminates vw, and the conditions (1), (2) are satisfied.
Then, for each j ∈ [0,m− 1], zjg is equal to vw1 · · ·wlv

′
jw
′
jg such that

(a) v′j ∈ (F̂0 ∪ F̂1)∗F̂+
γ(j), w′j ∈ Ô+

γ(j);
(b) j ≥ l (i.e., at most one of wl’s is deleted in each stage);
(c) ‖w′j‖Ôγ(j)

≥ φ
(m−j)
p (0);

where γ(j) = (m− j + 1)%2 and Uj ≡ (zjg ⇒∗ zj−1g).

The proof of Claim 3 is based on the observation that, if the scenario described
in the claim does not hold, the word to the left of g contains a subsequence
u ∈ (Ô0 ∪ Ô1)(F̂0 ∪ F̂1) at the end of some stage. Then, by the fact that Gj ’s
satisfy the statement 3 of Def. 2, the prefix of u belonging to Ô0 ∪ Ô1 cannot be
deleted, which contradicts the assumption (1) on page 57.

Claim 3 implies that Um, . . . , U1 form a subderivation vwg ⇒∗ z0g = vv′0w
′
0g

of U , where v′0 ∈ (F̂0 ∪ F̂1)+F̂+
γ(0), w′0 ∈ Ô+

γ(0), and ‖w′0‖Ôγ(0)
≥ φ

(m)
p (0) =

φ
(m−1)
p (1). Finally, z0 = vv′0w

′
0 has to be eliminated in the stage U0 using G2 or

G3, since U finishes with z′g and z′ satisfies the assumption (1) on page 57. That
is, by the assumption e(3 − γ(0)) on page 56, U0 ≡ (vv′0w′0g ⇒∗ v′w′g), where
v′ ∈ F̂3−γ(0), w′ ∈ Ô+

3−γ(0) and

‖w′‖Ô3−γ(0)
≥ φp(‖w′0‖Ôγ(0)

) ≥(Claim 3(c)) φ(m)
p (1) = φp+1(m) ≥ φp+1(n),

since m ≥ n, which follows from Claim 3(b). Thus, we obtain the statement 2 of
Definition 2 for the case w �= λ. One can easily check that this statement holds
for w = λ as well. ��

Leftist Grammars Are Non-primitive Recursive 59

4 Shrinking

Similarly to the expansion property, we define the shrinking property which
describes a way in which the functions φ−1

p are “computed” by leftist grammars.

Definition 4. Let I, O, F and {g} be disjoint, finite and nonempty sets of
symbols and let I = (I0, . . . , I3), O = (O0, . . . , O3) be partitions of I and O,
respectively. Moreover, let the following conditions be satisfied in a grammar G:

1. Let w ∈ I+ be an alternating word wrt I. Then, there exists a derivation
wg ⇒∗ v′w′g in which g eliminates w, such that v′ ∈ F+, w′ ∈ O∗ is an
alternating word wrt O and ‖w′‖O = φ−1

p (‖w‖I).
2. Let w ∈ I+ and let U ≡ (wg ⇒∗ zg) be a derivation in which g eliminates

w. If z ∈ (F ∪ O)∗, then z = v′w′ such that v′ ∈ F+, w′ ∈ O∗, and
‖w′‖O ≥ φ−1

p (‖w‖I).
3. The sets I0, . . . , I3 are homogeneous in G.

Then, we say that G satisfies p-shrinking wrt I, O, F and {g}, we denote this
fact by shp(I,O, F, g).

For a grammar G satisfying shp(I,O, F, g), we use the notation I(G) := I,
O(G) := O, and F (G) := F . Since the construction of a grammar satisfying
p-shrinking is independent of I, we denote p-shrinking by SHp(O, F, g).

Let Gφ−1
2

be a grammar which contains the following productions:

(i) g
ins→ al for each l ∈ [0, 1]

(ii) ai
ins→ a(i+1)%4

(iii) ai
ins→ fi

(iv) ai
ins→ f ′i

(v) g
ins→ f ′′i

(vi) fi
del→ f(i−1)%4

(vii) f ′i
del→ f ′(i−1)%4

(viii) fi
del→ ı for each ı ∈ Ij such that i% 2 = �j/2�

(ix) f ′i
del→ ı for each ı ∈ Ij such that i% 2 = |�(j − 1)/2�|

(x) f ′′i
del→ ı for each ı ∈ Ii.

for each i ∈ [0, 3].

Lemma 3. The grammar Gφ−1
2

satisfies sh2(I,O, F, g), where O = (O0, . . . , O3)

is a partition of O =
⋃3

j=0 Oj, Oi = {ai} for i ∈ [0, 3] and F =
⋃3

i=0{fi, f ′i , f ′′i }.

Lemma 4. Assume that a grammar Gφ−1
p

satisfies SHp(Ô, F̂ , ĝ). Then, one can
build a grammar Gφ−1

p+1
of size at most 6|Gφ−1

p
| which satisfies SHp+1(O, F, g) for

some sets O, F , {g} and a partition O = (O0, . . . , O3) of O.

60 T. Jurdziński

Proof. (Sketch) Let G0, . . . ,G4 be copies of the grammar Gφ−1
p

such that Gj sat-

isfies SHφ−1
p

(Ôj , F̂j , ĝj).

Let I(G4) = Î4 := I and I(Gj) = Îj := Ô(j−1)%4 ∪ Ô4 for j ∈ [0, 3]. That is,

Gj satisfies shp(Ô(j−1)%4 ∪ Ô4, Ôj , F̂j , ĝj) for j ∈ [0, 3]
G4 satisfies shp(I, Ô4, F̂4, ĝ4)

Given a set I and a partition I = (I0, . . . , I3) of I, the grammar Gφ−1
p+1

is obtained
by combining the alphabets and the rules of G0, . . . ,G4, adding a new symbol
g to the alphabet and the rules g

ins→ ĝj , g
del→ ĝj for j ∈ [0, 4]. The grammar

Gφ−1
p+1

defined in this way satisfies shp+1(I,O, F, g), where O = (F̂0, . . . , F̂3) is a

partition of O =
⋃3

j=0 F̂j and F = F̂4. ��

By combining Lemma 3 and Lemma 4, one can build a grammar of size expo-
nential with p, which “computes” φ−1

p .

5 Reduction

One can show by standard methods of computability theory that the problem
whether a one-tape Turing machine M halts on an empty input in Ack(|M |)
space is non-primitive recursive. The question whether a one-tape TM halts on
empty input in f(n) space can be reduced to the question if a linear-bounded
automaton (LBA) M ′ simulating M step by step accepts a word �f(n) where �
is a blank symbol. In [4], a reduction from the membership problem for LBAs
to the membership problem for leftist grammars is presented. We combine a
grammar obtained as a result of this reduction with grammars which “compute”
the functions φp and φ−1

p . As a result, we reduce (in exponential time) the
problem whether a Turing Machine M accepts an empty word in space Ack(|M |)
to the membership problem for a leftist grammar.

Theorem 1. The variable membership problem for leftist grammars is non-
primitive recursive.

Proof. First, we recall some results concerning leftist grammars.

Theorem 2. [4]1 Let M be a linear-bounded automaton (LBA) with an input
alphabet ΣM , and let I = (

⋃
a∈ΣM

I(a, 0),
⋃

a∈ΣM
I(a, 1)) be a partition of the

set I =
⋃

a∈ΣM ,i∈[0,1] I(a, i), where I(a, i) �= ∅ for each a ∈ ΣM and i ∈ [0, 1].
For a word w ∈ Σ∗M of length n, let

A(w) = {v1 · · · vn | vi ∈ I(w[i], i%2) for each i ∈ [1, n]}.
Then, there exists a grammar GM of size poly(|M |) and a set O with a partition
O = (O0, . . . , O3), such that I ∩O = ∅ and

– I(a, j) is homogenous in GM for each a ∈ ΣM , j ∈ [0, 1],

1 This result corresponds to a part of the main construction from [4].

Leftist Grammars Are Non-primitive Recursive 61

– if v is an alternating word wrt I, g eliminates v in a derivation vg ⇒∗
GM

w′g
and w′ ∈ O∗, then w′ is an alternating word wrt O, and ‖w′‖O ≥ ‖v‖I.

– w ∈ L(M) iff there exists a derivation vg ⇒∗
GM

w′g for each v ∈ A(w) such
that g eliminates v, ‖w′‖O = ‖v‖I and w′ is an alternating word wrt O.

(Note that, due to the fact that I(a, j)’s are homogeneous, the above two state-
ments hold for each v ∈ A(w) iff they hold for any v ∈ A(w).)
If GM satisfies the above conditions, we denote this fact by cmpM (I,O, g). ��

Theorem 3. [6]2 Let I be a set of symbols and let I = (I0, I1) be a partition of
I. Then, there exists a grammar G and a set O with a partition O = (O0, O1)
such that elements of O cannot insert other symbols and z ∈ (O0 ∪ O1)∗Oj is
able to eliminate w ∈ (I0 ∪ I1)∗Ij iff ‖z‖O ≥ ‖w‖I. This property is denoted by
eq(I,O). ��

For a Turing machine M and natural numbers p, n, we build the grammar HM

verifying if M halts on an empty input word in space φp(n). The grammar HM

consists of:
G1 which satisfies exp (I1, B1,O1, F1, g1)
G2 which satisfies cmpM ′ (I2,O2, g2)
G3 which satisfies shp (I3,O3, F3, g3)
G4 which satisfies eq (I4,O4).

where M ′ is an LBA simulating M , I2 = (
⋃

a∈ΣM′ I2(a, 0),
⋃

a∈ΣM′ I2(a, 1)),
I2(�, i) := O1,i, I3 := O2, I4 := (O3,0 ∪O3,2, O3,1 ∪O3,3), Oi = (Oi,0, . . . , Oi,ji),
Oi = Oi,0 ∪ · · · ∪ Oi,ji , j1 = j4 = 1, and j2 = j3 = 3. The grammar HM is
obtained by combining alphabets and productions of G1, . . . , G4, adding symbols
ı0, ı1, b such that I1 = ({ı0}, {ı1}), B1 = {b}, adding a final symbol x and new
production rules

(i) x
del→ a for each a ∈ O4 ∪ F1 ∪ F3

(ii) gi
del→ gi−1 for i ∈ [2, 3]

(iii) a
del→ g3 for each a ∈ O4.

The question whether M accepts with empty input in space φp(n) is reduced to
the question whether the word

R(M,p, n) ≡ ψ1(n)g1g2g3ψ4(n)x

belongs to the language L(HM), where ψ1(n) = bın%2
0 (ı1ı0)	n/2
,

ψ4(n) = an%2
0 (a1a0)	n/2
 and aj ∈ O4,j for j ∈ [0, 1]. The correctness of this

reduction is based on the observation that the only possible greedy derivation
R(M,p, n)x⇒∗ x works according to the following scenario:

1. Expansion: ψ1(n)g1 ⇒∗
G1

v1w1g1, where v1 ∈ F+
1 , w1 ∈ [O1,0](O1,1O1,0)∗

and ‖w1‖O1 = φp(n).
2 This theorem describes a simple generalization of a grammar presented in the proof

of Theorem 2 in [6].

62 T. Jurdziński

2. Computation: v1w1g1g2 ⇒∗ v1w2g2, where w2 ∈ O2,0(O2,1O2,0)∗ and
‖w2‖O2 = ‖w1‖O1 . Here, w1 is considered as an element of A(w), where
w = �φp(n).

3. Shrinking: v1w2g2g3 ⇒∗ v1v3w3g3, where
‖w3‖O3 = φ−1

p (‖w2‖O2) = φ−1
p (φp(n)) = n.

4. Verification: v1v3w3g3ψ4(n) ⇒∗ v1v3w4, where w4 ∈ O∗4 .
5. Final steps: v1v3w4x⇒∗ x.

However, such a derivation is possible only if w ∈ L(M) (see Theorem 2).
By applying the reduction R(M,p, n) for p := |M | and n := 3, we see that

the variable membership problem for leftist grammars is non-primitive recursive,
since Ack(m) = φm(3). ��
Using a similar reduction, one can prove the following result.
Theorem 4. There is no primitive recursive upper time bound for the (“static”)
membership problem for leftist grammars.

6 Conclusions and Open Problems

We have shown that the variable membership problem for leftist grammars is
non-primitive recursive. An interesting research direction is to find a restricted
variant of leftist grammars with feasible complexity and large expressive power.

Interestingly, large complexity of the membership problem for leftist gram-
mars can be obtained by a technique which is similar to the method applied in
the proof that verifying lossy channels has non-primitive recursive complexity
[10]. In both models, one can “weakly compute” recursive functions.

References

1. Bandyopadhyay, S., Mahajan, M., Narayan Kumar, K.: A non-regular leftist lan-
guage (manuscript, 2005)

2. Cheiner, O., Saraswat, V.: Security Analysis of Matrix. Technical report, AT&T
Shannon Laboratory (1999)

3. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Communi-
cations of the ACM 19(8), 461–470 (1976)

4. Jurdziński, T.: On Complexity of Grammars Related to the Safety Problem. The-
oretical Computer Science 389(1-2), 56–72 (2007); An extended abstract appeared
in ICALP 2006 Proceedings

5. Jurdziński, T.: Leftist Grammars are Non-primitive Recursive, Technical Report
of the Institute of Computer Science, University of Wroclaw (2008/01)

6. Jurdziński, T., Loryś, K.: Leftist Grammars and the Chomsky Hierarchy. Theory
of Computing Systems 41(2), 233–256 (2007)

7. Motwani, R., Panigrahy, R., Saraswat, V.A., Venkatasubramanian, S.: In: STOC
2000, pp. 306–315 (2000)

8. Saraswat, V.: The Matrix Design. Technical report, AT&T Laboratory (April 1997)
9. Saraswat, V., Jagadeesan, R.: Static support for capability-based programming in

Java (manuscript)
10. Schnoebelen, P.: Verifying Lossy Channel Systems has Nonprimitive Recursive

Complexity. Information Processing Letters 83(5), 251–261 (2002)

On the Computational Completeness of

Equations over Sets of Natural Numbers

Artur Jeż1,� and Alexander Okhotin2,3,��

1 Institute of Computer Science, University of Wroc�law, Poland
aje@ii.uni.wroc.pl
2 Academy of Finland

3 Department of Mathematics, University of Turku, Finland
alexander.okhotin@utu.fi

Abstract. Systems of equations of the form ϕj(X1, . . . ,Xn) = ψj(X1,
. . . , Xn) with 1 � j � m are considered, in which the unknowns Xi

are sets of natural numbers, while the expressions ϕj , ψj may contain
singleton constants and the operations of union (possibly replaced by
intersection) and pairwise addition S + T = {m + n |m ∈ S, n ∈ T}. It
is shown that the family of sets representable by unique (least, greatest)
solutions of such systems is exactly the family of recursive (r.e., co-r.e.,
respectively) sets of numbers. Basic decision problems for these systems
are located in the arithmetical hierarchy.

1 Introduction

Consider equations, in which the variables assume values of sets of natural num-
bers, and the left- and right-hand sides use Boolean operations and pairwise
addition of sets defined as S + T = {m + n | m ∈ S, n ∈ T }. The simplest
example of such an equation is X = (X + X) ∪ {2}, with the set of all even
numbers as the least solution. On one hand, such equations constitute a basic
mathematical object, which is closely related to integer expressions introduced in
the seminal paper by Stockmeyer and Meyer [18] and later systematically stud-
ied by McKenzie and Wagner [11]. On the other hand, they can be regarded as
language equations over a one-letter alphabet, with the sum of sets representing
concatenation of such languages.

Language equations are equations with formal languages as unknowns, which
recently became an active area of research, with unexpected connections to
computability established. Undecidability of the solution existence problem for
language equations with concatenation and Boolean operations was shown by
Charatonik [1]. Later it was determined by Okhotin [13,15,16] that the fam-
ily of sets representable by unique (least, greatest) solutions of such equa-
tions is exactly the family of recursive languages (recursively enumerable,
co-recursively enumerable, respectively). Kunc [8] constructed an equation of

� Supported by MNiSW grant number N206 024 31/3826, 2006–2008.
�� Supported by the Academy of Finland under grant 118540.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 63–74, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

64 A. Jeż and A. Okhotin

the form XL = LX , where L is a finite constant language, with a computation-
ally universal greatest solution. See Kunc [9] for a recent survey of the area.

The cited results essentially use languages over alphabets containing at least
two symbols, and, until recently, language equations over a unary alphabet re-
ceived fairly little attention. Systems of the form

Xi = ϕi(X1, . . . , Xn) (1 � i � n) (*)

with union and concatenation represent context-free grammars and their so-
lutions over a unary alphabet are well-known to be regular. Constructing any
equation with a non-regular unique solution is already not a trivial task; the first
example of such an equation using the operations of concatenation and comple-
mentation was presented by Leiss [10]. Recently Jeż [5] constructed a system (*)
using concatenation, union and intersection with a non-regular solution. This
result was extended to a large class of unary languages by Jeż and Okhotin [6,7],
who showed that these equations can simulate trellis automata [2] (which are the
simplest type of cellular automata) recognizing positional notation of numbers.

These recent advances suggest the question of understanding the exact limits
of the expressive power of equations over sets of numbers. Unexpectedly, this
paper establishes computational completeness of systems of equations of the form
ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn), in which Xi are sets of natural numbers and
ϕj , ψj contain sum and either union or intersection. To be precise, it is proved
that a set is representable as a component of a unique solution of such a system
if and only if this set is recursive. Similar characterizations are obtained for least
and greatest solutions. The results are established by re-creating the existing
computational completeness results for language equations using a much more
restricted object, equations over sets of numbers. Before proceeding with the
arguments, let us review the key result on language equations.

2 Language Equations and Their Computational
Completeness

Let Σ be a finite alphabet and consider systems of equations of the form

ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn), (**)

where the unknowns Xi are languages over Σ, while ϕj and ψj are expressions
using union, intersection and concatenation, as well as singleton constants.

Theorem 1 (Okhotin [13,15]). Let (**) be a system that has a unique (least,
greatest) solution (L1, . . . , Ln). Then each component Li is recursive (r.e., co-
r.e., respectively). Conversely, for every recursive (r.e., co-r.e.) language L ⊆
Σ∗ (with |Σ| � 2) there exists a system (**) with the unique (least, greatest,
respectively) solution (L, . . .).

As this paper considers a much more restricted family of equations, the first part
of Theorem 1 will apply as it is, while the lower bound proofs will have to be

On the Computational Completeness of Equations 65

entirely remade. Let us summarize the proof of the second part of Theorem 1,
which will serve as a model for the arguments presented later.

The main technical device used in the construction of such a system is the
language of computation histories of a Turing machine, defined and used by
Hartmanis [4]. In short, for every TM T over an input alphabet Σ one can
construct an alphabet Γ and an encoding of computations CT : Σ∗ → Γ ∗, so
that for every w ∈ L(T) the string CT (w) lists the configurations of T on each
step of its accepting computation on w, and the language

VALC(T) = {w�CT (w) | CT (w) is an accepting computation},

where � /∈ Σ ∪ Γ , is an intersection of two linear context-free languages. Since
equations (**) can directly simulate context-free grammars and are equipped
with intersection, for every Turing machine it is easy to construct a system
in variables (X1, . . . , Xn) with a unique solution (L1, . . . , Ln), so that L1 =
VALC(T).

It remains to “extract” L(T) out of VALC(T) using a language equation. Let
Y be a new variable and consider the inequality

VALC(T) ⊆ Y �Γ ∗,

which can be formally rewritten as an equation X1 ∪ Y �Γ ∗ = Y �Γ ∗. This in-
equality states that for every w ∈ L(T), the string w�CT (w) should be in Y �Γ ∗,
that is, w should be in Y . This makes L(T) the least solution of this inequality
and proves the second part of Theorem 1 with respect to r.e. sets and least solu-
tions. The construction for a co-r.e. set and a greatest solution is established by
a dual argument, and these two constructions can be then combined to represent
every recursive set [15].

At the first glance, the idea that the same result could hold if the alphabet
consists of a single letter sounds odd. However, this is what will be proved in
this paper, and, moreover, the general plan of the argument remains essentially
the same.

3 Resolved Systems with {∪, ∩, +}

A formal language L over the alphabet Σ = {a} can be regarded as a set of
numbers {n | an ∈ L}, and so equations over sets of numbers represent a very
special subclass of language equations. Let us first review the recent results on
resolved systems over sets of natural numbers of the form

Xi = ϕ(X1, . . . , Xn) (1 � i � n)

Here the right-hand sides ϕi may contain union, intersection and addition, as
well as singleton constants. To minimize the number of brackets, assume that the
addition has the highest precedence, followed by intersection, while the prece-
dence of union is the least.

66 A. Jeż and A. Okhotin

If intersection is disallowed, such systems are basically context-free grammars
over a one-letter alphabet, and hence their solutions are ultimately periodic.
Equations with both union and intersection are equivalent to an extension of
context-free grammars, the conjunctive grammars [12], and the question whether
any non-periodic set can be specified by such a system of equations has been
open for some years, until answered by the following example:

Example 1 (Jeż [5]). The least solution of the system

X1 = (X2+X2 ∩ X1+X3) ∪ {1}
X2 = (X6+X2 ∩ X1+X1) ∪ {2}

X3 = (X6+X6 ∩ X1+X2) ∪ {3}
X6 = X3+X3 ∩ X1+X2

is
(
{4n | n � 0}, {2 · 4n | n � 0}, {3 · 4n | n � 0}, {6 · 4n | n � 0}

)
.

To understand this construction, it is useful to consider positional notation of
numbers. Let Σk = {0, 1, . . . , k − 1} be digits in base-k notation. For every
w ∈ Σ∗k , let (w)k be the number defined by this string of digits. Define (L)k =
{(w)k | w ∈ L}. Now the solution of the above system can be conveniently
represented in base-4 notation as

(
(10∗)4, (20∗)4, (30∗)4, (120∗)4

)
.

The following generalization of this example has been obtained:

Theorem 2 (Jeż [5]). For every k � 2 and for every regular language L ⊆
Σ+

k there exists a resolved system over sets of natural numbers in variables X,
Y2, . . . , Yn with the least solution X = (L)k and Yi = Ki for some Ki ⊆ N.

A further extension of this result allows one to take a trellis automaton (one-
way real-time cellular automaton) recognizing a positional notation of a set of
numbers, and construct a system of equations representing this set of numbers.

A trellis automaton [2,14], defined as a quintuple (Σ,Q, I, δ, F), processes an
input string of length n � 1 using a uniform array of n(n+1)

2 nodes, as presented
in the figure below. Each node computes a value from a fixed finite set Q. The
nodes in the bottom row obtain their values directly from the input symbols using
a function I : Σ → Q. The rest of the nodes compute the function δ : Q×Q→ Q
of the values in their predecessors. The string is accepted if and only if the value
computed by the topmost node belongs to the set of accepting states F ⊆ Q.

Definition 1. A trellis automaton is a quintuple M = (Σ,Q, I, δ, F), in which:
– Σ is the input alphabet,
– Q is a finite non-empty set of states,
– I : Σ → Q is a function that sets the initial states,
– δ : Q×Q→ Q is the transition function, and
– F ⊆ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Σ∗ → Q∗.

a1 a2 a3 a4

Let LM (q) = {w | δ(I(w)) = q} and define L(M) =
⋃

q∈F LM (q).

On the Computational Completeness of Equations 67

Theorem 3 (Jeż, Okhotin [6]). For every k � 2 and for every trellis automa-
ton M over Σk with L(M)∩0Σ∗k = ∅ there exists a resolved system over sets of
natural numbers in variables X, Y2, . . . , Yn with the least solution X = (L(M))k
and Yi = Ki for some Ki ⊆ N.

An important example of a set representable according to this theorem is the
numeric version of the set of computational histories of a given Turing machine.
The symbols needed to represent the standard language of computations of a
Turing machine are interpreted as digits, and then every string from this lan-
guage is represented by a number. Since the standard language of computations
can be recognized by a trellis automaton, by Theorem 3 there is a system of
equations representing the corresponding set of numbers.

In the next section, such a set of numbers will be used for the same purpose
as the standard language VALC in the computational completeness proofs for
language equations [13,15,16].

4 Unresolved Systems with {∪, ∩, +}
Consider systems of equations of the form

ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn) (1 � j � m),

where the unknowns Xi are sets of natural numbers and ϕj , ψj may use union,
intersection and addition, as well as singleton constants.

The ultimate result of this paper is the computational completeness of such
systems using either union or intersection. However, let us start with the case
of systems that use both Boolean operations. The case of only one Boolean
operation presents additional challenges, since Theorem 3 as it is requires both
union and intersection; these issues will be discussed later in Section 6.

Theorem 4. The family of sets of natural numbers representable by unique
(least, greatest) solutions of systems of equations of the form ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) with union, intersection and addition, is exactly the family of
recursive (r.e., co-r.e., respectively) sets.

These solutions are recursive (r.e., co-r.e., respectively) because so are the so-
lutions of language equations with union, intersection and concatenation, see
Theorem 1. So the task is to take any recursive (r.e., co-r.e.) set of numbers
and to construct a system of equations representing this set by a solution of
the corresponding kind. The construction is based upon a rather complicated
arithmetization of Turing machines, which proceeds in several stages.

First, valid accepting computations of a Turing machine are represented as
numbers, so that these numbers could be recognized by a trellis automaton work-
ing on base-6 positional notations of these numbers. While trellis automata are
rather flexible and could accept many different encodings of such computations,
the subsequent constructions require a set of numbers of a very specific form.
This form will now be defined.

First, computations are expressed as strings in the standard way:

68 A. Jeż and A. Okhotin

Definition 2. Let T be a Turing machine recognizing numbers given to it in
base-6 notation. Let V ⊃ Σ6 be its tape alphabet, let Q be its set of states, and
define Γ = V ∪Q ∪ {�}.

For every number n ∈ L(T), denote the instantaneous description of T after
i steps of computation on n as a string IDi = αqaβ ⊆ V ∗QV V ∗, where T is in
state q scanning a ∈ Γ and the tape contains αaβ. Define

C̃T (n) = ID0 ·�·ID1 ·�·. . .·�·ID�−1 ·��·ID� ·�·
(
ID�

)R ·�·. . .·�·
(
ID1

)R ·�·
(
ID0

)R

Next, consider any code h : Γ ∗ → Σ∗6 , under which every codeword is in
{30, 300}+. Define CT (n) = h(C̃T (n))300.

The language {C̃T (n) | n ∈ L(T)} ⊆ Γ ∗ is an intersection of two linear context-
free languages and hence is recognized by a trellis automaton [2,14]. By the
known closure of trellis automata under codes, the language {CT (n)|n ∈ L(T)} ⊆
Σ+

6 is recognized by a trellis automaton as well.
Now the set of accepting computations of a Turing machine is represented as

the following six sets of numbers:

Definition 3. Let T be a Turing machine recognizing numbers given in base-6
notation. For every i ∈ {1, 2, 3, 4, 5}, the valid accepting computations of T on
numbers n � 6 with their base-6 notation beginning with the digit i is

VALCi(T) = {(CT (n)1w)6 | n = (iw)6, n ∈ L(T)},

The computations of T on numbers n ∈ {0, 1, 2, 3, 4, 5}, provided that they are
accepting, are represented by the following finite set of numbers:

VALC0(T) = {(CT (n))6 + n | n ∈ {0, 1, 2, 3, 4, 5} and n ∈ L(T)}

For example, under this encoding, the accepting computation on a number
n = (543210)6 will be represented by a number (30300300 . . . 30300143210)6 ∈
VALC5(T), where the whole computation is encoded by blocks of digits 30 and
300, the digit 1 acts as a separator and the lowest digits 43210 represent n
with its leading digit cut. A crucial property of this encoding is that the digits
representing n can be separated from the digits representing the computation:

Lemma 1. Let L ⊆ (1Σ+
6)6. Then for every m ∈ ({30, 300}∗3000�)6 and for

every n ∈ (1Σ��
6)6, if m + n ∈ ({30, 300}∗3000∗)6 + L, then n ∈ L.

Trellis automata recognizing the base-6 notation of numbers in VALCi(T), by
Theorem 3, give us the following system of equations:

Lemma 2. For every Turing machine T recognizing numbers there exists
a system of equations Xi = ϕi(X1, . . . , Xn) over sets of natural num-
bers using union, intersection and addition, such that its least solution is
(L0, L1, . . . , L5, L6, . . . , Ln) with Li = VALCi(T) for 0 � i � 5.

Using these sets as constants, the required equations can be constructed. The
first case to be established is the case of least solutions and r.e. sets.

On the Computational Completeness of Equations 69

Lemma 3. For every recursively enumerable set of numbers L0 ⊆ N there exists
a system of equations of the form

ϕj(Y,X1, . . . , Xm) = ψj(Y,X1, . . . , Xm)

with union, intersection and addition, which has the set of solutions
{

(L, f1(L), . . . , fm(L))
∣
∣ L0 ⊆ L

}

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to L0. In particular, there is a least solution with Y = L0.

Proof. Consider any Turing machine T recognizing L0. A system in variables
(Y, Y1, . . . , Y5, Y0, X7, . . . , Xm) will be constructed, where the number m will be
determined below, and the set of solutions of this system will be defined by the
following conditions, which ensure that the statement of the lemma is fulfilled:

L(T) ∩ {0, 1, 2, 3, 4, 5} ⊆ Y0 ⊆ {0, 1, 2, 3, 4, 5}, (1a)

{(1w)6 | w ∈ Σ+
6 , (iw)6 ∈ L(T)} ⊆ Yi ⊆ (1Σ+

6)6 (1 � i � 5), (1b)

Y = Y0 ∪
5⋃

i=1

{(iw)6 | (1w)6 ∈ Yi}, (1c)

Xj = Kj (7 � j � m). (1d)

The sets K7, . . . ,Km are some constants needed for the construction to work.
These constants and the equations needed to specify them will be implicitly
obtained in the proof. The constructed system will use inequalities of the form
ϕ ⊆ ψ, which can be equivalently rewritten as equations ϕ∪ψ = ψ or ϕ∩ψ = ϕ.

For each i ∈ {1, 2, 3, 4, 5}, consider the above definition of VALCi(T) and
define a variable Yi with the equations

Yi ⊆ (1Σ+
6)6, (2a)

VALCi(T) ⊆ ({30, 300}∗3000∗)6 + Yi. (2b)

Both constants are given by regular languages of base-6 representations, and
therefore can be specified by equations according to Theorem 2. It is claimed
that this system is equivalent to (1b).

Suppose (1b) holds for Yi. Then (2a) immediately follows. To check (2b),
consider any (Ci

T (iw)1w)6 ∈ VALCi(T). Since this number represents the com-
putation of T on (iw)6, this implies (iw)6 ∈ L(T), and hence (1w)6 ∈ Yi by (1b).
Then (Ci

T (iw)1w)6 ∈ ({30, 300}∗3000|1w|)6 + (1w)6 ⊆ ({30, 300}∗3000)6 + Yi,
which proves the inclusion (2b).

Conversely, assuming (2), it has to be proved that for every (iw)6 ∈ L(T),
where w ∈ Σ+

6 , the number (1w)6 must be in Yi. Since (iw)6 ∈ L(T),
there exists an accepting computation of T : (Ci

T (iw)1w)6 ∈ VALCi(T). Hence,
(Ci

T (iw)1w)6 ∈ ({30, 300}∗3000∗)6 +Yi due to the inclusion (2b), and therefore
(1w)6 ∈ Yi by Lemma 1.

70 A. Jeż and A. Okhotin

Define one more variable Y0 with the equations

Y0 ⊆ {0, 1, 2, 3, 4, 5}, (3a)
VALC0(T) ⊆ ({30, 300}∗300)6 + Y0. (3b)

The claim is that (3) holds if and only if (1a).
Assume (1a) and consider any number (CT (n))6 + n ∈ VALC0(T), where

n ∈ {0, 1, 2, 3, 4, 5} by definition. Then n is accepted by T , and, by (1a), n ∈ Y0.
Since (CT (n))6 ∈ ({30, 300}∗300)6, the addition of n affects only the last digit,
and (CT (w))6 +n ∈ ({30, 300}∗300)6 +n ⊆ ({30, 300}∗300)6 +Y0, which proves
(3b).

The converse claim is that (3) implies that every n ∈ L(T) ∩ {0, 1, 2, 3, 4, 5}
must be in Y0, The corresponding (CT (n))6 + n ∈ VALC0(T) is in
({30, 300}∗300)6 + n by (3b). Since n is represented by a single digit, the num-
ber (CT (n))6 +n ends with this digit. The set ({30, 300}∗300)6 +Y0 contains a
number of such a form only if n ∈ Y0.

Next, combine the above six systems together and add a new variable Y with
the following equation:

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
i′∈Σk

(
(Yi ∩ (1i′Σ∗k)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗k)6

)
. (4)

This equation has been borrowed from the authors’ previous paper [6, Th. 3],
where it was proved equivalent to Y = Y0 ∪ {iw | 1w ∈ Yi}, that is, to (1c).

The final step of the construction is to express constants used in the
above systems through singleton constants, which can be done by Theorem 2
and Lemma 2. The variables needed to specify these languages are denoted
(X7, . . . , Xn), and the equations for these variables have a unique solution
Xj = Kj for all j.

This completes the description of the set of solutions of the system. It is
easy to see that there is a least solution in this set, with Y = L(T), Y0 =
L(T) ∩ {0, 1, 2, 3, 4, 5}, Yi = {(1w)6 | w ∈ Σ+

6 , (iw)6 ∈ L(T)} and Xj = Kj. ��

The representation of co-recursively enumerable sets by greatest solutions is dual
to the case of least solutions and is established by an analogous argument.

Lemma 4. For every co-recursively enumerable set of numbers L0 ⊆ N there
exists a system of equations of the form

ϕj(Z,X1, . . . , Xm) = ψj(Z,X1, . . . , Xm)

with union, intersection and addition, which has the set of solutions
{

(L, f1(L), . . . , fm(L))
∣
∣ L ⊆ L0

}
,

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to L0. In particular, there is a greatest solution with Z = L0.

On the Computational Completeness of Equations 71

Finally, the case of recursive languages and unique solutions can be established
by combining the constructions of Lemmata 3 and 4 as follows:

Lemma 5. For every recursive set of numbers L ⊆ N there exists a system of
equations of the form ϕi(Y, Z,X1, . . . , Xn) = ψi(Y, Z,X1, . . . , Xn) with union,
intersection and addition, such that its unique solution is Y = Z = L, Xi = Ki,
where (K1, . . . ,Kn) is some vector of sets.

Proof. As a recursive language, L is both recursively enumerable and
co-recursively enumerable, hence both Lemmata 3 and 4 apply. Consider both
systems of language equations given by these lemmata, let Y be the variable from
Lemma 3 let Z be the variable from Lemma 4, and let X1, . . . , Xn be the rest
of the variables in these systems combined. The set of solutions of the systems
obtained is {

(Y, Z, f1(Y, Z), . . . , fn(Y, Z))
∣
∣ Z ⊆ L ⊆ Y

}
.

Add one more equation to the system:

Y = Z.

This condition collapses the bounds Z ⊆ L ⊆ Y to Z = L = Y , and the resulting
system has the unique solution

{
(L,L, f1(L,L), . . . , fn(L,L))

}
,

which completes the proof. ��

5 Decision Problems

Consider basic properties of equations, such as the existence and the uniqueness
of solutions. For the more general case of language equations it is known that
these and a few other properties are undecidable [13,15,16], and their exact po-
sition in the arithmetical hierarchy has been determined. These results will now
be re-created for equations over sets of numbers, based upon the constructions
from the previous section.

Theorem 5. The problem of whether a system of equations ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) over sets of natural numbers has a solution is Π1-complete.

Proof. The problem is in Π1 in the more general case of language equations
[13]. Its Π1-hardness is proved by a reduction from the emptiness problem for
Turing machines. Let T be a TM and construct a system of equations in variables
(Y0, . . . , Y5, X1, . . . , Xm) with the unique solution Yi = VALCi(T), Xj = Kj ⊆
N. Since L(T) = ∅ if and only

⋃5
i=0 VALCi(T) = ∅, it is sufficient to add a new

equation
⋃5

i=0 Yi = ∅ so that the resulting system has a solution if and only if
L(T) = ∅. ��

72 A. Jeż and A. Okhotin

Theorem 6. Testing whether a system ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) over
sets of natural numbers has a unique solution is a Π2-complete problem.

Proof. The Π2 upper bound is known from the case of language equations [13].
Π2-hardness is proved by a reduction from the known Π2-complete Turing

machine universality problem, which can be stated as follows: “Given a TM M
working on natural numbers, determine whether it accepts every n ∈ N0”. Given
M , construct the system of equations as in Lemma 3. It has a unique solution
if and only if the bounds L(T) ⊆ L ⊆ N are tight, that is, if and only if the TM
accepts every number. This completes the reduction. ��

Theorem 7. The problem whether a system ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn)
over sets of natural numbers has finitely many solutions is Σ3-complete.

Proof. The problem is in Σ3 for language equations [16].
To prove Σ3-hardness, consider the co-finiteness problem for Turing machines,

which is stated as “Given a TM T working on natural numbers, determine
whether N \ L(T) is finite”, which is known to be Σ3-complete [17, Cor. 14-
XVI]. Given M , use Lemma 3 to construct the system of equations with the set
of solutions {(L, f1(L), . . . , fk(L)) | L(T) ⊆ L}. This set is finite if and only if
N \ L(T) is finite, which completes the reduction. ��

6 Unresolved Systems with {∪, +} and {∩, +}

All results so far have been established using equations with addition, union
and intersection. In fact, the same results hold for equations using addition and
either union or intersection. Establishing all results in this stronger form, in
particular, requires rewriting the basic constructions of Theorems 2 and 3 [5,6].
The proof of the new Theorem 4 also has to undergo some changes.

An outline of these modifications is explained in this section. The first basic
result is a simulation of a resolved system of a specific form using union, inter-
section and addition by an unresolved system that does not use intersection.

Lemma 6. Let Xi = ϕi(X1, . . . , Xn) be a resolved system of equations with
union, intersection and addition and with constants from a set C containing
only positive integers. Let (L1, . . . , Ln) be its least solution. Assume that for
every variable Xi0 there exists a subset of variables {Xi}i∈I containing Xi0 ,
such that

– the sets {Li}i∈I are pairwise disjoint and their union is in C,
– the equations for all {Xi}i∈I are either all of the form Xi =

⋃
j αij , or all of

the form Xi =
⋂

j αij ∪ C, where C is a constant and αij = A1 + . . . + Ak,
with k � 1 and with each At being a constant or a variable,

In addition, assume that there are no cyclic chain dependencies in the system.
Then there exists an unresolved system with union and addition, with constants
from C, which has the unique solution (L1, . . . , Ln).

On the Computational Completeness of Equations 73

The construction is by replacing each equation Xi =
⋂

j αij ∪ C with equations
Xi ⊆ αij ∪ C for all j. In addition, for each subset of variables {Xi}i∈I with⋃

i∈I Li = CI , the equation
⋃

i∈I Xi = CI is added.
A similar construction produces equations with intersection instead of union:

Lemma 7. Under the assumptions of Lemma 6, there exists an unresolved sys-
tem with intersection and addition and with constants from C, which has a unique
solution that coincides with the least solution of the given system.

Here every equation Xj =
⋃

j αij is replaced with αi ⊆ X for each i. For every
subset of variables {Xi}i∈I with union CI , an equation Xi ⊆ CI is added for
each i ∈ I, as well as an equation Xi ∩Xj = ∅ for all i, j ∈ I with i �= j.

The next task is to apply Lemmata 6and 7 to resolved systems constructed in the
proofs of Theorems 2 and 3. For the lemmata to be applicable, the existing equa-
tions (see Jeż [5] and Jeż and Okhotin [6]) need to be decomposed into smaller parts
and slightly changed. Then the variables can be grouped into subsets, as required
by the lemmata. In the end, the following variant of Theorem 3 is obtained:

Lemma 8. For every k � 2 and for every trellis automaton M over Σk, with
L(M) ∩ 0Σ∗k = ∅, there exists and can be effectively constructed an unresolved
system of equations over sets of natural numbers using union and addition (inter-
section and addition, respectively) and singleton constants, such that its unique
solution contains a component (L(M))k.

It remains to modify the proofs of Lemmata 3–5. The equations in there use
mostly inclusions, which can be simulated using either union or intersection.
The only exception is the equation (4). It can be equivalently replaced by the
following unresolved equations using intersection and addition:

Y ∩ (ii′Σ∗6)6 =
(
Yi ∩ (1i′Σ∗6)6

)
+((i− 1)0∗)6 ∩ (ii′Σ∗6)6 (i, j ∈ Σ6, i � 2)

Y ∩ {0, 1, . . . , 5} = Y0

Y ∩ (1Σ+
6)6 = Y1

The construction of equivalent unresolved equations using union and addition
is slightly more complicated and is omitted due to space constraints. Altogether,
the following improved statement of Theorem 4 is established:

Theorem 8. The sets of natural numbers representable by unique (least,
greatest) solutions of systems of equations of the form ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) with addition, and union or intersection are exactly the recursive
(r.e., co-r.e., respectively) sets.

Theorems 5–7 on the undecidability level of decision problems for such equations
hold in this case as well.

7 Conclusion

The equations considered in this paper are a pure mathematical object. Unex-
pectedly, it turned out to be equivalent to the notion of effective computability.

74 A. Jeż and A. Okhotin

This can be compared to Diophantine equations, which have been proved to
be computationally complete by Matiyasevich. Due to this result, it is known, for
instance, that there is a Diophantine equation for which the range of admissible
values of a certain variable x is exactly the set of primes. Similarly, our Lemma 3
allows one to construct a system of equations over sets of natural numbers, which
has a unique solution with one of its components being exactly the set of primes.

Among the applications of this result, it settles the expressive power of a
generalization of integer circuits [11], as well as shows that language equations are
computationally complete even in the seemingly trivial case of a unary alphabet.

References

1. Charatonik, W.: Set constraints in some equational theories. Information and Com-
putation 142(1), 40–75 (1998)

2. Culik II, K., Gruska, J., Salomaa, A.: Systolic trellis automata, I and II. Interna-
tional Journal of Computer Mathematics 15, 16, 195–212, 3–22 (1984)

3. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. Journal of
the ACM 9, 350–371 (1962)

4. Hartmanis, J.: Context-free languages and Turing machine computations. In: Pro-
ceedings of Symposia in Applied Mathematics, vol. 19, pp. 42–51. AMS (1967)

5. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 1242–
1253. Springer, Heidelberg (2007)

6. Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability
and unbounded growth. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 168–181. Springer, Heidelberg (2007)

7. Jeż, A., Okhotin, A.: Complexity of equations over sets of numbers. In: STACS 2008
(2008)

8. Kunc, M.: The power of commuting with finite sets of words. Theory of Computing
Systems 40(4), 521–551 (2007)

9. Kunc,M.: What dowe knowabout language equations? In:Harju, T., Karhumäki, J.,
Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 23–27. Springer, Heidelberg (2007)

10. Leiss, E.L.: Unrestricted complementation in language equations over a one-letter
alphabet. Theoretical Computer Science 132, 71–93 (1994)

11. McKenzie, P., Wagner, K.W.: The complexity of membership problems for circuits
over sets of natural numbers. Computational Complexity 16, 211–244 (2007)

12. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

13. Okhotin, A.: Decision problems for language equations with Boolean operations.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 239–251. Springer, Heidelberg (2003)

14. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.
Informatique Théorique et Applications 38(1), 69–88 (2004)

15. Okhotin, A.: Unresolved systems of language equations: expressive power and de-
cision problems. Theoretical Computer Science 349(3), 283–308 (2005)

16. Okhotin,A.:Strict languageinequalitiesandtheirdecisionproblems.In:Jedrzejowicz,
J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618. Springer, Heidelberg (2005)

17. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability (1967)
18. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:

STOC 1973, pp. 1–9 (1973)

Placement Inference for a Client-Server Calculus

Matthias Neubauer and Peter Thiemann

Institut für Informatik, Universität Freiburg, Georges-Köhler-Allee 079
79110 Freiburg, Germany

{neubauer,thiemann}@informatik.uni-freiburg.de

Abstract. Placement inference assigns locations to operations in a dis-
tributed program under the constraints that some operations can only
execute on particular locations and that values may not be transferred
arbitrarily between locations. An optimal choice of locations additionally
minimizes the run time of the program, given that operations take differ-
ent time on different locations and that a cost is associated to transferring
a value from one location to another.

We define a language with a time- and location-aware semantics, for-
malize placement inference in terms of constraints, and show that solving
these constraints is an NP-complete problem. We then show that opti-
mal placements are computable via a reformulation of the semantics in
terms of matrices and an application of the max-plus spectral theory. A
prototype implementation validates our results.

1 Introduction

A multi-tier architecture is the best practice approach to the construction of a
distributed client-server system. Each tier corresponds to a component with a
well-defined set of interfaces that can be developed independently. Moreover, it is
possible to upgrade a component, to later change the underlying technology of a
component, or to individually maintain and test a component without affecting
other parts of the system. Multi-tier applications typically scale well because
the overhead of running several incarnations of a component simultaneously is
manageable and is easily outweighed by the performance gain.

Structuring such a system is no easy task, in particular if the physical design
does not quite match up with the logical design. The requirements dictated
by the characteristics of distribution must be kept in mind by designers and
programmers alike. Local and remote versions of interfaces must be provided
and must be kept synchronized, middleware technology has to be selected and
integrated into the system, and all sorts of idiosyncratic restrictions have to be
catered for to obtain a working system. In short, distribution leads to many new
sources of error.

Recent work [21,19,9,22] indicates that distributed client-server applications
may also be developed in one piece. This way, an application may be structured
entirely following logical design. Distribution is introduced later by a program
transformation which—guided by annotations—splits the program into compo-
nents that run on different tiers and introduces the necessary communications.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 75–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

76 M. Neubauer and P. Thiemann

Expr � e ::= halts | fs x | let x = ops(x) in e
| ifs x then e else e
| transs x in e

Def � d ::= f(x) = e

Prog � p ::= d e

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

x1, . . . , xnv ∈ Var
f1, . . . , fnf ∈ FVar pfun ∈ POp
s1, . . . , sns ∈ SVar op ∈ EOp
op ∈ Op = POp ∪ EOp

= {if} � {op2, . . . , opnop
}

Fig. 1. Syntax of ILS

The transformation preserves the semantics, hence reasoning about the system
and its functional test can happen in a non-distributed setting.

In previous work [21], we have proposed a theoretical framework that consists
of a sequential calculus (to model the application), a placement specification (to
formalize the annotation of operations with the locations where they run), and
a program transformation for introducing processes and communication.

Contribution. We extend our previous work on placement specification [21] to
placement inference, a static analysis that computes a placement that obeys the
placement restrictions of the basic operations and exhibits the shortest worst-
case run time.

Sec. 2 presents a language and its time- and location-aware semantics. Sec. 3
specifies a constraint-based analysis that infers all valid placements. The problem
of finding a valid placement is shown to be NP-complete.

Sec. 4 applies the theory of (max,+) algebras [6] to compute the expected
worst-case run time for a valid placement. The challenge is to define such a notion
also for nonterminating programs. This step requires to reformulate the timed
semantics in terms of matrix multiplication. Finally, we exhibit an algorithm
that finds a placement with minimal worst-case run time.

The results in this paper are excerpted from Neubauer’s PhD thesis [20], which
contains all proofs.

2 The Calculus ILS

2.1 Syntax and Informal Standard Semantics

Figure 1 defines the syntax of the ILS calculus, i.e., first-order recursive program
schemes with primitive operations, conditionals and explicit transfer operations.
There are five disjoint denumerable sets, Var, FVar, SVar, POp, and EOp, that
represent variable identifiers, function names, placement labels, names of pure
and effectful operations, respectively. An operation name, op, can stand for a
pure or an effectful operation.

To simplify the formalization of the static analysis, we assume that all place-
ment labels in a program are unique, each variable is bound at most once, and
that variables, function names, placement labels, and operations are numbered
consecutively. In some contexts, if serves as operation op1.

Placement Inference for a Client-Server Calculus 77

� ∈ L = {1, . . . , nl} locations
c ∈ Op ↪→ Dnl calculation cost cj for operation j
T ∈ Dnl×nl transfer cost matrix

o ∈ Op× SVar ↪→ Dnl operation placement oj,k for operation j annotated by sk

S ∈ SVar × Var ↪→ Dnl×nl transfer placement matrix Ss,x for var. x annotated by s

Fig. 2. Components of a timed configuration

Neubauer’s PhD dissertation [20] defines the standard semantics of the lan-
guage along with a simple type system and a type soundness proof. Here, we
summarize only the most important points.

A program is a sequence of mutually recursive function definitions, d, followed
by a single main expression. An expression of ILS performs a single operation on
multiple locations at the same time. Each expression carries a placement label
annotation, s, to specify the locations on which the expression acts. The variable
bindings are location dependent, that is, a variable’s value may be available on
one location, but unavailable on another. Expressions do not produce a final
value. They either end with a halts expression or with a control transfer to
another top level function, fs x. Arguments to operators, conditionals, and jumps
are restricted to variables.

Compound expressions sequence the evaluation of expressions. The expression
let x = ops(x) in e executes a primitive operation (with or without side effect)
before continuing with e. It presumes that its arguments are available on the
locations indicated with s. The conditional expression ifs x then e1 else e2

branches on the condition x and continues with either e1 or e2. The expression
transs x in e transfers the values bound to the variables x between locations
as indicated through the placement label annotation s before continuing with e.
After a transfer, the values are available on more locations as before.

For this work, our prime objective is a nonstandard semantics that computes
the time taken by executing a program according to the standard semantics.

2.2 Timed Semantics with Localities

The nonstandard semantics specifies the (maximal) duration that a distributed
computation takes for a certain location assignment. It is a small-step operational
semantics which models durations as elements of the (max,+) algebra M =
(R ∪ {−∞},⊗,⊕,1,0) [6], where ⊗ = + combines the durations of sequential
operations, ⊕ = max combinues durations of parallel operations, 1 = 0, and
0 = −∞. We simplify the timing behavior of a distributed system by ignoring
the actual values of the operands as well as any external factors on which the
duration of a transfer or an operation may depend.

A timed configuration χ = (L, c,T,o,S) forms the context of evaluation for
an ILS program. Fig.2 describes its components. The set of locations, L, models

78 M. Neubauer and P. Thiemann

T-S-Op

ϑc
′(�) = if os,k

� = 1 then ck
� ⊗ (

L

j ϑv(yj)(�)⊕ ϑc(�)) else ϑc(�)

ϑv
′ = ϑv[z �→ λ�.os,k

� ⊗ ϑc
′(�)]

L, c,T,o,S | ϑc, ϑv, d let z = ops
k(yj) in e,−→f ϑc

′, ϑv
′, d e

T-S-If

ϑc
′(�) = if os,1

� = 1 then c1
� ⊗ (ϑv(x)(�)⊕ ϑc(�)) else ϑc(�)

L, c,T,o,S | ϑc, ϑv, d ifs x then e1 else e2 −→f ϑc
′, ϑv, d ei

i ∈ {1, 2}

T-S-Trans

ϑv
′(x)(�) = if x ∈ x ∧ Ss,x

�′,� = 1 then T�′,� ⊗ ϑv(x)(�′) else ϑv(x)(�)

L, c,T,o,S | ϑc, ϑv, d transs x in e −→f ϑc, ϑv
′, d e

T-S-Jump

dj ≡ fj(x) = ej (∀i) ϑv
′(xi) = ϑv(zi)

χ | ϑc, ϑv, d fs
j z −→f ϑc, ϑv

′, d ej

Fig. 3. Timed reduction rules for ILS programs

entities where computations can take place simultaneously and independently.
The calculation cost cj� is the time to execute opj on location �. The transfer
cost T�1,�2 is the time to send a value from location �1 to �2. They constitute a
cost declaration for operations and transfers. The cost 0 declares unavailability.

The remaining components select operations and transfers for execution. The
operation placement o = oj,k has o� = 1 iff operation opj annotated by place-
ment label sk is executed at location �. Otherwise o� = 0. The transfer placement
matrix Ss,x

�′,� ∈ {0,1} contains 1 to indicate a possible transfer operation labeled
with s to transfer x from location �′ to location �. Otherwise it is 0. In addition,
each column of a transfer placement matrix is allowed to only have at most one
1 entry, because each target location must has at most one source location.

An evaluation state ϑc, ϑv, d e comprises a program and two timed environ-
ments that indicate when values are available at different locations and for spe-
cific arguments. The clock environment, ϑc ∈ L → D, expresses the time elapsed
on each location. The arrival environment, ϑv ∈ Var → L → D, indicates the
time when the value of a variable will be available at a given location.

Fig. 3 specifies the dynamic semantics as a reduction relationχ | ϑc, ϑv, d e −→f

ϑc
′, ϑv

′, d e′, which relates an evaluation state to one of its successor states in the
context of a timed configuration, χ.

The rule (T-S-Op) specifies the timing behavior of operation opk. For each
location � on which opk is performed, evaluation begins after the current time
on � and after all arguments of opk are available. Then opk takes ck� time,
which yields the new time at �. If opk is not performed, then the time at
� does not advance. The arrival times of the newly bound variable z are set
accordingly.

Placement Inference for a Client-Server Calculus 79

The rule (T-S-If) has two possible outcomes, one for each branch, because it
cannot decide the condition. Execution of the conditional starts after the current
time on the selected locations and after the condition is available. Then either
of the branches starts after the time taken for executing the conditional. The
arrival environment does not change.

A transfer expression (rule (T-S-Trans)) does not change the clock environ-
ment because transfers happen asynchronously. Sending from a location �′ starts
right after the current time and after the variable’s value is available. It arrives
at location � with a delay specified by the transfer cost T�′,�.

The rule (T-S-Jump) models a function call by setting the arrival times of
the formal parameters according to the actual parameters. Evaluation proceeds
with the body of the called function.

3 Placement Analysis

A timed configuration includes placements of operations and transfers. These
placements must be valid, i.e., satisfy restrictions to ensure that all arguments
of an operation scheduled to run at location � are eventually present at �.

This section develops a constraint-based placement analysis for ILS that iden-
tifies all valid placements for a program.1 Then we prove that finding a solution
for the resulting constraints is an NP-complete problem.

Availabilities. A name, M,N, · · · ∈ N , represents a fixed set of locations,
L(M) ∈ P(L). A location set variable α, β, · · · ∈ LSVar ranges over a set of
locations. An availability, Avail � A ::= α | N , specifies possible locations for a

value of a base type. A function availability, FAvail � A
A′,A′′

−−−−→ 0, states that the
arguments of a function must be available on locations A, at least locations A′

are needed to run the function, and effects may be visible on locations A′′.
An availability operation placement, Ξop ∈ Op ↪→ SVar ↪→ Avail, associates

each occurrence of an operator with a availability, which may be prescriptive by
specifying a set of locations or which may just associate a location set variable
with the occurrence. An availability transfer placement, Ξtr ∈ SVar ↪→ Var ↪→
Avail × Avail, similarly associates each variable occurrence with a pair of avail-
abilities. A function availability assumption, Δ ∈ FVar ↪→ FAvail, connects a
function declaration with its uses. An availability assumption, Γ ∈ Var ↪→ Avail,
associates a variable with its availability.

Constraints. Constraints, C ::= A � A | A ��� A | op � A | singleA | A ?= A,
express demands on availabilities: A is a subtype of A′ (A � A′), a transfer from
any location in A to any location in A′ is possible (A ��� A′), operation op is
available on A (op � A), A represents a single location (singleA), and A and A′

are equal (A ?= A′). We write C for a set of constraints.
1 The first author’s dissertation [20] includes a specification of the analysis and proves

its equivalence with the constraint-based variant.

80 M. Neubauer and P. Thiemann

Ξop ; A � ops | C, α operator placement access
Γ � x : α | C variable availability access
Ξop ; Ξtr; Δ; Γ ; A � e ! α′ | C expression availabilities

C-S-POp

Ξop(pfun)(s) = α
C ⊇ {Ac � α, pfun � α}
Ξop ; Ac � pfuns | C, α

C-S-EOp

Ξop(op)(s) = α
C ⊇ {Ac � α, op � α, single α}

Ξop ; Ac � ops | C, α

C-S-Var

Γ (x) = A′

C ⊇ {A′ � α}
Γ � x : α | C

C-S-Halt

α′ fresh

Ξop ; Ξtr; Δ; Γ ; A � halts ! α′ | ∅

C-S-Let

Ξop ; A � ops | C, α0 C ⊇ {α′ � α0}
(∀i ∈ [m]) Γ � xi : α0 | C

Ξop ; Ξtr; Δ; Γ, x0 : α0; A � e ! α′ | C
Ξop ; Ξtr; Δ; Γ ; A � let x0 = op(x) in e ! α′ | C

C-S-If

Ξop ; A � ifs | CΓ � x : α0 | C
(∀i ∈ [2]) Ξop ; Ξtr; Δ; Γ, x : α0; A � ei ! αi | C

C ⊇ {α0 � α1, α0 � α2, α
′ � α0} α′, α1, α2 fresh

Ξop ; Ξtr; Δ; Γ ; A � if x then e1 else e2 ! α′ | C

C-S-Trans

Γ � xi : αi | C
Ξop ; Ξtr; Δ; Γ, xi : α′

i; A � e ! α′ | C
(∀i ∈ [m]) (Ξtr(s)(xi) = (αi, α

′
i)

⇒ C ⊇ {αi ��� α′
i})

Ξop ; Ξtr; Δ; Γ ; A � transs x in e ! α′ | C

C-S-Jump

Δ(f) = αi
α′′,α′′′
−−−−−→ 0

(∀i ∈ [m]) Γ � xi : αi | C
C ⊇ {A � α′′, α′′′ ?

= α′} α′ fresh

Ξop ; Ξtr; Δ; Γ ; A � fs x ! α′ | C

Fig. 4. Availability rules for ILS

An availability substitution σ ∈ LSVar ↪→ P(L) substitutes a set of locations
for each location set variable. It extends pointwise to availabilities, function
availabilities, placements, and assumptions. It applies L(·) to each name.

Definition 1. Given a location mapping for operations Σ ∈ Op ↪→ P(L) that
specifies possible locations for operations, and a transfer matrix Θ ⊆ L×L that
represents all possible transfer paths between locations, an availability substitu-
tion σ is a (Σ,Θ)-solution of a constraint set C, written σ |=Σ,Θ C, if for all
C ∈ C, it holds that

(i) if C ≡ A � A′, then σ(A) ⊇ σ(A′),
(ii) if C ≡ A ��� A′, then (∀� ∈ σ(A), �′ ∈ σ(A′)) � � �′ ∈ Θ,

(iii) if C ≡ op � A, then Σ(op) ⊇ σ(A),
(iv) if C ≡ singleA, then |σ(A)| = 1, and

(v) if C ≡ A
?= A′, then σ(A) = σ(A′).

Placement Inference for a Client-Server Calculus 81

Constraint Availability Rules. Fig. 4 specifies the judgments and rules for
constraint generation. Given a program, p, and preassigned availabilities for func-
tions, variables and static placements, Δ, Γ , Ξop , and Ξtr, the system generates
a set of constraints, which expresses validity conditions.

The (C-S-POp) rule considers a pure operation pfun at placement label s
with available locations Ac. The (C-S-EOp) rule considers an effectful operation
op at placement label s with available locations Ac. It extends the rule (C-S-

POp) by assuring that operation op is placed on exactly one location. The
(C-S-Var) rule generates a subtyping constraint following the variable lookup.

Rule (C-S-Halt) places no restriction. Rule (C-S-Let) ensures that all ar-
guments for an operation placed according to α0 are present at all locations in
α0 and that the body of the let can also execute at least on α0. Rule (C-S-If)
ensures that the condition is available at α0 where the conditional is supposed
to execute and that these locations also support execution of the branches of
the conditional. Rule (C-S-Trans) states that the availability of variable values
must match the transfer facilities specified in Ξtr. Rule (C-S-Jump) matches
the argument placement with the placement required by the function’s type. It
furthermore threads the currently running locations A through the function’s
effect. Neubauer [20] presents the remaining judgments and rules.

Solving Constraints and Complexity. Neubauer’s PhD thesis [20, chapter
4.2] presents and proves sound and complete a constraint simplification proce-
dure that transforms a set of constraints C to a substitution that solves C. In
general, there may be more than one solution.

It remains to assess the complexity of constraint solving. The execution of a
program without effectful operations cannot be observed, thus the trivial place-
ment that allows no transfers and no computation is valid and even optimal. For
a program with effectful operations, determining the set of valid placements is
an NP-complete problem if there are more than two distinct locations.

Theorem 1. If nl > 2 then the problem of determining the valid placements of
a program, p, with effectful operations is NP-complete.

Proof. The problem is obviously in NP. It remains to show that it is NP-hard
by giving a polynomial-time Karp-reduction [4] from the problem of checking
the nl-colorability of a graph (an NP-complete problem for nl > 2 [12]) to the
computation of valid placements for an ILS program.

Let G = (V,E) be a graph with |V | = n and E = {(vi1 , vj1), . . . , (vie , vje)}.
From this graph, we construct a program as prescribed in Fig. 5. It can be shown
that each valid placement for p corresponds to a nl-coloring of G, thus proving
our claim. Details may be found in Neubauer’s thesis [20].

Informally, the parameters of the top-level function f simulate the vertices of
the graph. A coloring of a vertex by one of the nl colors is emulated by searching a
location assignment for the corresponding parameter. For each edge between two
vertices, we “connect” the parameters by introducing a data transfer between
them. The requirement that two adjacent vertices have to be colored differently is

82 M. Neubauer and P. Thiemann

p ≡ f(x0, x1, . . . , xn) = Di1,j1 [Di2,j2 [. . . [Die,je [halt]]]]

let y0 = pfuns0() in
let y1 = pfuns1() in
...
let yn = pfunsn() in
fsn+1 (y0, y1, . . . , yn)

where for each edge (vi, vj) ∈ E the contexts Ci,j and Di,j are defined by

Ci,j [·] ≡ let x′
j = opsi,j (xi) in

transs′
i,j x′

j in

ifs′′
i,j x0 then fs′′′

i,j (x0, x1, . . . , xi, . . . , x
′
j , . . . , xn) else [·]

Di,j [·] ≡ Ci,j [Cj,i[·]]

Fig. 5. Program constructed from a graph

M-S-Trans

S = (Sk,l)k∈[ns],l∈[nv]

D = diagB(I,B1, . . . ,Bnv)
Bl =

(

Sk,l •T if xl ∈ x

I otherwise

c;T;o;S | d, d transk x in e −→m D⊗ d, d e

Fig. 6. Matrix-based reduction rule for the transfer expression

enforced by choosing a transfer cost function which only allows transfers between
different locations.

4 Properties of Placement

The calculation of an optimal placement amounts to finding the placement which
minimizes the worst-case run time of an ILS program. This section presents a
method to calculate the worst-case run time by reformulating the timed seman-
tics in terms of matrices over a dioid and then applying results of the spectral
theory of such matrices. The difficulty here is to assign a meaningful notion
of worst-case run time also to potentially non-terminating programs, which is
where the spectral theory kicks in.

The first step is the reformulation of the timed semantics. It is now defined by
a judgment c; T; o; S | d, d e −→m d′, d e′ which relates two evaluation states of
the form d, d e. The environment vector d ∈ Dnl+nvnl combines the clock and
arrival environments of the previous formulation in a vector where the first nl

entries correspond to ϑc and the remaining entries to ϑv.

Placement Inference for a Client-Server Calculus 83

Fig. 6 shows the rule (M-S-Trans) for transfers as an example. It corresponds
to rule (T-S-Trans) from Fig. 3. The rule obtains the new environment vector
by multiplying d with a block diagonal matrix D where the upper left block is
I ∈ Dnl×nl to copy the ϑc-part unchanged and the remaining blocks Bl compute
the new arrival times of all variables by adding the transfer times from T to
the variable availabilities as determined by the placement through Sk,l. The
operation • stands for Hadamard (pointwise) multiplication of matrices.

In fact, each transition of the timed semantics can be expressed as a mul-
tiplication of the environment vector with a suitable transition matrix D that
depends only on c, T, o, and S [20, Lemma 4.33 and 4.34]. These matrices
completely describe the transition behavior of the program:

Lemma 1. There exists a finite family of matrices, (Di,j)i,j, such that

c; T; o; S | d, d sje′ −→m d′, d sie′′ iff Di,j �= Z ∧ d′ = Di,j ⊗ d

where i, j ∈ [ns] range over the indices of program expressions.

We set Di,j = Z if there is no transition from expression j to expression i.
The transition matrix M = M(p,o,S) ∈ Dnlns×nlns combines this family of
matrices into one big block matrix where the blocks are defined by Mi,j = Di,j .
This matrix encompasses the behavior of the entire program and it depends on
o and S.

Theorem 2. Let M = M(d e,o,S) be the transition matrix. Then

c; T; o; S | d, d sje′ −→m d′, d sie′′ iff D �= Z ∧ d′ = D⊗ d

where Aj =
[
Z . . . I

j
. . . Z

]T
, Bi =

[
Z . . . I

i
. . . Z

]
and D = Bi ⊗M⊗Aj .

Hence, n-fold multiplication with M corresponds to n reduction steps. Thus, we
may compute the n-step worst-case duration as the maximum of the clocks and
availabilities at any location after n steps starting from expression sj as follows:

Definition 2. The n-step worst-case duration of program p from sj is

dsj ,p,o,S
n = [1, . . . ,1]⊗M(p,o,S)n ⊗

[
Z . . . I

j
. . . Z

]T
.

Worst-Case Mean Duration. Most programs do not terminate under the
timed semantics, so that the n-step worst-case duration grows without bound
as n → ∞. However, the mean duration of a single step taken over all finite
path segments is an indicator for the expected performance of a program that
makes sense both for terminating and for nonterminating programs. The worst-
case behavior under this indicator is the maximal mean duration of all paths.
In keeping with the (max,+)-notation, we write d1/n for the division of a real
number d by a natural number n.

Definition 3. The worst-case mean duration of p from si with respect to M is
defined as ρsi,p,o,S = lim supn(dsi,p,o,S

n)1/n.

84 M. Neubauer and P. Thiemann

This definition happens to coincide with the definition of the maximum cycle
mean for a transition matrix. According to the (max,+) spectral theory [6] [13,
Lemma 1], the following quantities equally describe the maximum cycle mean,
ρ(A), of a matrix, A:

Lemma 2. For all A ∈ Rn×n
(max,+): lim supk ||Ak||1/k =

⊕
1≤k≤n(trace(Ak))1/k.

As the maximum cycle mean of such a matrix is computable, we can calculate
the worst-case mean duration of a program with a fixed placement.

Theorem 3. If p is a program with transition matrix M, then its worst-case
mean duration from si is either ρsi,p,o,S = 0 or =

⊕
1≤k≤nlns

(trace(Mk))1/k.

Optimal Placements. The constraint-based placement analysis of Section 3
gives us a way to find all valid placements for a certain program. The last step is
to statically determine one valid placement that minimizes the worst-case mean
duration among all valid placements.

Definition 4 (Optimal Placements). Let p be a program and c,T the asso-
ciated cost matrices. Let V be the set of valid placements with respect to c,T:2

V = {(o,S) | Ξop ;Ξtr;Δ;Γ ;α � p ! α′ | C, (∃σ) σ |=Σ,Θ C,o ∼ σΞop ,S ∼ σΞtr}

(o,S) ∈ V is an optimal placement if ρs1,p,o,S ≤ ρs1,p,o
′,S′

, for all (o′,S′) ∈ V .

The set of valid placements, V , depends on calculation costs, c, transfer costs, T,
and a program, p. A placement, (o,S), is valid if there exist availability assump-
tions and constraints generated by the constrained-based availability analysis
and the constraints are solvable by an availability substitution.

Corollary 1. For each program, p, operation costs, c, and transfer costs, T,
the set of optimal placements of p is computable.

Implementation. There is a prototype implementation of the placement anal-
ysis for ILS , which determines an optimal placement from calculation costs and
transfer costs. Our algorithm is a variation of the backtracking integer optimizer
of Marriott and Stuckey [18, Chapter 3, Figure 3.19].

We encode placement inference as a boolean satisfaction problem and deter-
mine solutions (valid placements) with a backtracking algorithm. The valuation
of a valid placement computes the maximum cycle mean using an adaption of
Howard’s algorithm for solving Markov decision processes. In practice [11], this
algorithm is reported to run in quadratic time in the length of the input program.

Still, enumerating all solutions of a placement problem may take time expo-
nential in the length of the input program. Our implementation checks consis-
tency at each choice point to abort the search as soon as the constraint set is no
longer solvable. The implementation avoids multiple traversals of the search tree
by interleaving the search for an optimal placement with the search for the next
solution. We additionally minimize the need to calculate the maximum cycle
mean by using the best intermediate solution as additional search bound. For
sample program, our implementation finds valid placements instantly.
2 o ∼ σΞop and S ∼ σΞtr denote the correspondence between matrices and relations.

Placement Inference for a Client-Server Calculus 85

5 Related Work and Conclusion

There are extensions of process algebras and automata with timed semantics,
which use absolute time values or time intervals (e.g. Chen’s thesis on Timed
CCS [8]). Hybrid system, typically modeled by hybrid automata, also allow to
model dynamic behavior, in particular timing, by considering time constraints
on transitions [14]. Other approaches add time constraints to automata using
real-valued clocks: Alur and Dill’s timed automata [2], Lynch’s MMT timed
automata [17] [16, Chapter 23], and others.

Our model is similar to weighted automata [15]. We rely on the (max,+) alge-
bra as a time domain, because we are only interested in worst-case run time. The
(max,+) algebra and related systems are studied in the context of discrete event
systems [6]. Originally, this theory models concurrent computations with timed
Petri nets. Our model is mainly influenced by Gaubert’s work on non-deterministic
finite automata with duration functions over (max,+) [13]. Buchholz and Kem-
per [7] have developed a notion of weak bisimulation for (max,+) automata.

Many static analysis problems can be solved by reduction to constraint satis-
faction problems, e.g., type inference for simply typed languages [5] or for calculi
with subtyping [23] and many others.

The constraint language of our location analysis is a restricted form of set con-
straints [1]. In general, constraint problems are instances of constraint program-
ming [18, 3]. General methodologies to characterize and examine the tractability of
constraint-satisfactionproblemsareconsidered,amongothers,byCooperetal. [10].

To conclude, we have shown that placement inference is feasible and that it
yields useful (though not optimal) results instantly, despite the NP-completeness
of the underlying problem. These results encourage further experimentation with
the analysis. We plan to integrate it in a compiler that implements the splitting
transformation of our previous work [21] and evaluate its performance with real-
istic programs. It also remains to see if the predicted timing behavior corresponds
with actual measurements.

References

1. Aiken, A., Wimmers, E.L.: Solving systems of set constraints. In: Proc. 1992 IEEE
Symposium on Logic in Computer Science. IEEE Computer Society Press, Los
Alamitos (1992)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Apt, K.R.: Explaining constraint programming. In: Middeldorp, A., van Oostrom,
V., van Raamsdonk, F., de Vrijer, R.C. (eds.) Processes, Terms and Cycles. LNCS,
vol. 3838, pp. 55–69. Springer, Heidelberg (2005)

4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, New York (1999)

5. Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, ch.8, vol. I, pp. 445–534. Elsevier Science,
Amsterdam (2001)

86 M. Neubauer and P. Thiemann

6. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity,
An Algebra for Discrete Event Systems. John Wiley and Sons, Chichester (1992)

7. Buchholz, P., Kemper, P.: Weak bisimulation for (max/+) automata and related
models. Journal of Automata, Languages and Combinatorics 8(2), 187–218 (2003)

8. Chen, L.: Timed Processes: Models, Axioms and Decidabilty. PhD thesis, Univer-
sity of Edinburgh (1992)

9. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web programming without
tiers. In: Post-proceedings of FMCO 2006. LNCS, vol. 4709. Springer, Heidelberg
(2006)

10. Cooper, M.C., Cohen, D.A., Jeavons, P.G.: Characterising tractable constraints.
Artificial Intelligence 65(2), 347–361 (1994)

11. Dasdan, A.: Experimental analysis of the fastest optimum cycle ratio and mean
algorithms. ACM Transactions on Design Automation of Electronic Systems 9(4),
385–418 (2004)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

13. Gaubert, S.: Performance evaluation of (max,+) automata. IEEE Transactions On
Automatic Control 40(12) (December 1995)

14. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th An-
nual Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer
Society Press, Los Alamitos (1996)

15. Kuich, W., Salomaa, A.: Semirings, automata, languages. Springer, London (1986)
16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
17. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations for timing-

based systems. In: de Bakker, J.W., Huizing, K., de Roever, W.P., Rozenberg, G.
(eds.) Proceedings REX Workshop on Real-Time: Theory in Practice, Mook, The
Netherlands, June 1991. LNCS, vol. 600, pp. 397–446. Springer, Berlin (1992)

18. Marriott, K., Stuckey, P.J.: Programming with constraints: an introduction. MIT
Press, Cambridge (1998)

19. Murphy VII, T., Crary, K., Harper, R.: Type-safe distributed programming with
ML5. In: Trustworthy Global Computing 2007 pre-proceedings (November 2007)

20. Neubauer, M.: Multi-Tier Programming. PhD thesis, Universität Freiburg (April
2007), http://www.freidok.uni-freiburg.de/volltexte/3104/

21. Neubauer, M., Thiemann, P.: From sequential programs to multi-tier applications
by program transformation. In: Abadi, M. (ed.) Proc. 32nd ACM Symp. POPL,
Long Beach, CA, USA, January 2005, pp. 221–232. ACM Press, New York (2005)

22. Serrano, M., Gallesio, E., Loitsch, F.: HOP, a language for programming the Web
2.0. In: Proceedings of the First Dynamic Languages Symposium, Portland, OR,
USA (October 2006)

23. Su, Z., Aiken, A., Niehren, J., Priesnitz, T., Treinen, R.: The first-order theory
of subtyping constraints. In: Mitchell, J. (ed.) Proc. 29th ACM Symp. POPL,
Portland, OR, USA, January 2002, pp. 203–216. ACM Press, New York (2002)

http://www.freidok.uni-freiburg.de/volltexte/3104/

Extended pi-Calculi

Magnus Johansson, Joachim Parrow, Björn Victor, and Jesper Bengtson

Department of Information Technology, Uppsala University

Abstract. We demonstrate a general framework for extending the pi-
calculus with data terms. In this we generalise and improve on several
related efforts such as the spi calculus and the applied pi-calculus, also
including pattern matching and polyadic channels. Our framework uses a
single untyped notion of agent, name and scope, an operational semantics
without structural equivalence and a simple definition of bisimilarity. We
provide general criteria on the semantic equivalence of data terms; with
these we prove algebraic laws and that bisimulation is preserved by the
operators in the usual way. The definitions are simple enough that an
implementation in an automated proof assistant is feasible.

1 Introduction

The pi-calculus [1] is a foundational calculus for describing communicating sys-
tems with dynamic connectivity. Allowing only names of communication chan-
nels to be transmitted between processes, it is still expressive enough to encode
other types of data such as booleans, integers, lists etc. Such data structures
are convenient when modelling protocols, programming languages, and other
complicated applications. However, having to work with encodings muddles the
models and complicates their analysis – and constructing correct encodings can
be quite difficult. To overcome these difficulties, extensions of the pi-calculus
have been introduced, where higher-level data structures (and operations on
them) are given as primitive. Our contribution in this paper is to establish a
unifying untyped framework where a range of such calculi can be formulated,
using a lean and symmetric semantics that is well suited for an automated proof
assistant.

Perhaps the simplest and oldest of data structures for the pi-calculus is to
allow tuples of names to be transmitted, leading to the polyadic pi-calculus [2]
and its typed variants. This is a quite mild extension where for example the agent
(or process) a〈b, c〉 . P can send the two names b and c to a receiving a(x, y) . Q in
one go. This needs to be faithful to the pi-calculus principle of scope extrusion,
which says that if a name is transmitted outside its scope then that scope is
extended to include the receiver. If for example both b and c are scoped, as in
(νb, c)a〈b, c〉 . P , then the scope of both b and c are extended to encompass Q.
In this way the effect is the same as sending b and c individually in subsequent
transmissions.

With subsequent advances of calculi for cryptographic applications another
view has emerged, where a fresh key is represented as a scoped name, and a data

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 87–98, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 M. Johansson et al.

structure such as enc(m, k) represents the encryption of m by the key k. Two
main examples are the spi calculus [3] and the applied pi-calculus [4].

The spi calculus is equipped with encryption/decryption primitives. An ex-
ample process

P = (νk,m)a〈enc(m, k)〉 . P ′ where P ′ = b(x) . if x = m then c〈m〉

sends out, over a, the fresh name m encrypted with the fresh key k, and then
receives a value x over b. If the received value is m, an output is sent on c.
Intuitively, since the environment does not know k (or m), P ′ can never receive
m, and the output on c can never happen.

However, a labelled transition for the process is P
(νk,m)a〈enc(m,k)〉−−−−−−−−−−−−→ P ′. Al-

though the label contains the names m and k, and therefore their scopes are
opened by the transition, the names should not become known to the environ-
ment since it cannot decrypt the message and find them. Thus, any reasonable
equivalence must explicitly keep track of which names are known. There are
several bisimulation equivalences of varying complexity for the spi calculus – see
[5] for an overview.

The applied pi-calculus [4] improves the situation in several ways. Firstly, it is
more general since the calculus is parameterised by a signature and an equation
system for data structures. Secondly, and more importantly, the transition labels
expose only what should be revealed. This is achieved by introducing variables
with so called active substitutions {M/x} of data terms for variables, the struc-
tural rule {M/x} | P ≡ {M/x} | P [x := M], and by disallowing the sending of
complex data directly – it must be sent using an alias variable such as x. Let us
return to the process P above; we have P ≡ Q where

Q = (νk,m, z)({enc(m,k)/z} | a〈z〉 . P ′) (νz)a〈z〉−−−−−→ (νk,m)({enc(m,k)/z} | P ′)

Here, the transition label only reveals that a (fresh) value is sent, but not how the
value is constructed; the scope of k and m is not opened, and their confidentiality
to the environment is clear; the bisimulation definition is correspondingly simple.
However, sending out a tuple of channel names as in the polyadic pi-calculus is
not possible in the labelled semantics of the applied pi-calculus – see Section 3.

In this paper we define a generalisation of the (applied) pi-calculus where we
allow both possibilities: data terms can be sent using an alias, not revealing the
construction of the value, or as the text or syntax tree for the term, exposing all
details. The process needs to explicitly use one form or the other, unlike the case
in the applied pi-calculus where a term in an object position is always implicitly
rewritten using an alias. Which form to use is up to the intended purpose of the
term: to keep secrets the alias form must be used, while to extrude the scope of
e.g. communication channels, the explicit form should be used. P and Q are not
at all equivalent, and the structural rule from the applied pi-calculus mentioned
above is neither needed nor valid. It is even possible to mix the different modes
by including an alias in an explicit data structure; the parts represented by the
alias remain hidden.

Extended pi-Calculi 89

Our new framework allows pattern matching inputs: e.g., a(f(x, y)) . P ′ can
only communicate with an output a〈f(M,N)〉 for some data terms M,N . This
can be seen as a generalisation of the polyadic pi-calculus where inputs of a certain
arity can only communicate with outputs of the same arity. Another significant
extension is that we allow arbitrary data terms also as communication channels.
Thus it is possible to include functions that create channels and also polyadic syn-
chronisation, cf. [6], where a channel may be composed of several names.

A reader might fear that to achieve all this the framework must be a compli-
cated union of all work cited above, with a plethora of primitives. This is not the
case. We use a single basic framework for extended pi-calculi, with a single un-
typed notion of agent and a single-level structural operational semantics that does
not rely on any structural equivalence to rewrite agents, a single notion of name
and scope, and a simple definition of bisimilarity. We provide general criteria on
the semantic equivalence of data terms; with these we prove algebraic laws and
that bisimulation is preserved by the operators in the usual way. Our framework
facilitates comparisons between different approaches, and proofs about the cal-
culi can be conducted using straightforward inductions over transitions. In this
way we improve on existing definitions of the applied pi-calculus. The framework
is lean enough that it is profitable to use an automated proof assistant and our
preliminary efforts in this direction (using Isabelle [7]) hold promise.

Related Work. The different bisimulation definitions for the spi calculus are pre-
sented in [8,9,10,5] and an overview can be found in [5]. Another example of an
environment sensitive equivalence can be found in [11]. In [12], a spi calculus pa-
rameterised by a data signature and evaluation function is defined. The relation
between the applied pi-calculus and extended pi-calculi is explored in Section 3.

The applied pi-calculus has been used for analysis of several security protocols,
e.g. [13,14,15]. Ad-hoc variants of the applied pi-calculus have also been used to
prove non-security properties, e.g. in [16] correctness of network based storage
is shown using a variant of an applied pi-calculus with polyadicity (but without
labelled semantics).

Polyadic synchronisation in the pi-calculus [6] is a subcalculus of an extended
pi-calculi as discussed in Section 3. In [17] a Spi calculus with pattern matching
is presented.

Disposition. In Section 2 we present the syntax and operational semantics of
extended pi-calculi. In Section 3, we illustrate by examples how these can be
put to use, and relate informally to other variants of the pi-calculus. Section 4
presents the labelled bisimulation relation, and our main results about it. Sec-
tion 5 concludes with suggestions for further work.

2 Definitions

Assume a signature with a set of symbols f, g, each with a nonnegative arity.
Among the symbols there is a countably infinite set of names a, b, . . ., all with
arity 0. (There may also be other symbols with arity 0.)

90 M. Johansson et al.

Definition 1 (Terms). The data terms, or for short just terms, ranged over
by M,N, . . ., are defined by M ::= f(M1, . . . ,Mn) where f has arity n.

If f has arity 0 we write just f for f(); in particular a name is a term. The
substitution of a term N for a name a in a term M , written M [a := N] is defined
by a[a := N] = N and f �= a =⇒ f [a := N] = f , extending homomorphically to
all terms.

In the following we shall define agents, actions, transitions etc. in the style
of nominal datatypes [18] building on our previous experience of nominal types
for the π-calculus [19]. It is not necessary to understand nominal datatypes to
appreciate the work presented here; suffice it to say that all alpha-equivalent
agents, actions etc. are considered equal.

The set of free names (i.e. the names with an non-bound occurrence) of an
object X is written as fn(X), and we abbreviate fn(X) ∪ fn(Y) to fn(X,Y) etc.
We write n(X) for the names (bound and free) in X . We also write a#X (“a is
fresh in X”) to mean a /∈ fn(X). Name permutation of a and b (exchanging all
a for b and vice versa) in P is written (a b) •P . In the following ã means a finite
(possibly empty) sequence of distinct names, a1, . . . , an. When occurring as an
operand of a set operator, ã means the corresponding set of names {a1, . . . , an}.
Concatenation of sequences ã and b̃ is written ã · b̃ and the empty sequence is
written ε.

Definition 2 (Agents and aliased names). The agents, ranged over by P,Q,
are the following:

0 Nil (νa)P Restriction
M N.P Output P |Q Parallel
M(N).P Input !P Replication
if M = N then P else Q Conditional {M/a} Alias

We say that a is the aliased name of {M/a}, and define the aliased names an(P)
of an agent P to be the set of free names aliased in any subagent in P . In the
input M(N).P it is required that n(N) ∩ an(P) = ∅. Input and restriction are
binding occurrences of n(N) and a.

All operators except Alias are familiar from the pi-calculus (we omit the sum
operator but inclusion of guarded sum would not greatly affect our results). The
Alias is similar in intention to what in the applied pi-calculus is called an “active
substitution”, though semantically it is a bit different in that our Alias will not
always enforce a substitution. An aliased name cannot be bound by input. The
reason is that with an input bound alias we can express aliasing of terms for
terms: M(a).{N/a} can receive a term K to replace a, becoming {N/K}, which is
not a syntactically correct agent.

Note that an aliased name is not a binder. Suppose we would restrict to a sub-
calculus with a construct like “alias a = M in P” to represent (νa)({M/a} |P),
i.e., the construct binds a. In this sub-calculus it is impossible to directly express
an agent such as (νa)(((νk)({enc(M,k)/a} | P)) | Q). This agent could represent

Extended pi-Calculi 91

that a term M encrypted with key k has been sent to P and Q, and that only P
has the key. So Q cannot use M until it receives k in a communication (opening
the scope of k). In order to express aliases that become usable only when their
“keys” are received, it seems that a binding “alias. . . ” construct is not enough.

The Input construct contains an implicit pattern matching. For example
M (f(a, b)).P can input objects only of shape f(K,L), thereby substituting K
for a and L for b in P . We shall use the silent prefix τ.P , which can be thought
of as a shorthand for (νa)(a a.0 | a (c).P) for some a, c#P , and let γ range over
prefixes. A generalised restriction (νã)P means (νa1) · · · (νan)P , or just P if
n = 0.

The substitution of M for a in the agent P is written P [a := M], and is
defined if a �∈ an(P); in other words it is not possible to substitute something for
an aliased name. Substitution is defined in the usual way, homomorphic on all
operators and renaming bound names to avoid captures. When Z is a term or
agent, ã = a1, . . . an are pairwise distinct and L̃ = L1, . . . , Ln we write Z[ã := L̃]
to mean the simultaneous substitution of each Li for ai in Z.

Definition 3 (Frames). A frame F is of kind (νãF)RF , where ãF is a sequence
of names and RF is a finite relation between names and terms. The names in
ãF are binding occurrences in the frame. The domain dom(F) is defined to be
dom(RF)−ãF , i.e. the domain of the relation but not including the bound names.

The intuition is that a frame contains information about what terms should be
considered equal, by relating aliases to terms. The bound names in a frame rep-
resent local placeholders, and cannot be contained in the terms to be compared
for equality. Frames may be nondeterministic in that two different terms have
the same alias (in that case the alias can represent either term) and even circular
— we have found no reason to forbid such aliases even though in some contexts
they would not make sense.

We abbreviate the empty frame (νε)∅ to ∅ when no confusion can arise. We
also write (νa)F for ν(a · ãF)RF , and {T/a} for (νε){(a, T)}, and F ∪ G for
ν(ãF · ãG)(RF ∪RG), as always alpha-converting to avoid clashes.

Definition 4 (Equal-in-Frame relation). An Equal-in-Frame relation (EF-
relation) is a ternary relation between a frame F and two terms M and N ,
written F �M = N .

The intuition is that F �M = N means that given the knowledge of the aliases
in F , it is possible to infer M = N . We shall not now define exactly how such
inferences are done; rather, we shall give a set of conditions (in Section 4 below)
on the EF-relation for our results to hold.

Definition 5 (Static equivalence). Two frames F and G are statically equiv-
alent, written F � G, when dom(F) = dom(G) and when for all terms M and
N we have F �M = N iff G �M = N .

Definition 6 (Actions). The actions ranged over by α, β are of the following
three kinds: An output of kind (νã)M N , where ã are binding occurrences, an
input of kind M N , and the silent action τ .

92 M. Johansson et al.

Table 1. Structural operational semantics. Symmetric versions are elided.

In

F �M = K

F �M(N).P
K N[ã:=L̃]−−−−−−−→ P [ã := L̃]

ã = n(N) Out

F �M = K

F �M N.P
K N−−−→ P

Then

F �M = N

F � if M = N then P else Q τ−→ P

Else

¬(F �M = N)

F � if M = N then P else Q τ−→ Q

Com

F ∪ F(Q) � P
(νã)M N−−−−−→ P ′ F ∪ F(P) �Q

M N−−−→ Q′

F � P |Q τ−→ (νã)(P ′ |Q′)
ã#Q

Par

F ∪ F(Q) � P
α−→ P ′

F � P |Q α−→ P ′ |Q
bn(α) ∩ fn(Q) = ∅

Scope

F � P
α−→ P ′

F � (νa)P
α−→ (νa)P ′

a#α, F

Open

F � P
(νb̃1·b̃2)M N−−−−−−−−→ P ′

F � (νa)P
(νb̃1·a·b̃2)M N−−−−−−−−−→ P ′

a ∈ n(N),

a#M,F, b̃1, b̃2
Rep

F � P | !P α−→ P ′

F�!P
α−→ P ′

For an output action (νã)M N it will hold that n(M) ∩ ã = ∅ and ã ⊆ n(N). If
ã is empty we write the action as just M N ; this corresponds to a free output
in standard pi. In the actions above we will refer to M as the subject, corre-
sponding to the channel over which communication takes places, and N as the
object transferred in the communication. Note that the subject is a term and
not necessarily a name. This admits functions in the signature that construct
channels. When an output object N is syntactically complicated we sometimes
write M〈N〉 for M N , to facilitate reading, in both actions and prefixes.

The frame of an agent is, intuitively, what the agent contributes to its envi-
ronment for resolution of aliases. It contains all the unguarded aliases, preserving
the scope of names.

Definition 7 (Frame of an agent). The function F from agents to frames is
defined inductively as follows.
F(0) = F(γ.P) = F(if M = N then P else Q) = ∅, F({M/a}) = {M/a},
F((νa)P) = (νa)F(P), F(P |Q) = F(P) ∪ F(Q), F(!P) = F(P)

Definition 8 (Transitions). A transition is of kind F � P
α−→ Q, meaning

that when the environment contains the frame F the agent P can do an α to
become Q. The transitions are defined inductively in Table 1.

Extended pi-Calculi 93

The frame is used to determine the action subjects. So if the EF-relation equates
the different terms M and N in every frame then the agents M K.P and N K,P
are bisimilar. In contrast, the frame does not affect objects, so the agents KM.P
and K N,P are not bisimilar, and can indeed be distinguished by the agent
K (a) . (b 〈t2(a,M)〉 .0 | b (t2(c, c)) . Q), where the non-linear pattern matching
along b succeeds only if the corresponding output is a tuple of two identical
terms. We have experimented with versions where the prefix rules, or the Com-
rule, or the definition of bisimilarity (and combinations thereof) use the frame to
generate or compare objects. In all cases we have encountered technical problems
in that the scope extension law (νa)(P |Q) ∼ P |(νa)Q if a#P fails, or restriction
fails to preserve bisimilarity.

3 Examples

We will now show how the extended pi-calculi relate to a few other calculi and
give some examples.

The pi-calculus and the Polyadic pi-calculus. Any monadic pi-calculus
agent [1] is also an extended pi-calculus agent. Using only names as symbols,
and with an EF-relation with only identity on names, the extended pi semantics
directly corresponds to an early operational semantics for the pi-calculus (with-
out sum). The frame of a pi agent will always be empty since there is no aliasing
in the pi-calculus.

Adding tupling symbols tn for tuples of arity n, we can also easily encode the
polyadic pi-calculus [2] in the extended pi-calculus. The encoding [[·]]P2E uses
pattern matching in the input rule:

[[a(b1, . . . , bn).P]]P2E = a(tn(b1, . . . , bn)).[[P]]P2E

[[a〈c1, . . . , cn〉.P]]P2E = a〈tn(c1, . . . , cn)〉.[[P]]P2E

Pi-calculus with Polyadic Synchronisation. In [6] the subject of an action
can be a vector of names. This is useful if we want a couple of processes to
atomically communicate only if they share a set of parameters. Example ap-
plications of polyadic synchronisation given in [6] are modelling e-services [20]
where a client and a server can only communicate if they agree on a set of ser-
vice parameters, and simple representations of localities and cryptography. Using
polyadic synchronisation we can gradually enable a communication by opening
the scope of names in a subject.

Using tuples of names as subjects in an extended pi-calculus we gain the
expressiveness of polyadic synchronisation (strictly greater than standard pi-
calculus). With the tupling symbols above, we can, e.g., encode if a = b then P
else 0 as (νc)(t2(c, a)〈c〉 | t2(c, b)(d) . P where c, d#P , and the underlining is
intended to clarify the input subject.

94 M. Johansson et al.

The Applied pi-Calculus. Our work is inspired by the applied pi-calculus [4].
For the most part the applied pi-calculus is a subset and can be translated
directly into an extended pi-calculus, but there are a few noteworthy issues.
Firstly, in the applied pi-calculus there is a distinction between variables and
names (collectively called atoms) where only variables can be substituted. Sec-
ondly, as seen in Section 1, in the applied pi-calculus there are limitations on
what can be output in an output action. For example the agent a M.P , where
M is not an atom, has no transitions since the only allowed output actions are
of the form a u or (νu)a u where u is an atom. In order to derive a transition
from a M.P it must first be rewritten using rules for structural equivalence:
aM.P ≡ (νx)({M/x} | a x.P) (νx)ax−−−−→ {M/x} | P . In a similar fashion names are
the only subjects in the applied pi-calculus. Any other term in subject position
in a prefix must be rewritten to a name using structural equivalence before a
transition can be derived.

Assuming an EF-relation which, as in the applied pi-calculus, is based on a
set of user supplied equations, given an agent A in the applied pi-calculus, let
[[A]]A2E be a translation into an extended pi-calculus. [[·]]A2E maps variables to
names and is a homomorphism except for the output prefix which is translated
as follows:

[[u M.P]]A2E = (νa)({M/a} | u a.[[P]]A2E), a /∈ atoms(u M.P) (M not an atom)
[[u M.P]]A2E = u M.[[P]]A2E (when M is an atom)

In the applied pi-calculus we have that u M.P ≡ (νx)({M/x} | u x.P) where
x /∈ atoms(u M.P), which exactly matches our translation. Assuming a well
sorted original process and well sorted inputs, this translation gives rise to a
process that has the same transitions as the original, except for outputs of names
that are not channels, which in applied pi-calculus can be output both literally
and as aliases. To handle this in an extended pi-calculus we would need a choice
operator.

As indicated in the introduction, we can express cryptographic operations,
given an appropriate signature and EF-relation. Using aliases for cryptographic
terms, we can protect the secrecy of keys and encrypted messages. In contrast
to the applied pi-calculus, we also have the possibility to send data terms as
is, without using aliases. This is important to be able to directly represent the
polyadic pi-calculus. Consider an example based on our encoding of polyadic pi
above, where z is a variable in the applied pi-calculus represented as a name in
our framework:

P = [[(νc, d)a〈c, d〉.c(z).P ′]]P2E = (νc, d)a〈t2(c, d)〉.c(z).P ′′

In an extended pi-calculus, P
(νc,d)a〈t2(c,d)〉−−−−−−−−−−→ c(z).P ′′ and c(z).P ′′ cM−−→ P ′′[z :=

M] for some M . In the applied pi-calculus, to have a transition, P must first be
rewritten to Q = (νc, d, x)({t2(c,d)/x} | a x . c(z) . P ′′). This rewritten process can,
however, not open the scopes of c and d, but has the only transition Q

(νx)ax−−−−→
(νc, d)({t2(c,d)/x} | c(z) . P ′′). This process is deadlocked.

Extended pi-Calculi 95

The spi calculus. If we assume an EF-relation based on an equation system
and a signature with primitives for encryption and decryption, similarly to what
we did for the applied pi-calculus above, we can encode the spi calculus [3] using
the translation used above for the applied pi-calculus. Note in particular that
the encoding ensures that encryptions are always sent as aliases.

4 Theory

This section gives our main results: our labelled bisimulation is preserved by the
operators in the usual way, and although we do not use structural congruence
in our operational semantics, the usual structural rules are sound.

Definition 9 (Bisimulation). A bisimulation R is a ternary relation between
frames and pairs of agents such that R(F, P,Q) implies all of

1. Static equivalence: F(P) � F(Q)
2. Symmetry: R(F,Q, P)
3. Extension of arbitrary frame: ∀G. R(F ∪G,P,Q)
4. Simulation: for all α, P ′ such that the bound names in α are disjoint from

n(Q,F) there exists Q′ such that

F � P
α−→ P ′ =⇒ F � Q

α−→ Q′ ∧ R(F, P ′, Q′)

We define P ∼ Q to mean that there exists a bisimulation R such that R(∅, P,Q).

Because of the universal quantification of G in clause 3, bisimilarity corresponds
to equal behaviour in all frames.

In order to establish properties of ∼ we will need to make assumptions about
the EF-relation.

Equivariance: F �M = N =⇒ (a b) • F � (a b) •M = (a b) •N.
Equivalence: {(M,N) : F �M = N} is an equivalence relation.
Strengthening: a#(F,M,N) ∧ F ∪ {T/a} �M = N =⇒ F �M = N.
Weakening: F �M = N =⇒ F ∪ {T/a} �M = N.
Scope Introduction: F �M = N ∧ a#(M,N) =⇒ (νa)F �M = N.
Scope Elimination: (νa)F �M = N =⇒ F �M = N.
Idempotence: F � F ∪ F
Union: F � G =⇒ F ∪H � G ∪H.

Weakening and strengthening say that no fewer equalities can be proved by
adding to the frame or by subtracting an alias that is never used. Scope intro-
duction and elimination similarly say that by removing a scope no less can be
proved (here the bound name a is guaranteed to be distinct from anything in M
or N), and likewise for adding a scope that does not capture anything in M and
N . Note that a property for restriction, F � G =⇒ (νa)F � (νa)G, follows
from scope introduction and elimination.

96 M. Johansson et al.

Table 2. Structural rules

P ≡ P | 0
P | (Q | R) ≡ (P |Q) |R

P |Q ≡ Q | P
!P ≡ P | !P

(νa)0 ≡ 0
P | (νa)Q ≡ (νa)(P |Q) if a#P

M N.(νa)P ≡ (νa)M N.P if a#M,N
M(N).(νa)P ≡ (νa)M(N).P if a#M,N

if M = N then P else (νa)Q ≡ (νa)(if M = N then P else Q) if a#M,N,P
if M = N then (νa)P else Q ≡ (νa)(if M = N then P else Q) if a#M,N,Q

(νa)(νb)P ≡ (νb)(νa)P (νa){M/a} ≡ 0 {M/a} ≡ {N/a} if ∅ �M = N

With these conditions on EF we can prove the following:

Theorem 1. If P ≡ Q from the structural laws in Table 2 then P ∼ Q.

Bisimilarity is preserved by all operators except input. Interestingly, the reason
that it is not preserved by input is not the same as in the ordinary pi-calculus. Let
a �= b and consider the agent P = if a = b then P ′ else 0; in the ordinary pi-
calculus (where this if is represented by a match) we have P ∼ 0 and c (a).P �∼
c (a).0, since the input may instantiate a to b. But in our framework we do
not have that P ∼ 0. The reason is that a frame can identify a and b, as in
{a/b}� P

τ−→ P ′. Instead, the counterexample is

P = (νa)(a b .0 | a (f) .0)

where f is a symbol that is not a name. Here P has no transitions because
the pattern matching will never succeed (remember that the frame is not used
when comparing the objects in a communication). So P ∼ 0. But d(b) . P can
instantiate b in P to f , so d(b) . P �∼ d(b) .0.

Theorem 2

1. P ∼ Q =⇒ P | R ∼ Q | R.
2. P ∼ Q =⇒ (νa)P ∼ (νa)Q.
3. P ∼ Q =⇒!P ∼ !Q.
4. P ∼ R∧Q ∼ S⇒ if M = N then P else Q ∼ if M = N then R else S.
5. P ∼ Q =⇒M N.P ∼M N.Q.
6. (∀L̃. P [ã := L̃] ∼ Q[ã := L̃]) =⇒ M (N).P ∼M (N).Q, where ã = n(N).

5 Further Work

Our framework for extended pi-calculi has been designed to facilitate formalisa-
tion with a theorem prover. We intend to extend our previous work [19] where
we formalised a significant part of the pi-calculus using the nominal datatype
package [21] of the interactive theorem prover Isabelle [7].

Extended pi-Calculi 97

A few generalisations of the current framework will be considered. In particu-
lar, we would like to generalise the notion of a frame so that it can contain more
than just aliases. In a typed version of the applied pi-calculus [22], processes are
extended with first order logical predicates which are used to prove correspon-
dence assertions of cryptographic protocols. This mechanism could be modeled
by allowing the frame to include such predicates.

There are several versions of applied pi-calculi focusing on cryptographic prop-
erties of agents, where type checking rather than bisimilarity proves a process
secure [23,24,22]. By typing extended pi-calculi we will include this kind of rea-
soning.

We intend to add weak bisimulation to our framework. Moving from strong
early to weak early bisimilarity is usually not difficult and we do not anticipate
any problems here. We also intend to explore barbed bisimilarity.

We have given some preliminary encodings of other calculi into our framework
but we have not formally proved any properties about them. It would be interest-
ing to investigate in a formal fashion how they relate and see what equivalences
are preserved by the encodings.

Finally, we aim to give a symbolic semantics for our framework. Non-symbolic
semantics suffer from problems with exploding state spaces making it difficult
for automatic tools such as the Mobility or Concurrency Workbenches [25,26] to
reason about them. A symbolic semantics could make use of the generalisations
mentioned above to let the frame contain conditions on symbolic values.

References

1. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Journal
of Information and Computation 100, 1–77 (1992)

2. Milner, R.: The polyadic π-calculus: A tutorial. In: Bauer, F.L., Brauer, W.,
Schwichtenberg, H. (eds.) Logic and Algebra of Specification. Series F., NATO
ASI, vol. 94. Springer, Heidelberg (1993)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi calculus.
Journal of Information and Computation 148, 1–70 (1999)

4. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of POPL 2001, pp. 104–115. ACM, New York (2001)

5. Borgström, J., Nestmann, U.: On bisimulations for the spi calculus. In: Kirchner,
H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 287–303. Springer,
Heidelberg (2002)

6. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in
π-calculus. Nordic Journal of Computing 10(2), 70–98 (2003)

7. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

8. Abadi, M., Gordon, A.D.: A bisimulation method for cryptographic protocols.
Nordic Journal of Computing 5(4), 267–303 (1998)

9. Elkjær, A.S., Höhle, M., Hüttel, H., Overg̊ard, K.: Towards automatic bisimilarity
checking in the spi calculus. In: Calude, C.S., Dinneen, M.J. (eds.) Combinatorics,
Computation & Logic. Australian Computer Science Communications, vol. 21(3),
pp. 175–189. Springer, Heidelberg (1999)

98 M. Johansson et al.

10. Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic pro-
cesses. SIAM Journal on Computing 31(3), 947–986 (2002)

11. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification
of spi calculus specifications. ACM Trans. Softw. Eng. Methodol. 12(2), 222–284
(2003)

12. Borgström, J.: Equivalences and Calculi for Formal Verifiation of Cryptographic
Protocols. PhD thesis, EPFL, Lausanne (to appear, 2008)

13. Fournet, C., Abadi, M.: Hiding names: Private authentication in the applied pi
calculus. In: Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.)
ISSS 2002. LNCS, vol. 2609, pp. 317–338. Springer, Heidelberg (2003)

14. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM
Trans. Inf. Syst. Secur. 10(3) (2007)

15. Bhargavan, K., Fournet, C., Gordon, A.D.: A semantics for web services authenti-
cation. Theor. Comput. Sci. 340(1), 102–153 (2005)

16. Chaudhuri, A., Abadi, M.: Formal security analysis of basic network-attached stor-
age. In: FMSE 2005: Proceedings of the 2005 ACM workshop on Formal methods
in security engineering, pp. 43–52. ACM, New York (2005)

17. Haack, C., Jeffrey, A.: Pattern-matching spi-calculus. Information and Computa-
tion 204(8), 1195–1263 (2006)

18. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Information
and Computation 186, 165–193 (2003)

19. Bengtson, J., Parrow, J.: Formalising the pi-calculus using nominal logic. In: Seidl,
H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 63–77. Springer, Heidelberg (2007)

20. Carbone, M., Coccia, M., Ferrari, G., Maffeis, S.: Process algebra-guided design
of java mobile network applications. In: Informal Proceedings of the FMTJP 2001
Workshop, Budapest (2001)

21. Urban, C.: Nominal techniques in Isabelle/HOL. Journal of Automatic Reasoning
(to appear, 2007)

22. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization in dis-
tributed systems. In: Proc. of CSF 2007 (to appear, 2007)

23. Gordon, A.D., Jeffrey, A.: Secrecy despite compromise: Types, cryptography, and
the pi-calculus. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653,
pp. 186–201. Springer, Heidelberg (2005)

24. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 141–156. Springer, Heidelberg
(2005)

25. Victor, B., Moller, F.: The Mobility Workbench — a tool for the π-calculus. In: Dill,
D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)

26. Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench: a semantics-
based tool for the verification of concurrent systems. ACM Trans. Program. Lang.
Syst. 15(1), 36–72 (1993)

Completeness and Logical Full Abstraction in
Modal Logics for Typed Mobile Processes

Martin Berger1, Kohei Honda2, and Nobuko Yoshida1

1 Imperial College London
2 Queen Mary, University of London

Abstract. We study an extension of Hennessy-Milner logic for the π-calculus
which gives a sound and complete characterisation of representative behavioural
preorders and equivalences over typed processes. New connectives are introduced
representing actual and hypothetical typed parallel composition and hiding. We
study three compositional proof systems, characterising the May/Must testing
preorders and bisimilarity. The proof systems are uniformly applicable to differ-
ent type disciplines. Logical axioms distill proof rules for parallel composition
studied by Amadio and Dam. We demonstrate the expressiveness of our logic
through verification of state transfer in multiparty interactions and fully abstract
embeddings of program logics for higher-order functions.

1 Introduction

Communication is becoming a foremost element of computing, from web services to
sensor networks to multicore programming. The diversity of behaviour these commu-
nicating systems exhibit is staggering, including functional and stateful, sequential and
concurrent, and deterministic and non-deterministic. A useful way of understanding
this diversity is to classify behaviour into types. A compositional universe of types has
fundamental merit in engineering, helping distilled understanding of the semantics of
behaviour and guaranteeing basic safety such as the absence of communication errors.

The π-calculus [17] is an expressive formalism for concurrency, representing a vast
array of communication behaviours with its small syntax. Starting from Milner’s sorting
[16], many different notions of types have been studied to classify different universes of
interactions. For example, one linear type discipline turns the π-calculus into a semantic
universe which exactly captures call-by-name and call-by-value higher-order sequential
computation [4].

Built on the preceding studies of modal logics for the untyped π-calculus [2,8,18]
and CCS [20,21], as well as on our own works on program logics [3,10,25], the present
work introduces a sound and complete modal logic for typed π-calculi which is uni-
formly applicable to diverse type disciplines. Its adaptability comes from three logical
operators, representing actual and hypothetical parallel composition and hiding. The
introduction of these operators is less about sheer expressiveness than about the organi-
sation of proof rules. Compositional reasoning is now confined to the proof rules of the
logic, which precisely follow the syntactic structures of processes; whereas extracting
the modal content of composition is relegated to the axioms of the assertion language.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 99–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

100 M. Berger, K. Honda, and N. Yoshida

This organisation helps us uniformly treat multiple type disciplines and their mixture in
logic: different type disciplines induce different axioms for these operators, reflecting
their distinct semantic effects, while keeping the identical proof rules.

Typed composition in the π-calculus often yields locally deterministic interactions,
which allows us to abstract away silent actions semantically. This is often essential for
reasoning about embeddings of data structures and programming languages. To capture
this effect, the present study considers modal assertions and proof systems for weak
typed transitions. Suggested by our study on logics for higher-order functions [10], we
construct three proof systems, the first one based on the May modality, the second one
on Must, and the third one which mixes these modalities. By deriving characteristic
formulae, we prove completeness of these proof systems with respect to the May/Must
testing preorders and bisimilarity. These results are established for the integration of
three channel type disciplines widely found in the literature, non-deterministic, linear
and replicated. These results extend to other linear and non-linear disciplines.

The combination of types and logics offers a powerful reasoning framework. We
show two case studies. First we reason about a practical business protocol, using a new
axiom for fixed point formulae for merging states in synchronised interactions. Second
we show our logic can fully abstractly embed the total and partial program logics for
call-by-value higher-order functions studied in [10]. The result extends to other program
logics, offering a unifying view on logics for sequential and concurrent programs.

Related Work. Hennessy-Milner logic of the untyped π-calculus is first studied in
[18] where early and late bisimilarities are characterised. Amadio and Dam [2] study
model checking and proof systems of Hennessy-Milner logic of the untyped π-calculus
with minimal and maximal fixed points. Dam [8] presents a proof system with ordinal-
indexed fixed point formulae with a powerful discharge rule and presents specifications
on Milner’s encoding of data structures. Our logic is built on these works. One of the key
contributions of the present work is the introduction of axioms for parallel composition
based on typed synchronisation algebra, through which we can logically capture the
semantics of typed processes. As far as we know, ours is the first modal logic for mobile
processes which fully characterises typed semantics.

Other process logics for the untyped π-calculus include [15,23], which study effi-
cient proof search using a freshness quantifier ∇; [6], which presents a logic for spatial
properties using a hiding operator and a freshness operator; and [5], which extends
Abramsky’s logical characterisation of a class of CPOs to obtain a negation-less logic
which corresponds to a power domain constructed by Fiore and others and which char-
acterises a strong late bisimilarity.

The logical operators for actual and hypothetical parallel composition appeared in
Stirling’s early work [20,21]. Their usage in the present work originates in [3]. The op-
erator for hypothetical composition allows rely-guarantee-based reasoning [12], whose
analogue in the sequent format is studied by Simpson [19] as well as in [2,7,8]. Logical
full abstraction of PCF is studied in [14] in the context of CPOs. A derivation of a pro-
gram logic from a typed process logic is studied in [9]. A fully abstract embedding of a
program logic in a modal process logic may not be found in the literature.

The full version of the present paper [1] lists detailed proofs and further examples.

Completeness and Logical Full Abstraction in Modal Logics 101

2 Processes and Types

Processes. We use a typed π-calculus with three kinds of channel types: linear, non-
deterministic and replicated. Linear types are based on session types [11,22] which
allow legible description of structured communication. For simplicity, we omit the del-
egation primitive. The grammar of processes (P,Q, . . .) is given by:

P ::= 0 | a(k).P | !a(k).P | a(k).P | k(x).P | k〈e〉.P | k ! l.P | k " [li : Pi]i∈I

| if e then P else Q | P|Q | (νu)P | (recX(x̃).P)〈ẽ〉 | X〈ẽ〉

k,k′, .. are linear channels; a,b,c, .. shared channels; u,u′, .. their union; v,w, .. val-
ues, which are constants (numbers and booleans) and channels; x,y, .. variables; X ,Y, ..
process variables; and l, li, .. labels for branching. Expressions (e,e′, ..) are variables,
constants, arithmetic/boolean operations (such as e + e′) and linear/shared channels.

The process a(k).P receives a request to establish a session from a(k).Q. !a(k).P is
the replicated version of a(k).P. In all of these three prefixes, k is bound in the body.
k(x).P receives a value from k〈e〉.Q via k; and k " [li : Pi]i∈I (with I finite) waits with
{li}i∈I-labelled branches from which k ! l.P selects one. P | Q is a parallel composi-
tion and (νu)P is a hiding. A recursive process (recX(x̃).P)〈ẽ〉 consists of a recursive
definition (recX(x̃).P) and actual parameters ẽ. In recX(x̃).P, a process variable X and
formal parameters x̃ are binders. fn(P) denotes the free channels in P. We often omit 0
and the empty vector. For example we write k for k〈〉.0 and recX .P for (recX().P)〈〉.

The structural congruence ≡ is standard [22,11], in which we include the unfold-
ing rule for recursion: (recX(x̃).P)〈ẽ〉 ≡ P[ṽ/x̃][recX(x̃).P/X] with ei ↓ vi, where e ↓ v
means e evaluates to v. The reduction rules are generated by:

a(k).P | a(k).Q −→ (νk)(P | Q) !a(k).P | a(k).Q−→!a(k).P |(νk)(P |Q)
k(x).P | k〈e〉.Q−→ P[v/x] | Q (e ↓ v) k " [li : Pi]i∈I | k ! l j.Q−→ Pj | Q (j ∈ I)

with the standard if-then-else rules, closing under the evaluation contexts and structure
rules. The first rule carries out session initiation via bound name passing. The second
rule is for value passing and the third for branching.

As an example, a simple ATM process with an initial value 300 is given below.

recX(x).(a(k).(recY (yk).k " [balance : k〈y〉.Y 〈yk〉,
deposit : k(w).k〈y + w〉.Y 〈y + wk〉,
quit : X〈y〉])〈xk〉)〈300〉

This ATM first establishes a session identified by k; and offers three options, balance,
deposit and quit. If balance is selected, then it shows the balance of the account, and
recurs with the same amount (y). If deposit is selected, then it receives a deposited
amount w, and recurs with the new state (y + w). If quit is chosen, it exits the loop and
terminates the conversation. The actual parameter 300 indicates the initial balance.

Types and Typing. The grammar of types follows [11], augmented with replicated
types, (τ)! and (τ)?, from [4].

α ::= nat | bool | (τ) | (τ)! | (τ)? | rec t.α | t
τ ::= ↓α;τ | ↑α;τ |&{li : τi}i∈I | ⊕{li : τi}i∈I | rec t.τ | end | t | ⊥

102 M. Berger, K. Honda, and N. Yoshida

We call α a shared type, which consists of non-deterministic type (τ); server type (τ)!

and client types (τ)? together called replicated types; atomic type nat and bool; re-
cursive type rec t.τ; and a type variable. We take an equi-recursive view of types, not
distinguishing between a type rec t.α and its unfolding α[rec t.α/t]. τ is a linear type.
Type ↓α;τ represents first inputting a value of type α, then performing the actions typed
by τ; type ↑α;τ is its dual. Type &{li : τi}i∈I represents waiting with n options, and be-
haves as τi if the i-th action is selected; type⊕{li : τi}i∈I is its dual. Type end represents
inaction and is often omitted. ⊥ indicates that no further connection is possible at a
given channel. The dual type of α is defined by exchanging ! and ?, ↑ and ↓, and & and
⊕. Atomic types, (τ), end, and t are self-dual.

The partial commutative and associative operator([22,4], which controls a parallel
composition, is defined by: (1) τ(τ = ⊥; (2) α(α = α if α = α; and (3) (τ)! (
(τ)? = (τ)! and (τ)?((τ)? = (τ)?. (1) says that once we compose two processes at a
linear channel, the channel is no longer composable. (3) says a server should be unique,
while an arbitrary number of clients can request interactions. Δ0 and Δ1 are compatible,
written Δ0) Δ1, if Δ0(u)(Δ1(u) is defined for each u ∈ dom(Δ0)∩dom(Δ1); Δi(u) =
α, then u ∈ dom(Δ j); and process variables are disjoint. If Δ0) Δ1, we set Δ0(Δ1 =
{(Δ0(Δ1)(u) | u ∈ dom(Δ0)∩dom(Δ1)}∪Δ0 \dom(Δ1)∪Δ1 \dom(Δ0).

Typing environments Γ,Δ, . . . are given by Γ ::= /0 | Γ,a : α | Γ,X : α̃τ̃ | Γ,k : τ.
The typing judgement for process P is given as Γ � P. The typing rules are identical
with [22,11] for linear/non-deterministic types, augmented with the typing for repli-
cated types from [4] (allowing only client typed channels to be free under a replicated
prefix). We only list the following rule for parallel composition.

Γi � Pi with i = 1,2 and Γ1) Γ2, then Γ1(Γ2 � P1 | P2

As an example, session channel k in ATM is typed by:

τ = rec t.&{balance : ↑nat; t, deposit : ↓nat;↑nat; t, quit : end}

The same session from the user’s viewpoint is typed dually as τ = rect.⊕{balance :
↓nat; t, deposit : ↑nat;↓nat;t, quit : end}, composable with τ by (.

Bisimilarity and Testing. Transition labels (�,�′, ..) are given by the grammar:

� ::= τ | a(k) | a(k) | kv | kv | k(a) | k(a) | k " l | k ! l

where k and a in (k) and (a) introduce binding. � is shared if it has shape a(k) or a(k);
linear if it is neither shared nor τ. We write � for the dual of �, defined by exchanging
the input and output (for example a(k) = a(k)). τ is undefined. We use the standard

early transition relation augmented with k ! l.P
k!l−→ P and k " [li : Pi]i∈I

k"l j−→ Pj (j ∈ I).

The typed early transition is defined by setting Γ � P
�−→ Γ \ � � Q if P

l−→ Q and if
the operation Γ \ � is defined, where Γ \ � is defined if � conforms to Γ, in which case
Γ\ � denotes the resulting environment. For example, assuming Γ = Δ,k : &{li : τi}i∈I ,
if l = l j (j ∈ I) then Γ\ k " l = Δ,k : τ j; otherwise Γ\ k " l j is undefined. We often leave

Γ and Δ implicit. =⇒ stands for a reflexive and transitive closure of
τ−→. We define the

early weak bisimilarity, the weak May preorder and the (divergence-insensitive) weak
Must preorder in the standard way, written ≈, �may and �must , respectively.

Completeness and Logical Full Abstraction in Modal Logics 103

3 Assertions

A Logical Language. Our logical language is Hennessy-Milner logic with equality,
value/name passing modality and fixed point formulae [2,8], augmented with new op-
erators. The grammar of assertions (A,B,C, . . .) follows.

A ::= e1=e2 | A∧B | ¬A | ∀xρ.A | 〈〈〉〉A | 〈�〉A | (µX(x̃).A)〈ẽ〉 | X〈ẽ〉
| νxρ.A | A◦B | A � B

Above � ranges over a(k), a(k), k〈e〉, k〈e〉, k" li and k! li. ρ stands for either α or τ. We
define A∨B, A⊃ B, ∃xρ.A, [�]A, [[]]A, and (νX(x̃).A)〈ẽ〉, by dualisation.
〈�〉A says that the process has some immediate, or strong, � action, satisfying A as

the result. 〈〈〉〉A says that after some sequence of zero or more silent actions, the process
will satisfy A (dually, in [[]]A, after whatever zero or more silent actions, the process will
satisfy A). We write 〈〈�〉〉A for 〈〈〉〉〈�〉〈〈〉〉A, saying that some weak �-transition leads to A.
Dually [[�]]A says that any weak �-transition ends up satisfying A. The combination of
strong and weak modalities is important for proof systems and axioms.

The minimal and maximal fixed points use parameters following [2,8], which are
essential for describing state-changing loops, as in the ATM example. We assume that
X〈ẽ〉 never occurs in A negatively (the assumption part of � is contravariant) [8].

A ◦B (read as “A par B”) is understood as A,B in [21]. Informally, a process Γ � P
satisfies A ◦B when Γ � P has the same observable behaviour as Q|R, together typed
under Γ, such that Q satisfies A and R satisfies B. This puts typing constraints on A and
B: if A and B have minimal typings Δ and Δ′, we demand Δ) Δ′ and Δ(Δ′ ⊂ Γ.

A � B (read as “rely A then B”) is a typed version of the consequence relation studied
in [20]. A process Γ � P satisfies A � B if, for each appropriately typed Q satisfying
A, P|Q satisfies B. Again this constrains the typing of A and B: if A has the minimal
typing Δ, we demand Γ) Δ and that B is typed under Γ(Δ. For example, for Γ � P
with Γ(k) = τ to satisfy B � C, k can be typed as τ in B, and, if so, k is typed ⊥ in C.

νxρ.A is the quantifier for name hiding. A process, say P, satisfies νxρ.A if there is a
fresh name u of type ρ and P′ such that (νu)P′ ≈ P and P′ satisfies A. Its logical nature
differs substantially from ∃, as studied in [25].

We often omit type annotations for quantifiers. T denotes 1 = 1, F its negation. The
standard association of operators is assumed, e.g. ∀x.A∧B ⊃C is parsed as ((∀x.A)∧
B)⊃C (◦, �, νx.A associate as ∧, ⊃, ∃x.A). We use the following notation:

Definition 1 (mixed modality). ���A = [[]](〈�〉T ∧ [�]A).

The modal formula ���A (read: “surely � then A”) says that now or after any silent
actions the process may have, it can do a strong �-action, and then it satisfies A.

Examples of Assertions. We illustrate ◦ and � using a simple example.

P ≡ !b(k).k(x).k〈x + 1〉.0 Q ≡ b(k).k〈2〉.k(y).h〈y〉.0

P accepts a session request, receives a number and returns its increment: Q requests
a session, sends 2 and receives and forwards the result to h. P and Q are typed under
b : (↓nat;↑nat;end)! and b : (↑nat;↓nat;end)?,h : ↑nat;end, respectively.

104 M. Berger, K. Honda, and N. Yoshida

We now assert for P and Q and their composition. First for P and Q individually:

A = ∀xnat.〈〈b(k)〉〉〈〈kx〉〉〈〈kx + 1〉〉T B = ∀ynat.〈〈b(k)〉〉〈〈k2〉〉〈〈ky〉〉〈〈hy〉〉T
From this we assert A ◦B for P|Q. Since A ◦B ⊃ 〈〈h3〉〉T (by the axioms in Section 4
later), we know P|Q can emit 3 via h. From this entailment we also know Q satisfies
A � 〈〈h3〉〉T, i.e. when composed with any behaviour satisfying A, it can emit 3 via h.

Above we only used the May modality. In fact, we can strengthen A and B using the
mixed modality (cf. Definition 1) as follows.

A′ = ∀xnat.�b(k)��kx��kx + 1�T B′ = ∀ynat.�b(k)��k2��ky��hy�T

We can then show that A′ ◦B′ entails �h3�T, hence P|Q surely emits 3 via h. This entail-
ment depends on the type of b: if b’s type is non-deterministic, e.g. b : (↓nat;↑nat;end),
then this assertion cannot be derived (as discussed in Proposition 4 later).

Next we consider a specification of the simple ATM, given as:

�a(k)� (νY (yk).�k "balance��ky�Y 〈yk〉)〈300k〉 (3.1)

The assertion says the process is ready to receive a session request via a: then it enters
a loop, and, if asked to show a balance, it shows y, and recurs. The initial balance is
300. Now a user of ATM may satisfy: ∀x.�a(k)��k !balance��kx��hx�T. which, when
combined with (3.1) by ◦, gives us 〈〈h300〉〉T. In contrast to the previous example, we
cannot derive �h300�T since another user may interfere at the shared channel a before
this user. This distinction will be formally underpinned in Proposition 4 later.

Semantics of Assertions. The interpretation of assertions follows [8], extended to the
typed setting. We list the key points. First, a property (written p,q, ..) is a set of typed
processes under an identical typing which are without free value/process variables and
which are closed under≈. We define operators on properties as:

p|||q =
⋃

P∈p,Q∈q[P|Q]≈ (νu)p =
⋃

P∈p[(νu)P]≈
〈〈〉〉p′ = {P | P=⇒P′ ∈ p′} 〈�〉p′ = {P | P≈ P0

�−→ P′ ∈ p′}
A parametrised property of type ρ̃ (written f ,g, . . .) is a function which maps a vector

of values typed ρ̃ to a property. An interpretation of variables (ξ,ξ′, ..) follows [8],
mapping a variable to a value and an assertion variable to a parametrised property.
Given Γ � A where Γ types the free channels in A, the interpretation of Γ � A under
ξ, written 〈〈Γ � A〉〉ξ, or 〈〈A〉〉ξ if Γ is known from the context, is given by the standard
clauses for equality, conjunction, universal quantifier, negation and assertion variable,
augmented with the following clauses. For modality, we set:

〈〈Γ � 〈〈〉〉A〉〉ξ = 〈〈〉〉〈〈Γ � A〉〉ξ, 〈〈Γ � 〈�〉A〉〉ξ = 〈�〉〈〈Γ\ � � A〉〉ξ
where Γ\ � adds a mapping w.r.t. �. For ◦, � and ν we set:

〈〈Γ � A◦B〉〉ξ =
⋃

Δ(Θ=Γ〈〈Δ � A〉〉ξ||| 〈〈Θ � B〉〉ξ 〈〈Γ � νxρ.A〉〉ξ = (νu)〈〈Γ,u : ρ � A〉〉(ξ · x -→ u)

〈〈Γ � A � B〉〉ξ = max pΓ. ((p||| 〈〈Δ � A〉〉ξ) ⊂ 〈〈Δ(Γ � B〉〉ξ)

Above max pΓ.P denotes the maximum property (by set inclusion) typed under Γ which
satisfies P. The following clause for µ-recursion is from [8].

〈〈Γ � (µX(x̃).A)〈ẽ〉〉〉ξ = (fix λ f .λṽ.(〈〈A〉〉(ξ ·X -→ f · x̃ -→ ṽ)))(ξ(ẽ))

where fix is the least fixed point and ξ(e) is the interpretation of e under ξ.

Completeness and Logical Full Abstraction in Modal Logics 105

E � P 	 A
E � a(k).P 	 〈〈a(k)〉〉A

E � P 	 A
E � a(k).P 	 〈〈a(k)〉〉A

E � P 	 A
E �!a(k).P 	 〈〈a(k)〉〉A

E � P 	 A
E � a(k).P 	 〈〈a(k)〉〉A

Acc,Req,Ser,CReq

E � P 	 A
E � k(x).P 	 ∀x.〈〈kx〉〉A

E � P 	 A
E � k〈e〉.P 	 〈〈ke〉〉A

E � Pi 	 Ai i = 1,2
E � P1 |P2 	 A1◦A2

E � P 	 A x fresh
E � (νu)P 	 νx.A[x/u]

Rcv,Send,Conc, Res
E � Pi 	 Ai ∀i ∈ I

E � k � [li :Pi]i∈I 	 V

i∈I〈〈k � li〉〉Ai

E � P 	 A j

E � k � l j.P 	 〈〈k � l j〉〉A j

−
E � 0 	 T

Bra,Sel,Inact

−
E, X :(x̃)A �X〈ẽ〉 	 A[ẽ/x̃]

E, X :(x̃)(∀ j � i.A(j)) � P 	 A(i)
E � (recX .(x̃).P)〈ẽ〉 	 ∀i.A(i)[ẽ/x̃]

Var,Rec-ind

E �P1 	 e⊃A E �P2 	 ¬e⊃A
E � if e then P1 else P2 	 A

E �P 	 A A⊃B
E � P 	 B

If, Conseq

Fig. 1. Proof System (the May Modality)

4 Proof Rules, Axioms and Completeness

Rules for the May Modality. Write Γ;E � P 	 A for the provability judgement where
Γ types P and A (except auxiliary variables in A) and E contains assignments of the
form X : (x̃)A, mapping a process variable to a parametrised formula (x̃ are binders). We
often write E � P 	 A, leaving Γ implicit. We consider three systems, one for the May
modality, one for Must, and one for their combination. They soundly and completely
characterise the May/Must preorders and bisimilarity, respectively.

The proof rules for the May modality are given in Figure 1. There is a single rule
for each typing rule, except that Conseq has no corresponding rules. The typing is
not mentioned, assuming it follows the typing rules. The first eight rules are standard
(Ser does not use a fixed point, which suffices due to the semantics of replication,
cf. Proposition 4 (6) later). Conc and Res hide complexity of process composition under
◦ and ν, which is to be unfolded by the axioms for these operators.

Inact and Var are standard. In Rec-ind, we assume i, j are in some well-ordered
set [10]. We make this rule applicable to fixed point operators by introducing the no-
tation (µ/νXκ(x̃).A)〈ẽ〉 from [8], with κ ranging over ordinals. The notation stands
for the standard approximant to the least fixed point, given as: (µX0(x̃).A)〈ẽ〉 ≡ F,
(µXκ+1(x̃).A)〈ẽ〉 ≡ A[(µXκ(x̃).A)/X][ẽ/x̃], and (µXλ(x̃).A)〈ẽ〉 ≡ ∃i�λ(µXi(x̃).A)〈ẽ〉
with λ a limit ordinal. Dually for ν-recursion. For example, via this notation, an in-
ference for (recX(k).k1.X〈k〉)〈k〉 is given as follows, setting A(i) = νY i(k).〈〈k1〉〉Y 〈k〉.

X : (k)∀ j � i.A(j) � k1.X〈k〉 	 A(i)
� (recX(k).k1.X〈k〉)〈k〉 	 (νY (k).〈〈k1〉〉Y 〈k〉)〈k〉

Using higher ordinals becomes necessary when we have a lexicographic ordering, as
with the behaviour with nested recursions.

106 M. Berger, K. Honda, and N. Yoshida

The conditional rule is standard. The final proof rule is the consequence rule as found
in Hoare logic.

Rules for the Must and Mixed Modalities. The May proof rules ensure that a pro-
cess can reach a certain state: in contrast, the Must rules ensure that a process cannot
reach a certain state. We first define the abbreviation noact(Γ), which says: “no ac-
tions at dom(Γ) are possible”. Let noact(k :↓α;τ) = ∀xα.[[kx]]F, noact(k : &{li : τi}) =
∧i[[k " li]]F, noact(k :end) = noact(x :nat) = noact(x :bool) = T and similarly for out-
puts and shared names. Set noact(ũ : ρ̃) = ∧inoact(ui : ρi). We then write [[�,Γ]]A for
[[]]([�]A∧noact(Γ)) with � �= τ, which says: “� is the only action possible and if it ever
happens then A follows”. Using this predicate, the proof system for the Must modality
is given by replacing 〈〈�〉〉 in each prefix rule in Figure 1 with [[�,Δ]], where Δ is the
typing of a process minus that of �; and for Inact, replacing T with noact(Γ), assuming
Γ is the implicit typing. Other rules stay unchanged, except for adding:

E, X :(x̃)A � P 	 A A admissible
E � (recX(x̃).P)〈ẽ〉 	 A[ẽ/x̃]

Rec-adm

where admissibility is defined via syntactic unfoldings [10]. Given R≡ (recX(x̃).P)〈ẽ〉,
let P0 ≡ 0 and Pn+1 ≡ P[(x̃)Pn/X] (where we set ((x̃)Q)〈ẽ〉 = Q[ẽ/x̃]). Then a closed
formula A is admissible if: (1) P0 satisfies A; and (2) If Pi satisfies A for each i ≥ 0,
then (recX(x̃).P)〈x̃〉 also satisfies A. This is extended to open formulae closing under
admissible properties. In practice, we may use a tractable variant of admissibility: for
example, if we restrict P to be sequential (i.e. without parallel composition), there is a
simple syntactic characterisation of admissibility.

To capture both modalities in a single proof system, we strengthen the Must pre-
fix rules through the use of the combined modality ��,Δ�A, which stands for ���A∧
noact(Δ) (cf. Definition 1). The proof system is given by replacing 〈〈�〉〉 in each prefix
rule in Figure 1 with ��,Δ�, fully capturing the semantics of prefix. Other rules remain
identical except for adding the following recursion rule, due to Larsen [13].

E, X :(x̃)X ′〈x̃〉 � P 	 A
E � (recX(x̃).P)〈ẽ〉 	 (µX ′(x̃).A)〈ẽ〉 Rec-mix

Soundness and Relative Completeness. Let us write Γ;E �may P 	 A, Γ;E �must P 	 A
and Γ;E �mix P 	 A, for provability in the May/Must/Mixed proof systems, respectively.
We also write Γ;E |=P 	 A (read: Γ �P satisfies A under E), when we have P∈〈〈Γ �
A〉〉(ξ · 〈〈E〉〉ξ) for each ξ, where 〈〈E〉〉ξ is the obvious interpretation of process variables
under E and ξ. We first observe:

Theorem 2 (soundness). Γ;E �may P 	 A implies Γ;E |= P 	 A, similarly for Γ;E �must

P 	 A and Γ;E �mix P 	 A.

Thus the three proof systems are all sound under the same satisfaction relation, allowing
the mixed use of their proof rules in reasoning. Further each system precisely captures a
distinct process semantics, as shown by the following completeness result. The proof is
by syntactically deriving characteristic formulae, which also entails observational and
descriptive completeness in the sense of [10].

Completeness and Logical Full Abstraction in Modal Logics 107

Theorem 3 (completeness). Let Γ � P and A be closed. Then |= P 	 A with A being
an upper-closed property w.r.t.�may (resp. a downward-closed property w.r.t. �must)
implies �may P 	 A (resp. �must P 	 A). Further for any A, if |= P 	 A then �mix P 	 A.

Basic Axioms. The operators ◦ and ν, used in the proof rules, do not directly describe
the communication behaviour of a process: It is through the axioms of the assertion
language that modal behaviours are extracted. Some of the basic axioms follow.

Proposition 4. Below we assume well-typedness of formulae.

1. B⊃ (A � (A◦B)), A � (B � C)≡ (A◦B) � C and (A◦ (A � B))⊃ B.
2. A◦B≡ A∧B if fn(A)∩ fn(B) = /0 and all free channels are server typed.
3. (���A)◦B≡ ���(A◦B) and ���A◦ ���B≡ νbn(�).(A◦B), with � linear.
4. ���A◦ ���B⊃ (〈〈�〉〉(A◦ ���B)∧〈〈〉〉(A◦B)∧〈〈�〉〉(���A◦B))
5. �a(k)�A◦ �a(k)�B≡ �a(k)�A◦νk.(A◦B), where a has a server type.
6. (νX(x̃).A)〈ẽ〉 ◦ (νY (ỹ).B)〈g̃〉 ⊃ (νZ(x̃ỹ).C[Z〈ẽg̃〉]i)〈ẽg̃〉 where (A ◦ B ⊃ C[X〈ẽ〉 ◦

Y 〈g̃〉]i) is valid and C[X〈ẽ〉i ◦Y 〈g̃〉i]i∈I denotes a formula with multiple holes in-
dexed by I, assuming all occurrences of X and Y are thus exhausted.

The three axioms in (1) relate � and ◦. In (2), fn(A) is the set of names and variables
of channel types. In (3), the second axiom eliminates dual actions. In (4) the prefixing
〈〈〉〉 cannot be removed due to state change, unlike (2). In (5), the axiom relies on a
having a server type, corresponding to the replication law in [16,24]. In the Server-
Client example in Section 3, if we type b with a non-deterministic type, we cannot
apply this axiom, hence cannot derive �h3�T. In (6), A and B indicate well-synchronised
recursive interactions, in which case we can merge their states under recursions.

Elimination of ◦ and ν. Through these and other axioms, we can transform formulae
into those without ◦ and ν. We discuss a basic result for such elimination, using deter-
ministic type disciplines from [4,24] (the typing in [4] ensures determinacy, to which
[24] adds a causality constraint to ensure strong normalisation: essentially the same re-
sult holds for processes in Section 2 without non-deterministic types). We extend 〈a(k)〉
to 〈a b̃(k)〉 (dually for output) since, in [4,24], a server channel (a) carries not only a
linear channel (k) but client-typed channels (b̃). We also replace the use of bisimilarity
in Section 3 with the standard reduction-based congruence [4,24], denoted ∼=, which
adds semantic precision. In correspondence, we refine the interpretation of equality and
quantification over server-typed names. Below let α be server-typed.

〈〈Γ � eα
1 = eα

2〉〉ξ = {Γ�P | P[ξ(e1)ξ(e2)/ξ(e2)ξ(e1)]∼= P}
〈〈Γξ � ∀xα.A〉〉ξ = max pΓξ.(∀qu:α.p|||q⊂ 〈〈Γ,x :α � A〉〉(ξ · x -→u))

The first clause says that two replicated channels are equal if the corresponding be-
haviours are. Together these clauses treat replicated channels as the behaviours they
represent, while maintaining the standard axioms for equality and quantifiers. Their sig-
nificance will become clear when we discuss logical full abstraction in Section 5. The
same proof systems satisfy completeness for ∼= and the corresponding precongruences.

108 M. Berger, K. Honda, and N. Yoshida

Now let us say A is ◦-free (resp. ν-free) if ◦ (resp. ν) does not occur in A. A is
approximately ◦-free if ◦ occurs only in fixed point formulae whose finite unfoldings
are ◦-free up to logical equivalence. We also say A characterises P when Γ |= P 	 A
and, moreover, whenever Γ |= Q 	 A we have P∼= Q.

Theorem 5 (elimination of ◦ and ν under determinism). Let P be typable by the
type discipline in [4] (resp. [24]). Then there is an algorithm to find a ν-free and ap-
proximately ◦-free formula (resp. a ν-free and ◦-free formula) which characterises P.

5 Applications

State Transfer: Synchronising Stateful Interactions. As the first reasoning exam-
ple, we extend the previous ATM in Sections 2 and 3 to three-party interactions among
User, ATM and Bank. Our purpose is to demonstrate how we can reason about the trans-
fer of state induced by synchronised actions among multiple parties. ATM is extended
with withdraw option, in which ATM asks Bank each time it receives a request from
User, and forwards the answer to User. The π-calculus term representing this behaviour,
which we call ATM, is given as:

a(k).b(k′).recY.(k "[balance : k′ !balance.k′(z).k〈z〉.Y,
withdraw :k(n).k′!withdraw.k′〈n〉.k′" [ok :k ! ok.Y,no :k !no.Y],
quit : k′ !quit])

The new ATM no longer has its own state, dispensing with parameters in its recursion.
At the same time, the state change in Bank is reflected onto ATM through interactions,
so that ATM will behave to User as if it were stateful. In turn, User would demand the
following invariance: if User withdraws money several times within a single session, the
withdrawal of an amount n succeeds if n is within the immediately preceding balance,
say z, with the resulting balance z− n. Below we give a specification of ATM, as seen
from User, asserting this invariance. The specification ATMSpec(a,x), where x is an
initial balance, is given as the formula �a(k)�〈〈〉〉(νZ(z).A)〈x〉 where we set A to be:

�k "withdraw� ∀n.�kn� (z≥ n ⊃ �k ! ok�Z〈z−n〉 ∧ z < n ⊃ �k !no�Z〈z〉)

Let BankSpec(b,x) be a specification for Bank given as �b(k′)�(νZ(z).B)〈x〉 where
B = A[k′/k] with k′ fresh in A. We now show:

ATM |= BankSpec(b,300) � ATMSpec(a,300)

To reach this judgement, we start from a formula directly derived by the proof rules,
which we call ATMSpec0(a,b), defined as �a(k)��b(k′)�νY.A0 where we set A0 to be:

�k "withdraw��k′ !withdraw� ∀n.�kn��k
′
n�(�k′ " ok��k ! ok�.Y ∧ �k′ "no��k !no�.Y)

It thus suffices to show ATMSpec0(a,b)◦BankSpec(b,300)⊃ ATMSpec(a,300). We
first calculate A0 ◦ B⊃ A by compensating all dual strong linear actions by Axiom (2)
in Proposition 4. This and Axiom (6) of the same proposition give us:

(νY.A0) ◦ (νZ(z).B)〈x〉 ⊃ (νZ(z).A)〈x〉

Completeness and Logical Full Abstraction in Modal Logics 109

Thus we have successfully transferred Bank’s state to the specification for ATM. Finally
by Axiom (4) in Proposition 4 we calculate:

�b(k′)�.(νZ(z).B)〈300〉 ◦ �a(k)��b(k′)�(νY.A0)
⊃ �a(k)�(�b(k′)�(νZ(z).B)〈300〉 ◦ �b(k′)�(νY.A0))
⊃ �a(k)�〈〈〉〉(νZ(z).A)〈300〉

Above the logical calculation of interaction at b induces 〈〈〉〉 in the final line, indicating
a shared, hence possibly nondeterministic, interaction: in contrast, all actions within a
session have strong modality. In this way the present framework allows specifications
and reasoning about the fine-grained mixture of determinism and non-determinism.

Logical Full Abstraction of PCFv. One of the notable effects of types in the π-calculus
is to enhance the semantic precision of the embedding of diverse calculi and pro-
gramming languages in this calculus. When a type discipline is sufficiently strong, the
embedding even enjoys full abstraction [4]. In the following we demonstrate that the
proposed logic inherits this feature at a logical level. We use the complete program
logic for call-by-value PCF (henceforth PCFv) from [10] and the process logic under
the type discipline of [4] based on the reduction-based equality ∼=, discussed in Section
4.

We first review PCFv and its logic. PCFv-types are either atomic types (nat and
bool) or arrow types (α⇒β). PCFv-terms (M,N, . . .) and formulae (A,B, . . .) are given
by the following grammar.

M ::= x | op(M̃) | λxα.M |MN | µxα⇒β.λyα.M | if M then N1 else N2

A ::= e1 = e2 | A∧B | ∀xα.A | ¬A | x• y↘ z

In the first line (terms), op(M̃) denotes the standard first-order operations (including
constants). In the second line (formulae), x• y↘ z, called evaluation formula, specifies
that a function x, when applied to an argument y, converges and results in a value z.
The semantics of these formulae exactly follows [10]. The judgement |= [A]M :u [B]
intuitively says that if the free variables in M satisfy A, the program M terminates and
whose result, named u, satisfies B. For its formal definition, see [10].

We use Milner’s encoding of call-by-value λ-calculus [16]. Below we only show
primary ones.

〈〈x〉〉k = k〈x〉 〈〈λx.M〉〉k = (νa)(k〈a〉|!a(xk′).〈〈M〉〉k′)
〈〈MN〉〉k = (νk1)(〈〈M〉〉k1 |k1(m).(νk2)(〈〈N〉〉k2 |k2(n).m〈nk〉))

The last line uses free name passing unlike [4], following [24, §6]. The embedding
of types is given accordingly [4]. For formulae, the standard constructs are mapped
directly: 〈〈e1= e2〉〉 ≡ e1 = e2, 〈〈A∧B〉〉 ≡ 〈〈A〉〉∧〈〈B〉〉, 〈〈¬A〉〉 ≡ ¬〈〈A〉〉 and 〈〈∀xα.A〉〉 ≡
∀x.〈〈A〉〉. In the first map, equality of two names in the PCFv-logic denotes equality of
their denotations: to embed this notion in the process logic, we need the refinement of
semantics of equality in Section 4. For evaluation formulae we set:

〈〈x• y↘z〉〉 ≡ 〈〈xy(k)〉〉〈〈kz〉〉T,

110 M. Berger, K. Honda, and N. Yoshida

which decomposes an evaluation formula to a modal formula with the May modality
(which corresponds to total correctness under determinism).

Below we say a formula A of PCFv-logic with fv(A) = {u} is upper-closed with
respect to u [10] if, whenever V named u satisfies A, and if W is greater than V in the
standard observational precongruence of PCFv, then W named u also satisfies A.

Theorem 6 (logical full abstraction of PCFv). Let V be a well-typed closed PCFv-
term and A be upper-closed with respect to u and, moreover, fv(A) = {u}. Then we have
|= [T]V :u [A] if and only if 〈〈V 〉〉k |= ∃u.(〈〈kx〉〉T∧〈〈A〉〉[x/u]).

The proof uses the correspondence of characteristic formulae on both sides, observing
that the May preorder and the contextual preorder coincide via the encoding of terms,
and that validity in upper-closed formulae is preserved and reflected via the encoding
of assertions. By translating partial correctness formulae using the Must modality, we
obtain logical full abstraction for the PCFv-logic for partial correctness in [10].

References

1. Full version of this paper as a DoC technical report, Imperial College London (to appear,
2008) www.dcs.qmul.ac.uk/∼kohei/processlogic

2. Amadio, R., Dam, M.: A modal theory of types for the π-calculus. In: Jonsson, B., Parrow,
J. (eds.) FTRTFT 1996. LNCS, vol. 1135, pp. 347–365. Springer, Heidelberg (1996)

3. Berger, M.: A program logic for sequential higher-order control (1): stateless case. Type-
script, 36 pages (October 2007)

4. Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.)
TLCA 2001. LNCS, vol. 2044, pp. 29–45. Springer, Heidelberg (2001)

5. Bonsangue, M., Kurz, A.: Pi-calculus in logical form. In: LICS 2007, pp. 303–312. IEEE,
Los Alamitos (2007)

6. Caires, L., Cardelli, L.: A spatial logic for concurrency. I& C 186(2), 194–235 (2003)
7. Cardelli, L., Gordon, A.D.: Anytime, anywhere: Modal logics for mobile ambients. In:

POPL, pp. 365–377 (2000)
8. Dam, M.: Proof systems for pi-calculus logics. In: Logic for Concurrency and Synchronisa-

tion. Trends in Logic, Studia Logica Library, pp. 145–212. Kluwer, Dordrecht (2003)
9. Honda, K.: From process logic to program logic. In: ICFP 2004, pp. 163–174. ACM, New

York (2004)
10. Honda, K., Berger, M., Yoshida, N.: Descriptive and relative completeness for logics for

higher-order functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 360–371. Springer, Heidelberg (2006)

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines for
Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP 1998 and ETAPS
1998. LNCS, vol. 1381, pp. 22–138. Springer, Heidelberg (1998)

12. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp. 321–332
(1983)

13. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recursion. Theor.
Comput. Sci. 72(2&3), 265–288 (1990)

14. Longley, J., Plotkin, G.: Logical full abstraction and PCF. In: Tbilisi Symposium on Logic,
Language and Information, CLSI (1998)

15. Miller, D., Tiu, A.: A proof theory for generic judgments. ACM Transactions on Computa-
tional Logic 6(4), 749–783 (2005)

www.dcs.qmul.ac.uk/~kohei/processlogic

Completeness and Logical Full Abstraction in Modal Logics 111

16. Milner, R.: The polyadic π-calculus: A tutorial. In: Proceedings of the International Summer
School on Logic Algebra of Specification, Marktoberdorf (1992)

17. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Parts I and II. Info.&
Comp. 100(1) (1992)

18. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. TCS 114, 149–171
(1993)

19. Simpson, A.: Sequent calculi for process verification: Hennessy-Milner logic for an arbitrary
GSOS. J. Log. Algebr. Program. 60-61, 287–322 (2004)

20. Stirling, C.: A complete compositional model proof system for a subset of CCS. In: Brauer,
W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 475–486. Springer, Heidelberg (1985)

21. Stirling, C.: Modal logics for communicating systems. TCS 49, 311–347 (1987)
22. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing System.

In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,
vol. 817, pp. 398–413. Springer, Heidelberg (1994)

23. Tiu, A.F.: Model checking for pi-calculus using proof search. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 36–50. Springer, Heidelberg (2005)

24. Yoshida, N., Berger, M., Honda, K.: Strong Normalisation in the π-Calculus. Information
and Computation 191, 145–202 (2004)

25. Yoshida, N., Honda, K., Berger, M.: Logical reasoning for higher-order functions with local
state. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 361–377. Springer, Heidel-
berg (2007)

On the Sets of Real Numbers Recognized by

Finite Automata in Multiple Bases�

Bernard Boigelot1, Julien Brusten1,��, and Véronique Bruyère2

1 Institut Montefiore, B28
Université de Liège

B-4000 Liège, Belgium
{boigelot,brusten}@montefiore.ulg.ac.be

2 Université de Mons-Hainaut
Avenue du Champ de Mars, 6

B-7000 Mons, Belgium
veronique.bruyere@umh.ac.be

Abstract. This paper studies the expressive power of finite automata
recognizing sets of real numbers encoded in positional notation. We con-
sider Muller automata as well as the restricted class of weak determinis-
tic automata, used as symbolic set representations in actual applications.
In previous work, it has been established that the sets of numbers that
are recognizable by weak deterministic automata in two bases that do not
share the same set of prime factors are exactly those that are definable
in the first order additive theory of real and integer numbers 〈R,Z,+, <〉.
This result extends Cobham’s theorem, which characterizes the sets of in-
teger numbers that are recognizable by finite automata in multiple bases.

In this paper, we first generalize this result to multiplicatively indepen-
dent bases, which brings it closer to the original statement of Cobham’s
theorem. Then, we study the sets of reals recognizable by Muller au-
tomata in two bases. We show with a counterexample that, in this setting,
Cobham’s theorem does not generalize to multiplicatively independent
bases. Finally, we prove that the sets of reals that are recognizable by
Muller automata in two bases that do not share the same set of prime
factors are exactly those definable in 〈R,Z,+, <〉. These sets are thus
also recognizable by weak deterministic automata. This result leads to a
precise characterization of the sets of real numbers that are recognizable
in multiple bases, and provides a theoretical justification to the use of
weak automata as symbolic representations of sets.

1 Introduction

By using the positional notation, real numbers can be encoded as infinite words
over an alphabet composed of a fixed number of digits, with an additional symbol

� This work is supported by the Interuniversity Attraction Poles program MoVES of
the Belgian Federal Science Policy Office, and by the grant 2.4530.02 of the Belgian
Fund for Scientific Research (F.R.S.-FNRS).

�� Research fellow (“Aspirant”) of the Belgian Fund for Scientific Research (F.R.S.-
FNRS).

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 112–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Sets of Real Numbers Recognized by Finite Automata 113

for separating their integer and fractional parts. This encoding scheme maps sets
of numbers onto languages that describe precisely those sets.

This paper studies the sets of real numbers whose encodings can be accepted
by finite automata. The motivation is twofold. First, since regular languages
enjoy good closure properties under a large range of operators, automata provide
powerful theoretical tools for establishing the decidability of arithmetic theories.
In particular, it is known that the sets of numbers that are definable in the first-
order additive theory of integers 〈Z,+, <〉, also called Presburger arithmetic,
are encoded by regular finite-word languages [Büc62, BHMV94]. This result
translates into a simple procedure for deciding the satisfiability of Presburger
formulas. Moving to infinite-word encodings and ω-regular languages, it can be
extended to sets of real numbers definable in 〈R,Z,+, <〉, i.e., the first-order
additive theory of real and integer variables. [BBR97, BJW05].

The second motivation is practical. Since finite automata are objects that are
easily manipulated algorithmically, they can be used as actual data structures for
representing symbolically sets of values. This idea has successfully been exploited
in the context of computer-aided verification, leading to representations suited
for the sets of real and integer vectors handled during symbolic state-space ex-
ploration [WB95, BJW05, EK06]. A practical limitation of this approach is the
high computational cost of some operations involving infinite-word automata,
in particular language complementation [Saf88, Var07]. However, it has been
shown that a restricted form of automata, weak deterministic ones, actually suf-
fices for handling the sets definable in 〈R,Z,+, <〉 [BJW05]. Weak automata can
be manipulated with essentially the same cost as finite-word ones [Wil93], which
alleviates the problem and leads to an effective representation system.

Whether a set of numbers can be recognized by an automaton generally de-
pends on the chosen encoding base. For integer numbers, it is known that a set
S ⊆ Z is recognizable in a base r > 1 iff it is definable in the theory 〈Z,+, <,Vr〉,
where Vr is a base-dependent function [BHMV94]. Furthermore, the well-known
Cobham’s theorem states that if a set S ⊆ Z is simultaneously recognizable in
two bases r > 1 and s > 1 that are multiplicatively independent , i.e., such that
rp �= sq for all p, q ∈ N>0, then S is ultimately periodic, i.e., it differs from
a periodic subset of Z only by a finite set [Cob69]. Equivalently, such a set is
definable in 〈Z,+, <〉 [BHMV94]. It follows that such a set S is recognizable in
every base. Our aim is to generalize as completely as possible Cobham’s theorem
to automata recognizing real numbers, by precisely characterizing the sets that
are recognizable in multiple bases. We first consider the case, relevant for prac-
tical applications, of weak deterministic automata. In previous work, it has been
established that a set of real numbers is simultaneously recognizable by weak
deterministic automata in two bases that do not share the same set of prime
factors iff this set is definable in 〈R,Z,+, <〉 [BB07]. As a first contribution, we
extend this result to pairs of multiplicatively independent bases. Since recogniz-
ability in two multiplicatively dependent bases is equivalent to recognizability in
only one of them [BRW98], this result provides a complete characterization of
the sets that are recognizable in multiple bases by weak deterministic automata.

114 B. Boigelot, J. Brusten, and V. Bruyère

Then, we move to sets recognized by Muller automata. We prove that there
exists a set of real numbers recognizable in two multiplicatively independent
bases that share the same set of prime factors, but that is not definable in
〈R,Z,+, <〉. This shows that Cobham’s theorem does not directly generalize to
Muller automata recognizing sets of real numbers. Finally, we establish that a
set S ⊆ R is simultaneously recognizable in two bases that do not share the same
set of prime factors iff S is definable in 〈R,Z,+, <〉. As a corollary, such a set
must then be recognizable by a weak deterministic automaton. Our result thus
provides a theoretical justification to the use of weak automata, by showing that
their expressive power corresponds precisely to the sets of reals recognizable by
infinite-word automata in every encoding base.

2 Representing Sets of Real Numbers with Finite
Automata

Let r > 1 be an integer numeration base and let Σr = {0, . . . , r − 1} be the
corresponding set of digits . We encode a real number x in base r, most significant
digit first, by words of the form wI # wF , where wI ∈ {0, r − 1}Σ∗r encodes the
integer part xI of x and wF ∈ Σω

r encodes its fractional part xF . Negative
numbers are represented by their r’s-complement. The length p of wI is not
fixed but has to be large enough for −rp−1 ≤ xI < rp−1 to hold; thus, the
most significant digit of an encoding of a real number is equal to 0 for positive
numbers and to r−1 for negative ones [BBR97]. Some numbers have two distinct
encodings with the same integer-part length, e.g., in base 10, the number 11/2
admits the encodings 0+5#50ω and 0+5#49ω. For a word w = bIp−1b

I
p−2 . . . bI1b

I
0 #

bF1 bF2 bF3 . . . ∈ {0, r − 1}Σ∗r # Σω
r , we denote by [w]r the real number encoded by

w in base r, i.e.,

[w]r =
p−2∑

i=0

bIi r
i +
∑

i>0

bFi r−i +
{

0 if bIp−1 = 0,
−rp−1 if bIp−1 = r − 1.

For finite words w ∈ Σ∗r , we denote by [w]r the natural number encoded by w,
i.e., [w]r = [0w # 0ω]r.

If the language formed by all the base-r encodings of the elements of a set
S ⊆ R is ω-regular, then it can be accepted by a (non-unique) infinite-word
automaton, called a Real Number Automaton (RNA) recognizing S. Such a set
S is then said to be r-recognizable. RNA can be generalized into Real Vector
Automata (RVA), suited for subsets of Rn, with n > 0 [BBR97].

RNA and RVA have originally been defined as Büchi automata [BBR97]. In
this paper, we will instead consider them to be deterministic Muller automata.
This adaptation can be made without loss of generality, since both classes of
automata share the same expressive power [McN66, PP04]. The fact that RNA
have a deterministic transition relation will simplify technical developments.

The subsets of R that are r-recognizable are exactly those that are definable
in the first-order theory 〈R,Z,+, <,Xr〉, where Xr(x, u, k) is a base-dependent

On the Sets of Real Numbers Recognized by Finite Automata 115

predicate that holds whenever u is an integer power of r and there exists an en-
coding of x in which the digit at the position specified by u is equal to k [BRW98].

It is known that the full expressive power of infinite-word automata is not
needed for representing the subsets of R that are definable in the first-order
theory 〈R,Z,+, <〉 [BJW05]. Indeed, such sets can be recognized by weak de-
terministic automata, i.e., deterministic Büchi automata such that their set of
states can be partitioned into disjoint subsets Q1, . . . , Qm, where each Qi con-
tains only either accepting or non-accepting states, and there exists a partial
order ≤ on the sets Q1, . . . , Qm such that for every transition (q, a, q′) of the
automaton, with q ∈ Qi and q′ ∈ Qj , we have Qj ≤ Qi.

A set recognized by a weak deterministic automaton in base r is said to be
weakly r-recognizable and such an automaton is called a weak RNA.

It has been established [BJW05] that the r-recognizable sets S ⊆ R that are
not weakly r-recognizable are exactly those that satisfy the dense oscillating
property: One has ∃x1∀ε1∃x2∀ε2∃x3∀ε3 · · · such that |xi+1 − xi| < εi for all
i ≥ 1, xi ∈ S for all odd i, and xi �∈ S for all even i.

In the technical sections of this paper, we will need to apply transformations
to sets represented by RNA (or weak RNA), or to the chosen encoding base.
The following results are immediate corollaries of [BRW98] and [BJW05].

Theorem 1. Let S ⊆ R, r ∈ N>1 and a, b ∈ Q. If S is (resp. weakly) r-
recognizable then the sets aS + b and S ∩ [a, b] are (resp. weakly) r-recognizable
as well.

Theorem 2. Let S ⊆ R, r ∈ N>1, and k ∈ N>0. The set S is (resp. weakly)
r-recognizable iff it is (resp. weakly) rk-recognizable.

3 Problem Reductions

In the next sections, we will consider sets S ⊆ R that are simultaneously rec-
ognizable, either by RNA or by weak RNA, in two bases r and s that satisfy
some conditions. We will then tackle the problem of proving that such sets are
definable in 〈R,Z,+, <〉. In this section, we reduce this problem, by restricting
the domain to the interval [0, 1], and introducing the notion of boundary point.

3.1 Reduction to [0, 1]

Let S ⊆ R be a set recognized by a (resp. weak) RNA A. Each accepting path
of A reads exactly one occurrence of the symbol #. Since A is finite-state, its
accepted language L(A) has the form

⋃
i L

I
i # LF

i , where the union is finite, and
the languages LI

i and LF
i contain, respectively, integer and fractional parts of the

encodings of the elements of S. This induces a decomposition of S into a finite
union

⋃
i(S

I
i +SF

i), where for each i, we have SI
i ⊆ Z and SF

i ⊆ [0, 1]. It has been
shown [BB07] that this decomposition is independent from the encoding base.
Besides, every set SI

i and SF
i is recognizable by the same type of automaton

as A.

116 B. Boigelot, J. Brusten, and V. Bruyère

Assume now that S ⊆ R is simultaneously (resp. weakly) r- and s-recog-
nizable, with respect to bases r and s that are multiplicatively independent.
By Cobham’s theorem [Cob69], each set SI

i is thus definable in 〈Z,+, <〉. This
reduces the problem of establishing that S is definable in 〈R,Z,+, <〉 to the
same problem for each set SF

i . Since we have SF
i ⊆ [0, 1] for all i, the problem

has thus been reduced from the domain R to the interval [0, 1].

3.2 Boundary Points

The following notions are adapted from [BB07]. Given a point x ∈ R and a value
ε > 0, a neighborhood of x is the set Nε(x) = {y ∈ R | |x − y| < ε}. A point
x ∈ R is a boundary point of a set S ⊆ R iff all its neighborhoods contain at
least one point from S as well as from its complement S = R \ S.

Lemma 1. If a (resp. weakly) r-recognizable set S ⊆ R has only finitely many
boundary points, then it is definable in 〈R,Z,+, <〉.

Proof sketch. If S ⊆ R has only finitely many boundary points, then it can be
decomposed into a finite union of intervals. In order to prove that S is definable
in 〈R,Z,+, <〉, it is sufficient to show that the extremities of these intervals
are rational numbers. Since S is (resp. weakly) r-recognizable, it is definable in
〈R,Z,+, <,Xr〉, and so is the set S′ containing only those interval extremities.
The set S′ is thus finite and r-recognizable, and its elements are encoded by
words sharing a finite number of fractional parts. These are necessarily ultimately
periodic, from which the elements of S′ are rational. ��

4 Multiplicatively Independent Bases

Let r, s ∈ N>1 be two multiplicatively independent bases, i.e., such that rp �= sq

for all p, q ∈ N>0. We consider a set S ⊆ [0, 1] that is both (resp. weakly) r-
and s-recognizable. In the next section, we derive some properties under the
assumption that S has infinitely many boundary points. We will see that this
assumption leads to a contradiction in the case of weak RNA, showing that S is
definable in 〈R,Z,+, <〉 by Lemma 1. This will be no longer true for RNA.

4.1 Product Stability

Let Ar be a (resp. weak) RNA recognizing S in base r. We assume w.l.o.g. that
the transition relation of Ar is complete.

Since S is (resp. weakly) r-recognizable, it is definable in 〈R,Z,+, <,Xr〉, and
so is the set BS of all boundary points of S, which is thus r-recognizable. Let
AB

r be a RNA recognizing BS .
By hypothesis, S has infinitely many boundary points, hence there exist in-

finitely many distinct paths of AB
r that end up cycling in the same set of accept-

ing states. One can thus extract from AB
r an infinite language L = 0 # uv∗twω ,

On the Sets of Real Numbers Recognized by Finite Automata 117

where t, u, v, w ∈ Σ∗r , |v| > 0, |w| > 0, and L encodes an infinite subset of the
boundary points of S. We then define y = [0 # uvω]r and, for each k ∈ N>0,
yk = [0 # uvktwω]r. The sequence y1, y2, y3, . . . ∈ Qω forms an infinite sequence
of distinct boundary points of S, converging towards y ∈ Q. If we have yk > y
for infinitely many k, then we define S1 = (S − y) ∩ [0, 1]. Otherwise, we define
S1 = (−S + y) ∩ [0, 1]. From Theorem 1, the set S1 is both (resp. weakly) r-
and s-recognizable. Moreover, this set admits an infinite sequence of distinct
boundary points that converges to 0.

Let A1
r and A1

s be (resp. weak) RNA recognizing S1 in the respective bases r
and s. The path π0 of A1

r that reads 0 # 0ω is composed of a prefix labeled by
0#, followed by an acyclic path of length p ≥ 0, and finally by a cycle of length
q > 0. It follows that a word of the form 0 # 0pt, with t ∈ Σω

r , is accepted by
A1

r iff the word 0 # 0p+qt is accepted as well. Remark that the set S1 admits
infinitely many boundary points with a base-r encoding beginning with 0 # 0p.
Similar properties hold for A1

s. In this automaton, the path π′0 recognizing 0#0ω

reads the symbols 0 and #, and then follows an acyclic sequence of length p′

before reaching a cycle of length q′.
We now define S2 = rpS1 ∩ [0, 1]. Like S1, the set S2 admits an infinite

sequence of boundary points that converges to 0. Moreover, by Theorem 1, S2

is both (resp. weakly) r- and s-recognizable. Let A2
r be a (resp. weak) RNA

recognizing S2 in base r. For every t ∈ Σω
r , the word 0 # t is accepted by A2

r

iff the word 0 # 0qt is accepted as well. In other words, the fact that a number
x ∈ [0, 1] belongs or not to S2 is not influenced by the insertion of q zero digits
in its encodings, immediately after the symbol #. This amounts to dividing the
value of x by rq , which leads to the following definition.

Definition 1. Let D ⊆ R be a domain, and let f ∈ R>0. A set S ⊆ D is f -
product-stable in the domain D iff for all x ∈ D such that fx ∈ D, we have
x ∈ S ⇔ fx ∈ S.

From the previous discussion, we have that S2 is rq-product-stable in [0, 1]. We
then define S3 = sp

′
S2 ∩ [0, 1]. The set S3 is rq-product-stable in [0, 1] as well.

By Theorem 1, S3 is also both (resp. weakly) r- and s-recognizable. Besides,
since S3 = rpsp

′
S1 ∩ [0, 1], the set S3 can alternatively be obtained by first

defining S4 = sp
′
S1 ∩ [0, 1], which is both (resp. weakly) r- and s-recognizable

by Theorem 1. Then, one has S3 = rpS4 ∩ [0, 1]. By a similar reasoning in base
s, we get that S3 is sq

′
-product-stable in [0, 1]. Like S2, the set S3 admits an

infinite sequence of distinct boundary points that converges to 0.
Finally, we replace the bases r and s by r′ = rq and s′ = sq

′
, thanks to

Theorem 2. The results of this section are then summarized by the following
lemma.

Lemma 2. Let r and s be two multiplicatively independent bases, and let S ⊆
[0, 1] be a set that is both (resp. weakly) r- and s-recognizable, and that admits
infinitely many boundary points. There exist powers r′ = ri and s′ = sj of r
and s, with i, j ∈ N>0, and a set S′ ⊆ [0, 1] that is both (resp. weakly) r′- and

118 B. Boigelot, J. Brusten, and V. Bruyère

s′-recognizable, both r′- and s′-product-stable in [0, 1], and that admits infinitely
many boundary points.

4.2 Recognizability by Weak RNA

We are now ready to prove that the sets S ⊆ [0, 1] that are recognizable by weak
RNA in two multiplicatively independent bases r and s can only have finitely
many boundary points.

By contradiction, suppose that such a set S has infinitely many boundary
points. By Lemma 2, we can assume w.l.o.g. that S is r- and s-product-stable
in [0, 1].

Hence, there exist α, β ∈ (0, 1] such that α ∈ S and β �∈ S. For every i, j ∈ Z

such that risjα ∈ (0, 1], we thus have risjα ∈ S. Similarly, for every i, j ∈ Z

such that risjβ ∈ (0, 1], we have risjβ �∈ S.
Let γ be an arbitrary point in the open interval (0, 1). Since r and l are

multiplicatively independent, it follows from Kronecker’s approximation theo-
rem [HW85] that any open interval of R>0 contains some number of the form
ri/sj with i, j ∈ N>0 [Per90]. Hence, for every sufficiently small ε > 0 and
δ ∈ {α, β}, there exist i, j ∈ N>0 such that

0 < γ − ε < (ri/sj)δ < γ + ε < 1

showing that every sufficiently small neighborhood Nε(γ) of γ contains one point
from S as well as from S. The latter property leads to a contradiction, since it
implies that S satisfies the dense oscillating property, and therefore cannot be
recognized by a weak RNA.

Taking into account the problem reductions introduced in Sections 3.1 and 3.2,
we thus have established the following result, that fully generalizes Cobham’s
theorem to weak RNA.

Theorem 3. Let r and s be two multiplicatively independent bases. If a set
S ⊆ R is weakly r- and s-recognizable, then it is definable in 〈R,Z,+, <〉.

Thanks to the above mentioned reductions, we can rephrase this theorem as
follows. If a set S ⊆ R is weakly r- and s-recognizable in two multiplicatively
independent bases, then it is a finite union

⋃
i(S

I
i + SF

i), where each SI
i ⊆ Z

is ultimately periodic and each SF
i ⊆ [0, 1] is a finite union of intervals with

rational extremities. It is worth mentioning that, as observed in [Wei99], such a
structural description of subsets S of R is equivalent to the definability of S in
〈R,Z,+, <〉.

4.3 Recognizability by RNA

Theorem 3 cannot be directly generalized to automata that are not restricted to
be weak and deterministic. Indeed, with RNA, a set can be recognizable in two
multiplicatively independent bases without being definable in 〈R,Z,+, <〉. This
property is established by the following theorem.

On the Sets of Real Numbers Recognized by Finite Automata 119

Theorem 4. For every pair of bases r and s that share the same set of prime
factors, there exists a set S that is both r- and s-recognizable, and that is not
definable in 〈R,Z,+, <〉.

Proof sketch. A counterexample is provided by the set S = {n/(f i1
1 f i2

2 · · · f ik
k) |

n ∈ Z, i1, i2, . . . , ik ∈ N}, where f1, f2, . . . fk are the prime factors of r and
s. Indeed, in either base t ∈ {r, s}, this set is encoded by the language Lt =
{0, t− 1}Σ∗t # Σ∗t (0ω ∪ (t − 1)ω). This language is clearly ω-regular, hence S is
both r- and s-recognizable. However, S satisfies the dense oscillating property,
which prevents it from being recognized by a weak RNA. It follows that S is not
definable in 〈R,Z,+, <〉. ��

The case of bases that do not share the same set of prime factors is investigated
in the next section.

5 Bases with Different Sets of Prime Factors

We now consider a subset of [0, 1] that is recognizable by RNA in two bases that
have different sets of prime factors. Recall that according to Lemma 1, in order
to prove that the set is definable in 〈R,Z,+, <〉, it is sufficient to show that this
set has only finitely many boundary points. Like in Section 4, we proceed by
contradiction, and assume that the set has infinitely many boundary points. By
Lemma 2, there exist bases r and s with different sets of prime factors, and a
set S ⊆ [0, 1] that is both r- and s-recognizable, both r- and s-product-stable in
[0, 1], and that has infinitely many boundary points. Without loss of generality,
we assume that there is a prime factor of s that does not divide r.

5.1 Sum Stability

Our strategy consists in exploiting Cobham’s theorem so as to derive additional
properties of S. The first step is to build from S a set S′ ⊆ R≥0 that coin-
cides with S over [0, 1], shares the same recognizability and product-stability
properties, and contains numbers with non-trivial integer parts.

Lemma 3. Let r, s ∈ N>1 be two bases with different sets of prime factors, and
let S ⊆ [0, 1] be a set that is r- and s-recognizable, r- and s-product-stable in [0, 1],
and that has infinitely many boundary points. There exists a set S′ ⊆ R≥0 that
is r- and s-recognizable, r- and s-product-stable in R≥0, and that has infinitely
many boundary points.

Proof sketch. Let S′ = {rkx | x ∈ S ∧ k ∈ N}. This set is clearly r-product-
stable in R≥0. Since S is r-product-stable in [0, 1], we have S′∩[0, 1] = S showing
that S′ has infinitely many boundary points. We build a RNA A′r recognizing S′

in base r from a RNA Ar recognizing S as follows. The automaton A′r is similar
to Ar, except that it delays arbitrarily the reading of the symbol #.

In order to prove that S′ is s-recognizable, notice that, since S is both r- and
s-product-stable in [0, 1], we have S′ = {risjx | x ∈ S ∧ i, j ∈ Z}. The set S′ can

120 B. Boigelot, J. Brusten, and V. Bruyère

therefore be expressed as S′ = {skx | x ∈ S ∧ k ∈ N}. By the same reasoning as
in base r, this set is s-recognizable, and s-product-stable in R≥0. ��

Consider now a set S′ obtained from S by Lemma 3. As discussed in Section 3.1,
this set can be expressed as a finite union S′ =

⋃
i(S

I
i + SF

i), where for each i,
we have SI

i ⊆ N and SF
i ⊆ [0, 1]. Moreover, for each i, the set SI

i is both r- and
s-recognizable, and it follows from Cobham’s theorem that this set is definable in
〈N,+, <〉. Since such a set is ultimately periodic, there exists ni ∈ N>0 for which
∀x ∈ N, x ≥ ni : x ∈ SI

i ⇔ x + ni ∈ SI
i . By defining n = lcm i(ni), we have

∀x ∈ R≥0, x ≥ n : x ∈ S′ ⇔ x + n ∈ S′. This prompts the following definition.

Definition 2. Let D ⊆ R be a domain, and let t ∈ R. A set S ⊆ D is t-sum-
stable in D iff for all x ∈ D such that x + t ∈ D, we have x ∈ S ⇔ x + t ∈ S.

Let us show that the set S′′ = (1/n)S′ is 1-sum-stable in R>0. For every x ≥ 1,
we have x ∈ S′′ ⇔ x + 1 ∈ S′′. For x < 1, we choose k ∈ N such that rkx ≥ 1.
Exploiting the properties of S′ (transposed to S′′), we get x ∈ S′′ ⇔ rkx ∈
S′′ ⇔ rkx + rk ∈ S′′ ⇔ x + 1 ∈ S′′. Lemma 3 can thus be refined as follows.

Lemma 4. Let r, s ∈ N>1 be two bases with different sets of prime factors, and
let S ⊆ [0, 1] be a set that is r- and s-recognizable, r- and s-product-stable in [0, 1],
and that has infinitely many boundary points. There exists a set S′ ⊆ R>0 that
is r- and s-recognizable, has infinitely many boundary points, and is r-product-,
s-product- and 1-sum-stable in R>0.

Note that Lemmas 3 and 4 still hold if the bases r and s are multiplicatively
independent.

5.2 Exploiting Sum-Stability Properties

Consider a set S′ ⊆ R>0 that satisfies the properties expressed by Lemma 4. It
remains to show that these properties lead to a contradiction. The hypothesis
on the prime factors of r and s is explicitly used in this section.

We proceed by characterizing the numbers t ∈ R for which S′ is t-sum-stable
in R>0. These form the set TS′ = {t ∈ R | ∀x ∈ R>0 : x + t ∈ R>0 ⇒ (x ∈ S′ ⇔
x+ t ∈ S′)}. Since S′ is r-recognizable, it is definable in 〈R,Z,+, <,Xr〉, and so
is TS′ , that is therefore r-recognizable as well.

The set TS′ enjoys interesting closure properties:

Property 1. For every t, u ∈ TS′ and a, b ∈ Z, we have at + bu ∈ TS′ .

The set TS′ is also r- and s-product stable in R. Since 1 ∈ TS′ , this yields the
following property.

Property 2. For every k ∈ Z, we have rk ∈ TS′ and sk ∈ TS′ .

Intuitively, being able to add or subtract rk from a number, for any k, makes it
possible to change in an arbitrary way finitely many digits in its base-r encodings,

On the Sets of Real Numbers Recognized by Finite Automata 121

without influencing the fact that this number belongs or not to S′. Our next
step will be to show that this property can be extended to all digits of base-r
encodings, implying either S′ = ∅ or S′ = R>0. This would then contradict our
assumption that S′ has infinitely many boundary points.

Property 3. There exist l,m ∈ N>0 such that, for every k ∈ N>0, we have

m/(rlk − 1) ∈ TS′ .

Proof. By Property 2, we have 1/sk ∈ TS′ for all k ∈ N. The base-r encodings
of 1/sk are of the form 0+ # vku

ω
k , where uk is their period . Hence, 1/sk =

ak/(r|vk|(r|uk | − 1)), with ak ∈ N>0. Recall that, by hypothesis, there exists a
prime factor f of s that does not divide r. Thus fk must divide r|uk| − 1. It
follows that the length of the periods uk must be unbounded w.r.t. k.

Consider a RNA AT
r recognizing TS′ in base r. We study the rational numbers

accepted by AT
r , which have base-r encodings of the form v # wuω . We assume

w.l.o.g. that the considered periods u are the shortest possible ones. It follows
from the unboundedness of uk that TS′ contains rational numbers with infinitely
many distinct periods. As a consequence, there exist u, u′, v, v′, w, w′ such that
uω is not a suffix of (u′)ω, the words v # wuω and v′ # w′(u′)ω are both accepted
by AT

r , and the paths π and π′ of AT
r reading them end up cycling in exactly

the same subset of accepting states. (Recall that RNA are deterministic Muller
automata.)

Let q be one of these states, and u1, u2 ∈ Σ+
r be periods of the (respective)

words read by π and π′ after reaching q in their final cycle. These periods can be
repeated arbitrarily, hence we can assume w.l.o.g. that |u1| = |u2|. Moreover we
can assume w.l.o.g. that [u2]r > [u1]r, otherwise uω would be a suffix of (u′)ω .
Besides, there exist v, w ∈ Σ∗r such that v # w reaches q. From the structure of
AT

r , it follows that for every k ≥ 0, the word v # w(uk
1u2)ω is accepted by AT

r .
For each k ≥ 0, we thus have [v # w(uk

1u2)ω]r ∈ TS′ . Developing, we get
dk/r

|w| + [vw # 0ω]r/r|w| ∈ TS′ , with dk = [#(uk
1u2)ω]r. Thanks to Properties 1

and 2, and the r-product-stability property of TS′ , this implies dk ∈ TS′ . We
now express dk in terms of [u1]r, [u2]r, and k:

dk =
[uk

1u2]r
rl(k+1) − 1

=
[u2]r − [u1]r
rl(k+1) − 1

+
[u1]r
rl − 1

, where l = |u1| = |u2|.

The next step will consist in getting rid of the second term of this expression.
By Properties 1 and 2, we have for all k ∈ N,

(rl − 1)dk − [u1]r =
m

rl(k+1) − 1
∈ TS′ ,

where m = (rl − 1)([u2]r − [u1]r) is such that m ∈ N>0. For all k > 0, we thus
have m/(rlk − 1) ∈ TS′ . ��

We are now ready to conclude. Given l and m by Property 3, we define S′′ =
(1/m)S′. Like S′, this set has infinitely many boundary points. The set TS′′ of

122 B. Boigelot, J. Brusten, and V. Bruyère

the values t for which S′′ is t-sum-stable in R>0 is given by TS′′ = (1/m)TS′ .
This set is thus r-recognizable. From Properties 1 and 2, we have for every k ∈ N,
1/rk ∈ TS′′ . Finally, from Property 3, we have for every k > 0, 1/(rlk−1) ∈ TS′′ .

Property 4. The set TS′′ is equal to R.

Proof. Since TS′′ and R are both r-recognizable, and two ω-regular languages
are equal iff they share the same subset of ultimately periodic words [PP04],
it is actually sufficient to show TS′′ ∩ Q = Q. Every rational t admits a base-r
encoding of the form v # wuω, where |u| = lk for some k ∈ N>0. We have

t =
[vw # 0ω]r

r|w|
+

[u]r
r|w|(rlk − 1)

.

Since 1/r|w| ∈ TS′′ and 1/(rlk − 1) ∈ TS′′ , the closure and product-stability
properties of TS′′ imply t ∈ TS′′ . ��

As a consequence, we either have S′′ = ∅ or S′′ = R>0, which contradicts the
hypothesis that this set has infinitely many boundary points. We thus finally
have the following theorem.

Theorem 5. Let r and s be two bases that do not share the same set of prime
factors. If a set S ⊆ R is r- and s-recognizable, then it is definable in 〈R,Z,+, <〉.

6 Conclusions

In this paper, we have established that the sets of real numbers that can be rec-
ognized by finite automata in two sufficiently different bases are exactly those
that are definable in the first-order additive theory of real and integer vari-
ables 〈R,Z,+, <〉. In the case of weak deterministic automata, used in actual
implementations of symbolic representation systems, the condition on the bases
turns out to be multiplicative independence. It is worth mentioning that rec-
ognizability in multiplicatively dependent bases is equivalent to recognizability
in one of them, and that definability in 〈R,Z,+, <〉 implies recognizability in
every base. We have thus obtained a complete characterization of the sets of
numbers recognizable in multiple bases, similar to the one known for the integer
domain [Cob69].

For Muller automata, we have demonstrated that multiplicative independence
of the bases is not a strong enough condition, and that the bases must have
different sets of prime factors in order to force definability of the represented
sets in 〈R,Z,+, <〉. Recall that the sets definable in that theory can all be
recognized by weak deterministic automata. We have thus established that the
sets of real numbers that can be recognized by infinite-word automata in all
encoding bases are exactly those that are recognizable by weak deterministic
automata. This result provides a theoretical justification to the use of weak
automata as symbolic data structures for representing sets of real and integer
numbers.

On the Sets of Real Numbers Recognized by Finite Automata 123

References

[BB07] Boigelot, B., Brusten, J.: A generalization of Cobham’s theorem to au-
tomata over real numbers. In: Arge, L., Cachin, C., Jurdziński, T., Tar-
lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 813–824. Springer,
Heidelberg (2007)

[BBR97] Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis
method for strongly linear hybrid systems. In: Proc. 9th CAV, Haifa, June
1997. LNCS, vol. 1254, pp. 167–177. Springer, Heidelberg (1997)

[BHMV94] Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-
recognizable sets of integers. Bulletin of the Belgian Mathematical So-
ciety 1(2), 191–238 (1994)

[BJW05] Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for
linear arithmetic over the integers and reals. ACM Transactions on Com-
putational Logic 6(3), 614–633 (2005)

[BRW98] Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and
integer arithmetic automata. In: Larsen, K.G., Skyum, S., Winskel, G.
(eds.) ICALP 1998. LNCS, vol. 1443, pp. 152–163. Springer, Heidelberg
(1998)

[Büc62] Büchi, J.R.: On a decision method in restricted second order arithmetic.
In: Proc. International Congress on Logic, Methodoloy and Philosophy of
Science, pp. 1–12. Stanford University Press, Stanford (1962)

[Cob69] Cobham, A.: On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory 3, 186–192 (1969)

[EK06] Eisinger, J., Klaedtke, F.: Don’t care words with an application to the
automata-based approach for real addition. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 67–80. Springer, Heidelberg (2006)

[HW85] Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers,
5th edn. Oxford University Press, Oxford (1985)

[McN66] McNaughton, R.: Testing and generating infinite sequences by a finite
automaton. Information and Control 9(5), 521–530 (1966)

[Per90] Perrin, D.: Finite automata. In: van Leeuwen, J. (ed.) Handbook of Theo-
retical Computer Science. Formal Models and Semantics, vol. B. Elsevier
and MIT Press (1990)

[PP04] Perrin, D., Pin, J.E.: Infinite words. Pure and Applied Mathematics,
vol. 141. Elsevier, Amsterdam (2004)

[Saf88] Safra, S.: On the complexity of ω-automata. In: Proc. 29th Symposium on
Foundations of Computer Science, pp. 319–327. IEEE Computer Society,
Los Alamitos (1988)

[Var07] Vardi, M.: The Büchi complementation saga. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, pp. 12–22. Springer, Heidelberg
(2007)

[WB95] Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger
arithmetic constraints. In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983,
pp. 21–32. Springer, Heidelberg (1995)

[Wei99] Weispfenning, V.: Mixed real-integer linear quantifier elimination. In:
Proc. ACM SIGSAM ISSAC, Vancouver, pp. 129–136. ACM Press, New
York (1999)

[Wil93] Wilke, T.: Locally threshold testable languages of infinite words. In: Proc.
10th STACS, Würzburg. LNCS, vol. 665, pp. 607–616. Springer, Heidel-
berg (1993)

On Expressiveness and Complexity
in Real-Time Model Checking

Patricia Bouyer1,2, Nicolas Markey2, Joël Ouaknine1, and James Worrell1

1 Oxford University Computing Laboratory
{First.Last}@comlab.ox.ac.uk
2 Laboratoire Spécification & Vérification
{First.Last}@lsv.ens-cachan.fr

Abstract. Metric Interval Temporal Logic (MITL) is a popular formalism for
expressing real-time specifications. This logic achieves decidability by restrict-
ing the precision of timing constraints, in particular, by banning so-called punc-
tual specifications. In this paper we introduce a significantly more expressive
logic that can express a wide variety of punctual specifications, but whose model-
checking problem has the same complexity as that of MITL. We conclude that for
model checking the most commonly occurring specifications, such as invariance
and bounded response, punctuality can be accommodated at no cost.

1 Introduction

One of the most successful approaches to verification is model checking: given a repre-
sentation S of a system together with a specification ϕ, determine whether S satisfies ϕ.
In the world of real time, a prominent modelling framework is to use timed automata to
represent systems and Metric Temporal Logic (MTL) as the specification formalism.

MTL was proposed nearly twenty years ago by Koymans [12] and has since been
extensively studied. MTL is an extension of Linear Temporal Logic (LTL) which allows
one to specify a wide range of timed behaviours. The formula �(p → �{1}q), for
example, asserts that whenever the system finds itself in a p-state, then it will be in a
q-state precisely one time unit later.

Unfortunately, the model-checking and satisfiability problems for MTL over dense
time are undecidable [3,16]. In fact, it was widely held until quite recently that any
formalism in which ‘punctual’ (exact) timing constraints could be expressed would
automatically be undecidable—see [3,4,9], among others. The formula given in the
previous paragraph is a typical example of a punctual specification.

Many researchers were thus led to consider relaxations and variations of the original
MTL formalism in search of decidability and tractability. The identification of Metric
Interval Temporal Logic (MITL) as a decidable fragment of MTL is a classic result
in real-time verification. MITL consists of those formulas in which every constraining
interval is non-singular. This syntactic restriction directly removes the problem of punc-
tuality, but correspondingly loses considerable expressiveness. Satisfiability and model
checking for MITL were shown to be EXPSPACE-complete in [2] via a translation of
formulas into equivalent timed automata; see also [11,15].

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 124–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Expressiveness and Complexity in Real-Time Model Checking 125

The starting point of this paper is to identify a new decidable fragment of MTL,
which we call Bounded-MTL. This is the subset of MTL in which the constraining in-
tervals appearing in any formula have finite length. For instance �[0,25)(p→ �{1}q) is
a Bounded-MTL formula. Note that, unlike in MITL, punctual formulas are permitted.
We show that Bounded-MTL is decidable in EXPSPACE if the time constraints in for-
mulas are encoded in binary, and in PSPACE if time constraints are encoded in unary.
Notwithstanding these bounds, we provide examples of Bounded-MTL formulas that
can only be satisfied by signals whose variability is doubly exponential in the size of
the formula. Moreover we observe that there exist Bounded-MTL formulas for which
there is no equivalent timed automata, unlike the situation for MITL formulas.

Bounded-MTL shows that, at least in the time-bounded setting, punctuality need not
be fatal for the complexity of model checking. However the restriction to time-bounded
modalities in Bounded-MTL is severe, for example prohibiting the expression of basic
safety properties such as invariance. This leads us to isolate the notion of flatness, which
generalises boundedness. We introduce coFlat-MTL, a natural extension of both MITL
and Bounded-MTL, which is closed under the always operator � and the bounded
until operator UI . In particular, if ϕ is a Bounded-MTL formula, expressing some
time-bounded property, then the invariance specification �ϕ is in coFlat-MTL.

Our main result is that the model checking problem for coFlat-MTL on timed au-
tomata is EXPSPACE-complete, that is, in the same complexity class as MITL model
checking. This substantiates the main thesis of this paper—that in model checking the
most common specifications, including invariance and bounded response, punctuality
can be accommodated for free. However we note that coFlat-MTL is not closed un-
der negation, and its satisfiability problem is undecidable. In this respect coFlat-MTL
is similar to the branching-time logic TCTL for which model checking is PSPACE-
complete but satisfiability is undecidable (again due to the problem of punctuality).

This paper adopts the standard semantics for MTL in which a model of a formula is a
signal: a function from the positive reals into a finite set, indicating which propositions
hold at every instant in time. An alternative approach, used in our earlier work [6], is
the so-called point-based semantics, which represents models as countable sequences of
timestamped snapshots. The signal semantics can be shown to generalise the pointwise
semantics. To accommodate this extra generality we had to move from the automata-
based proof techniques used in [6] to model-theoretic ones. As a side benefit, this shift
has allowed us to lift our previous restriction to finitely-variable models. Finally, the
logic which we term coFlat-MTL in the present paper strictly generalises the logic by
the same name in [6]; in particular, MITL is now a fragment of coFlat-MTL, so that our
results also extend the original EXPSPACE model checking of MITL [2].

2 Metric Temporal Logic

Given a set P of atomic propositions, the formulas of MTL are built from P using
Boolean connectives, and time-constrained versions of the until operator U as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ ,

where I ⊆ (0,∞) is an interval of reals with endpoints in N ∪ {∞}. We sometimes
abbreviate U(0,∞) to U , calling this the unconstrained until operator. We assume a dag

126 P. Bouyer et al.

representation of formulas, and define the size of a formula ϕ, denoted |ϕ|, to be the
number of distinct subformulas of ϕ. We also write Mϕ for the maximum finite integer
occurring as an endpoint of a constraining interval in ϕ.

We denote by R+ the set of nonnegative real numbers. Given a set X , a signal is a
function f : R+ → X . We say that f has finite variability if its set of discontinuities has
no limit points. We say that f has variability n ∈ N if it has at most n discontinuities
in any open unit-length subinterval (k, k + 1) of its domain, where k ∈ N. Given an
MTL formula ϕ over the set of propositional variables P , and a signal f : R+ → 2P ,
the satisfaction relation f |= ϕ is defined inductively, with the classical rules for atomic
propositions and Boolean operators, and with the following rule for the “until” modality,
where f t denotes the signal f t(s) = f(t + s):

f |= ϕ1 UI ϕ2 iff for some t ∈ I , f t |= ϕ2 and fu |= ϕ1 for all u ∈ (0, t).

Note that we adopt a strict semantics for UI , in which the judgement f |= ϕ1 UI ϕ2

is independent of f(0) (recall that 0 �∈ I by assumption). In the following we write
ϕ1 U ϕ2 for ϕ1 U(0,∞) ϕ2.

In general we do not assume that signals are finitely variable. Indeed there are formu-
las that are satisfiable only by infinitely variable signals: e.g. ¬(p U p) ∧ ¬(¬p U ¬p).

Further connectives can be defined following the usual conventions. In addition to
propositions0 (true) and⊥ (false), and to disjunction∨, we have the constrained even-
tually operator �Iϕ ≡ 0 UI ϕ, the constrained always operator �Iϕ ≡ ¬�I¬ϕ, and
the constrained dual until operator ϕ1 ŨI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)).

Admitting only ŨI as an extra connective one can transform any MTL formula into
an equivalent negation normal form, in which negation is only applied to propositional
variables.

3 Decidable Sublogics

It is well known that both model checking and satisfiability for MTL are highly unde-
cidable (Σ1

1 -complete) [2]. Here we consider syntactic restrictions yielding sublogics
with decidable model checking problem.

One approach, due to Alur, Feder and Henzinger [2], involves placing restrictions on
punctuality. We say that a formula ϕ is punctual if its outermost connective is a tem-
poral modality with a singular constraining interval, e.g., �{1}p. Intuitively, a punctual
formula specifies an exact timing constraint. Metric Interval Temporal Logic (MITL) is
the subset of MTL in which all constraining intervals are non-singular, that is, in which
punctual formulas are banned. The satisfiability and model checking problems for MITL
are EXPSPACE-complete.

In this paper our starting point is, in some sense, dual to that of [2]. Rather than
ban constraining intervals that are too small, we ban constraining intervals that are
too big. We define Bounded-MTL to be the subset of MTL in which all constraining
intervals have finite length, and we show that the satisfiability and model checking prob-
lems for Bounded-MTL are EXPSPACE-complete (or PSPACE-complete if timing
constraints are encoded in unary), matching the complexity of MITL. However the fol-
lowing example illustrates the fundamentally different character of MITL and Bounded-
MTL.

On Expressiveness and Complexity in Real-Time Model Checking 127

Example 1. Consider the Bounded-MTL formula ϕ ≡ �(0,1)(p ↔ �{1}p). A varia-
tion on a well-known result tells us that the set of signals satisfying ϕ is not realisable
as the language of a timed automaton [1,5]. Therefore ϕ defines a property that is not
expressible in MITL since MITL formulas can be transformed into equivalent timed
automata [2].

MITL and Bounded-MTL represent two different approaches to defining decidable
metric temporal logics, and they have incomparable expressive power. In particular,
Bounded-MTL is not capable of expressing invariance—one of the most basic safety
specifications. To repair this deficiency we introduce flatness as a generalisation of
boundedness. Our use of this term is motivated by similarities with logics introduced
in [7,8].

We say that an MTL formula in negation normal form is flat if (i) in any subformula
of the form ϕ1 UI ϕ2, either I is bounded or ϕ1 is in MITL, and (ii) in any subformula
of the form ϕ1 ŨI ϕ2, either I is bounded or ϕ2 is in MITL. For example �ϕ ≡
⊥ Ũ ϕ is flat if ϕ is in MITL. The intuition behind flatness is that potentially persistent
subformulas must be in MITL. We write Flat-MTL for the fragment of MTL composed
of all flat formulas.

Flatness is a key technical notion in this paper, however our main results are most
naturally understood in terms of the dual notion, coflatness. A formula is coflat if it is
the negation of a flat formula. More explicitly we say that a formula is coflat if (i) in
any subformula of the form ϕ1 UI ϕ2, either I is bounded or ϕ2 is in MITL, and
(ii) in any subformula of the form ϕ1 ŨI ϕ2, either I is bounded or ϕ1 is in MITL.
If we write coFlat-MTL for the sublogic of coflat formulas then coFlat-MTL includes
both Bounded-MTL and MITL, is closed under �I for arbitrary I (invariance), and is
closed under UI for bounded I (bounded liveness). Thus, for specifications, coflatness
is a much less restrictive property than flatness. While this generality renders the satis-
fiability problem for coFlat-MTL undecidable (the undecidability proof of [2] for the
satisfiability of MTL makes use only of formulas in coFlat-MTL), we show that the
model checking problem is no harder than for MITL.

Example 2. The formula (��(0,1)

∨
m∈M inm)∧(�

∧
m∈M (inm → �{1}outm)) spec-

ifies the behaviour of a perfect buffer which processes each message in one time unit,
operating in an environment where at least one message arrives every time unit. This for-
mula is in coFlat-MTL, but is not in Bounded-MTL (due to the unconstrained �) and
is not in MITL (due to the punctual �{1}).

Model Checking. The model checking problem for coFlat-MTL asks, given a timed au-
tomatonA and a coFlat-MTL formulaϕ, whether all (finitely variable) signals accepted
by A also satisfy ϕ. Rather than formally introducing timed automata we rely on a re-
sult of [10,17] that for each timed automaton A there is an MITL formula ϕA, of size
polynomial in A, such that the language of A is a projection of the language of ϕA.
Since Flat-MTL subsumes MITL, using this result we can reduce the model checking
problem for coFlat-MTL to the satisfiability problem for the dual logic Flat-MTL. The
main result of this paper is that the latter problem is EXPSPACE-complete, as is the
same problem for MITL [2].

128 P. Bouyer et al.

Theorem 1. The model-checking problem for coFlat-MTL is EXPSPACE-complete.

The proof of Theorem 1 occupies Sections 5 and 6. The decision procedure involves
a satisfiability-respecting translation of Flat-MTL into Linear Temporal Logic over the
reals. In this translation the non-punctual connectives in Flat-MTL are handled using
similar techniques to [11]. Dealing with the punctual connectives, however, requires
completely new ideas.

4 Hardness

Proposition 1. The satisfiability problem for Bounded-MTL is EXPSPACE-hard.

Proof. Given a 2n-space-bounded Turing machine M with input X , we construct in
logarithmic space a Bounded-MTL formula ϕM,X that is satisfiable if and only if M
accepts X . This reduction bears some similarities with the undecidability proof for
MTL [2], but it also differs in important respects. Indeed, directly applying the latter
proof to Bounded-MTL would only yield EXPTIME-hardness.

We now sketch the main ideas behind the definition of ϕM,X . Suppose that M has
set of control states S and tape alphabet Σ. The set of atomic propositions used by
ϕM,X is P ∪ Ṗ , where P = {pσ, pσ,s : σ ∈ Σ, s ∈ S} and Ṗ = {ṗ : p ∈ P}.
Intuitively, proposition pσ represents a tape cell that currently contains σ, whereas pσ,s
represents a tape cell that currently contains σ and is pointed to by the head ofM, while
M is in control state s. The dot is used as a pointer to aid in simulating M: an entire
computation of M is encoded in each time unit, and each step of the computation is
checked using the distinguished dotted propositions in two consecutive unit intervals.

ϕM,X is written as the conjunction of three components

ϕM,X ≡ ϕUNIQUE ∧ ϕCOPY ∧ ϕCHECK .

The formula ϕUNIQUE , which is straightforward to formalise, ensures that any signal
satisfying ϕM,X defines a left-continuous function f : [0, 2n] → P ∪ Ṗ , that is, only
one proposition holds at each moment, and propositions do not hold instantaneously.

The purpose of ϕCOPY and ϕCHECK is to ensure that in any signal satisfying ϕM,X

the sequence of propositions holding in the time interval [0, 1) encodes the computation
history ofM on X . Within this, the job of ϕCOPY is to copy the sequence of proposi-
tions holding in each unit-duration time interval into the subsequent time interval, at the
same time moving the dot superscript ‘one place to the right’. Formally we have

ϕCOPY =
∧

p∈P
�[0,2n](p→ �{1}(p ∨ ṗ))

∧
∧

p,q∈P
�[0,2n]((ṗ U(0,1) q) ↔ �{1}(p U(0,1) q̇)) ,

where �[0,2n]ψ is a shorthand for ψ ∧�(0,2n]ψ.
Thus the sequence of propositions holding in each subsequent time interval [k, k + 1),

k = 1, . . . , n− 1, should also represent the computation history ofM on X . The only

On Expressiveness and Complexity in Real-Time Model Checking 129

difference is that in the interval [k, k+1) the dot should decorate exactly those proposi-
tions encoding the contents of the k-th tape cell in each configuration in the computation
history.

The role of ϕCHECK is to verify that the sequence of propositions holding in each
subsequent unit-length interval does indeed encode the computation history ofM on X .
As it ‘reads’ the segment of the input signal defined over the time interval [k, k + 1),
ϕCHECK uses the dots as pointers to check the correctness of the k-th tape cell in
each configuration. Thus, in 2n time units the whole computation is checked. We omit
the details of ϕCHECK , but point out that it is equivalent to an LTL formula. (In fact
each modality is decorated with the constraining interval (0, 2n) merely to ensure that
ϕCHECK is in Bounded-MTL). ��

The proof of Proposition 1 assumes that constants are encoded in binary (in order to
concisely write �[0,2n]). It can be proved that model checking Bounded-MTL drops to
PSPACE when constants are encoded in unary. However, for the more expressive logic
Flat-MTL we can adapt the above encoding to show EXPSPACE-hardness assuming
only unary encoding of constants. Thus Theorem 1 holds irrespective of whether con-
stants are encoded in unary or binary.

5 Closure Labellings

It is well-known that the constrained until and dual-until operators UI and ŨI can be
expressed in terms of the unconstrained operators U and Ũ and the unary operators
�I and �I [11,15]. Unfortunately, adopting this simplification makes it impossible to
express flatness as a syntactic property, hence we prefer to retain a bit more flexibility
in our basic syntax. To this end we say that an MTL formula is in constraint normal
form if it is generated by the grammar

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 | ϕ1 ŨI ϕ2 | �Jϕ | �Jϕ ,

where I is a left-open, initial (i.e., with left end-point 0) interval, while J is arbitrary.
Any MTL formula can be transformed into an equivalent constraint normal form

using equivalences such as

ϕ1 U(�,r] ϕ2 ↔ �(0,�](ϕ1 U(0,r] ϕ2) ∧ �(�,r]ϕ2 .

This transformation is linear with respect to the DAG-size of formulas and it preserves
both MITL and Flat-MTL. Henceforth, without loss of generality, we assume that all
formulas are in constraint normal form.

Given I ⊆ R+ and n ∈ N, write I − n = {x ∈ (0,∞) : x + n ∈ I}. Define the
closure cl(ϕ) of a formula ϕ to be the smallest set such that the following hold (where
we adopt the identifications �∅ϕ ≡ 0 and �∅ϕ ≡ ⊥).

C1. cl(ϕ) contains all subformulas of ϕ
C2. ϕ1 UI ϕ2 ∈ cl(ϕ) implies ϕ1 U ϕ2,�Iϕ2 ∈ cl(ϕ)
C3. ϕ1 ŨI ϕ2 ∈ cl(ϕ) implies ϕ1 Ũ ϕ2,�Iϕ2 ∈ cl(ϕ)

130 P. Bouyer et al.

C4. �Jϕ1 ∈ cl(ϕ) implies �J−1ϕ1 ∈ cl(ϕ)
C5. �Jϕ1 ∈ cl(ϕ) implies �J−1ϕ1 ∈ cl(ϕ).

For example, cl(�(1,∞)p∧�{1}q) = {⊥, p, q, �{1}q, �(1,∞)p, �(0,∞)p, �(1,∞)p∧
�{1}q}.

It is straightforward to verify that cl(ϕ) has cardinality O(|ϕ| ·Mϕ). We note also
that if ϕ ∈ MITL, then cl(ϕ) ⊆ MITL; in particular, the interval I − 1 is a singleton
only if I is a singleton.

Given an MTL formula ϕ in constraint normal form, we define a closure labelling to
be a signal f : R+ → 2cl(ϕ) such that Rules CL1–CL10 below are satisfied for all s ∈
R+. Closure labellings are continuous-time counterparts of Hintikka sequences [19].
Here we denote by P the set of propositions mentioned in ϕ. We also assume that
Rules CL5 and CL6 apply to �ϕ1 and �ϕ1, respectively, under the identifications
�ϕ1 ≡ 0 U ϕ1 and �ϕ1 ≡ ⊥ Ũ ϕ1.

CL1. ⊥ �∈ f(s);
CL2. exactly one of p and ¬p lies in f(s) for any p ∈ P ;
CL3. ϕ1 ∧ ϕ2 ∈ f(s) implies ϕ1 ∈ f(s) and ϕ2 ∈ f(s);
CL4. ϕ1 ∨ ϕ2 ∈ f(s) implies ϕ1 ∈ f(s) or ϕ2 ∈ f(s);
CL5. ϕ1 U ϕ2 ∈ f(s) implies there exists t > s such that ϕ2 ∈ f(t) and ϕ1 U

ϕ2, ϕ1 ∈ f(u) for all u ∈ (s, t);
CL6. ϕ1 Ũ ϕ2 ∈ f(s) implies for all t > s, if ϕ2 �∈ f(t) then there exists u ∈ (s, t)

with ϕ1 ∈ f(u), and if ϕ1 Ũ ϕ2 �∈ f(t) then there exists u ∈ (s, t] with ϕ1 ∈ f(u);
CL7. ϕ1 UI ϕ2 ∈ f(s) implies ϕ1 U ϕ2 ∈ f(s) and �Iϕ2 ∈ f(s);
CL8. ϕ1 ŨI ϕ2 ∈ f(s) implies ϕ1 Ũ ϕ2 ∈ f(s) or �Iϕ2 ∈ f(s);
CL9. �Jϕ1 ∈ f(s) implies �J−1ϕ1 ∈ f(s+1) and ϕ1 ∈ f(s+δ) for all δ ∈ (0, 1]∩J ;
CL10. �Jϕ1 ∈ f(s) implies �J−1ϕ1 ∈ f(s + 1) unless ϕ1 ∈ f(s + δ) for some

δ ∈ (0, 1] ∩ J .

Rules CL1–CL10 encode the semantics of MTL in a natural way. However it is worth
noting though that constrained until UI and dual until ŨI are handled indirectly, via
Rules CL7 and CL8. Note also that the correctness of CL7 and CL8 depends on the
assumption that the interval I appearing in these rules is initial, which holds because ϕ
is in constraint normal form.

The following straightforward proposition expresses the expected property of closure
labellings.

Proposition 2. A Flat-MTL formula ϕ is satisfiable iff there is a closure labelling
g : R+ → 2cl(ϕ) with ϕ ∈ g(0).

5.1 The Partition Lemma

Next we identify some structure on the closure labellings of Flat-MTL formulas. To
this end, say that E ⊆ R+ is a basic set if it can be written as a finite union of compact
intervals with integer end-points: E = E1 ∪ E2 ∪ · · · ∪ En. We define length(E) in
the obvious manner as the sum of the lengths of the Ei. Given a basic set E ⊆ R+,

On Expressiveness and Complexity in Real-Time Model Checking 131

we say that a closure labelling g is E-rigid if g(t) contains punctual formulas1 only
when t ∈ E. The term rigid anticipates the development in Section 6.2.

The following result crucially relies on the flatness of ϕ:

Lemma 1 (Partition Lemma). Let ϕ be a Flat-MTL formula and g : R+ → 2cl(ϕ) a
closure labelling with ϕ ∈ g(0). Then there is a basic set E with length(E) � Mϕ ·2|ϕ|
and an E-rigid closure labelling h with ϕ ∈ h(0).

Remark 1. In case ϕ ∈ Bounded-MTL, the Partition Lemma can be strengthened by
requiring that length(E) � Mϕ · |ϕ|. This makes our algorithm be in PSPACE for
Bounded-MTL with unary-encoded integers.

Given a closure labelling f : R+ → 2cl(ϕ), the non-punctual part of f is the function
fnp ⊆ f , where fnp(t) consists of the set of formulas in f(t) of the form �Iϕ1 or
�Iϕ1 with I non-singular.

Consider a signal f : R+ → 2P , and assume that t1 < t2 < t3 < t1 + 1, and that
f t1 and f t3 both satisfy �Iψ with I non-singular; then it is easily shown that f t2 also
satisfies �Iψ. Thus �Iψ changes its truth value at most 3 times in any unit interval.
By duality, it also holds that �Iψ also changes its truth value at most 3 times in any
unit interval. Following this line of reasoning we can assume in Proposition 2 that gnp

has variability at most 3 ·Mϕ · |ϕ|. Moreover the construction underlying the proof of
the Partition Lemma is such that the only discontinuities in h, other than those in g, are
integer-valued. In summary we have:

Proposition 3. A Flat-MTL formula ϕ is satisfiable if, and only if, there is a basic set
E with length(E) ≤Mϕ · 2|ϕ| and an E-rigid closure labelling h : R+ → 2cl(ϕ) such
that ϕ ∈ h(0) and hnp has variability at most 3 ·Mϕ · |ϕ|.

6 The Decision Procedure

In this section we describe an EXPSPACE decision procedure for the Flat-MTL sat-
isfiability problem. As explained in Section 3, this implies that the model checking
problem for coFlat-MTL is also in EXPSPACE. To achieve this we utilise a technique,
inspired by [11], to give a translation of Flat-MTL into LTL+Past2 that respects the
satisfiability of formulas.

6.1 Tableaux

The rules CL9 and CL10 in Section 5 treat punctual and non-punctual connectives
alike. We now introduce a modified notion of closure labelling, called a tableau, in
which punctual and non-punctual connectives are handled differently. To motivate the
definition of a tableau, consider the following ‘stacking’ construction on a closure

labelling g : R+ → 2cl(ϕ). Given an integer k ≥ 1, define T : R+ →
(
2cl(ϕ)

)k

1 We recall (see Section 3) that a formula is punctual if its outermost connective is a temporal
modality with a singular constraining interval.

2 LTL+Past is the classical extension of LTL with past-time modalities [13].

132 P. Bouyer et al.

by T (t) = 〈g(t), g(t + 1), . . . , g(t + k)〉. We can think of T as a multi-track clo-
sure labelling in which the i-th track is the function Ti : R+ → 2cl(ϕ) defined by
Ti(t) = T (t)i. Notice that the (i + 1)-th track is one time unit ahead of the i-th track.
Motivated by this construction, we axiomatise the notion of a tableau below.

Given an integer k ≥ 1, we say that a signal T : R+ →
(
2cl(ϕ)

)k
is a tableau if the

following rules are satisfied for each 0 ≤ i ≤ k − 1 and s ∈ R+:

TH1. Ti satisfies the closure labelling axioms CL1–CL8;
TH2. Ti satisfies the versions of CL9 and CL10 in which the constraining interval J is

non-singular;
TV1. If 0 ≤ i < k − 1 then �Jψ ∈ T (s)i implies �J−1ψ ∈ T (s)i+1, ψ ∈ Ti(s + δ)

for all δ ∈ (0, 1] ∩ J such that s + δ ≤ 2s3, and ψ ∈ Ti+1(s + δ − 1) for all
δ ∈ (0, 1] ∩ J such that �s� ≤ s + δ − 1;

TV2. If 0 ≤ i < k − 1 then �Jψ ∈ T (s)i implies that either �J−1ψ ∈ T (s)i+1, or
there exists δ ∈ (0, 1] ∩ J such that either s + δ ≤ 2s3 and ψ ∈ T (s + δ)i, or
s + δ − 1 ≥ �s� and ψ ∈ T (s + δ − 1)i+1;

TV3. if 0 ≤ i<k−1 then for each n ∈ N such that n>0 we have T (n)i = T (n−1)i+1.

We think of TH1 and TH2 as horizontal rules, since they concern individual tracks
of T . They say that each track Ti would be a closure labelling but for the fact that rules
CL9 and CL10 need only hold for non-punctual connectives.

Next come the vertical rules TV1–TV3, which relate points on different tracks of T .
TV1 and TV2 are vertical counterparts of CL9 and CL10 for punctual and non-punctual
formulas. Note how TV3 reflects the intuition that Ti+1(s) = Ti(s + 1).

Since TH2 does not apply to punctual connectives, the tableau axioms do not accu-
rately capture the semantics of arbitrary MTL formulas. However, for Flat-MTL for-
mulas the notion of rigidity, defined in Section 5, comes to the rescue. Intuitively in a
tableau of an Flat-MTL formula we rely on the vertical rules to handle punctual sub-
formulas and we rely on the horizontal rules otherwise. Since the number of tracks of
a tableau is finite, the correctness of this idea depends on the existence of bounds on
the parts of the tableau containing punctual subformulas. To this end we first extend the
notion of rigidity to tableaux by saying that a tableau T is E-rigid iff each track Ti is
Ei-rigid, where Ei = {t : t + i ∈ E}. Then we have the following result:

Proposition 4. Given a basic set E and k ≥ length(E), there is an E-rigid closure
labelling g : R+ → 2cl(ϕ) with ϕ ∈ g(0) if, and only if, there is an E-rigid tableau

T : R+ →
(
2cl(ϕ)

)k
with ϕ ∈ T0(0).

Proof (sketch). If g : R+ → 2cl(ϕ) is an E-rigid closure labelling with ϕ ∈ g(0), then

T : R+ →
(
2cl(ϕ)

)k
defined by T (t) = 〈g(t), g(t + 1), . . . , g(t + k)〉 is an E-rigid

tableau with ϕ ∈ T0(0). Indeed, only rules TV1–TV3 need to be checked, and TV1
(resp. TV2) is simply a consequence of CL9 (resp. CL10). The rule TV3 is satisfied by
construction.

Conversely, given an E-rigid tableau T we construct a closure labelling g by splicing
together unit-length segments from different tracks of T . The idea is that if a given seg-
ment contains a punctual formula then it is concatenated with the segment immediately

On Expressiveness and Complexity in Real-Time Model Checking 133

below on the next track; otherwise it is concatenated with its right neighbour on the
same track. More precisely, define σ : N → {0, . . . , k − 1} by σ(0) = 0 and

σ(n + 1) =
{

σ(n) + 1 if [n, n + 1] ⊆ E
σ(n) otherwise.

Then g(t) = T (t− σ(�t�))σ(t
) is an E-rigid closure labelling (k ≥ length(E)). ��

Combining Lemma 1 and Proposition 4, we obtain the following result.

Corollary 1. A Flat-MTL formula ϕ is satisfiable if, and only if, there is a basic set E

with length(E) ≤ Mϕ · 2|ϕ| and an E-rigid tableau T : R+ →
(
2cl(ϕ)

)k
with ϕ ∈

T0(0) and k = length(E). Moreover we can assume that Tnp has variability 3 ·M2
ϕ ·

|ϕ| · 2|ϕ|.

6.2 The Stretching Lemma

Say that two signals f, g : R+ → X are stretching equivalent, denoted f ∼ g, if there
is a monotone bijection h : R+ → R+ such that g = f ◦ h. In this case it is easy to see
that f and g satisfy the same LTL+Past properties. Our translation from Flat-MTL to
LTL+Past relies on an observation of [11] that simple metric properties can be specified
in LTL+Past up to stretching equivalence.

Given an integer N , and set of atomic propositions ΔN = {dj , d′j : 1 ≤ j ≤ N} ∪
{p�}, let θN be an LTL formula enforcing the following properties: (i) the propositions
dj , d′j and p� all hold punctually; (ii) the propositions dj are mutually exclusive and
the d′j are also mutually exclusive; (iii) p� holds at time 0 and thereafter holds infinitely
often; (iv) in between each occurrence of p� each dj holds exactly once, and the dj hold
in the order d1, d2, . . . , dN (and similarly for the d′j). We omit the formal definition
of θN , which is straightforward. Lemma 2, below, states that a signal f that satisfies
(i)–(iv) can be stretched into one in which p� holds precisely at integer time-points and
every time dj holds then d′j holds one time unit later. The proof uses a construction
from [11, Lemma 10].

Lemma 2 (Stretching Lemma). If f |= θN then there exists a signal g ∼ f such that
gt |= p� iff t ∈ N, and gt+1 |= d′j whenever gt |= dj .

f

g

p� p� p�d1 d2 d′
1 d′

2 d1 d2d′
1 d′

2

=1

=1

Fig. 1. The stretching lemma

134 P. Bouyer et al.

6.3 Translation to LTL+Past

Given a Flat-MTL formula ϕ we define an LTL+Past formula ϕ◦ such that ϕ is satis-
fiable iff ϕ◦ is satisfiable. The idea is that ϕ◦ encodes the tableau rules for ϕ and the
E-rigidity condition. To this end, ϕ◦ uses the set of propositions Q = {pψ,i : ψ ∈
cl(ϕ), 0 ≤ i ≤ k − 1}, where k, which represents the height of the tableau, will be
chosen later. Then given a signal f : R+ → 2Q, the stretching equivalent signal g given
by Lemma 2 naturally encodes a function T : R+ → 2(cl(ϕ))k

by Ti(t) = {ψ : pψ,i ∈
g(t)}. The definition of ϕ◦ is such that f |= ϕ◦ iff g |= ϕ◦ iff T is a tableau for ϕ.

Most of the tableau rules can be straightforwardly encoded in ϕ◦. For example, TH1
is captured by formulas such as �(pϕ1∧ϕ2,i → (pϕ1,i ∧ pϕ2,i)) and �(pϕ1Uϕ2,i →
pϕ1,i U pϕ2,i); corresponding to Rule TV1 we have formulas such as �(p�Iψ,i →
p�I−1ψ,i+1).

The most interesting part of the translation concerns the rule TH2: the horizontal rule
dealing with the constrained and non-punctual connectives �J and �J . To help encode
this, we choose a suitable constant N (more on this later) and include formula θN , from
Section 6.2, as a conjunct of ϕ◦. We furthermore specify in ϕ◦ that propositions of the
form p�Iψ,i and p�Iψ,i with I non-singular only change truth value when one of the dj
holds (think of the dj as marking discontinuities in Tnp). Now consider some signal that
satisfies ϕ◦; let snj denote the time-point of the n-th occurrence of dj and let tnj denote
the time-point of the n-th occurrence of d′j . By Lemma 2 we can assume without loss of
generality that tnj = snj +1. But now it is easy to encode TH2. For instance, by referring
to the propositions dj and d′j we can specify in ϕ◦ that if p�Iψ,i holds in an interval
(snj , s

n
j+1) then p�I−1ψ,i holds in the interval (tn+1

j , tn+1
j+1).

It only remains to choose the constants k and N . The choice should be such that
if ϕ is satisfiable then there should exist a tableau T with k tracks such that Tnp has
variability at most N . But then Corollary 1 shows that we can take k = Mϕ · 2|ϕ| and
N = 3 ·M2

ϕ · |ϕ| · 2|ϕ|. Note that since k and N are both exponential in the size of the
description of ϕ, formula ϕ◦ may be exponentially bigger than ϕ. The correctness of
the construction is stated below.

Theorem 2. Let ϕ be a Flat-MTL formula, and ϕ◦ be the LTL+Past formula defined
above. Then, ϕ is satisfiable iff ϕ◦ is satisfiable.

In summary, we have a satisfiability-respecting exponential translation from Flat-MTL
to LTL+Past. Now it is known that the satisfiability problem for LTL+Past over R+

is PSPACE-complete [18,14] and we conclude that the satisfiability problem for Flat-
MTL and the model checking problem for coFlat-MTL are both in EXPSPACE. As
a final remark we observe that, due to the factor 2|ϕ| in the expressions for N and k,
the exponential blow-up in the translation from Flat-MTL to LTL+Past arises even if
the timing constraints in formulas are encoded in unary (as mentioned at the end of
Section 4, this exponential blow-up is unavoidable).

Remark 2. In Remark 1 we noticed that the length of the basic set for Bounded-MTL
formulas can be bounded by Mϕ · |ϕ| when constants are encoded in unary. In that case,
we can take k = Mϕ · |ϕ| and N = 3 ·M2

ϕ · |ϕ|2, and the size of the LTL+Past formula
is now polynomial. Hence, under the hypothesis that constants are encoded in unary,
the satisfiability and model checking problems for Bounded-MTL are in PSPACE.

On Expressiveness and Complexity in Real-Time Model Checking 135

References

1. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. of the ACM 43(1),

116–146 (1996)
3. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Real-Time: Theory

in Practice, Proc. REX Workshop 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg
(1992)

4. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Inf. &
Comp. 104(1), 35–77 (1993)

5. Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg
(2004)

6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proc. 22nd Ann.
IEEE Symp. Logic in Computer Science (LICS 2007), pp. 109–118. IEEE, Los Alamitos
(2007)

7. Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.)
CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)

8. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: Decidability and
complexity. Inf. & Comp. 205(1), 2–24 (2007)

9. Henzinger, T.A.: It’s about time: Real-time logics reviewed. In: Sangiorgi, D., de Simone, R.
(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Heidelberg (1998)

10. Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer,
Heidelberg (1998)

11. Hirshfeld, Y., Rabinovich, A.: Timer formulas and decidable metric temporal logic. Inf. &
Comp. 198(2), 148–178 (2005)

12. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

13. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Proc. Conference on
Logics of Programs. LNCS, vol. 193, pp. 413–424. Springer, Heidelberg (1985)

14. Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE and
below. Inf. & Comp. 205(1), 99–123 (2007)

15. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer,
P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)

16. Ouaknine, J., Worrell, J.: On metric temporal logic and faulty Turing machines. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 217–230.
Springer, Heidelberg (2006)

17. Raskin, J.-F.: Logics, Automata and Classical Theories for Deciding Real-Time. PhD thesis,
Université de Namur, Belgium (1999)

18. Reynolds, M.: The complexity of the temporal logic over the reals (submitted 2004)
19. Wolper, P.: Constructing automata from temporal logic formulas: A tutorial. In: European

Educational Forum: School on Formal Methods and Performance Analysis. LNCS, vol. 2090,
pp. 261–277. Springer, Heidelberg (2000)

STORMED Hybrid Systems

Vladimeros Vladimerou, Pavithra Prabhakar, Mahesh Viswanathan,
and Geir Dullerud

University of Illinois at Urbana-Champaign
Champaign, Illinois, USA

Abstract. We introduce STORMED hybrid systems, a decidable class
of hybrid systems which is similar to o-minimal hybrid automata in that
the continuous dynamics and constraints are described in an o-minimal
theory. However, unlike o-minimal hybrid automata, the variables are not
initialized in a memoryless fashion at discrete steps. STORMED hybrid
systems require flows which are monotonic with respect to some vector
in the continuous space and can be characterised as bounded-horizon
systems in terms of their discrete transitions. We demonstrate that such
systems admit a finite bisimulation, which can be effectively constructed
provided the o-minimal theory used to describe the system is decidable.
As a consequence, many verification problems for such systems have
effective decision algorithms.

1 Introduction

Embedded processors and electronic controllers are seeing increasingly ubiquitous
use, and in critical cases require extremely accurate and predictable functionality.
Such devices compute discrete steps while interacting with an environment that
has continuous dynamics and meeting real-time constraints. Hybrid automata [1]
are a popular formal model used to describe such systems. They have (finitely
many) discrete states, and continuous states evolving with time. The discrete and
continuous states dictate when discrete transitions take place as well as what the
effect of the transition is on the continuous part. Once such a system is modeled,
the verification problem asks whether the formal model meets certain correctness
requirements.

While the problem of verifying a general hybrid automaton against even sim-
ple properties (like invariants) is known to be undecidable, important decidable
classes have been identified. Timed automata [2], certain special kinds of rectan-
gular hybrid automata [10], and o-minimal hybrid automata [11] are important
classes of general hybrid automata for which many verification problems are
decidable. The decidability in all these cases is proved by demonstrating the
existence of a finite, computable partition of the state space that is bisimilar
to the original system. However, all these classes of decidable automata suffer
from serious drawbacks — timed and rectangular hybrid automata have very
simple dynamics for the way the continuous variables evolve, while o-minimal
systems have strong reset conditions on discrete transitions, that decouples the

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 136–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

STORMED Hybrid Systems 137

discrete dynamics from the continuous one, leaving the continuous state largely
unaffected by the discrete transitions. The many undecidability results in the
area [1,10,3,4,13] have reinforced the folklore belief that one must either restrict
the continuous dynamics or the discrete dynamics to something simple, in order
to achieve decidability. Notable exceptions like dynamical systems with piecewise
constant derivatives [3] and polygonal hybrid systems [8] are however restricted
to very low dimensions (only 2 variables are allowed to obtain decidability).

In this paper we introduce a new class of hybrid automata that we call
STORMED hybrid systems (STORMED h.s.). These adhere to the following
constraints. First the guards of any two transitions are separable in space by
some minimum, non-zero distance. Next, all the constraints (i.e, the guards, in-
variants, and flows) must be definable in a order-minimal (or o-minimal) theory.
Further we require the existence of a vector φ such that the flows in all the con-
trol states have positive projections on φ, and the projections of the guards onto
φ have delimited-ends. These automata also have monotonic resets, which either
leave the continuous state unchanged or advance its projection along φ. A form
of monotonicity was also captured in [5].

Our main result in this paper is that STORMED h.s. can be shown to be
bisimilar to a finite state transition system. Moreover the finite transition sys-
tem can be effectively constructed provided the o-minimal theory in which the
automaton is defined is decidable. Thus, STORMED h.s. can be verified against
rich branching time properties expressed in logics such as CTL and μ-calculus [7].

STORMED h.s. are both more general in some respects, and more restrictive
in other ways, when compared with other subclasses of hybrid automata investi-
gated in previous publications. They allow for a richer continuous dynamics than
timed automata and rectangular hybrid automata, and the discrete transitions
can affect the continuous dynamics in non-trivial ways unlike o-minimal systems.
However, they are required to have separable guards, monotonic flows/resets and
delimited ends on guard constraints. In spite of these restrictions, we believe
STORMED h.s. can be conveniently used to model interesting systems. For ex-
ample, monotonicity is implicitly present in terms of a depleting resource, like
fuel or time, while separability of guards translates to infrequency of discrete
steps.

Finally we look at some relaxations of the STORMED model, and prove
that removal of any single constraint cannot be tolerated. Such an investiga-
tion demonstrates that our model is reasonably tight; most relaxations of the
constraints yield undecidable models.

2 Preliminaries

Equivalence Relations and Partitions. A binary relation R on a set A is a subset
of A×A. We will say aRb to denote (a, b) ∈ R. An equivalence relation on a set A
is a binary relation R that is reflexive, symmetric and transitive. An equivalence
relation partitions the set A into equivalence classes : [a]R = {b ∈ A | aRb}.
A partition Π of the set A defines a natural equivalence relation ≡Π , where

138 V. Vladimerou et al.

a ≡Π b iff a and b belong to the same partition in Π . In this paper, we will use
the partition Π to mean both the partition, as well as the equivalence relation
associated with it. Finally, we will say an equivalence relation R1 refines another
equivalence relation R2 iff R1 ⊆ R2.

Transition Systems and Bisimulation. A transition system is given by S =
(Q,Q0,→), where Q is a set of states, Q0 ⊆ Q is the set of initial states, and
→⊆ Q×Q is the transition relation. For a transition system S = (Q,Q0,→), a
simulation relation is a binary relation R ⊆ Q×Q such that if (q1, q

′
1) ∈ R and

q1 → q2 then there is q′2 such that q′1 → q′2 and (q2, q
′
2) ∈ R. A binary relation

R is said to be a bisimulation iff both R and R−1 are simulation relations. q1 is
said to be bisimilar to q2 when there is a bisimulation R such that (q1, q2) ∈ R,
and we denote this by q1

∼= q2. Bisimilarity ∼= is an equivalence relation and a
bisimulation [12]. It is said to be of finite index if it has finitely many equiva-
lence classes. A bisimulation R is said to respect a partition Π iff R refines the
equivalence relation defined by Π .

Definability. Recall that a k-ary relation S ⊆ Ak, where A is the domain of A,
is said to be definable in the structure A if there is a formula ϕ(x1, x2, . . . xk),
with free variables x1, . . . xk, such that S = {(a1, . . . , ak) | A |= ϕ[xi -→ ai]ki=1}.
A k-ary function f will be said to be definable if its graph, i.e., the set of all
(x1, . . . , xk, f(x1, . . . xk)), is definable. A theory T (A) of a structure A is the
set of all sentences that hold in A. T (A) (or sometimes simply A) is said to be
decidable if there is an effective procedure to decide membership in the set T (A).

O-minimality. A binary relation ≤ on a set A is said to be a total ordering if it
is reflexive, transitive, antisymmetric ((a ≤ b ∧ b ≤ a) ⇒ a = b) , and total
(a ≤ b∨b ≤ a). The set A is said to be totally ordered if there is a total order on it.
An interval is a subset of a totally order set defined, using one or two bounds, as
follows: {x : a ≤ x ≤ b} , {x : x ≤ a}, and {x : a ≤ x}. Trivially, {x : a ≤ x ≤ b}
with a = b, is an interval consisting of a single point. We write A = (A,≤, . . .)
to convey that the τ -structure A has an ordering relation ≤ and other elements
in its structure. A totally ordered first-order structure A = (A,≤, . . .) is o-
minimal (order-minimal) if every definable set is a finite union of intervals [17].
The theory of this structure is also called o-minimal. Examples of o-minimal
structures include (R, <,+,−, ·, exp) and (R, <,+,−, ·), where +,−, ·, exp are
the addition, subtraction, multiplication and exponentiation operations on reals,
respectively. Additional examples can be found in [16,17]. The theory of (R, <
,+,−, ·) is known to be decidable [15].

