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Abstract. An L(p, q)-labeling of a graph is a labeling of its vertices by
nonnegative integers such that the labels of adjacent vertices differ by at
least p and the labels of vertices at distance 2 differ by at least q. The
span of such a labeling is the maximum label used. Distance constrained
labelings are an important graph theoretical approach to the Frequency
Assignment Problem applied in mobile and wireless networks.

In this paper we show that determining the minimum span of an
L(p, q)-labeling of a tree is NP-hard whenever q is not a divisor of p.
This demonstrates significant difference in computational complexity of
this problem for q = 1 and q > 1. In addition, we give a sufficient and
necessary condition for the existence of an H(p, q)-labeling of a tree in the
case when the metric on the label space is determined by a strongly vertex
transitive graph H . This generalizes the problem of distance constrained
labeling in cyclic metric, that was known to be solvable in polynomial
time for trees.

1 Introduction

Distance constrained graph labelings stem from the highly practical problem of
assigning frequencies to transmitters in order to avoid, or minimize, undesired
interference. Suppose that the metric in the frequency space is expressible by a
graph H . An H(p, q)-labeling of a graph G is defined as a mapping f : V (G) →
V (H) such that distH(f(u), f(v)) ≥ p for any two adjacent vertices u, v ∈ V (G),
and distH(f(u), f(v)) ≥ q for any two nonadjacent vertices u, v ∈ V (G) which
have a common neighbor (i.e., are at distance 2 in G). Here the vertices of
the graph G correspond to the transmitters in the network, and the edges of
G express possible interference. This general approach was first studied in the
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connection to locally injective graph homomorphisms [7]. Two special cases have
been introduced and intensively studied before — the case of linear metric, where
H = Pλ+1 is the path of length λ, and the cyclic metric corresponding to the
case H = Cλ.

These mappings are referred to as L(p, q)- and C(p, q)-labelings, respectively.
In both cases λ is the span of the labeling. We define the linear span Lp,q(G)
as the minimum span of an L(p, q)-labeling of G. Analogously, the cyclic span
Cp,q(G) is the minimum span of a labeling with the cyclic metric.

The concept of L(2, 1)-labeling was introduced by Roberts [18,11]. The exact
values for special graphs and graph classes have been determined several works,
cf. surveys [14,19,2] Griggs and Yeh [11] conjectured that L2,1(G) ≤ Δ2(G),
where Δ(G) denotes the maximum degree in G. This upper bound has been
recently proven true for every sufficiently large Δ(G) by Havet et al. [13].

Distance constrained graph labelings provide a rather interesting graph in-
variant from the computational complexity point of view. Griggs and Yeh [11]
proved that it is NP-hard to determine L2,1(G), while Fiala et al.[8] proved that
deciding L2,1(G) ≤ k is NP-complete for every fixed k ≥ 4. Rather interesting is
the complexity for restricted graph classes. Chang and Kuo [4] described a poly-
nomial time algorithm for determining the L2,1(G) if G is a tree, but already for
series-parallel graphs this problem becomes NP-complete [5]. The computational
complexity of determining the Lp,q(G) if G is a tree for q > 1 has been open
since then. It was explicitly asked by D. Welsh [private communication during a
graph coloring workshop at DIMACS in 1999] with a hope for a generalization
of the method of Chang and Kuo. While this works easily for an arbitrary p > 2
and q = 1, the case q > 1 kept resisting all attempts. Intuitively, the difference
between q = 1 and q > 1 relates to the difference between systems of distinct
and distant representatives [10]. Resolving this question is the main result of this
paper.

Formally, we consider the following decision problem:

L(p, q)-Labeling

Instance: A graph G and an integer λ.
Question: Does G allow an L(p, q)-labeling of span λ?

Note that p, q are fixed parameters while λ (and, of course, G) are part of the
input. We prove the following result.

Theorem 1. For positive integers p and q, the L(p, q)-Labeling problem re-
stricted to trees is solvable in polynomial time only if q divides p, otherwise it is
NP-complete.

