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Abstract. In this paper we give the first deterministic polynomial time
algorithm for testing whether a diagonal depth-3 circuit C(x1, . . . , xn)
(i.e. C is a sum of powers of linear functions) is zero. We also prove
an exponential lower bound showing that such a circuit will compute
determinant or permanent only if there are exponentially many linear
functions. Our techniques generalize to the following new results:

1. Suppose we are given a depth-4 circuit (over any field F) of the form:

C(x1, . . . , xn) :=
k∑

i=1

L
ei,1
i,1 · · · Lei,s

i,s

where, each Li,j is a sum of univariate polynomials in F[x1, . . . , xn].
We can test whether C is zero deterministically in poly(size(C),
maxi{(1 + ei,1) · · · (1 + ei,s)}) field operations. In particular, this
gives a deterministic polynomial time identity test for general depth-
3 circuits C when the d :=degree(C) is logarithmic in the size(C).

2. We prove that if the above circuit C(x1, . . . , xn) computes the de-
terminant (or permanent) of an m×m formal matrix with a “small”
s = o

(
m

log m

)
then k = 2Ω(m). Our lower bounds work for all fields

F. (Previous exponential lower bounds for depth-3 only work for
nonzero characteristic.)

3. We also present an exponentially faster identity test for homoge-
neous diagonal circuits (deterministically in poly(nk log(d)) field op-
erations over finite fields).

Keywords: arithmetic circuit, identity testing, depth 3, depth 4, deter-
minant, permanent, lower bounds.

1 Introduction

Identity Testing is the problem of checking whether a given arithmetic circuit
C(x1, . . . , xn), computing a polynomial over a field F, is the zero circuit. Ideally
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we would like to do identity testing deterministically in time polynomial in the
size of the circuit C but no such algorithm is known. The simplest known general
algorithm is randomized which was discovered independently by Schwartz [20]
and Zippel [22]: it evaluates the given circuit at a random point and accepts if
and only if the circuit evaluates to zero at that point. There are more involved
randomized algorithms that use fewer random bits [2]. Besides being a natural
algebraic problem, special cases of identity testing also appear in primality test-
ing [3], testing equivalence of read-once branching programs [6], graph matching
problems [15], interpolating sparse multivariate polynomials [7] and proving com-
plexity theory results such as IP=PSPACE [21], NP=PCP(O(logn), O(1)) [5].
Solving identity testing becomes all the more important by the work of Impagli-
azzo and Kabanets [11] who showed that – finding a deterministic algorithm for
identity testing is, roughly, equivalent to proving circuit lower bounds for NEXP.

In this paper we consider arithmetic circuits of depth 4 and solve the identity
testing problem for a natural restricted case. Our basic technique is to express the
multiplication gate (a0+a1x1+· · ·+anxn)d in a dual form

∑
j fj,1(x1) · · · fj,n(xn).

In full generality our dual form expresses a product-of-sum-of-univariates as a
sum-of-product-of-univariates effectively (see Remark 1). Our technique of com-
puting the dual is a new way to unfold a multiplication gate in an arithmetic cir-
cuit. The dual of a multiplication gate is obtained by using the tools of formal
power series (of ex), polynomial interpolation and working over local algebras.
This dual computation is faster than a brute-force expansion and may have other
applications. Finally, we also show that in the special case of homogeneous diago-
nal circuits we can actually do better and give a poly(nk log d) time identity test.

1.1 Known Results

There are deterministic algorithms known for identity testing only over restricted
classes of arithmetic circuits. Raz and Shpilka [19] gave a deterministic polyno-
mial time identity test for noncommutative arithmetic formulas. Dvir and Sh-
pilka [8] attempted a characterization of zero depth-3 circuits and obtained a
poly(n, 2logk−1 d) time identity test. Kayal and Saxena [14] used Chinese remain-
dering over local rings and gave a poly(ndk) time identity test for depth-3 circuits
which is clearly a polynomial time identity test if k, the top fanin of the circuit,
is bounded. In this work we allow the top fanin to be unbounded but impose
the restriction that each multiplication gate has only “few” distinct functions as
input. All these identity tests are non-black-box, i.e. they look inside the circuit
instead of just evaluating it at points. Recently, there has been some attempts
towards black-box identity testing for depth-3 circuits (see [12]). A black-box
identity test even for depth-4 circuits would have important repercussions for
the general identity testing problem [4].