3 Hybrid Systems and Special Subclasses

Hybrid systems mix discrete events with continuous dynamics. One formal rep-
resentation that has been found to conveniently model the behavior of such
systems is hybrid automata [10]. In this section, we recall the basic definition

STORMED Hybrid Systems 139

and introduce special classes of such systems, as a prelude to STORMED hybrid
systems that we define in the next section and is the main object of study in
this paper.

Definition 1. A hybridautomatonH is a tuple (Q,Δ,X,X0, q0, I,F ,R,G)where

– Q is a finite set of (discrete) control states,
– Δ ⊆ Q×Q is the set of edges between control states,
– X = Rn, is the domain of the continuous (part of the) state,
– X0 ⊆ X is the set of initial continuous states,
– q0 ∈ Q is initial control state,
– I : Q→ 2X , associates an invariant with every control state
– F : Q×X → (R+ → X) associates a flow function with each (q, x) ∈ Q×X,

describing how the continuous state evolves with time,
– G : Δ → 2X assigns a guard to each edge , which is a condition on the

continuous state that must hold in order to take the discrete transition,
– R : Δ→ 2X×X associates a reset with each edge, which is a binary relation

that describes how the continuous state changes when a discrete transition
is taken.

In the above hybrid automaton, we call n the dimension of H.

Notation: To make the text more readable, we will often write the argument of
a function as a subscript. In particular, Iq will be used to denote the invariant
associated with control state q instead of I(q), and similarly G(p,q) and R(p,q) to
denote the guard and reset conditions associated with an edge (p, q) instead of
G(p, q) and R(p, q). We will use F(q,x) for the flow associated with (q, x) instead
of F(q, x). Also, we call members of Q×X locations.

Before defining the semantics of the hybrid automata, we observe some condi-
tions that the flow function must satisfy for it to define “reasonable continuous
dynamics”; we call this time-independent spatially consistent.

Definition 2. The flow function F : Q ×X → (R+ → X) is said to be time-
independent spatially-consistent (TISC) if for every q ∈ Q and x ∈ X, F(q,x)

satisfies the following conditions:

1. F(q,x) is continuous and F(q,x)(0) = x.
2. It satisfies the following “semi-group” property: for every t ≥ 0 and x′ ∈ X,

if F(q,x)(t) = x′ then for every t′ ≥ 0, F(q,x)(t + t′) = F(q,x′)(t′).

Henceforth, we will assume all flows in the hybrid automata to be TISC flows.

Remark 3. TISC flows are a very basic requirement on the continuous dynam-
ics satisfied by most definitions of hybrid automata in the literature (except
in [6]). Typically the requirement is ensured by specifying the continuous dy-
namics in a control state by a differential equation which gives the derivative
with respect to time of the continuous state evolution. The flow itself is then
the solution of this differential equation. In this paper, we find it convenient to
instead directly talk about the flows themselves, rather than the differentials.
Notice that a TISC flow is not required to be differentiable and therefore it
allows for more general dynamics than is typically considered.

140 V. Vladimerou et al.

The semantics of a hybrid automaton H is defined in terms of a transition
system [[H]] = (C,C0,→), where

– C = Q×X is the set of states,
– C0 = q0 ×X0 is the set of initial states, and
– the transition relation → is the union of time transitions →t and discrete

transitions →d given by:
• (q1, x1) →t (q2, x2) iff q1 = q2 and there is a t ∈ R+ such that x2 =
F(q,x1)(t) and for all t′ ∈ [0, t], F(q,x1)(t

′) ∈ Iq1 .
• (q1, x1) →d (q2, x2) iff there is an edge (q1, q2) ∈ Δ such that x1 ∈ Iq1 ,

x2 ∈ Iq2 , x1 ∈ G(q1,q2), and (x1, x2) ∈ R(q1,q2).

In a time transition, the discrete part q1 of the state does not change but the
continuous part changes according to the flow Fq1 while remaining within the
invariant Iq1 . On the other hand, in a discrete transition, control state changes
according to an edge in the automaton, the continuous part of the state before
the transition is required to satisfy the guard associated with the edge, and the
result of taking the transition changes the continuous state according to the reset
conditions associated with the edge.

An execution starting from state (q, x) is a sequence of states (q1, x1), (q2, x2),
. . . , (qk, xk) such that (q1, x1) = (q, x), and for all i < k, (qi, xi) → (qi+1, xi+1).
(qk, xk) is said to be reachable from (q, x). For a hybrid automaton H, we say a
control state q is reachable, if for some x ∈ X , x0 ∈ X0, (q, x) is reachable from
an initial state (q0, x0). For a hybrid automaton H, the reachability problem is
to determine if a given control state is reachable.

3.1 Special Definitions

Here we look at some special restrictions on hybrid automata that will be relevant
for defining STORMED hybrid systems that we consider in this paper.

3.2 Separable Guards

A hybrid systemH = (Q,Δ,X,X0, q0, I,F ,R,G) is said to have separable guards
if there exists dmin > 0 such that for every pair of distinct edges (p1, q1), (p2, q2) ∈
Δ, min{‖x1 − x2‖ | x1 ∈ G(p1,q1) and x2 ∈ G(p2,q2)} ≥ dmin. The guards of H are
said to be dmin-separable.

Here ‖ · ‖ denotes euclidean distance. Also, we will be using the dot product
x · y, where x, y ∈ X , to denote the real value of the length of the projection of
y onto x as it is commonly used.

Guard separability can help remove the so-called Zeno behavior, i.e. it helps
avoid unbounded number of discrete steps in finite time.

Thus far, our discussion on hybrid automata did not address the issue of how
the automaton is formally presented. The general definition presented does not
give an effective presentation. We will consider automata where all the condi-
tions, guards, invariants, etc. are described in a logical theory, and even more
specifically in an o-minimal theory.

STORMED Hybrid Systems 141

3.3 O-Minimal Definability

A hybrid system H is said to be definable in an o-minimal structure A = {A,≤
, . . .} (or simply called o-minimal), if all its initial conditions, invariants, flows,
resets and guards are definable in A.

Remark 4. In the literature, o-minimal hybrid automata [11] refer to hybrid
automata as defined above with the additional restriction that all resets are
strong. In other words, for any edge (p, q) the resetR(p,q) is of the form G(p,q)×X ′

for some X ′ ⊆ X . This allows one to decouple the system into separate dynamical
systems, with the discrete transitions “resetting” the continuous state on each
discrete step. Even in Extended O-minimal Hybrid Automata [9], strong resets
(at each control graph cycle) seems inevidable. We do not need this decoupling
in STORMED, but we do make use of o-minimality.

The subclass of hybrid automata that we will consider in this paper will have
monotonicity requirements on the flow. We define these next.

3.4 Monotonic Flows

The set of flows F of H is monotonic with respect to a vector φ ∈ X , if there
exists an ε > 0 such that for every q ∈ Q, x ∈ X , and t, τ ≥ 0,

φ · (F(q,x)(t + τ)−F(q,x)(t)) ≥ ε‖F(q,x)(t + τ)−F(q,x)(t)‖,

where a · b refers to the dot-product between the vectors. We call such a set of
flows (ε, φ)-monotonic.

The above monotonicity requirement says that as the continuous state evolves
with time according to any flow, the projection on the vector φ increases at a
minimum rate ε. This guarantees that the projection on φ will never decrease.

Some obvious examples of monotonic flows are:

1. Linear flows of the form F(q,x)(t) = x + αq(t), where x ∈ Rn, and αq ∈
(R+ − {0})n.

2. Analytic flows s.t. for some φ, for all q ∈ Q and x ∈ X , satisfy∇tF(q,x)(t)·φ >
ε‖∇tF(q,x)(t)‖.

3.5 Monotonic Resets

The collection of reset sets R of H is said to be monotonic with respect to some
φ ∈ X , if there exist ε, ζ > 0 such that for every (p, q) ∈ Δ and x1, x2 ∈ X s.t.
(x1, x2) ∈ R(p,q), we have:

(i) if p = q, then either x1 = x2 or φ · (x2 − x1) ≥ ζ, and
(ii) if p �= q, then φ · (x2 − x1) ≥ ε‖x2 − x1‖.

We call such a collection of resets (ε, ζ, φ)-monotonic.

142 V. Vladimerou et al.

Remark 5. Notice that in the case when the discrete state changes, we do not
require the reset to move the continuous state along φ by a minimum value. It
only requires the change in the continuous state along φ is lower bounded by the
actual change in the continuous state. In particular, it forbids resets that take
the continuous state back along φ. Also our definition allows for identity resets.

Our definition guarantees that a minimum distance of min{ζ, εdmin} is trav-
eled along φ between two successive discrete transitions when the flow of the
hybrid systems is (ε, φ)-monotonic and its guards are dmin-separable. The only
exception is the trivial1 identity map. In all other cases, condition (i) avoids Zeno
behaviors in a discrete self-loop, and condition (ii) ensures that we cannot have
infinitely fast switching while moving only a finite distance along φ when the
guards are separable. To see the last remark, if the reset itself changes the value
of the continuous state enough to move it to another guard, then ‖x2 − x1‖ will
be at least dmin. Hence the distance traveled along φ would be at least εdmin.
Otherwise, suppose ‖x2−x1| < dmin, it moves at least φ·(x2−x1) along φ which
is at least ε‖x2 − x1‖, and it needs to travel a minimum of (dmin − ‖x2 − x1‖)
before taking the next transition. But since the flow is (ε, φ)-monotonic, it moves
another ε(dmin − ‖x2 − x1‖) at least along φ. Hence it moves at least εdmin in
total.

4 STORMED Hybrid Systems

In this section we formally introduce the special class of hybrid systems that we
study in this paper, and show that they admit a finite bisimulation.

Definition 6 (STORMED Hybrid Systems). A STORMED hybrid system
is a tuple (H,A, φ, b−, b+, dmin, ε, ζ) where H = (Q,Δ,X,X0, q0, I,F ,R,G) is a
hybrid automaton, A is an o-minimal structure, b−, b+, dmin ∈ R, and φ ∈ X is
a vector such that the following conditions are satisfied:

(S) The guards of H are dmin-Separable.
(T) The flows of H are TISC.
(O) H is definable in the O-minimal structure A.

(RM) Resets and flows F(·,·)(·) are Monotonic: (ε, ζ, φ)-monotonic and (ε, φ)-
monotonic respectively.

(ED) Ends are Delimited: for all (p, q) ∈ Δ we have {φ·x : x ∈ G(p,q) ∈ (b−, b+)
meaning that the projection of each of the guard sets on φ is bounded below
by (or is greater than) b− and bounded above by (or is less than) b+.

Before we turn to proving our main result on the existence of a bisimulation for
the STORMED systems, we will introduce a few definitions and a lemma to aid
the proof.

1 We ignore the trivial (identity) discrete transitions, i.e. (q, x) →d (q, x), which are
allowed by monotonic resets because we can all the same consider they do not
happen.

STORMED Hybrid Systems 143

Definition 7. Given a partition V of Q × X, define F �
t (V) to be the coarsest

bisimulation2 with respect to only →t that respects V. Further, define Fd(V) :=
{(s1, s2)|

(
∃s′1 . s1 →d s′1

)
⇒
(
∃s′2 . s2 →d s′2 ∧ s′1Vs′2

)
} ∩ V.

It can be easily observed that (a) The functionals F �
t (·) and Fd(·) are monotonic;

(b) F �
t (V) is a refinement of V and so is Fd(V), i.e. F �

t (V) ⊆ V and Fd(V) ⊆ V ;
(c) F �

t (·) is idempotent, i.e. F �
t (F �

t (V)) = F �
t (V)

Definition 8. For a hybrid system, we define the i-th neighborhood Ni ∈ Q×X
to be the set of all locations starting from which there is no execution that can
have more than i non-trivial discrete transitions. Note that Ni+1 ⊇ Ni.

Lemma 9. Given a STORMED Hybrid System (H,A, φ, b−, b+, dmin, ε, ζ) and
a partition P = {P1, P2, ..., Pk} of its state space Q × X, let ∼= to be a bisim-
ulation relation on H refining P. Define a sequence of partitions {W0,W1, . . .}
inductively by setting W0 = F �

t (P) and Wi+1 = F �
t (Fd(Wi)). The following hold

for all i ≥ 0:

(a) Wi is a finite partition definable in the o-minimal theory,
(b) ∼=⊆Wi, and
(c) Wi is a bisimulation on locations in the i-th neighborhood Ni that respects

P.

Proof: We use o-minimality to prove (a), then (b) and (c) follow for any hybrid
transition system. Details of the induction can be found in [18].

Lemma 10. Given a STORMED Hybrid System (H,A, φ, b−, b+, dmin, ε, ζ),
any execution of the system can have at most i� = 2 b+−b−

η 3 non-trivial discrete
transitions, where η := min{ζ, εdmin}.

Proof: Detailed proof using remark 5 in [18].

Theorem 11. (Finite Bisimulation) The transition system of a STORMED
hybrid system (H,A, φ, b−, b+, dmin, ε, ζ) has a finite bisimulation that respects
any A-definable partition P. Moreover, if A is decidable, then there is an effective
algorithm for constructing that bisimulation.

Proof: Again, let η := min{ζ, εdmin} and i� := 2 b+−b−
η 3. We can simply observe

that since, by Lemma 10, any execution in a STORMED system can go through
at most i� discrete transitions, all reachable states belong to Ni� . Therefore, by
Lemma 9, Wi� is a bisimulation for all reachable states in Q × X , it respects
P and it is definable in A. Therefore, if A is decidable, there exists an effective
algorithm for constructing Wi� .

Corollary 12. (Reachability) Given a STORMED hybrid system (H,A, φ, b−,
b+, dmin, ε, ζ),
2 The coarsest bisimulation with respect to a subset of the transition relation→′⊆→ is

the coarsest partition P = {Pi} of the state space Q×X such that P is a bisimulation
relation of the transition system given by (Q×X, q0 ×X0,→′).

144 V. Vladimerou et al.

1. the set-to-set reachability problem (i.e. given two sets S1, S2 ⊆ Q × X, if
there is a point in S1 that can reach some point in S2) is decidable, if A is.

2. Claim 1 is true even if the guards are not delimited, as long as the initial
conditions satisfy {φ · x : ∃q ∈ Q .(q, x) ∈ S1} ∈ [b−,∞] and the final set
satisfies {φ · x : ∃q ∈ Q .(q, x) ∈ S2} ∈ [−∞, b+].

Proof: First note that Claim 2 reduces to Claim 1 since there can be no discrete
transitions outside the set of states {(q, x) : x ∈ [b−, b+], q ∈ Q} that can reach
the set S2. Therefore we can restrict all guards along φ to [b−, b+] and be able to
answer the same question. To check reachability of a set S2 ⊆ Q×X from a non-
intersecting set S1, we can partition the state space to P = {S1, S2, Q×X \(S1∪
S2)} and get a finite bisimulation that respects P . This is possible because of
Theorem 11. The reachability problem then reduces to the reachability problem
of a finite automaton which is constructible if A is decidable, and hence the
reachability problem for STORMED h.s. is decidable.

5 Examples of STORMED Hybrid Systems

We believe that STORMED h.s. model will be useful in modeling many systems.
The STORMED h.s. constraints are realized in some physical systems as follows.

– Monotonicity can be associated with energy or time depletion, or in vehicle
control problems, with non-decreasing trajectories.

– The Ends-Delimited property can be present as a deadline on the monotonic
direction or a spatial confinement.

– Separability of guards represents infrequency in making control decisions,
also based on location or time.

– TISC flows arise naturally, whereas o-minimality is not necessarily a common
property, but can be used as an approximation most of the time. Lineariza-
tion and other model reductions may also result to o-minimal realizations.

In [18] we give a toy example illustrating how the characteristics of a physical
system map to the constraints imposed by a STORMED h.s.

6 Relaxations of the STORMED Model

In this section we show that relaxing the various constraints of the STORMED
model makes the reachability problem undecidable, and thus justify the tightness
of our definition of STORMED model. We consider TISC property of the flows
and o-minimal definablility of the system as intrinsic to our model. The theorem
below identifies relaxations which render the model undecidable.

Theorem 13. 1. The reachability problem of the STORMED model with the
constraint on the monotonicity of resets removed is undecidable.

2. The reachability problem of the STORMED model with the constraint on the
ends being limited removed is undecidable.

STORMED Hybrid Systems 145

Proof: We first present a proof of the undecidability of the reachability problem
of multi-rate timed automata along the lines of [1] , and then describe how it
can be modified to serve our purpose. Multi-rate timed automata can simulate
two counter-machines thus reducing the reachability problem for two counter-
machines to that of multi-rate automata. Consider a 2 counter-machine M with
counters C and D. In the multi-rate automaton A simulating it, there are two
variables x and y which store the values corresponding to the values of the
counters. A counter value of n is stored in the corresponding variable as 1/2n.
Hence an increment will halve the value of the variable and similarly a decrement
will double the value. The execution of A will synchronize with that of M every
two time units in the sense that if the i-th configuration of M points to location
p with the two counter values m and n, then A at time instant 2i will be in
state p with values of counters 1/2m and 1/2n. The parts of the automaton
corresponding to the operations increment, decrement and test for 0 is given in
Figure 1. Here g is a variable which keeps track of the global time. All variables
not shown are assumed to have a flow of 0.

Observe that automaton A satisfies all the STORMED constraints except
monotonic resets and separable guards. In order to prove part 1 of the above
theorem we modify A to obtain A1 such that A1 simulates M but has separable
guards. With every state q we associate a distinct even number hq. We introduce
a new variable v, and include in the transition going out of p a constraint v ∈
(hp, hp + 1]. If there is only one transition going out of p′ we add to its guard
the constraint v ∈ (hp′ , hp′ + 1], otherwise we add to the transition going from
p′ to q the constraint v = hp′ + 1, and to the transition going from p′ to r
the constraint v ∈ (hp′ , hp′ + 1/2]. We have three more variables g′, x′ and y′

whose values equal that of g, x and y, respectively, while entering any state.
However the values of x′ and y′ do not change while in state p and the value
of g′ does not change in state p′. It is easy to see that this can be ensured by
treating the variables x′, y′ and g′ similar to x, y and g respectively everywhere,
except that in state p, ẋ′ = 0 and ẏ′ = 0 and in state p′, ġ′ = 0. Finally we set
v̇ = hp/(2− x′) + x′/(2− x′) in state p corresponding to an operation on C. In
state p′ we set v̇ = hp′/(2− g′) + g′/(2− g′). Hence the value of v upon exiting
p would be hp + v1 and that upon exiting p′ would be hp′ + v1 where v1 is the
value of x when entering p. At any point of time the transitions that are enabled
in A1 is the same as that of A.

Now returning to part 2 of the theorem, we show how we can construct the
automaton A2 which restores the monotonicity of resets. However the ends will
no more be delimited. A2 is obtained from A1 by adding a new variable n which
increases monotonically at rate 1. The monotonicity is now along the flow of n.
This proves the above theorem.

Relaxing combinations of the STORMED constraints causes undecidability at
very low dimensions. Without separability of guards and ends-delimited we have
undecidability in 4 dimensions. This follows from the results of [3] where piece-
wise constant derivatives (PCD) with delimited ends in 3 dimensions is shown
undecidable. PCD flows are not monotonic but they can be made monotonic by

146 V. Vladimerou et al.

Fig. 1. The parts of the multi-rate automaton A corresponding to the operations in-
crement, decrement and test for zero of the 2-counter machine M

introducing a fourth dimension along which the flows are monotonic. The results
in [3] also imply that the reachability problem for STORMED h.s. without guard
separability or monotonicity is undecidable in 3 dimensions. By just relaxing sep-
arability of guards, it follows from the results in [14] that finite bisimulation does
not exist even in two dimensions.

7 Conclusions

We introduced STORMED h.s., a new class of hybrid automata and showed that
they admit a finite bisimulation. Further, the bisimulation is constructible if the
o-minimal theory in which the elements of the system are defined is decidable.
STORMED h.s. allow the continuous variables to have rich dynamics, while at
the same time not decoupling the discrete states. However, they require mono-
tonic flows/resets and separable guards. But such constraints are often present
in real systems, for example, monotonicity appears in the form of a depleting
resource. We also demonstrated that the relaxation of certain constraints from
the STORMED h.s. model results in a model that is undecidable. In the future
it would be useful to build a tool to algorithmically analyze systems described as
STORMED h.s., and evaluate its performance on models of embedded systems.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

STORMED Hybrid Systems 147

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138(1), 35–65 (1995)

4. Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C.H., Tsitsiklis, J.N.: De-
ciding stability and mortality of piecewise affine dynamical systems. Theoretical
Computer Science 255(1–2), 687–696 (2001)

5. Bouyer, P., Brihaye, T., Chevalier, F.: Weighted o-minimal hybrid systems are
more decidable than weighted timed automata? In: Artemov, S.N., Nerode, A.
(eds.) LFCS 2007. LNCS, vol. 4514, pp. 69–83. Springer, Heidelberg (2007)

6. Brihaye, T.: Verification and control of o-minimal hybrid systems and weighted
timed automata. PhD thesis, Academie Universitaire Wallonie-Bruxelles (2006)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

8. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid
systems, part i: Reachability. Theor. Comput. Sci. 379(1-2), 231–265 (2007)

9. Gentilini, R.: Reachability Problems on Extended O-minimal Hybrid Automata.
Lecture Notes in Compute Sceience, vol. 3829/2006, pp. 162–176. Springer, Hei-
delberg (2005)

10. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: Proc. 27th Annual ACM Symp. on Theory of Computing (STOC),
pp. 373–382 (1995)

11. Lafferriere, G., Pappas, G., Sastry, S.: O-minimal hybrid systems (1998)
12. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Englewood Cliffs

(1989)
13. Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata.

In: Proceedings of the International Conference on the Foundations of Software
Technology and Theoretical Computer Science, pp. 261–272 (2005)

14. Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.: A decidable class
of planar linear hybrid systems. Technical report, University of Illinois at Urbana-
Champaign, UIUCDCS-R-2008-2927 (2008)

15. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
University of California Press (1951)

16. van den Dries, L., Mille, C.: On the real exponential field with restricted analytic
functions. Israel Journal of Mathematics 85, 19–56 (1994)

17. van den Dries, L.: Tame Topology and O-minimal Structures. Cambridge Univesity
Press, Cambridge (1998)

18. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.: STORMED Hybrid
Systems. Technical report, University of Illinois at Urbana-Champaign (2008)

Controller Synthesis and Verification for Markov
Decision Processes with Qualitative

Branching Time Objectives�

Tomáš Brázdil, Vojtěch Forejt, and Antonı́n Kučera

Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
�brazdil,forejt,kucera�@fi.muni.cz

Abstract. We show that the controller synthesis and verification problems for
Markov decision processes with qualitative PECTL� objectives are 2-EXPTIME
complete. More precisely, the algorithms are polynomial in the size of a given
Markov decision process and doubly exponential in the size of a given qualitative
PECTL� formula. Moreover, we show that if a given qualitative PECTL� objec-
tive is achievable by some strategy, then it is also achievable by an effectively
constructible one-counter strategy, where the associated complexity bounds are
essentially the same as above. For the fragment of qualitative PCTL objectives,
we obtain EXPTIME completeness and the algorithms are only singly exponen-
tial in the size of the formula.

1 Introduction

A Markov decision process (MDP) [16,11] is a finite directed graph G �

(V� E� (V��V�)�Prob) where the vertices of V are partitioned into non-deterministic
and stochastic subsets (denoted V� and V�, resp.), E � V�V is a set of edges, and
Prob assigns a fixed probability to every edge (s� s�) � E where s � V� so that
�

(s�s�)�E Prob(s� s�) � 1 for every fixed s � V�. Without restrictions, we assume that
each vertex has at least one and at most two outgoing edges.

MDPs are used as a generic model for discrete systems where one can make deci-
sions (by selecting successors in non-deterministic vertices) whose outcomes are un-
certain (this is modeled by stochastic vertices). The application area of MDPs includes
such diverse fields as ecology, chemistry, or economics. In this paper, we focus on more
recent applications of MDPs in the area of computer systems (see, e.g., [18]). Here,
non-deterministic vertices are used to model the environment, unpredictable users, pro-
cess scheduler, etc. Stochastic vertices model stochastic features such as coin-tossing in
randomized algorithms, bit-flips and other hardware errors whose probability is known
empirically, probability distribution on input events, etc. There are two main problems
studied in this area:

� Controller synthesis. The task is to construct a “controller” which selects appropriate
successors at non-deterministic vertices so that a certain objective is achieved.

� Supported by the research center Institute for Theoretical Computer Science (ITI), project
No. 1M0545.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 148–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Controller Synthesis and Verification for Markov 149

� Verification. Here, we wonder whether a given objective is achieved for all “adver-
saries” that control the non-deterministic vertices. In other words, we want to know
whether a given system behaves correctly in all environments, under all interleavings
produced by a scheduler, etc.

Both “controller” and “adversary” are mathematically captured by the notion of strat-
egy, i.e., a function which to every computational history vs � V�V� ending in a non-
deterministic vertex assigns a probability distribution over the set of outgoing edges
of s. General strategies are also referred to as HR strategies because the decision de-
pends on the history of the current computation (H) and it is randomized (R). Strategies
that always return a Dirac distribution are deterministic (D), and strategies which de-
pend just on the currently visited vertex are memoryless (M). Thus, one can distinguish
among HR, HD, MD, and MR strategies.

Since the original application field of MDPs was mainly economics and performance
evaluation, there is a rich and mature mathematical theory of MDPs with discounted and
limit-average objectives [16,11]. In the context of computer systems, one is usually in-
terested in objectives related to safety, liveness, fairness, etc. , and these can be naturally
formalized as temporal properties. In particular, the subclass of linear-time properties
(such as Büchi, parity, Rabin, Street, or Muller properties) is relatively well understood
even in a more general framework of simple stochastic games [12,19,8,6]. Another class
of temporal objectives studied in the literature are linear-time multi-objectives [10,7],
which are Boolean combinations of linear-time objectives.

In this paper, we deal with a more general class of temporal properties that are spec-
ified as formulae of probabilistic branching-time logics PCTL, PCTL�, and PECTL�

[13]. These logics are obtained from their non-probabilistic counterparts CTL, CTL�,
and ECTL� (see, e.g., [9,17]) by replacing the universal and existential path quantifiers
with the probabilistic operator����, where � is a rational constant and �� is a comparison
such as � or �. Intuitively, the formula����� says “the probability of all runs that satisfy
� is ��-related to �”. If the bound � is restricted just to 0 and 1, we obtain the qualitative
fragment of a given logic. Controller synthesis for MDPs with branching-time objec-
tives has been considered in [1] where it is shown that strategies for fairly simple qual-
itative PCTL objectives may require memory and/or randomization. Hence, the classes
of MD, MR, HD, and HR strategies (see above) form a strict hierarchy. Moreover, in the
same paper it is also proved that the controller synthesis problem for PCTL objectives
is NP-complete for the subclass of MD strategies. A trivial consequence of this result is
coNP-completeness of the verification problem for PCTL objectives and MD strategies.
In [15], the subclass of MR strategies is examined, and it is proved that the controller
synthesis problem for PCTL objectives and MR strategies is in PSPACE (the same
holds for the verification problem). Some results about history-dependent strategies are
presented in [3], where it is shown that controller synthesis for PCTL objectives and
HD (and also HR) strategies is highly undecidable (in fact, this problem is complete for
the �1

1 level of the analytical hierarchy). In [3], it is also demonstrated that the controller
synthesis and verification problems are EXPTIME-complete for HD/HR strategies and
the fragment of PCTL that contains only the qualitative connectives ��1� , ��1�, and
��0� . Moreover, it is shown that strategies for this type of objectives require only finite
memory, and can be effectively constructed in exponential time. This study is continued

150 T. Brázdil, V. Forejt, and A. Kučera

in [4] where the memory requirements for objectives of various fragments of qualitative
PCTL are classified in a systematic way.

Our contribution. In this paper we solve the controller synthesis and verification
problems for all qualitative PCTL and qualitative PECTL� objectives and history-
dependent (i.e., HR and HD) strategies. For the sake of simplicity, we first unify HR
and HD strategies into a single notion of history-dependent combined (HC) strategy.
Let G � (V� E� (V��V�)�Prob) be a MDP and let (VD�VR) be a partitioning of V� into
the subsets of Dirac and randomizing vertices. A HC strategy is a HR strategy � such
that �(vs) is a Dirac distribution for every vs � V�VD. Hence, HC strategies coincide
with HR and HD strategies when VD � 	 and VD � V�, respectively. Nevertheless, our
solution covers also the cases when 	 � VD � V�. Now we can formulate the main
result of this paper.

Theorem 1. Let G � (V� E� (V��V�)�Prob) be a MDP, (VD�VR) a partitioning of V�,
and � a qualitative PECTL� formula.

� The problem whether there is a HC strategy that achieves the objective � is
2-EXPTIME-complete. More precisely, the problem is solvable in time which is poly-
nomial in
G
 and doubly exponential in
�
. Since qualitative PECTL� objectives are
closed under negation, the same complexity results hold for the verification problem.

� If the objective � is achievable by some HC strategy, then it is also achievable by
a one-counter strategy (see Definition 3). Moreover, the corresponding one-counter
automaton can effectively be constructed in time which is polynomial in
V
, doubly
exponential in
�
, and singly exponential in bp, where bp is the number of bits of
precision for the constants employed by Prob.

� In the special case when � is a qualitative PCTL formula, the controller synthesis
problem is EXPTIME-complete and the algorithms are only singly exponential in
the size of the formula.

This result gives a substantial generalization of the partial results discussed above and
solves some of the major open questions formulated in these papers. In some sense, it
complements the undecidability result for quantitative PCTL objectives given in [3].

The principal difficulty which requires new ideas and insights is that strategies for
qualitative branching-time objectives need infinite memory in general. In Section 3 we
give examples demonstrating this fact. Another difference from the previous work is
that the precise values of probabilities that are employed by a given strategy do influence
the (in)validity of qualitative PECTL� objectives. This is very different from qualitative
linear-time (multi-)objectives whose (in)validity depends just on the information what
edges have zero/positive probability.

Due to space constraints, we could not include all technical definitions and proofs.
These can be found in the full version of this paper [5].

2 Definitions

In this section we recall basic definitions that are needed for understanding key results
of this paper. For reader’s convenience, we also repeat the definitions that appeared
already in Section 1.

Controller Synthesis and Verification for Markov 151

In the rest of this paper, �, �0, �, and � denote the set of positive integers, non-
negative integers, rational numbers, and real numbers, respectively. We also use the
standard notation for intervals of real numbers, writing, e.g., (0� 1] to denote the set
�x � �
 0 	 x � 1�.

The set of all finite words over a given alphabet � is denoted ��, and the set of all
infinite words over � is denoted��. Given two sets K � �� and L � ����, we use K�L
(or just KL) to denote the concatenation of K and L, i.e., KL � �ww�
 w � K�w� � L�.
We also use �� to denote the set �� � �
� where
 is the empty word. The length of a
given w � ���� is denoted length(w), where the length of an infinite word is �. Given
a word (finite or infinite) over �, the individual letters of w are denoted w(0)�w(1)� � � �.

A probability distribution over a finite or countably infinite set X is a function
f : X � [0� 1] such that

�
x�X f (x) � 1. A probability distribution is Dirac if it as-

signs 1 to exactly one element. A �-field over a set is a set � � 2� that includes
 and is closed under complement and countable union. A probability space is a triple
(�� ��) where is a set called sample space, � is a �-field over whose elements
are called events, and� : � � [0� 1] is a probability measure such that, for each count-
able collection �Xi�i�I of pairwise disjoint elements of � , �(

�
i�I Xi) �

�
i�I �(Xi), and

moreover�()�1.

Definition 1 (Markov Chain). A Markov chain is a triple M � (S � � �Prob) where S
is a finite or countably infinite set of states, � � S �S is a transition relation, and Prob
is a function which to each transition s� t of M assigns its probability Prob(s� t) �
(0� 1] so that for every s � S we have

�
s�t Prob(s� t) � 1 (as usual, we write s x

� t
instead of Prob(s� t) � x).

A path in M is a finite or infinite word w � S � S � such that w(i�1)�w(i) for every
1 � i 	 length(w). A run in M is an infinite path in M. The set of all runs that start with
a given finite path w is denoted Run[M](w). When M is clear from the context, we write
Run(w) instead of Run[M](w).

When defining the semantics of probabilistic logics (see below), we need to mea-
sure the probability of certain sets of runs. Formally, to every s � S we associate the
probability space (Run(s)�� ��) where � is the �-field generated by all basic cylin-
ders Run(w) where w is a finite path starting with s, and � : � � [0� 1] is the unique
probability measure such that �(Run(w)) � �

length(w)�1
i�1 xi where w(i�1) xi�w(i) for ev-

ery 1 � i 	 length(w). If length(w) � 1, we put �(Run(w)) � 1. Hence, only certain
subsets of Run(s) are �-measurable, but in this paper we only deal with “safe” subsets
that are guaranteed to be in � .

Definition 2 (Markov Decision Process). A Markov decision process (MDP) is a finite
directed graph G � (V� E� (V��V�)�Prob) where the vertices of V are partitioned into
non-deterministic and stochastic subsets (denoted V� and V�, resp.), E � V�V is a
set of edges, and Prob assigns a fixed positive probability to every edge (s� s�) � E
where s � V� so that

�
(s�s�)�E Prob(s� s�) � 1 for every fixed s � V�. For technical

convenience, we require that each vertex has at least one and at most two outgoing
edges.

Let G � (V� E� (V��V�)�Prob) be a MDP. A strategy is a function which to every
vs � V�V� assigns a probability distribution over the set of outgoing edges of s. Each

152 T. Brázdil, V. Forejt, and A. Kučera

strategy � determines a unique Markov chain G� where states are finite paths in G
and vs x

� vss� iff either s is stochastic, (s� s�) � E, and Prob((s� s�)) � x, or s is non-
deterministic, (s� s�) � E, and x is the probability of (s� s�) chosen by �(vs). General
strategies are also called HR strategies, because they are history-dependent (H) and
randomized (R). We say that � is memoryless (M) if �(vs) depends just on the last ver-
tex s, and deterministic if �(vs) is a Dirac distribution. Thus, we obtain the classes of
HR, HD, MR, and MD strategies. For the sake of clarity and uniformity of our presen-
tation, we also introduce the notion of history-dependent combined (HC) strategy. Here
we assume that the non-deterministic vertices of V� are split into two disjoint subsets
VD and VR of Dirac and randomizing vertices. A HC strategy is a HR strategy � such
that �(vs) is a Dirac distribution for every vs � V�VD. Hence, in the special case when
VD � 	 (or VD � V�), every HC strategy is a HD strategy (or a HR strategy). A special
type of history-dependent strategies are finite-memory (F) strategies. A finite-memory
strategy � is specified by a deterministic finite-state automaton� over the input alpha-
bet V (see, e.g., [14]), where �(vs) depends just on the control state entered by � after
reading the word vs. In this paper we also consider one-counter strategies which are
specified by one-counter automata.

Definition 3 (One counter automaton). A one counter automaton is a tuple � �

(Q� �� qin� Æ
�0� Æ�0) where Q is a finite set of control states, � is a finite input alpha-

bet, qin � Q is the initial state, and Æ�0 : Q�� � Q��0� 1�� Æ�0 : Q�� � Q��0� 1��1�
are transition functions. The set of configurations of � is Q��0. For every u � �� we
define a binary relation u

�� over configurations inductively as follows:

� for all a � � we put (q� c) a
�� (q�� c � i) iff either c � 0 and Æ�0(q� a) � (q�� i), or c � 0

and Æ�0(q� a) � (q�� i);

� (q� c) au
�� (q�� c�) iff there is (q��� c��) such that (q� c) a

�� (q��� c��) and (q��� c��) u
�� (q�� c�).

For every u � ��, let qu � Q and cu � �0 be the unique elements such that
(qin� 0) u

�� (qu� cu).

Let G � (V� E� (V��V�)�Prob) be a MDP and (VD�VR) a partitioning of V�. A
one-counter strategy is a HC strategy � for which there is a one-counter automaton
� � (Q�V� qin� Æ

�0� Æ�0) and a constant k � � such that

� for every vs � V�VD, �(vs) is a Dirac distribution that depends only on qvs and the
information whether cvs is zero or not;

� for every vs � V�VR such that s has two outgoing edges, �(vs) is either a Dirac
distribution or a distribution that assigns k�cvs to one edge, and 1 � k�cvs to the other
edge. The choice depends solely on qvs.

Before presenting the definition of the logic PECTL�, we need to recall the notion of
Büchi automaton. Our definition of Büchi automaton is somewhat nonstandard in the
sense that we consider only special alphabets of the form 2�1�			�n� and the symbols as-
signed to transitions in the automaton are interpreted in a special way. These differences
are not fundamental but technically convenient.

Definition 4 (Büchi automaton). A Büchi automaton of arity n � � is a tuple
� � (Q� qin� Æ� A), where Q is a finite set of control states, qin � Q is the initial state,
Æ : Q�2�1�			�n� � 2Q is a transition function, and A � Q is a set of accepting states. A

Controller Synthesis and Verification for Markov 153

given infinite word w over the alphabet 2�1�			�n� is accepted by � if there is an accept-
ing computation for w, i.e., an infinite sequence of states q0� q1� � � � such that q0 � qin,
q j � A for infinitely many j � �0, and for all i � �0 there is �i � 2�1�			�n� such that
qi�1 � Æ(qi� �i) and�i � w(i). The set of all infinite words accepted by� is denoted L(�).

Let Ap � �a� b� c� � � �� be a countably infinite set of atomic propositions. The syntax of
PECTL� formulae is defined by the following abstract syntax equation:

� ::� a
 �a
 �����(�1� � � � � �n)

Here a ranges over Ap, �� is a comparison (i.e., �� � �	� ��������), � is a rational con-
stant, n � �, and the � in �(�1� � � � � �n) is a Büchi automaton of arity n. The qualitative
fragment of PECTL� is obtained by restricting � to 0 and 1. For simplicity, from now
on we write ����(�1� � � � � �n) instead of �����(�1� � � � � �n).

Let M � (S � � �Prob) be a Markov chain, and let � : S � 2Ap be a valuation.
The validity of PECTL� formulae in the states of M is defined inductively as follows:
s
�
 a iff a � �(s), s
�
 �a iff a � �(s), and

s
�
 ����(�1� � � � � �n) iff �(�w � Run(s)
 w[�1� � � � � �n] � L(�)�) �� �

Here w[�1� � � � � �n] is the infinite word over the alphabet 2�1�			�n� where w[�1� � � � � �n](i)
is the set of all 1 � j � n such that w(i)
�
 � j. Let us note that the set of runs
�w � Run(s)
 w[�1� � � � � �n] � L(�)� is indeed �-measurable in the above introduced
probability space (Run(s)�� ��), and hence the definition of PECTL� semantics makes
sense for all PECTL� formulae. In the rest of this paper, we often write s
� � instead
of s
�
 � when � is clear from the context.

The syntax of PECTL� is rather terse and does not include conventional temporal
operators such as� and� . This is convenient for our purposes (proofs become simpler),
but the intuition about the actual expressiveness of PECTL� and its sublogics is lost. As
a little compensation, we show how to encode conjunction, disjunction, and temporal
connectives �, � , � and � (the negation of � corresponds to ��0

	 (�� �)).

BG BFB∧ B∨ BU BX

{1} ∅
{1}

∅
{1, 2}

∅
{1},{2}

∅ {1}
{2}

∅
∅ {1}

∅

For example, the formula �1��
�1�2 is then a shortcut for ��1

	 (�1��
�1

(�2)), and in our
examples we stick to this simpler notation. The PCTL fragment of PECTL� is obtained
by restricting the syntax to � ::� a
 �a
 �1 � �2
 �1 � �2
 � ����
 �1 �

��� �2.
We also write a � � instead of �a � �.

3 The Result

As we have already noted, qualitative PECTL� formulae are closed under negation,
and hence it suffices to consider only the controller synthesis problem (a solution for
the verification problem is then obtained as a trivial corollary). Formally, the controller

154 T. Brázdil, V. Forejt, and A. Kučera

synthesis problem for qualitative PECTL� objectives and HC strategies is specified as
follows:
Problem: Controller synthesis for qualitative PECTL� objectives and HC strategies.
Instance: A MDP G � (V� E� (V��V�)�Prob), a partition (VD�VR) of V�, sin � V , � :

V � 2Ap, and a qualitative PECTL� formula �. (The � is extended to all
vs�V�V by stipulating �(vs) � �(s).)

Question: Is there a HC strategy � such that sin
�

 � in G� ?

Our solution of the problem (see Theorem 1) is based on one central idea underpinned
by many technically involved observations which “make it work”. Roughly speaking,
a given objective � is first split into finitely many “sub-objectives” �1� � � � � �n that are
achievable by effectively constructible finite-memory strategies �1� � � � � �n. Then, the
finite-memory strategies �1� � � � � �n are combined into a single one-counter strategy �

that achieves the original objective �.
Let us illustrate this idea on a concrete example. Consider the MDP G of the follow-

ing figure, where sin is Dirac.

G:

sin

a, b
�a, b

u
a, b

d

a, b

r1

a

r2

b

3
4

1
4

1
4

3
4

Gσ:
sin

a, b
u

a, b
r1

a a, b
u

a, b
r1

a a, b
u

a, b
r1

a

�

a, b
�

a, b
�

a, b

a, b
d

a, b
r2

b a, b
d

a, b
r2

b a, b
d

a, b
r2

b

�

a, b
�

a, b
�

a, b

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

3
4

1
4

W1

W2

The winning objective is the formula � � �a � �b, where �a � �
�1(a � ��0a) and

�b � �
�1(b � ��0b). The validity of a� b in the vertices of G is also indicated in the

figure. In this case, the “sub-objectives” are the formulae �a and �b, that are achiev-
able by memoryless strategies �u and �d that always select the transitions sin � u and
sin � d, respectively. Obviously, sin
� �a, sin �
� �b in G�u , and similarly sin
� �b,
sin �
� �a in G�d . Hence, none of these two strategies achieves the objective � (in fact,
one can easily show that � is not achievable by any finite-memory strategy). Now we
show how to combine the strategies �u and �d into a single one-counter strategy � such
that sin
� � in G�.

Let us start with an informal description of the strategy �. During the whole play,
the mode of � is either �u or �d, which means that � makes the same decision as �u

or �d, respectively. Initially, the mode of � is �u, and the counter is initialized to 1. If
(and only if) the counter reaches zero, the current mode is switched to the other mode,
and the counter is set to 1 again. This keeps happening ad infinitum. During the play,
the counter is modified as follows: each visit to � decrements the counter, and each visit
to r1 or r2 increments the counter.

Obviously, � is a one-counter strategy. However, it is not so obvious why it works.
The structure of the play G� is indicated in the figure above, where the initial state is
labeled sin (the actual graph of G� is an infinite tree obtained by unfolding the graph
shown in the figure). The play G� closely resembles an “infinite sequence” W1�W2� � � �

Controller Synthesis and Verification for Markov 155

of one-dimensional random walks. In each Wi, the probability of going right is 3
4 , the

probability of going left is 1
4 , and whenever the “left end” is entered (i.e., the counter

becomes zero), the next random walk Wi�1 in the sequence is started. All Wi, where
i is odd/even, correspond to the �u/�d mode. In the above figure, only W1 and W2

are shown, and their “left ends” are indicated by double circles. By applying standard
results about one-dimensional random walks, we can conclude that for every state s of
every Wi that is not a “left end”, the probability of reaching the “left end” of Wi from s
is strictly less than one. Now it suffices to realize the following:

– Let s be a state of Wi, where i is odd. Then s
� ��0a in G�. This is because all
states of Wi satisfy a, and the probability of reaching the “left end” of Wi from s is
strictly less than one. For the same reason, all states of Wi, where i is even, satisfy
the formula ��0b.

– Let s be a state of Wi, where i is odd, such that s
� b. Then s
� ��0b. This is
because there is a finite path to a state s� in Wi�1 along which b holds (this path
leads through the “left end” of Wi). Since s�
� ��0b (as justified in the previous
item), we obtain that s
� ��0b. For the same reason, for every state s of every Wi

such that i is even and s
� a we have that s
� ��0a.

Both claims can easily be verified by inspecting the figure on the previous page. Hence,
sin
� � in G� as needed.

The main idea of “combining” the constructed finite-memory strategies �1� � � � � �n

into a single one-counter strategy � is illustrated quite well by the above example. One
basically “rotates” among the strategies �1� � � � � �n ad infinitum. Of course, some issues
are (over)simplified in this example. In particular,

– in general, the “sub-objectives” do not correspond to subformulae of �. They de-
pend both on a given � and a given G;

– the events counted in the counter are not just individual visits to selected vertices;
– the individual random walks obtained by “rotating” the modes �1� � � � � �n do not

form an infinite sequence but an infinite tree;
– in the previous example, the only way how to leave a given Wi is to pass through its

“left end”. In general, each state of a given Wi can have a transition which “leaves”
Wi. However, these transitions have progressively smaller and smaller probabilities
so that the probability of “staying within” Wi remains positive.

Note that the last item explains why the definition of one-counter strategy admits the
use of “exponentially small” probabilities that depend on the current counter value (the
one-counter strategy defined in the above example only tested the counter for zero). To
demonstrate that the use of “exponentially small” probabilities is unavoidable, consider
the MDP Ĝ of the following figure, where ŝin is randomizing.

Ĝ:
ŝin

a, b
�

b

r

a

Ĝσ:
ŝin

a, b
�

b

r

a a, b
�

b

r

a a, b
�

b

r

a
1
4

1 − 1
4

1
16

1 − 1
16

1
64

1 − 1
64

156 T. Brázdil, V. Forejt, and A. Kučera

Let �̂ � ��0(a � (b � ��0b)). We claim that every HC strategy � which achieves
the objective �̂ must satisfy the following: Let K be the set of all probabilities that are
assigned to the edge ŝin � � in the play Ĝ�. Then all elements of K are positive and
inf(K) � 0, otherwise the formula �̂ � ��0(a � (b � ��0b)) would not hold. Hence,
� must inevitably assign “smaller and smaller” positive probability to the edge ŝin � �.
This is achievable by a one-counter strategy �̂ where �̂(vŝin) assigns 4�c(vŝin) to ŝin � �

and 1� 4�c(vŝin) to ŝin � r, where c(vŝin) is the number of occurrences of ŝin in vŝin. The
play Ĝ�̂ is also shown in the above figure. It is easy to see that ŝin
� �

�0(a�(b � ��0b))
in Ĝ�̂.

A Formal Proof of the Result. Due to space constraints, we cannot give a full proof
of Theorem 1 (it can be found in [5]). Here we only outline the structure of our proof,
identify the milestones, and try to “map” the vague notions introduced earlier to precise
technical definitions. Roughly speaking, our proof has two major phases.

(1) The controller synthesis problem for qualitative PECTL� objectives and HC strate-
gies is reduced to the controller synthesis problem for “consistency objectives” and
HC strategies. The “consistency objectives” are technically simpler than PECTL�

objectives, and they in fact represent the very core of the whole problem.
(2) The controller synthesis problem for consistency objectives and HC strategies is

solved.

The most important insights are concentrated in Phase (2). Our complexity results are
based on a careful analysis of the individual steps which constitute Phase (1) and (2).
Since all of our constructions are effective, one can also effectively construct the strat-
egy for the original PECTL� objective by taking the strategy for the constructed consis-
tency objective and modifying it accordingly.

We start by a formal definition of consistency objectives. First, we need to recall the
notion of a deterministic Muller automaton, which is a tuple � � (Q� �� Æ� A) where
Q is a finite set of control states, � is a finite alphabet, Æ : Q � � � Q is a transition
function (which is extended to the elements of Q��� in the standard way), and A � 2Q is
a set of accepting sets. A computation of� on w � �� initiated in q � Q is the (unique)
infinite sequence of control states � � q0� q1� � � � such that q0 � q and Æ(qi�w(i)) � qi�1

for all i � �0. A computation � is accepting if inf(�) � A, where inf(�) is the set of all
control states that occur infinitely often in �.

Definition 5 (Consistency objective). Let G � (V� E� (V��V�)�Prob) be a MDP,
sin � V an initial vertex, and (VD�VR) a partition of V�. A consistency objective is a
triple (�� (Q�0� Q�1)� L), where � � (Q�V� Æ� A) is a deterministic Muller automaton
over the alphabet V, (Q�0� Q�1) is a partition of Q s.t. for all q � Q�0, q� � Q�1 and
w � V� we have that Æ(q�w) � Q�0 and Æ(q��w) � Q�1, and L : V � 2Q is a labeling.

Let � be a HC strategy, and let Gsin
� be the play G� restricted to states that are

reachable from sin in G�. For every state vs of Gsin
� and every q � Q, let Acc(vs� q)

be the set of all runs v0s0� v1s1� � � � initiated in vs such that for every i � �0 we
have that Æ(q� s0 � � � si) � L(si�1) and the computation of � on s0 s1 � � � initiated
in q is accepting. For every comparison �� and every rational constant �, we write
vs
�� Acc���(q) if �(Acc(vs� q)) �� � in G�. A HC strategy � achieves the consistency

Controller Synthesis and Verification for Markov 157

objective (�� (Q�0� Q�1)� L) if for every state vs � V�V of the play Gsin
� , every q � Q,

and every ��� � ��1� �0� we have that if q � Q��� � L(s), then vs
� Acc���(q).

Phase (1). Let G � (V� E� (V��V�)�Prob) be a MDP, (VD�VR) a partition of V�, sin � V ,
� : V � 2Ap a valuation, and � a qualitative PECTL� formula. We construct a MDP
G�

� (V �� E�� (V �
�
�V �

�
)�Prob�), a partitioning (V �

D�V
�
R), a vertex s�in � V , and a consis-

tency objective (�� (Q�0� Q�1)� L) such that the existence of a HC strategy � where
sin
�
 � in G� implies the existence of a HC strategy � that achieves the objective

(�� (Q�0� Q�1)� L) in G� s�

in
� , and vice versa. The size of G� is polynomial in
G
 and ex-

ponential in
�
.
The construction is partly based on ideas of [4] and proceeds as follows. First, all

Büchi automata that occur in � are replaced with equivalent deterministic Muller au-
tomata. The resulting formula is further modified so that all probability bounds take
the form “�0” or “�1” (to achieve that, some of the deterministic Muller automata
may be complemented). Thus, we obtain a formula ��. Let M�0 and M�1 be the sets of
all deterministic Muller automata that appear in �� with the probability bound �0 and
�1, respectively. The automaton � is essentially the disjoint union of all automata in
M�0 and M�1. The sets Q�0 and Q�1 are unions of sets of control states of all Muller
automata in M�0 and M�1, respectively. The tricky part is the construction of G�. In-
tuitively, the MDP G� is the same as G, but several instances of Muller automata from
M�0M�1 are simulated “on the fly”. Moreover, some “guessing” vertices are added so
that a strategy can decide what “subformulae of ��” are to be satisfied in a given vertex.
The structure of G� itself does not guarantee that the commitments chosen by the strat-
egy are fulfilled. This is done by the automaton� and the condition that vs
� Acc���(q)

for all q � Q��� � L(s). (Intuitively, this condition says that the play G� s�

in
� is “consistent”

with the commitments chosen in the guessing vertices.)

Phase (2). The controller synthesis problem for consistency objectives and HC strate-
gies is solved in three steps:

(a) We solve the special case when the set Q�0 (see Definition 5) is empty.
(b) We solve the special case when the strategy is strictly randomizing (see below),

using the result of (a).
(c) We reduce the general (unrestricted) case to the special case of (b).

Now we describe the three steps in more detail. Let G � (V� E� (V��V�)�Prob) be a
MDP, sin � V an initial vertex, (VD�VR) a partition of V�, and (�� (Q�0� Q�1)� L) a
consistency objective, where � � (Q�V� Æ� A).

As for step (a), the key insight is the following observation (the proposition holds
under the non-restrictive assumption that for all s� t � V such that (s� t) � E and for all
p � Q�1 such that p � L(s) we have Æ(p� s) � L(t)):

Proposition 1. Let us assume that Q�0 � 	. Then the objective (�� (Q�0� Q�1)� L) is
achievable by some HC strategy iff there is a HC strategy � such that for every state
vs of Gsin

� , every p � L(s) � Q�1, and almost all runs v0s0� v1s1� � � � initiated in vs
there are k � �0, q � Q, and X � A such that Æ(p� s0 � � � sk�1) � q and almost all
runs v̂0 ŝ0� v̂1 ŝ1� � � � initiated in vk sk satisfy the following conditions: Æ(q� ŝ0 � � � ŝ j) � X
for every j � �0, and for every r � X there are infinitely many j � �0 such that
Æ(q� ŝ0 � � � ŝ j) � r.

158 T. Brázdil, V. Forejt, and A. Kučera

In other words, if Q�0 � 	, then the objective is achievable by a strategy which simply
“guesses” an appropriate moment and an appropriate X � A, and then it suffices to
verify that the guess was correct, i.e., almost all simulated computations of � visit
only the states of X and each of them is visited infinitely often. This can be effectively
implemented by a qualitative Büchi objective, and hence we can rely on the existing
algorithms (see Section 1). At this point, there is no need for infinite memory.

In step (b), we concentrate on another special case where both Q�0 and Q�1 may
be non-empty, but the set of strategies is restricted to strictly randomizing HC (srHC)
strategies. A srHC strategy is a HC strategy � such that �(vs) assigns a positive proba-
bility to all outgoing edges whenever s � VR. This is perhaps the most demanding part
of the whole construction, where we formalize the notion of “sub-objective” mentioned
earlier, invent the technique of “rotating” the finite-memory strategies for the individual
“sub-objectives”, etc. The main technical ingredient is the notion of entry point.

Definition 6. A set X � V is closed if each s � X has at least one immediate successor
in X, and every s � X which is stochastic or randomizing has all immediate successors
in X. Each closed X determines a sub-MDP G
X which is obtained from G by restricting
the set of vertices to X.

Let X be a closed set. An entry point for X is a pair (s� q) � X � Q�0 for which there
is a HD strategy � in G
X satisfying the following conditions:

1. s
� Acc�1(q);
2. for every state vt of (G
X)s

and every p � L(t) � Q�1 we have that vt
� Acc�1(p);

3. for all states vt of (G
X)s

and all p � L(t) � Q�0 we have the following: if there

is no state of V�V� reachable from vt in (G
X)s

, then either wt
� Acc�1(p), or

there is a finite path v0t0� � � � � vktk initiated in vt such that tk � VR and tk has two
outgoing edges (tk� r1)� (tk� r2) � E such that �(vktk) selects the edge (tk� r1) and
Æ(p� t0 � � � tk) � L(r2) � Q�0.

Intuitively, entry points correspond to the finitely many “sub-objectives” discussed ear-
lier. The next step is to show that the set of all entry points for a given closed set X can be
effectively computed in time which is polynomial in
G
 and exponential in
Q
. Further,
we show that for each entry point (s� q) one can effectively construct a finite-memory
deterministic strategy �(s� q) which has the same properties as the HD strategy � of Def-
inition 6 (this is what we meant by “achieving a sub-objective”). Here we use the results
of step (a). Technically, the key observation of step (b) is the following proposition (this
proposition holds under some technical assumptions that are not listed explicitly here).

Proposition 2. The consistency objective (�� (Q�0� Q�1)� L) is achievable by a srHC
strategy � iff there is a closed X � V such that sin � X and for all s0 � X and
q0 � L(s0) � Q�0 there is finite sequence (s0� q0)� � � � � (sn� qn) such that (si� si�1) � E,
qi � L(si) and Æ(qi� si) � qi�1 for all 0 � i 	 n, and (sn� qn) is an entry point for X.

Both directions of the proof require effort, and the “if” part can safely be declared as diffi-
cult. This is where we introduce the counter and “rotate” the �(s� q) strategies for the indi-
vidualentrypoints toobtainasrHCstrategy thatachieves theobjective(�� (Q�0� Q�1)� L).
This part is highly non-trivial and relies on many subtle observations. Nevertheless, the
whole construction is effective and admits a detailed complexity analysis.

Controller Synthesis and Verification for Markov 159

Step (c) is relatively simple (compared to step (a) and particularly step (b)). The
2-EXPTIME lower bound for qualitative PECTL� objectives also requires a proof (the
bound does not follow from the previous work). Here we use a standard technique
for simulating an exponentially bounded alternating Turing machine, employing some
ideas presented in [2]. The EXPTIME lower bound for qualitative PCTL has been
established already in [3].

References

1. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for proba-
bilistic systems. In: Proceedings of IFIP TCS 2004, pp. 493–506. Kluwer, Dordrecht (2004)

2. Brázdil, T., Brožek, V., Forejt, V.: Branching-time model-checking of probabilistic pushdown
automata. In: Proceedings of INFINITY 2007, pp. 24–33 (2007)

3. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Stochastic games with branching-time winning
objectives. In: Proceedings of LICS 2006, pp. 349–358. IEEE, Los Alamitos (2006)

4. Brázdil, T., Forejt, V.: Strategy synthesis for Markov decision processes and branching-time
logics. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, pp. 428–444.
Springer, Heidelberg (2007)

5. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for Markov decision
processes with qualitative branching time objectives. Technical report FIMU-RS-2008-05,
Faculty of Informatics, Masaryk University (2008)

6. Chatterjee, K., de Alfaro, L., Henzinger, T.: Trading memory for randomness. In: Proceed-
ings of 2nd Int. Conf. on Quantitative Evaluation of Systems (QEST 2004), pp. 206–217.
IEEE, Los Alamitos (2004)

7. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with multiple ob-
jectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336.
Springer, Heidelberg (2006)

8. de Alfaro, L.: Quantitative verification and control via the mu-calculus. In: Amadio, R.M.,
Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 102–126. Springer, Heidelberg (2003)

9. Emerson, E.A.: Temporal and modal logic. Handbook of TCS B, 995–1072 (1991)
10. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model check-

ing of Markov decision processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 50–65. Springer, Heidelberg (2007)

11. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1996)
12. Grädel, E.: Positional determinacy of infinite games. In: Diekert, V., Habib, M. (eds.) STACS

2004. LNCS, vol. 2996, pp. 4–18. Springer, Heidelberg (2004)
13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects

of Computing 6, 512–535 (1994)
14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, Reading (1979)
15. Kučera, A., Stražovský, O.: On the controller synthesis for finite-state Markov decision pro-

cesses. In: Proceedings of FST&TCS 2005. LNCS, vol. 3821, pp. 541–552. Springer, Hei-
delberg (2005)

16. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
17. Stirling, C.: Modal and temporal logics. Handbook of Logic in Comp. Sci. 2, 477–563 (1992)
18. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Pro-

ceedings of FOCS 1985, pp. 327–338. IEEE, Los Alamitos (1985)
19. Walukiewicz, I.: A landscape with games in the background. In: Proceedings of LICS 2004,

pp. 356–366. IEEE, Los Alamitos (2004)

On Datalog vs. LFP

Anuj Dawar and Stephan Kreutzer

1 University of Cambridge Computer Lab
anuj.dawar@cl.cam.ac.uk

2 Oxford University Computing Laboratory
kreutzer@comlab.ox.ac.uk

Abstract. We show that the homomorphism preservation theorem fails for LFP,
both in general and in restriction to finite structures. That is, there is a formula of
LFP that is preserved under homomorphisms (in the finite) but is not equivalent
(in the finite) to a Datalog program. This resolves a question posed by Atse-
rias. The results are established by two different methods: (1) a method of diag-
onalisation that works only in the presence of infinite structures, but establishes
a stronger result showing a hierarchy of homomorphism-preserved problems in
LFP; and (2) a method based on a pumping lemma for Datalog due to Afrati,
Cosmadakis and Yannakakis which establishes the result in restriction to finite
structures. We refine the pumping lemma of Afrati et al. and relate it to the power
of Monadic Second-Order Logic on tree decompositions of structures.

1 Introduction

Among the important classical results of model theory, relating syntactic to semantic
properties of first-order logic, are the preservation theorems. For instance, the Łoś-
Tarski theorem tells us that a sentence of first-order logic is equivalent to an existential
sentence if, and only if, the class of its models is closed under extensions and Lyndon’s
theorem states that a sentence is monotone in a relation R if, and only if, it is equivalent
to one that is positive in R (see [12]). The study of preservation theorems has played
an important role in the development of finite model theory, with many early results
demonstrating that such results fail when we restrict consideration to finite structures
(see, for instance, [8]).

One important exception to the general failure of preservation theorems in the finite
is Rossman’s proof of the homomorphism preservation theorem [17]. This shows that
on the class of finite structures, just as on the class of all structures (finite or infinite) a
sentence of first-order logic is equivalent to an existential positive sentence if, and only
if, it is preserved under homomorphisms. The homomorphism preservation property in
finite structures has aroused much interest in theoretical computer science through its
connections with questions in database theory and the study of constraint satisfaction
problems (CSPs).

Each of the preservation theorems mentioned has two directions, one of which is gen-
erally quite easy to establish: namely that the syntactic restriction (such as the restriction
to existential positive sentences) implies the semantic restriction (being preserved under
homomorphisms). Moreover, this direction holds generally on any class of structures C.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 160–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Datalog vs. LFP 161

The other direction, sometimes known as expressive completeness, states that any sen-
tence that satisfies the semantic restriction is equivalent to one of the simple syntactic
form. When we restrict this statement to a class C, we weaken both the hypothesis and
the conclusion of the statement. Thus, even for classes C and C′ where C ⊆ C′, it is im-
possible to deduce either the validity or the failure of a preservation theorem on C from
the statement for C′. In particular, the statements for the class of all structures and for
the class of finite structures alone are quite independent statements. Recently, there has
been a growing interest in investigating the status of preservation theorems for classes
C more restrictive than the class of all finite structures [5,6].

Atserias [3] (see [1, Question 4.3]) asked whether the homomorphism preservation
theorem holds for LFP—the extension of first-order logic with an operator for defin-
ing least fixed points of monotone formulas. Fixed-point logics have arguably played
a more important role in finite model theory than first-order logic. In particular, it is
known that LFP expresses all polynomial time computable properties of finite ordered
structures [13,18]. Thus, the question of whether a homomorphism preservation theo-
rem can be established for this logic arises naturally. The language formed by extending
existential positive formulas by means of a least fixed-point operator is Datalog and it
has been extensively studied as a database query language. It has also received atten-
tion in the study of constraint satisfaction problems as it provides a general means of
classifying many CSPs as tractable. It is easily seen that any query defined in Datalog is
preserved under homomorphisms. Thus, Atserias’ question asks whether it is the case
that every sentence of LFP that is preserved under homomorphisms is equivalent to a
Datalog program. We show in this paper that this is not the case, either on the class of
all (finite or infinite) structures or in restriction to the class of finite structures.

The homomorphism preservation question for extensions of first-order logic was also
studied by Feder and Vardi [10]. They showed that on finite structures, the homomor-
phism preservation property holds for a number of existential infinitary and fixed-point
logics. In particular, they established that any query definable in Datalog(¬, �=) that
is closed under homomorphisms is already definable in Datalog. The former language
is the extension of Datalog with inequality and negation on EDB predicates. Just as
Datalog can be seen as the existential positive fragment of LFP, Datalog(¬, �=) is its
existential fragment. Thus, our results show that the theorem of Feder and Vardi cannot
be extended from Datalog(¬, �=) to LFP.

The two examples we construct separating LFP from Datalog bear some similarity to
each other in that they are defined in terms of graphs having path lengths in some set S.
In addition, to guarantee that the classes we consider are closed under homomorphisms,
we take the union with the class of all graphs containing a cycle. The main differences
in the two results are in the choice of the set S and in the method used to prove that the
resulting class of graphs is not definable in Datalog. In the case where we allow infinite
structures, the proof is somewhat simpler as we can construct a set S that is undefinable
in Datalog (over the natural numbers) using standard diagonalisation arguments and
then obtain the result by means of a reduction of the graph problem to this set. This
actually establishes something stronger. It shows that for every k, there are formulas
of LFP that are preserved under homomorphisms but not definable by a formula with

162 A. Dawar and S. Kreutzer

only k nested alternations of the fixed-point operator with negation. These results are
established in Section 4.

When we restrict ourselves to finite structures, such diagonalisation methods are un-
available and we adapt a pumping lemma due to Afrati et al. [2] for our purpose. Afrati
et al. use their pumping lemma to demonstrate polynomial-time monotone properties
that are not definable in Datalog. In order to adapt it to the LFP-definable properties we
are interested in, we need to show that it works on a class of acyclic graphs. What we es-
tablish is that if π is a Datalog program which accepts a directed acyclic graph (G, s, t)
if, and only if, G contains a path from s to t of length p for some p in a given set S,
then S cannot grow too fast (the precise statement is given in Lemma 5.2). This suffices
to establish the result we seek. An apparently stronger pumping lemma (saying that S
cannot grow faster than linearly) is stated in [2], but without the restriction to acyclic
graphs. In the absence of this restriction, we cannot use their lemma directly and it is not
clear from their description of the proof that it can be adapted. This is explained in more
detail in Section 5. One virtue of our proof of this pumping lemma is that it connects it
with other recent innovations in the analysis of Datalog queries, namely their relation-
ship with tree decompositions and with the power of monadic second-order logic over
these. This new insight into Datalog may be of independent interest.

One source of interest in the relationship between LFP and Datalog is research on
the classification of tractable constraint satisfaction problems. We can associate with
any structure B, the decision problem CSP(B) of determining for a given structure A
whether there is a homomorphism A → B. This is the constraint satisfaction problem
associated with B (see [9]). Much research work has been devoted to classifying those
structures B for which this problem is decidable in polynomial time. It is immediate
from the above definition that the complement of CSP(B) is closed under homomor-
phisms. If we could find a finite structure B for which the complement of CSP(B) is
definable in LFP but not in Datalog, this would resolve certain conjectures on the classi-
fication of tractable CSPs (see [4] for a discussion). We note here that our example of a
homomorphism closed class separating LFP from Datalog on finite structures is not the
complement of CSP(B) for any finite B, but is of this form for an infinite structure B.

We begin in Section 2 with definitions, including those of LFP and Datalog as well
as first-order and monadic second-order logic. We also recall the definitions of tree
decompositions of structures and relate them to Datalog programs.

2 Preliminaries

We briefly introduce the fundamental concepts and notation we need in later sections.

Homomorphisms and Preservation. Let σ be a finite signature. We use boldface let-
ters for structures A,B, ... and corresponding Roman letters A,B, ... to denote their
universe. We also write a for a tuple a1, . . . , ak.

Definition 2.1. Let σ be a relational signature possibly with constant symbols and let
A,B be σ-structures. A homomorphism from A to B is a function h : A → B such
that for every k-ary relation symbol R ∈ σ and every k-tuple a ∈ Ak if a ∈ RA then
(h(a1), . . . , h(ak)) ∈ RB and for every constant symbol c ∈ σ, h(cA) = cB. We write
A→ B to denote that there is a homomorphism from A to B.

On Datalog vs. LFP 163

Definition 2.2. Let C be a class of structures. A subclass D ⊆ C is closed under ho-
momorphisms if whenever A,B ∈ C so that A ∈ D and there is a homomorphism
h : A → B then B ∈ D. We are particularly interested in model classes of sentences.
If ϕ is a sentence of a logic, we say ϕ is preserved under homomorphisms on C if the
class ModC(ϕ) := {A ∈ C : A |= ϕ} is closed under homomorphisms.

First-Order Logic, Monadic Second-Order Logic and Types. Let σ be a signature. We
assume that the reader is familiar with first-order logic. We write FO(σ) for the class
of all first-order formulas over the signature σ. Monadic Second-Order Logic (MSO) is
the extension of first-order logic by quantification over sets of elements, i.e. there are
quantifiers ∃X, ∀X , where X is a unary relation variable, and a formula ∃Xϕ is true in
a structure A, written A |= ∃Xϕ, if there is a set X ⊆ A such that (A, X) |= ϕ. The
semantics of ∀Xϕ is defined analogously. See e.g. [8] for more on MSO.

The quantifier rank qr(ϕ) of a formula ϕ (of FO or MSO) is the maximal depth of
nesting of quantifiers in ϕ. Note that up to logical equivalence there are only finitely
many MSO-formulas of quantifier rank at most q in a finite signature σ. We write MSOq

for the class of MSO-formulas of quantifier rank at most q. We write A ≡q B to denote
that two structures A and B cannot be distinguished in MSOq .

A type is a maximally consistent class of formulas. For a structure A and q ∈ N,
the MSOq-type of A is the class of MSO-sentences of quantifier rank at most q which
are true in A and if a ∈ Ak, then the MSOq-type of a in A is the class of all MSOq-
formulas ϕ(x) such that A |= ϕ(a). As, for each q ∈ N, MSOq only contains finitely
many formulas up to equivalence, the MSOq-type of a tuple or a structure can com-
pletely be described by a single formula in MSOq (see [8]). We will use the following
decomposition theorem for MSO. See e.g. [15] or [11].

Lemma 2.3. Let A and B be structures and let u be a tuple listing the vertices in the
intersection of A and B. The MSOq-type of u in A ∪ B is uniquely determined by the
MSOq-types of u in A and in B.

In particular, if A, B1 and B2 are structures such that A ∩B1 = A ∩B2 =: u and the
MSOq-types of u in B1 and B2 are the same, then A ∪B1 ≡q A ∪B2.

Least Fixed-Point Logic. We first present a brief introduction to least fixed-point logic.
For a detailed exposition see [8]. Let σ be a signature and let ϕ(R,x) be a formula
of signature σ which is positive in the k-ary relation variable R, i.e. every atom of the
form Rt in ϕ occurs within the scope of an even number of negation symbols. For
every σ-structure A, ϕ defines a monotone operator1 FA,ϕ : Pow(Ak) → Pow(Ak) via
FA,ϕ(P) := {a ∈ Ak : (A, P) |= ϕ[a]}, for every P ⊆ Ak. A theorem due to Knaster
and Tarski shows that on every structure A every monotone operator FA,ϕ has a least
fixed point which we denote by lfp(FA,ϕ).

The logic LFP(σ) is the extension of FO(σ) by least fixed-point operators. To be
precise: LFP(σ) contains FO(σ) and is closed under Boolean connectives and first-order
quantification; and if ϕ(R,x, z,Q) is an LFP(σ)-formula which is positive in the k-
ary relation variable R then for every k-tuple t of terms [lfpR,x ϕ](t) is an LFP(σ)-
formula such that for every

(
σ ∪̇ {z,Q}

)
-structure A and every tuple a ∈ Ak we have

A |= [lfpR,x ϕ](a) if, and only if, a ∈ lfp(FA,ϕ).

1 An operator F : Pow(M) → Pow(M) is monotone iff F (A) ⊆ F (B) for all A ⊆ B ⊆M .

164 A. Dawar and S. Kreutzer

The alternation depth of an LFP formula ϕ is defined as the maximal number of
alternations between fixed-point operators and negations inside ϕ. We write LFPk for
the class of LFP formulas of alternation depth at most k.
Datalog. Datalog is a database query language which could be defined as the collection
of formulas of LFP which do not use negation or universal quantification. However, the
usual presentation of the language is in terms of function-free Horn clauses, and we
follow this presentation below as the structure of the program in terms of rules is useful
for our proof of the pumping lemma in Section 5.

A Datalog program is a finite set of rules of the form T0 ← T1, . . . , Tm, where
each Ti is an atomic formula. T0 is called the head of the rule, while the right-hand
side is called the body. The relation symbols that occur in the heads are the inten-
sional database predicates (IDBs), while all others are the extensional database pred-
icates (EDBs). Note that IDBs may occur in the bodies too, thus, a Datalog program
is a recursive specification of the IDBs with semantics obtained via least fixed-points
of monotone operators. The collection of EDB predicates occurring in π constitute its
signature σ, and a Datalog program of signature σ is interpreted in σ-structures. One
IDB predicate is distinguished as the goal predicate. In general, we will assume that
the goal predicate is a 0-ary predicate, so that the program defines a Boolean query.
In the interests of space, we will not give a formal definition of the semantics of the
program, which can be found in standard textbooks such as [8]. A key parameter in
analysing Datalog programs is the number of variables used. We write k-Datalog for
the collection of all Datalog programs with at most k distinct variables in total.

A formula of first-order logic is said to be a conjunctive query if it is obtained from
atomic formulas using only conjunctions and existential quantification. Every finite
structure A with n elements gives rise to a canonical conjunctive query ϕA, which
is obtained by first associating a different variable xi with every element ai of A,
1 ≤ i ≤ n, then forming the conjunction of all atomic facts true in A, and finally
existentially quantifying all variables xi, 1 ≤ i ≤ n. In other words, the formula ϕA is
the existential closure of the positive diagram of A (see [12]). The significance of these
queries lies in the fact (first noted by Chandra and Merlin [7]) that for any structure B,
B |= ϕA if, and only if, there is a homomorphism from A to B.

For every positive integer k, let CQk be the collection of conjunctive queries that
have at most k distinct variables. Note that each variable may be reused, so its number
of occurrences may be arbitrarily large. The significance of CQk lies in that the number
of variables required to express ϕA is closely related to the tree width of A. We first
review the definition of tree width and then state its relationship with CQk.

Let A be a σ-structure. A tree-decomposition of A is a pair (T, B) where T is a
directed tree oriented from the root to the leaves and B is a labelling that associates to
each node t of T a non-empty set of elements Bt ⊆ A such that
1. for every tuple a in some relation R of A, there is a node t ∈ T such that a is

contained in Bt; and
2. for every a ∈ A, the set {t ∈ T : a ∈ Bt} forms a connected subtree of T.

The width of a tree-decomposition is the maximum cardinality of a set Bt minus one.
The treewidth of A is the smallest k for which A has a tree-decomposition of width k.

The connection between the number of variables in ϕA and the tree width of A can
now be summarised as follows (see [14,6]).

On Datalog vs. LFP 165

Lemma 2.4. If A has tree width less than k, then ϕA is equivalent to a formula of
CQk. For any satisfiable formula ϕ in CQk, there is a structure A with tree width less
than k, such that ϕA is logically equivalent to ϕ.

A Datalog program π can be unfolded into a conjunctive query, by repeatedly expanding
the rules. There are infinitely many such unfoldings for a recursive program. We are
interested in the structures, called expansions of π, for which these unfoldings are the
canonical conjunctive queries.

Definition 2.5. Given a Datalog program π, a partial unfolding of π is any conjunctive
query obtained using the following rules:

– The goal predicate G of π is a partial unfolding of π;
– If ϑ is a partial unfolding of π; R is an IDB predicate of π; R(x) is an atomic

formula occurring in ϑ; and R(y) ← T1(z1), . . . , Tm(zm) is a rule of π, let ϕ(x)
be the formula obtained from ∃z(T1(z1) ∧ · · · ∧ Tm(zm)) (where z includes all
variables occurring in the rule except for those in y) by replacing the variables in y
by x. Then, the formula ϑ′ obtained from ϑ by replacing the occurrence R(x) by
ϕ(x) is also a partial unfolding of π.

An unfolding of π is a partial unfolding in which no IDB predicate occurs.

It is not difficult to see that any unfolding of a Datalog program is a conjunctive query,
and more particularly, if π is a k-Datalog program, then any unfolding of π is in CQk.
It is also easily established that a structure A is in the query defined by π if, and only
if, there is some unfolding ϑ of π such that A |= ϑ.

Definition 2.6. An expansion of a k-Datalog program π is a structure A of tree width
less than k such that the canonical conjunctive query ϕA is logically equivalent to an
unfolding of π.

Now, it is clear, by Lemma 2.4, that B |= π if, and only if, A → B for some ex-
pansion A of π. Indeed, the models of π are generated from expansions whose tree
decompositions are given by the unfolding of π.

Definition 2.7. A decorated expansion of the k-Datalog program π is a tree decompo-
sition (T, B) of an expansion A of π along with a labelling L that associates to each
node t of T a pair (r, ρ) where r is either a rule of π or an atomic formula R(x) (for an
EDB predicate R); and ρ is an injective mapping from the variables of r to Bt.

The labelling L must satisfy the following conditions:

1. If L(t) = (r, ρ) and r is an atomic formula, then t is a leaf of T.
2. If L(t) = (r, ρ) and r is a rule R(x) ← T1(z1), . . . , Tm(zm), then t has exactly m

children t1, . . . , tm where for each i, if L(ti) = (ri, ρi) then ri is either an atomic
formula Ti(y) or a rule whose head is Ti(y). Further ρi(y) = ρ(zi).

3 LFP Definable Classes Closed Under Homomorphisms

In this section we introduce the classes of structures which we will use to separate LFP

from Datalog, and show that they are LFP definable, though proofs are omitted for lack
of space.

166 A. Dawar and S. Kreutzer

A source-target graph is a (finite or infinite) directed graph G with two distinguished
vertices s and t, i.e. a structure over the signature {E, s, t} where E is a binary relation
symbol and s, t are constant symbols. For a source-target graph A = (G, s, t), let nA

denote sup{p : G contains a simple path of length p starting at s}. Note that nA is
either a finite ordinal or ω. In the sequel, when we speak about a graph, we mean a
source-target graph.

Fix a set S ⊆ ω of natural numbers. We define the following classes of graphs.

– Cyc – the class of graphs that contain a cycle.
– Unb – the class of graphs A for which nA = ω.
– PS – the class of graphs A that contain a path from s to t of length p for some

p ∈ S.
– CS := PS ∪ Cyc.
– C∞S = (PS ∩ Unb) ∪ Cyc.

It is the classes CS and C∞S (for suitable choices of the set S) which we show separate
LFP from Datalog. Note that all acyclic graphs in C∞S are infinite, while CS may contain
finite as well as infinite acyclic graphs. We begin first by noting that these classes are
closed under homomorphisms.

Lemma 3.1. The classes CS and C∞S are closed under homomorphisms.

It can be shown that even the classes PS are closed under homomorphisms. The reason
we work with the classes CS and C∞S is for the sake of definability in LFP. It is difficult
to use LFP to determine the lengths of paths in the presence of cycles. In fact, the longest
path problem is NP-complete and hence unlikely to be definable in LFP. By including
all graphs with cycles, we make the problem easier, as then we only have to consider
the longest path in acyclic digraphs. We now aim to show that if the set S is definable
in LFP, in some sense, then the classes CS and C∞S are also definable.

For an ordinal α ∈ [0, ω], we write (α, succ) to denote the structure whose universe
is {β : β < α} and where succ is interpreted as the binary successor relation.

Lemma 3.2. There is a uniform LFP interpretation of (nA, succ) in acyclic source-
target graphs A.

The proof of Lemma 3.2 relies on the use of stage comparison relations, see [16]. We
remark that the interpretation in Lemma 3.2 is already definable in LFP1, the alternation
free fragment of LFP.

Lemma 3.3. There is a formula ϕunb of LFP that defines Unb on acyclic graphs.

This is used to show the definability of the classes CS and C∞S .

Lemma 3.4. If S ⊆ ω is definable in the structure (ω, succ) by a formula of LFPk, then
the class C∞S is defined by a sentence of LFPk+1.

Note that the class of sets S that are definable by LFP formulas in (ω, succ) is very rich.
In particular, it includes all Π1

1 -definable sets of numbers.

Lemma 3.5. If the class of finite structures S = {(n, succ) : n ∈ S} is definable in
LFP, then CS is defined by a sentence of LFP.

Note that {(n, succ) : n ∈ S} is definable in LFP if, and only if, the set S, represented
in unary, is decidable in polynomial time.

On Datalog vs. LFP 167

4 The Diagonalisation Method

The main result of this section is the following theorem.

Theorem 4.1. There is a sentence of LFP that is preserved under homomorphisms on
the class of all structures but which is not equivalent to any Datalog program.

Since Datalog is in the negation-free fragment of LFP, it is clear that every Datalog
program is equivalent to a formula in LFP1. Using diagonalisation methods, one can
show that for each k there is a subset Sk ⊂ ω such that Sk can be defined in the
structure (ω, succ) by an LFPk+1 formula ϕk(x) but not by any formula in LFPk, where
succ denotes the successor relation on ω. See e.g. [16]. Thus, we can choose a set S of
natural numbers which is definable in LFP on the structure (ω, succ) but not in Datalog.
Our aim is to show that the class C∞S is not definable in Datalog.

Lemma 4.2. For any set S, if there is a Datalog program defining C∞S , then S is defin-
able in (ω, succ) by a Datalog program.

This allows us to prove Theorem 4.1, as we can choose a set S that is definable in LFP

but not in LFP1. Then, Lemma 3.4, 3.1 and 4.2 together imply the theorem. The proof
actually implies a somewhat stronger result.

Corollary 4.3. For every k, there is an LFPk+2-definable class of structures which is
closed under homomorphisms but which cannot be defined in LFPk.

5 The Pumping Method

The result in the previous section relies crucially on infinite structures. In particular, the
class C∞S restricted to finite structures is just the class of all graphs containing a cycle,
and this is definable in Datalog. Moreover, the stronger Corollary 4.3 cannot hold on
finite structures since it is known that every formula of LFP is equivalent, in the finite, to
a formula of LFP1 (see [13]). Still, in this section we establish that the homomorphism
preservation property fails even when we restrict ourselves to finite structures.

Theorem 5.1. There is an LFP sentence ϕ which is preserved under homomorphisms
on the class of all finite structures such that there is no Datalog program equivalent to
ϕ on finite structures.

Specifically, we show that there are sets of numbers S, which are polynomial-time de-
cidable when written in unary, such that there is no Datalog program whose finite models
are exactly the ones inCS . This is established by showing the following pumping lemma.

Lemma 5.2. Let S ⊆ ω be an infinite set of numbers and π a Datalog program which
accepts a directed acyclic graph (G, s, t) if, and only if, G contains a path from s to
t of length p for some p ∈ S. Then, there is a constant c and an increasing sequence
(ai)i∈ω of numbers such that:

1. ai+1 < aci for all i; and
2. S ∩ [ai, ai+1] �= ∅ for all i.

168 A. Dawar and S. Kreutzer

Before we give a proof, a few remarks are in order. Recall that a Datalog program π
determines a collection C of expansions of bounded tree width such that a structure B
is accepted by π if, and only if, A→ B, for some A ∈ C. If π is as in Lemma 5.2, then
it accepts a structure (G, s, t) where G is a simple path of length p ∈ S. The expansion
A that maps to this structure must be an acyclic graph in which all paths from s to t
are of length p. To prove the lemma, we proceed from a decorated expansion for A to
“pump” a portion of the tree decomposition and obtain a sequence of expansions Ai

which are all acyclic and such that the lengths of all paths in Ai from s to t are in the
interval [ai, ai+1] for a suitably defined sequence (ai)i∈ω . This establishes the result.

It should be noted that a similar pumping lemma is stated by Afrati et al. [2], and
proved by similar means. Indeed, their statement is apparently stronger in that condition
(1) can be replaced by ai+1 < c + ai, which is to say that the sequence (ai)i∈ω can
be chosen to grow linearly in i rather than exponentially. However, their statement is
not confined to acyclic graphs, which is an essential restriction for our result. It would
suffice for our purposes if, in the proof of the pumping lemma of Afrati et al., it could
be shown that when an acyclic expansion is pumped, we always obtain an acyclic ex-
pansion, but we are unable to recover this fact from their proof. To be precise, they
present the proof in detail only for the case when the expansion A is itself a simple
path. In this case, the proof below can also be used to yield a linear sequence (ai)i∈ω .
They then state that the general case can be handled similarly, by choosing in the dec-
orated expansion of A a collection of pairs of points to pump such that each simple
path crosses exactly one such pair. We are unable to determine how such a collection
could be chosen and, if the points at which we pump an expansion are crossed by more
than one path, it is quite possible that pumping may create shortcuts. This is the reason
why, in the proof below, we have to pump each pair of points multiple times, forcing an
exponential growth in the sequence (ai)i∈ω. However, this is still sufficient to establish
Theorem 5.1, which is our aim here. We now proceed to a proof of Lemma 5.2.

Proof of Lemma 5.2. Let π be a Datalog-program that accepts a directed acyclic graph
(G, s, t) if, and only if, G contains a path from s to t of length p for some p ∈ S and
let k be the number of variables in π. Then, for any such (G, s, t), there is an expansion
A of π such that A → (G, s, t), and there is a corresponding decorated expansion
(T, B, L) where (T, B) is a tree decomposition of A of width k − 1. We can assume,
without loss of generality that each Bu, u ∈ T , has exactly k elements. It will be
clear how to adapt the construction to the case where this is not so. Since A is acyclic
(otherwise there would be no homomorphism A→ G), we let < be the (partial) order
on vertices of A induced by distance from sA (where vertices that are not reachable
from s have distance∞).

We now represent the decorated expansion (T, B, L) as a relational structure D as
follows:

– the universe of D is D := T ∪̇A, the disjoint union of T and A;

– the constants s and t are interpreted in D by sA and tA;

– D has a k + 1-ary relation B such that for each u ∈ T there is exactly one tuple
(u, a1, . . . , ak) ∈ B, and it satisfies: Bu = {a1, . . . , ak} and a1 ≤ a2 · · · ≤ ak;
and

On Datalog vs. LFP 169

– for every rule r of π and every mapping ρ from the variables of π to {1, . . . , k},
there is a unary relation Lr,ρ interpreted in D by {u ∈ T : L(u) = (r, ρ′)}, where
ρ′ is the map that takes x to aρ(x) where (u, a1, . . . , ak) ∈ B.

We will not distinguish notationally between (T, B, L) and D in the sequel, as it will
always be clear from the context in which presentation we formally work. It is easily
seen that we can write a formula ϕ of MSO such that D |= ϕ if, and only if, D is
a decorated expansion of π and the underlying expansion A is acyclic. Let q be the
quantifier rank of ϕ and let Q be the number of distinct MSO-types of quantifier rank at
most q. Note that the values of q and Q are determined by π and do not depend on the
choice of the expansion A.

For x ∈ T , we write Dx for the substructure of D induced by the subtree of T rooted
at x, and the elements related to nodes of this subtree by B. Note that the only elements
that Dx shares with the rest of D are in Bx. We write D[x/D′] for the structure obtained
from D by replacing Dx by D′. That is, it is the disjoint union of the structure D \
Dx, obtained by removing Dx from D, with the structure D′ while identifying the
elements in BD′

r (where r is the root of D′) with BD
x . It is then an easy consequence of

Lemma 2.3 that D ≡q D[x/D′] if Dx ≡q D′. In particular this implies that if D is an
acyclic decorated expansion then D[x/D′] is also an acyclic expansion. For x, y ∈ T ,
we write y ≺ x to denote that y is an ancestor of x in T.

We begin with an informal account of the proof of Lemma 5.2. The idea is to start
with an acyclic expansion D that maps homomorphically to a simple path of length N ,
for some large enough N . This enables us to find a pair x, y ∈ T such that Dx ≡q Dy

and y ≺ x. We can then pump, i.e. consider the expansions D′ := D[x/Dy] and
D′′ := D[x/D′

y], etc. in order to obtain larger acyclic expansions with longer s-t-
paths. If D itself consisted of a single path, x and y could be chosen so that the pumped
expansions themselves consisted of simple paths and we would obtain a set of such
paths growing linearly in length. However, if D contains multiple intersecting paths, the
process of pumping may create new paths, including ones shorter than N . Moreover,
in order to ensure that all paths in the new expansion are affected by pumping, it is
not sufficient to choose one pumping pair (x, y), rather we need pairs intersecting (in a
suitable way) all s-t-paths in D. Unfortunately, these pairs may overlap and we need to
define the process of pumping carefully.

The difficult part of the proof is therefore to choose the set of pairs (x, y) we want to
use, and to define the process of pumping carefully. In the construction outlined below,
we show how such a set of pairs can be found such that after repeating the pumping
process n times, every s-t-path has length at least n and at most nc, for some c ∈ N

that depends on D but not on n. This is enough to prove the lemma. We begin by giving
a definition of pumping for a set C of pairs (x, y) which form an anti-chain in D (in
a sense we make precise below). We then use this to inductively define the pumped
expansions for more general sets C.

Pumping at an antichain: Let D = (T, B, L) be a decorated expansion and C ⊆ T 2 a
set of pairs (x, y) such that y ≺ x and if (x, y), (x′, y′) ∈ C then x �= x′ and y �7 y′. We
define the expansions DC

n by induction on n: DC
0 := D and DC

n+1 := D[x/(DC
n)y :

(x, y) ∈ C].

170 A. Dawar and S. Kreutzer

In other words, DC
n is obtained from D by pumping each pair (x, y) in C simultane-

ously n times. Since, for distinct pairs (x, y) and (x′, y′), y and y′ (and hence also x and
x′) are incomparable, this is well-defined. We now use this to define pumping for sets
of pairs C which are not necessarily incomparable. To be specific, suppose that C ⊆ T 2

is a set of pairs (x, y) with y ≺ x and x �= x′ for distinct pairs (x, y) and (x′, y′). We
define a partial order on C by letting (x, y) � (x′, y′) just in case y′ ≺ y and let ht(x, y)
denote the length of the maximal �-chain below the pair (x, y). Let m be the maximal
value of ht(x, y) among all pairs in C. Write Cp for the set {(x, y) ∈ C : ht(x, y) = p}.

Pumping: We define the pumped expansions by induction on p: D0
n = DC0

n and
Dp+1

n = (Dp
n)C

p+1

n . Finally, let DC
n denote Dm

n .
Intuitively, given D and C we pump D by working bottom-up in D and replacing

recursively for each pair (x, y) ∈ C the tree rooted at x by the tree rooted at y and
repeat n times. Note that if C is chosen so that for each (x, y) ∈ C, Dx ≡q Dy , then
we also have DC

n ≡q D. In particular, DC
n is an acyclic expansion of π. The following

claim is easily established by induction on p.

Claim. Every s-t-path in DC
n is of length at most nm ·N .

Let b be the maximal branching degree in any decorated expansion of π (note that this
depends only on π) and choose N ∈ S with N > bQ·K , where K := 2k

2 · k4. Let
A be an expansion witnessing that a simple path of length N is accepted by π and
D = (T, B, L) be the corresponding decorated expansion. By the choice of N , every
s-t-path P in A must contain K distinct internal vertices v1, . . . vK such that there is a
chain xP := x1 ≺ · · · ≺ xK in T with Dxi ≡q Dxj for all i, j and vi ∈ Bxi . Choose
for each s-t-path such a chain and let Γ := {xP : P is an s-t-path in A}.

If Bx consists of the elements a1, . . . , ak in order, we say that a path P crosses x at
(α, β) (for 1 ≤ α < β ≤ k) if P contains aα and aβ and no intermediate element of
Bx. For a fixed xP , by the choice of K , we can find a pair (α, β) and a subsequence
x′P of xP of length at least 2k

2 · k2 such that for each x in x′P , P crosses x at (α, β).
Let Γ ′ be the collection of the pairs (x′P , (α, β)) for xP ∈ Γ .

Distant: Say a pair (u, v) ⊆ By , for some y ∈ T , is distant if for every path P from u
to v in A there is some (x, (α, β)) ∈ Γ ′ such that P crosses each x ∈ x at (α, β).

By construction, (s, t) is distant. For each (x, (α, β)) ∈ Γ ′ we can choose a pair
x, y ∈ x with (x, a1, . . . , ak) ∈ B and (y, b1, . . . , bk) ∈ B such that y ≺ x and (ai, aj)
is distant if, and only if, (bi, bj) is distant for all i, j. Indeed, as x has at least 2k

2 · k2

elements, we have at least k2 distinct choices for x. This ensures that we can choose C
to be a collection of such pairs (x, y), including one from each (x, (α, β)) ∈ Γ ′ such
that no two pairs in C share the same first component.

For u, v ∈ Bx, for some x ∈ T, define the pumping height of (u, v) to be the length
of the maximal chain (with respect to the order �) in C below x. The following claim
is the key to the pumping argument.

Claim. For all p, n, if the pumping height of (u, v) is at most p and (u, v) is distant then
the distance of u and v in Dp

n is at least n.

In particular, the claim implies that for n ∈ N, every s-t-path in DC
n is of length at

least n. As C, and hence m, only depend on the initial choice of D and not on n, we

On Datalog vs. LFP 171

have that every s-t-path in DC
n is of length at most nm · N . To complete the proof of

Lemma 5.2, take a1 = N + 1 and ai+1 = am+1
i . �

To complete the proof of Theorem 5.1, consider the class CS where S = {22n2

: n ∈
N} which is clearly decidable in polynomial time. It is easily verified that there is no
sequence (ai)i∈ω that satisfies the conditions of Lemma 5.2 for this set. Finally, we note
also that the restriction of the class CS to finite structures can be characterised as {A :
A finite and A �→ B} for a fixed infinite structure B. Simply take B to be the structure
formed from the disjoint union of all finite A �∈ CS by identifying all copies of s and t.

References

1. Open Problems List for the MathsCSP Workshop, Oxford (2006),
http://www.cs.rhul.ac.uk/home/green/mathscsp/

2. Afrati, F., Cosmadakis, S., Yannakakis, M.: On Datalog vs. Polynomial Time. Journal of
Computer and System Sciences 51, 177–196 (1995)

3. Atserias, A.: The homomorphism preservation property. In: Talk at International Workshop
on Mathematics of Constraint Satisfaction, Oxford (2006)

4. Atserias, A., Bulatov, A., Dawar, A.: Affine systems of equations and counting infinitary
logic. In: Proc. 34th International Colloquium on Automata, Languages and Programming.
LNCS, vol. 4596, pp. 558–570. Springer, Heidelberg (2007)

5. Atserias, A., Dawar, A., Grohe, M.: Preservation under extensions on well-behaved finite
structures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 1437–1449. Springer, Heidelberg (2005)

6. Atserias, A., Dawar, A., Kolaitis, P.G.: On preservation under homomorphisms and unions
of conjunctive queries. Journal of the ACM 53, 208–237 (2006)

7. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
databases. In: Proc. 9th ACM Symp. on Theory of Computing, pp. 77–90 (1977)

8. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg (1999)
9. Feder, T., Vardi, M.Y.: Computational structure of monotone monadic SNP and constraint

satisfaction: A study through Datalog and group theory. SIAM Journal of Computing 28,
57–104 (1998)

10. Feder, T., Vardi, M.Y.: Homomorphism closed vs existential positive. In: Proc. of the 18th
IEEE Symp. on Logic in Computer Science, pp. 311–320 (2003)

11. Grohe, M.: Logic, graphs, and algorithms. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and
Automata History and Perspectives, Amsterdam University Press (2007)

12. Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
13. Immerman, N.: Relational queries computable in polynomial time. Information and Con-

trol 68, 86–104 (1986)
14. Kolaitis, P.G., Vardi, M.Y.: Conjunctive query containment and constraint satisfaction. Jour-

nal of Computer and System Sciences 61, 302–332 (2000)
15. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and

Applied Logic 126, 159–213 (2004)
16. Moschovakis, Y.N.: Elementary Induction on Abstract Structures. North Holland, Amster-

dam (1974)
17. Rossman, B.: Existential positive types and preservation under homomorphisisms. In: 20th

IEEE Symposium on Logic in Computer Science, pp. 467–476 (2005)
18. Vardi, M.Y.: The complexity of relational query languages. In: Proc. of the 14th ACM

Symp. on the Theory of Computing, pp. 137–146 (1982)

http://www.cs.rhul.ac.uk/home/green/mathscsp/

Directed st-Connectivity Is Not Expressible in

Symmetric Datalog�

László Egri1, Benôıt Larose2, and Pascal Tesson3

1 School of Computer Science, McGill University
legri1@cs.mcgill.ca

2 Département d’Informatique et de Génie Logiciel, Université Laval
pascal.tesson@ift.ulaval.ca

3 Department of Mathematics and Statistics, Concordia University
larose@mathstat.concordia.ca

Abstract. We show that the directed st-connectivity problem cannot
be expressed in symmetric Datalog, a fragment of Datalog introduced in
[5]. It was shown there that symmetric Datalog programs can be eval-
uated in logarithmic space and that this fragment of Datalog captures
logspace when augmented with negation, and an auxiliary successor re-
lation S together with two constant symbols for the smallest and largest
elements with respect to S. In contrast, undirected st-connectivity is
expressible in symmetric Datalog and is in fact one of the simplest ex-
amples of the expressive power of this logic. It follows that undirected
non-st-connectivity can be expressed in restricted symmetric monotone
Krom SNP, whereas directed non-st-connectivity is only definable in the
more expressive restricted monotone Krom SNP. By results of [8], the in-
expressibility result for directed st-connectivity extends to a wide class of
homomorphism problems that fail to meet a certain algebraic condition.

1 Introduction

Separating deterministic logspace from non-deterministic logspace remains an
outstanding challenge of computational complexity. Because undirected and di-
rected st-connectivity are respectively complete for L [10] and NL, the question is
tied to the distinction between the hardness of these two problems. Ajtai and Fa-
gin gave the first proof that st-connectivity is “harder” for directed graphs than
for undirected graphs in a precise technical sense [2]. They showed that unlike
undirected st-connectivity, directed st-connectivity is not definable in monadic
Σ1

1 . The result presented here is similar in spirit: we prove that unlike undirected
st-connectivity, directed st-connectivity is not definable in symmetric Datalog.

This result is part of a research program investigating the descriptive complex-
ity of constraint satisfaction problems or, equivalently, of the problem Hom(B) of
determining whether a homomorphism exists between an input relational struc-
ture A and the fixed template B. Feder and Vardi [6] showed that in a number

� Research supported in part by NSERC, FQRNT and CRM.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 172–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 173

of important cases, a polynomial time algorithm for the problem Hom(B) could
be obtained by showing that the set of structures which are not homomorphic
to B is definable in Datalog (in the sequel, we abuse terminology and say simply
that Hom(B) is definable in Datalog). Pursuing that line of research, Dalmau
proved that cases of the homomorphism problem that are known to lie in NL are
all related to the linear fragment of Datalog. Finally, symmetric Datalog (itself
a restriction of linear Datalog), was introduced in [5]. Symmetric Datalog pro-
grams can be evaluated in logspace and all cases of the homomorphism problem
currently known to lie in L are in fact expressible in this fragment.

Over the last ten years, the complexity of Hom(B) has also been studied
through a powerful algebraic approach [3], whose description is beyond the scope
of this paper. The algebraic angle of attack was initially developed in parallel to
the aforementioned logical one, but the links between them have been increas-
ingly apparent. In particular, it is conjectured in [8] that Hom(B) (1) belongs to
logspace iff (2) it is definable in symmetric Datalog iff (3) the algebra associated
to B satisfies a technical universal-algebraic condition. The implication (2) →
(1) is a consequence of Reingold’s theorem [10]. The inexpressibility of directed
st-connectivity in symmetric Datalog is the missing piece of a puzzle establishing
the implication (2) → (3). Note that (1) ↔ (3) (or (1) ↔ (2)) can only hold if
L �= NL, whereas the equivalence of (2) and (3) may still hold if L = NL.

The second order logic fragments restricted monotone Krom SNP and re-
stricted symmetric monotone Krom SNP [4, 5, 7] were shown to be equivalent
to linear Datalog and symmetric Datalog respectively. From our main theorem,
it follows that undirected non-st-connectivity can be expressed in both second
order logic fragments while directed non-st-connectivity is only definable in re-
stricted monotone Krom SNP. Grädel showed that a logic closely related to sym-
metric monotone Krom SNP captures Logspace1 in the presence of an auxiliary
successor relation S and constant symbols for the smallest and largest element
with respect to S. Similarly, symmetric Datalog captures logarithmic space if
it is augmented with negation, an auxiliary successor relation S and constant
symbols for the smallest and largest elements with respect to S [5]. Separating
the complexity classes L and NL is equivalent to extending our inexpressibility
result and showing that directed st-connectivity is inexpressible in symmetric
Datalog even in the presence of negation and an auxiliary successor relation.

In the remainder of this section, we review the basic notions required for the
exposition of our results. Section 2 introduces the key technical ingredients of
our arguments and Section 3 presents a sketch of the proof of our main re-
sult. Because of space restrictions, most technical arguments are omitted in this
extended abstract.

1.1 Relational Structures and Homomorphisms

A vocabulary is a finite set of relation symbols. In the following, τ denotes a
vocabulary. Every relation symbol R in τ has an associated arity r. A relational

1 Grädel’s result uses the class co-SL now known to coincide with L.

174 L. Egri, B. Larose, and P. Tesson

structure A over the vocabulary τ , or simply a τ-structure consists of a set A
called the universe or domain of A, and a relation RA ⊆ Ar for every relation
symbol R ∈ τ , where r is the arity of R. We use boldface letters to denote
relational structures.

Definition 1. Let A = 〈A;RA
1 , . . . , RA

q 〉 and B = 〈B;RB
1 , . . . , RB

q 〉 be relational
structures over the same vocabulary. A function h : A → B is called a homo-
morphism from A to B if 〈h(a1), . . . , h(ari)〉 ∈ RB

i whenever 〈a1, . . . , ari〉 ∈ RA
i ,

1 ≤ i ≤ q. We write A h−→ B if h is a homomorphism from A to B and simply
A→ B if such an h exists.

For a fixed τ -structure B, the homomorphism problem for B, denoted Hom(B),
consists of determining whether a given τ -structure A is homomorphic to B. Al-
ternatively, one can think of Hom(B) as the set of such structures, i.e. Hom(B) =
{A : A h−→ B}. For a graph H with distinguished sets S and T of start and
target vertices, the directed ST -connectivity problem consists of determining if
there is a directed path from some s ∈ S to some t ∈ T . We view the triple (H , S,
T) as a relational structure H over the set of vertices with a binary edge-relation
E and unary relations S and T . One can easily verify that a directed path from
some s ∈ S to some t ∈ T exists in H iff there is no homomorphism from H to the
two-element structure B defined by EB = {(0, 0), (0, 1), (1, 1)}, SB = {1} and
TB = {0}. Similarly, there is an undirected ST -path in H iff H is not homomor-
phic to the two-element structure C defined as EC = {(0, 0), (1, 1)}, SC = {1}
and TC = {0}. In the sequel, we therefore regard (un)directed ST -connectivity
as a homomorphism problem.

1.2 Datalog

Datalog is a query and rule language for deductive databases. A Datalog program
D over a vocabulary τ is a finite set of rules of the form h ← b1; ...; bm where
h and each bi are atomic formulas Rj(v1, ..., vk). We say that h is the head of
the rule and that b1; ...; bm is its body. Relational predicates Rj which appear
in the head of some rule of D are called intensional database predicates (IDBs)
and are not part of the vocabulary τ . All other relational predicates are called
extensional database predicates (EDBs) and are in τ .

A rule of D is linear if its body contains at most one IDB and is non-recursive
if its body contains only EDBs. A linear but recursive rule is of the form I1(x̄) ←
I2(ȳ);E1(z̄1); . . . ;Ek(z̄k) where I1, I2 are IDBs and the Ei are EDBs2. Each such
rule has a symmetric I2(ȳ) ← I1(x̄);E1(z̄1); . . . ;Ek(z̄k). A Datalog program is
non-recursive if all its rules are non-recursive, linear if all its rules are linear and
symmetric if it is linear and if the symmetric of each recursive rule of D is also
a rule of D. We further say that D has width (j, k) if each rule of D has at most
k variables and at most j variables in the head.

A Datalog program D takes a τ -structure A as input and returns a structure
D(A) over the vocabulary τ ′ = τ ∪ {I : I is an IDB in D}. We also want to
2 Note that the variables occurring in x̄, ȳ, z̄i are not necessarily distinct.

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 175

view a Datalog program as being able to accept or reject an input τ -structure
and this is achieved by choosing one of the IDB’s of D as the goal predicate: the
τ -structure A is accepted by D if the goal predicate G is non-empty in D(A).

The semantics of Datalog are very intuitive and we only illustrate them
through an example. A formal definition can be found, for example, in [4, 9].
Consider the problem of two-coloring. An undirected graph is two-colorable if
and only if it contains no cycles of odd length. The following Datalog program D
defines two-coloring because the goal predicate becomes non-empty if and only
if the input graph contains an odd cycle.

O(x, y) ← E(x, y)
O(x, y) ← O(x,w);E(w, z);E(z, y)
O(x,w) ← O(x, y);E(w, z);E(z, y)

G← O(x, x)

Here E is the binary EDB representing the adjacency relation in the input graph,
O is a binary IDB whose intended meaning is “there exists an odd-length path
from x to y” and G is the 0-ary goal predicate. Intuitively, the program first
finds a path of length one using the only non-recursive rule and then iteratively
finds paths of higher odd lengths using the middle two rules. Whenever the path
begins and ends at the same vertex x, the goal predicate becomes non-empty
indicating the presence of a cycle of odd length.

Note that the two middle rules form a symmetric pair. In the above descrip-
tion, we have not included the symmetric of the last rule. In fact, the fairly
counterintuitive rule O(x, x) ← G can be added to the program without chang-
ing the class of structures accepted by the program since the rule only becomes
relevant if an odd cycle has already been detected in the graph.

Assume that a program D accepts a structure A. Intuitively, a derivation tree
over A is a representation of the “proof” that D accepts A. Consider, for exam-
ple, the following (linear) Datalog program D over the vocabulary consisting of
a binary relation symbol E and two unary relation symbols S and T :

I(y) ← S(y)
I(y) ← I(x);E(x, y)

G← I(y);T (y)

We choose G as the goal predicate. One can verify that an input structure A
is accepted if and only if there is a path in the graph A from a vertex in S to
a vertex in T . Let A be the input structure in Figure 1. Notice that D accepts
A because it contains a path v5, v6, v3, v4 from a vertex in S to a vertex in
T . Therefore one possible derivation tree for D over A is shown in Figure 1.
Intuitively, the derivation tree “follows” the path from v5 to v4.

Formally, a derivation tree T for a Datalog program D over a structure A
is a tree such that (1) the root of T is the goal predicate; (2) an internal node
(including the root) together with its children correspond to a rule R of D in the
following sense. The internal node is the head IDB of R and the children are the

176 L. Egri, B. Larose, and P. Tesson

v5

v6

v3

v4

v7
v8

v1
v2 G

I(v4)

I(v3)

I(v6)

I(v5)

S(v5)

E(v5, v6)

E(v6, v3)

E(v3, v4)

T (v4)

Fig. 1. The input structure A with S = {〈v5〉} and T = {〈v4〉} and the corresponding
derivation tree

predicates in the body of R; (3) an internal node of T is an IDB predicate I(ā)
together with an instantiation of variables where if I has arity r then ā ∈ Ar; (4)
the predicate children of a parent node inherit an instantiation to elements of A
from their parents; (5) the leaf nodes of T are EDB predicates E(b̄) such that if
E has arity s then b̄ ∈ As and b̄ ∈ EA. By design, a derivation tree for a Datalog
program D and a structure A exist if and only if D accepts A. For linear and
symmetric Datalog we use the term derivation path instead of derivation tree
because the IDBs in a derivation tree form a path.

Let τ consist of a single binary relation E. We say that a symmetric Datalog
program D computes reflexive transitive closure if D has a binary IDB G such
that for any τ -structure A (i.e. a digraph) we have that GD(A) is the reflexive
transitive closure of EA. For this case, we slightly abuse terminology and call
G the goal predicate. We show (Lemma 11) that there exist a symmetric D
computing reflexive transitive closure iff directed ST -connectivity is expressible
in symmetric Datalog. Although our main objective is the second statement, our
proof establishes the former statement for technical convenience.

In order to show that no symmetric Datalog program D computes reflexive
transitive closure, we use a form of pumping argument reminiscent of [1]. Roughly
speaking, we prove that if D is complete (i.e. if for all H we have 〈u, v〉 ∈ GD(H)

whenever 〈u, v〉 is in the reflexive transitive closure of EH) then it must be
unsound (i.e. there exists H′ such that GD(H′) contains a pair 〈u, v〉 which is not
in the closure of EH′

). We consider the behavior of D on an input H which is a
“sufficiently long” simple path s→ h1 → . . .→ hr → t. If D is complete then the
pair 〈s, t〉 must be in GD(H) and there must exist a derivation path P witnessing
this fact. Now, consider a subpath of P , say I3−I2−I1. For example, suppose that
by successively using rules R1 and R2, the program derives I3(a, b) from I1(c) as
follows: I2(c, a) R1←− I1(c);E(c, a) and I3(a, b) R2←− I2(a, c);E(a, b). Notice that
since the symmetric rules R′1,R′2 are also in D we can use R′2 followed by R′1
to re-obtain I1(c) from I3(a, b) and, from there, re-derive I3(a, b) from I1(c). In
other words, we can artificially lengthen P by replacing the subpath I3− I2− I1
of P by I3 − I2 − I1 − I2 − I3 − I2 − I1. By using this “pumping” trick on
carefully chosen subpaths, we obtain from P a new derivation path P ′ and then
construct from P ′ a new digraph H′ such that P ′ witnesses the membership of
a pair 〈u, v〉 in GD(H′) even though no path from u to v exists in H′. In the next

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 177

section, we formalize the above intuition by introducing mirror operators and
zig-zags: mirroring corresponds to the lengthening process just described and
zig-zags allow us to describe the form of the derivation path obtained through a
sequence of mirroring operations.

2 Zig-Zags, Mirror Operators and Free Derivation Paths

A min-max pair, denoted by [a, b], is a pair of integers a, b such that a < b.
Similarly, an index pair 〈i, j〉 is a pair of integers such that i < j. A zig-zag is a
sequence of integers Z = t1, . . . , tp such that |ti−ti+1| = 1 for each 1 ≤ i ≤ p−1.
Given a min-max pair [a, b] and a zig-zag Z, MaxP[a,b](Z) denotes the set of
all index pairs 〈k, �〉 such that (i) if t ∈ {tk, tk+1, ..., t�} then a ≤ t ≤ b, (ii)
a, b ∈ {tk, tk+1, ..., t�} and (iii) neither a ≤ tk−1 ≤ b nor a ≤ t�+1 ≤ b holds. Let
Z denote the set of all zig-zags. A mirror operator μ[a,b],r : Z → Z is a function
with a min-max pair parameter and r ∈ Z+. Let Z be a zig-zag. Then μ[a,b],r(Z)
is the zig-zag such that for each index pair 〈i, j〉 ∈ MaxP[a,b](Z) we insert r
consecutive copies of the sequence tj−1, tj−2, . . . ti, ti+1, . . . , tj after tj in Z.

Our main theorem relies on corollaries 6 and 8 which, in turn, rely on Lemma 2.
The proof of Lemma 2 is not difficult but laborious and is omitted.

Lemma 2. Let μ(Z) = μ[a,b],r1(Z) and ν(Z) = μ[c,d],r2(Z) be mirror operators,
and let Z be a zig-zag. Then

ν(μ(Z)) = μ(ν(Z)).

2.1 The Free Derivation Path

A free derivation path is obtained from a derivation path by replacing the domain
elements with the underlying variables and renaming all quantified variables
to different names. For example, let D be the symmetric Datalog program in
Figure 2a. Let the input structure A be the graph in Figure 2b together with
the unary relations S = {s} and T = {t}. Then a derivation path P obtained
from D over the input A is shown in Figure 2c. In Figure 2d we obtain the
corresponding free derivation path by renaming each variable of P such that the
variables of an IDB and EDBs in the body of a rule inherit the variables of the
head IDB and all other variables are renamed to new elements.

Let τ be the input vocabulary of a symmetric Datalog program D and let F
be a free derivation path. We can associate a τ -structure F with F as follows.
First, the domain F of F consists of all the variables appearing in F . Second,
let R ∈ τ have arity r and put a tuple 〈x1, . . . , xr〉 ∈ F r into the relation RF if
R(x1, . . . , xr) is present in F . Observe that F is a derivation path for F. F is
called the free structure associated with F .

Given a zig-zag Z = t1, . . . , tq and a free derivation path F having q occur-
rences of IDBs, we construct a corresponding labeled free derivation path FZ

as follows. Label the i-th IDB of F starting from the goal predicate with ti,
1 ≤ i ≤ q. If an IDB I is labeled with ti we denote it by Iti . Let FZ be a

178 L. Egri, B. Larose, and P. Tesson

I(y) ← S(y)
I(y) ← I(x);E(x, y)
I(x) ← I(y);E(x, y)

G← I(y);T (y)

(a) The symmetric Datalog program
D.

s
a t

(b) The edge relation of the input
structure A.

G

I(t)

I(a)

I(s)

I(a)

I(s)

S(s)

E(s, a)

E(a, s)

E(s, a)

E(a, t)

T (t)

(c) A derivation path P for A.

G

I(x1)

I(x2)

I(x3)

I(x4)

I(x5)

S(x5)

E(x5, x4)

E(x4, x3)

E(x3, x2)

E(x2, x1)

T (x1)

(d) The corresponding free derivation
path F for A. Note that the sec-
ond a becomes x4 and the second
s becomes x5.

Fig. 2. The construction of a free derivation path

labeled free derivation path and let μ = μ[a,b],r be a mirror operator. We extend
the action of μ to labeled free derivation paths in a natural way. First, for each
index pair 〈i, j〉 ∈ MaxP[a,b](Z) we insert r consecutive copies of the sequence
Itj−1 , Itj−2 , . . . Iti , Iti+1 , . . . , Itj after Itj in FZ . Second, let Itk

− Itk+1 be a seg-
ment of FZ and let R be the corresponding rule. Whenever Itk

−Itk+1 is inserted
in the new derivation path the corresponding rule is R and the parent of the
EDBs of R is Itk

. On the other hand, whenever we insert Itk+1 − Itk
the rule

corresponding to Itk+1 − Itk
is the symmetric rule R′ of R and accordingly, the

parent of the EDBs of R′ is Itk+1 . Third, μ(FZ) is labeled with μ(Z). Finally,
starting at the goal predicate, traverse the variables of μ(FZ) and rename them
to a new name whenever possible. This ensures that μ(FZ) is free. Clearly, if FZ

is a labeled free derivation path constructed from the rules of a symmetric pro-
gram D then μ(FZ) can also be constructed from the rules of D. The definition
of the free structure associated with a labeled free derivation path is analogous
to the definition of the free structure associated with a free derivation path.

For instance, consider again the program D in Figure 2a; a free derivation
path F for this program is shown in Figure 3a. Let Z = 1, 2, 3 be a zig-zag.
Then FZ is shown in Figure 3b. Figure 3c shows the intermediate step when the
variables are not yet renamed to new elements and Figure 3d shows μ[2,3],1(FZ).

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 179

G

I(x1)

I(x2)

S(x2)

E(x2, x1)

T (x1)

(a) The free derivation path F .

G1

I2(x1)

I3(x2)

S(x2)

E(x2, x1)

T (x1)

(b) The labeled free derivation path
FZ , where Z = 1, 2, 3.

G1

I2(x1)

I3(x2)

I2(x1)

I3(x2)

S(x2)

E(x2, x1)

E(x2, x1)

E(x2, x1)

T (x1)

(c) Intermediate step in the construc-
tion of μ[2,3],1(FZ).

G1

I2(y1)

I3(y2)

I2(y3)

I3(y4)

S(y4)

E(y4, y3)

E(y2, y3)

E(y2, y1)

T (y1)

(d) By renaming the variables we get
the new labeled free derivation
path μ[2,3],1(FZ).

Fig. 3. Constructing μ[2,3],1(FZ)

Before we present an outline of the general proof, we demonstrate the proof
idea by showing that the symmetric (1, 2)-Datalog program D in Figure 2a can-
not decide the directed ST -connectivity problem. Program D is complete in the
sense that it accepts any structure A in which there exist vertices s ∈ SA and
t ∈ TA such that there is a path from s to t in EA. In fact, D decides the
undirected ST -connectivity problem.

Observe that D accepts the directed ST -connectivity instance 〈U ;S, T,E〉,
where U = {u, v}, S = {u}, T = {v}, E = {〈u, v〉}. There could be many corre-
sponding derivation paths but pick the one that contains only a single application
of a recursive rule. Then the corresponding free derivation path is the one in Fig-
ure 3a and the corresponding free structure is F1 in Figure 4a. Applying μ[2,3],1

and constructing the free structure yields F2 in Figure 4b which is also accepted
by D even though there is no path from y4 to y1.

This trick can also be applied to any (1, k)-Datalog program. The difficulty is
to generalize this argument to (j, k)-programs for j > 1. To see this challenge,
assume that we input a directed path from a vertex u to a vertex v together
with S = {u} and T = {v} to a symmetric (j, k)-Datalog program with j > 1.
Then the free structure F can be rather more complicated than before. First,
F could contain many different paths from u to v. For each path p we can

180 L. Egri, B. Larose, and P. Tesson

S = {x2} T = {x1}

x2 x1

(a) The free structure F1 associated
with the free derivation path in
Figure 3a.

y4 y3

y2 y1

S = {y4} T = {y1}
(b) The free structure F2 associated

with the labeled free derivation
path FZ in Figure 3d.

Fig. 4. Fooling a simple symmetric program by “pumping” the input structure

find a mirror operator that produces a labeled free derivation path such that in
the corresponding free structure p “disappears”. After we compose these mirror
operators to obtain a new operator. Using the commutativity property stated
in Corollaries 6 and 8 we show that this new operator produces a labeled free
derivation path that is still accepted but in the corresponding free structure
each path “disappears”. Second, notice that if j = 1 then when we traverse the
edges of a path in a free structure we must either move in the free derivation
path monotonically towards the goal predicate or monotonically away from the
goal predicate. When j > 1 this is not the case any more. The location of
the edges of the path in the free structure can be much more “disordered” in the
free derivation path. This is why we need to mirror a segment of a labeled free
derivation path more than once, i.e. to set r greater than 1 in a mirror operator
μ[a,b],r.

3 Proof of the Main Theorems: Outline

We provide in this section an overview of the proof of the main theorems. Due to
space restrictions, we simply describe the main technical results and show how
they can be assembled to obtain Theorem 3 below and its alternative formulation
Theorem 12.

Theorem 3. No symmetric Datalog program D computes reflexive transitive
closure.

As noted at the end of the previous section, our proof revolves around a gener-
alization of the basic argument described through Figure 4.

Definition 4. Let FZ and FZ ′ be labeled free derivation paths and F and F′

be the corresponding relational structures, respectively. We say that there is a
homomorphism from FZ to FZ ′ if there is a homomorphism h from F to F′,
and we denote this by FZ h−→ FZ ′.

Lemma 5. Let FZ be a labeled free derivation path and μ1, μ2, . . . , μn be a
sequence of mirror operators. Let FZ

0 ,FZ
1 , . . . ,FZ

n be a sequence of labeled free
derivation paths defined by FZ

0 = FZ and FZ
i+1 = μi+1(FZ

i), 0 ≤ i ≤ n − 1.

Then FZ
n

h−→ FZ .

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 181

Proof. It clearly suffices to show that FZ
i+1

h−→ FZ
i . Notice that when we apply

μi to FZ
i to obtain FZ

i+1 we insert additional sequences into FZ
i and we create

new variables by renaming the original variables to new names whenever possible.
Let h be the function that maps each new variable in FZ

i+1 to the original in FZ
i .

Clearly, h is a homomorphism.

For example, we obtained the labeled free derivation path in Figure 3d by ap-
plying μ[2,3],1 to the labeled free derivation path in Figure 3b. Define h to be
y1 -→ x1, y2 -→ x2, y3 -→ x1, y4 -→ x2. Observe that h is a homomorphism from
μ[2,3],1(FZ) to FZ .

One of our main tools is Corollary 6, which follows directly from Lemma 2.

Corollary 6. Let μ(Z) = μ[a,b],r1(Z) and ν(Z) = μ[c,d],r2(Z) be mirror opera-
tors, let Z be a zig-zag, and let F be a free derivation path. Then, up to renaming
variables,

ν(μ(FZ)) = μ(ν(FZ)).

Given a labeled free derivation path FZ over τ we define E(FZ) as follows. Index
the EDBs in FZ by their distance from the root G(u, v) and let E(FZ) be the
set of all indexed EDBs that appear in FZ . Furthermore, we say that a set X ⊆
E(FZ) contains a path from x1 to xn if there are indexed EDBs in X such that
Ei1(x1, x2), Ei2(x2, x3), . . . , Eik (xn−1, xn) for some variables x2, x3, . . . , xn−1.
The indices of the EDBs are used to differentiate between paths which would be
the same if we removed the indices. For example, a labeled free derivation path
FZ could contain two paths p1 and p2 whose EDBs are exactly the same but an
EDB E(x, y) of p1 appears at a different level in FZ than the same EDB of p2.
If we had no indices this difference would be lost.

Definition 7. Let μ1, μ2, . . . , μn be mirror operators, let Mi be the operator
Mi = μi ◦ · · · ◦ μ2 ◦ μ1 and let M = Mn. Let X ⊆ E(FZ). We define the M -
expansion X ′ ⊆ E(M(FZ)) of X inductively as follows. The M0-expansion of X
is X. Assume that the Mi-expansion of X is Xi. Consider the construction of
Mi+1(FZ) from Mi(FZ). For each indexed EDB E� in Xi add the corresponding
indexed EDB in Mi+1(FZ) to Xi+1 and any new copies of E�. (Note that indices
of the EDBs in Mi+1(FZ) are recomputed.) The M -expansion of X is Xn.

For example, the μ[2,3],1-expansion of {E2(x2, x1)} in Figure 3b (after index-
ing the EDBs) is {E2(y2, y1), E3(y2, y3), E4(y4, y3)} in Figure 3d. We need the
following corollary of Lemma 2.

Corollary 8. Let Z be a zig-zag, let μ, ν be mirror operators, and let F be a
free derivation path. Let F ′ = (ν ◦μ)(FZ) = (μ◦ ν)(FZ). Let X ⊆ E(FZ). Then
in F ′, the (ν ◦ μ)-expansion of X is the same as the (μ ◦ ν)-expansion of X.

Finally, we also need the following two lemmas.

Lemma 9. Let FZ be a labeled free derivation path and M = μn ◦ · · · ◦ μ2 ◦ μ1

where μ1, μ2, . . . , μn are mirror operators. Let u, v be the variables appearing in

182 L. Egri, B. Larose, and P. Tesson

the goal predicate G(u, v), and let Eu��v ⊆ E(FZ) be a set that contains no path
from u to v. Let E′u��v ⊆ E(M(FZ

n)) be the M -expansion of Eu��v. Then E′u��v

contains no path from u to v.

Proof. Assume that E′u��v contains a path from u to v. Notice that if μ1(FZ)
contains a path from u to v then so does FZ . Repeating this argument for all
i ≥ 2, we obtain a path in Eu��v and this leads to a contradiction.

Lemma 10. Let F be a labeled free derivation path originating from a symmet-
ric (j, k)-Datalog program which has a binary goal predicate G. Assume that
the top IDB of F is G(u, v). Let q be the number of IDBs in F and con-
sider the zig-zag Z = 1, 2, . . . , q. Define a function Ly(x) recursively by setting
Ly(1) = 3(y − 1) and Ly(x) ≥ 4Ly(x − 1) + 6. Assume that E(FZ) contains
a path p from u to v of length at least � where � = Lk(j). Then there exists a
mirror operator μ such that the μ-expansion of p in E(μ(FZ)) does not contain
any path from u to v.

We now have the intermediate results required to prove Theorem 3 which we
restate for convenience.

Theorem 3. No symmetric Datalog program D computes reflexive transitive
closure.

Proof. Suppose for contradiction that D is a symmetric Datalog program that
computes transitive closure. Let B be a structure with an edge relation EB

such that EB is a simple path from a to b. Let the length � of this path satisfy
the length condition of Lemma 10. Obtain the free derivation path F from the
derivation path that witnesses the fact that D derives 〈a, b〉. Assume that the
variables in the binary goal G at the top of F are u and v. Let q be the number
of IDBs in F and let Z be the zig-zag 1, 2, . . . , q be a zig-zag. Observe that any
path from u to v in E(FZ) must have length exactly �. Let P = {p1, ..., pn} be
the set of all paths from u to v in E(FZ). For each 1 ≤ i ≤ n, use Lemma 10
to find a mirror operator μi such that the μi-expansion of pi does not contain
a path from u to v. Let F �� = (μn ◦ μn−1 ◦ · · · ◦ μ1)(FZ). Observe that by
Corollary 6, F �� = (μn ◦ · · · ◦ μi+1 ◦ μi−1 ◦ · · · ◦ μ1 ◦ μi)(F) for each 1 ≤ i ≤ n.
We claim that E(F ��) does not contain any path from u to v.

For the sake of contradiction assume that E(F ��) contains a path w from u
to v. Let h be the homomorphism defined in Lemma 5 from F �� to FZ . Then
h(w) is a path in E(FZ) and therefore h(w) = pi for some i. By construction,
the μi-expansion of pi in E(μi(FZ)) does not contain a path from u to v. Using
Lemma 9 we have that the (μn ◦ . . . ◦ μi+1 ◦ μi−1 ◦ . . . ◦ μ1 ◦ μi)-expansion of pi
in E(F ��) does not contain a path from u to v. By Corollary 8 the (μn ◦ . . . ◦
μi+1 ◦ μi−1 ◦ . . . ◦ μ1 ◦ μi)-expansion and the (μn ◦ μn−1 ◦ . . . ◦ μ1)-expansion of
pi are the same, hence the (μn ◦ μn−1 ◦ . . . ◦ μ1)-expansion of pi in F �� does not
contain a path from u to v. This leads to a contradiction since w is such a path.

Lemma 11. The following statements are equivalent:

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 183

(1) Let τ = {E} where E is a binary relation symbol. There exists a symmetric
Datalog program with binary goal predicate G such that for any τ-structure A,
after running the program on input A, G is the reflexive transitive closure of EA.
(2) Let σ = {S, T,E} where E is a binary and S and T are unary relation
symbols. Then there exists a symmetric Datalog program D such that for any σ-
structure B, D accepts if and only if there exist two vertices s ∈ SB and t ∈ TB

such that there is a path from s to t in EB.

We have thus proved the following theorem, the second half of which relies on
results of [4] and [5] linking fragments of Datalog and monotone Krom SNP.

Theorem 12
(a) Directed ST -connectivity is not definable in symmetric Datalog. More for-
mally, let σ be a vocabulary as in Lemma 11. There is no symmetric Datalog
program D such that D accepts an input σ-structure H iff EH contains a directed
path from some s ∈ SH to some t ∈ TH.
(b) The complement of directed ST -connectivity cannot be defined in restricted
symmetric monotone Krom SNP.

Minor modifications to our arguments show that the above theorem still holds
if we allow negation of EDBs in the Datalog programs.

Acknowledgment. We thank the anonymous referees for their helpful com-
ments on an earlier version of the paper.

References

1. Afrati, F., Cosmadakis, S.S., Yannakakis, M.: On Datalog vs. polynomial time. J.
Comput. Syst. Sci. 51(2), 177–196 (1995)

2. Ajtai, M., Fagin, R.: Reachability is harder for directed than for undirected finite
graphs. J. Symb. Log. 55(1), 113–150 (1990)

3. Cohen, D., Jeavons, P.: The complexity of constaint languages. In: Handbook of
Constraint Programming, pp. 245–280 (2006)

4. Dalmau, V.: Linear Datalog and bounded path duality of relational structures.
Logical Methods in Computer Science 1(1) (2005)

5. Egri, L., Larose, B., Tesson, P.: Symmetric Datalog and constraint satisfaction
problems in logspace. In: LICS 2007: Proceedings of the 22nd Annual IEEE Sym-
posium on Logic in Computer Science, pp. 193–202 (2007)

6. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1999)

7. Grädel, E.: Capturing complexity classes by fragments of second-order logic. Theor.
Comput. Sci. 101(1), 35–57 (1992)

8. Larose, B., Tesson, P.: Universal algebra and hardness results for constraint satis-
faction problems3. In: ICALP, pp. 267–278 (2007)

9. Libkin, L.: Elements of finite model theory. Springer, Heidelberg (2004)
10. Reingold, O.: Undirected st-connectivity in log-space, pp. 376–385 (2005)

3 Extended version is to appear in Theoretical Computer Science.

Non-dichotomies in

Constraint Satisfaction Complexity

Manuel Bodirsky1 and Martin Grohe2

1 École Polytechnique (CNRS), France
2 Humboldt-Universität zu Berlin, Germany

Abstract. We show that every computational decision problem is
polynomial-time equivalent to a constraint satisfaction problem (CSP)
with an infinite template. We also construct for every decision prob-
lem L an ω-categorical template Γ such that L reduces to CSP(Γ) and
CSP(Γ) is in coNPL (i.e., the class coNP with an oracle for L). CSPs with
ω-categorical templates are of special interest, because the universal-
algebraic approach can be applied to study their computational com-
plexity.

Furthermore, we prove that there are ω-categorical templates
with coNP-complete CSPs and ω-categorical templates with coNP-
intermediate CSPs, i.e., problems in coNP that are neither coNP-
complete nor in P (unless P=coNP). To construct the coNP-intermediate
CSP with ω-categorical template we modify the proof of Ladner’s the-
orem. A similar modification allows us to also prove a non-dichotomy
result for a class of left-hand side restricted CSPs, which was left open
in [10]. We finally show that if the so-called local-global conjecture for in-
finite constraint languages (over a finite domain) is false, then there is no
dichotomy for the constraint satisfaction problem for infinite constraint
languages.

1 Introduction

Let Γ be a relational structure over a finite signature τ , also called template or
constraint language in the following. The constraint satisfaction problem (CSP)
of Γ , denoted by CSP(Γ), is the computational problem to decide whether there
exists a homomorphism from a given finite τ -structure to Γ . For finite rela-
tional structures Γ it has been conjectured that the computational complexity
of CSP(Γ) exhibits a dichotomy: it is in P or NP-complete [9, 6].

Ladner’s theorem [14] states that there are computational problems in NP
that are neither in P nor NP-complete (unless P=NP); we also say that these
problems are NP-intermediate. However, the problems constructed by Ladner
are highly artificial, and the lack of natural computational problems that could
be NP-intermediate is one of the phenomena in complexity theory that is not well
understood. Even for well-studied problems in NP that are neither known to be
in P nor known to be NP-hard, such as the Graph Isomorphism problem, there
is usually no strong evidence that they are not in P. From the computational

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 184–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Non-dichotomies in Constraint Satisfaction Complexity 185

complexity perspective, it would therefore be very interesting if there were NP-
intermediate CSPs with finite domains (since CSPs for finite templates are,
arguably, relatively natural computational problems).

The CSP dichotomy conjecture is wide open. Bulatov, Krokhin, and Jeav-
ons [6] give a sufficient condition for a finite domain CSP to be NP-hard, and
they conjecture that all other problems are in P. This conjecture is based on
the so-called universal-algebraic approach to the CSP, and the mentioned condi-
tion is formulated in terms of an algebra that can be associated to the template
Γ . Most work in the area goes into finding larger and larger tractable classes
of CSPs [13, 3, 4]. But not all researchers in the area believe in the conjecture.
On the negative side, Feder and Vardi [9] introduced several heavily restricted
subclasses of NP –for example monadic strict NP (MSNP)– that do not have
a dichotomy. In fact, every problem in NP has a polynomial-time equivalent
problem in MSNP.

In this paper we are mainly interested in infinite templates Γ . A particularly
interesting class of infinite templates is the class of ω-categorical1 structures,
because ω-categorical templates Γ generalize finite templates in such a way that
the above mentioned universal-algebraic approach still applies. For example, it
holds that the complexity of the CSP(Γ) is fully captured by the polymorphism
clone of Γ (even by the pseudo-variety generated by the algebra of the polymor-
phism clone [2]).

Results

We show that for every computational decision problem L there exists a
polynomial-time equivalent constraint satisfaction problem with an infinite tem-
plate Γ . This improves previous complexity results about infinite domain con-
straint satisfaction problems obtained by Bauslaugh [1] and Schwandtner [17].
We also construct an ω-categorical template Γ such that L reduces to CSP(Γ)
and CSP(Γ) is in coNPL (i.e., the class coNP with an oracle for L).

Furthermore, we prove that there are ω-categorical templates with coNP-
complete CSPs and ω-categorical templates with coNP-intermediate CSPs, i.e.,
problems in coNP that are neither coNP-complete nor in P (unless P=coNP).
To show this we use templates that are countable homogeneous directed graphs.
These graphs are ω-categorical, and even though there are uncountably many
non-isomorphic countable homogeneous directed graphs, they are model-
theoretically well-understood [8]. In our construction we apply a modification
of Ladner’s proof technique. It remains open whether there are ω-categorical
structures Γ such that CSP(Γ) is NP-intermediate.

In another line of research, the complexity of the constraint satisfaction prob-
lem has been studied for restricted classes of input structures. Let τ be a fi-
nite relational signature, and let C and D be two classes of finite τ -structures.
Then CSP(C,D) is the computational problem where the input consists of two

1 A structure is ω-categorical if it has for all k only a finite number of k-types (in the
model-theoretic sense [12]).

186 M. Bodirsky and M. Grohe

structures C ∈ C and D ∈ D, and the question is whether there exists a homo-
morphism from C to D. It has been shown that when D0 is the set of all finite
τ -structures, then for any recursively enumerable class of finite τ -structures C the
problem CSP(C,D0) is tractable if and only if C has bounded tree-width modulo
homomorphic equivalence [10]. Note that this is not a dichotomy theorem.

With a similar modification of Ladner’s proof as in our previous result, we can
show that there is an efficiently decidable class C of finite (undirected) graphs
such that CSP(C,D0) is NP-intermediate (here, D0 is the class of all finite undi-
rected graphs); this was left open in [10]. In particular, this shows that there is
no dichotomy for problems of the form CSP(C,D). The same result was inde-
pendently obtained in a recent paper by Chen, Thurley, and Weyer [7].

Finally, we show a connection between the dichotomy conjecture for infinite
constraint languages over a finite domain (implied by Conjecture 4.12 of [5])
and the so-called local-global conjecture. If Γ is a relational structure with an
infinite signature and a finite domain, then CSP(Γ) is called locally tractable if
CSP(Γ ′) is tractable for all reducts Γ ′ of Γ with a finite signature. Note that
for the notion of local tractability we can fix an arbitrary representation of the
relations in the input instances. CSP(Γ) is called globally tractable if there is a
polynomial-time algorithm that solves CSP(Γ) where the relations in the input
instances are represented by fully specifying the relation R ⊂ D(Γ)k. Obviously,
global tractability implies local tractability. The local-global conjecture says that
CSP(Γ) is locally tractable if and only if it is globally tractable.

If the local-global conjecture is true, then the dichotomy for finite constraint
languages implies the dichotomy for infinite constraint languages. We show that
in a certain sense the converse is true as well: if the global tractability conjecture
is false, then there is no dichotomy for infinite constraint languages. In other
words, if the dichotomy conjecture for finite constraint languages is true, then
local and global tractability are equivalent.

Preliminaries

A relational signature τ is a set of relation symbols Ri, each of which has an
associated finite arity ki. The signature will be finite unless stated otherwise. A
relational structure Γ over the signature τ (also called τ -structure) consists of a
set DΓ (the domain) together with a relation R ⊆ Dki

Γ for each relation symbol
of arity ki from τ . If the reference to the relational structure is clear from the
context, we use for simplicity the same symbol for a relation symbol and the
corresponding relation. If necessary, we write RΓ for the relation R belonging to
the structure Γ . We call the elements of DΓ the vertices of Γ .

Let Γ and Γ ′ be τ -structures. A homomorphism from Γ to Γ ′ is a function f
from DΓ to DΓ ′ such that for each n-ary relation symbol R in τ and each n-tuple
(a1, . . . , an), if (a1, . . . , an) ∈ RΓ , then (f(a1), . . . , f(an)) ∈ RΓ ′

. In this case we
say that the map f preserves the relation R. Injective homomorphisms that
also preserve the complement of each relation are called embeddings. Surjective
embeddings are called isomorphisms, and isomorphisms between Γ and Γ are
called automorphisms.

Non-dichotomies in Constraint Satisfaction Complexity 187

The order of a structure Γ , denoted by |Γ |, is the cardinality of DΓ . An
induced substructure of a structure Γ is a structure Γ ′ with DΓ ′ ⊆ DΓ and
RΓ ′

= RΓ ∩Dn
Γ ′ for each n-ary R ∈ τ . The union of two τ -structures Γ, Γ ′ is

the structure Γ ∪ Γ ′ with domain DΓ ∪DΓ ′ and relations RΓ∪Γ ′
= RΓ ∪ RΓ ′

for all R ∈ τ . The intersection Γ ∩ Γ ′ is defined similarly. A disjoint union of Γ
and Γ ′ is the union of isomorphic copies of Γ and Γ ′ with disjoint domains. As
disjoint unions are unique up to isomorphism, we usually speak of the disjoint
union of Γ and Γ ′. A structure is called connected if it is not the disjoint union
of two nonempty structures. For a mapping f defined on the domain of a τ -
structure Γ , we let f(Γ) be the τ -structure with domain f(DΓ) and relations
Rf(Γ) = {(f(a1), . . . , f(an)) | (a1, . . . , an) ∈ RΓ } for every n-ary R ∈ τ .

Classes of structures are always assumed to be closed under isomorphism.

2 Templates of All Complexities

In this section we show that for every computational decision problem there
exists a polynomial-time equivalent constraint satisfaction problem with an in-
finite template Γ . Previously, it was known that for every recursive funtion f
there exists an infinite structure Γ such that CSP(Γ) is decidable, but has time
complexity at least f (a result due to Bauslaugh [1]). Recently, Schwandtner
gave upper and lower bounds in the exponential time hierarchy for some infinite
domain CSPs [17]; but these bounds leave an exponential gap.

Theorem 1. Let L be a language over a finite alphabet Σ. Then there is an
infinite relational structure Γ such that L is polynomial-time Turing equivalent
to CSP(Γ).

Proof (Idea). We construct an infinite relational structure Γ over the signature
τ that contains pairwise distinct unary relation symbols Pa for all elements of
a ∈ Σ; moreover, τ contains a binary relation symbol N and unary relation
symbols S and T .

For each word w ∈ Σ∗ let W be the following τ -structure with vertices
1, . . . , |w|. The relation NW is {(i, i + 1) | 1 ≤ i < |w|}. The unary relation
symbol PW

a holds on j ∈ {1, . . . , |w|} iff the jth symbol in w is a. Finally,
SW = {1} and TW = {|w|}. Let A be {W | w ∈ L}.

Let X be the set of τ -structures with domain {1, . . . , n}, for some n, where
the symbol N is interpreted by the relation {(i, i + 1) | 1 ≤ i < n}, each vertex
i is contained in at most one relation Pa, for a ∈ Σ, and at least one of the
following conditions is satisfied:

– S holds for none of the elements 1, . . . , n.
– T holds for none of the elements 1, . . . , n.
– There is an element from 1, . . . , n such that for all a ∈ Σ the relation Pa

does not hold.

The structure Γ is the infinite disjoint union over all structures in A ∪ X.
The proof that Γ has the required properties has been omitted due to space
restrictions. ��

188 M. Bodirsky and M. Grohe

3 ω-Categorical Templates of Various Complexities

A relational structure is called ω-categorical if for all k ≥ 1 there are at most
finitely many inequivalent first-order formulas with k free variables. This defi-
nition of ω-categoricity is by the theorem of Ryll-Nardzewski equivalent to the
standard definition of ω-categoricity [12]. With the definition given here it is
easy to see that the structure Γ constructed in Section 2 is not ω-categorical,
since there are infinitely many inequivalent first-order formulas with two free
variables x and y that express that x and y are at distance k with respect to the
relation N .

In this section we study the computational complexity of CSP(Γ) if Γ is an
ω-categorical structure, and prove the following.

Theorem 2. For every language L over a finite signature Σ there exists an ω-
categorical structure Γ such that L reduces to CSP(Γ) and CSP(Γ) is in coNPL.

For constructing ω-categorical templates, we need a few preliminaries from model
theory. Let B1, B2 be τ -structures such that A = B1 ∩ B2 is an induced sub-
structure of both B1 and B2. Then we call B1 ∪B2 the free amalgam of B1, B2

over A. More generally, a τ -structure C is an amalgam of B1 and B2 over A if
for i = 1, 2 there are embeddings fi of Bi to C such that f1(a) = f2(a) for all
a ∈ DA. Recall that classes of structures are always assumed to be closed under
isomorphism. A class A of τ -structures has the amalgamation property if for all
A,B1, B2 ∈ A with A = B1 ∩ B2 there is a C ∈ A that is an amalgam of B1

and B2 over A. A class K of finite τ -structures that has the amalgamation prop-
erty and is closed under taking induced substructures is called an amalgamation
class.

The following basic result is known as Fräıssé’s Theorem in model theory (see
Theorem 6.1.2 in [12]):

Fact 3. Let K be an amalgamation class. Then there is an ω-categorical τ-
structure Γ such that K is the class of finite induced substructures of Γ .

The structure Γ , which is unique up to isomorphism, is called the Fräıssé limit
of K.

A few remarks are necessary to relate our version of the theorem to the more
general version stated, for example, in [12]: Firstly, the amalgamation property
is usually defined in a slightly more complicated way where the structure A is
not necessarily an induced substructure of the Bi, but embedded into Bi. As
we assume classes of structures to be closed under isomorphism, this makes no
difference. Secondly, the class A in Fräıssé’s Theorem usually has to have an-
other property known as the joint embedding property. However, for relational
structures the joint embedding property is subsumed by the amalgmation prop-
erty. And thirdly, in general the Fräıssé limit Γ is homogeneous, but not neces-
sarily ω-categorical. But for finite relational vocabularies, homogeneity implies
ω-categoricity.

Let us now turn to the proof of Theorem 2. We encode words over the alphabet
Σ by structures similarly, but not exactly as in the proof of Theorem 1. Let τ be

Non-dichotomies in Constraint Satisfaction Complexity 189

a signature that contains the binary relation symbols N, �=, the unary relation
symbols S, T , and a unary relation symbol Pa for each a ∈ Σ. With each word
w = a1 . . . an ∈ Σ∗ we associate the τ -structure W with universe {0, 1, . . . , n+1},
NW = {(i, i + 1) | 0 ≤ i < n + 1}, �=W = {(i, j) | 0 ≤ i, j ≤ n + 1, i �= j},
SW = {0}, TW = {n + 1}, and Pa = {i | 1 ≤ i ≤ n, ai = a}.

For every τ -structure A, we define an undirected graph GN (A) to be the
graph with vertex set DA and an edge between a, b ∈ DA if and only if a �= b
and (a, b) ∈ NA or (b, a) ∈ NA. We say that A is connected by N if the graph
GN (A) is connected.

Let C be the class of all τ -structures isomorphic to a structure W for some
w ∈ Σ∗\L. Let K be the class of all τ -structures A with the following properties.

(1) The binary relation �=A is anti-reflexive, i.e., it does not contain pairs of the
form (x, x).

(2) The relations SA, TA, and Pa for a ∈ Σ are pairwise disjoint.
(3) NA is anti-reflexive and anti-symmetric. Furthermore, if �=A has cardinality

|A|(|A| − 1), then the graph GN (A) is acyclic.
(4) A does not contain a structure from C as an induced substructure.

Lemma 1. The class K is an amalgamation class.

Proof. It is straightforward to verify that K is closed under isomorphisms and
induced substructures. To show that K has the amalgamation property, let
B1, B2 ∈ K such that A = B1 ∩ B2 is an induced substructure of both B1

and B2. We claim that the free amalgam C = B1 ∪B2 is contained in K.
We have to prove that C has properties (1)–(4) from page 189. This is obvious

for properties (1) and (2), because both B1 and B2 have the property and their
intersection A is an induced substructure of both structures. To see that C
has property (3), note that either C = B1 or C = B2, and C inherits the
property from the respective structure, or DC \DB1 �= ∅ and DC \DB2 �= ∅, and
�=C= �=B1 ∪ �=B2 has cardinality less than |C|(|C|−1). It remains to prove that C
has property (4). Suppose for contradiction that C has an induced substructure
W ∈ C. As �=W connects all pairs of distinct vertices of W , the structure W
must be an induced substructure of B1 or of B2, which is a contradiction.

Let Γ be the Fräıssé-limit of K.

Lemma 2. A finite structure A has a homomorphism to Γ if and only if A has
properties (1)–(4).

Proof (of Theorem 2). There is the following reduction from L to CSP(Γ). Given
a word w ∈ Σ∗, let W be the corresponding τ -structure. If w /∈ L, then W is
in C, and hence W does not satisfy 4. Lemma 2 then implies that there is no
homomorphism from W to Γ . If w ∈ L, then W /∈ C. The structure W has
no induced substructure from C, because every proper induced substructure of
W either does not have an element in S, or does not have an element in T , or
is not connected by N . Therefore, W homomorphically maps to Γ . This shows

190 M. Bodirsky and M. Grohe

that the function that returns for a given word w its word-structure W is a
polynomial-time many-one reduction from L to CSP(Γ).

We finally show that CSP(Γ) can be decided by a universal-nondeterministic
polynomial-time algorithm with an oracle for L, by the following algorithm.

Input: A

If A does not have properties (1)–(3) then reject.
For all induced substructures W of A:

// (can be implemented non-deterministically)
If W is the τ -structure of a word w ∈ Σ∗ then

If w /∈ L then reject.
Accept.

Lemma 2 shows that A homomorphically maps to Γ if and only if A satisfies
(1)–(4), and this is what the algorithm tests. The algorithm can be implemented
on a non-deterministic polynomial-time Turing machine such that there exists
a run on input A where the algorithm rejects if and only if A homomorphically
maps to Γ .

4 coNP-Intermediate ω-Categorical Templates

In this section we construct an ω-categorical directed graph Γ such that CSP(Γ)
is in coNP, but neither coNP-complete nor in P (unless coNP=P). As in the
previous section, the infinite structures studied here are all defined as Fräıssé
limits. All structures in this section will be directed graphs.

Henson [11] used Fräıssé limits to construct 2ω many ω-categorical directed
graphs. If N is a class of τ -structures, Forb(N) denotes the class of all finite
τ -structures A such that no structure from N embeds into A. A tournament is
a directed graph G (without self-loops) such that for all pairs x, y of distinct
vertices exactly one of the pairs (x, y), (y, x) is an arc in G. Note that for all
classes N of finite tournaments, Forb(N) is an amalgamation class, because if
G1 and G2 are directed graphs in Forb(N) such that H = G1 ∩G2 is an induced
substructure of both G1 and G2, then the free amalgam G1 ∪ G2 is also in
Forb(N). We write ΓN for the Fräıssé-limit of Forb(N). Observe that for finite N

the problem CSP(ΓN) can be solved in deterministic polynomial time, because
for a given instance S of this problem an algorithm simply has to check whether
there is a homomorphism from one of the structures in N to S, which is the case
if and only if there is a homomorphism from S to ΓN.

Henson in his proof specified an infinite set T of tournaments T1, T2, . . . with
the property that Ti does not embed into Tj if i �= j. Note that this implies
that for two distinct subsets T1 and T2 of T the two sets Forb(T1) and Forb(T2)
are distinct as well. Since there are 2ω many subsets of the infinite set T, there
are also that many distinct ω-categorical directed graphs. The tournament Tn

in Henson’s set T has vertices 0, . . . , n + 1, and the following edges:

Non-dichotomies in Constraint Satisfaction Complexity 191

– (i, j) for j = i + 1 and 0 ≤ i ≤ n;
– (0, n + 1);
– (j, i) for j > i + 1 and (i, j) �= (0, n + 1).

Proposition 1. The problem CSP(ΓT) is coNP-complete.

Proof. The problem is contained in coNP, because we can efficiently test whether
a sequence v1, . . . , vk of distinct vertices of a given directed graph G induces Tk

in G, i.e., whether (vi, vj) is an arc in G if and only if (i, j) is an arc in Tk, for
all i, j ∈ {1, . . . , k}. If for all such sequences of vertices this test is negative, we
can be sure that G is from Forb(T), and hence homomorphically maps to ΓT .
Otherwise, G embeds a structure from T, and hence does not homomorphically
map to ΓT .

The proof of coNP-hardness goes by reduction from the complement of the
NP-complete 3-SAT problem, and is inspired by a classical reduction from 3-SAT
to Clique. For a given 3-SAT instance, we create an instance G of CSP(ΓT) as
follows: If

{x1
0, x

2
0, x

3
0}, . . . , {x1

k+1, x
2
k+1, x

3
k+1}

are the clauses of the 3-SAT formula (we assume without loss of generality
that the 3-SAT instance has at least three clauses), then the vertex set of G
is {(0, 1), (0, 2), (0, 3), . . . , (k + 1, 1), (k + 1, 2), (k + 1, 3)}, and the arc set of G
consists of all pairs ((i, j), (p, q)) of vertices such that xj

i �= ¬xq
p and such that

(i, p) is an arc in Tk.
We claim that a 3-SAT instance is unsatisfiable if and only if the created

instance G homomorphically maps to ΓT. The 3-SAT instance is satisfiable iff
there is a mapping from the variables to true and false such that in each clause
at least one literal, say xj0

0 , . . . , x
jk+1
k+1 , is true. This is the case if and only if the

vertices (0, j1), . . . , (k + 1, jk+1) induce Tk in G, i.e., ((i, ji), (p, jp)) is an edge if
and only if (i, p) is an edge in Tk. This is the case if and only if Tk embeds into
G, and if and only if G does not homomorphically map to ΓT . ��

We now modify the proof of Ladner’s Theorem given in [16] (which is basically
Ladner’s original proof) to create a subset T0 of T such that CSP(ΓT0) is in
coNP, but neither in P nor coNP-complete (unless coNP=P). One of the ideas
in Ladner’s proof is to ‘blow holes into SAT’, such that the resulting problem
is too sparse to be NP-complete and to dense to be in P. Our modification is
that we do not blow holes into a computational problem itself, but that we ‘blow
holes into the obstruction set T of CSP(ΓT)’.

In the following, we fix one of the standard encodings of graphs as strings
over the alphabet {0, 1}. Let M1,M2, . . . be an enumeration of all polynomial-
time bounded Turing machines, and let R1, R2, . . . be an enumeration of all
polynomial time bounded reductions. We assume that these enumerations are
effective; it is well-known that such enumerations exist.

The definition of T0 uses a Turing machine F that computes a function f :
N → N, which is defined below. The set T0 is then defined as follows.

T0 = {Tn | f(n) is even }

192 M. Bodirsky and M. Grohe

The input number n is given to the machine F in unary representation. The
computation of F proceeds in two phases. In the first phase, F simulates itself2

on input 1, then on input 2, 3, and so on, until the number of computation
steps of F in this phase exceeds n (we can always maintain a counter during the
simulation to recognize when to stop). Let k be the value f(i) for the last input
i for which the simulation was completely performed by F .

In the second phase, the machine stops if phase two takes more than n com-
putation steps, and F returns k. We distinguish whether k is even or odd. If
k is even, all directed graphs G on s = 1, 2, 3, . . . vertices are enumerated. For
each directed graph G in the enumeration the machine F simulates Mk/2 on
the encoding of G. Moreover, F computes whether G homomorphically maps to
ΓT0 . This is the case if for all structures Tl ∈ T that embed into G the value
of f(l) is even. So F tests for l = 1, 2, . . . , s whether Tl embeds to G (F uses
any straightforward exponential time algorithm for this purpose), and if it does,
simulates itself on input l to find out whether f(l) is even. If

(1) Mk/2 rejects and G homomorphically maps to ΓT0 , or
(2) Mk/2 accepts and G does not homomorphically map to ΓT0 ,

then F returns k + 1 (and f(n) = k + 1).
The other case of the second phase is that k is odd. Again F enumerates all

directed graphs G on s = 1, 2, 3, . . . vertices, and simulates the computation of
R	k/2
 on the encoding of G. Then F computes whether the output of R	k/2

encodes a directed graph G′ that homomorphically maps to ΓT0 . The graph G′

homomorphically maps to ΓT0 iff for all tournaments Tl that embed into G′

the value f(l) is even. Whether Tl embeds into G′ is tested with a straightfor-
ward exponential-time algorithm. To test whether f(l) is even, F simulates itself
on input l. Finally, F tests with a straightforward exponential-time algorithm
whether G homomorphically maps to ΓT . If

(3) G homomorphically maps to ΓT and G′ does not homomorphically map to
ΓT0 , or

(4) G does not homomorphically map to ΓT and G′ homomorphically maps to
ΓT0 ,

then F returns k + 1.

Lemma 3. The function f is a non-decreasing function, that is, for all n we
have f(n) ≤ f(n + 1).

Lemma 4. For all n0 there is n > n0 such that f(n) > f(n0) (unless coNP �= P).

Proof. Assume for contradiction that there exists an n0 such that f(n) equals a
constant k0 for all n ≥ n0. Then there also exists an n1 such that for all n ≥ n1

the value of k computed by the first phase of F on input n is k0.

2 Note that by the fixpoint theorem of recursion theory we can assume that F has
access to its own description.

Non-dichotomies in Constraint Satisfaction Complexity 193

If k0 is even, then on all inputs n ≥ n1 the second phase of F simulates Mk0/2

on encodings of an enumeration of graphs. Since the output of F must be k0,
for all graphs neither (1) nor (2) can apply. Since this holds for all n ≥ n1,
the polynomial-time bounded machine Mk0/2 correctly decides CSP(ΓT0), and
hence CSP(ΓT0) is in P. But then there is the following polynomial-time algo-
rithm that solves CSP(ΓT), a contradiction to coNP-completeness of CSP(ΓT)
(Proposition 1) and our assumption that coNP �= P.

Input: A directed graph G.

Test whether G homomorphically maps to ΓT0 .
If yes, accept.
If no, test whether one of the finitely many graphs in T \ T0 embeds into G.
Accept if none of them embeds into G.
Reject otherwise.

If k0 is odd, then on all inputs n ≥ n1 the second phase of F does not find
a graph G for which (3) or (4) applies, because the output of F must be k0.
Hence, R	k0/2
 is a polynomial-time reduction from CSP(ΓT) to CSP(ΓT0), and
by Proposition 1 the problem CSP(ΓT0) is coNP-hard. But note that because
f(n) equals the odd number k0 for all but finitely many n, the set T0 is finite.
Therefore, CSP(ΓT0) can be solved in polynomial time, contradicting our as-
sumption that coNP �= P. ��

Theorem 4. CSP(ΓT0) is in coNP, but neither in P nor coNP-complete (unless
coNP=P).

Proof. It is easy to see that CSP(ΓT0) is in coNP. On input G the algorithm non-
deterministically chooses a sequence of l vertices, and checks in polynomial time
whether this sequence induces a copy of Tl. If yes, the algorithm computes f(l),
which can be done in linear time by executing F on the unary representation of
l. If f(l) is even, the algorithm accepts. Recall that G does not homomorphically
map to ΓT0 iff a tournament Tl ∈ T0 embeds into G, which is the case iff there
is an accepting computation path for the above non-deterministic algorithm.

Suppose that CSP(ΓT0) is in P . Then for some i the machine Mi decides
CSP(ΓT0). By Lemma 3 and Lemma 4 there exists an n0 such that f(n0) = 2i.
Then there must also be an n1 > n2 such that the value k computed during the
first phase of F on input n1 equals 2i. Since Mi correctly decides CSP(ΓT0), the
machine F returns 2i on input n1. By Lemma 3, the machine F also returns 2i
for all inputs from n1 to n2, and by induction it follows that it F returns 2i for
all inputs larger than n ≥ n0, in contradiction to Lemma 4.

Finally, suppose that CSP(ΓT0) is coNP-complete. Then for some i the ma-
chine Ri is a valid reduction from CSP (ΓT) to CSP(ΓT0). Again, by Lemma 3
and Lemma 4 there exists an n1 such that the value k computed during the first
phase of F on input n1 equals 2i. Since the reduction Ri is correct, the machine
F returns 2i on input n1, and in fact returns 2i on all inputs greater than n1.
This contradicts Lemma 4. ��

194 M. Bodirsky and M. Grohe

5 Left-Hand Side Restrictions

Let S be a class of finite τ -structures. Then CSP(S,) is the computational
problem to decide whether for a given pair (A,B) of finite τ -structures with
A ∈ S there is a homomorphism from A to B.

As an example, let τ be the signature that consists of a single binary relation.
In this case, τ -structures can be considered as directed graphs (potentially with
loops). If C is the set of all complete graphs (without loops!), then CSP(C,) is
essentially a formulation of the Clique problem.

The following question was left open in [10]: Are there classes of structures S

such that CSP(S,) is in NP, but neither in P nor NP-complete?
We answer this question positively, and construct such a class S, which can

even be decided in polynomial time. Again we use a modification of Ladner’s
theorem. The modification is similar to the modification presented in Section 4.
This time, we ‘blow holes into the possible clique sizes for the clique problem’ and
obtain a class C0 ⊆ C such that CSP(C0,) is in NP \ P and not NP-complete
(unless P=NP).

The idea is to define C0 in such a way that the C \ C0 becomes finite when
CSP(C0,) is in P; hence, CSP(C0,) is polynomial-time equivalent to the Clique
problem, a contradiction unless P=NP. Moreover, the construction of C0 is
such that C0 is finite if CSP(C0,) is NP-hard. But for finite C0, the problem
CSP(C0,) is in P, again contradicting the assumption that P �= NP. We also
take extra care to make C0 polynomial-time decidable.

Theorem 5. CSP(C0,) is in NP, but neither in P nor NP-complete (unless
P=NP). Moreover, the set C0 can be decided in deterministic polynomial time.

In our proof we do not use any specific properties of the class C and the clique
problem, but in fact we can construct classes S0 ⊆ S with NP-intermediate
CSP(S0,) for any class S where CSP(S,) is NP-complete.

6 The Local-Global Conjecture

The complexity of the constraint satisfaction problem has also been studied
for templates Γ with an infinite signature. Several well-known computational
problems can be modeled as CSPs only if we allow (countably) infinite con-
straint languages: examples are boolean Horn-satisfiability, Ord-Horn constraints
in temporal reasoning [15], or solving linear equation systems over a finite field.

If the local-global conjecture as stated in Section 1 is true, then the dichotomy
for finite constraint languages implies the dichotomy for infinite constraint lan-
guages: if an infinite constraint language Γ has a finite reduct Γ ′ such that
CSP(Γ ′) is NP-hard, then CSP(Γ) is clearly NP-hard as well. On the other
hand, if CSP(Γ) is locally tractable, then the conjecture implies that CSP(Γ) is
globally tractable.

We show that if the local-global conjecture is false, then there is no dichotomy
for infinite constraint languages.

Non-dichotomies in Constraint Satisfaction Complexity 195

Theorem 6. If the local-global conjecture is false, then there exists a template
Γ0 with finite domain D and infinite signature such that CSP(Γ0) is neither
globally tractable nor NP-complete (unless P=NP); moreover, the meta-problem
for Γ0 is efficiently decidable, i.e., given a relation R over D, we can decide in
polynomial-time whether R is in Γ0.

The proof of Theorem 6 is essentially again a modification of Ladner’s theorem,
but we have to overcome a complication: for a straightforward application of
Ladner’s theorem, we need that if Γ is an expansion of Γ ′ by finitely many
relation symbols, and CSP(Γ) is NP-hard, then CSP(Γ ′) is NP-hard as well:
but this is not true in general. We only sketch the basic setting of Ladner’s
construction, which we have already seen twice in this paper, and focus on the
complication.

Proof (Sketch). Assume that there is an infinite constraint language Γ with a
finite domain such that CSP(Γ) is locally tractable, but not globally tractable.
If Γ is not NP-complete, we are already done with Γ0 = Γ , so assume that Γ
is NP-complete. We claim that we can assume without loss of generality that
Γ contains all primitive positive definable relations (for an introduction to this
basic concept in model theory and its applications in constraint satisfaction
theory, see e.g. [6]). To see this, first observe that the expansion Γ ′ of Γ by all
those relations trivially still has an NP-complete CSP. Moreover, all reducts of
Γ ′ with a finite signature have a CSP that is in P , because all relations in this
reduct can be defined by finitely many relations from Γ . So, Γ ′ can be obtained
from a finite reduct of Γ by expansion with finitely many primitive positive
relations, and hence CSP(Γ ′) is in P.

We construct a reduct Γ0 of Γ such that CSP(Γ0) is neither in P nor NP-
complete (unless P=NP). Again, the definition of Γ0 is by a Turing machine F
that computes a function f : N → N, and the n-th relation of Γ (according to
some fixed enumeration of the relations of Γ) is in Γ0 if f(n) is even.

As in the proofs before, n is given to the machine F in unary representation,
and we can define F in such a way that

– it runs in polynomial time in n, and
– Γ0 becomes finite if CSP(Γ0) is NP-hard, and
– Γ is an expansion of Γ0 by finitely many relations if CSP(Γ0) is in P.

If Γ0 is finite, then CSP(Γ0) is tractable, because every reduct of Γ with a
finite signature is by assumption tractable, and we obtain that P=NP. Now,
suppose that we are in the other case, and that Γ is an expansion of Γ0 by
finitely many relations. We want to show that CSP(Γ0) is NP-hard by reducing
CSP(Γ) to CSP(Γ0).

Let S be an instance of CSP(Γ). Note that S might contain constraints for
the relations from Γ that are not in Γ0, but there is a k such that all those
constraints have arity less than k. Because Γ contains all primitive positive
definable relations, Γ contains in particular for every l-ary relation R the k-ary
relation R′ := R×D×· · ·×D. We now replace each constraint in S with a relation

196 M. Bodirsky and M. Grohe

R from Γ that is not in Γ0 by a constraint for R′, introducing k− l new dummy
variables for the last k − l arguments of R′. Even though the representation of
R′ is much larger than the representation of R, this can only lead to a linear
increase in the size of the instance S, because both D and k are fixed. The
resulting structure S′ is an instance of CSP(Γ0), and S′ homomorphically maps
to Γ0 if and only if S homomorphically maps to Γ . Therefore CSP(Γ0) is NP-
complete, which again implies that P=NP. ��

Acknowledgements. We would like to thank Hubie Chen for his helpful comments
on an earlier version of this paper.

References

1. Bauslaugh, B.L.: The complexity of infinite h-coloring. J. Comb. Theory, Ser.
B 61(2), 141–154 (1994)

2. Bodirsky, M.: Constraint satisfaction problems with infinite templates. Survey (to
appear, 2007)

3. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceed-
ings of LICS 2003, pp. 321–330 (2003)

4. Bulatov, A.: A graph of a relational structure and constraint satisfaction problems.
In: Proceedings of LICS 2004, Turku, Finland (2004)

5. Bulatov, A., Jeavons, P.: Algebraic structures in combinatorial problems. Technical
report MATH-AL-4-2001, Technische Universitat Dresden, submitted to Interna-
tional Journal of Algebra and Computing (2001)

6. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

7. Chen, Y., Thurley, M., Weyer, M.: Understanding the complexity of induced sub-
structure isomorphisms. In: Aceto, L., Damgaard, I., Goldberg, L.A., Halldors-
son, M.M., Ingolfsdottir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125.
Springer, Heidelberg (2008)

8. Cherlin, G.: The classification of countable homogeneous directed graphs and
countable homogeneous n-tournaments. AMS Memoir. 131(621) (January 1998)

9. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing 28, 57–104 (1999)

10. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM 54(1) (2007)

11. Henson, C.W.: Countable homogeneous relational systems and categorical theories.
Journal of Symbolic Logic 37, 494–500 (1972)

12. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)
13. Idziak, P.M., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability

and learnability arising from algebras with few subpowers. In: LICS 2007, pp. 213–
224 (2007)

14. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1),
155–171 (1975)

15. Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66 (1995)

16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
17. Schwandtner, G.: Datalog on infinite structures. Dissertation, Humboldt-

Universität zu Berlin (submitted, 2008)

Quantified Constraint Satisfaction and the Polynomially
Generated Powers Property

(Extended Abstract)

Hubie Chen

Departament de Tecnologies de la Informació i les Comunicacions
Universitat Pompeu Fabra

Barcelona, Spain
hubie.chen@upf.edu

Abstract. The quantified constraint satisfaction probem (QCSP) is the problem
of deciding, given a relational structure and a sentence consisting of a quantifier
prefix followed by a conjunction of atomic formulas, whether or not the sentence
is true in the structure. The general intractability of the QCSP has led to the study
of restricted versions of this problem. In this article, we study restricted versions
of the QCSP that arise from prespecifying the relations that may occur via a set
of relations called a constraint language. A basic tool used is a correspondence
that associates an algebra to each constraint language; this algebra can be used to
derive information on the behavior of the constraint language.

We identify a new combinatorial property on algebras, the polynomially gen-
erated powers (PGP) property, which we show is tightly connected to QCSP com-
plexity. We also introduce another new property on algebras, switchability, which
both implies the PGP property and implies positive complexity results on the
QCSP. Our main result is a classification theorem on a class of three-element al-
gebras: each algebra is either switchable and hence has the PGP, or provably lacks
the PGP. The description of non-PGP algebras is remarkably simple and robust.

1 Introduction

Background. The constraint satisfaction problem (CSP) is the problem of deciding,
given a relational structure and a primitive positive sentence

∃x1 . . . ∃xm(R(xi1 , . . . , xik) ∧ . . .)

that is, a conjunction of atomic formulas in front of which all variables are existentially
quantified, whether or not the sentence is true in the structure. The quantified constraint
satisfaction problem (QCSP) is the generalization of the CSP where universal quan-
tification is permitted in addition to existential quantification. Each of these problems
constitutes a natural syntactic restriction of model checking in first-order logic.

The general intractability of the CSP and the QCSP–they are NP-complete and
PSPACE-complete, respectively–has prompted the study of restricted versions of these
problems. In this paper, we study restricted versions of the QCSP that are obtained
by prespecifying the relations that may occur using a set of relations called a constraint

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 197–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 H. Chen

language.1 This form of restriction has its origins in a 1978 paper of Schaefer [24], who
gave a classification theorem showing that all constraint languages over a two-element
domain give rise to a case of the CSP that is either polynomial-time tractable or NP-
complete. The non-trivial tractable cases identified by this result are 2-SAT, where each
constraint is equivalent to a length 2 clause; Horn-SAT, where each constraint is equiva-
lent to a propositional Horn clause, and Affine-SAT, where each constraint is an equation
over the two-element field. The quantified generalizations of these three problems are
known to be tractable [1,21,7,14], and a classification theorem on two-element QCSP
complexity shows that all other constraint languages over a two-element domain give
rise to a PSPACE-complete case of the QCSP [14,11].

An approach to studying the complexity of constraint languages based directly on
concepts and tools from universal algebra was introduced by Bulatov, Jeavons and
Krokhin [5]. The cornerstone of this approach is to associate, to each constraint lan-
guage Γ , an algebra AΓ whose operations are the polymorphisms of Γ . (Roughly speak-
ing, an operation f is a polymorphism of a constraint language Γ if each relation of Γ
is closed under the coordinate-wise action of f .) This algebra is used to derive infor-
mation about the constraint language. This approach has provided new and promising
vistas on the complexity of constraint languages; one celebrated achievement that it
has thus far yielded is the CSP complexity classification of constraint languages over
a three-element domain by Bulatov [6]. One can further name [3,16,4,22,20] as a sam-
pling of recent work using this viewpoint.

Contributions. In this paper, we develop the algebraic theory of the QCSP and present
both structural algebraic results as well as new complexity results on the QCSP.

Our starting point is collapsibility, a previously studied property on algebras [12]
which provides a sufficient condition on AΓ for the reducibility of the QCSP over Γ to
the CSP over Γ (which in turn immediately gives an NP upper bound on the complex-
ity of the QCSP). This condition was shown to hold on all algebras AΓ whose corre-
sponding QCSP is polynomial-time tractable, in the two-element case. At its heart, the
QCSP-to-CSP reduction provided by collapsibility exploits a property on algebras that
we define here and call the polynomially generated powers (PGP) property: an algebra
A has the PGP property if its nth power An has a polynomial-size generating set. In-
deed, it can be directly shown that collapsibility of an algebra A implies that A has the
PGP property via generating sets of a specific form.2 Although the PGP property is, in

1 It is worth mentioning that the complexity of the QCSP under structural restrictions–
restrictions based on variable interaction–have also recently attracted attention: see for exam-
ple the papers [9,13] by the present author (the latter with Dalmau), the paper [18] by Gottlob,
Greco and Scarcello, and the paper [23] by Pan and Vardi.

2 In fact, as discussed in this paper (Section 2), AΓ having the PGP property, along with a mild
computational assumption, yields a simple algorithm for the QCSP-to-CSP reduction on Π2

formulas. This relationship can be used to present simple and self-contained proofs of this
reduction on Π2 formulas; examples of such proofs are given in [11, Section 1]. The essential
proof technique applies across various constraint languages, and gives a uniform derivation
of previously existing results in the literature, namely, the collapse results of Grädel [19] in
descriptive complexity, as well as a theorem proved by Karpinski et al. [21] on theΠ2 fragment
of Quantified Horn-SAT.

Quantified Constraint Satisfaction and the Polynomially Generated Powers Property 199

our view, a natural combinatorial property on algebras, to the best of our knowledge, it
has not yet been systematically studied.

As we observe early on in this paper, in the two-element case, collapsibility “tells
the full story” for the PGP property and also for polynomial-time tractability: for a con-
straint language Γ over a two-element set, either AΓ is collapsible, has the PGP, and the
QCSP on Γ is polynomial-time tractable; or, AΓ does not have the PGP and the QCSP
on Γ is PSPACE-complete. However, the three-element case is not yet understood, nei-
ther with respect to the PGP property nor with respect to QCSP complexity. A partial
description of three-element non-collapsible idempotent algebras was achieved [12],
but this result does not readily yield a characterization of the three-element idempo-
tent algebras with respect to the PGP.3 The present investigation was initiated with the
hope of understanding three-element idempotent algebras from the mentioned perspec-
tives. In particular, two specific questions that we set out to answer were: Are there
three-element idempotent algebras having the PGP property other than those that are
collapsible, or does collapsibility give a full characterization of the PGP property for
such algebras? And, for all such algebras AΓ having the PGP property, is this QCSP on
Γ polynomial-time tractable, or at least reducible to the CSP?

This paper presents a classification of three-element idempotent algebras with re-
spect to the PGP property, which identifies further, non-collapsible algebras having this
property. In particular, we define a new property on algebras, switchability, and demon-
strate that, even though switchability strictly generalizes collapsibility, it still implies
both the PGP as well as a QCSP-to-CSP reduction. We then show our classification: for
any three-element idempotent algebra A lacking an algebraic sufficient condition for
CSP/QCSP intractability (the “G-set condition”), either A has switchability and indeed
is polynomial-time tractable, or A has a particular structure that readily implies absence
of the PGP property. For the described class of algebras, we therefore answer both of
the aforementioned research questions.4

On the “computer science” side, our introduction and study of switchability pro-
vide new polynomial-time tractable cases of the QCSP. Additionally, they give a suffi-
cient condition for a QCSP-to-CSP reduction that is general in that it can be applied
to universes of all sizes. We would like to emphasize that the description of non-
switchable/non-PGP algebras given by our classification is robust in the sense that the
terms of any such algebra may be viewed as a subclone of a single clone satisfying the
description. In addition to being appealing in its own right, we believe that this descrip-
tion’s mathematical robustness will facilitate study of these algebras and their QCSP
complexity.

Our classification in fact shows that the non-switchable/non-PGP algebras have the
exponentially generated powers (EGP) property: for any sequence of generating sets
X1, X2, . . . for the powers A1,A2, . . . of such an algebra A, these sets must have expo-
nential size in that |Xn| must be Ω(bn) for some b > 1. We thus obtain a dichotomy

3 This paper focuses on the the QCSP where constants are permitted. It is known that to study
this problem relative to a constraint language Γ , it suffices to study the algebra whose opera-
tions are the idempotent polymorphisms of Γ , hence our focus on idempotent algebras.

4 The first is answered by identifying new PGP algebras; the second, by showing these algebras
to be polynomial-time tractable.

200 H. Chen

result with respect to a new combinatorial measure on algebras–the requisite size of
generating sets for powers. Note that a dichotomy between the PGP property and EGP
property is by no means entailed by the definitions of these two properties, as there are
“intermediate” growth rates such as nlogn that are neither polynomial nor exponential,
according to our definitions. Our dichotomy thus exhibits a chasm in the growth rates
that occur naturally in this context, and it is curious that such intermediate growth rates
do not occur.

We conclude this introduction with a brief methodological/philosophical discussion
of this article’s approach and context. On the one hand, an algebraic notion was intro-
duced by complexity considerations: the definition of the PGP property was inspired by
considering the Π2 fragment of the QCSP. On the other hand, algebraic investigation
led to insight on complexity: during the course of obtaining the results in this article,
the author identified some non-collapsible algebras to have the PGP property prior to
establishing any complexity-theoretic result on any of them (in particular, before prov-
ing that any of them possessed a QCSP-to-CSP reduction). It is our understanding that
the recent investigations on the so-called few subalgebras property followed a similar
storyline: a purely combinatorial property on algebras was defined from computational
considerations [15,10], a classification of such algebras with respect to the property
was established [2], and then the algebras possessing the property were shown to entail
a desirable computational property–in this case, CSP tractability [20].5 We believe and
hope that the CSP and its variants will continue to effect this mutual cross-pollination
between algebra and complexity, and certainly look forward to further work along these
lines.

Preliminaries. Our notations and definitions are fairly standard, and similar to those
used in [12]. Here, we confine ourselves to a few remarks. We use [n] to denote the
set containing the first n positive integers, {1, . . . , n}. We use QCSPc(Γ) to denote the
QCSP over constraint language Γ where constants may appear in constraints; CSPc(Γ)
is the restriction of QCSPc(Γ) to formulas having only existential quantifiers. We use
QCSP(Γ) and CSP(Γ) to denote the same problems, but where constants may not
appear in constraints.

2 Properties

In this section, we introduce the two combinatorial properties on algebras–the polyno-
mially generated powers and the exponentially generated powers properties–that will
be studied.

For an algebra A and a subset X ⊆ A, we use 〈X〉 to denote the intersection of
all A-subalgebras containing X (that is, the smallest subalgebra of A containing X).
We call 〈X〉 the subalgebra generated by X . We say that a function f : N → N is a
polynomial if there exists k ≥ 1 such that f(n) is O(nk).

5 A remark: M. Valeriote has communicated to us that in studying the few subalgebras property,
it was observed by the authors of [2] that the few subalgebras property implies the PGP prop-
erty. The converse does not hold: the algebra ({0, 1}, {∧}) is an example of an algebra having
the PGP property but not having the few subalgebras property.

Quantified Constraint Satisfaction and the Polynomially Generated Powers Property 201

Definition 1. An algebra A has the polynomially generated powers (PGP) property if
there exists a polynomial p(n) such that for all n ≥ 1, there exists a subset Xn ⊆ An

of size |Xn| ≤ p(n) that generates the algebra An.

We now show that the PGP property, along with a polynomial-time algorithm that com-
putes generating sets, implies a reduction from the Π2 fragment of the QCSP to the
CSP.

Proposition 1. Let Γ be a constraint language. If AΓ has the PGP property and there
exists an algorithm that outputs a generating set Xn for An

Γ in polynomial time (in n),
then Π2-QCSPc(Γ) reduces to CSPc(Γ).

This proposition is implicit in [11]. As noted there, it can be readily used to derive the
collapse results of Grädel [19] in descriptive complexity, as well as a theorem proved by
Karpinski et al. [21] on the Π2 fragment of Quantified Horn-SAT. We refer the reader
to [11] for further discussion.

Definition 2. An algebra A has the exponentially generated powers (EGP) property if
for any sequence of subsets X1 ⊆ A1, X2 ⊆ A2, X3 ⊆ A3, . . . where for all n ≥ 1 the
subset Xn generates An, there exists b > 1 such that the size function |Xn| is Ω(bn).

The following proposition furnishes examples of algebras having the EGP property. Say
that an operation f : Ak → A is essentially unary if there exists a coordinate i and a
unary operation g : A→ A such that f(a1, . . . , ak) = g(ai) for all (a1, . . . , ak) ∈ Ak.
Say that an algebra is essentially unary if all of its operations are essentially unary.

Proposition 2. An essentially unary algebra A with finite universe of non-trivial size
has the EGP property.

3 Collapsibility

In this section, we review the notion of collapsibility as well as the results on this notion
that will be relevant to the present work. This section should be taken as a presentation
of previous work; other than Propositions 4, 5, and 7, the results and concepts are either
explicit or implicit in [12].

Definition 3. Let n ≥ 1 and A be an algebra. A rectangular adversary (of length n) is
a set of tuples having the form B1 × · · · ×Bn, where Bi ⊆ A for all i ∈ [n].6

Definition 4. Let n,w ≥ 1 and A be an algebra. Say that a rectangular adversary
B1 × · · · × Bn is w-bounded if there exists a value a ∈ A and a subset S ⊆ [n] with
|S| ≤ w such that Bs = A for all s ∈ S and Bi = {a} for all i ∈ [n] \ S. That is,
a rectangular adversary is w-bounded if w or fewer of its sets are equal to A, and the
rest are equal to {a} for the same constant a ∈ A.

6 We remark that what we call a rectangular adversary here is simply called an adversary
in [12].

202 H. Chen

Definition 5. An algebra A is collapsible if there exists w ≥ 1 such that for all n ≥ 1,
there exist an A-term operation f : Ak → A and w-bounded rectangular adversaries
(of length n) B11 × · · · × B1n, . . ., Bk1 × · · · × Bkn such that for all j ∈ [n], A =
f(B1j , . . . , Bkj).

The following is the primary computational property of collapsibility.

Theorem 3. [12] Let Γ be a constraint language. If AΓ is collapsible, then QCSPc(Γ)
reduces to CSPc(Γ).

We show that collapsibility directly implies the PGP.

Proposition 4. If an algebra A is collapsible, then it has the polynomially generated
powers property.

We may now observe that collapsibility characterizes the PGP property in the two-
element case. We have the following dichotomy result.

Proposition 5. Let A be an algebra having a 2-element universe. Either A is collapsi-
ble and has the PGP property, or A has the EGP property.

We can remark that, in the two-element case, the boundary line between the PGP
property and the EGP property matches the boundary between the tractability and in-
tractability of QCSP(Γ): for a constraint language Γ over a two-element set, when
AΓ has the PGP property, QCSP(Γ) is polynomial-time tractable; and, when AΓ has
the EGP property, QCSP(Γ) is PSPACE-complete. (This is readily derived from the di-
chotomy on two-element QCSP(Γ) complexity [14,11] and the proof of Proposition 5.)

The following theorem was the result of attempts to understand those algebras which
are not collapsible, nor have a G-set.

Theorem 6. [12] Let A be an idempotent algebra having three-element universe A.
Either:

1. A is collapsible and for any constraint language Γ with AΓ = A, QCSPc(Γ) is in
P;

2. A has a G-set as factor and for any constraint language Γ with AΓ = A,
QCSPc(Γ) is NP-hard; or,

3. There is a way to label the elements of A as {a, b, c} such that:
– the size 2 subalgebras of A are {a, c} and {b, c}, which we denote by α and β

respectively,
– A has as a term operation the semilattice operation sabc : A×A→ A defined

by sabc(x, y) = c if x �= y, and sabc(x, y) = x if x = y, and
– for every term operation f : Ak → A of A and subalgebras S1, . . . , Sk ∈
{α, β}, there exists T ∈ {α, β} such that f(S1, . . . , Sk) ⊆ T .7

7 Regarding the statement of this theorem, we remark that it is not the case that for every three-
element idempotent algebra A there exists a constraint language Γ such that A = AΓ ; the
operations of an algebra of the form AΓ are closed under taking term operations, which is not
required of an algebra in general.

Quantified Constraint Satisfaction and the Polynomially Generated Powers Property 203

The algebras AΓ for which the tractability/intractability of QCSPc(Γ) is not yet fully
understood are those of type (3). These fall into a “gap”: on the one hand, we cannot
derive tractability using the condition of collapsibility; on the other hand, we cannot
derive intractability using the G-set condition. We hence refer to them as gap algebras.

Definition 6. A gap algebra is a three-element idempotent algebra that is not collapsi-
ble and has no G-set as factor.

We now introduce some terminology that can be used to discuss gap algebras, but also
apply more generally to three-element algebras.

Definition 7. Let A be a three-element set, and let α and β be distinct two-element
subsets of A.

– We say that an operation f : Ak → A can be realized as an operation g :
{α, β}k → {α, β} if for all S1, . . . , Sk ∈ {α, β}, it holds that f(S1, . . . , Sk) ⊆
g(S1, . . . , Sk).

– We say that an operation f : Ak → A is αβ-projective if it can be realized by an
operation g on {α, β} that is a projection.

We remark that any term operation f of a gap algebra can be realized as an operation g,
by the third condition given on such algebras by Theorem 6, with respect to the α and
β described in that theorem.

We now define the notion of an αβ-projective algebra.

Definition 8. Let A be an algebra with three-element universe A. We say that A is αβ-
projective if there exist distinct two-element subsets α and β of A with respect to which
all operations of A are αβ-projective.

Note that the notion of αβ-projective operation is robust: the composition of αβ-
projective operations is also an αβ-projective operation. As all projections are αβ-
projective, all term operations of an αβ-projective algebra are αβ-projective.

Proposition 7. An algebra that is αβ-projective has the EGP property.

4 A Curious Operation

In this section, we focus on a particular algebra that is defined by a single operation.
Define r : {a, b, c}4 → {a, b, c} to be the operation where

r(a, b, b, b) = r(b, a, b, b) = r(b, b, b, b) = b

and
r(a, a, b, a) = r(a, a, a, b) = r(a, a, a, a) = a

and is equal to c otherwise. Define Ar to be the algebra ({a, b, c}, {r}). Note that Ar

has sabc as a term operation: sabc(x, y) = r(x, x, y, y); hence, Ar has no G-set factor.
Does Ar have the PGP property? We may observe that Ar is not αβ-projective,

rendering this sufficient condition for the EGP property unusable here. We do this as

204 H. Chen

follows. An algebra cannot be αβ-projective with respect to a two-element subset that
is not a subalgebra; hence, if Ar is αβ-projective at all, it must be αβ-projective with
respect to the two two-element subalgebras α = {a, c} and β = {b, c} of Ar. However,
from the relationships

b = r(a, b, b, b) ∈ r(α, β, β, β) �⊆ α

b = r(b, a, b, b) ∈ r(β, α, β, β) �⊆ α

a = r(a, a, b, a) ∈ r(α, α, β, α) �⊆ β

a = r(a, a, a, b) ∈ r(α, α, α, β) �⊆ β

we may see that r cannot be realized as any of the arity 4 projections (on {α, β}), and
hence is not αβ-projective. Indeed, one might view r as being “diagonalized away”
from being αβ-projective.

So, we were unable to apply our sufficient condition for the EGP property to Ar.
What about trying to show that Ar satisfies collapsibility, our sufficient condition for
the PGP property? This fails as well.

Proposition 8. The algebra Ar is not collapsible.

As we have now obtained that the algebra Ar has no G-set, is not αβ-projective, and is
not collapsible, we have that Ar is a non-αβ-projective gap algebra. We now show that
this algebra has the PGP property.

Proposition 9. The algebra Ar has the PGP property.

The proof of this proposition uses the following definition. For a tuple (t1, . . . , tn) ∈
T n over a set T , say that a coordinate i ∈ [n− 1] is a switch (of the tuple) if ti �= ti+1.

In the next sections, we will see that the algebra Ar is a member of a class of algebras
that we introduce called switchable algebras–algebras which, as with collapsible alge-
bras, both have the PGP property and imply a QCSP-to-CSP reduction. The condition
of switchability generalizes the condition of collapsibility; the algebra Ar will witness
that switchability is a strict generalization of collapsibility.8

5 Switchability

The goal of this section is to present the notion of switchability as well as some of its
basic properties. We review and introduce some basic concepts concerning quantified
formulas to be used (Section 5.1), present a notion of composition for sets of tuples that
is used in the definition of switchability (Section 5.2), and then proceed to develop the
notion of switchability (Section 5.3).

8 In the present section, we showed that the algebra Ar is not collapsible (Proposition 8); it
follows from Theorem 17 that the algebra Ar is switchable.

Quantified Constraint Satisfaction and the Polynomially Generated Powers Property 205

5.1 Truth and Adversaries

We now review a characterization of truth for quantified constraint formulas. This char-
acterization comes from the concept of Skolemization [17]. When Φ is a quantified
constraint formula, let V Φ denote the variables of Φ, let EΦ denote the existentially
quantified variables of Φ, let UΦ denote the universally quantified variables of Φ, and
for each x ∈ EΦ, let UΦ

x denote the variables in UΦ that come before x in the quantifier
prefix of Φ. (We may drop the Φ superscript if the formula is clear from the context.)
Let [B → A] denote the set of functions mapping from B to A.

Definition 9. A strategy for a quantified constraint formula Φ is a sequence of partial
functions

σ = {σx : [UΦ
x → A] → A}x∈EΦ.

That is, a strategy has a mapping σx for each existentially quantified variable x ∈ EΦ,
which tells how to set the variable x in response to an assignment to the universal
variables coming before x. Let τ : UΦ → A be an assignment to the universal variables.
We define 〈σ, τ〉 to be the mapping from V Φ to A such that 〈σ, τ〉(v) = τ(v) for all
v ∈ UΦ, and 〈σ, τ〉(x) = σx(τ |UΦ

x
) for all x ∈ EΦ. The mapping 〈σ, τ〉 is undefined

if σx(τ |UΦ
x

) is not defined for all x ∈ EΦ. The intuitive point here is that a strategy σ
along with an assignment τ to the universally quantified variables naturally yields an
assignment 〈σ, τ〉 to all of the variables, so long as the mappings σx are defined at the
relevant points.

We have the following characterization of truth for quantified constraint formulas.

Fact 10. A quantified constraint formula Φ is true if and only if there exists a strategy
σ for Φ such that for all mappings τ : UΦ → A, the assignment 〈σ, τ〉 is defined and
satisfies the constraints of Φ.

Note that a strategy satisfying the condition of Fact 10 must consist only of total func-
tions. We have defined a strategy to be a sequence of partial functions as we will be
interested in strategies σ that need not yield an assignment 〈σ, τ〉 for all τ .

Definition 10. An adversary is a set of tuples on a set A, all of the same length; the
length of an adversary is considered to be the length of one (any) of its tuples.

Let us say that an adversary A is an adversary for a quantified constraint formula Φ
if the length of A matches the number of universally quantified variables in Φ. When
this is the case, the adversaryA naturally induces the set of assignments A[Φ] = {τ ∈
[UΦ → A] | (∃(a1, . . . , an) ∈ A)(∀i ∈ [n])(τ(yi) = ai)}. Here, we assume that
y1, . . . , yn are the universally quantified variables of Φ, ordered according to quantifier
prefix, from outside to inside.

We say that an adversary is Φ-winnable if in the modified game, the existential player
can win: that is, if there is a strategy that can handle all assignments that the adversary
gives rise to, as formalized in the following definition.

Definition 11. LetΦ be a quantified constraint formula, and letA be an adversary forΦ.
We say thatA is Φ-winnable if there exists a strategyσ forΦ such that for all assignments
τ ∈ A[Φ], the assignment 〈σ, τ〉 is defined and satisfies the constraints of Φ.

206 H. Chen

We have previously given a characterization of truth for quantified constraint formulas
(Fact 10). This characterization can be formulated in the terminology just introduced.

Fact 11. The adversary An is Φ-winnable if and only if Φ is true.

5.2 Reactive Composition

Let f : Ak → A be an operation and let A,B1, . . . ,Bk be adversaries of length n. We
say thatA is f -reactively composable from B1, . . . ,Bk, denotedA� f(B1, . . . ,Bk), if
there exist partial functions gji : Ai → A for i ∈ [n], j ∈ [k] such that, for every tuple
(a1, . . . , an) ∈ A:

– for every j ∈ [k], the values gj1(a1), gj2(a1, a2), . . . , gjn(a1, . . . , an) are defined,
– for every j ∈ [k], the tuple (gj1(a1), gj2(a1, a2), . . . , gjn(a1, . . . , an)) is contained

in Bj , and
– for each i ∈ [n], ai = f(g1

i (a1, . . . , ai), . . . , gki (a1, . . . , ai)).

When A is an algebra and A,B1, . . . ,Bk are adversaries of the same length, we say
thatA is A-reactively composable from B1, . . . ,Bk if there exists a term operation f of
A such that A� f(B1, . . . ,Bk).

Theorem 12. Let Φ be a quantified constraint formula, assume that f : Ak → A is
an idempotent polymorphism of all relations of Φ, and letA,B1, . . . ,Bk be adversaries
for Φ. If each of the adversaries B1, . . . ,Bk is Φ-winnable andA�f(B1, . . . ,Bk), then
the adversary A is Φ-winnable.

The notion of reactive composition as well as this theorem appeared in [8], although in
a slightly different formulation.

Proposition 13. Let A be an algebra, and let S and S′ be sets of adversaries, all of
the same length. If an adversary A is A-reactively composable from adversaries in S′,
and all adversaries in S′ are A-reactively composable from adversaries in S, thenA is
A-reactively composable from adversaries in S.

5.3 Definition and Basic Properties

Recall that we define the switches of a tuple s = (s1, . . . , sn) ∈ Sn over a set S to be
the coordinates {i ∈ [n− 1] | si �= si+1}; the number of switches of s is the cardinality
of this set.

Definition 12. Let T ⊆ An be a set of tuples, and let w ≥ 1. Define S(T,w) to be the
set {t ∈ T | t has w or fewer switches }.

Definition 13. An algebra A is switchable if there exists w ≥ 1 such that for all n ≥ 1,
there exists an A-term operation f : Ak → A such that

An � f(S(An, w), . . . ,S(An, w)).

Quantified Constraint Satisfaction and the Polynomially Generated Powers Property 207

Observe that, for a fixed w ≥ 1, the set S(An, w) has polynomial size in n: a tuple in
this set is determined by the location of its switches and a tuple over A of length up to
w + 1 specifying, in order, the values it takes on. We may thus upper bound the size of
S(An, w) by (

(
n
1

)
+ · · ·+

(
n
w

)
) · (|A|w+1) which is O(nw).

Proposition 14. Let A be an algebra. If A is collapsible, then A is switchable.

Theorem 15. Let Γ be a constraint language. If AΓ is switchable, then QCSPc(Γ)
reduces to CSPc(Γ).

Theorem 16. Let A be an algebra. If A is switchable, then A has the PGP property.

6 Classification Theorem

Theorem 17. (Classification theorem) A three-element idempotent algebra not having
a G-set is either switchable or is αβ-projective.

Notice that the terms of an αβ-projective algebra may be viewed as a subclone of the
clone containing all αβ-projective operations.

6.1 Corollaries

Corollary 1. A three-element idempotent algebra not having a G-set either has the
PGP property, or has the EGP property.

Corollary 2. For every 3-element constraint language Γ , either QCSPc(Γ) is in P,
QCSPc(Γ) is NP-hard, or the algebra AΓ is αβ-projective.

Acknowledgements. The author thanks Vı́ctor Dalmau for useful discussions, Manuel
Bodirsky for suggestions on a draft of this paper, and Matt Valeriote for helpful remarks
and aid with terminological decisions. Some of the results and ideas in this paper were
presented at the Workshop on Universal Algebra and the Constraint Satisfaction Prob-
lem held at Vanderbilt University in June 2007; the author thanks the participants of
this workshop for their interest.

References

1. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)

2. Berman, J., Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with
few subalgebras of powers (submitted for publication)

3. Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of 18th
IEEE Symposium on Logic in Computer Science (LICS 2003), pp. 321–330 (2003)

4. Bulatov, A., Dalmau, V.: A simple algorithm for mal’tsev constraints. SIAM Journal of Com-
puting 36(1), 16–27 (2006)

5. Bulatov, A., Jeavons, P., Krokhin, A.: Classifying the complexity of constraints using finite
algebras. SIAM J. Computing 34(3), 720–742 (2005)

208 H. Chen

6. Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM (J. ACM) 53 (2006)

7. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Infor-
mation and Computation 117(1), 12–18 (1995)

8. Chen, H.: The computational complexity of quantiifed constraint satisfaction. Ph.D. thesis,
Cornell University (August 2004)

9. Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: ECAI (2004)
10. Chen, H.: The expressive rate of constraints. Annals of Mathematics and Artificial Intelli-

gence 44(4), 341–352 (2005)
11. Chen, H.: A rendezvous of logic, complexity, and algebra. SIGACT News Logic Column

(December 2006)
12. Chen, H.: The complexity of quantified constraint satisfaction: Collapsibility, sink algebras,

and the three-element case. SIAM Journal on Computing 37(5), 1674–1701 (2008)
13. Chen, H., Dalmau, V.: From pebble games to tractability: An ambidextrous consistency al-

gorithm for quantified constraint satisfaction. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634,
Springer, Heidelberg (2005)

14. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Sat-
isfaction Problems. SIAM Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics (2001)

15. Dalmau, V.: Computational complexity of problems over generalized formulas. Ph.D. Thesis,
UPC

16. Dalmau, V.: Generalized majority-minority operations are tractable. In: LICS (2005)
17. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, Heidelberg (1984)
18. Gottlob, G., Greco, G., Scarcello, F.: The complexity of quantified constraint satisfaction

problems under structural restrictions. In: IJCAI (2005)
19. Grädel, E.: Capturing complexity classes by fragments of second order logic. Theoretical

Computer Science 101, 35–57 (1992)
20. Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and learnabil-

ity arising from algebras with few subpowers (extended abstract). In: LICS (2007)
21. Karpinski, M., Büning, H.K., Schmitt, P.H.: On the computational complexity of quantified

horn clauses. In: CSL 1987, pp. 129–137 (1987)
22. Kiss, E., Valeriote, M.: On tractability and congruence distributivity. In: LICS (2006)
23. Pan, G., Vardi, M.Y.: Fixed-parameter hierarchies inside pspace. In: LICS (2006)
24. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the ACM Sym-

posium on Theory of Computing (STOC), pp. 216–226 (1978)

When Does Partial Commutative Closure

Preserve Regularity?

Antonio Cano Gómez1, Giovanna Guaiana2, and Jean-Éric Pin3,�

1 Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de
Valencia, Camino de Vera s/n, P.O. Box: 22012, E-46020 - Valencia

2 LITIS EA 4108, Université de Rouen, BP12, 76801 Saint
Etienne du Rouvray, France

3 LIAFA, Université Paris-Diderot and CNRS, Case 7014,
75205 Paris Cedex 13, France

The closure of a regular language under commutation or partial commutation
has been extensively studied [1,11,12,13], notably in connection with regular
model checking [2,3,7] or in the study of Mazurkiewicz traces, one of the models
of parallelism [14,15,16,22]. We refer the reader to the survey [10,9] or to the
recent articles of Ochmański [17,18,19] for further references.

In this paper, we present new advances on two problems of this area. The
first problem is well-known and has a very precise statement. The second prob-
lem is more elusive, since it relies on the somewhat imprecise notion of robust
class. By a robust class, we mean a class of regular languages closed under
some of the usual operations on languages, such as Boolean operations, prod-
uct, star, shuffle, morphisms, inverses of morphisms, residuals, etc. For instance,
regular languages form a very robust class, commutative languages (languages
whose syntactic monoid is commutative) also form a robust class. Finally, group
languages (languages whose syntactic monoid is a finite group) form a semi-
robust class: they are closed under Boolean operation, residuals and inverses of
morphisms, but not under product, shuffle, morphisms or star.

Here are the two problems:

Problem 1. When is the closure of a regular language under [partial] commu-
tation still regular?

Problem 2. Are there any robust classes of languages closed under [partial]
commutation?

The classes considered in this paper are all closed under polynomial operations.
Recall that, given a class L of regular languages, the polynomial languages of L
are the finite unions of languages of the form L0a1L1 · · · akLk where a1, . . . , ak
are letters and L0, . . . , Lk are languages of L. Taking the polynomial closure
usually increase robustness. For instance, the class Pol(G) of polynomials of
group languages is closed under union, intersection, quotients, product, shuffle
and inverses of morphisms.

� The authors acknowledge support from the AutoMathA programme of the European
Science Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 209–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

210 A. Cano Gómez, G. Guaiana, and J.-É. Pin

Let I be a partial commutation and let D be its complement in A×A. Our main
results on Problems 1 and 2 can be summarized as follows:

(1) The class Pol(G) is closed under commutation. If D is transitive, it is also
closed under I-commutation.

(2) Under some simple conditions on the graph of I, the closure of a language
of Pol(G) under I is regular.

(3) There is a very robust class of languages W which is closed under com-
mutation. This class, which contains Pol(G), is closed under intersection,
union, shuffle, concatenation, residual, length preserving morphisms and
inverses of morphisms. Further, it is decidable and can be defined as the
largest positive variety of languages not containing (ab)∗.

(4) If I is transitive, the closure of a language of W under I is regular.
Result (3) is probably the most important of the four results. It is, in a sense,
optimal since (ab)∗ is the canonical example of a regular language whose com-
mutative closure is not regular.

The proofs are nontrivial and combine several advanced techniques, includ-
ing combinatorial Ramsey type arguments, algebraic properties of the syntactic
monoid [5,6], finiteness conditions on semigroups [8] and properties of insertion
systems [4].

Our paper is organised as follows. We first survey the known results in Sec-
tion 1. Then we establish some combinatorial properties of group languages in
Section 2. Our results on commutative closure are established in Section 3 and
those on closure under partial commutation in Section 4.

1 Known Results

Let A be an alphabet and let I be a symmetric and irreflexive relation on A
(often called the independence relation). We denote by ∼I the congruence on
A∗ generated by the set {ab = ba | (a, b) ∈ I}. If L is a language on A∗, we
also denote by [L]I the closure of L under ∼I . When I is the relation {(a, b) ∈
A×A | a �= b}, we simplify the notation to ∼ and [L], respectively. Thus ∼ is the
commutation relation and [L] is the commutative closure of L. The dependence
relation associated with I is the relation D = {(a, b) ∈ A× A | (a, b) /∈ I}. The
relations I and D define two graphs (A, I) and (A,D) with A as set of vertices.
A class C of languages is closed under I-commutation if L ∈ C implies [L]I ∈ C.

1.1 The First Problem

For the commutative closure, the problem is solved [11,12,13]: the commutative
closure of the language (ab)∗ is not regular, but one can effectively decide whether
the commutative closure of a regular language is regular or not.

For partial commutations, the result of Sakarovitch [22] concluded a series of
previous partial results.

Theorem 1.1. One can decide whether the closure [L]I of a regular language L
is regular if and only if I is a transitive relation.

When Does Partial Commutative Closure Preserve Regularity? 211

1.2 The Second Problem

Only a few results are known for the second problem. They concern the following
classes of languages:

(1) the class Pol(I) of finite unions of languages of the form A∗a1A
∗ · · · akA∗,

with a1, . . . , ak ∈ A,
(2) the class J of piecewise testable languages (the Boolean closure of Pol(I)),
(3) the class Pol(J), which consists of finite unions of languages of the form

A∗0a1A
∗
1 · · · akA∗k with Ai ⊆ A and a1, . . . , ak ∈ A. These languages are

also called APC (Alphabetic Pattern Constraints) in [2],
(4) the class Pol(Com) of polynomials of commutative languages.

The following theorem summarises the results of Guaiana, Restivo and Salemi
[14,15], Bouajjani, Muscholl and Touili [2,3] and Cécé, Héam and Mainier [7].

Theorem 1.2. Let I be any independence relation. Then
(1) the class Pol(I) is closed under commutation,
(2) the class J is closed under commutation,
(3) the class Pol(J) is closed under I-commutation,
(4) the class Pol(Com) is closed under I-commutation.

1.3 Star-Free Languages

Two nice results on star-free languages were proved by Muscholl and Petersen
[16]. The first one is the counterpart of Theorem 1.1 for star-free languages.

Theorem 1.3. One can decide whether the closure [L]I of a star-free language
L is star-free if and only if I is a transitive relation.

The second result is related to our second problem.

Theorem 1.4. Let L be a star-free language. If D is transitive, then [L]I is
either star-free or non regular. If D is not transitive, then there exist star-free
languages such that [L]I is regular but not star-free.

2 Properties of Group Languages

Recall that a group language is a regular language whose syntactic monoid is
a group, or, equivalently, is recognized by a finite deterministic automaton in
which each letter defines a permutation of the set of states. We gather in this
section the properties of these languages needed in this paper.

An insertion system is a special type of rewriting system whose rules are of
the form 1 → r for all r in a given language R. We write u→R v if u = u′u′′ and
v = u′ru′′ for some r ∈ R. We denote by ∗→R the reflexive transitive closure of
the relation→R. Given a language L of A∗, its closure under ∗→R is the language

[L] ∗→R
= {v ∈ A∗ | there exists u ∈ L such that u

∗→R v}

212 A. Cano Gómez, G. Guaiana, and J.-É. Pin

We are especially interested in the case R = π−1(1), where π is a morphism from
A∗ onto a finite group G. Let F be the set of words of R of length � |G|. It is
not difficult to see that the relations ∗→F and ∗→R coincide.

The next lemma is a well-known consequence of Ramsey’s theorem [20].

Lemma 2.1. For any n > 0, there exists N > 0 such that, for any u0, u1,
. . . , uN ∈ A∗ there exists a sequence 0 � i0 < i1 < . . . < in � N such that
π(ui0ui0+1 · · ·ui1−1) = π(ui1ui1+1 · · ·ui2−1) = . . . = π(uin−1 · · ·uin−1) = 1.

Define a relation �π on A∗ by setting u �π v if and only if u = a1 · · · an,
with a0, . . . , an ∈ A and v = v0a1v1 · · · vn−1anvn for some words v0, . . . , vn such
that π(v0) = . . . = π(vn) = 1. The next proposition follows from the results of
Bucher, Ehrenfeucht and Haussler [4].

Proposition 2.2. The relation �π is a well preorder on A∗ and for any lan-
guage L, the language [L] ∗→R

is regular.

We prove a slightly more precise result.

Proposition 2.3. For any language L, the language [L] ∗→R
is a polynomial of

group languages.

Proof. By construction, R is a group language. If u = a1 · · ·an, the language
[u] ∗→R

is equal to Ra1R · · ·RanR, a polynomial of group languages. Now since
�π is a well preorder, every language of the form [L] ∗→R

is equal to a language of
the form [E] ∗→R

with E finite and thus is a finite union of languages of the form
Ra1R · · ·RanR. It is therefore a polynomial of group languages. ��

3 Commutative Closure

This section contains three new results. The first one concerns group languages,
the second one polynomials of group languages and the third one a robust class
introduced in [5,6] and denoted by W .

Recall that if L is a language of A∗, the syntactic preorder of L is the relation
�L defined on A∗ by u �L v if and only if, for every x, y ∈ A∗, xvy ∈ L implies
xuy ∈ L. The syntactic congruence ∼L is defined by u ∼L v if and only if u �L v
and v �L u.

3.1 Group Languages

Theorem 3.1. The commutative closure of a group language is regular.

Proof. Let L ⊆ A∗ be a group language and let π : A∗ → G be its syntactic
morphism. Let n = |G| and let N be the integer given by Lemma 2.1. We claim
that for any letter a ∈ A, aN ∼[L] a

N+n. Let g = π(a).
Suppose that xaNy ∈ [L]. Then there exists a word w of L commutatively

equivalent to xaNy. It follows that wan is commutatively equivalent to xaN+ny.

When Does Partial Commutative Closure Preserve Regularity? 213

Further, since G is a finite group, one has gn = 1 by Lagrange’s theorem, whence
π(wan) = π(w)π(an) = π(w). Thus the words w and wan have the same syn-
tactic image by π and hence wan ∈ L. Therefore xaN+ny ∈ [L].

Conversely, assume that xaN+ny ∈ [L]. Then xaN+ny is commutatively equiv-
alent to some word of L, say w = u0au1a · · ·uN−1auNauN+1. By applying
Lemma 2.1 to the sequence of words u0a, u1a, . . . , uNa, we obtain a sequence
0 � i0 < i1 < . . . < in � N such that

π(ui0a · · ·aui1−1a) = π(ui1a · · ·aui2−1a) = . . . = π(uin−1a · · · auin−1a) = 1 (1)

This implies in particular

π(ui0a · · · aui1−1) = π(ui1a · · · aui2−1) = . . . = π(uin−1a · · · auin−1) = g−1 (2)

Let r and s be the words defined by

w = r(ui0a · · ·aui1−1a)(ui1a · · ·aui2−1a)(uin−1a · · · auin−1a)s

Since w is commutatively equivalent to xaN+ny, the word

w′ = r(ui0a · · · aui1−1)(ui1a · · · aui2−1) · · · (uin−1a · · · auin−1)s

is commutatively equivalent to xaNy. Furthermore, Formulas (1) and (2) show
that π(w) = π(r)π(s) and π(w′) = π(r)(g−1)nπ(s). Since (g−1)n = 1 by La-
grange’s theorem, π(w) = π(w′) and thus w′ ∈ L. It follows that xaNy ∈ [L],
which proves the claim.

Now, the syntactic monoid of [L] is a commutative monoid in which each
generator has a finite index. Since the alphabet is finite, this monoid is finite
and thus [L] is regular. ��

Theorem 3.1 indicates that the commutative closure of a group language is a
commutative regular language. One may wonder whether, in turn, any commu-
tative regular language is the commutative closure of a group language. The
answer is no, but requires an improved version of Theorem 3.1.

Theorem 3.2. The commutative closure of a group language is a polynomial of
group languages.

Proof. Let L be a group language and let π : A∗ → G be its syntactic mor-
phism. We claim that [L] is a filter for �π, which will give the result by Propo-
sition 2.3. Let us show that if a1 · · ·an ∈ [L] and v0, v1, . . . , vn ∈ π−1(1), then
v0a1v1 · · · anvn ∈ [L]. Since a1 · · · an ∈ [L], there exists a word w ∈ L which is
commutatively equivalent to a1 · · ·an. Thus the word wv0v1 · · · vn is commuta-
tively equivalent to v0a1v1 · · · anvn. Now π(wv0v1 · · · vn) = π(w)π(v0) · · ·π(vn)
= π(w). Therefore wv0v1 · · · vn ∈ L, proving the claim. ��

Note that the commutative closure of a group language is not necessarily a group
language. Indeed, consider the set of all words of {a, b}∗ having an even num-
ber of (scattered) subwords equal to ab. Its commutative closure, A∗aA∗bA∗ ∪
A∗bA∗aA∗ is not a group language. However, Theorem 3.2 can be extended to
polynomials of group languages.

214 A. Cano Gómez, G. Guaiana, and J.-É. Pin

Theorem 3.3. The commutative closure of a polynomial of group languages is
also a polynomial of group languages.

Proof. It is shown in [21] that for any polynomial of group languages L, there
exists a morphism π : A∗ → G from A∗ onto a finite group G such that L is a
finite union of languages of the form Ra1R · · ·RanR, with R = π−1(1). Thus it
suffices to show that if K = Ra1R · · ·RanR for some letters a1, . . . , an, then [K]
is a polynomial of group languages.

We claim that [K] is a filter for �π, which will give the result by Propo-
sition 2.3. Let us show that if b1 · · · bm ∈ [K] and v0, v1, . . . , vm ∈ R, then
v0b1v1 · · · bmvm ∈ [K]. Let w be a word of K commutatively equivalent to
b1 · · · bm. As an element of K, w can be written as r0a1r1 · · · anrn for some words
r0, . . . , rn ∈ R. Since the words v0, . . . , vm are in R, the word wv0v1 · · · vm also
belongs to K and is commutatively equivalent to v0b1v1 · · · bmvm. This proves
the claim and concludes the proof. ��

3.2 Languages of W
We now define the class of regular languages W first introduced and studied in
[5,6]. Recall that a positive variety of languages is a class of regular languages
closed under union, intersection, residuals and inverses of morphisms.

The class W is the unique maximal positive variety of languages which does
not contain the language (ab)∗, for all letters a �= b. It is also the unique max-
imal positive variety satisfying the two following conditions: it is proper, that
is, strictly included in the variety of regular languages, and it is closed under
the shuffle operation. It is also the largest proper positive variety closed under
length preserving morphisms. Being closed under intersection, union, shuffle,
concatenation, length preserving morphisms and inverses of morphisms, W is a
quite robust class, which strictly contains the classes APC, Pol(Com) and Pol(G)
introduced previously.

The class W has an algebraic characterization [5,6]. Let a and b be two el-
ements of a monoid. Recall that b is an inverse of a if aba = a and bab = b.
Now, a regular language belongs to W if and only if its syntactic ordered monoid
belongs to the variety of finite ordered monoids W defined as follows: an ordered
monoid (M,�) belongs to W if and only if, for any pair (a, b) of mutually inverse
elements of M , and any element z of the minimal ideal of the submonoid gener-
ated by a and b, (abzab)ω � ab (see [6, p.435–436] for a precise definition of the
semigroup notions used in this characterization). This description might appear
quite involved, but has an important consequence: the variety W is decidable.
That is, given a regular language L, one can decide whether or not L belongs
to W . We also mention for the specialists that W contains the variety of finite
monoids DS.

The main result of this section states that W is closed under commutative
closure. In fact, we prove a stronger result, which relies on the notion of a period
that we now introduce.

Let M be a finite monoid. The exponent of M is the least integer ω such that
for all x ∈ M , xω is idempotent. Its period is the least integer p such that for

When Does Partial Commutative Closure Preserve Regularity? 215

all x ∈ M , xω+p = xω. By extension, the period (respectively exponent) of a
regular language is the period (respectively exponent) of its syntactic monoid.

Proposition 3.4. Let L be a commutative language of A∗ and let d be a positive
integer. If, for each letter c of A, there exists N > 0 such that cN+d �L cN , then
L is regular and its period divides d.

Proof. It follows from [8, Theorem 6.6.2, page 215] that, under these conditions,
L is a regular language. Let ω be the exponent of L. The relation cN+d �L cN

gives cN(ω−1)cN+d �L cN(ω−1)cN , whence cNω+d �L cNω and since cω ∼L

c2ω ∼L cNω, one gets finally cω+d �L cω. It follows that

cω ∼L cω+ωd �L . . . �L cω+2d �L cω+d �L cω

and hence cω ∼L cω+d. Since L is commutative, its syntactic monoid is commu-
tative and therefore uω ∼L uω+d for all u ∈ A∗. It follows that the period of L
divides d. ��

We can now state:

Theorem 3.5. Let L be a language of W(A∗). Then [L] is regular and commu-
tative (and hence in W(A∗)) and its period divides that of L.

Proof. Let L be a language of W(A∗) and let [L] be its commutative closure.
Then there exist an ordered monoid (M,�) ∈W, a surjective monoid morphism
ϕ : A∗ → M and an order ideal P of (M,�) such that ϕ−1(P) = L. Let ω be
the exponent of M and let p be its period. Let also d be any number such that,
for all t ∈ M , td is idempotent. In particular, d can be either ω or ω + p. We
claim that, for every such d, there exists an integer N such that, for every letter
c ∈ A, cN+d �[L] c

N . If the claim holds, then Proposition 3.4 shows that [L] is
regular and that its period divides d. Taking d = ω and d = ω + p then proves
that this period also divides p.

The rest of the proof consists in proving the claim. We need two combinatorial
results. The first one is a slight variation of Lemma 2.1.

Lemma 3.6. Let c be a letter of A. For any n � 0, there exists an integer N
such that, for every word u of A∗ containing at least N + 1 occurrences of c,
there exist an idempotent e of M and a factorization u = v0v1cv2c · · · vncvn+1

such that, for 1 � i � n, ϕ(vic) = e.

The second one requires an auxiliary definition. A word u of {a, b}∗ is said to be
balanced if |u|a = |u|b.

Proposition 3.7. Let B = {a, b}. There exists a balanced word z ∈ B∗ such
that, for any morphism γ : B∗ → M , γ(z) belongs to the minimal ideal of the
monoid γ(B∗).

Proof. Let n = |M | and let z be a balanced word of B∗ containing all words of
length � n as a factor. Let γ : B∗ →M be a morphism and let m be an element

216 A. Cano Gómez, G. Guaiana, and J.-É. Pin

of the minimal ideal J of γ(B∗). Then one can show there is a word u of length
� n such that γ(u) = m. Since |u| � n, u is a factor of z and γ(z) belongs to
Mγ(u)M . Now since m ∈ J , Mγ(u)M = MmM = J and hence γ(z) ∈ J . ��

Let us continue the proof of Theorem 3.5. Let n = |M | and let z be the balanced
word given by Proposition 3.7. Let r = |z|a = |z|b, n3 = d(1 + r), n2 = nn3 and
n1 = 3n2. Finally let N = N(n1) be the constant given by Lemma 3.6.

Let x, y ∈ A∗. If xcNy ∈ [L], there exists a word u of L commutatively
equivalent to xcNy and hence containing at least N occurrences of c. By Lemma
3.6, there exist an idempotent e of M and a factorization u = v0v1c · · · vn1cvn1+1

such that, for 1 � i � n1, ϕ(vic) = e.
Now, since n1 = 3n2, one can also write u as u = v0(f1g1) · · · (fn2gn2)vn1+1

where, for 1 � i � n2, fi = v3i−2cv3i−1 and gi = cv3ic.

Lemma 3.8. For 1 � i � n2, the elements ϕ(fi) and ϕ(gi) are mutually inverse.

Proof. We omit this proof, but it is a straightforward verification. ��

Setting s̄ = ϕ(c)e, one gets ϕ(gi) = s̄ for 1 � i � n2. Further, by the choice of
n2 and by the pigeonhole principle, one can find n3 indices i1 < . . . < in3 and
an element s ∈M such that ϕ(fi1) = . . . = ϕ(fin3

) = s. Setting

w0 = v0f1g1 · · · fi1−1gi1−1 x1 = fi1 y1 = gi1

w1 = fi1+1gi1+1 · · · fi2−1gi2−1 x2 = fi2 y2 = gi2
...

...
wn3−1 = fin3−1+1gin3−1+1 · · · fin3−1gin3−1 xn3 = fin3

yn3 = gin3

wn3 = fin3+1gin3+1 · · · fn2gn2vn1+1

we obtain a factorization

u = w0x1y1w1x2y2w2 · · · wn3−1xn3yn3wn3 (3)

such that ϕ(w1) = . . . = ϕ(wn3−1) = e, ϕ(x1) = . . . = ϕ(xn3) = s and ϕ(y1) =
. . . = ϕ(yn3) = s̄.

Recall that n3 = d(1 + r) where r = |z|a = |z|b. We now define words z1, . . . ,
zd as follows: the word zj is obtained by replacing in z the first occurrence of a by
xd+(j−1)r+1, the second occurrence of a by xd+(j−1)r+2, . . . , the r’s occurrence
of a by xd+jr and, similarly, the first occurrence of b by yd+(j−1)r+1, the second
occurrence of b by yd+(j−1)r+2, . . . , the r’s occurrence of b by yd+jr. Finally, set

u′ = w0(v3i1−2ccv3i1−1cz1v3i1c)(v3i2−2ccv3i2−1cz2v3i2c) · · ·
(v3id−2ccv3id−1czdv3idc)w1 · · · wn3 (4)

We are now ready for the three final steps.

Lemma 3.9. The word u′ is commutatively equivalent to xcN+dy.

When Does Partial Commutative Closure Preserve Regularity? 217

Proof. It is clear that u′ is commutatively equivalent to

cdw0(v3i1−2cv3i1−1cv3i1c) · · · (v3id−2cv3id−1cv3idc)(z1 · · · zd)(w1 · · · wn3)

Now, v3i1−2cv3i1−1cv3i1c = fi1gi1 = x1y1, . . . , v3id−2cv3id−1czdv3idc = fidgid =
xdyd. Further, by construction, z1 · · · zd ∼ xd+1yd+1 · · · xn3yn3 . Therefore

u′ ∼ cdw0x1y1w1x2y2w2 · · · wn3−1xn3yn3wn3

and finally u′ ∼ ucd ∼ xcN+dy. ��

Let T be the submonoid of M generated by s and s̄ and let γ : {a, b}∗ → T
be the morphism defined by γ(a) = s and γ(b) = s̄. By Proposition 3.7, γ(z)
belongs to the minimal ideal of T and since e = ss̄, the definition of W shows
that in M , (eγ(z)e)d � e.

Lemma 3.10. One has ϕ(z1) = . . . = ϕ(zd) = γ(z).

Proof. Each of the words zj is obtained by replacing in z the occurrences of a
by some xk and each occurrence of b by some yk. Since all the xk (resp. yk) have
the same image by ϕ, namely s (resp. s̄), ϕ(zj) is equal to γ(z). ��

Lemma 3.11. The word u′ belongs to L.

Proof. It follows from (3) that ϕ(u) = ϕ(w0)eϕ(wn3), and hence, since P = ϕ(L),
ϕ(w0)eϕ(wn3) ∈ P . Now, observe that

ϕ(v3i1−2ccv3i1−1cz1v3i1c) = ϕ(v3i1−2c)ϕ(c)ϕ(v3i1−1c)ϕ(z1)ϕ(v3i1c)
= eϕ(c)eϕ(z1)e = es̄γ(z)e by Lemma 3.10

By a similar argument, one has

ϕ(v3i1−2ccv3i1−1cz1v3i1c) = . . . = ϕ(v3id−2ccv3id−1czdv3idc) = es̄γ(z)e

Finally, since ϕ(w1) = . . . = ϕ(wn3−1) = e, it follows from (4) that

ϕ(u′) = ϕ(w0)(es̄γ(z)e)dϕ(wn3)

Furthermore, since s̄ ∈ T , s̄γ(z) belongs to the minimal ideal of T and since
M is in W, one has (es̄γ(z)e)d � e. Since ϕ(L) is an order ideal, the element
ϕ(w0)(es̄γ(z)e)dϕ(wn3) is also in ϕ(L) and hence u′ ∈ L. ��

Putting Lemmas 3.9 and 3.11 together, we conclude that xcN+dy ∈ [L], which
proves the claim and the theorem. ��

4 Closure Under Partial Commutation

Some of the results of Section 3 can be extended to partial commutations, under
some restrictions on the set I.

218 A. Cano Gómez, G. Guaiana, and J.-É. Pin

4.1 The Case Where D Is Transitive

The condition that D is transitive is equivalent to requiring that A∗/∼I is iso-
morphic to a direct product of free monoids A∗1×· · ·×A∗k. Denote by πj the pro-
jection from A∗ onto A∗j and let πI be the morphism from A∗ onto A∗1×· · ·×A∗k
defined by πI(u) = (π1(u), . . . , πk(u)). This morphism is intimately connected
to our problem, since u ∼I v if and only if πI(u) = πI(v). Let us denote by X
the shuffle product. The (easy) proof of the next result is omitted. The second
part of the statement relies on Mezei’s theorem characterizing the recognizable
subsets of a direct product of monoids.

Proposition 4.1. Let L be a language of A∗. If

πI(L) =
⋃

1�i�n

Li,1 × · · · × Li,k (5)

where for 1 � j � k, the languages L1,j, . . . , Ln,j are languages of A∗j , then
[L]I =

⋃
1�i�n Li,1 X · · ·X Li,k. In particular, if πI(L) is a recognizable subset

of A∗1 × · · · ×A∗k, then [L]I is regular.

If L is a group language, one can adapt an argument from [5, Proposition 9.6] to
show that πI(L) can be decomposed as in (5), where each Li,j belongs to Pol(G).
Therefore, since Pol(G) is closed under shuffle, we get:

Theorem 4.2. Suppose that D is transitive. If L is a group language, then [L]I
is a polynomial of group languages.

Still some work is needed to obtain the following result.

Theorem 4.3. Suppose that D is transitive. If L is a polynomial of group lan-
guages, then [L]I is also a polynomial of group languages.

This result cannot be extended to W . Indeed, let A = {a, b, c, d} and I =
{(a, b), (b, c), (c, d), (d, a)}. Then the language (abcd)∗ + A∗aaA∗ + A∗bbA∗ +
A∗ccA∗ + A∗ddA∗ + A∗ababA∗ + A∗bcbcA∗ + A∗cdcdA∗ + A∗dadaA∗ belongs to
W but [L]I is not regular, although D is transitive in this case.

4.2 The Case Where I Is Transitive

We now consider the case where I is transitive. In this case, A∗/∼I is a free
product of free commutative monoids.

Theorem 4.4. Let L be a language of W(A∗) and let I be a transitive indepen-
dence relation. Then [L]I is a regular language.

Proof. (Sketch) Let P = {A1, . . . , Ak} be the partition of A such that A∗/∼I is
isomorphic to the free product NA1 ∗ · · · ∗ NAk .

Let A = (Q,A, · , q0, F) be the minimal automaton of L. Recall that the states
of Q are partially ordered by the relation � defined by p � q if and only if, for
all u ∈ A∗, q ·u ∈ F implies p·u ∈ F .

When Does Partial Commutative Closure Preserve Regularity? 219

We now construct a generalized automaton B, over the same set of states Q,
in which transitions are labelled by regular languages. More precisely, for each
pair of states (p, q), we create a transition from p to q labelled by

Rp,q =
⋃

1�i�k

[
{u ∈ A∗i | p·u � q}

]

Each language {u ∈ A∗i | p·u � q} can be written as the intersection of A∗i
and of the language Kp,q = {u ∈ A∗ | p·u � q}. Since L ∈ W(A∗), one also
has Kp,q ∈ W(A∗) and since W is closed under commutation by Theorem 3.5,
so does Rp,q. The remainder of the proof (omitted for lack of space) consists in
proving that B recognizes [L]I . It follows that [L]I is regular. ��

Note that we don’t know whether [L]I also belongs to W(A∗). However, the
proof of Theorem 4.4 can be adapted to prove another result.

Let I1, . . . , Ik be the connected components of the graph (A, I). Then A∗/∼I

is isomorphic to the free product A∗/∼I1 ∗ · · · ∗ A∗/∼Ik
. Let us modify the

construction of the automaton B by taking

Rp,q =
⋃

1�j�k

[
{u ∈ A∗j | p·u � q}

]
Ij

Then one can prove that if each language [{u ∈ A∗j | p·u � q}
]
Ij

is regular, then
[L]I is regular. Putting Dj = {(a, b) ∈ Aj × Aj | (a, b) /∈ Ij} for 1 � j � k, one
can show, thanks to Theorem 4.3, that Rp,q is regular if L is a polynomial of
group languages and each relation Dj is transitive.

There is a simple graph theoretic interpretation of this latter condition. One
can show that I satisfies it if and only if the restriction of the graph (A, I) to
any four letter subalphabet is not one of the graphs P4 and Paw represented
below:

P4
Paw

We can now state our last result.

Theorem 4.5. Let L be a polynomial of group languages. If the graph (A, I) is
(P4, Paw)-free, then [L]I is regular.