The polynomial part is now a folklore. It has been proved already in [11] that an
optimum labeling using only labels of the form ap + bq always exists, and hence
L(rp, rq)-Labeling is equivalent to L(p, q)-Labeling. In particular, when q
divides p we get the L(p

q , 1)-Labeling problem which is solvable in polynomial
time by a slight modification of an algorithm by Chang and Kuo [4,3]. We note
here that it is sufficient to prove the NP-hardness part of the theorem for the
case of mutually prime p and q.
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The NP-hardness part of the theorem is proved by a reduction from the prob-
lem of deciding the existence of a system of distant representatives in systems
of symmetric sets. The construction extends the approach initiated in [9] where
the NP-hardness of extending a prelabeling to a complete L(p, q)-labeling was
proved. The main idea is a construction of trees that allow only specific labels
on their roots. The main difficulty, that we successfully managed to overcome,
was to keep the size of such trees polynomial. These constructions are presented
in Section 3 and the proof of Theorem 1 is concluded in Section 5.

It is interesting to note that Lp,q(T ) can be approximated well for trees by
qΔ(T ). Griggs and Yeh proved that Δ(T )q+p−q ≤ Lp,q(T ) ≤ Δ(T )q+2p−q−1
holds for positive integers p ≥ q and a tree T [11]. But perhaps a bit surprising
is the fact that in the cyclic metric the span of a tree is uniquely determined by
its maximum degree. Liu and Zhu [16] proved that Cp,q(T ) = qΔ(T )+2p− q for
every tree T and p ≥ q. In particular, the Cp,q-span of a tree can be computed
in linear time. We further explore this phenomenon and show that it is due to
the fact that cycles are transitive graphs. We prove a necessary and sufficient
condition for the existence of an H(p, q)-labeling of a tree T when H is a strongly
transitive graph in Theorem 2. This result has several applications. For instance,
the minimum n such that an input tree T has a Qn(p, q)-labeling (where Qn is
the n-dimensional cube) can be determined in polynomial time for q = 1 and
q = 2. These results are presented in Section 6.

2 Preliminaries and Notation

For integers i and j, we denote by [i, j] the interval {i, i + 1, i + 2, . . . , j}. By
convention, [i, j] = ∅ if j < i. Analogously, if i ≡ j (mod q), we denote by
[i, j]≡q the q-stepped interval {i, i + q, i + 2q, . . . , j}. For a positive integer k,
we write [k] := [1, k]. The binary operators div and mod stand for the integral
division and the remainder of the division.

We consider undirected graphs without loops or multiple edges. In a graph
G, the symbol NG(u) denotes the set of vertices adjacent to u, i.e., the (open)
neighborhood of u. We also define the closed neighborhood as NG[u] := NG(u) ∪
{u}. The subscripts G will be omitted if there is no danger of confusion which
graph G is being considered. The symbol Δ(G) stands for the maximum degree
of a vertex in the graph G.

A graph is connected if every pair of vertices can be connected by a path.
For vertices u, v ∈ VG, the distance distG(u, v) is the length of a shortest path
between u and v.

We adopt standard notions from graph theory: the path Pn on n vertices; the
cycle Cn; a star — a connected graph with at most one vertex of degree greater
than one; a tree — a connected graph with no cycle; and a hypercube Qn — a
graph on binary words of length n where two such words are adjacent if they
differ only at one position. For more details we refer to the classical monograph
by Harary [12] or to a more recent textbook by Matoušek and Nešetřil [17].
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When exploring L(p, q)-labelings in the first part of the paper, we assume that
the label set is a set [0, λ]. Thus an L(p, q)-labeling of G of span λ is a mapping
l : VG → [0, λ] such that for any pair of adjacent vertices u and v, it holds that
|l(u) − l(v)| ≥ p, and for any pair of nonadjacent vertices u and v that share a
common neighbor, it holds that |l(u) − l(v)| ≥ q.

For a fixed λ we define the reversed mapping on [0, λ] by a → ā := λ − a.
Observe that for any L(p, q)-labeling l of span λ, the reversed labeling l̄ defined
by l̄(u) := l(u) is also an L(p, q)-labeling. We extend the reversing to sets by
S = {ā | a ∈ S}.

We extend any mapping f defined on vertices of a graph G into a mapping
on sets of vertices by letting f(W ) :=

⋃
u∈W {f(u)} for each W ⊂ VG.

In the context of fixed p, q and λ we say that a label a ∈ [0, λ] is feasible for
a vertex u ∈ VG if there exists an L(p, q)-labeling l of G of span λ such that
l(u) = a. The set of feasible labels for u is called the feasible set of u in G.
Observe that every feasible set S is reversable: S = S. If a symmetric set S is
expressed as the union of a set and its reverse S = S′ ∪ S′, we abbreviate this
expression by the notation S = S′ ∪ · · ·. Finally, we say that a label a is forced
on a vertex u ∈ VG if {a, ā} is the feasible set of u.