In this paper we also prove exponential lower bounds for computing deter-
minant or permanent by certain restricted depth-4 circuits. These restricted
depth-4 circuits are the ones for which we give a deterministic polynomial time
identity test. Grigoriev, Karpinski and Razborov [9,10] have also shown such
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lower bounds for general depth-3 circuits but assuming a nonzero characteristic.
Our lower bounds are new in the sense that they hold over all fields.

1.2 Definitions and Statement of Results

We will use poly(M, N) to refer to a real function in M and N whose value
is upper bounded by (MN)c1 for all M, N > c2 where c1, c2 > 0 are absolute
constants. When using poly(M, N) we will not specify the value of c1, c2 as
our main interest in this paper is only in their existence. We will use [n] to
refer to the set {1, . . . , n}. We will denote the characteristic of a field F (i.e.
smallest integer t > 0 such that t = 0 in F or zero if there is no such t) by
char(F). An algebra R over a field F is simply a ring containing F. In this paper
only finite dimensional commutative algebras appear, i.e. there is an integer
N > 0 and basis elements b1, . . . , bN ∈ R such that any element in R can be
uniquely expressed as

∑N
i=1 αibi with αi’s in F. We call N the dimension of the

algebra R over F, denoted by dim(R). It is a simple exercise to see that basic
operations (e.g. multiplication of two elements) in R can be done using poly(N)
field operations (in F).

Our main concern in this paper are depth-3 (or depth-4) circuits. For the
purposes of identity testing (also lower bounds for determinant and permanent)
the hardest case is when the circuit has an addition gate at the top. These circuits
are called ΣΠΣ (or ΣΠΣΠ). It is clear that the output of such a ΣΠΣ circuit
C(x1, . . . , xn) would be:

∑k
i=1 �i,1 · · · �i,di , where the �i,j = (ai,j,0 + ai,j,1x1 +

· · · + ai,j,nxn) are linear functions over a field F. We call k the top fanin of C,
di the degree of the i-th multiplication gate and d = maxi{di} the degree of
C. The size of an arithmetic circuit is the number of addition, multiplication
and input gates in its representation as a directed acyclic graph. Clearly, in the
above setting size(C) is dominated by knd. It is easy to see that by brute-force
we can check whether a ΣΠΣ circuit C is a zero circuit in time polynomial in
k ·

(
n+d

d

)
but this is generally exponential in size(C).

In this paper we start with the case where each of the multiplication gates in
C has only one distinct linear function as input. We call such a C a diagonal
circuit and it looks like: C(x1, . . . , xn) =

∑k
i=1 bi · �di

i , where the bi’s are in F

and the �i’s are linear functions. Our techniques extend upto depth-4 circuits of
the form:

C(x1, . . . , xn) =
k∑

i=1

L
ei,1
i,1 · · ·Lei,s

i,s (1)

where the Li,j ’s are not linear functions but sums of univariate polynomials, i.e.
for all i ∈ [k], j ∈ [s]:

Li,j(x1, . . . , xn) = gi,j,1(x1) + · · · + gi,j,n(xn)

where gi,j,j′ ∈ F[xj′ ]. Our first main theorem is:

Theorem 1. Over any field F, let C be a circuit given as in Equation (1). Then
we can deterministically check whether C is a zero circuit in poly(size(C), maxi{
(1 + ei,1) · · · (1 + ei,s)}) field operations.
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Thus, when s is constant or when s is logarithmic but ei,j ’s are constants we
get a deterministic polynomial time identity test.

The lower bounds that we get, basically show that if a depth-3 circuit (or
a restricted depth-4 circuit) computes determinant (or permanent) then either
some of the multiplication gates have “lots” of distinct functions as inputs or
the top fanin of the circuit is exponential. Our second main theorem is:

Theorem 2. Over any field F, if the circuit in Equation (1) expresses the deter-
minant (or permanent) of a general m×m matrix with parameters s = o

(
m

log m

)
,

n = m2 and d = poly(m) then k = 2Ω(m).

