

Lecture Notes in Computer Science 5125
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luca Aceto Ivan Damgård
Leslie Ann Goldberg
Magnús M. Halldórsson
Anna Ingólfsdóttir Igor Walukiewicz (Eds.)

Automata, Languages
and Programming

35th International Colloquium, ICALP 2008
Reykjavik, Iceland, July 7-11, 2008
Proceedings, Part I

13

Volume Editors

Luca Aceto
Magnús M. Halldórsson
Anna Ingólfsdóttir
Reykjavik University, School of Computer Science
Kringlan 1, 103 Reykjavík, Iceland
E-mail: {luca, mmh, annai}@ru.is

Ivan Damgård
University of Aarhus, Department of Computer Science, IT-Parken
Åbogade 34, 8200 Århus N, Denmark
E-mail: ivan@daimi.au.dk

Leslie Ann Goldberg
University of Liverpool, Department of Computer Science
Ashton Building, Liverpool L69 3BX, UK
E-mail: l.a.goldberg@liverpool.ac.uk

Igor Walukiewicz
Université de Bordeaux-1, LaBRI
351, Cours de la Libération, 33405 Talence cedex, France
E-mail: igw@labri.fr

Library of Congress Control Number: 2008930136

CR Subject Classification (1998): F, D, C.2-3, G.1-2, I.3, E.1-2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-70574-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-70574-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12322985 06/3180 5 4 3 2 1 0

Preface

ICALP 2008, the 35th edition of the International Colloquium on Automata,
Languages and Programming, was held in Reykjavik, Iceland, July 7–11, 2008.
ICALP is a series of annual conferences of the European Association for Theo-
retical Computer Science (EATCS) which first took place in 1972. This year, the
ICALP program consisted of the established Track A (focusing on algorithms,
automata, complexity and games) and Track B (focusing on logic, semantics and
theory of programming), and of the recently introduced Track C (focusing on
security and cryptography foundations).

In response to the call for papers, the Program Committees received 477
submissions, the highest ever: 269 for Track A, 122 for Track B and 86 for Track
C. Out of these, 126 papers were selected for inclusion in the scientific program:
70 papers for Track A, 32 for Track B and 24 for Track C. The selection was
made by the Program Committees based on originality, quality, and relevance
to theoretical computer science. The quality of the manuscripts was very high
indeed, and many deserving papers could not be selected.

ICALP 2008 consisted of five invited lectures and the contributed papers.
This volume of the proceedings contains all contributed papers presented at
the conference in Track A, together with the papers by the invited speakers
S. Muthukrishnan (Google, USA) and Bruno Courcelle (Labri, Universitè Bor-
deaux, France). A companion volume contains all contributed papers presented
in Track B and Track C together with the papers by the invited speakers Ran
Canetti (IBM T.J. Watson Research Center and MIT, USA) and Javier Esparza
(Technische Universität München, Germany). The program had an additional
invited lecture by Peter Winkler (Dartmouth, USA), which does not appear in
the proceedings.

The following workshops were held as satellite events of ICALP 2008:

ALGOSENSORS 2008 – 4th International Workshop on Algorithmic Aspects of
Wireless Sensor Networks
CL&C2008– Second InternationalWorkshop on ClassicalLogic and Computation
FOCLASA 2008 – 7th International Workshop on the Foundations of Coordina-
tion Languages and Software Architectures
FIMN 2008 – Foundations of Information Management in Networks
FBTC 2008 – From Biology To Concurrency and Back
ICE 2008 – Interaction and Concurrency Experience
MatchUP 2008 – Matching Under Preferences - Algorithms and Complexity
MSFP 2008 – Second Workshop on Mathematically Structured Functional
Programming
PAuL 2008 – Third InternationalWorkshop on ProbabilisticAutomata and Logics
QPL/DCM 2008 – 5th Workshop on Quantum Physics and Logic and 4th Work-
shop on Development of Computational Models

VI Preface

SOS 2008 – 5th Workshop on Structural Operational Semantics
IMAGINE 2008 – Second International Workshop on Mobility, Algorithms and
Graph Theory in Dynamic Networks
DYNAMO 2008 – Second Training School on Algorithmic Aspects of Dynamic
Networks

We wish to thank all authors who submitted extended abstracts for consid-
eration, the Program Committees for their scholarly effort, and all referees who
assisted the Program Committees in the evaluation process.

Thanks to the sponsors (CCP Games, Icelandair, IFIP TC1, Teymi) for their
support, and to Reykjavik University for hosting ICALP 2008. We are also grate-
ful to all members of the Organizing Committee in the School of Computer Sci-
ence and to the Facilities and Technical staff of Reykjavik University. Thanks to
Andrei Voronkov and Shai Halevi for writing the conference-management sys-
tems EasyChair and Web-Submission-and-Review software, which were used in
handling the submissions and the electronic PC meeting as well as in assisting
in the assembly of the proceedings.

May 2008 Luca Aceto
Ivan Damg̊ard

Leslie Ann Goldberg
Magnús M. Halldórsson

Anna Ingólfsdóttir
Igor Walukiewicz

Organization

Program Committee

Track A

Michael Bender, State University of New York at Stony Brook, USA
Magnus Bordewich, Durham University, UK
Lenore Cowen, Tufts University, USA
Pierluigi Crescenzi, Università di Firenze, Italy
Artur Czumaj, University of Warwick, UK
Edith Elkind, University of Southampton, UK
David Eppstein, University of California at Irvine, USA
Leslie Ann Goldberg, University of Liverpool, UK (Chair)
Martin Grohe, Humboldt-Universität zu Berlin, Germany
Giuseppe F. Italiano, Università di Roma “Tor Vergata”, Italy
Christos Kaklamanis, University of Patras, Greece
Peter Bro Miltersen, University of Aarhus, Denmark
Michael Mitzenmacher, Harvard University, USA
Ian Munro, University of Waterloo, Canada
Ryan O’Donnell, Carnegie Mellon University, USA
Dana Ron, Tel-Aviv University, Israel
Tim Roughgarden, Stanford University, USA
Christian Scheideler, Technische Universität München, Germany
Christian Sohler, University of Paderborn, Germany
Luca Trevisan, University of California at Berkeley, USA
Berthold Voecking, RWTH Aachen University, Germany
Gerhard Woeginger, Eindhoven University of Technology, The Netherlands