References

1. Achache, A.: Opérateurs de fermeture semi-commutatifs. Novi Sad J. Math. 34(1),
79–87 (2004)

2. Bouajjani, A., Muscholl, A., Touili, T.: Permutation Rewriting and Algorithmic
Verification. In: Proc. 16th Symp. on Logic in Computer Science (LICS 2001),
Boston (MA), USA, pp. 399–409. IEEE Pub., Los Alamitos (2001)

220 A. Cano Gómez, G. Guaiana, and J.-É. Pin

3. Bouajjani, A., Muscholl, A., Touili, T.: Permutation Rewriting and Algorithmic
Verification. Information and Computation 205(2), 199–224 (2007)

4. Bucher, W., Ehrenfeucht, A., Haussler, D.: On total regulators generated by deriva-
tion relations. Theor. Comput. Sci. 40(2-3), 131–148 (1985)

5. Cano Gómez, A., Pin, J.-E.: On a conjecture of Schnoebelen. In: Ésik, Z., Fülöp,
Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 35–54. Springer, Heidelberg (2003)

6. Cano Gómez, A., Pin, J.-É.: Shuffle on positive varieties of languages. Theoret.
Comput. Sci. 312, 433–461 (2004)

7. Cécé, G., Héam, P.-C., Mainier, Y.: Efficiency of Automata in Semi-Commutation
Verification Techniques. Theoret. Informatics Appl. 42, 197–215 (2008)

8. De Luca, A., Varricchio, S.: Finiteness and regularity in semigroups and formal lan-
guages. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
Berlin (1999)

9. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Handbook of formal
languages. Beyond words, vol. 3, pp. 457–533. Springer, New York (1997)

10. Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific Publishing
Co. Inc., River Edge (1995)

11. Ginsburg, S., Spanier, E.H.: Bounded regular sets. Proc. Amer. Math. Soc. 17,
1043–1049 (1966)

12. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pa-
cific J. Math. 16, 285–296 (1966)

13. Gohon, P.: An algorithm to decide whether a rational subset of Nk is recognizable.
Theor. Comput. Sci. 41, 51–59 (1985)

14. Guaiana, G., Restivo, A., Salemi, S.: On the product of trace languages. In: Bertoni,
S.C.R.A., Goldwurm, M. (eds.) Proc. of the Workshop Trace theory and code
parallelization, pp. 54–67. University of Milan, Italy (2000)

15. Guaiana, G., Restivo, A., Salemi, S.: On the trace product and some families of
languages closed under partial commutations. J. Autom. Lang. Comb. 9(1), 61–79
(2004)

16. Muscholl, A., Petersen, H.: A note on the commutative closure of star-free lan-
guages. Inform. Process. Lett. 57(2), 71–74 (1996)

17. Ochmański, E., Stawikowska, K.: On closures of lexicographic star-free languages.
In: Automata and formal languages, pp. 227–234. Univ. Szeged. Inst. Inform.,
Szeged (2005)

18. Ochmański, E., Stawikowska, K.: Star-free star and trace languages. Fund. In-
form. 72(1-3), 323–331 (2006)

19. Ochmański, E., Stawikowska, K.: A Star Operation for Star-Free Trace Languages.
In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp.
337–345. Springer, Heidelberg (2007)

20. Pin, J.-E.: Varieties of formal languages. North Oxford, London (1986); (Traduction
de Variétés de langages formels)

21. Pin, J.-E.: Polynomial closure of group languages and open sets of the Hall topol-
ogy. Theoret. Comput. Sci. 169, 185–200 (1996)

22. Sakarovitch, J.: The “last” decision problem for rational trace languages. In: Simon,
I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 460–473. Springer, Heidelberg (1992)

Weighted Logics for Nested Words and
Algebraic Formal Power Series

Christian Mathissen�

Institut für Informatik, Universität Leipzig
D-04009 Leipzig, Germany

mathissen@informatik.uni-leipzig.de

Abstract. Nested words, a model for recursive programs proposed by Alur and
Madhusudan, have recently gained much interest. In this paper we introduce
quantitative extensions and study nested word series which assign to nested words
elements of a semiring. We show that regular nested word series coincide with se-
ries definable in weighted logics as introduced by Droste and Gastin. For this, we
establish a connection between nested words and series-parallel-biposets. Apply-
ing our result, we obtain a characterization of algebraic formal power series in
terms of weighted logics. This generalizes a result of Lautemann, Schwentick
and Thérien on context-free languages.

1 Introduction

Model checking of finite state systems has become an established method for automatic
hardware and software verification and led to numerous verification programs used in
industrial application. In order to verify recursive programs, it is necessary to model
them as pushdown systems rather than finite automata. This has motivated Alur and
Madhusudan [2,3] to define the classes of nested word languages and visibly pushdown
languages which is a proper subclass of the class of context-free languages and exceeds
the regular languages. These classes gained much interest and set a starting point for a
new research field (see e.g. [1, 4] among many others).

The goal of this paper will be: 1. to introduce a quantitative automaton model and a
quantitative logic for nested words that are equally expressive, 2. to establish a connec-
tion between nested words and series-parallel-biposets which were studied by Ésik and
Németh [11] and others, 3. to give a characterization of the important class of algebraic
formal power series by means of weighted logics.

In order to be able to model quantitative aspects, extensions of existing models were
investigated, such as weighted automata or probabilistic pushdown automata. In this
paper we introduce and investigate weighted nested word automata which we propose
as a quantitative model for sequential programs with recursive procedure calls. Due
to the fact that we define them over arbitrary semirings they are very flexible and can
model, for example, probabilistic or stochastic systems. As the first main result of this
paper we characterize their expressiveness using weighted logics, generalizing a result
of Alur and Madhusudan. Weighted logics were introduced by Droste and Gastin [7].

� Supported by the GK 446/3 of the German Research Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 221–232, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 C. Mathissen

They enriched the classical language of monadic second-order logic with values from a
semiring in order to add quantitative expressiveness. For example one may now express
how often a certain property holds, how much execution time a process needs or how
reliable it is. The result of Droste and Gastin has been extended to infinite words, trees,
texts, pictures and traces [9,10,17,16,18]. Moreover, a restriction of Łukasiewicz multi-
valued logic coincides with this weighted logics [19].

For our result we establish a new connection between series-parallel-biposets and
nested words. The class of sp-biposets forms the free bisemigroup which was investi-
gated by Hashiguchi et al. (e.g. [12]). Moreover, a language theory for series-parallel-
biposets was developed by Ésik and Németh [11]. We anticipate that the connection
between nested words and sp-biposets can be utilized to obtain further results. We give
an indication in the conclusions at the end of the paper.

Using projections of nested word series and applying the above mentioned result,
we obtain the second main result, a characterization of algebraic formal power series.
These form an important generalization of context-free languages. Algebraic formal
power series were already considered initially by Chomsky and Schützenberger [5] and
have since been intensively studied by Kuich and others. For a survey see [13] or [14].
Here we are able to give a characterization of algebraic formal power series in terms of
weighted logics, generalizing a result of Lautemann, Schwentick and Thérien [15] on
context-free languages.

2 Weighted Automata on Nested Words

Definition 2.1 (Alur & Madhusudan [3]). A nested word (over a finite alphabet Δ) is
a pair (w, ν) such that w ∈ Δ+ and ν is a binary nesting relation on {1, . . . , |w|} that
satisfies (a) if ν(i, j), then i < j, (b) if ν(i, j) and ν(i, j′), then j = j′, (c) if ν(i, j)
and ν(i′, j), then i = i′ and (d) if ν(i, j) and ν(i′, j′) and i < i′, then j < i′ or j′ < j.

If ν(i, j) we say i is a call position and j is a return position.

We collect all nested words over Δ in NW(Δ). Let nw = (w, ν) ∈ NW(Δ) where
w = a1 . . . an. The factor nw[i, j] for i ≤ j is the restriction of nw to positions between
i and j; more formally nw[i, j] = (ai . . . aj , ν[i, j]) where ν[i, j] = {(k, l) | (k + i −
1, l + i− 1) ∈ ν, 1 ≤ k, l ≤ j − i + 1}.

Nested words have been introduced in order to model executions of recursive pro-
grams, as well as nested data structures such as XML documents. Here we model quan-
titative behavior of systems such as runtime or the probability of an execution of a
randomized program. That is we assign to a nested word a quantity expressing, for
example, runtime or probability.

Example 2.2. 1. Probabilistic automata have been used to model fault-tolerant
systems or to model randomized programs. Consider the randomized recursive
pseudo-procedure bar (see next page) where flip(Y) means flipping a fair
coin Y. Consider furthermore the alphabet Δ = {r, w, b, call, ret} of atomic
events which stand for read, write, beep, call and return. Then the nested word
nw = (w, ν) defined by w = r.call.r.b.ret.w.w.ret and ν = {(2, 5)} models an
execution of bar. We calculate the probability of the execution by multiplying the
probability of each atomic action, i.e. 1 · 1/2 · 1 · 1/2 · 1/2 · 1/2 · 1/2 · 1/2 = 1/64.

Weighted Logics for Nested Words and Algebraic Formal Power Series 223

2. As Alur and Madhusudan point out XML documents or bibtex databases can nat-
urally be modeled as nested words where the nesting relation captures open and
close tags [3]. Suppose we model bibtex databases as nested words. Then we may
assign to a nested word e.g. the number of technical reports it stores.

proc bar(){
read(x);
flip(Y);if(Y==head)

beep;
else
bar();

flip(Y);while(Y==head)
write(x);
flip(Y);

exit;}

To be as flexible as possible we take the quan-
tities we assign to a nested word from a com-
mutative semiring. A commutative semiring �

is an algebraic structure (�,+, ·, 0, 1) such that
(�,+, 0) and (�, ·, 1) are commutative monoids,
multiplication distributes over addition and 0
is absorbing. For example the natural numbers
(�,+, ·, 0, 1) form a commutative semiring. An im-
portant example is also the max-plus semiring (� ∪
{−∞},max,+,−∞, 0) which has been used to
model real-time systems or discrete event systems.
This semiring possesses the property that any finitely generated submonoid of (�,+, 0)
is finite. Such semirings are called additively locally finite. Another important example
of an additively locally finite semiring is the probabilistic semiring ([0, 1],max, ·, 0, 1).
We call a semiring locally finite if any finitely generated subsemiring is finite. Examples
include any Boolean algebra such as the trivial Boolean algebra � = ({0, 1},∨,∧, 0, 1)
as well as (�+∪{∞},max,min, 0,∞) and the fuzzy semiring ([0, 1],max,min, 0, 1).

Definition 2.3. A weighted nested word automaton (WNWA for short) is a quadruple
A = (Q, ι, δ, κ) where δ = (δc, δi, δr) such that

1. Q is a finite set of states,
2. δc, δi : Q×Δ×Q→ � are the call and internal transition functions,
3. δr : Q×Q×Δ×Q→ � is the return transition function,
4. ι, κ : Q→ � are the initial and final distribution.

A run of A on nw = (a1 . . . an, ν) is a sequence of states r = (q0, . . . , qn); we also
write r : q0

nw→ qn. The weight of r at position 1 ≤ j ≤ n is given by

wgtA(r, j) =

⎧
⎪⎨

⎪⎩

δc(qj−1, aj , qj) if ν(j, i) for some j < i ≤ n

δr(qi−1, qj−1, aj, qj) if ν(i, j) for some 1 ≤ i < j

δi(qj−1, aj , qj) otherwise.

The weight wgtA(r) of r is defined by wgtA(r) =
∏

1≤j≤n wgtA(r, j) and the behav-
ior ‖A‖: NW(Δ) → � of A is given by

‖A‖ (nw) =
∑

q0,qn∈Q
ι(q0) ·

∑

r:q0
nw→qn

wgtA(r) · κ(qn).

A function S : NW(Δ) → � is called a nested word series. As for formal power
series we write (S, nw) for S(nw). We define the scalar multiplication · and the sum +
pointwise, i.e. for k ∈ � and nested word series S1, S2 we let (k·S1, nw) = k·(S1, nw)

224 C. Mathissen

and (S1+S2, nw) = (S1, nw)+(S2, nw) for all nw ∈ NW(Δ). A series S is regular if
there is a WNWA A with ‖A‖= S. For the Boolean semiring � WNWA are equivalent
to (unweighted) nested word automata [3]. A language L ⊆ NW(Δ) is recognized by
a nested word automaton iff its characteristic function �L : NW(Δ) → � is regular.

Example 2.4. The procedure bar of Example 2.2 can be modeled by a WNWA over
� = ([0, 1],max, ·, 0, 1) with four states {q1, . . . , q4}. The transitions (only the ones
with weight �= 0) are given as follows. We let ι(q1) = 1 and κ(q4) = 1. Moreover,

δi(q1, r, q2) = 1, δi(q2, b, q3) = δi(q3, w, q3) = δi(q3, ret, q4) = 1/2,
δc(q2, call, q1) = 1/2, δr(q2, q3, ret, q3) = 1/2.

Intuitively, each of the states corresponds to a line in the procedure bar which is the
next to be executed: q1 to line 2, q2 to line 3, q3 to line 7 and q4 is only reached at the
end of an execution. Consider the nested word nw of Example 2.2(a). There is exactly
one run r : q1

nw→ q4 with wgt(r) �= 0. Observe that the automaton assigns 1/64 to nw.

3 Weighted Logics for Nested Words

We now introduce a formalism for specifying nested word series. For this we interpret
a nested word nw = (a1 . . . an, ν) as a relational structure consisting of the domain
dom(nw) = {1, . . . , n} together with the unary relations Laba = {i ∈ dom(w) | ai =
a} for all a ∈ Δ, the binary relation ν and the usual ≤ relation on dom(nw).

First, we recall classical MSO logic. Formulae of MSO are inductively built from
the atomic formulae x = y, Laba(x), x ≤ y, ν(x, y), x ∈ X using negation ¬, the
connective∨ and the quantifications∃x. and ∃X. (wherex, y range over individuals and
X over sets). Let ϕ ∈ MSO, let Free(ϕ) be the set of free variables, let V ⊇ Free(ϕ) be
a finite set of variables and let γ be a (V , nw)-assignment (assigning variables of V an
element or a set of dom(nw), resp.). For i ∈ dom(nw) and T ⊆ dom(nw) we denote
by γ[x → i] and γ[X → T] the (V ∪ {x}, nw)-assignment (resp. (V ∪ {X}, nw)-
assignment) which equals γ on V \ {x} (resp. V \ {X}) and assumes i for x (resp. T
for X). We let LV(ϕ) = {(nw, γ) | (nw, γ) |= ϕ} and L (ϕ) = LFree(ϕ)(ϕ).

Let Z ⊆ MSO. A language L ⊆ NW(Δ) is Z-definable if L = L (ϕ) for a sen-
tence ϕ ∈ Z . First-order formulae, that is formulae containing only quantification over
individuals, are collected in FO. Monadic second-order logic and (unweighted) nested
word automata turned out to be equally expressive (Alur and Madhusudan [3, 2]).

We now turn to weighted MSO logics as introduced in [7]. Formulae of MSO(�)
are built from the atomic formulae k (for k ∈ �), x = y, Laba(x), x ≤ y, ν(x, y),
x ∈ X , ¬(x = y), ¬Laba(x), ¬(x ≤ y), ¬(ν(x, y)), ¬(x ∈ X) using the connectives
∨, ∧ and the quantifications ∃x., ∃X., ∀x., ∀X.. Let ϕ ∈ MSO(�) and Free(ϕ) ⊆ V .
The weighted semantics �ϕ�V of ϕ is a function which assigns to each pair (nw, γ) an
element of �. For k ∈ � we put �k�V (nw, γ) = k. For all other atomic formulae ϕ we
let �ϕ�V be the characteristic function �LV(ϕ). Moreover:

�ϕ ∨ ψ�V(nw, γ) = �ϕ�V (nw, γ) + �ψ�V (nw, γ),
�ϕ ∧ ψ�V(nw, γ) = �ϕ�V (nw, γ) · �ψ�V (nw, γ),

Weighted Logics for Nested Words and Algebraic Formal Power Series 225

�∃x.ϕ�V (nw, γ) =
∑

i∈dom(nw)
�ϕ�V∪{x}(nw, γ[x→ i]),

�∃X.ϕ�V(nw, γ) =
∑

T⊆dom(nw)
�ϕ�V∪{X}(nw, γ[X → T]),

�∀x.ϕ�V (nw, γ) =
∏

i∈dom(nw)
�ϕ�V∪{x}(nw, γ[x→ i]),

�∀X.ϕ�V(nw, γ) =
∏

T⊆dom(nw)
�ϕ�V∪{X}(nw, γ[X → T]).

In the following, we shortly write �ϕ� for �ϕ�Free(ϕ).

Remark. A formula ϕ ∈ MSO(�) which does not contain a subformula k ∈ � can
also be interpreted as an unweighted formula. Moreover, if � is the Boolean semiring
�, then it is easy to see that weighted logics and classical MSO logic coincide. In this
case k is either 0 (false) or 1 (true).

Example 3.1. 1. As in Example 2.2 suppose we model bibtex databases as nested
words. Moreover, assume that tecrep ∈ Δ marks the beginning of an entry con-
taining a technical report. Now, let � = � be the semiring of the natural numbers.
Then �∃x.Labtecrep(x)�(nw) counts the number of technical reports of the bibtex
database modeled by nw.

2. The nesting depth of a position of a nested word is the number of open call po-
sitions (i.e. where the corresponding return position has not occurred yet). The
nesting depth of a nested word is the maximum over all positions. Let � =
(� ∪ {−∞},max,+,−∞, 0). Define

open(x) := ∀y.(y ≤ x ∧ call(y)) → 1 ∨ (y ≤ x ∧ return(y)) → −1

where call(x) := ∃y.ν(x, y) and return(x) := ∃y.ν(y, x) (the precise definition of
→ is given below). Then �∃x.open(x)� assigns to a nested word its nesting depth.

Let Z ⊆ MSO(�). A series S : NW(Δ) → � is Z-definable if S = �ϕ� for a sentence
ϕ ∈ Z . Already for words, examples [7] show that unrestricted application of univer-
sal quantification does not preserve regularity as the resulting series may grow to fast.
Therefore we now define different fragments of MSO(�). For the fragment RMSO
for words, which we do not define here, Droste and Gastin [7] showed that a formal
power series is regular iff it is RMSO-definable. Unfortunately, RMSO is a semantic
restriction and it is not clear if it can be decided. In order to have a decidable frag-
ment, we syntactically define the fragment sRMSO. For this we follow the approach
of [8]. Given a classical MSO formula ϕ we assign to it formulae ϕ+ and ϕ− such that
�ϕ+� = �L (ϕ) and �ϕ−� = �L (¬ϕ). The problem that arises is that by definition, e.g.
∨ is interpreted as +. Hence, for a formula ϕ ∨ ψ one might not end up with a sum
which equals 0 or 1. One possible solution is to evaluate ϕ only if ψ evaluates to 0.
Similar for ∃x. and ∃X.. This leads to the following definition:

1. If ϕ is of the form x = y, Laba(x), x ≤ y, ν(x, y), then ϕ+ = ϕ and ϕ− = ¬ϕ.
2. If ϕ = ¬ψ then ϕ+ = ψ− and ϕ− = ψ+.
3. If ϕ = ψ ∨ ψ′, then ϕ+ = ψ+ ∨ (ψ− ∧ ψ′+) and ϕ− = ψ− ∧ ψ′−.
4. If ϕ = ∃x.ψ, then ϕ+ = ∃x.ψ+ ∧ ∀y.(y < x ∧ ψ(y))− and ϕ− = ∀x.ψ−.

226 C. Mathissen

In order to disambiguate set quantification, we have to define a linear order on the sub-
sets of the domain of a nested word or equivalently on nested words (of fixed length)
over the alphabet {0, 1}. We take the lexicographic order < which is given by the fol-
lowing formula: X < Y := ∃y.y ∈ Y ∧¬y ∈ X ∧∀z.[z < y → (z ∈ X ↔ z ∈ Y)]+.
We proceed:

5. If ϕ = ∃X.ψ, then ϕ+ = ∃X.ψ+ ∧ ∀Y.(Y < X ∧ ψ(Y))− and ϕ− = ∀X.ψ−.

Formulae of the form ϕ+ or ϕ− for some ϕ ∈ MSO are called syntactically unambigu-
ous. In the following, we shortly write ϕ→ ψ for ϕ− ∨ (ϕ+ ∧ψ) for any two weighted
formulae ϕ, ψ where ϕ does not contain subformulae of form k (k ∈ �).

We define aUMSO, the collection of almost unambiguous formulae, to be the small-
est subset of MSO(�) containing all constants k (k ∈ �) and all syntactically unam-
biguous formulae which is closed under conjunction and disjunction.

Definition 3.2. A weighted formula ϕ is in sRMSO (syntactically restricted MSO) if:
1. Whenever it contains a subformula ∀X.ψ, then ψ is syntactically unambiguous.
2. Whenever it contains a subformula ∀x.ψ, then ψ ∈ aUMSO.

Let now wUMSO, the collection of weakly unambiguous formulae, be the smallest
subset of MSO(�) containing all constants k (k ∈ �) and all syntactically unambiguous
formulae which is closed under conjunction, disjunction and existential quantification.

Definition 3.3. A weighted formula ϕ is in swRMSO (syntactically weakly restricted
MSO) if: 1. Whenever it contains a subformula ∀X.ψ, then ψ is syntactically unam-
biguous. 2. Whenever it contains a subformula ∀x.ψ, then ψ ∈ wUMSO.

Clearly, sRMSO ⊂ swRMSO ⊂ MSO(�). The first main result of this paper is the
characterization of regular nested word series using weighted logics.

Theorem 3.4. Let � be a commutative semiring and let S : NW(Δ) → �. Then:

(a) The series S is regular iff S is sRMSO-definable.
(b) If � is additively locally finite, then S is regular iff S is swRMSO-definable.
(c) If � is locally finite, then S is regular iff S is MSO-definable.

We prove the result in the next section by interpreting nested words in sp-biposets,
which we first investigate. The results are interesting in their own rights.

4 Nested Words and SP-Biposets

A bisemigroup is a set together with two associative operations. Several authors in-
vestigated the free bisemigroup as a fundamental, two-dimensional extension of classi-
cal automaton theory, see e.g. Ésik and Németh [11] and Hashiguchi et al. (e.g. [12]).
Ésik and Németh considered as a representation for the free bisemigroup the so-called
sp-biposets, a certain class of biposets. A Δ-labeled biposet is a finite nonempty set
V of vertices equipped with two partial orders ≤h and ≤v and a labeling function
λ : V → Δ. Let p1 = (V1, λ1,≤1

h,≤1
v), p2 = (V2, λ2,≤2

h,≤2
v) be biposets. We de-

fine p1 ◦h p2 = (V1 � V2, λ1 ∪ λ2,≤h,≤v) by letting ≤h=≤1
h ∪ ≤2

h ∪(V1 × V2)

Weighted Logics for Nested Words and Algebraic Formal Power Series 227

and ≤v=≤1
v ∪ ≤2

v. The operation ◦v is defined dually. Clearly, both products are as-
sociative. The set of biposets generated from the singletons by ◦h and ◦v is denoted
SPB(Δ). Its elements are called sp-biposets.

Weighted parenthesizing automata operating on sp-biposets generalizing the au-
tomata of Ésik and Németh [11] were defined in [16].

Definition 4.1. A weighted parenthesizing automaton (WPA for short) over Δ is a tuple
P = (H,V , Ω, μ, μop, μcl, λ, γ) where

1. H,V are finite disjoint sets of horizontal and vertical states, respectively,
2. Ω is a finite set of parentheses (to help the intuition we write (s or)s for s ∈ Ω),
3. μ : (H×Δ×H) ∪ (V ×Δ× V) → � is the transition function,
4. μop, μcl : (H × Ω × V) ∪ (V × Ω ×H) → � are the opening and closing paren-

thesizing functions and
5. λ, γ : H∪ V → � are the initial and final weight functions.

A run r of P is a word over the alphabet (H ∪ V) × (Δ ∪ Ω) × (H ∪ V) defined
inductively as follows. We also define its label lab(r), its weight wgtP(r), its initial
state init(r) and its final state fin(r).

1. (q1, a, q2) is a run for all (q1, q2) ∈ (H×H) ∪ (V × V) and a ∈ Δ. We set

lab((q1, a, q2)) = a ∈ SPB(Δ), wgtP((q1, a, q2)) = μ(q1, a, q2),
init((q1, a, q2)) = q1 and fin((q1, a, q2)) = q2.

2. Let r1 and r2 be runs such that fin(r1) = init(r2) ∈ H (resp. V). Then r = r1r2 is
a run having

lab(r) = lab(r1) ◦h lab(r2) (resp. lab(r) = lab(r1) ◦v lab(r2)),
wgtP(r) = wgtP(r1) · wgtP(r2), init(r) = init(r1) and fin(r) = fin(r2).

3. Let r be a run resulting from 2. such that fin(r), init(r) ∈ H (resp. V). Let q1, q2 ∈
V (resp.H) and s ∈ Ω. Then r′ = (q1, (s, init(r)) r (fin(r),)s, q2) is a run. We set

lab(r′) = lab(r),wgtP(r′) = μop((q1, (s, init(r))) ·wgtP(r) · μcl((fin(r),)s, q2)),
init(r′) = q1 and fin(r′) = q2.

Let p ∈ SPB(Δ). If r is a run of P with lab(r) = p, init(r) = q1, fin(r) = q2, we
write r : q1

p→ q2. Since we do not allow repeated application of rule 3, there are only
finitely many runs with label p. The behavior of P is a function ‖P‖: SPB(Δ) → �

with
(‖P‖, p) =

∑

q1,q2∈H∪V
λ(q1) ·

∑

r:q1
p→q2

wgtP(r) · γ(q2).

An sp-biposet series, i.e. a function S : SPB(Δ) → �, is regular if there is a WPA
P such that ‖P‖= S. For sp-biposets, MSO(�) can be defined similar as for nested
words. Moreover, for any sp-biposet p = (V, λ,≤h,≤v) the union ≤:=≤h ∪ ≤v gives
a linear order [11]. Using this linear order, we can define syntactically unambiguous
formulae as for nested words and then sRMSO and swRMSO. From Theorems 6.3
and 5.6 of [16] we obtain (here without proof due to space constraints) the following
result which generalizes the Büchi-type result of Ésik and Németh on the coincidence
of MSO-definable and regular languages of sp-biposets [11].

228 C. Mathissen

Theorem 4.2. Let � be a commutative semiring and let S : SPB(Δ) → �. Then:

(a) The series S is regular iff S is sRMSO-definable.
(b) If � is additively locally finite, then S is regular iff S is swRMSO-definable.
(c) If � is locally finite, then S is regular iff S is MSO-definable.

We note that under the assumptions of Theorem 4.2, given an sRMSO (resp. swRMSO,
resp. MSO) formula ϕ we can effectively construct a WPA P such that �ϕ� =‖P‖ (and
vice versa).

We will now derive similar results for nested words as for sp-biposets by interpreting
the different structures within each other. For this, we utilize definable transductions as
introduced by Courcelle [6]. Let σ1 and σ2 = ((Ri)i∈I , ρ) be two relational signatures
where ρ : I → �

+ assigns to each relation symbol Ri a positive arity and let C1 and C2
be classes of finite σ1- and σ2-structures, respectively.

Definition 4.3. A (σ1, σ2)-1-copying definition scheme (without parameter) is a tuple
D = (ϑ, δ, (ϕi)i∈I) of formulae in MSO(σ1) such that Free(ϑ) = ∅, Free(δ) = {x1}
and Free(ϕi) = {x1, . . . , xρ(i)}.
Let D be a (σ1, σ2)-1-copying definition scheme. For each s1 ∈ C1 such that s1 |= ϑ
define the σ2-structure defD(s1) = s2 = (dom(s2), (R2

i)i∈I) where dom(s2) = {v ∈
dom(s1) | (s1, v) |= ϕ} and Rs2

i = {(v1, . . . , vr) ∈ dom(s2)r | (s1, v1, . . . , vr) |= ϕi}
with r = ρ(i). Now a partial function Φ : C1 → C2 is definable if there is a definition
scheme D such that Φ = defD .

Clearly, MSO(�) can be defined for C1 and C2 along the lines as for nested words.
In order to disambiguate a formula, we need a linear order on each s ∈ C1 (resp. C2).
For the next proposition we therefore assume that there are binary relation symbols
≤1∈ σ1 and ≤2∈ σ2 such that the interpretation of ≤i in s is a linear order for any
s ∈ Ci (i = 1, 2). Using these linear orders, we can define syntactically unambiguous
formulae and then sRMSO(�) and swRMSO(�) over σ1 and σ2. Now, let Φ : C1 → C2
be a partial function with domain dom(Φ) and let S : C2 → �. Define Φ−1(S) by letting
(Φ−1(S), s1) = (S, Φ(s1)) for all s1 ∈ dom(Φ) and (Φ−1(S), s1) = 0 otherwise.

Proposition 4.4. Let Φ : C1 → C2 be a definable function. If S : C2 → � is MSO-
definable (resp. sRMSO-definable, swRMSO-definable), then so is Φ−1(S).

Remark. It suffices that ≤i can be defined by a formula ϕi(x, y) such that �ϕi� =
�L (ϕi). This is the case for sp-biposets where we let ϕ(x, y) = x ≤v y ∨ x ≤h y.

Now we define two embeddings of nested words into sp-biposets Φv, Φh : NW(Δ) →
SPB(Δ) as follows. Let nw = (w, ν) ∈ NW(Δ) where w = a1 . . . an. If ν = ∅, then
let Φh(nw) = a1◦h. . .◦han and Φv(nw) = a1◦v . . .◦van. If ν �= ∅, let i be the minimal
call position and j the corresponding return position. Let nw′ = nw[i + 1, j − 1] and
nw′′ = nw[j + 1, n]. Suppose for the moment that i + 1 ≤ j − 1 and j + 1 ≤ n. Then

Φh(nw) = a1 ◦h . . . ◦h ai−1 ◦h (ai ◦v Φv(nw′) ◦v aj) ◦h Φh(nw′′),
Φv(nw) = a1 ◦v . . . ◦v ai−1 ◦v (ai ◦h Φh(nw′) ◦h aj) ◦v Φv(nw′′).

If i + 1 > j − 1 or j + 1 > n, we just ignore the terms Φh(nw′), Φh(nw′′), Φv(nw′)
and Φv(nw′′), respectively, in the definition above. We identify the domain of Φ(nw)
with {1, . . . , n} in the obvious way. Observe that Φh and Φv are injective.

Weighted Logics for Nested Words and Algebraic Formal Power Series 229

Lemma 4.5. Let nw = (a1 . . . an, ν) ∈ NW(Δ), Φh(nw) = ({1, . . . , n}, λ,≤h,≤v).
Moreover, let 1 ≤ k ≤ i ≤ j ≤ l ≤ n with (k, l) ∈ ν such that there is no (k′, l′) ∈ ν
with k < k′ ≤ i ≤ j ≤ l′ < l. Then i ≤h j iff k has even nesting depth (cf. Ex. 3.1).

Recall that for an sp-biposet p = (V, λ,≤h,≤v) we let ≤:=≤h ∪ ≤v. A clan of p is
an interval [i, j] = {k ∈ V | i ≤ k ≤ j} which can not be distinguished from outside,
i.e. if for all i ≤ k, k′ ≤ j and l < i or j < l we have k ≤v l iff k′ ≤v l and k ≤h l
iff k′ ≤h l and l ≤v k iff l ≤v k′. A prime clan is a clan that does not overlap with any
other, i.e. there is no clan [k, l] such that k < i < l < j or i < k < j < l.

Lemma 4.6. Let nw = (a1 . . . an, ν) ∈ NW(Δ), Φh(nw) = ({1, . . . , n}, λ,≤h,≤v).
Then (i, j) ∈ ν iff i < j, [i, j] is a prime clan and not i = 1, j = n and 1 ≤h n.

Since the conditions of Lemma 4.6 and Lemma 4.5 can be expressed in MSO (actually
the latter can be expressed in FO), we obtain:

Corollary 4.7. The (partial) functions Φh, Φv, Φ
−1
h , Φ−1

v are definable.

We will now show that not only the formulae can be translated, but that WPA can
simulate WNWA and vice versa. More precisely:

Proposition 4.8. A series S : NW(Δ) → � is regular iff (Φ−1
h)−1(S) is regular.

Proof (Sketch). (If). Let P = (H,V , Ω, μ, μop, μcl, λ, γ) be a WPA. There is a WNWA
A = (Q, ι, δ, κ) with state space Q = (H�V)× (Ω �{i}) such that ‖A‖= Φ−1

h (‖P‖).
Intuitively, in the first component one simulates the states of the WPA and in the sec-
ond component one stores the most recent open bracket. This has to be updated when
reading a return position using the look-back ability of the nested word automaton.

(Only if). LetA = (Q, ι, δ, κ) be a WNWA. There is a WPA whereH,V are disjoint
copies of Q × ({c, i} � Δ) and Ω = Q such that (‖P‖, Φh(nw)) = (‖A‖, nw) for
all nw ∈ NW(Δ). Intuitively, in the first component one simulates the states of the
WNWA, in the second component one either selects if the next transition is a call or
an internal transition or one stores the letter to simulate a return transition in the next
bracket. Look-back behavior is simulated storing a state in the opening bracket and
closing it at the appropriate return position. ��

Theorem 3.4 now follows from Cor. 4.7, Prop. 4.4 and Thm. 4.2 together with Prop. 4.8.
We note that Proposition 4.8 also holds for non-commutative semirings. Moreover,

we note that under the assumptions of Theorem 3.4, given an sRMSO (resp. swRMSO,
resp. MSO) formula ϕ we can effectively construct a WNWA A such that �ϕ� =‖A‖
(and vice versa). Furthermore from Corollaries 5.7 and 5.8 of [16] we obtain

Corollary 4.9. Let � be a computable field (resp. computable locally finite semiring).
It is decidable whether two sentences ϕ, ψ ∈ sRMSO (resp. MSO) satisfy �ϕ� = �ψ�.

5 Algebraic Formal Power Series

In this section we consider algebraic formal power series and show that they arise as
the projections of regular nested word series. Algebraic formal power series were al-
ready considered initially by Chomsky and Schützenberger [5] and have since been
intensively studied by Kuich and others. For a survey see [13] or [14].

230 C. Mathissen

A formal power series is a mapping S : Δ+ → �. Given two formal power
series S1, S2, their Cauchy product, denoted S1 · S2, is given by (S1 · S2, w) =∑

w1w2=w(S1, w1)(S2, w2). Let �u denote the characteristic series of a word u ∈ Δ+.
Let X = {X1, . . . , Xn} be a set of variables. A polynomial P over (Δ ∪ X) with

values in � is a mapping P : (Δ ∪ X)+ → � such that its support is finite, i.e. the set
supp(P) = {w ∈ (Δ ∪ X)+ | (P,w) �= 0} is finite. A collection of polynomials Pi

for i = 1, . . . , n is called an algebraic system with variables in X . The supports of the
Pi’s are, thus, finite sets consisting of words of the form u1Xi1 . . . ukXikuk+1 where
uj ∈ Δ∗ and Xij ∈ X . A collection (Si)1≤i≤n of formal power series Si : Δ+ → � is
the solution of the algebraic system (Pi)1≤i≤n if

Si =
∑

u1Xi1 ...ukXik
uk+1∈supp(Pi)

Pi(u1Xi1 . . . ukXikuk+1)�u1 ·Si1 · · · �uk
·Sik ·�uk+1 .

for 1 ≤ i ≤ n. An algebraic system (Pi)1≤i≤n is proper if (Pi, Xj) = 0 for all
1 ≤ i, j ≤ n. Proper algebraic systems have a unique solution [14]. If a formal power
series S is the (component of) a solution of a proper algebraic system, then S is called
an algebraic formal power series. Over the trivial Boolean algebra � these series cor-
respond exactly to the ε-free context-free languages (the bijection is given by supp).

We now consider the projections of regular nested word series and show that they
give rise exactly to the algebraic series. The projection π(nw) of a nested word nw =
(w, ν) is simply the word w, i.e. we forget the nesting relation. This projection is canon-
ically generalized to nested word series S by letting π(S) : w -→

∑
w=π(nw)(S, nw).

Proposition 5.1. Let S : NW(Δ) → � be a regular nested word series. Then π(S) is
an algebraic formal power series.

Proof (Sketch). LetA = (Q, ι, δ, κ) be a WNWA such that ‖A‖= S and let q1, q2 ∈ Q.
We define polynomials Pq1,q2 : (Δ ∪Q2)∗ → � as follows (in order to obtain a more
compact presentation we consider here the empty word ε): For any a, b, c, d ∈ Δ and
q1, . . . , q8 ∈ Q let (Pq1,q1 , ε) = 1, (Pq1,q2 , a) = δi(q1, a, q2), (Pq1,q2 , a(q3, q4)b) =
δi(q1, a, q3)·δi(q4, b, q2)+δc(q1, a, q3)·δr(q1, q4, b, q2), (Pq1,q2 , a(q3, q4)b(q5, q6)c) =
δc(q1, a, q3) · δr(q1, q4, b, q5) · δi(q6, c, q2) + δi(q1, a, q3) · δc(q4, b, q5) · δr(q4, q6, c, q2)
and (Pq1,q2 , a(q3, q4)b(q5, q6)c(q7, q8)d) = δc(q1, a, q3) ·δr(q1, q4, b, q5) ·δc(q6, c, q7) ·
δr(q6, q8, d, q2). Finally, let (Pq1,q2 , w) = 0 in any other case. This gives a so-called
strict algebraic system with variables in Q2 having a necessarily unique solution
(Sq1,q2)q1,q2∈Q which is algebraic [14]. By induction on the length of w one gets

(Sq1,q2 , w) =
∑

π(nw)=w

∑

r:q1
nw→q2

wgtA(r).

Now use that algebraic series are closed under sum and scalar multiplication. ��
Our aim is to give a logical characterization for algebraic formal power series in the
spirit of Lautemann, Schwentick and Thérien [15]. They showed that the context-free
languages are precisely the languages which can be defined by sentences of the form∃ν.ϕ
where ϕ is a first-order formula and ν a binary predicate ranging over nesting relations.
Let ϕ be a weighted MSO formula over nested words, Free(ϕ) ⊆ V , w ∈ Δ+ and γ a
(V , w)-assignment. We define the semantics �∃ν.ϕ�nest : Δ+ → � by letting

Weighted Logics for Nested Words and Algebraic Formal Power Series 231

�∃ν.ϕ�nest(w, γ) =
∑

nesting rel. ν
�ϕ�((w, ν), γ).

Using Theorem 3.4, we may now reformulate Proposition 5.1.

Corollary 5.2. Let ϕ ∈ sRMSO be a sentence, then �∃ν.ϕ�nest is an algebraic formal
power series.

Conversely, we can construct a nested word automaton A such that π(‖ A ‖) is the
solution of a given algebraic system in Greibach normal form [14], i.e. we require
supp(Pi) ⊆ Δ∪ΔX ∪ΔXX . Elements of ΔXX produce call transitions, elements in
ΔX internal transitions and elements in Δ return transitions. Therefore we conclude:

Proposition 5.3. Let R : Δ+ → � be an algebraic formal power series. Then there is
a regular nested word series S : NW(Δ) → � such that π(S) = R.

Even stronger, we can restrict the series to first-order definable ones:

Proposition 5.4. Let S : NW(Δ) → � be a regular nested word series. Then there is
a first-order sentence ϕ ∈ sRMSO such that �∃ν.ϕ�nest = π(S).

Proof (Hint). Let A be a weighted nested word automaton such that ‖A‖= S. Con-
struct an algebraic system as in the proof of Proposition 5.1. This system has a form as
required in the proof of [15]. The rest of the proof follows [15]; one has to ensure not
to count weights twice and to obtain ϕ ∈ sRMSO. ��

In the following theorem we summarize what we obtained in this section.

Theorem 5.5. Let � be a commutative semiring and let S : Δ+ → �. Then the follow-
ing are equivalent:

1. S is an algebraic formal power series.
2. S = π(R) for some regular nested words series R : NW(Δ) → �.
3. There is a first-order sentence ϕ ∈ sRMSO such that �∃ν.ϕ�nest = S.

Let S : {a}+ → � be an algebraic formal power series. One can show that (S, an) ≤ cn

for some constant c and all n ∈ �. Thus, in item 3 of the last result we may not replace
sRMSO by MSO since (�∀x.∃y.1�, an) = nn.

Again we note that given an algebraic S : Δ+ → � we can effectively construct a
sentence ϕ ∈ FO∩ sRMSO such that S = �∃ν.ϕ�nest and vice versa.

Conclusion and Consequences. We introduced a quantitative automaton model and a
quantitative logic for nested words and showed that they are equally expressive. This
generalizes the logical characterization in the unweighted case as given in [3]. More-
over, we established a new connection between nested words and sp-biposets. Presum-
ably, the logical characterization of regular nested word series could also be obtained
by structural induction. However, the connection between sp-biposets and nested words
enables us to also obtain a generalization of the second main result of [15]. In this
paper another logical characterization of the algebraic formal power series is given
where quantification over nesting relations is now replaced by quantification over tree-
definable orders. It is easy to see that there is a definable bijection between sp-biposets

232 C. Mathissen

and the class of words together with a tree-definable order [11]. Thus, using the connec-
tion between nested words and sp-biposets we can conclude that every algebraic formal
power series can be defined by a formula ∃ν.ϕ where ϕ ∈ FO∩ sRMSO and ν ranges
now over tree-definable orders. The converse can be shown by simulating weighted
parenthesizing automata by weighted pushdown automata (as defined in [14]).

Acknowledgments. Thanks to M. Droste and A. Maletti for helpful comments, D. Kuske
for pointing to [15], as well as to three anonymous referees for insightful remarks.

References

1. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly pushdown
languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg (2005)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. of the 36th STOC, Chicago,
pp. 202–211. ACM, New York (2004)

3. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: H. Ibarra, O., Dang, Z.
(eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

4. Arenas, M., Barceló, P., Libkin, L.: Regular languages of nested words: Fixed points, au-
tomata, and synchronization. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.)
ICALP 2007. LNCS, vol. 4596, pp. 888–900. Springer, Heidelberg (2007)

5. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Com-
puter Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963)

6. Courcelle, B.: Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science 126, 53–75 (1994)

7. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Sci-
ence 380, 69–86 (2007)

8. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste, M., Kuich, W.,
Vogler,H. (eds.)HandbookofWeightedAutomata, ch.5.Springer,Heidelberg(toappear, 2008)

9. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words. In: H.
Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer, Heidelberg (2006)

10. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theoretical Computer
Science 366, 228–247 (2006)

11. Ésik, Z., Németh, Z.L.: Higher dimensional automata. Journal of Automata, Languages and
Combinatorics 9(1), 3–29 (2004)

12. Hashiguchi, K., Ichihara, S., Jimbo, S.: Formal languages over free binoids. Journal of Au-
tomata, Languages and Combinatorics 5(3), 219–234 (2000)

13. Kuich, W.: Word, Language, Grammar. In: Handbook of Formal Languages, ch.9. Semirings
and formal power series, vol. 1, pp. 609–677. Springer, Heidelberg (1997)

14. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer, Heidelberg (1986)
15. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: CSL

1994. LNCS, vol. 933, pp. 205–216. Springer, Heidelberg (1994)
16. Mathissen, C.: Definable transductions and weighted logics for texts. In: Harju, T.,

Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 324–336. Springer, Hei-
delberg (2007)

17. Mäurer, I.: Weighted picture automata and weighted logics. In: Durand, B., Thomas, W.
(eds.) STACS 2006. LNCS, vol. 3884, pp. 313–324. Springer, Heidelberg (2006)

18. Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.)
CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006)

19. Schwarz, S.: Łukasiewicz logics and weighted logics over MV-semirings. Journal of Au-
tomata, Languages and Combinatorics 12(4), 485–499 (2007)

Tree Languages Defined in First-Order Logic

with One Quantifier Alternation�

Miko�laj Bojańczyk1 and Luc Segoufin2

1 Warsaw University
2 INRIA - LSV

Abstract. We study tree languages that can be defined inΔ2. These are
tree languages definable by a first-order formula whose quantifier prefix is
∃∗∀∗, and simultaneously by a first-order formula whose quantifier prefix
is ∀∗∃∗, both formulas over the signature with the descendant relation.
We provide an effective characterization of tree languages definable in
Δ2. This characterization is in terms of algebraic equations. Over words,
the class of word languages definable in Δ2 forms a robust class, which
was given an effective algebraic characterization by Pin and Weil [11].

1 Introduction

We say a logic has a decidable characterization if the following decision problem
is decidable: “given as input a finite automaton, decide if the recognized language
can be defined using a formula of the logic”. Representing the input language by
a finite automaton is a reasonable choice, since many known logics (over words
or trees) are captured by finite automata.

This type of problem has been successfully studied for word languages. Ar-
guably best known is the result of McNaughton, Papert and Schützenberger [12,
9], which says that the following two conditions on a regular word language
L are equivalent: a) L can be defined in first-order logic with order and label
tests; b) the syntactic semigroup of L does not contain a non-trivial group. Since
condition b) can be effectively tested, the above theorem gives a decidable char-
acterization of first-order logic. This result demonstrates the importance of this
type of work: a decidable characterization not only gives a better understanding
of the logic in question, but it often reveals unexpected connections with alge-
braic concepts. During several decades of research, decidable characterizations
have been found for fragments of first-order logic with restricted quantification
and a large group of temporal logics, see [10] and [16] for references.

An important part of this research has been devoted to the quantifier al-
ternation hierarchy, where each level counts the alterations between ∀ and ∃
quantifiers in a first-order formula in prenex normal form. Formulas that have
n−1 alternations are called Σn if they begin with ∃, and Πn if they begin with ∀.
For instance, the word property “some position has label a” can be defined by a
� Work partially funded by the AutoMathA programme of the ESF, the PHC pro-

gramme Polonium, and by the Polish government grant no. N206 008 32/0810.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 233–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

234 M. Bojańczyk and L. Segoufin

Σ1 formula ∃x. a(x), while the language a∗ba∗ can be defined by the Σ2 formula
∃x∀y. b(x) ∧ (y �= x⇒ a(y)).

A lot of attention has been devoted to analyzing the low levels of the quantifier
alternation hierarchy. The two lowest levels are easy: a word language is definable
in Σ1 (resp. Π1) if and only if it is closed under inserting (removing) letters. Both
properties can be tested in polynomial time based on a recognizing automaton,
or semigroup. However, just above Σ1, Π1, and even before we get to Σ2, Π2,
we already find two important classes of languages. A fundamental result, due
to Simon [14], says that a language is defined by a boolean combination of
Σ1 formulas if and only if its syntactic monoid is J -trivial. Above the boolean
combination of Σ1, we find Δ2, i.e. languages that can be defined simultaneously
in Σ2 and Π2. As we will describe later on, this class turns out to be surprisingly
robust and it is the focus of this paper. Another fundamental result, due to Pin
and Weil [11], says that a regular language is in Δ2 if and only if its syntactic
monoid is in DA. The limit of our knowledge is level Σ2: it is decidable if a
language can be defined on level Σ2 [1, 11], but there are no known decidable
characterization for boolean combinations of Σ2, for Δ3, for Σ3, and upwards.

For trees even less is known. No decidable characterization has been found for
what is arguably the most important proper subclass of regular tree languages,
first-order logic with the descendant relation, despite several attempts. Similarly
open are chain logic and the temporal logics CTL, CTL* and PDL. However,
there has been some recent progress. In [5], decidable characterizations were
presented for some temporal logics, while Benedikt and Segoufin [2] character-
ized tree languages definable in first-order logic with the successor relation (but
without the descendant relation).

This paper is part of a program to understand the expressive power of first-
order logic on trees, and the quantifier alternation hierarchy in particular. The
idea is to try to understand the low levels of the quantifier alternation hierarchy
before taking on full first-order logic (which is contrary to the order in which word
languages were analyzed). We focus on a signature that contains the ancestor
order on nodes and label tests. In particular, there is no order between siblings.
As shown in [3], there is a reasonable notion of concatenation hierarchy for tree
languages that corresponds to the quantifier alternation hierarchy. Levels Σ1 and
Π1 are as simple for trees as they are for words. A recent unpublished result [8]
extends Simon’s theorem to trees, by giving a decidable characterization of tree
languages definable by a Boolean combination of Σ1 formulas. There is no known
characterization of tree languages definable in Σn for n ≥ 2.

The contribution of this paper is a decidable characterization of tree languages
definable in Δ2, i.e. definable both in Σ2 and Π2. As we signaled above, for word
languages the class Δ2 is well studied and important, with numerous equivalent
characterizations. Among them one can find [11, 15, 13, 7]: a) word languages
that can be defined in the temporal logic with operators F and F−1; b) word
languages that can be defined by a first-order formula with two variables, but
with unlimited quantifier alternations; c) word languages whose syntactic semi-
group belongs to the semigroup variety DA; d) word languages recognized by

Tree Languages Defined in First-Order Logic 235

two-way ordered deterministic automata; e) a certain form of “unambiguous”
regular expressions.

It is not clear how to extend some of these concepts to trees. Even when nat-
ural tree counterparts exist, they are not equivalent. For instance, the temporal
logic in a) can be defined for trees—by using operators “in some descendant” and
“in some ancestor”. This temporal logic was studied in [4], however it was shown
to have an expressive power incomparable with that of Δ2. A characterization
of Δ2 was left as an open problem, one which is solved here.

We provide an algebraic characterization of tree languages definable in Δ2.
This characterization is effectively verifiable if the language is given by a tree
automaton. It is easy to see that the word setting can be treated as a special
case of the tree setting. Hence our characterization builds on the one over words.
However the added complexity of the tree setting makes both formulating the
correct condition and generalizing the proof quite nontrivial.

2 Notation

Trees, forests and contexts. In this paper we work with finite unranked ordered
trees and forests over a finite alphabet A. Formally, these are expressions defined
inductively as follows: If s is a forest and a ∈ A, then as is a tree. If t1, . . . , tn is
a finite sequence of trees, then t1 + · · ·+ tn is a forest. This applies as well to the
empty sequence of trees, which is called the empty forest, and denoted 0 (and
which provides a place for the induction to start). Forests and trees alike will
be denoted by the letters s, t, u, . . . When necessary, we will remark on which
forests are trees, i.e. contain only one tree in the sequence.

A set L of forests over A is called a forest language.
The notions of node, descendant and ancestor relations between nodes are

defined in the usual way. We write x < y to say that x is an ancestor or y or,
equivalently, that y is a descendant of x.

If we take a forest and replace one of the leaves by a special symbol �, we
obtain a context. Contexts will be denoted using letters p, q, r. A forest s can
be substituted in place of the hole of a context p, the resulting forest is denoted
by ps. There is a natural composition operation on contexts: the context qp
is formed by replacing the hole of q with p. This operation is associative, and
satisfies (pq)s = p(qs) for all forests s and contexts p and q.

When a is a letter, we will sometimes also write a for the context that has
one root with label a and a hole below. For instance, any tree with label a in
the root can be written as at, for some forest t.

We say a forest s is an immediate piece of a forest s′ if s, t can be decomposed
as s = pt and s′ = pat for some contexts p, some label a, and some forest t.
The reflexive transitive closure of the immediate piece relation is called the piece
relation. We write s 7 t to say that s is a piece of t. In other words, a piece of t
is obtained by removing nodes from t. We extend the notion of piece to contexts.
In this case, the hole must be preserved while removing the nodes. The notions
of piece for forests and contexts are related, of course. For instance, if p, q are

236 M. Bojańczyk and L. Segoufin

contexts with p 7 q, then p0 7 q0. Also, conversely, if s 7 t, then there are
contexts p 7 q with s = p0 and t = q0. The figure below depicts two contexts,
the left one being a piece of the right one, as can be seen by removing the white
nodes.

??

We will be considering three types of languages in the paper: forest languages
i.e. sets of forests, denoted L; context languages, i.e. sets of contexts, denoted K,
and tree languages, i.e. sets of trees, denoted M .

Logic. The focus of this paper is the expressive power of first-order logic on
trees. A forest can be seen as a logical relational structure. The domain of the
structure is the set of nodes. The signature contains a unary predicate Pa for
each symbol a of A plus the binary predicate < for the ancestor relation. A
formula without free variables over this signature defines a set of forests, these
are the forests where it is true. We are particularly interested in formulas of low
quantifier complexity. A Σ2 formula is a formula of the form

∃x1 · · ·xn ∀y1 · · · ym γ ,

where γ is quantifier free. Properties defined in Σ2 are closed under disjunction
and conjunction, but not necessarily negation. The negation of a Σ2 formula
is called a Π2 formula, equivalently this is a formula whose quantifier prefix is
∀∗∃∗. A forest property is called Δ2 if it can be expressed both by a Σ2 and a
Π2 formula.

The problem. We want an algorithm deciding whether a given regular forest
language is definable in Δ2.

Notice that the forest property of “being a tree” is definable in Δ2. The Σ2 for-
mula says there exists a node that is an ancestor of all other nodes, while the Π2

says that for every two nodes, there exists a common ancestor. Hence a solution
of the problem for forest languages also gives a solution for tree languages.

As noted earlier, the corresponding problem for words was solved by Pin and
Weil: a word language L is definable in Δ2 if and only if its syntactic monoid
M(L) belongs to the variety DA, i.e. it satisfies the identity

(mn)ω = (mn)ωm(mn)ω

for all m,n ∈M(L). The power ω means that the identity holds for sufficiently
large powers (in different settings, ω is defined in terms of idempotent powers,
but the condition on sufficiently large powers is good enough here). Since one can

Tree Languages Defined in First-Order Logic 237

effectively test if a finite monoid satisfies the above property (it is sufficient to
verify the power |M(L)|), it is decidable whether a given regular word language
is definable in Δ2. We assume that the language L is given by its syntactic
monoid and syntactic morphism, or by some other representation, such as a
finite automaton, from which these can be effectively computed.

We will show that a similar characterization can be found for forests; although
the identities will be more involved. For decidability, it is not important how the
input language is represented. In this paper, we will represent a forest language
by a forest algebra that recognizes it. Forest algebras are described in the next
section.

Basic properties of Σ2. Most of the proofs in the paper will work with Σ2

formulas. We present some simple properties of such formulas in this section.
Apart from defining forest languages, we will also be using Σ2 formulas to

define languages of contexts. To define a context language we use Σ2 formulas
with a free variable; such a formula is said to hold in a context if it is true when
the free variable is mapped to the hole of the context.

Fact 1. Let K be a context language, L a forest language, and M a tree lan-
guage. If these languages are all definable in Σ2, then so are:

1. For any letter a, the forest language KaL.
2. The forest language M ⊕ L. This is the set of forests t1 + t + t2 such t is a

tree in M , and the concatenation of forests t1 + t2 is in L.

Proof
We only do the proof for KaL. The formula places an existentially quantified
variable x on the node a, and then relativizes the formulas for languages K and
L to nodes that are, respectively, not descendants of x and descendants of x. �

3 Forest Algebras

Forest algebras were introduced by Bojańczyk and Walukiewicz as an algebraic
formalism for studying regular tree languages [6]. Here we give a brief summary
of the definition of these algebras and their important properties. A forest algebra
consists of a pair (H,V) of finite monoids, subject to some additional require-
ments, which we describe below. We write the operation in V multiplicatively
and the operation in H additively, although H is not assumed to be commu-
tative. We accordingly denote the identity of V by � and that of H by 0. We
require that V act on the left of H . That is, there is a map (h, v) -→ vh ∈ H such
that w(vh) = (wv)h for all h ∈ H and v, w ∈ V. We further require that this
action be monoidal, that is, h·� = h for all h ∈ H, and that it be faithful, that is,
if vh = wh for all h ∈ H, then v = w. Finally we require that for every g ∈ H, V
contains elements (�+g) and (g+�) defined by (�+g)h = h+g, (g+�)h = g+h
for all h ∈ H.

238 M. Bojańczyk and L. Segoufin

A morphism α : (H1, V1) → (H2, V2) of forest algebras is actually a pair (γ, δ)
of monoid morphisms such that γ(vh) = δ(v)γ(h) for all h ∈ H, v ∈ V. However,
we will abuse notation slightly and denote both component maps by α.

Let A be a finite alphabet, and let us denote by HA the set of forests over A,
and by VA the set of contexts over A. Clearly (HA, VA) with forest substitution
as action, forms a forest algebra which we denote AΔ.

We say that a forest algebra (H,V) recognizes a forest language L ⊆ HA if
there is a morphism α : AΔ → (H,V) and a subset X of H such that L =
α−1(X). It is easy to show that a forest language is regular if and only if it is
recognized by a finite forest algebra [6].

Given any finite monoid M , there is a number ω(M) (denoted by ω when
M is understood from the context) such that for all element x of M , xω is an
idempotent: xω = xωxω. Therefore for any forest algebra (H,V) and any element
u of V and g of H we will write uω and ω(g) for the corresponding idempotents.

Given L ⊆ HA we define an equivalence relation ∼L on HA by setting s ∼L s′

if and only if for every context x ∈ VA, hx and h′x are either both in L or both
outside of L. We further define an equivalence relation on VA, also denoted ∼L,
by x ∼L x′ if for all h ∈ HA, xh ∼L x′h. This pair of equivalence relations defines
a congruence of forest algebras on AΔ, and the quotient (HL, VL) is called the
syntactic forest algebra of L. Each equivalence class of ∼L is called a type.

We now extend the notion of piece to elements of a forest algebra (H,V). The
general idea is that a context v ∈ V is a piece of a context w ∈ V if one can
construct a term (using elements of H and V) which evaluates to w, and then
take out some parts of this term to get v.

Definition 2. Let (H,V) be a forest algebra. We say v ∈ V is a piece of w ∈ V ,
denoted by v 7 w, if α(p) = v and α(q) = w hold for some morphism

α : AΔ → (H,V)

and some contexts p 7 q over A. The relation 7 is extended to H by setting
g 7 h if g = v0 and h = w0 for some contexts v 7 w.

4 Characterization of Δ2

In this section we present the main result of the paper: a characterization of Δ2

in terms of two identities.

Theorem 3
A forest language is definable in Δ2 if and only if its syntactic forest algebra
satisfies the following identities:

h + g = g + h (1)

vωwvω = vω for w 7 v (2)

Corollary 4. It is decidable whether a forest language can be defined in Δ2.

Tree Languages Defined in First-Order Logic 239

Proof
We assume that the language is represented as a forest algebra. This represen-
tation can be computed based on other representations, such as automata or
monadic second-order logic.

Once the forest algebra is given, both conditions (1) and (2) can be tested in
polynomial time by searching through all elements of the algebra. The relation
7 can be computed in polynomial time, using a fixpoint algorithm as in [4]. �

Theorem 3 is stated in terms of forest languages, but as mentioned earlier, the
same result works for trees.

We begin with the easier implication in Theorem 3, that the syntactic forest
algebra of a language definable in Δ2 must satisfy the identities (1) and (2).
The first identity must clearly be satisfied since the signature only contains the
descendant relation. The other identity follows from the following claim, whose
proof is standard.

Lemma 5. Let ϕ be a formula of Σ2 and let p 7 q be two contexts. For n ∈ N

sufficiently large, forests satisfying ϕ are closed under replacing pnpn with pnqpn.

The rest of the paper contains the more difficult implication of Theorem 3.
We will show that if a language is recognized by a forest algebra satisfying
identities (1) and (2), then it is definable in Δ2.

Proposition 6. Fix a morphism α : AΔ → (H,V), with (H,V) satisfying (1)
and (2). For every h ∈ H, the forest language α−1(h) is definable in Σ2.

Before proving this Proposition, we show how it concludes the proof of Theo-
rem 3. The nontrivial part is showing that every forest language α−1(h) is also
definable in Π2, and not just Σ2, as the proposition says (the rest follows by
closure of Δ2 under boolean operations). But this is a consequence of finiteness
of H :

t ∈ α−1(h) ⇔ t �∈
⋂

g �=h

α−1(g) ,

since the intersection on the right-hand side is Σ2, and therefore non-membership
is a Π2 condition.

The rest of this section is devoted to showing Proposition 6. The proof is by
induction on two parameters: the first is the size of the algebra, and the second
is the position of h in a certain pre-order defined below. The second parameter
corresponds to a bottom-up pass through the forest, as the types h that are small
in the pre-order correspond to forests that are close to the leaves. Moreover, for
some types h in the bottom-up pass, we will need a nested induction, involving
a top-down pass.

5 Bottom-Up Phase

We now define the pre-order on H , which is used in the induction proof of
Proposition 6. We say that a type h is reachable from a type g, and denote this

240 M. Bojańczyk and L. Segoufin

by g � h, if there is a context v ∈ V such that h = vg. If h and g are mutually
reachable from each other, then we write h ∼ g. Note that ∼ is an equivalence
relation. A type h is said to be maximal if h can be reached from all types
reachable from h.

The proof of Proposition 6 is by induction on the size of the algebra (H,V)
and then on the position of h in the reachability pre-order. The two parameters
are ordered lexicographically, the most important parameter being the size of
the algebra. As far as h is concerned, the induction corresponds to a bottom-up
pass, where types close to the leaves are treated first.

Let then h ∈ H be a type. By induction, using Proposition 6, for each g � h
with g �∼ h, we have a Σ2 formula defining the language of forests of type g. (The
case when there are no such types g corresponds to the induction base, which
is treated the same way as the induction step.) In this section we will use these
formulas to produce a Σ2 formula defining those forests s such that α(s) = h.

In the following, we will be using two sets:

stabV (h) = {v : vh ∼ h} ⊆ V stabH(h) = {g : g + h ∼ h} ⊆ H .

The main motivation for introducing this notation is that equation (2) implies
that they are both submonoids of V and H , respectively.

Lemma 7. The sets stabV (h), stabH(h) only depend on the ∼-class of h. In
particular, both sets are submonoids (of V and H, respectively).

Proof
We prove the Lemma for stabV (h), the case of stabH(h) being similar. We need
to show that if h ∼ h′ then stabV (h) = stabV (h′). Assume v ∈ stabV (h). Then
vh ∼ h. Hence we have u1, u2, u3 such that h = u1vh, h = u2h

′ and h′ = u3h.
This implies that h′ = u3u1vu2h

′ and therefore h′ = (u3u1vu2)ωh′. From (2) we
have that

h′ = (u3u1vu2)ωh′ = (u3u1vu2)ωv(u3u1vu2)ωh′ = (u3u1vu2)ωvh′ .

Hence h′ is reachable from vh′. Since vh′ is clearly reachable from h′, we get
h ∼ h′ and v ∈ stabV (h′). �

Recall now the piece order 7 on H from Definition 2, which corresponds to
removing nodes from a forest. We say a set F ⊆ H of forest types is closed under
pieces if h 7 g ∈ F implies h ∈ F . A similar definition is also given for contexts.
Another consequence of equation (2) is:

Lemma 8. Both stabV (h), stabH(h) are closed under pieces.

Proof
We consider only the case of stabV (h), the case of stabH(h) being similar. From
the definition of piece we need to show that if u ∈ stabV (h) and u′ 7 u then
u′ ∈ stabV (h). By definition we have a context v such that h = vuh. We are
looking for a context w such that wu′h = h. From h = vuh we get h = (vu)ωh.
Hence by (2) we have h = (vu)ωu′(vu)ωh = (vu)ωu′h as desired. �

Tree Languages Defined in First-Order Logic 241

We now consider two possible cases: either h belongs to stabH(h), or it does not.
In the first case we will conclude by induction on the size of the algebra while
in the second case we will conclude by induction on the partial order �. These
are treated separately in Sections 5.1 and 5.2, respectively.

5.1 h �∈ stabH(h)

For v ∈ V , we write Kv for the set of contexts of type v. For g ∈ H , we write
Lg for the set of forests of type h. For g ∈ H and F ⊆ H , we write LF

g for the
set of forests t of type h that can be decomposed as t = t1 + . . . + tn, with each
ti a tree with of type in F .

Let G be the set of forest types g such that h is reachable from g but not
vice-versa. By induction assumption, each language Lg is definable in Σ2, for
g ∈ G. Our goal is to give a formula for Lh.

Lemma 9. A forest has type h if and only if it belongs to LG
h or a language

KuaL
G
g , with uα(a)g = h and u ∈ stabV (h).

Proof
Let t be a forest of type h, and choose s a subtree of t that has type equivalent
to h, but no subtree with a type equivalent to h. If such s does not exist, then t
belongs to LG

h as a concatenation of trees with type in G. By minimality, s must
belong to some set aLG

g . Let p be the context such that t = ps. Since the type
of s is equivalent to h, and the type of t is h, then the type u of p belongs to
stabV (α(s)) which is the same as stabV (h) by Lemma 7. �

In Lemmas 10 and 11, we will show that the languages Ku and LG
g above can

be defined in Σ2. To be more precise, we only give an over-approximation ϕG
g

of the language LG
g , however all forests in the over-approximation have type g,

which is all we need. Proposition 6 then follows by closure of Σ2 under finite
union and Fact 1.

We begin by giving the over-approximation of LG
g .

Lemma 10. For any type g ∈ H, there is a formula ϕG
g of Σ2 such that:

– Any forest LG
g satisfies ϕG

g ; and
– Any forest satisfying ϕG

g has type g.

Proof
The proof of the lemma is in two steps. In the first step, we introduce a condition
(*) on a forest t, and show that: a) any forest in LG

g satisfies (*); and b) any
forest satisfying (*) has type g. Then we will show that condition (*) can be
expressed in Σ2.

(*) For some m ≤ n, the forest t can be decomposed, modulo commu-
tativity, as the concatenation t = t1 + · · · + tn of trees t1, . . . , tn, with
types g1, . . . , gn, such that
1. g1 + · · ·+ gm = g.

242 M. Bojańczyk and L. Segoufin

2. Each type from G is represented at most ω times in g1, . . . , gm.
3. If a tree s is a piece of tm+1 + · · ·+ tn, then α(s) 7 gi holds for some

type gi that occurs ω times in the sequence g1, . . . , gm.

We first show that condition (*) is necessary. Let t1, . . . , tn be all the trees
in a forest t, and let g1, . . . , gn ∈ G be the types of these trees. Without loss of
generality, we may assume that trees are ordered so that for some m, each type
of gi with i > m already appears ω times in g1, . . . , gm. It is not hard to see that
identity (2) implies aperiodicity of the monoid H , i.e.

ω · f = ω · f + f for all f ∈ H . (3)

In particular, it follows that g = g1 + · · · + gm since all of gm+1, . . . , gn are
swallowed by the above. It remains to show item 3 of condition (*). Let then s
be the piece of a tree ti with i > m. We get the desired result since the type of
ti already appears in g1, . . . , gm.

We now show that condition (*) implies α(t) = g. Let then m ≤ n and
t = t1 + · · · + tn be as in (*). We will show that for any j > m, we have
g + gj = g, which shows that the type of t is g. By item 3, gj 7 gi holds for
some some type gi that occurs ω times in the sequence g1, . . . , gm. By (3), we
have g = g + gi = g +ω · gi. It therefore remains to show that ω · gi + gj = ω · gi:

ω · gi + gj = ω · gi + gj + ω · gi =
(� + gi)ω(� + gj)(� + gi)ω0 = (� + gi)ω0 = ω · gi

In the above we have used identity (2). Note that the requirement in (2) was
satisfied, since gj 7 gi implies � + gj 7 � + gi.

It now remains to show that forests satisfying condition (*) can be defined in
Σ2. Note that m cannot exceed |G| · ω, and therefore there is a finite number of
cases to consider for g1, . . . , gm. Fix some sequence g1, . . . , gm. The only nontriv-
ial part is to provide a Σ2 formula that describes the set of forests tm+1 + . . .+tn
that satisfy item 3 of condition (*). From this construction, the formula for (*)
follows by closure of Σ2 under finite union and ⊕ (recall Fact 1), as well as the
assumption that each type in G can be defined in Σ2.

In order to define forests as in item 3 we use a Π1 formula that forbids the
appearance of certain pieces of bounded size inside tm+1 + · · ·+ tn. Let F be the
types in g1, . . . , gm that appear at least ω times. We claim that a sequence of
trees tm+1 + · · ·+ tn satisfies item 3 if and only if it satisfies item 3 with respect
to pieces s that have at most |H ||H| nodes. The latter property can be expressed
by a Π1 formula. The reason for this is that, thanks to a pumping argument,
any tree has a piece that has the same type, but at most |H ||H| nodes. �

Lemma 11. For any u ∈ stabV (h), the context language Ku is definable in Σ2.

To prove this lemma, we will use a more general result, Proposition 12, stated
below. The proof of this Proposition will appear in the journal version of this
paper. We say a tree t is a subtree of a context p if t is the subtree of some node
in p that is not an ancestor of the hole.

Tree Languages Defined in First-Order Logic 243

Proposition 12. Let F ⊆ H be a set of forest types definable in Σ2 that is
closed under pieces. For any u ∈ V , there is a Σ2 formula that defines the set of
contexts with type u that have no subtree of type outside F .

Proof (of Lemma 11)
Let F = stabH(h). The result will follow from Proposition 12 once we show
that a context in Ku cannot have a subtree outside F , and that F satisfies the
conditions in the proposition.

By Lemma 8, the set F = stabH(h) is closed under pieces. We now show
that F ⊆ G, and therefore each type in F is definable in Σ2. To the contrary,
if F would contain a type outside G, i.e. a type reachable from h, then by
closure under pieces it would also contain h, contradicting our assumption on
h �∈ stabH(h). Finally, each subtree t of a context in stabV (h) is a subtree—and
therefore also a piece—of a tree in stabH(h) = F . �

5.2 h ∈ stabH(h)

Lemma 13. If h ∈ stabH(h) then (stabH(h), stabV (h)) is a forest algebra.

Proof
We need to show that the two sets are closed under all operations.

stabV (h)stabV (h) ⊆ stabV (h)
stabH(h) + stabH(h) ⊆ stabH(h)

� + stabH(h) ⊆ stabV (h)
stabV (h)stabH(h) ⊆ stabH(h)

The first two of the above inclusions follow from Lemma 7. The third follows
straight from the definition of stab. For the last inclusion, consider v ∈ stabV (h)
and g ∈ stabH(h). We need to show that vg ∈ stabH(h). This means showing
that vg+h ∼ h. Since we have g+h ∼ h and vh ∼ h we have u, u′ ∈ V such that
h = u(g + h) and h = u′vh. Hence h = u′vu(g + h) and vg 7 h. We conclude
using Lemma 8 and the fact that h ∈ stabH(h). �

We have two subcases depending whether (stabH(h), stabV (h)) is a proper sub-
algebra of (H,V) or not.

Assume first that h is not maximal. Hence there exists a type g reachable
from h but not vice-versa. Let u be a context such that g = uh. It is clear that u
is not in stabV (h). Therefore (stabH(h), stabV (h)) must be a proper subalgebra
of (H,V), as we have that stabV (h) � V . Furthermore, this algebra contains
all pieces of h; so it still recognizes the language α−1(h); at least as long as the
alphabet is reduced to include only letters that can appear in h. We can then use
the induction assumption on the smaller algebra to get the Σ2 formula required
in Proposition 6.

If h is maximal then the algebra is not proper and we need to do more work.
The Σ2 formula required in Proposition 6 is obtained by taking v = � in the

244 M. Bojańczyk and L. Segoufin

proposition below. The proof of this proposition introduces a pre-order on V and
is done by induction using that pre-order simulating a top-down process. The
details are omitted here and will appear in the journal version of this paper.

Proposition 14. Fix a morphism α : AΔ → (H,V), a context type v ∈ V and
a maximal forest type h. The following forest language is definable in Σ2:

{t : vα(t) = h}

6 Discussion

Apart from label tests, the signature we have used contains only the descendant
relation. What about other predicates? For instance, if we add the lexicographic
order on nodes, we lose commutativity g + h = h + g, although the remain-
ing identity (2) remains valid. Is the converse implication true, i.e. can every
language whose algebra satisfies (2) be defined by a Δ2 formula with the lexico-
graphic and descendant order? What is the expressive power of Δ2 in the other
signatures, with predicates such as the closest common ancestor, next sibling or
child?

Probably the most natural continuation would be an effective characterization
of Σ2. Note that this would strenghten our result: a language L is definable in
Δ2 if and only if both L and its complement are definable in Σ2. We conjecture
that, as in the case for words [1], the characterization of Σ2 requires replacing
the equivalence in (2) by a one-sided implication, which says that a language
definable in Σ2 is closed under replacing vω by vωwvω , for w 7 v.

References

1. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theor. Comput.
Sci. 91(1), 71–84 (1991)

2. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FO+mod
(preliminary version in STACS 2005) (manuscript, 2008)

3. Bojańczyk, M.: Forest expressions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 146–160. Springer, Heidelberg (2007)

4. Bojańczyk, M.: Two-way unary temporal logic over trees. In: Logic in Computer
Science, pp. 121–130 (2007)

5. Bojańczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theoretical
Computer Science 358(2-3), 255–273 (2006)

6. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Automata and Logic: History
and Perspectives, pp. 107–132. Amsterdam University Press (2007)

7. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary
temporal logic. Inf. Comput. 179(2), 279–295 (2002)

8. Straubing, H., Bojańczyk, M., Segoufin, L.: Piecewise testable tree languages. In:
Logic in Computer Science (2008)

9. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

Tree Languages Defined in First-Order Logic 245

10. Pin, J.-É.: Logic, semigroups and automata on words. Annals of Mathematics and
Artificial Intelligence 16, 343–384 (1996)

11. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Com-
put. Systems 30, 1–30 (1997)

12. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information
and Control 8, 190–194 (1965)

13. Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A
new characterization of DA. In: Devel. in Language Theory, pp. 239–250 (2001)

14. Simon, I.: Piecewise testable events. In: Automata Theory and Formal Languages,
pp. 214–222 (1975)

15. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quantifier
alternation. In: STOC, pp. 256–263 (1998)

16. Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999)

Duality and Equational Theory

of Regular Languages

Mai Gehrke1, Serge Grigorieff2, and Jean-Éric Pin2,�

1 Radboud University Nijmegen, The Netherlands
2 LIAFA, University Paris-Diderot and CNRS, France

This paper presents a new result in the equational theory of regular languages,
which emerged from lively discussions between the authors about Stone and
Priestley duality. Let us call lattice of languages a class of regular languages
closed under finite intersection and finite union. The main results of this paper
(Theorems 5.2 and 6.1) can be summarized in a nutshell as follows:

A set of regular languages is a lattice of languages if and only if it can
be defined by a set of profinite equations.

The product on profinite words is the dual of the residuation operations
on regular languages.

In their more general form, our equations are of the form u → v, where u and
v are profinite words. The first result not only subsumes Eilenberg-Reiterman’s
theory of varieties and their subsequent extensions, but it shows for instance that
any class of regular languages defined by a fragment of logic closed under con-
junctions and disjunctions (first order, monadic second order, temporal, etc.)
admits an equational description. In particular, the celebrated McNaughton-
Schützenberger characterisation of first order definable languages by the aperi-
odicity condition xω = xω+1, far from being an isolated statement, now appears
as an elegant instance of a very general result.

How is this equational theory related to duality? The connection between
profinite words and Stone spaces was already discovered by Almeida [2], [3,
Theorem 3.6.1], but Pippenger [14] was the first to formulate it in terms of Stone
duality. Almeida (implicitely) and Pippenger (explicitely) both observed that the
Boolean algebra of regular languages over A∗ is dual to the Stone space Â∗, the
set of profinite words. Pippenger actually came very close to our first result, since
he mentioned that this duality extends to a one-to-one correspondence between
Boolean algebras of regular languages and quotients of Â∗. Our first result is the
full-fledged consequence of the similar one-to-one correspondence for all lattices
of languages provided by Priestley duality.

However, this link to duality theory is in fact much stronger and encompasses
not only the underlying lattices and spaces involved but also the algebraic op-
erations including the product of profinite words. That is the content of our
� The authors acknowledge support from the AutoMathA programme of the European

Science Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 246–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Duality and Equational Theory of Regular Languages 247

second result. It means that the profinite semigroup structure, in its entirety,
is a dual structure and thus the entire theory is a special case of duality the-
ory. In particular, the deep and highly evolved theory of duality and relational
semantics from modal logic applies, and, in the other direction, the wealth of
knowledge and examples from semigroup theory enriches our understanding of
general duality theory. In this sense, the results described here are just the tip
of an iceberg yet to be explored.

Due to the lack of space, most of the proofs are omitted.

1 Historical Background

Our starting point was Eilenberg’s variety theorem [7]. Recall that a variety
of languages is a class of regular languages closed under Boolean operations,
inverses of morphisms and left and right quotients by words. Eilenberg’s the-
orem states that varieties of languages are in one-to-one correspondence with
varieties of finite monoids, that is, classes of finite monoids closed under taking
submonoids, quotient monoids and finite direct products.

The notion of a variety of finite monoids is similar to that of variety of monoids
introduced by Birkhoff: a variety of monoids is a class of monoids closed under
taking submonoids, quotient monoids and direct products. Birkhoff proved in
[6] that his varieties can be characterized by sets of identities: for instance the
identity xy = yx characterizes the variety of commutative monoids. Almost fifty
years later, Reiterman [18] extended Birkhoff’s theorem to varieties of finite
monoids: any variety of finite monoids can be characterized by a set of profinite
identities. A profinite identity is an identity between two profinite words. The
precise definition of profinite words will be given in Section 2, but they can be
viewed as limits of sequences of words for a certain metric, the profinite metric.
For instance, one can show that the sequence xn! converges to a profinite word
denoted by xω and the variety of finite aperiodic monoids can be defined by the
identity xω = xω+1.

Eilenberg’s and Reiterman’s theorems have been extended several times over
the last twenty years by relaxing the definition of a variety of languages. In
[11], the third author considered positive varieties, for which the closure under
complement is not required and showed they correspond to varieties of finite
ordered monoids. The counterpart of Reiterman’s theorem, obtained by Pin-
Weil [13], makes use of identities of the form u � v, where u and v are profinite
words.

Pippenger [14] proposed to relax another condition by introducing strains of
languages, which share the same properties as varieties of languages except for
the closure under quotients by words, which is not required. Finally, Straubing
[21] and independently, Esik [8], relaxed the closure under inverses of morphisms.
Esik just required the closure under inverses of length-preserving morphisms.
Straubing considered a class C of morphisms between free monoids containing
the length-preserving morphisms and closed under composition and called C-
variety a class of regular languages closed under Boolean operations, quotients

248 M. Gehrke, S. Grigorieff, and J.-É. Pin

and inverses of morphisms from the class C. The counterpart of Reiterman’s
theorem for this case was given by Kunc [10] (see also [12]).

2 Profinite Topology

In this paper, A denotes a finite alphabet. A morphism ϕ : A∗ → M separates
two words u and v of A∗ if ϕ(u) �= ϕ(v). By extension, we say that a monoid
M separates two words if there is a morphism from A∗ onto M that separates
them. One can show that two distinct words can always be separated by a finite
monoid. Given two words u, v ∈ A∗, we set

r(u, v) = min {|M | |M is a monoid that separates u and v}
d(u, v) = 2−r(u,v)

with the usual conventions min ∅ = +∞ and 2−∞ = 0. One can show that d is
an ultrametric, that is, satisfies the following properties, for all u, v, w ∈ A∗,

(1) d(u, v) = 0 if and only if u = v,
(2) d(u, v) = d(v, u),
(3) d(u,w) � max{d(u, v), d(v, w)}.

Moreover, the relations d(uv, u′v′) � max{d(u, u′), d(v, v′)} hold for all u, u′, v, v′

∈ A∗, so that the concatenation product on A∗ is uniformly continuous.
Thus (A∗, d) is a metric space. Its completion, denoted by Â∗, is called the

free profinite monoid on A and its elements are called profinite words.
We now briefly review the main properties of Â∗. The reader is referred to

[22, 4] for more details. First, Â∗ is compact. Second, the topology defined by
d is the profinite topology, that is, the least topology which makes continuous
every morphism from A∗ onto a finite monoid (considered as a discrete metric
space). It follows that every morphism ϕ from A∗ onto a finite monoid F extends
uniquely to a (uniformly) continuous morphism ϕ̂ : Â∗ → F . Thirdly, since the
product on A∗ is uniformly continuous, it can be extended in a unique way to a
uniformly continuous product on Â∗. This product makes Â∗ a monoid.

Recall that a set is clopen if it is both open and closed. There is a strong
connection between clopen sets of Â∗ and regular languages of A∗. Indeed, a
language L is regular if and only if L is clopen in Â∗ and L = L ∩ A∗ [4]. The
languages of the form L, where L is a regular language, actually form a basis
for the topology and hence Â∗ is zero-dimensional. It is also totally disconnected
since its connected components are singletons.

What about sequences? First, every profinite word is the limit of some con-
verging sequence of words. Next, a sequence of profinite words (un)n�0 is con-
verging to a profinite word u if and only if, for every morphism ϕ from A∗ onto
a finite monoid, ϕ̂(un) is ultimately equal to ϕ̂(u).

For instance, if u is a word (or even a profinite word), one can prove that the
sequence un! is converging. Its limit is denoted by uω for the following reason:
if ϕ is a morphism from A∗ onto a finite monoid M , the sequence ϕ̂(u)n! is

Duality and Equational Theory of Regular Languages 249

ultimately equal to the unique idempotent power of ϕ̂(u), which is traditionally
denoted by ϕ̂(u)ω in semigroup theory. Thus the notation uω is justified by the
formula ϕ̂(uω) = ϕ̂(u)ω.

The closure in Â∗ of a regular language of A∗ can be characterized as follows.

Proposition 2.1. Let L be a regular language of A∗ and let u ∈ Â∗. The fol-
lowing conditions are equivalent:

(1) u ∈ L,
(2) ϕ̂(u) ∈ ϕ(L), for all morphisms ϕ from A∗ onto a finite monoid,
(3) ϕ̂(u) ∈ ϕ(L), for some morphism ϕ from A∗ onto a finite monoid that

recognizes L,
(4) η̂(u) ∈ η(L), where η is the syntactic morphism of L.

3 Duality for Distributive Lattices

In Stone duality, the dual space of a bounded distributive lattice D is based on
the set SD of prime filters of D. As identified already by Birkhoff, there is a
lattice embedding e of D into P(SD), defined by:

e(d) is the set of prime filters containing d.

A description of the range of e, both for Boolean algebras and then for dis-
tributive lattices was first provided by Stone [19, 20]. He showed that if one
generates a topology on the space of prime filters with the sets in the image of
the embedding e, then the resulting space is, in the Boolean case, a compact
0-dimensional space, and in the distributive lattice case a spectral space, i.e. a
compact (not necessarily Hausdorff), sober space with a ring of compact-open
sets as a basis. An answer in complete lattice theoretic terms is the result by
Jónsson and Tarski on canonical extensions. This is the most advantageous point
of view when considering additional structure on lattices and spaces such as the
semigroup operation.

For distributive lattices, Priestley [16] gave a slightly different topological
characterization of the range of e than Stone. If one generates a topology τ , not
just with the sets in the range of e, but also with their complements, one obtains
the dual space of the free Boolean extension of the lattice and, crucially, one
may reconstruct the original lattice if one remembers, in addition to the dual
space of the free Boolean extension of the lattice, also the inclusion order on the
space of prime filters. Thus in Priestley duality the dual of a distributive lattice
is the ordered topological space (SD,⊆, τ). It is characterized by the property
that it is compact and totally order disconnected. An ordered topological space
is totally order disconnected provided the points of the space are separated by
the upwards saturated clopen subsets. This is the duality we will use here.

One of the most powerful facts about dualities is that we get a complete cor-
respondence between subobjects on one side and quotients on the other. Here
we are interested in sublattices of regular languages, and these will of course

250 M. Gehrke, S. Grigorieff, and J.-É. Pin

correspond, under Priestley duality, to Priestley space quotients or equivalently,
certain compatible preorders on the dual space of the lattice of all regular lan-
guages. Working out this correspondence dates back to work by M. E. Adams
[1]. If D is a subalgebra of B, we obtain a dual quotient SB SD by mapping
a prime filter p of B to p ∩D. The topological condition that is needed is that
the quotient is a continuous (and, in the DL case, order preserving) map. An
equivalence relation (preorder for DL subalgebras) on the space SB corresponds
to a subalgebra provided the clopen subsets that are saturated with respect to
the equivalence relation (preorder for DL subalgebras) separate the equivalence
classes (of the equivalence relation corresponding to the preorder in the DL case).

4 Duality Applied to Reg(A∗)

The proof that the dual space of Reg(A∗) is none other than the space Â∗ of
profinite words can be found in Pippenger’s paper [14]. It relies on two facts.
First, given a prime filter p of Reg(A∗), there is a unique profinite word u such
that, for every morphism from A∗ onto a finite monoid, ϕ(u) is the unique
element m of M such that ϕ−1(m) ∈ p. In the opposite direction, if u is a
profinite word, the set

pu = {L ∈ Reg(A∗) | ϕ−1(ϕ̂(u)) ⊆ L

for some morphism ϕ from A∗ onto a finite monoid }
(1)

is a prime filter of Reg(A∗).

Theorem 4.1 (See [14]). The topological space underlying the profinite com-
pletion Â∗ is equal to the dual space of the Boolean algebra Reg(A∗). Further-
more, the canonical embedding is given by the topologial closure: e(L) = L.

5 Equational Characterization of Lattices

Formally, a profinite equation is a pair (u, v) of profinite words of Â∗. We also
use the term explicit equation when both u and v are words of A∗. We say that
a regular language L of A∗ satisfies the profinite equation u → v (or v ← u)
if the condition u ∈ L implies v ∈ L. Proposition 2.1 immediately gives some
equivalent definitions:

Corollary 5.1. Let L be a regular language of A∗, let η be its syntactic mor-
phism and let ϕ be any morphism onto a finite monoid recognizing L. The fol-
lowing conditions are equivalent:

(1) L satisfies the equation u→ v,
(2) η̂(u) ∈ η(L) implies η̂(v) ∈ η(L),
(3) ϕ̂(u) ∈ ϕ(L) implies ϕ̂(v) ∈ ϕ(L).

Duality and Equational Theory of Regular Languages 251

Given a set E of equations of the form u→ v, the set of all regular languages of
A∗ satisfying all the equations of E is called the set of languages defined by E.
It is not hard to see that the set of languages defined by a set E of equations is
a lattice. Our first result states that the converse is true as well.

Theorem 5.2. A set of regular languages of A∗ is a lattice of languages if and
only if it can be defined by a set of equations of the form u→ v, where u, v ∈ Â∗.

Proof. The proof is an instantiation of the duality between sublattices of Reg(A∗)
and preorders on its dual space Â∗. Given a lattice D of regular languages, we get
dually a quotient map qD : Â∗ SD given by pu -→ pu∩D, where pu is defined by
Formula (1). Equivalently, we may describe this quotient map by the preorder QD

on Â∗ given by u QD v if and only if qD(pu) ⊆ qD(pv). But this latter condition
is equivalent to requiring that, for all L ∈ D, u ∈ L implies v ∈ L. That is, in our
terminology, the preorder on Â∗ determining the quotient dual to D is exactly the
equational theory of D:

QD = {(u, v) | for all L ∈ D (L satisfies u→ v)}.

On the other hand, in the duality, given a preorder Q on Â∗ giving rise to a
Priestley quotient Â∗/Q, the corresponding lattice is the set of all L ∈ Reg(A∗)
so that their representation L is saturated with respect to the preorder. That
is, u ∈ L implies v ∈ L for all (u, v) ∈ Q. But, by our earlier definition, this is
exactly what we call the set of languages defined by Q if we identify each pair
(u, v) in Q with the corresponding equation u→ v.

Since, coming from D, going to the preorder QD, and then going back to the
set of languages defined by QD under duality gives us back D, we see that D is
the set of languages defined by QD. ��

Writing u ↔ v for (u → v and v → u), we get an equational description of the
Boolean algebras of languages.

Corollary 5.3. A set of regular languages of A∗ is a Boolean algebra of lan-
guages if and only if it can be defined by a set of equations of the form u ↔ v,
where u, v ∈ Â∗.

6 Duality for Quotienting Operations

As announced in the introduction, our second main result is that the product
on Â∗ itself is dual to operations on Reg(A∗). The pertinent operations are the
residuals of the product of languages, \ and /, defined, for all L,M,N ∈ Reg(A∗),
by the conditions

LM ⊆ N ⇐⇒ M ⊆ L\N ⇐⇒ L ⊆ N/M.

More explicitely, the right and left residuals of N by M are given by:

M\N = {u ∈ A∗ |Mu ⊆ N} = {u ∈ A∗ | for all v ∈M , vu ∈ N}
N/M = {u ∈ A∗ | uM ⊆ N} = {u ∈ A∗ | for all v ∈M , uv ∈ N}.

252 M. Gehrke, S. Grigorieff, and J.-É. Pin

In extended Priestley duality [9], the additional operations are captured by ad-
ditional relational structure on the dual space. A well-known case of this is the
capture of a modality on the dual frame by its binary Kripke relation. More
generally, n-ary relations on lattices are captured by (n + 1)-ary relations on
their dual spaces. Remarkably, in the case of the algebra (Reg(A∗), \, /), the
dual relation common to the two additional operations is functional and turns
out to be the product on profinite words.

Theorem 6.1. The dual space of the algebra (Reg(A∗), \, /) under extended du-
ality is the topological monoid of profinite words (Â∗, τ, ·). The relational dual of
the operations \ and / is the product of profinite words. The closure of Reg(A∗)
under \ and / accounts for the right and left continuity of the product, respec-
tively, and the equational property (H\K)/L = H\(K/L) of (Reg(A∗), \, /) cor-
responds to the associativity of the product.

The proof of Theorem 6.1 requires advanced machinery from duality theory and
space does not allow us to give even a sketch of the proof here.

This theorem has far-reaching consequences. To mention just two, the syn-
tactic ordered monoid of a regular language is none other than the dual space
of the subalgebra of (Reg(A∗), \, /) generated by the singleton set {L} under
the lattice operations and the residuation operations with arbitrary denomina-
tors, and closure of Reg(A∗) under product of languages corresponds to the fact
that product for profinite words is an open mapping. In the next section we use
Theorem 6.1 to give an important specialisation of Theorem 5.2.

The following observations will come in handy in the next section: for each
a ∈ A the residuals with denominator {a} are central in language theory. We
denote them by a−1() and ()a−1 instead of {a}\() and ()/{a}, respectively,
and call them quotienting operations.

We call a lattice of languages a quotienting algebra of languages provided it
is closed under the quotienting operations. For instance, the lattice Reg(A∗) is a
quotienting algebra. It is easy to prove that, for sets of regular languages closed
under finite intersections, closure under the residuals with arbitrary denomina-
tors amounts to the same as closure under the quotienting operators.

7 Lattices of Languages Closed Under Quotienting

In this section we characterise those lattices of languages for which the dual
quotient is not only a topological quotient but also an ordered monoid quotient.
Recall that an ordered monoid is a partially ordered monoid in which the monoid
operation is order preserving in each coordinate. Note that the map Â∗ SD

defined in the proof of Theorem 5.2 is an ordered monoid quotient if and only if
the relation QD is a congruence of ordered monoid.

Let u and v be two profinite words of Â∗. We say that L satisfies the semigroup
equation u � v if, for all x, y ∈ Â∗, it satisfies the equation xvy → xuy. Since A∗

is dense in Â∗, it is equivalent to state that L satisfies these equations only for

Duality and Equational Theory of Regular Languages 253

all x, y ∈ A∗. But there is a much more convenient characterization using the
syntactic ordered monoid of L.

Proposition 7.1. Let L be a regular language of A∗, let (M,�L) be its syntactic
ordered monoid and let η : A∗ →M be its syntactic morphism. Then L satisfies
the equation u � v if and only if η̂(u) �L η̂(v).

Proof. Corollary 5.1 shows that L satisfies the equation u � v if and only if,
for every x, y ∈ A∗, η̂(xvy) ∈ η(L) implies η̂(xuy) ∈ η(L). Since η̂(xvy) =
η̂(x)η̂(v)η̂(y) = η(x)η̂(v)η(y) and since η is surjective, this is equivalent to saying
that, for all s, t ∈M , sη̂(v)t ∈ η(L) implies sη̂(u)t ∈ η(L), which exactly means
that η̂(u) �L η̂(v). ��

Using the fact that in the extended duality, preservation of operations on the
algebraic side corresponds to bounded morphisms [9] on the other, one can now
prove the following specialisation of Theorem 5.2.

Theorem 7.2. Let D be a lattice of languages of A∗. The following conditions
are equivalent:

(1) D is a quotienting algebra of languages,

(2) D can be defined by a set of semigroup equations u � v, where u, v ∈ Â∗,

(3) the corresponding dual quotient Â∗ SD is an ordered quotient monoid.

Theorem 7.2 can be readily extended to Boolean algebras. Let u and v be two
profinite words. We say that a regular language L satisfies the equation u = v if it
satisfies the equations u � v and v � u. Proposition 7.1 now gives immediately:

Proposition 7.3. Let L be a regular language of A∗ and let η be its syntactic
morphism. Then L satisfies the equation u = v if and only if η̂(u) = η̂(v).

This leads to the following equational description of the Boolean algebras of
languages closed under quotients.

Proposition 7.4. A set of regular languages of A∗ is a Boolean quotienting
algebra if and only if it can be defined by a set of semigroup equations of the
form u = v, where u, v ∈ Â∗.

8 Classes of Languages Closed Under Inverses of
Morphisms

The results of this section and the previous section permit in particular to re-
cover the equational characterization of Eilenberg’s varieties and Straubing’s
C-varieties.

Denote by C a class of morphisms between free monoids containing the length-
preserving morphisms and closed under composition. These morphisms will be
called C-morphisms. Examples include the classes of all length-preserving mor-
phisms (morphisms for which the image of each letter is a letter), all length-
multiplying morphisms (morphisms such that, for some integer k, the length of

254 M. Gehrke, S. Grigorieff, and J.-É. Pin

the image of a word is k times the length of the word), all non-erasing mor-
phisms (morphisms for which the image of each letter is a nonempty word), all
length-decreasing morphisms (morphisms for which the image of each letter is
either a letter of the empty word) and all morphisms.

A class of language lattices L associates with every finite alphabet A a lattice
of languages L(A∗). Theorem 5.2 gives an equational description for each of
these lattices, but these equations depend on the alphabet A. We now show that
if L is closed under inverses of C-morphisms, a single set of equations suffices to
characterize the whole class L.

Indeed, if u → v is an equation of L(A∗) and ϕ : A∗ → B∗ is a C-morphism,
then ϕ̂(u) → ϕ̂(v) is an equation of L(B∗). This leads naturally to the following
definition. Let Σ be a countable alphabet. A regular language L of A∗ satisfies
the C-identity u � v, where u, v ∈ Σ̂∗ if, for each C-morphism ϕ : Σ∗ → A∗, L
satisfies the equation ϕ̂(v) → ϕ̂(u). Then one gets the following result:

Theorem 8.1. A class of language lattices is closed under quotienting and un-
der inverses of C-morphisms if and only if it can be defined by a set of C-identities
of the form u � v, where u, v ∈ Σ̂∗.

In practice, one may consider a C-identity as an equation in which each letter
represents a variable. If C is the class of length-preserving morphisms, these vari-
ables can be replaced by letters, if it is the class of length-multiplying morphisms,
they can be replaced by words of the same fixed length, etc.

Of course, similar results hold for identities of the form u↔ v, u � v or u = v.
Our main result thus offers multifarious aspects, which are summarized in the
following table. Reiterman’s theorem corresponds to the strongest assumptions.

Closed under Equations Definition

∪,∩ u→ v η̂(u) ∈ η̂(L) ⇒ η̂(v) ∈ η̂(L)

quotienting u � v for all x, y, xuy → xvy

complement u↔ v u→ v and v → u

quotienting and complement u = v for all x, y, xuy ↔ xvy

Closed under inverses of morphisms Interpretation of variables

all morphisms words

nonerasing morphisms nonempty words

length multiplying morphisms words of equal length

length preserving morphisms letters

9 Examples of Equational Definitions

In this section, we give a few examples of equational characterizations for classes
of languages that are not closed under inverses of morphisms and hence do not
form a variety of languages. The language A∗ is called the full language.

Duality and Equational Theory of Regular Languages 255

9.1 Languages with Zero and Nondense Languages

A language with zero is a language whose syntactic monoid has a zero. The class
of regular languages with zero is closed under Boolean operations and residuals.
According to Proposition 7.4, it has an equational definition, but finding one
explicitely requires a little bit of work.

Let us fix a total order on the alphabet A. Let u0, u1, . . . be the ordered
sequence of all words of A+ in the induced shortlex order. For instance, if A =
{a, b} with a < b, the first elements of this sequence would be 1, a, b, aa, ab,
ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . . It is proved in [17, 5] that
the sequence of words (vn)n�0 defined by v0 = u0, vn+1 = (vnun+1vn)(n+1)!

converges to an idempotent ρA of the minimal ideal of Â∗. We can now state:

Proposition 9.1. A regular language has a zero if and only if it satisfies the
equation xρA = ρA = ρAx for all x ∈ A∗.

Proof. Let L be a regular language and let η : A∗ →M be its syntactic monoid.
Since ρA belongs to the minimal ideal of Â∗, η̂(ρA) is an element of the minimal
ideal of M . In particular, if M has a zero, η̂(ρA) = 0 and L satisfies the equations
xρA = ρA = ρAx for all x ∈ A∗.

Conversely, assume that L satisfies these equations. Let m ∈M and let x ∈ A∗

be such that η(x) = m. Then the equations η̂(xρA) = η̂(ρA) = η̂(ρAx) give
mη̂(ρA) = η̂(ρA) = η̂(ρA)m, showing that η̂(ρA) is a zero of M . Thus L has a
zero. ��

In the sequel, we shall use freely the symbol 0 in equations to mean that a
monoid has a zero. For instance the equation x � 0 of Theorem 9.2 below should
be formally replaced by the three equations xρA = ρA = ρAx and x � ρA.

A language L of A∗ is dense if, for every word u ∈ A∗, L ∩A∗uA∗ �= ∅. Note
that dense languages are not closed under intersection: (A2)∗ and (A2)∗A ∪ {1}
are dense, but their intersection is not dense. However, one can show that regular
nondense or full languages form a lattice of languages closed under quotients.

We now give an equational description of the form foretold by Theorem 7.2.

Theorem 9.2. A language of A∗ is nondense or full if and only if it satisfies
the equations x � 0 for all x ∈ A∗.

9.2 Languages Defined by Density

The density of a language L ⊆ A∗ is the function which counts the number of
words of length n in L. More formally, it is the function dL : N → N defined by
dL(n) = |L ∩An|. See [23] for a general reference.

If dL(n) = O(1), then L is called a slender language. It is well known that
a regular language is slender if and only if it is a finite union of languages of
the form xu∗y, where x, u, y ∈ A∗. Regular slender languages form a lattice of
languages closed under residuals and morphisms.

Note that if |A| � 1, all regular languages are slender. For |A| � 2, slender or
full languages admit a simple equational characterization. Let us denote by i(u)
the first letter (or initial) of a word u.

256 M. Gehrke, S. Grigorieff, and J.-É. Pin

Theorem 9.3. Suppose that |A| � 2. A regular language of A∗ is slender or
full if and only if it satisfies the equations x � 0 for all x ∈ A∗ and the equation
xωuyω = 0 for each x, y ∈ A+, u ∈ A∗ such that i(uy) �= i(x).

We now also consider the Boolean closure of slender languages. A language is
called coslender if its complement is slender.

Theorem 9.4. Suppose that |A| � 2. A regular language of A∗ is slender or
coslender if and only if its syntactic monoid has a zero and satisfies the equations
xωuyω = 0 for each x, y ∈ A+, u ∈ A∗ such that i(uy) �= i(x).

Note that if A = {a}, the language (a2)∗ is slender but its syntactic monoid, the
cyclic group of order 2, has no zero. Therefore the condition |A| � 2 in Theorem
9.4 is mandatory.

A language is sparse if it has polynomial density, that is, if dL(n) = O(nk)
for some k > 0. It is well known that a regular language is sparse if and only if
it is a finite union of languages of the form u0v

∗
1u1 · · · v∗nun, where u0, v1, . . . ,

vn, un are words. Regular sparse languages from a lattice of languages and are
closed under concatenation product, morphisms and residuals.

Theorem 9.5. Suppose that |A| � 2. A regular language of A∗ is sparse or full
if and only if it satisfies the equations x � 0 for all x ∈ A∗ and the equations
(xωyω)ω = 0 for each x, y ∈ A+ such that i(x) �= i(y).

Pursuing the analogy with slender languages, we consider now the Boolean clo-
sure of sparse languages. A language is cosparse if its complement is sparse.

Theorem 9.6. Suppose that |A| � 2. A regular language of A∗ is sparse or
cosparse if and only if its syntactic monoid has a zero and satisfies the equations
(xωyω)ω = 0 for each x, y ∈ A+ such that i(x) �= i(y).

10 Conclusion

We proved that every lattice of regular languages is given by an equational
theory, a result that subsumes Eilenberg’s variety theorem and its extensions to
positive varieties and C-varieties. One could further extend this result to classes
of regular languages only closed under finite intersection by using the syntactic
semiring introduced by Polák [15]. Our result could also be adapted to languages
of infinite words, words over ordinals or linear orders, and even perhaps to tree
languages.

Our second main result does not in itself give a new result in the theory of
automata and semigroups, but it reveals a very strong link between two theories
pertaining to the foundations of computer science: the theory of relational se-
mantics for non-classical (modal, intuitionistic, many-valued, etc.) logics on the
one side and the algebraic theory of automata on the other. We have indicated
how the fundamental tools of semigroup theory fit into the duality perspective,
obtaining an extensive repertoire of equational theories as a modular family of
results so typical of modal correspondence theory. Further duality results will be
presented in the full version of this paper.

Duality and Equational Theory of Regular Languages 257

References

1. Adams, M.E.: The Frattini sublattice of a distributive lattice. Alg. Univ. 3, 216–228
(1973)

2. Almeida, J.: Residually finite congruences and quasi-regular subsets in uniform
algebras. Partugaliæ Mathematica 46, 313–328 (1989)

3. Almeida, J.: Finite semigroups and universal algebra. World Scientific Publishing
Co. Inc., River Edge (1994)

4. Almeida, J.: Profinite semigroups and applications. In: Structural theory of au-
tomata, semigroups, and universal algebra. NATO Sci. Ser. II Math. Phys. Chem.,
vol. 207, pp. 1–45. Springer, Dordrecht (2005); Notes taken by Alfredo Costa

5. Almeida, J., Volkov, M.V.: Profinite identities for finite semigroups whose sub-
groups belong to a given pseudovariety. J. Algebra Appl. 2(2), 137–163 (2003)

6. Birkhoff, G.: On the structure of abstract algebras. Proc. Cambridge Phil. Soc. 31,
433–454 (1935)

7. Eilenberg, S.: Automata, languages, and machines, vol. B. Academic Press [Har-
court Brace Jovanovich Publishers], New York (1976)

8. Ésik, Z.: Extended temporal logic on finite words and wreath products of monoids
with distinguished generators. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS,
vol. 2450, pp. 43–58. Springer, Heidelberg (2003)

9. Goldblatt, R.: Varieties of complex algebras. Ann. Pure App. Logic 44, 173–242
(1989)

10. Kunc, M.: Equational description of pseudovarieties of homomorphisms. Theoret-
ical Informatics and Applications 37, 243–254 (2003)

11. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics (Iz.
VUZ) 39, 80–90 (1995)

12. Pin, J.-É., Straubing, H.: Some results on C-varieties. Theoret. Informatics
Appl. 39, 239–262 (2005)

13. Pin, J.-É., Weil, P.: A Reiterman theorem for pseudovarieties of finite first-order
structures. Algebra Universalis 35, 577–595 (1996)

14. Pippenger, N.: Regular languages and Stone duality. Theory Comput. Syst. 30(2),
121–134 (1997)

15. Polák, L.: Syntactic semiring of a language. In: Sgall, J., Pultr, A., Kolman, P.
(eds.) MFCS 2001. LNCS, vol. 2136, pp. 611–620. Springer, Heidelberg (2001)

16. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone
spaces. Bull. London Math. Soc. 2, 186–190 (1970)

17. Reilly, N.R., Zhang, S.: Decomposition of the lattice of pseudovarieties of finite
semigroups induced by bands. Algebra Universalis 44(3-4), 217–239 (2000)

18. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14(1),
1–10 (1982)

19. Stone, M.: The theory of representations for Boolean algebras. Trans. Amer. Math.
Soc. 40, 37–111 (1936)

20. Stone, M.H.: Applications of the theory of Boolean rings to general topology. Trans.
Amer. Math. Soc. 41(3), 375–481 (1937)

21. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.)
LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

22. Weil, P.: Profinite methods in semigroup theory. Int. J. Alg. Comput. 12, 137–178
(2002)

23. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
language theory, ch. 2, vol. 1, pp. 679–746. Springer, Heidelberg (1997)

Reversible Flowchart Languages and

the Structured Reversible Program Theorem

Tetsuo Yokoyama1, Holger Bock Axelsen2, and Robert Glück2

1 NCES, Graduate School of Information Science, Nagoya University
2 DIKU, Department of Computer Science, University of Copenhagen

yokoyama@nagoya-u.jp, funkstar@diku.dk, glueck@acm.org

Abstract. Many irreversible computation models have reversible coun-
terparts, but these are poorly understood at present. We introduce re-
versible flowcharts with an assertion operator and show that any
reversible flowchart can be simulated by a structured reversible flowchart
using only three control flow operators. Reversible flowcharts are r-
Turing-complete, meaning that they can simuluate reversible Turing ma-
chines without garbage data. We also demonstrate the injectivization of
classical flowcharts into reversible flowcharts. The reversible flowchart
computation model provides a theoretical justification for low-level ma-
chine code for reversible microprocessors as well as high-level block-
structured reversible languages. We give examples for both such
languages and illustrate them with a lossless encoder for permutations
given by Dijkstra.

1 Introduction

In the microprocessor industry, the circuit model, based on well-known logical
connectives such as OR and AND, reigns supreme. In recent years, however,
energy efficiency has become an increasing concern, since standard desktop pro-
cessors dissipate on the order of 100W of power, which must be removed as heat.
Lowering power consumption while increasing computing power is a non-trivial
obstacle for the microprocessor industry, and efforts to do this have involved
computer science, physics and engineering.

Non-standard models of computing have therefore received increased atten-
tion [17]. One such model is reversible computing, which is the only approach
known to date that can circumvent the hard, physical barrier to the energy
efficiency of irreversible computations (such as the ubiquitous NAND-gate).
This physical barrier, the von Neumann-Landauer limit, provides a strict lower
boundary to the energy dissipated as heat with every bit of information de-
stroyed, whence irreversibility. Reversible computing, as well as reversible pro-
gramming, are poorly understood at present. This is unfortunate, since a good
understanding of reversible computing is also essential for quantum computing,
in that every operation on a quantum state must be unitary, and therefore in-
vertible and reversible. Low-power CMOS and quantum computing are two of
the possible applications for the reversible computing model.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 258–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reversible Flowchart Languages 259

A reversible computing model allows deterministic time-invertible computa-
tions, in which not only the next computation state, but also the previous com-
putation state is determined uniquely by the current state. All computations
are forward and backward deterministic. Store updates are non-destructive. Al-
though there are several reversible computation models, such as reversible Tur-
ing machines [2] and invertible cellular automata [18], they are not sufficiently
program-oriented to relate theoretical considerations and recent practical devel-
opments [7,9].

Most modern programming languages are imperative, with block-structured
control flow operators (CFOs) such as if and while. Structured programs are
more readable and maintainable [6]. The theoretical foundation for structured
programming is the classic Structured Program Theorem from the 1960s [4,5],
which guarantees that any unstructured program can be written using only three
structured CFOs: sequence, selection and loop. The same property is desirable
for reversible programming languages, but it is not obvious that it should carry
over from classical computing models.

The main goal of the present paper is to provide the theoretical justification
for the design, translation and computational strength of high-level imperative
reversible languages, such as Janus [14,19,20], and low-level machine code for re-
versible architectures, such as the Pendulum microprocessor [9,1]. The flowchart
model is well suited for this purpose, as it accommodates both low-level aspects
such as jumps and high-level aspects such as structured control flow operators.

We identify three reversible CFOs that are sufficient for the definition of
a structured reversible flowchart language. We show that reversible flowcharts
are r-Turing-complete, in that they can simuluate reversible Turing machines
without garbage data. We show the injectivization of classical flowcharts into
reversible flowcharts, indicating that the latter are Turing-complete, if garbage
data necessary for the injectivity of the computed function are disregared. We
present examples of how programming languages based on reversible flowcharts
can be designed, along with two code examples.

2 Reversible Flowcharts

Flowcharts have been used extensively in the study of programming languages.
Most programming languages used today have a control flow, which can be
easily modeled by flowcharts, making the latter important analytical tools in
programming language theory (e.g., [4,5,10,12,15]).

Reversible flowcharts. A reversible flowchart F is a finite directed graph with
three kinds of nodes, each representing an atomic operation (Fig. 1): a step per-
forms an elementary operation on the store specified by a transition function a;
a test dispatches the control flow depending on the value of predicate e; and an
assertion is a join point that passes incoming control flow through, depending on
the value of predicate e. Computation in a flowchart proceeds sequentially along
the directed graph of F . A well-formed flowchart has exactly one entry and one
exit. An interpretation of a flowchart F consists of a domain X (e.g., a store)

260 T. Yokoyama, H.B. Axelsen, and R. Glück

� a � ��
��

�e
t

f

�

�

��

�

�

�
e

t

f

�

�
(a) Step (b) Test (c) Assertion

Fig. 1. Atomic operations of reversible
flowcharts

�a−1�
�

�

�

�

�

�
e

t

f

� ��
��

�e
t

f

�

�
(a) Step (b) Assertion (c) Test

Fig. 2. Inverted atomic operations of re-
versible flowcharts

and an appropriate association with the partial transition functions (a : X ⇀ X)
and the predicates (e : X → Bool).

The transition function a of each step must be locally invertible, defined as
having an inverse transition function a−1 that can be determined without refer-
ring to a’s context or location in a flowchart.

The assertion operator is also new (Fig. 1(c)): Predicate e must be true when
the control flow reaches the join point along the true-edge (labeled t) and false
when the control flow reaches the join point along the false-edge (labeled f);
otherwise, the operation is undefined. The operator is represented by a circle.

In classical flowcharts, the join points are not associated with a predicate and
there is no information about the incoming control flow. Classical join points
are sources of backward non–determinism, which break reversibility, as do non-
invertible transition functions. Reversible flowcharts remove these sources.

Structured reversible flowcharts. Similar to classical flowcharts, reversible
flowcharts allow unstructured control flow. Needless to say, it is easy to construct
incomprehensible “spaghetti code” with unstructured reversible flowcharts.

A structured control flow operator (structured CFO) has exactly one entry
and one exit. We define three structured reversible CFOs (Fig. 3): sequence,
selection, and loop. A block Bi is either a locally invertible step (as above) or
one of the three structured reversible CFOs. The latter can be nested any number
of times. The constructs are all symmetric. A structured reversible flowchart is
one constructed from locally invertible steps and structured reversible CFOs.
Structured control flow makes a program modular and easier to verify.

The selection corresponds to an irreversible if-statement but has an exit as-
sertion e2. The loop is repeated as long as test e1 and assertion e2 are false.
The loop corresponds to an irreversible while loop if B1 is empty and to an
irreversible do-while loop if B2 is empty. In either case, the assertion at the
loop entry and the test at the loop exit make the loop reversible.

Inverse flowcharts. Starting with a reversible flowchart, structured or un-
structured, the following method can be used to generate an inverse flowchart:
(1) change the direction of each arrow, (2) replace each transition function a
with its inverse a−1, and (3) replace each test by an assertion and each assertion
by a test (the predicate e remains unchanged).

Reversible Flowchart Languages 261

� B1 � B2 � ��
��

�e1
t

f

� B1
��

�

�

�
e2

t

f

�

� B2 �

�
�

�

�

�
e2t

f

� B1
�

�
��

�e1 t

f�B2�

�

(a) Sequence (b) Selection (c) Loop

Fig. 3. Structured reversible CFOs

�B−1
2

�B−1
1

� ��
��

�e2
t

f

�B−1
1��

�

�

�
e1

t

f

�

�B−1
2

�

�
�

�

�

�
e1 t

f

�B−1
1�

�
��

�e2t

f�B−1
2

�

�

(a) Sequence (b) Selection (c) Loop

Fig. 4. Inverted structured reversible CFOs

Fig. 2 shows the inverse of each atomic operator in Fig. 1, where a−1 is the
inverse transition function. Similarly, Fig. 4 shows the inverse of each CFO in
Fig. 3, where B−1 is the inverse flowchart of B.

The flowchart resulting from inversion is also reversible, whether structured
or unstructured. Inversion does not add or delete atomic operations or CFOs.
Repeating the inversion once more restores the original reversible flowchart. The
transformation is purely local and does not require global analyses or changes in
control flow beyond changing the direction of the arrows. The ease with which
reversible flowcharts are inverted is a unique property of this computation model
and makes it an attractive analytical tool for program complexity [13]. In gen-
eral, it is difficult to construct an inverse flowchart mechanically from a classical
flowchart. Clearly, programming reversible flowcharts is quite different from pro-
gramming classical flowcharts.

3 The Structured Reversible Program Theorem

Nowadays, it is easy to forget that the uses and benefits of structure in high-level
programming languages were controversial. From a computational viewpoint,
this debate was effectively closed by the Structured Program Theorem [4], which
showed that structured and unstructured flowcharts have the same expressive
power. Thus, the useful ancillary benefits of structured high-level languages,
including their increased readability and being much easier to reason about, had
no computational weaknesses.

The same question is relevant to the reversible computation paradigm. Re-
versible computing is sufficiently different from standard computational models

262 T. Yokoyama, H.B. Axelsen, and R. Glück

entry

A0

� x1^= true �
�

�

�

�
x1

t

f

�A1
�

�
��

�xn
t

f�

� xn^= true � exit

Fig. 5. Flowchart A0 with main loop

that it is unclear whether results from classical (backward non-deterministic)
computing carry over to the reversible paradigm.1 Indeed, none of the classic
constructions (and therefore proofs) apply because they lead to classical irre-
versible flowcharts. While it may be intuitively obvious that structure is also
“free” in reversible programming, this must be proven.

Theorem 1 (Structured Reversible Program Theorem). For any well-
formed reversible flowchart F , a functionally equivalent structured reversible
flowchart A0, with at most a single reversible loop, can be constructed.

Proof. Let F be a well-formed reversible flowchart and n be the number of
edges in F . Let the domain of the transition functions and predicates of F be X .
Below we construct a functionally equivalent structured reversible flowchart A0

over a trivial extension of X . For this, we label every edge in F uniquely by li
(1 ≤ i ≤ n). Without loss of generality, label the entry edge l1, the exit edge ln,
and the two incoming edges of any assertion li and li+1.

The main idea of the proof is as follows. Each node and its incoming edges
is translated to a structured equivalent. A main loop simulates the control flow
of F one node at a time, by keeping track of which edge the execution follows
in F . This edge state is modeled by adding a fresh Boolean variable xi for each
edge li to the domain X . The initial and final value of each xi is false. The
edge state is called i if xi is true and all other xj ’s are false. Thus, if in F the
control flow is at edge li, then the edge state in A0 should be i. The edge state is
changed from i to j by using an injective transition function Pi,j that executes
xi^= true; xj^= true.2 In F this corresponds to moving from edge li to edge lj .

First, generate the main loop in Fig. 5 for entry edge l1 and exit edge ln.
Flowchart A0 is a reversible loop between an initial and a final step. The ini-
tial step sets x1 to true. If test xn is true the loop ends; otherwise, the loop
continues. The path back to assertion x1 is a skip operation.

Then build the structured reversible flowcharts Ai (0 < i < n) by the rules
in Fig. 6, where the atomic operation with incoming edge li (or li and li+1) in
1 As an example, given a bounded store (i.e. a finite number of possible configura-

tions), computations cannot be guaranteed to terminate for classical flowcharts. This
is not true in reversible computing, where a bounded store is sufficient to obtain
termination for well-formed reversible flowcharts.

2 xi^= true is shorthand for xi:= xi ⊕ true, where ⊕ is logical exclusive-or. This is
an injective (reversible) step.

Reversible Flowchart Languages 263

li � a � lj =⇒

Ai

��
��

�xi

t

f

� a �Pi,j
�

�Ai+1 �

�

�

�

�
xj

t

f

�

li ��
��

�e
t

f

� lj

� lk

=⇒

Ai

��
��

�xi

t

f

��
��

�e
t

f

�Pi,j
�

�Pi,k
�

�

�

�

�
e

t

f
�

�Ai+1 �

�

�

�

�
xj ∨ xk

t

f

�

li
��

�

�

�
e

t

f

� lj

li+1 �

=⇒

Ai

Ai+1

��
��

�xi

t

f

�Pi,j

�

���
�� ��

��xi+1

t

f

�Pi+1,j

�

�Ai+2
�

�

�

�

�
xj ∧ ¬e

t

f

�

�

�

�

�
xj ∧ e

t

f

�

Fig. 6. Unstructured operations transformed into structured reversible flowcharts Ai

the left column is translated into the flowchart Ai in the right column. A dashed
box Aj inside Ai stands for a well-formed flowchart simulating the execution of
control flow along an edge lj over exactly one node.

(1) A step with transition function a is executed in the translated flowchart
only if the state is i. The state is then changed to j and xj becomes true,
simulating the control flow over the step. If the state is not i, then Ai+1 is entered.
By the unique numbering of edges, after executing Ai+1 the state cannot be j,
so an assertion of xj is sufficient to distinguish between the two possibilities.

(2) A test is similar to a step. Pi,j and Pi,k change variables xi, xj and xk.
Thus, the value of predicate e in the test and the assertion must be the same, and
depending on e the edge state is set to either j or k. By an argument analogous
to the step case, the assertion xj ∨ xk is sufficient to distinguish this from Ai+1.

(3) Edges li and li+1 of an assertion are translated simultaneously, so Ai

contains Ai+1 and Ai+2. Predicate e differentiates between the two possibilities.
Finally, for well-formedness, we insert a dummy step An (e.g., an identity

step) although it is never reached in a computation. The structured reversible
flowchart A0 generated by the rules in Fig. 5 and 6 thus simulates the execution
of every step, test and assertion in the flowchart F . ��

264 T. Yokoyama, H.B. Axelsen, and R. Glück

The proof is constructive, and shows that a structured reversible flowchart can
be constructed from an arbitrary reversible flowchart with exactly the same func-
tionality. Thus, from a computational viewpoint, structured and unstructured
flowcharts are equally powerful, even in the reversible computing paradigm. The
proof was inspired by Cooper’s global proof sketch [5], but was more involved.

4 r-Turing Completeness of Reversible Flowcharts

At first glance, reversible flowcharts may not seem as powerful as their classical
counterparts, which do not require assertions and allow any transformation on
the store in steps.

First, we shall demonstrate that reversible flowcharts with unbounded space
are Turing-complete, provided that the generation of garbage data, extraneous
data needed for reversibility, is ignored. This can be accomplished by injectivizing
classical flowcharts (i.e., with irreversible join points and non-injective steps),
which are Turing-complete, into reversible flowcharts with the same functionality.
Such an injectivization effectively changes the type of the computed function: if
the classical flowchart F computes function f : X → Y, then the injectivized
flowchart will compute a function fg : X → Y × G, where G is some domain
of garbage data, necessary to guarantee that fg is an injective function. While
injectivization works for any computable function, it is not necessary for the
large and important class of injective, computable functions.3

Second, we show that reversible flowcharts are r-Turing-complete, meaning
that they can compute the same functions as reversible Turing machines cleanly,
i.e. without the generation of garbage data. In other words, if a reversible Turing
machine (RTM) computes the injective function f : X → Y , then f is com-
putable without garbage data in reversible flowcharts (and by Thm. 1, in struc-
tured flowcharts). Since RTMs can cleanly compute any injective, computable
function [3,13], so can reversible structured and unstructured flowcharts.

Theorem 2 (Injectivization of Classical Flowcharts). For any well-formed
classical flowchart F , a reversible flowchart Fh with the same functionality mod-
ulo the accumulation of garbage data can be constructed.

Proof. As shown above, the irreversibility of classical flowchart is due to irre-
versible steps (non-injective transformations) and join points without assertions.
To translate a classical flowchart into a reversible flowchart, the store will be ex-
tended with a history stack h to record the information required to reconstruct
the previous computation state. The stack is associated with the two standard
operations push and pop, which are inverse to each other. The operation top
is used to check the top element of the stack. A join point is injectivized as
follows.

3 A classical computation example is lossless audio codecs. Every operation on a quan-
tum state in a quantum computer must be unitary, and therefore injective.

Reversible Flowchart Languages 265

Irreversible
join point

�� �
�

=⇒

� push true h ��

�

	

top h

t

f

�

� push false h �

Reversible
join point

The injectivization of steps is similar: assume that every step is an assignment
x := e, which overwrites x with the value of expression e. Replace every step with
one computing push x h; x ^= e, which saves the original value of x on h. The
resulting reversible flowchart Fh is an injectivized version of F . ��

Corollary 1 (Input Embedding). The input embedding fi : x -→ (f(x), x)
of the function f computed by a classical flowchart F can be computed by a
reversible flowchart Fi.

Proof. Given a classical flowchart F computing f , (1) obtain a injectivized re-
versible flowchart Fh computing fh : x -→ (f(x), h), where h is the garbage
(history) induced by Thm. 2. (2) Invert Fh to obtain F−1

h which computes
f−1
h : (f(x), h) -→ x. (3) Construct Fi, which executes Fh, copies the values

of all output variables into fresh variables, and executes F−1
h . This rolls back

the execution of Fh, clearing the history stack and restoring the initial values of
all variables used by Fh. Flowchart Fi returns both the original input and the
output of executing flowchart F , and therefore computes fi. ��

RTMs are usually defined using quadruple rules [2,16], instead of the more com-
mon quintuple rules. A quadruple TM is defined by a finite set of states Q, a
finite set of symbols S, and a finite set of symbol rules 〈q1, s1, s2, q2〉 and shift
rules 〈q1, /, d, q2〉. A symbol rules says that in state q1 with the tape head reading
symbol s1, write s2 and change into state q2. A shift rule says that in state q1,
move the tape head in the direction d ∈ {−, 0,+} (left, stay, right) and change
into state q2. For a TM to be reversible there must be both forward determinism
(in the usual sense) and backward determinism. A quadruple TM is backward de-
terministic iff for any pair of distinct quadruples 〈q1, t1, t2, q2〉 and 〈q′1, t′1, t′2, q′2〉,
if q2 = q′2 then t1 �= /, t′1 �= / and t2 �= t′2.

Theorem 3 (r-Turing completeness). Any reversible Turing machine can
be simulated cleanly (without added garbage) by reversible flowcharts.

Proof. The configuration of a Turing machine can be simulated as follows. q is a
variable whose value is the current state, s holds the symbol under the tape head
and l and r are stacks holding the left and right portions of the tape relative to
the tape head, respectively.4

For a given RTM, assume that qs and qf are the start and finish states, re-
spectively, and that the transition rules are numbered R1 to Rn. Each transition
rule Ri is translated into a functionally equivalent reversible flowchart Ci ac-
cording to the rules shown in Fig. 8. The helper function Qq1,q2 consist of the

4 For convenience we assume the stacks are infinitely deep. Finite stacks will work as
well, although care must be taken to maintain reversibility.

266 T. Yokoyama, H.B. Axelsen, and R. Glück

entry � q ^= qs �
�

�

�

�
q=qst

f

� C1
�

�
��

�q=qf t

f�

� q ^= qf � exit

Fig. 7. Flowchart C0 with main loop for RTM simulation

〈q1, s1, s2, q2〉
⇓

��
�

�
�

�
�

�
�q=q1
∧

s=s1

t

f

� Qq1,q2
� Ss1,s2

�

� Ci+1 �

�

�

�

q=q2
∧

s=s2

t

f

�

〈q1, /, d, q2〉
⇓

��
�

�
�

�
�

�
�

q = q1

t

f

� Qq1,q2
� Md

�

� Ci+1 �

�

�

�

q = q2

t

f

�

Fig. 8. Translation of RTM transition rules Ri into reversible flowcharts Ci

step q ^= q1 ; q ^= q2. This changes q’s value from q1 to q2 reversibly, simulating
changing the state of the RTM from q1 to q2. Ss1,s2 is entirely analogous for the
symbol variable s. The step Md simulates moving the head in direction d. For
example, M+ is defined (reversibly) as push s l; pop s r. In the translation
of both rule types, if rule Ri did not apply (enforced by the test predicate),
control flows into Ci+1, the translation of rule Ri+1. Upon return from Ci+1,
backward determinism of the RTM ensures that the given assertions are suffi-
cient to differentiate between the two cases. In the translation of the final rule
Rn, a dummy step is inserted in place of Cn+1. Execution of C1 thus simulates
the application of exactly the rule implied by the (simulated) configuration of
the RTM.

C1 can be embedded in a reversible loop C0 that executes C1 repeatedly,
starting in state qs until the final state qf is reached (Fig. 7). C0 thus computes
the same function as the RTM, without the generation of garbage data. ��

5 Reversible Flowchart Programming Languages

The reversible flowchart computation model provides a theoretical justification
for low-level unstructured machine code (e.g., for a reversible microprocessor) as
well as for high-level block-structured reversible languages. We give two program-
ming languages as examples for both types and illustrate them with a garbage-
free implementation of a lossless encoder for permutations given by Dijkstra [8].

Reversible Flowchart Languages 267

Grammar of reversible language RL
p ::= b+

b ::= l: k a∗ j
a ::= x ^= e;

k ::= from l;
| if e from l else l;
| entry;

j ::= goto l;
| if e goto l else l;
| exit;

Grammar of structured reversible language SRL
p ::= b
a ::= x ^= e;

b ::= a
| b b
| if e then b else b fi e
| from e do b loop b until e

Expressions
e ::= c | x | o e · · · e
o ::= + | * | · · ·

Syntax Domains
p∈Prog
b ∈BasicBlock

a∈Assign
e ∈Expr

j ∈ Jump
c ∈Const

k ∈From
x∈Var

l ∈Label
o∈Op

Fig. 9. A family of reversible flowchart languages

The encoder implements an injective function. The decoder can be obtained from
the encoder using the straightforward inversion of Sec. 2, and vice versa.

Unstructured Reversible Language. A program written in the unstructured
reversible language RL is a sequence of basic blocks. A block consists of a label,
an unconventional from construct, a sequence of assignments, and a jump. A
jump may be unconditional (goto l), conditional (if e goto l1 else l2), or the
exit from the program (exit). The values of all variables are initially zero. The
syntax is shown in Fig. 9.

An assignment is a C-like exclusive-or assignment (x ^= e), where variable x
must not occur in expression e. This syntactic constraint makes the assignment
self-inverse. In general, any reversible update can be used as assignment operator
to the language (e.g., the C-like assignment operators += and -=; see Sec. 2).

A from construct is an unconditional assertion (from l) that the control flow
always comes from block l, a conditional assertion (if e from l1 else l2) that
the control flow comes from block l1 when predicate e is true and from block l2
otherwise, or the entry of the program (entry). This construct makes the control
flow of programs backward deterministic. Well-formed programs contain exactly
one entry and one exit.

Structured Language. A program written in the structured reversible lan-
guage SRL consists of one, possibly nested block. A block is an assignment,
a sequence of blocks, a conditional (if e1 then b1 else b2 fi e2), or a loop
(from e1 do b1 loop b2 until e2). They textually represent the reversible struc-
tured CFOs of Fig. 3. The syntax is shown in Fig. 9, with operational semantics
rules omitted for space reasons.

Example: permutation-to-code. Consider the problem of translating an ar-
ray x[] of length n, containing a permutation of the numbers 0, . . . , n−1, into an
array where each index entry i counts the number of elements in x[] smaller than
x[i] preceding the occurrence x[i] in x[]. For example, given the input permu-
tation x[]={2,0,3,1,5,4}, we obtain the encoded array x[]={0,0,2,1,4,4}.

268 T. Yokoyama, H.B. Axelsen, and R. Glück

This is a fine program inversion example described by Dijkstra, who used an
irreversible guarded commands language to write this program [8,11].

The structured reversible program in SRL is shown below in the left column.
The right column shows the inverted program: a decoder that reconstructs the
original permutation. Note that the encoder and decoder take the same number
of steps on the corresponding input/output and that their space consumption is
identical (due to the assumption that atomic step += and its inverse -= consume
equal execution time and space). For simplicity, we use the reversible update
operators += and -=, which can be simulated by ^= and auxiliary variables.

from k=n
loop k-=1

from j=0
loop if x[j]>x[k]

then x[j]-=1
fi x[j]>=x[k]
j+=1

until j=k
j-=k

until k=0

⇐⇒
program
inversion

from k=0
loop j+=k

from j=k
loop j-=1

if x[j]>=x[k]
then x[j]+=1
fi x[j]>x[k]

until j=0
k+=1

until k=n

The same program can be expressed in the unstructured reversible language
RL. The program can easily be inverted (omitted due to lack of space.)

l0: entry;
goto l1;

l1: if k=n from l0 else l7;
k-=1;
goto l2;

l2: if j=0 from l1 else l6;
goto l3;

l3: from l2;
if x[j]>x[k] goto l4 else l5;

l4: from l3;
x[j]-=1;
goto l5;

l5: if x[j]>=x[k] from l4 else l3;
goto l6;

l6: from l5;
j+=1;
if j=k goto l7 else l2;

l7: from l6;
j-=k;
if k=0 goto l8 else l1;

l8: from l7;
exit;

Admittedly, both RL and SRL are small reversible programming languages.
Their purpose is theoretical: to model unstructured control flow of low-level
reversible machine code with jumps and register updates, high-level reversible
languages with structured control flow and assignments and the clean translation
and interpretation of these languages within the reversible computing paradigm
(e.g., garbage-free reversible self-interpretation [20]).

6 Conclusion

We introduced the concept of reversible flowcharts, and showed that structured
and unstructured reversible flowcharts are equally expressive. We demonstrated
an injection of classical flowcharts, and proved the r -Turing completeness of

Reversible Flowchart Languages 269

reversible flowcharts. The work presented here is part of a larger effort on the
development of reversible programming systems, e.g. [1,7,9,19,20]. The results
of this paper can be guidelines in designing new structured and unstructured
reversible programming languages, independent of actual implementation.

Acknowledgments. An abstract of this paper was presented at the informal,
unrefereed 18th Nordic Workshop on Programming Theory, 2006. Part of this
work was supported by CREST, JST; and the FIRST research school.

References

1. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Computer Science - Theory and Applications. Proceed-
ings. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

3. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Com-
put. 18(4), 766–776 (1989)

4. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only
two formation rules. Communications of the ACM 9(5), 366–371 (1966)

5. Cooper, D.C.: Böhm and Jacopini’s reduction of flow charts. Communications of
the ACM 10(8), 463–473 (1967)

6. Dahl, O.-J., Dijkstra, E.W., Hoare, C.A.R. (eds.): Structured Programming. Aca-
demic Press, London (1972)

7. De Vos, A., Van Rentergem, Y.: Reversible computing: from mathematical group
theory to electronical circuit experiment. In: 2nd Conf. on Computing Frontiers,
pp. 35–44. ACM Press, New York (2005)

8. Dijkstra, E.W.: Program inversion. In: Bauer, F.L., Broy, M. (eds.) Program Con-
struction: Intl. Summer School. LNCS, vol. 69, pp. 54–57. Springer, Heidelberg
(1978)

9. Frank, M.P.: Reversibility for Efficient Computing. PhD thesis. MIT, Cambridge
(1999)

10. Gomard, C.K., Jones, N.D.: Compiler generation by partial evaluation: a case
study. Structured Programming 12, 123–144 (1991)

11. Gries, D.: The Science of Programming, ch.21: Inverting Programs, Texts and
Monographs in Computer Science. Springer, Heidelberg (1981)

12. Hatcliff, J.: An introduction to online and offline partial evaluation using a simple
flowchart language. In: Hatcliff, J., Mogensen, T., Thiemann, P. (eds.) Partial
Evaluation. Practice and Theory. LNCS, vol. 1706, pp. 20–82. Springer, Heidelberg
(1999)

13. Jacopini, G., Mentrasti, P., Sontacchi, G.: Reversible Turing machines and polyno-
mial time reversibly computable functions. SIAM Journal on Discrete Mathemat-
ics 3(2), 241–254 (1990)

14. Lutz, C.: Janus: a time-reversible language. Letter written to Landauer, R. (1986),
http://www.cise.ufl.edu/∼mpf/rc/janus.html

15. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill, New York (1974)
16. Morita, K., Yamaguchi, Y.: A universal reversible Turing machine. In: Durand-

Lose, J., Margenstern, M. (eds.) Machines, Computations, and Universality. Pro-
ceedings. LNCS, vol. 4664, pp. 90–98. Springer, Heidelberg (2007)

http://www.cise.ufl.edu/~mpf/rc/janus.html

270 T. Yokoyama, H.B. Axelsen, and R. Glück

17. Munakata, T.: Beyond silicon: New computing paradigms. Special issue. Commu-
nications of the ACM 50(9), 30–72 (2007)

18. Toffoli, T.: Computation and construction universality of reversible cellular au-
tomata. J. Comput. Sys. Sci. 15, 213–231 (1977)

19. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: 5th Conf. on Computing Frontiers, pp. 43–54. ACM Press, New York
(2008)

20. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: Partial Evaluation and Program Manipulation. Proceedings,
pp. 144–153. ACM Press, New York (2007)

Attribute Grammars and Categorical Semantics

Shin-ya Katsumata

Research Institute for Mathematical Sciences,
Kyoto University Kyoto, 606-8502, Japan

��������	�
��������������

Abstract. We give a new formulation of attribute grammars (AG for short) called
monoidal AGs in traced symmetric monoidal categories. Monoidal AGs subsume
existing domain-theoretic, graph-theoretic and relational formulations of AGs.
Using a 2-categorical aspect of monoidal AGs, we also show that every monoidal
AG is equivalent to a synthesised one when the underlying category is closed,
and that there is a sound and complete translation from local dependency graphs
to relational AGs.

1 Introduction

Attribute grammars are a mechanism to assign computation with bidirectional infor-
mation flow to derivation trees of context free grammars [18]. Our intention is to give
a categorical formulation of AGs. We employ traced symmetric monoidal categories
(TSMC for short) as the underlying categories for the formulation.

The key notion that links AGs and TSMCs is the circular (or recursive) computation.

Fig. 1. Simple Description of
Attribute Grammars

Circular computation is tightly related to the charac-
teristic feature of AGs, namely computation with bidirec-
tional information flow. To illustrate this, we consider the
situation that an AG assigns to a derivation tree (top left
of Figure 1) a computation with bidirectional information
flow (top right of Figure 1). Boxes P� Q�R are computa-
tion units assigned by the AG to nodes p� q� r in the tree.
Depending on the configuration of P� Q�R, the entire com-
putation may involve circular computation. For instance,
on the bottom of Figure 1 the box P feed-backs the input
from R to Q so that the entire computation has a cycle.

It is therefore natural to formulate AGs in a mathemati-
cal theory that admits circular computation. In [16], Joyal
et al introduced the concept of traced monoidal categories.
From the viewpoint of computer science, they provide an
abstract account of feedback-loops, iteration and recursion in the models of computa-
tion, such as domain theory, iteration theory [5], Conway theory [6], relational models
of flowcharts and networks [4], and so on.

The main observation of this paper is that by employing TSMCs as the underlying
mathematical theory, we can achieve higher degree of abstraction in AGs. Following
this observation, we propose a categorical formulation of AGs called monoidal AGs.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 271–282, 2008.
c� Springer-Verlag Berlin Heidelberg 2008

272 S.-y. Katsumata

The merit of this formulation is that we are free from concrete representation of data
structures and computation. We show that three existing formulations of AGs: 1) Chirica
and Martin’s K-systems [8], 2) Dependency graphs in classical AGs and 3) Courcelle
and Deransart’s relational AGs [9] are formally related to the instances of monoidal
AGs. Subsequently, by exploiting a 2-categorical aspect of monoidal AGs we show
that in closed TSMCs every monoidal AG is equivalent to the one which does not use
inherited attributes, and that there exists a sound and complete translation from local
dependency graphs into relational AGs. The latter result, which technically hinges on
Selinger’s work [21], appears to be new.

Preliminaries. We adopt the standard algebraic treatment of CFGs. We regard a CFG
G � (T� N� S � P) as a many-sorted signature �G � (N� P) by identifying each production
rule p : X0 � v0X1v1 � � �Xnvn � P (vi � T �� Xi � N� 0 � i � n) and an operator
p : X1 � � �Xn � X0. We also identify the set of derivation trees of G beginning with a
non-terminal symbol X � N and the set T�G X of closed �G-terms of X. In this paper
terminal symbols and the starting symbol do not play any role, so when declaring a
CFG we just mention the set of nonterminal symbols and production rules.

The following concepts will be used in classical AGs. We fix a countably infinite
set Attr of attribute names, and assume that it is closed under prefixing “i�” (i � N).
A named set is a finite sequence of pairs of an attribute name and a set such that each
attribute name in the sequence is di�erent. For a named set R � a1 : V1� � � � � an : Vn,
by �R� we mean V1 � � � � � Vn; for x � �R�, by xai we mean the i-th component of x; by
a(R) we mean a1� � � � � an � Attr�; by n(R) we mean �a1� � � � � an� 	 Attr; by i�R (i � N)
we mean the named set i�a1 : V1� � � � � i�an : Vn. For l � a1� � � � � an � Attr� with distinct
attribute names, by Xl we mean the named set a1 : X� � � � � an : X. For a pair of tuples
a� b, by a; b we mean the concatenation of them; for example, (a� b); (c� d) � (a� b� c� d).

2 Classical AGs

Fig. 2. Attribute Grammars

We first informally describe the central idea of AGs. Let
G � (N� P) be a CFG. An AG
 assigns a “computa-
tion unit” fp (top of Figure 2) to each production rule
p : X1 � � �Xn � X0 � P. The computation unit has an
I�O-port for X0 at the top and n I�O-ports for X1 � � �Xn at
the bottom (
 also specifies types of I�O ports, but we ig-
nore them now). The unit processes all inputs and outputs
simultaneously, regardless of direction. The information
flowing downward is called inherited attributes, while
the one flowing upward synthesised attributes. Given a
derivation tree t of G, we construct a complex circuit by
connecting computation units provided by
 with each
other according to the shape of t. The resulting circuit,
which has an I�O port only at the top, is the computation
assigned to t by the AG (bottom of Figure 2).

Attribute Grammars and Categorical Semantics 273

The above idea was proposed and formulated by in [18], where computation units
were represented by set-theoretic functions. Fix a CFG G � (N� P). A classical AG for
G is the tuple
 � (I� S� f) where

1. I and S are N-indexed family of named sets such that n(I X) � n(S X) � � for each
X � N. Below we write Up for the named set 1� S X1� � � � � n� S Xn� I X0 and Dp for
the named set S X0� 1� I X1� � � � � n� I Xn.

2. f is a P-indexed family of functions such that fp : �Up � � �Dp � for each p :
X1 � � �Xn � X0 � P. They are called attribute calculation rule. By expanding the
definition of Up and Dp, we may also see fp as the following function:

fp : � S X1� � � � � � � S Xn� � � I X0� � � S X0� � � I X1� � � � � � � I Xn�� (1)

The assignment of computation to derivation trees is done by meaning functions. Let

be an AG for G. A N-indexed family of functions

[[]]X : T�G X � (� I X� � � S X�) (2)

(subscript X is often dropped) is called the meaning function of
 if it satisfies the
following condition: for any p : X1 � � �Xn � X0 � P, ti � T�G Xi (1 � i � n) and
x � � I X0�, there exists xi � � I Xi� (1 � i � n) such that

[[p(t1� � � � � tn)]](x); x1; � � � ; xn � fp(
[[t1]](x1); � � � ;
[[tn]](xn); x)� (3)

Example 1. Consider a CFG Gp for expressions over integers:

Gp � (�V� n���� �E�� E� �cn : E � n� var : E � V� plus : E � E � E�)�

where n ranges over Z. The following data gives an AG
p � (I� S� f) for Gp:

I E � i : R� S E � s : R

fcn (i) � n� fvar(i) � i� fplus(1�s� 2�s� i) � (1�s � 2�s� i� i)�

If a meaning function
p[[]] : T�Gp
E � R � R exists, then from (3) it satisfies

p[[cn]](i) � n�
p[[var]](i) � i�
p[[plus(t� t�)]](i) �
p[[t]](i) �
p[[t�]](i)�

Thus the meaning function of
p evaluates expressions over integers with real numbers.

The problem of classical AGs is that the existence of meaning functions is not always
guaranteed. This is technically because the witnesses x1� � � � � xn ensuring (3) may not
exist under some situation. Another way to look at the problem is that the computation
of value
[[p(t1� � � � � tn)]] requires feed-backs of the output x1� � � � � xn of fp to itself,
but such circular computation can not be modelled in a naive way using set-theoretic
functions.

To resolve this problem, we shall either i) seek for AGs that do not induce circular
computation (such AGs are called non-circular or well-formed [18,10]) or ii) reformu-
late AGs within a mathematical theory that admits circular computation, such as domain
theory. In this paper we take the latter option. For the mathematical foundation of the
formulations of AGs, we employ traced symmetric monoidal categories [16,14], which
are recently recognised as providing an abstract representation of circular computation.

274 S.-y. Katsumata

3 Traced Symmetric Monoidal Categories and Int Construction

We assume that readers are familiar with symmetric monoidal categories (SMC for
short), symmetric monoidal functors and monoidal natural transformations; see e.g.
[20]. We fix a common method for taking tensors of multiple objects in SMCs. Every
SMC is equivalent to a strict one (coherence theorem [20]), so we mainly talk about
strict SMCs for legibility. We reserve notations I�� and c for the unit, tensor product
and symmetry for SMCs, respectively.

TrI
A�B(f) � f

TrX�Y
A�B (f) � TrX

A�B(TrY
A�X�B�X(f))

TrX
C�A�C�B(C � f) � C � TrX

A�B(f)
TrX

X�X(cX�X) � idX

TrX
A�B(f Æ (g � X)) � TrX

A��B(f) Æ g
TrX

A�B�((g � X) Æ f) � g Æ TrX
A�B(f)

TrX
A�B((B � g) Æ f) � TrY

A�B(f Æ (B � g))

Fig. 3. Axioms for Trace Operators

In a SMC �, one can represent a com-
putation with n inputs and m outputs as
a �-morphism f : A1 � � � � � An �

B1 � � � � � Bm. In order to express feed-
back loops � circular computation under
this representation, we adopt the concept
of trace operators. They were originally
introduced to balanced monoidal cate-
gories (which subsume SMCs) by Joyal
et al in [16]. The following formulation
of trace operators on SMCs is due to Hasegawa [14].

Definition 1 ([16,14]). A trace operator on a SMC � is a family of mappings TrX
A�B :

�(A � X� B � X) � �(A� B) that satisfies the axioms summarised in Figure 3 (see
[16,14,2] for graphical presentations of the axioms). A traced symmetric monoidal cat-
egory (TSMC) is a pair of a SMC and a trace operator on it.

Let ��� be TSMCs. A traced symmetric monoidal functor is a strong symmetric

monoidal functor (F : � � ��mI : I�
�

� FI��mA�B : FA �� FB
�

� F(A �� B)) that
preserves the trace operator in the following sense:

(Tr�)FX
FA�FB(m�1

A�B Æ F f Æ mA�B) � F((Tr�)X
A�B(f))�

Besides trace operators, in [16] Joyal et al gave a construction of categories called Int.
It was originally considered for the structure theorem for traced balanced monoidal
categories. In this paper Int construction will be used for obtaining the categories where
computation with bidirectional information flow can be naturally modeled.

Definition 2 ([16]). Let � be a TSMC. We define a category Int(�) by the following
data: an object is a pair (A�� A�) of �-objects1, and a morphism f : (A�� A�) �

(B�� B�) is a �-morphism f : A� � B� � B� � A�. The composition of f with
g : (B�� B�) � (C��C�) is defined to be the following morphism:

TrB�
A��C� �C��A�((C� � c) Æ (g � A�) Æ (B� � c) Æ (f �C�) Æ (A� � c))�

Consider a computation unit that has an input port A� and an output port A� at the
bottom, and an input port B� and an output port B� at the top. This unit receives infor-
mation from the bottom via A� and from the top via B�, then outputs processed infor-
mation to the bottom via A� and to the top via B�. In Int(�) such a unit is expressed

1 Compared to the original Int construction in [16], here the order of objects is swapped.

Attribute Grammars and Categorical Semantics 275

as a morphism f : (A�� A�) � (B�� B�), and its input-output relation is captured by
a �-morphism f : A� � B� � A� � B�. The definition of the composition in Int(�)
is designed so that it correctly captures the input-output relation of the composition of
two computation units (Int(�)-morphisms); see [16,1,2] for graphical presentations of
the composition.

Category Int(�) is a compact closed category, that is, a SMC such that every object
has a left dual [17]. In this paper we only use the SMC structure of Int(�) given by

IInt(�) � (I� I) (A�� A�) �Int(�) (B�� B�) � (A� � B�� A� � B�)�

This tensor products correspond to combining I�O ports (and computation units) in par-
allel. For instance, the computation unit drawn on the top of Figure 2 can be expressed
as an Int(�)-morphism fp : (X�

1 � X�

1) � � � � � (X�

n � X�

n) � (X�

0 � X�

0).
Below we state the structure theorem for TSMCs. This is a specialisation of the one

for traced balanced monoidal categories in [16].

Theorem 1. The mapping � �� Int(�) can be extended to a left biadjoint to the forget-
ful functor from the 2-category of compact closed categories to that of TSMCs. The unit
�� : � � Int(�) of this biadjunction, which maps a �-object A to an Int(�)-object
(I� A), is full and faithful.

4 Monoidal AGs

In this section we give a categorical formulation of AGs, called monoidal AGs. We first
introduce the concept of �-algebras for SMCs, which are a monoidal version of set-
theoretic many-sorted algebras. We note that the concept of algebras in SMCs are also
related to operads [19].

Definition 3. Let � � (S �O) be a signature and � be a SMC. A �-algebra in � is a
pair (A� �) such that A is a S -indexed family of �-objects and � is a O-indexed family
of �-morphisms such that �o : As1 � � � � � Asn � As for each o : s1 � � � sn � s � O.

Let
 � (A� �) be a �-algebra in �. The meaning function of
 is a S -indexed
family of mappings �
[[]]s : T� s � �(I� As)�s�S such that the following holds for
each o : s1 � � � sn � s � O (below we omit subscripts of meaning functions):

[[o(t1� � � � � tn)]] � �o Æ (
[[t1]] � � � � �
[[tn]])�

Definition 4. A monoidal AG for a CFG G � (N� P) in a TSMC � is a �G-algebra

 � (A� �) in Int(�).

This short and simple formulation captures essential information of AGs. We compare
monoidal AGs and classical AGs below.

1. The set of sorts of �G is N; so A assigns to each nonterminal symbol X � N an
Int(�)-object, say (A�X� A�X). We regard them as the domains of inherited and
synthesised attributes respectively; so A plays the role of both I and S.

276 S.-y. Katsumata

2. To each production rule p : X1 � � �Xn � X0 � P, � assigns an Int(�)-morphism
�p : AX1 � � � � � AXn � AX0, which is the following �-morphism by definition:

�p : A�X1 � � � � � A�Xn � A�X0 � A�X0 � A�X1 � � � � � A�Xn�

One can see the similarity between the domain and codomain of �p and those of at-
tribute calculation rule (1); here tensor products are used instead of direct products
(this is the reason of the name “monoidal” AG).

3. The meaning function of a monoidal AG
 for G is a mapping (X � N)

[[]] : T�G X � Int(�)(I� (A�X� A�X)) � �(A�X� A�X)�

so it assigns to a derivation tree t � T�G X a computation from A�X to A�X expressed
as a morphism in �; compare this with (2).

To see the suitability of our categorical formulation of AGs, in the subsequent sec-
tions we compare instances of monoidal AGs and three existing formulations of AGs:
i) Chirica and Martin’s K-systems, ii) local dependency graphs in classical AGs and iii)
Courcelle and Deransart’s relational AGs.

4.1 Monoidal AGs in �CPPO

The category �CPPO of �-complete pointed partial orders and continuous functions
is Cartesian closed and has the least fixpoint operator fixD : [[D � D] � D], which
determines a trace operator:

TrU
AB(f)(a) � �(fixB�U(�(b� u) � f (a� u)));

so �CPPO is a traced CCC (for the above construction see [14]).
Monoidal AGs in �CPPO are related to domain-theoretic formulations of AGs.

Among various such formulations, here we establish a formal connection between Chir-
ica and Martin’s K-systems [8] and monoidal AGs. Fix a CFG G � (N� P).

Definition 5 ([8]). A K-system for G is a tuple � � (D�� D�� f) such that

– D� and D� are N-indexed family of �-CPPOs called inherited and synthesised
attribute domains, respectively. For each X � N, we write DX for D�X � D�X.

– f is a P-indexed family of continuous functions such that for each p : X1 � � �Xn �

X0 � P, fp : [DX0 � DX1 � � � � � DXn � D�X0 � D�X1 � � � � � D�Xn]�

A K-system assigns a continuous function Dt : [D�X � D�X] to a derivation tree
t � T�G X (X � N) as follows. We first recursively define a �-CPPO Dt by

Dp(t1 �����tn) � D�X0 � D�X1 � � � � � D�Xn � Dt1 � � � � � Dtn (p : X1 � � �Xn � X0 � P)

For d � Dt, by �(d) we mean the first projection of d. Next, we construct a continuous
function Ht : [D�X � Dt � Dt] by induction on the structure of t:

Hp(t1�����tn)(i� (s� i1� � � � � in�w1� � � � �wn))

� fp((i� s)� (i1� �(w1))� � � � � (in� �(wn))); (Ht1(i1�w1)� � � � � Htn(in�wn))�

Attribute Grammars and Categorical Semantics 277

This function congregates one-step computation of inherited and synthesised attributes
at every node of t. We then define the continuous function �t : [D�X � D�X] that
denotes the meaning of t by �t(i) � �(fix(�x � Dt � Ht(i� x)))�

Let � � (D�� D�� f) be a K-system for G. We construct a monoidal AG M(�) �

(D� Æ) for G in �CPPO as follows:

DX � (D�X� D�X)

Æp(s1� � � � � sn� i) � fix(�(s� i1� � � � � in) � fp((i� s)� (i1� s1)� � � � � (in� sn)))

where X � N and p : X1 � � �Xn � X0 � P. On the other hand, every monoidal AG in
�CPPO can be casted to a K-system in an obvious way. These constructions preserve
the meanings of �G-terms.

Theorem 2. Let � be a K-system for a CFG G � (N� P) and
 be a monoidal AG
for G in �CPPO. Then for any t � T�G X (X � N), we have M(�) �t� � �t and
(K(
))t �
 �t�.

4.2 Monoidal AGs in Rel�

The category Rel of sets and relations has Cartesian (bi)products, which, at object level,
takes the disjoint sum of given sets. In [16] it was shown that the following is a trace
operator with respect to the Cartesian products:

TrU
AB(R) � RAB � RUB Æ (RUU)� Æ RAU �

where RXY (X � �A�U�� Y � �B�U�) is the restriction R to the relation between X and
Y, and (RUU)� is the transitive reflexive closure of RUU . The same operation was also
considered in [4]. We call this TSMC Rel�.

�cn i s

�var i �� s

�plus i

����
��

������ s

1�i 1�s

������
2�i 2�s

������

i

�����
�

����
�� s

1�i 1�s

		����
2�i

����� ����� 2�s

����

2�1�i �� 2�1�s

		���
2�2�i 2�2�s

���

Fig. 4. LDG � of �p (top) and an
example of CDG (bottom)

Monoidal AGs in Rel� are related to the con-
cept of local dependency graphs (LDG for short)
in classical AGs [18,10]. Let
 � (I� S� f) be a
classical AG for a CFG G � (N� P). We look
at the syntactic definition of f , and assign to
each production rule p : X1 � � �Xn � X0 � P
the following digraph �p: the set of vertices is
n(Up) � n(Dp), and there is an edge in �p from
a � n(Up) to a� � n(Dp) if and only if the a�-
component of the result of fp depends on the
a-component of fp’s input. We usually draw �p

so that n(I X0� S X0) are placed at the top and
n(k� I Xk� k� S Xk) (1 � k � n) are placed at the
bottom. The family � of digraphs constructed
from
 is called the LDG of
. For instance,
the LDG � of the classical AG
p in Example 1 is at the top of Figure 4.

LDGs are used to construct compound dependency graphs (CDG for short) of deriva-
tion trees. Let � be a LDG. For t � T�G X (X � N), we recursively construct a graph
CDG�(t) as follows: CDG�(p(t1� � � � � tn)) is the union of �p and the graphs obtained by

278 S.-y. Katsumata

adding a prefix “k�” (1 � k � n) to every node in CDG�(tk). In the bottom of Figure 4
CDG�(plus(c3� plus(var� c2))) is drawn. CDGs are a primary tool for detecting circular
computation in classical AGs; see [18,10].

By letting AX � (n(I X)� n(S X)), each digraph �p (p : X1 � � �Xn � X0 � P) of a LDG
� can be identified with a morphism in Int(Rel�):

�p � �(n(Up) � n(Dp)) � Int(Rel�)(AX1 � � � � � AXn� AX0)�

Thus a local dependency graph � of a classical AG for a CFG G specifies a monoidal
AG � � (A� �) for G in Rel�.

Theorem 3. Let � be a LDG of a classical AG
 for a CFG G � (N� P), and t � T�G X
(X � N). Then there exists a path from i � n(I X) to s � n(S X) in CDG�(t) if and only if
(i� s) � �[[t]].

For example, (i� s) � �[[plus(c3� plus(var� c2))]] as there is a path i � 2�i � 2�1�i �
2�1�s � 2�s � s in CDG�(plus(c3� plus(var� c2))), the graph on the bottom of Figure 4.

4.3 Monoidal AGs in Rel�

The category Rel has another symmetric monoidal structure given by A � B � A � B
(Cartesian products of sets). This is a part of the compact closed structure over Rel,
so Rel is canonically traced [16]; we call this TSMC Rel�. The trace operator derived
from the compact closed structure is the following:

TrU
AB(R) � �(a� b) � A � B � �u � U � ((a� u)� (b� u)) � R��

Monoidal AGs in Rel� are related to Courcelle and Deransart’s relational AGs [9].
We first fix a many-sorted first-order logic� with a standard set-theoretic interpretation
[[]]. For a typing context 	 of �, by i�	 we mean the context obtained by adding a
prefix “i�” to each variable in 	. For a well-typed formula 	 �
, we define i�
 to be
the formula
[i�x�x]x�var(�) (where var() is the set of variables in). Clearly i�	 � i�
.

Fix a CFG G � (N� P).

Definition 6 ([9]). A relational AG for G in � is a tuple � � (�
) such that

– 	 is a N-indexed family of typing contexts and
–
 is a P-indexed family of formuli such that for each p : X1 � � �Xn � X0 � P,
p is

the following well-typed formula:

1�	X1� � � � � n�	Xn� 	X0 �
p�

Let � � (�
) be a relational AG for G. For any t � T�G X (X � N), we recursively
define a formula 	X �
t by

p(t1 �����tn) � �1�	X1� � � � � n�	Xn�
p � 1�
t1 � � � � � n�
tn (p : X1 � � �Xn � X0 � P)�

We also define the relation �t to be �
t�.

Attribute Grammars and Categorical Semantics 279

From a relational AG � � (�
) for G in �, we construct a monoidal AG in Rel�

as follows. By letting AX � (1� �	X�) for X � N, we notice that the relation [[
p]] for
each p : X1 � � �Xn � X0 � P can be identified with a morphism in Int(Rel�):

�
p� � �(�1�	X1� � � � � n�	Xn� 	X0�) � Int(Rel�)(AX1 � � � � � AXn� AX0)�

Therefore � specifies a monoidal AG � � (A� �) where �p � �
p�.

Theorem 4. Let � be a relational AG for a CFG G � (N� P) in �. Then for any X � N
and t � T�G X, we have �t � � �t�.

5 Relating Monoidal AGs

We next see that functors and natural transformations between TSMCs give transla-
tions of monoidal AGs and relations between such translations. We begin with some
categorical aspects of algebras in SMCs. Fix a signature � � (S �O).

Definition 7. Let
 � (A� �) and � � (B� �) be �-algebras in a SMC �. A �-algebra
homomorphism from
 to � is a S -indexed family �hs : As � Bs�s�S of �-morphisms
satisfying �o Æ (hs1 � � � ��hsn) � hs Æ�o for each o : s1 � � � sn � s � O. We write Alg�(�)
for the category of �-algebras and �-algebra homomorphisms in �.

We write SMC for the 2-category of small SMCs, symmetric monoidal functors and
monoidal natural transformations. One can easily check that the mapping � �� Alg�(�)
extends to a 2-functor Alg� : SMC � Cat. We note that set-theoretic �-algebras are
precisely captured by Alg�(Set), where Set is the category of sets and functions with
tensors given by Cartesian products.

The meaning function in Definition 3 can be seen as initial algebra semantics. We
write �� � (T�� �) for the initial object in Alg�(Set).

Definition 8. 1. Let � be a SMC. We define a symmetric monoidal functor G� : ��
Set by G� � �(I�).

2. Let ��� be SMCs and (F : �� ��mI : I� � FI��mA�B : FA��FB � F(A��B))
be a symmetric monoidal functor. We define a monoidal natural transformation
GF : G� � G� Æ F by (GF)C(f) � F f Æ mI.

3. For a �-algebra
 in a SMC �, by �
� we mean the underlying set-theoretic �-
algebra Alg�(G�)(
). We say that two �-algebras in � are equivalent if their un-
derlying algebras are isomorphic in Alg�(Set).

The meaning function
 �� of a �-algebra
 in a SMC � is equal to the unique
morphism ! : �� � �
� in Alg�(Set). We regard two equivalent algebras as giving
the same meaning to �-terms, because their meaning functions are equal modulo an
isomorphism.

The general algebraic concepts above will be used as follows. Let G be a CFG. The
mapping AGG : � �� Alg�G

(Int(�)) is the construction of the category of monoidal
AGs for G in a TSMC �. It extends to a 2-functor AGG from the 2-category of TSMCs
to Cat, so relationships between TSMCs will immediately be reflected to those between
di�erent formulations of AGs. Below we apply this fact to show that i) in closed TSMCs
every monoidal AGs are equivalent to those which do not use inherited attributes, and
ii) there is a sound and complete translation from LDGs to relational AGs.

280 S.-y. Katsumata

5.1 Equivalence between Monoidal AGs and Synthesised Ones

AGs that do not use inherited attributes are called synthesised AG (S-AG for short).
In [8] Chirica and Martin showed that by using function spaces as attribute domains,
every K-system can be reduced to the one which does not use inherited attributes. This
technique was also applied to the encoding of AGs by higher-order catamorphisms
[11].

In this section we further generalise these results to monoidal AGs. We introduce
a monoidal version of synthesised AGs (monoidal S-AGs), and show that in closed
TSMCs every monoidal AG is equivalent to a monoidal S-AG. Fix a CFG G � (N� P).

Definition 9. A monoidal S-AG for G in a TSMC � is a monoidal AG (A� �) for G such
that A�X � I for each X � N.

It is easy to see that a monoidal AG
 for G in a TSMC � is S-AG if and only if there
exists a �G-algebra
� in � such that
 � Alg�G

(��)(
�).
To show that every monoidal AG is equivalent to a monoidal S-AG, we need an

extra structure on �. Recall that a SMC � is closed if � B has a right adjoint B �
 for every �-object B. The key of the equivalence is the following theorem due to
Hasegawa.

Theorem 5 ([13]). Let � be a TSMC. Then �� : � � Int(�) has a symmetric
monoidal right adjoint �� : Int(�) � � if and only if � is closed.

When � is closed, �� can be defined by ��(A�� A�) � A�
� A�.

Theorem 6. Let
 be a monoidal AG for G in a closed TSMC �. Then
 is equivalent
to the monoidal S-AG Alg�G

(��)(Alg�G
(��)(
)).

5.2 A Translation from Local Dependency Graphs to Relational AGs

Two TSMCs Rel� and Rel�, which provide the underlying category for local depen-
dency graphs and relational AGs, are linked by the finite multiset endofunctor � :
Rel � Rel defined as follows. First, we define the set MA to be the set of finite mul-
tisets of A. We identify an element of MA and a function f � A � N that returns
non-zero at finitely many elements in A (so MA � A � N if A is finite). We write �a�
(a � A) for the function that returns 1 only at a. The endofunctor� is then defined by

�A � MA� �R � �(h1� h2) � h � MR�

where h1(a) �
�

b�B�(a�b)�R h(a� b) and h2(b) �
�

a�A�(a�b)�R h(a� b). For any relation R 	

A � B, we have (a� b) � R if and only if (�a�� �b�) � �R; so functor � is faithful.

Theorem 7 ([21]). The above data gives a TSM functor � : Rel� � Rel�.

Fix a CFG G � (N� P). We consider the functor AGG(�) : AGG(Rel�)�AGG(Rel�)
that gives a translation between monoidal AGs for G.

Attribute Grammars and Categorical Semantics 281

Proposition 1. Let
 be a monoidal AG for G in Rel�. Then (i� s) �
[[t]] if and only
if (�i�� �s�) � (AGG(�)(
))[[t]].

Functor AGG(�) is the key of a sound and complete translation from LDGs to re-
lational AGs. Let � be a LDG of a classical AG
 � (I� S� f) for G. For each p :
X1 � � �Xn � X0 � P, we define Ap by Ap � 1� I X1� 1� S X1� � � � � n� I Xn� n� S Xn� I X0� S X0.
Then we can encode ��p as a set of vectors of natural numbers:

��p � � f � �Na(Ap)� � �h � �p � N�
�

a�n(Dp)

fa � h1(a) �
�

a�n(Up)

fb � h2(a)��

The relation on the right hand side can be expressed in a first-order logic with natural
numbers and the standard interpretation of them (we only need the sort nat for natural
numbers, logical connectives ������� and constants 0��). Therefore from the LDG �

we can construct a relational AG �� � (�
) as follows: for each X � N, we define the
context 	X to be i1 : nat� � � � � in : nat� s1 : nat� � � � � sm : nat where i1� � � � � in � a(I X)
and s1� � � � � sm � a(S X), and we define the formula
p (p : X1 � � �Xn � X0 � P) to be

��he�e��p �

���������
�

a�n(Dp)

a �
�

b�n(Up)�(a�b)��p

h(a�b)

��������	 �
���������
�

b�n(Up)

b �
�

a�n(Dp)�(a�b)��p

h(a�b)

��������	 �

For a named set R and a � n(R), by Æa we mean the tuple (0� � � � � 0�
a

1̆� 0� � � � � 0) � �Na(R)�.

Theorem 8. Let � be a LDG for a classical AG
 � (I� S� f) of a CFG G � (N� P).
Then for any t � T�G X (X � N), i � I X and s � S X, (Æi� Æs) � (��)t if and only if there
exists a path from i to s in CDG�(t).

6 Related Work

We have seen that our categorical formulation of AGs, namely monoidal AGs, are re-
lated to three existing formulations of AGs; K-systems [8], local dependency graphs
[18] and Courcelle and Deransart’s relational AGs [9]. However, there are many other
formulations of AGs [7,22,15] that are not covered in this paper. The study of relation-
ships between such AGs and monoidal AGs is left to the future work.

In [12] Girard proposed a novel interpretation of cut elimination called geometry
of interaction (GoI), which was later analysed by researchers including Abramsky,
Haghverdi, Jagadeesan and Scott [1,2,3]. It was revealed that TSMCs and Int construc-
tion were the key for an axiomatic account of GoI, and as a by-product many concrete
TSMCs were investigated; see e.g. [1,2]. It is interesting to examine if monoidal AGs in
the TSMCs discovered in the study of GoI are useful in the applications of AGs, such
as compiler constructions, program transformations and XML processing.

Acknowledgment. I am indebted to Masahito Hasegawa for technical advises and stimu-
lating discussions. I am also grateful to Susumu Nishimura, Keisuke Nakano, Kazuyuki
Asada, Naohiko Hoshino and Ichiro Hasuo for valuable discussions.

282 S.-y. Katsumata

References

1. Abramsky, S.: Retracting some paths in process algebra. In: CONCUR 1996. LNCS,
vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

2. Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of interaction and linear combinatory
algebras. Math. Struct. in Comput. Sci. 12(5), 625–665 (2002)

3. Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf. Com-
put. 111(1), 53–119 (1994)

4. Bainbridge, E.S.: Feedbacks and generalized logic. Inf. Control 31(1), 75–96 (1976)
5. Bloom, S.L., Ésik, Z.: Iteration theories; the equational logic of iterative processes. Springer,

Heidelberg (1993)
6. Bloom, S.L., Ésik, Z.: Fixed-point operations on ccc’s. part I. Theor. Comput. Sci. 155(1),

1–38 (1996)
7. Boyland, J.: Conditional attribute grammars. ACM Trans. Program. Lang. Syst. 18(1), 73–

108 (1996)
8. Chirica, L.M., Martin, D.F.: An order-algebraic definition of Knuthian semantics. Math. Sys.

Theory 13, 1–27 (1979)
9. Courcelle, B., Deransart, P.: Proofs of partial correctness for attribute grammars with appli-

cations to recursive procedures and logic programming. Inf. Comput. 78(1), 1–55 (1988)
10. Deransart, P., Jourdan, M., Lorho, B.: Attribute Grammars. LNCS. vol. 323. Springer, Hei-

delberg (1988)
11. Fokkinga, M., Jeuring, J., Meertens, L., Meijer, E.: A translation from attribute grammars to

catamorphisms. The Squiggolist 2(1), 20–26 (1991)
12. Girard, J.-Y.: Geometry of Interaction I: Interpretation of System F. In: Ferro, R., et al. (eds.)

Logic Colloquium 1988. North-Holland, Amsterdam (1989)
13. Hasegawa, M.: On traced monoidal closed categories. Invited talk at Traced Monoidal Cate-

gories, Network Algebras, and Applications (2007)
14. Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec.

Springer, Heidelberg (1999)
15. Jacobs, B., Uustalu, T.: Semantics of grammars and attributes via initiality. In: Reflections

on Type Theory, Lambda Calculus, and the Mind. Essays Dedicated to Henk Barendregt on
the Occasion of his 60th Birthday, pp. 181–196. Radboud University (2007)

16. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of
the Cambridge Philosophical Society 119(3), 447–468 (1996)

17. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. Journal of Pure and
Applied Algebra 19, 193–213 (1980)

18. Knuth, D.E.: Semantics of context-free languages. Math. Sys. Theory 2(2), 127–145 (1968);
See Math. Sys. Theory, 5(1) 95–96, 1971 for a correction

19. Leinster, T.: Higher Operads, Higher Categories. London Math. Soc. Lecture Note Series,
vol. 298. Cambridge University Press, Cambridge (2004)

20. MacLane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Math-
ematics, vol. 5. Springer, Heidelberg (1998)

21. Selinger, P.: A note on Bainbridge’s power set construction (manuscript, 1998)
22. Swierstra, S.D., Vogt, H.: Higher order attribute grammars. In: Alblas, H., Melichar, B. (eds.)

SAGA School 1991. LNCS, vol. 545, pp. 256–296. Springer, Heidelberg (1991)

A Domain Theoretic Model of Qubit Channels

Keye Martin

Naval Research Laboratory
Center for High Assurance Computer Systems

Washington, DC 20375
keye.martin@nrl.navy.mil

Abstract. We prove that the spectral order provides a domain theoretic
model of qubit channels. Specifically, we show that the spectral order
is the unique partial order on quantum states whose least element is
the completely mixed state, which satisfies the mixing law and has the
property that a qubit channel is unital iff it is Scott continuous and has a
Scott closed set of fixed points. This result is used to show that the Holevo
capacity of a unital qubit channel is determined by the largest value of
its informatic derivative. In particular, these channels always have an
informatic derivative that is necessarily not a classical derivative.

1 Introduction

The study of measurement was initiated within the context of computation [3].
In [5], it is shown that measurement can be used to prove fixed point theorems for
mappings that are not monotone and unique fixed point theorems for mappings
that are monotone. Results like these can be used to provide a unified view
of numerical algorithms, for instance. In such applications, we are primarily
concerned with operators f whose iterates fn(x) converge to a fixed point p.
The informatic derivative dfμ(p) then measures the rate at which f converges
to p.

The view of computation taken in the study of measurement, that a compu-
tation is a ‘process’ that evolves on a space of informatic objects, and that as it
evolves we can measure the amount of information lost or gained, in retrospect
lends itself very naturally to considerations in other areas, such as physics or the
study of communication. In [2], it was discovered that natural domain theoretic
structure existed in quantum mechanics. And developments such as [7] and [6]
establish the importance of domains and measurements in classical information
theory.

In this paper, we establish the significance of domain theory and measurement
in quantum information theory. We first show that a classical binary channel is
Scott continuous and has a Scott closed set of fixed points iff it is a binary sym-
metric channel, while a qubit channel is Scott continuous and has a Scott closed
set of fixed points iff it is unital. The binary symmetric channels are exactly the
entropy increasing binary channels; the unital qubit channels are exactly the en-
tropy increasing qubit channels. One reason such channels are important is that

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 283–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 K. Martin

they provide effective ways of interrupting communication. For instance, assuming
all inputs are equally likely, the best way to interrupt communication for a fixed
probability of error is to use a binary symmetric channel. The class of unital qubit
channels includes most of the models used to describe noise: bit flipping, phase
flipping, bit-phase flipping, phase damping (“decoherence”), depolarization, uni-
tary channels and projective measurements.

In fact, the connection between entropy increasing channels and Scott contin-
uous channels with Scott closed sets of fixed points also turns out to uniquely
determine the spectral order on quantum states. We have known since [2] that
the unique partial order on Δ2 = {(x, y) ∈ [0, 1] : x + y = 1} that satisfies the
mixing law and has a least element of ⊥ = (1/2, 1/2) is the Bayesian order. What
we prove in this paper is the quantum analogue of this result: the spectral order
is the unique partial order on two dimensional mixed quantum states Ω2 that
satisfies the mixing law, has least element ⊥ = I/2 and the additional property
that every unital channel is Scott continuous and has a Scott closed set of fixed
points. This additional property is trivially satisfied in the classical case Δ2.

Finally, we use these results to give a method for calculating the Holevo ca-
pacity of a unital qubit channel. Surprisingly, each unital qubit channel has
an informatic derivative defined everywhere except ⊥. The largest value of a
channel’s informatic derivative determines its Holevo capacity. This informatic
derivative is not a classical derivative. This demonstrates a completely new use
for informatic rates of change.

2 The Domains of Classical and Quantum States

We review the basic ideas in the study of domains and measurements, and then
the two examples of domains that are of interest in this paper.

2.1 Domain Theory and Measurement

A domain is a partially ordered set with intrinsic notions of completeness and
approximation defined by the order. A measurement is a function μ that to
each informative object x assigns a number μx which measures the information
content of the object x. We now define each of these terms precisely before
discussing them further.

The intrinsic notion of completeness that a domain has is that it forms a dcpo:

Definition 1. Let (P,�) be a partially ordered set or poset. A nonempty subset
S ⊆ P is directed if (∀x, y ∈ S)(∃z ∈ S)x, y � z. The supremum

⊔
S of S ⊆ P

is the least of its upper bounds when it exists. A dcpo is a poset in which every
directed set has a supremum.

The intrinsic notion of approximation possessed by a domain is formalized by
continuity:

A Domain Theoretic Model of Qubit Channels 285

Definition 2. Let (D,�) be a dcpo. For elements x, y ∈ D, we write x9 y iff
for every directed subset S with y �

⊔
S, we have x � s, for some s ∈ S. We set

• ↓↓x := {y ∈ D : y 9 x} and ↑↑x := {y ∈ D : x9 y}
• ↓x := {y ∈ D : y � x} and ↑x := {y ∈ D : x � y}

and say D is continuous if ↓↓x is directed with supremum x for each x ∈ D.

Definition 3. A domain is a continuous dcpo. A Scott domain is a continuous
dcpo in which any pair of elements with an upper bound has a supremum.

Definition 4. The Scott topology on a continuous dcpo D has as a basis all sets
of the form ↑↑x for x ∈ D. A set S ⊆ D is Scott closed if it is a lower set that is
closed under directed suprema.

A function f : D → E between domains is Scott continuous if the inverse image
of a Scott open set in E is Scott open in D. This is equivalent [1] to saying that
f is monotone,

(∀x, y ∈ D)x � y ⇒ f(x) � f(y),

and that it preserves directed suprema:

f(
⊔

S) =
⊔

f(S),

for all directed S ⊆ D. In particular, for the domain [0,∞)∗ of nonnegative reals
in their opposite order, a Scott continuous function μ : D → [0,∞)∗ will satisfy

1. For all x, y ∈ D, x � y ⇒ μx ≥ μy, and
2. If (xn) is an increasing sequence in D, then

μ

⎛

⎝
⊔

n≥1

xn

⎞

⎠ = lim
n→∞

μxn.

This is the case of Scott continuity that pertains to measurements:

Definition 5. A Scott continuous μ : D → [0,∞)∗ is said to measure the con-
tent of x ∈ D if for all Scott open sets U ⊆ D,

x ∈ U ⇒ (∃ε > 0)x ∈ με(x) ⊆ U

where
με(x) := {y ∈ D : y � x & |μx− μy| < ε}

are called the ε-approximations of x.

We often refer to μ as ‘measuring’ x ∈ D or as measuring X ⊆ D when it
measures each element of X .

Definition 6. A measurement μ : D → [0,∞)∗ is a Scott continuous map that
measures the content of ker(μ) := {x ∈ D : μx = 0}.

286 K. Martin

In this paper, all measurements μ we work with measure all of D. This implies [5]
that they are strictly monotone:

x � y & μx = μy ⇒ x = y

This property enables definition of the informatic derivative:

Definition 7. Let (D,μ) be a domain with a measurement μ that measures all
of D. If f : D → D is a function and p ∈ D is not compact, then

dfμ(p) = lim
x→p

μf(x)− μf(p)
μx− μp

is called the informatic derivative of f , provided that this limit exists.

2.2 The Bayesian Order on Classical States

The set of classical states

Δ2 := {(x, y) ∈ [0, 1]2 : x + y = 1}

has a natural domain theoretic structure introduced in [2]:

Definition 8. For x, y ∈ Δ2,

x � y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) .

The relation � on Δ2 is called the Bayesian order.

This order is derived from the graph of entropy H(x) = −x log2(x) − (1 −
x) log2(1− x) as follows:

�

�H

x flip−→

(1, 0) (0, 1)

⊥ = (1
2 ,

1
2)

Theorem 1 ([2]). (Δ2,�) is a Scott domain with maximal elements

max(Δ2) = {(0, 1), (1, 0)}

and least element ⊥ = (1/2, 1/2). The Shannon entropy H : Δ2 → [0,∞)∗, given
by

H(x) = −x1 log2(x1)− x2 log2(x2)

is a measurement.

A Domain Theoretic Model of Qubit Channels 287

2.3 The Spectral Order on Quantum States

Let H2 denote an two dimensional complex Hilbert space with specified inner
product 〈·|·〉.

Definition 9. A quantum state is a density operator ρ : H2 → H2, i.e., a self-
adjoint, positive, linear operator with tr(ρ) = 1. The quantum states on H2 are
denoted Ω2.

Quantum states are also sometimes call density operators or mixed states. The
set of eigenvalues of an operator ρ, called the spectrum of ρ, is denoted spec(ρ).

Definition 10. A quantum state ρ on H2 is pure if

spec(ρ) ⊆ {0, 1}.

The set of pure states is denoted Σ2. They are in bijective correspondence with
the one dimensional subspaces of H2.

Classical states are distributions on the set of pure states max(Δ2). An analogous
result holds for quantum states: density operators encode distributions on the
set of pure states Σ2.

Definition 11. A quantum observable is a self-adjoint linear operator e : H2 →
H2.

Now, if we have the operator e representing the energy observable of a system
(for instance), then its spectrum spec(e) consists of the actual energy values a
system may assume. If our knowledge about the state of the system is represented
by density operator ρ, then quantum mechanics predicts the probability that a
measurement of observable e yields the value λ ∈ spec(e). It is

pr(ρ→ eλ) := tr(pλe · ρ),

where pλe is the projection corresponding to eigenvalue λ and eλ is its associated
eigenspace in the spectral representation of e.

Definition 12. Let e be an observable on H2 with spec(e) = {1, 2}. For a
quantum state ρ on Ω2,

spec(ρ|e) := (pr(ρ→ e1), pr(ρ→ e2)) ∈ Δ2.

We assume that all observables e have |spec(e)| = 2. Intuitively, then, e is an
experiment on a system which yields one of 2 different outcomes; if our a priori
knowledge about the state of the system is ρ, then our knowledge about what
the result of experiment e will be is spec(ρ|e). Thus, spec(ρ|e) determines our
ability to predict the result of the experiment e.

Let [a, b] = ab− ba denote the commutator of operators.

288 K. Martin

Definition 13. For quantum states ρ, σ ∈ Ω2, we have ρ � σ iff there is an
observable e : H2 → H2 such that [ρ, e] = [σ, e] = 0 and spec(ρ|e) � spec(σ|e)
in Δ2.

This is called the spectral order on quantum states.

Theorem 2 ([2]). (Ω2,�) is a Scott domain with maximal elements

max(Ω2) = Σ2

and least element ⊥ = I/2, where I is the identity matrix. The von Neumann
entropy S : Ω2 → [0,∞)∗ given by S(ρ) = −tr(ρ log2(ρ)) is a measurement.

The Hilbert space formalism makes things seem much more complicated than
they really are in this case: the spectral order on Ω2 has a much simpler descrip-
tion which we now consider.

There is a 1-1 correspondence between density operators on a two dimensional
state space and points on the unit ball B3 = {x ∈ R3 : |x| ≤ 1}: each density
operator ρ : H2 → H2 can be written uniquely as

ρ =
1
2

(
1 + rz rx − iry
rx + iry 1− rz

)

where r = (rx, ry, rz) ∈ R3 satisfies |r| =
√

r2
x + r2

y + r2
z ≤ 1. The vector r ∈

B3 is called the Bloch vector associated to ρ. Bloch vectors have a number of
aesthetically pleasing properties.

If ρ and σ are density operators with respective Bloch vectors r and s, then
(i) the eigenvalues of ρ are (1 ± |r|)/2, (ii) the von Neumann entropy of ρ is
Sρ = H((1 + |r|)/2) = H((1 − |r|)/2), where H : [0, 1] → [0, 1] is the base two
Shannon entropy, (iii) if ρ and σ are pure states and r + s = 0, then ρ and σ
are orthogonal, and thus form a basis for the state space; conversely, the Bloch
vectors associated to a pair of orthogonal pure states form antipodal points on
the sphere, (iv) the Bloch vector for a convex sum of mixed states is the convex
sum of the Bloch vectors, (v) the Bloch vector for the completely mixed state
I/2 is 0 = (0, 0, 0).

Because of the correspondence between Ω2 and B3, we regard the two as equal
for the rest of the paper.

Example 1. From [2], using the Bloch representation of density operators, the
spectral order on Ω2 is given by x � y iff the line from the origin ⊥ to y passes
through x. That is,

x � y ≡ (∃p ∈ [0, 1])x = py

for all x, y ∈ Ω2.

3 Classical and Quantum Channels

We review classical binary channels, qubit channels and then a special subclass
of each of them: the entropy increasing channels.

A Domain Theoretic Model of Qubit Channels 289

3.1 Classical Channels

A binary channel has two inputs (“0” and “1”) and two outputs (“0” and “1”).
An input is sent through the channel to a receiver. Because of noise in the
channel, what arrives may not necessarily be what the sender intended. The effect
of noise on input data is modelled by a noise matrix u. If data is sent through
the channel according to the distribution x, then the output is distributed as
y = x · u. The noise matrix u is given by

u =
(
a ā
b b̄

)

where a = P (0|0) is the probability of receiving 0 when 0 is sent and b = P (0|1)
is the probability of receiving 0 when 1 is sent and x̄ := 1−x for x ∈ [0, 1]. Thus,
the noise matrix of a binary channel can be represented by a point (a, b) in the
unit square [0, 1]2 and all points in the unit square represent the noise matrix of
some binary channel.

The noise matrix u of a binary channel defines a function f : Δ2 → Δ2,
given by f(x) = x · u, which maps an input distribution x ∈ Δ2 to an output
distribution f(x) ∈ Δ2.

3.2 Quantum Channels

A classical binary channel f : Δ2 → Δ2 takes an input distribution to an
output distribution. In a similar way, a qubit channel is a function of the form
ε : Ω2 → Ω2. Specifically,

Definition 14. A qubit channel is a function ε : Ω2 → Ω2 that is convex linear
and completely positive.

To say that ε is convex linear means that ε preserves convex sums i.e. sums of
the form x · ρ + (1 − x) · σ. Complete positivity, defined in [8], is a condition
which ensures that the definition of a qubit channel is compatible with natural
intuitions about joint systems. For our purposes, there is no need to get lost
in too many details of the Hilbert space formulation: thankfully, qubit channels
also have a Bloch representation.

Definition 15. For a qubit channel ε : Ω2 → Ω2, the mapping it induces on
the Bloch sphere fε : B3 → B3 is called the Bloch representation of ε.

The set of qubit channels is closed under convex sum and composition. If ε is a
qubit channel and fε is its Bloch representation, then (i) the function fε is convex
linear, (ii) composition of quantum channels corresponds to composition of Bloch
representations: for channels ε1, ε2, we have fε1◦ε2 = fε1 ◦ fε2 , (iii) convex sum
of quantum channels corresponds to convex sum of Bloch representations: for
channels ε1, ε2 and x ∈ [0, 1], we have fxε1+x̄ε2 = xfε1 + x̄fε2 .

To illustrate how these properties make it simple to calculate the Bloch rep-
resentation of a qubit channel, consider the “bit flipping” channel,

ε(ρ) = (1− p)εI(ρ) + p · εx(ρ)

290 K. Martin

where εI is the identity channel and εx(ρ) = σxρσx, with σx being the spin

operator σx =
(

0 1
1 0

)

.

The Bloch representation of εI is fεI (r) = r. Using the correspondence be-
tween density operators and Bloch vectors, we calculate directly that the Bloch
representation of εx is fεx(rx, ry, rz) = (rx,−ry,−rz). Thus, by property (iii) of
Bloch representations,

fε(rx, ry, rz) = (1− p)(rx, ry, rz) + p(rx,−ry,−rz) = (rx, (1− 2p)ry, (1− 2p)rz)

Notice that states of the form (rx, 0, 0) are unchanged by this form of noise, they
are all fixed points of fε.

3.3 Entropy Increasing Channels

The classical channels f : Δ2 → Δ2 which increase entropy (H(f(x)) ≥ H(x))
are exactly those f with f(⊥) = ⊥. They are the strict mappings of domain the-
ory, which are also known as binary symmetric channels in information theory.

Similarly, the entropy increasing qubit channels are exactly those ε for which
ε(⊥) = ⊥. These are called unital in quantum information theory.

Definition 16. A qubit channel ε : Ω2 → Ω2 is unital if ε(⊥) = ⊥.

A qubit channel ε is unital iff its Bloch representation fε satisfies fε(0) = 0. Let
us consider a few important examples of unital channels.

Example 2. Unitary channels. If U is a unitary operator on H2, then ε(ρ) =
UρU † is unital since UU † = I. The Bloch representation fε is given by f(r) =
Mr where M is a 3×3 orthogonal matrix with positive determinant, a rotation.

Example 3. Projective measurements. If {P0, P1} are projections with P0 +P1 =
I, then

ε(ρ) = P0ρP0 + P1ρP1

is a unital channel since P 2
0 = P0 and P 2

1 = P1. In this case, the Bloch represen-
tation fε satisfies f2

ε = fε.

Just as with qubit channels, unital channels are also closed under convex sum
and composition: if ε1 and ε2 are unital channels, then ε1◦ε2 and p·ε1+(1−p)·ε2

are unital for p ∈ [0, 1].

Example 4. Let σx, σy and σz denote the spin operators

σx =
(

0 1
1 0

)

σy =
(

0 −i
i 0

)

σz =
(

1 0
0 −1

)

Each is unitary and self-adjoint.

(i) Each spin operator σi defines a unital channel εi(ρ) = σiρσi. For a Bloch
vector r = (rx, ry, rz), the respective Bloch representations sx, sy, sz are
sx(r) = (rx,−ry,−rz), sy(r) = (−rx, ry ,−rz) and sz(r) = (−rx,−ry, rz).

A Domain Theoretic Model of Qubit Channels 291

(ii) The Bit flipping channel ε = (1− p)εI + p εx is unital.
(iii) The phase flipping channel ε = (1− p)εI + p εz is unital.
(iv) The bit-phase flip channel ε = (1 − p)εI + p εy is unital.
(v) The depolarization channel

d(x) = p · ⊥+ (1− p)x

is unital, for a fixed p ∈ [0, 1].

Not all qubit channels are unital of course. Amplitude damping provides a well-
known example of a qubit channel that is not.

4 Scott Continuity of Unital Channels

Our first result establishes that from the domain theoretic perspective, unital
qubit channels are the quantum analogue of binary symmetric channels in the
classical case.

Theorem 3

• A classical channel f : Δ2 → Δ2 is binary symmetric iff it is Scott continu-
ous and its set of fixed points is Scott closed.

• A quantum channel f : Ω2 → Ω2 is unital if and only if it is Scott continuous
and its set of fixed points is Scott closed.

Proof. First consider the classical case. If a classical channel f is Scott continu-
ous, then it has a least fixed point, and since the set of fixed points is Scott closed,
⊥ = (1/2, 1/2) must be a fixed point. This implies that f is binary symmetric
since

(1/2, 1/2)
(
a ā
b b̄

)

= ((a + b)/2, (ā + b̄)/2) = (1/2, 1/2)

Conversely, suppose that f is binary symmetric. Then it can be written as

f(a, b) = (1− p) · (a, b) + p · (b, a)

for some p ∈ [0, 1]. First we show that f is Scott continuous. For the monotonicity
of f , let x, y ∈ Δ2 with x � y. Then we want to show f(x) � f(y). Writing
x = (x1, x2) and y = (y1, y2), we have

(y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1)

by the definition of � on Δ2; we seek to establish

(f1(y) ≤ f1(x) ≤ 1/2) or (1/2 ≤ f1(x) ≤ f1(y))

where we have written f(x) = (f1(x), f2(x)) and f(y) = (f1(y), f2(y)). Notice
that

f1(x) = (1− 2p)x1 + p and f1(y) = (1− 2p)y1 + p.

We consider the cases y1 ≤ x1 ≤ 1/2 and 1/2 ≤ x1 ≤ y1 separately.

292 K. Martin

In the first case, f1(y) ≤ f1(x) ≤ 1/2 holds when p ≤ 1/2, and 1/2 ≤ f1(x) ≤
f1(y) holds when p ≥ 1/2. In the second case, 1/2 ≤ f1(x) ≤ f1(y) holds when
p ≤ 1/2, and f1(y) ≤ f1(x) ≤ 1/2 holds for p ≥ 1/2. Thus, f(x) � f(y),
which proves f is monotone. Its Scott continuity now follows from its Euclidean
continuity and the fact that suprema in the Bayesian order coincide with limits
in the Euclidean topology.

Now we show that the fixed points of f form a Scott closed set. If p = 0, then
f is the identity mapping, in which case its set of fixed points is Scott closed.
Otherwise, its only fixed point is ⊥, since for p > 0,

(a, b) = f(a, b) =⇒ (a, b) = (b, a) =⇒ (a, b) = (1/2, 1/2) = ⊥.

Either way, the fixed points of f form a Scott closed subset of Δ2.
In the quantum case, any channel f that is Scott continuous and has a Scott

closed set of fixed points must have ⊥ as a fixed point, and so must be unital. For
the converse, we first show that any unital f is Scott continuous. Recall that f
can be written in Bloch form as f(r) = M ·r for some 3×3 real matrix M . Then
f is Euclidean continuous, and since suprema in the spectral order are limits in
the Euclidean topology, f is Scott continuous in the spectral order provided it
is monotone.

For the monotonicity of f , let r � s in the spectral order on Ω2. Then the
straight line segment π⊥s : [0, 1] → Ω2 from ⊥ to s, given by π⊥s(t) = t · s
for t ∈ [0, 1], must pass through r. To show that f(r) � f(s), we must show
that the line from ⊥ to f(s) passes through f(r). But this much is clear since
f(π⊥s(t)) = M(t · s) = t · f(s) = π⊥f(s)(t). Thus, all unital channels are Scott
continuous.

To see that the set of fixed points fix(f) is Scott closed, we first show that it is
a lower set. If s ∈ fix(f) and r � s, then r lies on the line segment that joins ⊥ to
s. But any point on this line is a fixed point of f since f(π⊥s(t)) = π⊥f(s)(t) =
π⊥s(t). In particular, r ∈ fix(f). The set fix(f) is closed under directed suprema
by the Scott continuity of f . Thus, fix(f) is Scott closed. �

Selfmaps on Hausdorff spaces have closed sets of fixed points. But the Scott
topology is not Hausdorff, so the result above is meaningful. The fact that the set
of fixed points is Scott closed also has experimental significance: in attempting
to prepare |0〉 during QKD, Alice actually prepares (1 − ε)|0〉〈0| + ε|1〉〈1| for
some small ε > 0. Then this too is a fixed point of the noise operator, provided
|0〉 is, so the only reduction in capacity is due solely to error in preparation –
Alice does not suffer ‘more noise’ simply because she cannot prepare a qubit
exactly.

5 Uniqueness of the Spectral Order

The order on Δ2 is canonical as follows:

A Domain Theoretic Model of Qubit Channels 293

Theorem 4 ([2]). There is a unique partial order on Δ2 that satisfies the mixing
law

x � y and p ∈ [0, 1] ⇒ x � (1− p)x + py � y

and has ⊥ := (1/2, 1/2) as a least element. It is the Bayesian order on classical
two states.

Because of the simplicity of Δ2, it then follows that the binary symmetric chan-
nels are exactly the classical channels that are Scott continuous and have a Scott
closed set of fixed points. In this section, we prove the analogous result for the
spectral order.

The special orthogonal group SO(3) is the set of 3×3 orthogonal real matrices
M with a positive determinant i.e. those matrices M such that M−1 = M t and
det(M) = +1. Such matrices are called rotations.

Lemma 1

(i) Every rotation f ∈ SO(3) is the Bloch representation of a unital channel,
(ii) For any x ∈ max(Ω2), there is a rotation f ∈ SO(3) such that f(x) =

(0, 0, 1).

Proof. (i) This is a folklore result, see [8] for instance.
(ii) This follows from the fact that SO(3) is a transitive group action on S2.

However, we want to write a self-contained paper, so let us give a simpler proof.
Every unit vector x appears as the third column M(0, 0, 1) of some orthogonal
matrix M since by the Gram-Schmidt process we can always find an orthonormal
basis {v1, v2, v3} whose first vector is v1 = x. Given such an orthonormal basis,
we construct an orthogonal matrix f whose column vectors are the vectors in
the orthonormal basis with the third column being x.

So let us take an orthogonal matrix M such that M(0, 0, 1) = x. Then M−1

is an orthgonal matrix with M−1(x) = (0, 0, 1). If det(M−1) = −1, we set

f =

⎛

⎝
−1 0 0
0 1 0
0 0 1

⎞

⎠ ·M−1

then f is a rotation with f(x) = (0, 0, 1). Otherwise, det(M−1) = +1, in which
case we set f = M−1. �

Theorem 5. There is a unique partial order on Ω2 with the following three
properties:

(i) It has least element ⊥ = I/2,
(ii) It satisfies the mixing law: if r � s, then r � tr + (1 − t)s � s, for all

t ∈ [0, 1],
(iii) Every unital channel f : Ω2 → Ω2 is monotone and has a lower set of fixed

points.

It is the spectral order, and gives Ω2 the structure of a Scott domain on which all
unital channels are Scott continuous and have a Scott closed set of fixed points.

294 K. Martin

Proof. In this proof, we work with Bloch representations. By the mixing law,
the depolarization channel dt(x) = tx + (1− t)⊥ = tx is deflationary, so tx � x
for each t ∈ [0, 1]. Thus, � contains the spectral order.

Now suppose r � s. We want to show that r precedes s on the line that travels
from ⊥ to s and on to a pure state. Draw the line π⊥a from ⊥ to r until it hits
the boundary of the Bloch sphere at a point a. Similarly, let π⊥b denote the line
from ⊥ to s and on to a pure state b. Since r � s and s � b, we have r � b by
transitivity and thus r � a, b.

Let f be a rotation such that f(b) = (0, 0, 1). Then f(−b) = (0, 0,−1). Let
p be the Bloch representation of a projective measurement in the basis whose
Bloch vectors are {f(b), f(−b)}. Then

Im(p) = {(0, 0, t) : t ∈ [−1, 1]}

Since r � b, f(r) � f(b) and thus p(f(r)) � p(f(b)). But, p(f(b)) = f(b), so
f(r) is also a fixed point, since the fixed points of p are Scott closed. Then
f(r), f(b) ∈ Im(p). This means f(r) and f(b) lie on a line that joins a pure state
to its antipode. Because f is a rotation, the same is true of r and b. However, by
the mixing law, the line from r to b, which increases with respect to �, does not
pass through ⊥ since ⊥ is the least element (otherwise, r = ⊥ and the proof is
finished). Then a = b, which means r and s lie on a line that joins ⊥ to a pure
state a.

So let us write r = xa and s = ya for x, y ∈ [0, 1]. If x ≤ y, the proof is done.
If x > y, then s = (y/x)r � r using the depolarization operator dy/x. But since
r � s, we have r = s by antisymmetry of �. �

Notice that the discrete order on Ω2 \ {0} with 0 adjoined as the least element
gives a domain that makes all unital channels Scott continuous with a Scott
closed set of fixed points, so requiring the mixing law is essential in uniquely
characterizing the spectral order.

6 Holevo Capacity from the Informatic Derivative

A standard way of measuring the capacity of a quantum channel in quantum
information is the Holevo capacity; it is sometimes called the product state
capacity since input states are not allowed to be entangled across two or more
uses of the channel.

Definition 17. For a trace preserving quantum operation f , the Holevo capacity
is given by

C(f) = sup
{xi,ρi}

[

S

(

f

(
∑

i

xiρi

))

−
∑

i

xi · S(f(ρi))

]

where the supremum is taken over all ensembles {xi, ρi} of possible input states
ρi to the channel.

A Domain Theoretic Model of Qubit Channels 295

The possible input states ρi to the channel are in general mixed and the xi are
probabilities with

∑
i xi = 1. If f is the Bloch representation of a qubit channel,

the Holevo capacity of f is given by

C(f) = sup
{xi,ri}

[

H

(
1 + |f (

∑
i xiri) |

2

)

−
∑

i

xi ·H
(

1 + |f(ri)|
2

)]

where ri are Bloch vectors for density operators in an ensemble, and we recall
that eigenvalues of a density operator with Bloch vector r are (1± |r|)/2.

Theorem 6. Let μ(x) = 1 − |x| denote the standard measurement on Ω2. For
any unital channel f and any p ∈ Ω2 different from ⊥,

dfμ(p) =
|f(p)|
|p|

Thus, the Holevo capacity of f is determined by the largest value of its informatic
derivative. Explicitly,

C(f) = 1−H

(
1
2

+
1
2

sup
x∈ ker(μ)

dfμ(x)

)

Proof. Since x � p iff x = tp for some t ∈ [0, 1], x → p in the μ topology iff
t→ 1−, so

dfμ(p) = lim
x→p

μf(x)− μf(p)
μx− μp

= lim
t→1−

μf(tp)− μf(p)
μ(tp)− μp

= lim
t→1−

|f(p)| − |f(tp)|
|p| − |tp|

= lim
t→1−

|f(p)|(1− |t|)
|p|(1− |t|) (Linearity of f)

=
|f(p)|
|p|

Now we show that the Holevo capacity is determined by the largest value of its
informatic derivative. By the Euclidean continuity of |f |, there is a pure state
r ∈ Ω2 for which

|f(r)| = max
|x|=1

|f(x)| = m+

Setting r1 = r, r2 = −r and x1 = x2 = 1/2 defines an ensemble for which the
expression maximized in the definition of C(f) reduces to 1 − H((1 + m+)/2).
Notice that in this step we explicitly make use of the fact that f is unital:
f(0) = 0. This proves 1−H((1 + m+)/2) ≤ C(f).

For the other inequality, any term in the supremum is bounded from above
by

1−
∑

i

xi ·H
(

1 + |f(ri)|
2

)

296 K. Martin

since H(x) ≤ 1. For each ri, there is a pure state pi ∈ max(Ω2) with ri � pi. By
the Scott continuity of f ,

|f(ri)| ≤ |f(pi)| ≤ sup
|x|=1

|f(x)| = m+,

so we have

H

(
1 + |f(ri)|

2

)

≥ H

(
1 + m+

2

)

which then gives C(f) ≤ 1−H((1 + m+)/2). �

Thus, we see that C(f) = 1 for any rotation f since dfμ = 1. Notice that dfμ ≡ 1
iff f is a rotation. For each p ∈ [0, 1], the unique channel f � 1 with dfμ = p is the
depolarization channel f = dp, so that C(dp) = 1−H((1+p)/2). In fact, the map
(p, 1− p) -→ d1−2p defines an isomorphism from the nonnegative classical binary
symmetric channels onto the depolarization channels that preserves capacity.
The only unital qubit channel with capacity zero is 0 itself.

Example 5. The two Pauli channel in Bloch form is

ε(r) = p r +
(

1− p

2

)

sx(r) +
(

1− p

2

)

sy(r)

where sx and sy are the Bloch representations of the unitary channels εx and
εy. This simplifies to

ε(rx, ry, rz) = (prx, pry,−(1− p)rz)

The matrix associated to ε is diagonal, so the diagonal element (eigenvalue) that
has largest magnitude also yields the largest value of its informatic derivative.
The capacity of the two Pauli channel is then

1−H

(
1 + max{p, 1− p}

2

)

where p ∈ [0, 1].

The set of unital channels U is compact hence closed and thus forms a dcpo as
a subset of the domain [Ω2 → Ω2].

Corollary 1. The Holevo capacity C : U → [0, 1] is Scott continuous.

7 Closing

The set of unital qubit channels U is a convex monoid and a dcpo with respect
to which the Holevo capacity is monotone. In a similar way, the interval domain
I[0, 1], which models classical binary channels, is a convex monoid and a dcpo
with respect to which the Shannon capacity is monotone [7].

A Domain Theoretic Model of Qubit Channels 297

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum,
T.S.E. (eds.) Handbook of Logic in Computer Science, vol. III, Oxford University
Press, Oxford (1994)

2. Coecke, B., Martin, K.: A partial order on classical and quantum states. Oxford
University Computing Laboratory, Research Report PRG-RR-02-07 (August 2002),
http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-02-07.html

3. Martin, K.: A foundation for computation. Ph.D. Thesis, Tulane University, De-
partment of Mathematics (2000)

4. Martin, K.: Entropy as a fixed point. In: Dı́az, J., Karhumäki, J., Lepistö, A.,
Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142. Springer, Heidelberg (2004)

5. Martin, K.: The measurement process in domain theory. In: Welzl, E., Montanari,
U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853. Springer, Heidelberg (2000)

6. Martin, K.: Topology in information theory in topology. Theoretical Computer Sci-
ence (to appear)

7. Martin, K., Moskowitz, I.S., Allwein, G.: Algebraic information theory for binary
channels. In: Proceedings of MFPS 2006. Electronic Notes in Theoretical Computer
Science, vol. 158, pp. 289–306 (2006)

8. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cam-
bridge University Press, Cambridge (2000)

9. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical
Journal 27, 379–423, 623–656 (1948)

http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-02-07.html

Interacting Quantum Observables

Bob Coecke and Ross Duncan

Oxford University Computing Laboratory

Abstract. We formalise the constructive content of an essential fea-
ture of quantum mechanics: the interaction of complementary quantum
observables, and information flow mediated by them. Using a general
categorical formulation, we show that pairs of mutually unbiased quan-
tum observables form bialgebra-like structures. We also provide an ab-
stract account on the quantum data encoded in complex phases, and
prove a normal form theorem for it. Together these enable us to describe
all observables of finite dimensional Hilbert space quantum mechanics.
The resulting equations suffice to perform computations with elemen-
tary quantum gates, translate between distinct quantum computational
models, establish the equivalence of entangled quantum states, and sim-
ulate quantum algorithms such as the quantum Fourier transform. All
these computations moreover happen within an intuitive diagrammatic
calculus.

1 Introduction

Complementary quantum observables such as position and momentum cannot
be assigned sharp values at the same time. This fact constitutes the heart of
quantum physics. That the self-adjoint operators which characterise these don’t
commute, motivated the study of non-commutative C∗-algebras, and that their
propositional lattices are not distributive resulted in Birkhoff-von Neumann
quantum logic. Neither of these axiomatic approaches unveils the true capabilities
which these complementary observables provide. They merely involve weakening
the commutativity/distributivity equation, rendering them essentially useless for
any quantum informatic purpose. In this paper we provide an axiomatic account
of complementary quantum observables which enables us to tackle problems of
actual interest to quantum informatics: algorithm design, identifying the ca-
pabilities of multi-partite entanglement, translation between distinct quantum
computational models etc. Our starting point is the axiomatisation of quantum
observables proposed by Pavlovic and one of the authors in [5] which substan-
tially relied on Carboni and Walters’ cartesian bicategories [2]. This notion of
quantum observable strongly improves on the one due to Abramsky and one of
the authors in [1], the paper which initiated categorical quantum axiomatics, in
that it axiomatises quantum observables in terms of dagger symmetric monoidal
structure only, allowing for an operational interpretation, a diagrammatic cal-
culus, as well as the ‘necessary’ higher level of abstraction.1

1 For a detailed discussion of this necessity see [3,12].

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 298–310, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interacting Quantum Observables 299

Somewhat ironically, while classical structures were crafted to reason about
classical control, this paper shows that considering a pair of interacting classical
structures—corresponding to complementary quantum observables—are a pow-
erful vehicle to specify and reason about pure quantum states and operations,
with many applications. We formalise this notion of complementarity through
a set of equations which axiomatise copyability of classical states and the infor-
mation flow through incompatible classical structures. Surprisingly the relevant
equations are almost exactly those of a bialgebra [13], differing only by scalar
factors. We show that the axioms of this structure, a scaled bialgebra, express
the essential features of quantum mechanics in very direct yet usable fashion.

2 Categories of Quantum States and Processes

A †-symmetric monoidal category (†-SMC) [12] is a symmetric monoidal category
(C,⊗, I) together with an identity-on-objects contravariant endofunctor † : C→
C which preserves the monoidal structure. An elementary account of †-SMCs
and their graphical representations is in [12]. Well known examples include Rel,
the category of sets and relations, and FdHilb, the category of finite dimensional
Hilbert spaces and linear maps.

However quantum states are not vectors in a Hilbert space: they are
one-dimensional subspaces. To articulate this fact we will use the word state ex-
clusively to refer to such one-dimensional subspaces. Similarly, a non-degenerate
observable does not correspond to a basis, but rather a maximal family of mutu-
ally orthogonal states. The move from a linear to a projective setting is formalised
using a pair of categories, FdHilbp and FdHilbwp. The category FdHilbp

has the same objects as FdHilb but its morphisms are equivalence classes of
FdHilb-morphisms for the congruence

f ∼ g ⇔ ∃c ∈ C \ {0} s.t. f = c · g.

This quotient reduces the scalar monoid to a two-element set, hence the capacity
for probabilistic reasoning is lost. The solution consists of enriching FdHilbp

with probabilistic weights i.e. to consider morphisms of the form r · f where
r ∈ R+ and f a morphism in FdHilbp. Therefore, let FdHilbwp be the category
whose objects are those of FdHilb and whose morphisms are equivalence classes
of FdHilb-morphisms for the congruence

f ∼ g ⇔ ∃α ∈ [0, 2π) s.t. f = eiα · g.

We regain the absolute values of the inner-product, and thus the probabilistic
distance between states.2 These three categories are related via inclusions:

FdHilbp

��
⊂

r∈R+
� FdHilbwp

��
⊂
α∈[0,2π)

� FdHilb

2 A detailed categorical account on FdHilbwp is in [3]; in particular, neither FdHilbp

nor FdHilbwp has biproducts, so the approach to measurements taken in [1] will
not work here.

300 B. Coecke and R. Duncan

We write |ψ〉 (or rarely ψ) to denote vectors; ||ψ〉〉 denotes a state spanned by
this vector. Similarly, |

∑
i ci| i 〉〉 is the state spanned by vector

∑
i ci| i 〉. We take

as given a canonical basis for the Hilbert space Cn, which we write {| i 〉}i. This
basis then fixes a canonical observable given by the states {|| i 〉〉}i. The hom-set
FdHilbp(C,C2)—that is, the space of linear maps C → C2— corresponds to
the the points of the Bloch sphere.3 The unitaries in FdHilbp(C,C2), i.e. those
maps U satisfying UU † = U †U = 1 correspond to rotations of the Bloch sphere.

3 Classical Structures and the Spider Theorem

A classical structure [5] in a †-SMC is an internal cocommutative comonoid
(A, δ : A→ A⊗A, ε : A→ I) with δ both isometric and Frobenius, that is,

δ† ◦ δ = 1A and δ ◦ δ† = (δ† ⊗ 1A) ◦ (1A ⊗ δ),

respectively. The unit object I canonically comes with classical structure λI : I :
I⊗ I and 1I. An orthonormal base {ψi}i for Hilbert space H induces

δ : H → H⊗H :: ψi -→ ψi ⊗ ψi and ε : H → C :: ψi -→ 1 (1)

as a classical structure. Conversely, each classical structure in FdHilb arises in
this way [6]. Hence, classical structure axiomatises the concept of (orthonormal)
base in a Hilbert space. Obviously, these classical structures are inherited by
FdHilbwp, and passing to FdHilbwp clarifies what the data which specify a
classical structure represent. A state ||ψ〉〉 is unbiased for some observable {||φi〉〉}i
if for all i we have that |〈ψ | φi〉|2 = 1/ dim(H) whenever ψ and φi are unit
vectors. Two observables {||ψi〉〉}i and {||φi〉〉}i are complementary whenever ||ψi〉〉
is unbiased for {||φj〉〉}j for all i.

Proposition 1. In FdHilbwp each pair consisting of an observable {||ψi〉〉}i on
a Hilbert space H and another state ||ε〉〉 of H which is unbiased for {||ψi〉〉}i
defines a unique classical structure by setting, for all i,

δ(||ψi〉〉) = ||ψi ⊗ ψi〉〉 and |ε(−)| = |〈ε,−〉|

Conversely, all classical structures in FdHilbwp arise in this way.

The crux to this result is the fact that a set of n base ‘vectors’ {|ψi〉}i of a
Hilbert space, up to a common global phase, is faithfully represented by the n+1
‘states’ {||ψi〉〉}i ∪ {||

∑
i ψi〉〉}. On the Bloch sphere an observable {||ψ0〉〉, ||ψ1〉〉},

e.g. {||0〉〉, ||1〉〉}, comprises two antipodal points, while ||ε〉〉, e.g. ||+〉〉, lies on the
corresponding equator, together making up a T-shape:

3 In any monoidal category maps of the type I → A are called points.

Interacting Quantum Observables 301

It is standard to interpret the eigenstates ||ψi〉〉 for an observable {||ψi〉〉}i as
classical data. Hence, in FdHilbwp, the operation δ of a classical structure copies
the eigenstates ||ψi〉〉 of the observable it is associated with. We can interpret
||ε〉〉 as the state which uniformly deletes these eigenstates: by unbiasedness the
probabilistic distance of each eigenstate ||ψi〉〉 to ||ε〉〉 is equal. Therefore we will
refer to δ as (classical) copying and to ε as (classical) erasing. A crucial point
here is that given an observable there is a choice involved in picking ε.

Within graphical calculus for †-SMCs (see [12]) we depict the morphisms δ

and ε by and , and their adjoints, δ† and ε† by and , When taking
the monoidal structure to be strict—which we will do throughout this paper—
classical structures obey the following remarkable theorem [4].4

Theorem 1. Let f, g : A⊗n → A⊗m be two morphisms generated from classical
structure (A, δ, ε) and the dagger symmetric monoidal structure. If the graphical
representation both of f and g is connected then f = g.

Hence, such a morphism only depends on the object A and the number of inputs
and outputs. We represent this morphism as an n + m-legged spider

.

Theorem 1 allows the dots representing δ, ε, δ† and ε† to ‘fuse’ into a single
dot, provided all the dots are connected. Note that, conversely, the axioms of
classical structure are consequences of this fusing principle.

Classical structure refines the †-compact structure which was used in [1,12],
provided the latter is self-dual. Graphical reasoning in compact structure by
‘yanking’ is subsumed by reasoning in terms of the above ‘spider theorem’. This
will become clear in the first example of §6.3. We can define the conjugate f∗ :
A→ B of a morphism f : A→ B relative to classical structures (A, δA, εA) and
(B, δB, εB) to be f∗ := (1B⊗η†A)◦(1B⊗f †⊗1A)◦(ηB⊗1A) where ηX := δX ◦ε†X .
In FdHilb the linear function f∗ is obtained by conjugating the entries of the
matrix of f when expressed in the classical structure bases. The dimension of A
is dim(A) := η†A ◦ ηA represented graphically by a circle.

4 A Generalised Spider Theorem and Abstract Phase
Data

Let (A, δ, ε) be a classical structure in a †-SMC. On points ψ, φ : I → A we
define

ψ (φ = δ† ◦ (ψ ⊗ φ) i.e. .

4 Similar results are known for concrete dagger Frobenius algebras, e.g. 2D topological
quantum field theories, as well as in more abstract categorical settings [11].

302 B. Coecke and R. Duncan

Since (A, δ†, ε†) forms a commutative monoid, this operation is immediately
associative and commutative, with unit ε†. Now define

Λ : C(I, A) → C(A,A) :: ψ -→ δ† ◦ (ψ ⊗ 1A) i.e. .

From the properties of δ† it immediately follows that Λ is a homomorphism of
monoids, and that for every ψ

Λ(ψ) ◦ δ† = δ† ◦ (1A ⊗ Λ(ψ)) = δ† ◦ (Λ(ψ)⊗ 1A) i.e. .

Since (is commutative, we also have

Λ(ψ) ◦ Λ(φ) = Λ(φ) ◦ Λ(ψ) i.e. .

and since Λ(ψ)† = (ψ† ⊗ 1A) ◦ δ, the spider theorem yields Λ(ψ)† = Λ(ψ∗).
Now let δn : A → A⊗n be defined by the recursion δ0 = ε, δ1 = 1A and
δn = δ ◦ (δn−1 ⊗ 1A).

Theorem 2. Let f : A⊗n → A⊗m be a morphism generated from classical struc-
ture (A, δ, ε), points ψi : I → A (not necessarily all distinct), and dagger sym-
metric monoidal structure. If the graphical representation of f is connected then

f = δm ◦ Λ
(⊙

i

ψi

)
◦ δ†n . (2)

This is a strict generalisation of Theorem 1: besides the number of inputs and
outputs there is now also the product of all points which distinguishes classes of
equal diagrams. We obtain a decorated spider:

In graphical terms, Theorem 2 allows arbitrary decorated dots of the same colour
to ‘fuse’ together provided we ‘multiply their decorations’.

In Cn, consider |ψ〉 =
∑

i ci| i 〉; when written in the basis fixed by (δ, ε), Λ(ψ)
consists of the diagonal n × n matrix with c1, . . . , cn on the diagonal. Hence,
Λ(ψ) is unitary, upto a normalisation factor, if and only if ||ψ〉〉 is unbiased for
{||1〉〉, . . . , ||n〉〉}. This fact admits generalisation to arbitrary †-SMCs.

Definition 1. We call ψ : I → A unbiased relative to δ if Λ(ψ) is unitary.

Proposition 2. The set of points which are unbiased relative to a classical
structure forms a group under (with (−)∗ as the inverse.

For ψ unbiased relative to δ, by Theorem 2 and Proposition 2, we have

=
(
Λ(ψ)⊗ Λ(ψ)

)
◦ δ ◦ Λ(ψ)† and = ε ◦ Λ(ψ)†

Interacting Quantum Observables 303

and again by the generalised spider theorem it then follows that these morphisms
define a classical structure. We call it a phase shift of (A, δ, ε). In C2, these phased
variants to the classical structure {||0〉〉, ||1〉〉, ||+〉〉} (cf. Proposition 1) are those
obtained by varying the choice of ||ε〉〉 on the equator of the Bloch sphere:

.

The states which are unbiased relative to {||0〉〉, ||1〉〉} are of the form ||+θ〉〉 :=∣
∣|0〉+ eiθ|1〉

〉
so form a family parameterised by a phase θ. In particular, we have

||+θ1〉〉 (||+θ2〉〉 = ||+θ1+θ2〉〉, that is, the operation (boils down to adding up
phases modulo 2π, which is an abelian group with minus as inverse.

5 Complementary Observables as Scaled Bialgebras

The goal of this section is to show that each pair of complementary observables
in FdHilbwp defines a scaled bialgebra. In the next section we will then use this
scaled algebra structure together with the generalised spider theorem for phase
data to reason about quantum informatics. First we define and study an abstract
notion of complementary observables. We then derive a general scaled bialgebra
law in categories with ‘enough points’ such as FdHilb. This result then carries
over to FdHilbwp where it takes a much simpler form.

5.1 Complementary Classical Structures (CCSs)

In eq.(1) we described classical structures in FdHilb as maps which copy base
vectors, and hence also the corresponding states in FdHilbwp. We introduce an
abstract counterpart to these ‘copy-able’ points. We assume as given a classical
structure (A, δ, ε) in a †-SMC.

Recall that if a †-SMC has a classical structure on an object A then the
monoidal subcategory generated by A is †-compact, and hence we can define the
dimension of A by dim(A) = ε ◦ δ† ◦ δ ◦ ε†.5 For brevity, we define D = dim(A).
We will, in addition, assume the existence of a self-adjoint scalar

√
D, which we

we denote graphically as . As the notation suggests,
√
D satisfies

√
D ⊗

√
D = D = dim(A) or, graphically: .

Notation. We represent all the points a : I → A which are unbiased with
respect to (A, δ, ε) by dots of the same green (light grey) colour used before.
Those points which are ‘copied’ by δ in the sense of the definition below we
mark by a different colour, here red, or darker grey. Any other points are marked
in black. In light of the special role played by unbiased points, we will use the
spider notation only for these.
5 One can show that dim(A) does not depend on the choice of classical structure.

304 B. Coecke and R. Duncan

Definition 2. We call a point ai : I → A classical relative to (A, δ, ε) if both√
D = ε ◦ ai and

√
D · (δ ◦ ai) = ai ⊗ ai hold, that is, graphically,

and .

The classical points for a classical structure in FdHilbwp are of course the states
{||ψi〉〉}i of Proposition 1.

The abstract conception of a classical point allows the concrete notion of
unbiasedness to be derived from the abstract formulation of Definition 1:

Lemma 1. If ai : I → A is classical and α : I → A unbiased for (A, δ, ε) then

(α† ◦ ai) · (α† ◦ ai)† = D i.e. .

The classical points are “eigenvectors” in a suitable sense:

Lemma 2. If ai : I → A is classical for (A, δ, ε) and ψ : I → A arbitrary then

√
D · (Λ(ψ) ◦ ai) = (ψ†∗ ◦ ai) · ai i.e. .

The monoid multiplication on points carries over to scalars:

Lemma 3. Let ai : I → A be classical and ψ, φ : I → A arbitrary then

√
D · (a†i ◦ (ψ (φ)) = (a†i ◦ ψ) · (a† ◦ φ) i.e. .

Remark 1. The reader may find the scalar factors in the above equations mys-
terious, not to say vexing. But recall that in FdHilb the equation

∣
∣ε†
∣
∣ =

√
D is

required to satisfy the comonoid laws; this scalar factor reappears here.6

Definition 3. Two classical structures (A, δX , εX) and (A, δZ , εZ) in a †-SMC
are called complementary if they obey the following rules:

– whenever zi : I → A is classical for (δX , εX) it is unbiased for (δZ , εZ);
– whenever xj : I → A is classical for (δZ , εZ) it is unbiased for (δX , εX);
– ε†X is classical for (δZ , εZ) and ε†Z is classical for (δX , εX).

We abbreviate complementary classical structure as CCS.

Notation. The reason that we refer to the classical points of (A, δX , εX) by zi,
and vice versa, is because zi is unbiased to (δZ , εZ) and hence can participate in
the generalised spider theorem for the classical structure (δZ , εZ).

For any non-degenerate quantum observable we can find a pair of complementary
classical structures in FdHilbwp merely by picking ||ε〉〉 for one observable from
among the eigenstates of the other observable.
6 An alternative would be to replace (ε⊗ 1H) ◦ δ = 1H with (ε ⊗ 1H) ◦ δ = 1√

D
1H.

Interacting Quantum Observables 305

5.2 Derivation of the Scaled Bialgebra Law from Abstract Bases

Definition 4. A set of points {ai}i is a basis for an object A if for all f, g :
A→ B, if f ◦ ai = g ◦ ai for all ai, then f = g. A basis is classical, or unbiased,
with respect to some classical structure (A, δ, ε) if its elements are respectively
classical, or unbiased, with respect to this structure. An unbiased basis is called
closed if for all ai, aj there exists ak such that ai (aj = ak and a0 = ε†. We
say that a †-SMC has monoidal bases when, for each basis {ai}i for A, and each
basis {bj}j for B, the set {ai ⊗ bj}ij is a basis for A⊗B.

An immediate consequence of this definition is that whenever b is an element
of a closed unbiased basis {bi}i, then Λ(b) is a permutation on the set {bi}i.
Further, by Lemma 2 every classical point is an eigenvector of Λ(b).

Lemma 4. Let {ai}i be a classical basis for A suppose p : A → A acts as a
permutation on this set; then

(p⊗ p) ◦ δ = δ ◦ p i.e. .

Lemma 5. Let (δX , εX), (δZ , εZ) be CCSs, let x be in a closed classical basis of
(δZ , εZ) and let z be unbiased for (δZ , εZ), then

√
D · (ΛX(x) ◦ ΛZ(z)) = (x† ◦ z) · (ΛZ(z) ◦ ΛX(x)) i.e. .

The Pauli matrices provide an example of these commutation relations.

Lemma 6. Let (δZ , εZ) and (δX , εX) be CCSs and let UZ denote all the unbiased
points and CZ a basis of classical points for (δZ , εZ). Suppose x ∈ CZ and let
X = ΛX(x). If CZ is closed under (X then:

– X is a permutation on CZ ;
– X is an automorphism on UZ such that

X◦ (α(Z β) = (X◦α)(Z (X◦β); , X◦ ε†Z = ε†Z and (X◦α)−1= X†◦α−1.

Corollary 1. (CZ ,(X) is an abelian group with a group action on UZ defined
by (x, z) -→ ΛX(x) ◦ z.

Lemma 7. Consider a †-SMC with monoidal bases and let σ be the monoidal
symmetry. Let (A, δX , εX) and (A, δZ , εZ) be CCSs with classical bases {zj}j and
{xi}i; {xi}i is closed if and only if

D · (δ†X⊗ δ†X)◦(1A⊗ σ⊗ 1A)◦(δZ⊗ δZ) =
√
D · δZ◦δ†X i.e. .

Corollary 2. In the above situation {xi}i is closed if and only if {zi} is.

Theorem 3. Let (δX , εX) and (δZ , εZ) be CCSs with closed bases including the
points z and x respectively. Then, graphically,

306 B. Coecke and R. Duncan

. (3)

We call the morphisms obeying eq.(3) a ‘scaled bialgebra’.

Proposition 3. If (δX , εX) and (δZ , εZ) form a scaled bialgebra then

i.e. it is a ‘scaled Hopf algebra’ with dim(A) · 1A as its ‘antipode’.

5.3 Complementary Classical Observables in FdHilbwp

Classical structures in FdHilb ‘are’ bases [6] so complementary pairs of bases
which satisfy the closedness condition of Definition 4 induce scaled bialgebras
in the sense of Theorem 3. These scaled bialgebra laws carry over to the CCSs
in FdHilbwp consisting of the states spanned by the basis vectors. Moreover, in
FdHilbwp, since all scalars are positive reals, all scalars in eqs.(3) coincide, so
cancellation simplifies eqs.(3) to

. (4)

Conversely, any pair of complementary observables yields a family of CCSs in
FdHilbwp mediated by a group of permutations on the respective sets of classical
states, and one can always construct a corresponding underlying family of CCSs
in FdHilb. What we so far failed to prove is that in general we can always
construct a corresponding underlying family of ‘closed’ CCSs. However: (i) CCSs
in FdHilb on C2 and C3 ‘are’ closed; (ii) CCSs can be chosen to be closed for
all (to us) known constructions of mutually unbiased bases (e.g. [10]); (iii) we
constructed closed CCSs on Cn in FdHilbwp for all n. Hence for all practical
situations involving complementary observables eq.(4) hold. We conjecture that
closed CCSs can be derived from any pair of mutually unbiased observables.7

6 Applications and Examples in Quantum Informatics

Inevitably, the examples from this field are constructed from the ubiquitous qubit
i.e. C2. Take the ‘green’ classical structure (δZ , εZ) as in eq.(1) for {| 0〉, | 1〉}.
The unbiased points for (δZ , εZ) are of the form |αZ〉 = |0〉+eiα |1〉, and |αZ〉(Z

7 The study of mutually unbiased bases is an active area of research; characterisation
of the maximal number of mutually unbiased bases is one of the important open
problems in quantum informatics.

Interacting Quantum Observables 307

|βZ〉 = |α + βZ〉. Further, ΛZ(α) =
(

1 0
0 eiα

)

, in particular, ΛZ(π) = Z. Notice

that ε†Z = |0〉+ |1〉 and |πZ〉 = |0〉−|1〉 form a basis, which is closed and unbiased
with respect to (δZ , εZ) and define a complementary ‘red’ classical structure
(δX , εX). The unbiased points for (δX , εX) have the form |θX〉 =

√
2(cos θ

2 |0〉+

sin θ
2 |1〉) and ΛX(θ) =

(
cos θ

2 sin θ
2

sin θ
2 cos θ

2

)

, in particular, ΛZ(π) = X. We have Z ◦

|θX〉 = |−θX〉, and, upto a global phase, X ◦ |αZ〉 = |−αZ〉. In the language of
Lemma 6 we have: if |CZ | = 2, then (CZ ,(X) is the symmetric group S2, its
unique non-identity element X is self-adjoint, and for α ∈ UZ we have X◦α = α∗
i.e. X assigns the inverses for the group UZ .

For some of the examples below it will also be convenient to explicitly have the
unitary operation which changes the green dots into red dots, that is, concretely,
the unitary operation which establishes the corresponding change of basis. In the
case of (δZ , εZ) and (δX , εX) given above, the two structures are connected via
the familiar Hadamard map H . As well as being unitary, H = H† so this map is
particularly well behaved.We will introduce H into the graphical language with

the following equations , and .

Below we disregard scalar factors which only distract from the essential point.

6.1 Quantum Gates, Circuits, and Algorithms

Above we introduced 1-qubit unitaries ΛZ(α) and ΛX(β) corresponding to ro-
tations in the X-Y and the Y -Z planes respectively; these suffice to represent
all 1-qubit unitaries, and their basic equational properties follow from the var-
ious lemmas introduced in the preceding sections. We demonstrate how to de-
fine the ∧X and ∧Z gates, and prove two elementary equations involving them.
The addition of these gates will provide a computationally universal set of
gates.

Example 1 (∧X gate). Setting one verifies by concrete cal-

culation that ∧X = . We can also give an abstract proof . Let |i〉 be a classical
point for the green classical structure; by evaluating it with an input to its con-

trol qubit (the green end) we have , which for |i〉 = |0X〉
is the identity, and in the binary case, for |i〉 = |1X〉, is the unique operation
X. By applying it three times, alternating the target and control input, we ob-

tain, , i.e. σ. while this is a well-known

property of ∧X, our proof uses only the bialgebra structure hence it will hold in
much greater generality than just for qubits.