3 Auxiliary Constructions for the Case p > q

Throughout the coming three sections we assume that p > q > 1 and that p
and q are relatively prime. In our construction we also use a third parameter,
an integer k, whose value will be specified later in the polynomial reduction. We
will use λ := 2p + kq and d := k + (p div q) + 1.

Construction 1. For given p > q > 1 and k ≥ 2, let T 1 be the only tree with
a vertex u of degree two which is a common neighbor of vertices w and w′ of
degree d. The other neighbors of w and w′ are of degree k + 2. All remaining
vertices are leaves.

Construction 2. For given p > q > 1 and k ≥ 2, let T 2 be the tree obtained
from T 1 by adding k leaves to u. Denote by v some leaf adjacent to u. (See
Fig. 1.)

Lemma 1. If p, q and k satisfy the assumptions of Constructions 1 and 2, then
[p, p̄]≡q is the feasible set for u in T1 and [q, 2p]≡q ∪ · · · is the feasible set for v
in T2.

Note that for each choice of a ∈ [p, p̄]≡q and b ∈ [q, a − p]≡q ∪ [a + p, q̄]≡q, a
labeling l of T 2 exists where l(u) = a and l(v) = b.

To simplify the next construction we define d′ := d − 2 = k − 1 + (p div q).

Construction 3. For given p > q > 1, k ≥ 2p
q + 1 and i ∈ [k − 1], let T 3

i be the
tree constructed as follows: Take the disjoint union of i copies of the tree T 1 and
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Fig. 1. The tree T 1 (solid lines) and tree T 2 (solid and dotted lines)

i d′ − i

u

. . .

w

v

. . .

Fig. 2. The tree T 3
i

d′ − i copies of T 2. Then insert a new vertex w and connect it to the i vertices
u of trees T 1 as well as to the d′ − i vertices v of trees T 2.

Rename the vertices such that only u of the first copy of T 1 and v of the last
copy of T 2 keep their names. (See Fig. 2.)

Lemma 2. Assume that p, q, k, and i satisfy the assumptions of Construction 3.
Then

– the set [p + q, p + iq]≡q ∪ · · · is the feasible set for u in T 3
i ,

– [(d′ − i)q, q̄]≡q ∪ · · · is the feasible set for v in T 3
i , and

– q is forced on w.

Proof. Let l be a hypothetical labeling. We show that this labeling is unique
upto an isomorphism of T 3

i and upto reversion of the labeling.
Observe that for the closed neighborhood of w it holds that l(N [w]) ⊆ [q, q̄],

since for every vertex in this set we identify vertices labeled by 0 and λ at
distance at most two. (This follows from the labeling described in Lemma 1.)

As the degree of w is at least k we exclude the case l(w) ∈ [p + q, p + q]
by the same argument as in Lemma 1. Assume without loss of generality that
l(w) ∈ [q, p + q]. Consequently, for the open neighborhood of w we get that
l(N(w)) ⊆ [p + q, q̄].
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We also assume without loss of generality that l(u) < l(v): if the maximal
label on N(w) was on some vertex u of the first copies, then l(N(w)) ⊂ [p, p̄].
This interval is not long enough to accommodate k + 1-many q-distant labels.

If we choose v such that it receives the maximal label on N(w), we see that
l(v) ≡ 2p (mod q). Hence, at least once the distance between consecutive labels
on N(w) is at least q + (p mod q).

The only way how labels of N(w) can be arranged into the interval [p + q, q̄]
is to use the arithmetic progression [p + q, p + iq]≡q on the first i copies of
u, and then after the gap q + (p mod q) to use the set [(d′ − i)q, q̄]≡q on the
copies of v. In all other ways a gap greater than q would be used at least twice,
and the above arrangement is already tight: the smallest possible label on v is
p + iq + q + (p mod q) = 2p + kq − (k − 1 + (p div q) − i)q.

As the smallest label used on N(w) is p + q, the label q is forced on w.
The above described labeling of N(w) can be extended to the rest of the tree

T 3
i . In the copies of T1, the labels of u and w comply with the labelings mentioned

after Lemma 1. In the remaining d′ − i copies of T 2, we choose l(u) = p + q if
l(v) > 2p + q and l(u) = p̄ otherwise. The choice of k in the Definition 3 assures
that this partial labeling can be extended on each copy of T 2.