Track B

Parosh Abdulla, Uppsala University, Sweden
Luca de Alfaro, University of California, Santa Cruz, USA
Christel Baier, Technische Universität Dresden, Germany
Giuseppe Castagna, Université Paris 7, France
Rocco de Nicola, Università di Firenze, Italy
Javier Esparza, Technische Universität München, Germany
Marcelo Fiore, University of Cambridge, UK
Erich Grädel, RWTH Aachen, Germany
Jason Hickey, California Institute of Technology, USA
Martin Hofmann, Ludwig-Maximilians-Universität München, Germany
Hendrik Jan Hoogeboom, Leiden University, The Netherlands

VIII Organization

Radha Jagadeesen, DePaul University, USA
Madhavan Mukund, Chennai Mathematical Institute, India
Luke Ong, Oxford University, UK
Dave Schmidt, Kansas State University, USA
Philippe Schnoebelen, ENS Cachan, France
Igor Walukiewicz, Labri, Université Bordeaux, France (Chair)
Mihalis Yannakakis, Columbia University, USA
Wieslaw Zielonka, Université Paris 7, France

Track C

Christian Cachin, IBM Research Zürich, Switzerland
Jan Camenisch, IBM Research Zürich, Switzerland
Ivan Damg̊ard, University of Aarhus, Denmark (Chair)
Stefan Dziembowski, Università di Roma “La Sapienza”, Italy
Dennis Hofheinz, CWI Amsterdam, The Netherlands
Susan Hohenberger, Johns Hopkins University, USA
Yuval Ishai, Technion Haifa, Israel
Lars Knudsen, DTU Copenhagen, Denmark
Arjen Lenstra, EPFL Lausanne, Switzerland
Anna Lysyanskaya, Brown University, USA
Rafael Pass, Cornell University, USA
David Pointcheval, ENS Paris, France
Dominique Unruh, Saarland University, Germany
Serge Vaudenay, EPFL Lausanne, Switzerland
Bogdan Warinschi, Bristol University, UK
Douglas Wikström, KTH Stockholm, Sweden
Stefan Wolf, ETH Zürich, Switzerland

Organizing Committee

Luca Aceto, Reykjavik University (Conference Chair)
Bjarni V. Halldórsson, Reykjavik University (Workshop Co-chair)
Magnús M. Halldórsson, Reykjavik University (Conference Chair)
Anna Ingólfsdóttir, Reykjavik University (Conference Chair)
MohammadReza Mousavi, Eindhoven University of Technology (Workshop

Co-chair)

Sponsoring Institutions

CCP Games
Icelandair
IFIP TC1
Reykjavik University
Teymi

Organization IX

Referees

Dimitris Achlioptas
Isolde Adler
Pavan Aduri
Panos Aliferis
Andris Ambainis
Christoph Ambühl
Aris Anagnostopoulos
Spyros Angelpopolos
Chrisil Arackaparambil
James Aspnes
Albert Atserias
Peter Auer
Vincenzo Auletta
Giorgio Ausiello
Chen Avin
Yossi Azar
Nikhil Bansal
Sanjoy Baruah
Tuğkan Batu
Niel de Beaudrap
Luca Becchetti
Paul Bell
Michael Bender
Petra Berenbrink
Anna Bernasconi
Nadja Betzler
Olaf Beyersdorff
Vittorio Bilo
Eric Blais
Avrim Blum
Johannes Blömer
Hans Bodlaender
Andrej Bogdanov
Mikolaj Bojanczyk
Paul Bonsma
Endre Boros
Mark Braverman
Tomas Brazdil
Patrick Briest
Andre Brinkmann
Harry Buhrman
David Bunde
Jonathan Buss
Tiziana Calamoneri

Ioannis Caragiannis
Marco Cesati
Chandra Chekuri
Eric Chen
Ning Chen
Jianer Chen
Qi Cheng
Giorgos Christodoulou
Andrea Clementi
Amin Coja-Oghlan
Vincent Conitzer
Colin Cooper
Graham Cormode
Bruno Courcelle
Andy Curtis
Victor Dalmau
Constantinos Daskalakis
Giuseppe Di Battista
Gabriele Di Stefano
Florian Diedrich
Martin Dietzfelbinger
Irit Dinur
Shahar Dobzinski
Michael Dom
Frederic Dorn
Reza Dorri-Giv
Shaddin Dughmi
Dominic Dumrauf
Stephane Durocher
Christoph Durr
Martin Dyer
Kord Eickmeyer
Friedrich Eisenbrand
Robert Elsaesser
Matthias Englert
Amir Epstein
Leah Epstein
Funda Ergun
Jeff Erickson
Thomas Erlebach
Kousha Etessami
Guy Even
Eyal Even-Dar
Alex Fabrikant

Piotr Faliszewski
Angelo Fanelli
Martin Farach-Colton
Arash Farzan
Henning Fernau
Jiri Fiala
Jeremy Fineman
Irene Finocchi
Eldar Fischer
Felix Fischer
Simon Fischer
Michele Flammini
Abraham Flaxman
Lisa Fleischer
Fedor Fomin
Lance Fortnow
Dimitris Fotakis
Pierre Fraigniaud
Paolo Giulio Franciosa
Gudmund Frandsen
Anna Frid
Tom Friedetzky
Alan Frieze
Martin Fürer
Peter Gacs
Travis Gagie
Anna Gal
Clemente Galdi
Nicola Galesi
Luisa Gargano
Bill Gasarch
Serge Gaspers
Dmitry Gavinsky
Joachim Gehweiler
Blaise Genest
Loukas Georgiadis
Stefanie Gerke
Seth Gilbert
Christian Glasser
Wayne Goddard
Paul Goldberg
Oded Goldreich
Daniel Gottesman
Vipul Goyal

X Organization

Fabrizio Grandoni
Catherine Greenhill
Alexander Grigoriev
Roberto Grossi
Jens Groth
Magdalena Grüber
Jiong Guo
Anupam Gupta
Venkatesan Guruswami
Vladimir Gurvich
Falk Hüffner
Esther Haenggi
Torben Hagerup
MohammadTaghi

Hajiaghayi
Angele Hamel
Kristoffer Arnsfelt

Hansen
Ramesh Hariharan
Nick Harvey
Soha Hassoun
Elad Hazan
Lisa Hellerstein
Benjamin Hescott
Jan van den Heuvel
Thomas Holenstein
Peter Hoyer
Chien-Chung Huang
Yumei Huo
Thore Husfeldt
Martin Höfer
Samuel Ieong
Nicole Immorlica
Sandy Irani
Kazuo Iwama
Riko Jacob
Markus Jalsenius
Maurice Jansen
Klaus Jansen
Peter Jeavons
Mark Jerrum
Albert Jiang
Lisa Kaati
Valentine Kabanets
Christos Kaklamanis