308 B. Coecke and R. Duncan

Example 2 (∧Z gate). One can derive the ∧Z from that of ∧X by augmenting

the target qubit of the ∧X with H gates i.e. . We have that

∧Z ◦ ∧Z = 1 since .

Example 3 (An algorithm : the quantum Fourier transform). The quantum
Fourier transform is one of the most important quantum algorithms, lying at
the centre of Shor’s famous factoring algorithm. The equations we have enable
this algorithm to be simulated in the diagrammatic language. Unlike the pre-
ceding examples, here we require the interaction between the two phase groups.

In our language the ∧Zα gate is and the circuit involving it

realises the quantum Fourier transform for 2 qubits. The algorithm can be sim-
ulated graphically, as shown below:

This example makes use of classical values coded as quantum states to control the
interference of phases: this is the archetypal behaviour of quantum algorithms.

6.2 Multi-partite Entanglement

In our graphical language, a quantum state is nothing more than a circuit with
no inputs; output edges correspond to the individual qubits making up the state.
The interior of the diagram, i.e. its graph structure, describes how these qubits
are related. Hence this notation is ideal for representing large entangled states.

Example 4. The cluster states used in measurement-based quantum comput-
ing, can be prepared in several ways; the graphical calculus provides short
proofs of their equivalence. For example, the original scheme describes a ∧Z
interaction between qubits initially prepared in the state |+〉; in our nota-

tion this is |0Z〉, or . So 1D cluster arises as where

the boxes delineate the individual |+〉 preparations and ∧Z operations. Al-
ternatively, the cluster state can be prepared by fusion of states of the form
|0+〉 + |1−〉. Our δ†Z is in fact this fusion operation, so a 1D cluster arises as

Interacting Quantum Observables 309

. Using the spider theorem, these are equiva-

lent . Ongoing work seeks

to classify multipartite entangled states in terms of their graphical representa-
tives, and to formalises general matrix product states.

6.3 Properties of Quantum Computational Models

Our formalism axiomatises two key features of quantum mechanics: the underly-
ing monoidal structure and the interaction of complementary observables. Fur-
thermore it is a semantic, which is to say extensional, framework which makes
it ideal for unifying various approaches to quantum computation. E.g. we can
demonstrate equivalence between different quantum computational models.

Example 5 (Verifying one-way quantum computations). We show how to verify
some example programs for the one-way model, taken from [7], by translation to
equivalent quantum circuits. Post-selected qubit measurements8 can be repre-
sented by copoints such a . The spider theorem allows the post-selected one-way

program implementing a ∧X opera-

tion upon its inputs to be rewritten to a ∧X gate in no more than two steps
. Now recall that any single qubit unitary map U has an Euler decomposi-
tion as such that U = ZαXβZγ . In our notation this is Zα = ΛZ(α) and
Xα = ΛX(α). Again a sequence of simple rewrites shows that the one-way pro-

gram to compute such a uni-

tary indeed computes the desired map.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In:
Abramsky, S., Coecke, B. (eds.) Proceedings of the 19th Annual IEEE Sympo-
sium on Logic in Computer Science (LiCS). IEEE Computer Science Press, Los
Alamitos (2004); Abstract physical traces. Theory and Applications of Categories
14, 111–124 (2005)

2. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. Journal of Pure and Applied
Algebra 49, 11–32 (1987)

3. Coecke, B.: De-linearizing linearity: projective quantum axiomatics from strong
compact closure. ENTCS 170, 49–72 (2007)

8 Classical structures were initially introduced in [5] to represent classical control struc-
ture so this example can easily be extended with the required unitary corrections.

310 B. Coecke and R. Duncan

4. Coecke, B., Paquette, E.O.: POVMs and Naimark’s theorem without sums (2006)
(to appear in ENTCS), arXiv:quant-ph/0608072

5. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G.,
Kauffman, L., Lamonaco, S. (eds.) Mathematics of Quantum Computing and Tech-
nology, pp. 567–604. Taylor and Francis, Abington (2007)

6. Coecke, B., Pavlovic, D., Vicary, J.: Dagger Frobenius algebras in FdHilb are bases.
Oxford University Computing Laboratory Research Report RR-08-03 (2008)

7. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of the
ACM 54(2) (2007), arXiv:quant-ph/0412135

8. Joyal, A., Street, R.: The Geometry of tensor calculus I. Advances in Mathemat-
ics 88, 55–112 (1991)

9. Kelly, G.M., Laplaza, M.L.: Coherence for compact closed categories. Journal of
Pure and Applied Algebra 19, 193–213 (1980)

10. Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. LNCS,
vol. 2948, pp. 137–144. Springer, Heidelberg (2004)

11. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. In:
Composing PROPs. Theory and Applications of Categories, vol. 13, pp. 147–163.
Cambridge University Press, Cambridge (2003)

12. Selinger, P.: Dagger compact closed categories and completely positive maps.
ENTCS, 170, 139–163 (2005),
www.mathstat.dal.ca/∼selinger/papers.htmldagger

13. Street, R.: Quantum Groups: A Path to Current Algebra, Cambridge UP (2007)

www.mathstat.dal.ca/~selinger/papers.htmldagger

Perpetuality for Full and Safe Composition

(in a Constructive Setting)

Delia Kesner

PPS, Université Paris Diderot

Abstract. We study perpetuality in calculi with explicit substitutions
having full composition. A simple perpetual strategy is used to define
strongly normalising terms inductively. This gives a simple argument to
show preservation of β-strong normalisation as well as strong normal-
isation for typed terms. Particularly, the strong normalisation proof is
based on implicit substitution rather than explicit substitution, so that it
turns out to be modular w.r.t. the well-known proofs for typed lambda-
calculus. All the proofs we develop are constructive.

1 Introduction

In calculi with explicit substitutions (ES) without composition rules, such as
λx [20,23], outermost substitutions must be delayed until the total execution
of all the innermost substitutions appearing in the same environment. Thus for
example, the outermost substitution [x/v] in the term (zyx)[y/xx][x/v] must be
delayed until [y/xx] is first executed on zyx. This can be recovered by the use
of composition rules which allow to propagate substitutions through (non pure)
terms. Thus, (zyx)[y/xx][x/v] can be reduced to (zyx)[x/v][y/(xx)[x/v]], which
can be further reduced to (zyv)[y/vv], a term equal to (zyx)[y/xx]{x/v}, where
{x/v} denotes the standard meta/implicit substitution (on non pure terms) that
the explicit substitution [x/v] is supposed to implement.

Composition rules for ES first appeared in λσ [1]. They are used to get con-
fluence on open terms [10,11] when implementing higher-order unification [7] or
functional abstract machines [19]. They guarantee a property, called full compo-
sition, that calculi without composition do not enjoy: any term of the form t[x/u]
can be reduced to t{x/u}, i.e. explicit substitution implements the implicit one.

Many calculi with ES such as λσ [1], λσ⇑ [10], λsub [22], λlxr [14] and λes [11]
enjoy full composition. However, λσ and λσ⇑ do not enjoy neither strong normali-
sation (SN) for typed terms, nor preservation of β-strong normalisation (PSN) for
untyped terms, a result which is a consequence of Melliès’ counter-example [21].
But full composition and normalisation can live together, leading to a notion
of safe composition; this is for example the case of λsub, λes and λlxr. The
available SN proofs for calculi with composition are indirect: either one simu-
lates reduction by means of another well-founded relation, or SN is deduced from
a sufficient property, as for example PSN. Proofs using the first technique are
for example those for λws [6] and λlxr [14], based on the well-foundedness of

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 311–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

312 D. Kesner

the reduction relation for multiplicative exponential linear logic (MELL) proof-
nets [9]. An example of SN proof using the second technique is that for λes,
where PSN is obtained by two consecutive translations, one from λes into a cal-
culus with ES and weakenings, the second one from this intermediate calculus
into the Church-Klop’s ΛI -calculus [16]. In both cases the proofs are long, but
especially not self-contained.

Since nothing indicates that calculi with safe composition could be only under-
stood in terms of MELL proof-nets or the ΛI -calculus, it will be then significant
to provide independent arguments to prove normalisation properties for them.
This would be useful, particularly, when integrating them inside other richer
frameworks such as type theory.

The aim of this paper is to understand safe composition. For that, we choose to
work with a simple calculus, that we call λex, obtained by extending λx with one
rewriting rule for composition of dependent substitutions and one equation for
commutation of independent substitutions. A similar calculus is studied in [24],
where our equation is treated as a non-terminating reduction rule. The λex-
calculus uses unary constructors for substitutions but has the same expressive
power than calculi with n-ary substitutions: thus for example (xy)[y/x, x/y]
can be implemented by the α-equivalent term (wy)[y/x][w/y]. Indeed, while
simultaneous substitutions are specified by lists (given by n-ary substitutions) in
calculi like λσ, they are modelled by sets (given by commutation of independent
unary substitutions) in λex. The λex-calculus is conceptually simple, it enjoys
full composition and confluence on open-terms.

The technical tools used in this paper are the following. We first define a
perpetual reduction strategy for λex: if t /∈ SNλex and t reduces to t′ by the
strategy, then t′ /∈ SN λex. In particular, since the perpetual strategy reduces
t[x/u] to t{x/u}, one has to show that normalisation of Implicit substitution
implies normalisation of Explicit substitution:

(IE) u ∈ SN λex & t{x/u} ∈ SN λex imply t[x/u] ∈ SN λex

In other words, ES implements implicit substitutions but nothing more than
that, otherwise one may get calculi such as λσ where t[x/u] does much more
than t{x/u} since it is able to behave like t{x/u} but also to behave differently
(for example by looping) before reducing to t{x/u}. A consequence of (IE) is
that standard techniques to show SN based on meta-substitution can also be
applied to calculi with ES, thus considerably simplifying the reasoning. Indeed,
the perpetual strategy is used to give an inductive characterisation of the set
SN λex by means of just four inference rules. This characterisation is then used
to show that untyped terms enjoy PSN and typed terms enjoy SN. In particular,
SN is shown by using arithmetical arguments: the proof is the one for simply
typed λ-calculus but just adds the new case t[x/u]. In that sense we can say
that our SN proof is modular w.r.t. the SN proof for typed lambda-terms. All
our proofs are constructive in the sense that neither excluded middle nor double
negation elimination are used. At the end of the paper we also show how SN of
other calculi (with or without) full composition can be obtained from SN of λex.

Perpetuality for Full and Safe Composition 313

Perpetual strategies are studied for the non equational systems λx in [3,15,18],
and λws in [2]. No abstract use of full composition can be done there. Current
investigations carried out in [29] show PSN for different calculi with (full or not)
composition. The approach is based on proofs by contradiction which analyse
some minimal not terminating reduction sequence of the underlying calculus.

The paper is organised as follows. Section 2 introduces syntax and reduction
rules. Perpetuality is studied in Section 3 and normalisation proofs are given in
Section 4. Section 5 presents the labelling technique to show the (IE) property.
In Section 6 we explain how to infer SN for other calculi with ES from our result
in Section 4. We conclude and give directions for further work in Section 7.

Full details of the proofs in the paper are available on [12].

2 Syntax

The λex-calculus can be viewed as the λx-calculus together with a safe compo-
sition rule for dependent substitutions and a commutativity equation for inde-
pendent substitutions. The set of x-terms is defined by:

Tx ::= x | Tx Tx | λx.Tx | Tx[x/Tx]
Free and bound variables are defined as usual by assuming the terms λx.t and

t[x/u] bind x in t. The congruence generated by renaming of bound variables
is called α-conversion. Thus for example (λy.x)[x/y] =α (λz.w)[w/y]. We use
the notation tn for a list of terms t1, . . . , tn and utn for ut1 . . . tn which is an
abbreviation of (. . . ((ut1)t2) tn).

Meta-substitution on x-terms is defined modulo α-conversion in such a way
that capture of variables is avoided:

x{x/v} := v (tu){x/v} := t{x/v}u{x/v}
y{x/v} := y if y �= x (λy.t){x/v} := λy.t{x/v}

t[y/u]{x/v} := t{x/v}[y/u{x/v}]
Thus for example (λy.x){x/y} = λz.y. Note that t{x/u} = t if x /∈ fv(t).
Besides α-conversion, we consider the following equations and rules.

Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Rules :
(λx.t) u →B t[x/u]
x[x/u] →Var u
t[x/u] →Gc t if x /∈ fv(t)
(tu)[x/v] →App t[x/v] u[x/v]
(λy.t)[x/v] →Lamb λy.t[x/v]
t[x/u][y/v] →Comp t[y/v][x/u[y/v]] if y ∈ fv(u)

The rewritingrelation generated by all the previous rules except B is denoted
by x. We write Bx for B∪x. The equivalence relation generated by the conversions

314 D. Kesner

α and C is written e. The reduction relation generated by the rewriting relations
modulo e specify rewriting of e-equivalence classes:

t→ex t′ iff ∃ s, s′ s.t. t =e s→x s′ =e t′

t→λex t′ iff ∃ s, s′ s.t. t =e s→Bx s′ =e t′

Note that all the equations and rules are assumed to avoid capture of variables
by α-conversion. Thus for example we have y �= x and y /∈ fv(v) in rule Lamb.
Same kind of assumptions are done for Comp and C.

The notation →∗
λex (resp. →+

λex) is used for the reflexive and transitive (resp.
transitive) closure of →λex. Thus, if t→∗

λex t′ in 0 reduction steps, then t =e t′.
A term t is said to be in λex-normal form, written t ∈ NFλex, if there is no

s such that t →λex s. A term t is said to be λex-strongly normalising, written
t ∈ SN λex, if there is no infinite λex-reduction sequence starting at t, in which
case ηλex(t) denotes the maximal length of a λex-reduction sequence starting at
t. A standard inductive definition of SN λex can be given by:

t ∈ SN λex iff ∀s (t→λex s implies s ∈ SN λex)

The following basic properties of λex-reduction can be shown by a straight-
forward induction on the λex-reduction relation.

Lemma 1 (Basic Properties).

– If t→λex t′, then fv(t′) ⊆ fv(t).
– For R ∈ {ex, λex}, if t →R t′, then u{x/t} →∗

R u{x/t′} and t{x/u} →R
t′{x/u}. Thus in particular t{x/u} ∈ SNR implies t ∈ SNR.

The rule Comp and the equation C guarantee the following property:

Lemma 2 (Full composition). t[x/u] →+
ex t{x/u}.

Proof. By induction on t. The interesting case is t = s[y/v]. If x ∈ fv(v), then
s[y/v][x/u] →Comp s[x/u][y/v[x/u]] →∗

ex (i.h.) s{x/u}[y/v{x/u}] = t{x/u}. If x /∈
fv(v), then s[y/v][x/u] =C s[x/u][y/v] →∗

ex (i.h.) s{x/u}[y/v] = t{x/u}.

Lemma 3 (Confluence). The reduction relation is confluent on open terms.

Proof. This can be proved by the Tait and Martin Löf technique. The proof
proceeds similarly to that of the λes-calculus given in [11].

3 Perpetuality

A perpetual strategy gives an infinite reduction sequence for a term, if one exists,
otherwise, it gives a finite reduction sequence leading to some normal form.
Perpetual strategies can be seen as antonyms of normalising strategies, they are
particularly used to obtain normalisation results. For a survey about perpetual
strategies we refer the reader to [30].

Perpetuality for Full and Safe Composition 315

In contrast to one-step strategies for ES given for example in [18,3], we now
define a many-step strategy for x-terms which preserves λex-normal forms and
gives a →+

λex-reduct for any t /∈ NFλex.
This is done according to the following cases. If t = xt1 . . . tn, rewrite the

left-most ti which is reducible. If t = λx.u, rewrite u. If t = (λx.s)uvn, rewrite
the head redex. If t = s[x/u]vn and u /∈ SN λex, rewrite u. If t = s[x/u]vn and
u ∈ SN λex, rewrite the head redex using full composition. Formally,

Definition 1. The strategy � on x-terms is given by an inductive definition.

un ∈ NFλex t � t′

(p-var)
xuntvm � xunt′vm

t � t′

(p-abs)
λx.t � λx.t′

(p-B)
(λx.t)uun � t[x/u]un

u ∈ SN λex
(p-subs1)

t[x/u]un � t{x/u}un

u /∈ SN λex u � u′

(p-subs2)
t[x/u]un � t[x/u′]un

The strategy is deterministic so that t � u and t � v implies u = v. Moreover,
the strategy is not necessarily leftmost-outermost or left-to-right because of the
(p-subs1) rule: substitution propagation can be performed in any order. Note
also that the strategy is not effective since it is based on an undecidable predicate.
The strategy is perpetual: if t /∈ SN λex and t � t′, then t′ /∈ SN λex. This will
be used later to give an inductive characterisation of the set SNλex.

Lemma 4. If t � t′, then t→+
λex t′.

Proof. By induction on the strategy � using Lemma 2.

Theorem 1 (Perpetuality). If t � t′ and t′ ∈ SN λex, then t ∈ SN λex.

Proof. By induction on the strategy �. We only treat the non trivial cases.

(p-B) t = (λx.s)uun � s[x/u]un = t′. If s[x/u]un ∈ SN λex, then s, u, un ∈
SN λex. We thus show by induction on ηλex(s) + ηλex(u) + Σiηλex(ui) that
every λex-reduct of (λx.s)uun is in SN λex. Conclude (λx.s)uun ∈ SN λex.

(p-subs2) t = s[x/u]un � s[x/u′]un = t′, u /∈ SN λex and u � u′. If s[x/u′]un ∈
SN λex then in particular u′ ∈ SN λex, thus u ∈ SN λex by the i.h. From
u /∈ SN ex and u ∈ SNλex we get (constructively) any proposition, so in
particular t ∈ SN λex.

(p-subs1) t = s[x/u]un � s{x/u}un = t′ and u ∈ SN λex. Then the (IE)
property (Lemma 8) allows to conclude.

4 Normalisation Properties

To show that untyped x-terms enjoy PSN and typed x-terms are λex-strongly
normalising we proceed in two different steps. We first define an inductive set
ISN which turns out to be equal to SNλex. PSN can then be easily proved by

316 D. Kesner

using the inductive definition of ISN . To show SN, we can then choose at least
two different ways to proceed. We include in Section 4.1 the shortest one which
is based on simple arithmetical arguments [27], and we refer the reader to [12]
for the second one which uses standard reducibility technology [8,26].

Inductive characterisations of SN terms are useful, for instance, in constructive
SN proofs. An inductive definition of SN terms for the λ-calculus is given for
example in [28]. It was then extended in [3,18] for calculi with ES, but using
many different inference rules to characterise SN terms of the form t[x/u]. We
just give here one inference rule for each possible x-term.

Definition 2. The inductive set ISN is defined as follows:

t1, . . . , tn ∈ ISN n ≥ 0
(var)

xt1 . . . tn ∈ ISN
u[x/v]t1 . . . tn ∈ ISN n ≥ 0

(app)
(λx.u)vt1 . . . tn ∈ ISN

u{x/v}t1 . . . tn ∈ ISN v ∈ ISN n ≥ 0
(subs)

u[x/v]t1 . . . tn ∈ ISN
u ∈ ISN

(abs)
λx.u ∈ ISN

Proposition 1. SN λex = ISN .

Proof. If t ∈ SN λex, t ∈ ISN is proved by induction on the pair 〈ηλex(t),
size(t)〉. If t ∈ ISN , t ∈ SN λex is proved by induction on t ∈ ISN using
Theorem 1.

Theorem 2 (PSN for λ-terms). If t ∈ SN β, then t ∈ SN λex.

Proof. By induction on the definition of SN β [28] using Prop. 1. If t = xtn
with ti ∈ SN β , then ti ∈ SN λex by the i.h. so that the (var) rule allows to
conclude. The case t = λx.u is similar. If t = (λx.u)vtn, with u{x/v}tn ∈ SN β

and v ∈ SN β, then both terms are in SN λex by the i.h. so that the (subs) rule
gives u[x/v]tn ∈ SN λex and the (app) rule gives (λx.u)vtn ∈ SN λex.

We now give a type system for x-terms. Richer type systems with intersection
types could also be given to characterise the set SNλex in terms of typed terms
(see [13,18] for details).

Types are built over a set of atomic types and the → constructor. An en-
vironment is a finite set of pairs x : A. A sequent Γ � t : A is formed by an
environment Γ , a term t and a type A. Derivations of sequents are obtained by
application of the following typing rules.

Γ, x : A � x : A

Γ � t : A→ B Γ � u : A

Γ � tu : B

Γ, x : A � t : B

Γ � λx.t : A→ B

Γ � u : B Γ, x : B � t : A

Γ � t[x/u] : A

Perpetuality for Full and Safe Composition 317

A term t of type A, written tA, is a term s.t. Γ � t : A is derivable for some
Γ . A typed term t is a term of type A for some type A.

Induction on type derivations together with weakening/strengthening allow
us to show the following stability properties.

Lemma 5 (Stability of Typed Terms)

(by substitution) If Γ � u : B & Γ, x : B � t : A, then Γ � t{x/u} : A.
(by reduction) If Γ � t : A & t→λex t′, then Γ � t′ : A.

4.1 The Arithmetical Technique

This technique is based on van Daalen’s strong normalisation proof for the typed
lambda-calculus [27], and is extremely short.

Lemma 6. If tA, uB ∈ SN λex, then t{xB/uB} ∈ SNλex.

Proof. By induction on 〈B, ηλex(t), size(t)〉.

– The cases t = x, t = λy.v and yvn are straightforward.
– t = xvvn. The i.h. gives V = v{x/u} and Vi = vi{x/u} in SN λex. To show

t{x/u} = uV Vn ∈ SN λex we show that all its reducts are in SN λex. We
reason by induction on ηλex(u) + ηλex(V) + Σi∈1...n ηλex(Vi).
If reduction takes place in a subterm of uV Vn, we conclude by the i.h.
Suppose u = λy.U and (λy.U)V Vn → U [y/V]Vn. Then type(V)=type(v) <
type(u) = type(x) so that U{y/V } ∈ SN λex by the i.h. Write U{y/V }Vn =
(zVn){z/U{y/V }}. We have type(U{y/V }) = type(U) < type(u) so that
U{y/V }Vn ∈ SN λex by the i.h. We conclude U [y/V]Vn ∈ SN λex by Prop. 1.

– t = (λy.s)vvn. The i.h. gives S = s{x/u}, V = v{x/u} and Vi = vi{x/u} in
SN λex. To show t{x/u} = (λy.S)V Vn ∈ SN λex we show that all its reducts
are in SN λex. We reason by induction on ηλex(S)+ηλex(V)+Σi∈1...n ηλex(Vi).
If reduction takes place in a subterm of (λy.S)V Vn, we conclude by the i.h.
Otherwise suppose (λy.S)V Vn → S[y/V]Vn. Now, take T = s{y/v} vn.
Since ηλex(T) < ηλex(t), then the i.h. gives T {x/u} ∈ SN λex. We write
S{y/V }Vn = T {x/u} so that Prop. 1 gives S[y/V]Vn ∈ SN λex. Thus all the
reducts of t{x/u} are SNλex and we can conclude t{x/u} ∈ SNλex.

– t = s[y/v]vn. The proof proceeds as in the previous case.

Theorem 3 (SN for λex). If t is a typed term, then t ∈ SNλex.

Proof. By induction on t. The cases t = x and t = λx.u are straightforward. If
t = uv, then u, v are typed and by the i.h. u, v ∈ SN λex. We write t = (z v){z/u},
where z v is SN λex by Definition 2 and appropriately typed. Lemma 6 then gives
t ∈ SN λex. If t = u[x/v], then u, v are typed and by the i.h. u, v ∈ SN λex so that
Lemma 6 gives u{x/v} ∈ SN λex. Prop. 1 allows us to conclude u[x/v] ∈ SNλex.

318 D. Kesner

5 The (IE) Property

The aim of this section is to show the key argument used to guarantee that our
strategy (Definition 1) is perpetual. More precisely, we show that normalisation
of Implicit substitution implies normalisation of Explicit substitution:

(IE) u ∈ SN λex & t{x/u} ∈ SN λex imply t[x/u] ∈ SN λex

To show the (IE) property we adapt the labelling technique [4,2] to the equa-
tional case. Given a set of variables S, the S-labelled terms (or simply labelled
terms if S is clear from the context), are given by:

TS ::= x | TS TS | λx.TS | TS[x/TS] | TS[[x/v]] (v ∈ SN λex & fv(v) ⊆ S)

Thus, labelled substitutions can only contain x-terms so in particular they
cannot contain other labelled substitutions inside them.

Note that we can always assume that subterms u[x/v] and u[[x/v]] inside
t ∈ TS are s.t. x /∈ S. Indeed, α-conversion allows to choose names outside S

for the bound variables of S-terms. The idea behind the operational semantics
of S-terms, specified by the following set of equations and reduction rules, is
that labelled substitutions may commute/traverse ordinary substitutions but
these last ones cannot traverse the labelled ones. This behaviour of labelled
substitutions is later used to simulate application of implicit substitution.

Equations :
t[y/u][[x/v]] =C t[[x/v]][y/u] if x /∈ fv(u) & y /∈ fv(v)
t[[y/u]][[x/v]] =C t[[x/v]][[y/u]] if x /∈ fv(u) & y /∈ fv(v)

Rules :
x[[x/v]] →Var v
t[[x/v]] →Gc t if x /∈ fv(t)
(tu)[[x/v]] →App t[[x/v]] u[[x/v]]
(λy.t)[[x/v]] →Lamb λy.t[[x/v]]
t[y/u][[x/v]] →Comp t[[x/v]][y/u[[x/v]]] if x ∈ fv(u)

The x (resp. EX) reduction relation is generated by the previous rules modulo
α (resp. α ∪ C) conversion. In particular, they enjoy termination.

As expected, reduction on labelled terms can be simulated by reduction on
their underlying x-terms.

Definition 3. Unlabelled of S-terms are x-terms defined by induction.

U(x) := x U(λx.t) := λx.U(t) U(t[x/u]) := U(t)[x/U(u)]
U(tu) := U(t)U(u) U(t[[x/u]]) := U(t)[x/u]

Consider the relation λex = λex ∪ EX on labelled terms.

Lemma 7. Let t ∈ TS. If t ∈ SN λex, then U(t) ∈ SN λex.

Perpetuality for Full and Safe Composition 319

Proof. We first prove by induction on→λex the following: for t ∈ TS, if U(t) →λex

u′, then ∃ u ∈ TS s.t. t→λex u and U(u) = u′. To conclude, we prove that every
λex-reduct of U(t) is in SN λex by induction on ηλex(t) using the first property.

Taking S = fv(u) and transforming the x-term s[x/u]un into the λex-term
s[[x/u]]un we have the following special case.

Corollary 1. If s[[x/u]]un ∈ SN λex, then s[x/u]un ∈ SN λex.

We now split λex in two disjoint relations λexi and λexe which will be projected
into λex-reduction sequences differently.

Definition 4. The internal reduction relation λexi is given by EX-reduction
together with λex-reduction in the bodies of labelled substitutions. The external
reduction relation λexe is given by λex-reduction everywhere except inside bodies
of labelled substitutions.

We will also use the following function xc from labelled terms to x-terms.

xc(x) := x xc(tu) := xc(t)xc(u)
xc(λy.t) := λy.xc(t) xc(t[x/u]) := xc(t)[x/xc(u)]

xc(t[[x/v]]) := xc(t){x/v}

Corollary 2. Let t be a labelled term. If xc(t) ∈ SN λex, then t ∈ SN λex.

Proof. Prove (using Lemma 1) that λex can be projected into λex as follows:

1. t→λexi t′ implies xc(t) →∗
λex xc(t′).

2. t→λexe t′ implies xc(t) →+
λex xc(t′).

Then show that λexi is terminating (see [12] for details). Last, apply the
abstract Theorem 4 given at the end of this section by taking a1 = λexi, a2 =
λexe, A = λex and u R U iff xc(u) = U . We get that xc(t) ∈ SN λex implies
(constructively) t ∈ SN λexi∪λexe = SNλex so we thus conclude.

The previous corollary allows us to conclude with the main property required in
the proof of the Perpetuality Theorem:

Lemma 8 (IE Property). If u, s{x/u}un ∈ SN λex, then s[x/u]un ∈ SN λex.

Proof. Let s{x/u}un ∈ SN λex, define S = fv(u) and consider the S-labelled
term s[[x/u]]un. Then xc(s[[x/u]]un) = xc(s){x/u}xc(un) = s{x/u}un so that
xc(s[[x/u]]un) ∈ SN λex. We get s[[x/u]]un ∈ SN λex by Corollary 2 and
s[x/u]un ∈ SNλex by Corollary 1.

Theorem 4. Let a1 and a2 be two reduction relations on s and let A be a re-
duction relation on S. Let R ⊆ s× S. Suppose a1 is well-founded and also

– For every u, v, U (u R U & u a1 v imply ∃V s.t. vRV and U A∗ V).
– For every u, v, U (u R U & u a2 v imply ∃V s.t. v R V and U A+ V).

Then, t R T & T ∈ SN A imply t ∈ SN a1∪a2 .

Proof. A constructive proof of this theorem can be found in Corollary 26 of [17].

320 D. Kesner

6 Deriving SN for Other Calculi

We now informally derive SN for other calculi with ES (having or not safe com-
position) from SN of λex, thus suggesting the existence of self-contained SN
proofs also for them. However, while the correspondence/translation between
yet another calculi without composition and λex seems to be unproblematic,
the relation with all possible forms of safe composition is not claimed.
• The λx-calculus [20,23] is a sub-calculus of λex. The fact that t →λx t′

implies t →+
λex t′ is then straightforward. Since typed terms in both calculi are

the same, we thus deduce that typed x-terms are λx-strongly normalising.
• The λes-calculus [11] can be seen as a refinement of λex, where propagation

of substitution with respect to application and substitution is done in a controlled
way. We refer the reader to [11] for details on the rules. The fact that t→λes t′

implies t →+
λex t′ is straightforward. Typed terms in both calculi are the same,

we thus deduce that typed x-terms are λes-strongly normalising.
• Milner’s calculus with partial substitution [22], called λsub, is able to encode

λ-calculus in terms of a bigraphical reactive system. Syntax of λsub is given by x-
terms and reduction rules completely propagate a substitution [x/u] only on one
occurrence of x at a time (see for example [22] for details). In [13] it is shown that
there exist a translation T from x-terms to x-terms such that t→λsub

t′ implies
T(t) →+

λes T(t′). Since translation T preserves typability, we conclude that typed
x-terms are λsub-strongly normalising from the previous point.
• A λ-calculus with partial β-steps appears in [5]. Syntax is given by pure λ-

terms and semantics is very similar to that of λsub. Similarly to [13], a translation
T from λ-terms to x-terms can be defined to project one-step reduction in λβp

into at least one-step reduction in λsub. Since typed λ-terms translate to typed x-
terms, then typed λ-terms are λβp-strongly normalising from the previous point.
• David and Guillaume [4] defined a calculus with labels, called λws, which

allows controlled composition of ES without losing PSN. The calculus λws has a
strong form of composition which is safe but not full. Its (typed) named notation
can be translated into (typed) x-terms in such a way that SN for typed terms
in λws is a consequence of SN for typed λex.
• A calculus with a safe notion of composition in director string notation

is defined in [25]. Its named version can be understood as λx together with a
composition rule t[x/u][y/v] → t[x/u[y/v]] where y ∈ fv(u) & y /∈ fv(t). The
calculus can be easily simulated in λex by rules Comp and Gc. Thus, again, typed
x-terms are strongly normalising.
• The λesw-calculus [11] was used as a technical tool to show PSN for λes.

The syntax extends x-terms with weakening constructors. It is then straightfor-
ward to define a translation T from λesw-terms to x-terms which forgets these
weakening operators. The reduction relation λesw can be split into an equa-
tional system E and two rewriting relations L1 and L2 s.t. t =E t′ or t →L1

t′ implies T(t) =C T(t′) and t→L2 t′ implies T(t) →+
λex T(t′).

The reduction relation generated by the rules L1 modulo the equations E
can be easily shown to be terminating. Therefore, every infinite λesw-reduction
sequence must contain infinitely many reduction steps generated by the rules

Perpetuality for Full and Safe Composition 321

L2 modulo the equations E , so that we obtain, via the translation T, an infinite
λex-reduction sequence. Also, typed λesw-terms trivially translate via T to typed
x-terms. A consequence is that typed xw-terms are λesw-strongly normalising.

7 Conclusion

We define a simple perpetual strategy for a calculus with ES enjoying full com-
position. We use this strategy to provide an inductive definition of SN terms
which is then used to prove that untyped terms enjoy PSN and typed terms are
SN. The proofs are simple, but especially self-contained, no simulation of the
source calculus into another SN calculus is used. The inductive characterisation
of SN terms and the SN theorem are extremely simple w.r.t. other proofs in the
literature [3,18] for ES. Last but not least, our development is constructive as
we make no use of classical logic reasoning.

Some remarks about the application of this method to other calculi might be
interesting. First of all, it is worth noticing that full composition alone is not
sufficient to achieve the SN proof, otherwise the λσ-calculus [1], which is known
to not being strongly normalising [21], could be treated. Indeed, our strategy �
for λex is not perpetual for λσ: Melliès’ counter-example is based on an infinite
λσ-reduction sequence starting from a typed term which is not reached by our
perpetual strategy. In other words, � is incomplete for λσ. The definition of a
perpetual strategy for λσ remains open. The definition of a one-step perpetual
strategy (eventually effective) for λex also deserves future attention.

We believe that a de Bruijn version of λex could be useful in real implemen-
tations. This could be achieved by using for example λσ technology (so that
equation C can be eliminated) together with the control of composition needed
to guarantee strong normalisation.

Acknowledgements. I am grateful to M. Fernández, S. Lengrand, F. Renaud,
F. R. Sinot, V. van Oostrom and the anonymous referees for useful comments.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.-J.: Explicit substitutions. Journal of
Functional Programming 4(1), 375–416 (1991)

2. Arbiser, A., Bonelli, E., Ŕıos, A.: Perpetuality in a lambda calculus with explicit
substitutions and composition. WAIT, JAIIO (2000)

3. Bonelli, E.: Perpetuality in a named lambda calculus with explicit substitutions.
Mathematical Structures in Computer Science 11(1), 47–90 (2001)

4. David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit sub-
stitution. Mathematical Structures in Computer Science 11, 169–206 (2001)

5. de Bruijn, N.G.: Generalizing Automath by Means of a Lambda-Typed Lambda
Calculus. In: Mathematical Logic and Theoretical Computer Science. Lecture Notes
in Pure and Applied Mathematics, vol. 106 (1987)

6. Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions.
Mathematical Structures in Computer Science 13(3), 409–450 (2003)

7. Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substi-
tutions. Information and Computation 157, 183–235 (2000)

322 D. Kesner

8. Girard, J.-Y.: Interprétation fonctionelle et élimination des coupures dans
l’arithmétique d’ordre supérieure. Thèse de doctorat d’état, Univ. Paris VII (1972)

9. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50 (1987)
10. Hardin, T., Lévy, J.-J.: A confluent calculus of substitutions. In: France-Japan

Artificial Intelligence and Computer Science Symposium, Izu, Japan (1989)
11. Kesner, D.: The theory of calculi with explicit substitutions revisited. In: Duparc,

J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 238–252. Springer,
Heidelberg (2007)

12. Kesner, D.: Perpetuality for full and safe composition (in a constructive setting)
(2008), http://www.pps.jussieu.fr/∼kesner/papers/

13. Kesner, D., Ó Conchúir, S.: Fundamental properties of Milner’s non-local explicit
substitution calculus, http://www.pps.jussieu.fr/∼kesner/papers/

14. Kesner, D., Lengrand, S.: Resource operators for lambda-calculus. Information and
Computation 205(4), 419–473 (2007)

15. Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Uniform Normalisation beyond
Orthogonality. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 122–136.
Springer, Heidelberg (2001)

16. Klop, J.-W.: Combinatory Reduction Systems. PhD thesis, Mathematical Centre
Tracts 127. CWI, Amsterdam (1980)

17. Lengrand, S.: Normalisation and Equivalence in Proof Theory and Type Theory.
PhD thesis, University Paris 7 and University of St Andrews (November 2006)

18. Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M., van Bakel, S.:
Intersection types for explicit substitutions. Information and Computation 189(1),
17–42 (2004)

19. Lévy, J.-J., Maranget, L.: Explicit substitutions and programming languages. In:
Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS,
vol. 1738, pp. 181–200. Springer, Heidelberg (1999)

20. Lins, R.: A new formula for the execution of categorical combinators. In: Siekmann,
J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 89–98. Springer, Heidelberg (1986)

21. Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In:
TLCA. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)

22. Milner, R.: Local bigraphs and confluence: two conjectures. In: EXPRESS. ENTCS
vol. 175 (2006)

23. Rose, K.: Explicit cyclic substitutions. In: CTRS. LNCS, vol. 656. Springer, Hei-
delberg (1992)

24. Sakurai, T.: Strong normalizability of calculus of explicit substitutions with com-
position, http://www.math.s.chiba-u.ac.jp/∼sakurai/papers.html

25. Sinot, F.-R., Fernández, M., Mackie, I.: Efficient reductions with director strings.
In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 46–60. Springer, Hei-
delberg (2003)

26. Tait, W.: Intensional interpretation of functionals of finite type I. Journal of Sym-
bolic Logic 32 (1967)

27. van Daalen, D.T.: The language theory of automath. PhD thesis, Technische
Hogeschool Eindhoven (1977)

28. van Raamsdonk, F.: Confluence and Normalization for Higher-Order Rewriting.
PhD thesis, Amsterdam University, Netherlands (1996)

29. Sinot, F.-R., van Oostrom, V.: Preserving termination of the λ-calculus or not
(unpublished note) (2007)

30. van Raamsdonk, F., Severi, P., Sorensen, M.H., Xi, H.: Perpetual reductions in
λ-calculus. Information and Computation 149(2) (1999)

http://www.pps.jussieu.fr/~kesner/papers/
http://www.pps.jussieu.fr/~kesner/papers/
http://www.math.s.chiba-u.ac.jp/~sakurai/papers.html

A System F with Call-by-Name Exceptions

Sylvain Lebresne

1 Preuves, Programmes et Systèmes (PPS), CNRS, Université Paris 7, Paris, France
2 Projet Logical, LIX, École Polytechnique, Palaiseau, France

Abstract. We present an extension of System F with call-by-name ex-
ceptions. The type system is enriched with two syntactic constructs: a
union type A �∪{ε} for programs of type A whose execution may raise
the exception ε at top level, and a corruption type A{ε} for programs
that may raise the exception ε in any evaluation context (not necessarily
at top level). We present the syntax and reduction rules of the system,
as well as its typing and subtyping rules. We then study its properties,
such as confluence. Finally, we construct a realizability model using or-
thogonality techniques, from which we deduce that well-typed programs
are weakly normalizing and that the ones who have the type of natural
numbers really compute a natural number, without raising exceptions.

1 Introduction

Exceptions are a convenient mechanism for handling errors in programming lan-
guages. Most modern languages use them: Java, Objective Caml, C++, The
main computational features of exceptions are:

1. You can raise an exception instead of any other expression (or instruction);
2. It propagates automatically by default;
3. Programmers can catch it only when (s)he needs to.

Exceptions have long been confined to call-by-value languages and are usually
presented as a mechanism which “cuts through” the normal control flow of a pro-
gram when raised. Adding exceptions to lazy languages is more difficult since
an expression is evaluated only when needed and thus, programs do not have a
readily-predictable control flow. As noted by S. Peyton Jones et al. [8], “(. . .)
the only productive way to think about an expression is to consider the value it
computes, not the way in which the value is computed”. That is why they pro-
posed the idea of exceptions-as-values: a value (of any type) is either a “normal”
value, or it is an “exceptional” one.

Exceptions have been less studied in type theoretical settings (in a broad
sense). Indeed, exceptions are more a practical facility than a theoretically useful
tool. However, with the development of proof assistants, there is a higher demand
of users for an exceptions mechanism in these tools.

But adding exceptions to type theoretical frameworks raises new difficulties,
at least for two reasons: first, because these languages are independent from any
reduction strategy (thus a notion of control-flow has no sense), and second, it is
undesirable in such frameworks to give all the possible types to an exception.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 323–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 S. Lebresne

The independence towards reduction strategy (see Coq [2] for example) is a
consequence of the fact that type theoretical languages are usually “pure” (they
do not allow side effects). Hence, the idea of exceptions-as-values seems also well
fitted to these languages.

Moreover, in type theoretical languages, exceptions cannot be in all types for
consistency reasons. More generally, these languages are expected to capture
more properties than usual functional languages. In particular, the exceptions
raised by an expression should be reflected in the type of this expression.

In this paper, we propose an extension of System F with exceptions-as-values
and a type system that allows static detection of uncaught exceptions using a
notion of corruption. This notion, by using subtyping, avoids any extra clutter
for the programmer and allows for modularity. Here, we use System F as a first
step towards more elaborate type theoretical frameworks.

The remaining of the paper is organized as follows. We explain our design
in Section 2: we justify the kind of exception-as-values we use and describe the
three levels of corruption our type system distinguishes. We formally present
our calculus in Section 3 and state the properties it enjoys. Then, the Section 4
provides some examples. We design in Section 5 a realizability model of our
calculus that gives some insight on the meaning of corruption. Finally, we present
in Section 6 some related works before concluding in Section 7 with future works.
Due to space constraints, proofs of the results of this paper are not given1.

2 Design of the System

2.1 Which Exceptions-as-Values?

There are essentially two designs for exceptions as values: either we encode ex-
plicitly exceptions in the language, or we make them primitives.

Encoding explicitly exceptions is an old idea [12, 9]: to each type A is as-
sociated a type Maybe A which is either values of A tagged as correct values
or exceptional values (this idea is nicely explained, for the Haskell programming
language, in [8]). It has later been realized that the Maybe type constructor forms
a monad [6,13]. And P. Wadler and P. Thiemann proposed in [14] to add effects
to monads, allowing for the detection of uncaught exceptions in such monadic
encoding. However, this approach has some drawbacks:

– Terms using exceptions are crippled by extra clutter. For example, in Haskell,
to apply a function f :: Int -> Int to a value x :: Maybe Int we are
forced to write:

do a <- x
return (f a)

Using exceptions is not as transparent for the programmer as it is in call-
by-value languages;

1 An extended version of this paper with sketches of proofs is available at
http://www.pps.jussieu.fr/∼lebresne/SystemFWithExceptions.pdf .

http://www.pps.jussieu.fr/~lebresne/SystemFWithExceptions.pdf

A System F with Call-by-Name Exceptions 325

– As remarked in [8], modularity and code re-use are compromised, especially
for higher order functions. Consider a sorting function taking a compari-
son function (returning a boolean) as argument. Then, the sorting function
cannot be applied to a comparison function which raises exceptions;

– Monads force the evaluation of arguments (in the example above, the eval-
uation of x is forced before the application to f). One could not see that as
an inconvenience, and this is indeed desirable for most uses of monads, but
nonetheless, we think that it can be avoided for exceptions.

This leads us to the second design choice: making exceptions primitives. This has
been first proposed by S. Peyton Jones et al. [8] with imprecise exceptions. The
idea is that a value of any type is either a “normal” value, or an “exceptional”
one. The resulting mechanism allows exceptions to be used in place of any other
term (as for more traditional “call-by-value” exceptions). Note that since values
may be exceptional, we can have for instance, a list, which is fully defined but
for which some elements are exceptional values (see Section 4). These exceptions
are raised only when (and if) the list is evaluated.

Our system, named Fx, adapts this idea to System F, adding it two new term
constructions: raise and try. But while the exceptions of [8] are not precisely
typed (the raising operation is in all types), we propose a type system where the
type of an expression indicates which exceptions the expression may raise.

2.2 Expected Properties

The type system we will present enjoys the following properties:

– If a term can raise an exception, its type indicates it. In particular, programs
of type N are not able to raise exceptions;

– Programmers can use a term raise ε in place of any other term. In particular,
raise ε type as a function;

– Exceptions and their typing discipline do not jeopardize modularity and
code re-use. A function defined without exceptions in mind still accepts
exceptional arguments and behave in a sensible way. Moreover, this is done
without knowing the actual code of the function.

2.3 Three Levels of Corruption

We call corrupted, a term that may mention exceptions. Given a type A (say the
type N of natural numbers), we distinguish three levels of corruptions for the
terms related with this type:

– Terms of A. They are not corrupted, either they do not mention exceptions
or catch them all;

– Terms of A �∪ {ε}. They are terms of A or terms that reduce to the exception ε
(they raise it).

326 S. Lebresne

– Terms of A{ε}. They are terms of A that may mention the exception ε but
do not necessarily reduce to it (for instance, if S is the successor function,
S (raise ε) has type N{ε}, but not type N �∪{ε} since it has not type N nor
does it reduce to raise ε).

Moreover, to handle the properties of corruption, we use a subtyping relation,
and have in particular the subtyping: A ≤ A �∪{ε} ≤ A{ε}.

2.4 Why We Need to Distinguish These Three Levels

The construction A �∪{ε} is really needed because of the typing of the try oper-
ation, since for a try to catch an exception in its body, this body has to reduce
to the exception.

But because we do not want to change the typing rule of application, the
construction A �∪{ε} clearly does not fulfill all our needs. Firstly, we cannot
use it to type S (raise ε). And secondly, there remains terms that we cannot
substitute by an exception: we can write (λx. S x) 0 but not (λx. S x) (raise ε).

To solve these problems, we use a second type construction, the corruption of
a type A by an exception of name ε, denoted A{ε}. The main property that the
corruption enjoys is a good behavior with respect to arrow types:

(A→B){ε} = A{ε}→B{ε}

This subtyping equality may seem paradoxical with the usual subtyping rule
of arrow (contra-variance to the left, co-variance to the right). This is however
justified by the realizability model of Section 5.

Intuitively, terms of type A{ε} should be seen as terms of type A where some
sub-terms may have been replaced by raise ε (hence, programmers can use
raise ε wherever they want, which, in turns, corrupts the resulting type). Equiv-
alently, while terms of A �∪ {ε} are terms that may reduce to raise ε at top-level,
terms of A{ε} are the ones that may reduce to raise ε in any evaluation context.

Now, with corruption, we can apply a function f : A→B to a potentially
exceptional term. Indeed, we have that

A→B ≤ (A→B) �∪ {ε} ≤ (A→B){ε} = A{ε}→B{ε}.

Remark that since we use subtyping, there is no need to actually know the
term f . This allows for modularity and, in particular, this is convenient for
primitive functions like S, allowing to type-check S (raise ε) with the type N{ε}.

2.5 Typing the Recursion Operator

So, Fx uses primitive natural numbers and hence, provides the usual recursion
operator (denoted rec). Moreover, a corrupted natural number is an integer
where some sub-terms may have been replaced by an exception. Hence, compu-
tationally, it is not difficult to write, using rec, a function that, given a corrupted
integer, return either its argument if it is a well formed natural number, or the

A System F with Call-by-Name Exceptions 327

corrupting exception otherwise (we will give such a function in Section 4). But to
give it the type we expect, i.e. NΔ→N �∪Δ, we will have to give to the recursion
operator a type more precise than the one it is usually given.

3 Formal Presentation

3.1 Syntax, Reductions and Associated Properties

Syntax of Terms. We consider a countable set E of names of exceptions (we
can use more than one exception in Fx) and a distinguished set of variables V .
Terms of Fx are defined by:

M,N ::= x | λx.M |M N | raise ε | tryM with ε -→ N | 0 | S | rec
In this definition, variables are ranged over by x, y, . . . while exception names are
ranged over by ε, ε′, Notions of free and bound variables are defined as usual,
as well as the external operation of substitution (written M{x := N}). The set
of all closed terms is denoted T and terms are considered up to α-equivalence.
Note that the construction tryM with ε -→ N does not bind the occurrences of
ε. The term raise ε is called an exception, ε being its name, but, as an abuse of
terminology, we also call ε an exception. In the term tryM with ε -→ N we will
sometimes call M the body and N the handler of the try construction.

Computation in Fx. Values are the terms of Fx defined by

V ::= λx.M | 0 | S | S N | rec | rec M | rec M N

The notion of reduction for the calculus is given by the rules of Figure 1.

(λx. M) N > M{x := N}
try (raise ε) with ε �→ N > N
try (raise ε′) with ε �→ N > raise ε′

tryV with ε �→ N > V

(raise ε) M > raise ε

rec X Y 0 > X
rec X Y (S N) > Y N (rec X Y N)
rec X Y (raise ε) > raise ε

Fig. 1. Notion of reduction for Fx

Computation in Fx is defined by the relation of reduction < as the least
congruence containing >.

Note that, as usual, the scope of capture of the try construction is dynamic:
in the term (λx. try x with ε -→ 0) (raise ε), the exception is caught during
reduction and the whole term reduces to 0.

We say that a term M raises the exception ε if M <∗ raise ε (that is, if M
reduces to the exception named ε).

Adding raise and try does not break the confluence of the calculus:

Theorem 1 (Confluence). If M , N and N ′ are terms such that M <∗ N and
M <∗ N ′, then there exists a term P such that N <∗ P and N ′ <∗ P.

328 S. Lebresne

3.2 The Type System

As stressed in Section 2.3, Fx uses a subtyping relation ≤. Thus, Fx is in fact an
extension of System Fη (System F with subtyping [5, 15]). Besides, we can use
more than one exception so that type constructions handle sets of exceptions
names.

The syntax of types for Fx is built upon the one of System F:

A,B ::= α | N | A→B | ∀α.A | A �∪Δ | AΔ

In A �∪Δ and AΔ, Δ is a finite set of exceptions names (Δ ⊆ E). Moreover, α
stands for a type variable taken from the set of type variables A. Notions of free
and bound type variable are defined as usual, as well as the external operation
of substitution (written A{α := B}). We denote by FV (A) the set of all the
free type variables of the type A. Types are considered up to α-equivalence.
Precedences for the arrow construction and the universal quantifier are the usual
ones; the precedences of A �∪Δ and AΔ being higher.

Typing. A typing context Γ is a finite set of declarations having the form
Γ ≡ x1 : A1, . . . , xn : An where x1, . . . , xn are pairwise distinct term variables
and where A1, . . . , An are arbitrary types. The set FV (Γ) denotes the union of
the sets of free type variables for the types used in Γ . The type system of Fx is
defined from the typing judgment

Γ �M : A

that reads ‘in the typing context Γ , the term M has type A’. This judgment is
inductively defined by the rules of Figure 2. Remark that the typing rules for
System Fη are unchanged, we simply add rules. Also note that the usual typing
rule for the recursion operator can be retrieved from (rec) by taking Δ = ∅ (and
the (rec) rule is in fact a typing scheme).

System Fη typing rules:
(x : A)∈Γ
Γ � x : A

(ax)
Γ, x : A �M : B

Γ � λx.M : A→B
(abs)

Γ �M : A→B Γ � N : A

Γ �M N : B
(app)

Γ �M : A α /∈ FV (Γ)

Γ �M : ∀α.A
(gen)

Γ �M : A A ≤ B

Γ �M : B
(subs)

Natural numbers typing rules:

Γ � 0 : N
(zero)

Γ � S : N→N
(succ)

Γ � rec : ∀α.α �∪Δ→ (NΔ → α �∪Δ→ α �∪Δ) → NΔ → α �∪Δ
(rec)

Exceptions handling typing rules:

Γ � raise ε : ∀α.α �∪{ε}
(raise)

Γ �M : A �∪{ε} Γ � N : A

Γ � tryM with ε �→ N : A
(try)

Fig. 2. Typing judgments

A System F with Call-by-Name Exceptions 329

Subtyping. The subtyping relation between two types A and B, written A ≤ B,
is inductively defined by the rules of Figure 3. The equality A = B is defined
as short for “A ≤ B and A ≥ B”, and the inference rules with an equality on
conclusion is a notation for the two expected inference rules.

System Fη rules :

A ≤ A
(st-id)

A ≤ B B ≤ C

A ≤ C
(st-trans)

A′ ≤ A B ≤ B′

A→B ≤ A′→B′
(st-arrow)

A ≤ B α /∈ FV (A)

A ≤ ∀α.B
(f-gen)

∀α.A ≤ A{α := B}
(f-inst)

α /∈ FV (A)

∀α. (A→B) ≤ A→∀α.B
(f-arr)

Exception related rules :

A �∪∅ ≤ A
(ex-noexu)

A∅ ≤ A
(ex-noexc)

(A→B) �∪Δ ≤ A→B �∪Δ
(ex-arru)

A ≤ B

A �∪Δ ≤ B �∪Δ
(ex-ctx)

A ≤ A �∪Δ
(ex-uni)

A �∪Δ ≤ AΔ
(ex-corrupt)

∀α.AΔ ≤ (∀α.A)Δ
(ex-fallc)

∀α. (A �∪Δ) ≤ (∀α.A) �∪Δ
(ex-fallu)

Exception related equality rules :

(A �∪Δ) �∪Δ′ = A �∪ (Δ∪Δ′)
(eq-uu)

(AΔ)Δ′
= A(Δ∪Δ′)

(eq-cc)

(A �∪Δ)Δ′
= AΔ′

�∪ (Δ−Δ′)
(eq-uc)

(A→B)Δ = AΔ→BΔ
(eq-arrc)

Fig. 3. The subtyping relation

The subtyping rules of Fη are unchanged. The rules (ex-noexu), (ex-noexc),
(eq-uu) and (eq-cc) dealt with sets of exceptions. The hierarchy of corruption
(see 2.3) is implemented by (ex-uni) and (ex-corrupt). The rules (ex-fallc) and
(ex-fallu) are justified by the absence of computational content of the universal
quantification. Moreover, corruption and union commutes (eq-uc).

The subtyping is stable by union (ex-ctx), but also by corruption (this can be
proved by simultaneous structural inductions on A and B). Rule (ex-arru) simply
says that, since a term M of type (A→B) �∪Δ is either a term of type A→B
or an exception of Δ, it can always be applied to a term of type A, resulting in
a term of type B (if M is a true function) or an exception of Δ (if so is M).

Finally, as discussed in Section 2.4, the rule (eq-arrc) is the main rule of
corruption and allows exceptions to be used anywhere. Note that we really need
an equality here on pain of losing the subject-reduction property.

330 S. Lebresne

3.3 Properties of Typing

We define the relation �Δ between terms by : M �Δ N if and only if N is
obtained from M by replacing some sub-terms in any position by raise ε, ε be-
longing to Δ. Then, Theorem 2 formally states that, in term of programming, ex-
ceptions can be used in any place, but with the added cost of corrupting the type.

Theorem 2 (corruption). If M and N are two terms, A a type and Δ a set
of exceptions such that Γ �M : A and M �Δ N , then Γ � N : AΔ.

4 Examples

A simple yet classical function on natural numbers which can raise an exception
is the predecessor function. In Fx, we can define:

pred ≡ rec (raise ε) (λx. λy. x) : N→N �∪{ε}
It has the expected reductions, i.e. pred 0 <∗ raise ε and pred (S N) <∗ N .
We can then define a “safe” predecessor pred′ from pred which returns 0 when
applied to 0:

pred′ ≡ λn. try (pred n) with ε -→ 0 : N→N

As Fx is an extension of System F, we can define lists using second-order
encodings. Let us recall such encodings of list:

list ≡ ∀β. ∀α. (α→ (β→α→α)→α)
nil ≡ λn. λc. n : list
cons ≡ λi. λl. λn. λc. c i (l z c) : ∀β. β→ list(β)→ list(β)

where we use the shortcut notation list(A) ≡ ∀α. (α→ (A→α→α)→α).
We can now define head and tail functions that raise an exception when

applied to the empty list. Notice that the code of the tail function relies on
the same “trick” than the one of the predecessor for natural numbers in their
second-order encoding version:

head ≡ λl. l (raise ε) (λi. λr. i) : list→∀β. β �∪{ε}
tail′ ≡ λl. λn. λc. (l (λx. n) (λe. λx. λy. y i (x c))) (λx. λy. y)
tail ≡ λl. l (raise ε) (λn. λc. tail′ l) : list→list �∪{ε}

We now define the mapping of a function to a list of integers:

map ≡ λf. λl. λn. λc. l n (λi. λr. c (f i) r) : (N→N)→ list(N)→ list(N)

Then we can define a (not very useful) function mapping to a list a function that
take the successor of the predecessor of the elements:

foo ≡ map (λe. S (pred e)) : list(N)→ list(N{ε})

Now, if given a list l, foo l has type list(N{ε}) and we can still get the head
of the list with head (foo l). However, this natural number can be corrupted (if

A System F with Call-by-Name Exceptions 331

the first element of l is 0) and if we want to check for the corruption, we can use
the following function, that ‘uncorrupts’ integers :

eval ≡ λn. (rec (λa. a) (λm. λr. λa. r (S a)) n) 0 : NΔ→N �∪Δ

To type this function, we instantiate the type of the recursion operator by the
type (N→N �∪Δ) �∪Δ.

5 Realizability Model

5.1 Daimon, Weak Head Reduction and Contexts

We add a daimon, �, similar to the one of [3]. It has no typing rules and com-
putationally behaves like an uncatchable exception.

A (closed) term is in weak head normal form, if it is in one of the following
forms (where V is a value):

whnf ::= V | raise ε | �

Rules for weak head reduction (<h) are given in Figure 4. The transitive and
reflexive closure of <h is noted <∗h.

M > M ′

M �h M
′

M �h M
′

M N �h M
′ N

M �h M
′ N �h N

′

tryM with ε �→ N �h tryM ′ with ε �→ N ′
M �h M

′

rec X Y M �h rec X Y M ′

Fig. 4. Weak head reduction

A context is a term with a hole (denoted by []) and is defined by:

C ::= [] | C N | tryC with ε -→ � | rec M N C

The set of all contexts is noted C and the term obtained by filling the hole of a
context C with the term M is noted C[M]. Note the restriction in the handler of
try to �. In fact, we consider contexts up to the following equivalence relation:

try (try [] with ε1 -→ �) with ε2 -→ � ≡ try (try [] with ε2 -→ �) with ε1 -→ �

Then, Δ being the set of exception {ε0, . . . , εn}, we denote by try [] withΔ -→�
the context try . . . try [] with ε0 -→ � . . . with εn -→ �.

5.2 Operations on Sets

We define some operations on sets of contexts :
S⊥ = {M | ∀C ∈ S, C[M] <∗ � }

A · S = { C
[
[] N

]
| C ∈ S, N ∈ A }

S ◦ T = { C[D[]] | C ∈ S, D ∈ T }
↓ΔS = S ◦ { try [] withΔ -→ � }
↑ΔS = { try [] withΔ -→ � } ◦ S

332 S. Lebresne

5.3 A Model for Fx

We define a realizability model for Fx using techniques of orthogonality (see [11]
for examples of use of such techniques). We call valuation function any function ρ
from type variables to the powerset of C minus the empty set (ρ : A→ (P(C))+).
To each type A we associate two sets:

A set of contexts |A |ρ ⊆ C
A set of terms �A �ρ ⊆ T

The set �A �ρ is uniformly defined from |A |ρ by

�A �ρ = |A |ρ⊥ = {M | ∀C ∈ |A |ρ, C[M] <∗ � }.

The set |A |ρ is defined by induction on A by:

|α |ρ = ρ(α)
|N |ρ = { rec � (λy. λx. x) [] }

|A �∪Δ |ρ = ↓Δ |A |ρ
|AΔ |ρ = ↑Δ |A |ρ

|A→B |ρ =
⋃

Δ⊆E
(|AΔ |ρ)

⊥ · |BΔ |ρ

| ∀α.A |ρ =
⋃

S⊆C+

|A |ρ;α←S

Note that the interpretation in the model of the construction A �∪Δ and AΔ

follows, to some extends, the idea that terms of type A �∪Δ are terms that may
raise an exception only at top level, where terms of AΔ are those that may raise
an exception in any evaluation context. This is emphasized by the “opposition”
of the operations ↓Δ and ↑Δ .

The other interesting point of the model is the interpretation of arrow types.
In Fx, a function f who has type A→B has also all the types AΔ→BΔ for
any Δ. Our arrow type is thus smaller than the usual realizability one and so,
functions of Fx are in particular realizability functions.

We define the interpretation of a typing context Γ by:
�Γ �ρ = { σ | ∀ (x : A) ∈ Γ, σ(x) ∈ �A �ρ }

Moreover, if σ is a substitution of term variables and M is a term, we use the
notation M [σ] for the parallel substitution of M by σ, which consists in applying
σ to all free variables of M in parallel. We can now show that our interpretation
is sound with respect to typing:

Theorem 3 (Model soundness). If M is a term, A a type and Γ a typing
context such that Γ � M : A, then for all valuation function ρ and for all
substitution σ ∈ �Γ �ρ we have M [σ] ∈ �A �ρ.

Note that in this model, we only consider closed terms by construction. For
this very reason, we cannot establish a strong normalization theorem using this
model. But, from the model, we obtain a weak head normalization theorem:

Theorem 4 (Weak head normalization). If M is a closed term, A a type
and Γ a typing context such that Γ � M : A, then M has a weak head normal
form.

A System F with Call-by-Name Exceptions 333

The model allows us to prove that our typing of exceptions is safe for the prim-
itive data types, the natural numbers:

Lemma 1 (type safety for natural numbers). If M is a term such that
�M : N, then M <∗ Sn 0 for some n≥0.

Hence, if a program is of the type of the natural numbers, we assure that it will
compute a true natural number without producing errors.

6 Related Works

Many works about the static detection of uncaught exceptions have been done,
based on typing or not. For instance, for the OCaml languages, J.C. Guzmn and
A. Surez [4] have proposed an extension of the type system where arrows are
annotated by which exceptions a function can raise. Later, X. Leroy and F. Pes-
saux [7] proposed a similar system but add polymorphism over these annotations.
Their solution is efficient and covers all the Ocaml language, including modular-
ity. However, all these works consider exceptions in call-by-value languages and
rely heavily on the exceptions-as-control-flow paradigm.

In the literature, exceptions are often considered as control operators [10].
However and contrarily to most control operators, the typing of exceptions does
not necessarily lift the logic to a classical one. Besides, in this paper, we address
the problem of the static detection of uncaught exceptions. We do not know of
previous works on control operators dealing with this particular problem.

Exceptions in type theoretical settings have been less studied. However,
R. David and G. Mounier [1] have designed a typed mechanism of exceptions
for the language AF2. But their exceptions are restricted in the sense that only
data types can carry exceptions.

7 Conclusion and Future Works

We have presented the Fx calculus, an extension of System F with typed ex-
ceptions. We have presented a mechanism of exceptions that does not force a
particular β-reduction strategy for the calculus. We have also provided a type
system for this mechanism that performs static detection of uncaught exceptions.
This type system is modular and allows the use and propagation of exceptions
to be transparent for the programmer. Finally, we have justified the semantic of
our calculus by exhibiting a realizability model.

We believe that our calculus can be extended in the following ways:

– We conjecture, but have not proved yet, the subject-reduction property for
Fx. The difficulty lies in the interaction between subtyping and implicit
polymorphism. However, we do have proved that the restriction of Fx to
first-order types have the subject-reduction property, and we believe that in
adapting our exceptions to languages with explicit polymorphism (like the
dependent product), we will not encounter this problem. Besides, for Fx,

334 S. Lebresne

we have shown that our model allows us to state a type safety lemma that
makes the proof of the subject-reduction property less urgent.

– Our realizability model only allows to state a weak normalization theorem.
To turn it into a strong normalization one, we need to find a suitable notion
of saturated sets (that can handle open terms).

– We can extend the calculus to allow exceptions to carry informations.
– A natural extension would be to add dependent product to our calculus,

and we have good hopes that such an extension can be done. At least, we
already know how to extend our realizability model to handle the dependent
product: if T is a type and Ux a type family indexed by x, we will take

|Πx : T. U |ρ =
⋃

Δ⊆E
{M · C |M ∈ �TΔ �ρ ∧ C ∈ |UΔ

M |ρ }

– Type inference in Fx is obviously undecidable [16]. However, type inference
for the restriction of Fx to first-order types remains to be studied, and we
have good hopes that it is decidable, since we know that in such a restriction,
the subtyping relation is decidable.

Acknowledgments. This work benefited from several discussions with and
suggestions from Hugo Herbelin and Alexandre Miquel.

References

1. David, R., Mounier, G.: An intuitionistic λ-calculus with exceptions. Journal of
Functional Programming 15(01), 33–52 (2004)

2. The Coq development team. The Coq Proof Assistant Reference Manual v8.1
(2006)

3. Girard, J.Y.: Locus Solum: From the rules of logic to the logic of rules. Mathemat-
ical Structures in Computer Science 11(03), 301–506 (2001)

4. Guzman, J., Suarez, A.: An extended type system for exceptions. In: Proceedings
of the ACM SIGPLAN Workshop on ML and its Applications, pp. 127–135 (1994)

5. Mitchell, J.C.: Polymorphic type inference and containment. Information and Com-
putation 76(2-3), 211–249 (1988)

6. Moggi, E.: Notions of computation and monads. INF. COMPUT. 93(1), 55–92
(1991)

7. Pessaux, F., Leroy, X.: Type-based analysis of uncaught exceptions. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 276–290 (1999)

8. Peyton Jones, S., Reid, A., Henderson, F., Hoare, T., Marlow, S.: A semantics for
imprecise exceptions. ACM SIGPLAN Notices 34(5), 25–36 (1999)

9. Spivey, M.: A functional theory of exceptions. Science of Computer Program-
ming 14(1), 25–42 (1990)

10. Thielecke, H.: Comparing Control Constructs by Double-Barrelled CPS. Higher-
Order and Symbolic Computation 15(2), 141–160 (2002)

11. Vouillon, J., Melliès, P.A.: Semantic types: a fresh look at the ideal model for types.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 52–63 (2004)

A System F with Call-by-Name Exceptions 335

12. Wadler, P.: How to Replace Failure by a List of Successes A method for excep-
tion handling, backtracking, and pattern matching. Functional Programming Lan-
guages and Computer Architecture (1985)

13. Wadler, P.: Comprehending monads. In: Proceedings of the 1990 ACM conference
on LISP and functional programming, pp. 61–78 (1990)

14. Wadler, P., Thiemann, P.: The marriage of effects and monads. ACM Transactions
on Computational Logic (TOCL) 4(1), 1–32 (2003)

15. Wells, J.B.: The undecidability of Mitchells subtyping relation. Technical Report
95-019, Boston University, Boston, Massachusetts (1995)

16. Wells, J.B.: Typability and type checking in System F are equivalent and undecid-
able. Annals of Pure and Applied Logic 98(1-3), 111–156 (1999)

Linear Logical Algorithms

Robert J. Simmons and Frank Pfenning

Carnegie Mellon University
{rjsimmon,fp}@cs.cmu.edu

Abstract. Bottom-up logic programming can be used to declaratively
specify many algorithms in a succinct and natural way, and McAllester
and Ganzinger have shown that it is possible to define a cost seman-
tics that enables reasoning about the running time of algorithms writ-
ten as inference rules. Previous work with the programming language
Lollimon demonstrates the expressive power of logic programming with
linear logic in describing algorithms that have imperative elements or
that must repeatedly make mutually exclusive choices. In this paper, we
identify a bottom-up logic programming language based on linear logic
that is amenable to efficient execution and describe a novel cost seman-
tics that can be used for complexity analysis of algorithms expressed in
linear logic.

Keywords: Bottom-up logic programming, forward reasoning, linear
logic, deductive databases, cost semantics, abstract running time.

1 Introduction

Logical inference rules are a concise and powerful tool for expressing many al-
gorithms in a declarative way. In the last decade, several lines of work have
advanced the argument that it is not only possible but convenient to formally
reason about the running time of algorithms expressed as inference rules.

Work on this topic can be broadly categorized into two groups: work that
takes a language similar to the pure bottom up logic programming language
presented by McAllester [1] and automates reasoning about the complexity of
algorithms expressed in that language [2,3], and work aimed at allowing analysis
for logic programming languages with richer features [4,5,6].

This paper falls into the second category; we present a bottom-up logic pro-
gramming language based on intuitionistic linear logic [7] that cleanly inte-
grates a notion of state transition with the saturating forward reasoning present
in bottom-up logic programming. We follow the two-part approach taken by
McAllester and Ganzinger in [1,4,5]. First, we give the language a dynamic cost
semantics called the abstract running time that looks at a chain of logical infer-
ences as a computation and defines the cost of that computation, and then we
describe an interpreter that can be shown to execute those computations in time
proportional to the abstract running time. Both of these concepts are critical –
without the interpreter, there is no reason to believe that the notion of abstract

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 336–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Linear Logical Algorithms 337

edge(x, y)
edge(y, x)

r1
edge(x, y)
path(x, y)

r2

edge(x, y)
path(y, z)

path(x, z)
r3

Fig. 1. A simple pure, bottom-up program for computing graph connectivity

running time is based in reality, and without the definition of abstract running
time, reasoning about the complexity of algorithms requires understanding the
intricacies of the interpreter’s implementation.

We start by briefly describing a pure logic programming language [1] in which
various graph algorithms and program analyses can be expressed concisely and
executed efficiently. One example is the program in Fig. 1 that computes con-
nectivity over an undirected graph.

Given a graph G = (E, V), this algorithm starts with a database that has a
fact edge(a, b) for every edge (a, b) ∈ E. The intended meaning of this program
is that path(a, b) should hold if and only if there is a path between vertex a and
b in graph G. Here, and throughout the paper, we will represent constants as
a, b, c, . . . and variables as x, y, z, . . ., and we will insist that all the terms in our
database be ground, meaning that they contain no free variables, and that all
rules be range-restricted, meaning that the variables in the conclusions (below
the line) are a subset of the variables in the premises (above the line). This last
restriction ensures that the database continues to contain only ground facts as
new facts are derived.

In order to calculate the path relation, rules are applied exhaustively in the
forward direction until saturation is reached; that is, until no possible forward
inference can cause us to learn anything new. The closure of an initial database
Γ under the rules in a program P (written CloP (Γ) or just Clo(Γ)) is the smallest
set containing Γ closed under the rules in P . Unlike Datalog, the language con-
tains function symbols, so the closure may be infinite; however, we are interested
only in programs with a finite closure.

The pure bottom-up logic programming language sketched above and described
fully in [1] and elsewhere has great expressive power but also some obvious limi-
tations. We will briefly mention related work on efforts related to our own.

Consider the way we encoded the graph G in Fig. 1. The collection of edges
was represented not as a matrix or an adjacency list, but merely as a collection of
facts – the data structure that we were working over was implicit in the database.
This idiom of database-as-data-structure is a strength of this declarative style of
programming, as details of underlying data structures can be omitted. However,
because the notion of database we use is one that incrementally “learns” all
derivable facts in an unspecified manner, it is difficult to describe algorithms
that have distinct states or phases. Several attempts at addressing this problem
amount to the identification of reasonable forms of locally stratified negation,
such as temporal [8] or XY [9] stratification. However, stratified negation cannot
easily describe algorithms that must repeatedly take only one of a number of
possible steps, and this can make specifying greedy algorithms difficult [6].

338 R.J. Simmons and F. Pfenning

Several disconnected lines of research have approached this problem. Greco
and Zaniolo describe a variant of Datalog with an intrinsic notion of choice that
has a semantics based on stable models and can naturally express a number of
greedy algorithms [6]. They define an execution model for their system and
show a number of complexity results, but they do not give a cost semantics, so
all complexity results are based on directly reasoning about the interpreter.

Ganzinger and McAllester [5] do not explicitly consider the applicability of
their system to greedy algorithms, but they demonstrate that their system, based
on deletion of facts and priorities on rules, can express many of the same algo-
rithms that motivated Greco and Zaniolo, such as algorithms computing min-
imum spanning trees and shortest paths. Unfortunately, the expressiveness of
their system is hard to determine because they define an unusual notion of dele-
tion that does not have any clear logical justification.

Pfenning and López et al. [10,11] propose linear logic as a more principled
foundation of Ganzinger and McAllester’s work. They show that their imple-
mentation of a linear logic programming language, Lollimon, is powerful enough
to express many of the algorithms shown in Ganzinger and McAllester’s previous
work. However, they cannot reason about the running time of such algorithms,
only their correctness, and complexity results would seem to be very difficult to
obtain in a language such as Lollimon that allows for almost arbitrary integration
of forward and backward chaining.

The primary contribution of this paper is the presentation of a programming
language based on bottom-up reasoning in linear logic – essentially a first-order,
Horn-like fragment of Lollimon – that is both useful for the specification of al-
gorithms and in the analysis of their running time. To our knowledge, this is
the first such result for a programming language based on linear logic. Section
2 describes the use of first-order linear logic in specifying a number of simple
algorithms. Section 3 defines the operational semantics and cost semantics of the
language, demonstrates the use of cost semantics in reasoning about complexity,
and briefly describes the interpreter that demonstrates that the cost semantics
are reasonable. Section 4 concludes and mentions a number of possible exten-
sions to the basic, pure language considered here.

2 Bottom-Up Programming in Linear Logic

The pure bottom-up logic programming language introduced in the previous
section is built from atomic propositions like nat(n), edge(a, b), and path(v, u).
These facts represent truth in the usual, mathematical sense - the rule r2 in
Fig. 1 says that if we know that there is an edge between some vertices a and
b, we can also know that there is a path between them. However, after we learn
path(a, b), we still know edge(a, b), because we treat truth as persistent.

Linear logic has a notion of persistent truth, but also has a notion of truth
that describes the current (and possibly changing) state of the world. We refer
to this notion of “truth in the current state of the system” as ephemeral truth,
and in addition to the persistent atomic propositions that we have previously

Linear Logical Algorithms 339

wins(x,n)
wins(y, n)

wins(x, s(n))
won(x, y, n)

Fig. 2. A simple linear logic program describing arbitrary single-elimination tourna-
ments

seen, we introduce ephemeral (or linear) atomic propositions that we distinguish
from persistent propositions by using an underline: linear(x).

Rules with ephemeral propositions as premises introduce the possibility of
changing the state of the world. The rule given in Fig. 2 describes a single-
elimination tournament in which any team can play another team that has the
same number of wins. If we have two teams a and c that have both won zero
games, we can represent this as the two linear atomic propositions wins(a, z)
and wins(c, z). These atomic propositions satisfy the two premises of the rule
in Fig. 2. If we arbitrarily let x = c and y = a, treating c as the “winning
team,” the rule represents the possibility of transitioning from a state where
both teams a and c have won zero games and are still in the running to a state
where team c has won one game and where team a is out of the running. There
is no wins(y, n) in the conclusion because the tournament is single-elimination
– after losing, a team cannot play any other teams. Applying this rule requires
consuming the two linear propositions we had before and replacing them with
a single new linear atomic proposition wins(c, s(z)). Applying the rule also adds
the persistent atomic proposition won(c, a, z) to the database, which represents
a persistent record of the fact that c defeated a in round z.

Changes to the state of a system are not necessarily reversible. While we could
imagine a backtracking semantics that would eventually consider team a beating
team c, or consider them playing other teams in the first round, we instead read
rules with linear premises as describing a committed choice – once we apply a
rule that consumes an ephemeral proposition, we will never consider any other
way that proposition could have been consumed. Put another way, while our
rules may describe a system that can evolve in many ways from an initial state,
when reading our rules as an algorithm, the algorithm will follow one particular
evolution of that system in a don’t-care nondeterministic manner.

We can use these ephemeral atomic propositions to support algorithms that
require certain actions to happen a fixed number of times, as well as algorithms
that require some actions to be mutually exclusive. The example in Fig. 3 is a
linear algorithm to compute a spanning tree of a connected, undirected graph
G = (E, V) that has some distinguished vertex root ∈ V . The input to the
algorithm is a persistent atomic proposition edge(a, b) for every edge (a, b) ∈ E
and a single ephemeral atomic proposition vert(a) for every vertex a ∈ V . We
view the relation tree as a directed subgraph of G where tree(a, b) is true iff there
is an edge from a to b in the tree.

Correctness of this spanning tree algorithm follows from invariants maintained
by the rules. Take V ′ to be the set of all x such that intree(x) holds, and take E′

340 R.J. Simmons and F. Pfenning

edge(x, y)
edge(y, x)

r1
vert(root)

intree(root)
r2

edge(x, y)
intree(x)
vert(y)

tree(x, y)
intree(y)

r3

Fig. 3. Finding a rooted spanning tree of an undirected graph

to be the the set of all ordered pairs (x, y) such that tree(x, y) holds. We have
two state invariants, maintained by rule application:

1. E′ is a subgraph of E and a spanning tree over V ′.
2. The set V/V ′ is always the set of variables x′ such that vert(x′) holds.

The two examples in Fig. 4 are more imperative in nature; both take as inputs
some multiset of items represented by linear atomic propositions of the form
item(x) and place them into a data structure. The program on the left requires
an additional input of the form list(nil) and collects items into a list represented
by a structured term, using x :: l as a shorthand for cons(x, l). The program
on the right requires no additional inputs, and collects items into a forest of
binary-heap-like trees. Trees are represented as linear atomic propositions of the
form tree(n, t), where n is a natural number expressing the depth of the tree and
t is a structured term representing the actual tree, a term consisting of an item
and a list of subtrees.

These examples bring up another important property of linear/ephemeral
propositions. For the purposes of bottom-up logic programming, deriving a per-
sistent proposition twice is not any different than deriving it once; however, with
linear propositions we are concerned with the multiplicity of those propositions:
having two copies of item(a) is different than having one. We will ensure that we
can unambiguously refer to linear propositions by labelling them uniquely. For
instance, the list-collection example on the left side of Fig. 4 could, from the mul-
tiset of atomic propositions {l0 : list(nil), l1 : item(a), l2 : item(a), l3 : item(b)},
derive list(a :: b :: a :: nil) and list(a :: a :: b :: nil), but not list(a :: a :: a :: nil),
because there are only two linear resources item(a) and the derivation of that
proposition requires three such resources. Committed choice ensures that we
will only compute one of the three possible lists, or more generally one of the !n
possible lists given n distinct items.

These examples demonstrate the power of linear logic to express algorithms
that would be difficult or inelegant to code in a system without linear resources.

item(x)
list(l)

list(x :: l)

item(x)

tree(z, node(x,nil))

tree(n, node(x, ts))
tree(n, t)

tree(s(n), node(x, t :: ts))

Fig. 4. Arbitrarily collecting items in a list (left) or in a forest of trees (right)

Linear Logical Algorithms 341

In the next section, we will make this more formal by defining an operational
semantics based on linear logic and a cost semantics that allows us to reason
about running time and complexity without knowing the details of an interpreter
for the language.

3 Language Semantics

In this section, we will develop the tools for reasoning about the algorithms we
began to specify in the previous section. Two of the fundamental properties of
an algorithm are its run time behavior, specified by an operational semantics,
and its running time, specified by a cost semantics. We will describe both.

We have already presented a number of programs, but we will formally define
a program P as a series of rules. Each rule has one or more atomic propositions
A0, . . . , An−1 as premises and zero or more atomic propositions C0, . . . , Cm−1

as conclusions; for example, in clause r2 of Fig. 3, A0 = vert(root) and C0 =
intree(root). There are two additional restrictions on the form of rules:

– Range restriction. The free variables in the conclusion must be a subset of
the free variables in the premises. This ensures that a ground database will
remain ground when inference rules are applied.

– Separation. The program must consistently identify some propositions as
linear and some as persistent; this was indicated before by writing linear
propositions as prop and persistent propositions as prop. Separation also
requires that in any rule with linear atomic propositions among the con-
clusions C0, . . . , Cm−1, at least one of the premises A0, . . . , An−1 must be
a linear atomic proposition. This requirement helps ensure that we will not
“flood” the database with unlimited copies of ephemeral propositions, and
also allows us to implement the saturation function Clo effectively.

3.1 Operational Semantics

In this section, we describe an operational semantics for the language we have
defined, noting that the operational semantics does not make much sense as an
implementation, as it makes transparently bad choices like running saturating
forward chaining redundantly. The input is a finite initial state 〈Γ0, Δ0〉 where
Γ0 is a set of persistent propositions and Δ0 is a set of labeled linear propositions;
a program trace is a finite list of states 〈Γ0, Δ0〉 . . . 〈Γm, Δm〉.

For each state 〈Γi, Δi〉, the operational semantics calculates the saturated
database Clo(Γi) of all the persistent atomic facts that are implied by Γi in P
by exhaustive forward reasoning, not involving linear propositions in any way.
Assuming the process of saturated forward inference terminates, the operational
semantics picks an arbitrary rule r ∈ P and a grounding substitution σ (that
is, a substitution that maps every free variable x in the rule to a variable-free
term t) such that, for each premise Ai of the rule r, Aiσ is in Clo(Γi) (if it is
persistent) or Δi (if it is linear). Applying that rule removes one or more linear

342 R.J. Simmons and F. Pfenning

resources from Δi and adds each conclusion Ciσ to either Γi or Δi depending
on whether Ci is linear or persistent. This results in a new state 〈Γi+1, Δi+1〉,
and the trace is extended. If there is no rule r and substitution σ satisfying the
conditions described above, then the trace cannot be extended and is called a
complete trace.

The operational semantics separates treatment of monotonic deduction that
involves only persistent propositions and the committed choice reasoning that
involves consuming ephemeral propositions. This distinction will be reflected in
the definition of abstract running time, but we can already see that it is reflected
in the arguments about the termination of algorithms. It was mentioned in
Section 1 that we have to give an argument that the closure will be finite, as this
is not true in general; we also have to give a termination argument bounding the
length of the program trace by bounding the number of possible applications of
rules with linear premises.

3.2 Linear Logic

While many details are beyond the scope of this paper, we will sketch the de-
scription of the language and operational semantics in terms of intuitionistic
linear logic; our system is a fragment of the judgmental reconstruction of first
order intuitionistic linear logic described in [7,12]. The necessary fragment of
linear logic is roughly analogous to the Horn fragment of standard intuitionistic
logic.

Atomic propositions A
Basic propositions Q ::= A | !A
State propositions S ::= Q | 1 | S ⊗ S
State transitions R ::= S | S � R | ∀x.R
Persistent hypotheses Γ ::= · | Γ,R pers
Ephemeral hypotheses Δ ::= · | Δ,R eph

The translation of a rule r with premises A0, . . . , An−1 and conclusions C0, . . . ,
Cm−1 is the persistent proposition

r : ∀x0.Q0 � . . . � ∀xn−1.Qn−1 � (Q′0 ⊗ . . .⊗Q′m−1)

with Qi = Ai if Ai is an ephemeral atomic proposition and Qi = !Ai if Ai is a
persistent atomic proposition, and similarly for Q′i and Ci. The “curried” form
is intended to clarify that the variables xi first occur in the premise Qi.

Judgments in the sequent calculus presentation of intuitionistic linear logic
have the form Γ ;Δ � R eph ; we write R pers to indicate that R is persistent, and
we write R eph to indicate that R is ephemeral. We omit writing the translated
rules from the program P that are tacitly included in Γ .

The concepts of polarity and focusing as described in [13] are useful in describ-
ing logic programming from a proof theoretic perspective. In particular, focusing
allows us to define derived rules in linear logic for any formula in the fragment
described above. If we have a rule with premises a and b, and with conclusions

Linear Logical Algorithms 343

c and d, we express that rule in linear logic as a � !b � (c ⊗ !d). If we treat
every atomic proposition as having positive polarity, focusing on the persistent
proposition a � !b � (c⊗ !d) gives this derived inference rule:

Γ ; · � b eph Γ, d pers ;Δ, c eph � γ

Γ ;Δ, a eph � γ

where γ is an arbitrary conclusion.
What we see from these rules is that our “next state” actually appears in the

premise of the derived rule; this may seem a bit unnatural, but it is consistent
with Lollimon and other linear logic programming languages [11].

We have left out the details that allow us to actually prove the following theo-
rems, but we can still state the soundness and (non-deterministic) completeness
of our language with respect to linear logic.

Theorem 1 (Soundness of operational semantics)
For any (separated and range-restricted) program P and for any program trace
〈Γ0, Δ0〉 . . . 〈Γm, Δm〉, given a sequent of the form Γm;Δm � γ for an arbitrary
γ, there exists a derivation of Γ0;Δ0 � γ.

Proof By induction on the length of the abstract trace. We need a lemma that
if A ∈ Clo(Γ), then Γ ; · � A eph .

Theorem 2 (Nondeterministic completeness of operational semantics)
For any (separated and range-restricted) program P , if the sequent Γ0;Δ0 � γ
is derivable using the sequent Γm;Δm � γ, where Γ0, Δ0, Γm, and Δm contain
only ground, atomic propositions and γ is an arbitrary conclusion, then there
exists some program trace 〈Γ0, Δ0〉 . . . 〈Γ ′m, Δm〉 where Clo(Γm) = Clo(Γ ′m).

Proof. By induction on focused derivations. We need a lemma that if Γ ; · �
A eph, then A ∈ Clo(Γ).

Theorem 2 says that if we can “work on the left” in linear logic from a sequent
Γ0;Δ0 � γ to a sequent Γm;Δm � γ, then some trace obeying the operational
semantics follows an equivalent path; however, because the operational semantics
allows an arbitrary choice of which applicable rule with linear premises to apply,
a correct implementation of the operational semantics might never take such a
path.

3.3 Cost Semantics

We define, following Ganzinger and McAllester [4,5], a cost semantics called
the abstract running time. This cost semantics will allow us to reason about
algorithms written in this language, such as the ones in in Section 2, without
considering the details of the implementation. The abstract running time of a
trace 〈Γ0, Δ0〉 . . . 〈Γm, Δm〉 is the sum of four components: |Γ0|+ |Δ0|+ m + Φ.
The first two components, |Γ0| and |Δ0|, are just the number of persistent and
linear resources (respectively) given as input. The other two components are
m, the number of transitions involving rules with linear premises, and Φ, the
number of unique prefix firings – a quantity we will now define.

344 R.J. Simmons and F. Pfenning

Definition 1 (Prefix firing). Let 〈Γ0, Δ0〉 . . . 〈Γm, Δm〉 be a program trace of
a program P . A prefix firing is a triple 〈r, σ, [l0, . . . , lk−1]〉 such that

– There is a rule r in P with premises A0, . . . , An−1.
– The substitution σ assigns a ground term for every free variable in the

premises A0, . . . , Ak−1.
– There is some state 〈Γi, Δi〉 where for all 0 ≤ j < k, either Ajσ ∈ Clo(Γi)

or lj : Ajσ ∈ Δi, and either
• All of A0, . . . , Ak−1 are persistent atomic propositions, or else
• k < n and there is no substitution σ′ that assigns the same terms as

σ to the free variables in A0, . . . , Ak−1 and additionally assigns ground
terms to all the free variables in Ak such that Akσ

′ ∈ Clo(Γi) or such
that l : Akσ

′ ∈ Δ′i, where Δ′i is Δi with all the linear propositions labeled
l0, . . . , lk−1 removed.

As mentioned previously, if multiple instances of the ground linear proposition
appear in Δi, they have distinct labels and can be used to form distinct prefix
firings. Because we don’t care about labels of persistent atomic propositions, and
the definition doesn’t use them, we write them as an underscore “ ”.

The majority of the definition just expresses the fact that the order of premises
matters; the last bullet point is the complicated one. It describes the conditions
where we can ignore would-be prefix firings that include linear propositions; we
can do so if we know that, in every state, we will always be able to expand the
prefix firing to a larger one.

3.4 Using the Abstract Running Time

Because the operational semantics is quite nondeterministic, and because our
cost semantics depends on the number of steps taken using of rules with linear
premises, we can expect reasoning in general about the running time of programs
to be undecidable. However, for well-designed programs it is usually still possible
to effectively reason about both the number of prefix firings and the length of
the program trace in order to get an informative abstract running time. We
give an example in this section, and the extended technical report [14] shows a
similar analysis that gives the list collection and heap collection example in Fig.
4 running times in O(n) and O(n log n), respectively, where n is the number of
input items.

We will show that the spanning tree algorithm in Fig. 3 has an abstract
running time in O(|E| + |V |), that is, proportional to the number of edges plus
the number of vertices. The abstract running time is |Γ0| + |Δ0| + m + Φ. It is
obvious that |Γ0| = |E| and |Δ0| = |V | based on how the problem is set up;
also, because every linear transition consumes a linear resource corresponding
to some v ∈ V , an abstract trace can have at most |V | transitions, which is to
say that m is bounded by |V |.

We consider the prefix firings for each of the three rules in turn. Rule r1
can have at most 2|E| prefix firings, as every edge (a, b) ∈ E leads to two facts:

Linear Logical Algorithms 345

edge(a, b) and edge(b, a). Rule r2 has no prefix firings, as it has one linear propo-
sition that is either there or not. Rule r3 can have at most 4|E| prefix firings.
The first premise edge(x, y) effectively “grounds” the rest of the premises, lead-
ing to 2|E| prefix firings of the form 〈r3, σ, []〉, and the final state will include
intree(a) for every vertex a, resulting in at most 2|E| prefix firings of the form
〈r3, σ, [,]〉. However, there are no prefix firings of the form 〈r3, σ, [, , l]〉, be-
cause a prefix firing that covers all the premises does not meet the condition
that k < n. This gives us an abstract running time bounded by 2|V |+ 7|E|, so
the abstract running time is in O(|E| + |V |).

3.5 Implementing the Operational Semantics

This theorem describes the relationship between the operational semantics, the
cost semantics, and the interpreter; it is a is a close analogue to the comparable
theorem in [5].

Theorem 3. For any terminating program P, there exists an interpreter run-
ning on a RAM machine extended with constant time hash table operations
such that for any initial state 〈Γ0, Δ0〉 the interpreter executes a complete trace
〈Γ0, Δ0〉, . . . , 〈Γm, Δm〉 and returns Clo(Γm) and Δm in time proportional to the
abstract running time of the trace.

Theorem 3 establishes that reasoning about the behavior of algorithms described
in the language we have presented is a three-part process. First, we must demon-
strate that, for a given program, Clo(Γ) is always finite that no trace of the op-
erational semantics can have unbounded length. Second, we must give a bound
to the abstract running time of all possible complete traces in terms of the
initial state. Having done so, Theorem 3 ties the knot by ensuring that the im-
plementation will execute one of the possible complete traces and will do so in
time proportional to the abstract running time of that trace. Because we have
bounded the abstract running time of any arbitrary trace, we know that the
trace actually executed by the interpreter has an abstract running time within
that bound and is therefore executed in time proportional to that bound.

The interpreter that establishes Theorem 3 is sketched here and described
fully in the extended version of this paper [14]. Given a program, we create a
derived program where for each rule r with n premises in the original program,
the derived program has 2n rules and introduces 2n new atomic propositions
(referred to as derived propositions), one for each premise Ai and one for each
prefix A0, . . . , Ai. The derived propositions expose variables that are shared be-
tween premises of a rule, allowing an index to efficiently discover premises with
matching instantiations of those variables. Two work lists (queues) – one deal-
ing with persistent propositions and one dealing with ephemeral propositions –
together contain all the immediate consequences of the facts in the index.

The portion of the interpreter dealing with purely persistent propositions is
similar to the interpreter in [1]. When a fact is removed from the persistent
work queue and added to the index, the index is used to find all immediate

346 R.J. Simmons and F. Pfenning

consequences of that fact and those already in the index; these consequences
are added to the queue. The treatment of linear atomic propositions is novel.
The index and linear work queues are allowed to temporarily contain multiple
derived propositions that are all consequences of Δi, the current multiset of non-
derived atomic propositions, even if some cannot simultaneously be consequences
of Δi because they require consuming the same ephemeral propositions. These
ephemeral propositions are only consumed when a rule from the original program
is applied, in the process removing all the derived propositions that depended
on the consumed propositions.

In order to avoid unnecessarily declaring and then deleting atomic proposi-
tions, upon removing an item from the linear work queue the index is recur-
sively used to find the first atomic proposition implied by the program and the
dequeued proposition, find the first atomic proposition implied by that proposi-
tion, and so on. Either this will succeed until we have shown that A0, . . . , An−1

are all derivable, in which case we apply that rule, or it will fail, in which case
backtracking, depth-first search looks for a different way to fully apply the rule.
Each failure corresponds to a prefix that cannot be extended; therefore, each
successful search can be charged against the number of linear transitions, and
each unsuccessful search can be charged against the number of prefix firings
resulting from non-extendable prefixes that include linear propositions.

4 Conclusion and Future Work

We have described a bottom-up logic programming language that has a no-
tion of ephemeral truth as well as the more familiar notion of persistent truth,
and we have defined a cost semantics that allows for reasoning about the run-
ning time of programs written in this language. The language can be used
to express and analyze a number of algorithms that have a notion of stateful
change or nondeterministic update, and other algorithms are described in the
extended version [14]. Our system is unique among similar work in having a
proof-theoretic semantics based on focusing and linear logic. In the future, we
are interested in pursuing a number of extensions to the language described here,
including priorities similar to those in [5], temporal stratification and stratified
negation similar to [8], and a notion of equality to describe algorithms that use
union-find.

Acknowledgments. We would like to thank Michael Ashley-Rollman, Dan Licata,
and the three anonymous reviewers for their comments on earlier drafts of this
paper. This material is based upon work supported under a National Science
Foundation Graduate Research Fellowship by the first author.

We wish to dedicate this paper to Harald Ganzinger, with whom the second
author discussed some of the core ideas presented here, and whose untimely
passing prevented him from participating further in this research.

Linear Logical Algorithms 347

References

1. McAllester, D.A.: On the complexity analysis of static analyses. J. ACM 49(4),
512–537 (2002)

2. Nielson, F., Nielson, H.R., Seidl, H.: Automatic complexity analysis. In: Le
Métayer, D. (ed.) ESOP 2002 and ETAPS 2002. LNCS, vol. 2305, pp. 243–261.
Springer, Heidelberg (2002)

3. Liu, Y.A., Stoller, S.D.: From Datalog rules to efficient programs with time and
space guarantees. In: PPDP 2003: Proceedings of the 5th ACM SIGPLAN in-
ternational conference on Principles and practice of declaritive programming, pp.
172–183. ACM, New York (2003)

4. Ganzinger, H., McAllester, D.A.: A new meta-complexity theorem for bottom-up
logic programs. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS
(LNAI), vol. 2083, pp. 514–528. Springer, Heidelberg (2001)

5. Ganzinger, H., McAllester, D.A.: Logical algorithms. In: Stuckey, P.J. (ed.) ICLP
2002. LNCS, vol. 2401, pp. 209–223. Springer, Heidelberg (2002)

6. Greco, S., Zaniolo, C.: Greedy algorithms in Datalog. Theory Pract. Log. Pro-
gram. 1(4), 381–407 (2001)

7. Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic.
Technical Report CMU-CS-03-131, Carnegie Mellon University (April 2003)

8. Nomikos, C., Rondogiannis, P., Gergatsoulis, M.: Temporal stratification tests for
linear and branching-time deductive databases. Theor. Comput. Sci. 342(2-3), 382–
415 (2005)

9. Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The Deductive Database System
LDL++. Theory Pract. Log. Program. 3(1), 61–94 (2003)

10. Pfenning, F.: Linear logical algorithms. In: Workshop on Programming Logics in
memory of Harald Ganzinger, Saarbrücken (June 2005) (invited talk)

11. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic
programming. In: PPDP 2005: Proceedings of the 7th ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming, pp. 35–
46. ACM, New York (2005)

12. Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie
Mellon University (December 2006)

13. Chaudhuri, K., Pfenning, F., Price, G.: A Logical Characterization of Forward and
Backward Chaining in the Inverse Method. In: Automated Reasoning, vol. 4130,
pp. 97–111. Springer, Heidelberg (2006)

14. Simmons, R.J., Pfenning, F.: Linear Logical Algorithms. Technical Report CMU-
CS-08-104, Carnegie Mellon University (May 2008)

A Simple Model of Separation Logic for

Higher-Order Store

Lars Birkedal1, Bernhard Reus2, Jan Schwinghammer3,
and Hongseok Yang4

1 IT University of Copenhagen
2 University of Sussex, Brighton

3 Saarland University, Saarbrücken
4 Queen Mary, University of London

Abstract. Separation logic is a Hoare-style logic for reasoning about
pointer-manipulating programs. Its core ideas have recently been ex-
tended from low-level to richer, high-level languages. In this paper we
develop a new semantics of the logic for a programming language where
code can be stored (i.e., with higher-order store). The main improve-
ment on previous work is the simplicity of the model. As a consequence,
several restrictions imposed by the semantics are removed, leading to a
considerably more natural assertion language with a powerful specifica-
tion logic.

1 Introduction

Higher-order store is included in modern programming languages in the form
of code pointers and storable objects. “Higher-order” here refers to the fact
that one can keep not only data in the store but also procedures or commands
that manipulate the store themselves. It is widely used in systems code, such as
operating system kernels, device drivers and web servers. For instance, the Linux
kernel keeps multiple linked lists whose nodes store code fragments, and calls
those fragments in response to external events, such as a signal from a printer.

However, formal reasoning about higher-order store is still an open problem.
Although several sound program logics for higher-order store have been pro-
posed, they either are intended for machine code [4] or they fail to combine local
reasoning with intuitive rules for stored code while maintaining the simplicity of
Hoare logic for first-order store [6,15]. The difficulty is that a logic for higher-
order store should accommodate reasoning about “recursion through the store”,
a tricky implicit recursion implemented by stored procedures.

The goal of our research is to solve the problem of reasoning about higher-order
store using separation logic. Separation logic is a program logic for reasoning mod-
ularly about programs with pointers. It has been demonstrated that the logic sub-
stantially simplifies formal program verification in low-level C-like programming
languages as well as richer, higher-level languages [1,2,3,7,8,9,12,13,17]. Our aim
is to design program logics for higher-order store that keep all the benefits of

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 348–360, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Simple Model of Separation Logic for Higher-Order Store 349

separation logic, such as (higher-order) frame rules, while providing efficient,
sound proof rules for recursion through the store.

In this paper, we investigate the semantic foundations for developing sep-
aration logic for higher-order store. We build on previous work of Reus and
Schwinghammer [15], which identified key semantic challenges for such a logic,
and provided fairly sophisticated solutions based on functor categories. In this
paper, we take different approaches to the various problems, and as a result
obtain a more powerful logic and a substantially simpler semantic model.

We now give an overview of two key semantic challenges that are involved in
developing separation logic for higher-order store. We outline how those chal-
lenges were addressed in earlier work [15], and compare with our new model.

The first challenge is to find a model that validates the frame rule known from
separation logic [17]. In traditional models of separation logic [10], the sound-
ness of the frame rule relies on programs satisfying a frame property, which
says that the meaning of each program phrase only relies on its “footprint”.
To ensure that all program phrases – in particular, memory allocation – satisfy
the frame property, the models interpret commands as relations (i.e., functions
from input states to sets of output states), and memory allocation denotes a
function that nondeterministically picks new memory. Now, in a language with
higher-order store, the semantics involves solving recursive domain equations.
With nondeterministic memory allocation, one is naturally led to recursive do-
main equations using powerdomains. These are problematic not only because it
is unclear whether they can be used to show the existence of recursive proper-
ties of the heap but also because programs would no longer denote ω-continuous
functions, due to the countable nondeterminism arising from memory allocation.
Instead, Reus and Schwinghammer considered a functor category, indexed over
finite sets of locations, which made it possible to prove that programs obeyed a
frame property without relying on a nondeterministic allocator. However, this
involved two non-trivial aspects. First, recursive domain equations now had to
be solved not in an ordinary category of domains, but in the functor category.
Second, the frame property became a recursively defined property, whose ex-
istence required a separate non-trivial proof. While Reus and Schwinghammer
succeeded in defining a model that validates the frame rule, the technical com-
plications involved make it difficult to scale the ideas to richer languages and
richer logics, e.g., with higher-order frame rules [2,3,11].

In this paper we validate the frame rule without relying on the frame prop-
erty of programs. Instead, we “bake-in” the frame rule into the interpretation of
Hoare triples, using an idea from [3]. (This is described in detail in Section 4.)
In particular, this approach allows us to model memory allocation by a simple
deterministic allocator, so that we can model the programming language using
ordinary recursively defined domains, avoiding the complications in [15]. Fur-
thermore, the approach also allows us to validate a whole range of higher-order
frame rules and to include pointer arithmetic.

The second challenge is to validate proof rules for recursion through the
store [16]. Such rules essentially amount to having recursively defined

350 L. Birkedal et al.

e ∈ Exp ::= . . . | ‘C’ quote (command as expression)

C ∈ Com ::= skip | C1;C2 | if (e1=e2) then C1 else C2 no op, sequencing, conditional
| let x=new (e1, . . . , en) in C | free e allocation, disposal
| [e1]:=e2 | let y=[e] in C | eval [e] assignment, lookup, unquote

Fig. 1. Syntax of expressions and commands

specifications, which denote recursive properties of the domain for commands. It
is well-known that to establish the existence of such recursive properties of do-
mains one needs additional conditions involving, in particular, admissibility and
certain forms of downward closure [14]. In [15], these conditions were ensured
by restricting the assertion language of the logic. In the present paper, we avoid
such restrictions by changing the interpretation of triples and slightly modifying
the recursion rules. In particular, we use an admissible and downwards closure
of the post-condition, similar to the use of ⊥⊥-closure in [3] (see Section 4).

2 Programs, Assertions and Specifications

Programs. The abstract syntax of the programming language is presented in
Fig. 1. It is essentially as in [15], with dynamic allocation (but here we as-
sume a more realistic, deterministic memory allocator) and storable, parameter-
less procedures. The language is deliberately kept simple so that we can study
higher-order store without distraction. We point out two features of the lan-
guage which proved problematic for the semantics given in loc. cit. First, the
language assumes that addresses are natural numbers, so that it is possible to
apply arithmetic operations on addresses. Next, the language includes an allo-
cator that deterministically picks n-consecutive cells.

Assertions. The assertions P,Q, . . . used in Hoare triples are built from the
formulas of classical predicate logic and the additional separation logic assertions
that describe the heap (e -→ e′, emp, P ∗ Q and P −∗Q; cf. [17]). Note that
expressions in formulas can point to quoted code, as in x -→ ‘C’, so that they
can be used to specify properties of stored procedures. We use two abbreviations:

e -→ def= ∃x′. e -→x′, e -→ e1, .., en
def= e -→ e1 ∗ e+1 -→ e2 ∗ .. ∗ e+n−1 -→ en.

where x′ �∈ fv(e). We write Γ � P (: Assert) for some finite set of variables Γ ,
when the assertion P contains only free variables in Γ .

Specifications. Specifications are formulas of first-order intuitionistic logic with
equality. In addition, it includes Hoare triples as atomic formulas and invariant
extensions ϕ⊗ P (from [3]):

ϕ, ψ ::= e1=e2 | {P}C{Q} | ϕ⊗ P | T | F | ϕ ∧ ψ | ϕ ∨ ψ | ϕ⇒ψ | ∃x.ϕ | ∀x.ϕ

A Simple Model of Separation Logic for Higher-Order Store 351

Proof Rules for Stored Code

(
(∀�y.{P}eval [e]{Q}) ⇒ ∀�y.{P}C{Q}

)
⇒ ∀�y.{P ∗ e �→ ‘C’}eval [e]{Q ∗ e �→ ‘C’}

(where �y /∈ fv(e, C))

(∀x. (∀�y.{P ∗ e �→ x}eval [e]{Q ∗ e �→ x}) ⇒ ∀�y.{P ∗ e �→x}C{Q ∗ e �→ x})
⇒ ∀�y.{P ∗ e �→ ‘C’}eval [e]{Q ∗ e �→ ‘C’} (where x �∈ fv(P,Q, �y, e, C), �y /∈ fv(e, C))

(∀x. (∀�y.{P ∗ e �→ x}eval [e]{Q}) ⇒ ∀�y.{P ∗ e �→x}C{Q})
⇒ ∀�y.{P ∗ e �→ ‘C’}eval [e]{Q} (where x �∈ fv(P,Q, �y, e, C), �y /∈ fv(e, C))

Proof Rules for Hoare Triples

(∀x.{P ∗ x �→ e}C{Q}) ⇒ {P}let x= new e in C{Q} (where x �∈fv(P,Q, e))

(∀x.{P ∗ e �→ x}C{Q}) ⇒ {∃x.P ∗ e �→ x}let x= [e] in C{Q} (where x �∈fv(Q, e))

{e �→ }free(e){emp} {e �→ }[e] := e′{e �→ e′}

�P �A
η ⊆

�
P ′�A

η
and

�
Q′�A

η
⊆ �Q�A

η for all η ∈ �Γ �

Γ � {P ′}C{Q′} ⇒{P}C{Q}

Proof Rules for Invariant Extension −⊗ P

ϕ ⇒ ϕ⊗ P {P}C{P ′}⊗Q ⇔ {P ∗Q}C{P ′ ∗Q}
(e0 = e1)⊗Q ⇔ e0 = e1 (ϕ⊗ P)⊗Q ⇔ ϕ⊗ (P ∗Q)
(ϕ⊕ ψ)⊗ P ⇔ (ϕ⊗ P)⊕ (ψ ⊗ P) (κx. ϕ)⊗ P ⇔ κx. ϕ⊗ P

(where ⊕ ∈ {⇒,∧,∨}) (where κ ∈ {∀, ∃}, x /∈ fv(P))

Fig. 2. Some proof rules

While assertions express properties of states, specifications describe properties
of programs (sometimes using assertions inside Hoare triples). For a finite set Γ
of variables, Γ � ϕ(: Spec) means that Γ includes all free variables of ϕ.

Proof rules. Our specification logic includes all the usual proof rules of intu-
itionistic first-order logic with equality, and special rules for Hoare triples and
invariant extension ϕ ⊗ P . Fig. 2 lists some of those, where the context Γ for
each specification is omitted. Note that the consequence rule uses semantically
valid implications for assertions, some of which can be proved using the proof
rules from classical logic and the logic of Bunched Implications. In this way, the
consequence rule embeds reasoning about assertions into the specification logic
without the need to commit to a specific proof system for assertions.

Most of the rules in the figure are standard and known from separation logic.
The only exceptions are the three proof rules for stored procedures.1 These rules

1 For simplicity, we do not consider mutually recursive stored procedures here, but it is
straightforward to generalize our rules to handle them. Also, the first rule for stored
procedures can be derived from the second and the higher-order frame rules. We
include it in order to point out the subtleties of reasoning about stored procedures.

352 L. Birkedal et al.

are similar to the rule for calling a parameterless, recursive procedure p declared
as p⇐ C, where C is the body of p that may contain a recursive call to p:

(∀+y.{P}call p{Q}) � ∀+y.{P}C{Q}
∀+y.{P}call p{Q}

(1)

This rule is usually proved sound via fixpoint induction (note that p in the pre-
miss semantically refers to any procedure with the required properties, whereas
in the conclusion p refers to the declared procedure). For the language of Fig. 1,
the fact that stored procedures are in use means that the declaration of a pro-
cedure is now expressed by an assertion e -→ ‘C’, stating that e is a reference to
the procedure with body C.

In Fig. 2 there are three rules for stored code that might call itself recursively,
establishing partial correctness (and hence do not feature in the logic for total
correctness of [6]). The first rule prohibits any access to the storing location e
except through eval [e], whereas the second and third are more permissive. Note
also that only the first two rules establish that the stored procedure called has
not been altered. This is important in cases where the procedure gets updated.
Updating code after its first call is a general pattern of usage of stored code,
found e.g. in device drivers [5]: the first call is used for initialisation that further
calls rely on.

It would be preferable to have just one rule for recursive procedures, e.g.

(∀x. (∀+y.{P ∗ e -→x}eval [e]{Q}) ⇒ ∀+y.{P ∗ e -→x}C{Q})
⇒ ∀+y.{P ∗ e -→ ‘C’}eval [e]{Q[‘C’/x]}(where x �∈ fv (P, +y, e, C),+y /∈ fv(e, C)) .

Alas we cannot easily prove such a rule sound. Our soundness proof for the
recursion rules relies on pre- and post-condition satisfying properties (a) and
(b), resp., as stated in the proof of Lemma 5 (see Section 4), and an arbitrary
post-condition might violate property (b). We achieve soundness by restricting
the shape of the post-condition to Q ∗ e -→x and stipulating the side condition
x �∈ fv(Q). As a consequence, we cannot instantiate the recursion rules with post-
condition e -→x∗e′ -→x, as needed for a self-copying command let x=[e] in [e′]:=x
stored at e. Yet, also Q ∗ e -→x ∗ e′ -→x satisfies property 2 mentioned above, and
soundness of a corresponding recursion rule could be established analogously to
Lemma 5. This means the logic is incomplete; our objective has been to find rules
that are easy to apply on programs with “common” use of stored procedures.

Alternatively, we could have given a single rule for stored procedures, but
with a semantic side-condition to rule out unsuitable post-conditions.

Example 1 (Factorial). Consider the following specification and implementation:

Fo
def= let x=[o] in let r=[o+1] in

if (x=0) then skip else
(
[o+1]:=r · x; [o]:=x−1; eval [o+2]

)

C
def= [o+2]:=‘Fo’; eval [o+2] o � {o -→ 5, 1, }C{o -→ 0, 5!, ‘Fo’}

The command C implements the factorial function in an object-oriented style,
using three consecutive cells (o, o+1, o+2). The first two cells represent fields

A Simple Model of Separation Logic for Higher-Order Store 353

arg and res, and the third cell denotes a method that computes the factorial of
arg (decrementing it as a side effect) and multiplies this onto res. Note that the
procedure Fo stored in o+2 calls itself by recursion through the store; see the
last instruction eval [o+2] of Fo.

The specification expresses that C computes 5! and stores it in cell o+1. The
key step of the proof is the derivation

o � (∀ij.{o -→ i, j}eval [o+2]{o -→ 0, j · i!})⇒ (∀ij.{o -→ i, j}Fo{o -→ 0, j · i!})
o � ∀ij. {o -→ i, j, ‘Fo’}eval [o+2]{o -→ 0, j · i!, ‘Fo’}

which shows the correctness of the stored procedure Fo. This step applies the
first rule for stored procedures, and it illustrates the benefit of the rule. Here, the
rule lets us hide the cell o+2 for code Fo in the premise, thereby giving a simple
specification to discharge. The derivation of this specification itself is omitted;
it involves only routine applications of standard separation logic proof rules. ��

Example 2. Next, we illustrate the typical use of the three rules for stored pro-
cedures with program Cn’s below:

F1
def= let j=[i] in

(
if j=0 then skip else ([i]:=j−1; eval [i+1])

)

F2
def= let j=[i] in let f=[i+1] in

(
[i]:=f ; if j=0 then [i]:=0 else ([i]:=j−1; eval [i+1])

)

F3
def= let j=[i] in

(
if j=0 then ([i+1]:=‘skip’) else ([i]:=j−1; eval [i+1])

)

Cn
def= [i+1]:=Fn; eval [i+1]

All of the Cn’s decrease the value of i to zero (rather inefficiently), using recur-
sion through the store. Additionally, C2 dereferences cell i+1 to get the stored
procedure F2 and copy it to cell i temporarily. C3 replaces the stored procedure
in i+1 by skip at the end of the execution. For these programs, we want to prove:

i�{i -→ , }C1{i -→0, ‘F1’} i�{i -→ , }C2{i -→0, ‘F2’} i�{i -→ , }C3{i -→0, ‘skip’}.

The major step of the proof of C1 is the use of the first rule for stored procedures:

i � {i -→ }eval [i+1]{i -→ 0} ⇒ {i -→ }F1{i -→ 0}
i � {i -→ , ‘F1’}eval [i+1]{i -→ 0, ‘F1’}

which shows a property of the stored procedure F1. Note that the first rule
successfully hides cell i+1 in the premise, giving us a simple subgoal to discharge.
Similarly, the application of rules for stored procedures form the major steps of
the proofs of the remaining triples for C2 and C3:

i � ∀x. {i -→ , x}eval [i+1]{i -→ 0, x} ⇒ {i -→ , x}F2{i -→ 0, x}
i � {i -→ , ‘F2’}eval [i+1]{i -→ 0, ‘F2’}

i � ∀x. {i -→ , x}eval [i+1]{i -→ 0, ‘skip’} ⇒ {i -→ , x}C3{i -→ 0, ‘skip’}
i � {i -→ , ‘F3’}C3{i -→ 0, ‘skip’}

Since F2 directly accesses cell i+1, which stores the procedure, and F3 updates
the storing cell, we have used the second rule for C2 and the third for C3. ��

354 L. Birkedal et al.

3 Semantics of Programs and Assertions

Our interpretation of the programming language is based on a solution of a
recursive domain equation, which is defined in the category Cppo of directed
complete pointed partial orders (in short, cppos) and strict continuous functions.

Let Nats+ be the set of positive natural numbers, ranged over by � and n, and
for n ∈ Nats+, write [n] for the set {1, . . . , n}. For a cppo A, we consider a cppo
of Nats+-labelled records with entries from A (i.e. a labelled smash product of
arbitrary finite arity), which will be used to model heaps. Its underlying set is
Rec(A) =

(∑
N⊆finNats+(N → A↓)

)
⊥, where (N → A↓) denotes the cpo of maps

from the finite address set N to the cpo A↓ = A− {⊥} of non-bottom elements
of A. For ⊥ �= ιN (r) ∈ Rec(A) we write dom(r) = N and use record notation
{|�1 = a1, . . . , �n = an|} if N = {�1, . . . , �n} and r(�i) = ai for all i ∈ [n]. Note
that field selection is actually application if the label is in the domain of the
record (for our semantic definitions this restricted form of field selection will be
sufficient). We shall also write r[� -→a] for the record that maps � to a and all
other �′ ∈ dom(r) to r(�′) (assuming �′ ∈ dom(r)). In case that r is ⊥, we define
r[� -→a] to be ⊥. The ordering on Rec(A) is given by

r � r′
def⇔ r �= ⊥ ⇒

(
dom(r) = dom(r′) ∧ ∀� ∈ dom(r). r(�) � r′(�)

)
.

The disjointness predicate r#r′ on records holds if r, r′ �= ⊥ and dom(r) ∩
dom(r′) = ∅, and a continuous (partial) combining operation r • r′ is defined by
r • r′ def= if (r#r′) then (r ∪ r′) else

(
if (r=⊥ ∨ r′=⊥) then ⊥ else undefined

)
.

The semantics of the programming language is given by a solution for the
following domain equation:

Val = Integers⊥ ⊕ Com⊥ Heap = Rec(Val) Com = Heap � Terr(Heap)

where Terr(D) = D⊕{error}⊥ is the error monad. We usually omit the tags and
(for h ∈ Heap) will simply write h ∈ Terr(Heap) and error ∈ Terr(Heap), resp.
Recall that a solution i : FCom(Com ,Com) ∼= Com can be obtained by the usual
inverse limit construction, where FCom is the evident locally continuous functor
obtained by separating negative and positive occurrences of Com in the right-
hand sides of the three equations above.2 Moreover, such a solution is a minimal
invariant, in the sense that idCom = lfp(λe:Com�Com . i ◦ FCom(e, e) ◦ i−1)
[14]. The soundness proof of the rules for stored procedures exploits this fact.

Interpretation of the programming language Fig. 3 gives the interpretation �C�η
of commands in Heap � Terr(Heap) (which is isomorphic to Com), where η ∈
Env def= (Var → Val↓) is an environment mapping identifiers to (non-bottom)
values in Val . An interpretation function for expressions �e�

E
η ∈ Val↓ is assumed,

where the only non-standard cases are quoted commands. �‘C’�Eη is defined to
be i(�C�η) (which implicitly makes use of the embedding of Com into Val). In
the defining equations in Fig. 3 we assume that h �= ⊥, and set �C�η ⊥ = ⊥
2 Formally, FCom(X,Y) is Rec(Integers⊥ ⊕X⊥) � Terr(Rec(Integers⊥ ⊕ Y⊥)).

A Simple Model of Separation Logic for Higher-Order Store 355

�skip�η h
def
= h

�C1;C2�η h
def
= if �C1�η h∈{⊥, error} then �C1�η else �C2�η (�C1�η h)�

if e=e′ thenC1 elseC2
�

η
h

def
= if {�e1�E

η , �e2�
E
η} ⊆ Com then ⊥

else if (�e�E
η =

�
e′�E

η
) then �C1�η h else �C2�η h

�let x=new e1, ..., en inC�η h
def
= let � = min{� | ∀�′. (�≤�′<�+n)⇒ �′ /∈ dom(h)}

in �C�η[x
→] (h • {|�= �e1�
E
η , . . . , �+n−1= �en�E

η |})
�free e�η h

def
= if �e�E

η /∈ dom(h) then error
else (let h′ s.t. h = h′ • {|�e�E

η =h(�e�E
η)|} in h′)

�[e1]:=e2�η h
def
= if �e1�

E
η /∈ dom(h) then error else (h[�e1�

E
η �→ �e2�

E
η])

�let x=[e] in C�η h
def
= if �e�E

η /∈ dom(h) then error else �C�η[x
→h(�e�E
η)] h

�eval [e]�η h
def
= if (�e�E

η /∈ dom(h) ∨ h(�e�E
η) /∈ Com) then error

else i−1(h(�e�E
η))(h)

Fig. 3. Interpretation of commands �C�η ∈ Heap � Terr(Heap)

�e1 ≤ e2�
A
η

def
= {h ∈ Heap | h �= ⊥ ⇒ �ei�

E
η ∈ Integers ∧ �e1�

E
η ≤ �e2�

E
η }

�e1 = e2�
A
η

def
= {h ∈ Heap | h �= ⊥ ⇒ �e1�

E
η = �e2�

E
η }

�∀x. P �A
η

def
=

T

{�P �A
η[x
→v] | v∈Val} �emp�A

η

def
= {{||} ,⊥} �P ∗Q�A

η

def
= �P �A

η ∗ �Q�A
η

�
e �→ e′�A

η

def
= {h ∈ Heap | h �= ⊥ ⇒ dom(h) = {�e�E

η} ∧ h(�e�E
η) =

�
e′�E

η
}

Fig. 4. Interpretation �P �A : Env → P of assertions

for all C and η. Note that the conditional only permits restricted comparison of
expressions, so that commands denote continuous functions.

Interpretation of assertions Let P be the set of predicates p ⊆ Heap that contain
⊥. The separating conjunction for these predicates, known from separation logic
[17], is defined by: h ∈ p1 ∗ p2

def⇔ ∃h1, h2. h=h1 • h2 ∧ h1 ∈ p1 ∧ h2 ∈ p2.
Note that p ∗ q ∈ P whenever p ∈ P and q ∈ P . Clearly ‘∗’ is associative and
commutative, since ‘•’ is, and if p ⊆ p′ and q ⊆ q′ then p ∗ q ⊆ p′ ∗ q′.

The poset (P ,⊆) forms a complete boolean BI algebra.3 Thus, we get a canon-
ical BI hyperdoctrine Set(−,P), which soundly models classical (higher-order)
predicate BI [1]. In particular this yields an interpretation for the quantifiers.
Some cases of this interpretation of assertions are spelled out in Fig. 4.

4 Semantics of Specifications

We now define the interpretation of specifications, and show how it addresses the
two key challenges described in the introduction. The most interesting
3 The negation and false of this boolean algebra are slightly unusual, and are defined

by ¬p def
= (Heap − p) ∪ {⊥} and false def

= {⊥}. Conjunction, disjunction and true are
defined as in the usual powerset boolean algebra.

356 L. Birkedal et al.

components of our interpretation are semantic Hoare triples, which we will use
to interpret (syntactic) Hoare triples. For each predicate p ∈ P , let Ad(p) be the
admissible, downward closure of p in Terr(Heap) (i.e., the smallest admissible,
downward-closed subset of Terr(Heap) that includes p; it may be obtained as the
intersection of all admissible, downward-closed subsets of Heap that include p).

Definition 1 (Semantic triple). A semantic Hoare triple is a triple of predi-
cates p, q ∈ P and function c ∈ FCom(Com ,Com), written {p}c{q}. A semantic
triple {p}c{q} is valid, denoted |={p}c{q}, if and only if, for all r ∈ P and all
h ∈ Heap, we have that h ∈ p ∗ r ⇒ c(h) ∈ Ad(q ∗ r).

Intuitively, a semantic triple {p}c{q} specifies that c should transform an input
state in p to an output state in q. Furthermore, the triple says that this trans-
formation should modify only the portion of memory for p (because, otherwise,
it would not preserve some invariant r when r was ∗-attached to the precondi-
tion p). Note that |= {p}c{q} ensures the absence of memory errors for inputs
in p ∗ r for all r, because Ad(q ∗ r) cannot contain error.

We point out two important aspects of valid semantic Hoare triples and their
relationships to the points raised in the introduction. First, the definition of
validity includes a universal quantification over ∗-added invariants r. Since we
will interpret (syntactic) Hoare triples using the validity of semantic triples, this
universal quantification means that Hoare triples in our logic impose a stronger
requirement on commands than the ones in standard separation logic. In partic-
ular, the requirement is strong enough to imply the frame rule:

Lemma 1 (Frame rule). If |= {p}c{q}, then |= {p ∗ r}c{q ∗ r} for all r ∈ P.

In this way, our model addresses the first challenge in the introduction regarding
the soundness of the frame rule. Second, the definition of the validity takes the
admissible, downward closure Ad(q ∗r) of post-conditions. As a result, whenever
we define a subset of FCom(Com ,Com) using a semantic Hoare triple, it is
guaranteed that the resulting set is admissible and downward-closed:

Lemma 2. For all p, q ∈ P, the subset {c | {p}c{q} is valid} is an admissible,
downward-closed subset of FCom(Com ,Com).

It is this property that lets us prove the soundness of the proof rules for stored
procedures, without requiring any additional conditions, such as a syntactic re-
striction on assertions [15].

We interpret specifications following the usual Kripke semantics of intuition-
stic logic. Our interpretation uses a particular Kripke structure that lets us
validate all the higher-order frame rules, i.e., rules for invariant extension ϕ⊗P .
Concretely, the Kripke structure is the preorder (P ,�) where the relation � is
defined by: p � q

def⇔ ∃r ∈ P . p ∗ r = q. Each world p in this Kripke structure
should be thought of as an invariant to be added by (higher-order) frame rules,
and the preorder p � q denotes that q is obtained by extending p with some
disjoint invariant r. This Kripke structure has been studied in [3], and we will
use the results from that paper.

A Simple Model of Separation Logic for Higher-Order Store 357

η, p |= ϕ ∧ ψ def⇔ η, p |= ϕ and η, p |= ψ

η, p |= ϕ⇒ ψ
def⇔ for all r ∈ P , if p ! r and η, r |= ϕ, then η, r |= ψ

η, p |= ϕ⊗ P def⇔ η, p ∗ �P �A
η |= ϕ

η, p |={P}C{Q} def⇔ |={�P �A
η ∗ p} �C�η {�Q�A

η ∗ p}

Fig. 5. Interpretation η, p |= ϕ of specifications

Some cases of the definition of the satisfaction relation |= are shown in Fig. 5.
Note that Hoare triples are interpreted using the validity of semantic triples.

Soundness We recall one consequence of our semantics, which is discussed in
more detail in [3]. It is the soundness of the generalized frame rule: ϕ ⇒ ϕ⊗P .
Since the interpretation follows the standard Kripke semantics, every formula ϕ
satisfies the usual Kripke monotonicity: ∀η, r, q. (η, r |= ϕ)∧(r� q) ⇒ (η, q |= ϕ).
Since r � q just means that q = r∗p for some p, the above monotonicity condition
is equivalent to ∀η, r, p. (η, r |= ϕ) ⇒ (η, r ∗ p |= ϕ). This just means that adding
an invariant p for each specification maintains the truth of a specification, and
explains why the generalized frame rule is sound in our semantics.

Lemma 3 (Invariants, [3]). All the axioms for invariant extensions are sound.

Our semantics validates all the proof rules for specifications. In the following,
we focus on the second rule for stored procedures.

Lemma 4 (Recursion). The second rule for stored procedures is sound.

Proof. For each η ∈ �Γ � and r ∈ P , define a predicate Aη,r on Com × Com by

Aη,r(c, d) def⇔ ∀+v∈Valn. |={�P ∗ e -→x�
A
η1
∗ r}i−1(d){�Q ∗ e -→x�

A
η1
∗ r}

where η1 = η[+y -→+v, x-→c]. Pick any η ∈ �Γ � and r ∈ P . By the definition of
�eval [e]� and the usual substitution lemma (which holds for our interpretation),
the soundness of the rule boils down to proving the following implication.
(
∀c ∈ Com . ∀r′ = r. Aη,r′(c, c) ⇒ Aη,r′(c, �‘C’�η)

)
⇒ Aη,r(�‘C’�η , �‘C’�η).

Suppose that there is a predicate Sη′,r′ on Com parameterized by (η′, r′), such
that (1) Sη′,r′(c) ⇔ (∀d∈Com . Sη′,r′(d) ⇒ Aη′,r′(d, c)). Then, we have
that (2) ∀c. Sη,r(c) ⇒ Aη,r(c, c). Hence, assuming the precondition ∀c. ∀r′ =
r. Aη,r′(c, c)⇒Aη,r′(c, �‘C’�η), we obtain ∀c. Sη,r(c) ⇒ Aη,r(c, �‘C’�η) and
therefore Sη,r(�‘C’�η) by (1). But then (2) shows Aη,r(�‘C’�η , �‘C’�η), as re-
quired. It remains to establish the existence of a predicate Sη′,r′ satisfying (1).
This is done in the following Lemma 5. ��

Lemma 5 (Existence). For all η, r, there exists Sη,r ⊆ Com such that Sη,r(c)
holds iff ∀d. Sη,r(d) ⇒ Aη,r(d, c), where Aη,r is as in the proof of Lemma 4.

358 L. Birkedal et al.

Proof. The proof builds on the same technique as used in [16], but many details
have changed. Let C denote the set of admissible subsets of Com , which forms a
complete lattice when ordered by ⊆. Pick η and r ∈ P . We define an operation
Φ : Cop→C, by S -→ {c ∈ Com | ∀d. d ∈ S ⇒ Aη,r(d, c)}. That Φ(S) is
admissible follows from the admissibility of Aη,r(d,−), which itself comes from
Lemma 2. The symmetrisation Φ§(S, T) def= 〈Φ(T), Φ(S)〉 of Φ is a monotonic
map on the complete lattice Cop × C and thus has a least (pre-) fixed point
(S−, S+), by Tarski’s fixed point theorem. Then (S+, S−) is also a fixed point
of Φ§, so one obtains S+ ⊆ S−. A predicate Sη,r ∈ C with the required property
Sη,r = Φ(Sη,r) is obtained by proving the opposite inclusion.

To this end, for l � idCom and S1, S2 ∈ C, define l : S1 ⊂ S2 to mean that
∀c ∈ S1. l(c) ∈ S2. Note that from

(1) l :S1⊂S2 ⇒ (i ◦FCom(l, l) ◦ i−1) :Φ(S2)⊂Φ(S1)

for all l � idCom , it follows by fixed point induction that lfp(λl. i ◦ FCom(l, l) ◦
i−1) : S− ⊂ S+. This is equivalent to idCom : S− ⊂ S+, i.e., S− ⊆ S+, because
lfp(...) is idCom by the minimal invariant property of Com .

It remains to prove (1). For this, one needs only prove the following two prop-
erties. Let Cl↓(p) be the downward closure of a predicate p. For all environments
η′, heaps h and functions l with l � idCom , if j

def= Rec(l̂),

(a) h ∈ �P ∗ e -→x�Aη′ implies j(h) ∈ Cl↓�P ∗ e -→x�Aη′[x �→l(η′(x))],

(b) h ∈ �Q ∗ e -→x�Aη′[x �→l(η′(x))] implies j(h) ∈ Cl↓�Q ∗ e -→x�Aη′ .

To see why it is suffices to prove (a) and (b), suppose l � idCom satisfies
l : S1 ⊂ S2. Pick c ∈ Φ(S2). We have to show (i ◦ FCom(l, l) ◦ i−1)(c) ∈ Φ(S1).
Thus, for all d ∈ S1, we must show that Aη,r(d, (i ◦ FCom(l, l) ◦ i−1)(c)) holds,
i.e., for all +v ∈ Valn

(2) |= {�P ∗ e -→ x�
A
η[�y �→�v,x �→d]∗r}FCom(l, l)(i−1(c)){�Q ∗ e -→ x�

A
η[�y �→�v,x �→d]∗r}.

For this, pick d ∈ S1 and +v ∈ Valn. Since l : S1 ⊂ S2, we have that l(d) ∈ S2,
and since c ∈ Φ(S2), it must be the case that

(3) |= {�P ∗ e -→ x�Aη[�y �→�v,x �→l(d)] ∗ r}i−1(c){�Q ∗ e -→ x�Aη[�y �→�v,x �→l(d)] ∗ r}.

We will now prove that (3) implies (2).
To simplify notation, we assume without loss of generality that η is such that

η(+y) = +v. Pick r′ ∈ P and h ∈ �P ∗ e -→ x�Aη[x �→d] ∗ r ∗ r′. Let j be Rec(l̂). Then,
we have to show the set membership below:

FCom(l, l)(i−1(c))(h) = Terr(j)(i−1(c)(j(h))) ∈ Ad(�Q ∗ e -→x�Aη[x �→d] ∗ r ∗ r′).

By property (a) and definition of j, j(h) is in Cl↓
(
�P ∗ e -→ x�Aη[x �→l(d)] ∗ r ∗ r′

)
.

So, we have (4) i−1(c)(j(h)) ∈ Ad(�Q ∗ e -→x�
A
η[x �→l(d)] ∗ r ∗ r′), because of (3)

A Simple Model of Separation Logic for Higher-Order Store 359

and the monotonicity of i−1(c). Note that by the property (b) and the defi-
nition of j, Terr(j) should map heaps in (�Q ∗ e -→x�

A
η[x �→l(d)] ∗ r ∗ r′) to those

in Ad(�Q ∗ e -→x�
A
η[x �→d] ∗ r ∗ r′). Furthermore, for all continuous functions f on

Terr(Heap), if f maps every heap in a predicate p into Ad(q), it also maps all
heaps in Ad(p) into Ad(q). Thus, since Terr(j) is continuous, it maps heaps in
Ad(�Q ∗ e -→x�Aη[x �→l(d)] ∗ r ∗ r′) into Ad(�Q ∗ e -→x�Aη[x �→d] ∗ r ∗ r′). By (4), this

means that Terr(j)(i−1(c)(j(h))) belongs to Ad(�Q ∗ e -→x�
A
η[x �→d] ∗ r ∗ r′). ��

5 Conclusion and Future Work

We have developed a simple model of separation logic for a language with higher-
order store. The model validates proof rules for recursion through the store and
a wide range of higher-order frame rules. Future work includes extending the
model to richer programming languages, in particular to languages with higher-
order functions. In order to obtain modularity it is also necessary to develop a
version of the logic where assertions do not contain code explicitly but rather
abstract specifications of its behaviour. We are confident that the simplicity of
the present model will make that possible. In future work we also plan to extend
the relationally parametric model of separation logic in [3] to higher-order store.

References

1. Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separa-
tion logic, and abstraction. ACM TOPLAS 29(5) (2007)

2. Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and
higher-order frame rules for algol-like languages. LMCS 2(5-1) (2006)

3. Birkedal, L., Yang, H.: Relational parametricity and separation logic. In: Seidl, H.
(ed.) FOSSACS 2007. LNCS, vol. 4423. Springer, Heidelberg (2007)

4. Cai, H., Shao, Z., Vaynberg, A.: Certified self-modifying code. In: Proc. PLDI 2007,
pp. 66–77 (2007)

5. Corbet, J., Rubini, A., Kroah-Hartman, G.: Linux Device Drivers, 3rd edn.
O’Reilly, Sebastopol (2005)

6. Honda, K., Yoshida, N., Berger, M.: An observationally complete program logic
for imperative higher-order functions. In: Proc. LICS 2005, pp. 270–279 (2005)

7. Krishnaswami, N., Aldrich, J., Birkedal, L.: Modular verification of the subject-
observer pattern via higher-order separation logic. In: FTfJP 2007 (2007)

8. Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract predicates and
mutable ADTs in Hoare type theory. In: De Nicola, R. (ed.) ESOP 2007. LNCS,
vol. 4421, pp. 189–204. Springer, Heidelberg (2007)

9. Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare
type theory. In: Proc. ICFP 2006, pp. 62–73 (2006)

10. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–18. Springer, Heidelberg (2001)

11. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
Proc. of 31st POPL, pp. 268–280 (2004)

360 L. Birkedal et al.

12. Parkinson, M.: When separation logic met Java. In: FTfJP 2006 (2006)
13. Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In: Proc.

35th POPL (2008)
14. Pitts, A.M.: Relational properties of domains. Information and Computation 127,

66–90 (1996)
15. Reus, B., Schwinghammer, J.: Separation logic for higher-order store. In: Ésik, Z.

(ed.) CSL 2006. LNCS, vol. 4207, pp. 575–590. Springer, Heidelberg (2006)
16. Reus, B., Streicher, T.: About Hoare logics for higher-order store. In: Caires, L.,

Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1337–1348. Springer, Heidelberg (2005)

17. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. LICS 2002, pp. 55–74 (2002)

Open Implication�

Karin Greimel1, Roderick Bloem1, Barbara Jobstmann2,
and Moshe Vardi3

1Graz University of Technology
2EPFL

3Rice University

Abstract. We argue that the usual trace-based notions of implication
and equivalence for linear temporal logics are too strong and should be
complemented by the weaker notions of open implication and open equiv-
alence. Although open implication is harder to compute, it can be used to
advantage both in model checking and in synthesis. We study the differ-
ence between trace-based equivalence and open equivalence and describe
an algorithm to compute open implication of Linear Temporal Logic for-
mulas with an asymptotically optimal complexity. We also show how to
compute open implication while avoiding Safra’s construction. We have
implemented an open-implication solver for Generalized Reactivity(1)
specifications. In a case study, we show that open equivalence can be
used to justify the use of an alternative specification that allows us to
synthesize much smaller systems in far less time.

1 Introduction

A recent verification project at STMicroelectronics [17] considered an arbiter
that receives requests and provides acknowledgments. Two of the requirements
for the design read: (R1) From some time on, the difference between the total
number of requests and the total number of acknowledgments is zero, and (R2)
the total number of acknowledgments never exceeds the total number of requests.
Requirement R1 does not imply R2: a trace that contains an acknowledgment
followed by a request with no further acknowledgments or requests thereafter
fulfills R1 but not R2. Nevertheless, because one can not predict the number of
requests that will come, the only way to implement R1 is to always wait for a
request before sending an acknowledge. Thus, any implementation that fulfills
R1 also fulfills R2. We say that R1 open-implies R2. Thus, it suffices to make
sure that R1 holds; R2 follows. Likewise, we say that two specifications are open
equivalent if they are fulfilled by the same implementations.

Traditionally, for linear specification formalisms such as Linear Temporal
Logic (LTL) [20] or Büchi automata [5], only trace implication and trace equiv-
alence have been studied. Intuitively, trace implication and trace equivalence
� This work was supported by EU grant 217069 (COCONUT), the Swiss National

Science Foundation (Indo-Swiss Research Program and NCCR MICS), NSF grants
CCF-0613889, ANI-0216467, and CCF-0728882, BSF grant 9800096, and a gift from
Intel. This paper is based on the MS thesis of the first author [8].

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 361–372, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

362 K. Greimel et al.

are defined with respect to all systems. In contrast, open implication and open
equivalence are defined with respect to open systems only. In open systems we
distinguish between inputs and outputs and we require that the system be re-
ceptive to all inputs [9], the intuition being that the system cannot block the
actions of the environments.

The notions of open implication and open equivalence have not been stud-
ied in the literature. We argue here that these are important notions. When
model checking open systems, a specification can always be substituted by an
open-equivalent one: it is fulfilled by the same open systems. Likewise, for au-
tomatic synthesis of open systems from specifications [21], one may replace the
specification by any realizable specification that open-implies it. The stronger
specification may be easier to synthesize. Consider for instance, a simplified spec-
ification of an arbiter with input r for request and output a for acknowledge-
ment. The specification reads ϕ = (GF r) → G(a → X(¬aU r)). Now consider
ϕ′ = G(a → X(¬aW r)). We have that ϕ and ϕ′ are open equivalent but not
trace equivalent. Moreover, the language of ϕ′ can be represented by a weak
automaton and is thus both easier to model check [4,15] and (much) easier to
synthesize [10,16].

In this paper, we show that the inability to predict the future is the under-
lying cause for the difference between open implication and trace implication.
Then, we consider the problem of deciding whether ϕ open-implies ψ for LTL
formulas ϕ and ψ. We provide an algorithm that runs in 2EXPTIME in |ϕ| and
PSPACE in |ψ|, matching the lower bounds. This algorithm uses Safra’s intricate
determinization construction. We complement this with an algorithm that avoids
Safra’s construction, is much easier to implement, and may be far more efficient
when the specifications are not equivalent. Additionally, we consider Generalized
Reactivity(1) formulas [19]. Although less expressive than LTL, such formulas
suffice to conveniently describe most properties that occur in practice. Efficient
synthesis tools for this subset have been used on realistic examples [2,3]. We
present an implementation of open implication based on this approach and show
that it can be used to significantly simplify the synthesis of an arbiter for an
industrial bus.

2 Preliminaries

We consider systems with input signals I and output signals O. We define AP =
I ∪O, which is the set of atomic propositions in the logic specifications defined
below. Our input alphabet is thus D = 2I , the output alphabet is Σ = 2O, and
we define A = 2AP .

Transducers and Trees. We use transducers to represent open systems. A (possi-
bly infinite) transducer with inputs D and outputs Σ is a tuple T = (Q, q0, δ, λ),
where Q is the (possibly infinite) state space, q0 ∈ Q is the initial state, δ :
Q×D → Q is the transition function, and λ : Q→ Σ is the output function. In
each state, the transducer outputs a letter in Σ, then reads a letters in D , and

Open Implication 363

moves to the next state. Transducers correspond to Moore machines. A trans-
ducer is finite if Q is finite. The run of T on a sequence d = d0d1 · · · ∈ Dω is a
sequence ρ0ρ1 · · · ∈ Qω, where ρ0 = q0 and ρi+1 = δ(ρi, di). The corresponding
word is λ(ρ) = w0w1 · · · ∈ Aω such that wi = λ(ρi) ∪ di. The set L(T) denotes
the words corresponding to some run of T and is called the language of T .

We use trees to represent transducers and runs of alternating automata (be-
low). A Σ-labeled D -tree is a tuple (τ, λ), where τ is the set of nodes, a prefix
closed subset of D∗, and λ : τ → Σ is the labeling function. If τ = D∗, τ is
complete. The node ε is the root of the tree and a node t ·d is a successor of t. A
path π in τ is a maximal sequence of nodes t0t1 . . . such that t0 = ε and there
are d0d1 . . . such that ti+1 = ti · di. Paths can be finite or infinite. We assign to
each path π = t0t1 . . . a word λ(π) = w0w1 . . . such that wi = λ(ti) ∪ di for all
i ≥ 0.

The unrolling of a transducer T = (Q, q0, δ, λ) is a complete Σ-labeled D -tree
(τ, λ), such that each run ρ of T is mapped to an infinite path π in (τ, λ) with
λ(ρ) = λ(π). A tree is regular if it is the unrolling of some finite transducer. We
denote the set of all regular Σ-labeled trees with directions D by T .

Temporal Logics. We write specifications in Linear Temporal Logic (LTL) [20].
The syntax of LTL is defined in negation normal form as ϕ ::= true | false | p |
¬p | ϕ∨ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | ϕRϕ with p ∈ AP . We use the usual semantics of
LTL for words in Aω. The set of words that satisfies ϕ is denoted by L(ϕ) ⊆ Aω .
A Σ-labeled D -tree t satisfies ϕ if for all paths π of t, π |= ϕ. A transducer T
satisfies ϕ (T |= ϕ) if its unrolling does. A formula ϕ is satisfiable if L(ϕ) �= ∅,
it is tautologous if L(ϕ) = Aω and it is realizable if there is a tree t such that
t |= ϕ.

Automata. Let B+(X) denote the set of Boolean formulas without negations
over X . We say that a set C ⊆ 2X satisfies ϕ ∈ B+(X) (written C |= ϕ) if ϕ
evaluates to true after replacing all occurrences of c ∈ C (c �∈ C) in ϕ by true
(false, resp.). Set C is minimal if forall c ∈ C, (C \ {c}) �|= ϕ.

An alternating parity tree automaton for Σ-labeled D -trees is a tuple A =
(Q, q0, δ, F), where Q is a finite set of states, q0 ∈ Q is the initial state, δ :
Q × Σ → B+(Q × D) is the transition relation and the acceptance condition
F = (F1, . . . , Fk) is a partition of Q, where k is the index of A. We use Aq to
denote the automaton A with initial state q.

We say that an alternating tree automaton is nondeterministic if it does not
force multiple copies to one child. That is, for all q ∈ Q and σ ∈ Σ, if C |= δ(q, σ)
and C is minimal then for all (q, d) ∈ C and (q′, d′) ∈ C, if d = d′ then q = q′.
The automaton is universal if all formulas are conjunctions and it is deterministic
if it is both nondeterministic and universal. For deterministic automata we can
assume, without loss of generality, that the transition relation is of the form δ :
Q× Σ × D ⇀ Q. An automaton is a co-Büchi automaton if k = 2 and a Büchi
automaton if k = 3 and F1 = ∅. Tree automata run on trees with directions D . If
|D | = 1, we say the automaton runs on words (over Σ) and omit D .

A run of an alternating tree automaton A on a tree (τI , λI) is a tree Tρ =
(τρ, λρ) with τρ ⊆ N∗ and λρ : τρ → (Q × τI) for which (1) λρ(ε) = (q0, ε)

364 K. Greimel et al.

and (2) If tρ is a node of Tρ with label (q, tI) and the children of tρ are labeled
(q1, t1), . . . , (qn, tn), then for all i ∈ {1, . . . , n} there is a di ∈ D such that
ti = tI · di and {(q1, d1), . . . , (qn, dn)} |= δ(q, λI(tI)). (Not all directions must
appear in {(q1, d1), . . . , (qn, dn)}.) Let π = t0t1 . . . be an infinite path in (τρ, λρ),
then inf(π) = {q ∈ Q | there exist infinitely many nodes t ∈ π with λρ(t) =
(q, tI) for some tI}. A path is accepting if the minimal i ∈ {1, . . . , k} for which
inf(π) ∩ Fi �= ∅ is even. A run is accepting if all infinite paths are accepting.
An automaton accepts an input tree (τI , λI), if there exists an accepting run on
(τI , λI). We call the set of trees accepted by A the language of A and denote it
by L(A).

We use three letter acronyms for automata, where the first denotes the branch-
ing mode of the automaton (nondeterministic, universal, deterministic, or alter-
nating), the second describes the acceptance condition (parity, Büchi or co-Büchi),
and the third letter indicates the input elements (words or trees). For instance, a
UPT is a universal parity tree automaton.

3 Open Implication

3.1 Definitions, Characteristics, and Lower Bounds

Definitions. Let us first recall the standard notions of implication and equiv-
alence between two LTL formulas and then define open implication and open
equivalence.

Definition 1. Given two LTL formulas ϕ and ψ, ϕ trace-implies ψ if L(ϕ) ⊆
L(ψ). Formula ϕ is trace equivalent to ψ if L(ϕ) = L(ψ).

Definition 2. Given two LTL formulas ϕ and ψ, ϕ open-implies ψ, denoted by
ϕ ◦→ ψ, if for all (infinite) transducers T we have that T |= ϕ implies T |= ψ.
Likewise, ϕ ◦↔ ψ (ϕ is open equivalent to ψ) if ϕ ◦→ ψ and ψ ◦→ ϕ.

Theorem 1. If for all finite transducers T , T |= ϕ implies T |= ψ, then ϕ ◦→ψ.

Proof. We prove the converse. If ϕ /◦→ψ, then there is a (possibly infinite) trans-
ducer T such that T |= ϕ, but T �|= ψ. The unrolling of T is accepted by the
deterministic Streett automaton A that accepts all trees (of the proper arity)
satisfying the CTL∗ formula χ = Aϕ ∧ ¬Aψ [7]. Since the language of A is
not empty, there exists a finite transducer generating a tree accepted by A [22].
Thus, there exists a finite transducer T ′ such that T ′ |= ϕ, but T ′ �|= ψ.

Without loss of generality, we refer to finite transducers in the remainder of the
paper.

Open versus Trace Equivalence. If two specifications are open equivalent but
not trace equivalent, then the traces in which the specifications differ cannot be
produced by a transducer because they require knowledge of the future.

Rosner [23] distinguishes two reasons for unrealizability. First, a specification
may be unrealizable because there is an infinite input word that cannot be paired

Open Implication 365

with an output word. The second reason is that some specifications require
clairvoyance. For instance, for the specification a ↔ X r, where a is an output
and r is an input, there exists a valid output word for every input word. Lack of
knowledge of the future input prevents an implementation. (See also [29].)

Formally, given a specification ϕ, we call w ∈ Aω ϕ-clairvoyant if w |= ϕ but
for some prefix w′ · (i ∪ o) there is no transducer T that outputs o in the initial
state, such that for all words v of T , w′ · v |= ϕ. That is, the word cannot be
used in a transducer because after some point, there is no correct reaction to all
future inputs. Note that only clairvoyant words satisfy a↔ X r. A word that is
not ϕ-clairvoyant is called ϕ-secure.

If two realizable specifications ϕ and ψ are open equivalent, then the set of
ϕ-secure words and the set of ψ-secure words are equal.

Theorem 2. We have ϕ ◦→ ψ iff L(ϕ) \ L(ψ) consists of ϕ-clairvoyant words.

Proof. The key insight is that w is ϕ-secure iff there is a transducer T such that
T |= ϕ and w ∈ L(T).

Let w ∈ L(ϕ) \L(ψ). If w is ϕ-secure then there is a transducer that satisfies
ϕ, contains w, and thus does not satisfy ψ, so ϕ /◦→ ψ. Vice-versa, suppose that
ϕ /◦→ψ. Then there is a transducer T that satisfies ϕ and not ψ. This transducer
contains a word w that satisfies ϕ and not ψ and this word is ϕ-secure.

Extending our notation to ω-regular languages, we have that for every ω-regular
language L there is an ω-regular language L′ that consists of the L-secure words
in L. Language L′ is the unique minimal representative of the open-equivalence
class of L and precisely characterizes all transducers that satisfy L. The language
can be constructed from a DPW A with language L by removing all edges
(q, o ∪ i, q′) such that there is an i′ with (q, o ∪ i′, q′′) ∈ δ and L(Aq′′

) is not
realizable.

Lower Bounds. An obvious solution to deciding open implication is to apply
the approach suggested in the proof of Theorem 1 by checking nonemptiness of
the tree automaton for the formula χ. The problem with this algorithm is that
it is doubly exponential in both |ϕ| and |ψ|. After discussing the lower-bound
complexity of deciding open equivalence and open implication between two LTL
formulas, we describe an asymptotically-optimal algorithm.

Theorem 3. Let ϕ and ψ be two LTL formulas. (1) Deciding whether ϕ ◦→ψ is
2EXPTIME-hard, so is deciding whether ϕ ◦↔ψ and (2) Deciding whether ϕ ◦→ψ
is 2EXPTIME-hard for a fixed ψ and PSPACE-hard for a fixed ϕ.

Proof. We have that ϕ is unrealizable iff ϕ ◦→ false iff ϕ ◦↔ false and LTL-
realizability is 2EXPTIME-complete [21]. This proves 2EXPTIME-hardness.

We prove that ψ is tautologous iff true ◦→ ψ. Because deciding validity of
LTL formulas is PSPACE-complete [25], this proves that open implication is
PSPACE-hard in ψ. The forward direction is trivial. For the other direction,
assume that ψ is not tautologous, then ∃w ∈ Aω : w �|= ψ. Since we can choose
w as a finite prefix followed by a finite cycle [27], we can construct a transducer
T such that w is a word of T . We have that T |= true but T �|= ψ, so true /◦→ ψ.

366 K. Greimel et al.

3.2 Algorithm and Upper Bounds

We show an algorithm to decide whether ϕ ◦→ψ that runs in time doubly expo-
nential in ϕ and in space polynomial in ψ. We first describe an algorithm that
is exponential in ψ, and then show how to obtain optimal space complexity. In
the following, we fix n = |ϕ| and m = |ψ|.

The algorithm proceeds as follows:
1. Construct a DPT ADPT = (QDPT, q0DPT, δDPT, FDPT)

such that L(ADPT) = {t ∈ T | t |= ϕ} with at most
2n22n+2+4n states and index iDPT = 22n+1 [18,27].

2. Compute the set Wϕ = {q ∈ QDPT | L(ADPT
q) �= ∅} in

doubly exponential time in n [7].
3. Construct a DPW ADPW = (QDPW, q0DPW, δDPW, FDPW)

over AP with |QDPT| states and index iDPT such that
σ ∈ L(ADPW) iff σ = λ(π) for some path π of a tree
t ∈ L(ADPT) (see below).

4. Construct a NBW ANBW = (QNBW, q0NBW, δNBW,
FNBW) with at most 2|QDPT|iDPT states, such that
L(ANBW) = L(ADPW) [12].

5. Construct an NBW BNBW with at most 22m states that
accepts all words in L(¬ψ) [27].

6. Check if L(ANBW) ∩ L(BNBW) = ∅ in time linear in the
size of ANBW and BNBW [27].

ANBW

BNBW

ADPW

Wϕ

ADPT

ϕ ¬ψ

A ∩B �= ∅?
The DPW ADPW = (QDPW, q0DPT, δDPW, FDPW) is constructed as follows. We
have QDPW = Wϕ, δDPW(q, o ∪ i) = δDPT(q, o, i) if ∀j ∈ I : δDPT(q, o, j) ∈ Wϕ,
and FDPW equals FDPT restricted to states in QDPW.

Lemma 1. σ ∈ L(ADPW) iff ∃t ∈ L(ADPT) with a path π such that λ(π) = σ.

Proof. Let σ = σ0σ1 · · · ∈ L(ADPW) and suppose that σj = ij ∪ oj with ij ∈ D
and oj ∈ Σ. Then ∀i ∈ D , the run of the DPT for σ0σ1 . . . σj−1(oj ∪ i) ends in
a state in Wϕ, whence we can extend the path to an accepted tree that includes
the word σ. Vice versa, if there exists a tree t ∈ L(ADPT) with a path π such
that λ(π) = σ then, by construction, σ is accepted by ADPW.

Theorem 4. ϕ /◦→ ψ iff L(ANBW) ∩ L(BNBW) �= ∅.

Proof. If ϕ /◦→ ψ then there is a transducer T such that T |= ϕ and T �|= ψ,
so for some path π ∈ t where t is the unrolling of T , we have λ(π) �|= ψ and
λ(π) |= ϕ. Thus, λ(π) is in L(ANBW) ∩ L(BNBW). Similarly, if there is a word
σ in L(ANBW) ∩ L(BNBW) then there is a regular tree t ∈ T satisfying ϕ with
a path π ∈ t such that λ(π) = σ. The transducer T generating t models ϕ and
violates ψ (because σ �|= ψ), so ϕ /◦→ ψ holds.

Theorem 5. Deciding ϕ ◦→ ψ is 2EXPTIME-complete and PSPACE-complete
when ϕ is fixed. Deciding open equivalence is 2EXPTIME-complete.

Proof. Hardness was shown in Theorem 3. The algorithm runs in time
22O(n)

2O(m). The first four steps of the algorithm use time and space 22O(n)
.

Open Implication 367

Deciding whether L(ANBW)∩L(BNBW) = ∅ can be done within the resources
required. The key is avoiding an explicit construction of BNBW, rather, construct-
ing its state while performing an on-the-fly search. We check whether there is a
word that is accepted by the NBW ANBW and the NBW BNBW by nondeter-
ministically guessing a word σ ∈ Aω and simultaneously keeping track of the
corresponding runs in both automata. We only have to store two states of the
NBW ANBW and two states of the NBW BNBW at each step of the algorithm.
Since each state of ANBW has size 2O(n) and each state of BNBW has size O(m),
nonemptiness for L(ANBW)∩L(BNBW) can be checked using 2O(n) +O(m) non-
deterministic space. By [24], this can be done using 2O(n) +O(m2) deterministic
space. The time requirement is exponential in the space requirement, so it is
22O(n)

2O(m2).
Altogether, the algorithm uses doubly exponential time in n and polynomial

space in m.

Open implication can be viewed as a simultaneous realizability testing for the
implicate (left-hand-side of implication) and validity testing for the implicant
(right-hand-side of the implication). For a fixed implicant, open implication is
2EXPTIME-complete, just like realizability1, and for a fixed implicate open
implication is PSPACE-complete, just like validity.

For the next section, we need a bound on the size of the witness for ϕ /◦→ ψ.

Lemma 2. If L(ANBW) ∩ L(BNBW) �= ∅ then there exists a word uv ∈ A∗ of
length at most 22m+1|QNBW| such that uvω ∈ L(ANBW) ∩ L(BNBW).

Proof. The product automaton CNBW of ANBW and BNBW has at most 2 ·
22m|QNBW| states. If L(CNBW) �= ∅ then there exists a word uv ∈ A∗ whose
length is at most the number of states in CNBW such that uvω ∈ L(CNBW).

Theorem 6. If ϕ /◦→ψ, there is a transducer T with at most 22m+1|QNBW||QDPT|
states such that T |= ϕ but T �|= ψ.

Proof. Let π = (i0∪o0) . . . (ik−1∪ok−1)
(
(ik∪ok) . . . (il−1∪ol−1)

)ω in L(ANBW)∩
L(BNBW) with l ≤ 22m+1|QNBW|. The transducer is T = (Q, q0, δ, λ) with Q =
Wϕ × {0, . . . , l − 1,⊥}, where the second element keeps track of whether and
where we are in π. From ADPT we can derive a transducer T ′ with state space
Wϕ that satisfies ϕ. Our transducer T behaves like T ′ for all states in QDPT×{⊥}.
For j ∈ {0, . . . , l−1}, we have λ((q, j)) = oj and δ((q, j), i) = (δDPT(q, oj , i), j′),
where j′ =⊥ if i �= ij and if i = ij then j′ = j+1 if j < l−1 and k otherwise. Note
that δDPT(q, oj , i) ∈ Wϕ because π is accepted by ANBW and thus by ADPW.
The transducer violates ψ when the input sequence is as in π and satisfies ϕ.
The number of states of T is at most 22m+1|QNBW||QDPT| = 2n22n+3+10n+3+2m

1 In spite of the doubly exponential lower bound, there have been recently encouraging
developments regarding the practicality of realizability checking [10,16,19].

368 K. Greimel et al.

Notation: Let witn(n,m) = 2n22n+3+10n+3+2m.
Note that it is possible to avoid constructing ANBW in our algorithm, if we

check language emptiness of L(ADPW)∩L(BNBW) directly. This leads to a slightly
better upper bound in Theorem 6.

Our proof techniques can be extended to other linear specification formalisms
that allow a translation of the specification into an NBW. Two popular for-
malisms falling into that class are QPTL [26] and the industrial PSL [6]. The
algorithm follows the approach described above, adapting Step 1 and 5 to the
formalism used. The complexity of the algorithm depends on the cost of trans-
lating the specification into an NBW. For QPTL and PSL it is possible to find
an algorithm whose complexity matches the lower bounds for realizability and
validity of the respective logics.

Note that the use of quantifiers allows us to check open equivalence between
specifications at different levels of abstraction, e.g., a specification can be checked
against a refined version that includes variables encoding implementation details.
This is particular useful for synthesis of Generalized Reactivity(1) (cf. Section 4),
which introduces additional variables to encode LTL specifications.

3.3 Avoiding Safra’s Construction

In this section, we present another algorithm to decide if ϕ ◦→ ψ, based on [16],
which avoids Safra’s intricate determinization construction and parity games and
lends itself to implementation [10].

In [16], Kupferman and Vardi provide an approach to decide the realizability
problem for LTL. Given an LTL formula ϕ, they construct a UCT U that accepts
exactly all trees that are solutions to the realizability problem of ϕ.

Theorem 7. [16] The realizability problem for an LTL formula ϕ can be reduced
to the nonemptiness problem for a UCT with at most 4|ϕ| states.

In order to check if the language of U is empty, U is translated into a corre-
sponding NBT N .

Theorem 8. [16] Let U be a UCT with p states. For each k > 0 we can construct
an NBT Nk with 2p(log(k)+2) states such that a tree generated by a transducer
with at most k states is accepted by U iff it is accepted by Nk.

Intuitively, the size of Nk is bounded by the size of the transducers generating
the trees Nk has to accept. (Note that in general one cannot translate a UCT
to an equivalent NBT.)

Since we are looking for a transducer that fulfills ϕ and violates ψ, Theorem 6
provides a bound on the size of the transducers of interest, which is witn(n,m).
We can replace the algorithm of Section 3.2 by the following algorithm:

1. Construct a UCT AUCT of size 4n such that L(AUCT) = {t ∈ T | t |= ϕ}.
From AUCT construct the NBT Nwitn(n,m) (Theorem 8). The number of
states of this NBT is 2O(m)2O(n)

.

Open Implication 369

2. Compute the set Wϕ of states q of Nwitn(n,m), such that N q
witn(n,m) accepts

some tree, in quadratic time [28].
3. From Nwitn(n,m) construct an NBW ANBW such that σ ∈ L(ANBW) if σ =

λ(π) for some path π of a tree t ∈ L(Nwitn(n,m)).
4. Construct an NBW BNBW with at most 4m states that accepts all words in

L(¬ψ) [27].
5. Check if L(ANBW) ∩ L(BNBW) = ∅ in time linear in the size of ANBW and

BNBW [27].

Theorem 9. Deciding if ϕ ◦→ψ can be reduced to the language emptiness check
of the product between ANBW and BNBW.

The revised algorithm is doubly exponential in ϕ and exponential in ψ. We do
not attempt to be space efficient here, as the automaton Nwitn(n,m) is already
exponential in ψ. Nevertheless, this approach is useful as it avoids Safra’s con-
struction and parity games. It is particularly suitable for finding counterexamples
to open implication, since it can be implemented incrementally by increasing the
size of the transducers we are looking for. This may allow us to find counterexam-
ples using much smaller automata than the full deterministic parity automaton
[16,14].

4 Generalized Reactivity

Generalized Reactivity(1), or GR(1) for short, is a specification formalism that
has been proposed in [19] for synthesis. GR(1) specifications consist of two sets
of symbolically represented DBWs, one for the environment and one for the
system. This formalism avoids the determinization step normally required for
synthesis; it has a symbolic synthesis algorithm consisting of a triply nested
fixpoint computation [19]. Experience shows that the formalism can be used to
synthesize modest sized industrial circuits from their specifications, and that the
restriction to GR(1) specifications is not overly restrictive [2,3].

We briefly recapitulate the construction of [19]. A DBW over AP with n
states can be symbolically represented by an LTL formula ϕ by using a set V
of 2lg(n)3 new atomic propositions. The formula is a conjunction of three parts:
(1) ϕi is a propositional formula over V denoting the initial state, (2) ϕt is
a formula of the form G

∧
i(χi → X ξi) representing the complete, deterministic

transition relation, where χi and ξi are propositional formulas over AP∪V and V ,
respectively, and (3) ϕf is a formula of the form GFχ, where χ is a propositional
formula over V , representing the fairness condition. For instance, we represent
G(r → F a) with V = {s} by ψ = ¬s∧G

(
(¬s∧ r ∧¬a→ X s)∧ (¬s∧ (¬r ∨ a) →

X¬s)∧(s∧¬a→ X s)∧(s∧a→ X¬s)
)
∧G F¬s. The DBW is shown in Figure 1.

A GR(1) specification has the form ϕ = (
∧

j ϕe,j)→ (
∧

j ϕs,j), where envi-
ronment assumptions ϕe,j and the system guarantees ϕs,j represent DBWs. In
the sequel, let ϕa

b =
∧

j ϕ
a
b,j for a ∈ {i, t, f} and b ∈ {s, e}. GR(1) formulas are

intended to describe Mealy machines, not Moore machines, which leads to small
technical differences with the previous presentation. Also, in keeping with [19],

370 K. Greimel et al.

¬s

s

¬a

a r ∧ ¬a

¬r ∨ a

Fig. 1. DBW for G(r → F a)

 1

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16

tim
e

(s
)

number of masters

old
new

open implication

Fig. 2. Time needed for calculations

we use game-based terminology here. A game corresponds to a tree automaton
and a winning state corresponds to a state with a nonempty language.

In order to decide realizability of a GR(1) formula, a game graph Gϕ is built.
The transition structure of the game graph is given by the combination of ϕt

e

and ϕt
s, the initial state is ϕi

e ∧ ϕi
s, and the winning condition is ϕf

e → ϕf
s . The

winning region Wϕ of the game is computed symbolically by a triply nested
fixpoint formula, and the formula is realizable if the initial state is winning [19].

We now describe how to decide open implication. Suppose we have two GR(1)
specifications, ϕ =

∧
i ϕe,i →

∧
j ϕs,j and ψ =

∧
k ψe,k →

∧
l ψs,l. We check

whether ϕ ◦→ ψ as follows.

1. Construct the game graph Gϕ and compute the winning region Wϕ.
2. Construct the game graph Gψ and the product G of Gϕ and Gψ .
3. Check if there is a path in G that (i) stays within Wϕ, (ii) satisfies ϕf

e → ϕf
s ,

and (iii) violates ψf
e → ψf

s .

Note that this algorithm is similar to the one described above, although removal
of the losing states (the states with an empty language) has been replaced by
the requirement that the path remain in the set of winning states. Thus, we
are looking for a path within Wϕ that satisfies all of the ψf

e,k, violates one of
the ψf

s,l, and either violates one if the ϕf
e,i or satisfies all of the ϕf

s,j . This is
expressed by the μ-calculus [13] formula γ = μY .Wϕ ∧ (γ′ ∨ pre(Y)), where
γ′ =

∨
i,l(νY .(Wϕ ∧ ¬ϕf

e,i ∧ Eψ ∧ ¬ψf
s,l)) ∨

∨
l(νY .(Wϕ ∧ Sϕ ∧ Eψ ∧ ¬ψf

s,l)),
Eψ =

∧
k pre(μZ . Y ∧(ψf

e,k∨pre(Z))), and Sϕ =
∧

j pre(μZ . Y ∧(ϕf
s,j∨pre(Z))).

The complexity of a symbolic algorithm can be given in terms of the number
of symbolic steps [1], where steps in this case are preimage computations and
computations of the force operator used for games [19]. Computing the winning
region of Gϕ requires a cubic number of steps in terms of the number of states in
Gϕ. Computing γ, a doubly-nested fixpoint, and thus requires only a quadratic
number of steps in terms of the size of G.

Theorem 10. We have that ϕ /◦→ψ iff the initial state of G is in the set γ. This
computation uses a number of symbolic steps cubic in Gϕ and quadratic in Gψ.

Open Implication 371

4.1 Experimental Results

We have implemented the algorithm for open implication of GR(1) formulas
in Anzu [11], a synthesis tool for GR(1) specifications. We have tested our
implementation on specifications of an arbiter for ARM’s AMBA AHB bus used
in [2,3]. In Figure 2, we show the time Anzu takes to synthesize the specifications
and the time needed to calculate open implication. The old specification, which
was used in [2] can only be synthesized for up to 7 masters. Anzu runs out
of memory for larger instances. In [3] an improved version of the specification
was presented, but it was not proven that the old and new specifications are
equivalent. The new specification can be synthesized for up to 15 masters2.
(2GB of memory were available.) Using the algorithm presented above, we can
show that the new specification open-implies the old one and can thus be used
in its stead. Figure 2 also shows that the combined time needed to calculate
open implication and to synthesize the new specification is less than the time
needed to synthesize the old specification, when that is possible. It should be
noted that the circuits that result from the new specification are much smaller
than those resulting from the old specification.

5 Conclusions

We have argued that open implication is an important concept both in model
checking and in synthesis. We have given algorithms to compute open implication
and open equivalence for the specification formalisms LTL and GR(1). For LTL,
we have shown an algorithm that runs in time that is doubly exponential in the
size of the implicate and space that is polynomial in the size of the implicant,
matching the lower bounds. We have also shown how to implement the algorithm
while avoiding Safra’s construction. Finally, we implemented the approach for
GR(1) specifications and showed that it can be used to show the correctness of
simple specifications and, thus, to synthesize circuits that would otherwise be
out of reach.

References

1. Bloem, R., Gabow, H., Somenzi, F.: An algorithm for strongly connected compo-
nent analysis in n log n symbolic steps. Formal Methods in System Design (2006)

2. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Automatic hardware synthesis from specifications: A case study. In: DATE (2007)

3. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. In: 6th International Workshop on
Compiler Optimization Meets Compiler Verification, pp. 3–16 (2007)

4. Bloem, R., Ravi, K., Somenzi, F.: Efficient decision procedures for model checking
of linear time logic properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633. Springer, Heidelberg (1999)

2 Our specifications are slightly different from those used in [2,3]

372 K. Greimel et al.

5. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Inter-
national Congress on Logic, Methodology, and Philosophy of Science (1962)

6. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg
(2006)

7. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proc. Foundations of Computer Science (1988)

8. Greimel, K.: Open implication. Master’s thesis, Graz University of Technology
(2007)

9. Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and
Models of Concurrent Systems, pp. 477–498 (1985)

10. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: 6th Conference on
Formal Methods in Computer Aided Design (FMCAD 2006), pp. 117–124 (2006)

11. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for property
synthesis. In: Computer Aided Verification, pp. 258–262 (2007)

12. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata.
In: Foundations of Software Science and Computation Structures (2001)

13. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

14. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Hei-
delberg (2006)

15. Kupferman, O., Vardi, M.Y.: Relating linear and branching model checking. In:
IFIP Working Conference on Programming Concepts and Methods (1998)

16. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Symposium on
Foundations of Computer Science (FOCS 2005), pp. 531–542 (2005)

17. McIsaac, A.: Personal Communication (November 2006)
18. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic

parity automata. In: Logic in Computer Science (LICS 2006), pp. 255–264 (2006)
19. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Proc. Ver-

ification, Model Checking and Abstract Interpretation, pp. 364–380 (2006)
20. Pnueli, A.: The temporal logic of programs. In: IEEE Symposium on Foundations

of Computer Science, Providence, RI, pp. 46–57 (1977)
21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. Symposium

on Principles of Programming Languages (POPL 1989), pp. 179–190 (1989)
22. Rabin, M.O.: Automata on Infinite Objects and Church’s Problem. In: Regional

Conference Series in Mathematics. American Mathematical Society, Providence
(1972)

23. Rosner, R.: Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Insti-
tute of Science (1992)

24. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences 4(2), 177–192 (1970)

25. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic.
Journal of the ACM 3, 733–749 (1985)

26. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science (1987)

27. Vardi, M., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115, 1–37 (1994)

28. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Sciences 32(2), 182–221 (1986)

29. Yoshiura, N.: Finding the causes of unrealizability of reactive system formal speci-
fications. In: Proc. Software Engineering and Formal Methods (SEFM 2004) (2004)

ATL* Satisfiability Is 2EXPTIME-Complete�

Sven Schewe

Universität des Saarlandes, 66123 Saarbrücken, Germany

Abstract. The two central decision problems that arise during the de-
sign of safety critical systems are the satisfiability and the model checking
problem. While model checking can only be applied after implementing
the system, satisfiability checking answers the question whether a system
that satisfies the specification exists. Model checking is traditionally con-
sidered to be the simpler problem – for branching-time and fixed point
logics such as CTL, CTL*, ATL, and the classical and alternating time
μ-calculus, the complexity of satisfiability checking is considerably higher
than the model checking complexity. We show that ATL* is a notable
exception of this rule: Both ATL* model checking and ATL* satisfiability
checking are 2EXPTIME-complete.

1 Introduction

One of the main challenges in system design is the construction of correct im-
plementations from their temporal specifications. Traditionally, system design
consists of three separated phases, the specification phase, the implementation
phase, and the validation phase. From a scientific point of view it seems inviting
to overcome the separation between the implementation and validation phase,
and replace the manual implementation of a system and its subsequent validation
by a push-button approach, which automatically synthesizes an implementation
that is correct by construction. Automating the system construction also pro-
vides valuable additional information: we can distinguish unsatisfiable system
specifications, which otherwise would go unnoticed, leading to a waste of effort
in the fruitless attempt of finding a correct implementation.

One important choice on the way towards the ideal of fully automated system
construction is the choice of the specification language. For temporal specifica-
tions, three different types of logics have been considered: Linear-time logics [1],
branching-time logics [2], and alternating-time logics [3]. The different paradigms
are suitable for different types of systems and different design phases. Linear-
time logic can only reason about properties of all possible runs of the system.
Consequently, it cannot express the existence of different runs. A constructive
non-emptiness test of an LTL specification is therefore bound to create a system
that has exactly one possible run. Branching-time logics [2], on the other hand,

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 373–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

374 S. Schewe

Logic Model Checking (Structure) Model Checking Satisfiability Checking

LTL NLOGSPACE [4] PSPACE [5] PSPACE [4]

CTL NLOGSPACE [6] PTIME [5] EXPTIME [2]

CTL* NLOGSPACE [6] PSPACE [5] 2EXPTIME [4]

ATL PTIME [3] PTIME [3] EXPTIME [7]

ATL* PTIME [3] 2EXPTIME [3] 2EXPTIME

Fig. 1. For all previously considered branching-time temporal specifications, satisfiabil-
ity checking is at least exponentially harder than model checking (in the specification).
We show that ATL* is an interesting exception to this rule.

can reason about possible futures, but they refer to closed systems [3] that do not
distinguish between different participating agents. Finally, alternating-time log-
ics [3] can reason about the strategic capabilities of groups of agents to cooperate
to obtain a temporal goal. The following example illustrates the differences.

Consider a vending machine that offers coffee and tea. Ultimately, we want
the machine to react on the requests of a customer, who shall be provided with
coffee or tea upon her wish. In alternating-time logic, we have a natural cor-
respondence to this requirement: we simply specify that the customer has the
strategic capability to get coffee or tea from the machine, without the need of
cooperation, written 〈〈customer〉〉©getcoffee or 〈〈customer〉〉©gettea , respectively.

In branching-time logic, there is no natural correspondence to the property.
The typical approximation is to specify the possibility that coffee or tea is pro-
vided, written E © getcoffee or E © gettea , respectively. However, this does no
longer guarantee that the customer can choose; the specification is also fulfilled if
the health insurance company can override the decision for coffee. A workaround
may be to introduce a dedicated communication interface between the vending
machine and the customer, and represent the desire for coffee by a desirecoffee
bit controlled by the customer. The property may then be approximated by
E©desirecoffee and desirecoffee → A©getcoffee. In LTL, the possibility of differ-
ent system behaviors cannot be expressed within the logic. Here, in addition to
specifying an interface, we would have to distinguish between parts of the system
under our control (the vending machine) and parts outside of our control (the
customer). The most likely approximation would be desirecoffee → ©getcoffee ,
with the addition that there is not only the need to design an interface to the
customer beforehand, but also to make assumptions about her behavior.

Using the workarounds for branching-time or linear-time logic requires solv-
ing the central design problem of designing interfaces in an early specification
phase, instead of starting with an abstract view on the system. Especially in the
case that synthesis fails, we could no longer distinguish if we made an error in
designing the interfaces, or if the specification is unrealizable.

As an example for this effect, we could consider to use alternating-time logic
for the specifications of protocol fairness. ATL* has, for example, been used
to express the fairness requirement “Bob cannot obtain Alice’s signature un-
less Alice can obtain Bob’s signature as well” [8] in contract signing protocols.

ATL* Satisfiability Is 2EXPTIME-Complete 375

Using satisfiability checking techniques for alternating-time logics, we can auto-
mate [9] the proof that fair contract signing is not possible without a trusted
third party [10] (under the presence of other standard requirements).

The alternating-time temporal logic ATL* [3] extends the classic branching-
time temporal logic CTL* [4] with path quantifiers that refer to the strategic
capabilities of groups of agents. An ATL* specification 〈〈A′〉〉ϕ requires that the
group A′ of agents can cooperate to enforce the path formula ϕ. ATL* formu-
las are interpreted over concurrent game structures, a special type of labeled
transition systems, where each transition results from a set of decisions, one for
each agent. When interpreted over a concurrent game structure C, 〈〈A′〉〉ϕ holds
true in a state s of C if the agents in A′ can win a two player game against the
agents not in A′. In this game, the two groups of agents take turns in making
their decisions (starting with the agents in A′), resulting in an infinite sequence
ss1s2 . . . of states of the concurrent game structure C. The agents in A′ win this
game, if the infinite sequence ss1s2 . . . satisfies the path formula ϕ.

Since ATL* specifications can canonically be transformed into alternating-
time μ-calculus (ATM) formulas [11,3], ATL* inherits the decidability and finite
model property from ATM [9]. This translation from ATL* to ATM, comprises a
doubly exponential blow-up, which is in line with the doubly exponential model
checking complexity of ATL* [11,3]. The complexity of the ATL* satisfiability
and synthesis problem, on the other hand, has been an interesting open challenge
since its introduction [7]: While the complexity of the satisfiability problem is
known to be EXPTIME-complete for the least expressive alternating-time logic
ATL [12,7] as well as for the most expressive alternating-time logic ATM [9],
the complexity of the succinct and intuitive temporal logic ATL* has only been
known to be in 3EXPTIME [9,11], and to inherit the 2EXPTIME hardness from
CTL*, leaving an exponential gap between both bounds.

Outline. In this paper, we introduce an automata-theoretic decision procedure
to demonstrate that deciding the satisfiability of an ATL* specification and, for
satisfiable specifications, constructing a correct model of the specifications is no
more expensive than model checking: both problems are 2EXPTIME-complete
in the size of the specification. To the contrary, the cost of model checking
a concurrent game structure against an ATL* specification is also polynomial
in the size of the concurrent game structure. While polynomial conveys the
impression of feasibility, the degree of this polynomial is, for known algorithms,
exponential in the size of the specification [3,11].

On first glance, an automata-theoretic construction based on automata over
concurrent game structures (ACGs) [9] – the alternating-time extension of sym-
metric alternating-automata [13] – does not seem to be a promising starting
point for the construction of a 2EXPTIME algorithm, because synthesis proce-
dures based on alternating automata usually shift all combinatorial difficulties
to testing their non-emptiness [14]. Using a doubly exponential translation from
ATL* through ATM to an equivalent ACG suffices to proof the finite model
property of ATL* [9], but indeed leads to a triply exponential construction.

376 S. Schewe

In order to show that a constructive non-emptiness test for ATL* specifica-
tions can be performed in doubly exponential time, we combine two concepts:
We first show that every model can be transformed into an explicit model that
includes a certificate of its correctness. For this special kind of model, it suffices
to build an ACG that only checks the correctness of the certificate. Finally, we
show that we can construct such an automaton, which is only singly exponential
in the size of the specification. Together with the exponential cost of a construc-
tive non-emptiness test of ACGs [9], we can provide a 2EXPTIME synthesis
algorithm for ATL* specifications that returns a model together with a cor-
rectness certificate. 2EXPTIME-completeness then follows with the respective
hardness result for the syntactic sublogic CTL* [4] of ATL*.

2 Logic, Models and Automata

In this section we recapture the logic ATL* [3], concurrent game structures, over
which ATL* specifications are interpreted, and automata over concurrent game
structures [9], which are used to represent alternating-time specifications.

2.1 Concurrent Game Structures

Concurrent game structures [3] generalize labeled transition systems (or pointed
Kripke structures) to a setting with multiple agents. A concurrent game structure
(CGS) is a tuple C = (P,A, S, s0, l, Δ, τ), where

– P is a finite nonempty set of atomic propositions,
– A is a finite nonempty set of agents,
– S is a nonempty set of states, with a designated initial state s0 ∈ S,
– l : S → 2P is a labeling function that decorates each state with a subset of

the atomic propositions,
– Δ is a nonempty set of possible decisions for every agent, and
– τ : S ×ΔA → S is a transition function that maps a state and the decisions

of the agents to a new state.

For a CGS C, a strategy for a set A′ ⊆ A of agents is a mapping fA′ : S∗ → ΔA′

from finite traces to decisions of the agents in A′, and a counter strategy is a
mapping f c

A�A′ : S∗ × ΔA′ → ΔA�A′
from finite traces and decisions of the

agents in A′ to decisions of the agents in A � A′. For a given strategy fA′ and
counter strategy f c

A�A′ , the set of plays starting at a position s1 is defined as
plays(s1, fA′) = {s1s2s3 . . . | ∀i≥1 ∃d′∈ΔA�A′

. si+1 = τ(si, (fA′(s1 . . . si), d′))},
plays(s1, f

c
A�A′)={s1s2s3 . . . | ∀i≥1 ∃d∈ΔA′

. si+1=τ(si, (f c
A�A′(s1 . . . si, d), d))}.

2.2 ATL*

ATL* extends the classical branching-time logic CTL* by path quantifiers that
allow for reasoning about the strategic capability of groups of agents.

ATL* Syntax. ATL* contains formulas 〈〈A′〉〉ψ, expressing that the group A′ ⊆
A of agents can enforce that the path formula ψ holds true. Formally, the state

ATL* Satisfiability Is 2EXPTIME-Complete 377

formulas (Φ) and path formulas (Π) of ATL* are given by the following grammar
(where p ∈ P is an atomic proposition, and A′ ⊆ A1 is a set of agents).

Φ := true | p | Φ ∧ Φ | Φ ∨ Φ | ¬Φ | 〈〈A′〉〉Π , and
Π := Φ | Π ∧Π | Π ∨Π | ¬Π | ©Π | Π UΠ .

Every state formula is an ATL* formula. We call an ATL* formula basic iff it
starts with a path quantifier 〈〈A′〉〉.

Semantics. An ATL* specification with atomic propositions⊆ P is interpreted
over a CGS C = (P,A, S, s0, l, Δ, τ). ‖ϕ‖C ⊆ S denotes the set of states where
ϕ holds. A CGS C = (P,A, S, s0, l, Δ, τ) is a model of a specification ϕ (C |= ϕ)
with atomic propositions P iff ϕ holds in the initial state (s0 ∈ ‖ϕ‖C).

For each state s of C, path(s) denotes all paths in C that originate from s, and
path(C) =

⋃
{path(s) | s ∈ S} denotes the set of all paths in C.

An ATL* formula is evaluated along the structure of the formula.

– Atomic propositions and Boolean connectives are interpreted as usual:
‖true‖C = S, ‖p‖C = {s ∈ S | p ∈ l(s)}, and
‖ϕ∧ ψ‖C = ‖ϕ‖C ∩ ‖ψ‖C, ‖ϕ ∨ ψ‖C = ‖ϕ‖C ∪ ‖ψ‖C, and ‖¬ϕ‖C = S � ‖ϕ‖C .

– Basic formulas ϕ = 〈〈A′〉〉ψ hold true in a state s if the agents in A′ have a
strategy which ensures that all plays starting in s satisfy the path formula ψ:
s ∈ ‖ϕ‖C ⇔ ∃fA′ : S∗ → ΔA′

. plays(s, fA′) ⊆ ‖ψ‖pathC .

For a path formula ϕ and a CGS C, ‖ϕ‖pathC ⊆ path(C) denotes the set of
paths of C where ϕ holds. Path formulas are interpreted as follows:

– For state formulas ϕ, ‖ϕ‖pathC =
⋃
{path(s) | s ∈ ‖ϕ‖C}.

– Boolean connectives are interpreted as usual: ‖ϕ∧ψ‖pathC = ‖ϕ‖pathC ∩‖ψ‖pathC ,
‖ϕ ∨ ψ‖pathC = ‖ψ‖pathC ∪ ‖ϕ‖pathC , and ‖¬ϕ‖pathC = path(C) � ‖ϕ‖pathC .

– A path π = s1, s2, s3, s4 . . . satisfies ©ϕ (read: next ϕ), if the path
s2, s3, s4 . . . obtained by deleting the first letter of π satisfies ϕ:
‖© ϕ‖pathC = {s1, s2, s3, s4 . . . ∈ path(C) | s2, s3, s4 . . . ∈ ‖ϕ‖pathC }.

– A path π = s1, s2, s3, s4 . . . satisfies ϕUψ (read: ϕ until ψ), if there is a
natural number n ∈ N such that
(1) the path sn, sn+1, sn+2 . . . obtained by deleting the initial sequence
s1, s2, s3 . . . sn−1 of π satisfies the path formula ψ, and
(2) for all i < n, the path si, si+1, si+2 . . . obtained by deleting the initial
sequence s1, s2, s3 . . . si−1 of π satisfies the path formula ϕ:
‖ϕUψ‖pathC = {s1, s2, s3, s4 . . . ∈ path(C) |
∃n ∈ N. (sn, sn+1, sn+2 . . . ∈ ‖ψ‖pathC ∧ ∀i < n. si, si+1, si+2 . . . ∈ ‖ϕ‖pathC)}.

Note that the validity of basic formulas 〈〈A′〉〉ψ is implicitly defined by the
outcome of a two player game with an ω-regular (LTL) objective. Such games are
determined [11]. Consequently, there is a counter strategy f c

A�A′ : S∗ ×ΔA′ →
ΔA�A′

such that plays(s, f c
A�A′) ⊆ ‖¬ψ‖pathC if and only if s /∈ ‖〈〈A′〉〉ψ‖C .

1 We assume that the set A of agents is known and fixed. For satisfiability checking, one
could argue that this is not necessarily the case. However, we can assume without loss
of generality that there is at most one agent that does not occur in the formula [7].

378 S. Schewe

2.3 Automata over Concurrent Game Structures

Automata over concurrent game structures (ACGs) [9] provide an automata-
theoretic framework for alternating-time logics. Generalizing symmetric au-
tomata [13], ACGs contain universal atoms (�, A′), which refer to all successor
states for some decision of the agents in A′, and existential atoms (♦, A′), which
refer to some successor state for each decision of the agents not in A′. ACGs can
run on CGSs with arbitrary sets Δ of decisions. For the purpose of this paper,
it suffices to consider ACGs with a Co-Büchi acceptance condition.

An ACG is a tuple A = (Σ,Q, q0, δ, F), where Σ is a finite alphabet, Q
is a finite set of states, q0 ∈ Q is a designated initial state, δ is a transition
function, and F ⊆ Q is a set of final states. The transition function δ : Q×Σ →
B+(Q × ({�,♦} × 2A)) maps a state and an input letter to a positive Boolean
combination of universal atoms – (q,�, A′) – and existential atoms – (q,♦, A′).

A run tree 〈R, r : R → Q × S〉 on a given CGS C = (P,A, S, s0, l, Δ, τ) is a
Q×S-labeled tree where the root is labeled with (q0, s0) and where, for a node
n with a label (q, s) and a set L = {r(n · ρ) |n · ρ ∈ R} of labels of its successors,
there is a set A ⊆ Q× ({�,♦} × 2A) of atoms satisfying δ(q, l(s)) such that

– for all universal atoms (q′,�, A′) in A, there exists a decision d ∈ ΔA′

of the agents in A′ such that, for all counter decisions d′ ∈ ΔA�A′
,

(q′, τ(s, (d, d′))) ∈ L, and
– for all existential atoms (q′,♦, A′) in A and all decisions d′ ∈ ΔA�A′

of
the agents not in A′, there exists a counter decision d ∈ ΔA′

such that
(q′, τ(s, (d, d′))) ∈ L.

A run tree is accepting iff all paths satisfy the Co-Büchi condition that only
finitely many positions on the path are labeled with a final state (or rather: with
an element of F × S), and a CGS is accepted iff it has an accepting run tree.

The atoms of an ACG A are the elements of the set atom(A) ⊆ Q×({�,♦}×
2A) of atoms that actually occur in some Boolean function δ(q, σ), and the size
|Q|+ |atom(A)| of A is the sum of the number of its states and atoms.

Theorem 1. [9] A constructive non-emptiness test of an ACG can be performed
in time exponential in the size of the ACG. ��

An automaton is called universal if all occurring Boolean functions δ(q, σ) are
conjunctions of atoms in Q× {(�, ∅)}.

3 From General to Explicit Models

In this section we show that every model of a specification can be transformed
into an explicit model, which makes both the truth of each basic subformula in
the respective state and a (counter) strategy that witnesses the validity or inva-
lidity of this basic subformulas explicit. This result is exploited in the following
section by constructing a small ACG Aϕ that accepts the explicit models of ϕ.
Constructing an explicit model from a general model consists of three steps:

ATL* Satisfiability Is 2EXPTIME-Complete 379

(a) (b)

Fig. 2. In the central third step of the transformation of an arbitrary model into an
explicit CGT, a CGT is widened in order to enable a finite encoding of witness strategies
for the (in)validity of basic subformulas in the labels. Figure 2a shows a CGT for a
single agent a and a binary set Δ = {left , right}, where 〈〈a〉〉ϕ holds in every position.
The color coding maps a witness strategy for 〈〈a〉〉ϕ to every position p – in the single
agent case an infinite path rooted in p that satisfies ϕ. In Figure 2a, the path that
always turns left is a witness strategy for the validity of 〈〈a〉〉ϕ in the root, indicated
by coloring this path and the root of the tree in the same color (red). In general,
witness strategies cannot be finitely encoded in the labels of a CGT, because there is
no bound on the number of paths a position belongs to. The tree is therefore widened
by extendingΔ toΔ′ = {(left ,new), (left , cont), (right ,new), (right , cont)} (Figure 2b).
Witness strategies for the resulting CGT are constructed from witness strategies for the
original CGT by turning first to a new , and henceforth to a cont direction, avoiding the
unbounded overlap of witness strategies – for 〈〈a〉〉ϕ, every position p occurs in at most
one witness strategy that does not start in p – allowing for their finite representation.

1. In a first step, we add a fresh atomic proposition b for each basic subformula
b of ϕ, and extend the labeling function such that b ∈ l(s) ⇔ s ∈ ‖b‖C.

2. In a second step, we unravel the model obtained in the first step to a tree.
Using trees guarantees that no position can be part of infinitely many wit-
nesses. However, the number of witness strategies a position might belong to
remains unbounded. (Or: May be linear in the number of its predecessors.)

3. In a final step, we widen the tree by adding a single Boolean decision to the
set Δ of decisions available to every agent (cf. Figure 2).
This widening allows us to map arbitrary but fixed witness (counter) strate-
gies from the original tree to witness (counter) strategies in the widened tree
such that witnesses for the validity of the same basic subformula b (or its
negation ¬b) in different states do not overlap. (With the exception of the
trivial case that the witness strategy must cover all successors.) This allows
us to explicitly encode the witnesses in the widened strategy trees.

From Models to Basic Models. For a given ATL* specification ϕ, we denote
with Bϕ the set of its basic subformulas. We call a model C = (P �Bϕ, A, S, s0,
l, Δ, τ) |= ϕ of an ATL* formula ϕ basic if, for all basic subformulas b ∈ Bϕ of ϕ
and all states s ∈ S of C, b ∈ l(s) ⇔ s ∈ ‖b‖C. Since the additional propositions
Bϕ do not occur in the specification, the following lemma holds trivially:

Lemma 1. An ATL* formula is satisfiable iff it has a basic model. ��

380 S. Schewe

From Models to Tree Models. We call a CGS C = (P,A, S, s0, l, Δ, τ) a
concurrent game tree (CGT) if S = (ΔA)∗, s0 = ε, and τ(s, d) = s · d. For
a CGS C = (P,A, S, s0, l, Δ, τ), we call TC = (P,A, (ΔA)∗, ε, l ◦ u,Δ, τ ′) where
τ ′(s, d) = s · d, and where the unraveling function u : (ΔA)∗ → S is defined
recursively by u(ε) = s0, and u(s) = s′ ⇒ u(s ·d) = τ(s′, d), the unraveling of C.
We extend u to finite and infinite paths (u(s0s1s2 . . .) = u(s0)u(s1)u(s2) . . .).

Lemma 2. A CGS C is a (basic) model of a specification ϕ if and only if its
unraveling TC is a (basic) model of ϕ.

Proof. By induction over the structure of ϕ, it is easy to prove that s ∈
‖ϕ‖TC ⇔ u(s) ∈ ‖ϕ‖C, and π ∈ ‖ϕ‖pathTC

⇔ u(π) ∈ ‖ϕ‖pathC . The only non-
trivial part in the induction is the transformation of the witness strategies
for basic formulas (ϕ = 〈〈A′〉〉ψ). However, we can simply use the unraveling
function u to transform a witness (counter) strategy fA′ or f c

A�A′ for C into
a witness (counter) strategy f ′A′ or f c

A�A′
′, respectively, for TC . For this, we

fix f ′A′(π) = fA′(u(π)) or f c
A�A′

′(π, d) = f c
A�A′(u(π), d), respectively. This en-

sures that plays(u(s), fA′) = u(plays(s, f ′A′)) := {u(π) | π ∈ plays(s, f ′A′)}, or
plays(u(s), f c

A�A′) = u(plays(s, f c
A�A′

′)). Using the induction hypothesis, we get
plays(s, f ′A′) ⊆ ‖ψ‖pathC or plays(s, f c

A�A′
′) ⊆ ‖¬ψ‖pathC , respectively. ��

From Tree Models to Explicit Tree Models. For a CGT T =
(P,A, (ΔA)∗, ε, l,Δ, τ), we call the CGT Tw = (P,A, (Δ′A)∗, ε, l ◦ h,Δ′, τ ′),
where Δ′ = Δ × {new , cont}, h : (Δ′A)∗ → (ΔA)∗ is a hiding function that
hides the {new , cont} part of a trace position-wise, and τ ′(s, d) = s · d is the
usual transition function of trees, the (Boolean) widening of T .

Lemma 3. A CGT T is a (basic) model of a specification ϕ if and only if its
(Boolean) widening Tw is a (basic) model of ϕ.

Proof. By induction over the structure of ϕ. Again, the only non-trivial part is
the transformation of the witness strategies for basic formulas (ϕ = 〈〈A′〉〉ψ).
For this part, we can use the hiding function h to transform a witness strategy
fA′ in T into a witness strategy f ′A′ in its widening Tw by choosing f ′A′(π) =
(fA′(h(π)), ∗), where ∗ ∈ {new , cont} can be chosen arbitrarily. This ensures
plays(h(s), fA′) = h(plays(s, f ′A′)) := {h(π) | π ∈ plays(s, f ′A′)}. Using the in-
duction hypothesis, we get plays(s, f ′A′) ⊆ ‖ψ‖pathC . As in the previous lemma, we
get the analogous result for the transformation of a witness counter strategy. ��

Let, for a basic subformula Bϕ � b = 〈〈A′〉〉ϕb of a specification ϕ,
a(b) = A′ and a(¬b) = A � A′ denote the set of agents that cooperate
to ensure ϕb and the set of their opponents, respectively, and let Eϕ =
{(b,new), (b, cont), (¬b,new), (¬b, cont) | b ∈ Bϕ} denote an extended set of sub-
formulas. We call a concurrent game structure C = (P �Bϕ�Eϕ, A, S, s0, l, Δ, τ)
well-formed if it satisfies the following requirements:

ATL* Satisfiability Is 2EXPTIME-Complete 381

– ∀s∈S. b/∈l(s) ⇒ ∀d∈Δa(b)∃d′∈Δa(¬b). (¬b,new)∈l(τ(s, (d, d′))),
– ∀s∈S. (¬b,new)∈l(s) ⇒ ∀d∈Δa(b)∃d′∈Δa(¬b). (¬b, cont)∈l(τ(s, (d, d′))),
– ∀s∈S. (¬b, cont)∈l(s) ⇒ ∀d∈Δa(b)∃d′∈Δa(¬b). (¬b, cont)∈l(τ(s, (d, d′))),
– ∀s∈S. b∈l(s) ⇒ ∃d∈Δa(b)∀d′∈Δa(¬b). (b,new)∈l(τ(s, (d, d′))),
– ∀s∈S. (b,new)∈l(s) ⇒ ∃d∈Δa(b)∀d′∈Δa(¬b). (b, cont)∈l(τ(s, (d, d′))), and
– ∀s∈S. (b, cont)∈l(s) ⇒ ∃d∈Δa(b)∀d′∈Δa(¬b). (b, cont)∈l(τ(s, (d, d′))).

For a basic subformula Bϕ � b = 〈〈a(b)〉〉ϕb of ϕ and its negation ¬b, we call the
set of traces witness(s, b) = {ss1s2s3 . . . ∈ path(s) | b ∈ l(s), (b,new) ∈ l(s1) and
∀i ≥ 2. (b, cont) ∈ l(si)} and witness(s,¬b) = {ss1s2s3 . . . ∈ path(s) | b /∈ l(s),
(¬b,new) ∈ l(s1) and ∀i ≥ 2. (¬b, cont) ∈ l(si)} the explicit witnesses for b and
¬b in s. C is called an explicit model of ϕ if the explicit witnesses are contained in
the set of paths that satisfy ϕb and ¬ϕb, respectively. (witness(s, b) ⊆ ‖ϕb‖pathC
and witness(s,¬b) ⊆ ‖¬ϕb‖pathC for all s ∈ S and b ∈ Bϕ.) Note that explicit
models of ϕ are in particular basic models of ϕ.

Lemma 4. Given a CGT T that is a basic model of an ATL* formula ϕ and a
set of witness strategies for T , we can construct an explicit model of ϕ.

Proof. In the proof of the previous lemma, we showed that the widening Tw of a
basic tree model T of ϕ is a basic model of ϕ. Moreover, we showed that, for the
translation of witness (counter) strategies that demonstrate the (in)validity of a
subformula b ∈ Bϕ of ϕ in a state s of Tw, any extension ∗ ∈ {new , cont} can
be chosen. In particular, the agents in a(b) or a(¬b), respectively, can choose to
first pick the new extension, and henceforth to pick the extension cont . For non-
universal specifications, that is, for the case a(b) �= ∅ or a(¬b) �= ∅, respectively,
this particular choice provides the guarantee that states reachable under the new
strategy f ′a(b) or counter strategy f c

a(¬b)
′, respectively, from different states in Tw

are disjoint. (∀s1, t1 ∈ (Δ′A)∗ ∀i, j > 1. s1s2s3 . . . ∈ plays(s1, f
′
a(b)) ∧ t1t2t3 . . . ∈

plays(t1, f ′a(b)) ∧ si = tj ⇒ s1 = t1, and the analogous result for f c
a(¬b)

′.)
For universal specifications, that is, for the case a(b) = ∅ or a(¬b) = ∅,

respectively, the respective player intuitively has no choice, and the (counter)
strategy f ′a(b) or f c

a(¬b)
′ is well defined.

In both cases, we mark the positions reachable under f ′a(b) in one step from
a position s1 with b ∈ l(s1) by (b,new) and positions reachable under f c

a(¬b)
′ in

one step from a position s1 with b /∈ l(s1) by (¬b,new), and we mark positions
reachable in more than one step by (b, cont) and (¬b, cont), respectively.

By construction, the resulting CGT Tw is well-formed, and b ∈ l(s) ⇒
witness(s, b) = plays(s, f ′a(b)) and b /∈ l(s) ⇒ witness(s,¬b) = plays(s, f c

a(¬b)
′)

hold. By Lemma 3, we also get b ∈ l(s) ⇒ plays(s, f ′a(b)) ⊆ ‖ϕb‖pathC and

b /∈ l(s) ⇒ plays(s, f c
a(¬b)

′) ⊆ ‖¬ϕb‖pathC . ��

Theorem 2. A specification has an explicit model if and only if it has a model.

Proof. The ‘if’ direction is implied by the Lemmata 1–4. For the ‘only if’ di-
rection, it is obvious that, for a given explicit model (P � Bϕ � Eϕ, A, S,

382 S. Schewe

s0, l, Δ, τ) of an ATL* formula ϕ, and for the projection of the labeling function to
the atomic propositions (l′(s)=l(s)∩P), (P,A, S, s0, l

′, Δ, τ) is a model of ϕ. ��

4 ATL* Satisfiability Is 2EXPTIME-Complete

We exploit the explicit model theorem by constructing an ACG Aϕ from an
ATL* specification ϕ that accepts only the explicit models of ϕ. Testing if a CGS
is a model of ϕ is considerably harder than testing if it is an explicit model. The
latter only comprises two simple tests: Checking the well-formedness criterion
can be performed by a (safety) ACG with O(|Bϕ|) states, while, for all basic
subformulas b ∈ Bϕ of ϕ, testing if all paths in witness(s, b) satisfy the path
formula ϕb and if all paths in witness(s,¬b) satisfy the path formula ¬ϕb can
be performed by a universal ACG that is exponential in ϕb.

Automata that check the (much weaker) model property, on the other hand,
need to guarantee consistency of the automaton decisions, which is usually solved
by using deterministic word automata to represent the single ϕb, leading to an
exponentially larger ACG (with parity acceptance condition and a number of
colors exponential in the length of ϕ).

We call a CGS C plain if all states in C are reachable from the initial state.
We can restrict our focus without loss of generality to plain concurrent game
structures, because unreachable states have no influence on the model property
(nor are they traversed by an automaton).

Lemma 5. For a specification ϕ, we can build an ACG Aw with O(|Eϕ|) states
that accepts a plain CGS C = (P �Bϕ �Eϕ, A, S, s0, l, Δ, τ) iff it is well-formed.

Proof. We can simply set Aw = (Σw, Qw, qw0 , δ, ∅) with Σw = 2Bϕ�Eϕ (the
atomic propositions P are not interpreted), Qw = {qw0 } � Eϕ, and

– δ(qw0 , σ)=(qw0 ,�, ∅)∧
∧

b∈σ∩Bϕ
((b,new),�, a(b))∧

∧
b∈Bϕ�σ((¬b,new),♦, a(b))

∧
∧

(b,∗)∈σ∩Eϕ
((b, cont),�, a(b)) ∧

∧
(¬b,∗)∈σ∩Eϕ

((¬b, cont),♦, a(b)), and
– for all e ∈ Eϕ, δ(e, σ) = true if e ∈ σ, and δ(e, σ) = false otherwise.

The (qw0 ,�, ∅) part of the transition function guarantees that every reachable
position in the input CGS is traversed, and the remainder of the transition
function simply reflects the well-formedness constraints. ��

Theorem 3. [4] Given an LTL formula ϕ, we can build an equivalent universal
Co-Büchi word automaton whose size is exponential in the length of ϕ. ��

In the context of this paper, the equivalent universal word automaton is read
as a universal ACG U that accepts exactly those words that satisfy the LTL
formula. (Words can be viewed as special concurrent game structures with a
singleton set of decisions (|Δ| = 1) or an empty set of agents (A = ∅).)

Let, for a path formula ψ, ψ̂ denote the formula obtained by replacing all
occurrences of direct basic subformulas b ∈ Bψ by b (read as atomic proposition).

ATL* Satisfiability Is 2EXPTIME-Complete 383

Lemma 6. For a specification ϕ and every Bϕ � b = 〈〈a(b)〉〉ϕb we can build two
universal ACGs Ab and A¬b whose size is exponential in the size of ϕ̂b and that
accept a plain CGS C = (P �Bϕ�Eϕ, A, S, s0, l, Δ, τ) iff witness(s, b) ⊆ ‖ϕ̂b‖pathC
and witness(s,¬b) ⊆ ‖¬ϕ̂b‖pathC , respectively, hold true.

Proof. By Theorem 3 we can translate the LTL formula ϕ̂b into an equivalent
universal ACG Ub = (P � Bϕ, Qb, q

b
0, δb, Fb) whose size is exponential in the

length of ϕ̂b. From Ub, we infer the universal ACG Ab = (P � Bϕ � Eϕ, Qb ×
{new , cont} � {qb}, qb, δ, Fb × {cont}) with the following transition function:

– δ(qb, σ) = (qb,�, ∅) if b /∈ σ and
– δ(qb, σ) = (qb,�, ∅) ∧

∧
q∈δb(q

b
0,σ)((q,new),�, ∅) otherwise,

– δ((q,new), σ) = true if (b,new) /∈ σ and
– δ((q,new), σ) =

∧
q′∈δb(q,σ)((q

′, cont),�, ∅) otherwise, and
– δ((q, cont), σ) = true if (b, cont) /∈ σ and
– δ((q, cont), σ) =

∧
q′∈δb(q,σ)((q

′, cont),�, ∅) otherwise.

δ again uses the (qb,�, ∅) part of the transition function to traverse every
reachable position in the input CGS. The assignments δ((q, ∗), σ) = true ensure
that, starting in any reachable state s, only the infinite paths in witness(s, b)
are traversed. The remaining transitions reflect the requirement that, for all
reachable positions s, all paths in witness(s, b) must satisfy the path formula ϕ̂b.
A¬b can be constructed analogously. ��

Theorem 4. For a given ATL* specification ϕ, we can construct an ACG Aϕ

that is exponential in the size of ϕ and that accepts a plain CGS if and only if
it is an explicit model of ϕ.

Proof. We build the automaton Aϕ = (2P�Bϕ�Eϕ , {q0}�Qw �
⊎

b∈Bϕ
{qb, q¬b}�

(Qb �Q¬b) × {new , cont}, q0, δ,
⊎

b∈Bϕ
(Fb � F¬b) × {cont}) that consists of the

states of the ACG Aw and, for every basic subformula b ∈ Bϕ of ϕ, of the
ACGs Ab and A¬b, and a fresh initial state q0. The transition function for
the non-initial states is simply inherited from the respective ACG, and for the
initial state we set δ(q0, σ) = false if σ does not satisfy ϕ (when read as a
Boolean formula over atomic propositions and basic subformulas), and δ(q0, σ) =
δ(qw0 , σ) ∧

∧
b∈Bϕ

δ(qb, σ) ∧ δ(q¬b, σ) otherwise.
The lemmata of this section imply that Aϕ is exponential in the size of ϕ,

and accepts a plain CGS if and only if it is an explicit model of ϕ. ��

It is only a small step from the non-emptiness preserving reduction of ATL* to
a 2EXPTIME algorithm for ATL* satisfiability checking and synthesis.

Together, Theorems 1, 2 and 4 provide a 2EXPTIME algorithm for a con-
structive satisfiability test for an ATL* specification. The corresponding hardness
result can be inferred from the 2EXPTIME completeness [4] of the satisfiability
problem for the syntactic sublogic CTL* (and even for CTL+ [15]) of ATL*.

Corollary 1. The ATL* satisfiability and synthesis problems are 2EXPTIME-
complete. ��

384 S. Schewe

5 Conclusions

We showed that the satisfiability and synthesis problem of ATL* specifications
is 2EXPTIME-complete. This result is surprising: For the remaining branching-
time temporal logics, the satisfiability problem is at least exponentially harder
than the model checking problem [4,14] (in the size of the specification).

What is more, the suggested reduction indicates that ATL* synthesis may
be feasible. The exponential blow-up in the construction of the ACG is the
same blow-up that occurs when translating an LTL specification to a nonde-
terministic word automaton. While this blow-up is unavoidable in principle, it
is also known that no blow-up occurs in most practical examples. This gives
rise to the assumption that, for most practical ATL* specifications ϕ, the size
of the emptiness equivalent Co-Büchi ACG Aϕ will be small. Moreover, Aϕ is
essentially universal (plus a few simple local constraints), and synthesis proce-
dures for universal Co-Büchi automata have recently seen a rapid development
(cf. [16,17,18]).

ATL* specifications thus seem to be particularly well suited for synthesis:
They form one of the rare exceptions of the rule that testing (model-checking)
is simpler than constructing a solution.

References

1. Wolper, P.: Synthesis of Communicating Processes from Temporal-Logic Specifi-
cations. PhD thesis, Stanford University (1982)

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. In: Proc. IBM Workshop on Logics of Programs,
pp. 52–71. Springer, Heidelberg (1981)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49, 672–713 (2002)

4. Emerson, E.A.: Temporal and modal logic, pp. 995–1072. MIT Press, Cambridge
(1990)

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. Transactions On Program-
ming Languages and Systems 8, 244–263 (1986)

6. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47, 312–360 (2000)

7. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: Atl satisfiability is indeed
exptime-complete. Journal of Logic and Computation 16, 765–787 (2006)

8. Kremer, S., Raskin, J.F.: A game-based verification of non-repudiation and fair
exchange protocols. Journal of Computer Security 11, 399–430 (2003)

9. Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the
alternating-time μ-calculus. In: Proc. CSL, pp. 591–605. Springer, Heidelberg
(2006)

10. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
Report 175, Technion, Haifa, Israel (1980)

11. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, pp. 279–290. IEEE
Computer Society Press, Los Alamitos (2001)

ATL* Satisfiability Is 2EXPTIME-Complete 385

12. van Drimmelen, G.: Satisfiability in alternating-time temporal logic. In: Proc.
LICS, pp. 208–217. IEEE Computer Society Press, Los Alamitos (2003)

13. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8 (2001)

14. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The bulletin of Symbolic
Logic 5, 245–263 (1999)

15. Wilke, T.: CTL+ is exponentially more succinct than CTL. In: Pandu Rangan, C.,
Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 110–121.
Springer, Heidelberg (1999)

16. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science, Pittsburgh, pp. 531–540 (2005)

17. Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless compositional synthesis. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Hei-
delberg (2006)

18. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

Visibly Pushdown Transducers�

Jean-François Raskin1 and Frédéric Servais2

1 Computer Science Department,
2 Department of Computer & Decision Engineering (CoDE),

Université Libre de Bruxelles (U.L.B.)

Abstract. Visibly pushdown automata have been recently introduced by Alur
and Madhusudan as a subclass of pushdown automata. This class enjoys nice
properties such as closure under all Boolean operations and the decidability of
language inclusion. Along the same line, we introduce here visibly pushdown
transducers as a subclass of pushdown transducers. We study properties of those
transducers and identify subclasses with useful properties like decidability of type
checking as well as preservation of regularity of visibly pushdown languages.

1 Introduction

Visibly pushdown languages (VPL) have recently been proposed by Alur and Mad-
husudan in [3] as a subclass of context-free languages (CFL) with interesting closure
and decidability properties. While CFL are not closed under intersection nor under com-
plementation, VPL are closed under all Boolean operations, and the language inclusion
problem is decidable. VPL are expressive enough to model a large number of relevant
problems, for example those related to the analysis of programs with procedure calls or
to the formalization of structured documents (like XML documents). As a consequence,
VPL offer an appropriate theoretical framework to unify many known decidability re-
sults in those fields as well as opportunities to solve new problems. In [3], visibly push-
down automata (VPA) are defined as a subclass of the pushdown automata where stack
operations are restricted by the input word. VPA operate on words over a tagged alpha-
bet Σ̂ = Σc �Σr �Σi where Σc are call symbols, Σr are return symbols, and Σi are
internal symbols. Each time a call symbol is read, the automaton has to push a symbol
on the stack; each time a return symbol is read, the automaton has to pop a symbol from
the stack; and each time an internal symbol is read, the automaton must leave the stack
unchanged. VPA exactly recognize VPL.

Transducers are machines that model relations between words, i.e. they recognize
sets of pairs of words. Transducers transform languages into languages: let L be a set
of words, T a transducer then T (L) = {w | ∃v ∈ L : T accepts the pair (v, w)}.
There are many important applications of transducers. For example, while languages
are useful to formalize sets of XML documents (i.e. XML document types), transducers
are useful to formalize XML document transformations (e.g., XSLT) [9]. Motivated by

� This research was supported by the Belgian FNRS grant 2.4530.02 of the FRFC project “Cen-
tre Fédéré en Vérification” and by the project “MoVES”, an Interuniversity Attraction Poles
Programme of the Belgian Federal Government.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 386–397, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Visibly Pushdown Transducers 387

this application, the type checking problem asks if all the words of L1 are translated
into words of L2 under a transducer T , i.e. whether T (L1) ⊆ L2. Transducers have
also been intensively used in the so-called regular model-checking [1,5]. In that setting,
the states of a system are modeled by words, state sets by languages and state transitions
by transducers. So far, the concept of regular model-checking has only been applied to
regular languages (with the notable exception of [6]). Unfortunately some parametric
systems cannot be modeled in this setting and more powerful classes of transducers
with good decidability and closure properties are needed.

In this paper, we study several subclasses of pushdown transducers. In the spirit
of [3], we define subclasses of pushdown transducers by imposing restrictions on the
use of the stack and the transition relation. We study three main classes of pushdown
transducers. First, visibly pushdown transducers are pushdown transducers that operate
over pairs of words defined on a tagged alphabet Σ̂. Those transducers respect two
restrictions: (i) along the reading of a pair of words, either the head is moved only in one
of the two words (allowing deletion and insertion), or it is moved over a pair of symbols
of the same type (two calls, two returns, or two internals), (ii) when reading internals
the transducer leaves the stack unchanged, when reading calls it pushes a symbol on
the stack, when reading returns it pops a symbol from the stack. We show here that
unfortunately the type checking is undecidable for this class even if L1 and L2 are
VPL. They are not closed under composition and they do not preserve VPL, i.e. the
transduction of a VPL is not necessarily a VPL. Second, synchronized visibly pushdown
transducers are obtained from visibly pushdown transducers by imposing the following
additional restrictions: (i) when a call is deleted then the matching return is deleted, (ii)
when a call is inserted then a matching return is inserted, and (iii) when a call is copied
then the matching return is also copied. We show that this class of pushdown transducers
has a decidable type checking problem for VPL. This result is not trivial as we also
show that the transduction of a VPL with a synchronized visibly pushdown transducer
is not necessarily a VPL. This class of transducers is well suited to formally validate
XML document transformations. Indeed, opening and closing tags are modeled by calls
and returns respectively, and a transformation that inserts (respectively deletes) a new
opening tag will usually also insert (respectively delete) the corresponding closing tag.
The synchronized restriction to our transducer is therefore very natural in that context.
Finally, we define the class of fully synchronized visibly pushdown transducers as a
subclass of synchronized visibly pushdown transducers that, in addition to having a
decidable type checking problem, preserve VPL, and are closed under composition and
inverse. This class of transducers has all the properties required to extend the techniques
used in regular model-checking from regular languages to VPL.

2 Preliminaries

Basics. An alphabet Σ is a finite set of symbols1, we note Σε for Σ∪{ε} (the alphabet
Σ together with the empty word symbol ε). The tagged alphabet over Σ is an alphabet,
noted Σ̂, which is equal to Σc � Σr � Σi, where Σc = {a | a ∈ Σ}, Σr = {a |

1 For technical reasons, we assume that all alphabets Σ in this paper are such that |Σ| ≥ 2.

388 J.-F. Raskin and F. Servais

a ∈ Σ} and Σi = {a | a ∈ Σ}.2 A word over Σ is a finite sequence of symbols
in Σ. A language over Σ is a set of words over Σ. In the rest of the paper, given
any alphabet Σ, we note RL(Σ), respectively CFL(Σ), the set of regular, respectively
context-free, languages over Σ. Let π be the function from Σ̂ into Σ defined as follows:
π(a) = π(a) = π(a) = a. We extend π to words: for w = a1a2 . . . an, π(w) =
π(a1)π(a2) . . . π(an), and to languages: π(L) = {π(w) | w ∈ L}. Let Σ1 ⊆ Σ2, for
w ∈ Σ∗2 , ↓Σ1(w) ∈ Σ∗1 returns the word w where the occurences of symbols in Σ2\Σ1

have been erased. Finally, a stack alphabet Γ is a finite set of symbols that contains a
special symbol, noted ⊥, called the bottom-of-stack symbol.

Visibly pushdown languages. A visibly pushdown automaton (VPA) [3] on finite
words over the tagged alphabet Σ̂ = Σc � Σr � Σi is a tuple A = (Q,Q0, Qf , Γ, δ)
where Q is a finite set of states, Q0 ⊆ Q, respectively Qf ⊆ Q, the set of initial
states, respectively final states, Γ the stack alphabet, and δ = δc � δr � δi where
δc ⊆ Q × Σc × Q × (Γ \ {⊥}) are the call transitions, δr ⊆ Q × Γ × Σr × Q
are the return transitions, and δi ⊆ Q×Σi ×Q are the internal transitions. On a call
transition (q, a, q′, γ) ∈ δc, γ is pushed onto the stack and the control goes from q to
q′. On a return transition (q, γ, a, q′) ∈ δr, γ is popped from the stack (note that if ⊥
is the top of the stack then it is read but not popped). Finally, on an internal transition
(q, a, q′) ∈ δi, there is no stack operation. Accordingly, a run of a visibly pushdown
automaton A over the word w = a1 . . . al is a sequence {(qk, σk)}0≤k≤l, where qk
is the state and σk ∈ Γ ∗ is the stack at step k, such that q0 ∈ Q0, σ0 = ⊥, and
for each k < l, we have either: (i) (qk, ak+1, qk+1, γ) ∈ δc and σk+1 = γσk; (ii)
(qk, γ, ak+1, qk+1) ∈ δr and if γ �= ⊥ then σk = γσk+1 else σk = σk+1 = ⊥; or
(iii) (qk, ak+1, qk+1) ∈ δi and σk = σk+1. A run is accepting if ql ∈ Qf . A word w is
accepted by A if there exists an accepting run of A over w. L(A), the language of A,
is the set of words accepted by A. A language L over a tagged alphabet Σ̂ is a visibly
pushdown language if there is a VPA A over Σ̂ such that L(A) = L. We note VPL(Σ̂)
for the set of VPL over the tagged alphabet Σ̂.

Example 1. V2n = {anbn | n ≥ 0} is a VPL(Σ̂), while C2n = {anbn | n ≥ 0} is not.

Proposition 1 ([3]). Here are the main properties of VPL and VPA.

1. The class of VPL is closed under all Boolean operations.3 In particular, given
A,A1, A2 ∈ VPA we can compute in polynomial time a VPA B such that
L(B) = L(A1)∩L(A2), and in exponential time a VPA C such that L(C) = L(A).

2. Given A1, A2 ∈ VPA, the problem of deciding whether L(A1) ⊆ L(A2)
is EXPTIME-COMPLETE, when A2 is deterministic the problem is PTIME-
COMPLETE.

3. Given A ∈ VPA, we can decide, in polynomial time, whether L(A) = ∅.
4. Let C ∈ CFL(Σ), then there exists V ∈ VPL(Σ̂) such that π(V) = C.

2 We sometimes write ac for a, ar for a and ai for a. We may also write a when the type of a is
clear from the context.

3 This is in sharp contrast with CFL that are not closed under intersection nor complement.

Visibly Pushdown Transducers 389

The following result states the undecidability of checking inclusion between a CFL and
VPL. To the best of our knowledge, the direction CFL into VPL is not established in the
literature. We give a proof of the theorem in [10].

Theorem 1. Let C ∈ CFL and V ∈ VPL then checking whether C ⊆ V , and checking
whether V ⊆ C are undecidable problems.

Transduction relations and the type-checking problem. A relation R ⊆ Σ∗ × Σ∗

is a transduction relation, or simply a transduction, over Σ, i.e. a set of pairs of words
over Σ. When R(v, w) holds, we sometimes call v the input and w the output of the
transduction. The transduction of a word v over Σ by a transduction relation R ⊆ Σ∗×
Σ∗ is the language {w | R(v, w)}, noted R(v). The transduction of a language L over
Σ by a transduction relation R ⊆ Σ∗ × Σ∗ is the language {w | ∃v ∈ L : R(v, w)},
noted R(L). The type checking problem asks, given an effective representation of two
languages L1 and L2, and an effective representation of a transduction relation R, to
establish if R(L1) ⊆ L2.

3 Visibly Pushdown Transducers

VPA are pushdown automata such that the input restrict the stack operations. Similarly
we define visibly pushdown transducers as pushdown transducers such that input and
output restrict the stack operations. Such a transducer will push, respectively pop, onto
the stack when it reads and/or write a call, respectively a return.

Definition 1 (VPT). A visibly pushdown transducer on finite words over Σ̂ is a tuple
T = (Q,Q0, Qf , Γ, δ) where Q is a finite set of states, Q0 ⊆ Q, respectively Qf ⊆ Q,
the set of initial states, respectively final states, Γ the stack alphabet, and δ = δc �
δr � δi, with δc ⊆ Q × Σc

ε × Σc
ε × Q × (Γ \ {⊥}), δr ⊆ Q × Γ × Σr

ε × Σr
ε × Q,

δi ⊆ Q × Σi
ε × Σi

ε × Q. Moreover if (q, α, β, q′, γ) ∈ δc, (q, γ, α, β, q′) ∈ δr or
(q, α, β, q′) ∈ δi then α �= ε or β �= ε. The class of visibly pushdown transducer is
noted VPT.4

Definition 2 (Run of a VPT). A run of a VPT T over (v, w), where v = a1 . . . al and
w = b1 . . . bm are words on Σ̂, is a sequence {(qk, ik, jk, σk)}0≤k≤n, where qk is the
state at step k, ik, respectively jk, are the index of the last letter of v, respectively w, the
transducer has reached, and σk ∈ Γ ∗ is the stack, such that q0 ∈ Q0, i0 = 1, j0 = 1,
σ0 = ⊥, and for all k < n, let α = ε or α = aik and β = ε or β = bjk

, ik+1 = ik + |α|,
jk+1 = jk + |β|, and we have either: (i) (qk, α, β, qk+1, γ) ∈ δc and σk+1 = γσk, (ii)
(qk, γ, α, β, qk+1) ∈ δr and if γ �= ⊥ then σk = γσk+1, else σk = σk+1 = ⊥, (iii)
(qk, α, β, qk+1) ∈ δi and σk = σk+1. A run is accepting if qn ∈ Qf , in = |v|+ 1, and
jn = |w|+ 1.

4 Note that we define transducers that operate over pairs of words defined on the same alphabet.
This is not restrictive: a transducer from words on an alphabet Σ1 to words on an alphabet Σ2

can be seen as a transducer fromΣ1∪Σ2 toΣ1∪Σ2. In the following, we will abuse notations
and sometimes we will define transducers where the input and output alphabets differ.

390 J.-F. Raskin and F. Servais

We note �T � the transduction induced by T , it is the set of pairs (v, w) ∈ Σ̂∗× Σ̂∗ such
that there exists an accepting run of T on (v, w)5. A transduction relation R ⊆ Σ̂∗×Σ̂∗

is a visibly pushdown transduction if there exists T ∈ VPT such that R = �T �.

Example 2. The transducer Tdel of Fig. 1(a) deletes the calls a, respectively the returns
b, and replaces them with the internals a, respectively b, it further verifies that the num-
ber of deleted calls is equal to the number of deleted returns. Clearly, Tdel is a VPT
that transduces V2n into C2n (defined in Example 1), which is also obtained when Tdel

is applied on Σ̂∗ . The transducer Tins of Fig. 1(b) copies the calls a it encounters and
then inserts the same number of returns b, finally it renames the remaining returns b into
c. Then Tins is a VPT that transduces V2n into the language S3n = {anbncn | n ≥ 0}.

q0 q1 q2 q3 q4 q5 q6
a/ε, γ0 ε/a γ, b/ε ε/b γ0, b/ε ε/b

a/ε, γ

γ0, b/ε

γ, b/ε

(a) Tdel

q0 q1
γ, ε/b

a/a, γ γ, ε/b

⊥, b/c

(b) Tins

Fig. 1. Examples of VPT

Definition 3 (Inverse transducer). Given a VPT T = (Q,Q0, Qf , Γ, δ), we define its
inverse T−1 = (Q,Q0, Qf , Γ, δ

′) with (i) (q1, β, α, q2, γ) ∈ δ′c ⇔ (q1, α, β, q2, γ) ∈
δc, (ii) (q1, γ, β, α, q2) ∈ δ′r ⇔ (q1, γ, α, β, q2) ∈ δr, and (iii) (q1, β, α, q2) ∈ δ′i ⇔
(q1, α, β, q2) ∈ δi.

Proposition 2 (Inverse transduction). Let T ∈ VPT, then �T−1� = �T �−1.

Proof. Any run of T on (v, w) can easily be transformed in a run of T−1 on (w, v) by
interchanging α with β and ik with jk. ��

Lemma 1. For all C ∈ CFL(Σ̂), there exist T ∈ VPT(Σ̂) and V ∈ VPL(Σ̂) such that
T (V) = C.

Proof. In this proof we use the alphabet ˆ̂
Σ which is the set {(ax)y | a ∈ Σ ∧ x, y ∈

{c, r, i}} and we make the hypothesis that Σ contains the letters c, r, and i. This is
without lost of generality as we make the hypothesis that our alphabets always contain
at least two letters.

First, by Proposition 1, there exists V ′ ∈ VPL(ˆ̂
Σ) such that π(V ′) = C. With the

notations above, π is defined as follows: π((ax)y) = ax. Second, let us consider the

function τ1 : ˆ̂
Σ → Σ̂ × Σ̂ defined as τ1((ax)y) = xiay. This function codes any

character of ˆ̂
Σ into a sequence of two characters of Σ̂. We extend the function τ1 to

words as follows: let w = a1 . . . an ∈ ˆ̂
Σ∗, τ1(w) = τ1(a1) . . . τ1(an). Given A′ a VPA

on ˆ̂
Σ for V ′, it is easy to construct A a VPA on Σ̂ such that L(A) = τ1(L(A′)), since

5 In the sequel, we sometimes say that the transducer read the input v and write the output w.

Visibly Pushdown Transducers 391

τ1 maps a call on an internal followed by a call, maps a return on an internal followed
by a return, and maps an internal on two internals.

Third, let us consider the function τ2 : {ci, ri, ii}× Σ̂ → Σ̂ defined by: τ2(xiay) =

ax. Clearly, for any word w ∈ ˆ̂
Σ∗, π(w) = τ2(τ1(w)). We are left to show that τ2 can be

defined as a VPT T . Here is the construction. First, T , when in state q, reads an internal
xi which determines the type of the ouput: a call if x = c, a return if x = r, and an
internal if x = i. Accordingly, it goes into qc, qr or qi respectively using the transitions
(q, ci, ε, qc) ∈ δi, (q, ri, ε, qr) ∈ δi or (q, ii, ε, qi) ∈ δi. Note that those transitions do
not move the head on the output (so erasing the internal xi). Then, T reads the next letter
ay and rewrites it into the output type defined by its current state, that is if the state is qc

then it writes (imposes to read) ac on the output, etc. There are nine cases to consider, (i)
read a call write a call, (ii) read a call write a return, (iii) read a call write an internal,
(iv) read a return write a call, and so on. For translation of one type of character to
another, we need to use two transitions that use first epsilon on output and then epsilon
on input. Here are two representative cases over the nine cases: (i) for ac into ac:
(qc, ac, ac, q, γ) ∈ δc, (ii) for ac into ar: (qr , ac, ε, qra, γ) ∈ δc, (qra,⊥, ε, ar, q) ∈ δr
and (qra, γ, ε, a

r, q) ∈ δr. Clearly, T is a VPT. To complete the proof, a simple induction
shows that T (V) = τ2(V) = π(V ′) = C. Note that the VPT is not using the stack:
only one character is pushed on the stack and return transitions can always use this
character or the bottom character. As a matter of fact, the transduction τ2 is definable
by a finite state transducer on Σ̂. ��
In the next proposition, we establish that the transduction and inverse transduction of a
VPL by a VPT is not necessarily a VPL nor even a CFL, and that the transduction and
inverse transduction of a RL by a VPT is not necessarily a VPL but it is always a CFL.
We note VPT(RL) = {T (R) | T ∈ VPT, R ∈ RL} and VPT(VPL) = {T (V) | T ∈
VPT, V ∈ VPL}.
Proposition 3. VPL � VPT(RL) ⊆ CFL � VPT(VPL).