In the following two lemmas we show constructions of trees that force exact
labels on some vertices.

Construction 4. For p > q > 1 and an even k ≥ 2p
q + 1, take the disjoint

union of k−2 trees: one copy of T 3
1 , one copy of T 3

k
2
, and two copies of each tree

T 3
i for i ∈ [2, k

2 − 1]. Insert an extra new vertex w and make it adjacent to each
of the k − 2 vertices u. The resulting graph is the tree T 4. Rename the vertices
such that ui is the vertex u of T 3

i , i.e., of one of the two isomorphic copies when
i ∈ [2, k

2 − 1]. (See Fig. 3.)

Lemma 3. If p, q and k satisfy the assumptions of Construction 4, then in T 4,
p + iq is forced on ui for each i ∈ [k

2 ], and 2q is forced on w.

Construction 5. For p > q > 1 and an even k ≥ 2p
q + 1, construct the tree T 5

from the disjoint union of pairs of trees T 3
i for i ∈ [k

2 ] by adding an extra new
vertex w and making it adjacent to all vertices v. Rename the vertices such that
for each i, vi is the vertex v of one of the two copies of T 3

i .

. . .

u2u1

w

u3 u k
2

u k
2 −1

T 3
1 T 3

2 T 3
2 T 3

3
T 3

k
2 −1

T 3
k
2 −1

T 3
k
2

Fig. 3. The Tree T 4
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. . .

w

v1 v2 vk
2

T 3
1 T 3

2T 3
1

T 3
k
2

T 3
k
2

Fig. 4. The Tree T 5

Lemma 4. Suppose p, q, and k satisfy the assumptions of Construction 5. Then
in T 5, p + k

2 q is forced on w, and for every i ∈ [k
2 ], iq is forced on vi.

Let Λ(k, p, q) (called the set of applicable labels) be the set of labels that are
forced on some vertex ui of T 4 or on some vi of T 5. By Lemmas 4 and 5,

Λ(k, p, q) :=

(
[
p + q, p +

kq

2

]

≡q
∪

[
q,

kq

2

]

≡q

)

∪ · · ·

4 Symmetric Systems of q-Distant Representatives

As a technical tool for proving NP-hardness results we use the following problem
of finding distant representatives:

System of q-distant representatives Sq-DR

Parameter: A positive integer q.
Instance: A collection of sets Ri, i ∈ [m] of integers.
Question: Is there a collection of elements ri ∈ Ri, i ∈ [m] that pairwise
differ by at least q

It is known that the S1-DR problem allows a polynomial time algorithm (by
finding a maximum matching in a bipartite graph), while for all q ≥ 2 the Sq-DR
problem is NP-complete, even if each set Ri has at most three elements [10].

We adjust the Sq-DR problem so that it can be used to prove NP-hardness
for the L(p, q)-Labeling problem for trees. Since every L(p, q)-labeling l comes
together with the reversed labeling l̄, we need a stronger concept of systems of
q-distant representatives where the sets are λ-symmetric, i.e., Ri = Ri for every
i ∈ [m]. Moreover, we say that a set R is 2q-sparse if the distance between any
two elements in R is at least 2q.

Lemma 5. For any p > q > 1, the Sq-DR problem remains NP-complete even
when restricted to instances where each Ri

– is of size at most 6,
– is 2q-sparse
– is λ-symmetric for λ = 2p + (6n + 2(p div q) + 4)q, and
– is a subset of Λ(6n + 2(p div q) + 4, p, q) ∩

(
[p + 2q, p + 3nq] ∪ · · ·

)

where n is a suitable integer.
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w

rm rm+1 rm+n

two trees for each element of S1

. . .

r1

s1
. . .. . .

T 5 T 5

T 4

T 5 T 4 T 5

Fig. 5. The final tree T 6

5 Proof of Theorem 1 for p > q

Proof. Assume an instance (Ri)i∈[m+n] of the Sq-DR problem with properties
described in Lemma 5, and let |Ri| = 4 or 6 for i ∈ [m] and |Rm+i| = 2
for i ∈ [n]. We construct a tree T 6 with special vertices ri such that these
vertices share a common neighbor and force for every i ∈ [m + n] that ri can
not be labeled by any label outside the set Ri under any L(p, q)-labeling of span
λ of T 6.