Panagiotis
Kanellopoulos

Viggo Kann
Haim Kaplan
Sanjiv Kapoor
George Karakostas
Howard Karloff
Marek Karpinski
Telikepalli Kavitha
Steven Kelk
Hans Kellerer
Julia Kempe
David Kempe
Iordanis Kerenidis
Sanjeev Khanna
Valerie King
Carl Kingsford
Ralf Klasing
Hartmut Klauck
Robert Kleinberg
Lasse Kliemann
Bettina Klinz
Adam Klivans
Joachim Kneis
Ker-i Ko
Petr Kolman
Spyros Kontogiannis
Tsvi Kopelowitz
Swastik Kopparty
Nitish Korula
Michal Koucky
Elias Koutsoupias
Lukasz Kowalik
Darek Kowalski
Dariusz Kowalski
Robi Krauthgamer
Stephan Kreutzer
Danny Krizanc
Andrei Krokhin
Sven Krumke
Piotr Krysta
Daniela Kuehn
Ravi Kumar
Amit Kumar
Michal Kunc

Daniel Kuntze
Orna Kupferman
Dietrich Kuske
Shay Kutten
Johannes Köbler
Oded Lachish
Christiane Lammersen
Michael Langberg
Alexander Langer
John Langford
Luigi Laura
Ranko Lazic
Homin Lee
Hing Leung
David Levin
Asaf Levin
Ming Li
Andrzej Lingas
Maciej Liskiewicz
Christof Loeding
Markus Lohrey
Michele Loreti
Vadim Lozin
Eyal Lubetzky
Fabrizio Luccio
Yoad Lustig
Christof Löding
Bin Ma
Michael Mahoney
Elitza Maneva
David F. Manlove
Giovanni Manzini
Alberto

Marchetti-Spaccamela
Russell Martin
Dániel Marx
Monaldo Mastrolilli
Jiri Matousek
Marios Mavronicolas
Andrew McGregor
Klaus Meer
Jan Mehler
Aranyak Mehta
Dieter van Melkebeek
Raghu Meka

Organization XI

Ulrich Meyer
Adam Meyerson
Zoltan Miklos
Miriam Di Ianni
Vahab Mirrokni
Bojan Mohar
Michael Molloy
Morteza Monemizadeh
Burkhard Monien
Angelo Monti
Michele Mosca
Luca Moscardelli
Georg Moser
Hannes Moser
Elchanan Mossel
Shay Mozes
S. Muthukrishnan
Veli Mäkinen
Stefanie Naewe
Daniel Nagaj
Ashwin Nayak
Jaroslav Nesetril
Vincent Nesme
Ilan Newman
Pat Nicholson
Carlo Nocentini
Lars Olbrich
Svetlana Olonetsky
Krzysztof Onak
Friedrich Otto
Rasmus Pagh
Linda Pagli
Alessandro Panconesi
Rina Panigrahy
Evi Papaioannou
Mihai Patrascu
Chris Peikert
David Peleg
Rudi Pendavingh
Paolo Penna
Carlos Perez-Delgado
Giuseppe Persiano
Andrea Pietracaprina
Alexei Piunovskiy
Wojciech Plandowski

Igor Potapov
Daniel Preda
Geppino Pucci
Rosario Pugliese
Jaikumar

Radhakrishnan
Tomasz Radzik
Rajmohan Rajaraman
Jörg Rambau
Anup Rao
Robert Raussendorf
R. Ravi
Oded Regev
David Richerby
Liam Roditty
Gianluca Rossi
Wojciech Rytter
Harald Räcke
Heiko Röglin
Mohammad Salavatipour
Alejandro Salinger
Piotr Sankowski
Rahul Santhanam
Thomas Sauerwald
Petr Savicky
Nitin Saxena
Christian Schaffner
Rob Schapire
Arthur Schmidt
Henning Schnoor
Nicole Schweikardt
Robert Schweller
Thomas Schwentick
Jacob Scott
Danny Segev
Rocco Servedio
C. Seshadhri
Jiri Sgall
Hadas Shachnai
Ronen Shaltiel
Ron Shamir
Asaf Shapira
Sasha Sherstov
Yaoyun Shi
Nahum Shimkin

Amir Shpilka
Adi Shraibman
Anastasios Sidiropoulos
Riccardo Silvestri
Matthew Skala
Alexander Skopalik
Miroslava Sotakova
Holger Spakowski
Robert Spalek
Bettina Speckmann
Aravind Srinivasan
Rob van Stee
Ken Steiglitz
Martin Strauss
Mukund Sundararajan
Maxim Sviridenko
Troels Bjerre Sørensen
Prasad Tetali
Dimitrios Thilikos
Wolfgang Thomas
Marc Thurley
Alex Tiskin
Isaac K. K. To
Ben Toner
Hanjo Täubig
Walter Unger
Ugo Vaccaro
Salil Vadhan
Matt Valeriote
Gregory Valiant
Virginia Vassilevska
Carmine Ventre
Adrian Vetta
Thomas Vidick
Eric Vigoda
Emanuele Viola
Ivan Visconti
Nisheeth Vishnoi
Paola Vocca
Heribert Vollmer
Jan Vondrak
Sergei Vorobyov
Johannes Waldmann
Xin Wang
John Watrous

XII Organization

Renato Werneck
Matthias Westermann
Mark Weyer
Peter Widmayer
Thomas Wilke
Ryan Williams
David Williamson

Anthony Wirth
Pawel Wocjan
Philipp Woelfel
Ronald de Wolf
Prudence W.H. Wong
Qiqi Yan
Shi Yaoyun

Shengyu Zhang
Hairong Zhao
Martin Ziegler
Marius Zimand
David Zuckerman
Uri Zwick

Table of Contents – Part I

Invited Lectures

Graph Structure and Monadic Second-Order Logic: Language
Theoretical Aspects . 1

Bruno Courcelle

Internet Ad Auctions: Insights and Directions . 14
S. Muthukrishnan

Track A: Algorithms, Automata, Complexity, and
Games

Complexity: Boolean Functions and Circuits

The Complexity of Boolean Formula Minimization 24
David Buchfuhrer and Christopher Umans

Optimal Cryptographic Hardness of Learning Monotone Functions 36
Dana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio,
Andrew Wan, and Hoeteck Wee

On Berge Multiplication for Monotone Boolean Dualization 48
Endre Boros, Khaled Elbassioni, and Kazuhisa Makino

Diagonal Circuit Identity Testing and Lower Bounds 60
Nitin Saxena

Data Structures

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 72
Yitong Yin

Constructing Efficient Dictionaries in Close to Sorting Time 84
Milan Ružić

On List Update with Locality of Reference . 96
Susanne Albers and Sonja Lauer

A New Combinatorial Approach for Sparse Graph Problems 108
Guy E. Blelloch, Virginia Vassilevska, and Ryan Williams