Proof. First, we know that VPT(RL) ⊆ CFL since it is true for the class of pushdown
transducers (which contains VPT). Second, to show that VPL ⊆ VPT(RL), for any
V ∈ VPL we construct a VPT that first ignores the input (taking only transitions that
are labelled by ε for the input), checks that the output is in V by simulating the VPA
that accepts V , and when it reaches the end of the output, it reads the input without
constraining the output using ε transitions on the output. When executing this transducer
on Σ̂∗, we get V . Third, to show that VPL �= VPT(RL), we consider Tdel of Example 2:
when executed on Σ̂∗ it returns C2n, a CFL which is not a VPL. Fourth, to prove CFL �

VPT(VPL), first by Lemma 1 we get CFL ⊆ VPT(VPL), second we consider the
transducer Tins of Example 2, it transduces V2n ∈ VPL into S3n �∈ CFL. ��
In the next result states that the class of VPT is not closed under composition.

Corollary 1 (Composition). There exists T, T ′ ∈ VPT such that �T � ◦ �T ′� is not a
visibly pushdown transduction.

Proof. From Proposition 3, there are V ∈ VPL and T ∈ VPT such that T (V) /∈ CFL.
Also there exist R ∈ RL and T ′ ∈ VPT such that T ′(R) = V since VPL ⊆ VPT(RL).
So �T � ◦ �T ′�(R) /∈ CFL but then it cannot be a VPT as VPT(RL) ⊆ CFL. ��

392 J.-F. Raskin and F. Servais

The next theorem shows that the type checking problem of VPT against VPL is unde-
cidable.

Theorem 2. For A1, A2 ∈ VPA and T ∈ VPT, it is undecidable whether T (L(A1)) ⊆
L(A2).

Proof. Let C ∈ CFL(Σ̂), by Lemma 1 there exist V ∈ VPL(Σ̂) and T ∈ VPT such
that T (V) = C. Therefore we have that T (V) ⊆ V ′ iff C ⊆ V ′ which is undecidable
as established in Theorem 1. ��

4 Synchronized Visibly Pushdown Transducers

We define here a restricted class of transducers that allow typechecking. The idea is to
synchronize the insertion, respectively the deletion, of a call with the insertion, respec-
tively the deletion, of the matching return.

Definition 4 (SVPT). A synchronized visibly pushdown transducer is a VPT such that
Γ = Γcopy �Γdel �Γins �{⊥} and such that if (q, α, β, q′, γ) ∈ δc or (q, γ, α, β, q′) ∈
δr then either: (i) α = ε, β �= ε and γ ∈ Γins ∪ {⊥}, (ii) α �= ε, β = ε and γ ∈
Γdel ∪ {⊥}, or (iii) α �= ε, β �= ε and γ ∈ Γcopy ∪ {⊥}.6 The set of synchronized
visibly pushdown transducer is noted SVPT.

Example 3. Tdel of Example 2 is a SVPT with Γdel = Γ, Γins = ∅ and Γcopy = ∅.
On the other hand, Tins is not a SVPT since γ is used for inserting, see transition
(q0, γ, ε, b, q1), and for copying, see transition (q0, a, a, q0, γ).

The next proposition states the class SVPT is closed by inverse.

Proposition 4. Let T ∈ SVPT then T−1 ∈ SVPT.

Proof. T−1 is a VPT (Proposition 2). Moreover, with Γ = Γ ′copy � Γ ′del � Γ ′ins � {⊥}
where Γ ′copy =Γcopy , Γ ′del =Γins and Γ ′ins =Γdel , this transducer is synchronized. ��
In the next proposition, we establish that the transduction or inverse transduction of a
VPL by a SVPT is not always a VPL. We note SVPT(RL) = {S(R) | S ∈ SVPT, R ∈
RL} and SVPT(VPL) = {S(V) | S ∈ SVPT, V ∈ VPL}.
Proposition 5. VPL � SVPT(RL) = SVPT(VPL) � CFL.

Proof. First, for VPL � SVPT(RL), consider Tdel of Example 2, it transduces a RL into
a CFL that is not a VPL (see Proposition 3), Tdel is a SVPT. Second, for SVPT(RL) =
SVPT(VPL), consider any S ∈ SVPT and A ∈ VPA. Let V = L(A). We construct
S′ ∈ SVPT such that S′(Σ̂∗) = S(V). More concretely, we impose that, for all w ∈
Σ̂∗ we have that S′(w) = S(w) when w ∈ V and S′(w) = ∅ otherwise. To achieve
that, S′ simulates S and A: it translates w as S does and, in parallel, it simulates A on w.
A run of S′ is accepting if the corresponding runs in S and A are accepting. It is crucial
to note that the parallel simulation of the stacks of S and A is only possible because S
is a SVPT: each time that it copies, respectively deletes or inserts, a call, it will copy,
respectively delete or insert the matching return. As a consequence the content of the
stack of S and A can be represented as pairs of symbols as follows:

6 As SVPT are VPT, call transitions are not allowed to push ⊥.

Visibly Pushdown Transducers 393

– call-return copy: when A and S are moving and pushing a symbol γ and γ′ ∈ Γcopy

on their respective stack, S′ pushes the symbol (γ, γ′). As S is a SVPT and γ′ ∈
Γcopy , this ensures that when we reach the matching return, S copies the return,
and the pair (γ, γ′) will be popped from the stack. This simulates the behavior of
the stacks of A and S. From there, S′ continues the parallel simulation of A and S.

– call-return delete: when A and S are moving and pushing a symbol γ and γ′ ∈ Γdel

on their respective stack, S′ pushes the symbol (γ, γ′). As S is a SVPT and γ′ ∈
Γdel , this ensures that when we reach the matching return, S will delete the return,
and the pair (γ, γ′) will be popped from the stack. This simulates the behavior of
the stacks of A and S. From there, S′ continues the parallel simulation of A and S.

– call-return insert: on a call-return insert, only S is moving. It pushes a symbol
γ′ ∈ Γins on its stack. To simulate this, S′ pushes the pair (γε, γ′) on its stack, γε
being a new stack symbol that does not belong to the stack symbols of A. As γ′

belongs to Γins , we know that the matching return will be inserted (so no input will
be read and A will not move), at that time S′ will pop the pair (γε, γ′), not moving
on the input. This simulates the behavior of the stacks of A and S. From there, S′

continues the parallel simulation of A and S.
– Other cases are treated similarly.

Third, SVPT(VPL) ⊆ CFL is a consequence of the facts that SVPT(RL) ⊆
VPT(RL) ⊆ CFL and SVPT(RL) = SVPT(VPL). Finally, SVPT(VPL) �= CFL is
a consequence of the fact that typechecking SVPT against VPL is decidable (Theo-
rem 3, see below) and the undecidability of checking the inclusion of a CFL into a VPL
(Theorem 1). ��

Non-deleting and non-inserting transducers. Two important subclasses of SVPT are
the class of transducers that do not insert and the ones that do not delete.

Definition 5. A non-inserting SVPT T = (Q,Q0, Qf , Γ, δ) is a SVPT such that (i)
δc ⊆ Q × Σc × Σc

ε × Q × Γ , (ii) δr ⊆ Q × Γ × Σr × Σr
ε × Q and (iii) δi ⊆

Q × Σi × Σi
ε × Q (and thus Γins = ∅). This class is noted SVPTni. A non-deleting

SVPT T = (Q,Q0, Qf , Γ, δ) is a SVPT such that (i) δc ⊆ Q × Σc
ε × Σc × Q × Γ ,

(ii) δr ⊆ Q×Γ ×Σr
ε ×Σr×Q and (iii) δi ⊆ Q×Σi

ε×Σi×Q (and thus Γdel = ∅).
This class is noted SVPTnd.

Proposition 6. Let T ∈ SVPT,

1. T ∈ SVPTnd iff T−1 ∈ SVPTni,
2. if T ∈ SVPTnd and V ∈ VPL then T (V) ∈ VPL,
3. if T ∈ SVPTni and V ∈ VPL then T−1(V) ∈ VPL.

Proof. The first assertion is a direct consequence of Proposition 2 stating that T−1 is
also a VPT and the fact that the inverse transducer of a non-inserting, respectively non-
deleting, transducer is obviously a non-deleting, respectively non-inserting, transducer.

Our proof for the second assertion is constructive. Given the SVPTnd T , and the
VPA Ain for V , we construct a VPA Aout that accepts T (V). We sketch here the main
arguments of the proof, the full detailed proof is given in [10]. On a word w, Aout

guesses a word v and checks that the pair (v, w) ∈ �T � and v ∈ V . For that, the VPA

394 J.-F. Raskin and F. Servais

Aout simulates in parallel the execution of Ain on v and the execution of T on the
pair (v, w), its run is accepting if the simulated runs in Ain and T are accepting. The
main delicate part of the proof is to show that Aout can simulate the two stacks while
respecting the restrictions imposed to a VPA. The parallel simulation of the stack of Ain

and T is possible because T is a SVPTnd: each time that it copies, respectively inserts, a
call, it will copy, respectively insert, the matching return. As a consequence, the content
of the stacks of Ain and T can be represented as pairs of symbols as follows:

– call-return copy: when Ain and T are moving and pushing a symbol γin and γT ∈
Γ T

copy on their respective stack, Aout pushes the symbol (γin , γT) and reads in w

the same symbol as written by T . As T is a SVPTnd and γT ∈ ΓT
copy , this ensures

that when we reach the matching return in v (and Ain pop γin), T copies the return
in w and pop γT . At that time, Aout pops the pair (γin , γT) from its stack and
reads in w the same symbol as written by T . This simulates the behavior of the
stacks of Ain and T . From there, Aout continues the parallel simulation of Ain and
T .

– call-return insert: on a call-return insert, only T is moving. It pushes a symbol
γT ∈ ΓT

ins on its stack and write β. To simulate this, Aout reads β and pushes
the pair (γε, γT) on its stack, γε being a new stack symbol that does not belong
to the stack symbols of Ain . As γT belongs to ΓT

ins , we know that the matching
return in w, say β′, will be inserted (no letter will be read by T and so Ain will not
move), at that time Aout will pop the pair (γε, γT) when reading β′. This simulates
the behavior of the stacks of Ain and T . From there, Aout continues the parallel
simulation of Ain and T .

Note that Aout could not simulate a transducer that deletes matching calls and returns
as it would have to modify its stack while not reading any letter, which is not allowed
in a VPA. The last assertion is a direct consequence of the first and the second. ��

We can now prove that type checking is decidable for SVPT.

Theorem 3. Let A1, A2 ∈ VPA and T ∈ SVPT, the problem of checking if
T (L(A1)) ⊆ L(A2) is EXPTIME-COMPLETE, the problem is PTIME-COMPLETE

when A2 is deterministic.

Proof. We know that checking inclusion between two VPL is EXPTIME-HARD (Propo-
sition 1), if we choose T to be the identity transducer (which is a SVPT), we obtain the
hardness part. For the easiness part, we first show that T is equivalent to the composi-
tion of two transducers: �T � = �Tni � ◦ �Tnd�, which are respectively non-inserting and
non-deleting.

Tnd will behave as T with the essential difference that whenever T deletes a call,
a return, respectively an internal, Tnd replaces it with εc, εr, respectively εi which are
new call, return, respectively internal symbols that do not belong to the alphabet Σ̂.
More formally, let T = (Q,Q0, Qf , Γ, δ) over Σ̂, Tnd is a transducer from Σ̂ into
Σ̂nd = Σc

nd � Σr
nd � Σi

nd where Σc
nd = Σc � {εc}, Σr

nd = Σr � {εr}, Σi
nd =

Σi � {εi}. We define Tnd = (Q,Q0, Qf , Γ
nd , δnd), such that Γ nd = Γ nd

copy � Γ nd
ins �

{⊥}, where Γ nd
copy = Γcopy � Γdel , and Γ nd

ins = Γins , δnd = δ′c ∪ δ′r ∪ δ′i, δ′c =

Visibly Pushdown Transducers 395

{(q, α, b, q′, γ) ∈ δc | α ∈ Σ̂c
ε , b ∈ Σ̂c} ∪ {(q, a, εc, q′, γ) | (q, a, ε, q′, γ) ∈ δc, a ∈

Σ̂c}, δ′r = {(q, γ, α, b, q′) ∈ δr | α ∈ Σ̂r
ε , b ∈ Σ̂r}∪ {(q, γ, a, εr, q′) | (q, γ, a, ε, q′) ∈

δr, a ∈ Σ̂r}, δ′i = {(q, α, b, q′) ∈ δi | α ∈ Σ̂i
ε, b ∈ Σ̂i} ∪ {(q, a, εi, q′) | (q, a, ε, q′) ∈

δi, a ∈ Σ̂i}. Note that Tnd does not erase and so the partition of the stack symbols
is different from the one for T , and clearly we have Tnd ∈ SVPTnd. Furthermore, by
construction, we have that for all (w1, w2) ∈ �T �, there exists w3 such that (w1, w3) ∈
�Tnd� and w2 = ↓Σ̂(w3), and conversely, for all (w1, w3) ∈ �Tnd�, (w1, ↓Σ̂(w3)) ∈
�T �. As T is a SVPT, for all w ∈ Tnd(Σ̂∗), w is such that the matching return of every
εc is an εr, and conversely. This property is easily proved by induction on the length of
runs of Tnd . We say that those words are synchronized on the pair (εc, εr).

We define the transducer Tni. For all w1 that are synchronized on the
pair (εc, εr), the transducer accepts the pairs (w1, ↓Σ̂(w1)) ∈ Σ̂nd × Σ̂.
Clearly, this transduction relation is realized by the following transducer Tni =
({q}, {q}, {q}, {γcopy, γdel ,⊥}, δni), on (Σ̂ ∪ {εc, εr, εi}) × Σ̂, such that δni =
δ′′c ∪ δ′′r ∪ δ′′i , δ′′c = {(q, a, a, q, γcopy) | a ∈ Σc} ∪ {(q, εc, ε, q, γdel)}, δ′′r =
{(q, γcopy , a, a, q) | a ∈ Σr} ∪ {(q, γdel , ε

r, ε, q)} ∪ δ′′r = {(q,⊥, a, a, q) | a ∈
Σr} ∪ {(q,⊥, εr, ε, q)}, and δ′′i = {(q, a, a, q) | a ∈ Σi} ∪ {(q, εi, ε, q)} which is in
the class SVPTni.7 Clearly, �T � = �Tni� ◦ �Tnd�.

To finish the proof, we consider the following equivalence: T (L(A1)) ⊆ L(A2) ⇔
Tnd(L(A1)) ∩ T−1

ni (L(A2)) = ∅. The proof of Proposition 6 tells us that we can con-
struct, in deterministic polynomial time in the size of Tnd and of A1, a VPA B1 that
accepts the language Tnd (L(A1)). Also, Proposition 1 tells us that we can compute, in
deterministic exponential time in the size of A2, an automaton B2 that accepts L(A2)
(in polynomial time if A2 is deterministic), and we can construct, in deterministic poly-
nomial time in the size of B2 and T−1

ni , a VPA B3 that accepts T−1
ni (L(A2)). Finally,

checking emptiness of intersection between two VPA can be done in deterministic
polynomial time (Proposition 1). This concludes our proof of EXPTIME-EASINESS

(PTIME-EASINESS if A2 is deterministic). ��

The following proposition states that any CFL can be obtained by applying two SVPT
on a VPL.

Proposition 7. For all C ∈ CFL(Σ̂), there exist V ∈ VPL(Σ̂), T1, T2 ∈ SVPT such
that T2(T1(V)) = C.

Proof. First, the proof of Lemma 1 tells us that there exists V ∈ VPL(Σ̂) such that
τ2(V) = C, where τ2 : {ci, ri, ii} × Σ̂ → Σ̂ is defined as: τ2(xiay) = ax. We now
show that τ2 can be expressed as the composition of two SVPT. We decompose τ2 into
the following two functions. First, τ3 : {ci, ri, ii} × Σ̂ → {ci, ri, ii} × Σ̂i defined
as: τ3(xiay) = xiai. Second, τ4 : {ci, ri, ii} × Σ̂i → Σ̂ defined as: τ4(xiai) = ax.
Clearly, those two functions can be expressed as SVPT and τ2 = τ4 ◦ τ3. ��

As a consequence of Proposition 7 and Theorem 1, we cannot type check the composi-
tion of two SVPT against VPL.

7 Note that without the hypothesis of synchronized on the pair (εc, εr), there is no SVPTni that

realizes ↓Σ̂ , that is the reason why this construction can not be generalized when T is a VPT.

396 J.-F. Raskin and F. Servais

Theorem 4. Let A1, A2 ∈ VPA and T1, T2 ∈ SVPT, it is undecidable whether
T1(T2(L(A1))) ⊆ L(A2).

Fully synchronized visibly pushdown transducers. We finish this section by intro-
ducing a class of VPT that maintain regularity, are closed under inverse and under
composition and for which type checking is decidable.

Definition 6 (FSVPT). A fully synchronized visibly pushdown transducer is a synchro-
nized visibly pushdown transducer which is both non-inserting and non-deleting. This
class is noted FSVPT.

Theorem 5. Let T ∈ FSVPT, then:

1. VPL preservation: for any V ∈ VPL, T (V) ∈ VPL;
2. Inverse: T−1 ∈ FSVPT;
3. Composition: for any T1 ∈ FSVPT there exists T2 ∈ FSVPT such that �T2� =

�T1� ◦ �T �;
4. Decidable type-checking: given two VPA A1, A2, deciding T (L(A1)) ⊆ L(A2) is

EXPTIME-COMPLETE.

Note that FSVPT = SVPTnd∩SVPTni, this class is exactly the class of VPT that do not
delete nor insert. Moreover, we could define finite state transducers to transduce words
on Σ̂, such that calls are mapped on calls, returns on returns, and internals on internals.
This class would be a strict subclass of FSVPT as such automata would translate lan-
guages from RL(Σ̂) into RL(Σ̂) while FSVPT can transduce languages from RL(Σ̂)
into languages that are not in RL(Σ̂). Finally, if T is a FSVPT then it can be seen as
a VPA that works on pairs of symbols (of the same type), and so, equivalence between
FSVPT is EXPTIME-COMPLETE.

5 Conclusion

In this paper, we have identified two interesting sub-classes of pushdown transduc-
ers. SVPT (synchronized visibly pushdown transducer) is a powerful subclass with a
decidable (EXPTIME-COMPLETE) type checking problem against VPL. This positive
result is surprising as we have shown that SVPT do not preserve VPL. Also, the class
of SVPT is not closed under composition. This has triggered the definition of FSVPT
(fully synchronized visibly pushdown transducers), this class of transducers enjoys nice
properties like preservation of VPL, closure to composition and decidable (EXPTIME-
COMPLETE) type checking problem against VPL.8

Alur and Madushudan have shown in [4] that VPL are equivalent to regular languages
of nested words. Our results can be rephrased in this setting as well. In [2], Alur has
studied the relation between VPL and tree languages. In future work, we will study
in details the relation between the transducers defined on regular tree languages, as

8 A. Thomo et al. defined in [11] a class of visibly pushdown transducers equivalent to ours.
However, their article does not study this class of transducers per se and they incorrectly states
that VPT maintains VPL in contradiction with our Proposition 3.

Visibly Pushdown Transducers 397

defined in [7,8], and our transducers. It seems pretty clear that their expressive power
are incomparable but a fine comparison requires a large effort of formalization and
is beyond the subject of this paper. As already said, those works on transducers were
often motivated by the application in XML, we will study the practical advantages and
drawbacks of our transducers for that application in future work.

In [6], Fisman and Pnueli use context-free languages for extending regular model-
checking. CFL are used to model the set of initial states of the system, the transition
relation as well as the specification (the set of good states) are given by finite state trans-
ducers and automata, respectively. We conjecture that FSVPT can be used to rephrase
and extend those results by offering an unified framework for regular model-checking
in the context of VPL, as FSVPT are preserving VPL. We will investigate this important
application in future work.

Acknowledgement. We want to thank Laurent Van Begin for suggesting the main idea
of the proof for Theorem 1 and Ahmed Bouajjani for pointing us the paper of Fisman
and Pnueli.

References

1. Abdulla, P., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: A simulation-
based approach. J. Log. Algebr. Program. 69(1-2), 93–121 (2006)

2. Alur, R.: Marrying words and trees. In: PODS, pp. 233–242 (2007)
3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211 (2004)
4. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: H. Ibarra, O., Dang, Z.

(eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)
5. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: CAV, pp.

403–418 (2000)
6. Fisman, D., Pnueli, A.: Beyond regular model checking. In: Hariharan, R., Mukund, M.,

Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 156–170. Springer, Heidelberg (2001)
7. Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree transducers.

In: PODS, pp. 283–294 (2005)
8. Martens, W., Neven, F.: Typechecking top-down uniform unranked tree transducers. In: Cal-

vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 64–78.
Springer, Heidelberg (2002)

9. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: PODS, pp. 11–22
(2000)

10. Raskin, J.-F., Servais, F.: Visibly pushdown transducers. Technical Report 2008.100, Feder-
ated Center for Verification - Université Libre de Bruxelles (2008),
http://www.ulb.ac.be/di/ssd/cfv/publications.html

11. Thomo, A., Venkatesh, S., Ying Ye, Y.: Visibly pushdown transducers for approximate vali-
dation of streaming XML. In: FoIKS, pp. 219–238 (2008)

http://www.ulb.ac.be/di/ssd/cfv/publications.html

The Non-deterministic Mostowski Hierarchy

and Distance-Parity Automata

Thomas Colcombet1,� and Christof Löding2

1 LIAFA/CNRS, France
2 RWTH Aachen, Germany

Abstract. Given a Rabin tree-language and natural numbers i, j, the
language is said to be i, j-feasible if it is accepted by a parity automaton
using priorities {i, i+1, ..., j}. The i, j-feasibility induces a hierarchy over
the Rabin-tree languages called the Mostowski hierarchy.

In this paper we prove that the problem of deciding if a language is
i, j-feasible is reducible to the uniform universality problem for distance-
parity automata. Distance-parity automata form a new model of au-
tomata extending both the nested distance desert automata introduced
by Kirsten in his proof of decidability of the star-height problem, and
parity automata over infinite trees. Distance-parity automata, instead
of accepting a language, attach to each tree a cost in ω + 1. The uni-
form universality problem consists in determining if this cost function is
bounded by a finite value.

1 Introduction

Finite automata running on infinite trees, originally introduced by Rabin in his
seminal work [15] are now widely considered as one of the key paradigms for
understanding many logics relevant to verification. Those automata are known
to be effectively equivalent to monadic second-order logic, μ-calculus, and to
subsume all the standard temporal logics.

An important parameter in the definition of the automaton model is the
acceptance condition. This acceptance condition determines, given a run of the
automaton, whether it is accepting or not. Different (often equivalent) choices
of acceptance conditions are known from the literature such as Büchi, Rabin,
Muller, or Streett conditions (cf. [16]). Though all possess their own interest, the
parity condition has emerged for many reasons as the central condition in the
theories of automata, logic and games.

When using a parity condition, each state of the automaton is labelled by a
natural number – called a priority – belonging to a fixed finite interval [i, j]. A
run is accepting if on every branch the highest priority seen infinitely often is
even. A language is said to be i, j-feasible if there exists a finite automaton using
the interval of priorities [i, j] accepting this language. Of course, the language
does not change if we shift all priorities by steps of 2 or −2. This is why we
� Supported by the AutoMathA program of the ESF.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 398–409, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata 399

(0, 0)

(0, 1)

(0, 2)

(1, 1)

(1, 2)

(1, 3)

(0, k)

(0, k + 1)

(1, k + 1)

(1, k + 2)

Fig. 1. Hierarchy of Mostowski indices

can restrict ourselves to i = 0 or i = 1. It is also clear that the bigger the
interval [i, j] is, the more tree languages are i, j-feasible. Mostowski first studied
this parameter [10], and the corresponding ladder-shaped hierarchy – depicted
Figure 1 – is named after him.

This Mostowski hierarchy exists in different variants according to the nature
of the transition relation used by the automaton. Over trees the hierarchy is
strict for all standard models of automata: deterministic [18] (even over words),
non-deterministic [11], and alternating [1] (in combination with [4,9]), see also
[2]. The hierarchy collapses over words for non-deterministic automata to the
Büchi level (1, 2), and in the alternating case to the intersection of levels (0, 1)
and (1, 2).

The next step in the study of this hierarchy is the question of decidability.
The problem is the following: given a regular language of infinite trees L (i.e.,
accepted by a non-deterministic or alternating automaton), and natural numbers
i ≤ j, is the language i, j-feasible? This question is parameterised both by the
nature of the language L, that we call the input language, and the nature of the
class of automata for which we test the i, j-feasibility, the output class.

In the case of any non-deterministic automaton as input, the 1, 1-feasibility and
the 0, 0-feasibility in the non-deterministic Mostowski hierarchy is decidable for
simple reasons: a language is at level (1, 1) iff it consists solely of finite trees, and
a language is at level (0, 0) iff it is closed for the standard topology over infinite
trees. Those two properties are easily shown to be decidable. Note also that the
non-deterministic and the alternating hierarchy coincide over those two levels.

More interestingly, the problem is known to be decidable in the Mostowski
hierarchy of languages accepted by deterministic automata. The problem is de-
cidable if both the input language and the output class are deterministic [13] (see
also [14] for more details). The problem is also known to be decidable if the input
language is deterministic, and the output class is non-deterministic [14] (which
is a refinement of the case of a path language as input [13]). The special case
of deciding if a deterministic language is accepted by a non-deterministic Büchi
automaton (i.e., 1, 2-feasible in the non-deterministic Mostowski hierarchy) was

400 T. Colcombet and C. Löding

formerly settled in [17]. Let us finally remark that every deterministic language
is alternating co-Büchi, i.e., that every deterministic language falls in the level
(0, 1) of the alternating Mostowski hierarchy. And hence the case of a determin-
istic language as input and an alternating one as output is also settled.

This paper is the first part in an attempt to show the decidability of the
following problem.

Problem 1. Given a regular tree language L and natural numbers i ≤ j, answer
whether L is i, j-feasible in the non-deterministic Mostowski hierarchy or not.

The scheme of the proof is inspired from the proof of decidability of the (re-
stricted) star-height problem due to Kirsten [7] (the problem was originally
solved by Hashiguchi [6]). The star-height problem is the following: given a reg-
ular language of finite words and a natural number k, is it possible to describe
the language by a regular expression using at most k nesting of Kleene stars?

For showing the decidability of the star-height problem, Kirsten introduces
a new class of automata: nested distance desert automata. Those are non-
deterministic finite automata running on finite words and equipped with some
counting features. The semantics of such automata is either to reject a word, or
to compute a natural number for it, that we can see as the price to pay for ac-
cepting it. Hence a nested distance desert automaton defines a partial mapping
from words to natural numbers. The proof then goes in two steps.

– Reduce the star-height problem to the limitedness problem for nested dis-
tance desert automata (the limitedness is the problem of determining if the
partial mapping defined by the automaton is bounded).

– Solve the limitedness problem for nested distance desert automata.

We want to follow exactly the same scheme to solve Problem 1. We introduce the
family of distance-parity automata running over infinite trees. Those automata
combine the features of nested distance desert automata and of parity automata.
If we restrict a distance-parity automaton to run on finite words, we fall back
to the class of automata defined by Kirsten. If we restrict those automata to
infinite words, we get a family of automata equivalent to the hierarchical ωB-
automata in [3]. The limitedness problem still makes sense for the distance-
parity automata, but we prefer to work with the uniform universality problem:
a distance-parity automaton is uniformly universal if the function it defines is
both total and bounded. This problem is decidable for finite words from [7], and
can be shown to be decidable over infinite words using [3].

Our proof scheme then goes as follows in two steps:

– Reduce the i, j-feasibility problem to the uniform universality problem for
distance-parity automata (Theorem 2).

– Show the decidability of the uniform universality problem for distance-parity
automata (open).

This paper is concerned with the first item. This reduction part is very different
from the one in the proof of Kirsten. Indeed, there is an intrinsic difficulty in

The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata 401

the study of regular languages of infinite trees: there is no known notion of a
canonical object describing a language. When dealing with finite words, one can
use the minimal deterministic automaton or the syntactic monoid. When dealing
with infinite words, one can use the syntactic ω-semigroup. When dealing with
finite trees, there exist a minimal bottom-up deterministic automaton, and a
corresponding algebraic presentation. Most methods for characterising classes of
languages begin by taking such a canonical presentation. But for infinite trees
no canonical type of acceptor is known. This problem is very deep as it can be
witnessed by the following fact: some languages are inherently ambiguous, i.e.,
it is impossible to provide an automaton that would possess a single accepting
run over every accepted input (the proof of this result is given in [12] but has
not been published; see also [5]). One contribution of this paper is the notion of
a guidable automaton, i.e., an automaton that is able to ‘mimic’ the behaviour of
every automaton accepting the same language. This guidable automaton plays
the role of the canonical presentation in our reduction. We show that every
regular tree language is accepted by a guidable automaton (Theorem 1).

The second part of our reduction is an ‘on the fly’ optimisation of the guid-
able automaton. This optimisation process makes use of the distance features of
distance-parity automata. It is shown to be both correct, and optimal.

The remainder of the paper is organised as follows. Section 2 is devoted to def-
initions, in particular automata and the acceptance conditions we use. Section 3
presents the notion of guidable automaton and we prove that such an automaton
exists for each regular language of trees. In Section 4 we establish Theorem 2
reducing the i, j-feasibility problem to the uniform universality problem.

2 Definitions

Words are finite sequences of letters. The set of words over an alphabet A is
denoted by A∗. The empty word is ε, and uv is the concatenation of u and v.
We denote by � the prefix relation over words and by � its strict variant. The
length of a word u is |u|, and |u|a for a ∈ A is the number of occurrences of a
in u. An ω-word is an infinite sequence of letters and by Aω we denote the set of
infinite words over A. The ordered set of natural numbers is written as ω, and
ω + 1 is ω augmented with the maximal value ω.

For the sake of simplicity, we assume that trees are binary and complete (i.e.,
with no leaves)1. A tree labelled by a finite alphabet A (we also say an A-tree) is
a mapping from {0, 1}∗ to A. The elements of {0, 1}∗ are called nodes. A branch
is a maximal totally ordered set of nodes. A branch naturally induces an ω-word
in Aω. It is sometimes convenient to identify a branch with this ω-word.

An automaton is a tuple A = (Q,A, I,Δ, col) in which:

1 We can code leaves in an infinite binary tree by marking all nodes below by a special
dummy symbol. It is easy to show that if the interval [i, j] contains an even priority,
then the original language is i, j-feasible iff the one after coding is i, j-feasible. This
means that we cannot treat the case of 1, 1-feasibility. However we have seen that
1, 1-feasibility is easy by other arguments.

402 T. Colcombet and C. Löding

– Q is a finite set of states, I ⊆ Q is the set of initial states,
– A is the alphabet,
– Δ ⊆ Q×A×Q×Q is the transition relation,
– col : Q→ Cols is a colour mapping to some finite set Cols of colours.

A run ρ of an automaton over an A-tree t is a Q-tree such that ρ(ε) ∈ I and
for all v ∈ {0, 1}∗, (ρ(v), t(v), ρ(v0), ρ(v1)) ∈ Δ. The Cols-tree col(ρ) denotes
(col ◦ρ). Each automaton – depending on its nature – comes with a mapping val
from Colsω to ω + 1. The value val (ρ) of a run ρ is the supremum of val (β) over
all branches β of col(ρ). The value A(t) of an A-tree t is the minimum of val(ρ)
for ρ ranging over all runs over t (by default ω if there is no such run).

We are now ready to introduce the different value mappings used through-
out the paper. The parity condition corresponds to an interval [i, j] of natural
numbers – called priorities – as set of colours. Given an infinite sequence of pri-
orities u ∈ [i, j]ω, val(u) is 0 if the maximal priority appearing infinitely often is
even, else it is ω. A parity automaton is an automaton using a parity condition.
A tree t is accepted by such an automaton iff A(t) = 0. The parity index (or
Mostowski index) of a parity automaton is the pair (i, j) of the minimal and
maximal priorities used in the automaton. We designate by L(A) the set of trees
that are accepted by the parity automaton A. A language is regular if it is equal
to L(A) for some parity automaton A, and is i, j-feasible if furthermore A has
parity index (i, j).

A distance condition (corresponding to nested distance desert automata in
[7], and hierarchical B-automata in [3]) is defined for a totally ordered set of
colours D = {d1, r1, . . . , dk, rk} with the order d1 < r1 < · · · < dk < rk. The
colours d1, . . . , dk are called distance colours, while the colours r1, . . . , rk are reset
colours. Given an infinite sequence u ∈ Dω, its value val(u) is the supremum
of |v|di where v ranges over all finite factors of u such that the maximal colour
of v is di. One can see this as having k counters numbered from 1 to k. When
seeing di the corresponding counter is incremented and all the counters below are
reset. When seeing ri, all the counters up to i are reset. The value of a sequence is
the supremum of all values of counters seen during this process (starting from 0).

We can derive from the two previous mappings a last one, the distance-parity
mapping, which can be seen as a conjunction of a distance and a parity condition.
It is described for a set of colours of the form Cols = D × [i, j] where D is the
ordered set of colours of a distance condition and [i, j] is a finite interval of
natural numbers. For a sequence u ∈ Colsω one derives the two corresponding
sequences u1 ∈ Dω and u2 ∈ [i, j]ω obtained by projection to the first and second
components of the elements in u, respectively. The value val(u) is the maximum
of val (u1) (as a distance condition) and val(u2) (as a parity condition).

Given a distance-parity automaton A, we define for each N < ω the language
L(N)(A) := {t : A(t) ≤ N}. In this way A defines a non-decreasing ω-sequence
of languages, i.e., an ω-chain of languages. It is easy to observe that for each
N , L(N)(A) is a regular language: For a fixed N the counters for the distance
colours can be coded in the states of the automaton. This construction gives a
parity automaton of index (i, j) for L(N)(A), hence we define the parity index

The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata 403

of a distance-parity automaton to be the parity index of the underlying parity
condition. From the above explanation we easily conclude the following.

Fact 1. Given a distance-parity automaton A of parity index (i, j) and a natural
number N , the language L(N)(A) is i, j-feasible.

The limitedness problem is the following: given a distance-parity automaton A,
determine if L(N)(A) is ultimately constant (in this case, the automaton is said
to be limited). In this paper we prefer the uniform universality problem: given
an automaton A, determine if L(N)(A) is equal to the set of all trees for some
natural number N (in this case the automaton is said to be uniformly universal).

3 Guidable Automata

As mentioned in the introduction, the first step of the proof is to construct a
so-called guidable automaton accepting the language L. The underlying idea is
that we want to be able to relate accepting runs of an automaton for L that has
a minimal number of priorities to accepting runs of our guidable automaton.

Definition 1. A parity automaton A = (QA, A, {q0}, ΔA, colA) is guidable if
for every parity automaton B = (QB, A, IB, ΔB, colB) such that L(B) ⊆ L(A)
there exist a mapping g : QA ×ΔB → ΔA with the following properties:

– g(p, (q, a, q′, q′′)) = (p, a, p′, p′′) for some p′, p′′ ∈ QA.
– For every accepting run ρ of B over a tree t, g(ρ) is an accepting run of A

over t, where g(ρ) = ρ′ is the unique run such that ρ′(ε) = q0, and for
all u ∈ {0, 1}∗:

(ρ′(u), t(u), ρ′(u0), ρ′(u1)) = g(ρ′(u), (ρ(u), t(u), ρ(u0), ρ(u1))) .

In this case we say that (B, g) guides A.

One way to see this definition is that g is a deterministic transducer with state
set QA that takes as input a run ρ of B and outputs a run ρ′ of A such that if ρ
is accepting (for B), then ρ′ is accepting (for A).

An example of an automaton over finite words that is not guidable (the defi-
nition of guidable automaton can easily be translated by the reader to the case
of finite words) is the automaton that accepts all {a, b}-words by guessing in the
first step of the run if the last letter is a or b, and then proceeds to two subau-
tomata, one accepting words ending with a, the other accepting words ending
with b. It is quite clear that it is not possible to guide such an automaton.
This example carries the important intuition that an automaton is guidable if
it is never forced to make an unnecessary guess concerning the remaining input.
Also consistent with this intuition, note that every deterministic automaton is
obviously guidable.

In our context of infinite trees, the only way we use the property of being
guidable is by the following simultaneous pumping argument.

404 T. Colcombet and C. Löding

Lemma 2. Suppose (B, g) guides A and consider accepting runs ρ, ρ′ as in
Definition 1. Let u � v be nodes such that ρ(u) = ρ(v) and ρ′(u) = ρ′(v). If the
maximal priority in ρ between u and v is even, then the maximal priority in ρ′

between u and v is also even.

Proof. Consider the run τ obtained from ρ by repeating infinitely often the part
between u and v (i.e., positions x such that u � x and v �� x), and τ ′ be
obtained from ρ′ in the same way. If the maximal priority between u and v in ρ
is even, then the run τ is accepting. But it is not difficult to see that g(τ) = τ ′

and hence by definition of guidable automata, τ ′ is also accepting. Thus, the
maximal priority n appearing infinitely often on the infinite branch obtained by
pumping is even. Since this branch is obtained by pumping ρ′ between u and v,
the priority n appears as the maximal one between u and v in ρ′. ��

The main result of this section is that for each regular tree language we can
construct a guidable automaton.

Theorem 1. For each regular tree language L there exists effectively a guidable
parity automaton A accepting L.

Proof. We start from a parity automaton C = (QC , A, IC , ΔC , colC) accepting the
complement of L. What we show is that applying a standard complementation
procedure to C – as it can be found, e.g., in [16] – yields a guidable automaton
A (which obviously accepts L). The rough idea why the automaton is guidable
is that a positional winning strategy in a game witnessing that an automaton B
has empty intersection with C can be rewritten into a mapping g which guides
A. This is a reasonable approach because both the mapping g and the winning
strategy in the above game witness that L(B) ⊆ L(A).

We now formally describe the automaton A and then show that it is guidable.
By G we denote the set of all mappings f : ΔC → {0, 1}. Each path in an A×G
labelled tree corresponds to an infinite sequence over (A × G × {0, 1}), where
the {0, 1}-component indicates the direction the path takes in each step. We say
that such a sequence

(a0, f0, i0)(a1, f1, i1) · · · ∈ (A×G× {0, 1})ω

is C-accepting if there is a transition sequence τ0τ1 · · · ∈ Δω
C such that

– for each j the transition τj is of the form (qj , aj , q
(0)
j , q

(1)
j) with fj(τj) = ij

and q
(ij)
j = qj+1,

– q0 is an initial state of C, and
– the acceptance condition of C is satisfied by q0q1 · · · .

It is easy to see that the set of all C-accepting sequences over (A ×G × {0, 1})
is a regular language of infinite words (a non-deterministic automaton can guess
the transition sequence of C and verify the local properties). Hence, the set of all
sequences that are not C-accepting is also a regular language, and from a de-
terministic parity word automaton for this language one constructs a deter-
ministic parity tree automaton (with a single initial state) A′ = (QA, A ×

The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata 405

G, {qAI }, ΔA′ , colA) accepting all (A × G)-trees in which all paths correspond
to non-C-accepting sequences. By projecting away the G-component one obtains
the automaton A = (QA, A,

{
qAI
}
, ΔA, colA) for the language L. Note that A′

and A only differ on the inputs in the transitions.
We show thatA is indeed a guidable automaton. Let B = (QB, A, IB, ΔB, colB)

be a tree automaton with L(B) ⊆ L(A). The mapping g is constructed from a
strategy in the emptiness game for the language L(B) ∩ L(C). In this game,
Adam wants to verify that L(B)∩L(C) �= ∅ and Eve wants to show the contrary.
In other words, Adam plays for constructing both a run of B and a run of C
corresponding to the same tree, while Eve wants to show the failure of this
construction by witnessing an invalid branch (rejectin for B or for C). The rules
of the game are as follows:

1. Adam starts by choosing a starting position (pI , qI) ∈ IB × IC .
2. From a position (p, q) ∈ QB×QC, Adam picks two transitions (p, a, p(0), p(1))
∈ ΔB and (q, a, q(0), q(1)) ∈ ΔC from these states (both using the same input
letter a). The game is now in position ((p, a, p(0), p(1)), (q, a, q(0), q(1))).

3. Eve chooses a direction i ∈ {0, 1} and the game moves to (p(i), q(i)).

The result of the game (the part that is interesting for the winning condition) is
an infinite sequence (p0, q0)(p1, q1) · · · ∈ (QB ×QC)ω. Eve wins if either p0p1 · · ·
does not satisfy the parity condition of B or q0q1 · · · does not satisfy the parity
condition of C.

This is the standard game for verifying emptiness of tree automata (see [16])
and Eve has a winning strategy iff L(B)∩L(C) = ∅. Because L(B) ⊆ L, we know
that Eve has indeed a winning strategy (C accepts the complement of L).

The winning condition for Eve is the disjunction of two parity conditions
and hence can be written as a Rabin condition. Therefore Eve has a posi-
tional winning strategy (see [8,19]). Such a positional winning strategy is a
mapping σE : ΔB × ΔC → {0, 1} assigning to each pair of transitions a di-
rection (for the transition pairs that do not correspond to valid game positions,
an arbitrary value can be chosen). It can be equivalently written as a mapping
σE : ΔB → (ΔC → {0, 1}) assigning to each B-transition a mapping from the
set of C-transitions to {0, 1}. From this we first define g′ : QA × ΔB → ΔA′

by g′(p, (q, a, q′, q′′)) = (p, (a, f), p′, p′′) for the unique p′, p′′ ∈ QA such that
(p, (a, f), p′, p′′) ∈ ΔA′ with f = σE(q, a, q′, q′′). The mapping g is then obtained
from g′ by projecting away the G-component.

We need now to show that g translates accepting B-runs into accepting A-
runs. Let ρ be an accepting run of B on some tree t. Assume that g(ρ) is rejecting.
Then also the run g′(ρ) is rejecting, where g′(ρ) is a run over the input tree t′ that
is obtained from t by adding the G-components of the transitions used in g′(ρ)
to the node labels of t. This means that there is an infinite branch i0i1 · · · with
labels (a0, f0)(a1, f1) · · · in t′ such that the sequence (a0, f0, i0)(a1, f1, i1) · · · is
C-accepting. Let τ0τ1 · · · ∈ Δω

C be the transition sequence from the definition of
C-acceptance.

Let τ ′0τ
′
1 · · · ∈ Δω

B be the transition sequence of B along the path i0i1 · · ·
in the run ρ. Now assume that in the emptiness game described above Eve

406 T. Colcombet and C. Löding

plays according to σE . One can verify that Adam can play the transition pairs
(τ ′0, τ0), (τ ′1, τ1), . . . against σE (because σE(τ ′j , τj) = fj(τj) = ij) and thus wins
against σE . This contradicts the choice of σE as a winning strategy for Eve. ��

4 Reduction from Parity Rank to Uniform Universality

In this section we describe how to reduce the problem of deciding whether a regu-
lar tree language is i, j-feasible to the problem of deciding the uniform universality
of a distance-parity automaton. We fix a regular language L and an interval [i, j]
of natural numbers. We also fix a guidable parity automatonA = (Q,A, q0, δ, col)
with L(A) = L using priorities in some interval P . In the following, we often iden-
tify runs ρ of A with their colouring col(ρ), i.e., with P -trees.

The idea is to construct a distance-parity automaton Ti,j of parity index (i, j)
reading P -trees such that:

(Correctness). For all P -trees t, if Ti,j(t) < ω then t is accepting (Lemma 4).
(Completeness). For every i, j-feasible language K ⊆ L, there exists M ∈ ω

such that for all trees t ∈ K, there exists an accepting run ρ of A over t
with Ti,j(col(ρ)) ≤M (Lemma 5).

Then we can cascade the automata Ti,j and A into a single one denoted Ai,j

using the same distance-parity condition as Ti,j : this automaton guesses a run
of A and applies the automaton Ti,j on the colouring of this run. This resulting
distance-parity automaton is such that L(N)(Ai,j) ⊆ L for all N (correctness),
and such that for all i, j-feasible K ⊆ L, K ⊆ L(M)(Ai,j) for some M (com-
pleteness). Let us now construct a distance-parity automaton Ui,j which at the
beginning non-deterministically decides either to execute the automaton Ai,j or
an automaton C accepting the complement of L.

Lemma 3. The automaton Ui,j is uniformly universal iff L is i, j-feasible.

Proof. Assume that L(N)(Ui,j) contains all trees for some N . This means that
L(N)(Ai,j) ∪ L(C) contains all trees, and thus L ⊆ L(N)(Ai,j). Since further-
more L(N)(Ai,j) ⊆ L (correctness), we have L = L(N)(Ai,j). And by Fact 1, L
is i, j-feasible. Conversely, assume that L is i, j-feasible. Then by completeness,
there exists M such that L ⊆ L(M)(Ai,j). Hence L∪L(C) ⊆ L(M)(Ui,j) contains
all trees. The automaton Ui,j is uniformly universal. ��

From this we directly get our main theorem:

Theorem 2. The problem of deciding the i, j-feasibility of a regular tree lan-
guage is reducible to the uniform universality of distance-parity automata.

We now describe the automaton Ti,j in detail. Intuitively, Ti,j maps each priority
in P to a priority in [i, j]. When reading a priority k ∈ P it “outputs” the priority
associated to k. To implement this idea, the main objects used by Ti,j are partial
mappings from P to [i, j] (for technical reasons we allow some priorities to be
undefined). To ensure correctness of Ti,j (in the sense mentioned above), these

The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata 407

mappings have to respect some conditions. First of all, odd priorities of P should
be mapped to odd priorities of [i, j]. Second, the ordering of the priorities should
be respected in the following sense: the image of every odd priority is required
to dominate the image of all even priorities below it.

Formally, let S be the set of partial mappings s : P → [i, j] such that for all
k for which s(k) is defined:

1. If k is odd, then s(k) is odd.
2. If k is even, then for all odd l > k such that s(l) is defined, s(l) ≥ s(k).

The transitions of Ti,j allow to change the mapping s in a safe way. It is not very
difficult to observe that on reading priority k ∈ P , Ti,j can safely change the
values for P -priorities strictly below k. Additionally, we also allow a bounded
number of arbitrary changes of the values. This bound is not fixed a priori and
is controlled by the distance condition.

We now proceed to the formal definition of the distance-parity automaton
Ti,j = (S × P × S, P, SI , δ, col).

– The set of initial states is SI = {〈s⊥, k, s〉 | s ∈ S, k ∈ P}, where s⊥ is the
mapping that is undefined everywhere.

– For all s′, s, s0, s1 ∈ S, k, k0, k1 ∈ P we allow the transition
(
〈s′, k, s〉, k, (0, 〈s, k0, s0〉), (1, 〈s, k1, s1〉)

)
.

In fact, every transition is allowed, provided the first component is equal to
the last one used at the parent node, and the second component remembers
the label of the P -tree at the current node. As a consequence, a run of Ti,j
on a given input tree is completely determined by the tree and the last
components of its states.

– Distance colours are D = {dk, rk−1 : k ∈ P}, and the priorities lie in [i, j].
– For all q ∈ S × P × S we set col (q) = (dst(q), pri(q)) with:

dst(〈s′, k, s〉) =

⎧
⎪⎨

⎪⎩

rk−1 if s(k) is defined and s′(l) = s(l) for all l ≥ k

dk if s(k) is undefined and s′(l) = s(l) for all l ≥ k

dl for the maximal l with s′(l) �= s(l) otherwise.

pri(〈s′, k, s〉) =

{
s(k) if s(k) is defined,
i if s(k) is undefined.

We now establish that Ti,j satisfies the correctness condition mentioned at
the beginning of this section.

Lemma 4 (correctness). For all P -trees t, if Ti,j(t) < ω then t satisfies the
parity condition of P on each branch.

Proof. Let t be a P -tree and let ρ be a run of Ti,j on t. Consider a branch B
and let k be the maximal P -priority that appears infinitely often on B in t. We
show that if k is odd, then B is rejecting in ρ.

408 T. Colcombet and C. Löding

In the following, the s-value of a priority in P refers to the value it is mapped
to by the sates of Ti,j . First note that rk−1 is the maximal release that can occur
infinitely often on B in ρ. Hence, if the s-value of some l ≥ k changes infinitely
often along B, then the distance condition is not satisfied and B is rejecting.
Otherwise, the s-value of k becomes stable eventually on B. This value is odd
because k is odd (property 1 of S), and furthermore it is bigger than the s-values
of the smaller even priorities (property 2 of S). Hence, the maximal priority
assumed infinitely often in ρ along B is odd and thus B is rejecting in ρ. ��

Lemma 5 (completeness). For every i, j-feasible language K ⊆ L, there ex-
ists M ∈ ω such that for all trees t ∈ K, there exists an accepting run ρ of A
over t with Ti,j(col(ρ)) ≤M .

This is the difficult part of the proof. The principle is the following. Consider
an automaton B of parity index (i, j) that accepts K and a mapping g such
that (B, g) guides A (this is possible since A is guidable). Let us consider an
accepting run τ of B over a tree t ∈ K. We set ρ to be g(τ), and we aim at
constructing a run of Ti,j witnessing that Ti,j(col(ρ)) ≤M for a bound M which
does not depend on t (but depends on B).

The very informal idea for constructing the run of Ti,j is to try to mimic the
priorities used by the run τ . For defining the states of Ti,j used at each position
of the run, we heavily rely on Lemma 2 which relates the use of priorities in τ
to the use of priorities in ρ. This lemma is only usable in presence of loops of B
in τ . Therefore, in parts of τ where B has not yet entered a loop or enters a new
strongly connected component of its transition graph, the states of Ti,j map some
priorities to an undefined value. The distance part of the condition is exactly
used as a counter of such kind of “errors”. But as B can only finitely often change
the strongly connected component, one can imagine that the number of those
errors is bounded by some M depending solely on the size of B.

5 Conclusion

We have shown in this paper that the problem of deciding the levels of the non-
deterministic Mostowski hierarchy can be reduced to the problem of uniform
universality for distance-parity automata. The next step is of course to show
the decidability of this latter problem. We have already obtained partial results
showing that uniform universality is decidable for special classes of distance-
parity automata (over trees). We expect the decidability of the general problem.

A key tool in our reduction is the notion of guidable automaton. We have
shown that each regular language of infinite trees can be accepted by such an
automaton. This model is interesting in its own right because it somehow shows
that there is a canonical way of using non-determinism for accepting a language
of infinite trees. We plan to investigate this model further and to see if it can be
applied in other contexts.

The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata 409

References

1. Arnold, A.: The μ-calculus alternation-depth hierarchy is strict on binary trees.
Informatique Théorique et Applications 33(4/5), 329–340 (1999)

2. Arnold, A., Duparc, J., Murlak, F., Niwiński, D.: On the topological complexity
of tree languages. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata:
History and Perspectives, pp. 9–28. Amsterdam University Press (2007)

3. Bojańczyk, M., Colcombet, T.: Bounds in ω-regularity. In: Proceedings of LICS
2006, pp. 285–296. IEEE Computer Society Press, Los Alamitos (2006)

4. Bradfield, J.C.: The modal μ-calculus alternation hierarchy is strict. Theor. Com-
put. Sci. 195(2), 133–153 (1998)

5. Carayol, A., Löding, C.: MSO on the infinite binary tree: Choice and order. In: Du-
parc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer,
Heidelberg (2007)

6. Hashiguchi, K.: Algorithms for determining relative star height and star height.
Inf. Comput. 78(2), 124–169 (1988)

7. Kirsten, D.: Distance desert automata and the star height problem. RAIRO –
Theoretical Informatics and Applications 3(39), 455–509 (2005)

8. Klarlund, N.: Progress measures, immediate determinacy, and a subset construc-
tion for tree automata. Annals of Pure and Applied Logic 69(2–3), 243–268 (1994)

9. Lenzi, G.: A hierarchy theorem for the μ-calculus. In: Meyer auf der Heide, F.,
Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 87–97. Springer, Heidelberg
(1996)

10. Mostowski, A.W.: Regular expressions for infinite trees and a standard form of
automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer,
Heidelberg (1985)

11. Niwiński, D.: On fixed-point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226,
pp. 464–473. Springer, Heidelberg (1986)

12. Niwiński, D., Walukiewicz, I.: Ambiguity problem for automata on infinite trees
(unpublished note)

13. Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata.
In: Morvan, M., Meinel, C., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp.
320–331. Springer, Heidelberg (1998)

14. Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic
tree automata. Electr. Notes Theor. Comput. Sci. 123, 195–208 (2005)

15. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 141, 1–35 (1969)

16. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Language
Theory, vol. III, pp. 389–455. Springer, Heidelberg (1997)

17. Urbański, T.F.: On deciding if deterministic Rabin language is in Büchi class. In:
Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
663–674. Springer, Heidelberg (2000)

18. Wagner, K.W.: Eine topologische Charakterisierung einiger Klassen regulärer Fol-
genmengen. J. Inf. Process. Cybern. EIK 13(9), 473–487 (1977)

19. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1–2), 135–183 (1998)

Analyzing Context-Free Grammars Using an

Incremental SAT Solver

Roland Axelsson1, Keijo Heljanko2,�, and Martin Lange1

1 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany
2 Department of Information and Computer Science,
Helsinki University of Technology (TKK), Finland

Abstract. We consider bounded versions of undecidable problems
about context-free languages which restrict the domain of words to some
finite length: inclusion, intersection, universality, equivalence, and am-
biguity. These are in (co)-NP and thus solvable by a reduction to the
(un-)satisfiability problem for propositional logic. We present such en-
codings – fully utilizing the power of incrementat SAT solvers – prove
correctness and validate this approach with benchmarks.

1 Introduction

Context-free grammars (CFG) and languages (CFL) have been used intensively
by computer scientists and linguists since Chomsky formalized them in 1956.
They have applications in compiler design, speech processing, bioinformatics,
static program analysis, XML processing, etc.

The word problem for CFGs is decidable in cubic time and quadratic space and
the Pumping Lemma for CFLs [1] provides a criterion by which the emptiness
problem becomes decidable as well. However, it has since long been known that
the following problems are undecidable: universality (given a CFG G over some
alphabet Σ, is L(G) = Σ∗?); inclusion, intersection, and equivalence (given two
CFG G1 and G2, is L(G1) ⊆ L(G2), is L(G1) ∩ L(G2) = ∅, and is L(G1) =
L(G2)?)

Another very important undecidable problem is ambiguity – is there a word
which has at least two different parse trees w.r.t. a given CFG? After seeing little
progress for many years, this problem has recently attracted attention again [3,8]
which is, e.g., due to its importance in compiler design and bioinformatics.

Due to decidability of the word problem these problems are all (co)-semi-
decidable through an enumeration of Σ∗. Hence bounded versions of these prob-
lems become decidable. For example, the bounded universality problem is: given
a CFG G and a k ∈ N, does L(G) contain all words of length ≤ k? Since the
word problem is even decidable in polynomial time, they are in (co-)NP and can
therefore be solved by a polynomial reduction to (UN-)SAT, provided that k is
given in unary coding.
� Work financially supported by Academy of Finland (project 112016) and Technology

Industries of Finland Centennial Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 410–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analyzing Context-Free Grammars Using an Incremental SAT Solver 411

The use of modern SAT solvers such as zChaff [6] has proved to be extremely
beneficial in areas like computer aided verification, AI planning, theorem prov-
ing, cryptanalysis, electronic design automation, etc. Here we show that, appar-
ently, formal language theory is also among them.

The observation about decidability of the above bounded problems is not
new although we are not aware of any work that exploits this idea thoroughly
in order to tackle the unbounded (and undecidable) problems. Here we present
optimized reductions of these bounded problems to SAT s.t. a SAT solver can find
witnesses, resp. counterexamples for these problems. The basis for the reduction
is the well-known CYK algorithm [9]. We generate propositional logic constraints
encoding which nonterminals may/must occur at certain positions in a CYK
parse table. A slightly different approach to encoding CYK parsing into SAT
has been independently discovered in [7]. However, the textbook version of CYK
is unsuitable since it requires the CFG to be in Chomsky Normal Form (CNF)
which may incur an exponential blow-up in the grammar. That would clearly be
counterproductive in the search for optimized reductions. We therefore develop
and use an optimized version of CYK which may be known in the community but
does not seem to have made it into the literature. When it comes to ambiguity, we
even must. Note that the transformation into CNF does not preserve ambiguity.
We therefore use a different normal form without these deficiencies.

The crucial difference between our symbolic encoding and an explicit execu-
tion of the CYK algorithm though, is the absence of an input word. This has to
be “guessed” by the SAT solver and the constraints will ensure (non)-inclusion
in the languages of some CFGs. Thus, we do not only get that the SAT formula
is satisfiable iff the language of the CFG, say, contains an ambiguous word of
length ≤ k. The satisfying assignment also encodes this word as well as two
different parse trees.

Note that CYK tables are in some sense closed under extension “to the right”:
the triangular table of size (k + 1) × (k + 1) can be obtained from the one
of size k × k by adding a column of length k + 1. This is what makes incre-
mental SAT solving predestined for solving bounded CFL problems. If a wit-
ness/counterexample of size ≤ k is not found, additional constraints for a greater
bound plus a few changes in the current constraints yield the new formula. In-
cremental SAT solvers maximally utilize information gathered in solving a SAT
instance to solve the next “bigger” but structurally very similar one. Such solvers
are therefore of particular interest for our setting.

This is clearly just a semi-decision procedure for the unbounded versions of
the considered problems. But it has distinct advantages over approximation ap-
proaches for ambiguity [3,8]. While the accuracy of answers given by those de-
pends on the quality of the approximation (that may produce false-positives),
our approach is only limited by time and available memory; the structure of the
produced formula does not pose any difficulty to the SAT solver. A report on
an empirical evaluation is included after some preliminary definitions, and the
presentation as well as exemplary correctness proofs of encodings for the above
problems. On the other hand, our approach is clearly not complete and not

412 R. Axelsson, K. Heljanko, and M. Lange

meant to replace approximation approaches to ambiguity. Instead, they could
also be combined, e.g. to provide a search for smallest witnesses to the problems
of horizontal and vertical ambiguity in [3] for instance.

2 Preliminaries

Let Σ be an alphabet. As usual, we write |w| for the length of a word w, Σ∗

for the set of finite words over Σ, Σ≤k for {w ∈ Σ∗ | |w| ≤ k} for any k ∈ N,
ε for the empty word and uv or LL′ to denote concatenation of words, sets,
languages, etc. If w = a1 . . . an we write wi..j for its subword ai . . . aj of length
j − i + 1. A context-free grammar is a tuple G = (NG, Σ, PG, SG) where NG is
a finite set of non-terminals, Σ is an alphabet, NG ∩ Σ = ∅, SG ∈ NG is the
starting symbol and PG ⊂ NG × (NG ∪ Σ)∗ is a finite set of production rules.
We use infix notation A→ α to denote (A,α) ∈ PG. As the size of G we define
|G| := |N |+

∑
A→α |α|.

The derivation relation⇒G⊆ (N∪Σ)+×(N∪Σ)∗ is defined as αAβ ⇒G αγβ
iff A → γ ∈ P for α, β, γ ∈ (N ∪ Σ)∗, A ∈ N . We will drop the index G if it
becomes clear from the context.

L(G) := {w ∈ Σ∗ | SG ⇒∗ w} is the language of G. An alternative way to
define the derivation of a word is via the existence of parse trees. We assume the
reader familiar with these fundamental concepts and refer to [4] for details.

A word w is ambiguous w.r.t. a CFG G, if there are two different parse trees for
w w.r.t. G. For a CFG G let amb(G) denote the set of words that are ambiguous
w.r.t. G. G itself is called ambiguous if amb(G) �= ∅.

In the following we will always assume the context-free languages under con-
sideration not to contain the empty word ε. This is not a restriction but simplifies
the presentation.

Definition 1. A CFG is in binary normal form (2NF), if for all (A→ α) ∈ PG

we have α ∈ {ε} ∪ Σ ∪ N ∪ NN . It is acyclic if for all A �= B ∈ N we have,
if A ⇒∗ B then B �∗ A. It is reduced if all nonterminals are reachable and
productive, i.e. for all A ∈ N there are sentential forms α, β and a word w ∈ Σ∗

s.t. S ⇒∗ αAβ and A⇒∗ w.

Lemma 1. For every CFG G there is a CFG G′ in reduced acyclic 2NF, com-
putable in time O(|G|2) s.t. L(G) = L(G′) and |G′| = O(|G|).

Lemma 2. Let G be an acyclic grammar. There exists a well-founded strict
partial order >⊆ N2

G, s.t. if A⇒∗ B and A �= B then A > B.

3 The Encoding

The task is now to create propositional logic constraints from a CFG G and
a k ∈ N that are satisfiable iff L(G) is (k-bounded) universal, ambiguous, etc.
Let G = (N,Σ, P, S) in reduced, acyclic 2NF and k be fixed. We use two kinds

Analyzing Context-Free Grammars Using an Incremental SAT Solver 413

of propositional variables: Xa
i for every a ∈ Σ and every 1 ≤ i ≤ k stating

that the i-th symbol of a witnessing word is a. An assignment to these variables
corresponds to the choice of a witness w. The other kind is XA

i,j and states that
nonterminal A derives the subword wi..j . Let P = {Xa

i , X
A
i,j | a ∈ Σ,A ∈ N, 1 ≤

i ≤ j ≤ k}. In the following, η will denote an assignment of these variables to
{tt, ff}, and we write η(C) = tt if η satisfies all the constraints C under the
usual interpretation of the operators in propositional logic.

With incrementality in mind we define constraint sets w.r.t. some p, p′ s.t.
1 ≤ p ≤ p′ ≤ k. Intuitively, these contain the constraints for the columns
p, . . . , p′ of a CYK table. Note that they may use variables with indices below p.

Let Φ = {ϕ1, . . . , ϕn} be an ordered set of propositional formulas. There is a
standard trick to state that at most one of them holds by introducing auxiliary
variables Yi for 1 ≤ i ≤ n + 1.

One(Φ) := { (ϕi → ¬Yi ∧ Yi+1) ∧ (Yi → Yi+1) | 1 ≤ i ≤ n }

With this macro, we can easily state that each position in a witnessing word is
occupied by a unique symbol.

W(p, p′) := { One({Xa
i | a ∈ Σ}) ∧

∨

a∈Σ
Xa

i | p ≤ i ≤ p′ }

Lemma 3. For any η, η(W(p, p′)) = tt iff there exists a unique sequence bp, . . . ,
bp′ , s.t. η(Xai

i) = tt iff bi = ai for all p ≤ i ≤ p′, ai ∈ Σ.

We will therefore simply write wp,p′

η for the unique wp..p′
induced by η. We

encode a derivation with the help of constraints R(p, p′) :=

{ XA
i,j ↔

∨

A→a
if i=j

Xa
i ∨

∨

A→B
A�=B

XB
i,j ∨

∨

A→BCor
A→CB

A�=B,C⇒∗ε

XB
i,j ∨

∨

A→BC

j−1∨

h=i

(XB
i,h ∧XC

h+1,j)

| A ∈ N, p ≤ i ≤ j ≤ p′}

This encoding splits up the derivation of wi,j
η by non-terminal A into the follow-

ing four cases (marked by the big disjunctions): derivation of a single terminal,
two cases of single non-terminal derivations and the derivation of composites.
Note that pre-computing the set of all nonterminals C s.t. C ⇒∗ ε can be done
in time O(|G|). It is also a necessary preliminary step during the transformation
into 2NF. So far, R(p, p′) contains a bi-implication. However, for some prob-
lems, implications in one direction only will suffice. For example, when encod-
ing bounded emptiness, the ←-parts are unnecessary. In general, the →-parts
express soundness of the encoding and are used to express that something is
derivable; the ←-parts encode completeness and can be used to express that a
word is not derivable. We write R→(p, p′) and R←(p, p′) for the soundness, resp.
completeness parts only.

Lemma 4. Let k > 0, η be an assignment s.t. η(R→(1, k) ∪W(1, k)) = tt and
w = w1,k

η . Then for all A ∈ NG, all 1 ≤ i ≤ j ≤ k we have: if η(XA
i,j) = tt then

A⇒∗ wi..j .

414 R. Axelsson, K. Heljanko, and M. Lange

Proof. Suppose η(XA
i,j) = tt. We prove the claim by induction on j − i where

we refer to the four different (big) disjunctions in R→(1, k) as “blocks 1–4”.
Base case (i = j): Clearly, at least one variable from blocks 1-3 has to be

evaluated to tt. Block 4 evaluates to ff for i = j.

1. η(Xa
i) = tt. There must be a rule A→ wi and therefore A⇒∗ wi.

2. η(XB
i,i) = tt. We proceed by well-founded induction on >. Suppose for all

B < A, we have B ⇒∗ wi if η(XB
i,i) = tt. Because of the rule A → B we

also have A⇒∗ wi.
3. η(XB

i,i) = tt. Analogous to (2).

Inductive case (i < j): Block 1 evaluates to ff for i < j, so at least one
disjunct from blocks 2–4 has to evaluate to tt.

1. η(XB
i,j) = tt. Same as in the base case.

2. η(XB
i,h) = η(XC

h+1,j) = tt (4). In particular, h,B,C exist and i ≤ h < j.
Clearly h − i ≤ j − i and j − (h + 1) ≤ j − i and therefore by induction
hypothesis B ⇒∗ wi..h and C ⇒∗ wh+1..j . As A → BC it follows that
A⇒∗ wi..j . ��

Lemma 5. Let k > 0, η be an assignment s.t. η(R←(1, k) ∪W(1, k)) = tt and
w = w1,k

η . Then for all A ∈ NG, all 1 ≤ i ≤ j ≤ k we have: if A ⇒∗ wi..j then
η(XA

i,j) = tt.

Proof. Again, we prove this by induction on j − i. Let w = wη. In the base case
suppose A ⇒∗ wi..i = a. Thus, η(Xa

i) = tt. Furthermore, there is a derivation
tree with root A and leaf front a. Clearly, whenever a node in this tree has two
successors labeled B and C then B ⇒∗ ε or C ⇒∗ ε. Because of 2NF, a must be
generated by some rule B → a, and because of block 1 we have η(XB

i,i) = tt. A
separate induction on the height of the tree – using blocks 2–4 – shows that we
have η(XC

i,i) = tt for all predecessors of this B in this tree, including the root A.
The crucial insight to the applicability of this induction is the fact that in this
parse tree the node labels on the path from the root to the leaf a are strictly
decreasing w.r.t. > according to Lemma 2.

Now assume j > i and A ⇒∗ wi..j . Hence, we have a parse tree t with root
A whose leaf front is wi..j . For a node n in t we write w(n) for the subword of
wi..j that constitutes of the leaf labels in the subtree under n. Furthermore, for
two words u, v we write u ≺ v if u is a genuine subword of v.

Note that |wi..j | ≥ 2, and – because of 2NF – leaves in this tree have a direct
predecessor n that can only have a single successor. Therefore, for each such n
we have w(n) ≺ wi..j . Note that w(n0) = wi..j for n0 the root of t. Hence, there
must be a highest (closest to the root) node n in this tree, that is labeled with
some B ∈ NG and has two successors n1 and n2 labeled with some C, resp. D,
s.t. w(n1) ≺ w(n) = w(n0) and w(n2) ≺ w(n) = w(n0). Hence, w(n1) = wi..h

and w(n2) = wh+1..j for some i ≤ h < j. But then we have C ⇒∗ wi..h,
D ⇒∗ wh+1..j , and, by hypothesis, η(XC

i,h) = η(XD
h+1,j) = tt. Since B → CD

we have η(XB
i,j) = tt by block 4. Finally, the path from the node labeled B to

Analyzing Context-Free Grammars Using an Incremental SAT Solver 415

RC(p, p′)

C R→
G (p, p′) R←

G (p, p′) R→
G′ (p, p′) R←

G′(p, p′)

bINCLG,G′ X X

bUNIVG X

bISECTG,G′ X X

bEQUIVG,G′ X X X X

Fig. 1. How to use the R-constraints

the root A must be strictly increasing w.r.t. < again, and an induction on its
length eventually shows η(XA

i,j) = tt using blocks 1–3. ��

3.1 Constraints for Particular Problems

We will now assemble the above constraints in order to obtain encodings of the
following problems. Let G,G′ be CFG and k > 0.

– Bounded Inclusion (bINCL): does ∀w ∈ Σ≤k : w ∈ L(G) ⇒ w ∈ L(G′)
hold?

– Bounded Universality (bUNIV): is Σ≤k ⊆ L(G)?
– Bounded Intersection (bISECT): is there a w ∈ Σk ∩ L(G) ∩ L(G′)?
– Bounded Equivalence (bEQUIV): does ∀w ∈ Σ≤k : w ∈ L(G) ⇔ w ∈ L(G′)

hold?

For those that take two CFG G,G′ as input we write RG to clarify which CFG
the constraints refer to.

The following is not hard to prove using the fact that the word problem for a
CFG can be solved in polynomial time. Note that bounded ambiguity is missing.
It will be treated separately below.

Proposition 1. For unarily encoded k ∈ N, the problems bINCL,
bUNIV, bEQUIV are in co-NP, and bISECT is in NP.

All of these encodings have a similar structure: they take some form of the R-
constraints plus a single problem specific one constraining the grammar’s starting
symbols. We therefore define

C(p, p′) = W(p, p′) ∪ RC(p, p′) ∪ SC(p, p′)

for C ∈ {bINCL, bUNIV, bISECT, bEQUIV}. TheR-parts can be obtained from
the table in Fig. 1. The S-part is always a single constraint SC := {

∨p′

j=p TC(j)}
with

TbINCL(j) := XSG

1,j ∧ ¬X
SG′
1,j TbUNIV(j) := ¬XSG

1,j

TbISECT(j) := XSG

1,j ∧X
SG′
1,j TbEQUIV(j) := XSG

1,j ↔ ¬XSG′
1,j

416 R. Axelsson, K. Heljanko, and M. Lange

We write bINCL(p) for bINCL(1, p), etc. The following theorem confirms the in-
troductory statement about the reductions from these bounded problems to SAT
being polynomial. Its proof is straight-forwardly based on standard techniques
for obtaining conjunctive normal form and therefore not presented here.

Proposition 2. Let G,G′ be CFGs, k > 0. For any set of constraints C ∈ {
bINCL(k), bUNIV(k), bISECT(k), bEQUIV(k) } there is an equivalent propo-
sitional formula ΦC in conjunctive normal form over O(|NG ∪ NG′ | · k2) many
variables s.t. |ΦC | = O((|G| + |G′|) · k3).

We will prove correctness of one of these reductions, namely for bINCL. The
others are proved in a similar way.

Theorem 1. Let G,G′ be CFGs in reduced acyclic 2NF, k > 0. Then
bINCLG,G′(k) is satisfiable iff there is a w ∈ Σ≤k s.t. w ∈ L(G) \ L(G′).

Proof. (⇒) Suppose η is a satisfying evaluation of bINCLG,G′(1, k). Let w = w1,k
η

according to Lemma 3. We will show that there is a k′ ≤ k s.t. SG ⇒∗ w1..k′

and SG′ �∗ w1..k′
. Let k′ be the least j s.t. η(XSG

1,j) = tt and η(XSG′
1,j) = ff. Its

existence is guaranteed by the specific constraints for bINCL. The rest follows
immediately from Lemmas 4 and 5.

(⇐) W.l.o.g we assume that the counterexample w is of minimal length k, i.e.
that bINCLG,G′(k′) is unsatisfiable for any k′ < k. We construct an evaluation
η of bINCLG,G′(1, k) as follows.

η(Xa
i) = tt iff wi = a η(XA

i,j) = tt iff A⇒∗ wi..j

for all A ∈ NG ∪NG′ , 1 ≤ i ≤ j ≤ k. A simple inspection of the constraints in
bINCL(k) shows that they are all fulfilled by η. ��

Theorem 2. Let G,G′ be CFGs in 2NF, k > 0. Then we have

– bUNIVG(k) is satisfiable iff there is a w ∈ Σ≤k s.t. w �∈ L(G).
– bISECTG,G′(k) is satisfiable iff there is a w ∈ Σ≤k s.t. w ∈ L(G) ∩ L(G′).
– bEQUIVG,G′(k) is satisfiable iff there is a w ∈ Σ≤k s.t. w ∈ L(G) \ L(G′)

or w ∈ L(G′) \ L(G).

A counterexample for the universality problem could therefore be found by
iteratively checking the constraint sets bUNIV(1), bUNIV(2), . . . for satisfia-
bility. Note that bUNIV(k + 1) contains many constraints already present in
bUNIV(k). In fact, for all of the above problems we have the following relation.
Let 0 < k < k′.

C(k′) =
(
C(k) \

⋃

1≤p≤p′≤k

SC(p, p′)
)
∪ C(k + 1, k′) ∪ SC(k + 1, k′)

Hence, these constraints support incrementality in the sense that the wider range
Σ≤k′

can be checked by modifying the constraints for the smaller range Σ≤k.
Furthermore, the increase need not take place in steps of size 1 only.

Analyzing Context-Free Grammars Using an Incremental SAT Solver 417

3.2 Ambiguity

We define the bounded ambiguity problem bAMB for a grammar G in reduced
acyclic 2NF and a k ≥ 1 in a non-obvious way: is there a nonterminal A ∈ NG

and a word v ∈ Σ≤k s.t. v has at least two different parse trees with roots labeled
A that differ in a node on level 1?

Note that a word w is ambiguous in the original sense w.r.t. a grammar
G iff it has two different parse trees that differ in a node (determined by the
derived subword under that node and the node’s label) which is not the root.
Therefore, these trees must have a subtree each with equally labeled roots and
equal derived subwords that differ on level 1. In other words, a derivation for w
derives a subword v from a nonterminal A by using two different rules for A or
using one rule in two different ways.

By not looking for ambiguous words, but ambiguous subwords, found wit-
nesses explain the reason for ambiguity more clearly. For example, if the exam-
ined grammar was an ambiguous one for Java, then the witness may not be a
whole Java program but just an ambiguous Java expression. Furthermore, this
definition of bounded ambiguity allows for much more compact encodings. Fi-
nally, if a CFG is reduced, i.e. all terminals are reachable and productive then
we have the following property: if (v,A) is an instance of bAMB for a CFG G
as defined above, then there is an ambiguous w ∈ L(G) s.t. w = uvz for some
u, z ∈ Σ∗. The converse direction holds trivially. Thus, bounded ambiguity in
our sense is just a more detailed description of bounded ambiguity as one may
expect it.

Proposition 3. The problem bAMB is solvable in NP for unarily encoded k ∈ N.

Before we can present the encoding we need to reconsider the transformation of a
CFG into reduced acyclic 2NF. Remember that acyclicity is necessary for the R-
constraints to be correct. However, it requires the removal of productions of the
form A → A after replacing nonterminals with equivalence class representants
in the construction of Lemma 1. But then the transformation does not preserve
ambiguity anymore, because such a cyclic rule can be its cause.

Definition 2. An extended CFG is a tuple G = (N,Σ, P, S,M,E) like a CFG
with E ⊆ M ⊆ N called the ambiguously nullable nonterminals and the am-
biguous nonterminals. The notions of language, derivability, 2NF, acyclicity, re-
ducedness etc. are defined as for a CFG. However, we define amb(G) = {w |
there are two different parse trees for w, or there is one parse tree containing a
nonterminal A ∈M }.

Then we can reformulate Lemma 1 for the new purpose as follows.

Lemma 6. For every CFG G there is an extended CFG G′ in acyclic and re-
duced 2NF, computable in time O(|G|2) s.t. L(G′) = L(G), and |G′| = O(|G|).
Moreover, we have amb(G′) = amb(G), and A ∈ E iff there are two different
parse trees with root A and leaf front ε.

418 R. Axelsson, K. Heljanko, and M. Lange

Proof. Let G = (N,Σ, P, S) be a CFG. It can be reduced and transformed into
2NF in time O(|G|). Define G′ := (Ñ ,Σ, P̃ , S̃,M,E) as the canonical factori-
sation of G under the equivalence relation A ∼ B iff A ⇒∗ B ⇒∗ A. I.e. its
non-terminals are equivalence classes Ã under this relation, and the production
rules of G′ are canonically derived from those in G. It should be clear that G′

is also reduced. Let E consist of all Ã that can derive ε in at least two different
ways. This can be computed in time O(|G′|). Define M := E ∪ {Ã | A ⇒+ A}.
Note that M can be computed in time O(|G|2). In order to make G′ acyclic,
simply remove all productions of the form Ã→ Ã.

It is not hard to see that amb(G′) ⊆ amb(G) holds. For the converse direction,
assume that t1 �= t2 are two parse trees for some w w.r.t. G. Let t̃1 and t̃2 result
from them by replacing every node label A with Ã and collapsing edges of
the form Ã → Ã. Note that these are parse trees for w w.r.t. G′. If t̃1 �= t̃2
then w ∈ amb(G′). Otherwise, if t̃1 = t̃2 then either they coincide because of
a collapsed edge in some ti. In this case, t̃1 must contain some Ã ∈ M and
therefore w ∈ amb(G′). Or there are nodes with labels A and B in t1 and t2 that
get mapped to the same node Ã in t̃1, i.e. A ∼ B and therefore Ã ∈M . ��
We are now ready to describe the SAT encoding of bounded ambiguity. As above,
we assume a macro Two(Φ) which, for an ordered set Φ of propositional formulas,
is satisfiable iff there is an assignment satisfying at least two formulas out of Φ.
It can easily be constructed by introducing at most 2 · |Φ|+ 2 new variables, c.f.
the construction of One above.

Let G be an extended CFG in reduced, acyclic 2NF. TheW-constraints remain
the same. Since “having two different parse trees” entails being derivable, we also
add theR→ constraints defined above. Finally, we simply have to state that there
is a nonterminal which forms the root of the parse (sub)tree which is either an
ambiguous nonterminal or to which two different productions apply.

bAMB(k, k′) := W(k, k′) ∪ R→(k, k′) ∪

{
k′
∨

j=k

(∨

A∈MG

XA
1,j ∨

∨

A→BCor
A→CB

A�=B,C∈EG

(XA
1,j ∧XB

1,j) ∨
∨

A∈NG\MG

(
XA

1,j ∧ Two(PA,j)
))
}

where

PA,j := { XB
1,j | A→ α ∈ {B,BC,CB} with C ⇒∗ ε }

∪ { Xa
1 | A→ a and j = 1 }

∪ { Xb
1,h ∧XC

h+1,j | A→ BC, 1 ≤ h < j }

encodes all the different productions that can be made at the root labeled A of
a parse tree for a word of length j. Again, let bAMB(k) := bAMB(1, k). It is
not difficult to see that the encoding of this problem supports incrementality as
well. In each increment, the W- and R→-constraints remain, the other one has
to be deleted, etc.

Lemma 6 together with an argument similar to that in the proof of Thm. 1
yields correctness of the encoding.

Analyzing Context-Free Grammars Using an Incremental SAT Solver 419

Theorem 3. Let G be a CFG in 2NF, k > 0. Then bAMB(k) is satisfiable iff
there are u, v, z ∈ Σ∗ s.t. uvz ∈ L(G), |v| ≤ k and there are two different parse
trees for w that differ on level 1 of the subtree for v.

Proposition 4. Let G be a CFG, k > 0. Then bAMB(k) can be equivalently
translated into a propositional formula Φ in conjunctive normal form over
O(|NG| · k2) many variables s.t. |Φ| = O(|G| · k3).

4 Comparison

A prototype implementation of the reduction approach (cfganalyzer) has been
implemented for all 5 bounded problems mentioned above. It is written in OCaml
3.09.3, uses zChaff version 2007.03.12 as a linked-in incremental SAT solver and
is available online.1

Of the problems discussed here, ambiguity is the one to which most attention
has been paid and for which a number of tools is available. These basically split
up into three different approaches: (1) brute-force ambiguity detection, (2) LRR
detection and (3) language approximation.

(1) Brute-force ambiguity detection systematically generates parse trees of a
certain maximal size and looks for double appearances of the derived words.
Ambiguous words which exceed the bound are not found – as in our approach.
The crucial difference though is the use of a high-performance SAT solver as a
back-end. While brute-force ambiguity detectors need to generate all parse trees
for a certain bound one-by-one, our reduction covers all parse trees for that
bound at once, and it is up to the SAT solver to find two in its solution space.
In terms of complexity: we use a polynomial reduction to an NP-problem while
(1) is an exponential reduction to a problem in P (finding equal strings in lists).
The performance discrepancies between derivation generators and cfganalyzer
can be seen by comparing Fig. 2 to the results of AMBER in [2]; cfganalyzer is
more than 1000 times faster on subwords of the same size as words in e.g. the
Pascal grammar and capable of pushing the bounds to k = 25 in reasonable time
where AMBER is already at 100.000 sec for k = 17.

(2) LRR or LR-regularity is a generalisation of the well-known LR(k) gram-
mar classes [5]. Instead of a k-symbol lookahead, an LRR parser considers regular
equivalence classes on the remaining input and reports parsing conflicts. LRR
detectors rely on the fact that every LRR-grammar is unambiguous and simply
check a given grammar for this property. But since not every unambiguous gram-
mar is LRR this method is of course also incomplete. Although being relatively
fast, common LR(k) parsers such as yacc often reveal little about the causes
of conflicts. Another positive effect of our approach is that it does always offer
a detailed report on the cause of the ambiguity upon termination, i.e. provides
two parsetrees for the ambiguous subword.
1 http://www.tcs.ifi.lmu.de/~mlange/cfganalyzer,

We would also like to thank Harri Haanpää (TKK) and Anders Møller (Århus) for
kindly providing us with benchmark CFGs.

420 R. Axelsson, K. Heljanko, and M. Lange

(3) Methods of the third kind usually are complete but not sound by over-
approximating the grammar. False-positives can occur because the language of the
approximated grammar is a superset of the original one. Examples are the ACLA
framework [3] or Schmitz’s method [8]. Our approach does not easily compare to
those since it is an under-approximation: it is sound, and complete only in the
sense that it produces no spurious reports. It does however not terminate on unam-
biguous inputs. Hence, the situation is dual to that of the over-approximation ap-
proaches which can reliably report unambiguity. Because of this duality these two
approaches combine well: a reported potential ambiguity of an over-approximation
tool may be confirmed as a fact by cfganalyzer and a seemingly non-terminating
run of it can be verified as unambiguous by such a tool.

To measure the performance of cfganalyzer it was run on 81 ambiguous
grammars from bioinformatics, ambiguous variants of programming languages
as well as on a larger number of toy examples from [2]. Note that unambiguous
ones are meaningless benchmarks here. Crucial for the performance of the tool on
ambiguous examples is of course the size of the grammar as it directly influences
the bound k up to which witnesses are found before the SAT solver runs out
of memory. Their number of rules varies between 3 and 862 (in 2NF). Most
grammars have less than 200 rules, but among the 13 grammars with number of
rules above 200, there are such prominent examples as C (413 rules), SML (304),
Pascal (337), Elsa C++ (862) and SQL (202). Fig. 2 gives an overview of the
performance on these in relation to the witness size k for ambiguous subwords.
All ambiguities in the given grammars were confirmed by cfganalyzer.

We have also examined cfganalyzer’s performance on the bounded equiva-
lence problem. It not only is the most difficult of the other problems but it also
has obvious applications in CFG design whenever one grammar serves as a spec-
ification and another as an implementation, and one wants to ensure that they
generate the same language. The following scenario provides a nice test suite. At
Helsinki University of Technology, students are given veral descriptions of CFLs

 1

 10

 100

 5 10 15 20 25

se
c

k

C
Elsa

Pascal
SML
SQL

Fig. 2. Ambiguity detection of subwords with length k

Analyzing Context-Free Grammars Using an Incremental SAT Solver 421

and their task is to come up with CFGs which generate them. An automatized
homework grading system has collected approx. 2000 student submissions for
40 different CFLs. Currently, unequivalence is only tested by sampling random
words and checking that they are in both or neither of the two languages.

For running qualitatively better tests – cfganalyzer will not miss counterex-
amples up to the given bound unlike the testing approach – we have checked each
of the 2000 grammars against all the sample solutions over the same alphabet
(which of course makes the equivalence test fail for a large percentage). First, a
coarse mapping of the submissions to the solution grammars was made, sorting
out all submissions which were inequivalent to all solutions within a bound of
k ≤ 15 already (less than 0.1s in most tests). The remaining 251 grammars which
potentially matched a solution were given a more thorough check by setting the
maximum bound up to k = 50. Checking this range took on average 23.41s which
is well below the time it would take to test all |Σ|51 − 1 words of length upto
50. This confirms cfganalyzer’s feasibility and usefulness in set-ups that have
to deal with CFGs in an automatic fashion.

5 Conclusion

The previous section shows that undecidable problems of CFLs can be (under-)
approximated by bounding the search space of witnesses / counterexamples and
using an incremental SAT solver for finding them. This approach is sound and
“complete upto termination”: it does not yield false-positives but, while unam-
biguity for example cannot be proved but only insinuated by the lack of found
witnesses. This complements other work on ambiguity detection, in particular
over-approximations which are complete – they can prove unambiguity – but
not sound. The prototype implementation cfganalyzer shows feasibility of this
approach: it has found ambiguity of large real-world grammars in short time. It
also shows that this approach by far outperforms other existing and comparable
approaches, e.g. under-approximations like the brute-force enumeration of parse
trees of bounded length.

References

1. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase struc-
ture grammars. Zeitschrift für Phonologie, Sprachwissenschaft und Kommunika-
tionsforschung 14, 113–124 (1961)

2. Basten, H.J.S.: The usability of ambiguity detection methods for context-free gram-
mars. In: Johnstone, A., Vinju, J. (eds.) Eighth Workshop on Language Descriptions,
Tools, and Applications (LDTA 2008), Budapest, Hungary (April 2008)

3. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 214–225.
Springer, Heidelberg (2007)

4. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

422 R. Axelsson, K. Heljanko, and M. Lange

5. Culik II, K., Cohen, R.S.: LR-regular grammars - an extension of LR(k) grammars.
Journal of Computer and System Sciences 7(1), 66–96 (1973)

6. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient sat solver. In: DAC, pp. 530–535. ACM, New York (2001)

7. Quimper, C.-G., Walsh, T.: Decomposing global grammar constraints. In: Bessière,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)

8. Schmitz, S.: Conservative ambiguity detection in context-free grammars. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
692–703. Springer, Heidelberg (2007)

9. Younger, D.H.: Recognition and parsing of context-free languages in time n3. Infor-
mation and Control 10(2), 372–375 (1967)

Weak Pseudorandom Functions in Minicrypt

Krzysztof Pietrzak1 and Johan Sjödin2,�

1 CWI Amsterdam
2 ETH Zurich

Abstract. A family of functions is weakly pseudorandom if a random
member of the family is indistinguishable from a uniform random func-
tion when queried on random inputs. We point out a subtle ambiguity
in the definition of weak PRFs: there are natural weak PRFs whose
security breaks down if the randomness used to sample the inputs is
revealed. To capture this ambiguity we distinguish between public-coin
and secret-coin weak PRFs.

We show that the existence of a secret-coin weak PRF which is not also
a public-coin weak PRF implies the existence of two pass key-agreement
(i.e. public-key encryption). So in Minicrypt, i.e. under the assumption
that one-way functions exist but public-key cryptography does not, the
notion of public- and secret-coin weak PRFs coincide.

Previous to this paper all positive cryptographic statements known
to hold exclusively in Minicrypt concerned the adaptive security of con-
structions using non-adaptively secure components. Weak PRFs give rise
to a new set of statements having this property. As another example we
consider the problem of range extension for weak PRFs. We show that in
Minicrypt one can beat the best possible range expansion factor (using a
fixed number of distinct keys) for a very general class of constructions (in
particular, this class contains all constructions that are known today).

1 Introduction

1.1 Weak Pseudorandom Functions

Informally, a pseudorandom function (PRF) is a function which cannot be dis-
tinguished from a uniform random function by any efficient distinguisher. PRFs
have a wide range of applications in cryptography. Sometimes, however, the full
power of a PRF is not needed and it is sufficient when the function cannot be
distinguished when queried on random values. Such objects are referred to as
weak PRFs.1

PRFs are black-box reducible to one-way functions. In particular, it was shown
in [9] how to construct a PRF from any pseudorandom generator and in [11]
a construction of a pseudorandom generator from any one-way function was
introduced. Unfortunately those (black-box) reductions are not efficient enough
� This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.
1 Sometimes they are called PRFs secure under a known-plaintext attack (KPA).

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 423–436, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

424 K. Pietrzak and J. Sjödin

to be practical2. In [23], Naor and Reingold gave a quite efficient construction of
a PRF relying on a number-theoretic assumption. More precisely, assuming that
the so called decisional Diffie-Hellman (DDH) assumption holds in some cyclic
group G = 〈g〉 of order q, they proposed a PRF (Zq)n+1 × {0, 1}n → G defined
by

((k0, . . . , kn), a) -→ gk0·Πai=1ki ,

where (k0, . . . , kn) is the secret key and ai denotes the i’th bit of a. As observed
in [22], if one just wants to construct a weak PRF, then even a much simpler
construction exists: let G be a cyclic group of order q, then

exp : Zq ×G→ G defined as exp(k, a) = ak

is a weak PRF if the DDH assumption holds in G (the exponent k is the secret
key). Note that compared to the Naor-Reingold construction, this construction
has a much shorter key (2log(q)3 compared to (n + 1)2log(q)3) and is more
efficient (each evaluation requires one exponentiation, compared to one expo-
nentiation and up to n multiplications).

1.2 Public-Coin vs. Secret-Coin Weak PRFs

A standard choice for the group G used in exp would be a large subgroup of
Z∗p (where p is some large prime) of prime order q (which exists if and only if
q divides the order p − 1 of Z∗p). The DDH assumption is believed to hold in
such groups if q is sufficiently large.3 A natural way to sample an element from
G is to choose an element r ∈ Zq uniformly at random and set a = gr for some
generator g of G.4

For a1, a2, . . . sampled this way, the tuples (a1, v1), (a2, v2), . . . computed by
the weak PRF as vi = exp(k, ai) = aki are indistinguishable from (a1, u1),
(a2, u2), . . . where each ui is a uniform random element in G. Now, assume
that the distinguisher also gets to see the randomness used to sample the ai’s.
Say r1, r2 are such that a1 = gr1 and a2 = gr2 . Then one can easily distinguish
v1 = ak1 , v2 = ak2 from u1, u2 as vr21 = vr12 (= gr1r2) but ur2

1 = ur1
2 only holds

with probability 1/q.
Thus the security of the weak PRF exp completely breaks down if the ran-

domness used to sample the random inputs is revealed. We will call such a weak
PRF a secret-coin weak PRF, as opposed to a public-coin weak PRF which
stays secure even if the random coins used to sample the inputs are revealed.
Whether a weak PRF is a public-coin or just secret-coin weak PRF depends on
the input-sampling algorithm, which hence must be part of the definition of the
weak PRF.
2 Even though progress has recently been made [10,14] for achieving more efficient

reductions of PRGs from one-way functions.
3 Say p− 1 = 2q where log(p) is at least our security parameter.
4 Alternatively one could sample random elements from Z∗

p until an element a is found
where aq = a, but this is less efficient (the expected number of tries is q/(p − 1)),
and only works if q2 does not divide p− 1 as otherwise there is more than just one
subgroup of order q).

Weak Pseudorandom Functions in Minicrypt 425

1.3 Public-Coins=Secret-Coins in Minicrypt

As the function exp shows, the distinction between public- and secret-coin weak
PRFs is meaningful and one can imagine many situations where the notion of a
secret-coin weak PRF is not sufficient. In particular, this will always be the case
when public randomness is used to sample the inputs.

It is not hard to see, that if a weak PRF is secret- but not public-coin, then the
input-sampling algorithm must be a distributional one-way function [17].5 We
further show that any secret-coin weak PRF which is not also a public-coin weak
PRF must be very artificial, in the sense that one can construct a public-key
encryption scheme from it:

Theorem 1. If there exists a secret-coin weak PRF which is not a public-coin
weak PRF, then a (IND-CPA) secure public-key encryption scheme exists (see
Section 1.4 for the disclaimer).

Thus it is not surprising that the DDH assumption required for the security
of exp implies public-key encryption [4,7]. So in Minicrypt (a name coined by
Impagliazzo to denote the hypothetical world where one-way functions exist,
but public-key cryptography does not [16]), the notion of public- and secret-coin
weak PRFs coincide.

In order to prove Theorem 1, we show how to construct a public-key encryp-
tion scheme from any secret-coin weak PRF F and a distinguisher D which can
distinguish F from a uniform random function when additionally to the random
input/output pairs it is provided with the randomness used by the input sam-
pling algorithm S (such a D exists as by assumption F is not a public-coin weak
PRF).

1.4 Uniform vs. Non-uniform and Negligible vs. Noticeable

There is a gap between what is generally considered a successful distinguisher
(or any other kind of an adversary) and what one expects from a protocol like
an encryption scheme: a system is usually considered broken even if only a non-
uniform adversary exists, whereas a protocol should be uniform and achieve its
task with overwhelming6 probability to be considered useful. The encryption
scheme we construct in order the prove Theorem 1 uses the distinguisher D as a
black-box, and only if D is uniform and has noticeable advantage in distinguish-
ing F from a uniform random function, we will get a useful (as described above)
key-agreement protocol. But if D is non-uniform, also the key-agreement protocol
will be non-uniform. Furthermore, if D has only non-negligible (but not notice-
able) advantage, then our encryption scheme will only be secure for infinitely
many values of the security parameter (and not as usual for all sufficiently large
ones).
5 A distributional one-way function is a function where no efficient algorithm can find

a random pre-image. Distributional one-way functions are equivalent to one-way
functions.

6 See Section 2 for a definition of negligible, noticeable and overwhelming.

426 K. Pietrzak and J. Sjödin

1.5 Range Extension for Weak PRFs

The problem of range extension for weak PRFs is the following: given a weak
PRF f : K ×X → X , construct a weak PRF F : Kt ×X → X s where F uses f
as a black-box, t is the number of keys, and s is the so-called expansion factor.
A trivial solution is to set

F ((k1, . . . , kt), x) = [f(k1, x), . . . , f(kt, x)],

but this is not very satisfying as the expansion factor is only the number of keys
(i.e. s = t). All efficient constructions for range extension of weak PRFs, that we
are aware of [2,21,20], are of the form that the i’th output block yi is computed
as

yi = fkiq
◦ fkiq−1

◦ · · · ◦ fki1
(x)

for some i1, . . . , iq ∈ {1, . . . , t}. The construction from [20] achieves an expansion
factor of s = 2t− 1, and in [25] it is shown that this is tight: no construction (of
the form as described above) with an expansion factor greater than 2t − 1 can
be proven secure via a black-box reduction. We show that it is possible to beat
this bound in Minicrypt. For this, consider the following construction which uses
two keys and has an expansion factor of 4 (which is more than 2t − 1 = 3)

F ((k1, k2), x) = [f(k1, x), f(k2, x), f(k2, f(k1, x)), f(k1, f(k2, x))]. (1)

In [21], it has been claimed that this function is indeed a weak PRF, but in fact
it is not as observed in [20]. The function f = exp is a simple counterexample,
as in this case the last two values of the output in (1) are identical, namely

[exp(k2, exp(k1, x)), exp(k1, exp(k2, x))] = [xk1k2 , xk1k2]. (2)

In Section 4, we prove the following theorem:

Theorem 2. If there exists a weak PRF f with superpolynomial domain size for
which the construction given by equation (1) is not a weak PRF, then a secure
public-key encryption scheme exists (disclaimer is below).

The requirement that the domain size must be superpolynomial is necessary
as otherwise the construction given in (1) is not a weak PRF even if f is a
uniform random function. The reason is that the last two values of the output
in (1), i.e. [f(k2, f(k1, x)), f(k1, f(k2, x))], collide twice as often as for random
elements. If now the domain size is not superpolynomial, collisions will occur
with high probability after polynomially many input-output samples (allowing
us to distinguish F from a uniform random function).

In order to prove Theorem 2, we show how to construct a two-pass key-
agreement protocol from any weak PRF f and a distinguisher D which can (for
random keys k1, k2) distinguish tuples computed as [f(k2, f(k1, .)), f(k1, f(k2, .))]

Weak Pseudorandom Functions in Minicrypt 427

from random tuples. For this reduction, we have the same issue with uniform
vs. non-uniform and negligible vs. noticeable, as discussed in Section 1.4.

1.6 Related Work

Adaptive Security in Minicrypt. The first positive cryptographic result
proven to hold only in Minicrypt stated that the cascade of non-adaptively secure
PRFs gives a construction with some weak form of adaptive security [24]. We
have found more results since then, but all were about the adaptive security of
some construction based on non-adaptively secure components.7 The results of
this paper show that weak PRFs give rise to a completely new class of statements
that hold exclusively in Minicrypt.

Other Worlds. Wee [26] shows that some cryptography (i.e. “non-trivial”
argument systems) is even possible in Pessiland, which is another of Impagliazzo’s
possible worlds [16] where not even one-way functions exist. Dent [3] explores
the limits of cryptography in universes whose existence is conjectured in popular
Science Fiction literature.

Win-Win. Our results can be viewed as “win-win” statements, where one shows
that (at least) one of two “positive” cryptographic statements is true. For exam-
ple we show that either every secret-coin weak PRF is a public-coin weak PRF
or public-key crypto exists. Results of similar flavour have been given before, in
particular Dziembowski shows that either “forward-secure storage” is possible
or (a weak form of) oblivious transfer exists [6]. Dubrov and Ishai show that
either every efficiently samplable distribution can be sampled using few random
bits, or one-way functions imply collision-resistant hashing [5].

Public vs. Secret Coins. That differentiating between the public- and secret-
coin variants of primitives is meaningful and important has been shown for at
least two important primitives, namely collision resistant hash functions (CRHF)
and trapdoor permutations (TDP).

In [15], Hsiao and Reyzin define public- and secret-coin families of CRHFs.
The collision resistance of the latter requires the coins used to sample the func-
tion to be kept secret. They show that no black-box reduction from secret-coin
to public-coin CRHFs exists.

The classical definition of a TDP states that it is hard to invert the per-
mutation given a random element from the range of the permutation. In [8],
Goldreich observes that for many applications this is not enough, and in fact
enhanced TDPs are needed. Those have the property that it is hard to invert a
random element even when given the random coins used to sample this element.
7 For example, in [19] it was shown that the four round Feistel-network with non-

adaptively secure round functions is not a pseudorandom permutation in general.
To be more precise, it was shown that there exists a non-adaptively secure func-
tion f (whose security is based on the inverse DDH assumption [1]) for which the
four-round Feistel-network with f as round function can be distinguished from a
random permutation with two adaptive queries. Here, one can show that any such
counterexample implies a three round key-agreement protocol (this is unpublished).

428 K. Pietrzak and J. Sjödin

2 Basic Definitions

Throughout, let n ∈ N denote a security parameter. An entity (e.g. adversary) is
efficient and uniform if it can be implemented by a probabilistic Turing machine
whose running time is polynomial in the input length (which for us will always
mean polynomial in n). It is efficient and non-uniform if it can be realized by a
sequence of circuits (one for each n) of polynomial (in n) size.

For a set X , let x
$← X denote that x is assigned a value from X uniformly at

random. Let xq denote the sequence x1, . . . , xq. For a function f : X → Y and
xq ∈ X q, let f(xq) denote f(x1), . . . , f(xq).
Uniform Random Functions. RX ,Y denotes a uniform random function
X → Y.
Negligible. A function μ : N → [0, 1] is negligible if for any c > 0 there is an
n0 such that μ(n) ≤ 1/nc for all n ≥ n0. To the contrary, μ is non-negligible if
for some c > 0 we have μ(n) ≥ 1/nc for infinitely many n. Throughout, negl(n)
denotes a negligible function in n.
Overwhelming. A function τ(·) : N → [0, 1] is overwhelming if 1 − τ(·) is
negligible.
Noticeable. A function φ : N → [0, 1] is noticeable if for some c > 0 there is
an n0 such that φ(n) ≥ 1/nc for all n ≥ n0.

Note that non-negligible is not the same as noticeable. For example μ(n) def=
n mod 2 is non-negligible but not noticeable.
Bit-Agreement. Bit-agreement is a protocol between two efficient parties,
which we refer to as Alice and Bob . They get the security parameter n in
unary (denoted 1n) as a common input and can communicate over an authentic
channel. Finally, Alice and Bob output a bit bA and bB, respectively. The protocol
has correlation ε if for all n

P[bA = bB] ≥ (1 + ε(n))/2.

Furthermore, the protocol is δ-secure if for any efficient adversary E, which can
observe the whole communication C, and for all n

P[E(1n, C) = bB] ≤ 1− δ(n)/2.

Key-Agreement. If ε(·) and δ(·) are overwhelming then such a protocol
achieves key-agreement. Any protocol which achieves bit-agreement with no-
ticeable correlation ε(·) and overwhelming security δ(·) can be turned into a
key-agreement protocol without increasing the number of rounds using parallel
repetition and privacy amplification [12,13].

If ε(·) is only non-negligible (i.e. for any constant c > 0, ε(n) ≥ 1/nc for
infinitely many n), then also the key-agreement protocol will only achieve cor-
rectness for infinitely many (and not for all sufficiently large) choices of the
security parameter.

Weak Pseudorandom Functions in Minicrypt 429

3 Public-Coin vs. Secret-Coin Weak PRFs

Definition 1 (weak PRFs). Consider a pair of efficient algorithms F,KeyGen
where for any n ∈ N we have

KeyGen : 1n → Kn F : Kn ×Xn → Yn.

KeyGen is the randomized key-generation algorithm which on input a security
parameter n (and some uniform random bits) outputs a key from the keyspace
Kn. Let the random variables Xi, Yi, and Zi for 1 ≤ i ≤ � be defined by first
sampling a key k ← KeyGen(1n) and then setting (below we use the same random
function RXn,Yn for all i)

Xi
$← Xn Yi ← F(k,Xi) Zi ← RXn,Yn(Xi).

F is a weak pseudorandom function secure if for every efficient distinguisher D
and any polynomial � = �(n)

|P[D(X�, Y �) = 1]− P[D(X�, Z�) = 1]| = negl(n).

Definition 2 (public-coin and secret-coin weak PRFs). Let F,KeyGen be
efficient algorithms as in the previous definition, and let Sample : {0, 1}s(n) → Xn

be an efficient input sampling algorithm.
Let the random variables Ri, Xi, Yi, and Zi be defined for 1 ≤ i ≤ � by first

sampling a key k ← KeyGen(1n) and then setting

Ri
$← {0, 1}s(n) Xi ← Sample(Ri) Yi ← F(k,Xi) Zi ← RXn,Yn(Xi).

The three algorithms F,KeyGen, Sample are a public-coin weak PRF if for all
efficient D and any polynomial � = �(n)

|P[D(R�, X�, Y �) = 1]− P[D(R�, X�, Z�) = 1]| = negl(n)

(i.e. the weak PRF, by Definition 1, stays secure even if the randomness used
to sample the inputs is revealed). Furthermore, F,KeyGen, Sample are referred to
as a secret-coin weak PRF if for all efficient D and any polynomial � = �(n)

|P[D(X�, Y �) = 1]− P[D(X�, Z�) = 1]| = negl(n).

Clearly, every public-coin weak PRF is a secret-coin weak PRF. Also if F,KeyGen
is a weak PRF (by Definition 1) and the output of Sample is close to uniform, then
F,KeyGen, Sample is a secret-coin weak PRF. Note that in the definitions above,
secure means secure against efficient uniform adversaries. To get a (stronger)
notion which implies security against non-uniform adversaries, one must just
consider a sequence of poly-size circuits instead of the poly-time bounded Turing-
machine D (cf. Section 1.4).

430 K. Pietrzak and J. Sjödin

Protocol BitAgreement(n)

Alice Bob

bB
$← {0, 1}

k← KeyGen(1n)

for i = 1, . . . , q = q(n) do

ri
$← {0, 1}n xi ← Sample(ri) od;

xq

−−→ for i = 1, . . . , q do

if bB = 0 then zi ← F(k, xi)

elseif bB = 1 then zi ← RXn,Yn(xi) od;

zq

←−−
bA ← D(rq, xq, zq)

Fig. 1. A bit-agreement protocol from a secret-coin weak PRF which is not a public-
coin weak PRF

3.1 The Reduction

Let (F,KeyGen, Sample) be a secret-coin weak PRF which is not a public-coin
weak PRF. For i = 1, 2, . . . consider the random variables ri, xi, yi, and ui,
defined by k ← KeyGen(1n), ri

$← {0, 1}s(n), xi ← Sample(ri), yi ← F(k, xi),

and ui
$← Yn (i.e. ui is a random element from the range of F). Now, as F is not

a public-coin weak PRF, there exist an efficient distinguisher D, a polynomial
q(.), and a non-negligible function φ(.) such that

Pr[D(rq , xq, yq) = 1]− Pr[D(rq , xq, uq) = 1] ≥ φ(n). (3)

Further, as F is a secret-coin weak PRF we have for any efficient E that

|Pr[E(xq, yq) = 1]− Pr[E(xq, uq) = 1]| = negl(n). (4)

In order to prove Theorem 1, we must construct a two-pass public-key encryption
scheme from the weak PRF. As discussed in Section 2, it is sufficient to construct
a two-pass bit-agreement protocol with non-negligible (or noticeable, see the
discussion in Section 1.4) correlation and overwhelming security. Such a protocol
BitAgreement is shown in Figure 1. The idea behind the protocol is quite
simple: First, Alice samples some random strings, on which she invokes Sample
to get random inputs to the secret-coin weak PRF F. Then she sends the inputs
to Bob, who either return the outputs of F on these inputs or random values
depending on his randomly chosen bit bB. As Alice knows the randomness she
used to sample the inputs, she can use the distinguisher D to get a guess bA on
bB with non-negligible correlation, as shown in Claim 1 below. Furthermore, an
adversary who does not know the randomness used to sample the inputs cannot
distinguish the cases where Bob sends random values or values computed by F,
as shown in Claim 2 below.

Weak Pseudorandom Functions in Minicrypt 431

Claim 1. BitAgreement(n) has correlation φ(n), with φ as in (3).

Proof.

Pr[bA = bB] = Pr[bB = 1] · Pr[bA = 1|bB = 1] + Pr[bB = 0] · Pr[bA = 0|bB = 0]

=
1
2

+
Pr[bA = 1|bB = 1]− Pr[bA = 1|bB = 0]

2
≥ 1

2
+

φ(n)
2

��
Claim 2. BitAgreement(n) is 1− negl(n) secure.

Proof. For any efficient adversary E

Pr[E(xq, zk) = bB] = Pr[bB = 1] · Pr[E(xq, zk) = 1|bB = 1] + Pr[bB = 0] · Pr[E(xq, zk) = 0|bB = 0]|

=
1
2

+
Pr[E(xq, zk) = 1|bB = 1] − Pr[E(xq, zk) = 1|bB = 0]

2
=

1
2

+ negl(n),

where the last step follows by (4). ��
Proof (of Theorem 1). The theorem follows from Claim 1 and 2 and the fact that
one can construct a key-agreement protocol from any bit-agreement protocol
which has noticeable correlation and overwhelming security without increasing
the number of rounds (via parallel repetition and privacy amplification [12,13]).

4 Range Extension for Weak PRFs

Let F : Kn×Xn → Xn,KeyGen : 1n → Kn denote a weak PRF as in Definition 1,
with the additional property that the domain and range are identical, i.e. Xn =
Yn, and that the domain is of superpolynomial size, i.e. for all c there is an n0

such that |Xn| ≥ nc for all n > n0. In order to prove Theorem 2, we must show
that if G : K2

n ×Xn → X 4
n defined as

G((k, k′), x) = [F(k, x),F(k′, x),F(k′, (F(k, x)),F(k, (F(k′, x))] (5)

is not a weak PRF, then a two-pass key-agreement protocol exists. If G is not
a weak PRF, there exists an efficient distinguisher D, a polynomial q(.), and a

non-negligible function φ(.), such that for xq $← X q
n , uq ← RXn,X 4

n
(xq), k ←

KeyGen(1n), and k′ ← KeyGen(1n)

Pr[D(xq,G((k, k′), xq)) = 1]− Pr[D(xq , uq) = 1] ≥ φ(n). (6)

We now define three other functions G̃,H, H̃ which will be used in the proof.
The function G̃ is defined almost as G, but with F(k′, .) replaced by a URF. The
systems H and H̃ are defined like G and G̃ respectively, but without the last term.
For the rest of this section, we let R denote RXn,Xn .

G̃((k, k′), x) = [F(k, x),R(x),R(F(k, x)),F(k,R(x))]
H((k, k′), x) = [F(k, x),F(k′, x),F(k′,F(k, x))]

H̃((k, k′), x) = [F(k, x),R(x),F(k′,R(x))]

432 K. Pietrzak and J. Sjödin

Protocol BitAgreement2(n)

Alice Bob

bB
$← {0, 1}

kA ← KeyGen(1n) kB ← KeyGen(1n)

for i = 1, . . . , q = q(n) do

ri
$← Xn si ← F(kA, ri) od;

rq, sq

−−−−→ for i = 1, . . . , q do

if bB = 0 then ti ← F(kB, ri)

yi ← F(kB, si)

elseif bB = 1 then ti
$← RXn,Xn(ri)

yi
$← RXn,Xn(si) od;

tq, yq

←−−−−
for i = 1, . . . , q do zi ← F(kA, ti) od;

bA ← D(rq, sq, tq, yq, zq)

Fig. 2. A bit-agreement protocol from a weak PRF F : Kn × Xn → Xn where the
construction given by (1) is not a weak PRF

Below we will show that if F is a weak PRF, then also G̃, H, and H̃ are weak
PRFs. The idea behind the bit-agreement protocol given in Figure 2 is now quite
simple: First, Alice and Bob each sample a random key for F. Then Bob flips
a random coin bB. If bB = 0, Alice and Bob together simulate an attack on G,
and if bB = 1, they simulate an attack on G̃. As Alice can distinguish G from
random (and thus from G̃), she can learn bB with non-negligible advantage, as
shown in Claim 5. However, an adversary Eve does not see the last term of G
or G̃, as they are computed by Alice and not sent over to Bob. Hence, Eve only
sees the outputs as they are given by H if bB = 0 and by H̃ if bB = 1. As H and
H̃ are weak PRFs, Eve only has negligible advantage in distinguishing those two
cases (and thus also in guessing bB), as shown in Claim 6.

Claim 3. If F is a weak PRF, then G̃ is a weak PRF.

Proof. We have to show that for any polynomial q(.) and x1, . . . , xq
$← Xn

(q = q(n)) the q four-tuples

[xi,F(k, xi),R(xi),R(F(k, xi)),F(k,R(xi))] (7)

are indistinguishable from random. Sample x′1, . . . , x
′
q

$← Xn, x′′1 , . . . , x
′′
q

$← Xn,
and consider the distribution

[xi,F(k, xi), x′i, x
′′
i ,F(k, x′i)]. (8)

As F is a weak PRF, the five tuples given by (8) are indistinguishable from
random. We will now show that (8) is indistinguishable from (7). First note

Weak Pseudorandom Functions in Minicrypt 433

that R(x1), . . . ,R(xq) has the same distribution as x′1, . . . , x
′
q, unless xi = xj

for some i �= j, as q is polynomial and |X | is superpolynomial, the probability
of this event is negligible. So we can safely replace R(xi) in (7) with x′i in (8).
Similarly, we can replace R(F(k, xi)) with x′′i as this will make no difference
unless F(k, xi) = F(k, xj) or F(k, xi) = xj for some i �= j, which only happens
with negligible probability. ��

Claim 4. If F is a weak PRF, then H and H̃ are weak PRFs.

Proof. That H̃ is weakly pseudorandom follows directly from the fact that G̃
is weakly pseudorandom (as shown by the previous claim). To show that H is
weakly pseudorandom, we show that, for random x1, . . . , xq ∈ Xn, the tuples

[xi,F(k, xi),F(k′, xi),F(k′,F(k, xi))] (9)

are indistinguishable from random. For this, it is sufficient by the triangle in-
equality, to show the following two facts. First, for random x′1, . . . , x

′
q ∈ Xn, the

tuples
[xi, x

′
i,F(k′, xi),F(k′, x′i)] (10)

are indistinguishable from (9), since F is a weak PRF and thus F(k, xi) can be
replaced by a random x′i. That (10) is indistinguishable from random follows
directly from the fact that F is a weak PRF. ��

Claim 5. BitAgreement2(n) has non-negligible correlation φ(n) − negl(n),
with φ as in (6).

Proof. For xq $← X q
n and uq ← RXn,X q

n
(xq)

Pr[bA = bB] = Pr[bB = 1] · Pr[bA = 1|bB = 1] + Pr[bB = 0] · Pr[bA = 0|bB = 0]

=
1
2

+
Pr[bA = 1|bB = 1]− Pr[bA = 1|bB = 0]

2

=
1
2

+
Pr[D(xq,G((kA, kB), xq)) = 1]− Pr[D(xq , G̃((kA, kB), xq)) = 1]

2

=
1
2

+
Pr[D(xq,G((kA, kB), xq)) = 1]− Pr[D(xq , uq) = 1]± negl(n)

2

≥ 1
2

+
φ(n)± negl(n)

2
,

where the second last step follows as G̃ is a weak PRF (as shown in Claim 3). ��

Claim 6. BitAgreement2(n) is 1− negl(n) secure.

Proof. Consider any efficient adversary E who can observe the communication
C = {rq, sq, tq, yq} between Alice and Bob . If bB = 0, then C has the same
distribution as generated by H, and if bB = 1, then C has the same distribution
as generated by H̃. The security now follows as an efficient E cannot distinguish
H from H̃, since these are both weak PRFs (as shown in Claim 4). More formally,

434 K. Pietrzak and J. Sjödin

for xq $← X q
n

Pr[E(C) = bB] = Pr[bB = 1] · Pr[E(C) = 1|bB = 1] + Pr[bB = 0] · Pr[E(C) = 0|bB = 0]|

=
1
2

+
Pr[E(C) = 1|bB = 1] − Pr[E(C) = 1|bB = 0]

2

=
1
2

+
Pr[E(xq, H̃(kA, xq)) = 1] − Pr[E(xq, H(kA, xq)) = 1]

2
=

1
2
± negl(n).

��

Proof (of Theorem 2). The theorem follows from Claim 5 and 6, and the fact
that one can construct a key-agreement protocol from any bit-agreement protocol
which has noticeable correlation and overwhelming security without increasing
the number of rounds (via parallel repetition and privacy amplification [12,13]).

5 Can We Efficiently Deconstruct “Useful” Properties?

Black Box Falsification. What does it mean that some statement “holds in
Minicrypt”? Trivially, it means that in order to falsify the statement, we must as-
sume the existence of something at least as strong as key-agreement. As observed
in [24], the fact that no black-box reduction one-way functions to key-agreement
exists [18], implies that no “black-box falsification” for such statements can ex-
ist (in [24] this was called a “black-box break”). E.g. by Theorem 2, there is no
black-box reduction from one-way functions to a weak PRF and a distinguisher,
such that the distinguisher breaks the security of the construction given by (1)
when instantiated with this weak PRF.8

Deconstructing the Homomorphic Property. We showed that the state-
ments of the theorems from this paper are non-trivial, by showing that they
do no longer hold outside Minicrypt, or more precisely under the standard DDH
assumption (which is false in Minicrypt as it implies key-agreement). These coun-
terexamples use the homomorphic property of the group, i.e. that (xa)b = (xb)a.
This is eminent in (2) which shows that the construction given by (1) does not
give secure range extension outside of Minicrypt. Usually, a weak PRF which is
homomorphic is a very useful thing to have, but clearly not if we want to use
this PRF in the construction given in (1). In order to safely use a weak PRF in
(1), all we have to make sure is, that the protocol from Figure 2 is NOT a secure
bit-agreement protocol. Intuitively, that should not be too hard.

Open Problem 1. Is there an efficient construction φ, such that for any weak
PRF F, φ(F) is a weak PRF but the protocol from Figure 2 is NOT a secure bit-
agreement protocol when instantiated with φ(F) (and thus (1) is a secure range
extension for φ(F)).

We can solve the above problem by first constructing a PRG from the weak PRF
and then using the GGM reduction [9] to get a regular PRF (note that (1) is triv-
ially secure for PRFs), but this is not really efficient: each evaluation of the PRF
8 Let us stress that black-box reductions for one-way functions to PRFs do exist [11,9].

Weak Pseudorandom Functions in Minicrypt 435

would make a linear (in the input length) number of invocations to the weak PRF.
The above problem is somewhat antipodal to questions usually asked in cryptog-
raphy, where one tries to construct something useful, like asking “can we con-
struct key-agreement from PRFs via black-box reductions” (the answer is no [18]).
Whereas here we are looking for a way to make some particular construction inse-
cure. Being more ambitious, we can ask if we can efficiently destroy any property
of a weak PRF which could be used to get a key-agreement protocol.

Open Problem 2. Is there an efficient construction φ, such that for any weak
PRF F, φ(F) is a weak PRF and any construction which is secure in Minicrypt
when instantiated with a weak PRF, is secure (in the real world) when instanti-
ated with φ(F)?

The general problem can be summarized as follows. We know several construc-
tions for extending the range of weak PRFs, getting public-coin weak PRFs
from secret-coin weak PRFs9, and achieving adaptive security from non-adaptive
PRFs [24,19], that one can show to be secure in Minicrypt, but which are (under
standard assumptions) not secure in the real world. As the constructions are
secure in Minicrypt, each weak/non-adaptive PRF for which the construction
actually is insecure can be used to construct a key-agreement protocol (via some
particular black-box construction), and must hence have a lot of structure. The
question is whether there is an efficient way to modify the weak/non-adaptive
PRF, such that it still keeps its original security guarantee (of being a weak/non-
adaptive PRF), but cannot be used anymore for the key-agreement protocols.
Then this modified PRF can safely be used in the efficient constructions that
have been proven to be secure in Minicrypt.

References

1. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836. Springer, Heidelberg
(2003)

2. Damg̊ard, I., Nielsen, J.B.: Expanding pseudorandom functions; or: From known-
plaintext security to chosen-plaintext security. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002)

3. Dent, A.: Cryptography in a hitchhiker’s universe. Journal of Craptology 4 (2007)
4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on

Information Theory IT-22(6), 644–654 (1976)
5. Dubrov, B., Ishai, Y.: On the randomness complexity of efficient sampling. In:

Proc. 38th ACM Symposium on the Theory of Computing (STOC), pp. 711–720
(2006)

6. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

7. El-Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

9 This construction simply uses the secret-coin weak PRF as the public-coin weak
PRF.

436 K. Pietrzak and J. Sjödin

8. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. II. Cambridge
University Press, Cambridge (2004)

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

10. Haitner, I., Harnik, D., Reingold, O.: Efficient pseudorandom generators from ex-
ponentially hard one-way functions. In: Bugliesi, M., Preneel, B., Sassone, V., We-
gener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 228–239. Springer, Heidelberg
(2006)

11. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

12. Holenstein, T.: Personal Communication (2005)
13. Holenstein, T.: Immunization of key-agreement schemes. PhD thesis, ETH Zürich

(2006) ISBN 3-86628-088-2
14. Holenstein, T.: Pseudorandom generators from one-way functions: A simple con-

struction for any hardness. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 443–461. Springer, Heidelberg (2006)

15. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 92–105. Springer, Heidelberg (2004)

16. Impagliazzo, R.: A personal view of average-case complexity. In: Structure in Com-
plexity Theory Conference, pp. 134–147 (1995)

17. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography (extended abstract). In: IEEE Symposium on the Foundations of
Computer Science (FOCS) 1989, pp. 230–235 (1989)

18. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Proc. 21th ACM Symposium on the Theory of Computing (STOC),
pp. 44–61 (1989)

19. Maurer, U., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff ciphers from weak
round functions? In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
391–408. Springer, Heidelberg (2006)

20. Maurer, U.M., Sjödin, J.: A fast and key-efficient reduction of chosen-ciphertext to
known-plaintext security. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 498–516. Springer, Heidelberg (2007)

21. Minematsu, K., Tsunoo, Y.: Expanding weak PRF with small key size. In: Won,
D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 284–298. Springer, Heidel-
berg (2006)

22. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and
KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346.
Springer, Heidelberg (1999)

23. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. of the ACM 51(2), 231–262 (2004)

24. Pietrzak, K.: Composition implies adaptive security in minicrypt. In: Vaudenay,
S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 328–338. Springer, Heidelberg
(2006)

25. Pietrzak, K., Sjödin, J.: Domain extension for weak PRFs; the good, the bad,
and the ugly. In: Advances in Cryptology — EUROCRYPT 2007, vol. 4515, pp.
517–533. Springer, Heidelberg (2007)

26. Wee, H.: Finding pessiland. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 429–442. Springer, Heidelberg (2006)

On Black-Box Ring Extraction and Integer

Factorization

Kristina Altmann, Tibor Jager, and Andy Rupp

Horst Görtz Institute for IT-Security
Ruhr-University Bochum

{kristina.altmann,tibor.jager}@nds.rub.de,
arupp@crypto.rub.de

Abstract. The black-box extraction problem over rings has (at least)
two important interpretations in cryptography: An efficient algorithm for
this problem implies (i) the equivalence of computing discrete logarithms
and solving the Diffie-Hellman problem and (ii) the in-existence of secure
ring-homomorphic encryption schemes.

In the special case of a finite field, Boneh/Lipton [1] and Maurer/
Raub [2] show that there exist algorithms solving the black-box extrac-
tion problem in subexponential time. It is unknown whether there exist
more efficient algorithms.

In this work we consider the black-box extraction problem over finite
rings of characteristic n, where n has at least two different prime factors.
We provide a polynomial-time reduction from factoring n to the black-
box extraction problem for a large class of finite commutative unitary
rings. Under the factoring assumption, this implies the in-existence of
certain efficient generic reductions from computing discrete logarithms
to the Diffie-Hellman problem on the one side, and might be an indicator
that secure ring-homomorphic encryption schemes exist on the other side.

1 Introduction

Informally speaking, the black-box extraction problem over an algebraic struc-
ture A (like a group, ring, or a field) can be described as follows: Given an
explicit representation of A (e.g., the cyclic group (Zn,+) with the canonical
binary representation of elements) as well as access to a black-box resembling
the structure of A and hiding an element x ∈ A, the challenge is to recover x
in the given explicit representation. Algorithms that work on the black-box rep-
resentation of an algebraic structure, and thus on any concrete representation,
are called generic or black-box algorithms.

The black-box extraction problem has been studied in various variants and
contexts, e.g., see [3,4,5,1,2]. The case where the algebraic structure is a cyclic
group (with given representation (Zn,+)), and the extraction problem is better
known as the discrete logarithm problem, was considered by Nechaev [3] and
Shoup [4]. They showed that the expected running time of any generic algorithm
for this problem is Ω(

√
p), where p is the largest prime factor of the group order

n. Here, the integer n as well as its factorization is assumed to be publicly known.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 437–448, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

438 K. Altmann, T. Jager, and A. Rupp

Boneh and Lipton [1] considered the black-box extraction problem over prime
fields Fp. Based on a result due to Maurer [6] they developed an algorithm solving
the problem in subexponential time (in log p). Maurer and Raub [2] augmented
this result to finite extension fields Fpk by providing an efficient reduction from
the black-box extraction problem over Fpk to the black-box extraction problem
over Fp. Currently it is unknown whether there exist more efficient algorithms
for black-box extraction over fields.

The black-box extraction problem over fields/rings has at least two impor-
tant applications in cryptography. For (Zn,+, ·) it can be interpreted as the
problem of solving the discrete logarithm problem given access to an oracle for
the Diffie-Hellman problem: (Zn,+) forms a cyclic additive group. The black-
box provides access to the common operations on this group as well as to the
additional operation “·”. This extra operation can be interpreted as an oracle
solving the Diffie-Hellman problem in the group (Zn,+). Hence, an efficient al-
gorithm for the black-box extraction problem over (Zn,+, ·) would correspond to
an efficient generic reduction from computing discrete logarithms to solving the
Diffie-Hellman problem over cyclic groups of order n. Such reductions are known
for groups where the group order is prime and meets certain properties [7], or
if certain side information, depending on the respective group, is given [6]. It
is also known that no efficient generic reduction exists for groups with orders
containing a large multiple prime factor [8]. Bach [9] has presented a non-generic
reduction from factoring n to computing discrete logarithms in the group Z∗n.

Furthermore, the analysis of the black-box extraction problem sheds light on the
existence of secure ring/field-homomorphic encryption schemes. A homomorphic
encryption scheme is a scheme where the encryption function is a homomorphism
from the plaintext space to the ciphertext space. Several group-homomorphic en-
cryption schemes are known, such as native RSA, native ElGamal or the Paillier
encryption scheme. A natural question arising in this context is whether there
exist secure ring-homomorphic encryption schemes, that is, schemes where the
plaintext- and ciphertext space exhibit a ring structure, and the encryption func-
tion is a ring-homomorphism. The results by Boneh and Lipton [1] and Maurer
and Raub [2] imply that for the special case of field -homomorphic encryption any
such scheme can be broken in subexponential time. It is unknown whether there
are more efficient algorithms. An efficient algorithm for the black-box ring problem
would imply the in-existence of secure ring-homomorphic encryption.

1.1 Our Contribution

In this work we consider the black-box extraction problem over finite commu-
tative rings with unity whose characteristic n is the product of at least two
different primes. To the best of our knowledge, this case has not been treated
in the literature yet. We present an efficient reduction from finding a non-trivial
factor of n to the black-box extraction problem over virtually any ring R where
computation is efficient. To this end, we extend a technique due to Leander and
Rupp [10] which was originally used to prove the equivalence of breaking RSA
and factoring regarding generic ring algorithms.

On Black-Box Ring Extraction and Integer Factorization 439

We first provide a reduction for the case R = Zn. This case is especially
interesting since Boneh and Lipton pointed out that their subexponential time
black-box extraction algorithm for finite fields can be extended to finite rings Zn

if n is squarefree, requiring that the factorization of n is known. Our result implies
that there are no better algorithms than those that factorize n. Moreover, under
the assumption that factoring n is hard, this implies the in-existence of efficient
generic reductions from computing discrete logarithms to solving the Diffie-
Hellman problem in cyclic groups of order n. Note that, in contrast to Bach [9]
who presented a reduction from factoring n to computing discrete logarithms in
Z∗n, i.e. where group elements are represented by integers modulo n and the group
order is φ(n) with φ(·) denoting the Euler totient function, we consider generic
reductions in groups of order n, regardless of the representation of elements.

We extend our reduction to rings of the form Zn[X1, . . . , Xt]/J , where t ≥ 0
and J is an ideal in Zn[X1, . . . , Xt] for which a Gröbner basis is known. If
computation (i.e., applying the ring operations including reduction, equality
testing and random sampling) in R is efficient, then the same holds for our
reduction from finding a factor of n to black-box extraction over R.

Boneh/Lipton [1] and Maurer/Raub [2] show that any field-homomorphic
encryption scheme can be broken in subexponential time. It is an open question
whether there exist more efficient generic algorithms. For a large class of rings we
can negate this question, assuming that factoring the ring characteristic cannot
be done better than in subexponential time. This might be seen as an indicator
for the existence of secure ring-homomorphic encryption schemes.

It is possible to extend the results presented in this paper to rings given in
basis representation and to direct products R1 × · · · ×Rl of rings whenever our
proofs apply to at least one component Ri, i ∈ {1, . . . , l}. However, we have to
refer to the full version of this paper [11] for details.

2 The Black-Box Ring Extraction Problem

Informally, black-box ring algorithms are the class of algorithms that operate on
the structure of an algebraic ring without exploiting specific properties of the
respresentation of ring elements. We adopt Shoup’s generic group model [4] to
formalize the notion of black-box ring algorithms:

Let (R,+, ·) be a finite commutative unitary ring and S ⊆ {0, 1}�log2(|R|)� be
a set of bit strings of cardinality |R|. Let σ : R → S be a bijective encoding
function which assigns ring elements to bit strings, chosen at random among all
possible bijections. A black-box ring algorithm is an algorithm that takes as input
an encoding list (σ(r1), . . . , σ(rk)), where ri ∈ R. Note that depending on the
particular problem the algorithm might take some additional data as input, such
as the characteristic of R, for example. In order to be able to perform the ring
operations on randomly encoded elements, the algorithm may query a black-box
ring oracle OR,σ. The oracle takes two indices i, j into the encoding list and a
symbol ◦ ∈ {+,−, ·} as input, computes σ(ri ◦ rj) and appends this bit string

440 K. Altmann, T. Jager, and A. Rupp

to the encoding list (to which the algorithm always has access). We capture the
notion of a black-box ring representation by the following definition:

Definition 1 (Black-Box Ring Representation). Let (R,+, ·) be a finite
ring. We call the tuple (σ,OR,σ) consisting of a randomly chosen encoding func-
tion σ : R→ S, and a corresponding black-box ring oracle OR,σ a black-box ring
representation for R and denote it by Rσ.

For short, we sometimes call Rσ a black box ring (meaning that we consider a
ring exhibiting the structure of R but whose elements are encoded by random bit
strings). As an abuse of notation we occasionally write σ(x) ∈ Rσ meaning that
the unique encoding σ(x) of an element x ∈ R is given. Moreover, when we say
in the following that an algorithm A performs operations on the black-box ring
Rσ, we mean that A interacts with the black-box ring oracle as described above.
Having formalized the notion of a black-box ring, we can define the black-box
ring extraction problem:

Definition 2 (BBRE Problem). Let R be an explicitly given finite commu-
tative ring with unity 1 and known characteristic n. Furthermore, let B :=
{r1, . . . , rt} be an (explicitly given) generating set of R. The black-box ring ex-
traction (BBRE) problem for R is the task of computing x ∈ R, where x is
chosen uniformly random from R, given σ(x), σ(1), σ(r1), . . . , σ(rt) ∈ Rσ.

3 BBRE for Zn and Integer Factorization

In this section we consider the BBRE problem for rings which are isomorphic
to Zn, where n has at least two different prime factors. We provide a reduction
from factoring n to the BBRE problem in the following sense: If there exists an
efficient algorithm solving the BBRE problem for Zn with non-negligible success
probability, then there exists an efficient algorithm finding a factor of n with
non-negligible probability.

Theorem 1. Let R := Zn for some integer n having at least two different prime
factors. Let A be an algorithm for the BBRE problem that performs at most m ≤
n operations on Rσ. Assume that A solves the BBRE problem with probability
ε. Then there is an algorithm B having white-box access to A that finds a factor
of n with probability at least

|ε− 1
n |

m2 + 3m + 2

by running A once and performing an additional amount of O
(
m2
)

random
choices and O

(
m3
)

operations on R as well as O
(
m2
)

gcd computations on
log2(n)-bit numbers.

Proof. We replace the original black-box ring oracle OR,σ with an oracle Osim

that simulates OR,σ without using the knowledge of the secret x. In order to
make this step more comprehensible, let us first define a slightly modified but
equivalent version of the original black-box ring oracle: Instead of using the ring

On Black-Box Ring Extraction and Integer Factorization 441

R = Zn for the internal representation of ring elements, these elements are
represented by polynomials in the variable X over R which are evaluated with
x each time the encoding of a newly computed element must be determined.

Definition 3 (An Equivalent Oracle). The oracle O has an input and an
output port as well as a random tape and performs computations as follows.
Input. As input O receives the modulus n and an element x ∈U R.
Internal State. As internal state O maintains two lists L ⊂ R[X] and E ⊂ Sn.
For an index i let Li and Ei denote the i-th element of L and E, respectively.
Encoding of Elements. Each time a polynomial P should be appended to the
list L the following computation is triggered to determine the encoding of P (x):
O checks if there exists any index 1 ≤ i ≤ |L| such that

(P − Li)(x) ≡ 0 mod n .

If this equation holds for some i, then the respective encoding Ei is appended to
E again. Otherwise the oracle chooses a new encoding s ∈U S\E and appends
it to E.
The computation of O starts with an initialization phase, which is run once,
followed by the execution of the query-handling phase:
Initialization. The list L is initialized with the polynomials 1, X and the list E
is initialized with corresponding encodings.
Query-handling. Upon receiving a query (◦, i1, i2) on its input tape, where ◦ ∈
{+,−, ·} identifies an operation and i1, i2 are indices identifying the list elements
the operation should be applied to, O appends the polynomial P := Li1 ◦ Li2 to
L and the corresponding encoding to E.

We say that an algorithm is successful in this game iff it outputs x, and denote
this event with S. Note that ε = Pr[S].

A Simulation Game. Now we replace O by a simulation oracle Osim. The
simulation oracle is defined exactly likeO except that it determines the encodings
of elements in a different way in order to be independent of the secret x.

Each time a polynomial P is appended to the end of list L (during initialization
or query-handling), Osim does the following: Let Lj = P denote the last entry
of the updated list. Then for each i < j the simulation oracle chooses a new
element xi,j ∈ R uniformly at random and checks whether

(Li − Lj)(xi,j) ≡ 0 mod n.

If the above equation is not satisfied for any i, the oracle chooses a new encoding
s ∈U S\E and appends it to E. Otherwise, for the first i the equation is satisfied,
the corresponding encoding Ei is appended to E again (i.e., Ej := Ei). The
algorithm is successful in the simulation game if it outputs the element x (given
as input to Osim). We denote this event by Ssim.

Note that due to the modification of the element encoding procedure, it is now
possible that both an element Li(x) is assigned to two or more different encodings
and that different elements are assigned to the same encoding. In these cases the

442 K. Altmann, T. Jager, and A. Rupp

behavior of Osim differs from that of O, what may allow to distinguish between
the oracles. In the case of a differing behaviour the following failure event F
occurred: There exist i, j ∈ {1, . . . , |L|} satisfying the equation

(Li − Lj)(x) ≡ 0 mod n and (Li − Lj)(xi,j) �≡ 0 mod n, or (1)

(Li − Lj)(x) �≡ 0 mod n and (Li − Lj)(xi,j) ≡ 0 mod n. (2)

It is important to observe that the original game and the simulation game
proceed identically unless F occurs. Thus the Difference Lemma [12] yields the
inequality

|Pr[S]− Pr[Ssim]| ≤ Pr[F].

Bounding the Probability of Success in the Simulation Game. Since
all computations are independent of the uniformly random element x ∈ R the
algorithm A can not do better than guessing x, i.e. Pr[Ssim] ≤ 1

|R| = 1
n .

Bounding the Probability of a Simulation Failure. Let D := {Li−Lj|1 ≤
i < j ≤ |L|} denote the set of all non-trivial differences of polynomials in L
after a run of A. In the following we show how the probability that a polynomial
Δ ∈ D causes a simulation failure is related to the probability of revealing a
factor of n by simply evaluating Δ with a uniformly random element from R.

For fixed Δ ∈ D let FΔ denote the event that Δ causes a simulation failure
as defined by Equations (1) and (2). Furthermore, let DΔ denote the event that
gcd(n,Δ(a)) /∈ {1, n} when choosing an element a uniformly at random from R.

We are going to express the probabilities of both events using the same terms.
Let n =

∏k
i=1 pei

i be the prime factor decomposition of n. Hence, R is isomorphic
to Zp

e1
1
× · · · × Zp

ek
k

by the Chinese Remainder Theorem. Using the notation

νi :=
|{a ∈ R | Δ(a) ≡ 0 mod pei

i }|
|R| ,

we can express the probability of FΔ by

Pr[FΔ] = 2 Pr
a∈UR

[Δ(a) ≡ 0 mod n]
(

1− Pr
a∈UR

[Δ(a) ≡ 0 mod n]
)

= 2

(
k∏

i=1

νi

)(

1−
k∏

i=1

νi

)

.

(3)

Similarly, we can write the probability of DΔ as

Pr[DΔ] = 1− Pr
a∈UR

[Δ(a) ≡ 0 mod n]−
k∏

i=1

Pr
a∈UR

[Δ(a) �≡ 0 mod pei

i]

= 1−
k∏

i=1

νi −
k∏

i=1

(1 − νi)

(4)

Now, the key observation is that we have the following relation between the
probabilities of the events FΔ and DΔ:

On Black-Box Ring Extraction and Integer Factorization 443

Lemma 1. ∀Δ ∈ D : 2 Pr[DΔ] ≥ Pr[FΔ]

Proof (Sketch). The inequality

2

(

1−
k∏

i=1

νi −
k∏

i=1

(1 − νi)

)

≥ 2

(
k∏

i=1

νi

)(

1−
k∏

i=1

νi

)

is equivalent to
(

1−
∏k

i=1 νi

)2

≥
∏k

i=1(1 − νi). The latter is easily proven by
complete induction on k ≥ 2. ��

The Factoring Algorithm. Consider an algorithm B that runs the BBRE algo-
rithm A on an arbitrary instance of the BBRE problem over Zn. During this run
it records the sequence of queries that A issues, i.e., it records the same list L
of polynomials as the black-box ring oracle. Then for each Δ ∈ D the algorithm
B chooses a new random element a ∈ Zn and computes gcd(n,Δ(a)). There are
at most (m + 2)(m + 1)/2 such polynomials, each can be evaluated using at
most m+ 1 ring operations (since it is given as a straight-line program of length
at most m). Thus, B chooses O

(
m2
)

random elements and performs O
(
m3
)

operations on R as well as O
(
m2
)

gcd computations on log2(n)-bit numbers.
Let D denote the event that B finds a factor of n. It holds that Pr[D] ≥

max{Pr[DΔ]|Δ ∈ D}. Thus the total probability of simulation failure Pr[F] is
upper bounded by

Pr[F] =
∑

Δ∈D

Pr[FΔ] ≤ 2
∑

Δ∈D

Pr[DΔ] ≤ (m + 2)(m + 1) Pr[D].

Finally by applying the Difference Lemma [12] it holds that

Pr[F] ≥ |Pr[S]− Pr[Ssim]| = |ε− 1
n
|. ��

4 An Extension to Multivariate Polynomial Rings

In this section we are going to lift our reduction from the special case R = Zn

to the case R = Zn[X1, . . . , Xt]/J , where Zn[X1, . . . , Xt] denotes the ring of
polynomials over Zn in indeterminates X1, . . . , Xt (t ≥ 0) and J is an ideal
in this polynomial ring such that R is finite. Note that any finite commutative
unitary ring has a representation of the above form:

Lemma 2. Let R be a finite commutative unitary ring of characteristic n. Then
there is an integer t ≤ log2 |R| and a finitely generated ideal J of Zn[X1, . . . , Xt]
such that R ∼= Zn[X1, . . . , Xt]/J.

Let n =
∏k

i=1 pei

i be the prime factor decomposition of n. This decomposition
induces a decomposition of the ring Zn[X1, . . . , Xt]/J into a direct product of
rings with prime-power characteristic:

444 K. Altmann, T. Jager, and A. Rupp

Lemma 3. Let F := {f1, . . . , fs} be a set of polynomials generating an ideal J
in Zn[X1, . . . , Xt], denoted by J = 〈F 〉. Let R = Zn[X1, . . . , Xt]/〈F 〉 and n =
∏k

i=1 pei

i be the prime factor decomposition of n. Then R is decomposable into a
direct product of rings R ∼= R1 × · · · ×Rk, where Ri := Zp

ei
i

[X1, . . . , Xt]/〈F 〉.
We call this way of decomposing R the prime-power decomposition of R.

4.1 Gröbner Bases for Polynomial Ideals over Rings

Roughly speaking, a Gröbner basis G is a generating set of an ideal J in a mul-
tivariate polynomial ring exhibiting the special property that reduction of poly-
nomials from J modulo the set G always yields the residue zero. This property is
not satisfied for arbitrary ideal bases. Gröbner bases were originally introduced
for polynomial rings over finite fields, and extended to the case where the coef-
ficients are elements of a Noetherian ring, such as Zn. In the following we adopt
the notation and definitions from [13].

A power product in indeterminates X1, . . . , Xt is a product of the form X =
Xa1

1 · . . . · Xat
t for some (a1, . . . , at) ∈ Nt

0. Let > be some arbitrary admissible
ordering of power products (e.g. lexicographic). Let f ∈ Zn[X1, . . . , Xt] with f �=
0. Then we can write f as f = c1X1 + . . .+ csXs, where c1, . . . , cs ∈ Zn\{0} and
X1 > . . . > Xs. The leading coefficient lc(f) and the leading power product lp(f)
of f with respect to > are defined as lc(f) := a1 and lp(f) := X1, respectively.

Definition 4 (Polynomial Reduction). Let two polynomials f and h and a
set of non-zero polynomials F = {f1, . . . , fs} in Zn[X1, . . . , Xt] be given.

(a) We say that f can be reduced to h modulo F in one step, denoted by f
F−→ h,

if and only if h = f − (c1X1f1 + . . . + csXsfs) for c1, . . . , cs ∈ R and power
products X1, . . . ,Xs, where lp(f) = Xilp(fi) for all i such that ci �= 0 and
lt(f) = c1X1lt(f1) + . . . + csXslt(fs).

(b) A polynomial h is called minimal with respect to F if h cannot be reduced.
We denote the reduction of f to its minimal residue by f mod F .

Using the above definition a Gröbner basis is characterized as follows.

Definition 5 (Gröbner Basis). Let J be an ideal in Zn[X1, . . . , Xt] and G =
{g1, . . . , gs} be a set of non-zero polynomials such that 〈G〉 = J . Then G is called
a Gröbner basis for J if for any polynomial f ∈ Zn[X1, . . . , Xt] we have

f ∈ J ⇐⇒ f mod G = 0 .

The following lemma requires that a Gröbner basis for the given ring ideal is
known. The lemma is crucial for proving that (similar to the Zn-case) an element
f ∈ R ∼= R1 × · · · × Rk that is congruent to zero over a component Ri but not
congruent to zero over another component Rj (cf. Lemma 3) helps in factor-
ing n. Observe that Lemma 4 requires that the leading coefficients of all given
Gröbner basis elements are units. For our purposes this is not a restriction but
a reasonable assumption, since otherwise the given representation of R would
immediately reveal a factor of n. A proof for this lemma based on the notion of
syzygies can be found in the full version of this paper [11].

On Black-Box Ring Extraction and Integer Factorization 445

Lemma 4. Let A = Zn[X1, . . . , Xt] and n =
∏k

i=1 pei

i . Furthermore, let G =
{g1, . . . , gs} be a Gröbner basis for the ideal J = 〈g1, . . . , gs〉 in A such that
lc(gl) ∈ Z∗n for all l ∈ {1, . . . , s}. Then for each i ∈ {1, . . . , k} the set Gi =
{pei

i , g1, . . . , gs} is a Gröbner basis for the ideal 〈pei

i , g1, . . . , gs〉 in A.

4.2 BBRE for Zn[X1, . . . , Xt]/J and Integer Factorization

In the case R = Zn our factoring algorithm is successful when it is able to find
an element a ∈ R such that a ∈ 〈pei

i 〉 and a �∈ 〈pej

j 〉 for some i, j ∈ {1, . . . , k}.
The following lemma shows that a generalization of this fact holds for rings of
the form Zn[X1, . . . , Xt]/J where J is given as a Gröbner basis.

Lemma 5. Let A = Zn[X1, . . . , Xt] where n =
∏k

i=1 pei

i and k ≥ 2. Further-
more, let G = {g1, . . . , gs} be a Gröbner basis for the ideal J = 〈g1, . . . , gs〉 in
A such that lc(gl) ∈ Z∗n for all l ∈ {1, . . . , s}. Assume an element f ∈ A is
given, such that f ∈ Ji = 〈pei

i , g1, . . . , gs〉 and f �∈ Jj = 〈pej

j , g1, . . . , gs〉 for some
i, j ∈ {1, . . . , k}. Then computing gcd(lc(r), n), where r = f mod G, yields a
non-trivial factor of n.

Proof (Sketch). r cannot be zero, since f �∈ J . However, since r ∈ 〈pei

i , g1, . . . , gs〉
and Gi := {pei

i , g1, . . . , gs} is a Gröbner basis by Lemma 4, r must be reducible
w.r.t. Gi. Since r is minimal w.r.t. G and the coefficients of elements of G are
units in Zn, it follows that there is no gi ∈ G such that lp(gi)|lp(r). Thus the
leading coefficient lc(r) must be divisible by pei

i . Computing gcd(lc(r), n) yields
a non-trivial factor of n. ��

The above fact allows us to formulate and prove a theorem similar to Theorem 1.

Theorem 2. Let R := Zn[X1, . . . , Xt]/J for some integer n having at least two
different prime factors. Assume a Gröbner basis G = {g1, . . . , gs} for J is given
such that lc(gl) ∈ Z∗n for l ∈ {1, . . . , s}. Let A be an algorithm for the BBRE
problem that performs at most m ≤ |R| operations on Rσ and solves the BBRE
problem with probability ε. Then there is an algorithm B having white-box access
to A that finds a factor of n with probability at least

|ε− 1
n |

(m + t + 2)(m + t + 1)

by running A once and performing an additional amount of O
(
(m + t)2

)
ran-

dom choices and O
(
m(m + t)2

)
operations on R as well as O

(
(m + t)2

)
gcd

computations on log2(n)-bit integers.

Proof (Sketch). We adopt the proof of Theorem 1. The description of the original
and the simulation game almost carries over by setting R := Zn[X1, . . . , Xt]/J .
There are only two technical differences concerning the oracles O and Osim con-
sidered in the original game and the simulation game: (i) the list L maintained
by both oracles is initialized with the t + 1 generating elements 1, X1, . . . , Xt of

446 K. Altmann, T. Jager, and A. Rupp

R, and with the variable X . As before, ring elements are representend by poly-
nomials in R[X] = (Zn[X1, . . . , Xt]/J)[X]. (ii) whenever an element P ∈ R[X]
is appended to the list L, say as element Lj = P , O checks whether there exists
an element Li ∈ L such that (Li − Lj)(x) ∈ J which is equivalent to checking
whether the minimal residue r = (Li − Lj)(x) mod G is the zero polynomial.
Instead of using the given secret x in the above evaluation, the simulation or-
acle Osim performs this check using a new random element xi,j ∈ R for each
difference polynomial Li − Lj (i < j ∈ {1, . . . , |L|}).

The rest of the description of the games applies unchanged. Let the events S,
Ssim and F be defined analogously to the case R = Zn. As before we obtain the
bound Pr[Ssim] ≤ 1

|R| ≤
1
n for success in the simulation game.

To derive a bound on Pr[F] we proceed as follows. Let D := {Li−Lj|1 ≤ i <
j ≤ |L|} denote the set of all non-trivial differences of polynomials in L after a
run of A, and let Δ ∈ D. Let n =

∏k
i=1 pei

i be the prime factor decomposition
of n, then R has a prime power decomposition into

R ∼= Z[X1, . . . , Xt]/〈pe11 , G〉 × · · · × Z[X1, . . . , Xt]/〈pek

k , G〉

by Lemma 3. Let νi := |{a∈R | Δ(a)∈〈pei
i ,G〉}|

|R| be the probability that Δ(a) ∈
〈pei

i , I〉 for a uniformly random element a ∈ R. Using this redefinition of the
probabilities νi, the probability Pr[FΔ] that Δ causes a simulation failure is
given by Equation 3.

By Lemma 5, Δ reveals a factor of n if we can find an element a ∈ R such that
Δ(a) ∈ 〈pei

i , G〉 and Δ(a) �∈ 〈pej

j , G〉 for some i, j ∈ {1, . . . , k}. In this case com-
puting gcd(lc(Δ(a) mod G), n) yields a non-trivial factor of n. The probability
Pr[DΔ] of finding such an element by evaluating Δ with some random a ∈U R
is given by Equation 4.

The Factoring Algorithm. For each Δ ∈ D the algorithm B chooses a random
a ∈U R and computes gcd(lc(Δ(a) mod G), n). There are at most (m + t +
2)(m + t + 1)/2 polynomials in D, each can be evaluated using at most m + 1
ring operations.

Let D denote the event that B finds a factor of n. Since the equations describing
Pr[DΔ] and Pr[FΔ] are the same as in the Zn case, the relationship 2 Pr[DΔ] ≥
Pr[FΔ] still holds. Using the fact that Pr[D] ≥ max{Pr[DΔ] | Δ ∈ D} the total
probability of simulation failure Pr[F] is upper bounded by

Pr[F] =
∑

Δ∈D

Pr[FΔ] ≤ 2
∑

Δ∈D

Pr[DΔ] ≤ (m + t + 2)(m + t + 1) Pr[D].

Therefore the probability of finding a factor of n with this algorithm is at least

Pr[D] ≥
|Pr[S]− 1

n |
(m + t + 2)(m + t + 1)

. ��

On Black-Box Ring Extraction and Integer Factorization 447

5 Implications for General Rings

Unfortunately, despite that fact that for any finite commutative unitary ring
R there exists a polynomial representation (cf. Lemma 2), our result does not
immediately carry over to any such ring. This is because to make our reduction
work the explicit polynomial representation of R must be known, and we require
that a Gröbner basis for the ideal J is known. If we are given a basis other than
a Gröbner basis as a description for J , we could compute a Gröbner basis from
this input, for example using a variant of Buchberger’s algorithm for Noetherian
rings [13]. However, for Gröbner basis algorithms still no upper bound on the
running time is known. It is known that there are instances where constructing
a Gröbner basis takes time in the order of 22O(t)

[14]. Thus, we cannot give the
factoring algorithm described in our reduction an arbitrary basis of the ideal J
as input and let it first compute a Gröbner basis, since there are cases where this
computation may easily exceed the time needed to factorize n directly. Hence,
our result only holds for families of rings R where a Gröbner basis for J is given
or known to be efficiently computable.

However, the “good” news is that our results seem to cover virtually any rep-
resentation of a finite commutative unitary ring R where computation is efficient:
Known representations for finite commutative rings with identity are table repre-
sentation, basis representation, and polynomial representation (cf. [15]). A table
representation of a ring R requires O

(
|R|2

)
space, which is clearly too much for

ring sizes of cryptographic interest. A basis representation requires O((log |R|)3)
space, thus might be interesting for cryptographic applications. Our result can
be extended to rings given in basis representation, however, we have to refer to
the full version of this paper [11] for the proof. For rings given in polynomial
representation, the ideal J is specified by some set of generating polynomials. In
order to be able to perform equality checks between ring elements efficiently —
which corresponds to solving instances of the ideal membership problem — there
is currently no other way than providing a Gröbner basis for the ideal J . Thus
we may conclude that our work seems to cover virtually any ring representation
of cryptographic interest.

Acknowledgements. We would like to thank Roberto Avanzi, Lothar Ger-
ritzen, and Gregor Leander for helpful discussions, and Dan Brown for pointing
out an error in a previous version.

References

1. Boneh, D., Lipton, R.J.: Algorithms for black-box fields and their application to
cryptography (extended abstract). In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 283–297. Springer, Heidelberg (1996)

2. Maurer, U., Raub, D.: Black-box extension fields and the inexistence of field-
homomorphic one-way permutations. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 427–443. Springer, Heidelberg (2007)

448 K. Altmann, T. Jager, and A. Rupp

3. Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes 55(2), 165–172 (1994)

4. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

5. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
IMA Int. Conf. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005)

6. Maurer, U.: Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete algorithms. In: Desmedt, Y. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 271–281. Springer, Heidelberg (1994)

7. den Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Gold-
wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, Heidelberg
(1990)

8. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,
K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg
(1998)

9. Bach, E.: Discrete logarithms and factoring. Technical Report UCB/CSD-84-186,
EECS Department, University of California, Berkeley (June 1984)

10. Leander, G., Rupp, A.: On the equivalence of RSA and factoring regarding generic
ring algorithms. In: Lai, X., Chen, K. (eds.) Advances in Cryptology — ASI-
ACRYPT 2007. LNCS, vol. 4284, pp. 241–251. Springer, Heidelberg (2006)

11. Altmann, K., Jager, T., Rupp, A.: On black-box ring extraction and in-
teger factorization. Cryptology ePrint Archive, Report 2008/156 (2008),
http://eprint.iacr.org/

12. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004), http://eprint.iacr.org/

13. Adams, W., Loustaunau, P.: An introduction to Gröbner bases. Graduate Studies
in Math, vol. 3. Oxford University Press, Oxford (1994)

14. Mayr, E.W., Meyer, A.: The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics 46, 305–329 (1982)

15. Agrawal, M., Saxena, N.: Automorphisms of finite rings and applications to com-
plexity of problems. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 1–17. Springer, Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/

Extractable Perfectly One-Way Functions

Ran Canetti1,� and Ronny Ramzi Dakdouk2,��

1 IBM T. J. Watson Research Center, Hawthorne, NY
canetti@watson.ibm.com

2 Yale University, New Haven, CT
dakdouk@cs.yale.edu

Abstract. We propose a new cryptographic primitive, called extractable per-
fectly one-way (EPOW) functions. Like perfectly one-way (POW) functions,
EPOW functions are probabilistic functions that reveal no information about their
input, other than the ability to verify guesses. In addition, an EPOW function, f ,
guarantees that any party that manages to compute a value in the range of f
“knows” a corresponding preimage.

We capture “knowledge of preimage” by way of algorithmic extraction. We
formulate two main variants of extractability, namely non-interactive and inter-
active. The noninteractive variant (i.e., the variant that requires non-interactive
extraction) can be regarded as a generalization from specific knowledge assump-
tions to a notion that is formulated in general computational terms. Indeed, we
show how to realize it under several different assumptions. The interactive-
extraction variant can be realized from certain POW functions.

We demonstrate the usefulness of the new primitive in two quite different set-
tings. First, we show how EPOW functions can be used to capture, in the standard
model, the “knowledge of queries” property that is so useful in the Random Or-
acle (RO) model. Specifically, we show how to convert a class of CCA2-secure
encryption schemes in the RO model to concrete ones by simply replacing the
Random Oracle with an EPOW function, without much change in the logic of the
original proof. Second, we show how EPOW functions can be used to construct 3-
round ZK arguments of knowledge and membership, using weaker knowledge as-
sumptions than the corresponding results due to Hada and Tanaka (Crypto 1998)
and Lepinski (M.S. Thesis, 2004). This also opens the door for constructing 3-
round ZK arguments based on other assumptions.

1 Introduction

The Random Oracle methodology [15,4] consists of two steps. The first step involves
designing a protocol and proving security in an idealized model called the Random
Oracle (RO) model. In the RO model, all parties have oracle access to a public random
function, O. The oracle answers are uniform and independent with only one constraint,
specifically, that all answers to the same query are identical. The second step involves
“moving” the protocol from this idealized model to the real world. This is done by
“replacing” the RO with a cryptographic hash function such as SHA1 [16] or MD5
[26]. In other words, every oracle call is replaced by a function call to some publicly

� Supported by NSF grant CFF-0635297 and US-Israel Binational Science Foundation Grant
2006317.

�� Work supported by NSF grant #0331548.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 449–460, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

450 R. Canetti and R.R. Dakdouk

known cryptographic hash function. This transformation is known as an instantiation of
Random Oracles.

Although the first step of the RO methodology is rigorous, the second step remains
a heuristic for the most part. While most results in this area provide proofs in the RO
model, they lack even informal justification as to why the instantiated protocols may
be secure. Such justification is of dire need given the fact that the RO methodology is
not sound in general. Specifically, it was shown that there are schemes secure in the
RO model without any secure instantiations [9,24,17]. Furthermore, there exist natu-
ral primitives that are realizable in the RO model but can not be realized at all in the
standard model, regardless of the computational assumptions used [25].

Given the general impossibility results mentioned above, one may resort to consid-
ering a proof in the RO model as a “stepping stone” towards a proof in the standard
model. However, there is a severe flaw with this point of view: When it comes to secu-
rity properties, proofs in the RO model use the Random Oracle somewhat like a Swiss
Army knife. Random Oracles satisfy many cryptographic properties including collision
resistance (it is hard to find two queries with the same RO answer), uniformity (the an-
swer to any query is uniformly distributed), unpredictability or correlation intractability
[9], programmability [25] and knowledge of queries (any machine that computes O(q)
“knows” q). Furthermore, works that use the RO methodology do not often highlight the
specific properties of Random Oracles that are used or needed for the current proof. This
makes translating a proof from the RO model to the standard model a harder task. And
indeed, proofs in the RO model usually follow different lines from the corresponding
ones in the standard model. This is contrary to the intuition behind the RO methodol-
ogy, which is to use the randomness in the RO model to come up with simple proofs
and then replace the Random Oracle by an appropriate function while maintaining the
overall proof structure.

In light of the above discussion, it is interesting to identify specific properties of
Random Oracles that are essential for the security of specific protocols. Once these
properties are identified, it may then be possible to capture them with concrete func-
tions that can be used to replace Random Oracles. Such an approach motivated the
introduction of perfectly one-way (POW) functions in [7] as functions that capture the
hiding property of Random Oracles and are then used to instantiate Random Oracles in
a semantically-secure encryption scheme.1 In another attempt, Boldyreva and Fischlin
[6] introduce a strong variant of pseudorandom generators geared towards instantiating
OAEP.

However, attempts at direct instantiation of encryption schemes secure against cho-
sen ciphertext attacks (IND-CCA2) in the RO model have failed. It seems that one
main problem is to translate a central property of Random Oracles, namely knowledge
of queries, to the standard model. This property proves essential for the security proof
in the RO model but it has not been previously formalized and captured by concrete
functions.

1.1 Our Work

We formalize the “knowledge of queries” property mentioned above and cast it on a
concrete object in the standard model. We call the new object an extractable perfectly

1 Informally, POW functions are probabilistic functions that hide all partial information about
the input.

Extractable Perfectly One-Way Functions 451

one-way (EPOW) function. Then, we use EPOW functions not only to instantiate such
schemes but also use a proof of security that follows similar logic as the original proof.
The intended goal in this instantiation is not to try to achieve a more efficient construc-
tion than the existing ones in the literature but rather identify and realize the needed
properties of the random oracle so that the proof of security remains the same in the
standard model in both its logic and simplicity. In addition, we show that EPOW func-
tions are useful in other contexts. We go into more detail shortly.

Extractable perfectly one-way functions. In the RO model, the knowledge of queries
property means that any machine that computes an RO answer, O(q), “knows” q. Even
though such a property is easy to formalize and satisfy in the RO model if the range
of O is sparse, defining it in the standard model while maintaining hiding properties is
tricky. Towards this end, we build on the notion of perfect one-wayness presented in [7]
to introduce a new class of functions called extractable perfectly one-way (EPOW)
functions. These are functions that hide all information about the input but any machine
that computes a valid image, “knows” a corresponding preimage. We also require a
similar property to hold with respect to auxiliary information which may include other
images. The corresponding statement is any machine that computes a new valid image,
even in the presence of other images, knows a corresponding preimage. Although using
extractability with a weaker hiding property may be sufficient for certain applications,
it is of particular interest when combined with POW functions since it gives a better
approximation of the properties expected from a Random Oracle.

From one angle, extractability can be interpreted as saying that the only way to pro-
duce a point in the range of this function is by taking a point in the input domain
and then applying the algorithm that computes this function to the input. From another
perspective, an EPOW function is an obfuscation of a point function [1,30] with the
additional property that the original source program, that computes the point function
in the clear, can be extracted from the view of any potentially adversarial obfuscator.
This property can in fact be defined with respect to any function family.

We define two variants of EPOW functions, namely noninteractive and interactive.
Noninteractive extraction is captured by the existence of a (nonblackbox) preimage
extractor. In more detail, every adversary, that tries to output a point in the range, has
a corresponding extractor that gets the view of the adversary and outputs a preimage.
We emphasize that the extractor gets the view of the adversary including any private
random coins. The interactive variant is described later on.

On the relation between noninteractive EPOW functions and NIZK. Superficially,
EPOW functions resemble noninteractive zero-knowledge (NIZK) arguments of knowl-
edge [29,28] in that an image can be viewed as a proof of preimage knowledge. How-
ever, EPOW functions and NIZK arguments of knowledge differ in several ways. First,
NIZK secrecy, i.e., zero knowledge, holds over the choices of the Common Reference
String (CRS) while EPOW functions require secrecy to hold without a CRS. Second,
EPOW functions are not required to have efficient verification, that is deciding whether
a given point belongs to the range of the function. (Not to be confused with the veri-
fication requirement on POW functions, where it is easy to check that a given output
is an image of a given input.) We mention that our noninteractive EPOW constructions
satisfy a weaker form of verification, which seems to be needed for the ZK applica-
tion but not for our Random Oracle instantiation. On the other hand, our interactive
EPOW constructions are not known to satisfy this form of verification. Third, NIZK

452 R. Canetti and R.R. Dakdouk

arguments of knowledge require a universal blackbox extractor to recover a witness
with the help of auxiliary information about the CRS. On the other hand, EPOW func-
tions only require a nonblackbox extractor for every adversary. However, this extractor
has to recover a preimage from the view of the adversary without any extra informa-
tion that is not given to the adversary. The latter formulation may better capture our
intuition about knowledge because it clearly demonstrates that an adversary “knows” a
preimage by recovering it from its view alone.

On the relation between noninteractive EPOW functions and other knowledge assump-
tions. From another angle, extractable functions look similar to other knowledge as-
sumptions such as the knowledge of exponent (KE) assumption [12,20] and the proof
of knowledge (POK) assumption [23]. In fact, we view extractable functions as an ab-
straction away from specific knowledge assumptions, much like a one-way function is
an abstraction of specific one-way assumptions, such as the discrete logarithm (DL)
assumption. In other words, the DL assumption gives us a one-way function but it may
even give us more, e.g., a one-way permutation in certain group or certain algebraic
properties. However, we abstract away from these particularities and identify the essen-
tial property needed. Likewise, we use extractable functions as a step towards capturing
the abstract knowledge assumption - it provides a relatively simple primitive that is de-
fined only in terms of its general computational properties, that seems to be useful in a
number of places, and that can be realized by a number of different assumptions. (We
show later that either the KE or the POK assumption, when combined with a hardness
assumption such as the DDH assumption, is sufficient for constructing EPOW func-
tions).

On the constructions. We give three simple constructions of EPOW functions. The first
one uses a POW function and a “strong” notion of NIZK proof of preimage knowledge.
In addition, we provide another construction from the POW construction in [7] and the
KE assumption. At a high level, the KE assumption guarantees preimage extraction,
while hiding can be based on a strong variant of the DDH assumption. The third con-
struction is similar to the second one but it uses the POK assumption (with the same
DDH assumption mentioned above). However, none of these constructions satisfies all
of our requirements (see [8] for more details). Thus, we turn our attention to EPOW
functions with interactive extraction.

Interactive EPOW Functions. These are POW functions with interactive extraction. In-
formally, interactive extraction means that if a party interacts consistently with a chal-
lenger, then it “knows” a preimage. Interaction between the prover and the challenger
is restricted to Arthur-Merlin games. Furthermore, the messages sent by the prover are
restricted to images of the interactive EPOW function. For instance, in a 3-round game
of this type, the prover computes hashes of the preimage using different random coins
for the EPOW function, H, chosen by the challenger. In more detail, the prover sends
y = Hk(x, r0) in the first round, the challenger then responds with a uniform string,
r1, and the prover sends the corresponding image, Hk(x, r1), in the last round. Here,
extractability means that if the images in the first and third round share a common
preimage, then the prover knows it. Similar to the noninteractive setting, knowledge of
preimage is captured by the existence of a preimage extractor.

We show how to transform POW functions to interactive EPOW functions. Infor-
mally, our transformation imposes a structure on the new function so that a preimage

Extractable Perfectly One-Way Functions 453

can be recovered from any two “related” images. For clarity, consider a toy construction
to recover the first bit only. Specifically, if H is the old POW function and x is the input,
then H′ is defined as H ′

k(x, (r1, r2)) = Hk((x, 1), r1), Hk((x, x1), r2), where x1 is the
first bit of x. To recover x1, the extractor asks the prover to compute H ′

k(x, (r1, r2)),
then it rewinds the protocol, and forces the prover to compute H ′

k(x, (r′1, r1)) using
the same r1 as before. Note that x1 can be recovered (by simple comparison) from
Hk((x, 1), r1) and Hk((x, x1), r1) computed in the first and second game respectively.

We remark that a slightly weaker notion of interactive EPOW functions can be con-
structed from any POW function and a corresponding Σ-protocol [5,11] for proving
preimage knowledge.

1.2 Applications

Using EPOW functions to instantiate Random Oracles in Encryption Schemes. As men-
tioned before, POW functions are used in [7] to capture and realize CPA-security of the
encryption scheme in [4]. However, this is not sufficient for CCA2-security as POW
functions may not guarantee extractability. So, an EPOW function provides the missing
link, namely extractability, for replacing a Random Oracle by a POW function. Here,
we use EPOW functions to instantiate the second encryption scheme in [4] (recalled
shortly), and translate the proof to the standard model in a straightforward way. This
scheme uses a trapdoor permutation, M , and two Random Oracles, O1, O2, to encrypt
a message, m, as c = (M(r), O1(r)⊕m,O2(r,m)), where r is uniform. At a high level,
it is CCA2-secure because the hiding property of Random Oracles gives us semantic se-
curity while knowledge of queries gives us knowledge of plaintext (the latter property
is what enables proving CCA2-security). Thus, if we replace the Random Oracle by an
EPOW function in the previous scheme we get a CCA2-secure encryption scheme in
the standard model. This scheme can be either noninteractive or 3-round depending on
whether the EPOW function is noninteractively or interactively extractable.

This approach can be utilized to realize other encryption schemes in the RO model.
In particular, we show how to instantiate some schemes that provably cannot be instan-
tiated using the standard instantiation prescribed in the RO methodology [9,24], where
each RO query is replaced with a call to a specific function. Thus, the aforementioned
instantiation is different from the standard one and does not contradict the impossibility
results mentioned above. A detailed presentation of this result appears in [8].

On the connection to other approaches and CCA2 schemes. We remark that generic
transformations from any semantically-secure scheme to a CCA2-secure one have been
studied before [14,27]. Also, the KE assumption has been used to prove that certain en-
cryption schemes are plaintext-aware, which when coupled with semantic security gives
CCA-secure schemes [3,13]. Moreover, Katz [22] used the notion of proofs of plaintext
knowledge to construct efficient 3-round CCA2-secure schemes. We emphasize that
the contributions of this work are not in giving better or more efficient constructions
than existing ones in the literature, but rather in the methodology of replacing Random
Oracles as described above.

Using EPOW functions to construct 3-round ZK protocols. We give one more appli-
cation of EPOW functions in the context of Zero-Knowledge (ZK) systems. Current
3-round ZK arguments and proofs use strong and very specific number theoretic as-
sumptions [20,21,23,3]. On the other hand, we construct 3-round ZK arguments of

454 R. Canetti and R.R. Dakdouk

knowledge and membership assuming only the existence of a variant of EPOW func-
tions and noninteractive witness-indistinguishable (WI) arguments [2,19]. This allows
for abstracting from specific number theoretic assumptions and opens the door for bas-
ing 3-round ZK arguments on other assumptions sufficient for constructing this variant
of EPOW functions. On the one hand, the existence of EPOW functions is an assump-
tion that is stated in general computational terms without resorting to specific algebraic
constructs. On the other hand, the assumption seems rather basic and in particular less
specific than current knowledge assumptions.

As a concrete example, we use our second EPOW construction to build such ZK ar-
guments. We remark that the KE assumption used here is weaker than the correspond-
ing knowledge assumptions used for constructing 3-round ZK arguments in [20,21,3].
Specifically, we eliminate the need for the second KE assumption in [21] and later up-
dated in [3]. We note that both simulation and extraction are nonblackbox.

Organization. We introduce and define extractable functions in Section 3. We then
highlight one noninteractive and one interactive constructions in Sections 4 and 5. The
last two sections discuss applications to Random Oracle instantiation and 3-round ZK
protocols, respectively. A more detailed presentation, common definitions, and proofs
appear in [8].

2 Preliminaries

A function, μ, is called negligible if it decreases faster than any inverse polynomial.
Formally, for any polynomial p, there exists an Np such that, for all n ≥ Np: μ(n) <

1
p(n) . We reserve μ to denote negligible functions. A distribution is called well-spread
if it has superlogarithmic min-entropy, i.e., maxkPr[Xn = k] is a negligible function
in n. A probabilistic function family is a set of efficient probabilistic functions having
common input and output domains. Formally, Hn = {Hk}k∈Kn is a function family
with key space Kn and randomness domain Rn if, for all k ∈ Kn, Hk : In × Rn →
On. A probabilistic function family has public randomness if for all k, Hk(x, r) =
r,H ′

k(x, r) for some deterministic function H ′
k. A family ensemble is a collection of

function families, i.e., H = {Hn}n∈N. An uninvertible function, f , with respect to a
well-spread distribution, X, is an efficiently computable function that is hard to invert on
X. Formally, for any PPT, A, Pr[x← Xn, A(f(x)) = x] < μ(n). If f is uninvertible
with respect to any well-spread distribution, then it is called uninvertible.

Perfectly One-way Probabilistic Functions. A perfectly one-way (POW) function is a
probabilistic function that satisfies collision resistance and hides all information about
its input. Due to its probabilistic nature, such a function is coupled with an efficient
verification scheme that determines whether a given string is a valid hash of some
given input [10].

One formulation of information hiding requires hardness of indistinguishability be-
tween hashes of the same input and hashes of different inputs [10], where the former
is taken from a well-spread distribution and the latter inputs are uniform and indepen-
dent. We also consider the presence of auxiliary information, which is represented as
an uninvertible function of the input. A notable special case of indistinguishability is
pseudorandomness, i.e., hashes of the same input are indistinguishable from uniform.
Moreover, the statistical version of both definitions can be obtained by dropping the

Extractable Perfectly One-Way Functions 455

requirements of auxiliary information and efficiency of the adversary. The formal defi-
nitions appear in [8].

3 Extractable Functions

An extractable function is one for which any machine that “computes” a point in the
range, “knows” a corresponding preimage. As a starting point, we can formulate this no-
tion by requiring any efficient machine that computes an image without auxiliary input
to “know” a preimage. Although, this requirement seems reasonable, it is not sufficient
for applications where auxiliary information is present. On the other hand, formulating
this notion in the presence of auxiliary information is tricky. As a toy example, A can
be a machine that receives an image as an input and copies it to its output. Moreover,
A may still receive an image hidden in its auxiliary input in a subtle way but can be ef-
ficiently extracted from it. Yet, we do not think that this captures our intuition because
A does not really compute the function, rather it decodes the image syntactically from
its input. Thus, we need a meaningful way of telling apart “copying” an image from
“computing” an image.

Following [18], we consider two types of auxiliary information. The first one, called
independent auxiliary information, consists of auxiliary information computed be-
fore a function is sampled from a family ensemble, H. We stress that this input is in-
dependent of the particular function currently used. This prevents hiding images in this
type of input. The second type, called dependent auxiliary information, is restricted
to images under H. This is a restricted form of dependent auxiliary information but it is
sufficient for our applications. Given these two types of inputs, we require that no ad-
versary can come up with a new image without knowing a corresponding preimage. We
capture knowledge of a preimage by requiring for every A, that computes a new image,
a corresponding extractor, KA, that has access to the private input of A and computes
a preimage. We emphasize that KA has to compute the preimage from the view of A
without any additional information.

For clarity, we first formalize this notion in the presence of independent auxiliary
information alone before addressing the general case.

Definition 1. Let H = {Hn}n∈N be any verifiable family ensemble (with verifier VH).
Then, H is called noninteractively extractable if for any PPT, A (with private random
coins denoted by rA), and polynomial, p, there exists a PPT, KA, such that for any
auxiliary information, z:

Pr[k← Kn, y = A(k, z, rA), x← KA(k, z, rA) : VH(x, y) = 1 or (∀x′, VH(x′, y) �= 1)]

> 1− 1

p(n)
− μ(n).

Note that we allow a noticeable extraction error. The constructions from the KE or POK
assumption have a negligible error. However, the error in our interactive constructions
is not known to be negligible. So, for uniformity, we adopt the weaker notion.

There are two possible ways to introduce dependent auxiliary information into Def-
inition 1. One can allow this auxiliary information to be images of any input while the
more restrictive way forces the images to correspond to inputs chosen from well-spread
distributions. Even though the former is more general, the latter is sufficient for our
applications. Thus, we use the latter notion in this work. The formal definitions are not
presented here due to space constraints.

456 R. Canetti and R.R. Dakdouk

Interactive extraction. In the interactive setting, we force an adversary, A, to compute
not only one image but a large fraction of the images of x (recall, the function is proba-
bilistic). We say that if A can do so, then x is extractable. We achieve the first property
by forcing A to use random coins for the probabilistic function that are chosen by an
external challenger. In more detail, we define a 3-round game between A and a chal-
lenger (or knowledge extractor). 2 At the end of the game, if the interaction is consistent
(we say shortly what this means) then extraction is possible.

The game starts with A sending an image, y0. The challenger sends uniform strings,
r1, ..., rn, and A has to answer with images, y1, ..., yn, using r1, ..., rn as random coins
for H. We call an interaction consistent if there is a common preimage, x, of y0, ..., yn
with r1, ..., rn as random coins for the last n images. We then say H is interactively ex-
tractable if for any adversary that plays this game consistently, there is a corresponding
extractor that recovers a common preimage of y0, ..., yn. We also allow A to receive an
auxiliary input that can depend, in an arbitrary way, on the choice of the function from
the ensemble, H.

4 A Noninteractive EPOW Construction

Before we present the EPOW construction, we show a simpler construction that
achieves extractability but satisfies a weaker notion of computational hardness, namely
one-wayness. Both constructions use the KE assumption to satisfy extractability. Infor-
mally, the KE assumption says that it is hard to compute, on input p, q, g, ga, a pair of
elements (gr, gra) without knowing r, where p and q are primes, p = 2q + 1, and g is a
generator for the quadratic residue group modulo p. This assumption can be formulated
with or without independent auxiliary information (it can be shown that it does not hold
with respect to auxiliary information that depends on (p, q, g, ga)).

Note that the KE and discrete-log (DL) assumptions imply that the family ensem-
ble, F = {{fp,q,g,ga}(p,q,g,ga)∈PQGAn

}n∈N, where fp,q,g,ga(x) = gx, (ga)x, is an
extractable one-way (EOW) family ensemble. We strengthen the previous construc-
tion into a POW function by masking x with a uniform element r as in [7]. Formally,
Hp,q,g,ga(x, r) = gr, gar, grx, garx.

Preimage extraction. If the KE assumption holds without auxiliary information then
for any PPT, A, that outputs a valid image (gr, gar, grx, garx), there are two PPT, K1

and K2, such that K1 extracts r and K1 extracts rx. Consequently, H is extractable.
Moreover, if the KE assumption holds with respect to auxiliary information, then H
is extractable with respect to independent auxiliary information. However, H is not
extractable in the presence of dependent auxiliary information. Note that extraction
occurs here with negligible error.

Information hiding. The secrecy of this construction is similar to that of the correspond-
ing one in [7], specifically Hp,q,g(x, r) = gr, grx. In particular, secrecy of both con-
structions is based on a stronger version of the DDH assumption. Informally, ga, gb, gab

is indistinguishable from ga, gb, gz where a is drawn from a well-spread distribution
instead of uniform. However, these secrecy notions differ in two ways. First, the [7]

2 In the full version of the paper, we define a 2-round version. However, realizing this notion
seems to require stronger assumptions.

Extractable Perfectly One-Way Functions 457

construction is pseudorandom while this one is an indistinguishable POW function.
Second, secrecy in [7] holds for a randomly chosen function while we use secrecy that
holds for any function. While the former is sufficient in some applications, such as Ran-
dom Oracle instantiation in encryption schemes, the latter is needed in the ZK protocol
(Section 7). Consequently, following [20], the DDH assumption used here is assumed
to hold for any (p, q, g) instead of a randomly chosen one.

5 Construction of Interactive EPOW Functions

The construction presented here is based on hardness assumptions and achieves both
interactive extraction and perfect one-wayness. However, it does not achieve perfect
one-wayness with auxiliary information. A second construction that satisfies the latter
property appears in the full version of the paper.

The idea behind both constructions is to have pairs of related images satisfy the
property that it is easy to compute a preimage if both of them are available. In more
detail, we identify for every r, a related r̂, such that O(x, r), O(x, r̂) revealsx. However,
O(x, r), O(x, r̂) is unlikely to appear in a single execution of the extraction game. So,
the extractor can recover a preimage by sending r in the second round of the game to
get O(x, r), rewinding A, and then sending r̂ to get O(x, r̂). More details appear after
the construction.

Construction 1. Let H = {Hn}n∈N and G = {Gn}n∈N be two family ensembles.
Denote by O = {On}n∈N the family ensemble defined as:

Ok=(k1,k2,k3)(x, (r
1
0 , r

2
0 , r

3
0 , r1..., rn, rG)) =

r2
0 , r

3
0 , Hk1(x, r1

0), Hk2(t1, r1), ..., Hk2(tn, rn), Gk3 (x, rG),

where for all i, ti = Hk(x, r2
0) if xi = 1, and ti = H(x, r3

0) otherwise.

Primage extraction. For simplicity, and to see why Construction 1 is extractable assume
that A receives only a single challenge, rO , in the second round of the extraction game.
Informally,K tries to make A output two “related” hashes that allows it to recover x. In
more detail, K sends r1

0, r
2
0 , r

3
0 , r1, ..., rn to A in the first execution of the game, where

all strings are uniform. K then rewinds A and starts a new game. In the second game,
K sends u1

0,r
1
0, u

3
0, u1, ..., un, where u1

0, u
3
0, u1, ..., un are chosen uniformly but r1

0 (the
string in bold font) is the same as the one used in the first interaction. If A answers both
challenges consistently, thenK can recover x. This is so because the message in the last
round of the first game contains t = Hk1(x, r1

0) in the clear, while the message in the
last round in the second game contains Hk2(t, ui) if and only if the ith bit of x is 1.
We remark that the technical proof requires that H satisfies a strong form of collision
resistance. The formal definition and proof of extraction appears in the full version of
the paper.

Information hiding. This construction uses two functions, H and G, instead of one due
to the properties needed to prove perfect one-wayness and extractability. Specifically,
our proof of perfect one-wayness uses the assumption that H is statistically perfectly
one-way. On the other hand, extractability assumes that H satisfies strong collision re-
sistance. Currently, we do not know of any class of functions that satisfies this require-
ment except statistically binding functions. However, no single function can be both

458 R. Canetti and R.R. Dakdouk

statistically pseudorandom (hiding) and statistically binding. Therefore, we use two
functions. We assume that G is strongly collision resistant, e.g., statistically binding, so
that O is strongly collision resistance and consequently extractable. On the other hand,
H is assumed to be a statistically POW function. Therefore, if G is computationally
perfectly one-way with auxiliary information (it is sufficient that the auxiliary informa-
tion be only a statistically hiding function), then O is a computationally POW function.
We emphasize that O is a POW function but not necessarily with respect to auxiliary
information. In the full version of the paper, we modify the construction to meet this
requirement based on a strong POW assumption.

6 Instantiating the Second Encryption Scheme of [4]

We use EPOW functions to instantiate Random Oracles in the second encryption
scheme of [4] while maintaining a similar proof of security. Extractable POW functions
allow us to do so because they capture two properties of Random Oracles essential for
the original proof, namely, pseudorandomness and knowledge of queries.

The original scheme uses a family ensemble of trapdoor permutations, M, with key
space PKn and trapdoor SKn, and two random oracles O1 and O2. The encryption of
a message, m, is c = Mpk(q), O1(q)⊕m,O2(m, q), where q is uniform.

Informally, this scheme is IND-CCA2 because it is IND-CPA and the decryption
oracle does not help the adversary, A. In more detail, without access to the decryption
oracle, A has a negligible advantage because M is one-way. On the other hand, any
valid decryption query, c1, c2, c3, that A makes must be preceded by two Random Or-
acle queries, Msk(c1) and Msk(c1), O1(Msk(c1)) ⊕ c2. However, if A makes any of
these two queries it can compute the plaintext on its own without the decryption oracle.

Interactive instantiation. In the interactive setting, each oracle query is replaced by a
call to a function, H. Moreover, to encrypt a message, m, E sends a hash of a uniform
string, q, in the first round. D responds by sending random strings r1, ..., rn. In the last
round, E sends n hashes of q using r1, ..., rn as random coins for H. E also sends the
ciphertext of m using the original scheme (with H in place of the Random Oracle) with
the same q as the one used in the first round. We note that the first two messages are
independent of the plaintext and thus can be sent ahead of time.

The idea behind this instantiation is to make use of interaction to verify that the
sender actually knows q. This utilizes the fact that H satisfies interactive preimage ex-
traction. So that any adversary communicating with the decryption oracle knows what
the plaintext is. Hence, the decryption oracle does not really help the adversary. There-
fore, IND-CCA2 can be reduced to IND-CPA. Since this scheme can be shown to be
IND-CPA, it is IND-CCA2 in the interactive setting.

Noninteractive instantiation. A similar relation can be drawn between the existence of
noninteractive EPOW functions and noninteractive instantiation of this scheme. Specif-
ically, if M is a trapdoor permutation and H is an extractable (with dependent auxil-
iary information) and pseudorandom POW function with public randomness, then the
scheme, E(m, pk′ = (pk, k1)) = r1,Mpk(q), y ⊕ m,Hk1(q,m, r2), where
Hk1(q, r1) = r1, y, is IND-CCA2.3

3 The construction in Section 4 is an indistinguishable POW function but is not known to be
pseudorandom. Realizing the latter requirement with noninteractive extraction remains open.

Extractable Perfectly One-Way Functions 459

7 Overview of the 3-Round Zero-Knowledge Protocol

EPOW functions can also be used to construct 3-round ZK argument systems. Such func-
tions allow us to do so because of their knowledge and secrecy properties. Informally, the
protocol starts with the prover sending an EPOW function. The verifier responds with a
corresponding image of a uniform string. The protocol ends with the prover sending a
noninteractive witness-indistinguishable (WI) proof that either the theorem is true or the
prover “knows” a preimage of the verifier’s message. Intuitively, this protocol is sound
because the verifier’s message completely hides its preimage. Thus, the (polynomially-
bounded) prover does not “know” a preimage. Consequently, if the verifier accepts the
conversation then by the soundness property of the WI proof, the theorem has to be true.
On the other hand, this protocol is zero-knowledge because the verifier “knows” a preim-
age of its message. In other words, a simulator can use the extractor for the EPOW func-
tion to recover a preimage and produce a WI proof using this preimage as a witness. In
more detail, the simulator sends a random EPOW function in the first round. The verifier
responds with an image under this function, and the simulator uses the extractor to recover
a corresponding preimage, and then uses it as a witness in computing the noninteractive
WI proof.

We emphasize that when using the construction of Section 4 in the above ZK pro-
tocol, we do not use any algebraic property of the discrete log in a direct way. This
opens the door for basing 3-round ZK arguments on assumptions other than the KE
assumption as long as such assumptions prove sufficient for constructing such EPOW
functions.

We remark that using EPOW functions with arbitrary small but noticeable extraction
failure probability gives weak simulation, i.e., simulation fails with arbitrary small but
noticeable probability. On the other hand, if an EPOW function, such as construction of
Section 4, has negligible extraction error then simulation succeeds overwhelmingly.

Acknowledgements. We are grateful to Joan Feigenbaum for many enlightening dis-
cussions and suggestions. We also thank the anonymous referees for their helpful com-
ments and remarks.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the
(im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139.
Springer, Heidelberg (2001)

2. Barak, B., Ong, S., Vadhan, S.: Derandomization in cryptography. In: Galbraith, S.D. (ed.)
Cryptography and Coding 2007. LNCS, vol. 4887. Springer, Heidelberg (2007)

3. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152. Springer,
Heidelberg (2004)

4. Bellare, M., Rogaway, P.: Random oracles are practical:a paradigm for designing efficient
protocols. In: CCS 1993 (1993)

5. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the Inter-
national Congress of Mathematicians (1986)

6. Boldyreva, A., Fischlin, M.: On the security of OAEP. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284. Springer, Heidelberg (2006)

460 R. Canetti and R.R. Dakdouk

7. Canetti, R.: Towards realizing random oracles:hash functions that hide all partial information.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294. Springer, Heidelberg (1997)

8. Canetti, R., Dakdouk, R.R.: Extractable perfectly one-way functions. eprint (2008)
9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: STOIC

1998 (1998)
10. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash functions. In:

STOIC 1998 (1998)
11. Cramer, R., Damgard, I., Nielsen, J.B.: Multiparty computation from threshold homomor-

phic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045. Springer,
Heidelberg (2001)

12. Damgard, I.: Towards practical public key systems secure against chosen ciphertext attacks.
In: Crypto 1992 (1992)

13. Dent, A.: The cramer-shoup encryption scheme is plaintext aware in the standard model. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004. Springer, Heidelberg (2006)

14. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Comput-
ing 30 (2000)

15. Fiat, A., Shamir, A.: How to prove yourself:practical solutions to identification and signature
problems. In: Crypto 1986 (1986)

16. Federal Information Processing Standard (FIPS). Secure hash standard. NIST, FIPS publica-
tion 180 (1993)

17. Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm. In: FOCS 2003
(2003)

18. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In:
FOCS 2005 (2005)

19. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer, Heidelberg (2006)

20. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462. Springer, Heidelberg (1998)

21. Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols (eprint) (1999)
22. Katz, J.: Efficient and non-malleable proofs of plaintext knowledge and applications. In:

Eurocrypt 2003 (2003)
23. Lepinski, M.: On the existence of 3-round zero-knowledge proofs. M.S. Thesis (2002)
24. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reduc-

tions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951. Springer, Heidelberg (2004)

25. Nielsen, J.: Separating random oracle proofs from complexity theoretic proofs:the non-
committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442. Springer,
Heidelberg (2002)

26. Rivest, R.: The MD5 message-digest algorithm. IETF Network Working Group, RFC 1321
(1992)

27. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In: FOCS 1999 (1999)

28. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139. Springer,
Heidelberg (2001)

29. De Santis, A., Persiano, G.: Zero knowledge proofs of knowledge without interaction. In:
FOCS 1992 (1992)

30. Wee, H.: On obfuscating point functions. In: STOIC 2005 (2005)

Error-Tolerant Combiners

for Oblivious Primitives�

Bartosz Przydatek1 and Jürg Wullschleger2

1 Google Switzerland, Zurich, Switzerland
przydatek@google.com

2 University of Bristol Bristol, United Kingdom
j.wullschleger@bristol.ac.uk

Abstract. A robust combiner is a construction that combines several
implementations of a primitive based on different assumptions, and yields
an implementation guaranteed to be secure if at least some assumptions
(i.e. sufficiently many but not necessarily all) are valid.

In this paper we generalize this concept by introducing error-tolerant
combiners, which in addition to protection against insecure implementa-
tions provide tolerance to functionality failures: an error-tolerant
combiner guarantees a secure and correct implementation of the output
primitive even if some of the candidates are insecure or faulty. We present
simple constructions of error-tolerant robust combiners for oblivious lin-
ear function evaluation. The proposed combiners are also interesting in
the regular (not error-tolerant) case, as the construction is much more
efficient than the combiners known for oblivious transfer.

1 Introduction

The security of many cryptographic schemes is based on unproven assumptions
about difficulty of some computational problems, like factoring integer numbers
or computing discrete logarithms. Even though some standard assumptions are
supported by years of extensive study and attacks, there is still no guarantee
of their validity. Moreover, for many newer assumptions even such supporting
evidence is missing, and so in general it is unclear how to decide which assump-
tions are trustworthy. Therefore, when given several implementations of some
cryptographic primitive, each based on a different assumption, it is difficult to
decide which implementation is the most secure one.

Robust combiners offer a method of coping with such difficulties: they take as
input several candidate schemes based on different assumptions, and construct
a scheme whose security is guaranteed if at least some candidates are secure.
Such an approach provides tolerance against wrong assumptions since even a
breakthrough algorithm for breaking one (or some) of the assumptions does not
necessarily make the combined scheme insecure. The concept of robust combin-
ers is actually not so new, but a more formal treatment of robust combiners was

� Work done in part at ETH Zurich. JW is supported by EPSRC.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 461–472, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

462 B. Przydatek and J. Wullschleger

initiated quite recently [14,13]. Combiners for some primitives, like one-way func-
tions or pseudorandom generators, are rather simple, while for others, e.g., for
oblivious transfer, the construction of combiners seems considerably harder [13].

Most constructions of robust combiners proposed so far assume the correct
functionality of the candidate implementations and focus on protecting security
against wrong assumptions only.1 Such an approach is justified by the fact that
often it is possible to test or to verify the correctness of the candidates prior to
their use in the combiner [13]. However, even though in principle the correctness
tests and verification can be performed efficiently, in practice they require con-
siderable effort and expert knowledge. Moreover, such a testing-based approach
provides no protection when the errors of the candidates are controlled by an
adversary or are caused by sporadic failures after the initial tests, e.g. due to
aging hardware or external noise.

Contributions. We propose a systematic approach to coping with erroneous can-
didates input to a combiner. That is, we introduce error-tolerant combiners,
which in addition to protection against insecure assumptions and implementa-
tions provide tolerance to functionality errors of the candidates. In other words,
an error-tolerant robust combiner guarantees a secure and correct implementa-
tion of the output primitive even if some of the candidates are insecure or faulty.
To exemplify the proposed notion of error-tolerant robust combiners we focus on
two-party oblivious primitives. We present constructions of error-tolerant com-
biners for oblivious linear function evaluation (OLFE). The primitive of OLFE
can be viewed as a generalization of oblivious transfer (OT), and so is complete
for arbitrary secure distributed computations [16,11,28].

The proposed combiners are optimal in terms of candidates’ use (they use
every candidate implementation only once), and in the honest-but-curious case
work as soon as the input is non-trivial. For OT, no such reduction is known
[7]. Additionally, the presented OLFE-combiner is also interesting in the regular
(not error-tolerant) case. In particular, the construction is much more efficient
than the combiners known for oblivious transfer.

Related work. As mentioned above, there are numerous implicit uses and con-
structions of combiners in the literature (e.g., [1,9,17,8,15]), but a more rigorous
study of robust combiners was initiated only recently, by Herzberg [14] and by
Harnik et al. [13], who have formalized the notion of combiners, and have shown
constructions of combiners for various primitives. In particular Harnik et al. [13]
have proposed a combiner for key agreement, which tolerates some failures of the
candidates (cf. Sect. 2), and also have shown that not all primitives are easy to
combine. In [18] robust combiners for private information retrieval (PIR) were
proposed, and also cross-primitive combiners have been studied, which can be
viewed as generalized reductions between primitives. This generalization lead to
a partial separation of PIR from OT. In [19] generalized definitions of combin-
ers for two-party primitives have been proposed, leading to constructions strictly
stronger than the ones known before, and allowing for easier impossibility proofs.
1 A notable exception is a combiner for key agreement due to Harnik et al. [13], which

can handle some failures of the candidates (cf. discussion in Sect. 2).

Error-Tolerant Combiners for Oblivious Primitives 463

OLFE has been studied in [26], where its symmetry has been shown. Rivest
[24] has shown that with one run of OLFE a very simple commitment scheme
can be implemented. In a recent work [12], Harnik et al. improve the efficiency
of previous OT-combiners, and show that it is possible to construct them with
a constant rate. While this is a great improvement for OT-combiners, it is only
asymptotically efficient, and even then by a (probably big) constant factor less
efficient than our OLFE-combiner, which is not only much simpler, but also uses
every candidate exactly once, which is certainly optimal.

2 Preliminaries and Definitions

Primitives. We review shortly the primitives relevant in this work. For more
formal definitions we refer to the literature. The parties participating in the
protocols and the adversary are assumed to be probabilistic polynomial time
Turing machines, (PPTMs).

Oblivious transfer2 (OT) is a protocol between a sender holding two bits b0 and
b1, and a receiver holding a choice-bit c. The protocol allows the receiver to get
bit bc so that the sender does not learn any information about receiver’s choice
c, and the receiver does not learn any information about bit b1−c.

Oblivious Linear Function Evaluation (OLFE) over a finite field F is a natural
generalization of oblivious transfer for domains larger than one bit [26], and
is a special case of oblivious polynomial evaluation [20]. In OLFE over F the
sender’s input is a linear function f(x) = a1x + a0, where a0, a1, x ∈ F, and the
receiver’s input is an argument c ∈ F. The goal of OLFE is that the receiver
learns the value of sender’s function at the argument of his choice, i.e. he learns
y = f(c) (and nothing else), and the sender learns nothing. Oblivious transfer
is indeed a special case of OLFE: the output bit bc of OT with inputs (b0, b1)
and c respectively, can be interpreted as an evaluation of the linear function
f(c) = a1 · c + a0 over F2, since

bc = (b0 + b1)
︸ ︷︷ ︸
≡a1

· c + b0︸︷︷︸
≡a0

.

Many protocols based on OT can be generalized to OLFE, and thereby increasing
their efficiency. For more applications, see [20].

Secret sharing [3,25] allows a party to distribute a secret among a group of
parties, by providing each party with a share, such that only authorized subsets
of parties can collectively reconstruct the secret from their shares. We say that
a sharing among n parties is a k-out-of-n secret sharing, if any k correct shares
are sufficient to reconstruct the secret, but any subset of less than k shares gives
2 The version of oblivious transfer described here and used in this paper is more

precisely denoted as 1-out-of-2 bit-OT [10]. There are several other versions of OT,
e.g., Rabin’s OT, 1-out-of-n bit-OT, or 1-out-of-n string-OT, but all are known to
be equivalent [23,4,5].

464 B. Przydatek and J. Wullschleger

no information about the secret. A simple method for k-out-of-n secret sharing
was proposed by Shamir [25]: a party P having a secret s ∈ Fq, where q > n,
picks a random polynomial f(x) over Fq, such that f(0) = s and the degree of
f(x) is (at most) k − 1. A share for party Pi is computed as si := f(zi), where
z1, . . . , zn are fixed, publicly known, distinct non-zero values from Fq. Since the
degree of f(x) is at most k − 1, any k shares are sufficient to reconstruct f(x)
and compute s = f(0) (via Lagrange interpolation). On the other hand, any
k − 1 or fewer shares give no information about s, since they can be completed
consistently to yield a sharing of any arbitrary s ∈ F [q], and the number of
possible completions is the same for every s.

Robust Combiners. In this section we recall definitions of robust combiners,
and present generalizations for combiners of two-party primitives, which capture
constructions that can tolerate even incorrect candidates. We say that a candi-
date implements a primitive correctly, if it produces the correct output when
both players are honest, and we say that a candidate is secure for Alice (Bob),
if the action of a dishonest Bob (Alice) can be simulated in an ideal setting (for
more details cf. [22]).

Definition 1 ((k;n)-robust F-combiner [13]). Let F be a cryptographic
primitive. A (k;n)-robust F -combiner is a PPTM which gets n candidates imple-
menting F as inputs and implements F while satisfying the following properties:

1. If at least k candidates securely implement F , then the combiner securely
implements F .

2. The running time of the combiner is polynomial in the security parameter κ,
in n, and in the lengths of the inputs to F .

To capture the error-tolerance of a combiner we introduce a parameter γ, which
denotes the number of candidates that are assumed to provide correct function-
ality. The following definition of error-tolerant combiners is based on a general-
ization of Definition 1, proposed recently in [19].

Definition 2 ((α, β, γ;n)-robust F-combiner). Let F be a cryptographic
primitive for two parties Alice and Bob. A (α, β, γ;n)-robust F -combiner is a
PPTM which gets n candidates implementing F as inputs and implements F
while satisfying the following properties:

1. If at least γ candidates implement F correctly, at least α candidates imple-
ment F securely for Alice, and at least β candidates implement F securely
for Bob, then the combiner securely implements F .

2. The running time of the combiner is polynomial in the security parameter κ,
in n, and in the lengths of the inputs to F .

Combiners which are (α, β, n;n)-robust, that is constructions working only when
all candidates provide correct functionality, are called in short just (α, β;n)-
robust. Note that any (k, k;n)-robust combiner is always also a (k;n)-robust
combiner, but a (k;n)-robust combiner may not be a (k, k;n)-robust combiner.

Error-Tolerant Combiners for Oblivious Primitives 465

Motivated by an observation that the constructions of (α, β;n)-robust com-
biners can be “non-uniform”, with explicit dependence on α, β, a stronger notion
of uniform combiners was introduced in [19]. Intuitively, an {δ;n}-robust uni-
form combiner is a single construction that is simultaneously a (α, β;n)-robust
combiner for all α, β ∈ {0, . . . , n} satisfying α + β ≥ δ. In particular, a uniform
combiner doesn’t obtain the values of α, β as parameters. The next definition
generalizes the notion of uniform combiners to the error-tolerant setting.

Definition 3 ({δ, γ;n}-robust uniform F-combiner). Let F be a two-party
primitive. We say that an F-combiner is a {δ, γ;n}-robust uniform F -combiner
if it is a (α, β, γ;n)-robust F-combiner, simultaneously for all α, β ∈ {0, . . . , n}
satisfying α + β ≥ δ .

Uniform combiners which are {δ, n;n}-robust, that is constructions working
only when all candidates provide functionality, correspond to the original no-
tion {δ;n}-robust uniform combiners. Note that the parameter δ is a bound on
the sum of the number of candidates secure for Alice and the number of candi-
dates secure for Bob, hence given n candidates δ is from the range 0 . . . 2n. As
an example consider a {4; 3}-robust uniform combiner: it is a (regular) (2; 3)-
robust combiner, but at the same time it is also a (3, 1; 3)-robust combiner and
a (1, 3; 3)-robust combiner.

Error Tolerance of Robust Combiners. So far research on robust combin-
ers focused on protection against wrong computational assumptions, and the
proposed constructions usually required that the candidates input to a combiner
provide the desired functionality. In general, this approach is justified by the fact
that in cryptographic schemes usually the security is based on some assumptions,
while the functionality properties are straightforward and hold unconditionally.
Moreover, Harnik et al. [13] suggested that sometimes a possible way of deal-
ing with unknown implementations of primitives is to test them for the desired
functionality before combining them.

However, in many realistic scenarios this functionality assumption is not al-
ways justified. For example, if the candidate implementations are given as black-
boxes, their failures might be time-dependent, e.g. caused by some transient
external factors, or even controlled by an adversary, due to some malicious “fea-
tures” (malware). In such a case, the testing could be successful, but the actual
run within a combiner would produce wrong results. Moreover, even if the candi-
date implementations are given as programs or software packages, it is sometimes
unreasonable to assume that a user will be able to check their functionality, as
such a check requires substantial effort and expert knowledge.

A notable exception of the above functionality assumption is a robust com-
biner for key agreement (KA) proposed by Harnik et al. [13]. This combiners
works by constructing a relaxed KA (where agreement is achieved with rela-
tively high probability), and then by using it together with an error correcting
code to increase the probability of agreement. However, this construction is also
partially based on testing (to construct a relaxed KA), and is tolerant only
against stochastic errors. In particular, the construction fails when the errors

466 B. Przydatek and J. Wullschleger

are caused by a malicious adversary which has ability of introducing arbitrary
errors in a single candidate. Such an adversary can easily force incorrect final re-
sults, by causing errors at selected locations in the transmitted codeword, which
lead to wrong error correction.

We suggest a more systematic approach to error tolerance. In particular, the
proposed definitions of error-tolerant combiners require that constructions guar-
antee correctness and security of the resulting implementation even when some
of the input candidates are under full control of an adversary.

3 Robust Combiners for OLFE

In this section, we propose a number of robust combiners for oblivious linear
function evaluation (OLFE). In particular, we present a (α, β;n)-robust OLFE-
combiner works for any α + β > n. The proposed construction achieves optimal
robustness and is much more efficient than the most efficient OT-combiners
with the same robustness [19]: it uses any candidate instance only once, which
is optimal, and therefore might be preferable in some scenarios. Moreover, we
exploit the symmetry of OLFE to construct efficient uniform OLFE-combiners.
Subsequently we present error-tolerant combiners for OLFE, which work even
if some of the input candidates are incorrect and do not guarantee the OLFE-
functionality. These combiners are optimal both terms of candidates’ use, and
in the achieved bound on α and β. For OT, no such reduction is known [7,27].

3.1 OLFE-Combiner

We start by presenting a robust OLFE-combiner, which does not provide error-
tolerance, but is of interest for at least two reasons. First, it constitutes a basis for
error-tolerant constructions presented later. Second, it is very efficient, and can
be advantageous in scenarios where otherwise an OT-combiner would be used.
For example, if we have a protocol for secure function evaluation based on OLFE,
a protocol for OLFE based on OT, and three implementations of OT from which
we assume two to be correct, it will be more efficient to use the OLFE-combiner
we present in this section than the OT-combiner: the construction would require
only half as many calls to each OT-instance. Furthermore, the construction is
perfect (its error probability is equal zero).

Recall that OLFE is a primitive defined over some finite field Fq, where the
sender’s input is a linear function f(x) = a1x + a0, with a0, a1, x ∈ Fq, and
the receiver’s input is an argument c ∈ Fq. The receiver learns the value of the
function on his input, y = f(c), and the sender learns nothing.

In our OLFE-combiner we use Shamir secret sharing scheme [25] for both
players at the same time to protect the privacy of the inputs. Given inputs
f(x) := a1x + a0 resp. c ∈ Fq, the sender and the receiver proceed as follows.
The sender picks two random polynomials A0(z) of degree n − 1 and A1(z) of
degree n−α, such that A0(0) = a0 and A1(0) = a1. The receiver picks a random
polynomial C(z) of degree n− β, such that C(0) = c. Then the parties evaluate

Error-Tolerant Combiners for Oblivious Primitives 467

Protocol OLFE-rc

sender’s input: linear function f(x) := a1x + a0, with a0, a1 ∈ Fq

receiver’s input: evaluation point c ∈ Fq

input olfe protocols: OLFE1, . . . ,OLFEn

parameters: n < q; α, β; distinct non-zero constants z1, . . . , zn ∈ Fq

1. Sender picks two random polynomials:
A0(z) of degree n− 1 such that A0(0) = a0, and
A1(z) of degree n− α such that A1(0) = a1.

2. Receiver picks a random polynomial C(z) of deg. n−β, s.t. C(0) = c.
3. ∀i ∈ [n] the parties run OLFEi, with sender holding input

fi(x) = A1(zi)x + A0(zi), and receiver holding input ci = C(zi).
4. Receiver uses the values {(z1, f1(c1), . . . , (zn, fn(cn))} to interpolate a poly-

nomial h̃(z) of degree n− 1, and outputs y = h̃(0).

()
Fig. 1. OLFE-rc: A (α,β;n)-robust OLFE-combiner for α+ β > n

locally these polynomials for n distinct non-zero values z1, . . . , zn ∈ Fq, and use
the resulting values as input to the instances of OLFE.

More precisely, we can view the two polynomials of the sender, A0(z) and
A1(z) as parts of a two-dimensional polynomial F (x, z) of degree 1 in x and
degree n − 1 in z, F (x, z) := A1(z) · x + A0(z), which satisfies F (x, 0) = f(x).
Note that for any constant zi ∈ Fq, the polynomial fi(x) := F (x, zi) = A1(zi)x+
A0(zi) is just a linear function. Furthermore we define a polynomial h(z) :=
F (C(z), z) = A1(z) · C(z) + A0(z), which clearly satisfies h(0) = f(c), i.e., h(0)
is the value the receiver should obtain. Hence the goal is now to allow the receiver
to learn h(0). To achieve this, the parties run OLFE candidates, through which
the receiver obtains sufficiently many points on h(z) to enable its interpolation
and the computation of h(0). To evaluate through OLFEi the polynomial h(z)
at any particular value zi ∈ Fq, the sender’s input is fi(x) := F (x, zi), and the
receiver’s input is C(zi).

Intuitively, the privacy of the users in this construction is protected by the
degrees of the polynomials we use. Since we have to be prepared that in worst
case only α of the n input OLFE-protocols are secure for the sender, and only β
are secure for the receiver, the polynomials A0(z) and A1(z) must have degree at
least n−α, and the degree of C(z) must be at least n−β. On the other hand, note
that h(z) is of degree max{deg(A0), deg(A1)+deg(C)} = max{n−1, 2n−α−β}.
Since we’re using n evaluation points, this degree must be at most n−1, otherwise
interpolation is not possible. This implies, that α + β > n must be satisfied.
Indeed, this construction works for any α, β with α + β > n, which is optimal.
Figure 1 presents the combiner in full detail, and its analysis is given below.

Lemma 1. Protocol OLFE-rc is correct if α + β > n.

468 B. Przydatek and J. Wullschleger

Proof. By construction, we have f(x) = F (x, 0) and c = C(0). Hence f(c) =
F (C(0), 0) = h(0). Further, we have yi := fi(ci) = f(g(zi), zi) = h(zi). Since h
has degree max{n− 1, 2n− α − β} < n, the interpolated of yi’s will result in a
polynomial h̃(z) identical to h(z). Hence, we have y = h̃(0) = h(0) = f(c). ��

Lemma 2. Protocol OLFE-rc is secure against a malicious sender if at least β
input instances of OLFE are secure against a malicious sender.

Proof. (sketch) Note that the values ci form a (n−β+1)-out-of-n secret sharing
of c, hence a malicious sender that sees at most (n−β) values of ci (of his choice)
does not get any information about c. ��

Lemma 3. Protocol OLFE-rc is secure against a malicious receiver if at least α
input instances of OLFE are secure against a malicious receiver.

A proof of this lemma is given in [22]. From the above lemmas, and from lower
bounds on robustness of OT-combiners [19] we obtain the following theorem:

Theorem 1. For every n > 1 and α, β satisfying α + β > n there exists an
efficient third-party black-box (α, β;n)-robust combiner for OLFE over Fq with
q > n. The combiner is perfect, achieves optimal robustness, and uses only one
run of each candidate instance of OLFE, which is also optimal.

3.2 Uniform OLFE-Combiner Based on Symmetry of OLFE

A two-party primitive is symmetric if it can be logically reversed, i.e. if any
implementation of a primitive F between Alice and Bob it can be logically
transformed into an implementation of F with reversed roles of Alice and Bob.
Such a logical reversal differs from physical reversal, in which the parties just
swap their roles when executing the corresponding protocol. In a recent work [19]
it was shown, that the symmetry of oblivious transfer [6,21,26] can be used to
construct efficient universal OT-combiners, which are based on an observation
that a physical reversal of a symmetric primitive followed by a logical rever-
sal (so-called swap-operation) yields an implementation with swapped security
properties. Since OLFE is also symmetric [26], we can use the same trick as in
[19] to obtain the following theorem.

Theorem 2. For any n > 1 and any δ > n there exists a third-party black-box
{δ;n}-robust uniform combiner for OLFE over Fq with q > 2n, using the swap-
operation. The combiner is perfect and uses only two runs of each candidate
instance of OLFE.

3.3 Error-Tolerant OLFE-Combiners

The OLFE-combiners described so far are very efficient, but break if any of
the candidates is incorrect, i.e. if a candidate provides incorrect output to the
receiver. In this section we present two very efficient constructions of error-
tolerant OLFE combiners, which are both robust against insecure candidates

Error-Tolerant Combiners for Oblivious Primitives 469

and tolerate erroneous candidates. However, the proposed constructions dif-
fer in the error-tolerance and robustness bounds, and also in the guaranteed
level of security. The first construction achieves better error-tolerance and ro-
bustness, but guarantees security against an honest-but-curious receiver only.
The second achieves security against malicious parties, at a cost of lower error-
tolerance and robustness. Both combiners are based on the combiner OLFE-rc
from Sect. 3.1.

OLFE-combiner with Honest-but-curious Receiver. We modify the con-
struction OLFE-rc to enable error correction while still preserving privacy of the
participants. To allow for error correction (using for example Berlekamp-Welch
algorithm [2]), we introduce additional redundancy in the information obtained
by the receiver, by decreasing the degree of the polynomial h(z). In particular,
the degree of the polynomial A0(z) (which shares the coefficient a0) is decreased
by 2ε, where ε denotes the number of erroneous candidates tolerated by the
combiner. This degree reduction of polynomial A0(z) in OLFE-rc, together with
error-correction added in Step 4 (before interpolation of a polynomial h̃(z) of de-
gree n−1−2ε), are already all modifications we need to obtain an error-tolerant
combiner. Let OLFE-rc-hr denote the resulting construction. Since the degree of
h(z) is given by max{deg(A0), deg(A1)+deg(C)} = max{n−1−2ε, 2n−α−β},
to ensure correction of up to ε errors it must hold that n− 1− 2ε ≥ 2n−α− β.
Using ε = n − γ, this implies that successful error correction is possible if
α + β + 2γ > 3n, i.e. we obtain the following lemma.

Lemma 4. Protocol OLFE-rc-hr is correct if α + β + 2γ > 3n.

Since the modifications introduced to construct OLFE-rc-hr do not affect the
information that can possibly leak (due to insecure candidates) from the receiver
to the sender, the security of the receiver remains unchanged.

Lemma 5. Protocol OLFE-rc-hr is secure against a malicious sender if at least
β input instances of OLFE are secure against a malicious sender.

To complete the security analysis of OLFE-rc-hr it remains to argue the security
of the sender.

Lemma 6. Protocol OLFE-rc-hr is secure against an honest-but-curious re-
ceiver if at least α input instances of OLFE are secure against a malicious
receiver, and if α + β + 2γ > 3n holds.

A proof of this lemma is given in [22]. From the above analysis we obtain the
following theorem:

Theorem 3. Let n > 1 and α, β, γ be such that α + β + 2γ > 3n. There exists
an efficient perfect (α, β, γ;n)-combiner for OLFE over Fq with q > n, secure
against an honest-but-curious receiver. The combiner uses only one run of each
candidate OLFE protocol.

470 B. Przydatek and J. Wullschleger

OLFE-combiner Secure Against Malicious Parties. It is not hard to see
that combiner OLFE-rc-hr does not guarantee privacy of the sender when the
receiver is malicious. For example,3 when n = 4, α = 3, β = 4, and γ = 3,
the degree of the corresponding h(z) is equal 1, i.e. only two points are needed
for interpolation of h(z). A malicious receiver can choose the evaluation points
ci arbitrarily (instead of a constant representing his polynomial C(z) of degree
n − β = 0), and so interpolate two various polynomials h′(z) and h′′(z) of
degree 1, corresponding to two values on the senders input function f(x) =
a1x + a0.

An additional simple modification is sufficient to avoid the above problem:
to ensure the privacy of the sender we increase the degree of the sharing of the
coefficient a1 by 2ε. That is, the new error-tolerant OLFE-combiner secure also
against malicious receivers, called OLFE-rc-et in the following, works as the
combiner OLFE-rc-hr, but the degree of the polynomial A1(z) is n − α + 2ε
rather than only n−α. Since now the degree degree of h(z) is given by max{n−
1 − 2ε, 2n − α − β + 2ε}, to ensure correction of up to ε errors the following
condition must then hold

n− 1− 2ε ≥ 2n− α− β + 2ε ,

and we obtain the following lemma.

Lemma 7. Protocol OLFE-rc-et is correct if α + β + 4γ > 5n.

As previously, the modifications introduced to construct OLFE-rc-et do not
affect the information that can possibly leak to the sender the security of the
receiver remains unchanged.

Lemma 8. Protocol OLFE-rc-et is secure against a malicious sender if at least
β input instances of OLFE are secure against a malicious sender.

Finally, we have to argue the security of the sender.

Lemma 9. Protocol OLFE-rc-et is secure against a malicious receiver if at least
α input instances of OLFE are secure against a malicious receiver, and if α +
β + 4γ > 5n holds.

A proof of this lemma is given in [22], and we obtain the following theorem:

Theorem 4. Let n > 1 and α, β, γ be such that α + β + 4γ > 5n. There exists
an efficient perfect (α, β, γ;n)-combiner for OLFE over Fq with q > n, secure
against malicious parties. The combiner uses only one run of each candidate
OLFE protocol.

Uniform Error-tolerant OLFE-combiners. As with the combiner OLFE-rc,
we can exploit the symmetry of OLFE and use the swap-operation (cf. Sect. 3.2)
to obtain uniform error-tolerant OLFE-combiners based on OLFE-rc-hr and
OLFE-rc-et. For details see [22].
3 Note, that these values satisfy the condition α+ β + 2γ > 3n.

Error-Tolerant Combiners for Oblivious Primitives 471

4 Conclusions

Robust combiners are a useful tool for dealing with implementations of crypto-
graphic primitives based on various computational assumptions. In this paper
we have studied robust combiners for oblivious primitives. In particular, we have
introduced error-tolerant combiners, which offer protection not only against in-
secure but also against erroneous candidate implementations. We have presented
a number of robust combiners for OLFE, both regular and error-tolerant. The
proposed constructions differ in the achieved efficiency and robustness/error-
tolerance, and offer a trade-off between these two measures.

While the presented constructions of error-tolerant combiners are optimally
efficient, they are not optimal in every respect. For example, there is a gap
in the robustness achieved by the proposed error-tolerant OLFE-combiners se-
cure against honest-but-curious and malicious parties. Of particular interest are
also regular OLFE-combiners, as they are both optimally efficient and optimally
robust. Moreover, we believe that OLFE is also interesting as a stand-alone
primitive, and not only as a special case of oblivious polynomial evaluation. In
particular, OLFE is symmetric, which allows for construction of uniform OLFE-
combiners.

References

1. Asmuth, C., Blakely, G.: An effcient algorithm for constructing a cryptosystem
which is harder to break than two other cryptosystems. Computers and Mathe-
matics with Applications 7, 447–450 (1981)

2. Berlekamp, E.R., Welch, L.R.: Error correction for algebraic block codes, U.S.
Patent 4 633 470 (1986)

3. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference. American Federation of Information Processing Societies,
pp. 313–317 (1979)

4. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg
(1988)

5. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: Proc. IEEE FOCS 1988, pp. 42–52 (1988)

6. Crépeau, C., Sántha, M.: On the reversibility of oblivious transfer. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 106–113. Springer, Heidelberg
(1991)

7. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

8. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

9. Even, S., Goldreich, O.: On the power of cascade ciphers. ACM Trans. Comput.
Syst. 3(2), 108–116 (1985)

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

472 B. Przydatek and J. Wullschleger

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a com-
pleteness theorem for protocols with honest majority. In: Proc. 19th ACM STOC,
pp. 218–229 (1987)

12. Harnik, D., Ishai, Y., Kushilevitz, E., Nielsen, J.B.: OT-combiners via secure com-
putation. In: Proc. TCC 2008. LNCS, Springer, Heidelberg (2008)

13. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners
for oblivious transfer and other primitives. In: Cramer, R.J.F. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005)

14. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

15. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

16. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM
STOC, pp. 20–31 (1988)

17. Maurer, U., Massey, J.L.: Cascade ciphers: The importance of being first. Journal
of Cryptology 6(1), 55–61 (1993). Preliminary version. In: Proc. IEEE Symposium
on Information Theory (1990)

18. Meier, R., Przydatek, B.: On robust combiners for private information retrieval
and other primitives. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
555–569. Springer, Heidelberg (2006)

19. Meier, R., Przydatek, B., Wullschleger, J.: Robuster combiners for oblivious trans-
fer. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 404–418. Springer,
Heidelberg (2007)

20. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

21. Ostrovsky, R., Venkatesan, R., Yung, M.: Fair games against an all-powerful ad-
versary. In: Advances in Computational Complexity Theory. AMS DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 155–169.
AMS (1993)

22. Przydatek, B., Wullschleger, J.: Error-tolerant combiners for oblivious primitives,
full version of this paper, Cryptology ePrint Archive, eprint.iacr.org (2008)

23. Rabin, M.O.: How to exchange secrets by oblivious transfer, Tech. Memo TR-81,
Aiken Computation Laboratory (1981), eprint.iacr.org/2005/187

24. Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes
using private channels and a trusted initializer (unpublished manuscript) (1999)

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
26. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)

EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)
27. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT

2007. LNCS, vol. 4515. Springer, Heidelberg (2007),
arxiv.org/abs/cs.CR/0608076

28. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In:
Proc. 27th IEEE FOCS, pp. 162–167 (1986)

eprint.iacr.org/2005/187
arxiv.org/abs/cs.CR/0608076

Asynchronous Multi-Party Computation
with Quadratic Communication

Martin Hirt1, Jesper Buus Nielsen2, and Bartosz Przydatek3,�

1 Dept. of Computer Science, ETH Zurich, Switzerland
2 Dept. of Computer Science, University of Aarhus, Denmark

3 Google Switzerland, Zurich, Switzerland

Abstract. We present an efficient protocol for secure multi-party computation in
the asynchronous model with optimal resilience. For n parties, up to t < n/3 of
them being corrupted, and security parameter κ, a circuit with c gates can be se-
curely computed with communication complexityO(cn2κ) bits, which improves
on the previously known solutions by a factor of Ω(n). The construction of the
protocol follows the approach introduced by Franklin and Haber (Crypto’93),
based on a public-key encryption scheme with threshold decryption. To achieve
the quadratic complexity, we employ several techniques, including circuit ran-
domization due to Beaver (Crypto’91), and an abstraction of certificates, which
can be of independent interest.

1 Introduction

Secure multi-party computation. Secure multi-party computation (MPC) allows a set of
n parties (players) to evaluate an agreed function of their inputs in a secure way, where
security means that an adversary corrupting some of the parties, cannot achieve more
than controlling their inputs and outputs. In particular, the adversary does not learn the
inputs of the uncorrupted parties, and she cannot influence the outputs of the uncorrupted
parties, except by selecting the inputs of the corrupted players. We focus on asynchronous
communication, i.e., the messages in the network can be delayed for an arbitrary amount
of time (but eventually, all messages are delivered). As a worst-case assumption, we give
the ability of controlling the delay of messages to the adversary. Asynchronous commu-
nication models real-world networks, like the Internet, much better than synchronous
communication. However, it turns out that MPC protocols for asynchronous networks
are significantly more involved than their synchronous counterparts. One reason for this
is that a player in an asynchronous network waiting for a message cannot distinguish
whether the sender is corrupted and did not send the message, or the message was sent
but delayed in the network. This implies also that in a fully asynchronous setting it is im-
possible to consider the inputs of all uncorrupted players when evaluating the function
— inputs of up to t (potentially honest) players have to be ignored.

History and related work. The MPC problem was first proposed by Yao [26] and solved
by Goldreich, Micali, and Wigderson [18] for computationally bounded adversaries and

� Work done in part at ETH Zurich.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 473–485, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

474 M. Hirt, J.B. Nielsen, and B. Przydatek

by Ben-Or, Goldwasser, and Wigderson [5] and independently by Chaum, Crépeau, and
Damgård [12] for computationally unbounded adversaries. All these protocols consid-
ered a synchronous network with a global clock. The first MPC protocol for the asyn-
chronous model (with unconditional security) was proposed by Ben-Or, Canetti, and
Goldreich [4]. Extensions and improvements, still in the unconditional model, were
proposed in [6,24]. A great overview of asynchronous MPC with unconditional security
is given in [8]. The most efficient asynchronous protocol up to date [19] communicates
O(n3κ) bits per multiplication gate, where κ is a security parameter.

Contributions. We present an asynchronous MPC protocol, cryptographically secure
with respect to an active adversary corrupting up to t < n/3 players (this is optimal
in an asynchronous network). Once the inputs are distributed, the protocol requires
O(cMn2κ) bits of communication to evaluate a circuit with cM multiplication gates and
with security parameter κ. This improves on the communication complexity of the most
efficient optimally-secure asynchronous MPC protocol by a factor of Ω(n). The new
protocol, similarly as [19], uses the approach based on threshold encryption [17, 13],
but introduces several modifications, which result in both conceptual simplification and
improved efficiency. In particular, we use a notion of certificates, which greatly simplify
the description of the protocol on an abstract level.

2 Formal Model and Preliminaries

Notation. We use n to denote the number of players (i.e., parties) participating in the
MPC protocol, we use P1, . . . , Pn to denote the players, and we use P to denote the
set of all players. For an integer m > 0 we write [m] to denote the set {1, . . . ,m}. Our
constructions are parametrized by a security parameter κ.

Communication Model. We consider an asynchronous communication network, with
point-to-point secure channels, but without guaranteed delivery of messages. An n-
player protocol is a tuple π = (P1, . . . , Pn, init), where each Pi is a probabilistic in-
teractive Turing machine, and init is an initialization function, used for the usual set-up
tasks, like initialization, setting up cryptographic keys, etc. The players communicate
over a network in which the delay between sending and delivery of a message is un-
bounded. We measure the communication complexity by the worst case number of bits
sent by the honest parties.

Security Model. We use the model of asynchronous protocols proposed by Canetti [9].
Formally our model for running a protocol is a hybrid model with a functionality init
for distributing initial cryptographic keys among the parties. We consider a poly-time
adversary, which can corrupt up to t < n/3 parties before the execution of the protocol,
i.e., we consider a static adversary, and corrupted parties are under full control of the
adversary. The adversary schedules the delivery of the messages arbitrarily, except that
it must eventually deliver all message sent be honest parties.

The security of a protocol is defined relative to an ideal evaluation of the circuit: for
any adversary attacking the protocol must exist a simulator which simulates the attack of
the adversary to any environment, given only an ideal process for evaluating the circuit.
The simulator has very restricted capabilities: It sees the inputs of the corrupted parties.

Asynchronous Multi-Party Computation with Quadratic Communication 475

Then it picks a subsetW ⊆ [n] of the parties to be the input providers, s.t. |W| ≥ n− t.
The adversary determines the inputs of the corrupted parties. The input gates of Circ
belonging to the parties from W are assigned the inputs of the corresponding parties,
and the remaining input gates are assigned default values. Then Circ is evaluated and the
outputs of the corrupted parties are shown to the simulator, which must then simulate
the entire view of an execution of the protocol.

2.1 Cryptographic Primitives and Protocols

In the proposed MPC protocols we employ a number of standard primitives and sub-
protocols. We introduce the required notation and tools with their essential properties,
and then we point to the literature to example implementations.

Homomorphic Encryption with Threshold Decryption. We assume the existence of
a semantically secure public-key encryption scheme, which additionally is homomor-
phic and enables threshold decryption, as specified below.

Encryption and decryption. For an encryption key e and a decryption key d, let Ee : M×
R → C denote the encryption function mapping a plaintext x ∈ M and a randomness
r ∈ R to a ciphertext X ∈ C, and let Dd : C → M denote the corresponding decryption
function, where M,R,C are algebraic structures, as specified below. We require that M

is a ring ZM for some M > 1, and we use "·" to denote multiplication in M. We often
use capital letters to denote encryptions of the plaintexts denoted by the corresponding
lower-case letters. When keys are understood, we write E , D instead of Ee, Dd, and we
often omit the explicit mentioning of the randomness in the encryption function E .

Homomorphic property. We require that there exist (efficiently computable) binary
operations +, ∗, ⊕, such that (M,+), (R, ∗), (C,⊕) are algebraic groups, and that Ee

is a group homomorphism, i.e. E (a, ra)⊕ E (b, rb) = E (a + b, ra ∗ rb). We use A>B
to denote A⊕ (−B), where−B denotes the inverse of B in the group C. For an integer
a and B ∈ C we use a # B to denote the sum of B with itself a times in C.

Ciphertext re-randomization. For X ∈ C and r ∈ R we let Re(X, r) = X ⊕ Ee(0, r).
We use X ′ = Re(X) to denote X ′ = Re(X, r) for a uniformly random r ∈ R. We call
X ′ = Re(X) a re-randomization of X . Note that X ′ is a uniformly random encryption
of Dd(X).

Threshold decryption. We require a threshold function sharing of decryption Dd among
n parties, i.e. that for a construction threshold tD = t+1, there is a sharing (d1, . . . , dn)
of the decryption key d (where di is intended for party Pi), satisfying the following
conditions. Given the decryption shares xi = Di,di(X) for tD distinct decryption-key
shares di, it is possible to efficiently compute x such that x = Dd(X). When keys are
understood, we write Di(X) to denote the function computing decryption share of party
Pi for ciphertext X , and x = D(X, {xi}i∈I) to denote the process of combining the
decryption shares {xi}i∈I to a plaintext x.