Assume that the set Ri, i ∈ [m] consists of elements {a, b, b̄, ā} with a < b.
We choose an auxiliary set Si ⊂ [q, p+(3n+1)q] of applicable labels such that

{q, a−q, a+q, b−q, b+q, p+(3n+1)q} ⊂ Si. The set Si contains also sufficiently
many other labels such that the distance between consecutive elements of Si is
at least q but strictly less than 2q with only two exceptions: a − q, a + q and
b− q, b+ q. (A construction of such set can be given explicitly, but we would like
to avoid excessive formalism.) As the set Ri is 2q-sparse, each Si is nonempty.

Analogously, we construct the sets Si for all Ri with six elements.
We construct tree T 6 as follows:

1. For each Ri with four or six elements
(a) Insert into T 6 a new copy of T 4 and rename its vertex u k

2
by si

(b) For each element p + jq of Si add two copies of the tree T 4 and make si

adjacent to both vertices uj .
(c) Analogously, for each jq ∈ Si add two copies of the tree T 5 and make si

adjacent to both vertices vj .
(d) Add an extra new leaf ri adjacent to si

2. For each Ri = {jq, jq} add a copy of T 5 and rename its vj by ri.
3. Finally, connect these m + n partial trees by a new common neighbor w of

all vertices ri, i ∈ [m + n]. (See Fig. 5.)

We argue that for every i ∈ [n] only the set Ri is feasible for the vertex ri in
each partial tree constructed in the first step of the construction. As λ

2 is forced
on si and both 0 and λ appear on l(N(si)) inside the copy of T 4 we get that
l(ri) ∈ [q, kq

2 ] ∪ · · ·.
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The elements of Si are forced on N(si), so only l(ri) ∈ (0 ∪ Ri ∪ [p + (3n +
2)q, p + kq

2 ]) ∪ · · ·. By the choice of k = 6n + 2(p div q) + 4 we have kq
2 =

(3n + p div q + 2)q < p + (3n + 2)q and hence l(ri) ∈ Ri.
Observe that the labelings giving pairs of uj of step 1b) λ-symmetric labels

can be simply combined altogether with any label of ri from the set Ri to get
an L(p, q)-labeling of the partial tree.

We conclude the proof by showing that the entire T 6 allows an L(p, q)-labeling
of span λ if and only if the set system (Ri)i∈[m+n] allows a system of q-distant
representatives.

Given a labeling l, the labels of vertices ri provide valid representatives for
Ri. This is since vertices ri are mutually at distance two and we have shown
that their labels can only belong to sets Ri (for i > m this follows directly from
Lemma 4).

In the opposite direction, we label each ri by the representative of Ri and
use the corresponding labelings of the partial trees described above. Then w
can be labeled by 0 as l(ri) > q for every i ∈ [m + n] as well as it holds that
0 �∈ N(l(vj)) for every feasible labeling of T 5 which was added in the second step
(consult Lemma 4).

Though the practical motivation for L(p, q)-labelings implies that p ≥ q, the
notion itself makes sense also for p < q. The NP-hardness result prevails as well.

6 H(p, q)-Labelings for Transitive Target Graphs

Consider the following graph labeling problem with a condition at distance two:

(p, q)-Distance Labeling (p, q)-DL

Instance: Graphs G and H .
Question: Does G allow an H(p, q)-labeling?

We emphasize that the target graph H is a part of the input of the problem.
The problem of determining Lp,q(G) and Cp,q(G) is equivalent to the (p, q)-DL

problem restricted to graphs H being paths and cycles. In contrary to our former
result on NP-completeness of the (p, q)-DL problem for q > 1, G being a star
and an arbitrary target graph H [6], the (p, q)-DL problem becomes easy when
G is a tree and the target graph H is a cycle:

Proposition 1 (Leese and Noble [15], Liu and Zhu [16]). Let T be a tree,
and p ≥ q be nonnegative integers. Then a Cλ(p, q)-labeling of T exists if and
only if λ ≥ qΔ(T ) + 2p − q.

We show now that the change of the complexity of the labeling problem for
linear and circular metrics follows from the fact that cycles are vertex-transitive.
Recall that a graph H is (strongly) vertex transitive if for every two vertices
x, y ∈ VH , the graph H allows an automorphism f swapping vertices x and y,
i.e., f(x) = y and f(y) = x.
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Theorem 2. Let H be a vertex transitive graph, and p, q be positive integers.
An H(p, q)-labeling of a tree T exists if and only if the graph H contains vertices
x, y1, y2, . . . , yΔ(T ) such that distH(x, yi) ≥ p and distH(yi, yj) ≥ q hold for every
distinct i, j ∈ [Δ(T )].