Note that determinant (or permanent) of an m × m matrix is just a sum of m!
monomials. A monomial y1 · · · ym can be expressed as a sum of powers of 2O(m)

linear forms. Hence, determinant can be expressed by a sum of powers of at most
O(m!) linear forms and our lower bounds show that this is almost tight.

1.3 Our Techniques

We use non-black-box methods, i.e. we heavily use the structure of the given
circuit. We use tools that previously have been used to understand noncommu-
tative formulas, for example by Nisan, Wigderson [16,17], Raz and Shpilka [19].
We apply these old tools in a nontrivial way to understand depth-3 and depth-4
(commutative) circuits. For clarity let us note here the two old theorems in a
generalized form.

A circuit D(x1, . . . , xn), over an algebra R over a field F, is called noncom-
mutative if each of its multiplication gate has ordered inputs and the variables
x1, . . . , xn do not commute, i.e. for all i �= j, xi · xj �= xj · xi. The output
D(x1, . . . , xn) is a formal expression in the ring R{x1, . . . , xn} of polynomi-
als over noncommutative variables x1, . . . , xn. Clearly, any commutative cir-
cuit C(x1, . . . , xn) can be turned into a noncommutative circuit C̃(x1, . . . , xn)
by imposing an order on the inputs to its multiplication gates and assuming
xi · xj �= xj · xi for all i �= j. But now circuits C and C̃ are computing differ-
ent polynomials and it may happen that C is a zero circuit but C̃ is a nonzero
circuit. However, if C̃ is a zero circuit then C is surely a zero circuit as well. A
circuit is called a formula if the fan-out of every gate in the circuit is at most one.
Noncommutative formulas are easier to analyze compared to the commutative
ones and the following identity test is relevant to us:

Theorem 3 (Theorem 2.5 of [19] generalized over algebras). Let R be
an algebra over a field F. Given a noncommutative formula C(x1, . . . , xn) ∈
R{x1, . . . , xn} we can verify deterministically in poly(size(C), dim(R)) field op-
erations whether C is zero.

The second result relevant to us is an extension of Theorem 5.1 of [19] that
proves lower bounds for pure circuits using the partial derivative space (see the
proof idea in Lemma 5.3 of [19]).
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Theorem 4 (Theorem 5.1 of [19] generalized over algebras). Let R be
an algebra over a field F, r ∈ R \ {0}, r′ ∈ R and let det(x1,1, . . . , xn,n) denote
the determinant of a formal n × n matrix ((xi,j)). If det(x1,1, . . . , xn,n) · r − r′

can be expressed as a circuit:

C(x1,1, . . . , xn,n) =
k∑

i=1

fi,1,1(x1,1) · · · fi,n,n(xn,n)

where the fi,j1,j2 ’s are univariate polynomials over R, then k · dim(R) = 2Ω(n).
A similar lower bound holds for the permanent as well.

Proof (Sketch). Since determinant is a multilinear polynomial we can ignore the
nonlinear terms in the fi,j1,j2 ’s. Now if we look at the suitably defined partial
derivative space (as in [19]) of the circuit C then it has rank, over F, at most
k·dim(R) because there are k multiplication gates and the coefficients in fi,j1,j2 ’s
are themselves of dimension dim(R) over F. On the other hand it is known that
the corresponding rank of determinant is 2Ω(n).

Our main contribution is a novel way to transform the multiplication gates of a
circuit, hence the overall circuit, to a form on which we can apply Theorems 3
and 4. Our basic technique is to use the formal power series ex = 1+x+ x2

2! + · · ·
and polynomial interpolation to express the multiplication gate (a0+a1x1+· · ·+
anxn)d in a dual form:

∑
j fj,1(x1) · · · fj,n(xn). Now this is a nice circuit as the

variables x1, . . . , xn in it are “separated” and we can invoke the known tricks.
For example, it can be viewed as a circuit in which the variables x1, . . . , xn

do not commute, thus by Theorem 3 we get a deterministic polynomial time
identity test for diagonal circuits. Also, by the lower bounds of Theorem 4 we
get that a diagonal circuit can compute determinant or permanent only if it is
of exponential size. These ideas generalize to circuits with s > 1 in Equation
(1) but require more algebraic sophistication as then we work with the formal
power series on larger local algebras instead of working on the base field F.