XIV Table of Contents – Part I

Random Walks and Random Structures

How to Explore a Fast-Changing World . 121
Chen Avin, Michal Koucký, and Zvi Lotker

Networks Become Navigable as Nodes Move and Forget 133
Augustin Chaintreau, Pierre Fraigniaud, and Emmanuelle Lebhar

Fast Distributed Computation of Cuts Via Random Circulations 145
David Pritchard

Finding a Maximum Matching in a Sparse Random Graph in O(n)
Expected Time . 161

Prasad Chebolu, Alan Frieze, and Páll Melsted

Design and Analysis of Algorithms

Function Evaluation Via Linear Programming in the Priced Information
Model . 173

Ferdinando Cicalese and Eduardo Sany Laber

Improved Approximation Algorithms for Budgeted Allocations 186
Yossi Azar, Benjamin Birnbaum, Anna R. Karlin,
Claire Mathieu, and C. Thach Nguyen

The Travelling Salesman Problem in Bounded Degree Graphs 198
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and
Mikko Koivisto

Treewidth Computation and Extremal Combinatorics 210
Fedor V. Fomin and Yngve Villanger

Scheduling

Fast Scheduling of Weighted Unit Jobs with Release Times and
Deadlines . 222

C. Greg Plaxton

Approximation Algorithms for Scheduling Parallel Jobs: Breaking the
Approximation Ratio of 2 . 234

Klaus Jansen and Ralf Thöle

A PTAS for Static Priority Real-Time Scheduling with Resource
Augmentation . 246

Friedrich Eisenbrand and Thomas Rothvoß

Codes and Coding

Optimal Monotone Encodings . 258
Noga Alon and Rani Hod

Table of Contents – Part I XV

Polynomial-Time Construction of Linear Network Coding 271
Kazuo Iwama, Harumichi Nishimura, Mike Paterson,
Rudy Raymond, and Shigeru Yamashita

Complexity of Decoding Positive-Rate Reed-Solomon Codes 283
Qi Cheng and Daqing Wan

Coloring

Computational Complexity of the Distance Constrained Labeling
Problem for Trees . 294

Jǐŕı Fiala, Petr A. Golovach, and Jan Kratochv́ıl

The Randomized Coloring Procedure with Symmetry-Breaking 306
Sriram Pemmaraju and Aravind Srinivasan

The Local Nature of List Colorings for Graphs of High Girth 320
Flavio Chierichetti and Andrea Vattani

Approximating List-Coloring on a Fixed Surface . 333
Ken-ichi Kawarabayashi

Randomness in Computation

Asymptotically Optimal Hitting Sets Against Polynomials 345
Markus Bläser, Moritz Hardt, and David Steurer

The Smoothed Complexity of Edit Distance . 357
Alexandr Andoni and Robert Krauthgamer

Randomized Self-assembly for Approximate Shapes 370
Ming-Yang Kao and Robert Schweller

Succinct Data Structures for Retrieval and Approximate Membership
(Extended Abstract) . 385

Martin Dietzfelbinger and Rasmus Pagh

Online and Dynamic Algorithms

Competitive Weighted Matching in Transversal Matroids 397
Nedialko B. Dimitrov and C. Greg Plaxton

Scheduling for Speed Bounded Processors . 409
Nikhil Bansal, Ho-Leung Chan, Tak-Wah Lam, and Lap-Kei Lee

Faster Algorithms for Incremental Topological Ordering 421
Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew,
Siddhartha Sen, and Robert E. Tarjan

XVI Table of Contents – Part I

Dynamic Normal Forms and Dynamic Characteristic Polynomial 434
Gudmund Skovbjerg Frandsen and Piotr Sankowski

Approximation Algorithms

Algorithms for ε-Approximations of Terrains . 447
Jeff M. Phillips

An Approximation Algorithm for Binary Searching in Trees 459
Eduardo Laber and Marco Molinaro

Algorithms for 2-Route Cut Problems . 472
Chandra Chekuri and Sanjeev Khanna

The Two-Edge Connectivity Survivable Network Problem in Planar
Graphs . 485

Glencora Borradaile and Philip Klein

Property Testing

Efficiently Testing Sparse GF (2) Polynomials . 502
Ilias Diakonikolas, Homin K. Lee, Kevin Matulef,
Rocco A. Servedio, and Andrew Wan

Testing Properties of Sets of Points in Metric Spaces 515
Krzysztof Onak

An Expansion Tester for Bounded Degree Graphs . 527
Satyen Kale and C. Seshadhri

Property Testing on k-Vertex-Connectivity of Graphs 539
Yuichi Yoshida and Hiro Ito

Parameterized Algorithms and Complexity

Almost 2-SAT Is Fixed-Parameter Tractable (Extended Abstract) 551
Igor Razgon and Barry O’Sullivan

On Problems without Polynomial Kernels (Extended Abstract) 563
Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and
Danny Hermelin

Faster Algebraic Algorithms for Path and Packing Problems 575
Ioannis Koutis

Understanding the Complexity of Induced Subgraph Isomorphisms 587
Yijia Chen, Marc Thurley, and Mark Weyer

Table of Contents – Part I XVII

Graph Algorithms

Spanners in Sparse Graphs . 597
Feodor F. Dragan, Fedor V. Fomin, and Petr A. Golovach

Distance Oracles for Unweighted Graphs: Breaking the Quadratic
Barrier with Constant Additive Error . 609

Surender Baswana, Akshay Gaur, Sandeep Sen, and
Jayant Upadhyay

All-Pairs Shortest Paths with a Sublinear Additive Error 622
Liam Roditty and Asaf Shapira

Simpler Linear-Time Modular Decomposition Via Recursive Factorizing
Permutations . 634

Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul

Computational Complexity

The Complexity of the Counting Constraint Satisfaction Problem 646
Andrei A. Bulatov

On the Hardness of Losing Weight . 662
Andrei Krokhin and Dániel Marx

Product Theorems Via Semidefinite Programming . 674
Troy Lee and Rajat Mittal

Sound 3-Query PCPPs Are Long . 686
Eli Ben-Sasson, Prahladh Harsha, Oded Lachish, and Arie Matsliah

Games and Automata

Approximative Methods for Monotone Systems of Min-Max-Polynomial
Equations . 698

Javier Esparza, Thomas Gawlitza, Stefan Kiefer, and Helmut Seidl

Recursive Stochastic Games with Positive Rewards 711
Kousha Etessami, Dominik Wojtczak, and Mihalis Yannakakis

Complementation, Disambiguation, and Determinization of Büchi
Automata Unified . 724