Security. We require the usual security of the threshold cryptosystem, cf. [13], and in
particular require that there exists an efficient two-party zero-knowledge protocol for
proving the correctness of decryption shares.

476 M. Hirt, J.B. Nielsen, and B. Przydatek

Digital Signatures. We assume the existence of a digital signature scheme unforge-
able against an adaptive chosen message attack. For a signing key s and a verifica-
tion key v, let Signs : {0, 1}∗ → {0, 1}κ denote the signing function, and let Verv :
{0, 1}∗ × {0, 1}κ → {0, 1} denote the verification function, where Verv(x, σ) = 1
indicates that σ is a valid signature on the message x. We write Signi/Veri to denote the
signing/verification operation of party Pi.

Threshold Signatures. We assume the existence of a threshold signature scheme,
which is unforgeable against an adaptive chosen message attack. For a signing key s
and a verification key v, let Ss : {0, 1}∗ → {0, 1}κ denote the signing function, and let
Vv : {0, 1}∗ × {0, 1}κ → {0, 1} denote the verification function, where Vv(m,σ) = 1
indicates that σ is a valid signature on m.

Threshold signing. We require that there exists a threshold sharing of Ss among n
parties, i.e. that for a given signing threshold tS, 1 < tS ≤ n, there exists a sharing
(s1, . . . , sn) of the signing key s (where si is intended for Pi), such that given signature
shares σi = Si,si(x) for tS distinct signing-key shares si, it is possible to efficiently
compute a signature σ satisfying Vv(x, σ) = 1. We will always have tS = n− t. When
keys are understood, we use Si(x) to denote the function computing Pi’s signature
share for the message x, and σ = S (x, {σi}i∈I) to denote the process of combining
the signature shares {σi}i∈I to a signature σ.

Security. The scheme should be unforgeable against adaptive chosen message attack
when the adversary is given (tS−1) signing-key shares, and we require that there exists
an efficient two-party zero-knowledge protocol for proving the correctness of signature
shares.

Byzantine Agreement. We require a Byzantine Agreement (BA) protocol: Each Pi

has input vi ∈ {0, 1} and output wi ∈ {0, 1}, where: Termination: If all honest parties
enter the BA, then the BA eventually terminates. Consistency: Upon termination the
outputs of all honest players are equal, i.e. wi = w for some w ∈ {0, 1}. Validity: If all
honest parties have input vi = w, then the output is w.

Cryptographic Assumptions & Instantiations of Tools. All the above tools can be
instantiated in the standard (random oracle devoid) model using known results from [23,
16, 14, 13, 3, 25, 22, 7]. For details see [20].

3 Certificates

In order to achieve robustness we require every party to prove (in zero-knowledge) the
correctness of essentially every value she provides during the protocol execution. To im-
plement this process efficiently we introduce certificates, which are used for certifying
the truth of claims. Any party can verify the correctness of a certificate locally, without
any interaction. Moreover, a certificate should provide no other information than the
truth of the claim. Finally, a party can convince any other party about the truth of the
corresponding claim by sending the certificate. More formally, we say that a bit-string
α is a certificate for claim m if there exits a publicly known, efficiently computable

Asynchronous Multi-Party Computation with Quadratic Communication 477

verification procedure V , such that the following conditions are satisfied, except with
negligible probability: if V (α,m) = 1 then claim m is true (soundness), and α gives
no other information than the truth of the claim m (zero-knowledge). Moreover we re-
quire completeness, i.e. the ability of generating certificates for true claims needed in
our protocols, like for example:

(i) «Pi knows the plaintext of Xi» (iii) «the plaintext of Xi is in the set {0, 1, 2}»
(ii) «Xi is the unique input of Pi» (iv) «at least n− t parties have received Xi»

If X is some value, and α is a certificate for some claim m about X (e.g., claim (iii)
above), then we say that X is a value certified (by α) for claim m.

We often require also that the certificates for correctness/validity of some data X im-
ply also uniqueness of the data, i.e. that it is not possible to obtain two valid certificates
for two different values for the same claim. This can be achieved by assigning unique
identifiers to every gate, every wire and every step in the protocols, and requiring that
the identifiers are parts of the claims, e.g. «Xi is input of Pi for wire id», and that parties
participate in construction of at most one certificate for a particular claim. Occasionally,
to clarify the issues, we explicitly specify the identifiers, but for simplicity the use of
identifiers is usually implict.

Constructing certificates. Certificates can be implemented in a simple way using any
signature scheme (Sign,Ver): a certificate α for claim m is just a set of at least n − t
correct signatures: α := {σi}i∈I , where |I| ≥ n− t and each σi is a signature of party
Pi on message m. To create short certificates we employ a threshold signature scheme
(S ,V) with a threshold tS = n− t (cf. Sect. 2.1). To construct a certificate α valid for
«some claim» a party collects tS correct signature shares σj = Sj(«some claim») from
different parties, and combines them to a signature α = S («some claim», {σj}j∈J),
where |J | ≥ tS . Any party knowing the corresponding public verification key v can
verify α using the algorithm V . Depending on the context, we use different methods
for creating certificates:

bilateral proofs: if Pi needs to certify knowledge of some value, or validity of some
NP-statement (cf. examples (i) and (iii), respectively), we will use 2-party zero-
knowledge proofs: Pi bilaterally proves a claim m in zero-knowledge to every
Pj , who then, upon successful completion of the proof, sends to Pi a signature
share σj = Sj(m) with a proof of correctness of the share, and Pi combines
the correct shares to get a certificate αi. We say then that “Pi constructs certifi-
cate αi for «some claim» by bilateral, zero-knowledge proofs”, denoted as αi :=
certifyzkp(«some claim»).

protocol-driven: For other claims, like (iv) and (ii), Pi also constructs a certificate αi

from a set of n − t signature shares σj , but this time Pj sends σj not in response
to a bilateral proof, but based on the current context of execution, as required by
the protocol. In this case we just say “Pi constructs certificate αi for «some claim»”
and write αi := certify(«some claim»). 1

1 Note that the signed messages can be different from the actual claim being certified, e.g, each
Pj could provide a signature share for the message «I have seenXi», and a complete signature
on such a message can be interpreted as a certificate for (iv).

478 M. Hirt, J.B. Nielsen, and B. Przydatek

An adversary corrupting up to t players can never obtain sufficiently many signature
shares: In the case of bilateral proofs an honest party never signs an incorrect claim,
hence the adversary can collect at most t < n − t shares. In the protocol-driven case,
the soundness depends on the actual claim being certified, but it will be clear from the
context. Note that the threshold n − t implies that n − 2t honest parties must sign to
create a certificate, which ensures uniqueness.

4 The New Protocol

Our protocol needs that the encryption key of a public-key encryption scheme is pub-
licly known, while the corresponding decryption key is shared among all the players.
Given such a setup the evaluation of a circuit proceeds as follows. First the parties
provide their inputs as ciphertexts of the encryption scheme. Then they cooperate to
evaluate the circuit gate-by-gate: given encryptions of inputs of a gate, parties compute
an encryption of the corresponding output of the gate, while maintaining privacy of the
intermediate values. Finally, after an encryption of the output gate is computed, parties
decrypt this encryption to learn the output. The robustness against corrupted parties is
achieved with help of certificates, which are used to certify the correct execution of the
protocol.

Intuitively, the efficiency gain stems from a combination of a ballanced distribution
of work, with the so-called circuit-randomization technique due to Beaver [1]. In this
technique the multiplication of two encrypted values is performed using a pre-generated
random triple, which in our case consists of three ciphertexts (U, V,W) containing
secret random plaintexts u, v, w ∈ M, satisfying u · v = w. Due to homomorphic
encryption, given such a triple and two ciphertexts A,B containing plaintexts a, b, we
compute a ciphertext C of c = a · b by publicly decrypting A + U and B + V , and by
using the following identity

a · b = (a + u) · (b + v)− (a + u) · v − u · (b + v) + w . (1)

Main Protocol — A High-level Overview. The protocol proceeds in four stages, a
precomputation stage, an input stage, an evaluation stage, and a termination stage. We
briefly summarize the goal of each stage:

– Precomputation stage: Players generate random triples.

– Input stage: Each player provides an encryption of his input to every other player,
and the players agree on a set of input providers.

– Evaluation stage: Players evaluate the circuit gate-by-gate, by executing concur-
rently subprotocols for every gate of the circuit.

– Termination stage: Executed concurrently to the evaluation stage, this stage ensures
that every player eventually receives the output(s) and terminates.

Strictly speaking, the presented protocol is limited to the evaluation of deterministic
circuits, but can be easily extended also to randomized circuits [20].

Asynchronous Multi-Party Computation with Quadratic Communication 479

The Circuit. For the clarity of presentation we assume that every party provides exactly
one input, and that the outputs are public, but this is without loss of generality [19]. The
function to be computed is given as a circuit Circ over the plaintext space M of the
homomorphic encryption scheme in use. The circuit is a set of labeled gates, where a
label G uniquely identifies the gate. The full description of a gate is a tuple (G, . . .),
where the parameters after the label depend on the type and the position of the gate. We
denote by G the set of all gate labels of Circ, and we use v : G → M ∪ {⊥} to refer
to the values of gates, i.e., v(G) denotes the value of gate G. Each gate has one of the
following types:

input gate: (G), consisting only of its label G = (Pi, input), where v(G) is equal to
xi, the input value provided by player Pi.

linear gate: (G, linear, a0, a1, G1, . . . , al, Gl), where l ≥ 0, a0, . . . , al ∈ M are con-
stants, and v(G) = a0 +

∑l
j=1 aj · v(Gj).

multiplication gate: (G,mul, G1, G2), where v(G) = v(G1) · v(G2).
output gate: (G, output, G1), where v(G) = v(G1) is an output value of Circ.

Dictionary. Throughout the computation each party Pi maintains a dictionaryΓi : G →
C ∪ {⊥}, containing Pi’s view on the intermediate values (encryptions) in the circuit.
Initially Γi(G) =⊥ for all labels from G. If Γi(G) = X �=⊥, then from Pi’s point of
view evaluation of gate G was completed, and X is a ciphertext encrypting the value
v(G). We say then that Pi has accepted X for G. Honest parties will agree on accepted
ciphertexts, allowing us to define a common map Γ . Furthermore, for all input gates
Γ (G) = X will be an encryption of the input that the party supplying input to that gate
intended to deliver, except for at most t parties, where X might be an encryption of a
default value. This is allowed by the security model.

Random Triples. Each party Pi maintains also a mapping Δi assigning to each mul-
tiplication gate a random triple generated during the precomputation stage, Δi : G →
C × C × C ∪ {⊥}. Initially Δi(G) =⊥, for all gates G and all j ∈ [n]. If Δi(G) =
(U, V,W) �=⊥, then Pi will use this triple for evaluating gate G. The honest parties Pi

and Pj will have Δi = Δj .

5 Subprotocols Used by the Main Protocol

Below we present subprotocols of the main protocol. First we present a protocol SELECT,
which is a basic subprotocol used both in the precomputation and input stages. Then we
describe the subprotocols for the main stages.

Selecting Values. Protocol SELECT is used for selecting values provided by the players
during the computation. It is parametrized by a condition ϕ (like e.g. «Xi is Pi’s valid
input»), which has to be satisfied for each input to the protocol, and certified by an
appropriate certificate. We require that ϕ implies uniqueness, i.e., that every party can
obtain a corresponding certificate valid for ϕ for at most one input value used in any
execution of SELECT.

The protocol proceeds as follows (cf. Fig. 1): First Pi distributes its input (Xi, αi)
to all parties, and then constructs and distributes a certificate of distribution βi, which

480 M. Hirt, J.B. Nielsen, and B. Przydatek

Protocol SELECT(ϕ), code for Pi: given input Xi with a certificate αi valid for condition ϕ(i)
initialize sets Ai,Ai, Ci as empty, then execute the following rules concurrently:
DISTRIBUTION:

1. send (Xi, αi) to all parties.
2. construct and send to all parties βi := certify(«we hold Pi’s input Xi»)

GRANT CERTIFICATE OF DISTRIBUTION: Upon first (Xj , αj) from Pj with αj valid for ϕ(j):
add j to Ai, add (Xj , αj) to Ai, and send σi :=Signi(«we hold Pj’s input Xj») to Pj .

ECHO CERTIFICATE OF DISTRIBUTION: Upon (Xj , βj) with βj valid for
«we hold Pj’s input Xj» and j �∈ Ci: add j to Ci and send (Xj , βj) to all parties.

SELECTION: If |Ci| ≥n−t, stop executing all above rules and proceed as follows:

1. send (Ai,Ai) to all parties.
2. collect a set {(Aj ,Aj)}j∈J of (n − t) well-formed (Aj ,Aj); let Bi :=

⋃
j∈J Aj and

Bi :=
⋃

j∈J Aj

3. enter n Byzantine Agreements (BAs) with inputs v1 . . . vn, where vj = 1 iff j ∈ Bi.
4. let w1, . . . , wn be the outputs of the BAs; letW := {j ∈ [n]| wj = 1}.
5. ∀ j ∈ Bi ∩W: send (Xj , αj) ∈ Bi to all parties.
6. collect and output (W, {(Xj , αj)}j∈W).

Fig. 1. Protocol SELECT(ϕ)

proves that Pi has distributed (Xi, αi) to at least n − t parties. When a party collects
n− t certificates of distribution, she knows that at least n− t parties have their certified
inputs distributed to at least n − t parties. So, at least n − t parties had their certified
inputs distributed to at least (n−t)−t ≥ t+1 honest parties. Hence, if all honest parties
echo the certified inputs they saw and collect n − t echoes, then all honest parties will
end up holding the certified input of the n − t parties, which had their certified inputs
distributed to at least t + 1 honest parties. These n − t parties will eventually be the
input providers. To determine who they are, n Byzantine Agreements are run.

Precomputation Stage. The goal of this stage is the generation of certified random
triples. The corresponding protocol GEN-TRIPLES uses two subprotocols: protocol
SELECT presented above, and protocol ONE-TRIPLE for generating a single random triple
in a computation lead by one of the parties.2 Given these two sub-protocols, we proceed
as follows (Fig.5): first every party generates its own random triple using ONE-TRIPLE,
and then uses this triple as input to SELECT, in which parties agree on at least (n − t)
triples.

In protocol ONE-TRIPLE we need to generate certified, encrypted random values un-
known to any party, so first we present a sub-protocol RANDOM (Fig. 3), which achieves
exactly that. Given (U,α) output by RANDOM, king Pk can extend it to a random triple
using ONE-TRIPLE, see Fig. 4. Note that when computing a certificate βi for the claim
«Pi knows vi in Vi, and Wi is a randomization of vi � U» the variables Pi, Vi, Wi, and U

2 In the ONE-TRIPLE protocol one party, say Pk , plays the role of a leader (called king) who with
help of other players (called slaves), generates Pk’s own random triple (U (k), V (k),W (k))
together with a certificate σ(k) certifying the triple’s correctness.

Asynchronous Multi-Party Computation with Quadratic Communication 481

To generate cM random triples and reach agreement on them, parties proceed as follows:

1. Every party Pk, k ∈ [n] starts as a king for � = %cM/(n − t)& in-
stances of ONE-TRIPLE(id, k) protocol to generate � certified random triples
(U (k,s), V (k,s),W (k,s);σ(k,s)), s = 1, . . . , � (all parties play roles of slaves to help the
king in Pk’s instances)

2. All parties start SELECT, where party Pi uses as its input the triples
(U (i,s), V (i,s),W (i,s);σ(i,s)) generated in the previous step. When SELECT ter-
minates, parties have agreed on a set of at least �(n − t) ≥ cM valid triples
{(U (j), V (j),W (j))}j∈J .

3. Every party Pi initializes its mapping Δi, using the triples from the previous step in some
pre-agreed order.

Fig. 2. Protocol GEN-TRIPLES for generating random triples

To generate for king Pk a certified random ciphertext (U,α), with α valid for «U : 1st part of
triple id(k)» parties proceed as follows:

GENERATION: code for every Pi:

1. pick random ui ∈ M and compute Ui := E (ui)
2. construct βi = certifyzkp(«Pi knows ui in Ui»)
3. compute σi := Signi(«Ui : component of 1st part of triple id(k)»)
4. send (Ui, βi, σi) to Pk:

CONSTRUCTION: code for Pk:

1. collect a set Sid(k) := {(Ui, βi, σi)}i∈Iid(k) , |Iid(k)| ≥ t + 1, with each βi valid for «Pi

knows ui in Ui»,
and each σi valid for «Ui : component of 1st part of triple id(k)».

2. send Sid(k) to all parties; each Pi computes U :=
⊕

i∈Iid(k)
Ui, and helps to construct α

in the next step.
3. construct α := certify(«U : 1st part of triple id(k)»).
4. output (U,α).

Fig. 3. Protocol RANDOM(id, k) for generating a certified random value for king Pk

are replaced by the actual values they stand for, but vi stays as a literal, since it is just a
name for the plaintext from Vi.

On the use of Byzantine Agreement. The protocol GEN-TRIPLES uses n BAs (as it in-
vokes SELECT) and generates n − t random triples. To implement multiplication of
encrypted values via circuit randomization (cf. Fig. 6), we need one random triple per
multiplication gate. A straightforward solution would be to use � = 2cM/(n− t)3 runs
of GEN-TRIPLES, but this would lead toO(cM) invocations of BA. To avoid this, we run
� invocations of ONE-TRIPLE in parallel, using only one invocation of SELECT. In partic-
ular, in the second step of GEN-TRIPLE each Pi uses all � triples as its input to SELECT.
Since SELECT returns a set of at least (n − t) inputs, we obtain an agreement on cM
random triples with only n BAs, which is independent of the circuit size.

482 M. Hirt, J.B. Nielsen, and B. Przydatek

To generate for Pk a certified random triple (U, V,W ;β), with β valid for «(U, V,W): correct
triple id(k)» parties proceed as follows:

REQUEST: code for Pk:

1. run RANDOM(id, k) to generate (U,α), with α valid for «U : 1st part of triple id(k)», and
send (U,α) to all parties.

REPLY: code for every Pi:

1. wait for (U,α) from Pk

2. compute Vi := E (vi) and Wi = R(vi � U) for a random vi ∈ M

3. construct βi := certifyzkp(«Pi knows vi in Vi, and Wi is a randomization of vi � U»)

4. compute σi := Signi(«(Vi,Wi) : part of triple id(k)»)

5. send (Vi,Wi;βi, σi) to Pk

CONSTRUCTION: code for Pk:

1. collect Tid(k) := {(Vi,Wi;βi, σi)}i∈Iid(k) , with each σi valid for «(Vi,Wi) : part of triple
id(k)», and each βi valid for «Pi knows vi in Vi, and Wi is a randomization of vi � U»
|Iid(k)| ≥ t+ 1.

2. send Tid(k) to all parties; each Pi computes V :=
⊕

i∈Iid(k)
Vi, W :=

⊕
i∈Iid(k)

Wi, and

helps to construct β in the next step.

3. construct β := certify(«(U,V,W): correct triple id(k)»).

4. output (U, V,W ;β).

Fig. 4. Protocol ONE-TRIPLE(id, k) for generating a random triple for king Pk

Input stage code for Pi: given an input xi ∈ M do the following:

1. compute Xi := E (xi) and construct αi := certifyzkp(«Xi is Pi’s valid input») (every
party Pj helps to construct at most one αi, for each Pi ∈ P).

2. enter execution of SELECT protocol with input (Xi, αi).
3. output value(s) returned by SELECT.

Fig. 5. The input stage code for Pi holding input xi ∈ M

Input Stage. The protocol is presented in Fig. 5. When providing (encrypted) inputs,
the parties are required to prove plaintext knowledge for their encryptions, to ensure
independence of the inputs. To cope with the inherent problems of the asynchronous
setting we use a protocol SELECT to agree on inputs from at least (n−t) input providers,
whose private inputs will be used in the actual computation. For the remaining inputs
the default values will be used.

Computing Linear Gates. Due to the homomorphic property of encryption, linear
gates are computed locally, without interaction: after Pi accepts encryptions of inputs to
a gate (G, linear, a0, G1, a1, . . . , Gl, al), i.e. when Γi(Gu) �=⊥, for u = 1 . . . l, then Pi

Asynchronous Multi-Party Computation with Quadratic Communication 483

Party Pi evaluating a multiplication gate (G,mul, G1, G2):

1. wait until A := Γi(G1) �=⊥, B := Γi(G2) �=⊥, and (U,V,W) := Δi(G) �=⊥
2. compute X := A⊕ U and Y := B ⊕ V
3. compute decryption shares and corresponding validity proofs: xi := Di(X), βi :=

certifyzkp(«xi is valid») yi := Di(Y), γi := certifyzkp(«yi is valid»); send (xi, βi) and
(yi, γi) to all parties

4. collect sets X := {(xj , βj)} and Y := {(yj , γj)}, each containing tD correct decryption
shares, with corresponding validity proofs.

5. compute plaintexts x := D(X,X) and y := D(Y,Y).
6. compute Z := E (x · y, r0) for a public constant r0, and set Γi(G) := Z ' (x � V)' (y �
U)⊕W

Fig. 6. Code for Pi evaluating a multiplication gate

Party Pi evaluating an output gate (G, output, G1):

1. wait until Γi(G1) = C �=⊥
2. compute a decryption share ci := Di(C) & a certificate δi := certifyzkp(«ci is valid»);

send (ci, δi) to every Pj

3. collect a set T = {(cj , δj)} of tD decryption shares for C, with corresponding validity
certificates δj

4. compute c := D(C, T)
5. compute and send to all parties a signature share σi,G = Si(«The value of G is c»), to-

gether with a certificate of its correctness, ξi,G := certifyzkp(«σi,G is correct»)
6. collect a set {σi,G, ξi,G}i∈I of tS certified signature shares and compute ζG =

S (x, {σi}i∈I) valid for «The value of G is c»
7. mark G as decrypted

Fig. 7. Code for player Pi evaluating an output gate

computes Γi(G) := A0⊕
(⊕l

u=1(aj # Γi(Gu))
)

, where A0 is a “dummy” encryption

of a0, computed using fixed, public random bits.

Computing Multiplication Gates. The multiplication protocol (Fig. 6) is based on a
trick by Beaver [1]. Essentially, this trick reduces the problem of multiplication to two
decryptions and a few linear operations (cf. eq. (1)).

Output Stage. When Pi completes the computation of a gate (G, output, G1) (i.e.
when Γi(G) = C �=⊥), but the gate has not been decrypted yet, then Pi sends a de-
cryption share ci of C to all parties, along with a certificate for the correctness of the
share. Every Pj collects sufficiently many certified decryption shares, and uses them to
decrypt the output. Subsequently the parties construct a certificate ζG, which certify-
ing that the decrypted output value is correct. With such a certificate any party Pi can
convince any other party about the correctness of the output.

484 M. Hirt, J.B. Nielsen, and B. Przydatek

Termination Stage. Essentially, every Pi waits until he receives or computes the de-
crypted output value with a correctness certificate, and echoes this certified output to all
parties before terminating (see [20] for details).

Summary. The main result of this paper is summarized in the theorem below. The
analysis leading to this theorem is presented in the full version [20].

Theorem 1. Assuming the cryptographic primitives from Sect. 2.1, there exists a pro-
tocol allowing n parties connected by an asynchronous network to securely evaluate
any circuit in the presence of a poly-time adversary actively corrupting up to t < n/3
parties. The bit complexity of the protocol is O((cI + cM + cO)n2κ), where cI , cM ,
cO denote the number of input, multiplication, and output gates, respectively, and κ is
a security parameter.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Proc. ACM CCS, pp. 62–73 (1993)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures — How to sign with RSA
and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416.
Springer, Heidelberg (1996)

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp.
52–61 (1993)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: Proc. 20th STOC, pp. 1–10 (1988)

6. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal re-
silience. In: Proc. 13th PODC, pp. 183–192 (1994)

7. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinopole: Practical asyn-
chronous Byzantine agreement using cryptography. In: Proc. 19th PODC, pp. 123–132
(2000)

8. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weiz-
mann Institute of Science, Rehovot 76100, Israel (June 1995)

9. Canetti, R.: Security and composition of multiparty cryptographic protocols. JoC 13(1), 143–
202 (2000)

10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In:
Proc. 30th STOC, pp. 209–218 (1998)

11. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In:
Proc. 25th STOC, pp. 42–51 (1993)

12. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended
abstract). In: Proc. 20th STOC, pp. 11–19 (1988)

13. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomor-
phic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300.
Springer, Heidelberg (2001)

14. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 110–
136. Springer, Heidelberg (2001)

Asynchronous Multi-Party Computation with Quadratic Communication 485

15. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987)

16. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries.
In: Proc. Financial Cryptography 2000 (2000)

17. Franklin, M., Haber, S.: Joint encryption and message-efficient secure computation. JoC 9(4),
217–232 (1996); Preliminary version in Proc. CRYPTO 1993

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game — a completeness
theorem for protocols with honest majority. In: Proc. 19th STOC, pp. 218–229 (1987)

19. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation
with optimal resilience (extended abstract). In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005)

20. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic
communication (2008), eprint.iacr.org

21. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

22. Nielsen, J.B.: A threshold pseudorandom function construction and its applications. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 401–416. Springer, Heidelberg (2002)

23. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg
(1999)

24. Prabhu, B., Srinathan, K., Rangan, C.P.: Asynchronous unconditionally secure computation:
An efficiency improvement. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS,
vol. 2551, pp. 93–107. Springer, Heidelberg (2002)

25. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

26. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE FOCS, pp. 160–164
(1982)

eprint.iacr.org

Improved Garbled Circuit: Free XOR Gates

and Applications

Vladimir Kolesnikov1 and Thomas Schneider2,�

1 Bell Laboratories, 600 Mountain Ave. Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

2 Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
thomas.schneider@trust.rub.de

Abstract. We present a new garbled circuit construction for two-party
secure function evaluation (SFE). In our one-round protocol, XOR gates
are evaluated “for free”, which results in the corresponding improvement
over the best garbled circuit implementations (e.g. Fairplay [19]).

We build permutation networks [26] and Universal Circuits (UC) [25]
almost exclusively of XOR gates; this results in a factor of up to 4 im-
provement (in both computation and communication) of their SFE. We
also improve integer addition and equality testing by factor of up to 2.

We rely on the Random Oracle (RO) assumption. Our constructions
are proven secure in the semi-honest model.

1 Introduction

Two-party general secure function evaluation (SFE) allows two parties to evalu-
ate any function on their respective inputs x and y, while maintaining privacy of
both x and y. SFE is (justifiably) a subject of immense amount of research, e.g.
[27,28,17]. Efficient SFE algorithms enable a variety of electronic transactions,
previously impossible due to mutual mistrust of participants. Examples include
auctions [21,6,8,4], contract signing [7], distributed database mining [12,16], etc.
As computation and communication resources have increased, SFE has become
truly practical for common use. Fairplay [19] is a full-fledged implementation of
generic two-party SFE with malicious players. It clearly demonstrates feasibility
and efficiency of SFE of many useful functions, represented as circuits of up to
≈ 106 gates. Today, generic SFE is a relatively mature technology, and even
improvements by a small factor are non-trivial and are most welcome.

One area of SFE that especially benefits from our work is the SFE of private
functions (PF-SFE). It is an extension of SFE where the evaluated function is
known only by one party and needs to be kept secret (i.e. everything besides
the size, the number of inputs and the number of outputs is hidden from the
other party). Examples of real-life private functions include airport no-fly check
function, credit evaluation function, background- and medical history checking

� The work was done while the author was visiting Bell Laboratories.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 486–498, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Garbled Circuit: Free XOR Gates and Applications 487

function, etc. Full or even partial revelation of these functions opens vulnera-
bilities in the corresponding process, exploitable by dishonest participants (e.g.
credit applicants), and should be prevented. It is known that the problem of
PF-SFE can be reduced to the “regular” SFE [24,23]. This is done by evaluat-
ing a Universal Circuit (UC) [25,15] instead of a circuit defining the evaluated
function. UC can be thought of as a “program execution circuit”, capable of
simulating any circuit C of certain size, given the description of C as input.
Therefore, disclosing the UC does not reveal anything about C, except its size.
At the same time, the SFE computes output correctly and C remains private,
since the player holding C simply treats description of C as additional (private)
input to SFE. This reduction is the most common (and often the most efficient)
way of securely evaluating private functions [24,23,15].

1.1 Related Work

General SFE has been a subject of immense amount of research, started by Yao
[27,28], which resulted in significant advances in the field [9,21,17]. Fairplay [19]
is a full practical implementation of general SFE based on garbled circuits.

Information-theoretic setting of SFE has also received a large amount of at-
tention, e.g. [13,11]. However, due to the restrictions of the model, the resulting
protocols are less efficient than those in the generous RO model. We apply some
of the ideas of this setting, such as the efficient XOR gate construction (e.g.
Construction 4 of [14]), in the RO setting, to obtain more efficient protocols.

1.2 Our Contributions

We present a new garbled circuit construction for two-party secure function eval-
uation (SFE) in the semi-honest model. In our one-round protocol, XOR gates
are evaluated “for free” (that is, without the use of the associated garbled tables
and the corresponding hashing or symmetric key operations). Our construction
is as efficient as the best garbled circuit implementations (e.g. Fairplay [19]) in
handling other gates.

We next show that free XOR gates bring significant benefit to many SFE
settings. We show how to build permutation networks [26] and UC [25,15] almost
exclusively of XOR gates; this results in a factor of up to 4 improvement (in both
computation and communication) of their SFE. As discussed above, SFE of UC
is the most efficient way of evaluating private functions; thus our work improves
performance of PF-SFE almost fourfold. We note that other useful functions
can benefit from free XOR gates. We show how to obtain a factor of up to 2
improvement of SFE of integer addition and equality testing.

We rely on the RO assumption; we discuss its (conservative) use in Sect. 3.1.

2 Setting and Preliminaries

We consider acyclic boolean circuits with k gates and arbitrary fan-out. That is,
the (single) output of each gate can be used as input to an arbitrary number of

488 V. Kolesnikov and T. Schneider

gates. We assume that the gates G1, . . . , Gk of the circuit are ordered topologi-
cally. This order (which is not necessarily unique) ensures that the i-th gate Gi

has no inputs that are outputs of a successive gate Gj , where j > i. A topological
order can always be obtained on acyclic circuits, with O(k) computation.

We concentrate on the semi-honest model, where players follow the protocol,
but try to learn information from the execution transcripts.

We use the following standard notation: ∈R denotes uniform random sam-
pling, || denotes concatenation of bit strings. 〈a, b〉 is a vector with two compo-
nents a and b, and its bit string representation is a||b. Wc = g(Wa,Wb) denotes
a 2-input gate G that computes function g : {0, 1}2 → {0, 1} with input wires
Wa and Wb and output wire Wc.

Let N be the security parameter. Let S be an infinite set and let X =
{Xs}s∈S and Y = {Ys}s∈S be distribution ensembles. We say that X and Y
are computationally indistinguishable, denoted X

c≡ Y , if for every non-uniform
polynomial-time distinguisher D and all sufficiently large s ∈ S, |Pr[D(Xs) =
1]− Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p.

Random Oracle. RO model is a useful abstraction, introduced and justified by
[3]. RO is simply a randomly chosen function {0, 1}∗ -→ {0, 1}N – a large object
which cannot be fully stored or traversed by polytime players. RO model gives
oracle access to such function to all players. In practice, ROs are modeled by
hash functions, such as SHA. Although it was shown [5] that a protocol secure
in the RO model may not be secure once RO is instantiated, “natural” RO
protocols maintain their security in practice, and are widely used.

Oblivious Transfer (OT). The 1-out-of-2 OT is a two-party protocol. The
sender P1 has two secrets m0,m1, and the receiver P2 has an selection bit i ∈
{0, 1}. At the end of the protocol, P2 learns mi, but nothing about m1−i, and
P1 learns nothing about i. One-round OT is a widely studied primitive in the
standard model [2,1], with improved implementations in the RO model [20,3].

Yao’s Garbled Circuit (GC). The GC approach, excellently presented in [17],
is the most efficient method of SFE of boolean circuits. Here we summarize its
idea. Player P1 first garbles circuit C: for each wire Wi, he randomly chooses two
secrets, w0

i and w1
i , where wj

i is a garbled value, or garbling, of the Wi’s value j.
(Note: wj

i does not reveal j.) Further, for each gate Gi, P1 creates and sends to
P2 a garbled table Ti, with the following property: given a set of garblings of Gi’s
inputs, Ti allows to recover the garbling of the corresponding Gi’s output, and
nothing else. Then garblings of players’ inputs are (obliviously) transferred to P2.
Now, P2 can obtain the garbled output simply by evaluating the garbled circuit
gate by gate, using the tables Ti. We call Wi’s garbling wj

i active if Wi assumes
the value j when C is evaluated on the given input. Observe that for each wire,
P2 can obtain only its active garbling. The output wires of the circuit are not
garbled (or their garblings are published), thus P2 learns (only) the output of
the circuit, and no internal wire values. P1 learns the output from (semi-honest)
P2. (This step is trivial in the semi-honest model, and is usually not considered

Improved Garbled Circuit: Free XOR Gates and Applications 489

in the analysis.) Correctness of GC follows from method of construction of tables
Ti. Neither party learns any additional information from the protocol execution.

3 Our Protocol

Overview. In our construction, we combine GC with the simple information-
theoretic SFE implementation of XOR-gates (e.g., Construction 4 of [14]). In
all GC implementations, XOR gates cost as much as AND or OR gates (i.e. in
computation and communication required for creation, transfer and evaluation
of the garbled tables). The XOR gates of Kolesnikov [14] are free of these costs.
However, his construction imposes a restrictive global relationship on the wire
secrets, which prevents its use in previous GC schemes. In this work, we show
how to overcome this restriction.

First, we show an SFE implementation of the XOR gate G, derived from one
of [14]. Let G have two input wires Wa,Wb and output wire Wc. Garble the wire
values as follows. Randomly choose w0

a, w
0
b , R ∈R {0, 1}N . Set w0

c = w0
a ⊕ w0

b ,
and ∀i ∈ {a, b, c} : w1

i = w0
i ⊕ R. It is easy to see that the garbled gate output

is simply obtained by XORing garbled gate inputs:
w0
c = w0

a ⊕ w0
b = (w0

a ⊕R)⊕ (w0
b ⊕R) = w1

a ⊕ w1
b

w1
c = w0

c⊕R = w0
a⊕(w0

b ⊕R) = w0
a⊕w1

b = (w0
a⊕R)⊕w0

b = w1
a⊕w0

b . Further,
garblings wj

i do not reveal the wire values they correspond to.
We can now pinpoint the restriction that the above XOR construction imposes

on the garbled values – the garblings of the two values of each wire in the circuit
must differ by the same value, i.e. ∀i : w1

i = w0
i ⊕R, for some global R. In con-

trast, in previous GC constructions, all garblings wj
i were chosen independently

at random, and proofs of security relied on that property.
Our main observation is that it is not necessary to select all garblings

independently. In our construction (Sect. 3.1), we choose a random R once, and
garble wire values, so that ∀i : w1

i = w0
i ⊕R.

3.1 Our Garbled Circuit Construction

Let C be a circuit. We first note that NOT gates can be implemented “for free”
by simply eliminating them and inverting the correspondence of the wires’ values
and garblings. We thus do not further consider NOT gates.

We implement XOR gates as discussed above in Sect. 3. Further, we replace
each XOR-gate with n > 2 inputs with n− 1 two-input XOR-gates.

We implement all other gates using standard garbled tables [19]. Namely,
each gate with n inputs is assigned a table with 2n randomly permuted entries.
Each entry is an encrypted garbling of the output wire, and garblings of the
input wires serve as keys to decrypt the “right” output value. For simplicity,
we present our construction and proof for the case n = 2. The generalization to
n-input gates (n ≥ 1) is straightforward.

In Alg. 1 below, each garbling w = 〈k, p〉 consists of a key k ∈ {0, 1}N and a
permutation bit p ∈ {0, 1}. The key is used for decryption of the table entries,

490 V. Kolesnikov and T. Schneider

and p is used to select the entry for decryption. The two garblings w0
i , w

1
i of

each wire Wi are related as required by the XOR construction: for a chosen
R ∈R {0, 1}N , ∀i : w1

i =
〈
k1
i , p

1
i

〉
=
〈
k0
i ⊕R, p0

i ⊕ 1
〉
, where w0

i =
〈
k0
i , p

0
i

〉
.

H : {0, 1}∗ -→ {0, 1}N+1 is a RO.
We now formalize the above intuition and present the GC construction (Alg.

1) and evaluation (Alg. 2). In SFE, Alg. 1 is run by P1 and Alg. 2 is run by P2.

Algorithm 1. (Construction of a garbled circuit)

1. Randomly choose global key offset R ∈R {0, 1}N
2. For each input wire Wi of C

(a) Randomly choose its garbled value w0
i =

〈
k0
i , p

0
i

〉
∈R {0, 1}N+1

(b) Set the other garbled output value w1
i =

〈
k1
i , p

1
i

〉
=
〈
k0
i ⊕R, p0

i ⊕ 1
〉

3. For each gate Gi of C in topological order
(a) label G(i) with its index: label(Gi) = i
(b) If Gi is an XOR-gate Wc = XOR(Wa,Wb) with garbled input values

w0
a =

〈
k0
a, p

0
a

〉
, w0

b =
〈
k0
b , p

0
b

〉
, w1

a =
〈
k1
a, p

1
a

〉
, w1

b =
〈
k1
b , p

1
b

〉
:

i. Set garbled output value w0
c =

〈
k0
a ⊕ k0

b , pa ⊕ pb
〉

ii. Set garbled output value w1
c =

〈
k0
a ⊕ k0

b ⊕R, pa ⊕ pb ⊕ 1
〉

(c) If Gi is a 2-input gate Wc = gi(Wa,Wb) with garbled input values
w0
a =

〈
k0
a, p

0
a

〉
, w0

b =
〈
k0
b , p

0
b

〉
, w1

a =
〈
k1
a, p

1
a

〉
, w1

b =
〈
k1
b , p

1
b

〉
:

i. Randomly choose garbled output value w0
c =

〈
k0
c , p

0
c

〉
∈R {0, 1}N+1

ii. Set garbled output value w1
c =

〈
k1
c , p

1
c

〉
=
〈
k0
c ⊕R, p0

c ⊕ 1
〉

iii. Create Gi’s garbled table. For each of 22 possible combinations of
Gi’s input values va, vb ∈ {0, 1}, set

eva,vb
= H(kva

a ||kvb

b ||i)⊕ wgi(va,vb)
c

Sort entries e in the table by the input pointers, i.e. place entry eva,vb

in position 〈pva
a , pvb

b 〉
4. For each circuit-output wire Wi (the output of gate Gj) with garblings

w0
i =

〈
k0
i , p

0
i

〉
, w1

i =
〈
k1
i , p

1
i

〉
:

(a) Create garbled output table for both possible wire values v ∈ {0, 1}. Set

ev = H(kvi ||“out”||j)⊕ v

Sort entries e in the table by the input pointers, i.e. place entry ev in
position pvi . (There is no conflict, since p1

i = p0
i ⊕ 1.)

Note, our encryption of table entries (Step 3(c)iii) is similar to that of Fairplay
[19, Section 4.2]. Fairplay uses eva,vb

= H(kva
a ||i||pva

a ||pvb

b)⊕H(kvb

b ||i||pva
a ||pvb

b)
⊕w

gi(va,vb)
c . This is a non-essential difference; we could use Fairplay’s encryption.

Intuition for security. (A formal proof is given in Sect. 3.2.) Alg. 1 uses the
output of the RO H as a one-time pad to encrypt the garbled output values
in the garbled tables (Step 3(c)iii) and the garbled output tables (Step 4a).
Note, any specific combination of H ’s inputs (keys and gate indices) is used for
encryption of at most one table entry throughout our construction. (We assume

Improved Garbled Circuit: Free XOR Gates and Applications 491

that concatenation and string representation inside H is done “right”.) Further,
since the evaluator of the garbled circuit only knows one garbled value per wire,
he can decrypt exactly one entry of Gi’s garbled table. All other entries are
encrypted with at least one key that cannot be guessed by a polytime evaluator.
Therefore, one of the two of garbled values of every wire looks random to him.

We now give the corresponding GC evaluation algorithm, run by P2. Recall,
P2 obtains all garbled tables and the garblings of P1’s input values from P1.
Garblings of input values held by P2 are sent via OT.

Algorithm 2. (Evaluation of a garbled circuit):

1. For each input wire Wi of C
(a) Receive corresponding garbled value wi = 〈ki, pi〉

2. For each gate Gi (in the topological order given by labels)
(a) If Gi is an XOR-gate Wc = XOR(Wa,Wb) with garbled input values

wa = 〈ka, pa〉 , wb = 〈kb, pb〉
i. Compute garbled output value wc = 〈kc, pc〉 = 〈ka ⊕ kb, pa ⊕ pb〉

(b) If Gi is a 2-input gate Wc = gi(Wa,Wb) with garbled input values wa =
〈ka, pa〉 , wb = 〈kb, pb〉

i. Decrypt garbled output value from garbled table entry e in position
〈pa, pb〉: wc = 〈kc, pc〉 = H(ka||kb||i)⊕ e

3. For each C’s output wire Wi (output of gate Gj) with garbling wi = 〈ki, pi〉
(a) Decrypt output value fi from garbled output table entry e in row pi :

fi = H(ki||“out”||j)⊕ e

The GC construction and evaluation algorithms can be directly used to obtain
the GC-based SFE protocol, in a standard manner. For completeness, we include
the description of this protocol.

Protocol 1. (Two-party SFE protocol):

– Inputs: P1 has private input x = 〈x1, .., xu1〉 ∈ {0, 1}u1 and P2 has private
input y = 〈y1, .., yu2〉 ∈ {0, 1}u2.

– Auxiliary input: A boolean acyclic circuit C such that ∀x ∈ {0, 1}u1, y ∈
{0, 1}u2, it holds that C(x, y) = f(x, y), where f : {0, 1}u1 × {0, 1}u2 →
{0, 1}v. We require that C is such that if a circuit-output wire leaves some
gate G, then gate G has no other wires leading from it into other gates (i.e.,
no circuit-output wire is also a gate-input wire). Likewise, a circuit-input
wire that is also a circuit-output wire enters no gates. We also require that
C is modified to contain no NOT-gates and all n-input XOR-gates with n > 2
replaced by 2-input XOR-gates as described in Section 3.1.

– The protocol:
1. P1 constructs the garbled circuit using Algorithm 1 and sends it (i.e. the

garbled tables) to P2.
2. Let W1, ..,Wu1 be the circuit input wires corresponding to x, and let

Wu1+1, ..,Wu1+u2 be the circuit input wires corresponding to y. Then,
(a) P1 sends P2 the garbled values wx1

1 , .., w
xu1
u1 .

492 V. Kolesnikov and T. Schneider

(b) For every i ∈ {1, .., u2}, P1 and P2 execute a 1-out-of-2 oblivious
transfer protocol, where P1’s input is (k0

u1+i, k
1
u1+i), and P2’s input

is yi. All u2 OT instances can be run in parallel.
3. P2 now has the garbled tables and the garblings of circuit’s input wires. P2

evaluates the garbled circuit, as described in Alg. 2, and outputs f(x, y).

It is easy to verify protocol’s correctness; we do not discuss it further.

On Our use of RO. In previous GC work, RO’s use improves efficiency in the
malicious model, but is not inherent. Here, while we rely on RO, we do so conser-
vatively. First, we use non-programmable RO [22], i.e. we don’t allow simulator
to fake RO’s answers. Second, (a variant of) correlation-robust functions [10], a
weaker notion than RO, is sufficient for our purposes. (Recall, if h is correlation-
robust and R, t1, .., tn are random, (h(t1 ⊕ R), .., h(tn ⊕ R)) is pseudo-random,
given t1, .., tn.)

Further, concrete security of our construction is comparable to that of stan-
dard GC with RO as the encryption function. This makes even constant-factor
efficiency improvements, such as those suggested in this work, meaningful. For
the lack of space, we omit the detailed analysis. We only note that the main fea-
ture of our protocol, the use of the global R, has very slight impact on security
(e.g., our adversary can decrypt all garbled tables, once he breaks any one of
them and learns R). Further, our use of RO is not vulnerable to birthday attacks
in the semi-honest model. Indeed, the circuit is small, and P2 w.h.p. will not see
RO collisions.

3.2 Proof of Security

Our protocol is secure against semi-honest adversaries, who are not allowed to
deviate from the protocol. Analogously to [19,18], (w.h.p.) malicious behavior
of players can be prevented by using cut-and-choose method; we don’t discuss
malicious players further.

We prove security in the simulation paradigm. Intuitively, a protocol π is
secure if whatever is seen by its party, can be computed only from that party’s
input and output. The view of a party Pi, viewπ

Pi
(x, y), consists of the party’s own

input, randomness, and all messages that Pi receives in the execution of π. Thus,
a protocol is secure, if there exist simulators S1, S2, such that {S1(x, f(x, y)} c≡
{viewπ

P1
(x, y)} and {S2(y, f(x, y)} c≡ {viewπ

P2
(x, y)}.

Case 1 - P1 is corrupted. P1’s view in Protocol 1 consists only of the view
in the OT protocols in Step 2b. The following S1(x, f(x, y)) simulates the view
of P1. Let SOT

1 be the simulator that is guaranteed to exist for P1 in the secure
1-out-of-2 OT protocol. S1 constructs a garbled circuit using Alg. 1. Then S1

feeds the constructed garblings of the input wires corresponding to y to SOT
1 ,

and obtains the simulated transcript of the OT, which he outputs. S additionally
outputs x and the randomness used in construction of GC. It is not hard to see
that the output of the simulator is indistinguishable from the view of P1.

Improved Garbled Circuit: Free XOR Gates and Applications 493

Case 2 - P2 is corrupted. We construct a simulator S2 that given input
(y, f(x, y)) simulates the view of P2. P2 receives a garbled circuit (including
garbled inputs), which S2 must simulate. However, S2 doesn’t know P1’s input
x. Thus, S2 can not honestly generate the garbled circuit, since it doesn’t know
which of the input garblings corresponding to x to hand to P2 in Step 2a of
the protocol. Instead, S2 generates a fake garbled circuit that always evaluates
to f(x, y), using a slightly modified Alg. 1. The only modification, in Step 4a,
appropriately forges the output tables:

4. For each circuit-output wire Wi (the output of gate Gj) with garblings
w0
i =

〈
k0
i , p

0
i

〉
, w1

i =
〈
k1
i , p

1
i

〉
:

(a) Create fake garbled output table for both possible wire values v ∈ {0, 1}
of the same encrypted output value. Set

ev = H(kvi ||“out”||j)⊕ fi(x,y)

Sort entries e in the table by the input pointers, i.e. place entry ev in
position pvi .

Let SOT
2 be an OT simulator for P2. S2 outputs y, and the fake garbled circuit

(i.e. its tables). Further, for each input wire Wi held by P2, S2 runs and outputs
SOT

2 (yi, w
yi

i). Finally, S2 simulates the received garblings of the input wires Wj

held by P1 simply by outputting w0
j (fake garblings corresponding to x = 0..0).

Theorem 1. The output of S2 is indistinguishable from the real view of P2.

Proof. (sketch) First, observe that S2 feeds SOT
2 proper inputs (i.e. y and the

corresponding honestly generated garblings). Thus, simulation of Step 2b of the
protocol is indistinguishable from the real execution. The crux of the proof is in
showing the indistinguishability of the fake and real circuits (which include the
tables and the input garblings that P2 sees). This is addressed next.

First, observe, pointers pji are independent of the parties’ inputs, and thus are
easily simulated by S2. For ease of presentation, we omit the details of pointer
simulation from the proof.

We now show that no polytime procedure D can distinguish simulated and
real garbled circuit transcripts with non-negligible probability. We proceed in-
ductively, gate by gate in topological order, in proving this for each partial
transcript τi, where τ0 includes all active secrets on the input wires, and each τi
additionally includes the garbled tables of first i gates.

Induction base. It is easy to see that the partial transcript τ0 – active secrets
on the input wires – is distributed identically in real and simulated cases. In-
deed, these secrets are uniformly random in the domain. Moreover, clearly, no
distinguisher D0 can output with non-negligible probability the global key offset
R̂ used in the construction of the (either simulated or real) transcript.

For the induction step, suppose no polytime Di−1 can with non-negligible
advantage distinguish the τi−1 transcripts (i.e. those including the active secrets
on the inputs and the first i − 1 garbled tables). Moreover, assume that no

494 V. Kolesnikov and T. Schneider

polytime Di−1 can output the global key offset R̂ with non-negligible probability
when given τi−1. We show that these properties hold also when additionally given
the i-th garbled table.

Recall, the i-th garbled table contains (a permutation of) entries:
H(ka||kb||i)⊕ v00

H(ka||kb ⊕ R̂||i)⊕ v01

H(ka ⊕ R̂||kb||i)⊕ v10

H(ka ⊕ R̂||kb ⊕ R̂||i)⊕ v11

where v00, .., v11 ∈ {kc, kc ⊕ R̂} are the output secrets that correspond to the
four possible gate input combinations. (Garbled output tables have one input
and consist of two entries. The corresponding claims hold for these cases as well,
via a natural modification of the following argument addressing two-input gates.)

Without loss of generality, suppose the active gate input secrets are ka and
kb. By the induction assumption, no polytime Di−1 can compute both ka and
ka ⊕ R̂, or both kb and kb ⊕ R̂ (otherwise Di−1 can output R̂). Thus, Di−1

can call functions H(ka||kb ⊕ R̂||i), H(ka ⊕ R̂||kb||i), or H(ka ⊕ R̂||kb ⊕ R̂||i)
only with negligible probability. Further, because of the inclusion of the gate
index i, these function calls have not been made in the construction of (real
or simulated) τi. Therefore, due to RO properties, except with negligible prob-
ability, all the inactive entries in the i-th table are distributed identically to
random strings, from the point of view of Di−1, and thus do not provide help
to Di−1 in computing R̂. Therefore, polytime Di cannot output R̂ or call any of
H(ka||kb⊕ R̂||i), H(ka⊕ R̂||kb||i), or H(ka⊕ R̂||kb⊕ R̂||i), except with negligible
probability. Therefore, no polytime Di can distinguish the real and simulated
transcripts τi with non-negligible probability.

This completes the induction and the proof of the theorem. ��

4 Application of Our SFE Constructions

We now present several motivating examples – practical functions whose SFE
benefits from improvements of our construction. Universal circuit (UC) construc-
tions [25,15] do not explicitly use many XOR gates. We show how to modify these
circuits to mainly consists of XOR gates, achieving fourfold reduction of garbled
circuit size. This construction may be of independent interest. Further, we show
how to reduce in half the size of garbled circuits of commonly used blocks, such
as integer addition and equality test.

Universal Circuits [25,15] and Permutation Networks [26]. The size of
a UC mainly comes from programmable switching networks (such as permuta-
tion network [26]) connecting the simulated gates. In turn, these networks are
constructed from two types of switching blocks shown in Fig. 1, as discussed in
[26,25,15]. The Y -block can be programmed to output one of its two inputs. The
X-block can be programmed to either pass or cross over its two inputs to the two
outputs. A natural SFE implementation of the Y -block uses a 2-input garbled
gate with a garbled table with 22 = 4 encrypted table entries. Similarly, X-block

Improved Garbled Circuit: Free XOR Gates and Applications 495

: = orY

a1 a2

b1

a1 a2

b1

a1 a2

b1

A) B)

(a) Y switching block

: = orX

a1 a2

b1 b2

A)

a1 a2

b1 b2

B)
a1 a2

b1 b2

(b) X switching block

Fig. 1. Switching blocks

is implemented by two 2-input garbled gates (one for each of its two outputs),
resulting in a garbled table of 2 · 22 = 8 entries.

We show how to take advantage of free XOR gates and implement both X-
and Y -gates with only two garbled table entries each. Since permutation network
[26] consists only of X-gates, this results in 75% size reduction of its SFE. UC
consists almost exclusively of X-gates. Valiant’s UC [25] for a circuit of k gates
has size ∼ 19k log k. The ∼ 19k log k − k overhead gates are X-gates that come
from switching networks. A recent UC construction [15] similarly consists almost
exclusively of X-gates, and of very few Y -gates and simulated gates. Thus, UC
enjoys almost 75% garbled table size reduction.

Let f : {0, 1} -→ {0, 1} be a function (implemented with two garbled table
entries). We implement X- and Y -blocks as follows (see Fig. 2). Y (a1, a2) = b1 =
f(a1⊕a2)⊕a1; X(a1, a2) = (b1, b2), where b1 = f(a1⊕a2)⊕a1, b2 = f(a1⊕a2)⊕
a2. It is easy to see that setting f = f0 to the zero function results in Y choosing
left input, and X passing the inputs. Further, setting f = fid to the identity
function results in Y choosing the right input, and in X crossing its inputs:
f = f0 : b1 = 0⊕ a1 = a1; b2 = 0⊕ a2 = a2.
f = fid : b1 = (a1 ⊕ a2)⊕ a1 = a2; b2 = (a1 ⊕ a2)⊕ a2 = a1.

f

a1 a2

b1

(a) Y switching block

f

a1 a2

b1 b2

(b) X switching block

Fig. 2. Efficient implementation of switching blocks

496 V. Kolesnikov and T. Schneider

This construction can be extended to implement programmable switching
blocks X and Y , which take an additional programming input bit p. This bit
determines behavior of X- (pass or cross) and Y -blocks (left or right input). The
natural construction for the Y - (resp. X-) switching block uses one (resp. two)
3-input gate(s) with 23 = 8 (resp. 16) encrypted table entries. In our XOR-based
construction, function f is then replaced by a two-input AND-gate (with p being
the second input) with 22 = 4 encrypted table entries. Clearly, p = 0 sets f = f0,
and p = 1 sets f = fid, allowing to program X- and Y -blocks. As above, the
size of Y - and X-blocks is reduced by 50% and 75% respectively.

Integer Adder and Multiplier. An adder for n-bit integers a, b is composed
from a chain of n full adder (FA) blocks as shown in Fig. 3(b). (The last FA
block can be replaced by a smaller half-adder block.) A FA block (see Fig. 3(a))
has as inputs a carry-in ci from the previous FA block and the two input bits
ai and bi. It outputs two bits: carry-out ci+1 = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)
and sum si = ai⊕ bi⊕ ci. The straightforward implementation of a FA uses two
3-input gates with 2 · 23 = 16 encrypted table entries. We can compute si “for
free” using free XOR-gates, and use only one 3-input gate with 23 = 8 encrypted
table entries to compute ci+1. The size of a FA block, and hence that of an n-bit
adder is reduced by 50%.

FA

ai bi

si

cici+1

(a) Full Adder (FA)

FA

an-1 bn-1

sn-1

0
cn

FA

a0 b0

s0

FA

a1 b1

s1

...
c1c2cn-1 c0

sn

(b) n-bit Adder built from n FA blocks

Fig. 3. Adder for two n-bit integers a and b

As circuits for integer multiplication consist of bit-multipliers (2-input AND-
gates) and adders, the improved implementation of adders can directly be used
to correspondingly improve integer-multiplication circuits.

Integer Equality Test. A similar construction is used to test equality of two n-
bit integers a and b. Now, we do not compute si, and use carry bits as inequality
flags. The carry-out bit is defined as ci+1 = (ai �= bi) ∨ ci = (ai ⊕ bi) ∨ ci. A
simple implementation uses two 2-input gates or one 3-input gate (each costs
8 encrypted table entries). Free XOR gate reduces the cost to that of one 2-
input OR gate (4 encrypted table entries). The size of equality test block is thus
reduced by 50%.

Acknowledgments. We thank Yuval Ishai and anonymous referees for helpful
comments. The second author thanks CACE project for funding his ICALP trip.

Improved Garbled Circuit: Free XOR Gates and Applications 497

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(1990)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS, pp. 62–73 (1993)

4. Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing en-
crypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107,
pp. 206–220. Springer, Heidelberg (2006)

5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proc. 30th ACM Symp. on Theory of Computing, pp. 209–218 (1998)

6. Crescenzo, G.D.: Private selective payment protocols. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962. Springer, Heidelberg (2001)

7. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

8. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471.
Springer, Heidelberg (2001)

9. Goldreich, O., Vainish, R.: How to solve any protocol problem - an efficiency im-
provement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 73–86.
Springer, Heidelberg (1988)

10. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg
(2003)

11. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

12. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. In: ACM SIGMOD Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD 2002) (2002)

13. Kilian, J.: Founding cryptography on oblivious transfer. In: Proc. 20th ACM Symp.
on Theory of Computing, Chicago, pp. 20–31. ACM, New York (1988)

14. Kolesnikov, V.: Gate evaluation secret sharing and secure one-round two-party
computation. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 136–155.
Springer, Heidelberg (2005)

15. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Financial Cryptography and Data Security, FC
2008. LNCS. Springer, Heidelberg (2008)

16. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)

17. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Cryptology ePrint Archive, Report 2004/175 (2004)

18. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

498 V. Kolesnikov and T. Schneider

19. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: USENIX (2004)

20. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001: Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001)

21. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: 1st ACM Conf. on Electronic Commerce (1999)

22. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

23. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. SIGKDD
Explor. Newsl. 4(2), 12–19 (2002)

24. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In:
Proc. 40th FOCS, New York, pp. 554–566. IEEE, Los Alamitos (1999)

25. Valiant, L.G.: Universal circuits (preliminary report). In: Proc. 8th ACM Symp.
on Theory of Computing, pp. 196–203. ACM Press, New York (1976)

26. Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
27. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foun-

dations of Comp. Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)
28. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp. on

Foundations of Comp. Science, Toronto, pp. 162–167. IEEE, Los Alamitos (1986)

Improving the Round Complexity of VSS

in Point-to-Point Networks

Jonathan Katz1,�, Chiu-Yuen Koo1,2, and Ranjit Kumaresan1

1 Dept. of Computer Science, University of Maryland
{jkatz,cykoo,ranjit}@cs.umd.edu
2 Google Labs, Mountain View, CA

Abstract. We revisit the following question: what is the optimal round
complexity of verifiable secret sharing (VSS)? We focus here on the case
of perfectly-secure VSS where the number of corrupted parties t satisfies
t < n/3, with n being the total number of parties. Work of Gennaro et al.
(STOC 2001) and Fitzi et al. (TCC 2006) shows that, assuming a broad-
cast channel, 3 rounds are necessary and sufficient for efficient VSS. The
efficient 3-round protocol of Fitzi et al., however, treats the broadcast
channel as being available “for free” and does not attempt to minimize
its usage. This approach leads to relatively poor round complexity when
protocols are compiled for a point-to-point network.

We show here a VSS protocol that is simultaneously optimal in terms
of both the number of rounds and the number of invocations of broadcast.
Our protocol also has a certain “2-level sharing” property that makes it
useful for constructing protocols for general secure computation.

1 Introduction

The round complexity of cryptographic protocols has been the subject of intense
study. Besides protocols for general secure computation, protocols for various
specific functionalities of interest (e.g., broadcast, zero-knowledge proofs, etc.)
have also been explored. Here, we revisit the case of verifiable secret sharing,
whose definition we now recall informally. (Formal definitions appear in Sec-
tion 2.) In secret sharing [2,19], there is a dealer who shares a secret among a
group of n parties in a sharing phase. The requirements are that, for some param-
eter t < n, any set of t colluding parties gets no information about the dealer’s
secret at the end of the sharing phase, yet any set of t+1 parties can recover the
dealer’s secret in a later reconstruction phase. Secret sharing assumes the dealer
is honest; verifiable secret sharing (VSS) [3] also requires that, no matter what a
cheating dealer does (in conjunction with t− 1 other colluding parties), there is
some unique secret to which the dealer is “committed” by the end of the sharing
phase. VSS serves as a fundamental building block in the design of protocols for
general secure multi-party computation as well as other specialized goals (such

� Research supported in part by NSF awards #0310751 and #0447075 (CAREER),
and US-Israel Binational Science Foundation grant #2004240.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 499–510, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

500 J. Katz, C.-Y. Koo, and R. Kumaresan

as Byzantine agreement); thus, it is of interest to understand the inherent round
complexity for carrying out this task.

In this work we will always consider perfectly-secure VSS, where the protocol
is required to be error-free and security should hold even against an all-powerful
adversary. This is known to be possible if and only if t < n/3 [1,5]. Previous
research investigating the round complexity of VSS, surveyed further below, has
focused on optimizing the round complexity assuming a broadcast channel is
available “for free”. (We remark that broadcast is essential for VSS, in a way we
make precise below.) As argued previously [12], however, if the ultimate goal is to
optimize the round complexity of protocols for point-to-point networks (where
protocols are likely to be run), then it is preferable to minimize the number
of rounds in which broadcast is used rather than to minimize the total number
of rounds. This is due to the high overhead of emulating a broadcast channel
over a point-to-point network: deterministic broadcast protocols require Ω(t)
rounds [7]; known randomized protocols [6,8,11] require only O(1) rounds in ex-
pectation, but the constant is rather high. (The most round-efficient protocol
known [11,12] requires 23 rounds in expectation for t < n/3.1) Moreover, when
using randomized broadcast protocols, if more than one invocation of broadcast
is used then special care must be taken to deal with sequential composition of
protocols without simultaneous termination (see [15,11,12]), leading to a sub-
stantial increase in the round complexity. As a consequence, a constant-round
protocol that only uses a single round of broadcast is likely to yield a more
round-efficient protocol in a point-to-point setting than any protocol that uses
two rounds of broadcast (even if that protocol uses no additional rounds).

As a concrete example (taken from [12]) to illustrate the point, consider the
VSS protocol of Micali and Rabin [16] and the ‘round-optimal’ VSS protocol
of Fitzi et al. [9]. The former uses 16 rounds but only a single round of broad-
cast; the latter uses 3 rounds, two of which require broadcast. Compiling these
protocols for a point-to-point network using the most round-efficient techniques
known (see [12]), the Micali-Rabin protocol runs in an expected 31 rounds while
the protocol of Fitzi et al. requires an expected 55 rounds!

In light of the above, when discussing the round complexity of protocols that
assume a broadcast channel we keep track of both the number of rounds as
well as the number of rounds in which broadcast is used. (In a given round
when broadcast is used, each party may use the broadcast channel but a rushing
adversary is still assumed. Existing broadcast protocols can be modified so that
the round complexity is unchanged even if many parties broadcast in parallel.)
We say a protocol has round complexity (r, r′) if it uses r rounds in total, and
r′ ≤ r of these rounds invoke broadcast. The round complexity of VSS refers to
the sharing phase only, since the reconstruction phase of most known protocols
utilizes only a single round, without broadcast. (An exception is the protocol
of [9], whose reconstruction phase uses a single round of broadcast.)

Our results and techniques. Gennaro et al. [10] show that three rounds are
necessary for VSS, assuming a broadcast channel. We also observe that it is
1 Actually, the VSS protocol given here can be used to improve this slightly.

Improving the Round Complexity of VSS 501

impossible to construct a strict constant-round protocol for VSS without using
a broadcast channel in at least one round: VSS implies broadcast using one addi-
tional round (the message to be broadcast can be treated as the input for VSS),
and the results of Fischer and Lynch [7] rule out strict constant-round protocols
for broadcast. Prior work [16,9,12,14] shows that optimal round complexity as
well as optimal use of the broadcast channel could each be obtained individually
for VSS, but it was unknown whether they could be obtained simultaneously.
Here, we resolve this question and show a (3, 1)-round VSS protocol that is op-
timal in both measures. (Our protocol has a 1-round reconstruction phase that
does not use broadcast.) As a consequence, we obtain a VSS protocol with the
best known round complexity in point-to-point networks. Our work also leads to
an improvement in the round complexity of the most round-efficient broadcast
protocols known [11].

A nice feature of our VSS protocol is that it also satisfies a certain “2-level
sharing” property that is not achieved by the 3-round protocol from [9]. Roughly
speaking, this means that the following conditions hold at the end of the sharing
phase when the dealer’s (effective) input is s:

1. There exists a polynomial f(x) of degree at most t such that f(0) = s and
each honest party Pi holds the value f(i).

2. For each party Pi, there exists a polynomial fi(x) of degree at most t such
that fi(0) = f(i) and each honest party Pj holds the value fi(j).

VSS protocols with this property constitute a useful building block for proto-
cols for general secure multi-party computation (see, e.g., [12,14]).

Our protocol is efficient, in that the computation and communication are
polynomial in n. The communication complexity of our protocol is O(n2t) field
elements, which matches the communication complexity of [9] but is worse than
that of [10].

We now summarize the basic techniques used to prove our main result. As
in [9], we begin by constructing a protocol for weak verifiable secret sharing
(WSS) [18]. (In WSS, informally, if the dealer is dishonest then, in the recon-
struction phase, each honest party recovers either the dealer’s input or a special
failure symbol.) Fitzi et al. show a (3, 2)-round WSS protocol that essentially
consists of the first three rounds of the 4-round VSS protocol from [10]. On a high
level, their protocol works as follows: In the first round, the dealer distributes
the shares of the secret using a random bivariate polynomial; in parallel, each
pair of parties (Pi, Pj) exchanges a random pad ri,j . In the second round, Pi

and Pj check for an inconsistency between their shares by broadcasting their
common shares masked with the random pad. In the third round, if there is a
disagreement between Pi and Pj in round 2 (note that all parties agree whether
there is disagreement since broadcast is used in round 2), then the dealer, Pi,
and Pj all broadcast the share in question. This allows the rest of the parties to
determine whether the dealer “agrees” with Pi or with Pj .

502 J. Katz, C.-Y. Koo, and R. Kumaresan

A (5, 1)-round WSS protocol is implicitly given in [12].2 There, rather than
using the “random pad” technique, a different method is used to detect disagree-
ment between Pi and Pj . While this saves one round of broadcast, it requires
additional rounds of interaction.

To construct a (3, 1)-round WSS protocol, we modify the (3, 2)-round WSS
protocol from [9] by using the random pad idea with the following twist: in
the second round of the protocol, Pi and Pj check if there is any inconsistency
between their shares by exchanging their common shares over a point-to-point
link; they also send the random pad ri,j to the dealer. In the third round of
the protocol, if there is a disagreement between Pi and Pj , then Pi and Pj

each broadcast the shares they hold; otherwise, they broadcast the value of
their common share masked with the random pad. The dealer will broadcast
the corresponding share masked with the random pad (or the share itself if the
random pads it received from Pi and Pj are different). Notice that secrecy of the
share is preserved if Pi, Pj , and the dealer are all honest. On the other hand, if
the dealer is malicious and there is a disagreement between honest parties Pi and
Pj , then the dealer can only “agree” with at most one of Pi and Pj in round 3,
but not both of them.

The above is the high-level idea of our WSS protocol. Using the same tech-
niques as in [9], we can then immediately obtain a (3, 1)-round VSS protocol.
However, the VSS protocol constructed in this manner will not have the “2-level
sharing” property; as a consequence, the resulting protocol cannot directly be
plugged in to existing protocols for general secure multi-party computation.

To convert the VSS protocol into one with 2-level sharing we note that, by the
end of the sharing phase, there is a set of honest parties (that we call a “core set”)
who already do have the required 2-level shares; thus, we only need to provide
honest parties outside the core set with their required shares. We achieve this,
as in [4], by having the dealer use a symmetric bivariate polynomial to share its
input, and then modifying the protocol so that honest parties who are not in the
core set can still generate appropriate shares by interpolating the shares of the
parties in the core set. Of course, this process needs to be carefully designed so
that no additional information is leaked to the adversary. We defer the details
of this to a later section.

Other related work. Gennaro et al. [10] initiated a study of the exact round
complexity of VSS. For t < n/3, they show an efficient (i.e., polynomial-time)
(4, 3)-round protocol, and an inefficient (3, 2)-round protocol. (Recall that the
round complexity of VSS is defined as the number of rounds in the sharing phase;
unless otherwise stated, all protocols mentioned use only one round, without
broadcast, in the reconstruction phase.) They also show that three rounds are
necessary for VSS when t < n/3. For t < n/4, they show that two rounds are
necessary and sufficient for efficient VSS. Settling the question of the absolute
round complexity of efficient VSS for t < n/3, Fitzi et al. [9] show an efficient

2 That work shows a 6-round VSS protocol that uses broadcast in the final two rounds.
The first five rounds of that protocol suffice for WSS.

Improving the Round Complexity of VSS 503

(3, 2)-round VSS protocol. The reconstruction phase of their protocol requires
one round of broadcast as well.

As discussed extensively already, although the protocol by Fitzi et al. is op-
timal in terms of the total number of rounds, it is not optimal in terms of its
usage of the broadcast channel. VSS protocols for t < n/3 using one round of
broadcast are known, but these protocols are not optimal in terms of their overall
round complexity. Micali and Rabin [16] give a (16, 1)-round VSS protocol, and
recent work of the authors [12,14] improves this to give a (7, 1)-round protocol.

Our work, as well as all the work referenced above, focuses on VSS protocols
with perfect security (i.e., 0-error VSS). A natural relaxation is to consider
statistical VSS where the security properties may fail with negligible probability.
Surprisingly, recent work subsequent to our own [17] shows that the lower bound
of Gennaro et al. [10] no longer holds in this setting, and that 2-round protocols
are in fact possible.

Future directions. It would, of course, be nice to characterize the optimal
round complexity of VSS in point-to-point networks. Though our work represents
progress toward this goal, the question is complicated by the fact that one must
consider the distribution of running times of any protocol (since strict constant-
round protocols are ruled out). It will also be interesting to understand the round
complexity of VSS when t < n/2; see [17] for an almost-tight characterization.

2 Model and Definitions

We consider the standard communication model where parties communicate in
synchronous rounds using pairwise private and authenticated channels. We also
assume a broadcast channel, with the understanding that it can be emulated in
a point-to-point network using a broadcast protocol. A broadcast channel allows
any party to send the same message to all other parties (and all parties to be
assured they have received identical messages) in a single round. We stress that
we do not assume simultaneous broadcast, but allow rushing here as well.

When we say a protocol tolerates t malicious parties, we always mean that
it is secure against an adversary who may adaptively corrupt up to t parties
during an execution of the protocol and coordinate the actions of these parties
as they deviate from the protocol in an arbitrary manner. Parties not corrupted
by the adversary are called honest. We always assume a rushing adversary; i.e.,
in any round the malicious parties receive the messages sent by the honest parties
before deciding on their own messages.

2.1 VSS and Variants

We now present definitions of WSS, VSS, and VSS with 2-level sharing.

Definition 1 (Weak verifiable secret sharing). A two-phase protocol for
parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial input
s, is a WSS protocol tolerating t malicious parties if the following conditions hold
for any adversary controlling at most t parties:

504 J. Katz, C.-Y. Koo, and R. Kumaresan

Privacy. If the dealer is honest at the end of the first phase (the sharing
phase), then at the end of this phase the joint view of the malicious parties
is independent of the dealer’s input s.

Correctness. Each honest party Pi outputs a value si at the end of the second
phase (the reconstruction phase). If the dealer is honest then si = s.

Weak commitment. At the end of the sharing phase the joint view of the
honest parties defines a value s′ (which can be computed in polynomial time
from this view) such that each honest party will output either s′ or a default
value ⊥ at the end of the reconstruction phase. ♦

Definition 2 (Verifiable secret sharing). A two-phase protocol for parties
P, where a distinguished dealer D ∈ P holds initial input s, is a VSS protocol
tolerating t malicious parties if it satisfies the privacy and correctness requirements
of WSS as well as the following (stronger) commitment requirement:

Commitment. At the end of the sharing phase the joint view of the hon-
est parties defines a value s′ (which can be computed in polynomial time
from this view) such that all honest parties will output s′ at the end of the
reconstruction phase. ♦

Definition 3 (Verifiable secret sharing with 2-level sharing). A two-
phase protocol for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P
holds initial input s, is a VSS protocol with 2-level sharing tolerating t malicious
parties if it satisfies the privacy and correctness requirements of VSS as well as
the following requirement:

Commitment with 2-level sharing. At the end of the sharing phase each
honest party Pi outputs si and si,j for j ∈ {1, . . . , n}, satisfying the following
requirements:
1. There exists a polynomial p(x) of degree at most t such that si = p(i)

for every honest party Pi, and furthermore all honest parties will output
s′ = p(0) at the end of the reconstruction phase.

2. For each j ∈ {1, . . . , n}, there exists a polynomial pj(x) of degree at
most t such that (1) pj(0) = p(j) and (2) si,j = pj(i) for every honest
party Pi. ♦

The above implies the commitment property of VSS, since the value s′ = p(0)
that will be output in the reconstruction phase is defined by the view of the
honest parties at the end of the sharing phase.

In our protocol descriptions, we implicitly assume all parties send properly-
formatted messages at all times; this is without loss of generality, as we may
interpret an improper or missing message as some default message. We assume
the dealer’s input s lies in a finite field F containing {0, 1, . . . , n} as a subset.

3 Weak Verifiable Secret Sharing

We show a (3, 1)-round WSS protocol tolerating t < n/3 malicious parties.

Improving the Round Complexity of VSS 505

3.1 The Protocol

Sharing phase. The sharing phase consists of three rounds, with broadcast
used in the last round.

Round 1: The dealer holds s. The following steps are carried out in parallel:

• The dealer chooses a random bivariate polynomial F (x, y) of degree at
most t in each variable such that F (0, 0) = s. The dealer then sends to
each party Pi the polynomials fi(x) := F (x, i) and gi(y) := F (i, y).

• Each party Pi picks a random pad ri,j ∈ F for j ∈ {1, . . . , n}, and sends
ri,j to both Pj and the dealer D.

Round 2: For every ordered pair (i, j), parties Pi and Pj proceed as follows:

• Party Pi sends ai,j := fi(j) to Pj .
• Party Pj sends bj,i := gj(i) to Pi.

(Note that, when everyone is honest, then ai,j = bj,i = F (j, i).)
• Let r′i,j be the random pad that Pj received from Pi in the previous

round. Then Pj sends r′i,j to D.

Round 3: For every ordered pair (i, j), parties Pi, Pj , and D do:

• (From the viewpoint of Pi:) If bj,i �= fi(j), then Pi broadcasts (“dis-
agree”, fi(j), ri,j). Otherwise, Pi broadcasts (“agree”, fi(j) + ri,j).

• (From the viewpoint of Pj :) If ai,j �= gj(i), then Pj broadcasts (“dis-
agree”, gj(i), r′i,j). Otherwise, Pj broadcasts (“agree”, gj(i) + r′i,j).

• (From the viewpoint of D:) If ri,j �= r′i,j , then D broadcasts (“not equal”,
F (j, i)). Otherwise, D broadcasts (“equal”, F (j, i) + ri,j).

Local computation. An ordered pair of parties (Pi, Pj) is conflicting if, in
round 3, party Pi broadcasts (“disagree”, fi(j), ri,j); party Pj broadcasts (“dis-
agree”, gj(i), r′i,j); and ri,j = r′i,j . For a pair of conflicting parties (Pi, Pj), we
say that Pi (resp., Pj) is unhappy if one of the following conditions hold:

• The dealer broadcasts (“not equal”, di,j) and di,j �= fi(j) (resp., di,j �= gj(i)).
• The dealer broadcasts (“equal”, di,j) and di,j �= fi(j) + ri,j (resp., di,j �=

gj(i) + r′i,j).
Note that all parties agree on who is unhappy. If there are more than t unhappy
parties, the dealer is disqualified and a default value is shared.

Reconstruction phase. The reconstruction phase is similar to the one in [9],
except that we do not use broadcast.

1. Every party Pi that is not unhappy sends fi(x) and gi(y) to all other parties.
2. Let f i

j , g
i
j denote the polynomials that Pj sent to Pi in the previous step.

Pi then constructs a consistency graph Gi whose vertices correspond to the
parties who are not unhappy:

• Initially, there is an edge between Pj and Pk in Gi if and only if f i
j(k) =

gik(j) and gij(k) = f i
k(j). (Note that we allow also the case j = k here.)

506 J. Katz, C.-Y. Koo, and R. Kumaresan

• If there exists a vertex in Gi whose degree is less than n− t (including
self-loops), then that vertex is removed from Gi. This is repeated until
no more vertices can be removed.

Let Corei denote the parties whose corresponding vertices remain in Gi.
3. If |Corei| < n− t, then Pi outputs ⊥. Otherwise, Pi reconstructs the polyno-

mial F ′(x, y) defined by any t+1 parties in Corei, and outputs s′ := F ′(0, 0).

We remark that, since we do not use broadcast in the reconstruction phase,
it is possible that Corei,Corej are different for different honest parties Pi, Pj .

3.2 Security of the Protocol

We state the following claims regarding the protocol of the previous section; all
proofs appear in the full version of this work [13].

Lemma 1. If the dealer is not corrupted by the end of the sharing phase, then
privacy is preserved.

Lemma 2. If the dealer is not corrupted by the end of the sharing phase, then
correctness holds.

Lemma 3. Weak commitment holds.

Our WSS protocol also satisfies a weak variant of 2-level sharing that we state
for future reference:

Lemma 4. Say the dealer is not disqualified in an execution of the WSS pro-
tocol, and let H denote the set of all honest parties who are not unhappy. Then
there is a bivariate polynomial F̂ of degree at most t in each variable such that,
at the end of the sharing phase, the polynomials fi, gi held by each Pi ∈ H satisfy
fi(x) = F̂ (x, i) and gi(y) = F̂ (i, y).

As a consequence, each Pi ∈ H can compute si and si,j for j ∈ {1, . . . , n}
such that:

1. There is a polynomial p(x) of degree at most t with si = p(i), and furthermore
all honest parties output either s′ = p(0) or ⊥ in the reconstruction phase.

2. For each j ∈ {1, . . . , n}, there exists a polynomial pj(x) of degree at most t
such that (1) pj(0) = p(j) and (2) si,j = pj(i).

4 Verifiable Secret Sharing

Before we describe our VSS protocol with 2-level sharing, we review the ideas
used in [9] to transform their WSS protocol into a VSS protocol (that does not
have 2-level sharing). At a high level, the sharing phase of the VSS protocol
is more-or-less the same as the sharing phase of the underlying WSS protocol;
the difference is that now, in the reconstruction phase, each party reveals the
random pads they used in the sharing phase. A problem that arises is to ensure

Improving the Round Complexity of VSS 507

that a malicious party Pi reveals the “correct” random pads. This is enforced by
having each player act as a dealer in its own execution of WSS, and “binding” the
random pads of each party to this execution of WSS. In more detail: in parallel
with the sharing phase of the larger VSS protocol, each party Pi also acts as a
dealer and shares a random secret using the WSS protocol. Let F pad

i (x, y) be
the corresponding bivariate polynomial chosen by Pi. Then Pi will use ri,j :=
F pad
i (0, j) as the appropriate “random pad” in the larger VSS protocol. (The

pads used by any player are now only (t + 1)-wise independent, but this suffices
for secrecy.) These random pads are then revealed in the reconstruction phase
by using the reconstruction phase of the underlying WSS protocol.

We can use the ideas outlined in the previous paragraph to obtain a (3, 1)-
round VSS protocol, but the resulting protocol will not have 2-level sharing. Yet
all is not lost. As observed already in Lemma 4, by the end of the sharing phase
of the resulting VSS protocol the honest parties that are not unhappy do have
the required 2-level shares. To achieve our desired result we must therefore only
enable any unhappy honest party to construct its 2-level shares.

At a high level, we do this as follows: Suppose F̂ (x, y) is the dealer’s bivariate
polynomial, defined by the end of the sharing phase of the VSS protocol, and let
Pi be an honest party who is unhappy. We need to show how Pi constructs the
polynomials F̂ (x, i) and F̂ (i, y) (which it will use to generate its 2-level shares
exactly as in the proof of Lemma 4). Let Pj be a party such that:
• Pj is not unhappy (in the larger VSS protocol);
• Pj was not disqualified as a dealer it its own execution of WSS; and
• Pi is not unhappy in Pj ’s execution of WSS.

From the proof of Lemma 4, we know there is a bivariate polynomial F̂ pad
j (x, y)

for which Pi holds the univariate polynomial F̂ pad
j (x, i). Furthermore, Pj has

effectively broadcasted the polynomial Bj(x) def= F̂ (x, j) + F̂ pad
j (0, x) in round 3,

since it has broadcasted F̂ (k, j)+F̂ pad
j (0, k) for all k. Thus, party Pi can compute

F̂ (i, j) := Bj(i)− F̂ pad
j (0, i) = F̂ (i, j)

for any party Pj satisfying the above conditions. If there are t + 1 parties satis-
fying the above conditions, then Pi can reconstruct the polynomial F̂ (i, y).

Unfortunately, it is not clear how to extend the above approach to enable
Pi to also reconstruct the polynomial F̂ (x, i) in the case when F̂ is an arbi-
trary bivariate polynomial. For this reason, we have the dealer use a symmetric3

bivariate polynomial. Then F̂ (x, i) = F̂ (i, x) and we are done.

4.1 The Protocol

We show a (3, 1)-round VSS protocol with 2-level sharing that tolerates t < n/3
malicious parties. Proofs of security are deferred to the appendix.
3 A polynomial F is symmetric if, for all �,m, the coefficient of the term xym is equal

to the coefficient of the term xmy. If F is symmetric then F (i, j) = F (j, i) for all i, j.

508 J. Katz, C.-Y. Koo, and R. Kumaresan

Sharing phase. The sharing phase consists of three rounds, with broadcast
used in the last round.

Round 1: The dealer holds s. The following steps are carried out in parallel:
1. The dealer chooses a random symmetric bivariate polynomial F (x, y) of

degree t in each variable such that F (0, 0) = s. Then D sends to each
party Pi the polynomial fi(x) := F (x, i). Note that F (x, i) = F (i, x)
since F is symmetric.

2. Each party Pi picks a random value ŝi and executes the first round of
the WSS protocol described in the previous section, acting as a dealer
to share the “input” ŝi. We refer to this instance of the WSS protocol
as WSSi.

3. Let F pad
i (x, y) denote the bivariate polynomial used by Pi in WSSi (i.e.,

F pad
i (0, 0) = ŝi). Party Pi sends the polynomial ri(y) := F pad

i (0, y) to
the dealer D.

Round 2: Round 2 of WSSi is run, for all i. Concurrently, each party Pj does
the following:
1. For all i, send aj,i := fj(i) to Pi.
2. Let fpad

i,j (x) be the x-polynomial that Pi sent to Pj in round 1 of WSSi.
(If Pi is honest then fpad

i,j (x) = F pad
i (x, j).) Party Pj sends r′i,j := fpad

i,j (0)
to D.

Round 3: Round 3 of WSSi is run, for all i. Concurrently, for every ordered
pair (i, j):
1. (From the viewpoint of Pi:) If aj,i �= fi(j), then Pi broadcasts (“dis-

agree”, fi(j), F pad
i (0, j)). Otherwise, Pi broadcasts (“agree”, fi(j) +

F pad
i (0, j)).

2. (From the viewpoint ofPj :) If ai,j �= fj(i), then Pj broadcasts (“disagree”,
fj(i), f

pad
i,j (0)). Otherwise, Pj broadcasts (“agree”, fj(i) + fpad

i,j (0)).
3. (From the viewpoint of D:) If ri(j) �= r′i,j , then D broadcasts (“not

equal”, F (j, i)). Otherwise, D broadcasts (“equal”, F (j, i) + ri(j)).

Local computation. Each party locally carries out the following steps:

1. An ordered pair of parties (Pi, Pj) is conflicting if, in round 3, party Pi

broadcasts (“disagree”, fi(j), F pad
i (0, j)); party Pj broadcasts (“disagree”,

fj(i), fpad
i,j (0)); and it holds that F pad

i (0, j) = fpad
i,j (0). For a pair of con-

flicting parties (Pi, Pj), we say that Pi (resp., Pj) is unhappy if one of the
following conditions hold:
(a) D broadcasts (“not equal”, di,j) and di,j �= fi(j) (resp., di,j �= fj(i)).
(b) D broadcasts (“equal”, di,j) and di,j �= fi(j) + F pad

i (0, j) (resp., di,j �=
fj(i) + fpad

i,j (0)).
Let Core denote the set of parties who are not unhappy with respect to
the definition above. For every Pi who was not disqualified as the dealer in
WSSi, let Corei denote the set of parties who are not unhappy with respect
to WSSi. (If Pi was disqualified in WSSi, then set Corei := ∅.)

Improving the Round Complexity of VSS 509

2. For all i, j, remove Pj from Corei if either of the following hold for the ordered
pair (i, j) in round 3:

• Pi broadcasts (“agree”, y) and Pj did not broadcast (“agree”, y).
• Pi broadcasts (“disagree”, #, w) and Pj broadcasts anything other than

(“disagree”, #, w). (Here, # denotes an arbitrary value.)

3. Remove Pi from Core if |Core ∩ Corei| < n− t. (Thus, if Pi was disqualified
in WSSi then Pi �∈ Core.)
Note that all parties have the same view regarding Core and the {Corei}.

4. If |Core| < n − t, then the dealer is disqualified and a default value (and
appropriate 2-level shares) are shared.

5. Each party Pi computes a polynomial f̂i(x) of degree at most t:
(a) If Pi ∈ Core, then f̂i(x) is the polynomial that Pi received from the

dealer in round 1.
(b) If Pi /∈ Core, then Pi computes f̂i(x) in the following way:

i. Pi first defines a set Core′i as follows: A party Pj is in Core′i if and
only if all the following conditions hold:
– Pj ∈ Core and Pi ∈ Corej .
– Define pj,k, for k ∈ {1, . . . , n}, as follows: if, in step 1 of round 3

for the ordered pair (j, k), party Pj broadcasted (“agree”, yj,k),
then set pj,k := yj,k. If Pj broadcasted (“disagree”, wj,k, zj,k),
then set pj,k := wj,k + zj,k.

We require that the {pj,k} are consistent with a polynomial Bj(x)
of degree at most t; i.e., Bj(k) = pj,k for all k. (If not, then Pj

is not included in Core′i.)
Our proofs show that |Core′i| ≥ t + 1 if the dealer is not disqualified.

ii. For each Pj ∈ Core′i, set pj := pj,i−fpad
j,i (0). Let f̂i be the polynomial

of degree at most t such that f̂i(j) = pj for every Pj ∈ Core′i. (It will
follow from our proof that such an f̂i exists.)

6. Finally, Pi outputs si := f̂i(0) and si,j := f̂i(j) for all j ∈ {1, . . . , n}.

Reconstruction phase. Each party Pi sends si to all other parties. Let s′j,i
be the value that Pj sends to Pi. Using Reed-Solomon decoding, Pi computes
a polynomial f(x) of degree at most t such that f(j) = s′j,i for at least 2t + 1
values of j. The final output of Pi is f(0).

A proof of security appears in the full version of this work [13].

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 1–10 (1988)

2. Blakley, G.R.: Safeguarding cryptographic keys. In: National Computer Confer-
ence, vol. 48, pp. 313–317. AFIPS Press (1979)

510 J. Katz, C.-Y. Koo, and R. Kumaresan

3. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults. In: 26th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 383–395 (1985)

4. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
J. ACM 40(1), 17–47 (1993)

6. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzan-
tine agreement. SIAM J. Computing 26(4), 873–933 (1997)

7. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Information Processing Letters 14(4), 183–186 (1982)

8. Fitzi, M., Garay, J.: Efficient player-optimal protocols for strong and differential
consensus. In: 22nd Annual ACM Symp. on Principles of Distributed Computing,
pp. 211–220 (2003)

9. Fitzi, M., Garay, J.A., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-optimal
and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)

10. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of ver-
ifiable secret sharing and secure multicast. In: 33rd Annual ACM Symposium on
Theory of Computing (STOC), pp. 580–589 (2001)

11. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006)

12. Katz, J., Koo, C.-Y.: Round-efficient secure computation in point-to-point net-
works. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 311–328.
Springer, Heidelberg (2007)

13. Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the round complexity of VSS in
point-to-point networks, http://eprint.iacr.org/2007/358

14. Koo, C.: Studies on Fault-Tolerant Broadcast and Secure Computation. PhD thesis,
University of Maryland (2007)

15. Lindell, Y., Lysyanskaya, A., Rabin, T.: Sequential composition of protocols with-
out simultaneous termination. In: 21st Annual ACM Symposium on Principles of
Distributed Computing, pp. 203–212 (2002)

16. Micali, S., Rabin, T.: Collective coin tossing without assumptions nor broadcasting.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 253–
266. Springer, Heidelberg (1991)

17. Patra, A., Choudhary, A., Ashwinkumar, B., Rangan, C.: Probabilistic verifiable se-
cret sharing tolerating an adaptive adversary, http://eprint.iacr.org/2008/101

18. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: 21st Annual ACM Symposium on Theory of Computing, pp.
73–85 (1989)

19. Shamir, A.: How to share a secret. Comm. ACM 22(11), 612–613 (1979)

http://eprint.iacr.org/2007/358
 http://eprint.iacr.org/2008/101

How to Protect Yourself without Perfect

Shredding�

Ran Canetti1, Dror Eiger2, Shafi Goldwasser3, and Dah-Yoh Lim4

1 IBM T. J. Watson Research Center
2 Google, Inc. (work done at Weizmann Institute of Science)

3 MIT and Weizmann Institute of Science
4 MIT

Abstract. Erasing old data and keys is an important tool in crypto-
graphic protocol design. It is useful in many settings, including proac-
tive security, adaptive security, forward security, and intrusion resilience.
Protocols for all these settings typically assume the ability to perfectly
erase information. Unfortunately, as amply demonstrated in the systems
literature, perfect erasures are hard to implement in practice.

We propose a model of partial erasures where erasure instructions
leave almost all the data erased intact, thus giving the honest players
only a limited capability for disposing of old data. Nonetheless, we pro-
vide a general compiler that transforms any secure protocol using perfect
erasures into one that maintains the same security properties when only
partial erasures are available. The key idea is a new redundant represen-
tation of secret data which can still be computed on, and yet is rendered
useless when partially erased. We prove that any such a compiler must
incur a cost in additional storage, and that our compiler is near optimal
in terms of its storage overhead.

Keywords: mobile adversary, proactive security, adaptive security, for-
ward security, intrusion resilience, universal hashing, partial erasures,
secure multiparty computation, randomness extractors.

1 Introduction

As anyone who has ever tried to erase an old white board knows, it is often
easier to erase a large amount of information imperfectly, than to erase a small
amount of information perfectly.

In cryptographic protocol design, perfect erasures, namely the complete dis-
posal of old and sensitive data and keys, is an important ability of honest players
in fighting future break-ins, as this leaves no trace of sensitive data for the ad-
versary to recover.

Examples where perfect erasures have been used extensively include the areas
of proactive security [7,17,19,22,30,36], forward security [1,12,20] and intrusion

� Full version of paper available at http://eprint.iacr.org/ as [5]

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 511–523, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://eprint.iacr.org/

512 R. Canetti et al.

resilience [27], and adaptive security [2,6,28,37]. Whereas erasures merely sim-
plify the design of adaptively secure protocols, some form of erasures is provably
necessary for achieving proactive security and even for defining the task of for-
ward security as we explain below.

The goal of Proactive Security introduced in [36] is to achieve secure multi-
party computations where some fraction of the parties are faulty. The identity
of faulty parties are decided by a mobile adversary who can corrupt a different
set of players in different time periods (here the protocols assume time is di-
vided into well-defined intervals called time periods) subject to an upper bound
on the total number of corrupted players per time period. At the heart of the
solutions pursued in the literature are secret sharing methods in which in every
time period, the old shares held by players are first replaced by new shares and
then perfectly erased. It is easy to prove that secret sharing would be impos-
sible to achieve without some form of erasures: otherwise a mobile adversary
which is able to corrupt every single player in some time period or another,
can eventually recover all old shares for some single time period and recover
the secret. Forward security [1,12,20]. is an approach taken to tackle the private
key exposure problem, so that exposure of long-term secret information does not
compromise the security of previous sessions. Again, the lifetime of the system
is divided into time periods. The receiver initially stores secret key SK0 and
this secret key “evolves” with time: at time period i, the receiver applies some
function to the previous key SKi−1 to derive the current key SKi and then key
SKi−1 is perfectly erased. The public (encryption) key remains fixed throughout
the lifetime of the scheme. A forward-secure encryption scheme guarantees that
even if an adversary learns the secret key available at time i, SKi, messages
encrypted during all time periods prior to i remain secret. Intrusion Resilience is
a strengthening of forward security [27] which can be viewed as combination of
forward and backward security. Obviously, erasures are essential to define (and
solve) both the forward security and intrusion resilience problems.

Finally, an example of a different flavor of the utility of erasures to guard
against adversaries that can choose which future parties to corrupt as the proto-
col proceeds, based on information already gathered. Erasures are useful in this
context since they limit the information the adversary sees upon corrupting a
party. Protocols designed without erasures (although possible in this context),
tend to be much more complex than those that rely on data erasures [2,6,28,37].

Unfortunately, perfect erasures of data are hard to achieve in practice and
are thus problematic as a security assumption, as pointed out by Jarecki and
Lysyanskaya [28] in their study of adaptive adversaries versus static adversaries
in the context of threshold secret sharing.

Some of the difficulty in implementing perfect erasures is illustrated in the
works of Hughes and Coughlin, Garfinkel, and Vaarala [18,24,25,39]. The root
cause of this difficulty is that systems are actually designed to preserve data,
rather than to erase it. Erasures present difficulties at both the hardware level
(e.g. due to physical properties of the storage media) and at the software level
(e.g. due to the complications with respect to system bookkeeping and backups).

How to Protect Yourself without Perfect Shredding 513

At the hardware level, e.g. for hard drives, the Department of Defense recom-
mends overwriting with various bit patterns [35]. This takes the order of days
per 100GB, and is not fully effective because modern hard drives use block re-
placement and usually employ some form of error correction. For main memory,
due to “ion migration”, previous states of memory can be determined even after
power off. At the software level, many operating systems detect and remap bad
sectors of the hard drive on the fly, but original data can remain in the bad
sectors and be recoverable.

1.1 This Paper

In light of the above difficulties, we propose to study protocols that can guarantee
security even when only imperfect or partial erasures are available.

The first question to be addressed is how to model erasures that are only par-
tially effective. One option is to simply assume that each erasure operation suc-
ceeds with some probability. However, such a modeling does not capture all the
difficulties described above. In particular, it allows obtaining essentially perfect
erasures by applying the erasure operation several times on a memory location;
therefore such a model is unlikely to yield interesting or effective algorithms.
In addition, such modeling does not take into account potential dependencies
among information in neighboring locations.

The model of Partial Erasures. We thus take a much more conservative
approach. Specifically, we model partial erasures by a length-shrinking function
h : {0, 1}m -→ {0, 1}	φm
, that shrinks stored information by a given fraction
0 ≤ φ ≤ 1. We call φ the leakage fraction. When φ = 0 then we get the perfect
erasures case; when φ = 1 nothing is ever erased. For the rest of this work we
think of φ being a value close to 1 (namely, the size of what remains after data
is partially-erased is close to the original size). Note that we do not require φ to
be a constant – for instance, for reasonable settings of the parameters, it may be

1
poly(α) close to 1, where α is a security parameter of the protocol in question.

The shrinking function may be chosen adversarially. In particular, it is not
limited to outputting exact bits, and any length-shrinking function (efficiently
computable or not) on the inputs is allowed. This modeling captures the fact
that the remaining information may be a function of multiple neighboring bits
rather than on a single bit. It also captures the fact that repeated erasures may
not be more effective than a single one.

The function h is assumed to be a function only of the storage contents to
be erased. Furthermore, for simplicity we assume that h is fixed in advance
– our schemes remain secure without any modification even if the adversary
chooses a new hi prior to each new erasure. This choice seems to adequately
capture erasures that are only partially successful due to the physical properties
of the storage media1. However, this may not adequately capture situations
where the failure to erase comes from interactions with an operating system, for
1 Indeed, physical properties of the storage are mostly fixed at the factory; from then

on the behavior of the hardware only depends on what is written.

514 R. Canetti et al.

instance memory swapping, and caching. In order to capture this sort of erasure
failures, one might want to let h to be a function of some information other than
the contents to be erased, or alternatively to be determined adaptively as the
computation evolves.

We treat m, the input length of h, as a system parameter. (For instance, m
might be determined by the physical properties of the storage media in use.)
One can generalize the current model to consider the cases where h is applied
to variable-length blocks, and where the block locations are variable.

Our Memory Model. We envision that processors participating in protocols
can store data (secret and otherwise) in main memory as well as cache, hard drives,
and CPU registers. We assume all types of storage are partially erasable, except a
constant number of constant size CPU registers which are assumed to be perfectly
erasable. We emphasize that the constant size of the registers ensures that we do
not use this to effectively perfectly erase main memory and thus circumvent the
lack of perfect erasures in main memory, since at no time can the registers hold
any non-negligible part of the secret. We call this the register model.

We shall use these registers to perform intermediate local computations during
our protocols. This will allow us to ignore the traces of these computations, which
would otherwise be very messy to analyze.

Results and Techniques. Our main result is a compiler that on input any
protocol that uses perfect erasures, outputs one that uses only partial erasures,
and preserves both the functionality and the security properties of the original
protocol. Our transformation only applies to the storage that needs to be erased.

The idea is to write secrets in an encoded form so that, on the one hand, the
secret can be explicitly extracted from its encoded form, and on the other hand
loss of even a small part of the encoded form results in loss of the secret.

Perhaps surprisingly, our encoding results in expanding the secret so that the
encoded information is longer than the original. We will prove that expanding
the secret is essential in this model (see more discussion below). This expansion
of secrets seems a bit strange at first, since now there is more data to be erased
(although only partially). However, we argue that it is often easier to erase a
large amount of data imperfectly than to erase even one bit perfectly.

We describe the compiler in two steps. First we describe a special case where
there is only a single secret to be erased. Next we describe the complete compiler.

Our technique for the case of a single secret is inspired by results in the bounded
storage model, introduced by Maurer [32,33]. Work by Lu [29] casted results in the
bounded storage model in terms of extractors [34], which are functions that when
givenasourcewithsomerandomness,purifiesandoutputsanalmostrandomstring.

At a high level, in order to make an n-bit secret s partially erasable, we
choose random strings R,X and store R,X,Ext(R,X)⊕s, where Ext is a strong
extractor that takes R as seed and X as input, and generates an n-bit output
such that (R,Ext(R,X)) is statistically close to uniform as long as the input X
has sufficient min-entropy. To erase s, we apply the imperfect erasure operation
on X . Both R and Ext(R,X)⊕ s are left intact.

How to Protect Yourself without Perfect Shredding 515

For sake of analysis, assume that |X | = m, where m is the input length for the
partial erasure function h. Recall that erasing X amounts to replacing X with a
string h(X) whose length is φm bits. Then, with high probability (except with
probability at most 2−(1−φ)m/2), X would have about (1 − φ)m/2 min-entropy
left given h(X). This means that, as long as (1− φ)m/2 > n, the output of the
extractor is roughly 2−(1−φ)|X|/2-close to uniform even given the seed R and the
partially erased source, h(X). Consequently, s is effectively erased.

There is however a snag in the above description: in order to employ this
scheme, one has to evaluate the extractor Ext without leaving any trace of the
intermediate storage used during the evaluation. Recall that our model the size
of the perfectly erasable memory is constant independently of n, the length of
the secret. This means that Ext should be computable with constant amount of
space, even when the output length tends to infinity. We identify several such
extractors, including ε-almost universal hashing, strong extractors in NC0, and
Toeplitz Hashing [31]. It would seem superficially that locally computable strong
extractors [40] can be used, but unfortunately they cannot (proof deferred to full
version [5]).

Now let us move on to describe the general compiler. Suppose we want to
compute some function g (represented as a circuit) on some secret s, only now,
s is replaced by a representation that is partially erasable, and we would like to
make sure that we can still compute g(s). We are going to evaluate the circuit in
a gate-by-gate manner where the gate inputs are in expanded form. The inputs
are reconstructed in the registers, and the gate is evaluated to get an output,
which is in turn expanded and stored in main memory. Even though some small
(negligible) amount of information is leaked at each partial erasure, we show
that as long as the number of erasure operations is sub-exponential, the overall
amount of information gathered by the adversary on the erased data is negligible.

For maximum generality we formulate our results in the Universally Compos-
able (UC) framework. In particular we use the notion of UC emulation [3], which
is a very tight notion of correspondence between the emulated and emulating
protocols. Our analysis applies to essentially any type of corruption – adaptive,
proactive, passive, active, etc. That is, we show:

Theorem (informal): For any protocol Πorg that requires perfect erasures
(for security), the protocol Πnew = Compiler(Πorg) UC-emulates Πorg, and
tolerates (maintains security even with) imperfect/partial erasures in the register
model. For leakage fraction of φ, if Πorg uses n bits of storage then Πnew uses
about 2

1−φn bits of storage.

Optimality of the scheme. One of the main cost parameters of such compilers
is the expansion factor, the amount by which they increase the (erasable part
of the) storage. That is, a compiler has expansion factor Ψ if whenever Πorg

uses n bits of storage, Πnew uses at most Ψn bits of storage. It can be seen
that our compiler has expansion factor Ψ ≤ 2

1−φ + ν(n) where ν is a negligible
function. In addition, in [5] we show that if ε-almost universal hashing is used

516 R. Canetti et al.

and φ > 1/4, then our compiler would have an expansion factor of about c
1−φ ,

where 1 < c < 2 is a constant.
We show that our construction is at most twice the optimal in this respect.

That is, we show that any such compiler would necessarily have an expansion
of roughly Ψ ≥ 1

1−φ . This bound holds even for the simplest case of compiling
even a single secret into one that is partially erasable. Roughly speaking, the
argument is as follows. If we do not want to leak any information on a secret of
n bits the function h must shrink the expanded version of s by at least n bits. In
our model, h shrinks by (1−φ)Ψn bits and therefore, (1−φ)Ψn ≥ n⇒ Ψ ≥ 1

1−φ .

Some specific solutions. In addition to the general compiler, in [5] we de-
scribe some special-tailored solutions to two specific cases. One case is where
the function to be evaluated is computable by NC0 circuits. The second case
is the case for all known proactive secret sharing schemes. These solutions are
computationally more efficient since they do not require running the compiler
on a gate by gate basis. In particular, in the case of proactive secret sharing
we can apply our expanded representation directly to the secret and its shares
and the instructions which modify the shares (to accordingly modify the new
representations) and leave the rest of the protocol intact. Note that this greater
efficiency also translates into tighter security – for instance if the original proto-
col assumed some timing guarantees, then the new protocol need not assume a
timing that is much looser than the original.
Remark 1. As we elaborate in [5], a side benefit of using using our constructions
is that it can be resistant to a practical class of physical attacks [21] that involves
freezing RAM and recovering secrets from it.

Remark 2. Note that because we prove statistical security, our schemes are “ev-
erlastingly secure” in the sense that even if the adversary stores all the partially
erased information, whatever happens in the future will not help him, e.g. even
if it turns out that P = NP .

1.2 Related Work

The Bounded Storage Model (BSM). The Bounded Storage Model (BSM)
proposed by Maurer [32,33], considers computationally unbounded but storage
limited adversaries. This enables novel approaches to the secure communication
problem as follows. The communicating parties begin with a short initial secret
key k. In the first phase they use this key k and access to a long public random
string R to derive a longer key X . The storage bounded adversary computes an
arbitrary length-shrinking function on R. In the second phase, R “disappears”,
and the parties will use X as a one-time pad to communicate privately.

We will use the same kind of length-shrinking function to capture the act of
partially erasing old shares of a secret.

However, conceptually the settings of the BSM and partial erasures are fun-
damentally different. In the BSM model possibility is proved by putting limi-
tations on the adversary (storage), where as in our work possibility is proved

How to Protect Yourself without Perfect Shredding 517

inspite of putting limitation on the honest parties (erasing capability). Thus,
although some of techniques are similar the setup is entirely different. From a
technical point of view there are two differences we emphasize as well. Firstly,
the extractors that we use must be computable with constant sized memory),
whereas in the BSM the extractors are not necessarily computable with constant-
sized memory. Secondly, in the BSM, it is assumed that the adversary’s storage
bound remains the same as time goes by, namely a constant fraction φ of the
public randomness R. The same assumption is used in the bounded retrieval
model [11,10,14,15,16]. For instance [16] constructs intrusion resilient secret shar-
ing schemes by making the shares large and assuming that the adversary will
never be able to retrieve any share completely. For partial erasures this bound is
unreasonable, and we allow the adversary to get φ fraction of Ri for each erasure
operation.

Exposure Resilient Functions. Exposure-Resilient Functions, or ERFs, were
introduced by Canetti et al. [4,13]. An �-ERF is a function with a random input,
such that an adversary which learns all but � bits of the input, cannot distinguish
the output of the function from random.

At a high level the ERF objectives seem very similar to partial erasures.
However, the settings are different. In particular, ERFs only deal with the leakage
of exact bits whereas we deal with the leakage of general information. (We remark
that this limitation of ERFs is inherent in their model: It is easy to see that there
do not exist ERFs that resists arbitrary leakage functions).

Encryption as Deletion. As Di Crescenzo et al. [9] noted, one simple but
inefficient way to implement erasable memory can be obtained by using the
crypto-paging concept of Yee [41]. Assume that some amount of storage that
is linear in the security parameter is available that is perfectly erasable, and
some other poly storage is persistent. To make the persistent memory effectively
erasable, pick an encryption scheme and keep the key in the erasable part. Always
encrypt the contents to be kept on the persistent storage. Then erasing the key
is as good as erasing the contents.

By combining these ideas with ours, it is possible to have an increase in storage
that is linear in the security parameter, while using only a constant amount of
perfectly erasable memory.

2 How to Make Secrets Partially Erasable

To change a protocol using perfect erasures to one that uses only partial erasures,
the high level idea is that instead of having a piece of secret s ∈ {0, 1}n directly
in the system, we let the parties store it in expanded form. At the cost of more
storage, this gives the ability to effectively erase a secret even when only partial
erasures are available. In the end, the number of bits that have to be partially
erased might be more than the number of bits that have to be perfectly erased.
This is still reasonable because it is often much easier to partially erase a large

518 R. Canetti et al.

number of bits than to perfectly erase a small number. Furthermore, we show
in 2.1 that such expansion is inherent in the model.

We write UX to denote an r.v. uniformly random on some set X .

Definition 1 (Statistical Distance). Suppose that A and B are two distri-
butions over the same finite set Σ. The statistical distance between A and B is
defined as Δ(A;B) := 1

2

∑
σ∈Σ

∣
∣
∣PrA[σ]− PrB[σ]

∣
∣
∣.

Definition 2 (Statistical Distance from the Uniform). Let d(A) := Δ
(A;UA). Also define d(A|B) :=

∑
b d(A|B = b) · PrB[b] =

∑
b PrB[b] 12

∑
a |

PrA|B=b[a] − 1
|A| |. We say that a random variable A is ε-close to the uniform

given B to mean that d(A|B) ≤ ε.

Due to lack of space we refer the reader to the introduction for the definitions
of a partial erasure function h : {0, 1}m -→ {0, 1}	φm
 and a leakage fraction
0 ≤ φ ≤ 1.

Definition 3 (Partially Erasable (or Expanded) Form of a Secret). Let
Exp(◦, ◦) be the “expansion” function taking the secret s to be expanded as the
first input and randomness as the second, and Con be the “contraction” function
taking the output of Exp as the input. Let hs

i := h(Exp(s, $i)), where $i are
independent randomness. We say that (Exp,Con) is (�, α, φ)-partially erasable
form of a secret if ∀s ∈ {0, 1}n, for any h with leakage fraction φ,
1. (Correctness) Con (Exp(s, r)) = s for all r ∈ {0, 1}poly(n).
2. (Secrecy) ∀s′ ∈ {0, 1}n, Δ

(
hs

1, ..., h
s
� ;h

s′

1 , ..., hs′

�

)
≤ 2−α.

3. (With Constant Memory) Both Exp,Con are computable with constant mem-
ory.

Remark 3. We require both Exp and Con to be computable with constant mem-
ory to ensure that intermediate computations can be kept in the registers which
are perfectly erasable.

Remark 4. We require indistinguishability for many (� above) erasures to
account for the fact that many computations may be done during the proto-
col (directly or indirectly) on the secret, from which the adversary might gain
more information on a secret. Generally, an adversary may have many partially
erasable forms of the same secret (i.e adversary can see h(Exp(s, $i)) s.t for each
i adversary knows a 1-1 and onto correspondence qi from Exp(s, $i) to s).

An example of an expanded form of a secret which can be partially erased and
satisfies correctness and secrecy (in the above definition) would be to use a
universal hash function family {HR} as follows: expand s to (v,R, k) s.t. s =
HR(k)⊕ v. By using the leftover hash lemma [26], for any constant φ such that
0 < φ < 1, for any arbitrary partial erasure function h with leakage fraction
φ, for any universal hash function family {HR}, HR(k) can be made negligibly
close to uniform given R and h(k) (so HR(k) is as good as a one time pad).

Let us first focus on bounding d(HR(k)|R, h(k)).

How to Protect Yourself without Perfect Shredding 519

Theorem 1 (Security for a Single Erasure using Universal Hash). Let
{HR} be a universal family of hash functions. Let (R, h(k)) be a tuple such
that R ∈ {0, 1}n×m, k ∈ {0, 1}m, and h(k) ∈ {0, 1}φm, where R picks out a
random function out of {HR}, and k is random. Then, d(HR(k)|R, h(k)) ≤
2−

1
3 (1−φ)m+ n

3 +1.

The proof of this theorem and the next is deferred to the full version [5].

Theorem 2 (Security for Multiple Erasures using Universal Hash). Let
{HR} be a family of universal hash functions. Let (R1, h(k1)), ..., (R�, h(k�)) be
� tuples such that Ri ∈ {0, 1}n×m, ki ∈ {0, 1}m, and h(ki) ∈ {0, 1}φm, where Ri

picks out a random function out of {HR}, ki is random, and qi are public 1-1
correspondences such that s = qi(HRi(ki)). Then, for any β > 0, m poly in n,
and sufficiently large n,

d(HRi(ki)|R1, h(k1), ..., R�, h(k�)) ≤
√

ln 2
2

�2−
1
3 (1−φ)m+ (β+1)n

3 − 1
3 .

Note that to get 2−(α+1) security when the adversary gets � partially erased
tuples, we need:

√
ln 2
2

�2−
1
3 (1−φ)m+ (β+1)n

3 − 1
3 ≤ 2−(α+1)

⇔ � ≤ 2
4
3−2(α+1)− 1

3 (1+β)n+ 1
3m(1−φ)

ln 2
(1)

⇔ m ≥ 3 log ((ln 2)�)− 4 + 6(α + 1) + (1 + β)n
(1− φ)

(2)

Let us make a few observations. Inequality 1 shows that if h has leakage fraction
φ, how many times can you partially erase a secret (or computations on the
secret) without leaking too much information. Rearranging, and fixing the other
parameters, we can also see that the fraction that needs to be erased, (1 − φ),
has to be at least logarithmic in �. Inequality 2 on the other hand lower bounds
m, which as we will see shortly, translates into a statement about the space
efficiency of using universal hashing to get partially erasable forms.

Let us now consider two partially erasable forms based on universal hashing
which satisfy correctness, secrecy and moreover can be computed with constant
size memory. The expansions we consider can be thought of as having two parts,
R, k, each serving different purposes. Furthermore, only one part, k, needs to be
partially erased2.

The first expanded form of s is random matrix R ∈ {0, 1}n×m and vector
k ∈ {0, 1}m subject to the constraint that R · k = s. Only the vector k needs to
be erased. However, this simple construction is highly randomness inefficient.

Our preferred partial erasable form will be to use Toeplitz hashing instead
(whose universality is proven in [31]). A random Toeplitz matrix R ∈ {0, 1}n×m

2 Which makes our results stronger than required by the definition.

520 R. Canetti et al.

which selects a random hash function out of the Toeplitz family {HR}, where
HR : {0, 1}m -→ {0, 1}n. In order to store an n-bit secret s in a partially erasable
manner, we choose random Toplitz matric R ∈ {0, 1}n×m, k ∈ {0, 1}m (where R
is fully specified by a random string of n + m− 1 bits), and store R, k,R · k ⊕ s
instead. Again, only the k part needs to be erased. In this case Exp(s, r) uses r
to form a random Toeplitz R and a random k, and outputs R, k,R · k ⊕ s, and
Con(R, k, x) recovers s by computing R · k ⊕ x.

It is easy to see how to implement (Exp,Con) corresponding to Toeplitz hash
that is computable with constant memory, bit by bit. From the triangle in-
equality, for all s, s′ ∈ {0, 1}n, Δ

(
HR(k) ⊕ s,R, h(k);HR(k) ⊕ s′, R, h(k)

)
≤

2d(HR(k)|R, h(k)). Combining these with theorem 2 proves that:

Corollary 1 (Toeplitz Hashing gives a Partially Erasable Form).
Toeplitz hashing yields a partially erasable form of a secret.

2.1 Space Efficiency

Lower Bound. Say that an expansion function Exp is Ψ -expanding if for any
r we have |Exp(s, r)| ≤ Ψ |s|. One parameter we would like to minimize is Ψ , the
storage overhead, whose lower bound is given below (proof in [5]):

Theorem 3 (Lower Bound on the Storage Expansion Ψ). For any Ψ -
expanding, (�, α, φ)-partially erasable expansion function Exp that is applied to
inputs of length n we have: Ψ ≥ 1

1−φ

(
1− n+α−1

n�2α−1

)
.

For typical settings of the parameters, where both α and � are polynomial in n,
we get that Ψ ≥ 1

1−φ (1− neg(α)) .

Efficiency. Let us see how tight our construction is to the lower bound. If a
completely random R is used and HR := R · k (whose universality is proven
in [8]), then the expansion factor Ψ of the storage would be (size of R + size of
k) · 1

n , which is (n + 1)m · 1
n = (1 + 1

n)m. Plugging this into inequality 2, we see
that this bound is a (growing) factor of n away from the optimal.

If a Toeplitz matrix R is used instead, then the corresponding expanded form
will be R ∈ {0, 1}n×m, k ∈ {0, 1}m and x ∈ {0, 1}n such that R · k ⊕ x = s. In
this case, R requires n+m−1 bits to specify (since it is Toeplitz), and k requires
m bits and x requires n bits respectively. So in this case, n bits get expanded
into 2m+ 2n−1 bits, and Ψ is 2m

n + 2− 1
n . Plugging in inequality 2, we see that

for α = O(n) and � = 2O(n), then this bound is a constant factor away from the
optimal given in theorem 3. If � is subexponential in n and α is sublinear in n,
then the bound we get is about Ψ ≥ 2

1−φ + 2, so it is essentially a factor of 2
away from the optimal bound3.
3 In the full version [5] we discuss two other partially erasable forms: 1. ε-almost

universal hashing which, provided that φ > 1/4, gives roughly Ψ ≥ c
1−φ

for some
constant 1 < c < 2, and 2. strong extractors computable with constant memory (e.g.
those in NC0), which, provided that the extractor is near optimal, would achieve
the lower bound. Unfortunately we do not know of such extractors.

How to Protect Yourself without Perfect Shredding 521

3 A General Construction

3.1 Computing on Partially Erasable Secrets at the Gate Level

Let s ∈ {0, 1}n be the secret involved, and let (Exp,Con) be the partially erasable
form of s. Consider any efficient computation on s, which can be modeled as a
poly(n)-sized circuit. Without loss of generality, we consider gates with fan-in
of two and fan-out of one, and consider each output bit separately as being
computed by a polynomial-sized circuit.

To evaluate a gate, the two corresponding input bits are reconstructed from
their expanded forms in the registers (using Con). The gate is evaluated, resulting
in an output bit b in the registers. This output bit is expanded into the partially
erasable form and output to main memory4, by using Exp. This can be done
with constant memory. Note that if we just store the values of the wires näıvely,
i.e. by individually expanding the 1-bit value of each wire to a Ψn size secret,
then the overhead of our scheme will not even be constant. So we must amortize
the cost: group the wires of the circuit into groups of size t (i.e., there are t wires
in each group), where t is such that secrets of size t are expanded into m-bit
strings. Now, when we write the values of the wires in an expanded form, we
expand all the t values into a single m-bit string. This will make sure that the
overhead of the general compiler will still be the same as the overhead for the
scheme described in section 2.

The above is an informal description of Compute-in-register(g,Exp(s, $)),
which makes sure that the computation of g(s) is done properly without leaking
intermediate computation (through expressing them in expanded form). The
proof of the following lemma is in [5].

Lemma 1. Let s ∈ {0, 1}n be any secret, g be the function to be computed
on s, where each bit i of output of g(s) is computed by a poly(n)-sized circuit
Cgi , consisting of gates {Xj

i }j. Let vi denote the number of partially erased
intermediate computations while computing the i-th output bit (Compute-in-

register(g,Exp(s, $))), where Exp(s, $) is the expansion function of a (�, α, φ)-
partially erasable form and v :=

∑
i vi ≤ �.

Then, the adversary cannot distinguish the case of s versus any s′ ∈ {0, 1}n
being partially erased, by more than 2−α probability, i.e.:

Δ
(
h(Exp(s, $1)), ..., h(Exp(s, $v));h(Exp(s′, $′1)), ..., h(Exp(s′, $′v))

)
≤ 2−α.

Starting with any protocol that uses perfect erasures, we replace all computations
on the secrets to use Compute-in-register instead. The result that we get is
(proof in [5]):

4 Note that even if in practice, storage locations holding expanded forms of the inter-
mediate computations may be overwritten, for analyzing security we can think of all
the expanded forms as being written in a new memory location. Put another way,
overwriting is just one form of the imperfect erasures we are capturing.

522 R. Canetti et al.

Theorem 4. For any protocol Πorg that requires perfect erasures (for security),
the protocol Πnew = Compiler(Πorg) UC-emulates Πorg, and tolerates (main-
tains security even with) imperfect/partial erasures in the register model.

References

1. Anderson, R.: Two remarks on public key cryptology invited lecture. In: Acm-Ccs
1997 (1997)

2. Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294. Springer, Heidelberg (1997)

3. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proc. 42nd IEEE Symp. on Foundations of Comp. Science, pp. 136–
145 (2001)

4. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)

5. Canetti, R., Eiger, D., Goldwasser, S., Lim, D.-Y.: How to protect yourself without
perfect shredding (full version) (2008), http://eprint.iacr.org/

6. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure computation
(1995)

7. Canetti, R., Gennaro, R., Herzberg, A., Naor, D.: Proactive security: Long-term
protection against break-ins. In: CryptoBytes (1) (1999)

8. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. JCSS 18 (1979)

9. Di Crescenzo, G., Ferguson, N., Impagliazzo, R., Jakobsson, M.: How to forget a
secret. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 500–509.
Springer, Heidelberg (1999)

10. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in
the bounded retrieval model. In: Theory of Cryptography Conference, pp. 225–244
(2006)

11. Dagon, D., Lee, W., Lipton, R.J.: Protecting secret data from insider attacks. In:
Financial Cryptography, pp. 16–30 (2005)

12. Diffie, W., Van-Oorschot, P.C., Weiner, M.J.: Authentication and authenticated
key exchanges. In: Designs, Codes, and Cryptography, pp. 107–125 (1992)

13. Dodis, Y.: Exposure-Resilient Cryptography. PhD thesis. MIT, Cambridge (2000)

14. Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Theory
of Cryptography Conference, pp. 207–224 (2006)

15. Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg (2006)

16. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: FOCS 2007,
Washington, DC, USA, pp. 227–237. IEEE Computer Society, Los Alamitos (2007)

17. Frankel, Y., Gemmel, P., MacKenzie, P.D., Yung, M.: Proactive rsa. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg
(1997)

18. Garfinkel, S.L.: Design Principles and Patterns for Computer Systems That Are
Simultaneously Secure and Usable. PhD thesis. MIT, Cambridge (2005)

19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold Dss signa-
tures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996)

http://eprint.iacr.org/

How to Protect Yourself without Perfect Shredding 523

20. Günther, C.G.: An identity-based key-exchange protocol. In: Proc. EUROCRYPT
1989, pp. 29–37 (1989)

21. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot
Attacks on Encryption Keys (April 2008), http://citp.princeton.edu/memory/

22. Herzberg, A., Jakobsson, M., Jarecki, S., Krawczyk, H., Yung, M.: Proactive public
key and signature systems. In: ACM Conference on Computers and Communication
Security (1997)

23. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing, or:
How to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 339–352. Springer, Heidelberg (1995)

24. Hughes, G., Coughlin, T.: Tutorial on hard drive sanitation (2006),
http://www.tomcoughlin.com/

25. Hughes, G., Coughlin, T.: Secure erase of disk drive data, pp. 22–25 (2002)
26. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way

functions. In: STOC 1989, pp. 12–24 (1989)
27. Itkis, G., Reyzin, L.: Sibir: Signer-base intrusion-resilient signatures. In: Yung, M.

(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)
28. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: Intro-

ducing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 221–243. Springer, Heidelberg (2000)

29. Lu, C.-J.: Encryption against storage-bounded adversaries from on-line strong ex-
tractors. In: Proc. CRYPTO 2002, pp. 257–271 (2002)

30. Lysyanskaya, A.: Efficient threshold and proactive cryptography secure against the
adaptive adversary (extended abstract) (1999)

31. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Proc. 22nd ACM Symp. on Theory of Computing (2002)

32. Maurer, U.: A provably-secure strongly-randomized cipher. In: Damg̊ard, I.B. (ed.)
EUROCRYPT 1990. LNCS, vol. 473, pp. 361–373. Springer, Heidelberg (1991)

33. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher, pp. 53–66 (1992)

34. Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer
and System Sciences 52(1), 43–52 (1996)

35. Department of Defense. DoD 5220.22-M: National Industrial Security Program
Operating Manual (1997)

36. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks, pp. 51–61 (1991)
37. Damg̊ard, I., Nielsen, J.: Improved non-committing encryption schemes based on

a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, Springer, Heidelberg (2000)

38. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal, 656–715

39. Vaarala, S.: T-110.5210 cryptosystems lecture notes (2006)
40. Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in

the bounded-storage model. J. Cryptol. 17(1), 43–77 (2004)
41. Yee, B.: Using secure coprocessors. PhD thesis (May 1994)

http://citp.princeton.edu/memory/
http://www.tomcoughlin.com/

Universally Composable Undeniable Signature

Kaoru Kurosawa1 and Jun Furukawa2

1 Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp
2 NEC Corporation, Japan
j-furukawa@ay.jp.nec.com

Abstract. How to define the security of undeniable signature schemes
is a challenging task. This paper presents two security definitions of un-
deniable signature schemes which are more useful or natural than the
existing definition. It then proves their equivalence.

We first define the UC-security, where UC means universal compos-
ability. We next show that there exists a UC-secure undeniable signature
scheme which does not satisfy the standard definition of security that has
been believed to be adequate so far. More precisely, it does not satisfy the
invisibility defined by [10]. We then show a more adequate definition of
invisibility which captures a wider class of (naturally secure) undeniable
signature schemes.

We finally prove that the UC-security against non-adaptive adver-
saries is equivalent to this definition of invisibility and the strong unforge-
ability in FZK -hybrid model, where FZK is the ideal ZK functionality.
Our result of equivalence implies that all the known proven secure un-
deniable signature schemes (including Chaum’s scheme) are UC-secure
if the confirmation/disavowal protocols are both UC zero-knowledge.

Keywords: Universal composability, undeniable signature scheme.

1 Introduction

The concept of undeniable signature schemes was introduced by Chaum and van
Antwerpen [9]. In an undeniable signature scheme, the signer issues an undeni-
able signature σ which is not publicly verifiable. She then proves the validity or
invalidity of σ to the verifier in zero-knowledge (ZK) by running a confirmation
protocol or disavowal protocol. Undeniable signature schemes have found vari-
ous applications in cryptography such as in licensing software, electronic cash,
electronic voting and auction. Then there have been a wide range of research
covering a variety of different schemes for undeniable signatures over the past
15 years [1,2,8,10,11,12,13,17,19,20,21].

Recently, the security of Chaum’s undeniable signature scheme is proved for-
mally in the random oracle model under the decisional Diffie-Hellman (DDH)
assumption by [22]. In the standard model, Laguillaumie and Vergnaud showed
an undeniable signature scheme which is secure under a decisional variant of the
strong Diffie-Hellman (DH) assumption [18]. Kurosawa and Takagi showed an

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 524–535, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Universally Composable Undeniable Signature 525

undeniable signature scheme which is secure under the strong RSA assumption
and the decisional Nth residuosity assumption [16].

However, how to define the security of undeniable signature schemes is a
challenging task. For example, it is not known if the security of these schemes is
maintained under a general protocol composition. This concern is serious because
undeniable signatures are often used as a building block in a more complicated
protocol as shown above.

This paper presents two security definitions of undeniable signature schemes
which are more useful or natural than the existing definition. It then proves their
equivalence.

We first present an ideal functionality of undeniable signature schemes Σ in
the universally composable (UC) framework [3,4]. We next show that there exists
a UC-secure undeniable signature scheme which does not satisfy the standard
definition of security that has been believed to be adequate so far. More precisely,
it does not satisfy the invisibility defined by [10]. The invisibility means that,
for a message m, the receiver cannot tell if σ is a valid signature or a simulated
signature. We then show a more adequate definition of invisibility which captures
a wider class of (naturally secure) undeniable signature schemes.

We finally prove that the UC-security against non-adaptive adversaries is
equivalent to this definition of invisibility and the strong unforgeability in FZK-
hybrid model where FZK is the ideal ZK functionality. For adaptive adversaries,
we show that it is impossible to construct a UC-secure undeniable signature
scheme even in the FZK-hybrid model.

Our result of equivalence implies that all the known proven secure undeniable
signature schemes (including Chaum’s scheme) [22,18,16] are UC-secure against
non-adaptive adversaries if the confirmation protocol and the disavowal protocol
are UC zero-knowledge. Hence the security of these schemes is maintained under
a general protocol composition against non-adaptive adversaries.

2 Preliminaries

2.1 Undeniable Signature Scheme

According to [10], an undeniable signature scheme is denoted by

Σ = (Gsign, Sign,Check, Sim, πcon, πdis).

It consists of a key generation algorithm Gsign, a signing algorithm Sign, a va-
lidity check algorithm Check, a signature simulator Sim, a confirmation protocol
πcon and a disavowal protocol πdis.

The key generation algorithm Gsign is a PPT (probabilistic polynomial-time)
algorithm which outputs (vk, sk), where vk is a verification key and sk is the
signing key. 1 The message space M is specified by vk.

The signing algorithm Sign is a PPT algorithm which generates a signature
σ on input a message m ∈M and the signing key sk.
1 We assume that sk is uniquely determined by vk.

526 K. Kurosawa and J. Furukawa

We say that (m,σ) is valid if σ is an output of Sign(sk,m) for some random
string r. Otherwise, we say that (m,σ) is invalid. The validity check algorithm
Check is a deterministic polynomial time algorithm such that

Check((vk,m, σ), sk) =
{

1 if (m,σ) = valid
0 if (m,σ) = invalid

The signature simulator Sim is a PPT algorithm which outputs a simulated
signature such that σ′ = Sim(vk,m).

An undeniable signature scheme must satisfy unforgeability and invisibility.
Invisibility means that for a message m, the receiver cannot tell if σ is a valid
signature or a simulated signature.

This implies that the receiver cannot verify the validity of (m,σ) by him-
self. Instead, the cooperation of the signer is needed to verify the validity and
invalidity of (m,σ) by running a confirmation protocol πcon and a disavowal
protocol πdis with the receiver respectively. πcon is a zero-knowledge interactive
proof system (ZKIP) on a language L0 = {(vk,m, σ) | (m,σ) is valid}, and πdis

is a ZKIP on a language L1 = {(vk,m, σ) | (m,σ) is invalid}. Each ZKIP must
satisfy completeness, soundness and zero-knowledgeness.

2.2 Security of Undeniable Signature

Unforgeability. The unforgeability is defined as follows. Consider the following
game between a challenger and an adversary A.

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. For i = 1, 2, . . . , qs for some qs, A queries a message mi to the signing oracle
adaptively and receives a signature σi.

3. Eventually, A outputs a forgery (m∗, σ∗).

We allow the adversary A to query (mj , σj) to the confirmation/disavowal or-
acle adaptively at step 2, where the confirmation/disavowal oracle responds as
follows.

– If (mj , σj) is a valid pair, then the oracle returns a bit μ = 1 and proceeds
with the execution of the confirmation protocol πcon with A.

– Otherwise, the oracle returns a bit μ = 0 and executes the disavowal protocol
πdis with A accordingly.

We say that A succeeds in strong forgery if (m∗, σ∗) is valid and (m∗, σ∗) is
not among the pairs (mi, σi) generated during the signing oracle queries. 2

Definition 1. We say that Σ is strongly unforgeable if Pr[A succeeds in strong
forgery] is negligible for any PPT adversary A in the above game.
2 We say that A succeeds in weak forgery if (m∗, σ∗) is valid and m∗ has never been

queried to the signing oracle. Weak unforgeability and strong one are equivalent if
the signing algorithm is deterministic, and there exists a unique signature for each
message that is verified correctly.

Universally Composable Undeniable Signature 527

Invisibility. Damg̊ard and Pedersen defined the invisibility by using the fol-
lowing game between a challenger and an adversary A [10].

1. The challenger generates a key pair (vk, sk) randomly, and gives the verifi-
cation key vk to A.

2. A is permitted to issue a series of signing queries mi to the signing oracle
adaptively and receives a signature σi.

3. At some point, A chooses a message m∗ and sends it to the challenger.
4. The challenger chooses a random bit b.

If b = 1, then he computes a real signature σ∗ = Sign(sk,m∗).
Otherwise, he computes a fake signature σ∗ = Sim(vk,m∗).
He then returns σ∗ to A.

5. A performs some signing queries again
6. At the end of this attack game, A outputs a guess b′.

We allow the adversary A to query (mj , σj) to the confirmation/disavowal oracle
adaptively at step 2 and at step 5.

However, A is not allowed to query the challenge (m∗, σ∗) to the confirma-
tion/disavowal oracle at step 5. Also A is not allowed to query m∗ to the signing
oracle.

Definition 2. We say that Σ is invisible if for any PPT adversary A, |Pr[b =
b′]− 1/2| is negligible in the above game.

2.3 Universal Composability

The security of a protocol π = (P1, · · · , Pn) is maintained under a general pro-
tocol composition if π is secure in the universally composable (UC) security
framework. See [3,4,5] for the details.

3 UC Undeniable Signature

3.1 Ideal Functionality

Suppose that there exists a trusted third party (TTP) who has magical ink such
that anything written by it is not visible. Only TTP can see it by using a special
pair of glasses. Then the ideal functionality of undeniable signature schemes can
be illustrated as follows.

1. A signer, Alice, first receives a registered number vk from TTP.
2. Upon signing request on a message m from Alice, TTP makes a signature σ

on m (on behalf of vk) by using the magical ink.
3. Upon verification request on (m,σ,Bob) from Alice, TTP checks if σ is a

correct signature (on behalf of vk) by using the special pair of glasses. Then
it tells Bob if (m,σ) is valid or not.

528 K. Kurosawa and J. Furukawa

We now present the ideal functionality Fusig of undeniable signature schemes
in the UC framework.

Key Generation: 1. Upon receiving a value (KeyGen, sid) from some party P ,
verify that sid = (P, sid′) for some sid′. If not, then ignore the request.
Else, hand (KeyGen, sid) to the adversary.

2. Upon receiving (Keys, sid, vk,Sim) from the adversary, output
(VerifyKey, sid, vk,Sim) to P , where vk is a verification key and Sim is
a PPT algorithm.

Signature Generation: Upon receiving a value (Sign, sid,m) from P , verify
that sid = (P, sid′) for some sid′. If not, then ignore the request. Else do:
1. If (m,σ, 1) is recorded, then output (Signature, sid,m, σ) to P . 3

2. Else, if P is not corrupted, generate σ = Sim(vk,m) randomly such that
no entry (m,σ, 0) is recorded. Then output (Signature, sid,m, σ) to P
and the adversary.

3. Else send (Sign, sid,m) to the adversary.
Upon receiving (Signature, sid,m, σ) from the adversary, verify that no
entry (m,σ, vk, 0) is recorded. If it is, then output an error message to P
and halt. Else, output (Signature, sid,m, σ) to P , and record the entry
(m,σ, vk, 1).

Verification: Upon receiving a value (Verify, sid,m, σ, V) from P , where V is
a verifier, verify that sid = (P, sid′) for some sid′. If not, then ignore the
request. Else do:
1. If (m,σ, flag′) is recorded, then set flag = flag′.
2. Else, if P is not corrupted, then set flag = 0 and record (m,σ, 0). (This

condition guarantees strong unforgeability: if the signer is not corrupted,
and never signed m, then the verification fails.)

3. Else, hand (Verify, sid,m, σ, V) to the adversary.
Upon receiving (AdVerified, sid,m, σ, φ) from the adversary,
let flag = φ and record (m,σ, φ).

Finally output (Verified, sid, (m,σ), f lag) to V and the adversary.

3.2 Remarks

The main differences between Fusig and Fsig are as follows, where Fsig is the
signature functionality given by [4].

– At key generation, Fsig receives vk from the adversary, and hands it to P .
On the other hand, Fusig receives (vk, Sim) from the adversary, and hands
it to P .

– At signature generation, Fsig receives σ from the adversary, and hands it to
P . On the other hand, Fusig computes σ = Sim(vk,m), and hands it to P .
This is because σ must be invisible in undeniable signature schemes.

3 Ignore this step if the signing algorithm is probabilistic.

Universally Composable Undeniable Signature 529

– The signer (P) issues Verify command to Fusig while the verifier (V) issues
it to Fsig. This is because V should not be able to verify the validity of (m,σ)
without the cooperation of P in undeniable signature schemes.

The adversary returns (Keys, sid, vk,Sim) to Fusig at key generation. Hence
Sim depends on vk. This means that we can write σ = Sim(m) instead of σ =
Sim(vk,m) at signature generation.

4 Subtlety on Invisibility and New Definition

4.1 Problem of Previous Definition

The standard definition of invisibility (Def. 2) was given by Damg̊ard and Ped-
ersen [10], where Sim is a part of Σ. However, we show that there exists a
UC-secure (and naturally secure) undeniable signature scheme which does not
satisfy this definition of invisibility (Def. 2).

Let Σ be an undeniable signature scheme which satisfies the strong unforge-
ability and the invisibility defined by Def. 1 and Def. 2. Let Σ′ be a strongly
unforgeable (usual) signature scheme. Then consider an undeniable signature
scheme Ω based on Σ and Σ′ as follows.

– The public-key of Ω is (vk, vk′), where vk is a public-key of Σ, and vk′ is a
public-key of Σ′.

– The undeniable signature σ̃ on a message m is (σ, sk′, σ′), where σ is an
undeniable signature of Σ on m, sk′ is a secret-key of Σ′ and σ′ is a (usual)
signature of Σ′ on m.

This undeniable signature scheme Ω does not satisfy the invisibility defined
by Def. 2 because any PPT Sim() cannot compute sk′.

However, we can show that Ω is UC-secure. Intuitively, it is strongly un-
forgeable because Σ is strongly unforgeable. It is naturally invisible because σ
is invisible, and everyone can compute σ′ for any message by using sk′ once he
obtains sk′ (for example, by known message attack). Indeed, our ideal process
adversary S has only to return Sim which includes sk′ at Key Generation.

4.2 New Definition of Invisibility

The above difference comes from the fact that Sim is independent of vk in the
previous definition while it is not in the UC framework. Indeed, the adversary
returns (vk, Sim) to Fusig in the UC framework.

We now show a new definition of invisibility. We delete Sim from Σ, and let
Sim be a part of a public-key. That is, we define an undeniable signature scheme
as

Σ = (Gsign, Sign,Check, πcon, πdis)

such that

530 K. Kurosawa and J. Furukawa

– the key generation algorithm Gsign outputs (vk, sk) and Sim. The signer
makes (vk, Sim) public, and keeps sk secret.

The other parts of Σ remain the same. Accordingly, we need to modify step 1
of the attack game of invisibility shown in Sec.2.2 as follows.

1. The challenger generates (vk, sk) and Simby running Gsign, and gives (vk, Sim)
to A.

We then define invisibility as follows.

Definition 3. We say that Σ is invisible if for any PPT adversary A, |Pr[b =
b′]− 1/2| is negligible in the modified attack game.

Now Ω is invisible under our new definition. More generally, it is easy to see
that our new definition captures a wider class of (naturally secure) undeniable
signature schemes.

4.3 New Definition of Unforgeability

We also need to modify step 1 of the attack game of unforgeability shown in
Sec.2.2 as follows.

1. The challenger generates (vk, sk) and Simby running Gsign, and gives (vk, Sim)
to A.

We then define strong unforgeability as follows.

Definition 4. We say that Σ is strongly unforgeable if Pr[A succeeds in strong
forgery] is negligible for any PPT adversary A in the modified attack game.

4.4 Translation to Protocol

Under our new definition of Sec.4.2 and Sec.4.3, we show how to translate an
undeniable signature scheme Σ = (Gsign, Sign,Check, πcon, πdis) into a protocol
πΣ in FZK-hybrid model, where FZK is the ZK functionality on the binary
relation Check.

1. When party P receives an input (KeyGen, sid), it verifies that sid = (P, sid′)
for some sid′. If not, it ignores the input. Else it generates (vk, sk) and Sim
by running Gsign, and outputs (VerifyKey, sid, vk,Sim).

2. When P receives an input (Sign, sid,m) with sid = (P, sid′),
it sets σ = Sign(sk,m) and outputs (Signature, sid,m, σ).

3. When P receives an input (Verify, sid,m, σ, V), do:
(a) P sends ((vk,m, σ), sk) to FZK .
(b) FZK then sends (Verified, sid, P, (vk,m, σ), f) to V and the adversary,

where f = Check((vk,m, σ), sk).
(c) Finally V outputs (Verified, sid, (m,σ), f).

Universally Composable Undeniable Signature 531

When a party is corrupted, it reveals its internal state, which includes all past
signing and verification requests and answers, and for P also the state of the
signing algorithm, including the signing key and the randomness used to sign
past messages.

Definition 5. We say that an undeniable signature scheme Σ is UC-secure if
πΣ securely realizes Fusig .

5 Equivalence

In this section, we prove that our UC-security notion of undeniable signature
schemes is equivalent to our new definition of strong unforgeability and our new
definition of invisibility.

Theorem 1. Σ satisfies strong unforgeability and invisibility if Σ is UC-secure
against non-adaptive adversaries in the FZK-hybrid model.

A proof is given in [14].

Corollary 1. Σ satisfies weak unforgeability and invisibility if Σ is UC-secure
against non-adaptive adversaries.

Theorem 2. Σ is UC-secure against non-adaptive adversaries if Σ satisfies
strong unforgeability and invisibility in the FZK-hybrid model.

5.1 Proof of Theorem 2

Assume that πΣ does not securely realize Fusig against non-adaptive adversaries.
We show that Σ does not satisfy strong unforgeability or invisibility. Assume
that Σ is invisible (otherwise the theorem is proven). Then there exists a PPT
algorithm Sim which satisfies the definition of the invisibility. Our goal is to
construct a forger G.

Using the equivalent notion of security against the (non-adaptive) dummy
adversary D, 4 we have that for any ideal process adversary S, there exists an
environment Z that can tell whether it is interacting with Fusig and S, or with
πΣ and the non-adaptive dummy adversary D. (Remember that non-adaptive
adversaries corrupt parties at the beginning of executions only.)

We consider a particular S as shown below. For this particular S, there exists
an environment ZS that can distinguish the real world and the ideal world. We
will use this ZS to construct a forger G on Σ.

First our particular S behaves as follows.
4 The dummy adversary D only delivers to parties messages generated by the en-

vironment Z, and delivers to Z all messages generated by the parties. Instead of
quantifying over all possible adversary A, it suffices to require that the ideal pro-
tocol adversary S be able to simulate, for any environment Z, the behavior of the
dummy adversary D. [5]

532 K. Kurosawa and J. Furukawa

– Suppose that there are no party corruption instructions by Z. In this case, S
provides Fusig with vk and Sim at key generation. S outputs nothing other
than this.

– Suppose that Z instructs S to corrupt P at the beginning. In this case, Fusig

forwards all commands of Z (to P) to S. Then S behaves in the same way
as the real signer of πΣ does. That is:

1. At key generation, S generates (vk, sk) randomly and returns vk and Sim to
Fusig.

2. At signature generation, S computes σ = Sign(sk,m) and returns σ to Fusig .
3. At signature verification, S computes φ = Check((vk,m, σ), sk)) and returns

(AdVerified, sid,m, σ, φ) to Fusig.

Lemma 1. ZS does not corrupt P with nonnegligible probability.

Proof. If ZS always corrupts P (at the beginning), then such ZS cannot distin-
guish the real world and the ideal world because our S behaves in the same way as
the real signer. Hence ZS does not corrupt P with nonnegligible probability. ��

1. G is given (vk,Sim) as an input. G then runs ZS .
2. If ZS corrupts some party P at the beginning, then G outputs failure.

If ZS activates P with input (KeyGen, sid) with sid = (P, sid′) for some sid′,
then G returns (vk,Sim) to ZS .

3. When ZS activates P with input (Sign, sid,m),
then G asks its signing oracle for a signature σ on m, and returns σ to ZS .

4. When ZS activates P with input (Verify, sid,m, σ, V) for some party V ,
then G queries (m,σ) to its confirmation/disavowal oracle,
and returns the answer to ZS through V .

5. If the answer is valid, and (m,σ) is not a pair generated at step 3,
then G outputs (m,σ) as a strong forgery and stops.

Fig. 1. Forger G

Next let FORGE denote the event that ZS activates P with input (Verify,
sid,m, σ, V) such that (m,σ) is a strong forgery.

Lemma 2. Suppose that Σ satisfies the invisibility. Also suppose that ZS does
not corrupt P , and can distinguish the real world from the ideal world. Then
FORGE happens in the real world with nonnegligible probability.

Now we present our forger G in Fig.1. Suppose that ZS does not corrupt P .
Then G simulates the real world for ZS until step 5. Therefore the view of ZS

of Fig.1 is the same as the view of ZS in the real world until step 5. Hence
from Lemma 1 and Lemma 2, it is clear that G succeeds in strong forgery with

Universally Composable Undeniable Signature 533

nonnegligible probability if Σ is not UC-secure and satisfies the invisibility. This
completes the proof of Theorem 2.

(Proof of Lemma 2)
It is clear that FORGE never happens in the ideal world. We prove that ZS

cannot distinguish the real world and the ideal world if FORGE never happens
in the real world.

Suppose that FORGE never happens in the real world. Then the view of ZS

in the real world is identical to the view of ZS shown in Fig.2.

1. When party P receives an input (KeyGen, sid),
it verifies that sid = (P, sid′) for some sid′. If not, it ignores the input.
Else it generates (vk, sk) and Sim by running Gsign,
and outputs (VerifyKey, sid, vk,Sim).

2. When P receives an input (Sign, sid,m) with sid = (P, sid′),
it sets σ = Sign(sk,m) and outputs (Signature, sid,m, σ).
P records (m,σ).

3. When P receives an input (Verify, sid,m, σ, V), do:
If (m,σ) is recorded, then P outputs valid. Otherwise P outputs invalid.

Fig. 2. FORGE never happens

We consider a series of games on ZS as follows. Game0 is the same as Fig.2
except for that σi are all simulated signatures. Assume that ZS activates P
with input (Sign, sid,mi) and the signing oracle returns σi for i = 1, · · · , qs. For
j = 1, · · · , qs, Gamej is the same as Fig.2 except for that σi is a real signature
for i = 1, · · · , j, and σi is a simulated signature for i = j + 1, · · · , qs. Note that
Gameqs is the same as Fig.2, where σi are all real signatures.

From a view point of ZS , it is clear that Game0 is the ideal world and
Gameqs is the real world. Therefore from our assumption, ZS can distinguish
Game0 and Gameqs . Then it is easy to show that there exists J such that ZS

can distinguish GameJ−1 and GameJ .
Now we construct an adversary A who can break the invisibility by using

ZS as follows. A engages in the attack game on the invisibility. First, A is given
(vk, Sim) by the challenger. It then runs ZS . When ZS invokes some uncorrupted
P , A returns (vk, Sim) to ZS .

Suppose that ZS activates P with input (Sign, sid,mi).

– If i < J , then A queries mi to his own signing oracle and receives a real
signature σi. A records (mi, σi).

– If i > J , then A computes a simulated signature σi = Sim(vk,mi).
– If i = J , then A sends mJ to the challenger as a challenge message, and

receives σJ from the challenger.

A then returns the above σi to ZS .

534 K. Kurosawa and J. Furukawa

Suppose that ZS activates P with input (Verify, sid,m, σ, V) for some party
V . If (m,σ) is recorded, then A returns valid. Otherwise, A returns invalid.
(Remember that FORGE never happens.)

Let b′ be the final output of ZS . A outputs this b′.
It is clear that the view of ZS is exactly the same as that of GameJ−1 and

GameJ according to the challenge bit b of the challenger. Therefore from the
definition of J , |Pr(b′ = b)− 1/2| is nonnegligible. This means that A wins the
attack game on the invisibility. However, this is a contradiction.

This completes the proof of Lemma 2.

5.2 Application

From the result of [22], it is easy to see that Chaum’s undeniable signature
scheme is (strongly) unforgeable under CDH assumption, and invisible under
DDH assumption in the random oracle model even under our definitions. Hence
we have the following corollary from Theorem 2.

Corollary 2. Chaum’s undeniable signature scheme is UC-secure against non-
adaptive adversaries under the DDH assumption in the random oracle model
if it uses a confirmation protocol and a disavowal protocol which are UC zero-
knowledge.

6 Impossibility Result

In this section, we show that it is impossible to construct an undeniable signature
scheme which satisfies our UC-security against adaptive adversaries.

Theorem 3. There exists no undeniable signature scheme Σ which is UC-secure
against adaptive adversaries even in the FZK-hybrid model.

A proof is given in [14].

References

1. Boyar, J., Chaum, D., Damg̊ard, I., Pedersen, T.: Convertible undeniable signa-
tures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp.
189–208. Springer, Heidelberg (1991)

2. Biehl, I., Paulus, S., Takagi, T.: Efficient undeniable signature schemes based on
ideal arithmetic in quadratic orders. Designs, Codes and Cryptography 31(2), 99–
123 (2004)

3. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, Revision 1 of ECCC Report TR01-016 (2001)

4. Canetti, R.: Universally Composable Signatures, Certification and Authentication,
IACR ePrint 2003/239

5. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, IACR ePrint 2000/067 (2005)

Universally Composable Undeniable Signature 535

6. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

7. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: STOC 2002, pp. 494–503 (2002)

8. Chaum, D.: Zero-knowledge undeniable signatures. In: Damg̊ard, I.B. (ed.) EU-
ROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)

9. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

10. Damg̊ard, I., Pedersen, T.: New convertible undeniable signature schemes. In: Mau-
rer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Hei-
delberg (1996)

11. Galbraith, S., Mao, W.: Invisibility and anonymity of undeniable and confirmer
signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003)

12. Galbraith, S., Mao, W., Paterson, K.G.: RSA-based undeniable signatures for gen-
eral moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217.
Springer, Heidelberg (2002)

13. Gennaro, R., Rabin, T., Krawczyk, H.: RSA-based undeniable signatures. Journal
of Cryptology 13(4), 397–416 (2000)

14. Kurosawa, K., Furukawa, J.: Universally Composable Undeniable Signature, Cryp-
tology ePrint Archive, Report 2008/094 (2008), http://eprint.iacr.org/

15. Kurosawa, K., Heng, S.: Relations among security notions for undeniable signature
schemes. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 34–48.
Springer, Heidelberg (2006)

16. Kurosawa, K., Takagi, T.: New Approach for Selectively Convertible Undeni-
able Signature Schemes. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 428–443. Springer, Heidelberg (2006)

17. Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto,
T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)

18. Laguillaumie, F., Vergnaud, D.: Short undeniable signatures without random ora-
cles: The Missing Link. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg (2005)

19. Michels, M., Stadler, M.: Efficient convertible undeniable signature schemes. In:
SAC 1997, pp. 231–244. Springer, Heidelberg (1997)

20. Monnerat, J., Vaudenay, S.: Undeniable signatures based on characters: how to sign
with one bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 361–396. Springer, Heidelberg (2004)

21. Monnerat, J., Vaudenay, S.: Generic homomorphic undeniable signatures. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 354–371. Springer, Heidelberg
(2004)

22. Ogata, W., Kurosawa, K., Heng, S.: The security of the FDH variant of Chaum’s
undeniable signature scheme. IEEE Transactions on Information Theory 52(5),
2006–2017 (2006)

http://eprint.iacr.org/

Interactive PCP

Yael Tauman Kalai� and Ran Raz��

Abstract. A central line of research in the area of PCPs is devoted
to constructing short PCPs. In this paper, we show that if we allow an
additional interactive verification phase, with very low communication
complexity, then for some NP languages, one can construct PCPs that
are significantly shorter than the known PCPs (without the additional
interactive phase) for these languages. We give many cryptographical
applications and motivations for our results and for the study of the new
model in general.

More specifically, we study a new model of proofs: interactive-PCP.
Roughly speaking, an interactive-PCP (say, for the membership x ∈ L)
is a proof-string that can be verified by reading only one of its bits,
with the help of an interactive-proof with very small communication
complexity. We show that for membership in some NP languages L,
there are interactive-PCPs that are significantly shorter than the known
(non-interactive) PCPs for these languages.

Our main result is that for any constant depth Boolean formula
Φ(z1, . . . , zk) of size n (over the gates ∧,∨,⊕,¬), a prover, Alice, can
publish a proof-string for the satisfiability of Φ, where the size of the
proof-string is poly(k). Later on, any user who wishes to verify the pub-
lished proof-string needs to interact with Alice via a short interactive
protocol of communication complexity poly(log n), while accessing the
proof-string at a single location.

Note that the size of the published proof-string is poly(k), rather than
poly(n), i.e., the size is polynomial in the size of the witness, rather than
polynomial in the size of the instance. This compares to the known (non-
interactive) PCPs that are of size polynomial in the size of the instance.
By reductions, this result extends to many other central NP languages
(e.g., SAT, k-clique, Vertex-Cover, etc.).

More generally, we show that the satisfiability of
∧n

i=1[Φi(z1, . . . , zk) =
0], where each Φi(z1, . . . , zk) is an arithmetic formula of size n (say, over
GF[2]) that computes a polynomial of degree d, can be proved by a
published proof-string of size poly(k, d). Later on, any user who wishes
to verify the published proof-string needs to interact with the prover
via an interactive protocol of communication complexity poly(d, log n),
while accessing the proof-string at a single location.

We give many applications and motivations for our results and for the
study of the notion of interactive PCP in general. In particular, we have
the following applications:

� Georgia Institute of Technology. Supported in part by NSF CyberTrust grant CNS-
0430450. Part of this work was done when the author visited the Weizmann Insti-
tute.

�� Weizmann Institute of Science. Supported by Binational Science Foundation (BSF),
Israel Science Foundation (ISF) and Minerva Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 536–547, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Interactive PCP 537

Succinct zero knowledge proofs: We show that any interactive
PCP, with certain properties, can be converted into a zero-knowledge
interactive proof. We use this to construct zero-knowledge proofs of com-
munication complexity polynomial in the size of the witness, rather than
polynomial in the size of the instance, for many NP languages.

Succinct probabilistically checkable arguments: In a subsequent
paper, we study the new notion of probabilistically checkable argument,
and show that any interactive PCP, with certain properties, translates
into a probabilistically checkable argument [18]. We use this to construct
probabilistically checkable arguments of size polynomial in the size of the
witness, rather than polynomial in the size of the instance, for many NP
languages.

Commit-Reveal schemes: We show that Alice can commit to a
string w of k bits, by a message of size poly(k), and later on, for any
predicate Φ of size n, whose satisfiability can be proved by an efficient
enough interactive PCP with certain properties, Alice can prove the
statement Φ(w) = 1, by a zero-knowledge interactive proof with commu-
nication complexity poly(log n). (Surprisingly, the communication com-
plexity may be significantly smaller than k and n).

1 Introduction

Different interpretations and views of the notion of proof have played a central
role in the development of complexity theory. Many of the most exciting ideas
in complexity theory were originated by defining and studying new models of
proofs. Three of the most successful models that were suggested are: Interactive
Proofs [6,13,20,26], where the proof is interactive, Probabilistically Checkable
Proofs (PCP) [1,2,9], where the verifier is only allowed to read a small number
of symbols of the proof, and Multi-prover Interactive Proofs [4,5], where the
verifier interacts with several (say, two) different provers that are not allowed to
communicate between them.

A two provers interactive proof can be viewed as a proof where the verifier is
given access to two independent interactive proofs. In light of the great success
of this model, it seems very interesting to study the case where the verifier is
given access to two independent proofs of a different nature. For example, in [25]
the case where the verifier is given access to both, a quantum proof on one hand,
and a classical PCP on the other hand, was studied.

Since interactive proofs and PCPs are among the most exciting models of
proofs that were suggested, it seems very interesting to ask what happens when
the two models are combined. In this paper, we study the new model where the
verifier is given access to both, a PCP on one hand, and an interactive proof on
the other hand. We think of this model also as an Interactively Verifiable PCP
(or, in short, Interactive PCP), that is, a PCP that is verified by an interac-
tion between a prover and the verifier. We show that in some cases this model
has advantages over both PCPs and interactive proofs (given separately). More
specifically, we show that the membership in many NP languages can be proved
by a combination of a PCP and an interactive proof, where the PCP is much

538 Y.T. Kalai and R. Raz

shorter than the best PCPs known for these languages, and the interactive proof
is of a much lower communication complexity than the best interactive proofs
known for these languages.

For example, one of our main results shows that for any constant depth
Boolean formula Φ(z1, . . . , zk) of size n (over the gates ∧,∨,⊕,¬), a prover,
Alice, can publish a proof-string (PCP) for the satisfiability of Φ, where the size
of the proof-string is poly(k) (rather than poly(n), i.e., the size of the proof-
string is polynomial in the size of the witness, rather than polynomial in the size
of the instance). Later on, any user who wishes to verify the published proof-
string needs to interact with Alice via an interactive protocol of communication
complexity poly(logn), while accessing the proof-string at a single location.

By reductions, the result extends to many other central NP languages, e.g.,
SAT, k-clique, Vertex-Cover, etc. Moreover, a subsequent theorem of Goldwasser,
Kalai, and Rothblum [12], in the context of computation delegation, improves the
above mentioned result so that it holds for any Boolean formula Φ(z1, . . . , zk) of
size n (rather than only for constant depth formulas). More generally, they show
that the same result holds for any Boolean circuit Φ(z1, . . . , zk) of size n and
depth d, where now the size of the proof-string is poly(k, d), and the interactive
verification phase is of communication complexity poly(d, logn).

We give many motivations and applications for these results, and for the study
of the new model in general. Most of these applications are general reductions
that convert any interactive PCP, with certain properties, into another object
(i.e., the application). The motivations and applications are described in details
in Subsection 1.4.

1.1 Interactive PCP

In this paper, we study a new model of proofs: interactive PCP, and show that
for membership in some NP languages L, there are interactive-PCPs that are
significantly shorter than the known (non-interactive) PCPs for these languages.

An interactive PCP (say, for the membership x ∈ L) is a combination of a
PCP and a short interactive proof. Roughly speaking, an interactive PCP is a
proof that can be verified by reading only a small number of its bits, with the
help of a short interactive proof.

More precisely, let L be an NP language, defined by L = {x : ∃w s.t. (x,w) ∈
RL}. Let p, q, l, c, s be parameters as follows: p, q, l are integers and c, s are reals,
s.t. 0 ≤ s < c ≤ 1. (Informally, p is the size of the PCP, q is the number of
queries allowed to the PCP, l is the communication complexity of the interac-
tive proof, c is the completeness parameter and s is the soundness parameter).
We think of the parameters p, q, l, c, s as functions of the instance size n. An in-
teractive PCP with parameters (p, q, l, c, s) for membership in L is an interactive
protocol between an (efficient1) prover P and an (efficient) verifier V , as follows:

We assume that both the prover and the verifier know L and get as input an
instance x of size n, and the prover gets an additional input w (supposed to be a

1 We could also consider a model with a not necessarily efficient prover.

Interactive PCP 539

witness for the membership x ∈ L). In the first round of the protocol, the prover
generates a string π of p bits. (We think of π as an encoding of the witness w).
The verifier is still not allowed to access π. The prover and the verifier then
apply an interactive protocol, where the total number of bits communicated
is l. During the protocol, the verifier is allowed to access at most q bits of the
string π. After the interaction, the verifier decides whether to accept or reject
the statement x ∈ L. We require the following (standard) completeness and
soundness properties: There exists an (efficient) verifier V such that:

Completeness: There exists an (efficient) prover P , such that: for every x ∈ L
and any witness w (given to the prover P as an input), if (x,w) ∈ RL then the
verifier accepts with probability at least c.

Soundness: For any x �∈ L and any (not necessarily efficient) prover P̃ , and
any w (given to the prover P̃ as an input), the verifier accepts with probability
at most s.

Note that in the above definition we allow π to depend on L, x and w. However,
in our results we use π that depends only on w, and is of size polynomial in the
size of w. We hence think of π as an encoding of the witness w (and this encoding
will always be efficient in our results). The fact that π depends only on w (and
not on x) is important for many of our applications.

Note also that the notion of interactive PCP is very related to the notion of
multi-prover interactive proof [5]. For example, an interactive PCP with q = 1
can be viewed as a two provers interactive proof, where the interaction with the
first prover is of only one round and is of question size log p and answer size 1,
and the interaction with the second prover is of communication complexity l,
(and where both provers are efficient).

1.2 Our Results

We show that the membership in some NP languages, with small witness size,
can be proved by short interactive PCPs with q = 1. We have two main results.

I) Let Φ(z1, . . . , zk) be a constant depth Boolean formula of size n (over the
gates ∧,∨,⊕,¬). For any constant ε > 0, the satisfiability of Φ can be proved by
an interactive PCP with the following parameters. Size of the PCP: p = poly(k).
Number of queries: q = 1. Communication complexity of the interactive proof:
l = poly(logn). Completeness: c = 1− ε. Soundness: s = 1/2 + ε.

Moreover, the string π (generated by the prover in the first round of the
protocol) depends only on the witness w1, . . . , wk, and not on the instance Φ.

II) Let Φ1(z1, . . . , zk), . . . , Φn(z1, . . . , zk) be arithmetic formulas of size n (say,
over GF[2]) that compute polynomials of degree d. For any constant ε > 0,
the satisfiability of the formula

∧n
i=1[Φi(z1, . . . , zk) = 0] can be proved by an

interactive PCP with the following parameters. Size of the PCP: p = poly(k, d).
Number of queries: q = 1. Communication complexity of the interactive proof:
l = poly(d, logn). Completeness: c = 1. Soundness: s = 1/2 + ε.

540 Y.T. Kalai and R. Raz

Moreover, the string π (generated by the prover in the first round of the
protocol) depends only on the witness w1, . . . , wk (and on the parameter d), and
not on Φ1, . . . , Φn. The result works over any other finite field.

In both results, we could actually take ε to be poly-logarithmically small.
Also, the constant 1/2, in the soundness parameter of both results, appears only
because the string π is a string of bits. We could actually take π to be a string
of symbols in {1, . . . , 2k} and obtain soundness 2−k + ε.

An additional property of our constructions is that we can assume that the
verifier queries the string π before the interaction with the prover starts. This is
the case, because the queries to π are non-adaptive (i.e., they do not depend on
the values returned on previous queries) and do not depend on the interaction
with the prover.

Note that many of the central NP languages can be reduced to the satisfiabil-
ity of a constant depth formula, without increasing the witness size (e.g., SAT,
k-clique, Vertex-Cover, etc.). We hence obtain short interactive PCPs for many
other NP languages. Moreover, many NP languages can be reduced to the sat-
isfiability of a formula of the form

∧n
i=1[Φi(z1, . . . , zk) = 0] (without increasing

the witness size), where Φ1, . . . , Φn are arithmetic formulas of small degree. In
these cases, by the second result, perfect completeness can be obtained.

1.3 Subsequent Result

In a subsequent work [12], Goldwasser et al. improved our results as follows.
Let Φ(z1, . . . , zk) be any Boolean circuit of size n and depth d. For any con-

stant ε > 0, the satisfiability of Φ can be proved by an interactive PCP with
the following parameters. Size of the PCP: p = poly(k, d). Number of queries:
q = 1. Communication complexity of the interactive proof: l = poly(d, log n).
Completeness: c = 1. Soundness: s = 1/2 + ε.

Moreover, the string π (generated by the prover in the first round of the
protocol) depends only on the witness w1, . . . , wk, and not on the instance Φ.

Thus, in particular, Goldwasser et al. improve our first result so that it holds
for any formula (rather than for a constant-depth formula) and with perfect
completeness. Consequently, their result improves all the applications.

1.4 Motivations and Applications

Below we give several applications and motivations for our results, and for the
study of the model of interactive PCP in general. In most of these applications
what we actually have is a general reduction that converts any interactive PCP,
with certain properties, into another object (i.e., the application). For simplicity,
we concentrate on the applications of our first main result and the improved
result given in [12].

Motivation: Succinct PCPs with interaction: The PCP theorem states
that the satisfiability of a formula Φ(z1, . . . , zk) of size n can be proved by a
proof of size poly(n) that can be verified by reading only a constant number of
its bits [4,9,2,1].

Interactive PCP 541

A central line of research in the area of PCPs is devoted to constructing
short PCPs. An extremely interesting question is: Do there exist PCPs of size
polynomial in the size of the witness, rather than polynomial in the size of the
instance (think of the instance as significantly larger than the witness) ? For
example, does the satisfiability of a formula Φ(z1, . . . , zk) of size n can be proved
by a PCP of size poly(k), rather than poly(n) (think of n as significantly larger
than k) ? A positive answer for this question would have important applications
in complexity theory and cryptography (see for example [15]). However, a very
interesting recent result by Fortnow and Santhanam shows that this is very
unlikely, as it implies that NP ⊆ coNP/poly [11].

Our main results imply that for any constant depth Boolean formula
Φ(z1, . . . , zk) of size n, Alice can publish on the internet a “succinct” proof for
the satisfiability of Φ, where the size of the proof is poly(k) (rather than poly(n),
i.e., the size of the proof is polynomial in the size of the witness, rather than
polynomial in the size of the instance). Later on, any user who wishes to verify
the published proof needs to interact with Alice via an interactive protocol of
communication complexity poly(logn), while accessing the published proof at
a single location. By reductions, the result extends to many other central NP
languages (e.g., SAT, k-clique, Vertex-Cover, etc.).

Using the above mentioned improvement of [12] the same holds for any formula
Φ(z1, . . . , zk) of size n, (rather than a constant depth formula). Moreover, the
result holds for any Boolean circuit Φ(z1, . . . , zk) of size n and depth d, where
now the size of the published proof is poly(k, d), and the interactive verification
protocol is of communication complexity poly(d, log n).

Application: Succinct probabilistically checkable arguments: In a very
recent subsequent work [18], we give the following application of interactive
PCPs. We study the new notion of probabilistically checkable argument (PCA)
and we give a general way to construct a PCA from an interactive PCP. We use
this to construct short PCAs for some languages in NP.

A probabilistically checkable argument (PCA) is a relaxation of the notion
of probabilistically checkable proof (PCP). It is defined analogously to PCP,
except that the soundness property is required to hold only computationally,
rather than information theoretically. We consider the model where each verifier
is associated with a public key, and each PCA is verifier-dependent, that is, it
depends on the verifier’s public key. (The key does not need to be certified, and
we can assume that the verifier simply publishes it on his web-page). We show
that for membership in some languages L, there are PCAs that are significantly
shorter than the known PCPs for these languages.

More precisely, our reduction in [18], combined with the above mentioned
result of [12], gives the following result: the satisfiability of a Boolean formula
Φ(z1, . . . , zk) of size n can be proved by a PCA of size poly(k). That is, the
size of the PCA is polynomial in the size of the witness (as opposed to known
PCPs, that are of size polynomial in the size of the instance). The number of
queries to the PCA is poly-logarithmic in n. As before, by reductions, the result
extends to many other central NP languages (e.g., SAT, k-clique, Vertex-Cover,

542 Y.T. Kalai and R. Raz

etc.). Moreover, the result holds for any Boolean circuit Φ(z1, . . . , zk) of size n
and depth d, where now the size of the PCA is poly(k, d) and the number of
queries to the PCA is poly(d, logn). The soundness property relies on exponential
hardness assumptions.

Application: Succinct zero-knowledge proofs: The notion of zero-knowledge
proof, first introduced by Goldwasser, Micali and Rackoff [13], has become one
of the central notions of modern cryptography. Goldreich, Micali and Wigderson
showed that for any language L ∈ NP, the membership x ∈ L can be proved by an
interactive zero-knowledge proof of polynomial communication complexity [14].
An extremely interesting open problem in cryptography is: Can we significantly
reduce the communication complexity of zero-knowledge protocols ? Kilian and
Micali, independently, showed that for any language L ∈ NP, the membership
x ∈ L can be proved by a succinct interactive zero-knowledge argument of poly-
logarithmic communication complexity [19,22]. Note, however, that the succinct
zero-knowledge protocols of [19,22] are arguments, rather than proofs, that is, their
soundness property holds computationally. These works left open the problem of
constructing “short” zero-knowledge proofs for NP.

As an application of our results we show that the satisfiability of a constant
depth Boolean formula Φ(z1, . . . , zk) of size n (over the gates ∧,∨,⊕,¬) can
be proved by an interactive zero-knowledge proof of communication complex-
ity poly(k) (rather than poly(n)). That is, we obtain zero-knowledge proofs of
communication complexity polynomial in the size of the witness, rather than
polynomial in the size of the instance. As before, the result extends to many
other central NP languages.

We note that a similar result, for the case of constant depth formulas, was
proved independently (and roughly at the same time) by Ishai, Kushilevitz,
Ostrovsky and Sahai [16], using different methods.

Once again, using the above mentioned improvement of [12] the same holds
for any formula Φ(z1, . . . , zk) of size n (rather than a constant depth formula).
Moreover, the result holds for any Boolean circuit Φ(z1, . . . , zk) of size n and
depth d, where now the communication complexity of the zero-knowledge proof
is poly(k, d).

We note that for this application we do not use the full power of interactive-
PCP, and use mainly the fact that the interactive phase is of very low commu-
nication complexity. The results are proved by a general reduction that converts
any interactive PCP, with certain properties, into a zero-knowledge interactive
proof.

Application: Succinct Commit-Reveal schemes: The zero-knowledge
proofs that we construct have an additional property that makes them very
useful for many applications. They consist of two phases: The first phase is
non-interactive, and depends only on the witness w = (w1, . . . , wk) (and is inde-
pendent of the instance Φ). In this phase the prover sends to the verifier a certain
(non-interactive) commitment to her witness at hand. The second phase is in-
teractive and is very short. It is of communication complexity poly-logarithmic

Interactive PCP 543

in n. In this phase the prover and verifier engage in a zero-knowledge proof that
indeed the string that the prover committed to (in the first phase) is a valid
witness for Φ.

This additional property has the following immediate application: Given a
string of bits, w = (w1, . . . , wk), a user, Alice, can publish a commitment to w.
The commitment is of size poly(t, k), where t is the security parameter, and is
non-interactive. Later on, for any constant depth Boolean formula Φ(z1, . . . , zk)
of size n (over the gates ∧,∨,⊕,¬), such that Φ(w) = 1, Alice can prove the state-
ment Φ(w) = 1, by an interactive zero-knowledge proof (rather than argument)
with communication complexity poly(t, log n). Verifying this proof requires ac-
cessing the published commitment in only poly(t) locations. In other words, after
publishing the commitment to w, Alice can prove the statement Φ(w) = 1, by a
zero-knowledge proof with communication complexity poly-logarithmic in n.

Note that the proof of the statement Φ(w) = 1 is of communication complexity
poly-logarithmic in n, and may be significantly shorter than the length of w.
This is interesting even if we discard the requirement of the proof being zero-
knowledge.

Once again, using the above mentioned improvement of [12] the same holds
for any formula Φ(z1, . . . , zk) of size n (rather than a constant depth formula).
Moreover, the result holds for any Boolean circuit Φ(z1, . . . , zk) of size n and
depth d, where now the commitment is of size poly(t, k, d), and the communica-
tion complexity of the zero-knowledge proof phase is poly(d, t, log n).

Application: How to commit to a formula: Below, we give several examples
for situations where the commit-reveal protocol may be useful. Many of these
motivations and applications are taken from [17] (where succinct non-interactive
argument systems with similar properties were given). Note, however, that the
situation here is completely different than the one in [17], as here we give in
the proof phase interactive proofs and there we gave non-interactive arguments.
Nevertheless, many of the motivations and applications are similar.

For simplicity, we describe all these applications using the above mentioned
improved result of [12]. That is, we present the applications for any Boolean
formula2, rather than only for constant depth formulas. We note that one could
get results for formulas (rather than for constant depth formulas) also by using
our second main result. These results, however, are not as strong as the ones
obtained by using the improved result of [12].

In all the applications that we describe below, except for the first one, the
main idea is that the string w can itself be a description of a formula Λ. Thus, the
commitment that Alice publishes is just a commitment to the formula Λ. We then
take the formula Φ to be a (universal) formula that runs the formula Λ on N dif-
ferent inputs, x1, . . . , xN , and checks that the N outputs are z1, . . . , zN . Thus, Al-
ice publishes a commitment to Λ, and later on proves the statement

∧N
i=1[Λ(xi) =

zi], by a very short interactive zero-knowledge proof. The commitment is of size
2 Using [12], one can also obtain similar results for circuits, rather than formulas,

where the depth of the circuit is also taken into account. For simplicity, we present
the applications here only for formulas.

544 Y.T. Kalai and R. Raz

poly(t, |Λ|) (where t is the security parameter), and the communication com-
plexity of the zero-knowledge proof is poly(t, log |Λ|, logN). Note that the com-
munication complexity is logarithmic in both |Λ| and N . The main drawback of
our protocol, in these contexts, is that it works only for Boolean formulas, and
not for general Boolean circuits (with unbounded depth).

I) One of the main tasks of cryptography is to protect honest parties from
malicious parties in interactive protocols. Assume that in an interaction between
Alice and Bob, Alice is supposed to follow a certain protocol Φ. That is, on an
input x, she is supposed to output Φ(x,w), where w is her secret key. How can
Bob make sure that Alice really follows the protocol Φ ? A standard solution,
effective for many applications, is to add a commitment phase and a proof phase
as follows: Before the interactive protocol starts, Alice is required to commit to
her secret key w. After the interactive protocol ends, Alice is required to prove
that she actually acted according to Φ, that is, on inputs x1, . . . , xN , her outputs
were Φ(x1, w), . . . , Φ(xN , w). In other words, Alice is required to prove the N
statements Φ(xi, w) = zi. Typically, we want the proof to be zero-knowledge,
since Alice doesn’t want to reveal her secret key.

Thus, Alice has to prove in zero-knowledge the statement
∧N

i=1[Φ(xi, w) = zi].
The only known way to do this is by a proof of length N · q, where q is the size
of proof needed for proving a single statement of the form Φ(xi, w) = zi. Note
that N · q may be significantly larger than the total size of all other messages
communicated between Alice and Bob.

Our results imply that if Φ is a Boolean formula, there is a much more
efficient way. Alice will commit to her secret key w. Then, Alice can prove
to Bob the statement

∧N
i=1[Φ(xi, w) = zi], by a zero-knowledge proof of size

poly(t, log |Φ|, log N), (where t is the security parameter). That is, the proof is
of size polylogarithmic in |Φ| and N .

II) Alice claims that she found a short formula for factoring integers, but
of course she doesn’t want to reveal it. Bob sends Alice N integers x1, . . . , xN

and indeed Alice menages to factor all of them correctly. But how can Bob
be convinced that Alice really applied her formula, and not, say, her quantum
computer ? We suggest that Alice commits to her formula Λ, and then proves
that she actually used her formula Λ to factor x1, . . . , xN . The commitment is
of size poly(t, |Λ|) (where t is the security parameter), and the communication
complexity of the zero-knowledge proof is poly(t, log |Λ|, logN).

III) We want to run a chess contest between formulas. Obviously, the parties
don’t want to reveal their formulas (e.g., because they don’t want their rivals to
plan their next moves according to it). Of course we can just ask the parties to
send their next move at each step. But how can we make sure that the parties
actually use their formulas, and don’t have teams of grand-masters working for
them ? We suggest that each party commits to her formula Λ before the contest
starts. After the contest ends, each party will prove that she actually played
according to the formula Λ that she committed to. As before the commitment
is of size poly(t, |Λ|) and the communication complexity of the zero-knowledge
proof is poly(t, log |Λ|, logN) (where N is the number of moves played).

Interactive PCP 545

IV) Assume that both Alice and Bob have access to a very large database
[(x1, z1), . . . , (xN , zN)]. Their goal is to learn a small Boolean formula Λ that
explains the database. That is, the goal is to learn Λ such that Λ(x1) = z1, . . . ,
Λ(xN) = zN . Alice claims that she managed to learn such a formula Λ, but
she doesn’t want to reveal it. It follows from our result that Alice can prove to
Bob the existence of such a Λ by a zero-knowledge proof with communication
complexity poly(t, |Λ|, logN), where t is the security parameter.

1.5 Techniques

Our proofs combine many techniques that were previously used in constructing
PCPs, and in computational complexity in general, together with some new
techniques. Our main technical contribution is a new sum-check procedure, which
is, in many cases, more efficient than the standard one. More precisely, the
standard sum-check procedure requires a prover that runs in time polynomial in
the size of the space (on which the sum-check is performed). Our new procedure
enables to perform sum-check, with a polynomial-time prover, in many cases
where the space is of super-polynomial size.

The first result is proved by a reduction to the second result. This is done
by approximating a constant depth formula by a (family of) polynomials of
degree d = poly(logn) (a well known method in complexity theory, first used
by Razborov and Smolensky [24,27] for proving lower bounds for constant depth
formulas). It is well known that the approximation can be done by a relatively
small family of polynomials. That is, the approximation can be done using a
relatively small number of random bits (see for example the survey paper of [7]).

Suppose that we have a small family of polynomials of degree d = poly(log n)
that approximate the constant depth formula. After the prover generates the string
π, the verifier chooses randomly a polynomial Φ from the family, and the prover is
required to prove thatΦ(w1, . . . , wk) = 1 for the witnessw = (w1, . . . , wk) encoded
by π. This proves that the constant depth formula is satisfied by the witness w. We
loose the perfect completeness because the low degree polynomials only approxi-
mate the constant depth formula and are not equivalent to it.

For the proof of the second result we use methods that were previously used for
constructing PCPs and interactive proofs, together with some new techniques.
The proof has two parts: The first part shows the needed result but with q larger
than 1, that is, more than one query to the PCP. The second part shows that
in any interactive PCP, the number of queries, q, can be reduced to 1, using a
short additional interaction with the prover.

For the proof of the first part, we take π to be the low degree extension
of the witness w. The verifier checks that π is indeed a low degree polyno-
mial using a low degree test, as is frequently done in constructions of PCPs
(e.g., [4,2,1,23,3,21]). Given an arithmetic formula Φ of size n and degree d,
the verifier can verify that Φ(w1, . . . , wk) = 0 by an interactive sum-check pro-
cedure, as is frequently done in constructions of PCPs and interactive proofs
(e.g., [20,26]). However, we need to apply the sum-check procedure on a space
of size > kd, which is, in most interesting cases, super-polynomial in n. This

546 Y.T. Kalai and R. Raz

seems to require a prover that runs in super-polynomial time. Nevertheless, we
show that we can use our new sum-check procedure, that can be performed by
an efficient prover, even when the space is of super-polynomial size.

Note that the prover needs to prove that Φi(w1, . . . , wk) = 0 for every poly-
nomial Φi ∈ {Φ1, . . . , Φn}. Since this would require too much communication,
we take Φ to be a (pseudo-random) linear combination of Φ1, . . . , Φn (using any
linear error correcting code). The combination is chosen by the verifier, and the
prover is only required to prove that Φ(w1, . . . , wk) = 0.

As mentioned above, the second part of the proof of the second result is a
general theorem that shows that in any interactive PCP the number of queries q
can be reduced to 1 (using some additional interaction with the prover). This is
done as follows. First, we can assume w.l.o.g. that all the queries to π are made
after the interactive protocol ends. This is because rather than querying π, the
verifier can simply ask the prover for the answers, and after the interactive
protocol ends make the actual queries and compare the answers. Second, we
can assume w.l.o.g. that the string π, generated by the (honest) prover, is a
multivariate polynomial of low degree. Otherwise, we just ask the prover to
generate the low degree extension of π, rather than π itself.

We can now apply a method that is based on methods that are frequently
used in constructions of PCPs (e.g., [10,1,8,25]). If the verifier wants to query π
in q points, the verifier takes a curve γ of degree q + 1 that passes through all
these points and an additional random point. If π is a low degree polynomial,
the restriction of π to γ is also a low degree polynomial. The verifier asks the
prover to send this low degree polynomial, and verifies the answer by checking it
in a single point, using a single query to π. The verifier still needs to check that
π is indeed a low degree polynomial. This is done, once again, using a low degree
test. The verifier asks the prover for the restriction of π to a low dimensional
subspace ν, and verifies the answer by checking it in a single point, using a single
query to π. This, however, requires an additional query to π, while we only allow
one query altogether. We hence need to combine the two tests. That is, we need
to combine the low degree test and the test that the prover’s answer for the
curve γ is correct. To do this, the verifier actually asks the prover to send the
restriction of π to a manifold spanned by both γ and ν. The verifier verifies the
answer by checking it in a single point, using a single query to π.

This shows that the verifier can make only one query to π. However, the point
queried in π contains a field element and not a single bit. To reduce the answer
size to a single bit, the prover is required to generate in π the error correcting
code of each field element, rather than the element itself. The verifier can now
verify an element by querying only one bit in its error correcting code.

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verification and
Hardness of Approximation Problems. J. ACM 45(3), 501–555 (1998)

2. Arora, S., Safra, S.: Probabilistic Checking of Proofs: A New Characterization of
NP. J. ACM 45(1), 70–122 (1998)

Interactive PCP 547

3. Arora, S., Sudan, M.: Improved Low-Degree Testing and its Applications. Combi-
natorica 23(3), 365–426 (2003)

4. Babai, L., Fortnow, L., Lund, C.: Non-Deterministic Exponential Time has Two-
Prover Interactive Protocols. Computational Complexity 1, 3–40 (1991)

5. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions. In: STOC 1988, pp. 113–131
(1988)

6. Babai, L., Moran, S.: Arthur-Merlin Games: A Randomized Proof System, and a
Hierarchy of Complexity Classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

7. Beigel, R.: The Polynomial Method in Circuit Complexity. In: Structure in Com-
plexity Theory Conference, pp. 82–95 (1993)

8. Dinur, I., Fischer, E., Kindler, G., Raz, R., Safra, S.: PCP Characterizations of
NP: Towards a Polynomially-Small Error-Probability. In: STOC 1999, pp. 29–40
(1999)

9. Feige, U., Goldwasser, S., Lovasz, L., Safra, S., Szegedy, M.: Interactive Proofs and
the Hardness of Approximating Cliques. J. ACM 43(2), 268–292 (1996)

10. Feige, U., Lovasz, L.: Two-Prover One-Round Proof Systems: Their Power and
Their Problems (Extended Abstract). In: STOC 1992, pp. 733–744 (1992)

11. Fortnow, L., Santhanam, R.: Infeasibility of Instance Compression and Succinct
PCPs for NP. In: STOC 2008 (2008)

12. Goldwasser, S., Kalai, Y.T., Rothblum, G.: Delegating Computation: Interactive
Proofs for Mortals. In: STOC 2008 (2008)

13. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing 18(1), 186–208 (1989)

14. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Va-
lidity or All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(3),
691–729 (1991)

15. Harnik, H., Naor, M.: On the Compressibility of NP instances and Cryptographic
Applications. In: FOCS, pp. 719–728 (2006)

16. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-Knowledge from Secure
Muliparty Computation. In: STOC 2007, pp. 21–30 (2007)

17. Kalai, Y.T., Raz, R.: Succinct Non-Interactive Zero-Knowledge Proofs with Pre-
processing for LOGSNP. In: FOCS 2006, pp. 355–366 (2006)

18. Kalai, Y.T., Raz, R.: Probabilistically Checkable Arguments
19. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC

1992, pp. 723–732 (1992)
20. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic Methods for Interactive

Proof Systems. J. ACM 39(4), 859–868 (1992)
21. Moshkovitz, D., Raz, R.: Sub-Constant Error Low Degree Test of Almost Linear

Size. In: STOC 2006, pp. 21–30 (2006)
22. Micali, S.: CS Proofs (Extended Abstracts). In: FOCS 1994, pp. 436–453 (1994)
23. Raz, R., Safra, S.: A Sub-Constant Error-Probability Low-Degree Test, and a Sub-

Constant Error-Probability PCP Characterization of NP. In: STOC 1997, pp. 475–
484 (1997)

24. Razborov, A.: Lower Bounds for the Size of Circuits of Bounded Depth with Basis
{∧,⊕}. Math. Notes of the Academy of Science of the USSR 41(4), 333–338 (1987)

25. Raz, R.: Quantum Information and the PCP Theorem. In: FOCS 2005, pp. 459–468
(2005)

26. Shamir, A.: IP=PSPACE. J. ACM 39(4), 869–877 (1992)
27. Smolensky, R.: Algebraic Methods in the Theory of Lower Bounds for Boolean

Circuit Complexity. In: STOC 1987, pp. 77–82 (1987)

Constant-Round Concurrent Non-malleable Zero

Knowledge in the Bare Public-Key Model

Rafail Ostrovsky1, Giuseppe Persiano2, and Ivan Visconti2

1 UCLA, Los Angeles, CA 90095, USA
rafail@cs.ucla.edu

2 Dipartimento di Informatica ed Applicazioni, Università di Salerno,
84084 Fisciano (SA), Italy

{giuper,visconti}@dia.unisa.it

Abstract. One of the central questions in Cryptography is the design
of round-efficient protocols that are secure under concurrent man-in-the-
middle attacks. In this paper we present the first constant-round concur-
rent non-malleable zero-knowledge argument system for NP in the Bare
Public-Key model [Canetti et al., STOC 2000], resolving one of the ma-
jor open problems in this area. To achieve our result, we introduce and
study the notion of non-malleable witness indistinguishability, which is
of independent interest. Previous results either achieved relaxed forms of
concurrency/security or needed stronger setup assumptions or required
a non-constant round complexity.

Keywords: non-malleable zero knowledge, witness indistinguishability.

1 Introduction

In [1] Dolev, Dwork and Naor proposed the notion of a non-malleable zero-
knowledge (NMZK, for short) proof system where security must be preserved
even under a man-in-the-middle attack. This strong attack allows the adversary
to act as a prover in a proof and as a verifier in another proof with full con-
trol over the scheduling of the messages. The notion of NMZK is proved to be
extremely important in cryptography, since it captures the notion of proof in-
dependence, and led to multiple applications. Feasibility results for NMZK have
been shown by using either black-box techniques and a super-constant number
of rounds by Dolev et al. [1] or by using non-black-box techniques and obtain-
ing computational soundness in a constant number of rounds by Barak [2] and
Pass and Rosen [3]. Another strong security notion for proof systems is that
of concurrent zero knowledge, introduced by Dwork, Naor and Sahai [4], where
security has to work against adversaries that are involved in many concurrent
executions of a proof system.

In this paper we consider an adversary A mounting a concurrent man-in-the-
middle attack in which A acts as a verifier interacting with a honest prover in
polynomially many left proofs and acts as a prover interacting with honest veri-
fiers in polynomially many right proofs. The problem of designing protocols that

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 548–559, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constant-Round Concurrent Non-malleable Zero Knowledge 549

combine concurrent security with security against man-in-the-middle adversaries
has received a lot of attention; several questions still remain open, though. In
particular, constant-round concurrent non-malleable zero-knowledge (cNMZK,
for short) proof systems have been shown to exist by assuming the existence of
trusted third parties or a trusted common reference string or using relaxed secu-
rity notions or relaxed concurrency. A construction with poly-logarithmic round
complexity for concurrent NMZK in the plain model has been given by Barak,
Prabhakaran, and Sahai [5]. The possibility of constructing constant round cN-
MZK proof systems in the plain model or under weaker setup assumptions is
still an open problem.

Witness indistinguishability. A weaker but still useful security notion for proof
systems is that of witness indistinguishability [6], where it is required that the
adversarial verifier does not distinguish the witness used by the prover. Despite
the tremendous applicability of witness indistinguishability, while a lot of atten-
tion has been given to zero knowledge with respect to man-in-the-middle attacks,
very little attention has been given to witness indistinguishability with respect
to concurrent man-in-the-middle attacks.

1.1 Our Results

In this paper we study concurrent man-in-the-middle attacks with respect to
proof systems and show the following two results.

We first show the definition and construction of a new concurrent non-malleable
primitive that extends the notion of witness indistinguishability to the setting in
which the adversary is a concurrent man-in-the-middle. For defining this new prim-
itive, we focus on a specific class of argument systems referred to as commit-and-
prove1 functionality introduced in [7]. We then construct a constant-round con-
current non-malleable witness indistinguishable (cNMWI, for short) argument of
knowledge (under Def. 2) for all NP in the plain model (see Theorem 1). This con-
struction relies upon the work by Pass and Rosen [8] where constant-round con-
current non-malleable (NM, for short) commitments have been achieved. In a next
work we also show that the notions of NMWI and NMZK argument systems are
incomparable, this is surprising since all previously introduced notions of witness
indistinguishability were implied by the corresponding notions of zero knowledge.

Second, we show the construction of a a constant-round cNMZK argument
system under standard complexity theoretic assumptions and security notions in
the Bare Public-Key model, a set-up assumption introduced in [9] that does not
require any trusted third party. So far this has been achieved only under stronger
setup assumptions. Previously, constant-round concurrent zero knowledge has
been obtained in the BPK model in [9] (in [10] with a concurrent soundness
guarantee, and in [11, 12] under standard assumptions). Given our results, the

1 We restrict our study to this class of argument systems as: 1) they allow us to define the
notion of witness encoded in a proof; 2) they suffice for our constructions and applica-
tions. It is possible however to generalize this notion.

550 R. Ostrovsky, G. Persiano, and I. Visconti

BPK model is, at the best of our knowledge, the weakest model in which constant-
round cNMZK has been achieved.

Corruption model and adaptive inputs. In all our results we consider the static
corruption model where the adversary has to choose the corrupted parties before
the protocols start. Following the previous work on NMZK, in the proof of
our concurrent NMZK argument of knowledge in the BPK model we assume
that the inputs (i.e., statements) for honest parties are fixed according to some
predetermined distribution while the adversary can choose its inputs adaptively.
Instead, for our cNMWI argument of knowledge in the plain model, following [13]
we also allow the adversary to choose the inputs of the prover by giving it both
the statements and the witnesses.

Work related to witness indistinguishability and cNMZK zero knowledge in the
plain model. Recently and independently from our work Micali, Pass and Rosen
[14] presented an extension of the notion of witness indistinguishability for achiev-
ing a relaxed notion of secure computation that does not resort to the simulation
paradigm. Their techniques are similar to ours but in this work, in contrast to [14],
we achieve arguments of knowledge and focus on the use of these strong notions of
witness indistinguishability for achieving a notion of security based on simulation
(i.e., concurrent NMZK). Moreover, achieving input-indistinguishability involves
significantly more complicated protocols; furthermore, it is not clear how easy this
notion is to work with when used as a “sub-protocol”. The power of our simple
and specific definition of non-malleable witness indistinguishability is that it can
be achieved essentially directly by relying on the non-malleable commitment pro-
tocol of [8] and it is easy to work with.

We observe that in the plain model constant-round (non-concurrent) NMZK
has been recently obtained [2, 3] whereas obtaining constant-round concurrent
zero knowledge in the plain model has been open for quite some time. The only
constant-round concurrent zero-knowledge arguments known in the plain model
impose a bound on the number of concurrent executions that the adversary can
perform [15]. If we do not insist on constant-round protocols, non-malleability
and security in a concurrent setting have been achieved by [5] which present a
protocol with logarithmic round complexity.

2 Non-malleable Witness Indistinguishability

For lack of space, the definition of standard tools and the ones about non-
malleability can be found in the full version of this work [16, 17].

We now start by discussing and defining the new non-malleable notion of proof
systems. In our definition of NM witness indistinguishability we shall require
that the witness encoded in the proof given by the man-in-the-middle adversary
A is independent from the witness used by the honest prover in the left proof.
Notice that A might be unaware of the witness it has used in the right proof.
More specifically, we focus on a specific class of argument systems referred to as

Constant-Round Concurrent Non-malleable Zero Knowledge 551

commit-and-prove argument systems (previously considered in [7]). Informally,
the transcript of a commit-and-prove argument encodes in an unambiguous way
the witness used by the prover (even though it might not be efficiently extracted
from the transcript). In a NMWI commit-and-prove argument we require the
witness encoded in the proof produced by the man-in-the-middle adversary to
be independent of the witness used (by the honest prover) in the proof in which
the adversary acts as a verifier.

For general argument systems it is not clear whether the notion of witness
encoded is well defined as there could be more than one. Therefore, we focus on
commit-and-prove argument systems for which the notion of the witness encoded
is well defined and commit-and-prove arguments actually suffice for proving our
next result (i.e., cNMZK n the BPK model).

Commit-and-prove argument systems. A commit-and-prove argument system
Π = 〈P, V 〉 for a language L is a two-stage protocol. On input x, in the first
stage the prover and the verifier execute a commitment protocol by which the
prover commits to a string w. In the second stage, the prover proves to the
verifier that the committed string w is a valid witness for “x ∈ L”. We study
commit-and-prove argument systems in which the commitment scheme used in
the first stage is non-interactive and statistically binding, therefore the notion
of witness encoded in the proof is well defined and it corresponds to the string
committed to by the first prover-to-verifier message. If the proof is not accepted
by the verifier, we consider the witness to be encoded in the proof to be the
string ⊥. We shall require that in a NMWI commit-and-prove argument system
the man-in-the-middle adversary encodes in the right proof a witness that is
independent from the one that the honest prover has used in the left proof.

Tag-based NMWI commit-and-prove arguments. We consider a man-in-the-middle
adversaryA interacting in the left proof with tag tagwith the honest proverP that
is running on input instance x and witness w. In the right proof, A is interacting
with the honest verifier V on common input x̃ and tag ˜tag of its choice. We denote
by z the auxiliary information available to A.

The notion of tag-based NM witness indistinguishability is defined in terms of
the random variable wmimA(tag, x, w, z) that is the distribution of the output
of the following process: a transcript trans of an interaction of A, including the
left and the right proof, is picked according to distribution ViewP

A(tag, x, w, z)
(i.e., the view of A when running with z as auxiliary input and playing with
P that runs on input (x,w) and tag tag) and the output of a procedure wit
applied to trans is returned. The procedure wit returns ⊥ if the right proof is
not accepting (i.e., V outputs 0) or tag is the tag of the right proof. Otherwise
it returns the witness encoded in the right proof.

Definition 1 (tag-based NMWI argument). A family of commit-and-prove
argument systems Π = {〈Ptag, Vtag〉}tag for an NP-language L is a tag-based
non-malleable witness indistinguishable (tag-based NMWI, in short) argument
with tags of length � if, for all probabilistic polynomial-time man-in-the-middle

552 R. Ostrovsky, G. Persiano, and I. Visconti

adversaries A, for all probabilistic polynomial-time algorithms D, there exists a
negligible function ν such that for all x ∈ L, for all tags tag ∈ {0, 1}�, for all
pairs (w,w′) of witnesses for x, and for all auxiliary information z it holds that

|Prob[D(x,w,w′,wmimA(tag, x, w, z), z) = 1]−

Prob[D(x,w,w′,wmimA(tag, x, w′, z), z) = 1]| < ν(|x|).
A NMWI argument system is an argument of knowledge when for any prover that
proves a given statement with probability p, there exists an efficient extractor
that outputs a valid witness with essentially the same probability p (see the
definition of [18]).

Comparison with NMZK and NM commitments. We stress here that NMZK
requires the existence of a simulator while NM witness indistinguishability does
not. Instead, NM witness indistinguishability crucially considers the possible
witnesses that are encoded in the proofs given by the man-in-the-middle while
NMZK requirements are satisfied when a valid witness is given in output by the
simulator-extractor. The notion of NM witness indistinguishability is similar to
the notion of NM commitment with respect to commitment [1, 3]. Indeed, both
notions concern the security of a primitive against man-in-the-middle attacks
by considering a string that is encoded in the messages sent by the adversary.
This string is a committed message in case of NM commitments while it is an
encoded witness in case of NM witness indistinguishability.

2.1 Concurrent and Simulation-Based NMWI Arguments

We extend the notion of non-malleable witness indistinguishability to the con-
current setting by considering a concurrent man-in-the-middle adversary A that
opens m = poly(k) left and right proofs each with a common input of length
n = poly(k). Here k refers to the security parameter. A interacts in the i-th left
proof with an instance of the honest prover P on common input “xi ∈ L” and
private prover’s input wi ∈ W (xi). In the j-th right proof A is interacting with
the honest verifier V on common input x̃j of its choice.

To define concurrent non-malleable witness indistinguishability, we extend
wmimA(X,W, z) to sequences of inputs and witnesses in the following way.
The distribution wmimA(X,W, z) is the distribution of the output of the fol-
lowing procedure. First a transcript trans is sampled according to the view
ViewP

A(X,W, z) ofA. Then the output of the following extension of the procedure
wit applied to trans is returned. Procedure wit returns a sequence (w̃1, · · · , w̃m)
where m is the number of right proofs and it holds that: if the j-th right proof
is non-accepting or has the same common input as one of the left proofs then
w̃j =⊥; otherwise, w̃j is the witness encoded in the j-th right proof.

As done for non-malleable witness indistinguishability, we can obtain a tag-
based definition of concurrent non-malleable witness indistinguishability and we
define wmimA(T,X,W, z) so to take into account the tags and not the inputs of
the right proofs. We stress again that A is allowed to choose the inputs and the
tags for the right proofs.

Constant-Round Concurrent Non-malleable Zero Knowledge 553

Definition 2 (tag-based cNMWI argument). A family of commit-and-prove
argument systems Π = {〈Ptag, Vtag〉}tag for the language L is a tag-based con-
current non-malleable witness indistinguishable argument (a tag-based cNMWI)
with tags of length � if, for all probabilistic polynomial-time concurrent man-in-the-
middle adversaries A, for all m = poly(k), for all n = poly(k) and for all proba-
bilistic polynomial-time algorithms D, there exists a negligible function ν such that
for all k, for all sequences X of m elements of L of length n, for all sequences T of
tags of length �, for all sequences W and W ′ of witnesses for X, and for all auxiliary
information z it holds that

|Prob[D(X,W,W ′,wmimA(T,X,W, z), z) = 1]−

Prob[D(X,W,W ′,wmimA(T,X,W ′, z), z) = 1]| < ν(k).

We stress that the two above definitions can be adapted by requiring that each
statement to be proved is adaptively chosen by the adversary (that will also
provide valid witnesses to the provers) before the corresponding proof starts, as
discussed in [19]. Our constructions will enjoy this extra property.

We will also consider a relaxed notion of concurrent non-malleable witness
indistinguishability where the adversary is allowed to run only one left proof.
We denote this restricted notion of concurrent NM witness indistinguishability
as one-left many-right concurrent NM witness indistinguishability.

Simulation-based cNMWI Arguments. We also give a simulation-based definition
of non-malleable witness indistinguishability. We consider only the tag-based case.
LetA be a concurrent man-in-the-middle adversary and consider the following two
executions. The first execution is the man-in-the-middle execution where the con-
current man-in-the-middle adversaryA interacts with several copies of the honest
prover in the left proofs and with several copies of the honest verifier in the right
proofs. For this execution we define distribution wmimA(T,X,W, z) as done pre-
viously. Also, we stress that A can choose the inputs for the right proofs as well
as the tags. In the second execution, called the stand-alone execution, we con-
sider a simulator S that, without receiving any witness for the inputs X of the left
instances and without interacting with a honest prover, manages to output the
transcripts of the left and the right proofs. We denote by wstaS(T,X, z) the ran-
dom variable that describes output of the following procedure. First a transcript
trans is sampled according to the distribution of the output of S(T,X, z). Then
the procedure wit is applied to trans and the output is returned.

Definition 3 (tag-based SBcNMWI argument). A family of commit-and-
prove argument system Π = {〈Ptag, Vtag〉}tag is a tag-based simulation-based
concurrent non-malleable witness indistinguishable (tag-based SBcNMWI, in
short) argument for the language L, if for all polynomials m = poly(k) and
n = poly(k), for all probabilistic polynomial-time concurrent man-in-the-middle
adversaries A, there exists a simulator S running in expected polynomial time,
such that the following distributions are computationally indistinguishable:

{wmimA(T,X,W, z)}T∈{0,1}ml,X∈Lm
n ,W∈W (X),z∈{0,1}� and

554 R. Ostrovsky, G. Persiano, and I. Visconti

{wstaS(T,X, z)}T∈{0,1}ml,X∈Lm
n ,z∈{0,1}� .

The notion of a simulation-based non-malleable witness indistinguishable
commit-and-prove argument of knowledge can be obtained by further requir-
ing that S is able to extract witnesses from the right proofs whenever they use
tags different from the left proofs.

The notion of one-left many-right SBcNMWI argument can be obtained by
restricting the adversary to be involved only in one left proof.

Theorem 1. Assume that there exists a family of claw-free permutations. Then
there exists a constant-round tag-based cNMWI commit-and-prove argument of
knowledge for all NP in the plain model.

The proof of this theorem is obtained by first noticing that a variation of the
commitment scheme of [3] actually allows one to obtain a one-left many-right
SBcNMWI argument of knowledge, then by noticing that any one-left many-right
SBcNMWI argument of knowledge is a one-left many-right cNMWI argument
of knowledge, and finally by noticing that any one-left many-right cNMWI ar-
gument of knowledge is a many-left many-right cNMWI argument of knowledge
(see the full version of this work [16,17] for the protocol and the security proof.)

We finally stress that the above theorem still holds in case the adversary
chooses the inputs of the honest prover, by feeding it also valid witnesses.

3 cNMZK in the BPK Model

In the BPK model [9], each verifier registers some public information (called
the public key) in a public file during a preprocessing stage. Each public key
is associated with some secret information (called the secret key) that is known
only to the owner of the public key. After the preprocessing is completed, parties
engage in the proof stage where proofs are run.

We will define and construct in the BPK model constant-round arguments for
any NP-language that are secure with respect to a BPK concurrent man-in-the-
middle adversary A which during the preprocessing stage has complete control
over the public file where keys are registered (that is,A can modify, omit and, add
new adaptively chosen keys to the public file) and, once the preprocessing stage
is completed, A acts as a concurrent man-in-the-middle adversary. We stress
that no form of key-authentication is required thus making the BPK model a
setting very close to the plain model.

The BPK model for interactive argument systems. We now review the definition
of an interactive argument system in the BPK model that were previously given
in [20] and the extension to the concurrent man-in-the-middle attack case.

Formally, a BPK pair is a pair 〈P, V 〉 where P is a probabilistic polynomial-
time algorithm and V is a pair V = (V0, V1) of probabilistic polynomial-time
algorithms. The interaction between provers and verifiers takes place in two
stages. In the first stage, called the set-up stage, verifiers run algorithm V0, on

Constant-Round Concurrent Non-malleable Zero Knowledge 555

input a security parameter 1k, to obtain a pair (pk, sk) consisting of a public
and a secret key. Each verifier publishes his public key pk in a public file F . The
second stage, called the proof stage, consists of polynomially (in the security
parameter) many proofs. In each of them a prover interacts with a verifier;
specifically, the prover runs algorithm P on input x (of length polynomial in the
security parameter), some auxiliary information w (typically w is a witness for
x to be member of some fixed language L) and the public key pk chosen by the
verifier. The verifier instead runs algorithm V1 on input x and sk.

A BPK pair 〈P, V 〉 is complete for the languageL if in any interaction on common
inputx ∈ LandpkconstructedbyV0,whereP receivesasadditionalinputw ∈ W (x),
andV1 secretkeyskassociatedwithpk,V1 acceptsexceptwithnegligiblyprobability.

The definitions of argument systems in the BPK model can be found in [9],
in particular in [20, 21] the notions of concurrent zero-knowledge and concurrent
soundness have been defined. We will focus on cNMZK arguments of knowledge in
the BPK model that imply both concurrent zero knowledge and concurrent sound-
ness. Indeed, concurrent zero-knowledge corresponds to a special case where the
man-in-the-middle does not run any right proof. Instead, concurrent soundness
corresponds to the special case where the man-in-the-middle does not run any left
proof and is implied by the fact that we require that a legal NP witness is obtained
for any accepting proof given by the adversary (i.e. proofs where V outputs 1).

We next define cNMZK argument of knowledge in the BPK model.
A BPK concurrent man-in-the-middle adversary A = (A0,A1) is a pair of

probabilistic algorithms. A0 on input an auxiliary information z receives the
public file F containing the public keys as computed by the honest verifiers and
outputs a modified public file F ′. In computing F ′, A0 is allowed to add new
adaptively chosen keys and to remove some of the keys of the honest verifiers.
A0 also outputs some secret auxiliary information Z relative to F ′. Once F ′ is
made public by A0, it cannot be changed and the control passes to A1 that runs
on input F ′ and Z. In the proof stage, A1 behaves like a concurrent man-in-
the-middle adversary with the only restriction that he can start right proofs in
which he plays as a prover with honest verifiers only with respect to entries of
F ′ that were chosen by the honest verifiers and not modified by A0.

We define the view BViewA(X,W, z) of a BPK concurrent man-in-the-middle
adversaryA = (A0,A1) with respect to the vector X of left inputs with witnesses
W as consisting of the initial public file received by A0, of all messages received
by A1 in the proof stage both in the left proofs run on input X and right proofs
run on inputs adaptively chosen by A1, along with the sequence of internal states
of A0 and A1 and coin tosses, and the output of the honest verifiers.

Definition 4. (cNMZK arguments of knowledge in the BPK) A BPK pair Π =
〈P, V 〉 complete for the language L is a BPK cNMZK argument of knowledge if
for every probabilistic polynomial-time BPK concurrent man-in-the-middle ad-
versary A, there exists a probabilistic algorithm S running in expected polyno-
mial time such that, for all m = poly(k) and n = poly(k), by denoting with
S(X, z) = (S0(X, z), S1(X, z)) the output of S on input (X, z), we have

556 R. Ostrovsky, G. Persiano, and I. Visconti

1. {S0(X, z)}X∈Lm
n ,z∈{0,1}� and {BViewA(X,W, z)}X∈Lm

n ,W∈W (X),z∈{0,1}� are
computationally indistinguishable.

2. Writing the second component of S’s output as S1(X, z) = (w̃1, . . . , w̃m),
we have that, for all accepting right proofs j of S0(X, z) with common input
x̃j �∈ X, w̃j ∈W (x̃j) except with negligible probability.

We stress that the adversary can always see the output of the verifier. This is
an important issue for proof systems in which the internal state of the verifier is
needed to decide whether a proof is accepted or not.

As a concurrent verifier and a concurrent prover are both special cases of
a concurrent man-in-the-middle adversary, then it is obvious that a cNMZK
argument of knowledge in the BPK model is both concurrent zero-knowledge
and concurrently sound.

3.1 The Constant-Round Protocol

The main idea is to use the FLS paradigm by having the prover prove knowledge
of either a legal witness of the input statement or of the secret key of the verifier.
The goal is to design a simulator that runs the honest verifier algorithm and plays
the role of the prover by first extracting the secret keys used by the adversary
and then by using them as witnesses running in a straight-line fashion the honest
prover algorithm. In order to make this possible, we have the verifier first prove
knowledge of his secret key so that the simulator will first extract the secret keys
of the adversary. To withstand concurrent man-in-the-middle attack, we employ
the cNMWI argument of knowledge we have developed in the previous section
along with the two-key technique by [6].

More in details, in the preprocessing stage, each verifier computes a pair of
public keys along with the corresponding secret keys. He then randomly chooses
one of the two secret keys and discards the other one. This step can be implement
by using a one-way function f in the following way: randomly pick two messages
sk0, sk1 in the domain of f ; compute public keys pk0 = f(sk0), pk1 = f(sk1);
randomly select b← {0, 1}; set sk = (b, skb) and pk = (pk0, pk1).

The actual argument on input x consists of a sequential composition of two
instances of the tag-based constant-round cNMWI commit-and-prove argument
of knowledge we have constructed. First the verifier proves knowledge of one of
the two secret keys associated to his entry in the public file (this is obviously
done by NP-reducing this instance to the NP-complete language used by the sub-
protocol). This subprotocol is run using x◦0 as tag. Obviously the honest verifier
uses his knowledge of one of two secret keys to successfully complete this subpro-
tocol. In the second execution the prover proves knowledge of either w such that
R(x,w) = 1 or of one of the two secret keys associated with the two public keys
of the verifier. The tag used in this subprotocol is x ◦ 1. Obviously the honest
prover uses knowledge of a witness w for R(x, ·) to complete the protocol.

Let us explain how we plan to perform simulation of the protocol. Simulation
is easy for right proofs where the simulator plays the role of the honest verifier.
Indeed right proofs are executed relatively to entry of the public file that have

Constant-Round Concurrent Non-malleable Zero Knowledge 557

been constructed by the simulator itself and thus it knows one of the secret keys
to perform the first subprotocol of a right proof. Simulating the second subpro-
tocol of right proofs and the first subprotocol of the left proofs is trivial as the
simulator can simply play the honest verifier algorithm of the subprotocol. In or-
der to simulate the second subprotocol of left proofs instead the simulator needs
to know either a witness for “x ∈ L” or one of the secret keys associated with the
corresponding entries of the public file that are used by the adversary. However,
the adversary has just proved knowledge of at least one of the two keys in the first
subprotocol of the same proof. Therefore we plan on extracting one of these keys
from the adversary and then use it to perform the second subprotocol. The use
of rewinds is dangerous in concurrent setting but not in the BPK model as shown
in [9]. Indeed the number of extraction procedures that have to be successfully run
is independent of the number of concurrent proofs, since it is bounded by the size
of the public file. Once the simulator knows at least one secret key for each of the
entries of the public file used by the adversary, the simulation is straight-line.

Let us now explain why we can also extract valid witness for all theorems
proved by the adversary. We know that in all succeeding proofs for x ∈ L given
by the adversary, there is a cNMWI argument of knowledge for proving that
x ∈ L or that the adversary knows one of the two secret keys of the verifier.
During the simulated game we can run the extractor for all these proofs in
order to obtain the valid witnesses thus satisfying definition 4. If instead we
extract as witnesses the secret keys of the verifier, we distinguish two cases. In
the former case we extract a secret key that was not used by the simulator; we
show how to reduce this case to an adversary that inverts the one-way function
used for generating the public keys. In the latter case we always extract the
same secret keys used by the simulator; this last case means that the adversary
succeeded in encoding in the cNMWI arguments of knowledge that it proved, the
same witness encoded by the simulator in the cNMWI arguments of knowledge
where the adversary played as verifier. This last case contradicts the NM witness
indistinguishability of the cNMWI arguments of knowledge.

The protocol in details. Let L be an NP-language with polynomial-time relation
R and let f be a one-way function. Associated with L and f , we consider two
auxiliary NP-languages L1 and L2 with polynomial-time relations R1 and R2

defined as follows:

– (pk0, pk1) ∈ L1 iff there exist b and sk such that pkb = f(sk);
– (x, pk0, pk1) ∈ L2 iff x ∈ L or (pk0, pk1) ∈ L1.

In the description of our BPK cNMZK argument of knowledge (P, V) for any NP-
language L we will use a tag-based cNMWI argument of knowledge Π
= {〈Ptag,Vtag〉}tag for an NP-complete language Λ. When we say that we ex-
ecute Π for proving that τ ∈ L1 (or σ ∈ L2) we actually mean that τ (or σ)
is reduced to an instance of Λ and Ptag and Vtag are executed on input this in-
stance. We also remark that known reductions have the property that, if a witness
for τ ∈ L1 (or for σ ∈ L2) is known then a witness for the new instance can be
constructed in polynomial time. (The protocol is formally described in Fig. 1.)

558 R. Ostrovsky, G. Persiano, and I. Visconti

Input: security parameter 1k.

Preprocessing stage:
Entry l of the public file is constructed by V0 as follows:

pick skl
0, sk

l
1 ← {0, 1}k, compute pkl

0 = f(skl
0) and pkl

1 = f(skl
1),

randomly pick bl ← {0, 1}, set pkl = (pkl
0, pkl

1) and skl = (bl, skl
bl

).

output: (pk, sk).

Proof stage:
Sub-protocol: tag-based cNMWI argument of knowledge Π =

{〈Ptag,Vtag〉}tag for a NP-complete language Λ.

Common input: the public file F , entry pkl = (pkl
0, pkl

1) of F , n = poly(k)-bit
string x ∈ L.

P ’s private input: a witness w for x ∈ L.

V1’s private input: secret key skl = (bl, skl
bl

).

V1 −→ P : V1 and P engage in an execution of Π with tag x ◦ 0 where V1

runs Px◦0 to prove to P (running Vx◦0) knowledge of a witness (bl, skl) for
σ = (pkl

0, pkl
1) ∈ L1.

P −→ V1: P and V1 engage in an execution of Π with tag x◦1 where P runs Px◦1

to prove to V1 (running Vx◦1) knowledge of a witness for τ = (x,pkl
0, pkl

1) ∈ L2.

Fig. 1. The constant-round BPK cNMZK argument of knowledge 〈P, V 〉 for NP

Lemma 1. If f is a one-way function and Π is a cNMWI argument of knowl-
edge then the protocol of Fig. 1 is a cNMZK argument of knowledge in the BPK
model for any NP language.

For lack of space, the formal proof can be found in [17, 16].

Theorem 2. If a family of claw-free permutations exists, then in the BPK model
there exists a constant-round cNMZK argument of knowledge for all NP.

The proof follows by Theorem 1, and by the observation that claw-free permu-
tations imply the existence of one-way functions.

Acknowledgments. We thank the anonymous reviewers for their suggestions.
The work of the first author has been supported in part by Intel equipment
grant, NSF Cybertrust grant No. 0430254, Xerox Innovation group Award and
IBM Faculty Award. The work of the authors has been supported in part by
the European Commission through the IST program under Contract IST-2002-
507932 ECRYPT and the one of the last two authors through the FP6 program
under contract FP6-1596 AEOLUS.

Constant-Round Concurrent Non-malleable Zero Knowledge 559

References

1. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. Siam J. on Comput-
ing 30, 391–437 (2000)

2. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: Proc. of FOCS, pp. 345–355 (2002)

3. Pass, R., Rosen, A.: New and Improved Constructions of Non-Malleable Crypto-
graphic Protocols. In: Proc. of STOC, pp. 533–542 (2005)

4. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proc. of STOC,
pp. 409–418 (1998)

5. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: Proc. of FOCS, pp. 345–354 (2006)

6. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
Proc. of STOC, pp. 416–426 (1990)

7. Kilian, J.: Uses of randomness in Algorithms and Protocols. MIT Press, Cambridge
(1990)

8. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: Proc. of FOCS,
pp. 563–572 (2005)

9. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge.
In: Proc. of STOC, pp. 235–244 (2000)

10. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-round resettable zero knowl-
edge with concurrent soundness in the bare public-key model. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)

11. Di Crescenzo, G., Visconti, I.: Concurrent zero knowledge in the public-key model.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 816–827. Springer, Heidelberg (2005)

12. Visconti, I.: Efficient zero knowledge on the internet. In: Bugliesi, M., Preneel, B.,
Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 22–33. Springer,
Heidelberg (2006)

13. Feige, U., Lapidot, D., Shamir, A.: Multiple NonInteractive Zero Knowledge Proofs
under General Assumptions. SIAM Journal on Computing 29, 1–28 (1999)

14. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: Proc. of
FOCS, pp. 136–145 (2006)

15. Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. of FOCS,
pp. 106–115 (2001)

16. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its
relation to nmzk. Technical Report ECCC Report TR06-095, ECCC (2006)

17. Ostrovsky, R., Persiano, G., Visconti, I.: Constant-round concurrent nmwi and its
relation to nmzk. Technical Report 2006-256, Cryptology ePrint Archives (2006)

18. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

19. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proc. of FOCS, pp. 543–553 (1999)

20. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)

21. Reyzin, L.: Zero-Knowledge with Public Keys, Ph.D. Thesis. MIT Press, Cam-
bridge (2001)

Delegating Capabilities in Predicate Encryption

Systems

Elaine Shi1 and Brent Waters2

1 Carnegie Mellon University
2 SRI International

Abstract. In predicate encryption systems, given a capability, one can
evaluate one or more predicates on the plaintext encrypted, while all
other information about the plaintext remains hidden. We consider the
role of delegation in such predicate encryption systems. Suppose Alice
has a capability, and she wishes to delegate to Bob a more restrictive
capability allowing the decryption of a subset of the information Alice
can learn about the plaintext encrypted. We formally define delegation in
predicate encryption systems, propose a new security definition for dele-
gation, and give an efficient construction supporting conjunctive queries.
The security of our construction can be reduced to the general 3-party
Bilinear Diffie-Hellman assumption, and the Bilinear Decisional Diffie-
Hellman assumption in composite order bilinear groups.

1 Introduction

In traditional public key encryption a user creates a public and private key
pair where the private key is used to decrypt all messages encrypted under
that public key. Traditional public key encryption allows “all-or-nothing” ac-
cess to the encrypted data: the private key owner can decrypt everything; and
any party without the private key learns nothing about the data encrypted. Re-
cently, cryptographers have proposed a new notion of encryption called predicate
encryption [5,9,8,21,1,7,17] (also referred to as searching on encrypted data). In
predicate encryption, the private key owner can compute a capability that allows
one to evaluate predicates on the encrypted data. Capabilities can be regarded
as partial decryption keys that release partial information about the plaintext
encrypted in a controlled manner.

For example, imagine a network audit log collection effort similar to the one
mentioned in the recent work[21]. Suppose different Internet Service Providers
(ISPs) contribute network audit logs to an untrusted repository. The audit logs
will later be used to study network intrusions and worms. Due to privacy con-
cerns, the ISPs encrypt their audit logs before submitting them to the repository,
and only a trusted authority has the private key to search the logs. Now suppose
there has been an outbreak of a new network worm. An auditor (e.g., a research
institute) has been asked to study the behavior of the worm and propose counter-
measures. The auditor can now request the authority for a capability that allows

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 560–578, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Delegating Capabilities in Predicate Encryption Systems 561

the decryption of suspicious log entries, e.g., flows satisfying the following char-
acteristic: (port ∈ [p1, p2]) ∧ (time ∈ last month). Meanwhile, the privacy of
all other log entries are still preserved.

In predicate encryption, it is often important for a user holding a capability
(or a set of capabilities) to generate another capability that is more restrictive
than the ones she currently holds. For example, suppose that Carnegie Mellon
University has the capability to decrypt all log entries satisfying characteristics
of the SQL Slammer worm. Now the university may ask a specific group of re-
searchers to study the SQL Slammer worm originating from an IP address range.
To do this, the head of the university can create a more restrictive capability that
can decrypt all log entries having the worm characteristic, and originating from
this IP range. We say that a predicate encryption system allows for delegation
if a user can create capabilities more restrictive than the one she currently owns
and if she can do this operation autonomously; that is, without interacting with
an authority.

In this paper, we study delegation in predicate encryption systems. We pro-
pose new security definitions of delegation, and a delegateable predicate encryp-
tion scheme supporting conjunctive queries. In the remainder of this section,
we first give an overview of related work, and then explain our approach and
contributions.

1.1 Related Work

From traditional public-key encryption to predicate encryption. While traditional
public-key encryption is sufficient for applications where there is a one to one
association between a particular user and a public key, several applications will
demand a finer-grained and more expressive decryption capabilities. Shamir [20]
provided the first vision for finer-grained encryption systems by introducing
the concept of Identity-Based Encryption (IBE). In an IBE system, a party
encrypts a message under a particular public key and associates the ciphertext
with a given string or “identity”. A user can obtain a private key, that is derived
from a master secret key, for a particular identity and can use it to decrypt any
ciphertext that was encrypted under his identity.

Since the realization of the first Identity-Based Encryption schemes by Boneh
and Franklin [6] and Cocks [13], there have been a number of new crypto-systems
that provided increasing functionality and expressiveness of decryption capabil-
ities. In Attribute-Based Encryption systems [2,12,15,18,19] a user can receive
a private capability that represents complex access control policies over the at-
tributes of an encrypted record. Other encryption systems, including keyword
search (or anonymous IBE) [1,5,7,8,9,17,21] systems, allow for a capability holder
to evaluate a predicate on the the encrypted data itself and learn nothing more.
We henceforth refer to such encryption systems as predicate encryption. Pred-
icate encryption represents a significant breakthrough in the sense that access
to the encrypted data is no longer “all-or-nothing”; a user with a predicate
capability is able to learn partial information about encrypted data.

562 E. Shi and B. Waters

Delegation. The concept of delegation was first introduced in this context by
Horwitz and Lynn [16] in the form of Hierarchical Identity-Based Encryption
(HIBE) [4,14,16]. In an HIBE scheme both private keys and ciphertexts are as-
sociated with ordered lists of identities. A user with a given hierarchical identity
is able to decrypt any ciphertext where his identity is a prefix of the ciphertext’s
identity; moreover, a user is able to delegate by creating any other private key
with for which his identity is a prefix. For example, a user in charge of the UC
Davis domain with a private key for edu:ucdavis can delegate to the computer
science department a private key for edu:ucdavis.cs. Since then, the introduc-
tion of HIBE the principle of delegation has been applied to other access control
systems such as attribute-based encryption systems [15].

1.2 Delegation in Predicate Encryption

In this paper, we examine the problem of delegating capabilities in the more
general context of predicate encryption systems [1,5,8,9,17,21,23]. Apart from
the aforementioned network audit log example, delegation in predicate encryp-
tion can also be useful in other scenarios. For example, suppose Alice has the
capability to decrypt all email labeled with “To:alice@yahoo.com”. If Alice
plans to go on vacation over the next two weeks she might want to delegate to
her assistant the ability to read all of her incoming emails, but only over this
period. To do this, Alice can create a more restrictive capability that can de-
crypt all such messages that are sent the next two weeks. In another example,
suppose Alice’s email gateway has the capability to decrypt certain labels of the
email and makes forwarding decisions accordingly. For example, emails label as
“urgent” by her boss should be sent to her pager; emails from her family should
be forwarded to her home computer, etc. The email gateway might want to in-
stall similar filtering capabilities on an upstream gateway for cost saving reasons,
however, this gateway might be a less trusted device; and Alice may only wish
to have the upstream gateway classify emails as “urgent” and ”non-urgent” and
give preference in forwarding the urgent emails.

Delegation in predicate encryption poses a unique set of challenges; and is
typically harder to realize than delegation in Identity-Based Encryption (IBE).
This is due to the fact that in an IBE system, a user is able to access an encrypted
message if and only if his private key identity matches the ciphertext identity,
but the ciphertext identity itself is not hidden. In contrast, predicate encryption
systems such as anonymous IBE hides the “identity” of the ciphertext itself.
In fact, one can equivalently regard the “identity” as part of the data to be
encrypted; and the query predicates are directly evaluated over the encrypted
data itself. In practice, this means that it is typically much more difficult to
realize delegation in predicate encryption systems. For instance, in anonymous
HIBE systems one needs to be careful that the delegation components themselves
cannot be used to answer queries.

Another difficulty in building delegation into encryption systems is that pre-
vious definitions for security of HIBE appear to be incomplete. In the existing
definitions of HIBE security, the attacker plays a game where he receives all

Delegating Capabilities in Predicate Encryption Systems 563

all of his private key queries directly from the HIBE authority; however this
does not accurately model an adversary’s view in a real system. In a real sys-
tem an adversary might get the private key edu:ucdavis.cs directly from an
authority or it might choose to get it from a user with the key edu:ucdavis. In
general, private keys received directly from the authority and delegated private
keys may have different distribution or forms. For example, in the Gentry and
Silverberg [14] and Boneh and Boyen HIBE [3] schemes if a HIBE private key of
depth � is received directly from an authority, the authority will create � newly
random elements of Z∗p in creating the key; however, if the key is generated by
another user only one new degree of randomness will be added and the rest will
be in common with the previous key. As a result, in the security game, we should
not assume in general that delegated keys have the same distribution as keys
directly computed by the authority.

Our Approach. We first set out to create a general framework and definitions
for delegation in predicate encryption systems. In order to do this we create
a general definition that accounts for how predicate capabilities were created.
In particular, our definition allows for the adversary to make queries both for
capabilities that are created by an authority and for capabilities delegated by
users. The adversary may then ask for some subset of these capabilities to be
revealed to him.

Using our new definition we set out to realize delegation in an expressive
predicate encryption system by extending the Hidden Vector Encryption (HVE)
system of Boneh and Waters [8] to allow for delegation. In order to realize
security under our new definition we apply two new techniques.

First, we need to make sure that the additional delegation components do not
compromise the security of our scheme. We enforce this by “tying” the delega-
tion components of a key to the restrictions of the original key itself. Second, we
have the challenge that in the previous HVE techniques of Boneh and Waters [8],
the simulator typically creates key that are “completely random” in the sense that
they have the same distribution as those coming directly from the authority; how-
ever our security definition demands that the keys reflect the distribution of del-
egation steps specified by the adversary. In order to overcome this we modify the
basic scheme such that the distribution of the keys is hidden from a computation-
ally bounded adversary. We show that no adversary can tell whether any key was
delegated as he specified or came directly from the authority. After applying this
hybrid step we can then proceed to use a simulation that is similar to the previ-
ous ones. We believe that our approach is novel in that it is the first instance of a
computational game over the private keys in a capability oriented crypto-system.

Finally, we provide a more efficient realization of Anonymous HIBE, which
can be seen as a special case of our delegateable HVE scheme. Our Anonymous
HIBE scheme has the property that private keys are O(D) in size for a system
that allows hierarchies of depth D. Our private key space efficiency can be viewed
as a direct result of our corrected definition as the previous scheme of Boyen and
Waters required O(D2) to make all delegated keys have the same distribution
as those that came directly from the authority.

564 E. Shi and B. Waters

2 Definitions

In this section, we introduce the notion of delegation in predicate encryption
systems and provide a formal definition of security.

In a predicate encryption system, some user, Alice, creates a public key and
a corresponding master key. Using her master key, Alice can compute and hand
out a token to Bob, such that Bob is able to evaluate some function1, f , on
the plaintext that has been encrypted. Meanwhile, Bob cannot learn any more
information about the plaintext, apart from the output of the function f .

In this paper, we consider the role of delegation in predicate encryption sys-
tems. Suppose Alice (the master key owner) has given Bob tokens to evaluate
a set of functions f1, f2, . . . , fm over ciphertexts. Now Bob wishes to delegate
to Charles the ability to evaluate the functions {f1 + f2, f3, f4} over the cipher-
text. Charles should not be able to learn more information about the plaintext
apart from the output of the functions {f1 + f2, f3, f4}. For example, although
Charles can evaluate f1 + f2, he should not be able to learn f1 or f2 separately.
In general, Bob may be interested in delegating any set of functions that is more
restrictive than what he is able to evaluate with his tokens. Delegation can also
happen more than a single level. For example, after obtaining a token from Bob
for functions {f1 + f2, f3, f4}, Charles may now decide to delegate to his friend
David a token to evaluate f3 · f4.