1.4 Organization

The paper is organized as follows. In section 2 we present our results for the
basic case of diagonal circuits over zero characteristic. In section 3 we show
how to extend our results to restricted depth-4 circuits over zero characteristic.
In section 4 we extend the previous results to nonzero characteristic. Finally,
in section 5 we present an exponentially faster identity test for homogeneous
diagonal circuits (deterministically in poly(nk log(d)) field operations over finite
fields). Some of the proofs have been omitted from the extended abstract due to
space constraints.

2 Diagonal Depth-3 Circuits

The aim of this section is to define a dual expression for multiplication gates
of the form (a0 + a1x1 + · · · + anxn)d and use that form to give an identity
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test for diagonal circuits and to prove lower bounds. We will assume throughout
this section that the base field F is of characteristic zero. We will use the fairly
standard notation [m]f(x1, . . . , xn) to denote the coefficient of the monomial m
in a polynomial (more generally, a power series) f . For example, [xyz](x + y +
z)3 = 6.

2.1 Dual of a Multiplication Gate

The following lemma formalizes and computes the dual of an affine power.

Lemma 1. Let a0, a1, . . . , an be in a field F of zero characteristic. Then we can
compute univariate polynomials fi,j’s in poly(nd) field operations such that for
t = (nd + d + 1):

(a0 + a1x1 + · · · + anxn)d =
t∑

i=1

fi,1(x1) · · · fi,n(xn)

Proof. We will prove this using the formal power series: exp(x) = 1+x+ x2

2! +· · · ,
where exp(x) = ex and e is the base of natural logarithm. Define the degree d

truncation of the series to be Ed(x) = 1 + x + · · · + xd

d! . Observe that:

(d!)−1 · (a0 + a1x1 + · · · + anxn)d = [zd] exp ((a0 + a1x1 + · · · + anxn) · z)

= [zd] exp(a0z) · exp(a1x1z) · · · exp(anxnz)

= [zd] Ed(a0z) · Ed(a1x1z) · · ·Ed(anxnz)

The product Ed(a0z)·Ed(a1x1z) · · ·Ed(anxnz) can be viewed as a univariate poly-
nomial in z of degree (nd+d). Hence, its coefficient of zd can be computed by eval-
uating the polynomial at (nd+d+1) distinct points α1, . . . , αnd+d+1 ∈ F (remem-
ber F is large enough) and by interpolation we can compute β1, . . . , βnd+d+1 ∈ F

such that:

[zd] Ed(a0z) · Ed(a1x1z) · · ·Ed(anxnz)

=
nd+d+1∑

i=1

βi · Ed(a0αi) · Ed(a1αix1) · · · Ed(anαixn)

This is the dual form of (a0+a1x1+· · ·+anxn)d as required. It is routine to verify
that all the univariate polynomials Ed(·) in the above sum can be computed in
poly(nd) field operations.

2.2 Identity Test and Lower Bounds

The dual form of multiplication gates obtained in Lemma 1 is easy to analyze.
We give the ideas in the following theorems.

Theorem 5. Over zero characteristic, identity testing for diagonal circuits can
be done in deterministic polynomial time (poly(nkd) field operations).
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Proof. Suppose we are given a diagonal circuit C:

C(x1, . . . , xn) =
k∑

i=1

bi · �di

i

Then by Lemma 1 we can compute the dual form of each of the k multiplication
gates such that:

C(x1, . . . , xn) =
k∑

i=1

ndi+di+1∑
j=1

fi,j,1(x1) · · · fi,j,n(xn) (2)

where the univariate polynomials fi,j,j′ ’s are of degree at most di.
Now observe that the variables in the circuit on the RHS of Equation (2) can

be assumed to be noncommutative without affecting the output, i.e. circuit C.
Thus, if we apply the identity testing algorithm of Theorem 3 to the circuit on
the RHS of Equation (2) we will correctly know whether C is zero or not. Hence,
C can be verified for zeroness deterministically in poly(nkd) field operations.