Detlef Kähler and Thomas Wilke

Tree Projections: Hypergraph Games and Minimality 736
Gianluigi Greco and Francesco Scarcello

XVIII Table of Contents – Part I

Group Testing, Streaming, and Quantum

Explicit Non-adaptive Combinatorial Group Testing Schemes 748
Ely Porat and Amir Rothschild

Tight Lower Bounds for Multi-pass Stream Computation Via Pass
Elimination . 760

Sudipto Guha and Andrew McGregor

Impossibility of a Quantum Speed-Up with a Faulty Oracle 773
Oded Regev and Liron Schiff

Superpolynomial Speedups Based on Almost Any Quantum Circuit 782
Sean Hallgren and Aram W. Harrow

Algorithmic Game Theory

The Speed of Convergence in Congestion Games under Best-Response
Dynamics . 796

Angelo Fanelli, Michele Flammini, and Luca Moscardelli

Uniform Budgets and the Envy-Free Pricing Problem 808
Patrick Briest

Bayesian Combinatorial Auctions . 820
George Christodoulou, Annamária Kovács, and Michael Schapira

Truthful Unification Framework for Packing Integer Programs with
Choices . 833

Yossi Azar and Iftah Gamzu

Quantum

Upper Bounds on the Noise Threshold for Fault-Tolerant Quantum
Computing . 845

Julia Kempe, Oded Regev, Falk Unger, and Ronald de Wolf

Finding Optimal Flows Efficiently . 857
Mehdi Mhalla and Simon Perdrix

Optimal Quantum Adversary Lower Bounds for Ordered Search 869
Andrew M. Childs and Troy Lee

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 881
Lior Eldar and Oded Regev

Author Index . 893

Table of Contents – Part II

Invited Lectures

Composable Formal Security Analysis: Juggling Soundness, Simplicity
and Efficiency . 1

Ran Canetti

Newton’s Method for ω-Continuous Semirings . 14
Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Track B: Logic, Semantics, and Theory of
Programming

Bounds

The Tractability Frontier for NFA Minimization . 27
Henrik Björklund and Wim Martens

Finite Automata, Digraph Connectivity, and Regular Expression
Size (Extended Abstract) . 39

Hermann Gruber and Markus Holzer

Leftist Grammars Are Non-primitive Recursive . 51
Tomasz Jurdziński

On the Computational Completeness of Equations over Sets of Natural
Numbers . 63

Artur Jeż and Alexander Okhotin

Distributed Computation

Placement Inference for a Client-Server Calculus . 75
Matthias Neubauer and Peter Thiemann

Extended pi-Calculi . 87
Magnus Johansson, Joachim Parrow, Björn Victor, and
Jesper Bengtson

Completeness and Logical Full Abstraction in Modal Logics for Typed
Mobile Processes . 99

Martin Berger, Kohei Honda, and Nobuko Yoshida

XX Table of Contents – Part II

Real-Time and Probabilistic Systems

On the Sets of Real Numbers Recognized by Finite Automata in
Multiple Bases . 112

Bernard Boigelot, Julien Brusten, and Véronique Bruyère

On Expressiveness and Complexity in Real-Time Model Checking 124
Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell

STORMED Hybrid Systems . 136
Vladimeros Vladimerou, Pavithra Prabhakar,
Mahesh Viswanathan, and Geir Dullerud

Controller Synthesis and Verification for Markov Decision Processes
with Qualitative Branching Time Objectives . 148

Tomáš Brázdil, Vojtěch Forejt, and Antońın Kučera

Logic and Complexity

On Datalog vs. LFP . 160
Anuj Dawar and Stephan Kreutzer

Directed st-Connectivity Is Not Expressible in Symmetric Datalog 172
László Egri, Benôıt Larose, and Pascal Tesson

Non-dichotomies in Constraint Satisfaction Complexity 184
Manuel Bodirsky and Martin Grohe

Quantified Constraint Satisfaction and the Polynomially Generated
Powers Property (Extended Abstract) . 197

Hubie Chen

Words and Trees

When Does Partial Commutative Closure Preserve Regularity? 209
Antonio Cano Gómez, Giovanna Guaiana, and Jean-Éric Pin

Weighted Logics for Nested Words and Algebraic Formal Power
Series . 221

Christian Mathissen

Tree Languages Defined in First-Order Logic with One Quantifier
Alternation . 233

Miko�laj Bojańczyk and Luc Segoufin

Duality and Equational Theory of Regular Languages 246
Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin

Table of Contents – Part II XXI

Nonstandard Models of Computation

Reversible Flowchart Languages and the Structured Reversible
Program Theorem . 258

Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück

Attribute Grammars and Categorical Semantics . 271
Shin-ya Katsumata

A Domain Theoretic Model of Qubit Channels . 283
Keye Martin

Interacting Quantum Observables . 298
Bob Coecke and Ross Duncan

Reasoning about Computation

Perpetuality for Full and Safe Composition (in a Constructive
Setting) . 311

Delia Kesner

A System F with Call-by-Name Exceptions . 323
Sylvain Lebresne

Linear Logical Algorithms . 336
Robert J. Simmons and Frank Pfenning

A Simple Model of Separation Logic for Higher-Order Store 348
Lars Birkedal, Bernhard Reus, Jan Schwinghammer, and
Hongseok Yang

Verification

Open Implication . 361
Karin Greimel, Roderick Bloem, Barbara Jobstmann, and
Moshe Vardi

ATL* Satisfiability Is 2EXPTIME-Complete . 373
Sven Schewe

Visibly Pushdown Transducers . 386
Jean-François Raskin and Frédéric Servais

The Non-deterministic Mostowski Hierarchy and Distance-Parity
Automata . 398

Thomas Colcombet and Christof Löding

Analyzing Context-Free Grammars Using an Incremental SAT Solver . . . 410
Roland Axelsson, Keijo Heljanko, and Martin Lange

XXII Table of Contents – Part II

Track C: Security and Cryptography Foundations

Theory

Weak Pseudorandom Functions in Minicrypt . 423
Krzysztof Pietrzak and Johan Sjödin

On Black-Box Ring Extraction and Integer Factorization 437
Kristina Altmann, Tibor Jager, and Andy Rupp

Extractable Perfectly One-Way Functions . 449
Ran Canetti and Ronny Ramzi Dakdouk

Error-Tolerant Combiners for Oblivious Primitives 461
Bartosz Przydatek and Jürg Wullschleger

Secure Computation

Asynchronous Multi-party Computation with Quadratic
Communication . 473

Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek

Improved Garbled Circuit: Free XOR Gates and Applications 486
Vladimir Kolesnikov and Thomas Schneider

Improving the Round Complexity of VSS in Point-to-Point Networks . . . 499
Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan

How to Protect Yourself without Perfect Shredding 511
Ran Canetti, Dror Eiger, Shafi Goldwasser, and Dah-Yoh Lim

Two-Party Protocols and Zero-Knowledge

Universally Composable Undeniable Signature . 524
Kaoru Kurosawa and Jun Furukawa

Interactive PCP . 536
Yael Tauman Kalai and Ran Raz

Constant-Round Concurrent Non-malleable Zero Knowledge in the
Bare Public-Key Model . 548

Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti

Encryption with Special Properties/Quantum
Cryptography

Delegating Capabilities in Predicate Encryption Systems 560
Elaine Shi and Brent Waters

Table of Contents – Part II XXIII

Bounded Ciphertext Policy Attribute Based Encryption 579
Vipul Goyal, Abhishek Jain, Omkant Pandey, and Amit Sahai

Making Classical Honest Verifier Zero Knowledge Protocols Secure
against Quantum Attacks . 592

Sean Hallgren, Alexandra Kolla, Pranab Sen, and Shengyu Zhang

Composable Security in the Bounded-Quantum-Storage Model 604
Stephanie Wehner and Jürg Wullschleger

Various Types of Hashing

On the Strength of the Concatenated Hash Combiner When All the
Hash Functions Are Weak . 616

Jonathan J. Hoch and Adi Shamir

History-Independent Cuckoo Hashing . 631
Moni Naor, Gil Segev, and Udi Wieder

Building a Collision-Resistant Compression Function from
Non-compressing Primitives (Extended Abstract) . 643

Thomas Shrimpton and Martijn Stam

Robust Multi-property Combiners for Hash Functions Revisited 655
Marc Fischlin, Anja Lehmann, and Krzysztof Pietrzak

Public-Key Cryptography/Authentication

Homomorphic Encryption with CCA Security . 667
Manoj Prabhakaran and Mike Rosulek

How to Encrypt with the LPN Problem . 679
Henri Gilbert, Matthew J.B. Robshaw, and Yannick Seurin

Could SFLASH be Repaired? . 691
Jintai Ding, Vivien Dubois, Bo-Yin Yang,
Owen Chia-Hsin Chen, and Chen-Mou Cheng

Password Mistyping in Two-Factor-Authenticated Key Exchange 702
Vladimir Kolesnikov and Charles Rackoff

Affiliation-Hiding Envelope and Authentication Schemes with Efficient
Support for Multiple Credentials . 715

Stanis�law Jarecki and Xiaomin Liu

Author Index . 727

Graph Structure and Monadic Second-Order

Logic: Language Theoretical Aspects�

Bruno Courcelle

Université Bordeaux-1, LaBRI, CNRS
Institut Universitaire de France

351, Cours de la Libération
33405, Talence cedex, France

courcell@labri.fr

Abstract. Graph structure is a flexible concept covering many differ-
ent types of graph properties. Hierarchical decompositions yielding the
notions of tree-width and clique-width, expressed by terms written with
appropriate graph operations and associated with Monadic Second-order
Logic are important tools for the construction of Fixed-Parameter
Tractable algorithms and also for the extension of methods and results
of Formal Language Theory to the description of sets of finite graphs.
This informal overview presents the main definitions, results and open
problems and tries to answer some frequently asked questions.

Tree-width and monadic second-order (MS) logic are well-known tools for con-
structing fixed-parameter tractable (FPT) algorithms taking tree-width as pa-
rameter. Clique-width is, like tree-width, a complexity measure of graphs from
which FPT algorithms can be built, in particular for problems specified in MS
logic. These notions are thus essential for constructing (at least theoretically)
tractable algorithms but also in the following three research fields:

- the study of the structure of graphs excluding induced subgraphs, minors or
vertex-minors (a notion related to clique-width, see [48] or [18]);

- the extension of language theoretical notions in order to describe and to
transform sets of finite and even countable graphs;

- the investigation of classes of finite and countable graphs on which MS logic
is decidable.

Although these four research fields have been initially developed indepen-
dently, they are now more and more related. In particular, new structural results
for graph classes have consequences for algorithmic applications (see [7]).

This overview deals only with finite graphs, trees and relational structures.
There is a rich theory of countable graphs described by logical formulas, logically
defined transformations, equation systems and finite automata. The survey [1] is
a good approach of this theory.

� Supported by the GRAAL project of “Agence Nationale pour la Recherche”.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 B. Courcelle

1 Graph Structure and Logic

Graph structure is a flexible concept covering many different cases. Hierarchical
decompositions form an important type of structuring. Those yielding the notions
of tree-width and clique-width can be expressed by terms written with graph
operations defined below that generalize the concatenation of words. There exist
other types of hierarchical structurings that are useful for establishing results or
for algorithmic purposes. Examples are the modular decomposition defined by
Gallai ([20], [38]), the split decomposition (also called join decomposition) defined
by Cunnigham ([25], [33]), the decomposition in 3-connected components defined
by Tutte ([11], [21]), the clique-sum decomposition ([52], [7]).

The existence of an embedding in a fixed surface, or of a homomorphism into
a fixed graph (a proper vertex coloring with p colors of a loop-free graph can be
defined as a homomorphism of this graph into the clique Kp) is also a type of
structure ([8], [43]). Finally, the non-existence in a graph of particular induced
subgraphs, minors or vertex-minors is also an important type of structural prop-
erty. (See [48] for vertex-minors).

There exist nontrivial relations between these different types of structures:
graphs without a fixed planar graph P as a minor have tree-width at most
f(size(P)) for some function f ([50]); graphs embeddable in a fixed surface are
characterized by finitely many excluded minors ([51]); forbidding certain induced
subgraphs implies bounded clique-width ([15], [16]), just to take a few examples,
to which one could add the restricted duality theorems of [43]. There are still
many open questions concerning comparisons between various types of graph
structure.

Monadic second-order logic (MS logic in short) is the extension of first-order
logic with quantified variables denoting subsets of the considered relational struc-
tures, hence sets of vertices when it is used for graphs, and sets of edges when a
graph is represented by its incidence graph. It can express many graph proper-
ties: degree constraints, existence of proper colorings with fixed numbers of col-
ors, connectivity, existence of spanning trees with particular properties, absence
or existence of particular induced subgraphs or minors. From characterizations
by forbidden configurations, one obtains that the sets of cographs, of distance-
hereditary graphs, of planar graphs, of graphs embeddable in a fixed surface, of
graphs of tree-width bounded by a fixed constant are MS-definable, i.e., can be
characterized as the finite models of certain MS formulas.