2.1 Definition

We now formally define delegation in predicate encryption systems that captures
the above notion.

Let X = (x1, x2, . . . , x�) ∈ {0, 1}� denote a plaintext. Without loss of general-
ity, assume that we would like to evaluate from the ciphertext boolean functions
(a.k.a. predicates) on X . Functions that output multiple bits can be regarded as
concatenation of boolean functions. Let F denote the set of all boolean functions
from {0, 1}� to {0, 1}, i.e., F := {f

∣
∣ f : {0, 1}� → {0, 1}}.

A token allows one to evaluate from the ciphertext a set of functions on X .
Let G = {g1, g2, . . . , gm} ⊆ F denote a collection of functions (also referred to as
a function family). We use the notation closure(G) to denote the set of functions
mapping {0, 1}� to {0, 1} that can be evaluated from {g1(X), g2(X), . . . , gm(X)},
i.e.,

closure(G) =
{

f ′ : {0, 1}� → {0, 1}
∣
∣
∣
∣ f ′(X) = h(g1(X), g2(X), . . . , gm(X)), where h : {0, 1}m → {0, 1}

}

Given a token to evaluate a function family G ⊆ F from a ciphertext, we
have sufficient information to evaluate any function in closure(G) (assuming un-
restricted computational power). A party with a token for a function family G
may be interested in delegating to a friend the ability to evaluate a subset of
closure(G). In other words, any subset of closure(G) can be used to define a token
more restrictive than a token for the function family G.
1 Although we focus on functions that are predicates in our solutions, we use the more

general term of functions in this discussion and our formal definitions.

Delegating Capabilities in Predicate Encryption Systems 565

A Delegateable Predicate Encryption (DPE) scheme consists of the following
(possibly randomized) algorithms.

Setup(1λ). The Setup algorithm takes as input a security parameter 1λ, and
outputs a public key PK and a master secret key MSK.

Encrypt(PK, X). The Encrypt algorithm takes as input a public key PK and a
plaintext X = (x1, x2, . . . , x�) ∈ {0, 1}�; and outputs a ciphertext CT.

GenToken(PK,MSK,G). The GenToken algorithm takes as input a public key
PK, master secret key MSK, and a set of boolean functions G ⊆ F . It outputs
a token for evaluating the set of functions G from a ciphertext.

Query(PK,TKG ,CT, f). The Query algorithm takes as input a public key PK,
a token TKG for the function family G, a function f ∈ G, and a ciphertext
CT. Suppose CT is an encryption of the plaintext X ; the algorithm outputs
f(X).

Delegate(PK,TKG ,G′). The Delegate algorithm takes as input a public key PK,
a token for the function family G ⊆ F , and G′ ⊆ closure(G). It computes a
token for evaluating the function family G′ on a ciphertext.

Remark 1. We note that the above definition captures delegation in predicate
encryption systems in the broadest sense. In a predicate encryption system, we
would like to maximize the expressiveness of delegation; however, one should not
be able to delegate beyond what she can learn with her own tokens. Otherwise,
the security of predicate encryption would be broken.

Since we care about being able to perform expressive delegations, we can judge a
system by its expressiveness, e.g., what types of functions one can evaluate over
the ciphertext, and what types of delegations one can perform. Our vision is to
design a predicate encryption system that supports a rich set of queries and del-
egations. As an initial step, we restrict ourselves to some special classes of func-
tions. At the time of writing this paper, the most expressive predicate encryption
system (without delegation) we know of supports conjunctive queries [8]. How-
ever, soon after this writing, Katz, Sahai and Waters propose a novel predicate
encryption system supporting inner product queries [17].

2.2 Security

To define the security for delegation in predicate encryption, we describe a query
security game between a challenger and an adversary. This game formally cap-
tures the notion that the tokens reveal no unintended information about the
plaintext. In this game, the adversary asks the challenger for a number of to-
kens. For each queried token, the adversary gets to specify its path of derivation:
whether the token is directly generated by the root authority, or delegated from
another token. If the token is delegated, the adversary also gets to specify from
which token it is delegated. The game proceeds as follows:

Setup. The challenger runs the Setup algorithm, and gives the adversary the
public key PK.

566 E. Shi and B. Waters

Query 1. The adversary adaptively makes a polynomial number of queries of
the following types:
– Create token. The adversary asks the challenger to create a token for a

set functions G ⊆ F . The challenger creates a token for G without giving
it the adversary.

– Create delegated token. The adversary specifies a token for function family
G that has already been created, and asks the challenger to perform a
delegation operation to create a child token for G′ ⊆ closure(G). The
challenger computes the child token without releasing it to the adversary.

– Reveal token. The adversary asks the challenger to reveal an already
created token for function family G.

Note that when token creation requests are made, the adversary does not
automatically see the created token. The adversary only sees a token when
it makes a reveal token query.

Challenge. The adversary outputs two strings X∗
0 , X

∗
1 ∈ {0, 1}� subject to the

following constraint:
For any token revealed to the adversary in the Query 1 stage, let G denote
the function family corresponding to this token. For all f ∈ G, f(X∗

0) =
f(X∗

1).
Next, the challenger flips a random coin b, and encrypts X∗

b . It returns the
ciphertext to the adversary.

Query 2. Repeat the Query 1 stage. All tokens revealed in this stage must
satisfy the same condition as above.

Guess. The adversary outputs a guess b′ of b. The advantage of an adversary
A in the above game is defined to be AdvA = |Pr[b = b′]− 1/2|.

Definition 1. We say that a delegateable predicate encryption system is secure
if for all polynomial-time adversaries A attacking the system, its advantage AdvA
is a negligible function of λ.

Selective Security. We also define a weaker security notion called selective se-
curity. In the selective security game, instead of submitting two strings X∗

0 , X
∗
1

in the Challenge stage, the adversary first commits to two strings at the be-
ginning of the security game. The rest of the security game proceeds exactly as
before. The selective security model has appeared in various constructions in the
literature [10,11,3,8,9,21], since it is often easier to prove security in the selective
model.

We say that a delegateable predicate encryption system is selectively secure
if all polynomial time adversaries A have negligible advantage in the selective
security game.

Remark 2. We note that our security definition is complete in the sense that in
the query phase, the adversary gets to specify, for each queried token, its path of
derivation: whether the token is generated by the root authority, or from whom
the token has been delegated. Previously when researchers studied delegation in
identity-based encryption systems, (e.g., Hierarchical Identity-Based Encryption

Delegating Capabilities in Predicate Encryption Systems 567

uzyx

T0 a1 a2 a3 a4 a5 a6

Fig. 1. A simple example of predicate encryption similar to the one described in
BW06 [8]

(HIBE) [4], Anonymous Hierarchical Identity-Based Encryption (AHIBE) [9]),
the security game was under-specified: the adversary does not get to specify from
whom each queried token is delegated. One way to interpret this is to assume that
all tokens are generated from the same probability distribution. For example, the
AHIBE [9] work uses this approach. While this allows us to prove the security of
these systems, it is in fact an overkill. This motivates our new security definition
for delegation. Under the new security definition, the delegated token need not
be picked from the same probability distribution as the non-delegated tokens. In
fact, we show that the ability to capture such nuances in our security definition
allows us to construct a simpler AHIBE scheme with smaller private key size.

2.3 A Simple Example

To help understand the above definition, we give a simple example similar to that
in the BW06 paper [8]. As shown by Figure 1, suppose the point X encrypted
takes on integer values between 0 and T . Given a, b ∈ [0, T], let fa,b denote the
function that decides whether X ∈ [a, b]:

fa,b(X) =

{
1 X ∈ [a, b]

0 o.w.

In Figure 1, we mark three disjoint segments [a1, a2], [a3, a4] and [a5, a6]; and four
points x, y, z, u. Suppose Alice has a token for functions {fa1,a2 , fa3,a4 , fa5,a6}.
This allows her to evaluate the following three predicates: whether a1 ≤ X ≤ a2,
a3 ≤ X ≤ a4, and a5 ≤ X ≤ a6. Alice can now distinguish between ciphertexts
Encrypt(PK, x) and Encrypt(PK, y); but she cannot distinguish between cipher-
texts Encrypt(PK, y) and Encrypt(PK, z).

Suppose now Alice performs a delegation, and computes a child token for the
function g(X) = fa1,a2(X)∨fa3,a4(X). Suppose that Bob receives this delegated
token from Alice. Now Bob is able to decide whether (a1 ≤ X ≤ a2) ∨ (a3 ≤
X ≤ a4); this is a subset of information allowed by Alice’s token. Given this new
token, Bob can decide whether X falls inside these two ranges, but he cannot
decide between the cases whether X ∈ [a1, a2] or X ∈ [a3, a4]. For example, Bob
can distinguish between the ciphertexts Encrypt(PK, x) and Encrypt(PK, u), but
he cannot distinguish between the ciphertexts Encrypt(PK, x) and
Encrypt(PK, y).

568 E. Shi and B. Waters

3 Delegateable Hidden Vector Encryption (dHVE)

We propose a primitive called delegateable hidden vector encryption (dHVE),
where we add delegation to the HVE construction proposed in BW06 [8]. This
is an interesting special case to the general definition given in Section 2.1, and
represents an initial step towards our bigger vision of enabling expressive queries
and delegations in predicate encryption systems.

3.1 Delegateable HVE Overview (dHVE)

In our dHVE system, plaintexts consists of multiple “fields”. For example, a
plaintext can be the tuple (IP, port, time, length). A token corresponds to a
conjunction of a subset of these fields: we can fix a field to a specific value, make
a field “delegateable”, or choose not to include a field in a query. For example,
the query (IP = ?) ∧ (port = 80) ∧ (time = 02/10/08) fixes the values of the
port and time fields, and makes the IP field delegateable. The length field
is not included in the query. A party in possession of this token can fill in any
appropriate value for the delegateable field IP, however, she cannot change the
values of the fixed field or delete them from the query, nor can she add in the
missing field length to the query. We now give formal definitions for the above
notions.

Let Σ denote a finite alphabet and let ?,⊥ denote two special symbols not in
Σ. Define Σ?,⊥ := Σ ∪ {?,⊥}. The symbol ? denotes a delegateable field, i.e.,
a field where one is allowed to fill in an arbitrary value and perform delegation.
The symbol ⊥ denotes a “don’t care” field, i.e., a field not involved in some
query. Typically, if a query predicate does not concern a specific field, we call
this field a “don’t care” field. In the aforementioned example, (IP = ?)∧(port =
80)∧ (time = 02/10/08), the IP field is a delegateable field, length is a “don’t
care” field, and the remaining are fixed fields.

Plaintext. In dHVE, our plaintext is composed of a message M ∈ {0, 1}∗ and �
fields, denoted by X = (x1, x2, . . . , x�) ∈ Σ�. The Encrypt algorithm takes as
input a public key PK, a pair (X,M) ∈ {0, 1}∗ × Σ�, and outputs a ciphertext
CT.

Tokens. In dHVE, a token allows one to evaluate a special class of boolean
functions on the fields X ∈ Σ�. We use a vector σ = (σ1, σ2, . . . , σ�) ∈ (Σ?,⊥)�

to specify a set of functions being queried. Given σ, let W(σ) denote the indices
of all delegateable fields, let D(σ) denote the indices of all “don’t care” fields,
and let S(σ) denote the indices of the remaining fixed fields. In the following,
we use the notation [�] to denote the set {1, 2, . . . , �}.

W(σ) := {i
∣
∣ σi = ?}, D(σ) := {i

∣
∣ σi = ⊥}

S(σ) := {i
∣
∣ σi ∈ Σ} = [�]\ (W(σ) ∪ D(σ))

Delegating Capabilities in Predicate Encryption Systems 569

Let σ = (σ1, σ2, . . . , σ�) ∈ (Σ?,⊥)�, σ specifies the following function family
Cσ on the point X = (x1, . . . , x�) encrypted:

Cσ :=

⎧
⎨

⎩

(
∧

i∈W ′

(xi = ai)

)

∧

⎛

⎝
∧

j∈S(σ)

(xj = σj)

⎞

⎠
∣
∣ W ′ ⊆ W(σ),∀i ∈W ′, ai ∈ Σ

⎫
⎬

⎭

(1)

In other words, given a token for σ, the family Cσ denotes the set of functions
we can evaluate from a ciphertext. For the delegateable fields, we can fill in any
appropriate value, but we cannot change or delete any of the fixed fields or add
a “don’t care” field to the query. In addition, if any function in Cσ evaluates to
1, one would also be able to decrypt the payload message M.

Remark 3. The family Cσ is a set of conjunctive equality tests, where we can fill
in every delegateable field in σ with a value in Σ or “don’t care”. In particu-
lar, we fill in fields in W ′ with appropriate values in σ, and for the remaining
delegateable fields W(σ) −W ′, we fill them with “don’t care”. If σ has no del-
egateable field, then the set Cσ contains a single function. This is exactly the
case considered by the original HVE construction, where each token allows one
to evaluate a single function from a ciphertext.

Delegation. In dHVE, Alice, who has a token for σ, can delegate to Bob a
subset of the functions she can evaluate: 1) Alice can fill in delegateable fields
(i.e., W(σ)) with a value in Σ or with the “don’t care” symbol ⊥; 2) Alice can
also leave a delegateable field unchanged (with the ? symbol). In this case, Bob
will be able to perform further delegation on that field.

Definition 2. Let σ = (σ1, σ2, . . . , σ�), σ′ = (σ′1, σ
′
2, . . . , σ

′
�) ∈ Σ�

?,⊥. We say
that σ′ ≺ σ, if for all i ∈ S(σ) ∪D(σ), σ′i = σi.

Note that σ′ ≺ σ means that from TKσ we can perform a delegation operation
and compute TKσ′ . In addition, if σ′ ≺ σ, then Cσ′ ⊆ Cσ, i.e., TKσ′ allows one
to evaluate a subset of the functions allowed by TKσ.

In summary, we introduce delegateable fields to the original HVE construc-
tion. We use the notation σ ∈ Σ�

?,⊥ to specify a function family. Given TKσ, one
can perform a set of conjunctive equality tests (defined by Equation (1)) from
the ciphertext. One may also fill in the delegateable fields in σ with any value
in Σ ∪ {⊥} and compute a child token for the resulting vector. The child token
allows one to evaluate a subset of the functions allowed by the parent token.

Example. Suppose the trusted authority T issues to A a token for σA = (I1, I2, ?,
?,⊥,⊥, . . . ,⊥). This token allows A to evaluate the following functions from the
ciphertext:

– (x1 = I1) ∧ (x2 = I2)

– ∀I3 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)

– ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x4 = I4)

– ∀I3, I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

570 E. Shi and B. Waters

Later, suppose A delegates to B the following token: σB = (I1, I2, I3, ?,⊥,
⊥, . . . ,⊥), where I3 ∈ Σ. Note that this allow B to evaluate the following
functions:
– (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3)
– ∀I4 ∈ Σ : (x1 = I1) ∧ (x2 = I2) ∧ (x3 = I3) ∧ (x4 = I4)

Clearly, a token for σB releases a subset of information allowed by σA. Mean-
while, B is able to further delegate on the x4 field.

3.2 dHVE Definition

We now give a formal definition of dHVE.

Setup(1λ). The Setup algorithm takes as input a security parameter 1λ, and
outputs a public key PK and a master secret key MSK.

Encrypt(PK, X,M). The Encrypt algorithm takes as input a public key PK, a
pair (X,M) ∈ Σ� × {0, 1}∗; and outputs a ciphertext CT.

GenToken(PK,MSK, σ). The GenToken algorithm takes as input a public key
PK, master secret key MSK, and a vector σ ∈ (Σ?,⊥)�. It outputs a token for
evaluating the set of conjunctive queries Cσ from a ciphertext.

Delegate(PK,TKσ, σ
′). The Delegate algorithm takes as input a public key PK,

a token TKσ for the vector σ, and another vector σ′ ≺ σ. It outputs a
delegated token TKσ′ for the new vector σ′.

Query(PK,TKσ,CT, σ′). The Query algorithm takes as input a public key PK, a
token TKσ for the vector σ, a ciphertext CT, and a new vector σ′ satisfying
the following conditions: (1) σ′ ≺ σ; (2) σ′ does not contain delegatable
fields, that is, such a σ′ specifies a single conjunctive query (denoted fσ′)
over the point X encrypted. The algorithm outputs fσ′(X); in addition, if
fσ′(X) = 1, it also outputs the message M.

Remark 4. We note that in comparison to the general definition given in Sec-
tion 2, in dHVE, we add a payload message M ∈ {0, 1}∗ to the plaintext. Mean-
while, the conjunctive queries in dHVE are functions on the attributes X ∈ Σ�,
but not the payload M. Additionally, if a query matches a point X encrypted,
one can successfully decrypt the payload message using the corresponding to-
ken. It is not hard to show that the above formalization for dHVE is captured
by the general definition given in Section 2: We can regard (M, X) as an entire
bit-string, and decrypting the payload M can be regarded as evaluating a con-
catenation of bits from the bit-string (M, X). We choose to define dHVE with a
payload message to be consistent with the HVE definition in BW06 [8].

Selective security of dHVE. We will prove the selective security of our dHVE
construction. We give the formal selective security definition below. The full
security definition for dHVE can be found in the Appendix.

– Init. The adversary commits to two strings X∗
0 , X

∗
1 ∈ Σ�.

– Setup. The challenger runs the Setup algorithm and gives the adversary the
public key PK.

Delegating Capabilities in Predicate Encryption Systems 571

– Query 1. The adversary adaptively makes a polynomial number of “create
token”, “create delegated token” or “reveal token” queries. The queries must
satisfy the following constraint: For any token σ revealed to the adversary,
let Cσ denote the set of conjunctive queries corresponding to this token.

∀TKσ revealed, ∀f ∈ Cσ : f(X∗
0) = f(X∗

1) (2)

– Challenge. The adversary outputs two equal length messages M0 and M1

subject to the following constraint:
For any token σ revealed to the adversary in the Query 1 stage, let Cσ
denote the set of conjunctive queries corresponding to this token.

∀TKσ revealed : if ∃f ∈ Cσ, f(X∗
0) = f(X∗

1) = 1, then M0 = M1 (3)

The challenger flips a random coin b and returns an encryption of (Mb, Xb)
to the adversary.

– Query 2. Repeat the Query 1 stage. All tokens revealed in this stage must
satisfy constraints (2) and (3).

– Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined to be AdvA =
|Pr[b = b′] − 1/2|. We say that a dHVE construction is selectively secure if for
all polynomial time adversaries, its advantage in the above game is a negligible
function of λ.

Observation 1. Anonymous Hierarchical Identity-Based Encryption (AHIBE)
is a special case of the above defined dHVE scheme.

AHIBE is very similar to the dHVE definition given above. The only difference
is that in AHIBE, the function family queried is Cσ, where σ has the special
structure such that S(σ) = [d] where d ∈ [�], W(σ) = [d + 1, �], and D(σ) = ∅.
In fact, we show that the new security definition and the techniques we use to
construct dHVE can be directly applied to give an AHIBE scheme with shorter
private key size. While the previous AHIBE scheme by Boyen and Waters require
O(D2) private key size, our new construction has O(D) private key size, where
D is the maximum depth of the hierarchy. We refer readers to the Appendix for
details of the construction.

4 Background on Pairings and Complexity Assumptions

Our construction relies on bilinear groups of composite order n = pqr, where
p, q and r are distinct large primes. We assume that the reader is familiar with
bilinear groups. More background on composite order bilinear groups can be
found in the Appendix.

Our construction relies on two complexity assumptions: the bilinear Diffie-
Hellman assumption (BDH) and the generalized composite 3-party Diffie-Hellman
assumption (C3DH). Although our construction only requires bilinear groups whose

572 E. Shi and B. Waters

order is the product of three primes n = pqr, we state our assumptions more gener-
ally for bilinear groups of order n where n is the product of three or more primes.

We begin by defining some notation. We use the notation GG to denote the
group generator algorithm that takes as input a security parameter λ ∈ Z>0,
a number k ∈ Z>0, and outputs a tuple (p, q, r1, r2, . . . , rk,G,GT , e) where
p, q, r1, r2, . . . , rk are k + 2 distinct primes, G and GT are two cyclic groups
of order n = pq

∏k
i=1 ri, and e : G2 → GT is the bilinear mapping function. We

use the notation Gp,Gq,Gr1, . . . ,Grk
to denote the respective subgroups of order

p, q, r1, . . . , rk of G. Similarly, we use the notation GT,p,GT,q,GT,r1 , . . . ,GT,rk

to denote the respective subgroups of order p, q, r1, . . . , rk of GT .

The bilinear Diffie-Hellman assumption. We review the standard Bilinear
Diffie-Hellman assumption, but in groups of composite order. For a given group
generator GG define the following distribution P (λ):

(p, q, r1, . . . , rk,G,GT , e)
R← GG(λ, k), n← pq

∏k
i=1 ri,

gp
R← Gp, gq

R← Gq, h1
R← Gr1 , . . . , hk

R← Grk

a, b, c
R← Zn

Z̄ ←
(
(n,G,GT , e), gq, gp, h1, h2, . . . , hk, ga

p , gb
p, gc

p

)

T ← e(gp, gp)
abc

Output (Z̄, T)

Define algorithm A’s advantage in solving the composite bilinear Diffie-Hellman
problem as cBDH AdvGG,A(λ) :=

∣
∣Pr[A(Z̄, T) = 1]− Pr[A(Z̄, R) = 1]

∣
∣, where

(Z̄, T) R← P (λ) and R
R← GT,p. We say that GG satisfies the composite bilin-

ear Diffie-Hellman assumption (cBDH) if for any polynomial time algorithm A,
cBDH AdvGG,A(λ) is a negligible function of λ.

The generalized composite 3-party Diffie-Hellman assumption. We also
rely on the composite 3-party Diffie-Hellman assumption first introduced by
Boneh and Waters [8]. For a given group generator GG define the following
distribution P (λ):

(p, q, r1, . . . , rk,G,GT , e)
R← GG(λ, k), n← pq

∏k
i=1 ri,

gp
R← Gp, gq

R← Gq, h1
R← Gr1 , . . . , hk

R← Grk

R1, R2, R3
R← Gq, a, b, c

R← Zn

Z̄ ←
(
(n,G,GT , e), gq, gp, h1, h2, . . . , hk, ga

p , gb
p, gab

p · R1, gabc
p · R2

)

T ← gc
p ·R3

Output (Z̄, T)

Define algorithmA’s advantage in solving the generalized composite 3-party Diffie-
HellmanproblemforGGasC3DHAdvGG,A(λ):=

∣
∣Pr[A(Z̄, T)=1]−Pr[A(Z̄, R)=1]

∣
∣,

where (Z̄, T) R← P (λ) and R
R← G. We say that GG satisfies the composite 3-party

Diffie-Hellman assumption (C3DH) if for any polynomial time algorithmA, its ad-
vantage C3DHAdvGG,A(λ) is a negligible function of λ.

Delegating Capabilities in Predicate Encryption Systems 573

The assumption is formed around the intuition that it is hard to test for Diffie-
Hellman tuples in the subgroup Gp if the elements have a random Gq subgroup
component.

Remark 5. Consider bilinear groups of order n = pqr, where p, q and r are
three distinct primes. In the above generalized composite 3-party Diffie-Hellman
assumption, whether to call a prime p, q or r is merely a nominal issue. So
equivalently, we may assume that it is hard to test for Diffie-Hellman tuples in
the subgroup Gp, if each element is multiplied by a random element from Gr

instead of Gq.

5 dHVE Construction

We construct a dHVE scheme by extending the HVE construction by Boneh and
Waters [8] (also referred to as the BW06 scheme). One of the challenges that we
have to overcome is how to add delegation in anonymous IBE systems. We note
that delegation is easier in non-anonymous IBE systems, such as in HIBE [4].
In the HIBE construction [4], the public key contains an element corresponding
to each attribute, and the delegation algorithm can use these elements in the
public key to rerandomize the tokens. In anonymous systems, however, as the
encryption now has to hide the attributes as well, we have extra constraints on
what information we can release in the public key. This makes delegation harder
in anonymous settings.

5.1 Construction

In our construction, the public key and the ciphertext are constructed in a way
similar to the BW06 scheme. However, we use a new trick to reduce the number of
group elements in the ciphertext asymptotically by one half. Our token consists
of two parts, a decryption key part denoted as DK and a delegation component
denoted as DL. The decryption key part DK is similar to that in the BW06
scheme. The delegation component DL is more difficult to construct, since we
need to make sure that the delegation component itself does not leak unintended
information about the plaintext encrypted.

We will use Σ = Zm for some integer m. Recall that Σ?,⊥ := Σ ∪ {?,⊥},
where ? denotes a delegateable field, and ⊥ denotes a “don’t care” field.

Setup(1λ). The setup algorithm first chooses random large primes p, q, r > m
and creates a bilinear group G of composite order n = pqr, as specified in
Section 4. Next, it picks random elements

(u1, h1), . . . , (u�, h�) ∈ G2
p , g, v, w,w ∈ Gp , gq ∈ Gq, gr ∈ Gr

and an exponent α ∈ Zp. It keeps all these as the secret key MSK.
It then chooses 2� + 3 random blinding factors in Gq:

(Ru,1, Rh,1), . . . , (Ru,�, Rh,�) ∈ Gq and Rv, Rw, Rw ∈ Gq.

574 E. Shi and B. Waters

For the public key, PK, it publishes the description of the group G and the
values

gq, gr, V = vRv, W = wRw, W = wRw, A = e(g, v)α,

(
U1 = u1Ru,1, H1 = h1Rh,1

. . .

U� = u�Ru,�, H� = h�Rh,�

)

The message space M is set to be a subset of GT of size less than n1/4.
Encrypt(PK, X ∈ Σ�, M ∈M ⊆ GT). Assume that Σ ⊆ Zm. Let X = (x1, . . . ,

x�) ∈ Z�
m. The encryption algorithm first chooses a random ρ ∈ Zn and ran-

dom Z, Z0, Zφ, Z1, Z2, . . . , Z� ∈ Gq. (The algorithm picks random elements
in Gq by raising gq to random exponents from Zn.) Then, the encryption
algorithm outputs the ciphertext:

CT =
(

C̃ = MAρ, C = V ρZ, C0 = W ρZ0, Cφ = W
ρ
Zφ,

⎛

⎜
⎜
⎝

C1 = (Ux1
1 H1)

ρZ1,

C2 = (Ux2
2 H2)

ρZ2,

.

C� = (U
x�
� H�)

ρZ�

⎞

⎟
⎟
⎠

)

Remark 6. We note that the ciphertext size is cut down by roughly a half
when compared to the BW06 construction [8]. Therefore, our construction
immediately implies an HVE scheme with asymptotically half the ciphertext
size as the original BW06 construction.

GenToken(PK,MSK, σ ∈ Σ�
?,⊥). The token generation algorithm will take as

input the master secret key MSK and an �-tuple σ = (σ1, . . . , σ�) ∈ Σ�
?,⊥. The

token for σ consists of two parts: (1) a decryption key component denoted
as DK, and (2) a delegation component denoted DL.
– The decryption key component DK is composed in a similar way to the

original HVE construction [8]. Recall that S(σ) denotes the indices of the
fixed fields, i.e., indices j such that σj ∈ Σ. Randomly select γ, γ ∈ Zp

and tj ∈ Zp for all j ∈ S(σ). Pick random Y, Y0, Yφ ∈ Gr and Yj ∈ Gr for
all j ∈ S(σ). Observe that picking random elements from the subgroup
Gr can be done by raising gr to random exponents in Zn. Next, output
the following decryption key component:
DK =

(
K = gαwγwγ

∏
j∈S(σ)(u

σj

j hj)tj Y, K0 = vγY0, Kφ = vγYφ, ∀j ∈ S(σ) : Kj = vtj Yj

)

– The delegation component DL is constructed as below. Recall that W(σ)
denotes the set of all indices i where σi = ?. Randomly select Yi,u, Yi,h ∈
Gr. For each i ∈ W(σ), for each j ∈ S(σ) ∪ {i}, randomly select
si,j ∈ Zp, Yi,j ∈ Gr. For each i ∈ W(σ), randomly select γi, γi ∈ Zp,
Yi,h, Yi,u, Yi,0, Yi,φ ∈ Gr. Next, output the following delegation compo-
nent DLi for coordinate i.

∀i ∈ W(σ) : DLi =

(
Li,h = h

si,i

i wγiwγi
∏

j∈S(σ)(u
σj

j hj)si,j Yi,h, Li,u = u
si,i

i Yi,u

Li,0 = vγiYi,0, Li,φ = vγiYi,φ, ∀j ∈ S(σ) ∪ {i} : Li,j = vsi,j Yi,j

)

Remark 7. Later, suppose we want to delegate on the kth field by fixing it
to I ∈ Σ. To do so, we will multiply LIk,u to Lk,h, resulting in something
similar to the decryption key DK (except without the gα term). Observe that

Delegating Capabilities in Predicate Encryption Systems 575

the Li,h terms encode all the fixed fields (i.e., S(σ)). This effectively restricts
the use of the delegation components, such that they can only be added on
top of the fixed fields, partly ensuring that the delegation components do
not leak unintended information.

Delegate(PK, σ, σ′). Given a token for σ ∈ Σ�
?,⊥, the Delegate algorithm com-

putes a token for σ′ ≺ σ. Without loss of generality, we assume that σ′ fixes
only one delegateable field of σ to a symbol in Σ or to ⊥. Clearly, if we
have an algorithm to perform delegation on one field, then we can perform
delegation on multiple fields. This can be achieved by fixing the multiple
delegateable fields one by one.
We now describe how to compute TKσ′ from TKσ. Suppose σ′ fixes the kth

coordinate of σ. We consider the following two types of delegation: 1) the
kth coordinate is fixed to some value in the alphabet Σ, and 2) the kth

coordinate is set to ⊥, i.e., it becomes a “don’t care” field.
Type 1: σ′ fixes the kth coordinate of σ to I ∈ Σ, and the remaining coordinates

of σ remain unchanged. In this case, S(σ′) = S(σ) ∪ {k}, and W(σ′) =
W(σ)\{k}. (Recall that S(σ) denotes the set of indices j where σj ∈ Σ,
and W(σ) denotes the set of delegateable fields of σ.)

Step 1: Let (DK,DL) denote the parent token. Pick a random exponent μ ∈
Zn and rerandomize the delegation component DL by raising every
element in DL to μ. Denote the rerandomized delegation component
as:

∀i ∈ W(σ) : D̂Li =

(
L̂i,h = L

μ
i,h, L̂i,u = L

μ
i,u,

L̂i,0 = L
μ
i,0, L̂i,φ = L

μ
i,φ, ∀j ∈ S(σ) ∪ {i} : L̂i,j = L

μ
i,j

)

In addition, compute a partial decryption key component with the
kth coordinate fixed to I:
pDK =

(
T = L̂I

k,uL̂k,h, T0 = L̂k,0, Tφ = L̂k,φ, ∀j ∈ S(σ′) : Tj = L̂k,j

)

The partial decryption key pDK is formed similarly to the decryption
key DK, except that pDK does not contain the term gα.

Step 2: Compute |W(σ′)| rerandomized versions of the above. For all i ∈
W(σ′), randomly select τi ∈ Zn, and compute:

pDKi =
(
Γi = T τi, Γi,0 = T τi

0 , Γi,φ = T τi

φ , ∀j ∈ S(σ′) : Γi,j = T τi

j

)

Step 3: We are now ready to compute the decryption key component DK′

of the child token. DK′ is computed from two things: 1) DK, the de-
cryption key component of the parent token and 2) pDK, the partial
decryption key computed in Step 1. In particular, pDK is the partial
decryption key with the kth field fixed; however, as pDK does not
contain the gα term, we need to multiply appropriate components of
pDK to those in DK.

To compute DK′, first, randomly select Y ′, Y ′0 , Y
′
φ ∈ Gr. For all

j ∈ S(σ′), randomly select Y ′j ∈ Gr. Now output the following DK′:
DK′ =

(
K ′ = KTY ′, K ′

0 = K0T0Y
′
0 , K ′

φ = KφTφY ′
φ, K ′

k = TkY ′
k, ∀j ∈ S(σ) : K ′

j = KjTjY
′
j

)

576 E. Shi and B. Waters

Step 4: We now explain how to compute the delegation component DL′ of
the child token. DL′ is composed of a portion DL′i for each i ∈ W(σ′).
Moreover, each DL′i is computed from two things: 1) D̂Li as computed
in Step 1 and 2) pDKi as computed in Step 2.
Follow the steps below to compute DL′. For each i ∈ W(σ′), ran-
domly select Y ′i,h, Y

′
i,u, Y

′
i,0, Y

′
i,φ from Gr. For each i ∈ W(σ′), for

each j ∈ S(σ) ∪ {i, k}, pick at random Y ′i,j from Gr. Compute the
delegation component DL′ of the child token as below:

∀i ∈ W(σ′) : DL′
i =

⎛

⎜
⎝

L′
i,h = L̂i,hΓiY

′
i,h, L′

i,u = L̂i,uY ′
i,u

L′
i,0 = L̂i,0Γi,0Y

′
i,0, L′

i,φ = L̂i,φΓi,φY ′
i,φ,

L′
i,i = L̂i,iY

′
i,i, L′

i,k = Γi,kY ′
i,k, ∀j ∈ S(σ) : L′

i,j = L̂i,jΓi,jY
′
i,j

⎞

⎟
⎠

Type 2: We now go on to explain how to perform a Type 2 delegation. Suppose
σ′ fixes the kth coordinate of σ to ⊥. In this case, S(σ′) = S(σ), and
W(σ′) = W(σ)\{k}. The child token is formed by removing the part
DLk from the parent token:

TKσ′ = (DK, DL\{DLk})

Remark 8. It is not hard to verify that delegated tokens have the correct
form, except that their exponents are no longer distributed independently
at random, but are correlated with the parent tokens. In the proof in the
Appendix, we show that Type 1 delegated tokens “appear” (in a compu-
tational sense) as if there were generated directly by calling the GenToken
algorithm, that is, with exponents completely at random. This constitutes
an important idea in our security proof.

Query(PK,TKσ,CT, σ′). A token for σ ∈ Σ�
?,⊥ allows one to evaluate a set of

functions Cσ defined by Equation (1) from the ciphertext. Let σ′ ≺ σ and
assume σ′ has no delegateable fields. Then σ′ represents a single function fσ′

(a conjunctive equality test), and the Query algorithm allows us to evaluate
fσ′ over the ciphertext.

To evaluate fσ′ from the ciphertext using TKσ, first call the Delegate
algorithm to compute a decryption key for σ′. Write this decryption key in
the form DK = (K, K0, Kφ, ∀j ∈ S(σ′) : Kj). Furthermore, parse the

ciphertext as CT =
(
C̃, C, C0, Cφ, ∀j ∈ � : Cj

)
.

Now use the same algorithm as the original HVE construction to perform
the query. First, compute

M ← C̃ · e(C,K)−1 · e(C0,K0)e(Cφ,Kφ)
∏

j∈S(σ′)

e(Cj ,Kj) (4)

If M �∈ M, output 0, indicating that fσ′ is not satisfied. Otherwise, output
1, indicating that fσ′ is satisfied and also output M. We explain why the
Query algorithm is correct in the Appendix.

Delegating Capabilities in Predicate Encryption Systems 577

5.2 Security of Our Construction

Theorem 1. Assuming that the bilinear Diffie-Hellman assumption and the
generalized composite 3-party Diffie-Hellman assumptions hold in G, then the
above dHVE construction is selectively secure.

We now explain the main techniques used in the proof; however, we defer the
detailed proof to the Appendix. In our main construction, delegated tokens
have certain correlations with their parent tokens. As a result, the distribution
of delegated tokens differ from tokens generated freshly at random by calling
the GenToken algorithm. A major technique used in the proof is “token indis-
tinguishability”: although delegated tokens have correlations with their parent
tokens, they are in fact computationally indistinguishable from tokens freshly
generated through the GenToken algorithm. (Strictly speaking, Type 1 dele-
gated tokens are computationally indistinguishable from freshly generated to-
kens.) This greatly simplifies our simulation, since now the simulator can pretend
that all Type 1 tokens queried by the adversary are freshly generated, without
having to worry about their correlation with parent tokens. Intuitively, the above
notion of token indistinguishability relies on the C3DH assumption: if we use a
random hiding factor from Gr to randomize each term in the token, then DDH
becomes hard for the subgroup Gp.

Acknowledgement

We would like to thank John Bethencourt and Jason Franklin for helpful sug-
gestions and comments. We also would like to thank the anonymous reviewers
for their helpful reviews.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy (2007)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

578 E. Shi and B. Waters

7. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of FOCS (2007)

8. Boneh, D., Waters, B.: A fully collusion resistant broadcast trace and revoke system
with public traceability. In: ACM Conference on Computer and Communication
Security (CCS) (2006)

9. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117. Springer,
Heidelberg (2006)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: EUROCRYPT, pp. 255–271 (2003)

11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

12. Chase, M.: Multi-authority attribute based encryption. In: TCC, pp. 515–534
(2007)

13. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Proceedings of the 8th IMA International Conference on Cryptography and Cod-
ing, London, UK, pp. 360–363. Springer, Heidelberg (2001)

14. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501. Springer, Heidelberg (2002)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM conference on Computer and
communications security (CCS) (2006)

16. Horwitz, J., Lynn, B.: Towards hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg (2002)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Eurocrypt (to appear, 2008)

18. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: CCS 2006: Proceedings of the 13th ACM conference on Computer and
communications security (2006)

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Proceedings
of Crypto (1984)

21. Shi, E., Bethencourt, J., Chan, T.-H.H., Song, D., Perrig, A.: Multi-dimension
range query over encrypted data. In: IEEE Symposium on Security and Privacy
(May 2007)

22. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damgaard, I., Goldberg, L.A., Halldorsson, M.M., Ingolfsdottir, A.,
Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125. Springer, Heidelberg (2008),
http://sparrow.ece.cmu.edu/∼elaine/docs/delegation.pdf

23. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy (2000)

Appendix

Due to limit of space, please refer to the online full version of this paper for the
appendix [22].

http://sparrow.ece.cmu.edu/~elaine/docs/delegation.pdf

Bounded Ciphertext Policy Attribute Based

Encryption

Vipul Goyal�, Abhishek Jain�, Omkant Pandey�, and Amit Sahai�

Department of Computer Science, UCLA
{vipul,abhishek,omkant,sahai}@cs.ucla.edu

Abstract. In a ciphertext policy attribute based encryption system,
a user’s private key is associated with a set of attributes (describing
the user) and an encrypted ciphertext will specify an access policy over
attributes. A user will be able to decrypt if and only if his attributes
satisfy the ciphertext’s policy.

In this work, we present the first construction of a ciphertext-policy
attribute based encryption scheme having a security proof based on a
number theoretic assumption and supporting advanced access structures.
Previous CP-ABE systems could either support only very limited access
structures or had a proof of security only in the generic group model. Our
construction can support access structures which can be represented by
a bounded size access tree with threshold gates as its nodes. The bound
on the size of the access trees is chosen at the time of the system setup.
Our security proof is based on the standard Decisional Bilinear Diffie-
Hellman assumption.

1 Introduction

In many access control systems, every piece of data may legally be accessed by
several different users. Such a system is typically implemented by employing a
trusted server which stores all the data in clear. A user would log into the server
and then the server would decide what data the user is permitted to access.
However such a solution comes with a cost: what if the server is compromised?
An attacker who is successful in breaking into the server can see all the sensitive
data in clear.

One natural solution to the above problem is to keep the data on the server
encrypted with the private keys of the users who are permitted to access it.
However handling a complex access control policy using traditional public key
encryption systems can be difficult. This is because the access policy might be
described in terms of the properties or attributes that a valid user should have
rather than in terms of the actual identities of the users. Thus, a priori, one may

� This research was supported in part from grants from the NSF ITR and Cybertrust
programs (including grants 0627781, 0456717, and 0205594), a subgrant from SRI
as part of the Army Cyber-TA program, an equipment grant from Intel, an Alfred
P. Sloan Foundation Fellowship, and an Okawa Foundation Research Grant.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 579–591, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

580 V. Goyal et al.

not even know the exact list of users authorized to access a particular piece of
data.

The concept of attribute based encryption (ABE) was introduced by Sahai
and Waters [1] as a step towards developing encryption systems with high ex-
pressiveness. Goyal et al [2] further developed this idea and introduced two vari-
ants of ABE namely ciphertext-policy attribute based encryption (CP-ABE)
and key-policy attribute based encryption (KP-ABE). In a CP-ABE system, a
user’s private key is associated with a set of attributes (describing the proper-
ties that the user has) and an encrypted ciphertext will specify an access policy
over attributes. A user will be able to decrypt if and only if his attributes sat-
isfy the ciphertext’s policy. While a construction of KP-ABE was offered by [2],
constructing CP-ABE was left as an important open problem.

Subsequently to Goyal et al [2], Bethencourt et al [3] gave the first construction
of a CP-ABE system. Their construction however only had a security argument
in the generic group model. Cheung and Newport [4] recently gave a CP-ABE
construction supporting limited type of access structures which could be repre-
sented by AND of different attributes. Cheung and Newport also discussed the
possibility of supporting more general access structures with threshold gates.
However as they discuss, a security proof of this generalization would involve
overcoming several subtleties. In sum, obtaining a CP-ABE scheme for more
advanced access structures based on any (even relatively non-standard) number
theoretic assumption has proven to be surprisingly elusive.

Our Results. We present the first construction of a ciphertext-policy attribute
based encryption scheme having a security proof based on a standard number
theoretic assumption and supporting advanced access structures. Our construc-
tion can support access structures which can be represented by a bounded size
access tree with threshold gates as its nodes. The bound on the size of the ac-
cess trees is chosen at the time of the system setup and is represented by a
tuple (d, num) where d represents the maximum depth of the access tree and
num represents the maximum number of children each non-leaf node of the tree
might have. We stress that any access tree satisfying these upper bounds on the
size can be dynamically chosen by the encrypter. Our construction has a security
proof based on the standard Decisional Bilinear Diffie-Hellman (BDH) assump-
tion. We note that previous CP-ABE systems could either support only very
limited access structures [4] or had a proof of security only in the generic group
model [3] (rather than based on a number theoretic assumption). Further, we
show how to extend our constructions to support non-monotonic access policies.
Finally, we observe that our constructions for non-monotonic access policies can
in fact support any access formula with bounded polynomial size.

Our Techniques. Our construction can be seen as a way to reinterpret Key-
Policy ABE schemes (e.g. [2]) with a fixed “universal” tree access structure as
a CP-ABE scheme. Such a reinterpretation presents some problems because in
a KP-ABE scheme, the key material for each attribute is “embedded” into the

Bounded Ciphertext Policy Attribute Based Encryption 581

access structure in a unique way depending on where it occurs in the access
policy. To overcome this difficulty, we introduce many “copies” of each attribute
for every position in the access structure tree where it can occur. This causes a
significant increase in private key size, but does not significantly affect cipher-
text size. However, since the actual access structure to be used for a particular
ciphertext must be embedded into the fixed “universal” tree access structure
in the KP-ABE scheme, this causes a blowup in ciphertext size. This effect
can be moderated by having multiple parallel CP-ABE schemes with different
sized “universal” tree access structures underlying the scheme, which allows for
a trade-off between ciphertext size and the size of the public parameters and
private keys.

Note that in general a Boolean formula of size n can be represented by a
balanced formula of size O(n2/ log(3/2)) (roughly O(n3.42)). Thus, in general our
methodology would yield a ciphertext blowup of O(n3.42) group elements. As
such, our result can be seen as a “feasibility result” for CP-ABE for general
Boolean formulas of bounded size. We leave constructing more efficient CP-ABE
schemes based on number-theoretic assumptions as an important open question.

2 Background

We first give formal definitions for the security of Bounded Ciphertext Pol-
icy Attribute Based Encryption (BCP-ABE). Then we give background infor-
mation on bilinear maps and our cryptographic assumption. Like the work of
Goyal et al. [2], we describe our constructions for access trees. Roughly speaking,
given a set of attributes {P1, P2, . . . , Pn}, an access tree is an access structure
T ⊆ 2{P1,P2,...,Pn}, where each node in the tree represents a threshold gate (see
Section 3 for a detailed description). We note that contrary to the work of Goyal
et al., in our definitions, users will be identified with a set of attributes while
access trees will be used to specify policies for encrypting data.

A Bounded Ciphertext Policy Attribute Based Encryption scheme consists of
four algorithms.

Setup (d, num). This is a randomized algorithm that takes as input the implicit
security parameter and a pair of system parameters (d, num). These parameters
will be used to restrict the access trees under which messages can be encrypted
in our system. It outputs the public parameters PK and a master key MK.
Key Generation (γ,MK). This is a randomized algorithm that takes as input
– the master key MK and a set of attributes γ. It outputs a decryption key D
corresponding to the attributes in γ.
Encryption (M,PK, T ′). This is a randomized algorithm that takes as input –
the public parameters PK, a message M , and an access tree T ′ over the universe
of attributes, with depth d′ ≤ d, and where each non-leaf node x has at most
num child nodes. The algorithm will encrypt M and output the ciphertext E.
We will assume that the ciphertext implicitly contains T ′.

582 V. Goyal et al.

Decryption (E,D). This algorithm takes as input – the ciphertext E that was
encrypted under the access tree T ′, and the decryption key D for an attribute
set γ. If the set γ of attributes satisfies the access tree T ′ (i.e. γ ∈ T ′), then the
algorithm will decrypt the ciphertext and return a message M .

We now discuss the security of a bounded ciphertext-policy ABE scheme. We
define a selective-tree model for proving the security of the scheme under the
chosen plaintext attack. This model can be seen as analogous to the selective-ID
model [5,6,7] used in identity-based encryption (IBE) schemes [8,9,10].

Selective-Tree Model for BCP-ABE. Let U be the universe of attributes
fixed by the security parameter. The system parameters d, num are also defined.

Init. The adversary declares the access tree T ′, that he wishes to be challenged
upon.
Setup. The challenger runs the Setup algorithm of ABE and gives the public
parameters to the adversary.
Phase 1. The adversary is allowed to issue queries for private keys for many
attribute sets γj , where γj does not satisfy the access tree T ′ for all j.
Challenge. The adversary submits two equal length messages M0 and M1. The
challenger flips a random coin b, and encrypts Mb with T ′. The ciphertext is
passed on to the adversary.
Phase 2. Phase 1 is repeated.
Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b]− 1
2 . We

note that the model can easily be extended to handle chosen-ciphertext attacks
by allowing for decryption queries in Phase 1 and Phase 2.

Definition 1. A bounded ciphertext-policy attribute-based encryption scheme
(BCP-ABE) is secure in the Selective-Tree model of security if all polynomial
time adversaries have at most a negligible advantage in the Selective-Tree game.

2.1 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear
maps. Let G1 and G2 be two multiplicative cyclic groups of prime order p. Let
g be a generator of G1 and e be a bilinear map, e : G1 ×G1 → G2. The bilinear
map e has the following properties:

1. Bilinearity: for all u, v ∈ G1 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G1 is a bilinear group if the group operation in G1 and the bilinear
map e : G1 × G1 → G2 are both efficiently computable. Notice that the map e
is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 The Decisional Bilinear Diffie-Hellman (BDH) Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a generator of G1. The deci-
sional BDH assumption [7,1] is that no probabilistic polynomial-time algorithm

Bounded Ciphertext Policy Attribute Based Encryption 583

B can distinguish the tuple (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple
(A = ga, B = gb, C = gc, e(g, g)z) with more than a negligible advantage. The
advantage of B is

∣
∣Pr[B(A,B,C, e(g, g)abc) = 0]− Pr[B(A,B,C, e(g, g)z)] = 0

∣
∣

where the probability is taken over the random choice of the generator g, the
random choice of a, b, c, z in Zp, and the random bits consumed by B.

3 Access Trees

In our constructions, user decryption keys will be identified with a set γ of at-
tributes. A party who wishes to encrypt a message will specify through an access
tree structure a policy that private keys must satisfy in order to decrypt. We
now proceed to explain the access trees used in our constructions.

Access Tree. Let T be a tree representing an access structure. Each non-leaf
node of the tree represents a threshold gate, described by its children and a
threshold value. If numx is the number of children of a node x and kx is its
threshold value, then 0 < kx ≤ numx. For ease of presentation, we use the term
cardinality to refer to the number of children of a node. Each leaf node x of the
tree is described by an attribute and a threshold value kx = 1.

We fix the root of an access tree to be at level 0. Let ΦT denote the set of all
the non-leaf nodes in the tree T . Further, let ΨT be the set of all the non-leaf
nodes at depth d− 1, where d is the depth of T . To facilitate working with the
access trees, we define a few functions. We denote the parent of the node x in
the tree by parent(x). The access tree T also defines an ordering between the
children of every node, that is, the children of a node x are numbered from 1 to
numx. The function index(x) returns such a number associated with a node x,
where the index values are uniquely assigned to nodes in an arbitrary manner
for a given access structure. For simplicity, we provision that index(x) = att(x),
when x is a leaf node and att(x) is the attribute associated with it.

Satisfying an Access Tree. Let T be an access tree with root r. Denote by
Tx the subtree of T rooted at the node x. Hence T is the same as Tr. If a set of
attributes γ satisfies the access tree Tx, we denote it as Tx(γ) = 1. We compute
Tx(γ) recursively as follows. If x is a non-leaf node, evaluate Tz(γ) for all children
z of node x. Tx(γ) returns 1 if and only if at least kx children return 1. If x is a
leaf node, then Tx(γ) returns 1 iff att(x) ∈ γ.

Universal Access Tree. Given a pair of integer values (d, num), define a
complete num-ary tree T of depth d, where each non-leaf node has a threshold
value of num. The leaf nodes in T are empty, i.e., no attributes are assigned to
the leaf nodes. Next, num−1 new leaf nodes are attached to each non-leaf node x,

584 V. Goyal et al.

thus increasing the cardinality of x to 2 ·num−1 while the threshold value num
is left intact. Choose an arbitrary assignment of dummy attributes (explained
later in Section 4) to these newly added leaf nodes1 for each x. The resultant
tree T is called a (d, num)-universal access tree (or simply the universal access
tree when d, num are fixed by the system).

Bounded Access Tree. We say that T ′ is a (d, num)-bounded access tree if
it has depth d′ ≤ d, and each non-leaf node in T ′ exhibits a cardinality at most
num.

Normal Form. Consider a (d, num)-bounded access tree T ′. We say that T ′
exhibits the (d, num)-normal form if (a) it has depth d′ = d, and (b) all the
leaves in T ′ are at depth d. Any (d, num)-bounded access tree T ′ can be con-
verted to the (d, num)-normal form (or simply the normal form when d, num
are fixed by the system) in the following way in a top down manner, starting
from the root node r′. Consider a node x at level lx in T ′. If the depth dx of the
subtree T ′x is less than (d− lx), then insert a vertical chain of (d− lx−dx) nodes
(where each node has cardinality 1 and threshold 1) between x and parent(x).
Repeat the procedure recursively for each child of x. Note that conversion to the
normal form does not affect the satisfying logic of an access tree.

Map between Access Trees. Consider a (d, num)-universal access tree T
and another tree T ′ that exhibits the (d, num)-normal form. A map between
the nodes of T ′ and T is defined in the following way in a top-down manner.
First, the root of T ′ is mapped to the root of T . Now suppose that x′ in T ′ is
mapped to x in T . Let z′1, . . . , z

′
numx′ be the child nodes of x′, ordered according

to their index values. Then, for each child z′i (i ∈ [1, numx′]) of x′ in T ′, set the
corresponding child zi (i.e. with index value index(z′i)) of x in T as the map of
z′. This procedure is performed recursively, until each node in T ′ is mapped to
a corresponding node in T . To capture the above node mapping procedure, we
define a public function map(·) that takes a node (or a set of nodes) in T ′ as
input and returns the corresponding node (or a set of nodes) in T .

4 Small Universe Construction

Before we explain the details of our construction, we first present an overview
highlighting the main intuitions behind our approach.

4.1 Overview of Our Construction

Fixed Tree Structure. We first give the outline of a basic target system. For
simplicity, let us consider a very simple and basic access tree T . The tree T has
depth, say, d; and all leaf nodes in the tree are at depth d. Each non-leaf node x

1 From now onwards, by dummy nodes, we shall refer to the leaf nodes with dummy
attributes associated with them.

Bounded Ciphertext Policy Attribute Based Encryption 585

is a “kx-out-of-numx” threshold gate where kx and numx are fixed beforehand.
Thus the “structure” of the access tree is fixed. However, the leaf nodes of T are
“empty”, i.e., no attributes are associated with them. At the time of encryption,
an encrypter will assign attributes to each leaf-node, in order to define the access
structure completely. That is, once the encrypter assigns an attribute to each leaf
node in T , it fixes the set of “authorized sets of attributes”. A user having keys
corresponding to an authorized set will be able to decrypt a message encrypted
under the above access structure.

We now explain how such a system can be constructed. Recall that ΨT de-
notes the set of non-leaf nodes at depth d − 1. Each leaf child z of an x ∈ ΨT
will be assigned an attribute j.2 However, the same j may be assigned to z1

as well as z2 where z1 is a child node of x1 ∈ ΨT , and z2 is a child node of
x2 ∈ ΨT . Thus, any given attribute j may have at most |ΨT | distinct parent
nodes. Intuitively, these are all the distinct positions under which j can appear
as an attribute of a leaf in the tree T . Now, during system setup, we will publish
a unique public parameter corresponding to each such appearance of j, for each
attribute j. Next, consider a user A with an attribute set γ. Imagine an access
tree T ′ that has the same “structure” as T , except that each node x ∈ ΨT ′ has
cardinality |γ| instead of numx (while the threshold is still kx). Additionally,
each attribute j ∈ γ is attached to a distinct leaf child of each node x ∈ ΨT ′ . A
will be assigned a private key that is computed for such an access tree T ′ as in
the KP-ABE construction of Goyal et al [2]. Now, suppose that an encrypter E
has chosen an assignment of attributes to the leaf nodes in T to define it com-
pletely. Let f(j, x) be a function that outputs 1 if an attribute j is associated
with a leaf child of x and 0 otherwise. Then, E will compute (using the public
parameters published during system setup) and release a ciphertext component
Ej,x corresponding to an attribute j attached to a leaf child of x ∈ ΨT (i.e.,
iff f(j, x) = 1). A receiver who possesses an authorized set of attributes for
the above tree can choose from his private key - the components Dj,x, such that
f(j, x) = 1; and use them with corresponding Ej,x during the decryption process.

Varying the Thresholds. The above system, although dynamic, may be very
limited in its expressibility for some applications. In order to make it more
expressible, we can further extend the above system as follows. At the time of
encryption, an encrypter is now given the flexibility of choosing the threshold
value between 1 and some maximum fixed value, (say) num for each node x in
the access tree.

As a first step, we will construct T as a complete num-ary tree of depth d,
where each non-leaf node is a “num-out-of-num” threshold gate. As earlier, the
leaf nodes in the tree are empty. Next, we introduce a (num − 1)-sized set of
special attributes called dummy attributes [1] that are different from the usual

2 For simplicity of exposition, we provision that an encrypter cannot assign the same
attribute j to two child nodes z1, z2 of a given x. We note that this restriction can be
removed by some simple modifications. Details will be given in the full version [11].

586 V. Goyal et al.

attributes (which we will henceforth refer to as real attributes3). Now, attach
(num − 1) leaf nodes to each x ∈ ΦT , and assign a dummy attribute to each
such newly-added leaf node (henceforth referred to as dummy nodes).

Note that a dummy attribute j may have atmost |ΦT | parent nodes. Intu-
itively, these are all the distinct positions where j can appear as an attribute
of a dummy leaf in T . Therefore, during the system setup, for each dummy
attribute j, we will publish a unique public parameter corresponding to each
appearance of j (in addition to the public parameters corresponding to the real
attributes as in the previous description). Next, consider a user A with an at-
tribute set γ. Imagine an access tree T ′ that is similar to T , except that each
node x ∈ ΨT ′ has |γ| leaf child (dummy nodes not inclusive) instead of num
(while the threshold is still num). Additionally, each attribute j ∈ γ is attached
to a distinct leaf child of each node x ∈ ΨT ′ . A will be assigned a private key
that is computed for such an access tree T ′ as in the KP-ABE construction of
Goyal et al [2] (the difference from the previous description for fixed trees is
that here A will additionally receive key-components corresponding to dummy
attributes). Now, at the time of encryption, an encrypter E will first choose a
threshold value kx ≤ num for each x ∈ ΦT . Next, E will choose an assignment of
real attributes to the leaf nodes in T , and an arbitrary (num− kx)-sized subset
ωx of dummy child nodes of each x ∈ ΦT . Finally, E will release the ciphertext
components as in the previous description. E will additionally release a cipher-
text component corresponding to each dummy node in ωx, for each x ∈ ΦT .
Now, consider a receiver with an attribute set γ. For any x ∈ ΦT , if kx children
of x can be satisfied with γ, then the receiver can use the key-components (from
his private key) corresponding to the dummy attributes in order to satisfy each
dummy leaf z ∈ ωx; thus satisfying the num-out-of-num threshold gate x.

Varying Tree Depth and Node Cardinality. Finally, we note that the
above system can be further extended to allow an encrypter to choose the depth
of the access tree and also the cardinality of each node; thus further increasing
the expressibility of the system. To do this, we will assume an upper bound
on the maximum tree depth d and the maximum node cardinality num, fixed
beforehand. We will then make use of the techniques presented in the latter part
of Section 3 to achieve the desired features. Details are given in the construction.

4.2 The Construction

Let G1 be a bilinear group of prime order p, and let g be a generator of G1. In
addition, let e : G1 × G1 → G2 denote the bilinear map. A security parameter,
κ, will determine the size of the groups. We also define the Lagrange coefficient
Δi,S for i ∈ Zp and a set, S, of elements in Zp: Δi,S(x) =

∏
j∈S,j �=i

x−j
i−j . We will

associate each attribute with a unique element in Z∗p. Our construction follows.

3 As the name suggests, we will identify users with a set of “real” attributes, while
the dummy attributes will be used for technical purposes, i.e., varying the threshold
of the nodes when needed.

Bounded Ciphertext Policy Attribute Based Encryption 587

Setup (d, num). This algorithm takes as input two system parameters, namely,
(a) the maximum tree depth d, and (b) the maximum node cardinality num.
The algorithm proceeds as follows. Define the universe of real attributes U =
{1, . . . , n}, and a (num − 1)-sized universe of dummy attributes4 U∗ = {n +
1, . . . , n+num−1}. Next, define a (d, num)-universal access tree T as explained
in the section 3. In the sequel, d, num,U ,U∗, T will all be assumed as implicit
inputs to all the procedures.

Now, for each real attribute j ∈ U , choose a set of |ΨT | numbers {tj,x}x∈ΨT
uniformly at random from Zp. Further, for each dummy attribute j ∈ U∗, choose
a set of |ΦT | numbers {t∗j,x}x∈ΦT uniformly at random from Zp. Finally, choose
y uniformly at random in Zp. The public parameters PK are:

Y = e(g, g)y, {Tj,x = gtj,x}j∈U,x∈ΨT , {T
∗
j,x = gt∗

j,x}j∈U∗,x∈ΦT

The master key MK is:

y, {tj,x}j∈U,x∈ΨT , {t
∗
j,x}j∈U∗,x∈ΦT

Key Generation (γ,MK). Consider a user A with an attribute set γ. The
key generation algorithm outputs a private key D that enables A to decrypt a
message encrypted under a (d, num)-bounded access tree T ′ iff T ′(γ) = 1.

The algorithm proceeds as follows. For each user, choose a random polynomial
qx for each non-leaf node x in the universal access tree T . These polynomials
are chosen in the following way in a top-down manner, starting from the root
node r. For each x, set the degree cx of the polynomial qx to be one less than the
threshold value, i.e., cx = num− 1. Now, for the root node r, set qr(0) = y and
choose cr other points of the polynomial qr randomly to define it completely.
For any other non-leaf node x, set qx(0) = qparent(x)(index(x)) and choose cx
other points randomly to completely define qx. Once the polynomials have been
decided, give the following secret values to the user:

{Dj,x = g
qx(j)
tj,x }j∈γ,x∈ΨT , {D

∗
j,x = g

qx(j)
t∗
j,x }j∈U∗,x∈ΦT

The set of above secret values is the decryption key D.

Encryption (M,PK, T ′). To encrypt a message M ∈ G2, the encrypter E first
chooses a (d, num)-bounded access tree T ′. E then chooses an assignment of real
attributes to the leaf nodes in T ′.

Now, to be able to encrypt the message M with the access tree T ′, the en-
crypter first converts it to the normal form (if required). Next, E defines a map
between the nodes in T ′ and the universal access tree T as explained in section 3.
Finally, for each non-leaf node x in T ′, E chooses an arbitrary (num− kx)-sized
set ωx of dummy child nodes of map(x) in T .

4 Recall the distinction between real attributes and dummy attributes that was intro-
duced in the Overview section.

588 V. Goyal et al.

Let f(j, x) be a boolean function such that f(j, x) = 1 if a real attribute j ∈ U
is associated with a leaf child of node x ∈ ΨT ′ and 0 otherwise. Now, choose a
random value s ∈ Zp and publish the ciphertext E as:

〈T ′, E′ =M ·Y s, {Ej,x=T
s
j,map(x)}j∈U,x∈ΨT ′ :f(j,x)=1, {E∗

j,x=T
∗s
j,map(x)}j=att(z):z∈ωx,x∈ΦT ′ 〉

Decryption (E,D). We specify our decryption procedure as a recursive algo-
rithm. For ease of exposition, we present the simplest form of the decryption
algorithm here. The performance of the decryption procedure can potentially be
improved by using the techniques explained in [2].

We define a recursive algorithm DecryptNode(E,D, x) that takes as input the
ciphertext E, the private key D, and a node x in T ′. It outputs a group element
of G2 or ⊥. First, we consider the case when x is a leaf node. Let j = att(x) and
w be the parent of x. Then, we have:

DecryptNode(E,D, x) =

⎧
⎨

⎩
e(Dj,map(w), Ej,w) = e(g

qmap(w)(j)

tj,map(w) , gs·tj,map(w)) if j ∈ γ
⊥ otherwise

which reduces to e(g, g)s·qmap(w)(j) when j ∈ γ. We now consider the recursive
case when x is a non-leaf node in T ′. The algorithm proceeds as follows: For
all nodes z that are children of x, it calls DecryptNode(E,D, z) and stores the
output as Fz . Additionally, for each dummy node z ∈ ωx (where ωx is a select set
of dummy nodes of map(x) in T chosen by the encrypter), it invokes a function
DecryptDummy(E,D, z) that is defined below, and stores the output as Fz . Let
j be the dummy attribute associated with z. Then, we have:

DecryptDummy(E,D, z) = e(D∗
j,map(x), E

∗
j,x) = e(g

qmap(x)(j)

t∗
j,map(x) , g

s·t∗
j,map(x)),

which reduces to e(g, g)s·qmap(x)(j). Let Ωx be an arbitrary kx-sized set of child
nodes z such that Fz �= ⊥. Further, let Sx be the union of the sets Ωx and ωx.
Thus we have that |Sx| = num. Let ĝ = e(g, g). If no kx-sized set Ωx exists,
then the node x was not satisfied and the function returns ⊥. Otherwise, we
compute:

Fx =
∏

z∈Sx

F
Δi,S′

x
(0)

z , where
i=att(z) if z is a leaf node
i=index(map(z)) otherwise

S′
x={i:z∈Sx}

=
∏

z∈Ωx

F
Δi,S′

x
(0)

z

∏

z∈ωx

F
Δi,S′

x
(0)

z

=

{ ∏
z∈Ωx

(ĝs·qmap(x)(i))
Δi,S′

x
(0)∏

z∈ωx
(ĝs·qmap(x)(i))

Δi,S′
x
(0)

if x ∈ ΨT ′
∏

z∈Ωx
(ĝs·qmap(z)(0))

Δi,S′
x
(0)∏

z∈ωx
(ĝts·qmap(x)(i))

Δi,S′
x
(0)

else

=

{ ∏
z∈Sx

ĝ
s·qmap(x)(i)·Δi,S′

x
(0)

if x ∈ ΨT ′
∏

z∈Ωx
(ĝs·qmap(parent(z))(index(map(z))))

Δi,S′
x
(0)∏

z∈ωx
(ĝs·qmap(x)(i))

Δi,S′
x
(0)

else

=
∏

z∈Sx

ĝ
s·qmap(x)(i)·Δi,S′

x
(0)

= ĝs·qmap(x)(0) = e(g, g)s·qmap(x)(0) (using polynomial interpolation)

and return the result.

Bounded Ciphertext Policy Attribute Based Encryption 589

Now that we have defined DecryptNode, the decryption algorithm simply
invokes it on the root r′ of T ′. We observe that DecryptNode(E,D, r′) = e(g, g)sy

iff T ′(γ) = 1 (note that Fr′ = e(g, g)s·qmap(r′)(0) = e(g, g)s·qr(0) = e(g, g)sy, where
r is the root of the universal tree T). Since E′ = M · e(g, g)sy, the decryption
algorithm simply divides out e(g, g)sy and recovers M .

Theorem 1. If an adversary can break our scheme in the Selective-Tree model,
then a simulator can be constructed to play the Decisional BDH game with a
non-negligible advantage.

Proof: See full version [11].

5 Non-monotonic Access Trees

One limitation of our original construction is that it does not support negative
constraints in a ciphertext’s access formula. With some minor modifications to
our small universe construction, we can allow an encrypter to use non-monotonic
ciphertext policies. Below we highlight the necessary modifications in the small
universe case.

We introduce explicit attributes that indicate the negative of attributes in
the system. A user will be assigned a negative attribute for each attribute not
present in his attribute set. In this manner, each user will have |U| number of
attributes. It is known that by applying DeMorgan’s law, we can transform a
non-monotonic access tree T ′′ into T ′ so that T ′ represents the same access
scheme as T ′′, but has NOTs only at the leaves, where the attributes are. Fur-
ther, we can replace an attribute j with its corresponding negative attribute j̄ if
the above transformation results in a NOT gate at the leaf to which j is associ-
ated. Now consider a (d, num)-bounded non-monotonic access tree T ′′ chosen by
an encrypter. Using the above mechanism, the encrypter first transforms it to T ′
such that the interior gates of T ′ consist only of positive threshold gates, while
both positive and negative attributes may be associated with the leaf nodes.
Then, the encryption and decryption procedures follow as in the original con-
struction.

Supporting any Access Formula of Bounded Polynomial Size. It is
known that any access formula can be represented by a non-monotonic NC1

circuit [12]. It is intuitive to see that any circuit of logarithmic depth can be
converted to a tree with logarithmic depth. To this end, we note that our modified
construction for non-monotonic access trees can support any access formula of
bounded polynomial size.

6 Discussion and Extensions

We discuss various extensions to our scheme.

590 V. Goyal et al.

Large Universe Case. In our previous construction, the size of public pa-
rameters corresponding to the real attributes grows linearly with the size of the
universe of real attributes. Combining the tricks presented in section 4 with
those in [2], we construct another scheme that allows us to use arbitrary strings
as attributes in the system, yet the public parameters corresponding to the real
attributes grow only linearly in a parameter n which we fix as the maximum
number of leaf child nodes of a node in an access tree we can encrypt under.
Details will be given in the full version [11].

Non-Monotonic Access Policies in the Large Universe Case. We note
that the solution for supporting non-monotonic access policies in the small uni-
verse construction is inapplicable in the large universe case. This is because the
attributes in the system may not be fixed at the time of key generation. However,
we can leverage the techniques from [13] in order to support non-monotonic ac-
cess policies in the large universe case. Details will be give in the full version [11].

Delegation of Private Keys. Similar to the system of Goyal et al. [2], our con-
structions come with the added capability of delegation of private keys. Details
will be given in the full version [11].

References

1. Sahai, A., Waters, B.: Fuzzy Identity Based Encryption. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-
Grained Access Conrol of Encrypted Data. In: ACM conference on Computer and
Communications Security (ACM CCS) (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer
Society, Los Alamitos (2007)

4. Cheung, L., Newport, C.: Provably Secure Ciphertext Policy ABE. In: ACM con-
ference on Computer and Communications Security (ACM CCS) (2007)

5. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)

6. Canetti, R., Halevi, S., Katz, J.: Chosen Ciphertext Security from Identity Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

7. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

8. Shamir, A.: Identity Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 37–53. Springer,
Heidelberg (1985)

9. Boneh, D., Franklin, M.: Identity Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

10. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA Int. Conf., pp. 360–363 (2001)

Bounded Ciphertext Policy Attribute Based Encryption 591

11. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute
Based Encryption, http://eprint.iacr.org/2008/

12. Brent, R.P.: The parallel evaluation of general arithmetic expressions. Journal of
ACM 21, 201–206 (1974)

13. Ostrovsky, R., Sahai, A., Waters, B.: Attribute Based Encryption with Non-
Monotonic Access Structures. In: ACM conference on Computer and Communica-
tions Security (ACM CCS) (2007)

http://eprint.iacr.org/2008/

Making Classical Honest Verifier Zero Knowledge
Protocols Secure against Quantum Attacks

Sean Hallgren1, Alexandra Kolla2, Pranab Sen3, and Shengyu Zhang4

1 Pennsylvania State University, University Park, PA, U.S.A.
2 U C Berkeley, Berkeley, CA, U.S.A.
akolla@cs.berkeley.edu

3 Tata Institute of Fundamental Research, Mumbai, India
pgdsen@tcs.tifr.res.in

4 California Institute of Technology, Pasadena, CA, U.S.A.
shengyu@caltech.edu

Abstract. We show that any problem that has a classical zero-knowledge proto-
col against the honest verifier also has, under a reasonable condition, a classical
zero-knowledge protocol which is secure against all classical and quantum poly-
nomial time verifiers, even cheating ones. Here we refer to the generalized notion
of zero-knowledge with classical and quantum auxiliary inputs respectively.

Our condition on the original protocol is that, for positive instances of the
problem, the simulated message transcript should be quantum computationally
indistinguishable from the actual message transcript. This is a natural strengthen-
ing of the notion of honest verifier computational zero-knowledge, and includes
in particular, the complexity class of honest verifier statistical zero-knowledge.
Our result answers an open question of Watrous [Wat06], and generalizes classi-
cal results by Goldreich, Sahai and Vadhan [GSV98], and Vadhan [Vad06] who
showed that honest verifier statistical, respectively computational, zero knowl-
edge is equal to general statistical, respectively computational, zero knowledge.

1 Introduction

Zero knowledge protocols are a central concept in cryptography. These protocols allow
a prover to convince a verifier about the truth of a statement without revealing any addi-
tional information about the statement, even if the verifier cheats by deviating from the
prescribed protocol. For a nice overview of definitions and facts about zero-knowledge
we refer the reader to [Gol01]. In practice, zero-knowledge protocols are used as prim-
itives in larger cryptographic protocols in order to limit the power of malicious parties
to disrupt the security of the larger protocol. For example, at the start of a secure on-
line transaction Alice may be required to prove her identity to Bob. She does this by
demonstrating that she knows a particular secret which only she is supposed to know.
However, Alice wants to prevent the possibility of Bob committing identity theft, that
is, Bob should not be able to masquerade as Alice later on. Thus, Bob should gain no
information about Alice’s secret even if he acts maliciously during the identity verifica-
tion protocol.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 592–603, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Making Classical Honest Verifier Zero Knowledge Protocols 593

With the advent of quantum computation an important question rears its head: what
happens to classical zero-knowledge protocols when the cheating verifier has access to
a quantum computer? Note that even if the verifier cheats quantumly, the messages ex-
changed with the prover and the prover itself continue to be classical. Thus, the prover
does not know if it is interacting with a classical or quantum verifier. One may ex-
pect that quantum computers can break some classical zero-knowledge protocols, i.e. a
quantum verifier interacting with the prover may be able to extract information about
from the message transcript (sequence of all messages exchanged) that a classical ver-
ifier cannot. As one example, the Feige-Fiat-Shamir [FFS88] zero-knowledge protocol
for identity verification can be broken by a quantum computer simply because it relies
on the hardness of factoring for security.

Watrous [Wat06] recently showed that two well-known classical protocols continue
to be zero-knowledge against cheating quantum verifiers. In particular, he showed that
the graph isomorphism protocol of Goldreich, Micali and Wigderson [GMW91] is se-
cure, and also that the graph 3-coloring protocol in [GMW91] is secure if one can find
classical commitment schemes that are concealing against quantum computers. How-
ever, the general question of which classical zero-knowledge protocols continue to be
secure against cheating quantum verifiers was left open by Watrous.

In this paper, we answer this question for a large family of classical protocols. We
show that all protocols that are honest verifier zero-knowledge (HVZK) and satisfy
some reasonable assumption on their simulated transcripts can be made secure against
all efficient classical and quantum machines. More specifically, any protocol which is
honest verifier statistical zero-knowledge (HVSZK) can be transformed to be statis-
tical zero-knowledge against all classical and quantum verifiers (SZKQ). Also, any
protocol which is honest verifier computational zero-knowledge and has classical mes-
sage transcripts of the interaction between the prover and the honest verifier that yield
no information to an efficient quantum machine (HVCZKQ), can be transformed to
be computational zero knowledge against all classical and quantum verifiers (CZKQ).
Note that classically it was shown that any language in HVCZK also has a protocol
which is zero-knowledge against any cheating verifier (the class CZK).

As in the classical case, by starting with fairly weak assumption on protocols, we
show that a much stronger protocol exists. Note that being zero-knowledge against
quantum verifiers does not imply being zero-knowledge against classical verifiers ow-
ing to a technical requirement in the definition of zero-knowledge to be elucidated
later. The significance of our result is that we give a single classical protocol zero-
knowledge against both types of verifiers. Our work substantially generalizes Watrous’
results [Wat06].

Formally, a protocol is said to be zero-knowledge if for every non-uniform polyno-
mial time verifier there is a non-uniform polynomial time simulator that can produce,
for inputs in the language, a simulated view of the verifier that is indistinguishable to the
verifier’s view in an actual interaction with the prover. The view of the verifier consists
of the message transcript together with the internal state of the verifier, and represents
what the verifier can ‘learn’ from interacting with the prover. The existence of a poly-
nomial time simulator for every polynomial time verifier captures the intuition that the
verifier learns nothing that it could not have learned on its own from the input, even

594 S. Hallgren et al.

by being malicious. For a classical verifier the simulator is required to be classical. For
a quantum verifier the simulator is quantum. Thus, zero-knowledge against quantum
verifiers does not immediately imply zero-knowledge against classical verifiers.

Constructing a simulator appears to be counterintuitive since it seems to replace the
role of the prover who is usually assumed to be computationally unbounded whereas
the simulator is polynomial time. The difference between the prover and the simulator
is that the prover has to respond to verifiers queries in an ‘online’ fashion, that is im-
mediately, whereas the simulator can work ‘offline’ and generates the messages ‘out of
turn’, as well as ‘rewind’. By rewinding, we mean a simulator runs parts of the veri-
fier during the simulation and produces a fragment of the conversation that has some
desired property with a certain probability. If the simulator fails then it rewinds, that is
it just runs the part of the verifier again from scratch. In the quantum case one would
have a quantum simulator using the quantum verifier to produce such a fragment of the
conversation and attempting to rewind if it fails.

Protocols that are classically zero-knowledge are not necessarily zero-knowledge
against quantum verifiers. In the case of the two problems graph isomorphism and graph
3-coloring that Watrous [Wat06] studied, the essential difference between classical and
quantum simulators comes from one additional requirement of zero-knowledge proto-
cols. In order for zero-knowledge protocols to sequentially compose, which is essential
to achieve reasonable error parameters as well as ensure the security of the protocol
when used as part of a larger cryptographic system, the simulator must still work when
the simulators and verifiers are given an arbitrary auxiliary state. This is a natural re-
quirement if one considers that, for example, perhaps the verifier has interacted with
the prover already to compute some intermediate information modeled by the auxil-
iary state, and now during the next interaction it gains even more information. In the
quantum case the auxiliary state is an unknown quantum state. But unknown quantum
states cannot be copied, and measurements of unknown quantum states are irreversible
operations in general, and as pointed out by Watrous [Wat06], even determining if the
simulator was successful in producing a fragment of the conversation with the desired
property may destroy the state. Therefore the simulator cannot trivially rewind since it
cannot feed the auxiliary state into the verifier a second time if the state was destroyed
during the first attempt at simulation. Nevertheless, Watrous [Wat06] showed that it
is possible to quantumly rewind in a clever way in the case of Goldreich, Micali and
Wigderson’s [GMW91] classical zero-knowledge protocols for graph isomorphism and
graph 3-coloring.

When searching for more classical zero-knowledge protocols that are secure against
quantum cheating verifiers we come across new difficulties not encountered by Wa-
trous [Wat06]. One restriction of the protocols he analyzes is that they are three-round
public coin protocols where the second message is O(log n) uniformly random bits
from the verifier. This leaves out many languages in SZK and CZK including the com-
plete problems statistical difference [SV03] and entropy difference [GV97] for SZK.
In a different vein [Wat02, Wat06], Watrous showed that every problem in SZK has a
quantum protocol that is statistical zero-knowledge against any cheating non-uniform
polynomial time quantum verifier. Very recently, Kobayashi [Kob08] extended Wa-
trous’ result to the case of quantum protocols that are quantum computationally zero

Making Classical Honest Verifier Zero Knowledge Protocols 595

knowledge. However, it is preferable that the prescribed protocols themselves are clas-
sical since they can be implemented using current technology yet remain secure against
all potential quantum attacks in the future. In this paper, we show that a large class of
polynomial round, polynomial verifier message length classical zero-knowledge proto-
cols can be made secure against cheating quantum verifiers.

Classically, the construction of zero-knowledge protocols has been greatly simplified
by showing that HVSZK or HVCZK is equal to SZK or CZK [GSV98, Vad06].
Concretely, if one can design a protocol for a given language that is zero-knowledge
against (only) the honest verifier, which is typically much easier, then there is also a pro-
tocol for the language that is zero-knowledge against an arbitrary cheating verifier. We
follow this approach: we show that if one can find a classical protocol zero-knowledge
for just the honest (classical!) verifier such that the actual and simulated message tran-
scripts with respect to the honest verifier are indistinguishable by polynomial sized
quantum circuits, then there is also a classical protocol that is zero-knowledge against
all classical and quantum cheating verifiers. More precisely, our result can be stated as:

Result 1

1. SZK = HVSZK = SZKQ, where SZKQ is the class of languages with a clas-
sical protocol that is statistical zero knowledge against all classical and quantum
verifiers.

2. HVCZKQ = CZKQ = CZKQ, Where HVCZKQ (resp. CZKQ) is the class
of languages with a classical protocol that is honest verifier computational zero-
knowledge (resp. computational zero-knowledge) and for YES instances,the classi-
cal message transcripts of the interaction between the prover and the honest verifier
are quantum computationally indistinguishable from the simulated message tran-
scripts. Similarly, CZKQ is the class of languages with a classical protocol that
is computational zero knowledge against all classical and quantum verifiers.

We note that the classical results HVSZK = SZK and HVCZK = CZK are known
and can be found in Goldreich, Sahai and Vadhan [GSV98] and Vadhan [Vad06]. Also,
observe that HVSZK ⊆ HVCZKQ ⊆HVCZK.

Finally, we would like to remark that the definition of zero knowledge in quantum
computation in the literature assumes that we can do error-free computation. Construct-
ing a simulator for a cheating verifier typically involves a polynomial multiplicative
factor overhead. Thus in reality, it may happen that a simulator fails to successfully
simulate the cheating verifier’s view because of additional noise incurred by the over-
heads. However, if we take the view that noise rates in hardware can be decreased by
polynomial factors with polynomial effort, the current definition of zero knowledge in
quantum computation is justified.

1.1 Overview of Our Proof: Ideas and Difficulties

Damgård, Goldreich and Wigderson [DGW94] gave a method, hereafter called DGW,
for transforming any classical constant round public coin honest verifier zero knowledge
protocol into another classical constant round public coin protocol that is zero knowl-
edge against all classical verifiers. We first observe that Watrous’ quantum rewinding

596 S. Hallgren et al.

trick [Wat06] can be used to show that the new protocol resulting from DGW is secure
against all quantum verifiers also. This allows us to handle protocols with verifier mes-
sages of polynomial length. The shortcoming is that, as in the classical case, the quantum
simulator succeeds in almost correctly simulating theprover-verifier interaction with non-
negligible probability only if the original protocol has a constant number of rounds. This
arises from the fact that the classical and quantum simulators from DGW ‘rewind from
scratch’, that is, they attempt to simulate all the rounds of the protocol in one shot, and if
they fail, they rewind the verifier to the beginning of the protocol. The success probability
of one attempt at simulation drops exponentially in the number of rounds, and hence, we
can only handle a constant number of rounds using the DGW transformation.

BuildingonDamgårdetal.’swork,Goldreich,SahaiandVadhan[GSV98]gaveamethod,
hereafter called GSV, for transforming any classical public-coinHVZKprotocol into an-
other public-coin protocolZKagainst all classical verifiers. Their transformation handles
protocolswithapolynomialnumberof rounds.However,onecannotapplyWatrous’quan-
tumrewindingtechnique[Wat06]tothenewprotocolresultingfromGSVforthefollowing
technical reason: the simulator for the new protocol rewinds the new verifier polynomial
number of times for each round. In order to do the same thing quantumly using Watrous’
rewinding lemma, one needs that for most messages of the verifier in the original protocol,
the success probability of the simulation attempt conditioned on the old verifier’s message
beindependentof thequantumauxiliarystate.Unfortunatelythiscannotbeensuredforany
message of the verifier in the original protocol, and hence, we are unable to show that GSV
makes the protocol secure against cheating quantum verifiers.

Our crucial observation is that if the honest-verifier simulator for the original clas-
sical public coin ZK protocol uses its internal randomness in a stage-by-stage fashion,
where each stage consists of a constant number of rounds, then applying DGW gives a
new protocol which is zero-knowledge against all classical and quantum verifiers. This
is still the case even the original protocol has a polynomial number of rounds. This is
because now the classical or quantum simulator for the new protocol can rewind the
verifier polynomial number of times within each stage, where each iteration preserves
the simulated message transcript of the earlier rounds and uses fresh random coins to
attempt to simulate the current round. Since the success probability of one simulation
attempt for a stage is inverse polynomial as it has a constant number of rounds, polyno-
mially many rewinding steps will result in a successful simulation of the current stage
with very high probability. This leads us to the question of which problems possess
zero-knowledge protocols with stage-by-stage honest-verifier simulators.

Our next observation is that the standard technique of converting any public coin
interactive protocol into a zero-knowledge protocol [IY88, BGG+90] based on bit
commitments actually gives rise to a new protocol with a stage-by-stage honest veri-
fier simulator. Note that any interactive protocol can be converted into a public coin
protocol [GS89] where the messages of the verifier are uniformly distributed random
strings independent of the previous messages of the protocol, and the final decision
of the verifier to accept or reject is a deterministic function of the message transcript
and the input. The only caveat is that the existence of bit commitment schemes seems
to be conditional on the existence of one-way functions. However, the recent work of
Vadhan [Vad06], Nguyen and Vadhan [NV06] and Ong and Vadhan [OV08] gives a

Making Classical Honest Verifier Zero Knowledge Protocols 597

way of replacing standard bit commitments by instance-dependent bit commitments,
which exist unconditionally as shown by them. An instance-dependent bit commitment
scheme is a protocol which depends on the input instance to the problem such that the
protocol is hiding on the bit to be committed for positive instances of the problem and
binding on the bit for negative instances of the problem. Since the hiding and binding
properties are not required to hold simultaneously, the need for unproven assumptions
like the existence of one-way functions is avoided. Ong and Vadhan [OV08] show that
every problem with an honest verifier zero-knowledge protocol gives rise to a public
coin constant round instance dependent bit commitment scheme which is statistically
binding on the negative instances. For positive instances, the hiding property of the
commitment scheme is statistical if the original protocol is HVSZK, and computa-
tional against polynomial sized classical circuits if the original protocol is HVCZK.
We can show that their proofs can be modified to ensure that the hiding property is
computational against polynomial sized quantum circuits if the original classical pro-
tocol is in HVCZKQ. Replacing the bit commitments in the standard compilation
of interactive proofs to zero-knowledge by instance dependent commitments gives us
a zero-knowledge protocol with an honest-verifier simulator that uses its internal ran-
domness in a stage-by-stage fashion, where each stage consists of a constant number of
rounds. Applying the DGW transformation to such a protocol gives rise to a new public
coin classical protocol zero-knowledge against all non-uniform polynomial time clas-
sical and quantum verifiers. That fact follows since the success probability of correctly
simulating a stage in the new protocol continues to be inverse polynomial and also the
simulator for the new protocol can rewind in a stage-by-stage fashion.

2 Preliminaries

2.1 The DGW Transformation

We denote a classical N -round public coin interactive protocol by the notation (P, V) :
(α1, β1, ..., αN , βN), which means that in the round i, the (honest) classical verifier V
sends a uniformly random string αi and the (honest) classical prover P responds with
a string βi, which in general is a function of the previous transcript and the prover’s
randomness. Without loss of generality, each αi has the same length s. Let t < s be a
positive integer. Damgård, Goldreich and Wigderson [DGW94] describe a family Fs,t

of nearly s-wise independent hash functions from {0, 1}s to {0, 1}t. Every function
f ∈ Fs,t has a description of length s2 bits and for all y ∈ {0, 1}t, 1 ≤ |f−1(y)| ≤
(s− 1)2s−t + 1, where f−1(y) := {x ∈ {0, 1}s : f(x) = y}. Computing f−1(y) can
be done in randomized time polynomial in s and 2s−t. In DGW, s − t is taken to be
logarithmic in the input length, so 2s−t will be a polynomial in the input length. Using
this family Fs,t, Damgård et al. describe a process to transform a random message
α ∈R {0, 1}s from the verifier in the original protocol, giving rise to a new protocol
with twice as many messages.

1. The verifier chooses f uniformly in Fs,t and sends it to the prover.
2. The prover chooses y uniformly in {0, 1}t and sends it to the verifier.
3. The verifier chooses α uniformly in f−1(y) and sends it to the prover.

598 S. Hallgren et al.

As described, the second message of the verifier in the DGW transformation is not
public coin. However, it can be made public coin by letting the verifier send a random
r ∈ ((s− 1)2s−t + 1)!, which the prover interprets as the (r mod |f−1(y)|)th element
of f−1(y). Note that since (s − 1)2s−t + 1 is polynomial in the input size, r can be
described using polynomially many bits. Henceforth, we shall assume that the new
protocol arising from the application of DGW is public coin but we shall continue to
use the description of DGW given above for simplicity.

Applying DGW to an N -round public coin protocol (α1, β1, ..., αN , βN) gives a new
public coin protocol (f1, y1, α1, β1, ..., fN , yN , αN , βN) where each βi is obtained in
the same way as the original prover does on seeing the previous (α1, ..., αi). The DGW
transformation satisfies the following soundness and completeness property which we
will crucially use [DGW94].

Fact 1. Suppose the original N -round public coin protocol has perfect completeness
and soundness error ε0, then the DGW transformation gives a new public coin protocol
with perfect completeness and soundness error ε1 = ε0 + N(2s2(t−s)/4 + 2−s).

The zero knowledge properties of DGW will be the main topic of discussion in the later
sections of this paper.

2.2 Stage-by-Stage Simulator

We now give the formal definition of the important notion of an interactive protocol
possessing a ‘stage-by-stage’ honest-verifier simulator, which is central to our work.

Definition 1. Suppose (P, V) is a classical public coin protocol with N stages, each
stage i containing constant number c of rounds (αi1, βi1, ..., αic, βic), where αij , βij

are verifier’s, respectively prover’s messages and all αijs are of the same length. We
say that an honest-verifier simulator M is stage-by-stage if its internal random string r
can be decomposed as r = r1 ◦ · · · ◦ rN , r1, . . . , rN uniform and independent random
variables, such that in each stage i, the simulated messages (β̂i1, . . . , β̂ic) are functions
of r1, . . . , ri and the input alone, and (α̂i1, . . . , α̂ic) is a function of ri alone.

A public coin constant round protocol can be trivially considered to be a stage-by-stage
with only one stage. Note that we do not assume anything about how the simulator uses
its randomness in each stage; it can be used arbitrarily. But since each stage only con-
tains a constant number of rounds, rewinding to the beginning of the stage is affordable
while simulating the new protocol arising from the application of DGW.

2.3 Instance-Dependent Bit Commitments

We recall the definition of instance-dependent bit commitment protocols [OV08] which
will be used in our construction of interactive protocols with honest-verifier stage-by-
stage simulators. Below, by an exponentially small function ε(n) we mean a function
of a positive parameter n that grows smaller than 2−nc

for some fixed c > 0. By the
total variation distance, also known as statistical distance, between two probability
distributions P , Q on the same sample space, we mean the �1-distance ‖P − Q‖ =∑

i |P (i)−Q(i)|.

Making Classical Honest Verifier Zero Knowledge Protocols 599

Definition 2. For a promise problem Π = (ΠY , ΠN), a classical public coin constant
round instance-dependent bit commitment scheme consists of a classical public coin
interactive protocol Comx for every x ∈ ΠY ∪ΠN between two parties called sender
Sx and receiver Rx, with the following properties:

1. Protocol Comx has two stages, a commit stage and a reveal stage;
2. At the beginning of the commit stage, Sx gets a private input b ∈ {0, 1} which

represents the bit he has to commit to. The commit stage proceeds for a constant
number of rounds, and its transcript cx;b is defined to be the commitment to the
bit b;

3. Later on, in the reveal stage, Sx reveals the bit b and sends another string dx;b

called the decommitment string for b. The receiver Rx accepts or rejects determin-
istically based on cx;b, b and dx;b.

4. Sender Sx and receiver Rx can be implemented in randomized time polynomial in
|x|;

5. For all x ∈ ΠY ∪ΠN , for all b ∈ {0, 1}, Rx accepts with probability 1 if both Sx

and Rx follow the prescribed protocol;

The scheme Comx is said to be exponentially binding statistically for all x ∈ ΠN , if for
any sender S∗x, there exists an exponentially small function ε(·) such that if c∗x denotes
the commitment obtained by the interaction of S∗x and the honest Rx, the probability
that there exist decommitment strings d∗x;0, d∗x;1 in the reveal stage so that Rx accepts
on c∗x, 0, d∗x;0 as well as c∗x, 1, d∗x;1 is less than ε(|x|). The binding property is required
to hold for malicious senders too who do not follow the prescribed protocol. In addi-
tion, the scheme Comx is said to be exponentially hiding statistically for all x ∈ ΠY

if the views of the honest receiver Rx when b = 0 and b = 1 have exponentially small
total variation distance. Similarly, if the two views are negligibly distinguishable by
polynomial sized classical or quantum circuits, the scheme Comx is said to be compu-
tationally, respectively quantum computationally, hiding.

Remark: Observe that we only require the hiding property to hold for the honest re-
ceiver Rx in the above definition. The reason for this is as follows. As mentioned ear-
lier in the introduction, our initial aim is only to get a protocol with a stage-by-stage
honest verifier simulator. We will then make that protocol resilient against all malicious
verifiers by applying the DGW transformation. The hiding property of the commitment
scheme against the honest receiver translates to zero knowledge against the honest ver-
ifier in Proposition 1, where we show how to achieve our initial aim.

3 Applying DGW to Protocols with Stage-by-Stage Simulators

In this section, we will show that applying the DGW transformation to a classical public
coin interactive protocol with a stage-by-stage honest verifier simulator results in a
classical public coin protocol zero-knowledge against all non-uniform polynomial time
classical and quantum verifiers.

600 S. Hallgren et al.

Lemma 1. If a classical public-coin protocol P has a stage-by-stage honest-verifier
simulator M such that the simulated transcript is quantum computationally indistin-
guishable from the actual prover honest-verifier interaction, then applying DGW to it
gives a new classical public coin protocolP ′ with inverse polynomially larger soundess
error that is computationally zero-knowledge against all non-uniform polynomial time
classical and quantum verifiers. If in addition P is statistical zero knowledge against
the honest verifier, P ′ is statistically zero knowledge against all non-uniform polyno-
mial time classical and quantum verifiers.

Proof. (Sketch) The claim about soundness error follows from Fact 1 with an appropri-
ate setting of the parameters of the DGW transformation. The zero-knowledge property
crucially relies on the stage-by-stage assumption and the zero-knowledge property of
DGW. Below we sketch the main points of difference from the standard classical set-
ting.

First, the classical proof attempts to simulate all the rounds of the protocol failing
which it rewinds from scratch. Here, we do a stage-by-stage simulation, that is, we try
to simulate all the rounds of one stage failing which we rewind to the beginning of the
stage only. The stage-by-stage property of the honest-verifier simulator M allows us
to do this, since rewinding to the beginning of stage i just means tossing a fresh coin
ri without disturbing the earlier coin tosses r1, . . . , ri−1. Since each stage consists of
only a constant number of rounds, the success probability of one attempt at simulating
DGW on a stage is inverse polynomial. Thus polynomially many rewinding steps for a
stage suffices to simulate the stage successfully with very high probability. After suc-
cessfully simulating a stage, we can proceed to simulating the next stage, and so on for
polynomially many stages.

The second point of difference is that in the proof of security against quantum ver-
ifiers, we use Watrous’ rewinding technique [Wat06] at the end of a stage. The reason
this is possible is because the DGW transformation ensures that the success probability
of one attempt at simulation of a stage is independent of the quantum auxiliary input.
Combined with the observation above that the probability of successfully simulating a
stage is inverse polynomial, this allows us to rewind a stage polynomially many times
quantumly without disturbing previous stages and ensure a successful simulation with
very high probability. ��

A more formal proof of the classical and quantum parts of the above lemma is given in
the appendix.

4 Designing Protocols with Stage-by-Stage Simulators

In this section, we indicate how to design a classical public coin interactive protocol
for any promise problem in HVSZK and HVCZKQ with perfect completeness, ex-
ponentially small soundness and possessing a stage-by-stage honest-verifier simulator.
For problems in HVSZK the simulated transcript will be exponentially close in to-
tal variation distance to the actual transcript, and for problems in HVCZKQ the two
transcripts will be negligibly distinguishable against polynomial sized quantum circuits.

Making Classical Honest Verifier Zero Knowledge Protocols 601

The following statement follows by modifying the arguments of Vadhan [Vad06].
But first, we have to define the notion of a quantumly secure false entropy genera-
tor which is the natural quantum generalization of a so-called false entropy genera-
tor [HILL99].

Definition 3. Let I ⊆ {0, 1}∗, and m(·) be a polynomial function. For x ∈ I , a family
Dx of probability distributions on {0, 1}m(|x|) is said to be P -sampleable if there exists
a probabilistic polynomial time algorithm whose output is distributed according to Dx

on input x. A P -sampleable family Dx is said to be a quantumly secure false entropy
generator if there exists a family Fx of probability distributions on {0, 1}m(|x|) that
is negligibly distinguishable from Dx by polynomial sized quantum circuits such that
H(Fx) ≥ H(Dx) + 1, where H(·) is the Shannon entropy of a probability distribution.

Lemma 2. Suppose Π = (ΠY , ΠN) is a promise problem in HVCZKQ. Then there
is a family {Dx}x∈ΠY ∪ΠN of P-sampleable probability distributions on {0, 1}m(|x|),
and a subset I ⊆ ΠY such that {Dy}y∈I is a quantumly secure false entropy generator.
Also, (ΠY \ I,ΠN) ∈ HVSZK.

Proof. (Sketch) The proof follows by observing that the arguments of [Vad06] go
through equally well for quantum indistinguishability as for classical indistinguishabil-
ity. Essentially, this is because the proof of [Vad06] uses reducibility arguments where
the computational hardness of a primitive is used as a black box. A more detailed proof
is left for the full version of the paper. ��

We need the following result about the existence of classical public coin constant round
instance dependent bit commitment protocols for problems in HVSZK by Ong and
Vadhan [OV08].

Fact 2. Every promise problem in HVSZK gives rise to a classical constant round
public coin instance dependent bit commitment scheme that is exponentially hiding on
the positive instances and exponentially binding on the negative instances statistically.

Remark: In fact for our purposes, we do not really require the full strength of the above
fact. A weaker primitive of classical constant round public coin instance-dependent two-
phase bit commitment scheme that is statistically hiding on the positive instances and
statistically 1-out-of-2 binding on the negative instances suffices for us. Such schemes
were first constructed by Nguyen and Vadhan [NV06]. However, our construction of an
interactive protocol with a stage-by-stage honest-verifier simulator is more complicated
if we use 1-out-of-2 binding schemes. Hence, we use the stronger scheme of the above
fact in our proof.

Finally, we need the following statement which follows by modifying the arguments
of Håstad, Impagliazzo, Levin and Luby [HILL99], and Naor [Nao91].

Lemma 3. Let I ⊆ J ⊆ {0, 1}∗. Suppose Dx, x ∈ J is a P-sampleable family of
probability distributions on {0, 1}m(x). Also, suppose Dx, x ∈ I is a quantumly secure
false entropy generator. Then there is a classical constant round public coin instance-
dependent bit commitment scheme for all x ∈ J which is exponentially binding statisti-
cally for all x ∈ J and quantum computationally hiding for all x ∈ I .

602 S. Hallgren et al.

Proof. (Sketch) Same reasoning as in the proof of Lemma 2. ��

By combining Lemmas 2 and 3, and Fact 2, and using the techniques of Vadhan
[Vad06], we can conclude the following quantum analogue of results of Ong and Vad-
han [OV08].

Lemma 4. Every promise problem in HVCZKQ gives rise to a classical constant
round public coin instance dependent bit commitment scheme that is quantum compu-
tationally hiding on the positive instances and exponentially binding statistically on the
negative instances.

We are now finally in a position to show that every problem in HVCZKQ has a clas-
sical public coin interactive protocol with a stage-by-stage honest verifier simulator.
For the classical counterparts of the proposition below, we refer the reader to Ong and
Vadhan [OV08].

Proposition 1. Every promise problem Π = (ΠY , ΠN) in HVCZKQ has a clas-
sical public coin interactive protocol with perfect completeness, exponentially small
soundness and a stage-by-stage honest-verifier simulator that produces simulated tran-
scripts that are negligibly quantum computationally distinguishable from the actual
prover honest-verifier interaction transcripts. Furthermore if Π ∈ HVSZK, then the
resulting protocol is constant round and the simulated transcripts are exponentially
close in total variation distance from the actual transcripts.

A proof sketch can be found in the appendix.
Combining Lemma 1 together with Proposition 1, we prove the main theorem of the

paper.

Theorem 1. HVCZKQ ⊆ CZKQ and HVSZK ⊆ SZKQ.

Acknowledgments

We are grateful to an anonymous referee of an earlier version of this paper for detecting
a subtle bug in that version, and also for informing us about the recent work of Ong and
Vadhan [OV08] on zero-knowledge. We thank Shien Jin Ong and Salil Vadhan for clari-
fying many doubts about instance-dependent bit commitments and zero-knowledge. We
also thank the anonymous referees of this version for helpful comments. S.Z. thanks Ior-
danis Kerenidis, Manoj Prabhakaran, Ben Reichardt, Amit Sahai, Yaoyun Shi, Robert
Spalek, Shanghua Teng, Umesh Vazirani and Andy Yao for listening to the progress
of the work, clarifying things and giving interesting comments. P.S. thanks Jaikumar
Radhakrishnan and Thomas Vidick for helpful feedback. All authors thank Wei Huang
and Martin Rötteler for discussions at an early stage of the work.

References

[BGG+90] Ben-Or, M., Goldreich, O., Goldwasser, S., Håstad, J., Kilian, J., Micali, S., Ro-
gaway, P.: Every provable is provable in zero-knowledge. In: Goldwasser, S. (ed.)
CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

Making Classical Honest Verifier Zero Knowledge Protocols 603

[DGW94] Damgård, I., Goldreich, O., Wigderson, A.: Hashing functions can simplify zero-
knowledge protocol design (too). Technical Report RS-94-39, BRICS (1994)

[FFS88] Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryp-
tology 1(2), 77–94 (1988)

[GMW91] Goldreich, O., Micali, S., Widgerson, A.: Proofs that yield nothing but their va-
lidity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM 38(1), 691–729 (1991)

[Gol01] Goldreich, O.: Foundations of cryptography, vol. 1. Cambridge University Press,
Cambridge (2001)

[GS89] Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. Advances in Computing Research, vol. 5, pp. 73–90. JAC Press, Inc.
(1989)

[GSV98] Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-knowledge
equals general statistical zero-knowledge. In: Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, pp. 399–408 (1998)

[GV97] Goldreich, O., Vadhan, S.: Comparing entropies in statistical zero knowledge with
applications to the structure of SZK. In: Proceedings of the 14th Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 448–457 (1997)

[HILL99] Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A pseudorandom generator from
any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

[IY88] Impagliazzo, R., Yung, M.: Direct zero-knowledge computations. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer, Heidelberg (1988)

[Kob08] Kobayashi, H.: General properties of quantum zero-knowledge proofs. In: Proceed-
ings of the 5th Theory of Cryptography Conference, pp. 107–124 (2008), Also
quant-ph/0705.1129

[Nao91] Naor, M.: Bit commitment using pseudorandom generator. Journal of Cryptology 4,
151–158 (1991)

[NV06] Nguyen, M.-H., Vadhan, S.: Zero knowledge with efficient provers. In: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, pp. 287–295 (2006)

[OV08] Ong, S., Vadhan, S.: An equivalence between zero knowledge and commitments.
In: Proceedings of the 5th Theory of Cryptography Conference (to appear, 2008)

[SV03] Sahai, A., Vadhan, S.: A complete promise problem for statistical zero-knowledge.
Journal of the ACM 50(2), 196–249 (2003)

[Vad06] Vadhan, S.: An unconditional study of computational zero knowledge. SIAM Jour-
nal on Computing 36(4), 1160–1214 (2006)

[Wat02] Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: Pro-
ceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, pp. 459–468 (2002)

[Wat06] Watrous, J.: Zero-knowledge against quantum attacks. In: Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, pp. 296–305 (2006)

Composable Security in the

Bounded-Quantum-Storage Model

Stephanie Wehner1 and Jürg Wullschleger2

1 California Institute of Technology, IQI, Pasadena CA 91125, USA
2 University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom

Abstract. We give a new, simulation-based, definition for security in
the bounded-quantum-storage model, and show that this definition al-
lows for sequential composition of protocols. Damg̊ard et al. (FOCS ’05,
CRYPTO ’07) showed how to securely implement bit commitment and
oblivious transfer in the bounded-quantum-storage model, where the ad-
versary is only allowed to store a limited number of qubits. However,
their security definitions did only apply to the standalone setting, and it
was not clear if their protocols could be composed. Indeed, we show that
these protocols are not composable in our framework without a small
refinement. We then prove the security of their randomized oblivious
transfer protocol with our refinement. Secure implementations of oblivi-
ous transfer and bit commitment follow easily by a (classical) reduction
to randomized oblivious transfer.

1 Introduction

Secure two-party computation [1] allows two mutually distrustful players to
jointly compute the value of a function without revealing more information about
their inputs than can be inferred from the function value itself. The primitive
known as oblivious transfer (OT) [2,3,4] is thereby of particular importance:
any two-party computation can be implemented, if this primitive is available
[5,6]. Another important primitive in this context is bit commitment (BC) [7].
But since bit commitment can be implemented from oblivious transfer, a direct
implementation of bit commitment is only important if we cannot implement
oblivious transfer itself, or if we want to improve efficiency. In oblivious transfer,
the sender (Alice) chooses two bits x0 and x1, the receiver (Bob) chooses a bit
c. The protocol of oblivious transfer allows Bob to retrieve xc in such a way
that Alice cannot gain any information about c. At the same time, Alice can be
ensured that Bob only retrieves xc, but no information about x1−c.

Unfortunately, BC and OT are impossible to implement securely without any
additional assumptions, even in the quantum model [8,9]. This result holds even
in the presence of the so-called superselection rules [10]. Exact trade-offs on
how well we can implement BC in the quantum world can be found in [11]. To
circumvent this problem (classically and quantumly), we thus need to assume
that the adversary is limited. In the classical case, one such limiting assumption
is that the adversary is computationally bounded. In the quantum model, it is

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 604–615, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Composable Security in the Bounded-Quantum-Storage Model 605

also possible to securely implement both protocols provided that an adversary
cannot measure more than a fixed number of qubits simultaneously [12]. String
commitments can be obtained with very weak security parameters [13].

The Bounded-Quantum-Storage Model. In the quantum case, it is very difficult
to store states even for a very short period of time. This leads to the protocol
presented in [14,15], which show how to implement BC and OT if the adversary
is not able to store any qubits at all. In [16,17], these ideas have been generalized
to the bounded-quantum-storage model, where the adversary is computationally
unbounded and allowed to have an unlimited amount of classical memory. How-
ever, he is only allowed a limited amount of quantum memory. The honest players
do not require any quantum storage at all, making the protocols implementable
using present day technology.

Security Definitions and Composability. As cryptographic protocols are almost
never executed on their own, it is important that they remain secure when
they are composed. [18,19,20] introduced simulation-based security definitions
and showed that they can be composed sequentially, i.e, at any point in time
at most one protocol is running. A stronger security definition called universal
composability has been introduced in [21,22,23]. It guarantees that protocols can
be securely composed in an arbitrary way (also concurrently) in any environment.

Based on earlier an earlier definition of security in the quantum setting [24], a
simulation-based security definition has been presented in [25], however no com-
posability theorem was proven. Universal composability in the quantum world
has been introduced in [26], and independently in [27]. In [28], it has been shown
that classical protocols are universally composable using their classical defini-
tions, are secure against quantum adversaries.

1.1 Contribution

In [17], protocols for OT and BC have been presented and shown to be secure
against adversaries who have bounded quantum storage. However, the proofs
only guarantee security in a standalone setting, and it was not clear whether
these protocols remain secure when they are composed with other protocols.
Indeed, the following simple example shows that in some situations, the protocols
presented in [16,17] do not guarantee security in a strong sense. (However, Fehr
and Schaffner [29] recently showed that the original definitions still allow for some
weak form of composability.) Suppose the adversary receives a large number of
halves of EPR-pairs from the environment as his auxiliary input. He can then
effectively enlarge his own quantum memory by teleporting quantum states to
the environment, which has unlimited memory. The classical communication
needed to teleport can be part of the adversary’s classical storage that he later
outputs. In the case of the protocol presented in [17] (where the security depends
on the fact that the adversary does not know in which basis to measure before his
quantum memory bound is applied) this allows the environment to distinguish
easily between the real and the ideal setting.

606 S. Wehner and J. Wullschleger

We present a formal model for secure two-party computation in the bounded-
quantum-storage model and show that our model implies that secure protocols
are sequentially composable. Then, we slightly modify the protocol for random-
ized OT presented [17] by introducing a second memory bound and prove the
security of the protocol in our model.

In the full version of this work, we give well-known classical reductions of
BC and OT to randomized OT. An important consequence is that any secure
function evaluation can be achieved in the bounded-quantum-storage model.
This follows from the fact that the proof of [28] carries over to our model,
which means that any classical protocol that is secure in the classical universal
composability model is also secure in our model. Therefore, we can use the
protocol from [30] (based on [6]) to implement any secure function evaluation 1.

2 Preliminaries

We use the term computational basis to refer to the basis given by {|0〉, |1〉}.
We write + for the computational basis, and let |0〉+ = |0〉 and |1〉+ = |1〉.
The Hadamard basis is denoted by ×, and given by {|0〉×, |1〉×}, where |0〉× =
(|0〉 + |1〉)/

√
2 and |1〉× = (|0〉 − |1〉)/

√
2. For a string x ∈ {0, 1}n encoded in

bases b ∈ {+,×}n, we write |x〉b = |x1〉b1 , . . . , |xn〉bn . We also use 0 to denote
+, and 1 to denote ×. Finally, we use x|c to denote the sub-string of an encoded
string x consisting of all xi where bi = c.

We use the font A to label a quantum register, corresponding to a Hilbert
space A. A quantum channel from A to B is a completely positive trace preserv-
ing (CPTP) map Λ : A → B. We also call a map from A to itself a quantum
operation. Any quantum operation on the register A can be phrased as a unitary
operation on A and an additional ancilla register A′, where we trace out A′ to
obtain the actions of the quantum operation on register A [32]. We use S(A) to
refer to the set of all quantum states in A, and T(A) to refer to the set of all
Hermitian matrices in A. We use U to refer to a quantum operation, upper case
letters X to refer to classical random variables, the font S for a set, and the font
A to refer to a player in the protocol.

Our ability to distinguish two quantum states ρ, ρ′ ∈ S(H) is determined by
their trace distance defined as D(ρ, ρ′) := 1

2 Tr |ρ− ρ′|, where |A| =
√
A†A. The

triangle inequality holds. I.e., for all ρ, ρ′ and ρ′′, we have D(ρ, ρ′′) ≤ D(ρ, ρ′) +
D(ρ′, ρ′′). We also write ρ ≡ε ρ′, if D(ρ, ρ′) ≤ ε. For all practical purposes,
ρ ≡ε ρ means that the state ρ′ behaves like the state ρ, except with probability
ε [33]. For any quantum channel Λ, we have D(Λ(ρ), Λ(ρ′)) ≤ D(ρ, ρ′). Let
ρAB ∈ S(A ⊗ B) be classical on A, i.e. ρAB =

∑
x∈X PX(x)|x〉〈x| ⊗ ρx for some

distribution PX over a finite set X . We say that A is ε-close to uniform with
respect to B, if D(ρAB, IA/d⊗ ρB) ≤ ε, where d = dim(HA).

For random variables X and Y with joint distribution PXY , the smooth condi-
tional min-entropy [34] can be expressed in terms of an optimization over events
1 Note that because our implementation of OT is physical, the results presented in

[31] cannot be applied, as explained in [30] on page 11.

Composable Security in the Bounded-Quantum-Storage Model 607

E occurring with probability at least 1 − ε. Let PXE|Y =y(x) be the probabil-
ity that {X = x} and E occur conditioned on Y = y. We have Hε

min(X |Y) =
maxE:Pr(E)≥1−ε miny minx(− logPXE|Y =y(x)).The smooth min-entropy allows us
to use the following chain rule.

Lemma 1 (Chain Rule [34]). For all random variables X, Y , Z and for all
ε, ε′ > 0, Hε+ε′

min (X |Y Z) ≥ Hε
min(XY | Z)− log |Y| − log(1/ε′).

We also need the monotonicity of the smooth min-entropy, Hε
min(XY | Z) ≥

Hε
min(X | Z). A function h : S × X → {0, 1}� is called a two-universal hash

function [35], if for all x0 �= x1 ∈ X, we have Pr[h(S, x0) = h(S, x1)] ≤ 2−� if S
is uniform over S. We thereby say that a random variable S is uniform over a
set S if S is chosen from S according to the uniform distribution. The following
theorem is from [17], stated slightly differently than in [33,36].

Theorem 1 (Privacy Amplification [33,36]). Let X and Z be (classical)
random variables distributed over X and Z, and let Q be a random state of q
qubits. Let h : S × X → {0, 1}� be a two-universal hash function and let S be
uniform over S and independent from X and Z. If � ≤ Hε′

min(X | Z) − q −
2 log(1/ε), then h(S,X) is (ε + 2ε′)-close to uniform with respect to (S,Z,Q).

The following lemma that we prove in the full version follows from the uncer-
tainty relation presented in [17].

Lemma 2. Let X ∈ {0, 1}n be a uniform random string, let B ∈ {+,×}n be a
uniform random basis. Let |X〉B = (|X1〉B1 , . . . , |Xn〉Bn) be a state of n qubits,
and let K be the outcome of an arbitrary measurement of |X〉B, which does not

depend on X and B. Then, for any ε, we have Hε
min(X |BK) ≥ n

2 −10 3

√
n2 log 1

ε ,
which is positive if n > 8000 log(1/ε).

3 Security in the Bounded-Quantum-Storage Model

We now give a definition of offline-security in the bounded-quantum-storage
model, and show that it allows protocols to be composed sequentially (at any
given time only one sub-protocol is executed). More detail can be found in the
long version of our paper. Our definitions are closely related to [25].

We look at the following setting: Two players, A and B, execute a protocol
P = (PA,PB), where PA is the program executed by A and PB the program exe-
cuted by B. Before the first round, each program receives an input (that might be
entangled with the input of the other player) and stores it. In each round, each
program may first send/receive messages to/from a given functionality G, then
apply a quantum operation to its current internal storage (including the message
space), and finally send/receive further messages at the end of each round. G
defines the communication resources available between the players, modeled as
an interactive quantum functionality. It may contain a classical and/or a quan-
tum communication channel, or other functionalities such as oblivious transfer

608 S. Wehner and J. Wullschleger

or bit commitment. Finally, in the last step of the protocol each program outputs
an output value. The execution of P using G (denoted by P(G)) is a quantum
channel, which takes the input of both parties to the output of both parties.

Players may be honest, which means that they follow the protocol, or they may
be corrupted. All corrupted players belong to the adversary, A ⊂ {A,B}. Note
that we can ignore the case where both players are corrupted. To simplify the
proofs, we assume the set A to be static, i.e., it is already fixed before the protocol
starts. We take the adversary to be active, i.e., he may not follow the protocol.
The adversary A = {p} may replace his part of the protocol Pp by another
program Ap. Opposed to Pp, Ap receives some auxiliary (quantum) input at
the start of the protocol that may also be entangled with the environment. This
input can be given to the adversary from the environment, but also come from
the output of an honest player from a previous run of the protocol. At the end of
the protocol, the adversary may return a (quantum) output to the environment.
There is no communication between the adversary and the environment between
the beginning and the end of the protocol. After receiving the (quantum) output,
the environment tries to distinguish the protocol from the ideal setting based on
its knowledge of its own input and output to and from the adversary.

We do not restrict the computational power of Ap in any way, however we
do limit its internal quantum storage to a certain memory-bound of m qubits.
We call such an Ap m-bounded. Ap is allowed to perform arbitrary quantum
operations in each round of the protocol. However after receiving his input, and
after every round, all of his internal memory is measured, except for m qubits.
He may, however, store an unlimited amount of classical information.

The ideal functionality, denoted by F, defines what functionality we expect
the protocol to implement. In this paper, we only consider non-interactive func-
tionalities, i.e., both players can send it input only once at the beginning, and
obtain the output only once at the end. These functionalities have the form of a
quantum channel. To make the definitions more flexible, we allow F to look dif-
ferently depending on whether both players are honest, or either A or B belongs
to the adversary. So the ideal functionality is in fact a collection of functionali-
ties, F = (F∅,F{A},F{B}). F∅ denotes the functionality for the case when both
players are honest, and F{A} and F{B} for the cases when A or B respectively
are dishonest. As a honest player does not know whether the other player is also
honest or not, we require that F{A} (F{B}) and F{∅} must look the same from
him. We also require that F{A} and F{B} allow the adversary to play honestly,
i.e., they must be at least as good for the adversary as the functionality F∅.

As we formally define in the long version, we say that a protocol P having
access to the functionality G implements a functionality F, if the following con-
ditions are satisfied: First of all, we require that output of the protocol is ε-close
to that of F, if both players are honest. Second, for A = {p}, we require that
the adversary attacking the protocol has basically no advantage over attacking
F directly. We thus require that for every m-bounded program Ap, there exists
an s-bounded program Sp (called the simulator), such that the overall outputs
of both situations are ε-close, for all inputs. For simplicity, we do not make any

Composable Security in the Bounded-Quantum-Storage Model 609

restrictions on the efficiency of the simulators2. Also, we do not require him to
use the adversary Ap as a black-box: Sp may be constructed from scratch, under
full knowledge of the behavior of Ap.

It is important to note that we allow the simulator to execute some or all
actions of Ap in a single round. This will allow the simulator to execute Ap

without a memory bound being applied: Recall, that a memory bound is applied
only after each round. This model is motivated by the physically realistic as-
sumption that such memory bounds are introduced by adding specific waiting
times after each round. Since the adversary is computationally unbounded, he
would essentially also be able to perform any computation before the memory
bound is applied and hence the simulator does not gain any more powers than
the adversary. In particular, this does not give the simulator any memory.

However, in order to make protocols composable with other protocols in our
model, we do require the simulator to be memory-bounded as well. The amount
of memory required by the simulator gives a bound on the virtual memory the
adversary seems to have by attacking the real protocol instead of the ideal one.
Ideally, we would like Sp to use the same amount of memory as Ap.

An important property of our definition is that it allows protocols to be com-
posed. The following theorem shows that in a secure protocol that is based on
an ideal, non-interactive functionality G and some other functionalities G′, we
can replace G with a secure implementation of G, without making the protocol
insecure. We thereby denote the concatenation of the functionalities G and G′

by G‖G′. The theorem requires that G is called sequentially, i.e., that no other
sub-protocols are running parallel to G. The proof uses the same idea as in the
classical case [20].

Theorem 2 (Sequential Composition Theorem). Let F and G be non-
interactive, and G′ and H arbitrary functionalities. Let P(G‖G′) be a protocol
that calls G sequentially and that implements F with error at most ε1 secure
against m1-bounded adversaries using s1-bounded simulators, and let Q(H) be
a protocol that implements G with error at most ε2 secure against m2-bounded
adversaries using s2-bounded simulators, where m2 ≥ s1. Then P(Q(H)‖G′)
implements F with error at most ε1 + ε2, secure against min(m1,m2)-bounded
adversaries using s2-bounded simulators.

4 Randomized Oblivious Transfer

We now apply our framework to the randomized OT protocol presented in [16]. In
particular, we prove security with respect to the following definition of random-
ized oblivious transfer. We show in the long version how to obtain the standard
notion of OT from randomized OT. Note that in our version of randomized OT,
also the choice bit c of the receiver is randomized.

Definition 1 (Randomized oblivious transfer).
(
2
1

)
-ROT� (or, if � is clear

from the context, ROT) is defined as ROT = (ROT∅,ROT{A},ROT{B}), where

2 Recall the adversary is computationally unbounded as well.

610 S. Wehner and J. Wullschleger

– ROT∅: The functionality chooses uniformly at random the value (x0, x1) ∈R

{0, 1}2� and c ∈R {0, 1}. It sends (x0, x1) to A and (c, y) to B where y = xc.
– ROT{A}: The functionality receives (x0, x1) ∈ {0, 1}2� from A. Then, it

chooses c ∈R {0, 1} uniformly at random and sends (c, y) to B, where y = xc.
– ROT{B}: The functionality receives (c, y) ∈ {0, 1} × {0, 1}� from B. Then,

it sets xc = y, chooses x1−c ∈R {0, 1}� uniformly at random, and sends
(x0, x1) to A.

The protocol BQS-OT = (BQS-OTA,BQS-OTB) uses a noiseless unidirectional
quantum channel Q-Comm, and a noiseless unidirectional classical channel Comm,
both from the sender to the receiver. Let h : R × {0, 1}n → {0, 1}� be a two-
universal hash function. A memory bound is applied before step 1, and between
step 2 and 3. The sender (A) and receiver (B) execute:

Protocol 1: BQS-OTA

1. Choose x ∈R {0, 1}n and b ∈R {0, 1}n uniformly at random.
2. Send |x〉b := (|x1〉b1 , . . . , |xn〉bn) to Q-Comm, where |xi〉bi is xi encoded

in the basis bi.
3. Choose r0, r1 ∈R R uniformly at random and send (b, r0, r1) to Comm.
4. Output (s0, s1) := (h(r0, x|0), h(r1, x|1)), where x|j is the string of all xi

where bi = j.
Protocol 2: BQS-OTB

1. Choose c ∈R {0, 1} uniformly at random.
2. Receive the qubits (q1, . . . , qn) from Q-Comm and measure them in the

basis c, which gives output x′ ∈ {0, 1}n.
3. Receive (b, r0, r1) from Comm.
4. Output (c, y) := (c, h(rc, x′|c)), where x′|c is the string of all x′i where

bi = c.

Security against the sender. We first consider the case when the sender, A, is
dishonest. This case turns out to be quite straightforward and closely follows the
proof given in [17]. We use the following letters to refer to the different classical
and quantum registers available to the adversary: Let Q denote the quantum
register. Note that since we assume that our adversary’s memory is m-bounded,
the size of Q does not exceed m. Let MQ and MK denote the quantum and
classical registers, that hold the messages sent to the receiver. Let K denote
the classical input register of the adversary. Finally, let A denote an auxiliary
quantum register. Recall from Section 2, that any quantum operation on Q
and MQ can be implemented by a unitary followed by a measurement on an
additional register A. Wlog we let A andMQ be measured in the computational
basis to enforce a memory bound, and Q be the sole quantum memory.

To model quantum and classical input that a malicious A may receive, we let
Q start out in any state ρin, unknown to the simulator. Likewise, K may contain
some classical input kin of A. Wlog we assume that all other registers start out
in a fixed state of |0〉. We can then describe the actions of A by a single unitary

Composable Security in the Bounded-Quantum-Storage Model 611

AA defined by

AA(ρin︸︷︷︸
Q

⊗ |0〉〈0|
︸ ︷︷ ︸
A

⊗ kin︸︷︷︸
K

⊗ |0〉〈0|
︸ ︷︷ ︸
MQ

⊗ |0〉〈0|
︸ ︷︷ ︸
MK

)A†A = ρout︸︷︷︸
Q,A

⊗ kin︸︷︷︸
K

⊗ ρxb︸︷︷︸
MQ

⊗ |br0r1〉〈br0r1|
︸ ︷︷ ︸

MK

.

Note that without loss of generality AA leaves K unmodified: since K is classical
we can always copy its contents to A and let all classical output be part of A.
To enforce the memory bound, assume wlog that A and MQ are now measured
completely in the computational basis. We now show that for any adversary AA

there exists an appropriate simulator SA.

Lemma 3. Protocol BQS-OT is secure against dishonest A.

Proof. Let SA be defined as follows: SA runs AA. Note that SA can effectively
skip the wait time required for the memory bound to take effect, since he can
execute AA in one round before his memory bound is applied, where we refer
to Section 3 for an important discussion and justification of this procedure. The
simulator then measures register MQ in the basis determined by MK . This
allows him to compute s0 = h(r0, x|0) and s1 = h(r1, x|1). SA then sends s0

and s1 to ROT{A}. It is clear that since the simulator based his measurement
on MK , s0 and s1 are consistent with the run of the protocol. Furthermore,
note that SA did not need to touch register Q at all. We can thus immediately
conclude that the environment can tell no difference between the real protocol
and the ideal setting. ��
Security against the receiver. The proof of security against a dishonest receiver
requires a more careful treatment of the quantum input given to the adversary.
The main idea behind our proof is that the memory bound in fact fixes a classical
bit c. Our main challenge is to find a c that the simulator can calculate and that
is consistent with the adversary and his input, while keeping the output state
of the adversary intact. To do so, we use a generalization of the min-entropy
splitting lemma in [17], which in turn is based on an earlier version of [37]. It
states that if two random variables X0 and X1 together have high min-entropy,
then we can define a random variable C, such that X1−C has at least half of
the original min-entropy. To find C, one must know the distributions of X0 and
X1. In the following generalization, we do not exactly know the distribution of
X0 and X1, since we assume that its distribution also depends on an unknown
random variable J , distributed over a domain of the size 2β . β = 0 gives the
min-entropy splitting lemma in [17].

Lemma 4 (Generalized Min-Entropy Splitting Lemma). Let ε ≥ 0, and
0 < β < α. Let J be a random variable over {0, . . . , 2β − 1}, and let X0, X1 and
K be random variables such that Hε

min(X0X1 | KJ) ≥ α. Let f(x1, k) = 1, if
there exists a j ∈ {0, . . . , 2β − 1} such that PX1|KJ(x1, k, j) ≥ 2−(α−β)/2, and 0
otherwise, and let C := f(X1,K). We have Hε

min(X1−CC | KJ) ≥ α−β
2 .

Proof. Let Sj
k be the set of values x1 for which PX1|KJ(x1, k, j) ≥ 2−(α−β)/2.

We have |Sj
k| ≤ 2(α−β)/2, since all values in Sj

k have a probability that is at least
2−(α−β)/2. Let Sk :=

⋃
j S

j
k. We have |Sk| ≤ 2β · 2(α−β)/2 = 2(α+β)/2.

612 S. Wehner and J. Wullschleger

Let K = k and J = j. Because C = 0 implies that X1 �∈ Sk, and thus also that
X1 �∈ Sj

k, we have PX1C|KJ(x1, 0, k, j) < 2−(α−β)/2. It follows from the assump-
tion that there exists an event E with probability 1− ε such that for all x0, x1,
k and j, we have PX0X1E|KJ(x0, x1, k, j) ≤ 2−α. Hence PX0CE|KJ(x0, 1, k, j) =
∑

x1∈Sk
PX0X1E|KJ(x0, x1, k, j) ≤ 2(α+β)/2 · 2−α = 2−(α−β)/2 . ��

We now describe the actions of the adversary. Let M denote the register holding
the quantum message he receives from the sender in step 2. Let his registersQ, A
and K be initialized as above. We can now describe the actions of the adversary
by two unitaries, where a memory bound is applied after the first. The action
of the adversary following step 2 can be described as a unitary A(1)

B as before.
Note we can again assume that A(1)

B leavesK unmodified. To enforce the memory
bound, we now let register M and A be measured in the computational basis.
We use ρout ∈ Q to denote the adversary’s quantum output, and kout ∈ M⊗A
to denote his classical output. After the memory bound is applied, the receiver
obtains additional information from the sender. The actions of the adversary
after step 3 can then be described by a unitary A(2)

B followed by a measurement
of quantum registers M and A in the computational basis.

First, we analyze the case where the adversary’s auxiliary quantum input is
a pure state of β qubits. Note that this means that the adversary cannot be
entangled with the environment. Then we extend it, by allowing the adversary
some arbitrary mixed quantum auxiliary input.

Lemma 5. Protocol BQS-OT is secure against dishonest B with an error of at
most 5ε, if he receives a pure state quantum (auxiliary) input, and his quantum
memory is bounded before step 1 by β qubits, and between step 2 and 3 by m
qubits, for

8� + 2β + 4m ≤ n− 20 3

√

n2 log
1
ε
− 12 log

1
ε
− 4.

Proof. Let Kin be the classical auxiliary input the adversary receives, and let
|j〉 for j ∈ {0, . . . , 2β − 1} be a basis for the quantum auxiliary input. Any
fixed auxiliary input |j〉 and kin fixes a distribution PX0X1K|J=j , where K is the
classical value the adversary has after second memory bound. The choice of input
state |Ψin〉 thus defines the distribution of J . First of all, the simulator simulates
the actions of the sender following steps 1 and 2, using a random string X and a
random basis B. The simulator then applies A(1)

B , which gives him some classical
output Kout, and a quantum state ρout. It follows from the uncertainty relation
of Lemma 2 that Hε

min(X | BKoutKin) ≥ α for α := n/2− 10 3
√

n2 log(1/ε). Let
(X0, X1) := X , where X0 := X|0 and X1 := X|1 are the substrings of X defined
in the same way as in the protocol.

It follows from Lemma 4 and the fact that the simulator holds a description
of A(1), K = (B,Kout,Kin) and X0, X1 that he can calculate the value C :=
f(X1,K). This means that the simulator can construct a linear transformation
SB acting on registersQ,M, A, K, X , B,R, and C combining the actions of A(1)

A
and the choice of c using the function f as defined in the min-entropy splitting

Composable Security in the Bounded-Quantum-Storage Model 613

Lemma 4. We have

SB(
∑

j

αj |j〉
︸︷︷︸
Q

⊗ |xb〉
︸︷︷︸
M

⊗ |0〉
︸︷︷︸
A

⊗ |kin〉
︸︷︷︸
K

⊗ |x〉
︸︷︷︸
X

⊗ |b〉
︸︷︷︸
B

⊗ |r0, r1〉
︸ ︷︷ ︸
R

⊗ |0〉
︸︷︷︸
C

⊗ |0〉
︸︷︷︸
Y

) =

∑

q,m1,a1

αq,m1,a1 |q〉︸︷︷︸
Q

⊗ |m1〉
︸︷︷︸
M

⊗ |a1〉
︸︷︷︸
A

⊗ |kin〉
︸︷︷︸
K

⊗ |x〉
︸︷︷︸
X

⊗ |b〉
︸︷︷︸
B

⊗ |r0, r1〉
︸ ︷︷ ︸
R

⊗ |c〉
︸︷︷︸
C

⊗ |s0, s1〉
︸ ︷︷ ︸
Y

)

for any pure state input |Ψin〉 =
∑

j αj |j〉. Wlog, all registers except Q are now
measured in the computational basis as the memory bound takes effect. It is an
important consequence of our generalized min-entropy splitting lemma that the
simulator can measure register C in the computational basis to extract c without
causing any disturbance to the quantum output: Note that the definition of f did
not take j into account explicitly and hence C is not entangled with the quan-
tum output. From Lemma 4 we thus have that Hε

min(X1−CC | K) ≥ α−β
2 .

The simulator now chooses R0 and R1 uniformly at random and calculates
S0 = h(R0, X0) and S1 = h(R1, X1). Since R0 and R1 are independent of
X0, X1 and C, we have Hε

min(X1−CC | K) = Hε
min(X1−CC | RCK). Us-

ing the chain rule from Lemma 1 and the monotonicity of Hε
min, we obtain

H2ε
min(X1−C | CRCKSC) ≥ α−β

2 − � − 1 − log 1
ε . By using the privacy ampli-

fication Theorem 1, we get that S1−C is 5ε close to uniform with respect to
(R0, R1, C, SC , B,Kout,Kin) and ρout if � ≤ α−β

2 − �− 1 − log 1
ε −m − 2 log 1

ε .
By replacing α and rearranging the terms we get the claimed equation.

The simulator now sets Y := SC , and sends (C, Y) to ROT{B}. To complete
the simulation, he runs A(2)

A as the adversary would have. Note that the simulator
did not require any more memory than the adversary itself, i.e., we can take SB

to be m-bounded as well. Clearly, the simulator determined C solely from the
classical output of the adversary and thus the adversary’s output state in the
simulated run is equal to the original output state of the adversary ρout ⊗ kout.
Since the only difference between the simulation and the real execution is that in
the simulation, S1−C is chosen completely at random, the simulation is 5ε-close
to the output of the real protocol. ��

It remains to address the case where the receiver gets a mixed state quantum
input. This is the case where the adversary receives a state that is entangled with
the environment. Note that this means that we must decrease the size of the
adversary’s memory: If he could receive an entangled state of β qubits as input,
he could use it to increase his memory to m + β qubits by teleporting β qubits
to the environment, and storing the remaining m. Hence, we now have to take
the adversary to be m′-bounded, where m′ := m− β. Luckily, using a a similar
argument as in [38], we can now extend the argument given above: Note that
for any pure state input |Ψ〉 = |Ψin〉⊗ kin, the output of the simulated adversary
is exactly Λ(|Ψ〉〈Ψ |), where Λ is the adversary’s channel. Since {|Ψ〉〈Ψ |||Ψ〉 ∈
Q ⊗ K, ‖|Ψ〉‖ = 1} spans all of T(Q ⊗ K) and the map given by the simulation
procedure is the same as Λ on all inputs, we can conclude that the complete map
is equal to Λ. Note that the simulator does not need to consider the β qubits

614 S. Wehner and J. Wullschleger

that the adversary might have teleported to the environment: we can essentially
view it as part of the original adversary’s quantum memory, and the simulator
bases his decision solely on the classical output of the adversary. Hence,

Lemma 6. Protocol BQS-OT is secure against dishonest B with an error of at
most 5ε, if he receives a quantum (auxiliary) input, and his quantum memory
is bounded before step 1 by β qubits and between step 2 and 3, by m qubits, for

8� + 6β + 4m ≤ n− 20 3

√
n2 log 1

ε − 12 log 1
ε − 4.

Theorem 3. Protocol BQS-OT(Q-Comm‖Comm) implements
(
2
1

)
-ROT� with an

error of at most 5ε, secure against m-bounded adversaries using m-bounded sim-

ulators, if 8� + 10m ≤ n− 20 3

√
n2 log 1

ε − 12 log 1
ε − 4.

Acknowledgments

We thank S. Desrosiers and C. Schaffner for useful comments, and D. Unruh for
a kind explanation of his work. SW is supported by NSF grant PHY-0456720.
JW is supported by the EPSRC. Part of this work was done while SW was a
PhD student at CWI, Amsterdam, and JW was a PhD student at ETH Zürich,
and during a 3 month visit at McGill University, Montreal, Quebec.

References

1. Yao,A.C.:Protocolsforsecurecomputations.In:23rdIEEEFOCS,pp.160–164(1982)
2. Wiesner, S.: Conjugate coding. SIGACT News 15(1), 78–88 (1983)
3. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-

81, Harvard Aiken Computation Laboratory (1981)
4. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.

Commun. ACM 28(6), 637–647 (1985)
5. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the 20th

STOC, pp. 20–31 (1988)
6. Crépeau, C., van de Graaf, J., Tapp, A.: Committed oblivious transfer and pri-

vate multi-party computation. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 110–123. Springer, Heidelberg (1995)

7. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983)

8. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys-
ical Review Letters 78, 3414–3417 (1997)

9. Lo, H.K., Chau, H.F.: Is quantum bit commitment really possible? Physical Review
Letters 78, 3410–3413 (1997)

10. Kitaev, A., Mayers, D., Preskill, J.: Superselection rules and quantum protocols.
Physical Review A 69, 052326 (2004)

11. Spekkens, R., Rudolph, T.: Degrees of concealment and bindingness in quantum
bit commitment protocols. Physical Review A 65, 012310 (2002)

12. Salvail, L.: Quantum bit commitment from a physical assumption. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 338–353. Springer, Heidelberg (1998)

13. Buhrman, H., Christandl, M., Hayden, P., Lo, H.K., Wehner, S.: Security of quan-
tum bit string commitment depends on the information measure. Physical Review
Letters 97, 250501 (2006)

Composable Security in the Bounded-Quantum-Storage Model 615

14. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992)

15. Crépeau, C.: Quantum oblivious transfer. J. of Mod. Opt. 41(12), 2455–2466 (1994)
16. Damg̊ard, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the Bounded

Quantum-Storage Model. In: 46th IEEE FOCS, pp. 449–458 (2005)
17. Damg̊ard, I.,Fehr,S.,Renner,R.,Salvail,L.,Schaffner,C.:Atighthigh-orderentropic

uncertainty relation with applications in the bounded quantum-storage model. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622. Springer, Heidelberg (2007)

18. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

19. Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)

20. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

21. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42th IEEE FOCS, pp. 136–145 (2001)

22. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. In: IEEE SP, p. 184 (2001)

23. Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic
library (2003), http://eprint.iacr.org/2003/015

24. van de Graaf, J.: Towards a formal definition of security for quantum protocols.
Ph.D. thesis (1998), http://www.cs.mcgill.ca/∼crepeau/PS/these-jeroen.ps

25. Smith, A.: Multi-party quantum computation. Masters Thesis (2001), quant-
ph/0111030

26. Ben-Or, M., Mayers, D.: General security definition and composability for quantum
and classical protocols (2004), quant-ph/0409062

27. Unruh, D.: Simulatable security for quantum protocols (2004), quant-ph/0409125
28. Unruh, D.: Formal security in quantum cryptology. Student research project, In-

stitut für Algorithmen und Kognitive Systeme. University of Karlsruhe (2002)
29. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment

(2008), arxiv:0804.1059
30. Estren, G.: Universally composable committed oblivious transfer and multi-party

computation assuming only basic black-box. M.Sc. thesis, School of Computer
Science. McGill University (2004)

31. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th STOC, pp. 494–503 (2002)

32. Hayashi, M.: Quantum Information: An introduction. Springer, Heidelberg (2006)
33. Renner, R., König, R.: Universally composable privacy amplification against quan-

tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

34. Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and
privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
199–216. Springer, Heidelberg (2005)

35. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18, 143–154 (1979)

36. Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich,
Switzerland (2005), http://arxiv.org/abs/quant-ph/0512258

37. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EUROCRYPT
2007. LNCS, vol. 4515. Springer, Heidelberg (2007)

38. Watrous, J.: Zero-knowledge against quantum attacks (2005), quant-ph/0511020

http://eprint.iacr.org/2003/015
http://www.cs.mcgill.ca/~crepeau/PS/these-jeroen.ps
http://arxiv.org/abs/quant-ph/0512258

On the Strength of the Concatenated Hash

Combiner When All the Hash Functions Are
Weak

Jonathan J. Hoch and Adi Shamir

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Israel

{yaakov.hoch,adi.shamir}@weizmann.ac.il

Abstract. At Crypto 2004 Joux showed a novel attack against the
concatenated hash combiner instantiated with Merkle-Damg̊ard iterated
hash functions. His method of producing multicollisions in the Merkle-
Damg̊ard design was the first in a recent line of generic attacks against
the Merkle-Damg̊ard construction. In the same paper, Joux raised an
open question concerning the strength of the concatenated hash com-
biner and asked whether his attack can be improved when the attacker
can efficiently find collisions in both underlying compression functions.
We solve this open problem by showing that even in the powerful ad-
versarial scenario first introduced by Liskov (SAC 2006) in which the
underlying compression functions can be fully inverted (which implies
that collisions can be easily generated), collisions in the concatenated
hash cannot be created using fewer than 2n/2 queries. We then expand
this result to include the double pipe hash construction of Lucks from
Asiacrypt 2005. One of the intermediate results is of interest on its own
and provides the first streamable construction provably indifferentiable
from a random oracle in this model.

Keywords: hash functions, cryptographic combiners, indifferentiability.

1 Introduction

Cryptanalysis of hash functions has been a very active area of research in the
past few years. A flurry of attacks have been found against various hash func-
tions including SHA-1 and the MD variants (see [10,16,17,18,19]). Besides these
attacks on specific hash functions, a number of novel generic attacks against the
Merkle-Damg̊ard [5,14] iterated construction have been published as well. These
include among others Joux’s multicollision attack [7], Kelsey and Schneier’s ex-
pandable message attack [9] and Kelsey and Kohno’s herding attack [8]. Joux’s
multicollision attack demonstrates how to find collisions in a concatenated hash
construction H(M) = F (M)‖G(M) when at least one of the underlying hash
functions is iterated.

In the classic combiner scenario we have two instantiations, I1 and I2, of some
cryptographic primitive, e.g., two encryption schemes or two hash functions. The

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 616–630, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Strength of the Concatenated Hash Combiner 617

goal is to build a new combined instantiation I of the primitive, which remains
secure even when one of the underlying primitives is broken, as long as the other
remains secure. In contrast to this classical approach, we will show that certain
hash combiners retain a provable level of security even if all of the underlying
hash functions are compromised, provided that the two primitives are sufficiently
random and sufficiently different in a sense which will be made precise later.

1.1 Related Work

Joux’s innovative attack focused attention on the security properties of hash com-
biners as his attack shows that the trivial combiner does not improve over the secu-
rity of the underlying hash functions. A line of research concerning hash combiners
has followed, demonstrating that security amplifying combiners exist [6] and on
the other hand proving that any provably secure black-box combiner must pre-
serve the total length of the underlying hash functions [1,15]. Other responses to
Joux’s paper include Lucks’ [12] proposal of the wide/double piped constructions
whose aim was to overcome the multicollision attack by using a larger internal
state. Lucks’ proposal is provably secure in the random oracle model against mul-
ticollisions. Maurer et al. [13] introduced the notion of indifferentiability. Similar
to the concept of indistinguishability, this notion describes a situation in which two
systems are indistinguishable despite having extra access to the internal structure
of the systems. Inspired by the generic attacks against the Merkle-Damg̊ard iter-
ated construction, Coron et al. [3] operated within the indifferentiability frame-
work to show how iterated hash functions can be proved indifferentiable from
random oracles in the ideal cipher model.1 Liskov further pursued this approach
in [11] by introducing weak compression functions. A weak compression function
behaves like a random oracle except that the adversary is given access to corre-
sponding inversion oracles. Liskov presented a new hash construction, the zipper
hash, composed of a pair of weak compression functions and using the framework
of Coron et al. proved it indifferentiable from a random oracle. In Joux’s attack he
did not assume that the attacker can find collisions in the underlying compression
functions faster than the birthday paradox bound. Joux then posed the question
whether the ability to find collisions efficiently in both the underlying compres-
sions functions can help the attacker improve the complexity of his attack.

1.2 Our Results

In this paper we prove that even in a very strong attack scenario in which the at-
tacker can find not only collisions but even invert in unit time all the compression
functions on inputs of his choice, the best attack against the concatenated con-
struction is Joux’s multicollision attack with complexity O

(
2n/2

)
. Furthermore,

as an intermediate result we show a streamable2 hash construction, provably
1 The underlying compression function is modelled as an ideal cipher.
2 A hash construction in which each block of the message can be processed once and

then be forgotten. This is an essential requirement in applications where the hash is
computed on the fly from a data stream.

618 J.J. Hoch and A. Shamir

indifferentiable from a random oracle in the model of weak compression func-
tions, which has the same rate as the non-streamable zipper hash of Liskov [11].
This result is then extended to prove that the double pipe hash construction
of Lucks [12] is also indifferentiable from a random oracle in the same model.
We stress that the model of weak compression functions captures all black-box
generic attacks arising from collision or preimage finding attacks against the
underlying compression functions.

1.3 Paper Organization

Section 2 describes the model of weak compression functions and gives our no-
tation for the rest of the paper. Section 3 proves the main result of the paper,
namely that in the model of weak compression functions, finding collisions in
the concatenated hash combiner requires O

(
2n/2

)
operations. Finally, Section 4

proves the indifferentiability of Lucks’ double pipe hash construction.

2 The Model

We first give a short description of the iterated hash construction. An iterated
hash function F f : {0, 1}∗ → {0, 1}n is built by iterating a basic compression
function f : {0, 1}n × {0, 1}m → {0, 1}n as follows:

• Split a message M into k, m-bit blocks x1, . . . , xk.
• Set h0 = IV where IV is the initialization vector.
• For each message block xi compute hi = f (hi−1, xi).
• Output F f (M) = hk.

The classical Merkle-Damg̊ard construction also contains padding and length
encoding which we will ignore for the sake of simplicity since they do not affect
our results.

Following Joux’s open question, we will try to model a situation in which
the attacker can efficiently find collisions in either compression function, but
do not assume any other special properties of these colliding pairs. In fact we
will give our adversary even stronger oracle access and allow him to find in
unit time random preimages of two different types as well. Formally, let f and
g be compression functions from m + n bits to n bits, and let F and G be
the corresponding hash functions built by instantiating the Merkle-Damg̊ard
paradigm with f and g respectively. We will model f and g as random functions
provided as black box oracles with additional respective inversion oracles.

We define the following oracles:

• f∗(x, ?, z) → (x, y, z) where y is chosen uniformly such that f(x, y) = z, or
⊥ if no such y exists.

• f−1(?, y, z)→ (x, y, z) where x is chosen uniformly such that f(x, y) = z, or
⊥ if no such x exists.

On the Strength of the Concatenated Hash Combiner 619

• g∗(x, ?, z) → (x, y, z) where y is chosen uniformly such that g(x, y) = z, or
⊥ if no such y exists.

• g−1(?, y, z)→ (x, y, z) where x is chosen uniformly such that g(x, y) = z, or
⊥ if no such x exists.

f and g queries will be called forward queries, g−1 and f−1 queries will be
called backward queries and f∗ and g∗ queries will be called bridging queries.3

The slightly more complicated case in which these inverses are not uniformly
distributed will be discussed at the end of this section. One should notice that
while weak compression functions are indeed weak in the sense that they allow
trivial collision and preimage attacks, there are some operations in which they
do not assist at all. For example, given two chaining values x1 and x2 finding a
message block y such that f(x1, y, ?) = f(x2, y, ?) still requires O

(
2n/2

)
queries.

We now introduce a slight modification due to Liskov [11] of the framework of
Coron et al. [3] and Maurer et al. [13]. This framework will enable us to prove that
certain hash functions based on weak compression functions are indifferentiable
from random oracles. Let Γ be an oracle encapsulating f, f−1, f∗,g, g−1 and g∗.

Definition 1 (indifferentiability). A construction C is (q, ε)-indifferentiable
in the presence of Γ from a random oracle RO if there exists a polynomial time
simulator S, such that for every distinguisher D which uses at most q oracle
queries (to either of the oracles),

∣
∣Pr[DC,Γ = 1]− Pr[DRO,SRO

= 1]
∣
∣ < ε

Notice that this definition is slightly different from the usual notion of indistin-
guishability in that the simulator, besides simulating the behavior of Γ , must
also remain consistent with the random oracle RO. The following example il-
lustrates the problem. Let C be an iterated hash function built from a com-
pression function f and assume that f is a random oracle. The pair (C, f)
is differentiable from (RO,SRO) for any simulator S. The distinguisher D,
when presented with a pair (A,B), performs the following queries h1 = A(m1),
h2 = B(h1,m2), h = A(m1m2). If h = h2 the distinguisher returns 1 and other-
wise 0. When D is presented with the pair (C, f), the equality will always hold
and Pr[DC,f = 1] = 1. On the other hand, for any simulator S, the probability
over the random coins of S and the random oracle that SRO(m2) = RO(m1m2)
is negligible. In this example, the distinguisher worked since the simulator could
not maintain the required consistency with RO. So we see that S does not only
need to simulate Γ per se but also needs to maintain the relation of S relative
to the RO, simulating the relationship between Γ and C as well. Maurer et al.
[13] proved that this definition of indifferentiability will allow us to use the con-
struction C in place of a random oracle in any cryptography protocol and retain
the same level of provable security.

Another subtle issue is the fact that in our case Γ includes inversion ora-
cles. Notice that when f is a random function, a fixed fraction of the queries

3 Liskov in [11] used the term squeezing queries.

620 J.J. Hoch and A. Shamir

f−1(?, y, z) do not have answers, while other queries might have multiple possible
answers. We have defined f−1 and f∗ to return an answer uniformly distributed
the possible answers, and thus the simulator S must reproduce the same distri-
bution of the number of inverses which is known to be Poisson.4 If we would like
to model inversion oracles with a non-uniform distribution, the simulator will
need to model this distribution as well.

3 A Lower Bound

Using techniques similar to those introduced by Coron et al. we will show that
the construction C(M) = F (M)⊕G(M) is indifferentiable from a random oracle
RO when less than O

(
2n/2

)
queries are performed. Since finding collisions in

H(M) = F (M)‖G(M) implies finding collisions in C(M) as well, the indifferen-
tiability of C(M) will give us a lower bound on the number of queries required
to find a collision in H(M) with non-negligible probability. Notice that the same
proof can be used for any construction of the form H(M) = α(F (M), G(M)) for
any n-bit function α which is uniquely invertible when its output and any one
of its input parameters in known.

Let Γ be an oracle implementing f, g, f−1, f∗, g−1 and g∗. Let RO be a ran-
dom oracle and let SRO be an oracle Turing machine with the same black-box
interface as Γ . In order to prove the indifferentiability result, we will give a hy-
brid argument and show that any distinguisher D cannot differentiate between
interacting with the pair (C, Γ) and the pair (RO,SRO).

3.1 The Simulator S

We want the simulator SRO to simulate Γ such that for any distinguisher D,
which performs q 9 2

n
2 queries 5, |Pr[DC,Γ = 1]−Pr[DRO,S = 1]| is negligible.

Obviously we would like the simulator S to produce random responses to the
simulated queries while maintaining consistency. The naive approach would be
to keep a list of all answers given so far and each time S receives a new query,
it will return a random value consistent with the values returned so far. Notice
that there are two types of consistency involved: self consistency and consistency
with the random oracle RO. Handling the self consistency can be done efficiently
with the list of answers, however consistency with the random oracle is a bit
more tricky. The following definition will capture the essence of maintaining
consistency with the random oracle.

4 Note that Liskov in [11] neglected to handle this problem, and therefore his sim-
ulator suffers from the fact that a distinguisher can query f−1 on a large number
of random inputs and the simulator will always return an inverse whereas a true
random function will only have inverses for 1 − 1/e fraction of the inputs.

5 We will charge queries to C or RO differently than queries to Γ or S. An l block
message query to C or RO will cost l queries. The reason for this different cost will
become clear in the remainder of the proof.

On the Strength of the Concatenated Hash Combiner 621

Definition 2 (Chains). A chain is a triplet (M,hf , hg), where M is a k block
message and hf , hg are hash values. In addition we require that

f(f(...f(IVf ,m1),m2), ..),mk) = hf

g(g(...g(IVg,m1),m2), ...),mk) = hg

and all the intermediate links are defined in the list of known values (i.e., have
been queried previously).

1
m

fIV
2

m km

fh

gIV
gh

1
m

2
m km

Fig. 1. Chains in the concatenated hash combiner

The chains create a tree structure, with the triplet (⊥, IVf , IVg) at the root.
An edge between (M,hf , hg) and (M‖mk+1, h

′
f , h

′
g) corresponds to a pair of

queries, linking hf to h′f and hg to h′g with the same message block mk+1.
Each node/chain in the tree corresponds to a constraint hf ⊕ hg = RO(M).
The fact that with overwhelming probability the chains form a tree rather than
a general graph structure will be proven later. To maintain consistency with
the random oracle RO, our naive S will examine each new query and check if
answering it will create a chain. If the response creates a chain, S will return a
value consistent with RO. As stated, however, this task may require exponential
time. Let us assume that the adversary uses a small number of calls to f and
f∗ in order to create a exponential size multicollision in F . When receiving a
new g query, S must check exponentially many possible messages for G as there
are that many messages with known chaining values for F . To overcome this
problem the simulator will maintain three data structures in order to perform
its operation. The first two structures Tf and Tg will contain explicit lists of the
triplet answers given by S so far. The third structure will hold the tree of chains
created so far. Notice that while the chain tree is implied from the first two lists,
keeping it explicitly allows the simulator to run in polynomial time.

We will show how S updates these structures after each query and uses them
in order to give consistent answers. For each forward query to f or g, S checks
whether the value is already defined in the corresponding data structure of
triplets, and if so returns the same value; if not, it returns a random value. To
check if the value is defined, S checks if the query appears in its list of responses
and additionally checks if the query completes a chain, i.e., extends the chain
tree. If the query completes a chain with message M , S queries RO(M) and uses

622 J.J. Hoch and A. Shamir

the answer to give a consistent answer to the query. Notice that although chains
might be created by bridging or backward queries, we will show that this will
only happen with negligible probability and thus we can ignore these possibil-
ities. In fact, we will show that with very high probability the chain tree does
not contain any hash value more than once. I.e., the combined list of all x’s and
z’s in the chain tree does not contain duplicates. Our main lemma will show
that with high probability, the above holds and chains are only created though
forward queries. This in turn will imply that the answers S gives are consistent
with the random oracle RO.

For backward and bridging queries, S also needs to reproduce the preimage
distribution of Γ . In normal practice, m is significantly larger than n and there-
fore, returning a random value for bridging queries will reproduce the expected
preimage distribution with respect to bridging queries. However, for backward
queries6, we need to reproduce a Poisson distribution on the number of preim-
ages. To this effect, S will keep together with each triplet, an integer j that
represents the number of answers to the query (?, y, z). Whenever a triplet con-
taining the pair (y, z) is created for the first time, S generates j according to a
Poisson distribution. If on a backward query j = 0, S returns the triplet (⊥, y, z).
For forward and bridging queries, j is generated according to a Poisson distri-
bution conditioned on the output being non-zero. In future backward queries, S
will return a uniform answer from the j possible answers. If one of the j possible
answers is not defined yet, S will simply return a random value.

The simulator S formally acts as follows:

Forward queries
On input (x, y, ?):

1. Check if there exists a triplet (x′, y′, z′) in the same7 list and return that
triplet if it exists.

2. If no such triplet exists, generate an integer j with Poisson distribution
conditioned on being non-zero.

3. Check whether the query extends the chain tree.
4. If it does, query RO(M) where M is the message corresponding to the new

chain, and return the answer compatible with RO(M).
5. Update the chain tree.
6. If no such chain is found, return a uniformly distributed answer.
7. In any case update the list of triplets with the answer and memorize the

generated j.

Backward queries
On input (?, y, z):

1. Check if there exists a triplet (x′, y′, z′) in the same list with (y, z) = (y′, z′).

6 The same special treatment given to backward queries can be given to bridging
queries as well when m is not significantly larger than n.

7 I.e., Tf for f queries and TG for g queries.

On the Strength of the Concatenated Hash Combiner 623

2. If no such triplet exists, generate an integer j with Poisson distribution.
3. Choose uniformly from the j possible answers (some may not be defined

yet).
4. If the chosen answer is not defined, generate a uniform answer x.
5. If j = 0, set x =⊥.
6. In any case (even if j = 0) update the list of triplets with the answer and

memorize the generated j.

Bridging queries
On input (x, ?, z):

1. Generate a random y.
2. Generate an integer j with Poisson distribution conditioned on being non-

zero.
3. Update the list of triplets with the answer and memorize the generated j.

3.2 The Indifferentiability Proof

Our hybrid argument will have five settings. In the first setting, we simply have
the pair (RO,SRO). In the second setting, we have the pair (RRO, SRO) where
R simply relays the queries it receives to RO and answers with the responses it
gets from RO. Since the view of any distinguisher D is identical with both pairs,
we clearly have that

Pr[DRO,SRO

= 1] = Pr[DRRO

, SRO = 1]

In the third setting, we have the pair (RRO, S1
RO) in which we slightly change

the simulator S to S1 such that when certain unexpected events occur, S1 ex-
plicitly fails. Whenever an unexpected event occurs, S1 fails explicitly, otherwise
S1 behaves exactly as S does.

Definition 3 (Unexpected events). Let an unexpected event be the event
that during an S query one of the following occurs:

U1 During a forward query the answer triplet (x, y, z) is such that there exists
a triplet (x′, y′, z′)8 in one of the lists, (x, y) �= (x′, y′) and either z = z′,
z = x′ or z = IV .

U2 During a backward query the answer triplet (x, y, z) is such that there exists
a triplet (x′, y′, z′) in one of the lists, (y, z) �= (y′, z′) and either x = x′,
x = z′ or x = IV .

U3 During a bridging query the answer triplet (x, y, z) is such that there exists
a triplet (x′, y′, z′) in one of the lists and y = y′.

Lemma 1. For any distinguisher D, the probability over the random coins of S

and the random oracle RO that one of the unexpected events occurs is O
(

q2

2n

)
.

8 Throughout this definition, answer triplets of the form (⊥, y′, z′) are also considered.

624 J.J. Hoch and A. Shamir

Proof. We will prove that the probability of an unexpected event occurring at
query number i, conditioned on the event that so far no unexpected events have
occurred is O

(
q
2n

)
. Using the union bound over all q queries we then get that

the probability of the unexpected event is O
(

q2

2n

)
.

We will examine each of the three possible unexpected events and bound
their probability. We first analyze what happens if during the query, no chain is
completed. In this case, for forward queries the answer triplet has a uniformly
distributed z and therefore the probability of z = z′ or z = x′ for any of the
existing x′, z′ is bounded by 2q

2n . For bridging queries, the answer triplet has a
uniformly distributed y and therefore the probability of y = y′ for any of the
existing y′ list is bounded by q

2m . For backward queries the answer triplet has
a uniformly distributed x and therefore the probability of x = x′ or x = z′ for
any of the existing x′, z′ in the respective list is bounded by 2q

2n .
We now examine the case in which the query completes a chain. For a back-

ward and bridging queries the simulator’s answer does not depend on the fact
that a chain has been completed and therefore the probability of an unexpected
event is the same as before. For forward queries, the response of the simulator
is fully determined by RO(M). However, the value of RO(M) is uniformly dis-
tributed and hence so is the simulator’s answer. Therefore, also in this case the
probability of U1 occurring is at most 2q

2n . Concluding, we have that the prob-
ability of an unexpected event occurring conditioned that no such events have
happened so far is O

(
q
2n

)
. A union bound over all the queries gives us the bound

O
(

q2

2n

)
as required.9 ��

Lemma 2

1. If we condition on the event that no unexpected events occur, then for every
distinguisher the view when interacting with the pair (RRO, SRO) is identical
to view when interacting with the pair (RRO, S1

RO)
2.
∣
∣Pr[DRRO ,SRO

= 1]− Pr[DRRO ,S1
RO

= 1]
∣
∣ = O

(
q2

2n

)

Proof. Unless an unexpected event occurs, S1 behaves exactly the same as S.
This proves the first part of the lemma. Putting this result together with the
fact that the probability of an unexpected event is bounded by O

(
q2

2n

)
, proves

the second part as well. ��

Now we turn our attention to the fourth setting, in which we examine the pair
(R1

S1 , SRO
1), where R1 answers its RO queries on input M by using S1 to cal-

culate C(M). I.e., R1 queries S on all the required f and g queries. Notice that
a single query to R1 with an l-block message will result in l queries to S1, for
this reason R1 queries cost l times more than a S1 query.

Lemma 3. If no unexpected events occur, then chains are only created by for-
ward queries.
9 Note that even though using the union bound is usually not tight, in this case we

get the birthday bound which is indeed tight.

On the Strength of the Concatenated Hash Combiner 625

Proof. Notice that when a chain is created, the message M is already determined.
Without loss of generality, let the query which completes the chain be a f, f−1 or
f∗ query. In this case, all the g triplets in the chain have already been made and
in particular, M is defined. Now, if a chain were created using a bridging query
f∗, then the answer triplet (x, y, z) is such that y ∈M (as it completes a chain)
and in particular y appears in a triplet in Tg, implying that the unexpected event
U2 occurred. If the chain were created using a backward query f−1, then as the
answer query (x, y, z) completed a chain, we know that x appears in a triplet
in the Tf list or x = IV . Since (x, y, z) did not appear in Tf prior to the query
(otherwise the chain would have been completed before) this implies that the
unexpected event U3 has occurred. Therefore, if no unexpected events occur all
chains are created by forward queries. ��

Corollary 1. If no unexpected events occur, the chain data structure is a tree
containing all chains.

Proof. If a forward call creates a cycle in the chain data structure, then unex-
pected event U1 occurs. Hence, the chain data structure is a tree. Notice that
if more that one chain is created during a forward call, then unexpected event
U1 has occurred previously (as there are two identical nodes in the chain tree).
Therefore, at most a single chain is created during each forward call and the
simulator tracks them correctly. ��

Lemma 4. Unless an unexpected event occurs, then for every distinguisher the
view when interacting with the pair (RRO, S1

RO) is indifferentiable from the view
when interacting with the pair (R1

S1 , S1
RO).

Proof. The proof will demonstrate the following three points:

1. Unlessanunexpectedeventoccurswheninteractingwiththepair (RRO, S1
RO),

the answers given by S1 are consistent with those given by RRO.
2. Unlessanunexpectedeventoccurswheninteractingwiththepair(R1

S1 , S1
RO),

the answers given by S1 are consistent with those given by R1
S1 .

3. Unless an unexpected event occurs when interacting either with the pair
(RRO, S1

RO) or with the pair (R1
S1 , S1

RO), the answers given by RRO are
exactly the same as those given by R1

S1 .

Proof of point 1. Notice that from Lemma 3 we know that chains are only
completed by forward queries. This implies that the simulator’s answers are
consistent with the value RO(M) for any message M . Since RRO(M) simply
replies with RO(M), the answers given by both oracles are consistent.

Proof of point 2. The proof is similar to the proof of the previous point. The
simulator’s answers are always consistent with the value RO(M) for any message
M and R1

S1(M) = RO(M) since the behavior of S1 ensures this result.

626 J.J. Hoch and A. Shamir

Proof of point 3. This point is obvious since RRO(M) = RO(M) and also
R1

S1(M) = RO(M).
It now follows that unless an unexpected event occurs, the views generated

by any distinguisher’s interaction with the pairs (RRO, S1
RO) and (R1

S1 , S1
RO)

are indifferentiable. ��

We are now ready for the proof of our main theorem:

Theorem 1. The construction C(M) = F (M) ⊕ G(M), where F,G are iter-
ated hash functions based on the compression function f and g respectively, is
indifferentiable in q 9 2n/2 queries from a random oracle even in the presence
of f−1, f∗, g−1 and g∗ oracles.

Proof. Let S be the simulator defined above and let Γ be an oracle encapsulating
f , g, f−1, f∗, g−1 and g∗. We will prove that for any distinguisher D

|Pr[DC,Γ = 1]− Pr[DRO,SRO

= 1]| = O
(

q2

2n

)

The lemmas so far have shown that |Pr[DR
S1
1 ,S1 = 1]− Pr[DRO,SRO

= 1]| =
O
(

q2

2n

)
and that S can be implemented in time polynomial in the number

of queries q. It remains to show that for any possible distinguisher the pairs
(RS1

1 , S1
RO) and (C, Γ) are indifferentiable. Notice however that unless an un-

expected event occurs, S exactly simulates Γ and R1
S exactly computes C. This

completes the proof. ��

We have shown that the construction C(M) = F (M) ⊕ G(M) (or any n-bit
function of F and G which is uniquely invertible when its output and any one
of its input parameters is known) is indifferentiable in q 9 2n/2 queries from a
random oracle even in the presence of f−1, f∗, g−1 and g∗ oracles and hence
finding collisions in H(M) = F (M)‖G(M) requires O

(
2n/2

)
queries, matching

the known upper bound of Joux. Notice that the construction C(M) = F (M)⊕
G(M) requires the same amount of underlying function calls as the zipper hash
of Liskov, albeit having a larger internal state, while having the advantage of
being streamable.

3.3 Comments

Note that even though we have proved a lower bound on the number of calls to
the compression functions and hence on the running time of a collision finding
attack, this does not give a corresponding lower bound on the amount of memory
required for the attack. In fact we can use Pollard’s rho algorithm to find such
a collision using only a linear amount of memory. Let M0,1

1 M0,1
2 ...M0,1

n and
N0,1

1 N0,1
2 ...N0,1

n be Joux multicollisions for F and G respectively. We define two
functions r1, r2 s.t. r1(x) = F (Nx1

1 Nx2
2 ...Nxn

n) and r2(x) = G(Mx1
1 Mx2

2 ...Mxn
n).

We now use the rho algorithm to find a cycle in the path generated by iteratively
alternating between applications of r1 and r2. The memory complexity is O(n)
while the time complexity is O(n2

n
2).

On the Strength of the Concatenated Hash Combiner 627

4 Application to Lucks’ Double Pipe Proposal

The same proof framework can be used to prove other indifferentiability results.
For example, the double pipe hash from [12] can also be proved indifferentiable
from a random oracle in the model of weak compression functions. Given a
compression function f , the double pipe hash has a 2n bit internal state (r, s)
and is defined as follows:

• Split a message M into k blocks each of size (m− n) bits, x1, . . . , xk.
• Set r0 = IV1, s0 = IV2 where IV1 and IV2 are the initialization vectors.
• Foreachmessageblockxicomputeri=f (ri−1, si−1‖xi)andsi=f(si−1, ri−1‖xi).
• Output DP f (M) = f(IV3, rk‖sk‖om−2n).

The double pipe hash is schematically described in Figure 2.

Fig. 2. Lucks’ double pipe hash (taken from [12])

Note that Lucks proved that the double pipe hash is not vulnerable to mul-
ticollision or multi-(second)-preimage attacks when the underlying compression
function is modeled as a random oracle (or ideal cipher) which has no weaknesses,
while Liskov [11] claimed (without proof) that the construction is indifferentiable
from a random oracle if the two pipes use two unrelated weak compression func-
tions f and g. We will prove that the original construction is indifferentiable
from a random oracle even when the same function is used in both pipes, and
it is weak in the sense that the attacker is given both inversion and bridging
oracles. Our proof will also hold if the final hash is replaced by a xor operation,
or any function which is uniquely invertible when its output and any one of its
input parameters are known.

The proof outline is identical to the one presented in Section 3; we will there-
fore only give the main lemmas required. We start by giving an adequate defi-
nition of chains in the double pipe hash, that following the example in section
3 captures the essence of consistency between the simulator S and the random
oracle RO.

Definition 4 (Double pipe hash chains). A (double pipe hash) chain is a
triplet M,h1, h2, where M is a k block message and h1 and h2 are hash values.
In addition we require that

f(f(...f(IV1, s1‖m1), s2‖m2), ..), sk‖mk) = h1

628 J.J. Hoch and A. Shamir

f(f(...f(IV2, r1‖m1), r2‖m2), ...), rk‖mk) = h2

where ri is the chaining value of the upper pipe after the first i blocks and si
is the chaining value of the lower pipe after the same i blocks. We additionally
require that all the intermediate links are defined in the list of known values (i.e.,
have been queried previously).

The simulator will be identical to the one introduced in Section 3 with the
following changes: We will change the simulator’s behavior when a chain is com-
pleted with message M . Without loss of generality, assume that the query which
completed the chain is in the lower pipe. The simulator computes the value
z = RO(M), generates a random value d, sets the triplet (IV3, rk‖d‖0m−2n, z)
and returns d as the response to the query.

The unexpected events will now become:

Definition 5 (Double pipe unexpected events). Let an unexpected event
be the event that during a S query one of the following occurs:

V1 During a forward query the answer triplet (x, y, z) is such that there exists
a triplet (x′, y′, z′), (x, y) �= (x′, y′) and either z = z′, z = x′ or z = IV .

V ∗1 During a forward query a chain is completed and the random value d gener-
ated is such that there exists a triplet (x′, y′, z′), and y = rk‖d‖0m−2n.

V2 During a backward query the answer triplet (x, y, z) is such that there exists
a triplet (x′, y′, z′), (y, z) �= (y′, z′) and either x = x′, x = z′ or x = IV .

V3 During a bridging query the answer triplet (x, y, z) is such that there exists
a triplet (x′, y′, z′) and y = y′.

Lemma 5. The probability over the random coins of S and the random oracle
RO, that an unexpected event occurs is O

(
q2

2n

)
.

Proof. As before, we will prove that the probability of an unexpected event oc-
curring, conditioned on the event that so far no unexpected events have occurred
isO

(
q
2n

)
. The proof for events V1, V2 and V3 is identical to the proof for the corre-

sponding events U1, U2 and U3. It remains to bound the probability of V ∗1 . How-
ever, since d is completely uniform, we have that the probability is at most q

2n .

Using a union bound over all queries gives us the required bound of O
(

q2

2n

)
. ��

As in the proof in Section 3, the main lemma will show that unless an unexpected
event occurs, chains are only created during forward queries.

Lemma 6. If no unexpected events occur, then chains are only created by for-
ward queries.

Proof. As before, notice that when a chain is created, the message M is already
determined. Now, if a chain were created using a bridging query f∗, then the
answer triplet (x, y, z) is such that y ∈ M (as it completes a chain) and in
particular y appears in an existing triplet, implying that the unexpected event
V2 occurred. If the chain were created using a backward query f−1, then as the

On the Strength of the Concatenated Hash Combiner 629

answer query (x, y, z) completed a chain, we know that x appears in an existing
triplet or x = IV . Since (x, y, z) did not appear in the list of triplets prior to
the query (otherwise the chain would have been completed before) this implies
that the unexpected event V3 has occurred. Therefore, if no unexpected events
occur all chains are created by forward queries. ��

Theorem 2. The double pipe hash construction is indifferentiable from a ran-
dom oracle in the model of weak compression functions.

Proof. The sequence of hybrids is the same as in the proof in Section 3 and
culminates with the required result. ��

5 Conclusion

While the results of Joux [7], Kelsey and Schneier [9] and Kelsey and Kohno [8]
have shown that there are a number of surprising attacks when the attacker is
allowed more than 2n/2 time, we have shown that there is a surprising amount
of ‘life’ below the 2n/2 barrier: Even an adversary with the power to invert
compression functions on inputs of his choice in unit time is still unable to
differentiate between a variety of hash constructions and a random oracle. It
seems that there are two main issues at the heart of our results. The first is the
assumed randomness of the compression function, which implies that with less
than 2n/2 queries it is not feasible to use in an effective way the given inversion
oracles. The second issue is the fact that during the simulation the simulator
needs to maintain consistency with the random oracle. In order to do this, the
simulator must somehow ‘know’ when the queries given so far define some final
hash value. In all the examples we gave as well as in the zipper hash[11] of Liskov,
the construction of the combined hash function is such that with overwhelming
probability the simulator can always tell when a query determines the output of
the hash.

References

1. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resis-
tant hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 570–
583. Springer, Heidelberg (2006), http://www.cs.stanford.edu/∼xb/crypto06b/

2. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
3. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How

to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

4. Cramer, R. (ed): Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26 (2005)Proceedings. Cramer, R. (ed): EUROCRYPT
2005. LNCS. vol. 3494. Springer (2005)

5. Damg̊ard, I.: A Design Principle for Hash Functions. In: [2], pp. 416–427

http://www.cs.stanford.edu/~xb/crypto06b/

630 J.J. Hoch and A. Shamir

6. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (2007)

7. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

8. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

9. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: [4], pp. 474–490

10. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105 (2006), http://eprint.iacr.org/

11. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Selected Areas in Cryptography, pp. 358–375 (2006)

12. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions.. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

13. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

14. Merkle, R.C.: One Way Hash Functions and DES. In: [2], pp. 428–446
15. Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions

don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 23–33.
Springer, Heidelberg (2007)

16. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: [4], pp. 1–18

17. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: [4], pp. 19–35
18. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:

Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

19. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4.
In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 1–12. Springer, Heidelberg (2005)

http://eprint.iacr.org/

History-Independent Cuckoo Hashing�

Moni Naor1,��, Gil Segev1,��, and Udi Wieder2

1 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel

{moni.naor,gil.segev}@weizmann.ac.il
2 Microsoft Research, Silicon Valley Campus,
1065 La Avenida, Mountain View, CA 94043

uwieder@microsoft.com

Abstract. Cuckoo hashing is an efficient and practical dynamic dictio-
nary. It provides expected amortized constant update time, worst case
constant lookup time, and good memory utilization. Various experiments
demonstrated that cuckoo hashing is highly suitable for modern com-
puter architectures and distributed settings, and offers significant im-
provements compared to other schemes.

In this work we construct a practical history-independent dynamic
dictionary based on cuckoo hashing. In a history-independent data struc-
ture, the memory representation at any point in time yields no informa-
tion on the specific sequence of insertions and deletions that led to its
current content, other than the content itself. Such a property is signif-
icant when preventing unintended leakage of information, and was also
found useful in several algorithmic settings.

Our construction enjoys most of the attractive properties of cuckoo
hashing. In particular, no dynamic memory allocation is required, up-
dates are performed in expected amortized constant time, and member-
ship queries are performed in worst case constant time. Moreover, with
high probability, the lookup procedure queries only two memory entries
which are independent and can be queried in parallel. The approach
underlying our construction is to enforce a canonical memory represen-
tation on cuckoo hashing. That is, up to the initial randomness, each set
of elements has a unique memory representation.

1 Introduction

Over the past decade an additional aspect in the design of data structures has
emerged due to security and privacy considerations: a data structure may give
away much more information than it was intended to. Computer folklore is
rich with tales of such cases, for example, files containing information whose
creators assumed had been erased, only to be revealed later in embarrassing
circumstances1.

� Due to space limitations we refer the reader to a longer version available at
http://www.wisdom.weizmann.ac.il/∼naor.

�� Most of the work was done at Microsoft Research, Silicon Valley Campus.
1 See [5] for some amusing anecdotes of this nature.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 631–642, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

632 M. Naor, G. Segev, and U. Wieder

When designing a data structure whose internal representation may be re-
vealed, a highly desirable goal is to ensure that an adversary will not be able
to infer information that is not available through the legitimate interface. In-
formally, a data structure is history independent if its memory representation
does not reveal any information about the sequence of operations that led to its
current content, other than the content itself.

In this paper we design a practical history-independent data structure. We
focus on the dictionary data structure, which is used for maintaining a set under
insertions and deletions of elements, while supporting membership queries. Our
construction is inspired by the highly practical cuckoo hashing, introduced by
Pagh and Rudler [25], and guarantees history independence while enjoying most
of the attractive features of cuckoo hashing. In what follows we briefly discuss
the notion of history independence and several of its applications, and the main
properties of cuckoo hashing.

Notions of history independence. Naor and Teague [23], following Miccian-
cio [18], formalized two notions of history independence: a data structure is
weakly history independent if any two sequences of operations that lead to the
same content induce the same distribution on the memory representation. This
notion assumes that the adversary gaining control is a one-time event, but in fact,
in many realistic scenarios the adversary may obtain the memory representation
at several points in time. A data structure is strongly history independent if for
any two sequences of operations, the distributions of the memory representation
at all time-points that yield the same content are identical. Our constructions
in this paper are strongly history independent. An alternative characterization
of strong history independence was provided by Hartline et al. [14]. Roughly
speaking, they showed that strong history independence is equivalent to having
a canonical representation up to the choice of initial randomness. More formal
definitions of the two notions are provided in Section 2.

Applications of history independence. History-independent data structures
were introduced in a cryptographic setting. Micciancio showed that oblivious
trees2 can be used to guarantee privacy in the incremental signature scheme
of Bellare, Goldreich and Goldwasser [2,3]. An incremental signature scheme is
private if the signatures it outputs do not give any information on the sequence
of edit operations that have been applied to produce the final document.

An additional cryptographic application includes, for example, designing vote
storage mechanisms (see [4,21,22]). As the order in which votes are cast is public,
a vote storage mechanism must be history independent in order to guarantee the
privacy of the election process.

History-independent data structures are valuable beyond the cryptographic
setting as well. Consider, for example, the task of reconciling two dynamic sets.
We consider two parties each of which receives a sequence of insert and delete
operations, and their goal is to determine the elements in the symmetric differ-
ence between their sets. Now, suppose that each party processes its sequence of

2 These are trees whose shape does not leak information.

History-Independent Cuckoo Hashing 633

operations using a data structure in which each set of elements has a canonical
representation. Moreover, suppose that the update operations are efficient and
change only a very small fraction of the memory representation. In such a case,
if the size of the symmetric difference is rather small, the memory representa-
tions of the data structures will be rather close, and this can enable an efficient
reconciliation algorithm.

Cuckoo hashing. Pagh and Rudler [25] constructed an efficient hashing scheme,
referred to as cuckoo hashing. It provides worst case constant lookup time, ex-
pected amortized constant update time, and uses roughly 2n words for storing
n elements. Additional attractive features of cuckoo hashing are that no dy-
namic memory allocation is performed (except for when the tables have to be
resized), and the lookup procedure queries only two memory entries which are
independent and can be queried in parallel. These properties offer significant
improvements compared to other hashing schemes, and experiments have shown
that cuckoo hashing and its variants are highly suitable for modern computer
architectures and distributed settings. Cuckoo hashing was found competitive
with the best known dictionaries having an average case (but no non-trivial
worst case) guarantee on lookup time (see, for example, [10,25,27,29]).

1.1 Related Work

Micciancio [18] formalized the problem of designing oblivious data structures.
He considered a rather weak notion of history independence, and devised a
variant of 2–3 trees whose shape does not leak information. This notion was
strengthened by Naor and Teague [23] to consider data structures whose mem-
ory representation does not leak information. Their main contributions are two
history-independent data structures. The first is strongly history independent,
and supports only insertions and membership queries which are performed in ex-
pected amortized constant time. Roughly speaking, the data structure includes
a logarithmic number of pair-wise independent hash functions, which determine
a probe sequence for each element. Whenever a new element is inserted and
the next entry in its probe sequence is already occupied, a “priority function”
is used to determine which element will be stored in this entry and which ele-
ment will be moved to the next entry in its probe sequence. The second data
structure is a weakly history-independent data structure supporting insertions,
deletions and membership queries. Insertions and deletions are performed in ex-
pected amortized constant time, and membership queries in worst case constant
time. Roughly speaking, this data structure is a history-independent variant of
the perfect hash table of Fredman, Komlós and Szemerédi [12] and its dynamic
extension due to Dietzfelbinger et al. [7].

Buchbinder and Petrank [6] provided a separation between the two notions of
history independence for comparison based algorithms. They established lower
bounds for obtaining strong history independence for a large class of data struc-
tures, including the heap and the queue data structures. They also demonstrated
that the heap and queue data structures can be made weakly history independent
without incurring any additional (asymptotic) cost.

634 M. Naor, G. Segev, and U. Wieder

Blelloch and Golovin [5] constructed two strongly history-independent data
structures based on linear probing. Their first construction supports insertions,
deletions and membership queries in expected constant time. This essentially
extends the construction of Naor and Teague [23] that did not support deletions.
While the running time in the worst case may be large, the expected update
time and lookup time is tied to that of linear probing and thus is O(1/(1 −
α)3) where α is the memory utilization of the data structure (i.e., the ratio
between the number of items and the number of slots). Their second construction
supports membership queries in worst case constant time while maintaining an
expected constant time bound on insertions and deletions. However, the memory
utilization of their second construction is only about 9%. In addition, it deploys
a two-level encoding, which may involve hidden constant factors that affect the
practicality of the scheme. Furthermore, the worst case guarantees rely on an
exponential amount of randomness and serves as a basis for a different hash table
with more relaxed guarantees. The goal of our work is to design a hash table
with better memory utilization and smaller hidden constants in the running
time, even in the worst case.

1.2 Our Contributions

We construct a practical history-independent data structure that supports inser-
tions, deletions, and membership queries. Our construction is based on cuckoo
hashing, and shares most of its properties. Our construction provides the fol-
lowing performance guarantees (where the probability is taken only over the
randomness used during the initialization phase of the data structure):

1. Insertions and deletions are performed in expected amortized constant time.
Moreover, with high probability, insertion and deletions are performed in
time O(log n) in the worst case.

2. Membership queries are performed in worst case constant time. Moveover,
with high probability, the lookup procedure queries only two memory entries
which are independent and can be queried in parallel.

3. The memory utilization of the data structure is roughly 50% when support-
ing only insertions and membership queries. When supporting deletions the
data structure allocates an additional pointer for each entry. Thus, the mem-
ory utilization in this case is roughly 25%, under the conservative assumption
that the size of a pointer is not larger than that of a key.

We obtain the same bounds as the second construction of Blelloch and Golovin
[5] (see Section 1.1). The main advantages of our construction are its simplicity
and practicality: membership queries would mostly require only two independent
memory probes, and updates are performed in a way which is almost similar
to cuckoo hashing and thus is very fast. A major advantage of our scheme is
that it does not use rehashing. Rehashing is a mechanism for dealing with a
badly behaved hash function by choosing a new one; using such a strategy in
a strongly history-independent environment causes many problems (see below).

History-Independent Cuckoo Hashing 635

Furthermore, our data structure enjoys a better memory utilization, even when
supporting deletions. We expect that in any practical scenario, whenever cuckoo
hashing is preferred over linear probing, our construction should be preferred
over those of Blelloch and Golovin.

1.3 Overview of the Construction

In order to describe our construction we first provide a high-level overview of
cuckoo hashing. Then, we discuss our approach which is based on the underlying
properties of cuckoo hashing.

Cuckoo hashing. Cuckoo hashing uses two tables T0 and T1, each consisting
of r ≥ (1 + ε)n words for some constant ε > 0, and two hash functions h0, h1 :
U → {0, . . . , r − 1}. An element x ∈ U is stored either in entry h0(x) of table
T0 or in entry h1(x) of table T1, but never in both. The lookup procedure is
straightforward: when given an element x ∈ U , query the two possible memory
entries in which x may be stored. The deletion procedure deletes x from the
entry in which it is stored. As for insertions, Pagh and Rudler [25] demonstrated
that the “cuckoo approach”, kicking other elements away until every element has
its own “nest”, leads to a highly efficient insertion procedure when the functions
h0 and h1 are assumed to sample an element in [r] uniformly and independently.
More specifically, in order to insert an element x ∈ U we first query entry
T0[h0(x)]. If this entry is not occupied, we store x in that entry. Otherwise, we
store x at that entry anyway, thus making the previous occupant “nestless”. This
element is then inserted to T1 in the same manner, and so forth iteratively. We
refer the reader to [25] for a more comprehensive description of cuckoo hashing.

Our approach. Cuckoo hashing is not history independent. The table in which
an element is stored depends upon the elements inserted previously. Our ap-
proach is to enforce a canonical memory representation on cuckoo hashing. That
is, up to the initial choice of the two hash functions, each set of elements has
only one possible representation. As in cuckoo hashing, our construction uses
two hash tables T0 and T1, each consisting of r ≥ (1 + ε)n entries for some
constant ε > 0, and two hash functions h0, h1 : U → {0, . . . , r − 1}. An element
x ∈ U is stored either in cell h0(x) of table T0 or in cell h1(x) of table T1.

Definition 1.1. Given a set S ⊆ U and two hash functions h0 and h1, the
cuckoo graph is the bipartite graph G = (L,R,E) where L = R = {0, . . . , r− 1},
and E = {(h0(x), h1(x)) : x ∈ S}.

The cuckoo graph plays a central role in our analysis. It is easy to see that a
set S can be successfully stored using the hash functions h0 and h1 if and only
if no connected component in G has more edges then nodes. In other words,
every component contains at most one cycle (i.e., unicyclic). The analysis of the
insertion and deletion procedures are based on bounds on the size of a connected
component. The following lemma is well known in random graph theory (see, for
example, [15, Section 5.2]), and implies that the expected size of each component
is constant, and with high probability it is O(log n):

636 M. Naor, G. Segev, and U. Wieder

Lemma 1.1. Assume r ≥ (1+ε)n and the two hash functions are truly random.
Let v be some node and denote by C the connected component of v. Then there
exists some constant β = β(ε) ∈ (0, 1) such that for any integer k > 0 it holds
that Pr[|C| > k] ≤ βk.

In order to describe the canonical representation that our construction enforces it
is sufficient to describe the canonical representation of each connected component
in the graph. Let C be a connected component, and denote by S be the set of
elements that are mapped to C. In case C is acyclic, we enforce the following
canonical representation: the minimal element in S (according to some fixed
ordering of U) is stored in both tables, and this yields only one possible way of
storing the remaining elements. In case C is unicyclic, we enforce the following
canonical representation: the minimal element on the cycle is stored in table T0,
and this yields only one possible way of storing the remaining elements. The
most challenging aspect of our work is dealing with the unlikely event in which
a connected component contains more than one cycle.

Rehashing and history independence. It is known [17] that even if h0 and
h1 are completely random functions, with probability Ω(1/n) there will be a
connected component with more than one cycle. In this case the given set cannot
be stored using h0 and h1. The standard solution for this scenario is to choose
new functions and rehash the entire data. In the setting of strongly history-
independent data structures, however, rehashing is particular problematic and
affects the practical performance of the data structure. Consider, for example, a
scenario in which a set is stored using h0 and h1, but when inserting an additional
element x it is required to choose new hash functions h′0 and h′1, and rehash the
entire data. If the new element x is now deleted, then in order to maintain history
independence we must “roll back” to the previous hash functions h0 and h1, and
once again rehash the entire data. This has two undesirable properties: First,
when rehashing we cannot erase the description of any previous pair of hash
functions, as we may be forced to roll back to this pair later on. When dealing
with strongly history-independent data structures, a canonical representation
for each set of elements must be determined at the initialization phase of the
data structure. Therefore, all the hash functions must be chosen in advance, and
this may lead to a high storage overhead (as is the case in [5]). Secondly, if an
element that causes a rehash is inserted and deleted multiple times, each time
an entire rehash must be performed.

Avoiding rehashing by stashing elements. Kirsch et al. [16] suggested a
practical augmentation to cuckoo hashing in order to avoid rehashing: exploiting
a secondary data structure for storing elements that create cycles, starting from
the second cycle of each component. That is, whenever an element is inserted
to a unicyclic component and creates an additional cycle in this component, the
element is stashed in the secondary data structure. In our case, the choice of
the stashed element must be history independent in order to guarantee that the
whole data structure is history independent. Kirsch et al. prove the following
bound on the number of stashed elements in the secondary data structure:

History-Independent Cuckoo Hashing 637

Lemma 1.2. Assume r ≥ (1+ε)n and the two hash functions are truly random.
The probability that the secondary data structure has more than s elements is
O(r−s).

The secondary data structure in our construction can be any strongly history-
independent data structure (such as a sorted list). This approach essentially
reduces the task of storing n elements in a history independent manner to that
of storing only a few elements in a history-independent manner. In addition, it
enables us to avoid rehashing and to increase the practicality of our scheme.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we overview
the notion of history independence. In Section 3 we describe our data structure.
In Section 4 we propose several possible instantiations for the secondary data
structure used in our construction, and in Section 5 we provide several concluding
remarks.

2 Preliminaries

A data structure is defined by a list of operations. We say that two sequences
of operations, S1 and S2, yield the same content if for all suffixes T , the results
returned by T when the prefix is S1 are identical to those returned by T when
the prefix is S2.

Definition 2.1 (Weak History Independence). A data structure implemen-
tation is weakly history independent if any two sequences of operations that yield
the same content induce the same distribution on the memory representation.

We consider a stronger notion of history independence that deals with cases
in which an adversary may obtain the memory representation at several points
in time. In this case it is required that for any two sequences of operations, the
distributions of the memory representation at all time-points that yield the same
content are identical.

Definition 2.2 (Strong History Independence). Let S1 and S2 be sequences
of operations, and let P1 = {i11, . . . , i1�} and P2 = {i21, . . . , i2�} be two lists such
that for all b ∈ {1, 2} and 1 ≤ j ≤ � it holds that 1 ≤ ibj ≤ |Sb|, and the content
of the data structure following the i1j prefix of S1 and the i2j prefix of S2 are
identical. A data structure implementation is strongly history independent if for
any such sequences the distributions of the memory representation at the points
of P1 and at the corresponding points of P2 are identical.

Note that Definition 2.2 implies, in particular, that any data structure in which
the memory representation of each state is fully determined given the random-
ness used during the initialization phase is strongly history independent. Our
construction in this paper enjoys such a canonical representation, and hence is
strongly history independent.

638 M. Naor, G. Segev, and U. Wieder

3 The Data Structure

Our data structure uses two tables T0 and T1, and a secondary data structure.
Each table consists of r ≥ (1 + ε)n entries for some constant ε > 0. In the
insert-only variant each entry stores at most one element. In the variant which
supports deletions each entry stores at most one element and a pointer to another
element. The secondary data structure can be chosen to be any strongly history-
independent data structure (we refer the reader to Section 4 for several possible
instantiations of the secondary data structure).

Elements are inserted into the data structure using two hash functions h0, h1 :
U → {0, . . . , r − 1}, which are independently chosen at the initialization phase.
An element x ∈ U can be stored in three possible locations: entry h0(x) of table
T0, entry h1(x) of table T1, or stashed in the secondary data structure. The
lookup procedure is straightforward: when given an element x ∈ U , query the
two tables and perform a lookup in the secondary data structure.

In the remainder of this section we first describe the canonical representation
of the data structure and some of its useful properties. Then, we provide a
high-level description of the insertion and deletion procedures. Due to space
limitations the proof of history independence and the efficiency analysis (proving
the performance guarantees claimed in Section 1.2) are omitted from this version.

The canonical representation. As mentioned in Section 1.3, it is sufficient
to consider a single connected component in the cuckoo graph. Let C be a
connected component, and denote by S the set of elements that are mapped to
C. We distinguish between the following cases:

– C is a tree. In this case the minimal element in S is stored in both tables,
and this yields only one possible way of storing the remaining elements.

– C is unicyclic. In this case the minimal element on the cycle is stored in table
T0, and this yields only one possible way of storing the remaining elements.

– C contains at least two cycles. In this case we iteratively put in the secondary
data structure the largest element that lies in a cycle, until C contains only
one cycle. The elements which remain in the component are arranged ac-
cording to the previous case. We note that this case is rather unlikely, and
occurs with only a polynomially small probability.

– When supporting deletions each table entry includes additional space for one
pointer. These pointers form a cyclic sorted list of the elements of the com-
ponent (not including stashed elements). When deletions are not supported,
there is no need to allocate or maintain the additional pointers.

When describing the insertion and deletion procedures it will be convenient to
consider the cuckoo graph as a directed graph. Given an element x, we orient
the edge so that x is stored at its tail. In other words, if x is stored in table
Tb for some b ∈ {0, 1}, we orient its corresponding edge in the graph from
Tb[hb(x)] to T1−b[h1−b(x)]. An exception is made for the minimal element of an
acyclic component, since such an element is stored in both tables. In such a case
we orient the corresponding edge in both directions. The following claims state
straightforward properties of the directed graph:

History-Independent Cuckoo Hashing 639

Claim 3.1. Let x1 → · · · → xk be any directed path. Then, given the element x1

it is possible to retrieve all the elements on this path using k probes to memory.
Furthermore, if xmin is a minimal element in an acyclic component C, then for
any element x stored in C there exists a directed path from x to xmin.

Claim 3.2. Let C be a unicyclic component, and let x∗ be any element on its
cycle. Then for any element x stored in C there exists a simple directed path
from x to x∗.

The insertion procedure. Given an element to insert x, the goal of the in-
sertion procedure is to insert x while maintaining the canonical representation.
Note that one only has to consider the representation of the connected compo-
nent of the cuckoo graph in which x resides. Furthermore, Lemma 1.1 implies
that the size of the component is O(1) on expectation, thus an algorithm which
is linear in the size of the component would have a constant expected running
time. In the following we show that the canonical memory representation could
be preserved without using the additional pointers. The additional pointers are
only needed for supporting deletions. If the additional pointers are maintained,
then once the element is inserted the pointers need to be updated so that the
element is in its proper position in the cyclic linked list. This could be done in
a straightforward manner in time linear in the size of the component.

Given an element x ∈ U there are four possible cases to consider. The first
and simplest case is when both T0[h0(x)] and T1[h1(x)] are unoccupied, and we
store x in both entries. The second and third cases are when one of the entries
is occupied and the other is not occupied. In these cases x does not create a
new cycle in the graph. Thus, unless x is the new minimal element in an acyclic
component it is simply put in the empty slot. If x is the new minimal element
in an acyclic component, it is put in both tables and the appropriate elements
are pushed to their alternative location, effectively removing the previous min-
imum element from one of the tables. The fourth case, in which both entries
are occupied involves slightly more details, but is otherwise straightforward. In
this case x either merges two connected components, or creates a new cycle in a
component. The latter case may also trigger the low probability event of stashing
an element in the secondary data structure. Due to space limitations, a formal
description of the procedure is provided in the longer version of the paper.

The deletion procedure. The deletion procedure takes advantage of the ad-
ditional pointer stored in each entry. Recall that these pointers form a cyclic
list of all the elements of a connected component. Note that since the expected
size of a connected component is constant, and the expected size of the sec-
ondary data structure is constant as well, a straightforward way of deleting an
element is to retrieve all the elements in its connected component, reinsert them
without the deleted element, and then reinsert all the elements that are stashed
in the secondary data structure. This would result in expected amortized con-
stant deletion time. In practice, however, it is desirable to minimize the amount

640 M. Naor, G. Segev, and U. Wieder

of memory manipulations. In the longer version of the paper we detail a more
refined procedure, which although shares the same asymptotic performance, is
more sensible in practice.

4 The Secondary Data Structure

In this section we propose several possible instantiations for the secondary data
structure. As discussed in Section 1.3, the secondary data structure can be any
strongly history-independent data structure. Recall that Lemma 1.2 implies in
particular that the expected number of stashed elements is constant, and with
overwhelming probability there are no more than logn stashed elements. Thus,
the secondary data structure is essentially required to store only a very small
number of elements. Furthermore, since the secondary data structure is probed
every time a lookup is performed, it is likely to reside most of the time in the
cache, and thus impose a minimal cost.

The practical choice. The most practical approach is instantiating the sec-
ondary data structure with a sorted list. A sorted list is probably the simplest
data structure which is strongly history independent. When a sorted list con-
tains at most s elements, insertions and deletions are performed in time O(s) in
the worst case, and lookups are performed in time O(log s) in the worst case.
In turn, instantiated with a sorted list, our data structure supports insertions,
deletions, and membership queries in expected constant time. Moreover, Lemma
1.2 implies that the probability that a lookup requires more than k probes is at
most O(n−2k

).

Constant worst case lookup time. We now propose two instantiations that
guarantee constant lookup time in the worst case. We note that these instanti-
ations result in a rather theoretical impact, and in practice we expect a sorted
list to perform much better.

One possibility is using the strongly history-independent data structure of
Blelloch and Golovin [5], and in this case our data structure supports insertions
and deletions in expected constant time, and membership queries in worst case
constant time. Another possibility is using any deterministic perfect hash table
with constant lookup time. On every insertion and deletion we reconstruct the
hash table, and since its construction is deterministic, the resulting data struc-
ture is strongly history independent. The repeated reconstruction allows us to
use a static hash table (instead of a dynamic hash table), and in this case the
construction time of the table determines the insertion and deletion time. Perfect
hash tables with such properties were suggested by Alon and Naor [1], Miltersen
[19], and Hagerup, Miltersen and Pagh [13]. Asymptotically, the construction of
Hagerup et al. is the most efficient one, and provides an O(s log s) construction
time on s elements. Instantiated with their construction, our data structure sup-
ports insertions and deletion in expected constant time, and membership queries
in worst case constant time.

History-Independent Cuckoo Hashing 641

5 Concluding Remarks

On using O(log n)-wise independent hash functions. One possible draw-
back of our construction, from a purely theoretical point of view, is that we
assume the availability of truly random hash functions, while the constructions
of Blelloch and Golovin assume O(log n)-wise independent hash functions (when
guaranteeing worst case constant lookup time) or 5-wise independent hash func-
tions (when guaranteeing expected constant lookup time). Nevertheless, sim-
ulations (see, for example, [25]) give a strong evidence that simple heuristics
work for the choice of the hash functions as far as cuckoo hashing is concerned
(Mitzenmacher and Vadhan [20] provide some theoretical justification). Thus we
expect our scheme to be efficient in practice.

Our construction can be instantiated with O(log n)-wise independent hash
functions, and still provide the same performance guarantees for insertions, dele-
tions, and membership queries. However, in this case the bound on the number
of stashed elements is slightly weaker than that stated in Lemma 1.2. Neverthe-
less, rather standard probabilistic arguments can be applied to argue that (1)
the expected number of stashed elements is constant, and (2) the expected size
of a connected component in the cuckoo graph is constant.

Alternatively, our construction can be instantiated with the highly efficient
hash functions of Dietzfelbinger and Woelfel [9] (improving the constructions
of Siegel [28] and Ostlin and Pagh [24]). These hash functions are almost nδ-
wise independent with high probability (for some constant 0 < δ < 1), can be
evaluated in constant time, and each function can be described using only O(n)
memory words. One possible drawback of this approach is that the distance to
nδ-independence is only polynomially small.

Memory utilization. Our construction achieves memory utilization of essen-
tially 50% (as in cuckoo hashing), and of 25% when supporting deletions. More
efficient variants of cuckoo hashing [8,11,26] circumvent the 50% barrier and
achieve better memory utilization by either using more than two hash func-
tions, or storing more than one element in each entry. It would be interesting to
transform these variants to history-independent data structures while essentially
preserving their efficiency.

References

1. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16(4-5), 434–449 (1996)

2. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental Cryptography: The Case
of Hashing and Signing. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839,
pp. 216–233. Springer, Heidelberg (1994)

3. Bellare, M., Goldreich, O., Goldwasser, S.: Incremental cryptography and applica-
tion to virus protection. In: 27th STOC, pp. 45–56 (1995)

4. Bethencourt, J., Boneh, D., Waters, B.: Cryptographic methods for storing ballots
on a voting machine. In: 14th NDSS, pp. 209–222 (2007)

642 M. Naor, G. Segev, and U. Wieder

5. Blelloch, G.E., Golovin, D.: Strongly history-independent hashing with applica-
tions. In: 48th FOCS, pp. 272–282 (2007)

6. Buchbinder, N., Petrank, E.: Lower and upper bounds on obtaining history-
independence. Inf. Comput. 204(2), 291–337 (2006)

7. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., auf der Heide, F.M., Rohnert,
H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput. 23(4), 738–761 (1994)

8. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theor. Comput. Sci. 380(1-2), 47–68 (2007)

9. Dietzfelbinger, M., Woelfel, P.: Almost random graphs with simple hash functions.
In: 35th STOC, pp. 629–638 (2003)

10. Erlingsson, Ú., Manasse, M., McSherry, F.: A cool and practical alternative to tradi-
tional hash tables. In: 7th Workshop on Distributed Data and Structures (2006)

11. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with
worst case constant access time. Theor. Comput. Sys. 38(2), 229–248 (2005)

12. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. J. ACM 31(3), 538–544 (1984)

13. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algo-
rithms 41(1), 69–85 (2001)

14. Hartline, J.D., Hong, E.S., Mohr, A.E., Pentney, W.R., Rocke, E.: Characterizing
history independent data structures. Algorithmica 42(1), 57–74 (2005)

15. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. Wiley-Interscience, Chich-
ester (2000)

16. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: Cuckoo hashing
with a stash (manuscript, 2008)

17. Kutzelnigg, R.: Bipartite random graphs and cuckoo hashing. In: 4th Colloquium
on Mathematics and Computer Science, pp. 403–406 (2006)

18. Micciancio, D.: Oblivious data structures: Applications to cryptography. In: 29th
STOC, pp. 456–464 (1997)

19. Miltersen, P.B.: Error correcting codes, perfect hashing circuits, and deterministic
dynamic dictionaries. In: 9th SODA, pp. 556–563 (1998)

20. Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: Exploiting the
entropy in a data stream. In: 19th SODA, pp. 746–755 (2008)

21. Molnar, D., Kohno, T., Sastry, N., Wagner, D.: Tamper-evident, history-
independent, subliminal-free data structures on PROM storage -or- How to store
ballots on a voting machine. In: IEEE S&P, pp. 365–370 (2006)

22. Moran, T., Naor, M., Segev, G.: Deterministic history-independent strategies for
storing information on write-once memories. In: 34th ICALP, pp. 303–315 (2007)

23. Naor, M., Teague, V.: Anti-persistence: History independent data structures. In:
33rd STOC, pp. 492–501 (2001)

24. Ostlin, A., Pagh, R.: Uniform hashing in constant time and linear space. In: 35th
STOC, pp. 622–628 (2003)

25. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. of Algorithms 51(2), 122–144 (2004)
26. Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: 16th

SODA, pp. 830–839 (2005)
27. Ross, K.A.: Efficient hash probes on modern processors. In: 23nd International

Conference on Data Engineering, pp. 1297–1301 (2007)
28. Siegel, A.: On universal classes of fast high performance hash functions, their time-

space tradeoff, and their applications. In: 30th FOCS, pp. 20–25 (1989)
29. Zukowski, M., Héman, S., Boncz, P.A.: Architecture conscious hashing. In: 2nd

International Workshop on Data Management on New Hardware, vol. 6 (2006)

Building a Collision-Resistant Compression Function
from Non-compressing Primitives

(Extended Abstract)

Thomas Shrimpton1 and Martijn Stam2

1 University of Lugano and Portland State University
thomas.shrimpton@unisi.ch

2 EPFL
martijn.stam@epfl.ch

Abstract. We consider how to build an efficient compression function from a
small number of random, non-compressing primitives. Our main goal is to achieve
a level of collision resistance as close as possible to the optimal birthday bound.
We present a 2n-to-n bit compression function based on three independent n-to-
n bit random functions, each called only once. We show that if the three random
functions are treated as black boxes then finding collisions requires Θ(2n/2/nc)
queries for c ≈ 1. This result remains valid if two of the three random functions
are replaced by a fixed-key ideal cipher in Davies-Meyer mode (i.e., EK(x)⊕ x
for permutation EK). We also give a heuristic, backed by experimental results,
suggesting that the security loss is at most four bits for block sizes up to 256 bits.
We believe this is the best result to date on the matter of building a collision-
resistant compression function from non-compressing functions. It also relates to
an open question from Black et al. (Eurocrypt’05), who showed that compression
functions that invoke a single non-compressing random function cannot suffice.

Keywords: Hash Functions, Random Oracle Model, Compression Functions,
Collision Resistance.

1 Introduction

The design of hash functions usually proceeds in two stages. First one designs a com-
pression function with fixed domain, typically bitstrings of some small length. One then
applies a domain extension method, such as the Merkle-Damgård transform [14,6], to
the compression function in order to construct a hash function for messages of arbitrary
length. The first part has our interest; in particular, the central problem considered by
this paper is the following one:

Given a (small) number of independentn-to-n bit random (one-way) functions,
construct a 2n-to-n bit compression function with provable collision resistance
as close as possible to the optimal 2n/2 birthday bound.

This problem is related to one recently considered by Maurer and Tessaro [12], who
consider the problem of constructing a function C : {0, 1}m(n) → {0, 1}l(n) given a
n-to-n bit random one-way function f . Setting m(n) = 2n and l(n) = n gives rise to a

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 643–654, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

thomas.shrimpton@unisi.ch
martijn.stam@epfl.ch

644 T. Shrimpton and M. Stam

2n-to-n bit compression function. Maurer and Tessaro cast security in the indifferentia-
bility framework, in which case domain extension is actually far more challenging than
range extension. For all ε > 0 they give a construction indifferentiable from a random
function against adversaries making Θ(2n(1−ε)) queries. Indifferentiability is a much
stronger requirement than just collision resistance, indeed for ε ≥ 1/2 their functions
have better proven security than ours. Unfortunately, the construction by Maurer and
Tessaro is not very efficient, to get the required collision resistance for a 2n-to-n bit
compression function requires 99 calls to the underlying primitive f .

This raises the question whether more efficient constructions are possible, at least
when one focuses primarily on collision resistance. Ideally we would like to make do
with just one random function, and to invoke it once for each n-bit block of message
digested; such a compression function would be called rate-1. Unfortunately, Black et
al. [4] have given a negative result that all but rules this out. One can also show that
rate-1/2 compression functions (with optimal collision resistance) are unlikely to exist.
Thus the best one can hope for will be a rate-1/3 compression function.

We show that this hope can be realized. In particular, we present a compression
function that calls random n-to-n bit functions f1, f2, f3, and that has almost optimal
collision resistance (here n is a parameter that can be chosen freely). When we consider
the construction for increasing n, we show that any adversary making Θ(2n/2/nc) total
oracle queries, for c > 1, has a vanishing probability of finding a collision in H . On the
other hand, for c < 1 we provide compelling arguments that an adversary exists that
will find a collision with high probability. Thus it is fair to say that finding collisions
takes around Θ(2n/2/n) queries. Experimental results, detailed in the full version [21],
suggest that for n of cryptographic relevance (up to 256 bits), the loss is at most 4 bits
of collision resistance. Of course, the standard caveats apply to these results when one
instantiates the random functions in practice.

Central to our proof is the concept of the yield of a set of queries. This is the number
of compression function evaluations an adversary can make given a certain number of
queries to the underlying primitives. Somewhat surprisingly, we can show that for our
compression function an adversary can do not much better than simply optimizing his
yield and hoping for a collision via the birthday bound. The yield can also be used to get
(crude) negative results, for instance for any rate-1/2 compression function there exists a
(greedy) adversary with yield 2n/2 using only 2n/4 queries. Since we expect good hash
functions to behave randomly, this indicates it is unlikely to find a rate-1/2 compression
function with good collision resistance. This use of the yield to obtain impossibility
results has recently been extensively generalized by Rogaway and Steinberger [20].

The construction itself is as follows: Hf1,f2,f3(V,M) = f3 (f1 (M)⊕ f2 (V)) ⊕
f1 (M). A picture of the compression function is given in Figure 1. The compres-
sion function can easily be transformed into a hash function with arbitrary domain
while preserving the collision resistance (e.g., using the Merkle-Damgård transform).
As a note of warning, we do not claim any “beyond-birthday” properties one might
hope for from a hash function, such as resistance against multi-collisions and optimal
preimage resistance. Indeed, preimages can typically be found in O(22n/3) queries,
rather than the desired Ω(2n). Rogaway and Steinberger [20] show that this reduced

Building a Collision-Resistant Compression Function 645

V f2

M f1

⊕
f3

⊕
H(V,M)

n n

n

Fig. 1. The triple-function compression function. The functions f1, f2, f3 are random n-to-n bit
functions.

preimage-resistance is to a large extent inherent to rate-1/3 schemes and not an artefact
of our particular scheme.

In the full version we also investigate what happens when one wants to instanti-
ate f1, f2 and f3 with a blockcipher with its key fixed (thus supplying the adversary
with inverse oracles for each). When f1 or f2 are instantiated directly with a fixed-
key ideal cipher (i.e., random two-way permutations instead of random functions), the
construction breaks down badly. However, we show that by using a Davies-Meyer like
construction in the place of f1 and f2 we can also deal with a fixed-key ideal cipher
in those places without loss of security. Using a fixed-key ideal cipher for f3 does not
seem to affect collision resistance, yet we do not have a full proof for this.

The problem of building compression functions from non-compressing primitives
has its historical roots in blockcipher-based hashing, although a blockcipher can already
be thought of as compressing its key and plaintext into a ciphertext. That said, there
seems to be no intrinsic theoretical reason to restrict designs to using blockciphers (or
permutations), hence our focus on simple random one-way functions (cf. [3,12]).

Interestingly, the problem of building a compression function using random func-
tions (as opposed to a fixed-key ideal cipher) has an unexpected link with that of con-
structing double-length hash functions. Specifically: given a 2n-to-n bit compression
function create a 4n-to-2n bit compression function with collision resistance close to
the optimal 2n. In the full version of this paper, we show that range extenders could
be used as an alternative means to turn a number of non-compressing random func-
tions into a compressing one, and vice versa. In particular, one can use our method to
get a rate-1/3 4n-to-2n bit double-length compression function with close to optimal
collision resistance (in the output size) based on a set of 2n-to-n bit random functions.

RELATED WORK. Bellare and Micciancio [1] introduce incremental hash functions,
which in principle could be built upon a non-compressing primitive. Crucial differences
with our work are that they build an entire hash function, not just a compression func-
tion, and that the collision resistance of their schemes is not based on query complexity
(usually just n queries suffice for a collision), but on the presumed computational hard-
ness of combining the query answers into an actual collision.

Bernstein [3] bases his Rumba20 compression function on these ideas. He xor’s to-
gether the output of four pseudorandom generators, components of the Salsa20 stream-
cipher. By modelling the underlying primitives as (independent) random one-way

646 T. Shrimpton and M. Stam

functions, he shows an upper bound (and estimate) on the full complexity for colli-
sion finding of O(2n/3), well below the birthday bound (and our lower bound). Note
that the query complexity for finding collisions is Θ(2n/8) (cf. Wagner [22]). The ex-
panding nature of Bernstein’s primitives somewhat complicates theoretical efficiency
comparisons, but the rate of his scheme is arguably 1/2, so more efficient than ours.

There has also been extensive research into the construction of hash functions based
on blockciphers. Davies-Meyer [13], Matyas-Meyer-Oseas [11], and Miyaguchi-Preneel
[15,18] are all well-known 2n-to-n bit compression functions based on a single call to
a blockcipher with n-bit key operating on n-bit blocks. These type of rate-1 construc-
tions were later systematically studied by Preneel et al. [18] and Black et al. [5], who
identified twelve distinct constructions that provide optimal collision resistance when
the blockcipher is modelled as an ideal cipher. Black et al. [5] showed that an additional
eight constructions do not yield collision resistant compression functions, yet still lead
to collision resistant hash functions when properly MD-iterated.

Most of the work related to blockcipher-based compression functions allows per-
round rekeying [5,9,16,18]. This significantly eases design and proof. Unfortunately,
rekeying has the drawback of entailing a significant computational cost: Gladman’s
implementation survey [8] shows that AES key scheduling would account for nearly
50% of the overall runtime. Thus a lower rate fixed-key solution might actually be
more efficient. Fixing the key would make use of the blockcipher in a more natural
way, namely setting up a key once and then processing relatively large amounts of data
with it (the way that blockciphers are used for encryption). A fixed-key blockcipher
would be modelled as a random two-way permutation.

Preneel et al. [17] propose a family of fixed-key constructions, but no formal security
proof is given. The rate of their scheme is always strictly smaller then 1/2 and typically
between 1/4 and 1/8. Recently (but subsequent to the initial presentation of our work),
Rogaway and Steinberger [19] have constructed a rate-1/3 scheme based on a fixed-key
ideal cipher that achieves security comparable to ours.

2 Preliminaries

GENERAL NOTATION. For a positive integer n, we write {0, 1}n for the set of all bit-
strings of length n. When X and Y are strings we write X ||Y to mean their concate-
nation and X ⊕ Y to mean their bitwise exclusive-or (xor). Unless specified otherwise,
we will consider bitstrings as elements in the group ({0, 1}n,⊕).

For positive integers m and n, we let Func(m,n) denote the set of all functions
mapping {0, 1}m into {0, 1}n. We write f

$← Func(m,n) to denote random sampling
from the set Func(m,n) and assignment to f . Unless otherwise specified, all finite sets
are equipped with a uniform distribution.

DISTRIBUTIONS AND TENSORS. With ({0, 1}n)q we denote the set of q-element vec-
tors, or q-vectors, in which each element is an n-bit string. When a ∈ ({0, 1}n)q and
b ∈ ({0, 1}n)q , we will write a = (a1, . . . , aq) and b = (b1, . . . , bq) when we wish to
stress its components.

Building a Collision-Resistant Compression Function 647

Fix a value q, and let Q = q2. We define a ⊗ b ∈ ({0, 1}n)Q as the tensor product
under exclusive-or, where we identify ({0, 1}n)q×q with ({0, 1}n)q·q = ({0, 1}n)Q.
More concretely (a ⊗ b)i,j = ai ⊕ bj for i and j in [1, . . . , q]. (Whenever possible
we will try to use dummy i to refer to elements of a and dummy j to refer to those of
b.) If A and B are both distributions over ({0, 1}n)q, this tensor operation induces a
distribution over ({0, 1}n)Q, which we will denote by the symbol A⊕B. Unless other-
wise specified, we will assume throughout that A and B are two distributions induced
by sampling from ({0, 1}n)q without replacement. We will use U to denote the uni-
form distribution over ({0, 1}n)Q (where n and Q will often follow from the context).
Thus U corresponds to sampling Q strings from {0, 1}n uniformly and independently
with replacement.

If in a random sample some value appears exactly k times, we say there is a k-way
collision in that sample. Let MU (k) be the random variable describing the number of
k-way collisions when the samples are drawn according to the distribution U . Similarly,
let MA⊕B(k) be the random variable describing the number of k-way collisions when
the samples are drawn according to the distribution A⊕B.

COMPRESSION FUNCTION SECURITY. When algorithms are provided with oracles,
we write them as superscripts. A compression function is a mapping from {0, 1}n ×
{0, 1}m to {0, 1}n for some m,n > 0. For us, a compression function H must be given
by a program that, given (V,M), computes H ···(V,M) via access to a finite number
of specified oracles. A collision-finding adversary is an algorithm with access to one or
more oracles, whose goal it is to find collisions in some specified compression function.

Definition 1. Let n, � > 0 be integer parameters. Let H : {0, 1}n×{0, 1}n → {0, 1}n
be a compression function taking � oracles. LetA be a collision-finding adversary for H
that takes � oracles. The collision-finding advantage ofA is defined to be

Advcoll
H(n)(A) = Pr

[
f1, . . . , f�

$← Func(n, n), (V,M), (V ′,M ′) ← Af1(·),...,f�(·) :

(V,M) �= (V ′,M ′) and Hf1,...f� (V,M) = Hf1,...,f�(V ′,M ′)
]

Furthermore, for q > 0, we define Advcoll
H(n)(q) as the maximum of Advcoll

H(n)(A) over
all adversaries A making at most q queries.

When the compression function H is defined for arbitrary positive integers n, we will
be able to make asymptotic statements about collision resistance.

We consider information-theoretic adversaries in order to make a strong statement
about collision resistance. That is, our adversaries are computationally unbounded and
their complexity is measured only by the number of queries made to the oracles for the
non-compressing primitives. Without loss of generality, we assume that adversaries do
not repeat queries to oracles and that they do not query an oracle outside of its specified
domain.

COLLISIONS. In bounding the probability of finding a collision in our compression
function, we will need the distribution of k-way collisions when the samples from
{0, 1}n are distributed according to A⊕B. For the sequel, to bound the collision finding

648 T. Shrimpton and M. Stam

probability either upwards or downwards, the following lemma suffices (proven in the
full version).

Lemma 2. For some positive integers q, n, let Q = q2 and N = 2n, and let λ = Q/N .
Let q-vectors a and b have elements drawn according to A and B, respectively (i.e.,
uniformly from {0, 1}n without replacement). Then

1. When q, n tend to infinity such that λ→ 0, E[MA⊕B(k)] tends to Ne−λ λk

k! .

2. For all k > 0 we have
∑

κ≥k Pr[MA⊕B(κ) > 0] ≤ (q!)22n(2n−k)!
((q−k)!)2k!(2n)! .

For notational convenience, the righthand side of the inequality will be denoted by
Pq,k,n.

3 The Rate-1/3 Compression Function

We want to show that H (see Figure 1) is collision-resistant, so that it can be iterated to
create a collision-resistant hash function [14,6,2,7]. In the sequel, we will model f1, f2,
and f3 as three independent, uniform elements of Func(n, n), and simply refer to our
construction as Hf1,f2,f3 (or just H when it is not necessary to make the component
functions explicit). We proceed to bound the probability that a computationally un-
bounded adversary can find a collision as a function of the number of its oracle queries.
In particular, we will prove the following statement.

Theorem 3. Fix n > 0 and let Hf1,f2,f3 be as previously defined. Then for all k, q ≥ 0
we have Advcoll

H(n)(q) ≤ q2

2n + (kq)2

2n + Pq,k,n.

Section 4 is dedicated to a proof of this theorem. What is more the following lemma
provides asymptotic upper and lower bounds on the number of queries required to find
collisions. The first item is a corollary of Theorem 3 and we will give a short proof
sketch. The second item is proven after the proof of Theorem 3. Lemma 4 can be loosely
rephrased by saying that to find collisions with any constant (non-zero) probability
Θ̃(2n/2) queries are necessary and sufficient.

Lemma 4. 1. For any c > 1 and all adversaries making at most O(2n/2/nc) queries
it holds that limn→∞Advcoll

H(n)(A) = 0 .

2. For any c < 1 there exists an ε > 0 and an adversary asking Θ(2n/2/nc) queries
for which, under a uniformity assumption, Advcoll

H(n)(A) > ε for all sufficiently
large n.

Proof: (Sketch, item 1.) Let d be such that c > d > 1 and consider the upper bound
from Theorem 3 with k = nd and q = 2n/2/nc. Then as n→∞ all three terms tend to
zero. Details of the asymptotic analysis can be found in the full version. Q.E.D.

In the remainder of this section we build some intuition about the compression function
and the necessary requirements on f1, f2, f3 when instantiated in practice. For a clas-
sical birthday attack, an attacker would need to evaluate the compression function H
on roughly 2n/2 inputs to succeed. Clearly, one can obtain this many evaluations by

Building a Collision-Resistant Compression Function 649

querying each of the f1, f2, f3 oracles on this many points. However, the structure of
the compression function may make things easier for the adversary. In particular, ask-
ing q queries to each of the oracles can provide more than q evaluations of H , due to
internal xor-collisions at the input to f3. In the next section we will introduce the yield
of a query set, and use it to measure the number of H evaluations an adversary can
make given q queries to each of the oracles.

We note that in the construction of H any bijection can be applied to the inputs and
the output without affecting the collision resistance as bounded by Theorem 3. This
freedom might yield a possible avenue to strengthen the hash function when iterating
the compression function, without aversely affecting the security of the compression
function itself.

PRACTICAL CONSIDERATIONS. Firstly, a collision in either f1 or f2 easily leads
to a collision on the full compression function. In fact, it is even worse, since a sin-
gle colliding pair M,M ′ for f1 can be used for any chaining value V . That is, if
f1(M) = f1(M ′), then for all V it holds that H(V,M) = H(V,M ′). The precise
ramifications of such an attack are unclear, although it for instance allows finding k-
way collisions in a standard (strengthened) MD-iterate in query complexity Θ(2n/2),
which is an improvement over Joux’ [10] Θ(2n/2 log k). We will not delve into this in
great detail; actual attacks based on this property will also crucially rely on the iteration
method used (and if multi-collisions are an issue one should not rely on the standard
MD-transform).

Secondly, from the proof it will be clear that our construction is equally secure if
the random functions are replaced by random one-way permutations. However, if ei-
ther f1 or f2 are invertible, an adversary can find collisions in H by making O(2n/4)
oracle queries. Say that f2 is invertible. Then the adversary makes 2n/4 queries to
both f1 and f3. With reasonable probability this will result in an internal xor-collision
f1(M)⊕ f3(Z) = f1(M ′) ⊕ f3(Z ′). Inverting f2 on Z ⊕ f1(M), resp. Z ′ ⊕ f1(M ′)
will give a collision for H . Similarly if f1 is invertible, call f2 and f3 each 2n/4 times
to find an internal xor-collision f2(V) ⊕ f3(Z) ⊕ Z = f2(V ′) ⊕ f3(Z ′) ⊕ Z ′. Now
inverting f1 on Z ⊕ f2(V) and Z ′ ⊕ f2(V ′) will complete the collision. If both f1 and
f2 are invertible, only two calls to f3 are needed to find a collision. Thus we will need
(at least) for f1 and f2 to be collision-resistant and one-way. In particular, this rules out
the straightforward blockcipher implementation fi(M) = EKi(M) for fixed (distinct)
keys Ki, i ∈ {1, 2}, as this violates the one-way requirement. Nonetheless, one could
instantiate the functions f1, f2 with a simple blockcipher-based function. In the full ver-
sion we show that, for example, instantiation as fi(X) = EKi(X) ⊕ X , (i ∈ {1, 2},
where K1 and K2 are fixed and publicly known keys) gives a collision-resistant com-
pression function in a combined model using a random oracle for f3 and an ideal cipher
for E.

Instantiating f3 with f3(X) = EK3(X)⊕X is pointless: it essentially results in the
original rate-1/3 scheme with the inputs swapped and f3 replaced with EK3 . Luckily,
neither invertibility of f3 nor collisions in f3 appear to be useful for finding collisions
in H . It would be interesting to see whether our construction can be proven secure (with
similar collision resistance), in the ideal cipher model for f3. Note that invertibility of

650 T. Shrimpton and M. Stam

f3 is useful for finding preimages, allowing a meet-in-the-middle attack using only
Θ(2n/2) (as shown later).

4 Proof of Theorem 3 and Lemma 4

In this section we will prove Theorem 3 and the second item of Lemma 4. Following
the proof, we will also give some intuition why one expects that Θ̃(22n/3) queries are
necessary and sufficient to find preimages. This provides a fairly complete asymptotic
characterization of the newly proposed construction.

SETTING UP THE PROOF. We will distinguish between three ways for an adversary to
find a collision in H . It can try to find a collision in f1 or f2, since either would lead
to a collision in H , as already shown above. Failing that, it can try to find a collision in
the final output. This leads to the following upper bound

Advcoll
H(n)(A) ≤Pr[A finds collision in f1] + Pr[A finds collision in f2]

+ Pr[A finds collision in H |no collisions in f1 or f2] .

The probabilities of finding a collision in f1 or f2 are ordinary collision-finding
problems and hence well understood. For q ≤

√
N these probabilities roughly sum

up to (and are upper bounded by) q2

N , the first term in the upper bound of Theorem 3.
Needless to say, if f1 and f2 are (random) permutations, no collisions exist and both
probabilities are always zero. In any case, we can concentrate on the probability of A
finding a collision in H when f1 and f2 are collision free. Henceforth we will therefore
model f1 and f2 as random (one-way) permutations, but f3 still as a random (one-way)
function.

We also make the following standard assumptions, all without loss of generality.
Firstly, we assume that the adversary makes exactly q queries to each of the three ora-
cles, f1, f2, f3: for any adversary that makes qi queries to fi there is an adversary that
makes q = max(q1, q2, q3) queries to each of the oracles with identical success proba-
bility. Secondly, we will assume that adversaries actually compute Hf1,f2,f3(V,M) and
Hf1,f2,f3(V ′,M ′) before outputting their candidate collisions. In particular, this means
that all necessary queries to f1, f2 and f3 are made before halting.

REMOVING THE ADVERSARY. Normally we would imagine that the adversary makes
queries to all three oracles in some adaptive, probabilistic manner. But here we cannot
only argue away the adversary’s adaptivity, but we can remove the adversary altogether.
Recall that f1, f2, f3 are independent oracles, and let us focus for a moment on the
adversary’s queries to f1 and f2.

Knowing that A makes q queries to each, we can imagine preparing the answers in
advance. That is, before the adversary starts querying the oracles, we make two lists,
each of q random elements, and when the adversary makes a query to one of the two
oracles f1 or f2, we supply it with the next element of the respective list. Because
the inputs to f1 and f2 are not used elsewhere in the compression function, the actual
correspondence between query and response is irrelevant. Consequently, we might as

Building a Collision-Resistant Compression Function 651

well have provided the two lists to the adversary before any queries to f1 or f2, and
even at the very beginning of the collision-finding game, in advance of any f3 queries,
given f3’s independence of f1 and f2.

DEFINING THE YIELD. A netral quantity in bounding an adversary’s succes is what we
call the yield. Formally, given a vector c = (c1, . . . , cQ) ∈ ({0, 1}n)Q, define

yield(c) = max
G⊆{0,1}n

|G|=q

∑

g∈G

Q∑

i=1

[ci = g]

where [true] = 1 and [false] = 0. Thus the yield counts the total number of occurences
of the q most frequent elements in a vector. We also define the yield over the tensor of
two q-vectors. Given vectors a = (a1, . . . , aq) and b = (b1, . . . , bq) in ({0, 1}n)q , we
will define the yield of tensor a⊗ b to be

yield(a⊗ b) = max
G⊆{0,1}n

|G|=q

∑

g∈G

q∑

i=1

q∑

j=1

[ai ⊕ bj = g] .

Let us give some intuition for this latter definition, in particular. Recall that we will give
the response lists of f1 and f2, call these a = (a1, . . . , aq) and b = (b1, . . . , bq) (resp.),
to the adversary prior to its making any f3 queries. These q queries to f3 can be made
according to any strategy. One such strategy, already mentioned in the previous section,
is to query the f3 oracle on those values for which it knows the greatest total number
of xor-preimages, thereby maximizing the number of inputs for which it can evaluate
the compression function. It is precisely this number that the yield of a⊗ b represents:
the number of compression function outputs that the adversary can evaluate by asking q
queries to f3.

CONNECTING THE PIECES. We still need to show how the yield relates to the collision-
finding probability of the adversary. Let dr, for r = 1, . . . , q, denote the number of pairs
(i, j) such that ai ⊕ bj equals the input of the r-th query to f3. Suppose that after r− 1
queries to f3, the adversary still has not found a collision. Then it will be able to output
preimages for

∑r−1
s=1 ds hash values (or, equivalently, it will be able to output the hash

value for that many preimages). With its rth call to f3 it will be able to evaluate dr new
hash values, and the probability that one collides with one of the older values is therefore
upper bounded by dr

∑r−1
s=1 ds/2n. The upper bound is not always tight. Consequently,

picking the elements corresponding to the maximal yield is sometimes not the optimal
strategy for finding a collision; picking elements that are slightly less common might
actually increase the chances of finding a collision, nonetheless the same upper bound
will apply.

Summing over all queries to f3 leads us to the following upper bound

Pr[A finds collision in H | no collisions in f1 or f2] ≤
q∑

r=1

r−1∑

s=1

drds/2n .