Theorem 6. Over zero characteristic, if a diagonal circuit expresses the deter-
minant (or permanent) of a formal m × m matrix with n = m2 variables and
degree d = poly(m) then the top fanin k = 2Ω(m).

Proof. Suppose a diagonal circuit C computes the determinant of a general m×m
matrix. Then by Lemma 1 determinant is being computed by a circuit as given
in Equation (2). Now the exponential lower bound of Theorem 4 applies and we
get that poly(ndk) = 2Ω(m) implying k = 2Ω(m).

3 Extension to Restricted Depth-4 Circuits

In this section we extend the results of the last section to depth-4 circuits (with
some success). The starting point is a dual expression for multiplication gates
of the form Le1

1 · · ·Les
s where the Li’s are sums of univariate polynomials in

F[x1, . . . , xn]. The proof is along the same lines as presented before but now we
will work in local algebras over F. Finally, we use that form to give identity test
and prove lower bounds. We will again assume throughout this section that the
base field F is of characteristic zero.

3.1 Dual of a Multiplication Gate

We compute the dual form of a multiplication gate of the form:

M(x1, . . . , xn) = (g1,1(x1)+ · · ·+g1,n(xn))e1 · · · (gs,1(x1)+ · · ·+gs,n(xn))es (3)

which means that we express M as an expression:
∑t

i=1 fi,1(x1) · · · fi,n(xn)
where the fi,j ’s are univariate polynomials over an F-algebra R (unlike the di-
agonal case where we worked over F). This expression with variables x1, . . . , xn

“separated” we call a dual of the multiplication gate. The following lemma shows
that such a dual is computable but we pay a price in terms of the dimension of
algebra R which is (e1 + 1) · · · (es + 1).
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Lemma 2. Let M(x1, . . . , xn) be the multiplication gate of Equation (3) over a
field F of zero characteristic and e = (e1 + · · · + es). Then we can compute uni-
variate polynomials fi,j’s over an algebra R := F[z1, . . . , zs]/(ze1+1

1 , . . . , zes+1
s )

in poly(size(M), dim(R)) field operations such that for t = (ne + 1):

M(x1, . . . , xn) · ze1
1 · · · zes

s =
t∑

i=1

fi,1(x1) · · · fi,n(xn) over R

Remark 1. Note that we can informally describe the above equation as: a product-
of-sums-of-univariates can be written as a sum-of-products-of-univariates. This
justifies our continued usage of the phrase “dual form”.

Proof. We will again prove this using the formal power series: exp(x) = 1 + x +
x2

2! + · · · , where exp(x) = ex and e is the base of natural logarithm. Recall that
the degree d truncation of the series is Ed(x) = 1 + x + · · · + xd

d! . Let L1, . . . , Ls

be the distinct factors of M (that are now not linear functions but sums of
univariate polynomials). Observe that:

(e1! · · · es!)−1 · Le1
1 · · ·Les

s = [zeze1
1 · · · zes

s ] exp(L1z1z) · · · exp(Lszsz)
= [zeze1

1 · · · zes
s ] exp(L1z1z + · · · + Lszsz)

= [zeze1
1 · · · zes

s ] exp ((g1,1z1 + · · · + gs,1zs)z) · · ·
· · · exp ((g1,nz1 + · · · + gs,nzs)z)

= [zeze1
1 · · · zes

s ] Ee ((g1,1z1 + · · · + gs,1zs)z) · · ·
· · · Ee ((g1,nz1 + · · · + gs,nzs)z) (4)

Note that the last product can be viewed as a univariate polynomial in z of degree
ne. Hence, its coefficient of ze can be computed by evaluating the polynomial
at (ne + 1) distinct points α1, . . . , αne+1 ∈ F (remember that F is large enough)
and by interpolation we can compute β1, . . . , βne+1 ∈ F such that:

[zeze1
1 · · · zes

s ] Ee ((g1,1z1 + · · · + gs,1zs)z) · · ·Ee ((g1,nz1 + · · · + gs,nzs)z)

= [ze1
1 · · · zes

s ]
ne+1∑
i=1

βi · Ee ((g1,1z1 + · · · + gs,1zs)αi) · · ·

· · ·Ee ((g1,nz1 + · · · + gs,nzs)αi)