Graph structure notions are related with MS logic in several ways that we can
classify under two main titles: Expressive power of MS logic and Construction
of algorithms. We will discuss later the language theoretical aspects.

2 Expressive Power of Monadic Second-Order Logic

It is easy to construct an MS formula expressing that a given graph has no
minor or no induced subgraph isomorphic to a fixed finite graph. Hence the set
of graphs of tree-width at most k is MS-definable because it is characterized

Graph Structure and MS Logic: Language Theoretical Aspects 3

by finitely many excluded minors. A set of graphs defined by excluded induced
subgraphs forming a set that is infinite but MS-definable is also MS-definable.
Perfect graphs and comparability graphs are of this type. Their definitions are
not directly translatable into MS formulas ([17], [38], [24]).

Monadic second-order logic can also be used to specify graph transformations.
By analogy with the transformations of words and terms called transductions in
language theory, I call monadic second-order (MS) transductions certain trans-
formations of relational structures (hence of trees, graphs and hypergraphs) that
can be specified by MS formulas. They generalize the notion of interpretation
used in model theory and the rational transductions (transforming words into
sets of words) such that the image of every word is finite. (Due to space limita-
tions, definitions are not given formally. They can be found in the given references
and in my book in preparation [3].)

In many situations concerning graph structure, one needs more than a yes
or no answer. For an example, that a graph does not contain K5 or K3,3 as
a minor implies that it is planar, but this fact does not describe any planar
embedding. In other words, we are not only interested in checking that a given
graph “has some structure”, e.g. a tree-decomposition or a planar embedding,
but also in having an MS transduction that constructs from the given graph
some tree-decomposition or some planar embedding. Such transductions may be
difficult to construct. Sometimes, they use edge set quantifications (decomposi-
tion in 3-connected components, [21]), and/or auxiliary linear orderings of the
input structures. Constructions of planar embeddings, of the modular and split
decompositions, of the chord diagram defining a circle graph, respectively are
considered in this perspective in [22], [20], [25], [26].

Independently of these graph theoretical applications, MS transductions are
useful tools for building MS formulas because the inverse image of an MS-
definable set of graphs or relational structures under an MS transduction is
MS-definable.

3 Construction of Algorithms

Books by Downey and Fellows [4] and by Flum and Grohe [6], survey articles by
Grohe [7], and by Makowsky [9], and many other articles have popularized the
facts that MS expressible graph problems have FPT algorithms for tree-width
and clique-width taken as parameters. We will refer by CMS to the extension of
MS logic allowing set predicates Cardp(X) expressing that the cardinality of a
set X is a multiple of p, by MS2 to the extension allowing edge set quantifications
(also called guarded second-order logic in [39]) and by CMS2 to the combination
of both extensions.

Theorem 1 (Fixed-Parameter Tractability Theorem): Every CMS2 ex-
pressible graph problem has a fixed-parameter linear algorithm for tree-width.
Every CMS expressible graph problem has a fixed-parameter cubic algorithm for
clique-width. These results extend to the counting and optimization problems
specified in these extensions of MS logic.

4 B. Courcelle

This result makes particularly interesting the expression of graph properties in
CMS or CMS2 logic. However, monadic second-order logic yields no polynomial
algorithm for graphs of unbounded tree-width or clique-width : each level of the
polynomial hierarchy contains complete problems expressible in MS logic ([45]).

Algebraic characterizations of tree-width and clique-width.
Tree-width and clique-width are based on graph decompositions that can be

expressed with graph operations. Such operations generalize the concatenation
of words. For defining tree-decompositions, we use graphs with distinguished
vertices called sources (or boundary vertices in [4]) specified by labels. Each
label designates a single vertex. The corresponding graph operations are the
parallel-composition that glues two graphs at their sources with same labels and
unary operations that remove or modify source labels. The basic graphs are
isolated vertices and graphs with a single edge. Tree-decompositions correspond
closely to terms built with these operations and the tree-width of a graph is the
minimum number of labels to be used to construct it with these operations.

Clique-width is similar but it is defined with different operations. These op-
erations use also labels but a label may be attached to several vertices. The
relevant operations are disjoint union (denoted by ⊕), unary operations adda,b
that add edges between every vertex labeled by a and every vertex labeled by b,
and unary operations that modify labels. The basic graphs are isolated vertices.
The clique-width of a graph is the minimum number of labels to be used to
construct it with these operations. Whereas words are generated from letters by
a single binary operation, operations that use countably many labels (they form
a countable set) are needed for generating all graphs,

Is Theorem 1 best possible ?
No. That a graph is Hamiltonian can be decided in polynomial time on graphs

of bounded clique-width, although this property is MS2 but provably not CMS
[55]. (The algorithm is not FPT).

However, some converse results do exist : if every existential monadic second-
order property (3-vertex colorability is an example of such a property) is decidable
in polynomial time on all graphs of a set C that is closed under taking minors or
topological minors then C has bounded tree-width. The closure conditions under
taking minors cannot be replaced by closure under taking subgraphs. These
results are proved in [44].

Is Theorem 1 practical usable ?
Not directly, for several reasons. First, because the algorithms need appro-

priate hierarchical decompositions of the input graphs. A tree-decomposition of
width at most k can be found in linear time if there exists one, but the constant
depends exponentially on k, and the algorithm is not implementable [13]. For
clique-width, the situation is similar: one can construct in cubic time a clique-
width expression of width at most 2k+1 − 1 if the given graph has clique-width
at most k by an algorithm derived from [41] and [49], but this algorithm is too
complex to be implemented. Deciding if the clique-width of a graph G is at most
k for given (G, k) is NP-complete [35]. This problem is polynomial for k < 4 and
open for k = 4. A second difficulty comes from the translation of MS formulas

Graph Structure and MS Logic: Language Theoretical Aspects 5

into the finite automata on terms, on which the FPT algorithms are based. Since
short formulas can express complicated properties, these automata have in the
worst cases non-elementary sizes in terms of the considered formulas ([37]).

Is the situation hopeless ?
Fortunately not! There exist implementable algorithms producing non op-

timal but usable tree-decompositions [14]. For clique-width, there exist algo-
rithms based on modular decomposition that can produce in linear time optimal
clique-width expressions for graphs from particular classes ([16], [30]). Another
possibility consists in inputting graphs that have “natural” tree-decompositions
(just because of the nature of the problems they formalize) or graphs produced
by context-free grammars with their derivation trees, because derivation trees
are hierarchical decompositions of the appropriate types. The second difficulty
appears in the general statement intended to cover all formulas, but concrete
problems may yield automata of reasonable sizes. Softwares like MONA [42]
may be used for graphs defined by terms written with the operations described
above, as well as directly for words and terms [54].