What can we say about this value? Firstly, the possible values of dr are determined
by a and b and the maximum

∑q
s=1 ds = yield(a⊗b). Suppose we allow the adversary

652 T. Shrimpton and M. Stam

to partition yield(a⊗b) arbitrarily in q (real) parts dr. The optimal way, in the sense of
maximizing the sum above, is then to choose dr = yield(a⊗ b)/q for all r = 1, . . . , q
(optimality of this choice can be shown by induction). In that case we have

Pr[A finds collision in H| no collisions in f1 or f2] ≤
q∑

r=1

r−1∑

s=1

drds/2n

≤
q∑

r=1

r−1∑

s=1

(yield(a⊗ b)/q)2/2n

≤ yield(a⊗ b)2/2n+1 .

Moreover, if we would assume that the compression function outcomes for an adversary
optimizing its yield are uniformly distributed, the probability that a collision occurs will
satisfy the birthday bound, that is Advcoll

H(n)(A) ≈ 0.63 ·yield(a⊗b)2/2n+1 giving us
nearly matching upper and lower bounds. Our task then is to put bounds on the expected
value of yield(a ⊗ b), or rather its square, where the elements in a and b are chosen
independently, uniformly at random from {0, 1}n (without replacement).

To upper bound the yield we recall that it is the sum of the frequencies of the q
most frequent elements in a ⊗ b. As such, the trivial upper bound on the yield is the
cardinality of a ⊗ b, that is Q = q2. Moreover, if all collisions in a ⊗ b are less than
k-way, then the yield is (strictly) smaller than kq. We can combine the two bounds as
well. Let p be an upper bound on the probability that at least one collision that is at
least k-way occurs in a⊗ b. Then conditioning on this event and employing the above
observations yields that

Pr[A finds collision in H | no collisions in f1 or f2] ≤ (kq)2/2n + p .

By Lemma 2 we can use Pq,k,n as our upper bound p. This concludes the proof of the
upper bound of an adversary’s advantage.

To lower bound the adversary’s advantage, we need to lower bound the expected
yield. We will only do this asymptotically, proving the second item of Lemma 4. Given
c < 1, let d be such that c < d < 1 and consider the expected number of k-way colli-
sions for k = nd. By Lemma 2, this number is given by λk . In the full version, we show
that asymptotically the expected number of k-way collisions exceeds q. Consequently
the yield is at least kq = 2n/2nd−c and the probability of a collision tends to one.

A NOTE ON PREIMAGE RESISTANCE. Although our goal is to demonstrate a con-
struction that yields a compression function with good collision resistance, other useful
properties should also be mentioned. Ideally, finding a preimage takes expected time
2n for an n-bit primitive. To get an idea of the preimage resistance of the current pro-
posal, we can look at the value of q for which the yield is around 2n. If q > 2n/2,
a lower bound (and reasonable estimate) for the yield is q3/2n. Since q3/2n ≈ 2n

for q ≈ 2
2
3n it follows that our construction is not as preimage resistant as one might

wish for. However, Rogaway and Steinberger [20] recently showed that this reduced
preimage resistance is all but inevitable. Indeed, for any rate-1/3 scheme there exists
an adversary whose yield is at least 2n after 22n/3 queries, which will likely lead to a
preimage.

Building a Collision-Resistant Compression Function 653

When f3 is a random two-way permutation instead of a random one-way function,
finding preimages becomes easier due to a meet-in-the-middle attack pointed out to us
by Antoine Joux. Given a target h, the adversary queries f1 on q = 2n/2 arbitrary values
leading to f1(V1), . . . , f1(Vq) and subsequently queries f−3

3 on the values h⊕f1(Vi) for
i = 1, . . . , q. After querying f2 on q arbitrary values (leading to f2(M1), . . . , f2(Mq))
a preimage is obtained if f2(Mi) = f−1

3 (h⊕ f1(Vj)) which will occur with probability
q2/2n ≈ 1.

POISSON HEURISTIC TO APPROXIMATE THE YIELD. In the full version we develop
an alternative characterization of yield(a ⊗ b) and recast the problem of finding the
expected value yieldA⊕B

n (q) into that of determining a certain property of the tail of
a Poisson distribution. Experimental results give concrete estimates of the collision re-
sistance of our proposal in practice, and it turns out that for n up to 256, the loss in
collision resistance is at most four bits.

5 Conclusion

In this paper we have proposed a rate-1/3 2n-to-n bit compression function based on
three random n-to-n bit functions. If the three underlying functions are modelled as
random oracles, finding collisions requires roughly 2n/2/n queries. Preimage resistance
is loosely estimated to be around 22n/3. Since the attacks based on optimizing the yield
are inherently time and space consuming, it is unclear whether in practice algorithms
can be found with a time complexity matching these query complexities (meaning our
scheme will be harder to break).

Acknowledgements. We would like to thank Antoine Joux, Thomas Ristenpart and
David Wagner for clarifying discussions. We also thank the anonymous reviewers for
their feedback. Much of this paper was developed while the first author was visiting
LACAL at EPFL, and he thanks them for their hospitality. Also, he was supported in
part by NSF grant CNS-0627752.

References

1. Bellare, M., Micciancio, D.: A new paradigm for collision-free hashing: incrementality at re-
duced cost. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 163–192. Springer,
Heidelberg (1997)

2. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and the EMD
transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314.
Springer, Heidelberg (2006)

3. Bernstein, D.: The Rumba20 compression function (2007),
http://cr.yp.to/rumba20.html

4. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly efficient blockcipher-
based hash functions. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
526–541. Springer, Heidelberg (2005)

5. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-
function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442.
Springer, Heidelberg (2002)

http://cr.yp.to/rumba20.html

654 T. Shrimpton and M. Stam

6. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435. Springer, Heidelberg (1990)

7. Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K.: Constructing secure hash func-
tions by enhancing Merkle-Damgård construction. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Heidelberg (2006)

8. Gladman, B.: Implementation experience with AES candidate algorithms. In: Second AES
Conference (1999)

9. Hirose, S.: Provably secure double-block-length hash functions in a black-box model. In:
Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg
(2005)

10. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions.
In: Franklin, M.K. (ed.) Advances in Cryptology – CRYPTO 2004. LNCS, vol. 3621, pp.
306–316. Springer, Heidelberg (2004)

11. Matyas, S., Meyer, C., Oseas, J.: Generating strong one-way functions with cryptographic
algorithms. IBM Technical Disclosure Bulletin 27(10a), 5658–5659 (1985)

12. Maurer, U., Tessaro, S.: Domain extension of public random functions: Beyond the birth-
day barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 187–204. Springer,
Heidelberg (2007)

13. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC
Press, Boca Raton (1996)

14. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) Advances in Cryptol-
ogy – CRYPTO 1989. LNCS, vol. 435, pp. 428–466. Springer, Heidelberg (1990)

15. Miyaguchi, S., Iwata, M., Ohta, K.: New 128-bit hash function. In: Proceedings 4th Interna-
tional Joint Workshop on Computer Communications, pp. 279–288 (1989)

16. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.: Combining compression functions and
block cipher-based hash functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

17. Preneel, B., Govaerts, R., Vandewalle, J.: On the power of memory in the design of collision
resistant hash functions. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718,
pp. 105–121. Springer, Heidelberg (1993)

18. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic
approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer,
Heidelberg (1994)

19. Rogaway, P., Steinberger, J.: How to build a permutation-based hash function (manuscript,
2008)

20. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg
(2008)

21. Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-
compressing primitives. Technical Report 409, IACR e-print (2007)

22. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

Robust Multi-property Combiners for Hash

Functions Revisited

Marc Fischlin1, Anja Lehmann1, and Krzysztof Pietrzak2

1 Darmstadt University of Technology, Germany
www.minicrypt.de

2 CWI, Amsterdam, Netherlands

Abstract. A robust multi-property combiner for a set of security
properties merges two hash functions such that the resulting function
satisfies each of the properties which at least one of the two starting
functions has. Fischlin and Lehmann (TCC 2008) recently constructed a
combiner which simultaneously preserves collision-resistance, target
collision-resistance, message authentication, pseudorandomness and in-
differentiability from a random oracle (IRO). Their combiner produces
outputs of 5n bits, where n denotes the output length of the underlying
hash functions.

In this paper we propose improved combiners with shorter outputs.
By sacrificing the indifferentiability from random oracles we obtain a
combiner which preserves all of the other aforementioned properties but
with output length 2n only. This matches a lower bound for black-box
combiners for collision-resistance as the only property, showing that the
other properties can be achieved without penalizing the length of the
hash values. We then propose a combiner which also preserves the IRO
property, slightly increasing the output length to 2n+ ω(logn). Finally,
we show that a twist on our combiners also makes them robust for one-
wayness (but at the price of a fixed input length).

1 Introduction

The concept of hash function combiners has been introduced by Herzberg [4] as
an approach to create hash functions which are more resistant to cryptanalytic
results. A combiner for some security property is a combination of two candidate
hash functions such that the resulting function satisfies the property as long as
at least one of the candidates has this property. For example, the “concatena-
tion combiner” CH0,H1

‖ (M) = H0(M)‖H1(M) preserves the property of being
collision-resistant (CR) and target collision-resistant (TCR), because a collision
M �= M ′ for the combiner is always also a collision for both components H0 or
H1. Thus if either of the hash function H0 or H1 is collision-resistant, then so is
the combined function.

Nowadays hash functions are often deployed in many facets, e.g., as pseudo-
random functions in TLS or message authentication codes in IPSec, and thus
provide numerous properties beyond collision-resistance. While the concatena-
tion combiner preserves the MAC property, the PRF property is in general not

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 655–666, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

656 M. Fischlin, A. Lehmann, and K. Pietrzak

conserved. In contrast, the “XOR combiner” CH0,H1
⊕ (M) = H0(M) ⊕ M1(M)

is robust with respect to PRF, and also for indistinguishability from a random
oracle (IRO), but neither preserves the CR nor the TCR property.

Ideally, one would like to have a single combiner preserving many properties
simultaneously. To this end, Fischlin and Lehmann [3] have introduced the notion
of robust multi-property combiners for a set of security properties prop. Accord-
ing to their strongest notion such a combiner satisfies the property P ∈ prop

if P is satisfied by at least one of the two candidate hash functions. Their com-
biner, denoted here as C5P, preserves all of the discussed properties, i.e., (target)
collision-resistance (TCR, CR), pseudorandomness (PRF), message authentica-
tion (MAC) and indifferentiability from a random oracle1 (IRO).

Paying tribute to the fact that several properties are conserved, the C5P com-
biner requires an output length of 5n bits for the underlying hash functions with
n-bit outputs, as opposed to 2n bits for the concatenating combiner for collision
resistance or the n bits for the XOR combiner for pseudorandomness. Note that
the lower bounds for black-box combiners preserving collision-resistance only
[2,7] suggest that 2n is essentially the best we can hope for if collision-resistance
is among the multiple properties. This raises the question if the lower bound can
be matched.

M

H0
0 H0

1

⊕ H1
⊕

⊕ H2
⊕

⊕ H3
⊕

M

PIP

H0
0 H0

1

⊕ H1
⊕

⊕ H2
⊕

⊕ H3
⊕

M

H0
0 H0

1

⊕

⊕ H1
⊕ lsbm

⊕ H2
⊕

H3
⊕ PIF

lsb3m

⊕

αM

αM

Fig. 1. Illustration of the basic construction C4P (left) preserving CR,PRF,TCR and
MAC. Here Hi

b(·) denotes Hb(〈i〉2 ‖·) where 〈i〉2 is the binary representation of the
integer i with two bits.Hi

⊕(·) denotesHi
0(·)⊕Hi

1(·). By applying a pairwise independent
permutation to the input of H0

0 we get our construction C4P&OW (center), which also
preserves OW. Because of the PIP, the input length of the construction must now
be fixed. The combiner C4P&IRO (right) also preserves the IRO property (besides the
four properties preserved by C4P), at the prize of an increased output length. This
is achieved by adding a third branch to the basic construction which is based on a
“signature” value αM depending on an input M and a pairwise independent function.

1 Indifferentiability from a random oracle is sometimes also referred to as “being a
pseudorandom oracle”.

Robust Multi-property Combiners for Hash Functions Revisited 657

The Combiner C4P. In this paper we first propose a combiner C4P with opti-
mal output length of 2n bits and which preserves all the properties of the C5P

combiner from [3], except for indifferentiability from random oracles. The basic
idea of this construction is to use the concatenation combiner C‖, and to apply a
three-round Feistel permutation to its output, where the round functions of the
Feistel network are constructed by using the XOR-combiner C⊕ (cf. Figure 1).
The round functions are made somewhat independent by prepending the round
number to the input.

The rationale here is that applying the Feistel (or any other) permutation to
the output of C‖ still preserves the CR, TCR and MAC properties, e.g., collisions
for C‖ are pulled through the downstream permutation and can be traced back
to collisions for C‖. At the same time, one achieves robustness for the PRF
property. The latter can be seen as follows: if either H0 or H1 is pseudorandom,
then the round functions in the Feistel network are pseudorandom as H⊕ is a
secure combiner for pseudorandom functions. The Luby-Rackoff [5] result now
states that a three-round Feistel-network, instantiated with quasi independent
pseudorandom functions, is a pseudorandom permutation. We note that the
formal argument also needs to take into account that finding collisions in the
keyed version of the initial C‖ computation is infeasible.

Preserving IRO. In Section 4.2 we modify the C4P construction such that it
also preserves indifferentiability from a random oracle. The obstruction of the
IRO robustness in the C4P combiner stems from the invertibility of the Feistel
permutation: an adversary trying to distinguish the output of the combiner from
a random function (given access to the underlying hash function components, as
opposed to the case of pseudorandom functions for example) can partly “reverse
engineer” images under the combiner. Hence, we introduce a “signature” value
αM (depending on the input message M), entering the round functions in the
Feistel network and basically allowing combiner computations in the forward
direction only.

The description of our enhanced combiner C4P&IRO is given in Figure 1. The
signature αM is taken as (a prefix of) the XOR of the output halves of the C‖
combiner and is used as additional input parameter in the Feistel round func-
tions, allowing us to also save one round of the Feistel structure. Note that this
essentially means that different Feistel permutations may be used for different
inputs M,M ′, because the signatures αM , αM ′ may be distinct. In order to ap-
ply again the argument that the Feistel permutation does not interfer with the
CR,TCR and MAC robustness of the concatenating combiner, we therefore also
need to ensure that finding “bad” pairs αM and αM ′ is infeasible. To this end we
introduce another output branch which basically guarantees collision resistance
of the signatures. This additional output is of length 3m for some m = ω(logn),
yielding an overall output length of 2n + ω(logn).

Preserving One-Wayness. Even though both our solutions are robust for an
important set of properties they are still not known to be good combiners for
one-wayness. Our results so far merely show that they are one-way functions

658 M. Fischlin, A. Lehmann, and K. Pietrzak

making for example the potentially stronger assumption that one of the two
hash functions is collision-resistance. In Section 5 we therefore show how to
augment our constructions such they also preserves the one-wayness property.

The idea is that applying a pairwise-independent permutation (PIP) to the
input of H0 (or H1) in the concatenation combiner C‖ makes this combiner also
robust for one-wayness. Then we can use this modified concatenation combiner
in the initial stages of our previous constructions, noting again the subsequent
Feistel permutations do not interfer with this property either. Yet, as the descrip-
tion length of a PIP is linear in its input length, the input length of the derived
combiners must be fixed, too, giving one-wayness as an additional property.

2 Preliminaries

2.1 Hash Functions and Their Properties

A hash functionH = (HKGen,H) is a pair of efficient algorithms such that HKGen
for input 1n returns (the description of) a hash function H , and H for input H
and M ∈ {0, 1}∗ deterministically outputs the hash value H(M) ∈ {0, 1}n.
Often, the hash function is based on a public initial value IV which is replaced
by a secret key K when the hash function is used as a pseudorandom function or
a MAC.2 For such a keyed hash function we write H(K,M). If the key generation
algorithm is clear from the context,we simply identify the hash function with its
digest values H(·).

The following are security properties that are often required by cryptographic
applications from hash functions.

collision resistance (CR): The hash function is called collision-resistant if for
any efficient algorithm A the probability that for H ← HKGen(1n) and
(M,M ′) ← A(H) we have M �= M ′ but H(H,M) = H(H,M ′), is negligible
(as a function of n).

target collision-resistance (TCR): A hash function is called target collision-
resistant if any adversary A consisting of two efficient algorithms (A1,A2)
has negligible success probability of winning the following experiment. Let
A1(1n) first generate the target message M and possibly some additional
state information st. Then, a hash function H ← HKGen(1n) is chosen andA2

on input (H,M, st) tries to compute a colliding message M ′. The adversary
A wins if M �= M ′ but H(M) = H(M ′).

pseudorandomness (PRF): A keyed hash function H(K, ·) where the key gen-
eration algorithm outputs a public part (H, IV) and IV is replaced by a secret
key K, is called pseudorandom if for any efficient adversary D the advantage
Pr
[
DH(K,·)(H) = 1

]
− Pr

[
Df (H) = 1

]
is negligible, where the probability

in the first case is over D’s coin tosses, the choice of H ← HKGen(1n) and

2 Here IV is understood as a general parameter, possibly consisting of pairs of keys
as in NMAC or HMAC, and not only as a single-valued paramter as in the Merkle-
Damgȧrd design principle.

Robust Multi-property Combiners for Hash Functions Revisited 659

the key K, and in the second case over D’s coin tosses, the choice of H ←
HKGen(1n), and the choice of the random function f : {0, 1}∗ → {0, 1}n.

message authentication (MAC): We say that a keyed hash function (as de-
fined for PRFs) is a secure MAC if for any efficient adversaryA the probabil-
ity that for H ← HKGen(1n) and random key K and (M, τ) ← AH(K,·)(H)
we have τ = H(K,M) and M has never been queried to oracle H(K, ·), is
negligible.

indifferentiability from random oracles (IRO): Indifferentiability [6] is a
generalization of indistinguishability allowing to consider random oracles
that are used as a public component. More formally, a hash function Hf

based on a random oracle f is indifferentiable from a random oracle F if
for any efficient adversary D there exists an efficient algorithm S such that
the advantage Pr

[
DHf ,f (H) = 1

]
−Pr

[
DF ,SF (H)(H) = 1

]
is negligible in n,

where the probability in the first case is overD’s coin tosses, H ← HKGen(1n)
and the choice of the random function f , and in the second case over the
coin tosses of D and S, and H ← HKGen(1n) and over the choice of F .

one-wayness (OW): A hash function is called one-way if for any efficient al-
gorithm A the probability that for H ← HKGen(1n) and for random M
(chosen from some domain which is clear from the context) the probability
that A(H,H(M)) returns M ′ with H(M ′) = H(M), is negligible.

2.2 Robust Multi-property Combiners

We now give a formal definition of robust multi-property combiners. A hash
function combiner C = (CKGen,C) for some security property P is a pair of
algorithms which, when instantiated with two hash functions H0,H1, itself im-
plements a hash function, such that the combined function satisfies P if at least
one of the two candidates satisfies P. The concept of combiners for multiple
properties prop = {P1,P2, . . . ,PN} has been introduced in [3] and distinguishes
between different levels of robustness. In the weakest case the combiner inherits
a set of multiple properties if one of the hash functions is strong and has all the
properties (weakly robust), whereas the strongest notion only requires that each
property individually is provided by at least one of the two candidates (strongly
robust). In between, there are mildly robust combiners for which one property
may support the implementation of another property. In this paper we only con-
sider strongly robust multi-property combiners. We denote by prop(H) ⊆ prop

for a set prop = {P1,P2, . . . ,PN} the properties which hash function H has.

Definition 1 (Multi-Property Robustness). A hash function combiner C =
(CKGen,C) is strongly multi-property-robust (sMPR) for a set prop =
{P1,P2, . . . ,PN} of properties, if for any hash functions H0,H1 we have Pi ∈
prop(H0) ∪ prop(H1) =⇒ Pi ∈ prop(CH0,H1).

In our construction the key-generation procedure CKGen of the combiner calls
the key-generation procedure HKGen of H0 and H1 (and possibly samples some

660 M. Fischlin, A. Lehmann, and K. Pietrzak

other random variables like pairwise independent permutations), and then uses
the two sampled functions H0 and H1 in the evaluation procedure CH0,H1 as
“black-boxes”. For the IRO property we assume that the evaluation procedure
is given access to the oracles directly. The security property then requires that
CH0,H1 is indifferentiable from a random oracle if H0 or H1 is a random oracle,
and the other oracle is arbitrary.

3 The C4P Combiner for CR, PRF, TCR and MAC

In this section we introduce the construction of our basic combiner C4P as illus-
trated in Figure 1. Recall that the idea of this combiner is to apply a Feistel per-
mutation (with quasi independent round functions given by the XOR combiner)
to the concatenating combiner to ensure CR, PRF, TCR and MAC robustness.

3.1 Our Construction

The three-round Feistel permutation P 3 over {0, 1}2n is given by the round
functions Hi

⊕(·) = Hi
0(·)⊕Hi

1(·) for i = 1, 2, 3, with Hi
b(·) denoting the function

Hb(〈i〉2 ‖·) where 〈i〉2 is the binary representation of the integer i with two
bits. In the i-th round the input (Li, Ri) is mapped to the output (Ri, Li ⊕
Hi
⊕(Ri)). We occassionally denote this Feistel permutation more explicitly by

ψ[H1
⊕, H

2
⊕, H

3
⊕](·).

Our combiner, instantiated with hash functionsH0,H1, is a pair of efficient al-
gorithms C4P = (CKGen4P,C4P) where the key generation algorithm CKGen4P(1n)
samples H0 ← HKGen0(1n) and H1 ← HKGen1(1n). The evaluation algorithm
CH0,H1

4P for parameters H0, H1 and input message M outputs

CH0,H1
4P (M) = P 3(H0

0 (M)‖H0
1 (M)).

3.2 Multi-property Robustness

We next show that the construction satisfies the strongest notion for robust
multi-property combiners:

Theorem 1. C4P is a strongly robust multi-property combiner for prop =
{CR,PRF,TCR,MAC}.

Recall that a strong robust multi-property combiner inherits all properties that
are provided by at least one of the underlying hash functions. Thus, we have
to prove that each property CR,PRF,TCR and MAC is preserved independently.
As explained in the introduction the Feistel permutation clealy preserves some
the properties from the initial C‖ combiner due to its invertibility, making C4P is
CR-, TCR- and MAC-robust (proof omitted from this version).

Lemma 1. The combiner C4P is PRF-robust.

Robust Multi-property Combiners for Hash Functions Revisited 661

Proof. As the XOR combiner is a good combiner for pseudorandom functions
(PRFs), the round functions in the Feistel network P 3 = ψ[H1

⊕, H
2
⊕, H

3
⊕] are

instantiated with PRFs, as long as at least H0 or H1 is a PRF. Prepending the
unique prefix 〈i〉2 for i = 1, 2, 3 to the input of Hi

⊕(·) = H⊕(〈i〉2 ‖·) in each round
ensures that the functions in different rounds are never invoked on the same
input, which means they are indistinguishable from three independent random
functions. We can now apply the result due to Luby-Rackoff [5] which states
that a three-round Feistel-network instantiated with independent pseudorandom
functions is a pseudorandom permutation (PRP). Further, if either H0 or H1

is a PRF, then the initial concatenation combiner CH0,H1
‖ is weakly collision

resistant3, i.e., the probability that the adversary will invoke the combiner on
distinct inputs M,M ′ where H0

0 (M)‖H0
1 (M) = H0

0 (M ′)‖H0
1 (M ′), is negligible.

Thus, with overwhelming probability, all the adversary sees is the output of a
PRP on distinct inputs. This distribution is indistinguishable from uniformly
random (this follows from the PRP/PRF switching lemma [1]), thus C4P is PRF
robust. More precisely, if the distinguishing advantage of either H0 or H1 is at
most ε, then the advantage for our combiner is at most O(q2 ·2−n)+ε, taking into
account the probability O(q2/2n) for weak collisions in case of a truly random
function. ��

4 Preserving Indifferentiability: The C4P&IRO Combiner

To be IRO-robust, a combiner CH0,H1 has to be indifferentiable from a random
oracle for any efficient adversary D, if Hb is a random oracle for some b ∈ {0, 1}.
Thereby the adversary D has oracle access either to the combiner CH0,H1 and
the random oracle Hb, or to F and a simulator SF . The simulator’s goal is to
mimic Hb such that D cannot have a significant advantage on deciding whether
its interacting with CH0,H1 and Hb, or with F and SF .

The reason why the previous combiner CH0,H1
4P fails in preserving the IRO-

property in a robust fashion is basically the invertibility of the combiner. This
circumvents the usual strategy of the simulator, which is to check if a query is a
potential attempt of D to simulate the construction of the combiner and then to
precompute further answers that are consistent with the information D can get
from F . However, for CH0,H1

4P the simulator may be unable to precompute those
consistent values, because an adversary D can compute the permutation part of
the combiner backwards such that SF has to commit to its round values used
in the permutation P 3 before knowing the initial input M .

Thus, in order to guarantee the IRO property, we modify the CH0,H1
4P combiner

such that the adversary is forced to query the message M before he can create
meaningful queries aiming to imitate the construction. By this the simulator
becomes able to switch to the common strategy of preparing consistant answers
in advance. As explained in the introduction, adding a signature value αM into
the computation does the job.
3 Weak collision resistance is defined similarly to collision resistance, except that here

the function is keyed and the adversary only gets black-box access to the function.

662 M. Fischlin, A. Lehmann, and K. Pietrzak

4.1 The Combiner C4P&IRO

In this section we consider the modified combiner C4P&IRO as illustrated in
Figure 1. The combiner C4P&IRO = (CKGen4P&IRO,C4P&IRO) is defined as fol-
lows: CKGen4P&IRO first samples H0 ← HKGen0(1n), H1 ← HKGen1(1n) and a
pairwise independent function h : {0, 1}m → {0, 1}3m for some m ≤ n/3 (the
larger m, the better the security level, but the longer the output, too):

Definition 2. A familiy of functions h : A → B from domain A to range B
is called pairwise independent iff for all x �= x′ ∈ A and z �= z′ ∈ B we have
Pr [h(x) = z ∧ h(x′) = z′] = 1

|B|·(|B|−1) (over the choice of h).

For simplicity we often call h a pairwise independent function if it is chosen
at random from such a family. The function is called a pairwise independent
permutation if, in addition, A = B. An example of such a permutation are the
functions h(a,b)(x) = ax + b for random a �= 0 and b from the field A = GF(2n).
Throughout this work all pairwise independent functions and permutations are
understood to be efficiently computable.

The evaluation algorithm CH0,H1,h
4P&IRO (M) first computes the concatenation com-

biner H0
0 (M)‖H0

1 (M) and a signature αM depending on M as αM = lsbm
(H0
⊕(M)) where H0

⊕(M) = H0
0 (M) ⊕ H0

1 (M) and lsba(x) denotes the first a
bits of x. The value αM is used as additional prefix in the round functions of the
two-round Feistel permutation P 2

α(·) = ψ[H1
⊕(αM‖·), H2

⊕(αM‖·)]. Applying P 2
α

on H0
0 (M)‖H0

1 (M) then gives the first part of the combiners output. The second
part is determined only by αM , which is necessary to guarantee robustness for
CR,TCR and MAC. To avoid that the output of the second branch leaks informa-
tion about αM when the combiner is instantiated with pseudorandom functions
(which would allow inverting the Feistel network and thereby preventing the
IRO-property again) we hide αM by applying the function H3

⊕.
Overall, the combiner computes for input message M and its corresponding

signature αM the following output:

CH0,H1,h
4P&IRO (M) = P 2

α(H0
0 (M)‖H0

1 (M)) ‖ lsb3m(H3
⊕(αM))⊕ h(αM).

4.2 C4P&IRO Preserves the IRO Property

We show that this combiner is indifferentiable from a random oracle when in-
stantiated with two functions H0, H1, where one of them is a random oracle (we
refer to it as Hb, b ∈ {0, 1}), and the other function Hb is arbitrary. Like the
random oracle Hb, also Hb is given as an oracle and accessible by all parties.
The pairwise independent function h that comes up in this construction is only
needed to prove that C4P&IRO still preserves the CR and TCR properties; for the
IRO property this function can be arbitrary.

Lemma 2. The combiner C4P&IRO is IRO-robust.

Remark 1. Note that the security of C4P&IRO as a random oracle combiner de-
pends on m, and thus on the output length, which is 2n + 3m. This can be

Robust Multi-property Combiners for Hash Functions Revisited 663

slightly improved to 2n + 2m + m′ for some m′ < m (by simply replacing 3m
with 2m + m′ in Figure 1), though m′ should not be too small, as C4P&IRO is a
good combiner for the CR and TCR with probability 2−m′

(this probability is
over the choice of the PIF, as we explain later in Section 4.3).

Proof. For the proof we assume that b = 0, i.e., the hash function H0 : {0, 1}∗ →
{0, 1}n is a random oracle. The case b = 1 is proved analogously. The adversary
D has then access either to the combiner C4P&IRO and H0 or to a random oracle
F : {0, 1}∗ → {0, 1}2n+3m and a simulator SF . Our combiner is indifferentiable
from a random oracle F if there exists a simulator SF , such that the adversaryD
can distinguish between C4P&IRO, H0 and F ,SF only with negligible probability.

The simulator keeps as state the function table of a (partially defined) function
Ĥ0 : {0, 1}∗ :→ {0, 1}n, which initially is empty, i.e., Ĥ0(X) = ⊥ for all X . We
define Ĥi

0(M) = Ĥ0(〈i〉2 ‖M) to mimic the notion used in Figure 1. The goal of
SF is to define Ĥ0 in such a way that, from D’s point of view, (F , Ĥ0) look like
(CH0,H1,h

4P&IRO , H0), i.e., the output of Ĥ0 has to be random and consistent to what
the distinguisher can obtain from F . Therefore, our simulator SF parses each
query X it is invoked on as X = 〈i〉2 ‖M and proceeds as follows:

Simulator SF
H1,f (X):

on query X check if some entry Y ← Ĥ0(X) already exists
if Y = ⊥ //no entry so far

if X = 〈0〉2 ‖M for some M

set Ĥ0
0 (X) = y0 where y0 is randomly chosen from {0, 1}n

get y1 ← H0
1 (M) and compute αM = lsbm(y0 ⊕ y1)

get U ← F(M) for query M and parse U as U1‖U2‖U3

where |U1| = |U2| = n and |U3| = 3m.

set Ĥ1
0 (αM ||y1) = U2 ⊕ y0 ⊕H1

1 (αM‖y1)
set Ĥ2

0 (αM ||U2) = U1 ⊕ y1 ⊕H2
1 (αM‖U2)

set Ĥ3
0 (αM) = (U3‖z) ⊕ (h(αM)‖0n−3m) ⊕ H3

1 (αM)
where z is randomly chosen from {0, 1}n−3m

if X �= 〈0〉2 ‖M , choose a random Y ∈ {0, 1}n

and save the value by setting Ĥ0(X) = Y

output Y ← Ĥ0(X)

The interesting queries are the queries of the form X = 〈0〉2 ‖M which could
be an attempt of D to simulate the construction of the combiner, such that the
simulator has to compute in addition consistent answers to potential subsequent
queries of D. The simulator starts by sampling a random y0 ∈ {0, 1}n and sets
Ĥ0

0 (M) = y0. To define the “signature” αM of M , SF queries its oracle H1 on
〈0〉2 ‖M and uses the answer y1 = H0

1 (M) to compute αM = lsbm(y0 ⊕ y1).
The simulator then defines the outputs of Ĥ1

0 , Ĥ
2
0 and Ĥ3

0 such that
CĤ0,H1,h

4P&IRO (M) = F(M). Therefore SF invokes its random oracle F on input
M and computes the corresponding outputs of Ĥ0 by retracing the combiners
construction as defined in the simulators description. Note that this is possible in
a unique way, except for the n− 3m last bits of Ĥ3

0 (αM), which must be chosen
uniformly at random. We say the simulator “loses” if, for some i ∈ {1, 2, 3}, the

664 M. Fischlin, A. Lehmann, and K. Pietrzak

function Ĥi
0 is already defined on any input of the form αM‖∗, such that SF

cannot define all Ĥi
0 values in order to provide consistent outputs.

As αM ∈ {0, 1}m is uniformly random, the probability that the simulator
loses in the q-th query is at most 3q · 2−m (as each Ĥi

0 for i ∈ {1, 2, 3} is defined
on at most q− 1 inputs). Let E denote the event that the simulator loses in any
of its q queries, then the overall probability that E happens is at most 3q2 · 2−m.
If E does not occur, the replies of SF are consistent with F and random, since
SF answers are determined by its random choices and the replies of F . Hence,
the advantage of the adversary D in distinguishing (CH0,H1,h

4P&IRO , H0) from (F ,SF)
is at most the probability that event E happens, which is by Pr[E] = 3q2 · 2−m

negligible. ��

4.3 C4P&IRO Is Robust for CR, TCR, MAC, PRF

We now prove that, like the C4P combiner, C4P&IRO also preserves the CR, TCR,
MAC and PRF property in a robust manner. The proofs for TCR, MAC and PRF
are similar to the proofs for C4P and appear in the full version.

Lemma 3. The combiner C4P&IRO is CR- and TCR-robust.

Proof. We will prove that for any H0, H1, with probability 1 − 2−m over the
choice of the pairwise independent function h, any collision for CH0,H1,f

4P&IRO is si-
multaneously a collision for H0

0 and H0
1 . To this end, let M �= M ′ be a collision for

CH0,H1,h
4P&IRO and let αM and αM ′ denote their signatures. Let Y ‖Y ′ = CH0,H1,h

4P&IRO (M)
where Y ∈ {0, 1}2n and Y ′ ∈ {0, 1}3m.

If αM = αM ′ , then M,M ′ must be a collision for H0
0 and H0

1 , as we have

H0
0 (M)‖H0

1 (M) = P 2
α
−1

(Y) = P 2
α′
−1

(Y) = H0
0 (M ′)‖H0

1 (M ′) (1)

and the Feistel permutations P 2
α, P

2
α′ are identical if αM = αM ′ .

For M,M ′ where αM �= αM ′ , a collision CH0,H1,h
4P&IRO (M) = CH0,H1,h

4P&IRO (M ′) does
not imply (1), and thus will in general not be a collision for H0 and H1. Yet, as
with probability 1 − 2−m over the choice of the pairwise independent function
h : {0, 1}m → {0, 1}3m, there does not exist a collision M,M ′ for CH0,H1,h

4P&IRO where
αM �= αM ′ . Note that for this it is sufficient to prove that for any two potential
signatures α �= α′ ∈ {0, 1}m, we have

lsb3m(H3
⊕(α))⊕ h(α) �= lsb3m(H3

⊕(α′))⊕ h(α′) (2)

as this implies that the final outputs are distinct for any two messages with
different signatures. As h is pairwise independent, for any particular α �= α′,
equation (2) holds with probability 1 − 2−3m. Taking the union bound over all
2m(2m − 1)/2 < 22m distinct values α �= α′, we get that the probability that
there exists some α �= α′ not satisfying (2) is at most 22m/23m = 2−m.

The proof of TCR-robustness follows a similiar argument and appears in the
full version. ��

Robust Multi-property Combiners for Hash Functions Revisited 665

5 Preserving One-Wayness and the C4P&OW Combiner

In this section we first propose a combiner which preserves collision resistance
and one-wayness simultaneously. We remark that this is a strong combiner in
the sense that it preserves each property as long as one of the hash functions has
the property in question. This additional guarantee here comes at the price of
restricted input length. At the end of this section we briefly discuss how to plug
in this combiner into our combiners C4P and C4P&IRO to get our construction
C4P&OW and C6P, respectively.

We remark that the concatenating combiner CH0,H1
‖ (M) = H0(M)‖H1(M)

for collision resistance is readily verified to be an insufficient combiner for one-
wayness. Similarly, the “input-splitting” combiner defined by CH0,H1

OW (M0‖M1) =
H0(M0)‖H1(M1) preserves one-wayness but clearly not collision resistance. Be-
low we construct a combiner which draws from the best of both constructions:
it uses the same input M for both hash functions but re-randomizes the part for
H0 via a pairwise-independent permutation π.

5.1 A Combiner for CR and OW

We define the combiner C‖&OW for preserving collision-resistance and one-wayness
in a robust manner as follows. The key generation algorithm CKGen‖&OW(1n) gen-
erates H0 ← HKGen0(1n) and H1 ← HKGen1(1n) and picks a pairwise indepen-
dent permutation π : {0, 1}5n → {0, 1}5n. It outputs (H0, H1, π). The evaluation
algorithm CH0,H1,π

‖&OW on input M ∈ {0, 1}5n returns H0(π(M))‖H1(M). Note that
we fix the input length to 5n bits. This value can be replaced by any length kn
with k ≥ 5, as we only use the fact that the input length is at least 5n bits (but
then π must also be over {0, 1}kn). Getting shorter output length is possible, at
the prize of worse security bounds. By the following theorem C‖&OW preserves the
properties of C‖ and COW simultaneously.

Theorem 2. The combiner C‖&OW is a strongly robust multi-property combiner
for prop = {CR,TCR,MAC,OW}.

The proof is omitted due to space constraints and appears in the full version of
the paper.

5.2 Combining Things

We can now plug in the combiner C‖&OW into the initial computation of the
combiner C4P, obtaining our construction C4P&OW. That is, we replace the initial
computation H0

0 (M)‖H0
1 (M) in our original combiner by H0

0 (π(M))‖H0
1 (M) for

messages of 5n bits. Note that if Hb(·) is one way on inputs of length 5n + 2,
then also H0

b (·) is one-way on inputs of length 5n, and we only lose a factor of
4 in the security.

Theorem 3. The combiner C4P&OW is a strongly robust multi-property combiner
for prop = {CR,PRF,TCR,MAC,OW}.

666 M. Fischlin, A. Lehmann, and K. Pietrzak

When we apply the modifications from Section 5 and the combiner C4P&IRO from
Section 4 together, we get our construction C6P. This construction is defined like
C4P&IRO, where one additionally applies a pairwise-independent permutation over
{0, 1}kn (with k ≥ 5) to the input of H0

0 .

Theorem 4. The combiner C6P is a strongly robust multi-property combiner for
prop = {CR,TCR,PRF,MAC,OW, IRO}.

The proofs of theorem 3 and 4 are given in the full version of this paper.

Acknowledgments

We thank Thomas Holenstein for a helpful conversation on one-way functions.
We also thank the anonymous reviewers for valuable comments. The first two
authors are supported by the Emmy Noether Program Fi 940/2-1 of the German
Research Foundation (DFG).

References

1. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

2. Boneh, D., Boyen, X.: On the impossibility of efficiently combining collision resistant
hash functions. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 570–583.
Springer, Heidelberg (2006)

3. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(2008)

4. Herzberg, A.: On tolerant cryptographic constructions. In: Menezes, A. (ed.) CT-
RSA 2005. LNCS, vol. 3376, pp. 172–190. Springer, Heidelberg (2005)

5. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM Journal on Computing 17(2), 373–386 (1988)

6. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

7. Pietrzak, K.: Non-trivial black-box combiners for collision-resistant hash-functions
don’t exist. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515. Springer,
Heidelberg (2007)

Homomorphic Encryption with CCA Security

Manoj Prabhakaran� and Mike Rosulek�

University of Illinois, Urbana-Champaign
{mmp,rosulek}@uiuc.edu

Abstract. We address the problem of constructing public-key encryp-
tion schemes that meaningfully combine useful computability features
with non-malleability. In particular, we investigate schemes in which
anyone can change an encryption of an unknown message m into an
encryption of T (m) (as a feature), for a specific set of allowed functions
T , but the scheme is “non-malleable” with respect to all other opera-
tions. We formulate precise definitions that capture these intuitive re-
quirements and also show relationships among our new definitions and
other more standard ones (IND-CCA, gCCA, and RCCA). We further
justify our definitions by showing their equivalence to a natural formu-
lation of security in the Universally Composable framework. We also
consider extending the definitions to features which combine multiple ci-
phertexts, and show that a natural definition is unattainable for a useful
class of features. Finally, we describe a new family of encryption schemes
that satisfy our definitions for a wide variety of allowed transformations
T , and which are secure under the standard Decisional Diffie-Hellman
(DDH) assumption.

1 Introduction

A recurring theme in cryptography is the tension between achieving powerful
functionality and making strong security guarantees. In the case of encryption,
IND-CCA security is well-accepted as a sufficiently strong security guarantee.
On the other hand, for encryption to be useful in sophisticated applications (such
as voting or mix-nets), the scheme should have features which allow computa-
tion on encrypted messages (e.g., features like rerandomizability [20,21], proxy
re-encryption [5,9], searchability [36,11] and different kinds of homomorphism
properties [18,27]). However, IND-CCA security rules out any such feature which
operates on encrypted messages, while the other extreme of IND-CPA security
does not exclude the possibility that a scheme may have additional “unforeseen
features” that an adversary can exploit when the scheme is used in a larger
application. Is it possible to express (and achieve via a construction) a security
requirement capturing the best of both worlds: to be malleable enough to allow
rich features, but non-malleable enough to rule out “everything else?”

In this work we address this question in the context of homomorphic public-
key encryption schemes — those which allow anyone to change encryptions of
� Partially supported by NSF grant CNS 07-47027.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 667–678, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

668 M. Prabhakaran and M. Rosulek

unknown messages m1, . . . ,mk into an encryption of T (m1, . . . ,mk), for some
allowed set of functions T . Such schemes have been extensively studied for a long
time and have a wide variety of applications (cf. [4,12,14,15,20,23,24,25,33,34]).
Homomorphic encryption schemes have additional utility in that ciphertexts hide
not only the underlying plaintext, but also the way in which the ciphertext was
derived (i.e., as a regular encryption, or via some homomorphic operation applied
to some other ciphertexts). We explicitly formalize this requirement, which we
call unlinkability.

Challenges and Related Work. The first challenge is formally defining (in a con-
vincing way) the intuitive requirement that a scheme “allow particular features
but forbid all others.” Security notions for regular encryption developed and
matured over many years [19,26,32,3,17,7], while arguably security definitions
for homomorphic encryptions have lagged behind — to date, homomorphic en-
cryptions are almost exclusively held to the weak standard of IND-CPA security.
In some applications (e.g., [14]) CPA security is indeed sufficient, but for others
(e.g. [16]) it is not. Very little work has addressed the possibility of homomorphic
encryption schemes having “unforeseen features” beyond the prescribed opera-
tions; one exception is Wikström [37], who addresses this question in a simpler
setting for El Gamal.

Benignly-malleable (gCCA) security [35,1] was proposed as a relaxation of
CCA security, and was further relaxed in the definition of Replayable-CCA
(RCCA) security [10]. RCCA security allows a scheme to have homomorphic op-
erations which preserve the underlying plaintext, but enforces non-malleability
“everywhere else.” However, relaxing CCA security in the same way does not
yield an acceptable level of security when applied to more expressive homo-
morphic operations (see Section 3.1); a new approach to defining security is
needed.

The second challenge is achieving the desired security with a construction
based on standard assumptions — i.e., an encryption scheme that has a par-
ticular set of (unlinkable) homomorphic operations, but is non-malleable with
respect to all other operations. Note that even if the set of allowed operations is
very simple, supporting it can be very involved. Indeed, the problem of unlink-
able (rerandomizable) RCCA encryption considered in a recent series of works
[10,21,30] corresponds to arguably the simplest special case of our definitions.

Our Results. We give several new security definitions to precisely capture the
desired requirements in the case of unary homomorphic operations (those which
transform a single encryption of m to an encryption of T (m), for a particu-
lar set of functions T). We provide two new indistinguishability-based security
definitions: one formalizing the unlinkability requirement and one formalizing
the intuition of “non-malleability except for certain prescribed operations.” To
justify this last security definition, we show that it subsumes the standard IND-
CCA, gCCA, and RCCA security definitions (Theorem 1). We further show that
our two new security requirements imply a natural definition of security in the

Homomorphic Encryption with CCA Security 669

Universal Composition framework (Theorem 2). Using the UC framework to
define security of encryption schemes was already considered in [7,10,28,8].

We also consider extending our definitions to the case of binary homomorphic
operations (those which combine pairs of ciphertexts). We show that the natural
generalization of our UC security definition to this scenario is unachievable for
a large class of useful homomorphic operations (Theorem 5).

Finally, we describe a family of encryption schemes which achieves our defini-
tions for a wide range of allowed (unary) homomorphism operations. The con-
struction, which is a careful generalization of the rerandomizable RCCA-secure
scheme of [30], is secure under the standard DDH assumption, and supports the
group operation as a homomorphic feature (as well as several related operations).

We refer the reader to the full version of this work [31] for the technical details
omitted in this extended abstract.

2 Homomorphic Encryption Preliminaries

m ζ

m′ ζ ′

Enc

Dec

T CTrans(·, T)

Dec

Fig. 1. Syntax and correctness of a ho-
momorphic encryption scheme

Let M be a space of plaintext messages,
let ⊥ be a special error indicator symbol
not inM, and let T be a “transformation
space” — i.e., a set of polynomial-time
computable functions from (M ∪ {⊥})k
to M∪ {⊥}. We call the elements of T
the allowable transformations.

An encryption scheme consists of three
polynomial-time (polynomial in the im-
plicit security parameter) algorithms,
KeyGen, Enc and Dec.

A T -homomorphic encryption scheme comes with an additional algorithm
CTrans, the homomorphic operation feature: a randomized algorithm which takes
k ciphertexts and (the description of) a transformation from T , and outputs
another ciphertext.1 We mostly restrict attention to the case where k = 1; i.e.,
when the homomorphic operation is unary.

Correctness Properties. Below we give the correctness properties for unary ho-
momorphic encryption. These requirements can be slightly relaxed (e.g., to hold
only with overwhelming probability over key generation), but our construction
achieves these simpler requirements.

For all key pairs (PK,SK) in the support of KeyGen, we require the following:

1. For every plaintext msg ∈ M, we require DecSK(EncPK(msg)) = msg, with
probability 1 over the randomness of Enc.

2. For every purported ciphertext ζ and every T ∈ T , we require
DecSK(CTrans(ζ, T)) = T (DecSK(ζ)), with probability 1 over the random-
ness of CTrans.

1 Allowing CTrans to take the public key as additional input would also be a meaningful
relaxation, but may not be suitable in some applications.

670 M. Prabhakaran and M. Rosulek

3 Defining Security

In this section we present our formal security definitions. The first two are tra-
ditional indistinguishability-based definitions, while the third is a definition in
the Universal Composition framework.

3.1 Homomorphic-CCA (HCCA) Security

Our first indistinguishability-based security definition formalizes the intuitive
notions of message privacy and “non-malleability other than certain operations.”

Existing non-malleability definitions such as IND-CCA, benignly-malleable
(a.k.a. gCCA) security [35,1] and Replayable CCA (RCCA) security [10] share
a similar structure, in which an experimenter encrypts one of two adversarially
chosen plaintexts and provides a decryption oracle to the adversary, whose task
it is to guess which plaintext was encrypted. Since the adversary could simply ask
to decrypt the challenge ciphertext itself, the decryption oracles are guarded to
not decrypt ciphertexts which may be “derivatives” of the challenge ciphertext.
In CCA security, the only derivative is the challenge ciphertext itself; in gCCA,
derivatives are those which satisfy a particular binary relation with the challenge
ciphertext; in RCCA, derivatives are those which decrypt to either of the two
adversarially-chosen plaintexts.

However, in the case of more general homomorphic encryption, it may be legal
(i.e., possible via a feature of the scheme) to change the underlying plaintext of a
ciphertext to any other possible plaintext. Indeed, in some instantiations of our
construction, every ciphertext in the support of the Enc operation is a possible
derivative of every other such ciphertext. Following the IND-CCA paradigm here
would weaken it essentially to IND-CCA1 (i.e., “lunchtime attack”) security.

Our approach to identifying “derivative” ciphertexts is completely different,
and as a result our definition initially appears incomparable to these other stan-
dard definitions. However, Theorem 1 demonstrates that our new definition gives
a generic notion of non-malleability which subsumes these existing definitions.

The formal definition, which we call Homomorphic-CCA (HCCA) security,
appears below. Informally, in the security experiment we identify derivative ci-
phertexts not for regular encryptions, but for special “rigged” ciphertexts that
carry no message. In other words, there should be a procedure RigEncPK which
outputs a rigged ciphertext ζ and some auxiliary information S, such that ζ is
indistinguishable from a normal ciphertext. There should also be a corresponding
procedure RigExtractSK which, when given another ciphertext ζ′ and auxiliary
information S, determines whether ζ′ was obtained by applying a transformation
to ζ, and outputs the transformation.

Intuitively, the transformations output by RigExtract constitute all the ways
a ciphertext’s message can depend on another ciphertext in the scheme, so re-
stricting the range of RigExtract restricts the malleability of the scheme.

Definition 1. A homomorphic encryption scheme is Homomorphic-CCA
(HCCA) secure with respect to T if there are PPT algorithms RigEnc and

Homomorphic Encryption with CCA Security 671

RigExtract, where the range of RigExtract is T ∪ {⊥}, and such that for all PPT
adversaries A, the advantage of A in the following IND-HCCA experiment is
negligible:

1. Setup: Pick (PK,SK) ← KeyGen and give PK to A.
2. Phase I: A gets access to the DecSK(·) oracle and the following two

“guarded” RigEnc and RigExtract oracles:

GRigEncPK() = ζi, where (ζi, Si) ← RigEncPK , when called for the ith time
GRigExtractSK(ζ, i) = RigExtractSK(ζ, Si)

3. Challenge: A outputs a plaintext msg∗. We privately flip a coin b← {0, 1}.
If b = 0, we compute ζ∗ ← EncPK(msg∗). If b = 1, we compute (ζ∗, S∗) ←
RigEncPK . In both cases, we give ζ∗ to A.

4. Phase II: A gets access to the same GRigEnc and GRigExtract oracles as in
Phase I, as well as a “rigged” version of the decryption oracle RigDec. When
b = 0, RigDec is simply the normal decryption oracle DecSK(·). When b = 1,
RigDec is implemented as follows:

RigDecSK(ζ) =

{
T (msg∗) if ⊥ �= T ← RigExtractSK(ζ, S∗)
DecSK(ζ) otherwise

.

5. Output: A outputs a bit b′. The advantage of A is Pr[b′ = b]− 1
2 .

We immediately observe that in order to achieve HCCA security, T must be
closed under composition (or at least approximately so). T must also contain the
identity function, since the adversary can simply submit the challenge ciphertext
ζ∗ to the RigDec oracle.

3.2 Unlinkability

There indeed is some tension between the HCCA definition given above and the
intuitive notion of unlinkability that we desire. HCCA security implies that it is
possible to track transformations applied to rigged ciphertexts, while unlinkabil-
ity demands that ciphertexts not leak whether they were generated via a trans-
formation. To reconcile this, we require unlinkability only on ciphertexts that
succesfully decrypt under a private key chosen by the challenger. This excludes
linkability via the RigEnc and RigExtract procedures, since tracking ciphertexts
using RigExtract in general requires the tracking party to know the private key.

Our formal definition of unlinkability is given below. We highlight that the
adversary has access to a decryption oracle in the experiment, making it mean-
ingful for modeling chosen-ciphertext attacks.

Definition 2. A homomorphic encryption scheme is unlinkably homomorphic
with respect to T if for all PPT adversaries A, the advantage of A in the fol-
lowing experiment is negligible:

672 M. Prabhakaran and M. Rosulek

1. Setup: Pick (PK,SK) ← KeyGen and give PK to A.
2. Phase I: A is given access to the decryption oracle DecSK(·).
3. Challenge: Flip a coin b ← {0, 1}. Receive from A a ciphertext ζ and

transformation T ∈ T . If DecSK(ζ) = ⊥, abort; else give ζ∗ to A, where:

ζ∗ ←
{

EncPK(T (DecSK(ζ))) if b = 0
CTrans(ζ, T) if b = 1

4. Phase II: A is given access to the decryption oracle DecSK(·).
5. Output: A outputs a bit b′. The advantage of A is Pr[b′ = b]− 1

2 .

Note that unlinkability is a security guarantee involving maliciously crafted
ciphertexts, and is not necessarily implied by guaranteeing that the distribu-
tions EncPK(T (msg)) and CTrans(EncPK(msg), T), which involve only honestly-
generated ciphertexts, are indistinguishable.

We have defined unlinkability with the goal that a scheme can be both T -
unlinkably homomorphic, and T -HCCA-secure (for the same T). Indeed, it is
easy to see that if a scheme is T -unlinkably homomorphic and T ′-HCCA-secure,
then T ⊆ T ′. For simplicity, and to highlight the compatibility and sharp tradeoff
between these two definitions, we only focus on schemes which satisfy them both
with respect to the same transformation space T .

3.3 UC Definition: Homomorphic Message Posting

We also define the “Homomorphic Message Posting” functionality FT
hmp

in the
framework of Universally Composable security [7,29] as a natural security defini-
tion encompassing both unlinkability and our desired notion of non-malleability.
We give an informal overview below (the more technical formal definition ap-
pears in the full version).
FT

hmp
allows parties to post private messages for other parties, as on a bul-

letin board, represented by abstract handles which reveal no information about
the message (they are generated by the adversary without knowledge of the
message). Only the designated receiver is allowed to obtain the corresponding
message for a handle. To model the homomorphic feature, the functionality al-
lows parties to post messages derived from other handles, as follows: When a
party provides a previously posted handle and a transformation T ∈ T , the
functionality retrieves the message m corresponding to the handle and then acts
as if the party had actually posted T (m). The requesting party does not need
to know, nor is it told, the underlying message m of the existing handle.
FT

hmp
models the non-malleability we require, since the only way a posted

message can influence a subsequent message is via an allowed transformation.
The functionality also models unlinkability by internally behaving identically

(in particular, in its interaction with the adversary) for the two different kinds
of posts. The only exception is that corrupt parties may generate “dummy”
handles which look like normal handles but do not contain any message. When
a party derives a new handle from such a dummy handle, the adversary learns

Homomorphic Encryption with CCA Security 673

the transformation. This apparent slight weakness is natural2 and it mirrors the
tradeoff between our indistinguishability definitions. In our security proofs, this
additional dummy handle feature is crucial.

Homomorphic Encryption Schemes and Protocols for FT
hmp

. The UC framework
defines when a protocol is said to securely realize the functionality FT

hmp
: for

every PPT adversary in the real world interaction (using the protocol), there
exists a PPT simulator in the ideal world interaction with FT

hmp
, such that no

PPT environment can distinguish between the two interactions.
We associate homomorphic encryption schemes with candidate protocols for

FT
hmp

in the following natural way (for simplicity assume all communication is
on an authenticated broadcast channel). To setup an instance of FT

hmp
, a party

generates a key pair and broadcasts the public key. To post a message, a party
encrypts it under the public key and broadcasts the resulting ciphertext. The
“derived post” feature is implemented via the CTrans procedure. To retrieve a
message from a handle, the receiver decrypts it using the private key.

4 Relationships among Security Definitions

To justify our new security definitions, we prove some relationships among them
and among the more established definitions of IND-CCA, gCCA [1,35], and
RCCA [10] security. We defer the proofs to the full version.

Theorem 1. CCA, gCCA, and RCCA security can be obtained as special cases
of the HCCA definition, by appropriately restricting RigEnc and RigExtract.

Theorem 2. Every T -homomorphic encryption scheme which is HCCA-secure,
unlinkably homomorphic (with respect to T) and satisfies the correctness prop-
erties, is a secure realization of FT

hmp
in the standard UC model, where the ad-

versary is allowed to make only static (non-adaptive) corruptions.

Proof (sketch). To show that the UC security definition is satisfied, we must
construct a simulator for every real-world adversary. The simulator uses RigEnc
to simulate ciphertexts between uncorrupted parties (for which the simulator
does not know the corresponding plaintext), and it uses RigExtract to detect
when the adversary has applied a transformation to them.

In general, one cannot easily modify a T1-unlinkable-HCCA-secure scheme into a
T2-unlinkable-HCCA-secure scheme, even if T2 ⊆ T1. The problem of “disabling”
the transformations in T1 \ T2 while at the same time maintaining those in
T2 appears just as challenging as constructing a T2-unlinkable-HCCA scheme
from scratch. However, such a generic reduction is possible for the special case
of unlinkable (a.k.a. rerandomizable) RCCA security, where the only allowed
transformation is the identity function:
2 For example, an adversary may broadcast a single encryption under a public key

that he keeps hidden. The ciphertext will be meaningless to the recipient, but if the
adversary later encounters another ciphertext that decrypts under this same key, he
can deduce that the it was derived from his previous ciphertext.

674 M. Prabhakaran and M. Rosulek

Theorem 3. Given a T -unlinkable-HCCA-secure scheme and a (not necessar-
ily unlinkable) RCCA-secure scheme, it is possible to construct an unlinkable-
RCCA-secure scheme.

Proof (sketch). To encrypt a message in the new scheme, first encrypt it in the
RCCA-secure scheme, then encrypt the resulting ciphertext in the unlinkable-
HCCA-secure scheme. The other operations of the scheme are defined appropri-
ately, and the resulting scheme achieves unlinkable RCCA security.

Note that RCCA security without unlinkability is a weaker requirement than
CCA security [10]. Thus, for example, an unlinkable HCCA-secure scheme along
with a plain CCA-secure encryption scheme will yield an unlinkable RCCA-
secure encryption scheme.

5 Achieving Unlinkable HCCA Security

Our main result is a family of construtions which achieves both HCCA secu-
rity and unlinkable homomorphism, with respect to a wide range of message
transformations, under the standard DDH assumption in two related groups.

Our construction is based on the rerandomizable RCCA scheme of Prab-
hakaran and Rosulek [30]. Recall that rerandomizable RCCA security is a spe-
cial case of unlinkable HCCA security where the only allowed transformation
is the identity function. Indeed, for the appropriate choice of parameters, our
construction coincides with the one presented there.

Requirements. As in [30], our construction requires two (multiplicative) cyclic
groups with a specific relationship: G of prime order p, and Ĝ of prime order
q, where Ĝ is a subgroup of Z∗p. We require the DDH assumption to hold in
both groups (with respect to the same security parameter). Given a sequence of
primes q, 2q + 1, 4q + 3 (a Cunningham chain of the first kind of length 3 [2]),
the two quadratic-residue groups Ĝ = QR∗2q+1 and G = QR∗4q+3, in which the
DDH assumption is believed to hold, represent a suitable choice.

Features. Our construction uses Gn as its message space, where n is a parameter
of the construction. We write the group operation in G as multiplication. For
τ = (τ1, . . . , τn) ∈ Gn, define Tτ to be the “componentwise multiplication by τ”
transformation: (m1, . . . ,mn) -→ (τ1m1, . . . , τnmn). We also let Tτ (⊥) = ⊥ for
simplicity.

Given n we can construct a scheme whose message space is Gn, and whose set
of allowable transformations is Tf = {Tτ | τ ∈ Gn and f ◦Tτ ≡ f}, provided that
f satisfies a certain technical property. In other words, the allowed transforma-
tions are the subspace of componentwise-multiplication transformations which
are invariant with respect to the f function. By setting f appropriately, we can
obtain the following notable classes Tf :

– The identity function alone (i.e., rerandomizable RCCA security)
– All transformations Tτ . That is, all component-wise multiplications in Gn.
– All “scalar multiplications” of tuples in Gn by coefficients in G.

Homomorphic Encryption with CCA Security 675

High-level Overview. The full and lengthy details of the construction are def-
ered to the full version. Some important ideas behind the scheme are outlined
here:

The Cramer-Shoup CCA-secure scheme [13] achieves non-malleability via a
ciphertext component of the form (DEμ)x, where D,E are parts of the public
key, x is a random value used in encryption, and μ is a hash of the ciphertext’s
prefix. The rerandomizable RCCA scheme of [30] uses the same paradigm, except
that the value μ is a direct encoding of the plaintext (in rerandomizable RCCA,
ciphertexts are malleable but only in ways which preserve the plaintext). In our
HCCA-secure scheme, μ is a hash of f(m1, . . . ,mn). Intuitively, the scheme can
therefore only be malleable in ways which preserve f(m1, . . . ,mn). Finally, we
use the same “double-strand” technique of [30] to achieve a CTrans operation
which is unlinkable and perfectly rerandomizable. We also expand the public
key size to allow n group elements to be encrypted, instead of just one.

Theorem 4. The construction satisfies the correctness requirements, HCCA se-
curity, and unlinkable homomorphism properties with respect to Tf , for any suit-
able f , under the DDH assumption in the two cyclic groups.

6 Beyond Unary Transformations

Many interesting applications of homomorphic encryptions involve (at least)
binary operations — those which accept encryptions of plaintexts m0 and m1

and output a ciphertext encoding T (m0,m1). A common example is ElGamal
encryption, where T may be the group operation of the underlying cyclic group.
In this section, we examine the possibility of extending our results to schemes
with binary transformations. We show some simple positive results, and also an
impossibility for the specific case of group operations.

6.1 Extending Definitions

It is straight-forward to extend the UC definition of FT
hmp

to handle binary trans-
formations. We define FT

2-hmp
to act like FT

hmp
, except that T is a set of allowed

binary transformations. Honest parties may then generate a derived post by giv-
ing two handles an an allowed transformation T . Naturally, the functionality
internally acts as if the party had requested a post of T (m1,m2), where m1,m2

are the messages corresponding to the given handles.
It is not clear what is the most appropriate behavior for FT

2-hmp
when one or

both of the given handles is a dummy handle. Our impossibility results in the
next section do not depend on any particular behavior of FT

2-hmp
in such a case,

so we opt to make the definition as weak as possible. When such a request is
made, we let the adversary learn the transformation and the two handles.

Defining an analog of our indistinguishability definition, however, appears to
be much more difficult task. Indeed, it is not clear how to appropriately handle

676 M. Prabhakaran and M. Rosulek

the case where the adversary applies a transformation to a pair of ciphertexts
where one or both were generated via (independent calls to) RigEnc.

Below we show that it is impossible to securely realize FT
2-hmp

(i.e., achieve
unlinkability and an HCCA-like definition for binary transformations) for a large
class of useful transformations T . Still, one may be willing to relax the unlinka-
bility requirement (e.g., as in [34]) and still demand some non-malleability. Thus
we leave it as an important open problem to give a meaningful generalization of
HCCA security, for transformations that combine multiple ciphertexts.

6.2 A Simple Positive Result

FT
2-hmp

can be achieved for some simple transformation spaces, by appropriately
composing an HCCA-secure, unlinkably homomorphic (unary) scheme Π . To see
this, construct a new scheme whose ciphertexts are k-tuples of completely inde-
pendent ciphertexts from Π . The (binary) transformation operations in the new
scheme have the following form: Given two tuples of k ciphertexts each, choose k
components from among these 2k ciphertexts, apply an allowed transformation
to each separately, and output those k ciphertexts in a tuple.

The resulting scheme’s transformations simply “mix and match” the inde-
pendent components of the two tuples of ciphertexts to form a new tuple. The
unlinkability of the transformations applied to each individual component im-
plies the unlinkability of the new scheme. It is easy to see that such a scheme
securely realizes of FT

2-hmp
with respect to the appropriate transformation space.

6.3 Negative Results

The positive result presented above appears to be much less sophisticated than,
say, a scheme that is homomorphic with respect to a group operation. Indeed,
this limitation turns out to be inherent in securely realizing FT

2-hmp
.

Theorem 5. There is no secure realization of FT
2-hmp

via a homomorphic en-
cryption scheme, when T contains a quasigroup operation3 on the message space.

Proof (sketch). The main observation is that each handle (ciphertext) must have
a bounded length independent of its “history” (i.e., whether it was generated
via the homomorphic operation and if so, which operations applied to which
existing handles), and thus can only encode a bounded amount of information
about its history. We show that any simulator for FT

2-hmp
must be able to extract

a reasonble history from any handle output by the adversary.
However, when a quasigroup operation is an allowed transformation, there

can be far more possible histories than can be encoded in a single handle. We
use this fact to construct an environment and adversary which can distinguish
between the real world and the ideal world with any simulator, contradicting the
security definition.
3 A quasigroup operation � on a set X is an operation such that fixing any two values

in the equation x � y = z uniquely determines the third value.

Homomorphic Encryption with CCA Security 677

Acknowledgments

We thank Rui Xue for helpful discussions regarding Theorem 3, as well as the
feedback from the anonymous referees.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Andersen, J.K., Weisstein, E.W.: Cunningham chain. From MathWorld–A Wolfram
Web Resource (2005), http://mathworld.wolfram.com/CunninghamChain.html

3. Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two no-
tions, and an indistinguishability-based characterization. In: Wiener, M.J. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)

4. Benaloh, J.: Verifiable Secret-Ballot Elections. PhD thesis, Department of Com-
puter Science. Yale University (1987)

5. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

6. Boneh, D. (ed.): CRYPTO 2003. LNCS, vol. 2729. Springer, Heidelberg (2003)
7. Canetti, R.: Universally composable security: A new paradigm for cryptographic

protocols. Cryptology ePrint Archive, Report 2000/067 (2005)
8. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-

thentication and key-exchange protocols. In: Halevi, Rabin (eds.) [22], pp. 380–403
9. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:

ACM Computer and Communication Security (CCS) (2007)

10. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh (ed.) [6], pp. 565–582

11. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. TR
CS0917, Department of Computer Science, Technion (1997)

12. Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-autority secret-
ballot elections with linear work. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)

13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462. Springer, Heidelberg (1998)

14. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, Rabin (eds.) [22], pp. 41–59

15. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh (ed.) [6], pp. 247–264

16. Danezis, G.: Breaking four mix-related schemes based on universal re-encryption.
In: Proc. Information Security Conference. Springer, Heidelberg (2006)

17. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (electronic) (2000); Preliminary version in STOC (1991)

18. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

http://mathworld.wolfram.com/CunninghamChain.html

678 M. Prabhakaran and M. Rosulek

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984); Preliminary version appeared in STOC 1982

20. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for
mixnets. In: Proceedings of the 2004 RSA Conference, Cryptographer’s track, San
Francisco, USA (February 2004)

21. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack se-
cure cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004)

22. Halevi, S., Rabin, T. (eds.): TCC 2006. LNCS, vol. 3876. Springer, Heidelberg
(2006)

23. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000)

24. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-resistant
hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 445–456. Springer,
Heidelberg (2005)

25. Jurik, M.J.: Extensions to the Paillier Cryptosystem with Applications to Crypto-
logical Protocols. PhD thesis, BRICS (2003)

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: STOC, pp. 427–437. ACM, New York (1990)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

28. Patil, A.: On symbolic analysis of cryptographic protocols. Master’s thesis, Mas-
sachusetts Institute of Technology (2005)

29. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure re-
active systems. In: ACM Conference on Computer and Communications Security,
pp. 245–254 (2000)

30. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, Springer, Heidelberg (to appear, 2007)

31. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with chosen-ciphertext
security. Cryptology ePrint Archive, Report 2008/079 (2008),
http://eprint.iacr.org/2008/079

32. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

33. Sako, K., Kilian, J.: Secure voting using partially compatible homomorphisms.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 411–424. Springer,
Heidelberg (1994)

34. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In:
FOCS, pp. 554–567 (1999)

35. Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology
ePrint Archive, Report 2001/112 (2001), http://eprint.iacr.org/

36. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

37. Wikström, D.: A note on the malleability of the El Gamal cryptosystem. In:
Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 176–184.
Springer, Heidelberg (2002)

http://eprint.iacr.org/2008/079
http://eprint.iacr.org/

How to Encrypt with the LPN Problem

Henri Gilbert, Matthew J.B. Robshaw, and Yannick Seurin

Orange Labs, 38–40 rue du General Leclerc, Issy les Moulineaux, France
{henri.gilbert,matt.robshaw,yannick.seurin}@orange-ftgroup.com

Abstract. We present a probabilistic private-key encryption scheme
named LPN-C whose security can be reduced to the hardness of the
Learning from Parity with Noise (LPN) problem. The proposed protocol
involves only basic operations in GF(2) and an error-correcting code. We
show that it achieves indistinguishability under adaptive chosen plain-
text attacks (IND-P2-C0). Appending a secure MAC renders the scheme
secure under adaptive chosen ciphertext attacks. This scheme enriches
the range of available cryptographic primitives whose security relies on
the hardness of the LPN problem.

Keywords: symmetric encryption, LPN, error-correcting code.

1 Introduction

The connections between cryptography and learning theory are well known since
the celebrated paper by Impagliazzo and Levin [18]. They showed that these
two areas are in a sense complementary since the possibility of cryptography
rules out the possibility of efficient learning and vice-versa. Since then, a lot
of work has dealt with building cryptographic primitives based on presumably
hard learning problems. Perhaps the most well-known of these problems among
the cryptographic community is the so called Learning from Parity with Noise
(LPN) problem, which can be described as learning an unknown k-bit vector
x given noisy versions of its scalar product a · x with random vectors a. The
prominent lightweight authentication protocol HB+ recently proposed by Juels
and Weis [19], and its variants [7,9,12,26], are based on this problem.

Our work is concerned with encryption schemes in the symmetric setting,
where a sender and a receiver share a secret key. Up to now, most of the work
in this field has concentrated on studying various operating modes to use with
a secure block cipher [2]. Departing from this approach, we will construct a
symmetric encryption scheme that does not appeal to any assumption regarding
the pseudorandomness of a block cipher, and whose security can directly be
reduced to some hard problem, namely here the LPN problem. In a nutshell,
our scheme, named LPN-C, uses a shared secret matrix M and random vectors
a to compute “noisy” masking vectors b = a ·M ⊕ ν. The vector b is then used
to mask the plaintext, preliminary encoded with an error-correcting code. The
receiver, knowing M , can remove the mask a ·M , and then the noise with the
error-correcting code. At the same time the noise ν prevents an attacker from
“learning” the secret matrix M .

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 679–690, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

680 H. Gilbert, M.J.B. Robshaw, and Y. Seurin

Related Work. We briefly review the related work building cryptographic
primitives based on hard learning problems. We have already cited the authen-
tication protocol HB+ [19], which was itself derived from a simpler protocol
named HB by Hopper and Blum [17]. Both protocols possess a proof of security
in a certain attack model relying on the LPN problem [19,20,21]. Gilbert, Rob-
shaw, and Sibert [13] then showed a simple man-in-the-middle attack against
HB+. This triggered many trials to modify and protect HB+ against man-in-
the-middle attacks [7,9,26] but these three proposals were recently broken [11].
The subsequent proposal HB# [12] is the only one to be provably secure against
(some) man-in-the-middle attacks.

Former proposals were made by Blum et al. [5], who described a pseudorandom
number generator (PRNG), a one-way function, and a private-key cryptosystem
(encrypting only one bit at a time, thus much less efficient than the proposal
in this paper) based on very general hard-to-learn class of functions. They also
proposed a PRNG explicitly based on the LPN problem (rather than on general
class of functions) derived from an older proposal of one-way function based on
the hardness of decoding a random linear code [14]. More recently, Regev [28]
proposed a public-key cryptosystem based on the so-called LWE (Learning with
Error) problem, a generalization of the LPN problem to fields GF(p), p > 2 (and
proved that an efficient algorithm for the LWE problem would imply an efficient
quantum algorithm for worst-case lattice problems).

LPN-C carries some similarity with a scheme by Rao and Nam [27], which
may be seen as a secret-key variant of the McEliece cryptosystem, and with the
trapdoor cipher TCHo [1], by Aumasson et al. In the later, the additional noise
added to C(x)⊕ ν is introduced via an LFSR whose feedback polynomial has a
low-weight multiple used as the trapdoor.

Organisation. Our paper is organised as follows. First we give some basic
definitions and facts about the LPN problem and private-key encryption. Then
we describe the encryption scheme LPN-C. In Section 4 we analyse the security
of the scheme, in particular we establish that it is secure in the sense IND-
P2-C0. In Section 5 we give some practical parameter values and explore some
possible variants of the scheme. Finally, we draw our conclusions and suggest
some potential future work.

2 Preliminaries

Basic Notation. In the sequel, the security parameter will be denoted by k,
and we will say that a function of k (from positive integers to positive real
numbers) is negligible if it approaches zero faster than any inverse polynomial,
and noticeable if it is larger than some inverse polynomial (for infinitely many
values of k). An algorithm will be efficient if it runs in time polynomial in k and
possibly the size of its inputs. PPT will stand for Probabilistic Polynomial-Time
Turing machine.

We use bold type x to indicate a row vector while scalars x are written in
normal text. The i-th bit of x is denoted x[i]. The bitwise addition of two

How to Encrypt with the LPN Problem 681

vectors will be denoted ⊕ just as for scalars, the scalar product of a and b will
be denoted a · b, and their concatenation a‖b. We denote the Hamming weight
of x by Hwt(x).

Given a finite set S and a probability distribution Δ on S, s ← Δ denotes
the drawing of an element of S according to Δ and s

$←− S denotes the random
drawing of an element of S endowed with the uniform probability distribution.
Berη will denote the Bernoulli distribution of parameter η ∈]0, 1

2 [, i.e. a bit
ν ← Berη is such that Pr[ν = 1] = η and Pr[ν = 0] = 1− η. We also define the
corresponding vectorial distribution Bern,η: an n-bit vector ν ← Bern,η is such
that each bit of ν is independently drawn according to Berη. Finally, we will need
to define the two following oracles: we will let Un denote the oracle returning
independent uniformly random n-bit strings, and for a fixed k-bit string s, Πs,η

will be the oracle returning independent (k + 1)-bit strings according to the
distribution (to which we will informally refer to as an LPN distribution):

{a $←− {0, 1}k; ν ← Berη : (a,a · s⊕ ν)} .

The LPN Problem. The LPN problem is the problem of retrieving s given
access to the oracle Πs,η. For a fixed value of k, we will say that an algorithm
A (T, q, δ)-solves the LPN problem with noise parameter η if A runs in time at
most T , makes at most q oracle queries, and

Pr
[
s

$←− {0, 1}k : AΠs,η (1k) = s
]
≥ δ .

By saying that the LPN problem is hard, we mean that any efficient ad-
versary solves it with only negligible probability. There is a significant amount
of literature dealing with the hardness of the LPN problem. It is closely re-
lated to the problem of decoding a random linear code [4] and is NP-Hard. It
is NP-Hard to even find a vector x satisfying more than half of the equations
outputted by Πs,η [16]. The average-case hardness has also been intensively in-
vestigated [5,6,17]. The current best known algorithms to solve it are the BKW
algorithm due to Blum, Kalai, and Wasserman [6] and its improved variants
by Fossorier et al. [10] and Levieil and Fouque [23]. They all require 2Θ(k/ log k)

oracle queries and running time.

Private-key Encryption. We briefly recall the basic definitions dealing with
the semantics of probabilistic private-key encryption.

Definition 1 (Private-key cryptosystem). A probabilistic private-key en-
cryption scheme is a triple of algorithms Γ = (G, E ,D) such that:

– the key generation algorithm G, on input the security parameter k, returns
a random secret key K ∈ K(k): K

$←− G(1k);
– the encryption algorithm E is a PPT algorithm that takes as input a secret

key K and a plaintext X ∈ {0, 1}∗ and returns a ciphertext Y : Y ← EK(X);

682 H. Gilbert, M.J.B. Robshaw, and Y. Seurin

– the decryption algorithm D is a deterministic, polynomial-time algorithm
that takes as input a secret key K and a string Y and returns either the
corresponding plaintext X or a special symbol ⊥: DK(Y) ∈ {0, 1}∗ ∪ {⊥}.

It is usually required that DK(EK(X)) = X for all X ∈ {0, 1}∗. One can
slightly relax this condition, and only require that DK(EK(X)) = X except
with negligible probability.

3 Description of LPN-C

Let C : {0, 1}r → {0, 1}m be an [m, r, d] error-correcting code (i.e. of length m,
dimension r, and minimal distance d) with correction capacity t = �d−1

2 �. This
error-correcting code is assumed to be publicly known. Let M be a secret k×m
matrix (constituting the secret key of the cryptosystem). To encrypt an r-bit
vector x, the sender draws a k-bit random vector a and computes

y = C(x)⊕ a ·M ⊕ ν ,

where ν ← Berm,η is an m-bit noise vector such that each of its bits is (inde-
pendently) 1 with probability η and 0 with probability 1− η. The ciphertext is
the pair (a,y).

Upon reception of this pair, the receiver decrypts by computing y ⊕ a ·M =
C(x)⊕ν, and decoding the resulting value. If decoding is not possible (which may
happen when the code is not perfect), then the decryption algorithm returns ⊥.
When the message is not r-bit long, it is padded till its length is the next multiple
of r and encrypted blockwise. The steps for LPN-C are given in Fig. 1.

As can be seen from its description, LPN-C encryption involves only ba-
sic operations (at least when a simple linear code is used) reduced to scalar
products and exclusive-or’s. The decryption requires to implement the decod-
ing procedure, which implies more work on the receiver side, though there are
error-correcting codes with very efficient decoding algorithms [25].

Parameters Security parameter k
Polynomials (in k) m, r, d with m > r
Noise level η ∈]0, 1

2 [

Public Components An [m, r, d] error-correcting code C : {0, 1}r → {0, 1}m

and the corresponding decoding algorithm C−1

Secret Key Generation On input 1k, output a random k ×m binary matrix M
Encryption Algorithm On input an r-bit vector x, draw a random k-bit vector

a and a noise vector ν, compute y = C(x)⊕ a ·M ⊕ ν,
and output (a,y)

Decryption Algorithm On input (a,y), compute y ⊕ a ·M , decode the result-
ing value by running C−1 and return the corresponding
output or ⊥ if unable to decode

Fig. 1. Description of LPN-C

How to Encrypt with the LPN Problem 683

Decryption Failures. Decryption failures happen when the Hamming weight
of the noise vector ν is greater than the correction capacity t of the error-
correcting code, Hwt(ν) > t. When the noise vector is randomly drawn, the
probability of decryption failure is given by

PDF =
m∑

i=t+1

(
m

i

)

ηi(1− η)m−i .

In order to eliminate such decryption failures, the Hamming weight of the
noise vector can be tested before being used. If Hwt(ν) > t, the sender draws a
new noise vector according to Berm,η. When the parameters are chosen such that
ηm < t, then this happens only with negligible probability and the encryption
algorithm remains efficient.

4 Security Proofs

4.1 Security Model

The security notions for probabilistic private-key encryption have been formal-
ized by Bellare et al. [2] and thoroughly studied by Katz and Yung in [22]. The
two main security goals for symmetric encryption are indistinguishability (IND)
and non-malleability (NM). Indistinguishability deals with the secrecy afforded
by the scheme: an adversary must be unable to distinguish the encryption of two
(adversarially chosen) plaintexts. This definition was introduced in the context
of public-key encryption as a more practical equivalent to semantic security [15].
Non-malleability was introduced (again in the context of public-key encryption)
by Dolev, Dwork, and Naor [8] and deals with ciphertext modification: given
a challenge ciphertext Y , an adversary must be unable to generate a different
ciphertext Y ′ so that the respective plaintexts are meaningfully related.

Adversaries run in two phases (they are denoted as a pair of algorithms
A = (A1,A2)) and are classified according to the oracles (encryption and/or
decryption) they are allowed to access in each phase. At the end of the first
phase, A1 outputs a distribution on the space of the plaintexts (i.e. a pair of
plaintexts (x1,x2) of probability 1/2 each in the case of IND or a more com-
plex distribution in the case of NM). Then, a ciphertext is selected at random
according to the distribution and transmitted to A2 (this represents A’s chal-
lenge) and the success of A is determined according to the security goal (e.g. in
the case of IND, determine whether x1 or x2 was encrypted). The adversary is
denoted PX-CY , where P stands for the encryption oracle and C for the decryp-
tion oracle, and where X,Y ∈ {0, 1, 2} indicates when A is allowed to access the
oracle:

– 0: A never accesses the oracle
– 1: A can only access the oracle during phase 1, hence before seeing the

challenge (also termed non-adaptive)
– 2: A can access the oracle during phases 1 and 2 (also termed adaptive)

684 H. Gilbert, M.J.B. Robshaw, and Y. Seurin

We only give the formal definition of indistinguishability since this is the security
goal we will be primarily interested in. A formal definition of non-malleability
can be found in [22].

Definition 2 (IND-PX-CY). Let Γ = (G, E ,D) be an encryption scheme and
let A = (A1,A2) be an adversary. For X,Y ∈ {0, 1, 2} and a security parameter
k, the advantage of A in breaking the indistinguishability of Γ is defined as:

Advind-px-cy
A,Γ (k)

def=
∣
∣
∣
∣Pr

[
K

$←− G(1k); (x0,x1, s) ← AO1,O′
1

1 (1k);

b
$←− {0, 1}; y ← EK(xb) : AO2,O′

2
2 (1k, s,y) = b

]
− 1

2

∣
∣
∣
∣

where (O1,O2) is (∅, ∅), (EK(·), ∅), (EK(·), EK(·)) when X is resp. 0, 1, 2 and
(O′1,O′2) is (∅, ∅), (DK(·), ∅), (DK(·),DK(·)) when Y is resp. 0, 1, 2, and s is
some state information. Note that the plaintexts returned by A1 must respect
|x0| = |x1| and that when Y = 2, A2 is not allowed to query DK(y).
We say that Γ is secure in the sense IND-PX-CY if Advind-px-cy

A,Γ (k) is negli-
gible for any PPT adversary A.

Important relationships between the different security properties have been
proved by Katz and Yung [22]. The most meaningful for us are:

– non-adaptive CPA-security implies adaptive CPA-security:

IND-P1-CY ⇒ IND-P2-CY and NM-P1-CY ⇒ NM-P2-CY

– IND and NM are equivalent in the case of P2-C2 attacks (but unrelated for
other attacks): IND-P2-C2⇔ NM-P2-C2.

4.2 Proof of Indistinguishability Under Chosen Plaintext Attacks

We now prove that LPN-C is secure in the sense IND-P2-C0, by reducing its
security to the LPN problem. First, we will recall the following useful lemma
which was proved in [20] following [28], and which states that the hardness of the
LPN problem implies that the two oracles Uk+1 and Πs,η are indistinguishable.

Lemma 1 ([20], Lemma 1). Assume there exists an algorithm M making q
oracle queries, running in time T , and such that

∣
∣
∣Pr
[
s

$←− {0, 1}k : MΠs,η (1k) = 1
]
− Pr

[
MUk+1(1k) = 1

]∣
∣
∣ ≥ δ .

Then there is an algorithm A making q′ = O(q ·δ−2 log k) oracle queries, running
in time T ′ = O(T · kδ−2 log k), and such that

Pr
[
s

$←− {0, 1}k : AΠs,η (1k) = s
]
≥ δ

4
.

How to Encrypt with the LPN Problem 685

A full proof of this result can be found in [20]. We will reduce the security of
LPN-C to the problem of distinguishing Uk+1 and Πs,η rather than directly to
the LPN problem.
Theorem 1. Assume there is an adversary A, running in time T , and attacking
LPN-C with parameters (k,m, r, d, η) in the sense of IND-P2-C0 with advantage
δ by making at most q queries to the encryption oracle. Then there is an algo-
rithm M making O(q) oracle queries, running in time O(T), and such that

∣
∣
∣Pr
[
s

$←− {0, 1}k : MΠs,η (1k) = 1
]
− Pr

[
MUk+1(1k) = 1

]∣
∣
∣ ≥

δ

m
.

Proof. As already pointed out, non-adaptive CPA-security (P1) implies adaptive
CPA-security (P2), hence we may restrict ourselves to adversaries accessing the
encryption oracle only during the first phase of the attack (before seeing the
challenge ciphertext).

The proof proceeds by a hybrid argument. We will first define the following
hybrid distributions on {0, 1}k+m. For j ∈ [0..m], let M ′ denote a k × (m − j)
binary matrix. We define the probability distribution Pj,M ′,η as

{a $←− {0, 1}k; r $←− {0, 1}j; ν ← Ber(m−j),η : a‖r‖(a ·M ′ ⊕ ν)} .

Hence the returned vector a‖b is such that the first j bits of b are uniformly
random, whereas the last (m − j) bits are distributed according to (m − j)
independent LPN distributions related to the respective columns of M ′. Note
that Pm,M ′,η = Uk+m.

We will also define the following hybrid encryption oracles E ′j,M ′,η associated
with the secret matrix M ′ and noise parameter η: on input the r-bit plaintext
x, the encryption oracle encodes it to C(x), draws a random (k + m)-bit vector
a‖b distributed according to Pj,M ′,η, and returns (a, C(x)⊕ b).

We now describe how the distinguisherM proceeds. Recall thatM has access
to an oracle and wants to distinguish whether this is Uk+1 or Πs,η. On input the
security parameter 1k, M draws a random j ∈ [1..m]. If j < m, it also draws
a random k × (m− j) binary matrix M ′. It then launches the first phase A1 of
the adversary A. Each time A1 asks for the encryption of some x, M obtains a
sample (a, z) from its oracle, draws a random (j − 1)-bit vector r

$←− {0, 1}j−1,
and draws a (m − j)-bit noise vector ν distributed according to Ber(m−j),η. It
then forms the masking vector b = r‖z‖(a ·M ′ ⊕ ν) and returns (a, C(x)⊕ b).

The adversary A1 then returns two plaintexts x1 and x2. The distinguisher
M selects a uniformly random α ∈ {1, 2} and returns to A2 the ciphertext
corresponding to xα encrypted exactly as described just before. If the answer of
A2 is correct, then M returns 1, otherwise it returns 0.

It is straightforward to verify that when M’s oracle is Uk+1, M simulates the
encryption oracle E ′j,M ′,η, whereas when M’s oracle is Πs,η, then M simulates
the encryption oracle E ′j−1,M ′′,η where M ′′ = s‖M ′ is the matrix obtained as

686 H. Gilbert, M.J.B. Robshaw, and Y. Seurin

the concatenation of s and M ′. Hence the advantage of the distinguisher can be
expressed as

Adv =
∣
∣
∣Pr
[
s

$←− {0, 1}k : MΠs,η (1k) = 1
]
− Pr

[
MUk+1(1k) = 1

]∣
∣
∣

=
1
m

∣
∣
∣
∣
∣
∣

m−1∑

j=0

Pr
[
AE

′
j,M′,η succeeds

]
−

m∑

j=1

Pr
[
AE

′
j,M′,η succeeds

]
∣
∣
∣
∣
∣
∣

=
1
m

∣
∣
∣Pr
[
AE

′
0,M′,η succeeds

]
− Pr

[
AE

′
m,M′,η succeeds

]∣
∣
∣ .

Note that the encryption oracle E ′0,M ′,η is exactly the real LPN-C encryption
oracle. On the other hand the encryption oracle E ′m,M ′,η encrypts all plaintexts
by blinding them with uniformly random vectors b so that in this case the
adversary A cannot do better (or worse) than guessing α at random and has a
success probability of 1/2. Hence

∣
∣
∣Pr
[
AE

′
0,M′,η succeeds

]
− Pr

[
AE

′
m,M′,η succeeds

]∣
∣
∣

is exactly the advantage of the adversary which is greater than δ by hypothesis.
The theorem follows. ��

Remark 1. Note that when the error-correcting code is linear, the scheme is
clearly malleable, even when the adversary has no access at all to the encryption
nor the decryption oracle (the scheme is not NM-P0-C0). Indeed, an adversary
receiving a ciphertext (a,y) corresponding to some plaintext x, can forge a new
ciphertext corresponding to some other plaintext x⊕x′ simply by modifying the
ciphertext to (a,y ⊕ C(x′)). The same kind of attacks, though more elaborate,
would probably apply for non-linear error-correcting codes. Since NM-P2-C2 is
equivalent to IND-P2-C2, the scheme cannot be IND-P2-C2 either. We investi-
gate the security with respect to IND-P2-C1 attacks in the next subsection.

4.3 An IND-P0-C1 Attack

Here we show that the scheme is insecure (i.e. distinguishable) when the attacker
has (non-adaptive) access to the decryption oracle. The idea is to query the
decryption oracle many times with the same vector a in order to get many
approximate equations on a ·M . Consider an adversary querying the decryption
oracle with ciphertexts (a,yi) for a fixed a and random yi’s. Each time yi⊕a·M
is at Hamming distance less than t from a codeword, the decryption oracle will
return xi such that Hwt(C(xi)⊕yi⊕a ·M) ≤ t. This will give an approximation
for each bit of a ·M with noise parameter less than t

m .
Indeed, let us fix some bit position j, and evaluate the probability p that,

given that the decryption oracle returned the plaintext xi, the j-th bit of a ·M
is not equal to the j-th bit of C(xi)⊕ yi:

p = Pr
yi

$←−{0,1}m

[
(a ·M)[j] �= (C(xi)⊕ yi)[j]

∣
∣
∣DK(a,yi) = xi

]
.

How to Encrypt with the LPN Problem 687

Obviously, the sum over j of this quantity is equal to the expected value of the
number of errors, hence is less than t. Consequently the error probability is less
than t/m. Assume the vector a was chosen to have only one non-null coordinate
(say, the l-th one). Then this will enable to retrieve with high confidence the
bit in position (l, j) of the secret matrix M with a few attempts (according
to the Chernoff bound, since the repeated experiments use independent yi’s).
Repeating the procedure k · m times will enable the adversary to retrieve the
matrix M , which completely compromises the security of the scheme.

Note that for this reasoning to be correct, the probability that the decryption
oracle does not return ⊥ must be noticeable. Otherwise the adversary will have
to make an exponential number of attempts to get enough equations. Clearly

Pr
yi

$←−{0,1}m

[
DK(a,yi) �=⊥

]
= 2r

t∑

i=0

(
m
i

)

2m
: 2−(1− r

m−H(t
m))m ,

where H is the entropy function H(x) = −x log2(x) − (1 − x) log2(1 − x). The
concrete value of this probability will depend on the error-correcting code which
is used. If it is good enough this value will not be too small.

At the same time this suggests a method to thwart the attack. Assume that
LPN-C is modified in the following way: an additional parameter t′ such that
ηm < t′ < t is chosen. When the number of errors in y⊕a ·M is greater than t′

(i.e. y⊕a ·M is at Hamming distance greater than t′ from any codeword), the
decryption algorithm returns ⊥. If t′ is such that 2−(1− r

m−H(t′
m))m is negligible,

then the previous attack is not possible anymore. At the same time, this implies
to drastically reduce the noise parameter η and the LPN problem becomes easier.
The scheme also remains malleable, as the attack in Remark 1 remains applicable
(hence the scheme cannot be IND-P2-C2 either). However, it could be that such
a modified scheme is IND-P2-C1. This remains an open problem.

4.4 Achieving P2-C2 Security

The most straightforward way to get an encryption scheme secure against chosen-
ciphertext attacks from an encryption scheme secure against chosen-plaintext
attacks is to add message authenticity, e.g. by using a Message Authentication
Code (MAC). This idea was suggested in [8,22] and was carefully studied by
Bellare and Namprempre [3]. They explored the three paradigms Encrypt-and-
MAC, MAC-then-Encrypt and Encrypt-then-MAC and showed that the later
one was the most secure way to proceed. More precisely, assume that the sender
and the receiver share an additional secret key Km for the goal of message
authentication, and let MACKm(·) be a secure1 MAC. LPN-C is modified as
follows: let A = (a1, . . . ,an) be the vectors used to encrypt in LPN-C, and Y =
(y1, . . . ,yn) be the ciphertexts to transmit. A MAC of the ciphertext is added

1 that is, strongly unforgeable under chosen plaintext attacks; see [3] for a precise
definition.

688 H. Gilbert, M.J.B. Robshaw, and Y. Seurin

to the transmission and computed as τ = MACKm(A‖Y). The decryption
algorithm is modified to return ⊥ each time the MAC is not valid.

Given that the original scheme is IND-P2-C0, generic results of [3] imply that
the enhanced scheme is IND/NM-P2-C2. This generic method has the drawback
to rely on an additional assumption, namely the unforgeability of the MAC. We
go one step further and propose a way to build a MAC only relying on the LPN
problem and a one-way function.

Let M2 be a secret l × l′ binary matrix, where l and l′ are polynomials in k.
Let H : {0, 1}∗ → {0, 1}l be a one-way function. For X ∈ {0, 1}∗ define

MACM2(X) = H(X) ·M2 ⊕ ν′

where ν′ ← Berl′,η. We sketch the proof of the security of this MAC in the
Random Oracle model in the full version of this paper.

5 Concrete Parameters for LPN-C

We now discuss some example parameters for LPN-C as well as some possi-
ble practical variants. We will define the expansion factor of the scheme as
σ = |ciphertext|

|plaintext| = m+k
r , and the secret key size |K| = k · m. There are vari-

ous trade-offs possible when fixing the values of the parameters (k, η,m, r, d).
First, the hardness of the LPN problem depends on k and η (it increases with k
and η). However an increase to k implies a higher expansion factor and a bigger
key size, whereas an increase to η implies to use a code with a bigger correction
capacity and minimal distance, hence a bigger factor m

r . Depending on how the
noise vectors ν are generated, decryption failures may also be an issue.

Example values for k and η were given by Levieil and Fouque [23]. If one
is seeking 80-bit security, suitable parameters are (k = 512, η = 0.125), or
(k = 768, η = 0.05). Example parameters for LPN-C are given below, where we
used the list of Best Known Linear Codes available in magma 2.13 [24].

LPN-C expansion storage storage decryption
k η m r d factor σ |K| (bits) (Toeplitz) failure PDF

512 0.125 80 27 21 21.9 40, 960 591 0.42
512 0.125 160 42 42 16 81, 920 671 0.44
768 0.05 80 53 9 16 61, 440 847 0.37
768 0.05 160 99 17 9.4 122, 880 927 0.41
768 0.05 160 75 25 12.4 122, 880 927 0.06

Possible Variants. A first possibility is to increase the size of the secret matrix
M in order to decrease the expansion factor σ. Indeed, assume that M is now a
k × (n ·m) binary matrix for some integer n > 1. Then it becomes possible to
encrypt n blocks of r bits with the same random vector a. The expansion factor
becomes σ = n·m+k

n·r . Asymptotically when n increases, the expansion factor of
the scheme tends to the one of the error-correcting code m

r .

How to Encrypt with the LPN Problem 689

Another possibility would be to pre-share the vectors ai’s, or to generate them
from a small seed an a pseudorandom number generator. The expansion factor
would then fall to σ = m

r , but synchronization issues could arise.
Finally, we mention the possibility (already used in HB# [12]) to use Toeplitz

matrices in order to decrease the size of the secret key. A (k×m)-binary Toeplitz
matrix M is a matrix for which the entries on every upper-left to lower-right
diagonal have the same value. The entire matrix is specified by the top row and
the first column. Thus a Toeplitz matrix can be stored in k + m− 1 bits rather
than the km bits required for a truly random matrix. However, the security
implications of such a design choice remain to be studied.

6 Conclusions

We have presented LPN-C, a novel symmetric encryption scheme whose security
can be reduced to the LPN problem. Due to the low-cost computations (es-
sentially of bitwise nature) required on the sender side, this encryption scheme
could be suitable for environments with restricted computation power, typically
RFIDs. Moreover, due to some similarities it could be possible to combine it
with one of the authentication protocols HB+ or HB#.

Among open problems we highlight the design of an efficient MAC directly
from the LPN problem without any other assumption, as well as an understand-
ing of the impact of the use of Toeplitz matrices in LPN-C (and HB#).

References

1. Aumasson, J.-P., Finiasz, M., Meier, W., Vaudenay, S.: TCHo: A Hardware-
Oriented Trapdoor Cipher. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 184–199. Springer, Heidelberg (2007)

2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption: Analysis of the DES Modes of Operation. In: Proceedings
of FOCS 1997, pp. 394–403 (1997)

3. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

4. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the Inherent Intractabil-
ity of Certain Coding Problems. IEEE Trans. Info. Theory 24, 384–386 (1978)

5. Blum, A., Furst, M., Kearns, M., Lipton, R.: Cryptographic Primitives Based on
Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

6. Blum, A., Kalai, A., Wasserman, H.: Noise-Tolerant Learning, the Parity Prob-
lem, and the Statistical Query Model. J. ACM 50(4), 506–519 (2003); Preliminary
version. In: Proceedings of STOC 2000

7. Bringer, J., Chabanne, H., Dottax, E.: HB++: A Lightweight Authentication Pro-
tocol Secure Against Some Attacks. In: Proceedings of SecPerU 2006, pp. 28–33.
IEEE Computer Society Press, Los Alamitos (2006)

8. Dolev, D., Dwork, C., Naor, M.: Nonmalleable Cryptography. SIAM Journal of
Computing 30(2), 391–437 (2000)

690 H. Gilbert, M.J.B. Robshaw, and Y. Seurin

9. Duc, D.N., Kim, K.: Securing HB+ Against GRS Man-in-the-Middle Attack. In:
Institute of Electronics, Information and Communication Engineers, Symposium
on Cryptography and Information Security, January, pp. 23–26 (2007)

10. Fossorier, M.P.C., Mihaljevic, M.J., Imai, H., Cui, Y., Matsuura, K.: A Novel
Algorithm for Solving the LPN Problem and its Application to Security Evaluation
of the HB Protocol for RFID Authentication.,
http://eprint.iacr.org/2006/197.pdf

11. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Good Variants of HB+ are Hard to Find.
In: Proceedings of Financial Crypto 2008 (to appear, 2008)

12. Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: Increasing the Security and Ef-
ficiency of HB+. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008)

13. Gilbert, H., Robshaw, M.J.B., Sibert, H.: An Active Attack Against HB+: A Prov-
ably Secure Lightweight Authentication Protocol. IEE Electronics Letters 41(21),
1169–1170 (2005)

14. Goldreich, O., Krawczyk, H., Luby, M.: On the Existence of Pseudorandom Gen-
erators. In: Proceedings of FOCS 1988, pp. 12–21 (1988)

15. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-
tem Science 28(2), 270–299 (1984)

16. Håstad, J.: Some Optimal Inapproximability Results. J. ACM 48(4), 798–859
(2001)

17. Hopper, N., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

18. Impagliazzo, R., Levin, L.A.: No Better Ways to Generate Hard NP Instances than
Picking Uniformly at Random. In: Proceedings of FOCS 1990, pp. 812–821 (1990)

19. Juels, A., Weis, S.A.: Authenticating Pervasive Devices With Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

20. Katz, J., Shin, J.: Parallel and Concurrent Security of the HB and HB+ Protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

21. Katz, J., Smith, A.: Analysing the HB and HB+ Protocols in the “Large Error”
Case, http://eprint.iacr.org/2006/326.pdf

22. Katz, J., Yung, M.: Complete Characterization of Security Notions for Probabilistic
Private-Key Encryption. Journal of Cryptology 19(1), 67–95 (2006); Preliminary
version. In: Proceedings of STOC 2000

23. Levieil, E., Fouque, P.-A.: An Improved LPN Algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

24. MAGMA Computational Algebra System,
http://magma.maths.usyd.edu.au/magma

25. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland Mathematical Library (1983)

26. Munilla, J., Peinado, A.: HB-MP: A Further Step in the HB-family of Lightweight
Authentication Protocols. Computer Networks 51, 2262–2267 (2007)

27. Rao, T.R.N., Nam, K.H.: Private-Key Algebraic-Code Encryptions. IEEE Trans-
actions on Information Theory 35(4), 829–833 (1989)

28. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In: Proceedings of STOC 2005, pp. 84–93 (2005)

http://eprint.iacr.org/2006/197.pdf
http://eprint.iacr.org/2006/326.pdf
http://magma.maths.usyd.edu.au/magma

Could SFLASH be Repaired?�

Jintai Ding1, Vivien Dubois2, Bo-Yin Yang3,�,
Owen Chia-Hsin Chen3, and Chen-Mou Cheng4

1 Dept. of Mathematics and Computer Sciences, University of Cincinnati
2 CELAR, France

3 Institute of Information Sciences, Academia Sinica, Taiwan
4 Dept. of Electrical Engineering, National Taiwan University

Abstract. The SFLASH signature scheme stood for a decade as the
most successful cryptosystem based on multivariate polynomials, before
an efficient attack was finally found in 2007. In this paper, we review its
recent cryptanalysis and we notice that its weaknesses can all be linked
to the fact that the cryptosystem is built on the structure of a large
field. As the attack demonstrates, this richer structure can be accessed
by an attacker by using the specific symmetry of the core function being
used. Then, we investigate the effect of restricting this large field to a
purely linear subset and we find that the symmetries exploited by the
attack are no longer present. At a purely defensive level, this defines
a countermeasure which can be used at a moderate overhead. On the
theoretical side, this informs us of limitations of the recent attack and
raises interesting remarks about the design itself of multivariate schemes.

Keywords: multivariate cryptography, signature, SFLASH, differential.

1 Introduction

Multivariate schemes are asymmetric primitives based on hard computational
problems involving multivariate polynomials. Reference problems are for instance
solving a system of multivariate polynomial equations, or deciding whether two
sequences of multivariate polynomials are isomorphic. The research for such
schemes originates from Matsumoto and Imai’s work in the early 80s, but has re-
ally been active for a decade. The practical interest for considering such schemes,
besides the obvious diversification effort, comes from their usual high perfor-
mances which make them well-suited for implementation on small devices. On
the other side, the area is young and much cryptanalytic effort is still to be done
to understand well what their security might rely on.

Multivariate schemes are all based on a construction method inspired from
McEliece [12]: an easy-to-invert multivariate vectorial function is transformed
into a random-looking one by applying secret linear bijections on both variables
and coordinates. Of course, such a linear hiding has the nice feature to be very
� Correspondence to BY at by@moscito.org; a full version of this extended abstract

available from the authors, also cf. ePrint at http://eprint.iacr.org/2007/366.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 691–701, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

692 J. Ding et al.

easy to undo by the legitimate user, but it also has the drawback of leaking the
invariant properties of the internal function. Whenever such invariant properties
can be used in order to devise a cryptanalytic attack (e.g. elimination properties
enhancing Gröbner basis computation), one uses additional transformations to
destroy them.

SFLASH is a signature scheme proposed by Patarin, Goubin and Courtois [17],
following a design they had introduced at Asiacrypt’98 [15]. The easy-to-invert
internal function of SFLASH is defined from a single variable polynomial over
some field extension Fqn and turned into a function from (Fq)n to itself by using
the linear structure of Fqn over Fq. To allow efficient inversion, this function has
a specific shape as a polynomial over Fqn , namely this is a monomial which is
inverted by raising to the inverse exponent, like in RSA. The basic McEliece-
type hiding, i.e. using two linear bijections, of such a function was the initial
proposal – known as the C* cryptosystem – of Matsumoto and Imai [11], but it
was later seen by Patarin [14] that the hidden monomial structure implies some
algebraic properties of the public function which can be exploited for an attack.
However, Patarin, Goubin and Courtois later showed [15] that algebraic attacks
can be very easily avoided by using an additional transformation initially used
by Shamir [16] which consists in simply deleting a few coordinates of the public
function. Schemes obtained from the application of minus to C* are termed C*–

schemes; they are suitable for signature. SFLASH is a C*– scheme chosen as a
candidate for the selection organized by the NESSIE European consortium [1],
and accepted in 2003 [13].

Recently, Dubois, Fouque, Shamir and Stern discovered a new property of
C* monomials which is almost not affected by the minus transformation, and
which can be used to recover missing coordinates of the public function [4,3]. As
a consequence, all practical parameters choices for C*– schemes, including those
of SFLASH, were shown insecure. The attack found by Dubois et al. is the most
effective development of a new kind of cryptanalysis which targets geometrical
properties of multivariate functions. Consequences of this attack are of course a
reevaluation of related cryptosystems and a more careful study of the properties
of the internal functions being used. However it seems that the mere design
principle of multivariate schemes is here in question : can we effectively hide a
particular function such as a C* monomial using linear maps ?

Our results. In this paper, we review the recent cryptanalysis of SFLASH and
we notice that its weaknesses can all be linked to the fact that the cryptosys-
tem is built on the structure of a large field. As the attack demonstrates, this
richer structure can be accessed by an attacker by using the specific symmetry
of the internal C* function that can be perceived from even a small number of
public polynomials. Then, we study the effect of restricting this large field to a
purely linear subset, and we find that the symmetries exploited by the attack
are no longer present. We provide mathematical proofs for the target cases ex-
plaining this phenomenon in detail. As we will see, this result conveys additional
perspective on the general design of multivariate schemes.

Could SFLASH be Repaired? 693

Organization of the Paper. In Section 2, we give a brief introduction to SFLASH.
In Section 3, we review its recent cryptanalysis [4,3]. In Section 4, we show
that the geometrical properties which are exploited by the attack do not hold
when restricting the internal function to a proper subspace of the large field. In
Section 5, we define a modified family of schemes which resists the attack. We
discuss our results in Section 6.

2 The SFLASH Scheme

2.1 The C* Scheme

The C* scheme was proposed by Matsumoto and Imai in 1988. It uses a monomial
over Fqn : F (x) = x1+qθ

, x ∈ Fqn , where x can be identified with an n coordinates
vector over Fq by fixing some basis of Fqn . The exponent 1+qθ is chosen invertible
modulo qn− 1 and raising to its inverse is inverting F . Since 1 + qθ has q-weight
2, F corresponds to a multivariate function from (Fq)n into itself of degree 2. On
the other hand, the inverse of 1 + qθ has very high q-weight O(n) for prescribed
values of θ [11], and the inverse of F then corresponds to a multivariate function
from (Fq)n into itself with very high degree O(n). A C* scheme is built by
transforming F with randomly chosen linear bijections S and T : P = T ◦F ◦S.
The resulting function P has the same multivariate properties as F , but the
twisting provided by S and T hides the single variable representation which
allows fast inversion. Unfortunately, Patarin showed in 1995 [14] that although
the plaintext x is a high degree function in term of the ciphertext y, the pairs
(x, y) satisfy many low degree algebraic relations, whose degree is independent
of the security parameter n. This implies vulnerability to algebraic attacks.

2.2 SFLASH

To avoid an attacker to possibly reconstruct existing algebraic relations on the
pairs (x, y), a simple idea is not to provide the entire description of how these
variables are related. The most easy way to realize this was used by Shamir in
1993 [16] and consists in simply removing a few coordinate-polynomials of the
public key, say the last r ones where r is an additional parameter. Furthermore,
Patarin, Goubin and Courtois showed in 1998 [15] that for a C* scheme, the
degree of algebraic relations between x and the partial y is quickly growing with
the parameter r. Of course, the resulting scheme is no longer bijective but it can
still be used for signature at no performance loss. These schemes were introduced
as C*– by Patarin, Goubin and Courtois [15]. A public key consists of the n− r
first coordinates of an initial C* public key P = T ◦ F ◦ S with T and S as the
secret key. A rationale for the parameter r is provided in [15]; choosing r with
qr ≥ 280 is then required for a 280 security level. Besides, no algebraic attack is
expected to succeed when r is not too small in regards to n, the initial number of
polynomials. SFLASH is a C*– scheme chosen by Patarin et al. for the NESSIE
selection. For the recommended parameters q = 27, n = 37, θ = 11 and r = 11,
the signature length is 239 bits and the public key size is 15 Kbytes.

694 J. Ding et al.

3 The Symmetry in SFLASH

The design of SFLASH was aimed at resisting algebraic attacks and stood chal-
lenging for almost ten years. However, in the last four years, a new kind of
cryptanalysis for multivariate schemes has been developed based on geometri-
cal properties of the so-called differential [8,5,6]. As defined in the initial paper
by Fouque, Granboulan and Stern [8], the differential transforms a quadratic
function P (x) into its bilinear symmetric associate, denoted DP (a, b). The dif-
ferential of P can be obtained by substituting monomials xixj by aibj + ajbi in
the expression of P (if P is not homogeneous, terms of degree 1 and 0 are dis-
carded). The interest of doing so is that DP is linear separately in a and b and
its properties relatively to these variables can then be described in terms of linear
algebra. Furthermore, when considering a multivariate scheme P = T ◦ F ◦ S,
these properties are isomorphic to those of F since S and T are linear bijections.

Recently, Dubois, Fouque, Shamir and Stern showed a very efficient cryptanal-
ysis of C*– schemes based on a class of geometrical invariants of the differential
of C* [4,3]. We summarize it below.

3.1 Skew-Symmetric Maps with Respect to the Differential

The differential of the internal C* function is DF (a, b) = a b qθ

+ aq
θ

b for
a, b ∈ Fqn . When a and b are identified with n coordinates vectors over Fq,
DF is a bilinear symmetric function from (Fq)n × (Fq)n to (Fq)n. Each of the
n coordinates of DF is a multivariate polynomial in the coordinates a1, . . . , an
and b1, . . . , bn of a and b respectively, which is linear separately in a and b, and
where a and b play symmetric roles. Each such polynomial is written on the basis
of terms aibj + ajbi so it has n(n − 1)/2 coefficients. Now, it is observed in [4]
that linear maps consisting of multiplications by some element ξ of Fqn have a
specific action on DF . Indeed, we have

DF (ξ.a, b) + DF (a, ξ.b) = (ξ + ξq
θ

).DF (a, b) (1)

For the particular elements ξ such that ξ + ξq
θ

= 0 (at least 1 is solution), the
associated multiplication maps Mξ satisfy

DF (Mξ(a), b) + DF (a,Mξ(b)) = 0

that is, they are the skew-symmetric maps with respect to DF . The existence of
non-trivial (i.e. not colinear to the identity) such maps is of course very unusual
and even for a C* monomial it does not happen for all parameters. However,
even when it does not happen, the initial identity can also be interpreted as a
skew-symmetry property. Let us indeed define for any linear map M , the skew-
symmetric action of M over DF as the bilinear and symmetric function

Σ[M](a, b) = DF (M(a), b) + DF (a,M(b))

Our basic identity infers that in the special case of multiplication maps,

Σ[Mξ](a, b) = Mζ ◦DF (a, b)

Could SFLASH be Repaired? 695

where Mζ is the multiplication by ξ + ξq
θ

. As a consequence, for any element ξ
of Fqn , the coordinates of the bilinear and symmetric function Σ[Mξ](a, b) are
linear combinations of the coordinates of DF . Therefore, expressed in geomet-
rical terms, multiplication maps have the specific property to leave unchanged
under skew-symmetric action the subspace spanned by the coordinates of DF .
Note that this property is very strong because the subspace spanned by the n
coordinates of DF has dimension at most n while for a random linear map M ,
the coordinates of Σ[M] might be any polynomials in the whole space of bilinear
symmetric polynomials of dimension n(n− 1)/2 and are very unlikely to all be
confined in the tiny subspace spanned by the coordinates of DF .

The public key P of a C* scheme inherits of the above properties; the only
difference is that the linear maps that play with regards to P the role of
multiplications with regards to F are the conjugates S−1 ◦ Mξ ◦ S. Now, a
crucial point is : although the latter maps depend on the secret bijection S,
they can be computed from their characteristic property with regards to the
public key P . For instance, considering the simple skew-symmetry condition,
DP (M(a), b) + DP (a,M(b)) = 0, we see that this equation is linear in M . It
can be seen [4] that each coordinate of DP provides us with n(n− 1)/2 linear
conditions on the n2 coefficients of M . Then, even a marginal number of co-
ordinates of the public key allows to solve the space of skew-symmetric maps.
Solving the more general skew-symmetry condition follows similar principles al-
though more theory is involved; we refer the reader to the original paper [3] for
the details.

3.2 Consequences

The properties described above allow an attacker to compute from a C*– public
key conjugates S−1 ◦Mξ ◦ S of multiplications maps Mξ. This of course is very
annoying because these maps depend on the secret bijection S and were initially
considered as secret information. Furthermore, it is shown in [4] that the nature
of these maps is an additional problem. We do not consider these aspects here
and focus on the initial breach i.e. the existence of linear maps which can be
computed from the public key although they contain secret information. In the
sequel, we investigate the possibility to destroy the skew-symmetry property of
C*– schemes.

4 Breaking the Symmetry

As we have seen, for C*– schemes, the linear maps which are associated to the
skew-symmetry property are connected to the internal field structure, namely
they are multiplications by elements of Fqn . In principle, this means that the ex-
istence of these maps is tied to the internal field structure. A natural question is:
would skew-symmetric maps exist if the internal field structure were truncated,
i.e. restricted to a subspace of it?

696 J. Ding et al.

4.1 Projection Breaks the Skew-Symmetry Property of C*–

Schemes

Suppose we consider the internal function F restricted to some proper subspace
H of Fqn . We denote FH this restriction. The skew-symmetric maps with respect
to the differential DFH of FH are by definition the linear maps MH from H to
itself which satisfy :

DFH(MH(h), k) + DFH(h,MH(k)) = 0 , h, k ∈ H (2)

We expect the solutions MH to this condition to be the restrictions to H of
the skew-symmetric maps w.r.t DF which map H to itself. When H is an arbi-
trary subspace, we do not expect non-trivial multiplications Mξ to map H into
itself. Then, the only solutions to our condition should be the scalar multiples
of the Identity: MH = λ.IdH , λ ∈ Fq. Let us now show that our expectation
is correct using mathematical arguments. First, we characterize the linear maps
MH which are skew-symmetric with respect to DFH by transforming the above
condition (2) in a condition with respect to DF . That is, we embed the above
condition over H in a condition over Fqn . We can embed MH into a linear map
M̄H which is MH over H and zero elsewhere. The same way, we can embed
the Identity over H into the projection map to H , denoted πH . Then, (2) is
equivalent to:

DF (M̄H(a), πH(b)) + DF (πH(a), M̄H(b)) = 0 , a, b ∈ Fqn

Therefore, the linear maps M̄H are special solutions to the condition

DF (M(a), πH(b)) + DF (πH(a),M(b)) = 0 , a, b ∈ Fqn (3)

They are those solutions M left unchanged by composition with πH :

M = M ◦ πH = πH ◦M

Our method to determine the linear maps M̄H is then clear : we first find the
solutions M to the condition (3), and then find those which are left unchanged
by composition with πH .

The Solutions to Condition 3. As we can see, obvious solutions to Condi-
tion 3 are the maps Mξ ◦ πH where Mξ is skew-symmetric with respect to DF .
Since our condition is greatly overdetermined, we do not expect any other so-
lutions. This is confirmed experimentally. In the most simple case when H is a
hyperplane, we can give it a mathematical proof.

Lemma 1. Let H be a hyperplane of Fqn and DF be the differential of a bijective
C* monomial. The linear maps M which satisfy the condition

DF (M(a), πH(b)) + DF (πH(a),M(b)) = 0 , a, b ∈ Fqn

are of the form Mξ ◦ πH where Mξ is skew-symmetric with respect to DF .

Could SFLASH be Repaired? 697

Proof. The idea of the proof is to replace M and πH by their expressions as sums
of q-powerings, and to express our condition as the vanishing of a polynomial
in a, b over Fqn . We have M(a) =

∑n−1
i=0 μi a

qi

and πH can be expressed as the
projection orthogonally to some element u, where the orthogonality is defined rel-
atively to the trace product (see [10] for a definition). Recalling tr(a) =

∑n−1
i=0 aq

i

and that tr(a) is an element of Fq, we have πH(a) = a− tr(au)u. To simplify, we
consider in the sequel u = 1. We can rewrite our condition : A(a, b)−B(a, b) = 0,
where

A(a, b) = DF (M(a), b) + DF (a,M(b))
B(a, b) = tr(a)DF (M(b), 1) + tr(b)DF (M(a), 1)

Both expressions are written on the basis of symmetric terms of the form aq
i

bq
j

+
aq

j

bq
i

and their respective coefficients are :

A(a, b) : coefficient{i, 0} = μqθ

i−θ ; coefficient{i, θ} = μi

B(a, b) : coefficient{i, j} = μi + μj + (μi−θ + μj−θ)q
θ

From these expressions, we easily resolve μ0 = 0 and μi = ξ for all i �= 0
where ξ satisfies ξq

θ

+ ξ = 0 (see the full version for the details). Therefore,
M(a) = ξ(a− tr(a)) = Mξ ◦ πH(a) where Mξ is skew-symmetric with respect to
DF (which is obtained from ξq

θ

+ ξ = 0). ��

Solutions Which are Left Unchanged by Composition with the Pro-
jection. As we have shown, the linear maps M̄H which correspond to the skew-
symmetric maps with respect to DFH , are the solutions to Condition 3 which
are left unchanged by composition with πH . As argued in the previous section,
the solutions to this condition are Mξ ◦ πH where Mξ is multiplication by some
element ξ. These maps are unchanged by composition with πH if and only if
Mξ commutes with πH , i.e. if and only if Mξ maps H to itself. Then, since for
any ξ, Mξ is bijective, we have ξ.H = H . Our goal is to show that, except for
specific choices of H which are very sparse, the only ξ satisfying this property
are the scalar multiples of 1. As a first step, we notice that these elements ξ
form a multiplicative group, independently of the choice of H . Therefore, they
actually form a subfield of Fqn and H is a linear space over this subfield. Finally,
the subspaces H for which our property is satisfied by non-trivial elements ξ
are subspaces over intermediate subfields of Fqn . As a second step, we upper-
bound the probability that a random subspace H of a prescribed dimension s is
a subspace over an intermediate subfield of Fqn . (In this case, we say that H is
degenerate). We show that this probability is negligible in terms of q and n.

Lemma 2. Degenerate subspaces of Fqn only exist at dimensions s not coprime
with n. Degenerate hyperplanes never exist. The proportion of degenerate sub-
spaces in Fqn of a prescribed dimension is always O(q−n).

Proof. When H is a subspace over Fqr , its dimension over Fq is a multiple of r.
Since r must itself be a divisor of n, degenerate subspaces only exist at dimensions
s not coprime with n. For instance, we deduce that degenerate hyperplanes never

698 J. Ding et al.

exist since n−1 is always coprime with n. Let r be a common divisor of s and n.
It can be shown that the number of subspaces of dimension s in a vector space
of dimension n is of the order of qs(n−s) [9]. Then, the number of Fqr -subspaces
of dimension s/r in Fqn is of the order of qs(n−s)/r. The number of degenerate
subspaces of dimension s in Fqn is dominated by the latter quantity considered
for the smallest common factor r of n and s. Since the smallest possible value of
r is 2, the proportion of degenerate subspaces of dimension s in Fqn is at most of
the order of q−s(n−s)/2. Since s(n−s) is minimal for s = 2 (2 is a common factor
of s and n), the searched proportion is dominated by q−(n−2) and therefore q−n

asymptotically. ��

Application to the General Skew-Symmetry Property of C*– Schemes.
In the preceding paragraphs, we have shown that restricting the internal function
F to some proper subspace H of Fqn destroys the simple skew-symmetry prop-
erty (2). In this paragraph, we consider the general skew-symmetry property of
C*– schemes. This property expresses that there exists non-trivial linear maps
which leave the space spanned by the coordinates of DF unchanged under skew-
symmetric action. The linear maps satisfying this condition are the whole space of
multiplications. Using similar techniques as before, we can show that this property
considered for the restricted function FH admits only trivial solutions.

4.2 Experimental Verifications

We checked experimentally, for various C* parameters n and θ, the effect of
restricting the internal function to a randomly chosen subspace H of various
dimensions s. For instance, for parameters n = 36 and θ = 4, we obtain the
table below for the solution space of the general skew-symmetry condition as
the number of coordinate-wise conditions grows.

5 Projected C*– Schemes

Based on the previous results, we are led to define a new family of schemes that
we call projected C*– schemes. As we will see, these schemes actually consists in
hiding a C* monomial using non-bijective linear maps. We next define the (ad-
hoc) computational problems on which the security of these schemes is based.
Finally, we discuss possible choices of parameters and suggest one concrete choice
with performances comparable to SFLASH.

Description. A projected C*– scheme is defined as follows. Start from a C*
scheme F (x) = x1+qθ

with secret linear maps S and T . Let r and s be two
integers between 0 and n. Let T− be the projection of T on the last r coordinates
and S− be the restriction of S on the last s coordinates. Compute P̂ = T− ◦
F ◦ S−. The generated function P̂ is used as the public key and the secret
linear bijections S and T are used as the secret key. Note that P̂ is a quadratic
function from (Fq)n−s to (Fq)n−r. To find a preimage by the public function of

Could SFLASH be Repaired? 699

conditions s = 0 s = 1 s = 2 s = 3 s = 4 s = 9 s = 18

1 1296 1225 1156 1089 1024 769 324
2 708 669 632 598 564 414 207
3 168 145 124 109 104 99 90
4 36 1 1 1 1 1 1
6 36 1 1 1 1 1 1
...

...
...

...
...

...
...

...

a given message m, the legitimate user first pads m with a random vector m′ of
(Fq)r and compute the preimage of (m,m′) by T ◦ F ◦ S. If this element has its
last s coordinates to 0, then its n − s first coordinates are a valid signature for
m. Otherwise, he discards this element and tries with an other random padding
m′. When r > s, the process ends with probability 1 and costs on average qs

inversions of F . In practice, r is chosen a significant fraction of n to make the
public key resistant to algebraic attacks; s can be chosen as small as 1 to destroy
symmetries arising from the internal field structure. As for C*– schemes, the
significant value of r makes projected C*– schemes only suitable for signature,
since reviewing all possible paddings m′ is not efficient. Finally, we mention that
projection already appeared in the literature as a possible modifier [18] but was
never considered as a useful measure let alone a defensive measure.

Possible Angles of Analysis. As usual for multivariate schemes, the security
relies on several ad-hoc computational problems. The first problem is solving
the public system of quadratic equations. Since s is chosen small, this is about
as hard as solving the initial C*– system. The second problem is recovering
the functional decomposition of the public key or at least some information on
the secret maps S−, T−. There is no efficient strategy to solve this problem in
general [7], and the attack by Dubois et al. which falls into this category for C*–

schemes is here prevented by the projection. Remains the strategy consisting in
recovering the public key into a valid C*– public key. Showing this to be possible
is actually the new challenge opened by the new family of schemes.

Parameters. n, θ, r are chosen following the rationales for C*– schemes. We
choose s = 1 as it induces the minimal factor q on the secret operations. The
value of q can be chosen small but, at constant blocksize, this requires a larger
value of n and therefore a larger public key. As a possible trade-off, we propose
pFLASH with q = 24, n = 74, θ = 11, r = 22 and s = 1. Our tests have pFLASH
signing at � 1 million K8/C2 cycles, in line with expectations of ∼ 16× time of
SFLASH [2]; private key size is 2× at 5.4kB. These are still attractive features
for small device implementation.

6 Conclusion

In this paper, we provide additional insight on the recent cryptanalysis of
SFLASH by exhibiting a simple modification which provably avoids the attack.

700 J. Ding et al.

Our study shows that the attack against SFLASH has deeper roots than the
mere fact that it is based on a C* monomial : the attack is made possible be-
cause the large field structure is embedded in the public key and is stopped
when it is no more the case. Then, we realize that, indeed, one might not hope
to hide effectively a particular function defined on a large field using linear bi-
jections; this might at most be achievable in some security range using compres-
sive linear maps. But then, is it still possible to build a practical cryptosystem
in this setting ? At the present state, we can still define a modified family of
C* -based schemes which is of practical interest. Analysis of this most simple
case would probably yield additional understanding of the ways to distinguish a
specifically-built multivariate function and would provide further insight on the
very possibility to obfuscate such a function using linear maps.

Acknowledgment

JD and BY are grateful to the Alexander van Humboldt Foundation, the Taft
Fund, and TWISC [National Science Council project NSC 96-2219-E-011-008
/ NSC 96-2219-E-001-001] without whose valuable support much of this work
would’ve not happened. BY, CC, OC would also like to thank NSC for partial
sponsorship via project NSC 96-2221-E-001-031-MY3.

References

1. European project IST-1999-12324 on New European Schemes for Signature, In-
tegrity and Encryption, http://www.cryptonessie.org

2. Daniel, J.: Bernstein. eBATs benchmark results, http://ebats.cr.yp.to
3. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical Cryptanalysis of

SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007)

4. Dubois, V., Fouque, P.-A., Stern, J.: Cryptanalysis of SFLASH with Slightly Mod-
ified Parameters. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
264–275. Springer, Heidelberg (2007)

5. Dubois, V., Granboulan, L., Stern, J.: An Efficient Provable Distinguisher for HFE.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 156–167. Springer, Heidelberg (2006)

6. Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with Internal Pertur-
bation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265.
Springer, Heidelberg (2007)

7. Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and The-
oretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006)

8. Fouque, P.-A., Granboulan, L., Stern, J.: Differential Cryptanalysis for Multivariate
Schemes.. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–
353. Springer, Heidelberg (2005)

9. Goldman, J., Rota, G.-C.: The Number of Subspaces of a Vector Space. In: Tutte,
W.T. (ed.) Recent Progress in Combinatorics, pp. 75–83. Academic Press, London
(1969)

http://www.cryptonessie.org
http://ebats.cr.yp.to

Could SFLASH be Repaired? 701

10. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its ap-
plications, vol. 20. Cambridge University Press, Cambridge (1997)

11. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient
Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EURO-
CRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

12. McEliece, R.J.: A Public-Key Cryptosystem based on Algebraic Coding Theory.
In: JPL DSN Progress Report, pp. 114–116. California Inst. Technol., Pasadena
(1978)

13. NESSIE, New European Schemes for Signatures, Integrity, and Encryption. Port-
folio of Recommended Cryptographic Primitives, http://www.nessie.eu.org

14. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261.
Springer, Heidelberg (1995)

15. Patarin, J., Goubin, L., Courtois, N.: C*
-+ and HM: Variations Around Two

Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT
1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)

16. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In:
Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg
(1994)

17. Specifications of SFLASH. Final Report NESSIE, pp. 669–677 (2004)
18. Wolf, C., Preneel, B.: Taxonomy of Public Key Schemes based on the problem of

Multivariate Quadratic equations. ePrint Archive Report 2005/077,
http://eprint.iacr.org/2005/077

http://www.nessie.eu.org
http://eprint.iacr.org/2005/077

Password Mistyping in

Two-Factor-Authenticated Key Exchange

Vladimir Kolesnikov1 and Charles Rackoff2

1 Bell Labs, Murray Hill, NJ 07974,USA
kolesnikov@research.bell-labs.com

2 Dept. Computer Science, University of Toronto, Canada
rackoff@cs.utoronto.ca

Abstract. We study the problem of Key Exchange (KE), where authen-
tication is two-factor and based on both electronically stored long keys
and human-supplied credentials (passwords or biometrics). The latter
credential has low entropy and may be adversarily mistyped. Our main
contribution is the first formal treatment of mistyping in this setting.

Ensuring security in presence of mistyping is subtle. We show
mistyping-related limitations of previous KE definitions and construc-
tions (of Boyen et al. [6,7,10] and Kolesnikov and Rackoff [16]).

We concentrate on the practical two-factor authenticated KE setting
where servers exchange keys with clients, who use short passwords (mem-
orized) and long cryptographic keys (stored on a card). Our work is thus
a natural generalization of Halevi-Krawczyk [15] and Kolesnikov-Rackoff
[16]. We discuss the challenges that arise due to mistyping. We propose
the first KE definitions in this setting, and formally discuss their guar-
antees. We present efficient KE protocols and prove their security.

1 Introduction

The problem of securing communication over an insecure network is generally
solved using key exchange (KE). KE provides partners with matching randomly
chosen keys, which are used for securing their conversation. Of course, no adver-
sary Adv should be able to mismatch players. Therefore, players must possess
secrets with which they can authenticate themselves. The kind of secrets that
are available to players determines the setting of KE. In the simplest KE setting
players have a long shared random string. KE is more complicated if parties
establish key pairs with the public keys securely published. Using weak and/or
fuzzy credentials, such as passwords or biometrics, further complicates the de-
sign of KE. Finally, using a combination of credentials may make certain aspects
of KE easier (such as incorporating password authentication), but increases the
overall complexity of the solution, as discussed in [16].

Our Setting. Two-factor authentication is critical and is used extensively in
secure applications such as banking, VPN, etc. Stored long keys protect against
online adversaries, but are vulnerable against theft. The extra layer of security is
achieved with additional use of a theft-resistant credential, e.g. a short password

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 702–714, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Password Mistyping in Two-Factor-Authenticated Key Exchange 703

or a biometric. Unfortunately, neither password nor biometric can be expected
to be read reliably into the computer.

We give foundation to this setting by generalizing the work of Halevi-
Krawczyk (HK) [15] and Kolesnikov-Rackoff (KR) [16]. Recall, they address the
client-server setting where both long key and a short password are used for KE.
The servers are incorruptible, but client’s card or password can be compromised.

Motivated by real scenarios, we study the effects of password mistyping. Mis-
typing need not be random, but may be skewed by the adversary, e.g. by technical
means or social engineering manipulation. We thus consider security against
adversaries who can arbitrarily affect user’s mistyping. This consideration is
especially relevant in case biometric credentials are used for authentication, since,
due to technology limitations, biometric readings are expected to be misread.

Mistyping opens subtle vulnerabilities and raises complex definitional issues.
In the sequel, we use terms “password” and “mistype”, although our work applies
to passwords, biometrics, and other short noisy credentials, as noted in Sect. 5.

1.1 Our Contributions and Outline of Work

Our main contribution is the first formal treatment of mistyping of passwords
in KE that uses a combination of credentials.

We discuss recent definitions that consider mistyping-related settings and
issues – robust fuzzy extractors of [6,7,10]. We point out a limitation of the
definitions of [6,7,10] with respect to robust handling of biometric misread-
ing/mistyping and discuss possible remedies. We demonstrate and correct a vul-
nerability of the definition and protocol of [16], which can only be exploited when
users mistype. These observations further emphasize the subtleties of mistyping
and the need for its formal treatment and deeper understanding.

In Sect. 3, we introduce our setting and the framework of [16] which we build
upon. Then, with simple protocols we illustrate mistyping-related issues, discuss
natural definitional approaches to handling mistyping and their shortcomings.
Most of the mistyping-related subtleties we uncover arise due to the simultaneous
use of both long keys and passwords. In Sect. 4, we formalize our discussion in
a definition, and formally argue that it prevents attacks that exploit mistyping.

In Sect. 5 we discuss applications of our work in biometric authentication.
In Sect. 6 we give efficient protocols; we prove their security in the full version.

1.2 Related Work

The problem of key exchange has deservedly received a vast amount of attention.
Password KE was first considered by Bellovin and Merritt [4]. Foundations –
formal definitions and protocols – were laid in [3,8,13,9], and other works.

The use of combined keys in authentication, where the client has a password
and the public key of the server, was introduced by Gong et al. [14] and first
formalized by Halevi and Krawczyk [15]. Kolesnikov and Rackoff [16] extended
this setting by allowing the client to also share a long key with the server, and
gave first definitions of KE in their (and thus in the Gong et al. and HK) setting.

704 V. Kolesnikov and C. Rackoff

Password Mistyping in KE. Despite the large research effort, the definitional
issues of KE password mistyping are formally approached only in the UC defi-
nition of Canetti et al. [9]. In their password-only setting, mistyping is modelled
by Environment Z providing players’ inputs. Additional use of long key makes
our setting significantly different (and more subtle with respect to mistyping)
from that of [9]. Mistyping was also considered in different settings: related-key
attacks on blockciphers [2] and signing authority delegation [17].

Biometric authentication and fuzzy extractors. A growing body of work,
e.g. [5,10,11,12], addresses the use of biometrics in cryptography. Boyen et al.
[6,7,10] consider its application to KE. They introduce the notion of robust fuzzy
extractor (RFE), and give generic constructions of biometric-based KE from
RFE. While their setting is similar to ours, the problems solved by [6,7,10] are
different. They give KE protocols that accept “close enough” secrets, thus en-
abling security and privacy of biometric authentication. They do not aim to give
a formal KE definition that handles biometric/password misreading. Moreover,
as shown in Sect. 2, their notion of RFE is insufficiently strong to guarantee
security of their generic KE protocol in many practical settings. (However, in-
stantiating their KE protocol with their RFE construction is secure, since the
latter satisfies stronger requirements than required by the definition.)

2 Mistyping-Related Limitations in Previous Work

On robust fuzzy extractor (RFE) definition and KE protocol [7,6,10].
We first clarify underlying biometric technology limitations and assumptions.
Biometrics are “fuzzy”, i.e. each scan is likely to be different from, but “close”
to the “true” scan. Error-correction [12] is then used to extract non-fuzzy keys
usable in cryptography. However, error-correction cannot correct many misread-
ing errors (up to 10%), since this would imply high false acceptance rate1. Thus
misreading beyond error-correction ball occurs often, and must be considered.

We note a limitation of RFE definition [7,6,10], prohibiting its use with the
generic KE construction (Sect. 3.3 of [7]) in many scenarios. Roughly, definition’s
domains of correctness and security guarantees coincide. That is, extracted ran-
domness is only guaranteed to be good if the scan is within the error-correction
distance t from the original. There are no guarantees on the randomness if this
condition does not hold. This is, perhaps, due to the papers’ implicit assumption
that “natural” misreadings are almost always “close” and are corrected (i.e. FRR
is negligible). However, as discussed above, this assumption often does not hold.
Strengthening the randomness guarantees of RFE would increase its usability.

More specifically, a RFE (Gen,Rep) may exhibit the following vulnerability.
Given the public helper string P , if the biometric w0 is misread in a special
way w′ outside the error-correction ball, the extracted randomness Rep(w′, P)
is predictable. Even more subtly, Rep(w′, P) and Rep(w0, P) could be related,
1 In balanced optimized real-life systems, which compare scans directly, False Reject

Rate (FRR) is usually 1..10%. Notably, NIST reports FRR of fingerprints 0.1..2%,
iris 0.2..1% and face 10%. See [1] for comprehensive overview and references.

Password Mistyping in Two-Factor-Authenticated Key Exchange 705

but unequal. Clearly, KE protocols, including one of Sect. 3.3 of [7,6], constructed
from such RFE would not be secure. One solution is to require, for w′ outside the
error-correction ball, that either Rep(w′, P) = ⊥ (property of RFE construction
of [6,7]) or that Rep(w′, P) is either equal to or independent from Rep(w0, P).

Finally, although [6,7,10] consider adversarial substitution of P with P ′, they
guarantee Rep(w′, P ′) = ⊥ only for w′ in the error-correction ball. This vul-
nerability also can be resolved by separating the error-correction and security
domains. We defer detailed definition, analysis and constructions as future work.

On the definition and construction of [16]. We present the following prac-
tical outside-of-the-model mistyping attack on the protocol (and thus also on the
definition) of Kolesnikov and Rackoff [16]. Specifically, resistance to Denial of
Access (DoA) attacks of the protocol of [16] is compromised if the honest client
ever mistypes. Indeed, since their protocol is not challenge-response, client C’s
message can be replayed. This is not a problem if C always types the correct
password (session keys of C and server S will be independent). However, if the
password was mistyped, both the original and replayed message will cause S to
register password failure, violating the intent of the DoA resistance. We stress
that the KR protocol is otherwise secure against mistyping (and we prove it in
Sect. 6). Our definitions and protocols address and correct the above insecurity.

Above limitations show subtleties of mistyping and the need to address them.

3 Pre-definition Discussion

Our main contribution is a formal treatment of mistyping in the combined keys
KE setting of Kolesnikov and Rackoff [16]. The KR setting is a generalization
of the Halevi-Krawczyk setting [15], in which clients have a password and the
public key of S. In KR setting, clients carry stealable cards capable of storing
cryptographic keys – public key of S and long key � shared by C and S. Addi-
tion of the cards allows better functionality and security than that of HK. KR
definitions and protocol guarantee and achieve strong security when C’s card is
secure, and weaker, password-grade, security, when the card is compromised.

We stress that the definition of KR does not handle mistyping. That is, it is
possible to construct KR-secure protocols that “break” if the client ever mistypes
his password. Sect. 3.3 of [16] provides an example and a short informal discus-
sion on mistyping, and leaves the problem open. In Sect. 3.2, we expand this
discussion, present more subtle mistyping threats, and discuss approaches to
handling them. This leads to the presentation of our definitions in Sect. 4.

Notation. We concentrate on the two-factor authentication setting, where a
client (denoted C) exchanges keys with a server (S). Both long and short keys
are used for KE. Let P be a player. We denote by Pi the i-th instance of P .
We write PQ

i to emphasize that Pi intends to do KE with (some instance of)
player Q. Denote the adversary by Adv. Sometimes we distinguish the game and
real-life adversary, and denote the latter AdvReal. Denote C’s password by pwd

706 V. Kolesnikov and C. Rackoff

and long key by �. S’s public/ private keys are pkS and skS . Password failure
and the associated control symbol output by S is denoted by P⊥.

On the Style of Definition. We chose the game (Bellare-Pointcheval-Roga-
way [3]) style, since this allowed using the intuitive definition of KR (only existing
two-factor-authentication KE definition). Extending KR allowed reduction of
security claims of our definition/setting to those of KR. Further, the stronger
and arguably more intuitive UC model unfortunately is sometimes too strict,
ruling out some efficient protocols which appear to be good enough in practice.

Proposing a simulation-based (especially, UC) definition, and exploring the
relationship between it and our definition would add confidence in both our and
the UC treatment of the problem. We thus leave as an important next step the
design, detailed analysis and comparison of a corresponding UC definition. We
expect that our discussions of ideas and obstacles would aid in this future work.

3.1 Review of the Framework of [16]

Our definition is an extension of the KE definition of KR (Def. 2 of [16]).
Recall, KR (and thus our) definition follows the common game-based

paradigm. The real world and real adversary AdvReal are abstracted as a game,
played by the game adversary Adv. Game includes clients and servers – Inter-
active Turing Machines (ITM) running the KE protocol Π , communicating via
channels controlled by Adv. Game rules mimic reality, and are designed so that
Adv’s wins correspond to real-life breaks. Π is defined secure if no polytime Adv
is able to win above certain “allowed” probability. Definition is thus reduced to
the design of the game. KR break down the real world into five intuitive games
(KE1, KE2, KE3, DOA and SID), which mimic possible real-life attack scenarios.

Game KE1 is the core of the definition; it addresses password security when
the long key is compromised. The difficulty of KE1 design is in balancing the
power given to Adv, since AdvReal’s non-negligible advantage must be accounted
exactly. It is achieved by “charging” Adv for each active attack (i.e. P⊥ output
by S). The allowed Adv win probability is a function of the number of charges.

KE2 models AdvReal posing as S to C. KE3 models KE with uncompromised
card. In both cases, Adv is allowed only negligible success, which is easy to model.
DOA models a “denial of access” attack formalized by KR, which requires that
Adv is not able to cut C’s access to S by exhausting allowed password failures.
Finally, SID is a game preventing technicality-based insecure protocols.

We stress that a good model need not mimic the world exactly. E.g., Adv’s
ability to mistype or to know whether S failed may be different from AdvReal’s,
as long as Adv can win in some way (only) against bad protocols.

Mistyping in KR definitions. In KR games, client ITMs are always instan-
tiated with correct password, which limits Adv’s ability to emulate mistyping.
Many real-life attacks that exploit mistyping cannot be carried in the game, al-
lowing vulnerable protocol to withstand Adv’s attacks and be defined secure. In
Sect. 3.2, we discuss vulnerabilities, some natural “fixes” and their limitations.

Password Mistyping in Two-Factor-Authenticated Key Exchange 707

3.2 Natural Definitional Approaches to Mistyping (That Don’t
Work)

To better expose subtle definitional issues and the limitations of some natural
approaches, we build presentation incrementally. We propose several mistyping-
vulnerable protocols, each progressively more “tricky”, and show that they are
KR-secure. We then discuss corresponding natural “fixes” of the KR definition
– ways of allowing Adv to modify or substitute client’s password, so as to mimic
real-life mistyping and allow Adv to carry the real-world attacks. We show that
ultimately they are insufficient and conclude that, for technical reasons, direct
mimicking of mistyping in the games does not result in a good model. For read-
ability, we keep discussion brief and informal (but readily formalizeable).

Mistyping vulnerabilities by example. Let Π be a KR-secure KE protocol.
Π1, Π2, Π3 below are KR-secure, but fail in progressively more subtle ways.

Π1 (S leaks long key upon mistyping). Let Π1 be a protocol as Π , except that
in Π1 S reveals the long key � in a message, once password failure P⊥ occurred.

Clearly, Π1 is “bad”. But, it is easy to see that Π1 is secure by KR definition.
Since instances of C never mistype in the game, KR Adv cannot cause P⊥without
possession of �. Thus, Adv cannot gain from S revealing �, and Π1 is KR-secure.

Π2 (S leaks password upon repeated mistyping). Let pwd be C’s password.Let
Π2 be a protocol as Π , except that in Π2, S reveals pwd once pwd+ 1 was tried
twice. (Limited global state can be communicated among instances of S with
the help of Adv, thus allowing Π2 [16]; see full version for detailed discussion.)

At the first glance, it may appear that Π2 is “good”. Indeed, the advantage
Adv gets from causing the leak is canceled by the effort to obtain it – a redun-
dant password attempt for each attempt of causing the leak (this is the reason
why Π2 is KR-secure). However, this leak can be caused by real-life honest C
mistakenly entering pwd + 1 twice. This is not an unusual situation, and the
resulting password compromise is clearly unacceptable.

Π3 (S leaks a small hint about a password upon repeated mistyping).Let pwd
be C’s password. Let Π3 be a protocol as Π , except that in Π3, S reveals whether
pwd = 0 once pwd + 1 was tried 4 times. Π3 is bad for the same reason as Π2.

Definitional approaches. We consider strengthening Adv of KR by mimicking
powers of real-life adversary. Our goal is to disallow above “bad” protocols.

Allowing Adv to specify the password of C’s instances disqualifies Π1.Indeed,
Adv wins the game where he is not given �, as follows. He instantiates C with a
wrong password, causing P⊥ and leak of �, which Adv uses to win.

To disqualify Π2, Adv needs more than simple substitution of C’s password.
Adv needs the power to specify a “mistyping function” applied to the password
given to C (idea also considered in [17]). That is, Adv specifies a map F : D -→ D,
and C is instantiated with password F (p). (Not every map F is allowed [16].)

While Π3 is bad for the same reason as Π2 (real-life C’s mistyping leaks a
password hint), it is harder to disqualify Π3 due to the small size of the leak.
It turns out that Π3 is an important example, showing that allowing Adv to
influence C’s input is insufficient. We continue this discussion below in Sect. 4.

708 V. Kolesnikov and C. Rackoff

4 Mistyping-Secure KE Definition

Π3, the last example of Sect. 3.2 is a (otherwise secure) protocol where S leaks a
small password hint after four certain repeated mistypings. A repeated mistyping
does not help Adv (he is checking already checked password). Since in KR defi-
nition, Adv is charged for each (even repeated) mistyping, the cost of mistyping
outweighs the benefit of the leak, and Adv is not able to exploit the vulnerability.

This leads to our main idea – to allow Adv to run mistyped KE executions
“for free”. This way, Adv will be able to win whenever a non-negligible amount
of information is leaked due to mistyping. It turns out that this additional power,
applied properly, results in a good (i.e. sufficiently, but not too strong, and easy
to use) definition, presented in this section.

Our extension of KR definition. We would like to give Adv the ability to
observe and actively participate “for free” in mistyped KE sessions. This is not
possible with the approaches we previously discussed, including that of [16]. This
is because there Adv always learns whether S accepted the password, allowing
Adv to verify a password guess, for which Adv must be charged. Our idea is
to withhold failure information from Adv (and not charge him in case of P
⊥) by default, thus allowing “free” mistypings. If Adv wants to obtain failure
information, it is given to him upon special “check” request. Since this gives him
information about the password, he is charged one attempt, if the check reveals
P⊥. Note, this cost structure is a simple generalization of the one used in [16].
This amendment of KR is sufficient to handle mistyping.

Another advantage of this approach is allowing to mimic mistyping without
Adv creating instances with substituted password. Indeed, Adv can make a pass-
word guess, and, based on it, emulate any mistyping sequence of C. As shown in
Sect. 4.1, this guarantees security, since a “free” mistyping-dependent leak would
confirm Adv’s guess, allowing him to win. On the other hand, C’s input substi-
tution, especially using a mistyping map, is technically complex, and makes the
definition less usable, since proofs would have to consider all such maps.

We now present our definition. Let n be a security parameter, and D = {0, 1}m
is the password domain. (In general, m can be a function of n; interesting cases
are when m is constant or logarithmic in n.) All players (Adv, C, S) are p.p.t.
machines. As does [16], we use session IDs (SID) to partner instances of players,
and impose the following correctness requirement. In the absence of adversary,
all sessions terminate and intended parties output same sid and key.

Definition 1. We say that an instance CS
i of a client C and an instance SC

j of
a server S are partners, if they have output the same session id sid.

We start by presenting KE games, which model attacks of a real-life adversary
AdvReal. The first game models the setting where AdvReal obtained C’s long
key, is attacking a server, and is allowed a limited number of password tries.

Game KE1. Adv deterministically chooses active attack threshold q ∈ 1..|D|
(based on security parameter n) and creates an (honest) server S. Adv chooses

Password Mistyping in Two-Factor-Authenticated Key Exchange 709

S’s name; then S’s public/private keys are set up, and the public key revealed to
Adv. Adv then runs players by executing steps 1-7 multiple times, in any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for
the client; the client C is registered with S, and long key � and password pwd
are set up and associated with C. Only one honest client can be created. Adv
is given the long key �, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,
choosing any unused name, long key and password for him.

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from
Adv) as input: his name C, the partner server’s name S, the public key of
S, the long key and the password of C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from
Adv) as input: his name S, the private key of S, his partner’s name (C or
Bi) and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. The instance imme-
diately responds with a reply (by giving it to Adv) and/or, terminates and
outputs the result (a sid and either the session key, the failure symbol ⊥, or,
in case of the server instance, the password failure symbol P⊥) according to
the protocol. Adv learns only the sid part of the output.

6. Adv “checks” any completed honest instance – then he is notified whether
the instance output P⊥, ⊥, or a session key. Adv gets charged one attempt,
if he checked SC and it output P⊥.
When Adv accumulates q charges, he becomes restricted – he can neither
deliver messages to any instances SC

j nor check any instances.
7. Adv “opens” any successfully completed and checked honest instance – then

he is given the session key output of that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who
has been instantiated to talk to the honest client C, must have completed, been
checked by Adv, and output a session key. The challenge is, equiprobably, either
the key output by SC

j or a random string of the same length. Adv must not have
opened SC

j or a partner of SC
j , and is not allowed to do it in the future.

Then Adv continues to run the game as before (execute steps 2-7). Finally,
Adv outputs a single bit b which denotes Adv’s guess at whether the challenge
string was random. Adv wins if he makes a correct guess, and loses otherwise.
Adv cannot “withdraw” from a challenge, and must produce his guess.

Note that we handle sid differently from [16]. Here we insist that parties
always output sid, while previously sid was only output if a party did not fail.
We need this change, since KE1’s interface needs to be the same for cases when
an instance failed and did not fail. Outputting a sid only if KE succeeded (and
letting it known to Adv for free) helps Adv determine whether P⊥ occurred.

In all other KE games (KE2, KE3, SID and DOA) below, password
mistyping and even the knowledge of pwd should not help Adv. We thus choose
to reveal the password to Adv and remove restrictions on the number of P⊥’s
(thus removing the definition of q). We also allow Adv to specify Ci’s password

710 V. Kolesnikov and C. Rackoff

at its instantiations. These games are presented by modifying the above KE1.
All of the above four modifications are included in all games below.

KE2 models the setting where Adv stole C’s pwd and �, but is attacking C.

Game KE2 is derived from KE1 as noted in the previous paragraphs; further,
Adv is given � and must challenge an honest client instance CS

i .
KE3 models the setting where Adv only stole C’s pwd, and is attacking S.

Game KE3 derived from KE1 as noted above, but Adv is not given �.
SID enforces non-triviality, preventing improper partnering (e.g. players un-

necessarily outputting same sid). Recall, Adv is not allowed to challenge parties
whose partner has been opened; SID ensures that Adv is not unfairly restricted.

Game SID is derived from KE1 as noted above; further, Adv does not ask
for (nor answers) the challenge. Adv wins if any two honest partners output
different session keys.

Note, SID allows for one (or both) of the partners to output a failure symbol.
Adv only wins if two successfully completed parties output different session keys.

Finally, game DOA models resistance to the Denial of Access (DoA) attacks.
This game prevents vulnerabilities due to mistyping (see Sect. 4.1).

Game DOA is derived from KE1 as noted above; further, Adv does not ask
for (nor answers) the challenge. Adv wins if the number of P⊥’s is greater than
the number of client instances where he substituted the password.

Definition 2. We say that a key exchange protocol Π is secure in the Com-
bined Keys model with mistyping, if for every polytime adversaries Adv1, Adv2,
Adv3, Advsid and Advdoa playing games KE1, KE2, KE3, SID and DOA, their
probabilities of winning (over the randomness used by the adversaries, all players
and generation algorithms) is at most only negligibly (in n) better than:

– 1/2 + q
2|D| , for KE1,

– 1/2, for KE2 and KE3,
– 0, for SID and DOA.

The definition for the HK setting (where C does not have �) is extracted from
Def. 2 by removing all uses of � and the games where Adv doesn’t know �.

4.1 Why This Is a Good Definition

First, since Adv is not weaker than Adv of [16], Def. 2 enforces basic security
properties of the protocols. We additionally need to argue that the definition
is not too strict and that it prevents mistyping-caused leaks in protocols. The
former property is intuitive, and we support it by proposing an efficient protocol
and proving its security w.r.t. Def. 2 (Sect. 6). The latter property, on the other
hand, requires significantly more careful consideration, presented in this section.

Note, KE1 is the only game where we need to be careful with not giving Adv
too much power w.r.t. mistyping. In other games, unlimited ability of Adv to

Password Mistyping in Two-Factor-Authenticated Key Exchange 711

substitute C’s input should not help him win against a secure protocol. At the
same time, such Adv directly models real-life adversary. Therefore, this simple
allowance resolves mistyping problems w.r.t. other games we consider.

KE1 is the core of the definition, and most of the definitional subtleties appear
in KE1. We start with the discussion of the details and ideas about this game.

Why KE1 is a good model. Often, when a definition is proposed, a proof
is provided, demonstrating the relationship between the new and previous defi-
nitions. This adds confidence in the proposed definition. We introduce the first
definition in our setting; thus there is no previous definition to relate it to.

Our approach. Instead, we prove that if a protocol Π is secure by Def. 2, Adv
of the game KE1 cannot tell the difference between the following two executions,
if he is not allowed to see the outputs of S. In one execution, selected (by Adv)
client instances are instantiated with a mistyping sequence Adv chooses, and in
the other they are instantiated with the password pwd of C. We stress that Adv
is active during these executions; he can perform (almost) all the actions Adv of
KE1 can. This provides an informal “reduction” to the definition of [16], in the
following sense. Assume the definition of [16] is “good”, i.e. accurately identifies
insecure protocols in its “no-mistyping” model. Then Def. 2 is “good” in the
general setting, where clients are allowed to mistype.

Indeed, suppose Π is “bad”. Due to the indistinguishability of the above
executions, anything that Π leaks due to mistyping can also be seen and ex-
ploited without mistyping by Adv of KE1 of [16]. Then Π will be insecure by
definition of [16], since, by assumption, it is a good definition. Since KE1 Adv
of Def. 2 is at least as strong as that of [16], Π will also be insecure by Def.
2. From another angle, if active Adv cannot distinguish the above executions,
then he is not learning anything from the mistypings, other than what may be
inferred from the corresponding sequence of P⊥’s, but the latter is unavoidable
anyway.

This reduction is informal, and serves only as evidence that our definition is
good. By the nature of definitional work, it is not possible to “prove” definitions.

Formal theorem statement and proof of indistinguishability of the above
executions is in full version. Proof idea is that some passwords used in the mis-
typed execution must be unequal to C’s pwd. Ability to distinguish executions
gives a free hint of what pwd is not, allowing corresponding KE1 Adv to win.

On DoA protection. As mentioned in Sect. 2, the definition of [16] does
not model (and fails to guarantee) DoA resistance when honest users mistype.
We need that a replayed client’s flow must not cause S output P⊥. There-
fore, C must send at least one message that is dependent on S’s message.
Thus, the one-round, two-independent-flow protocols are not possible if DoA is
desired.

We change the DOA game accordingly. Adv knows pwd, and is now allowed
to instantiate clients with passwords of his choice. Adv wins DOA, if the number
of P⊥ is greater than the number of client instances with substituted password.

712 V. Kolesnikov and C. Rackoff

5 Application to Biometric Authentication

We note that our definitions and protocols are directly applicable to biometric-
based authentication. For example, fuzzy extractors [11] can be naturally used
in our two-factor authentication setting, as follows. The storage card now ad-
ditionally contains the public data pubC of C’s biometric bC . The (potentially
short) randomness extracted from bC plays the role of the password. To authen-
ticate, C first reconstructs the password using extractor’s recovery procedure
Rec(pubC, b′C), and then uses it as prescribed by a KE protocol. Misreading b′C
of bC can cause variety in the output of Rec and thus effect mistypings in the
protocol. Still, our definitions (in-particular, mistyping-security property) and
properties of fuzzy extractors guarantee security of this construction, even if
Adv captured the card with the long key and pubC . (In the HK setting, where
C only has pkS , we also can use our definition and above protocol – but pubC is
now sent by S to C authenticated by S’s signature, as part of the protocol.)

However, we note that our definitions do not handle the general case, where
bC is used directly as input to C. That is, S knows “acceptance set” of C (ASC),
and accepts if C’s submitted password/biometric bC ∈ ASC . We anticipate that
a natural extension of our definition would handle this case. In particular, the
correctness requirement should be amended w.r.t. ASC , and Adv’s allowed suc-
cess rate may be dependent on AS as well. We leave this definition as future work,
to be performed either as extension of our definition, or in the UC framework.

6 Mistyping-Secure KE Protocols

WLOG, assume protocol messages are formed properly (i.e. values drawn from
appropriate domains, etc.). Let n be a security parameter, E = (Gen,Enc,Dec)
be a CCA2 secure public key encryption scheme, F : {0, 1}n×{0, 1}n -→ {0, 1}n
be a PRFG, and MAC : {0, 1}n×{0, 1}∗ -→ {0, 1}n be a message authentication
code. Let NC ∈ {0, 1}n be the name of client C. (Shorter names may be used.)

Although KR definitions do not handle mistyping, their protocol resists all
mistyping-related attacks, except for (perhaps, unimportant in some settings)
DoA resistance. We first prove this fact. Constr. 1 is the protocol of [16], only
with updated handling of sid, to satisfy the syntactic requirements of Def. 2.

Construction 1. (KE with mistyping, no DoA resistance [16])

SC CS

choose r ∈R {0, 1}n choose k ∈R {0, 1}n ,
set α=EncpkS (NC ,pwd,k)

r → · · · ← α,MAC�(α)
set sid = (r, α), set sid = (r, α),
verify MAC�(α) and NC ; output
if fail, output (sid,⊥),halt (sid,K = Fk(r))

verify pwd;
if fail, output (sid,P⊥),halt

else output (sid,K = Fk(r))

Password Mistyping in Two-Factor-Authenticated Key Exchange 713

Theorem 1. Constr. 1 satisfies Def. 2, except for the success rate in game DoA.

We now present a fully secure protocol in our model, derived from Constr. 1.

Construction 2. is a challenge-response version of Constr. 1, where CS replies
with (α,MAC�(r, α)) to message r.

Theorem 2. Constr. 2 is secure by Def. 2.

We note that Constr. 2 can be modified to allow S to send confirmation to C
whether he accepted, failed or password-failed. See full version for details.

Proofs of security of Theorems 1 and 2 are presented in the full version.

Achnowledgements. We thank Shai Halevi, Hugo Krawczyk, and anonymous
referees for valuable comments.

References

1. http://en.wikipedia.org/wiki/Biometrics#Performance, Retrieved 02/10/08
2. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-

prps, rka-prfs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003)

3. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secureagainst dictionary attacks. In: SP 1992: Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, Washington, DC, USA, p. 72. IEEE Computer
Society, Los Alamitos (1992)

5. Boyen, X.: Reusable cryptographic fuzzy extractors. In: CCS, pp. 82–91. ACM
Press, New York (2004)

6. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data (revised version),
http://www.cs.stanford.edu/∼xb/eurocrypt05b/

7. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authenti-
cation using biometric data. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

8. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password-Authenticated Key
Exchange Using Diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally compos-
able password-based key exchange. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

10. Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenti-
cated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 147–163. Springer, Heidelberg (2006)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. Cryptology ePrint Archive,
Report 2003/235 (2003), http://eprint.iacr.org/

http://en.wikipedia.org/wiki/Biometrics#Performance
http://www.cs.stanford.edu/~xb/eurocrypt05b/
http://eprint.iacr.org/

714 V. Kolesnikov and C. Rackoff

12. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EU-
ROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

13. Goldreich, O., Lindell, Y.: Session-key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

14. Li Gong, T., Lomas, M.A., Needham, R.M., Saltzer, J.H.: Protecting poorly cho-
sen secrets from guessing attacks. IEEE Journal on Selected Areas in Communi-
cations 11(5), 648–656 (1993)

15. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Trans. Inf. Syst. Secur. 2(3), 230–268 (1999)

16. Kolesnikov, V., Rackoff, C.: Key exchange using passwords and long keys. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 100–119. Springer,
Heidelberg (2006)

17. MacKenzie, P., Reiter, M.: Delegation of cryptographic servers for capture-resilient
devices. Distributed Computing 16(4), 307–327 (2003)

Affiliation-Hiding Envelope and Authentication Schemes
with Efficient Support for Multiple Credentials

Stanisław Jarecki and Xiaomin Liu

University of California, Irvine�

{stasio,xiaominl}@ics.uci.edu

Abstract. We present an efficient implementation of affiliation-hiding envelope
and authentication schemes. An envelope scheme enables secure message trans-
mission between two parties s.t. the message can be decrypted only by a receiver
who holds a credential from (i.e. is affiliated with) an entity specified by the
sender’s authorization policy. An envelope scheme is affiliation-hiding if it hides
the receiver’s affiliation, and if the sender’s policy is revealed only to receivers
who satisfy it. Similarly, an authentication scheme is affiliation-hiding if it re-
veals information about affiliations and the authentication policy of a participat-
ing party only to counterparties that satisfy this policy.

The novelty of our affiliation-hiding envelope scheme is that it remains prac-
tical in the multi-affiliation setting without relying on groups with bilinear maps.
Namely, it requiresO(n) modular exponentiations and communicatesO(n) group
elements, even if each party has n credentials, and each party’s authentication pol-
icy specifies n admissible affiliations. Moreover, our affiliation-hiding envelope is
chosen-ciphertext secure, which leads to a provably secure affiliation-hiding au-
thentication scheme with sameO(n) efficiency in the multi-affiliation setting.

1 Introduction

Privacy Protection in Cryptographic Protocols. As the world becomes increasingly de-
pendent on electronic communications, and as such communications fall prey to vari-
ous forms of surveillance, it is important to investigate whether cryptographic protocols
which enable secure electronic communication can have privacy-protecting variants
that are efficient enough for practical usage. For example, group signature and privacy
escrow schemes [10,19], provide privacy-protecting alternatives to standard signature
and authentication schemes, where the verifier learns that the prover holds credentials
that prove its membership in some group, but does not learn the identity of the prover
within that group. In another example, key-private encryption or broadcast encryption
[3,2] enable sending encrypted message to, respectively, a single receiver or to any
member of a group, s.t. the ciphertext hides the encryptor’s policy (i.e. the identity of
intended recipients) from everyone except of the authorized recipients themselves.

Affiliation-Hiding Envelopes and Authentication. Affiliation-hiding envelopes address
the same privacy issue as key-private broadcast encryption but with regards to interac-
tive protocols for secure message transmission. An envelope scheme is an interactive

� Research supported by NSF CyberTrust Grant #0430622.

L. Aceto et al. (Eds.): ICALP 2008, Part II, LNCS 5126, pp. 715–726, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

716 S. Jarecki and X. Liu

protocol between sender S and receiver R, where R receives S’s message only if R
satisfies S’s authorization policy. We call receiver R certified by a Certification Author-
ity (CA) a member of a group administered by this CA, and we say that R is affiliated
with this group. Since in a PKI setting one can hold certificates from many CA’s, we let
Afl(R) be a set of groups R is affiliated with, and we assume that the sender’s autho-
rization policy is also expressed as a set of groups, denoted Pol(S). Using this notation,
an envelope scheme should ensure that R learns nothing about sender S’s message if
Afl(R) ∩ Pol(S) = ∅. An affiliation-hiding envelope scheme, introduced as a “Hidden
Credentials” scheme by Holt et al. [12], must satisfy two additional privacy properties:
(1) Receiver’s affiliations Afl(R) are hidden from all parties, including a potentially
malicious sender; and (2) Sender’s policy Pol(S) is hidden from any non-authorized
receiver R∗, i.e. any R∗ s.t. Afl(R∗) ∩ Pol(S) = ∅.

Affiliation-hiding authentication schemes, introduced as “Secret Handshakes” by
Balfanz et al. [1], provide similar privacy property to authentication schemes: If each
player U is affiliated with a set of groups Afl(U), and its authentication policy consists
of a set of groups Pol(U), an authentication protocol between A and B should succeed
only if Afl(A) ∩ Pol(B) �= ∅ and Afl(B) ∩ Pol(A) �= ∅. Moreover, such protocol is
affiliation-hiding if sets Afl(A) and Pol(A) are hidden from any B∗ who does not sat-
isfy A’s authentication policy, i.e. B∗ s.t. Afl(B∗)∩Pol(A) = ∅, and if sets Afl(B) and
Pol(B) are similarly hidden from any A∗ s.t. Afl(A∗) ∩ Pol(B) = ∅.

Affiliation-Hiding vs. Unlinkability. Note that the property of affiliation-hiding is or-
thogonal to the property of unlinkability offered by group signatures and identity es-
crow schemes. Group signatures protect the privacy of a user within the group she is
affiliated with, but they reveal this user’s affiliation to any observer. In contrast, an
affiliation-hiding authentication ensures that user’s affiliation is revealed only to the
entities that satisfy this user’s authentication policy. Conversely, affiliation-hiding en-
velopes and authentication schemes protect the privacy of users’ affiliations and authen-
tication/authorization policies, but they might not protect the user from being linkable,
i.e. it might be easy for the adversary to detect that two instances of the authentication
or envelope scheme were executed by the same player. Indeed, the affiliation-hiding
schemes we present here are linkable in this sense.

Prior Work on Affiliation-Hiding Envelopes and Authentication. Several solutions to
affiliation-hiding envelope or authentication have been proposed under various assump-
tions. Affiliation-hiding envelope was given based on a Bilinear Diffie-Hellman (BDH)
problem [12], while affiliation-hiding authentication was given based on BDH [1], a
Computational Diffie-Hellman (DH) [9], and the RSA problem [13,14]. However, all
these schemes consider a simplified setting where both the affiliation list and the pol-
icy of every player consists of a single group, and the straightforward extensions of
these schemes to the multi-affiliation setting have O(n2) complexity, where n is the
upper bound on the size of policies and certificate lists. The only previous work which
achieves O(n) complexity in the multi-affiliation is an affiliation-hiding envelope due to
Bradshaw et al. [7]. However, this scheme relies on groups with bilinear maps, which, as
we show, is not necessary. Moreover, it is not clear if this scheme offers chosen cipher-
text security: [7] refers to the Fujisaki-Okamoto [11] method which requires ciphertext
re-encryption during decryption, and it’s not clear how this would work if encryption

Affiliation-Hiding Envelope and Authentication Schemes 717

is simultaneously performed under n keys only some of which might be known by the
receiver. Indeed, even defining CCA security for an envelope scheme is not trivial, and
such definitions are missing from [7]. While CCA security is important in many applica-
tions of encryption, it is especially important in our context, because CCA encryption
leads to provably secure encryption-based authentication [8], and the same holds for
CCA-secure affiliation-hiding envelope and affiliation-hiding authentication.

Our Contributions. First, we define CCA security and privacy of an affiliation-hiding
envelope scheme in the multi-affiliation setting. Second, we show such scheme with
O(n) efficiency, secure in the Random Oracle Model under DDH and GapDH assump-
tions on any multiplicative group, i.e. not necessarily one with a bilinear map. Note
that DDH and GapDH assumptions are potentially weaker than BDH and that they can
be plausibly posited on groups with smaller orders. In exact costs, the scheme of [7]
requires 2n bilinear maps and n exponentiations, while our scheme requires about 2.5n
exponentiations. Finally, in the full version of this paper [16] we show that a CCA-
secure affiliation-hiding envelope scheme implies an affiliation-hiding authentication
protocol. The resulting authentication protocol, included here, retains the same O(n)
complexity in the multi-affiliation setting as the underlying envelope scheme.

Other Related Work. While all the above affiliation-hiding schemes are linkable, and
so is the scheme we present here, there are works which extend affiliation-hiding au-
thentication schemes (and envelopes) to unlinkable schemes. The initial proposal by
Tsudik and Xu [20] worked only if two communicating users assume the same revoca-
tion epoch. Jarecki and Liu [15] showed a scheme which tolerates up to a constant Δ
lag in the revocation epochs at the O(Δ) cost to the protocol. Even though this scheme
scales well in the multi-affiliation setting, the resulting protocol imposes a non-standard
constraint that two players fail to communicate if their assumed revocation epochs are
farther than Δ apart. In recent work same authors proposed a scheme that makes no
assumptions on synchrony in revocation lists [17], but this scheme becomes O(n2) in
the multi-affiliation setting, unlike the (linkable) affiliation-hiding scheme presented
here. We note that affiliation-hiding authentication was also extended to a group key
agreement protocol [13], but this protocol works only in the single-affiliation setting.

Organization. In Section 2 we intuitively explain our technical challenges and our so-
lutions. Section 3 consists of preliminaries. In Section 4 we formally define affiliation-
hiding envelopes. In Section 5 we show our construction of such envelope scheme and a
sketch of a security argument for it. Finally in Section 6 we show a generic construction
of an affiliation-hiding authentication from an affiliation-hiding envelope. For lack of
space, we have relegated all security proofs to the full version of this paper [16].

2 Technical Roadmap

First note that given CCA-secure and affiliation-hiding envelope scheme that is efficient
in the multi-affiliation setting, construction of an affiliation-hiding authentication effi-
cient in this setting is immediate: Each party chooses a nonce and encrypts it for the
other using the envelope scheme, where in each case the sender uses the keys corre-
sponding to his authentication policy while the receiver attempts to decrypt using the

718 S. Jarecki and X. Liu

keys and certificates corresponding to his set of affiliations. The resulting key is then a
hash of the two nonces. The computational and communication costs of this scheme are
just twice the costs of the underlying envelope. The affiliation-privacy of this scheme
follows from affiliation-privacy of the envelope, while security follows from the chosen
ciphertext security of the envelope scheme by a straightforward extension of a theorem
shown in [15]. (Note, however, that if the envelope is not CCA secure then subtle at-
tacks on this simple authentication scheme are possible, e.g. if the adversary modifies
one of the ciphertexts without changing the plaintext.)

Thus the technical challenge is in building a CCA-secure affiliation-hiding envelope
efficient in the multi-affiliation setting. Note that an envelope scheme can be built from
CMA-secure signatures where the sender Ui′ encrypts its message under the group pub-
lic key PKj , and the receiver Ui can decrypt it only if he possesses a valid signature
σi,j issued under the key PKj on some (fixed) message. Such envelope scheme can be
affiliation-hiding because the authentication (of Ui as member in Gj) is done implic-
itly, i.e. by the fact that Ui can decrypt Ui′’s message. Note that existing efficient secret
handshake schemes, e.g. [1,9,13], are constructed using such implicitly-authenticated
envelope, each created from a different signature scheme. In the case of the DL-based
scheme of [9], the envelope scheme works by splitting the signature σi,j into two parts,
the “certificate” certi,j and the “secret key” ski,j . The receiver sends its certificate
certi,j to the sender, and the sender can derive an encryption public key pki,j , from
certi,j and the group public key PKj , s.t. pki,j is a public key encryption key corre-
sponding to the private decryption key ski,j . For example, if (s, r) is a Schnorr signature
on an empty message under the group public key PKj = y, i.e. gs = r · yH(r,y), and
if we set certi,j = r and ski,j = s, then the ElGamal encryption key corresponding
to ski,j , i.e. pki,j = gs, can be indeed computed from certi,j and PKj . By the strong
CMA unforgeability property of Schnorr signatures user Ui can be revoked from Gj

by placing = r on a revocation list. Moreover, neither certi,j = r nor the ElGamal
encryption under pki,j = gs can be linked to the group key y, and thus the scheme is
affiliation-hiding (but not unlinkable).

However, this affiliation-hiding envelope leads to an O(n2) protocol in a setting
where the sender encrypts under n group public keys y1, ..., yn and the receiver has n
certificate and secret key tuples (r1, s1), ..., (rn, sn) to decrypt with. In order to get this
cost down to O(n) we make the following two moves: First, we create a special-purpose
discrete-log based certification scheme which allows each user Ui to control the secret
key part ski,j for all signatures σi,j it holds (i.e. for each group Gj it is affiliated with),
so that it can set all these ski,j values to a single common value si. In this way the
receiver can use only one key ski = si in its attempts to decrypt all the ciphertexts sent
as part of this envelope scheme. Here is a CMA-secure signature scheme we create to
meet this property: A signature on message si under key yj = gxj is a non-interactive
(in ROM) zero-knowledge proof Πri,j of knowledge of a discrete logarithm DLg(ri,j),
where ri,j = (yj)si = gxj·si . Setting certi,j = (ri,j , Πri,j) and ski = si, the ElGamal
encryption key pki,j is just the pair (yj , ri,j) because the decryption key ski is a discrete
logarithm between these two values. Note that certi,j is independent of key yj . It is also
plausible (and we prove that it indeed holds) that the ElGamal encryption of m under
pki,j , a pair ((yj)t, (ri,j)t ·m), cannot be linked to key yj under the DDH assumption.

Affiliation-Hiding Envelope and Authentication Schemes 719

Secondly, in order for the sender not to have to create n2 ElGamal ciphertexts, for
each ri,j sent by the receiver and each group key yl in sender’s authentication policy,
the encryptor batches these n2 encryptions by using a single randomness t in all these
instances. (We note that a similar idea of re-using randomness in several instances of
ElGamal encryption was investigated also in [4] and [5].) We show this affiliation-
hiding envelope scheme in Figure 2. Following the methodology of Bellare, Kohno, and
Shoup [5] we use CCA-secure symmetric encryption and a hash function modeled as
a random oracle to convert ElGamal into a CCA encryption scheme while re-using the
same randomness in all the ciphertexts. One of the interesting parts of the security proof
of the resulting scheme is that the reduction, to solve its Diffie-Hellman challenge from
the attacker’s computation of (one of) ElGamal “temporary key” values rti,j , needs to
know the discrete logarithm DL(g, ri,j) for the value for which the adversary computes
(ri,j)t. Seemingly, this requires simultaneous extraction of the discrete logarithms of up
to n values ri,1, ..., ri,n sent by the malicious receiver. However, our reduction instead
uses the standard forking-lemma to efficiently extract DL(g, ri,j) for a random index
j, and with probability 1/n that index corresponds to the correct ri,j value.

3 Cryptographic Assumptions and Tools

We state the security assumptions required by our construction, as well as two tools we
employ, namely certain zero-knowledge proofs and a symmetric encryption scheme.
From now on let g be a generator of a multiplicative group of order q, denoted 〈g〉 = G.

DDH Assumption on G: We say that DDH is (T, ε)-hard in G, if any T -time algorithm
A has at most 1/2+ε advantage in distinguishing distributions {(g, ga, gb, gab)}a,b←Zq

and {(g, ga, gb, gc)}a,b,c←Zq .

GapDH Assumption on G: Informally, GapDH assumption holds if the CDH problem
in group G is hard even given access to a DDH oracle in this group. A DDH oracle in
G is an algorithm on input (gα, gβ, gγ) outputs 1 if γ = αβ, and 0 otherwise. We say
GapDH problem is (T, ε, qddh)-hard in G if any T -time algorithm A making at most
qddh DDH oracle queries, succeeds with probability at most ε in computing gab given
(g, ga, gb), for random a, b in Zq .

Non-Interactive Zero Knowledge Proof of Knowledge of Discrete Logarithm: We
use a standard NIZK proof of knowledge (in ROM) of discrete logarithm of value y =
gx, denoted NIZK-DLH1(y), which is a pair (a, z), where a = gα for random α in Zq ,
z = α + e · x (mod q), and e = H1(a, y), where H1 : {0, 1}∗ → Zq is a hash function.
Verifier accepts the proof Π = (a, z) if gz = a · ye, for e = H1(a, y). In our security
proofs we use a standard simulator of this NIZK which on input y picks random z and
e in Zq , computes a = gz/ye, “defines” H1(a, y) as e, and outputs (a, z).

A symmetric key encryption scheme: We use a symmetric encryption scheme
Πsym = (KGen,SEnc,SDec), which is chosen-plaintext secure (IND-CPA) and sat-
isfies the integrity of ciphertext property (INT-CTXT). As shown in [6], IND-CPA
and INT-CTXT imply IND-CCA security of encryption. We skip the standard defi-
nition of IND-CPA security of symmetric encryption, but we state the ciphertext in-
tegrity property [18,6]: A symmetric key encryption Πsym has (T, ε, qE , qD)-integrity

720 S. Jarecki and X. Liu

of ciphertexts (INT-CTXT) if for any T -time adversary A with at most qE queries to
SEnc(K, ·) and at most qD queries to SDec(K, ·),A outputs a valid new ciphertext C,
s.t. SDec(K,C) �=⊥, with probability at most ε, where we call C “new” if it was not
returned by any call to SEnc(K, ·).

4 Affiliation-Hiding Envelope Schemes

An (implicitly authenticated) envelope scheme consists of a tuple of efficient proba-
bilistic algorithms (Setup, GInit, UInit, MEnc, Dec, Check), and a 2-party protocol
Add. The principals in the scheme are n′ users U1, .., Un′ and n groups G1, ..., Gn

administered by n respective group authorities GA1, ..., GAn. Each user Ui has both
a policy Pol(Ui) and a set of affiliations Afl(Ui), both of which are subsets of groups
G1, ..., Gn. (However, our security and privacy definitions are all stated for the worst
case, where the policy or affiliation set of an attacked entity is made of all n groups.)
The syntax of an envelope scheme given below is custom-made to model two-round
envelope protocols in which the sender and the receiver proceed in a way described in
Figure. 1 below. We useM to denote the message space.

– Setup(1λ), on security parameter λ, generates common parameters σ.
– GInit(σ), executed by GAj creates public key pair (SKj , PKj) for group Gj .
– UInit(σ), executed by user Ui creates Ui’s secret key ski.
– Add is an interactive procedure between user Ui and GAj on Ui’s private input

ski, on GAj’s private input SKj , and on public input PKj . At the end of the
interaction, Ui gets his public key pki,j and a certificate certi,j of membership
for group Gj . (We additionally require that the resulting keys pki,j come from a
publicly samplable space.) We say that (pki,j , certi,j) is issued under key PKj .
To revoke key pki,j , it is simply added to Gj’s revocation list Revj . We introduce
the following notation: pki = {pki,j}Gj∈Afl(Ui); certi = {certi,j}Gj∈Afl(Ui);
PKi = {PKl}Gl∈Pol(Ui); Revi =

⋃
Gl∈Pol(Ui)

Revl.
– MEnc(PKi′ ,pki,m) is executed by sender Ui′ on inputs PKi′ , message m ∈M,

and vector pki supplied by receiver Ui. The algorithm’s output, denoted e, encodes
a set of ciphertexts Rep(e) = {el,j | (PKl, pki,j) ∈ PKi′ × pki}.

– Dec(ski, e) is executed by receiver Ui on private input ski and a ciphertext e, an
element in Rep(e). The output is a message m ∈M or a failure symbol⊥.
We define MDec(ski, e) as a procedure that computes Dec(ski, el,j) for every
el,j ∈ Rep(e) (processed in some canonic order), and outputs the message output
by the first successful instance of Dec(ski, el,j), or ⊥ if all these Dec instances
fail.

– Check(σ,pki, certi) is executed by sender Ui′ to test the validity of certificates
certi supplied by the receiver Ui in the envelope procedure. It outputs 1 or 0.

Using these procedures, an envelope protocol between Ui and Ui′ proceeds as follows:

4.1 Security and Privacy Properties of an Affiliation-Hiding Envelope Scheme

Completeness. Let σ, pairs (PKl, SKl) for every group Gl, and (pki,j , ski,j) for every
user Ui and every group Gj ∈ Afl(Ui) be properly generated by procedures Setup,

Affiliation-Hiding Envelope and Authentication Schemes 721

Sender Ui′(PKi′ ,Revi′ , m) Receiver Ui(pki, certi, ski)

(pki,certi)��
If Check(σ,pki, certi) = 0, then

output ⊥ and abort.
∀ pki,j ∈ pki, if pki,j ∈ Revi′ , then

pick random pk′
i,j , set pki,j ← pk′

i,j .
e← MEnc (PKi′ ,pki, m) e �� m ← MDec(ski, e)

Fig. 1. Envelope Scheme in Multi-Affiliation Setting

GInit, and Add respectively. We say that an Envelope Scheme is ε-complete, if for any
receiver Ui with input (pki, ski), and any sender Ui′ with input (PKi′ ,Revi′ ,m), if
∃ Gl, s.t. pki,l ∈ pki, and PKl ∈ PKi′ , then

Pr[MDec(ski,MEnc(PKi′ ,pki,m)) = m] ≥ 1− ε.

Chosen Ciphertext Security. The (CCA) security property for an envelope scheme is
equivalent to CCA security for broadcast encryption. Namely, a malicious receiver who
is not a valid member of any group specified by the sender’s policy cannot tell any-
thing about the encrypted message, even if he is given a CCA access to some valid
group members acting as receivers, except that they cannot be queried on the challenge
ciphertext. Formally, we define the security of an envelope scheme via the following
game between an adversaryA and a challenger.

– Init: AdversaryA gets {PKj}j∈{1,...,n}, and {(pki, certi)}i∈{1,...,n′}.
– Join, Corruption and Decryption Query Phase I (JCD-I):

On a join request JR(j), the challenger performs Add between GAj and A. The
public key which A receives in this instance is then revoked (i.e. added to Revj).
On corruption request CR(i), the challenger sends ski to A, and all public keys
pki,j for Gj ∈ Afl(Ui) are added to respective revocation list Revj .
On decryption query DQ(i, e), challenger sends Dec(ski, e) to A.

– Challenge: A sends (pk∗, cert∗,m0,m1). If Check(σ,pk∗, cert∗) = 0, then
the game aborts. Let Rev =

⋃n
l=1 Revl. For each pkj in pk∗, if pkj ∈ Rev, chal-

lenger picks random pk′j and sets pkj ← pk′j . The challenger then picks random
bit b, and replies toA with e∗ ← MEnc(PK,pk∗,mb) for PK = {PKl}l=1,...,n.

– Join, Corruption and Decryption Query Phase II (JCD-II): This is the same as
in Join, Corruption and Decryption Query Phase I, except that:
(a) the challenger rejects CR(i) if pki,j ∈ pk∗ for some group Gj , i.e. if the en-
cryption challenge included one of Ui’s public keys; and
(b) the challenger rejects DQ(i, e) if ∃ j, l, s.t. pki,j ∈ pk∗, PKl ∈ PK, Gl = Gj

and e = e∗l,j for some e∗l,j ∈ Rep(e∗). Intuitively, e∗l,j is an encryption of mb under
PKl and pki,j . Since certi,j in cert∗ that corresponds to pki,j in pk∗ is valid, Ui

is a valid member of Gj , and therefore pki,j was issued under PKj = PKl, so
Dec(ski, e∗l,j) would reveal mb.

– Guess: Adversary outputs a bit b′ as her guess of b.

722 S. Jarecki and X. Liu

We define the adversary’s advantage Adv-Sec(A) as the probability that b′ = b in the
above game. We say that an envelope scheme is (n, n′, T, ε, qD)-secure if for n groups
and n′ users, and for any T -time adversary A with at most qD decryption queries,∣
∣Adv-Sec(A)− 1

2

∣
∣ ≤ ε.

Sender Privacy. The sender privacy property says that even a malicious receiver can-
not tell anything about the sender’s authentication policy, if this receiver is not a valid
member of any group specified by the sender’s policy. Moreover, this property holds
even if the attacker is given a CCA access to valid group members acting as receivers,
except that they cannot be queried on the challenge ciphertext. Note that here we define
sender privacy only against outsider attacks, i.e. against adversaries who are not valid
members of any group in the sender’s authentication policy. In [16] we also consider a
stronger notion of sender privacy, namely against insider attacks.

Formally, we define sender privacy via an interactive game between an adversaryA
and a challenger. As in the game in the security definition above, this game has five
phases: Init, JCD-I, Challenge, JCD-II, and Guess. All phases are the same as in the
security game, except the Challenge phase:

– Challenge: Adversary sends (pk∗, cert∗,m). If Check(σ,pk∗, cert∗) = 0, then
the game aborts. Let Rev =

⋃n
l=1 Revl. For each pkj in pk∗, if pkj ∈ Rev, chal-

lenger picks random pk′j and sets pkj ← pk′j . The challenger then picks a random
bit b and sends e∗ to A computed as follows: If b = 0, the challenger computes
e∗ ← MEnc(PK,pk∗,m), for PK = {PKl}l=1,...,n; If b = 1, challenger com-
putes e∗ ← MEnc(PK′,pk∗,m) for PK′ = {PK ′

l}l=1,...,n, where each PK ′
l is

randomly chosen by GInit.

We define the adversary’s advantage Adv-SPri(A) as the probability that b′ = b in the
above game. We say that an envelope scheme is (n, n′, T, ε, qD)-sender-private if for
n groups and n′ users, and for any T -time adversary A with at most qD decryption
queries,

∣
∣Adv-SPri(A)− 1

2

∣
∣ ≤ ε.

Remarks: This privacy definition is a “real-random” notion of privacy, but it implies a
“flexible” privacy notion, where the adversary picks two sets of group keys, V0 and V1,
|V0| = |V1|, and the challenger responds with encryption under keys Vb for a random b.

Receiver Privacy. The receiver privacy property states that no one can tell anything
about the affiliations of the receiver (except possibly of the group authorities). For-
mally, the receiver privacy is defined via the following game, parameterized by a tuple
(i∗,G0,G1), where i∗ is a index of an attacked user and G0 and G1 are two sets of groups
s.t. |G0| = |G1| and G0 ∪ G1 ⊆ Afl(Ui∗). This game has five phases: Init, JC-I, Chal-
lenge, JC-II, and Guess. Init and Guess are the same as in the security game. JC-I and
JC-II are identical, which are the same as JCD-I in the security game except that (1)
there is no decryption query, since the answer to an decryption query to an honest re-
ceiver leaks the receiver’s affiliation completely; and (2) corruption query on user Ui∗

is rejected. In the Challenge phase, the challenger picks a random bit b, and replies with
({pki∗,j}Gj∈Gb

, {certi∗,j}Gj∈Gb
).

We define the adversary’s advantage Adv-RPrii∗,G0,G1(A) as the probability that b′ =
b in the above game. We say that an envelope scheme is (n, n′, T, ε)-receiver-private if

Affiliation-Hiding Envelope and Authentication Schemes 723

for n groups and n′ users, for any (i∗,G0,G1) satisfying the above constraints, any
T -time adversaryA,

∣
∣Adv-RPrii∗,G0,G1(A) − 1

2

∣
∣ ≤ ε.

Remark on Trust in Group Managers: The security and sender-privacy definitions given
above are stated for an adversary who is not an authorized recipient, i.e. who is not a
valid member of any groups in the sender’s authentication policy. In particular, it makes
no sense to require such security or privacy against an adversary which colludes with
the group managers themselves, since a group manager of any group in the sender’s
policy can create a virtual user that satisfies this policy, and hence neither the message
nor the policy itself can be protected against such adversary. In contrast, the receiver
privacy could in principle be achieved even for players colluding with the relevant group
managers, but above we only define a simplified notion of receiver privacy where all
group managers are honest. Indeed, the receiver privacy of our envelope scheme is
broken by any dishonest group manager. However, as we show in the full version of
the paper [16], this vulnerability can be fixed if the Add protocol we give in Section
5 below for adding a member to a group is changed so that instead of having user Ui

send its long-term secret ski to GAj , the two parties compute (pki,j , certi,j) using an
efficient secure computation protocol.

5 The Construction of an Affiliation-Hiding Envelope Scheme

We provide the algorithms that instantiate our affiliation-hiding envelope scheme. The
whole operation of the scheme is schematically illustrated in Fig.2.

– Setup(1λ) sets σ = (g, q) where g generates a multiplicative group G of order q,
s.t. DDH and GapDH hold in G with security parameter λ.

– GInit(σ) executed by GAj picks xj ∈ Zq , and sets (SKj, PKj) = (xj , yj=gxj).
– UInit(σ) executed by Ui picks si ∈ Zq and sets ski = si.
– Add proceeds as follow: Ui sends si to GAj , who replies with (pki,j , certi,j) =

(ri,j , Πri,j) where ri,j = (yj)si = gxj·si and Πri,j = NIZK-DLH1(ri,j). Note
that ri,j is random in G for a random si, so ri,j ’s can be publicly sampled. (See
also a Remark on Trust in Group Managers above.)

– MEnc(PKi′ ,pki,m) picks random t ∈ Zq , sets dl = (yl)t for every yl ∈ PKi′

and cj = SEnc(Kj ,m) for every rj ∈ pki, where Kj = H2((rj)t) and H2 :
G → KeySpace(Πsym) is a hash function modeled as random oracle in the security
analysis. The output is e = (d, c) where d = {dl}PKl∈PKi′ and c = {cj}pkj∈pki

.
We define el,j in Rep(e) as 〈dl, cj〉.

– Dec(si, 〈d, c〉) outputs m ← SDec(K, c) for K = H2(dsi), if d ∈ G, and ⊥
otherwise. Note that even though the resulting algorithm MDec(si, 〈d, c〉) runs in
Ω(n2) time, it makes only n exponentiation operations, to compute dsi for every
d ∈ d, and it only needs to make n2 symmetric decryption operations SDec.

– Check(σ,pk, cert) output 1 if Πrj verifies as NIZK-DLH1(rj), for every rj ∈ pk
and corresponding Πrj ∈ cert, and outputs 0 otherwise.

Theorem 1. If the symmetric key encryption scheme Πsym is complete and ε-INT-
CTXT, then our envelope scheme is ε′-complete, where ε′ = n2 · ε.

724 S. Jarecki and X. Liu

User initialization procedure UInit:
Group Manager GAj(xj , yj) Player Ui(si)

si��
ri,j ← (yj)

si = gxj∗si

Πri,j ← NIZK-DLH1(ri,j)
(ri,j ,Πri,j

)
��

Envelope protocol:
Sender Ui′({yl}l,Rev, m) Receiver Ui({ri,j}j , {Πri,j}j , si)

If for some j, Πri,j does not verify
{ri,j}j ,{Πri,j

}j��
as NIZK-DLH1(ri,j) then abort.

∀ j, if ri,j ∈ Rev, then pick ri,j
R←G;

Pick random t ∈ Zq

∀ yl, set dl ← (yl)
t

∀ j, set cj ← SEnc(H2((ri,j)
t), m)

({dl}l,{cj}j) �� ∀ l, Kl ← H2((dl)
si)

∀ l, j, try m ← SDec(Kl, cj)
until m �=⊥

Fig. 2. Our Affiliation-Hiding Envelope Scheme

Theorem 2. If GapDH is (T1, ε1, q1)-hard in G, and the symmetric key encryption
scheme Πsym is (T2, ε2, q2)-IND-CPA and (T3, ε3, qE , qD)-INT-CTXT, then our con-
struction of the envelope scheme is (n, n′, T ′, ε′, q′D)-secure in ROM, where T ′ =
min{T1/2, T2, T3} − O(nn′ + q′D + qH1 + qH2) · Texp, ε′ = nε1 + √

qH1 · ε1 +
nε2 + qD · ε3 + (2nn′ + 1)qH1/q + 2nqD/q + n/q, (q′D + n) · qH2 ≤ q1, where
Texp is the time for an exponentiation operation and q′Hi

is the number of queries the
adversary makes to hash function Hi, for i = 1, 2.

For lack of space we relegate the security proof to the full version of the paper [16],
but we sketch it here in the simplified single-policy and single-affiliation setting. In this
case the adversary’s challenge is (pk, cert,m0,m1), where pk = r and cert = (a, z)
is a NIZK-DLH2(r), and the challenger returns a ciphertext (d, c) where d = yt and
c = SEnc(H2(rt),mb) where PK = y is the single public key in challenger’s policy.

Consider first the case when A never queries the random oracle H2 on rt and yet
A has a non-negligible advantage in distinguishing challenger’s bit b. In this case we
construct a reduction that breaks the IND-CPA security of the symmetric key encryp-
tion scheme, since the reduction effectively distinguishes the encryption of m0 from
m1 without any information about the encryption key H2(rt). Without getting into
details, the fact that the symmetric encryption scheme has the ciphertext integrity prop-
erty (INT-CTXT) helps the reduction handle adversary’s decryption queries in this case.
Now, suppose that A does query the random oracle on w = rt. We consider two cases
depending on the origin of the (r, (a, z)) tuple in A’s challenge. If this tuple is a pub-
lic key and a certificate of some non-revoked user (note that A learns the public keys
and certificates of all honest players), then we construct a reduction that breaks the
GapDH assumption by successfully outputting w = rt given triple (h, ht, r). This can
be achieved by setting the group key y to h, setting d to ht in the encryption challenge,

Affiliation-Hiding Envelope and Authentication Schemes 725

and simulating the NIZK proof (a, z) of DL between g and r. This reduction uses the
DDH oracle to correctly answer the decryption queries, and while not knowing rt it
cannot set the c part of the ciphertext correctly, the only way the adversary can real-
ize that c is incorrect is by querying H2 on rt, at which point the reduction solves its
challenge. The last case is when A queries H2(rt) but the (r, (a, z)) tuple in its chal-
lenge is created by A itself. Note that (a, z) is a NIZK of DL between g and r, so
A can always create such proof if he sets r = gγ for some known γ. The reduction
has to extract this value γ from this proof of knowledge, and this is done using a stan-
dard forking lemma. (Interestingly, in the full multi-affiliation version of the proof the
reduction does not have to extract the witnesses for all (rj , Πj) pairs provided by A
since with probability 1/n it can guess the index j of rj for which it needs to extract
the discrete logarithm.) If A queries H2 on w = rt in this game, then we construct a
reduction which breaks the GapDH assumption by computing gt given (h, ht, g). The
reduction again sets the group public key y to h and d in the encryption to ht. Then
gt = rDL(r,g)·t = (rt)1/γ = w1/γ . Decryption queries are handled as above.

The proofs of the sender/receiver privacy properties of this envelope scheme, stated
below, are also given in [16]. We note that the proof of receiver privacy is rather simple,
while the proof of sender privacy is similar to the proof of (CCA) security.

Theorem 3. If GapDH is (T1, ε1, q1)-hard and DDH is (T4, ε4)-hard in G, and the
symmetric key encryption scheme Πsym is (T3, ε3, qE , qD)-INT-CTXT, then our enve-
lope scheme is (T ′, ε′, q′D)-sender-private, where T ′ = min{T1/2, T3, T4} −O(nn′ +
q′D + qH1 + qH2) · Texp, ε′ = nε1 +√qH1 · ε1 + qD · ε3 + ε4 + (3nn′ + 1)qH1/q +
nqD/q + nqH2/q + n/q, (q′D +n) · qH2 ≤ q1, where qHi is the number of queries the
adversary makes to hash function Hi, for i = 1, 2.

Theorem 4. If DDH is (T, ε)-hard in G, then our envelope scheme is (n, n′, T ′, 2ε′)-
receiver-private where T ′ = T −O(nn′)Texp and ε′ = ε + nn′qH1/q.

6 Affiliation-Hiding Authentication Scheme

An affiliation-hiding authentication scheme consists of algorithms Setup, GInit, UInit
and 2-party protocols Add and Handshake. All the algorithms and protocols are as
in an envelope scheme except Handshake, which is the actual authentication protocol
executed between two players Ui and Ui′ . At the end of this protocol, the two players
output the same authentication key if each of them is affiliated with at least one group in
the other player’s policy. An affiliation-hiding authentication scheme can be constructed
from an envelope scheme. We give a simplified description of the construction of the
Handshake protocol here and refer the readers to [16] for details. The two players
Ui and Ui′ picks their respective random nonces Ki and Ki′ , and send them to each
other using two instances of the envelope scheme. The resulting authentication key is
the hash of the two nonces. By a similar argument as in [15], if the envelope scheme
is secure and sender and receiver private then this authentication scheme is both secure
and affiliation-hiding.

726 S. Jarecki and X. Liu

References

1. Balfanz, D., Durfee, G., Shankar, N., Smetters, D.K., Staddon, J., Wong, H.C.: Secret hand-
shakes from pairing-based key agreements. In: IEEE Symposium on Security and Privacy
(2003)

2. Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private
broadcast encryption. In: Proceedings of Financial Cryptography 2006 (2006)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248. Springer, Heidelberg (2001)

4. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Security notions
and randomness re-use. In: PKC 2003 (2003)

5. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: how to encrypt with
one 160-bit exponentiation. In: CCS 2006: 13th ACM conference on Computer and commu-
nications security (2006)

6. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and anal-
ysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976. Springer, Heidelberg (2000)

7. Bradshaw, R., Holt, J., Seamons, K.: Concealing complex policies in hidden credentials. In:
CCS 2004: 11th ACM Conference on Computer and Communications Security (2004)

8. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure chan-
nels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332. Springer, Heidelberg
(2002)

9. Castelluccia, C., Jarecki, S., Tsudik, G.: Secret handshakes from CA-oblivious encryption.
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329. Springer, Heidelberg (2004)

10. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547. Springer, Heidelberg (1991)

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption
schemes. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg
(1999)

12. Holt, J., Bradshaw, K., Seamons, K.E., Orman, H.: Hidden credentials. In: 2nd ACM Work-
shop on Privacy in the Electronic Society (2003)

13. Jarecki, S., Kim, J., Tsudik, G.: Authenticated group key agreement protocols with the
privacy property of affiliation-hiding. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377.
Springer, Heidelberg (2006)

14. Jarecki, S., Kim, J., Tsudik, G.: Beyond secret handshakes: Affiliation-hiding authenticated
key exchange. In: Proceedings of CT-RSA (2008)

15. Jarecki, S., Liu, X.: Unlinkable secret handshakes and key-private group key management
schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521. Springer, Heidelberg
(2007)

16. Jarecki, S., Liu, X.: Affiliation-hiding envelope and authentication schemes with efficient
support for multiple credentials (2008), eprint.iacr.org

17. Jarecki, S., Liu, X.: Private conditional oblivious transfer and unlinkable secret handshakes
(in submission, 2008)

18. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of operation.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978. Springer, Heidelberg (2001)

19. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462. Springer, Heidelberg (1998)

20. Tsudik, G., Xu, S.: A flexible framework for secret handshakes. In: Privacy Enhancing Tech-
nologies 2006, pp. 295–315 (2006)

eprint.iacr.org

Author Index

Albers, Susanne I-96
Alon, Noga I-258
Altmann, Kristina II-437
Andoni, Alexandr I-357
Avin, Chen I-121
Axelsen, Holger Bock II-258
Axelsson, Roland II-410
Azar, Yossi I-186, I-833

Bansal, Nikhil I-409
Baswana, Surender I-609
Ben-Sasson, Eli I-686
Bengtson, Jesper II-87
Berger, Martin II-99
Birkedal, Lars II-348
Birnbaum, Benjamin I-186
Björklund, Andreas I-198
Björklund, Henrik II-27
Bläser, Markus I-345
Blelloch, Guy E. I-108
Bloem, Roderick II-361
Bodirsky, Manuel II-184
Bodlaender, Hans L. I-563
Boigelot, Bernard II-112
Bojańczyk, Miko�laj II-233
Boros, Endre I-48
Borradaile, Glencora I-485
Bouyer, Patricia II-124
Brázdil, Tomáš II-148
Briest, Patrick I-808
Brusten, Julien II-112
Bruyère, Véronique II-112
Buchfuhrer, David I-24
Bulatov, Andrei A. I-646

Canetti, Ran II-1, II-449, II-511
Chaintreau, Augustin I-133
Chan, Ho-Leung I-409
Chebolu, Prasad I-161
Chekuri, Chandra I-472
Chen, Hubie II-197
Chen, Owen Chia-Hsin II-691
Chen, Yijia I-587
Cheng, Chen-Mou II-691
Cheng, Qi I-283

Chierichetti, Flavio I-320
Childs, Andrew M. I-869
Christodoulou, George I-820
Cicalese, Ferdinando I-173
Coecke, Bob II-298
Colcombet, Thomas II-398
Corneil, Derek I-634
Courcelle, Bruno I-1

Dachman-Soled, Dana I-36
Dakdouk, Ronny Ramzi II-449
Dawar, Anuj II-160
de Wolf, Ronald I-845
Diakonikolas, Ilias I-502
Dietzfelbinger, Martin I-385
Dimitrov, Nedialko B. I-397
Ding, Jintai II-691
Downey, Rodney G. I-563
Dragan, Feodor F. I-597
Dubois, Vivien II-691
Dullerud, Geir II-136
Duncan, Ross II-298

Egri, László II-172
Eiger, Dror II-511
Eisenbrand, Friedrich I-246
Elbassioni, Khaled I-48
Eldar, Lior I-881
Esparza, Javier I-698, II-14
Etessami, Kousha I-711

Fanelli, Angelo I-796
Fellows, Michael R. I-563
Fiala, Jǐŕı I-294
Fischlin, Marc II-655
Flammini, Michele I-796
Fomin, Fedor V. I-210, I-597
Forejt, Vojtěch II-148
Fraigniaud, Pierre I-133
Frandsen, Gudmund Skovbjerg I-434
Frieze, Alan I-161
Furukawa, Jun II-524

Gamzu, Iftah I-833
Gaur, Akshay I-609

728 Author Index

Gawlitza, Thomas I-698
Gehrke, Mai II-246
Gilbert, Henri II-679
Glück, Robert II-258
Goldwasser, Shafi II-511
Golovach, Petr A. I-294, I-597
Gómez, Antonio Cano II-209
Goyal, Vipul II-579
Greco, Gianluigi I-736
Greimel, Karin II-361
Grigorieff, Serge II-246
Grohe, Martin II-184
Gruber, Hermann II-39
Guaiana, Giovanna II-209
Guha, Sudipto I-760

Habib, Michel I-634
Haeupler, Bernhard I-421
Hallgren, Sean I-782, II-592
Hardt, Moritz I-345
Harrow, Aram W. I-782
Harsha, Prahladh I-686
Heljanko, Keijo II-410
Hermelin, Danny I-563
Hirt, Martin II-473
Hoch, Jonathan J. II-616
Hod, Rani I-258
Holzer, Markus II-39
Honda, Kohei II-99
Husfeldt, Thore I-198

Ito, Hiro I-539
Iwama, Kazuo I-271

Jager, Tibor II-437
Jain, Abhishek II-579
Jansen, Klaus I-234
Jarecki, Stanis�law II-715
Jeż, Artur II-63
Jobstmann, Barbara II-361
Johansson, Magnus II-87
Jurdziński, Tomasz II-51

Kähler, Detlef I-724
Kalai, Yael Tauman II-536
Kale, Satyen I-527
Kao, Ming-Yang I-370
Karlin, Anna R. I-186
Kaski, Petteri I-198
Katsumata, Shin-ya II-271

Katz, Jonathan II-499
Kavitha, Telikepalli I-421
Kawarabayashi, Ken-ichi I-333
Kempe, Julia I-845
Kesner, Delia II-311
Khanna, Sanjeev I-472
Kiefer, Stefan I-698, II-14
Klein, Philip I-485
Koivisto, Mikko I-198
Kolesnikov, Vladimir II-486, II-702
Kolla, Alexandra II-592
Koo, Chiu-Yuen II-499
Koucký, Michal I-121
Koutis, Ioannis I-575
Kovács, Annamária I-820
Kratochv́ıl, Jan I-294
Krauthgamer, Robert I-357
Kreutzer, Stephan II-160
Krokhin, Andrei I-662
Kučera, Antońın II-148
Kumaresan, Ranjit II-499
Kurosawa, Kaoru II-524

Laber, Eduardo Sany I-173, I-459
Lachish, Oded I-686
Lam, Tak-Wah I-409
Lange, Martin II-410
Larose, Benôıt II-172
Lauer, Sonja I-96
Lebhar, Emmanuelle I-133
Lebresne, Sylvain II-323
Lee, Homin K. I-36, I-502
Lee, Lap-Kei I-409
Lee, Troy I-674, I-869
Lehmann, Anja II-655
Lim, Dah-Yoh II-511
Liu, Xiaomin II-715
Löding, Christof II-398
Lotker, Zvi I-121
Luttenberger, Michael II-14

Makino, Kazuhisa I-48
Malkin, Tal I-36
Markey, Nicolas II-124
Martens, Wim II-27
Martin, Keye II-283
Marx, Dániel I-662
Mathew, Rogers I-421
Mathieu, Claire I-186
Mathissen, Christian II-221

Author Index 729

Matsliah, Arie I-686
Matulef, Kevin I-502
McGregor, Andrew I-760
Melsted, Páll I-161
Mhalla, Mehdi I-857
Mittal, Rajat I-674
Molinaro, Marco I-459
Moscardelli, Luca I-796
Muthukrishnan, S. I-14

Naor, Moni II-631
Neubauer, Matthias II-75
Nguyen, C. Thach I-186
Nielsen, Jesper Buus II-473
Nishimura, Harumichi I-271

O’Sullivan, Barry I-551
Okhotin, Alexander II-63
Onak, Krzysztof I-515
Ostrovsky, Rafail II-548
Ouaknine, Joël II-124

Pagh, Rasmus I-385
Pandey, Omkant II-579
Parrow, Joachim II-87
Paterson, Mike I-271
Paul, Christophe I-634
Pemmaraju, Sriram I-306
Perdrix, Simon I-857
Persiano, Giuseppe II-548
Pfenning, Frank II-336
Phillips, Jeff M. I-447
Pietrzak, Krzysztof II-423, II-655
Pin, Jean-Éric II-209, II-246
Plaxton, C. Greg I-222, I-397
Porat, Ely I-748
Prabhakar, Pavithra II-136
Prabhakaran, Manoj II-667
Pritchard, David I-145
Przydatek, Bartosz II-461, II-473

Rackoff, Charles II-702
Raskin, Jean-François II-386
Raymond, Rudy I-271
Raz, Ran II-536
Razgon, Igor I-551
Regev, Oded I-773, I-845, I-881
Reus, Bernhard II-348
Robshaw, Matthew J.B. II-679
Roditty, Liam I-622

Rosulek, Mike II-667
Rothschild, Amir I-748
Rothvoß, Thomas I-246
Ružić, Milan I-84
Rupp, Andy II-437

Sahai, Amit II-579
Sankowski, Piotr I-434
Saxena, Nitin I-60
Scarcello, Francesco I-736
Schapira, Michael I-820
Schewe, Sven II-373
Schiff, Liron I-773
Schneider, Thomas II-486
Schweller, Robert I-370
Schwinghammer, Jan II-348
Segev, Gil II-631
Segoufin, Luc II-233
Seidl, Helmut I-698
Sen, Pranab II-592
Sen, Sandeep I-609
Sen, Siddhartha I-421
Servais, Frédéric II-386
Servedio, Rocco A. I-36, I-502
Seshadhri, C. I-527
Seurin, Yannick II-679
Shamir, Adi II-616
Shapira, Asaf I-622
Shi, Elaine II-560
Shrimpton, Thomas II-643
Simmons, Robert J. II-336
Sjödin, Johan II-423
Srinivasan, Aravind I-306
Stam, Martijn II-643
Steurer, David I-345

Tarjan, Robert E. I-421
Tedder, Marc I-634
Tesson, Pascal II-172
Thiemann, Peter II-75
Thöle, Ralf I-234
Thurley, Marc I-587

Umans, Christopher I-24
Unger, Falk I-845
Upadhyay, Jayant I-609

Vardi, Moshe II-361
Vassilevska, Virginia I-108
Vattani, Andrea I-320
Victor, Björn II-87

730 Author Index

Villanger, Yngve I-210
Visconti, Ivan II-548
Viswanathan, Mahesh II-136
Vladimerou, Vladimeros II-136

Wan, Andrew I-36, I-502
Wan, Daqing I-283
Waters, Brent II-560
Wee, Hoeteck I-36
Wehner, Stephanie II-604
Weyer, Mark I-587
Wieder, Udi II-631
Wilke, Thomas I-724
Williams, Ryan I-108

Wojtczak, Dominik I-711
Worrell, James II-124
Wullschleger, Jürg II-461, II-604

Yamashita, Shigeru I-271
Yang, Bo-Yin II-691
Yang, Hongseok II-348
Yannakakis, Mihalis I-711
Yin, Yitong I-72
Yokoyama, Tetsuo II-258
Yoshida, Nobuko II-99
Yoshida, Yuichi I-539

Zhang, Shengyu II-592

	Tityle Page
	Preface
	Organization
	Table of Contents
	Composable Formal Security Analysis: Juggling Soundness, Simplicity and Efficiency
	Introduction
	Symbolic Analysis in a Nutshell
	Universally Composable Security
	Composable Formal Security Analysis
	Future Research
	References

	Newton’s Method for \omega -Continuous Semirings
	Introduction
	From Programs to Fixed Point Equations on Semirings
	Some Semiring Interpretations

	Fixed Point Equations
	Newton’s Method for \omega -Continuous Semirings
	Generalizing Newton’s Method

	Newton’s Method on Different Semirings
	The Language Semiring
	The Counting Semiring
	The Real Semiring

	Conclusion
	References

	The Tractability Frontier for NFA Minimization
	Introduction
	Preliminaries
	Notions of Non-determinism
	A Notion of Very Little Non-determinism
	The Minimization Problem
	Are \deltaNFAs the Closest Possible to Determinism?

	Minimizing Non-deterministic Automata is Hard
	Succinctness and Uniqueness
	Automata with Multiple Initial States
	References

	Finite Automata, Digraph Connectivity, and .Regular Expression Size (Extended Abstract)
	Introduction
	Basic Definitions
	Star Height of Regular Languages and Cycle Rank ofDigraphs
	Definitions and Early Results
	Cycle Rank Via Cops and Robbers
	Lower Bounds on Regular Expression Size
	Lower Bounds on Alphabetic Width of Language Operations
	A Lower Bound for Converting DFAs into Regular Expressions

	References

	Leftist Grammars Are Non-primitive Recursive
	Introduction
	Definitions
	Leftist Grammars
	Ackermann’s Function

	Expansion
	Shrinking
	Reduction
	Conclusions and Open Problems
	References

	On the Computational Completeness of Equations over Sets of Natural Numbers
	Introduction
	Language Equations and Their Computational Completeness
	Resolved Systems with {\bigcup, \bigcap, +}
	Unresolved Systems with {\bigcup, \bigcap, +}
	Decision Problems
	Unresolved Systems with {\bigcup, +} and {\bigcap, +}
	Conclusion
	References

	Placement Inference for a Client-Server Calculus
	Introduction
	The Calculus ILS
	Syntax and Informal Standard Semantics
	Timed Semantics with Localities

	Placement Analysis
	Properties of Placement
	Related Work and Conclusion
	References

	Extended pi-Calculi
	Introduction
	Definitions
	Examples
	Theory
	FurtherWork
	References

	Completeness and Logical Full Abstraction in Modal Logics for Typed Mobile Processes
	Introduction
	Processes and Types
	Assertions
	Proof Rules, Axioms and Completeness
	Applications
	References

	On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases
	Introduction
	Representing Sets of Real Numbers with Finite Automata
	Problem Reductions
	Reduction to [0, 1]
	Boundary Points

	Multiplicatively Independent Bases
	Product Stability
	Recognizability by Weak RNA
	Recognizability by RNA

	Bases with Different Sets of Prime Factors
	Sum Stability
	Exploiting Sum-Stability Properties

	Conclusions
	References

	On Expressiveness and Complexity in Real-Time Model Checking
	Introduction
	Metric Temporal Logic
	Decidable Sublogics
	Hardness
	Closure Labellings
	The Partition Lemma

	The Decision Procedure
	Tableaux
	The Stretching Lemma
	Translation to LTL+Past

	References

	STORMED Hybrid Systems
	Introduction
	Preliminaries
	Hybrid Systems and Special Subclasses
	Special Definitions
	Separable Guards
	O-Minimal Definability
	Monotonic Flows
	Monotonic Resets

	STORMED Hybrid Systems
	Examples of STORMED Hybrid Systems
	Relaxations of the STORMED Model
	Conclusions
	References

	Controller Synthesis and Verification for Markov Decision Processes with Qualitative Branching Time Objectives
	Introduction
	Definitions
	TheResult
	References

	On Datalog vs. LFP
	Introduction
	Preliminaries
	LFP Definable Classes Closed Under Homomorphisms
	The DiagonalisationMethod
	The Pumping Method
	References

	Directed st-Connectivity Is Not Expressible in Symmetric Datalog
	Introduction
	Relational Structures and Homomorphisms
	Datalog

	Zig-Zags, Mirror Operators and Free Derivation Paths
	The Free Derivation Path
	Proof of the Main Theorems: Outline

	References

	Non-dichotomies inConstraint Satisfaction Complexity
	Introduction
	Templates of All Complexities
	ω-Categorical Templates of Various Complexities
	coNP-Intermediate ω-Categorical Templates
	Left-Hand Side Restrictions
	The Local-Global Conjecture
	References

	Quantified Constraint Satisfaction and the Polynomially Generated Powers Property (Extended Abstract)
	Introduction
	Properties
	Collapsibility
	A Curious Operation
	Switchability
	Truth and Adversaries
	Reactive Composition
	Definition and Basic Properties

	Classification Theorem
	References

	When Does Partial Commutative Closure Preserve Regularity?
	Known Results
	The First Problem
	The Second Problem
	Star-Free Languages

	Properties of Group Languages
	Commutative Closure
	Group Languages
	Languages of W

	Closure Under Partial Commutation
	The Case Where D Is Transitive
	The Case Where I Is Transitive

	References

	Weighted Logics for Nested Words and Algebraic Formal Power Series
	Introduction
	Weighted Automata on Nested Words
	Weighted Logics for NestedWords
	Nested Words and SP-Biposets
	Algebraic Formal Power Series
	References

	Tree Languages Defined in First-Order Logic with One Quantifier Alternation
	Introduction
	Notation
	Forest Algebras
	Characterization of \Delta_{2}
	Bottom-Up Phase
	h ∈ stab_+{H}(h)
	$h ∈ stab_{H}(h)$
	Discussion

	References

	Duality and Equational Theory of Regular Languages
	Historical Background
	Profinite Topology
	Duality for Distributive Lattices
	Duality Applied to Reg(A∗)
	Equational Characterization of Lattices
	Duality for Quotienting Operations
	Lattices of Languages Closed Under Quotienting
	Classes of Languages Closed Under Inverses of Morphisms
	Examples of Equational Definitions
	Languages with Zero and Nondense Languages
	Languages Defined by Density

	Conclusion
	References

	Reversible Flowchart Languages and the Structured Reversible Program Theorem
	Introduction
	Reversible Flowcharts
	The Structured Reversible Program Theorem
	r-Turing Completeness of Reversible Flowcharts
	Reversible Flowchart Programming Languages
	Conclusion
	References

	Attribute Grammars and Categorical Semantics
	Introduction
	Classical AGs
	Traced Symmetric Monoidal Categories and Int Construction
	Monoidal AGs
	Monoidal AGs in \omegaCPPO
	Monoidal AGs in Rel^{+}
	Monoidal AGs in Rel^{\times}

	Relating Monoidal AGs
	Equivalence between Monoidal AGs and Synthesised Ones
	A Translation from Local Dependency Graphs to Relational AGs

	Related Work
	References

	A Domain Theoretic Model of Qubit Channels
	Introduction
	The Domains of Classical and Quantum States
	Domain Theory and Measurement
	The Bayesian Order on Classical States
	The Spectral Order on Quantum States

	Classical and Quantum Channels
	Classical Channels
	Quantum Channels
	Entropy Increasing Channels

	Scott Continuity of Unital Channels
	Uniqueness of the Spectral Order
	Holevo Capacity from the Informatic Derivative
	Closing
	References

	Interacting Quantum Observables
	Introduction
	Categories of Quantum States and Processes
	Classical Structures and the Spider Theorem
	A Generalised Spider Theorem and Abstract Phase Data
	Complementary Observables as Scaled Bialgebras
	Complementary Classical Structures (CCSs)
	Derivation of the Scaled Bialgebra Law from Abstract Bases
	Complementary Classical Observables in FdHilb_{wp}

	Applications and Examples in Quantum Informatics
	Quantum Gates, Circuits, and Algorithms
	Multi-partite Entanglement
	Properties of Quantum Computational Models

	References

	Perpetuality for Full and Safe Composition (in a Constructive Setting)
	Introduction
	Syntax
	Perpetuality
	Normalisation Properties
	The Arithmetical Technique

	The(IE)Property
	Deriving SN for Other Calculi
	Conclusion
	References

	A System F with Call-by-Name Exceptions
	Introduction
	Design of the System
	Which Exceptions-as-Values?
	Expected Properties
	Three Levels of Corruption
	Why We Need to Distinguish These Three Levels
	Typing the Recursion Operator

	FormalPresentation
	Syntax, Reductions and Associated Properties
	The Type System
	Properties of Typing

	Examples
	Realizability Model
	Daimon, Weak Head Reduction and Contexts
	Operations on Sets
	A Model for Fx

	Related Works
	Conclusion and Future Works
	References

	Linear Logical Algorithms
	Introduction
	Bottom-Up Programming in Linear Logic
	Language Semantics
	Operational Semantics
	Linear Logic
	Cost Semantics
	Using the Abstract Running Time
	Implementing the Operational Semantics

	Conclusion and Future Work
	References

	A Simple Model of Separation Logic for Higher-Order Store
	Introduction
	Programs, Assertions and Specifications
	Semantics of Programs and Assertions
	Semantics of Specifications
	Conclusion and Future Work
	References

	Open Implication
	Introduction
	Preliminaries
	Open Implication
	Definitions, Characteristics, and Lower Bounds
	Algorithm and Upper Bounds
	Avoiding Safra’s Construction

	Generalized Reactivity
	Experimental Results

	Conclusions
	References

	ATL* Satisfiability Is 2EXPTIME-Complete
	Introduction
	Logic, Models and Automata
	Concurrent Game Structures
	ATL*
	Automata over Concurrent Game Structures

	From General to Explicit Models
	ATL* Satisfiability Is 2EXPTIME-Complete
	Conclusions
	References

	Visibly Pushdown Transducers
	Introduction
	Preliminaries
	Visibly Pushdown Transducers
	Synchronized Visibly Pushdown Transducers
	Conclusion
	References

	The Non-deterministic Mostowski Hierarchy and Distance-Parity Automata
	Introduction
	Definitions
	Guidable Automata
	Reduction from Parity Rank to Uniform Universality
	Conclusion
	References

	Analyzing Context-Free Grammars Using an Incremental SAT Solver
	Introduction
	Preliminaries
	The Encoding
	Constraints for Particular Problems
	Ambiguity

	Comparison
	Conclusion
	References

	Weak Pseudorandom Functions in Minicrypt
	Introduction
	Weak Pseudorandom Functions
	Public-Coin vs. Secret-Coin Weak PRFs
	Public-Coins=Secret-Coins in Minicrypt
	Uniform vs. Non-uniform and Negligible vs. Noticeable
	Range Extension for Weak PRFs
	Related Work

	Basic Definitions
	Public-Coin vs. Secret-Coin Weak PRFs
	The Reduction

	Range Extension for Weak PRFs
	Can We Efficiently Deconstruct “Useful” Properties?
	References

	On Black-Box Ring Extraction and Integer Factorization
	Introduction
	Our Contribution

	The Black-Box Ring Extraction Problem
	BBRE for \mathbb{Z}_{n} and Integer Factorization
	An Extension to Multivariate Polynomial Rings
	Gr\ddot{o}bner Bases for Polynomial Ideals over Rings
	BBRE for $\mathbb{Z}_{n}[X1, . . . ,Xt]/J$ and Integer Factorization

	Implications for General Rings
	References

	Extractable Perfectly One-Way Functions
	Introduction
	OurWork
	Applications

	Preliminaries
	Extractable Functions
	A Noninteractive EPOWConstruction
	Construction of Interactive EPOWFunctions
	Instantiating the Second Encryption Scheme of [4]
	Overviewofthe3-Round Zero-Knowledge Protocol
	References

	Error-Tolerant Combiners for Oblivious Primitives
	Introduction
	Preliminaries and Definitions
	Robust Combiners for OLFE
	OLFE-Combiner
	Uniform OLFE-Combiner Based on Symmetry of OLFE
	Error-Tolerant OLFE-Combiners

	Conclusions
	References

	Asynchronous Multi-Party Computation with Quadratic Communication
	Introduction
	Formal Model and Preliminaries
	Cryptographic Primitives and Protocols

	Certificates
	TheNewProtocol
	Subprotocols Used by the Main Protocol
	References

	Improved Garbled Circuit: Free XOR Gates and Applications
	Introduction
	Related Work
	Our Contributions

	Setting and Preliminaries
	Our Protocol
	Our Garbled Circuit Construction
	Proof of Security

	Application of Our SFE Constructions
	References

	Improving the Round Complexity of VSS in Point-to-Point Networks
	Introduction
	Model and Definitions
	VSS and Variants

	Weak Verifiable Secret Sharing
	The Protocol
	Security of the Protocol

	Verifiable Secret Sharing
	The Protocol

	References

	How to Protect Yourself without Perfect Shredding
	Introduction
	This Paper
	Related Work

	How to Make Secrets Partially Erasable
	Space Efficiency

	A General Construction
	Computing on Partially Erasable Secrets at the Gate Level

	References

	Universally Composable Undeniable Signature
	Introduction
	Preliminaries
	Undeniable Signature Scheme
	Security of Undeniable Signature
	Universal Composability

	UC Undeniable Signature
	Ideal Functionality
	Remarks

	Subtlety on Invisibility and New Definition
	Problem of Previous Definition
	New Definition of Invisibility
	New Definition of Unforgeability
	Translation to Protocol

	Equivalence
	Proof of Theorem 2
	Application

	Impossibility Result
	References

	Interactive PCP
	Introduction
	Interactive PCP
	Our Results
	Subsequent Result
	Motivations and Applications
	Techniques

	References

	Constant-Round Concurrent Non-malleable Zero Knowledge in the Bare Public-Key Model
	Introduction
	Our Results

	Non-malleable Witness Indistinguishability
	Concurrent and Simulation-Based NMWI Arguments

	cNMZKintheBPK Model
	The Constant-Round Protocol

	References

	Delegating Capabilities in Predicate Encryption Systems
	Introduction
	Related Work
	Delegation in Predicate Encryption

	Definitions
	Definition
	Security
	A Simple Example

	Delegateable Hidden Vector Encryption (dHVE)
	Delegateable HVE Overview (dHVE)
	dHVE Definition

	Background on Pairings and Complexity Assumptions
	dHVEConstruction
	Construction
	Security of Our Construction

	References

	Bounded Ciphertext Policy Attribute Based Encryption
	Introduction
	Background
	Bilinear Maps
	The Decisional Bilinear Diffie-Hellman (BDH) Assumption

	Access Trees
	Small Universe Construction
	Overview of Our Construction
	The Construction

	Non-monotonic Access Trees
	Discussion and Extensions
	References

	Making Classical Honest Verifier Zero Knowledge Protocols Secure against Quantum Attacks
	Introduction
	Overview of Our Proof: Ideas and Difficulties

	Preliminaries
	The DGWTransformation
	Stage-by-Stage Simulator
	Instance-Dependent Bit Commitments

	Applying DGWto Protocols with Stage-by-Stage Simulators
	Designing Protocols with Stage-by-Stage Simulators
	References

	Composable Security in the Bounded-Quantum-Storage Model
	Introduction
	Contribution

	Preliminaries
	Security in the Bounded-Quantum-Storage Model
	Randomized Oblivious Transfer
	References

	On the Strength of the Concatenated Hash Combiner When All the Hash Functions Are Weak
	Introduction
	Related Work
	Our Results
	Paper Organization

	The Model
	A Lower Bound
	The Simulator S
	The Indifferentiability Proof
	Comments

	Application to Lucks’ Double Pipe Proposal
	Conclusion
	References

	History-Independent Cuckoo Hashing
	Introduction
	Related Work
	Our Contributions
	Overview of the Construction
	Paper Organization

	Preliminaries
	The Data Structure
	The Secondary Data Structure
	Concluding Remarks
	References

	Building a Collision-Resistant Compression Function from Non-compressing Primitives (Extended Abstract)
	Introduction
	Preliminaries
	The Rate-1/3 Compression Function
	Proof of Theorem 3 and Lemma 4
	Conclusion
	References

	Robust Multi-property Combiners for Hash Functions Revisited
	Introduction
	Preliminaries
	Hash Functions and Their Properties

	The \mathcap{C}4P Combiner for \sfCR, PRF, TCR and \sfMAC
	Our Construction
	Multi-property Robustness

	Preserving Indifferentiability: The $\mathcapC_{4P&IRO}$ Combiner
	The Combiner $\mathcapC_$4P&IRO$
	$\mathcapC_{4P&IRO}$ Preserves the IRO Property
	$\mathcapC_{4P&IRO}$ Is Robust for \sf{CR, TCR,MAC, PRF$

	Preserving One-Wayness and the $\mathcapC_{4P&OW}$ Combiner
	A Combiner for CR and OW
	Combining Things

	References

	Homomorphic Encryption with CCA Security
	Introduction
	Homomorphic Encryption Preliminaries
	Defining Security
	Homomorphic-CCA (HCCA) Security
	Unlinkability
	UC Definition: Homomorphic Message Posting

	Relationships among Security Definitions
	Achieving Unlinkable HCCA Security
	Beyond Unary Transformations
	Extending Definitions
	A Simple Positive Result
	Negative Results

	References

	How to Encrypt with the LPN Problem
	Introduction
	Preliminaries
	Description of LPN-C
	Security Proofs
	Security Model
	Proof of Indistinguishability Under Chosen Plaintext Attacks
	An IND-P0-C1 Attack
	Achieving P2-C2 Security

	Concrete Parameters for LPN-C
	Conclusions
	References

	Could SFLASH be Repaired?
	Introduction
	The SFLASH Scheme
	The C* Scheme
	SFLASH

	The Symmetry in SFLASH
	Skew-Symmetric Maps with Respect to the Differential
	Consequences

	Breaking the Symmetry
	Projection Breaks the Skew-Symmetry Property of C*– Schemes
	Experimental Verifications

	ProjectedC*– Schemes
	Conclusion
	References

	Password Mistyping in Two-Factor-Authenticated Key Exchange
	Introduction
	Our Contributions and Outline of Work
	Related Work

	Mistyping-Related Limitations in Previous Work
	Pre-definition Discussion
	Review of the Framework of [16]

	Natural Definitional Approaches to Mistyping (That Don’t Work)
	Mistyping-Secure KE Definition
	Why This Is a Good Definition

	Application to Biometric Authentication
	Mistyping-Secure KE Protocols
	References

	Affiliation-Hiding Envelope and Authentication Schemes with Efficient Support for Multiple Credentials
	Introduction
	Technical Roadmap
	Cryptographic Assumptions and Tools
	Affiliation-Hiding Envelope Schemes
	The Construction of an Affiliation-Hiding Envelope Scheme
	Affiliation-Hiding Authentication Scheme
	References

	Author Index