Notice that the monomials having nonzero coefficients in the above sum are of the
form zt1

1 · · · zts
s such that t1 + · · ·+ ts = e = e1 + · · ·+ es. Thus, if we look at the

above sum modulo the ideal (ze1+1
1 , . . . , zes+1

s ) then the surviving monomials
zt1
1 · · · zts

s would be those that have t1 � e1, . . . , ts � es which together with
t1 + · · · + ts = e = e1 + · · · + es uniquely determines the surviving monomial as
ze1
1 · · · zes

s . Consequently, we can summarize the above computations as, over R:

(e1! · · · es!)−1 · Le1
1 · · ·Les

s · ze1
1 · · · zes

s

=
ne+1∑
i=1

βi · Ee ((g1,1z1 + · · · + gs,1zs)αi) · · ·Ee ((g1,nz1 + · · · + gs,nzs)αi) .
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This is the dual form of M as required. Notice that there is a nonconstant
factor ze1

1 · · · zes
s appearing on the LHS but since this factor is a nonzero element

of the algebra R, the dual form will be good enough for our purposes. It is
routine to verify that the univariate polynomials Ee(·) over R in this sum can
be computed in poly(size(M), dim(R)) field operations and that the dimension
of R is (e1 + 1) · · · (es + 1).

3.2 Identity Test and Lower Bounds

We can now apply the dual form of Lemma 2 to k multiplication gates and work
on a bigger algebra. We formalize this idea in the following theorems.

Theorem 7. Given a circuit C over a field F of zero characteristic:

C(x1, . . . , xn) =
k∑

i=1

L
ei,1
i,1 · · ·Lei,s

i,s

where the Li,j’s are sums of univariate polynomials and (wlog) for all i, ei,1 �= 0.
We can test whether C is a zero circuit deterministically in poly(size(C), maxi{
(1 + ei,1) · · · (1 + ei,s)}) field operations.

Proof. Let us apply the dual form of Lemma 2 to the i-th multiplication gate
Mi, with ei := (ei,1 + · · · + ei,s), and compute the univariate polynomials
fi,j1,j2 ’s, for all 1 � j1 � ti = (nei + 1) and j2 ∈ [n], over the algebra Ri :=
F[zi,1, . . . , zi,s]/(zei,1+1

i,1 , . . . , z
ei,s+1
i,s ) in poly(size(Mi), dim(Ri)) field operations

such that:

L
ei,1
i,1 · · · Lei,s

i,s · zei,1
i,1 · · · zei,s

i,s =
ti∑

j1=1

fi,j1,1(x1) · · · fi,j1,n(xn) over Ri (5)

With the aim of getting a dual form of the circuit C let us define a commutative
algebra R that contains the algebras corresponding to each multiplication gate,
i.e. R1, . . . , Rk, as “orthogonal” subalgebras and in which the following (k − 1)
relations hold: z

e1,1
1,1 · · · ze1,s

1,s = · · · = z
ek,1
k,1 · · · zek,s

k,s . Explicitly, the algebra R is:
F[zi,j | ∀i ∈ [k], ∀j ∈ [s]]/I, where the ideal I is generated by the following three
sets of relations:

– z
ei,j+1
i,j = 0, for all i ∈ [k], j ∈ [s].

– zi,j · zi′,j′ = 0, whenever i �= i′.
– z

ei,1
i,1 · · · zei,s

i,s = z
ei′,1
i′,1 · · · zei′,s

i′,s , for all i, i′ ∈ [k].

Note that the first set of relations just make R1, . . . , Rk as subalgebras of R
while the other two sets impose relations on certain zero-divisors in R (ei,1 �= 0
implies that z

ei,1
i,1 · · · zei,s

i,s is a zero-divisor of R). The second set of relations are
put in so that the dimension of R gets down to roughly sum of the dimensions
of R1, . . . , Rk. Note that the dimension of R over the base field F is exactly∑k

i=1(1 + ei,1) · · · (1 + ei,s) − 2(k − 1) which is nonzero.
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Now by using the third set of relations in R and summing up Equation (5)
for all the k multiplication gates, we get over the algebra R:

C(x1, . . . , xn) · ze1,1
1,1 · · · ze1,s

1,s =
k∑

i=1

L
ei,1
i,1 · · ·Lei,s

i,s · z
ei,1
i,1 · · · zei,s

i,s

=
k∑

i=1

ti∑
j1=1

fi,j1,1(x1) · · · fi,j1,n(xn) (6)

This last expression can be viewed as a noncommutative formula in variables
x1, . . . , xn over the algebra R. Clearly, it is zero iff C(x1, . . . , xn) · ze1,1

1,1 · · · ze1,s

1,s

is zero over R iff C is zero over F. Thus, it is sufficient to test the circuit on
the RHS of Equation (6) for zeroness. This can be done by applying the identity
testing algorithm of Theorem 3, now working over the algebra R. Hence, we
can deterministically verify whether C is zero in poly(size(C), dim(R)) field
operations as required.

Theorem 8. Following the notation of the last theorem, if C expresses the
determinant (or permanent) of a formal m × m matrix with parameters s =
o
(

m
log m

)
, n = m2 and (e1 + · · · + ek) := e = poly(m) then k = 2Ω(m).

Proof. Suppose the circuit C computes the determinant of a general m × m
matrix. Recall that C has a dual form as given in Equation (6). Thus, we can
apply Theorem 4 to deduce that poly(nek, dim(R)) = 2Ω(m) implying:

poly (nek, maxi{(1 + ei,1) · · · (1 + ei,s)}) = 2Ω(m)

As the ei,j ’s are at most poly(m) the above implies poly(nek, ms) = 2Ω(m) which
using the hypothesis further implies k = 2Ω(m).

4 Extension to the Nonzero Characteristic Case

In the last section we defined the dual form of a multiplication gate Le1
1 · · · Les

s ,
where the Li’s are sums of univariates over a field F of zero characteristic. In
this section we note how to obtain the dual form when the characteristic of F is
a prime p > 1. Note that over such a field the expressions used in the proof of
Lemma 2 may not be well defined, for example if p|d! then 1

d! is undefined in F.
We can show that such issues can be taken care of by working in a local algebra
over a Galois ring of characteristic pb instead of working over F. This finishes
the proofs of our main Theorems 1 and 2.

5 A Faster Identity Test for Diagonal Circuits

Identity testing for homogeneous diagonal circuits can be made exponentially
faster in the degree d of the circuit. Unfortunately, we only know how to do this
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over a finite field F with an extra assumption that d < char(F) (we do believe it
should be possible to do this in general). The main idea to speed up the identity
test is that if the degree d of a diagonal circuit C is large compared to fanin k
then an argument using Vandermonde’s matrix shows that C can be zero only
if each multiplication gate is zero, which can be tested in time poly(nk log(d)).
Thus, wlog we can assume d � k and the identity test given in this paper tests∑k

i=1 bi · �d
i = 0 deterministically in poly(nk) field operations.

6 Conclusion

In this work we gave a deterministic polynomial time identity test for restricted
depth-4 circuits. Our basic idea was to define a dual operation on the multi-
plication gates in a depth-3 circuit that converts a product gate into a sum of
product of univariate polynomials over a local algebra. This dual is efficiently
computable when the multiplication gate has “few” distinct linear functions as
input. In the case of a general multiplication gate of a depth-3 circuit of degree d
the dual computation takes exponential time: poly(n2d). This dual computation
can be viewed as a new way to unfold a given depth-3 circuit better than the
direct brute-force expansion. We leave it as an open question to improve this
duality to solve the identity testing problem for general depth-3 circuits.

Kayal [13] has observed that Theorems 1 and 2 for depth-3 circuits can also
be obtained (nontrivially) by using the space of partial derivatives first defined
by Nisan and Wigderson [17]. The basic reason is that the space of partial
derivatives of a diagonal circuit has “low” rank and this can be exploited to give
an identity test and proving lower bounds. However, in the case of our restricted
depth-4 circuits the space of partial derivatives typically has “high” rank. For
example, the partial derivative space of (x2

1 + · · · + x2
n)n is of rank more than

2n. Thus, the dual form analyzes the restricted depth-4 circuits in ways stronger
than the partial derivative space.
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