Proof. Observe that the existence of an H(p, q)-labeling of T immediately gives
the existence of vertices x, y1, . . . , yΔ(T ).

For the opposite implication we construct the labeling by induction. The
H(p, q)-labeling will satisfy the property that for every vertex u of T and its
neighbors v1, . . . vk, the graph H allows an automorphism g such that the labels
satisfy l(u) = g(x) and for every i ∈ [k] it holds that l(vi) = g(yj) for some
j ∈ Δ(T ).

Firstly, select an arbitrary vertex r of T , and make the tree rooted in r. Also
define l(r) = x and extend the labeling l on N(r) such that distinct neighbors
of r are mapped onto distinct yi’s. Clearly, the required automorphism g is the
identity.

Assume that the labeling is already defined on a vertex u and its parent
v, but not yet at the children of u. Let g be the automorphism of H used to
distribute labels on N [v] and f be the automorphism swapping vertices l(u) and
l(v). We now compose both automorphisms h := f ◦ g and extend the labeling
on the whole neighborhood of u by using distinct vertices of h(y1), . . . , h(yΔ(T ))
as labels.

Note that Proposition 1 is a corollary of Theorem 2 since every cycle is vertex
transitive. The (p, q)-DL problem for trees is solvable in polynomial time for
those classes of target graphs for which the condition of the existence of vertices
x and y1, . . . , yΔ(T ) can be answered in polynomial time. In particular, this
applies for vertex transitive graphs of restricted treewidth as follows from well
known results by Arnborg et al. [1].

Corollary 1. Let G be a class of vertex transitive graphs with bounded treewidth.
Then the (p,q)-DL problem, restricted to input graphs G that are trees and graph
H from the class G, can be solved in polynomial time.

We now consider the case when H is an n-dimensional hypercube Qn and q =
1, 2.

Corollary 2. Let T be a tree, and H be an n-dimensional hypercube Qn. Then
a tree T allows an H(p, 1)-labeling if and only if

Δ(T ) ≤
(

n

p

)

+
(

n

p + 1

)

+ · · · +
(

n

n

)

.

Also, T has an H(p, 2)-labeling if and only if

Δ(T ) ≤
(

n

p

)

+
(

n

p + 2

)

+
(

n

p + 4

)

+ . . . .
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Proof. Every hypercube is vertex transitive. Choose x ∈ VQn arbitrarily.
The first claim follows directly from the fact that the number of vertices in

Qn that are at distance at least p from x is exactly
(
n
p

)
+

(
n

p+1

)
+ · · · +

(
n
n

)
.

Let Ui be the set of vertices at distance i from x. It is well known that |Ui| =(
n
i

)
. Define U := Up ∪Up+2 ∪Up+4 ∪ . . . . This U is an independent set and every

vertex of U is at distance at least p from x. Let W := Up−2 ∪ Up−4 ∪ Up−6 ∪ . . . .
As the union U ∪ W is a maximum independent set in Qn, the set U is a
maximum independent set among vertices that are at distance at least p from
x. By Theorem 2 the tree T allows an H(p, 2)-labeling if and only if Δ(T ) ≤ |U |
and the other claim follows.

Note that for q ≥ 3 the problem of finding x, y1, . . . , yΔ(T ) in Qn becomes harder,
since it requires to compute the set of vertices that are pairwise at distance at
least three — in particular none of the layers Ui, i < n can be taken completely.

Finally, observe that for p = q = 2 the search for x, y1, . . . , yΔ(T ) in a general
graph H is equivalent to the test whether H allows an independent set of size
at least Δ(T ) + 1.
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17. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics. Oxford University
Press, Oxford (1998)

18. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Discrete
Mathematics 93(2–3), 229–245 (1991)

19. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete
Mathematics 306(12), 1217–1231 (2006)


	Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract)
	Introduction
	Preliminaries and Notation
	Auxiliary Constructions for the Case $p>q$
	Symmetric Systems of $q$-Distant Representatives
	Proof of Theorem 1 for $p > q$
	$H(p,q)$-Labelings for Transitive Target Graphs



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