What about first-order formulas ?
There are FPT algorithms for model-checking of first-order formulas on cer-

tain classes of graphs of unbounded tree-width or clique-width, for instance, on
those that have locally bounded tree-width or that exclude a fixed graph as a
minor ([36], [7]). The structural description of the latter types of graphs used in
[52] for proving the Graph Minor Theorem finds here unexpected applications.
Nešetřil and Ossona de Mendez also apply structure theorems to the verification
of first-order formulas expressing graph inclusions [47].

Could one use terms describing graphs written with other operations than those
defining tree-width and clique-width, and that would have good ”compatibility”
with MS logic ?

One could use the unfolding operation that transforms a directed graph into
the tree of finite paths issued from a specified vertex, because the inverse image
under it of a CMS definable set of trees is CMS definable [32]. This operation
is used together with MS transductions in order to construct countable graphs
having decidable MS theories. These graphs form a hierarchy defined by Caucal
(see the survey [1]). This operation has not yet been used to my knowledge to
describe sets of finite graphs in a similar way. By using it, one could obtain
compact representations of large graphs. (Trees with 2n nodes can be described
by terms of size n that encode directed acyclic graphs.)

4 Language Theoretical Concepts Extended to Sets of
Finite Graphs

Two sets of graph operations have been defined above to characterize alge-
braically tree-width and clique-width. They define two algebraic structures on
finite labelled graphs and two types of descriptions of these graphs by terms. Al-
gorithmic applications are based on that, but so are also the language theoretical
notions of context-free graph grammars and recognizability.

6 B. Courcelle

Context-free grammars as equation systems.
Context-free grammars are usually defined as sets of rewriting rules, however,

a classical theorem characterizes the context-free languages as the components
of the least solutions of equation systems that are easily built from context-free
grammars. These systems define languages in a recursive way in terms of set
union, the extension to sets of the concatenation of words, letters and a con-
stant denoting the empty word. Context-free languages are thus the equational
subsets of the free monoid. This characterization extends to arbitrary algebras
(Mezei and Wright [46]), even to those with infinite sets of operations, and in
particular to our graph algebras. We obtain thus context-free graph grammars,
defined formally as equation systems, without having to consider derivation se-
quences, permutation of derivation steps, derivation trees, because these notions
are useless or are given for free in the algebraic setting.

Closure under union and under the operations of the algebra, as well as decid-
ability results (emptiness, finiteness) can be established once and for all at the
algebraic level. Since systems are finite, algorithms on them make sense although
the global set of operations may be infinite.

Two robust classes of context-free graph grammars.
There are many possible graph algebras, and each of them yields a notion of

equational set. However, two of them have emerged as particularly robust and
interesting. These are the HR algebra whose operations are those characterizing
tree-width, and the VR algebra related similarily to clique-width. The acronym
HR stands for Hyperedge Replacement and refers to an algebra of graphs, the
equational sets of which are exactly those defined independently by hyperedge
replacement (hypergraph) grammars. Its operations are those from which tree-
width can be defined. In particular, the set of graphs of tree-width at most k is
HR-equational. Similarly, VR stands for Vertex Replacement and refers to other
graph grammars that actually generate the VR-equational sets. Its operations
have been designed in [28] so that the sets defined by certain grammars be the
corresponding equational sets. The set of graphs of clique-width at most k is
VR-equational.

In which sense are these classes robust ?
Our robustness criterium is stability under MS transductions, generalizing the

fact that the families of context-free and of regular languages are closed under
rational transductions. Furthermore, context-free languages are generated by ra-
tional transductions from particular context-free languages that describe trees.
(Rational transductions are compositions of homomorphisms, inverse homomor-
phisms, intersections with regular languages. They are closed under composition
and under inverse. Monadic second-order transductions are closed under com-
position, but not under inverse.)

The family of HR equational sets of graphs is characterized as the set of im-
ages of binary trees under MS2 transductions (those that transform graphs via
their incidence graphs), hence is closed under these transductions ([27]). It fol-
lows also that MS2 transductions preserve bounded tree-width. The family of VR
equational sets is the set of images of binary trees under MS transductions, hence

Graph Structure and MS Logic: Language Theoretical Aspects 7

is closed under these transductions ([34]) which consequently preserve bounded
clique-width. These facts give characterizations independent of the chosen alge-
bras. Furthermore, they help to prove that “small variations” on the signatures
preserve the corresponding classes of equational sets ([12], [29]).

What do we get from definitions of sets of graphs by equation systems ?
We get relatively compact descriptions. By using derived operations, one can

make them (hopefully) more readable. For example, series-composition of graphs
with two sources, denoted by •, is not a basic operation of the HR algebra,
but it is defined by a term over the basic operations, and • can replace this
term in an equation system. The equation defining series-parallel graphs is then
S = S//S∪S•S∪e where // and e that denote respectively parallel-composition
and a single edge, are basic operations. Every generated graph has at least one
derivation tree, which is a term over the operations of types HR and VR and
their extensions with derived operations. This term can be used for storing the
graph as a string of symbols, and as input to algorithms. Extensions of the Semi-
Linearity Theorem for context-free languages (Parikh’s theorem) make it pos-
sible to extract numerical informations, like the possible numbers of vertices
and/or edges in a generated graph. Incorrect graphs can thus be detected by
using this result as a preliminary test. Filtering theorems (see below) make it
possible to transform equation systems. Parsing is more difficult for context-free
graph grammars than for context-free word grammars. It is NP-complete for
certain particular grammars and polynomial for others. (See the first two chap-
ters of [10]). Unambiguous graph grammars would be interesting for counting
purposes, like are unambiguous context-free grammars, (see the book by Flajolet
and Sedgewick [5]). Ambiguity for a graph grammar is actually not that obvious
to define, in particular because of associative and commutative operations like
// in the above definition of series-parallel graphs.

Recognizability
Two of the various equivalent characterizations of regular languages are in-

teresting for dealing with graphs. First, their characterization in terms of finite
congruences, because it applies to every algebra (Mezei and Wright in [46])
and second their characterization as the set of MS-definable languages. MS-
definability is only meaningful for logical structures or for objects represented
by such structures, and this is the case for graphs. In the case of languages,
MS-definability is equivalent to recognizability, but for graphs one has only one
implication : MS-definability implies recognizability. (It is open to find restric-
tions on the congruences used in the definition of HR- (or VR-) recognizability
so as to make it equivalent to CMS2- (or CMS-) definability.)

Theorem 2 (Recognizability Theorem): Every CMS2-definable set of graphs
is recognizable in the HR algebra. Every CMS-definable set of graphs is recogniz-
able in the VR algebra.

The opposite implications cannot hold since there are uncountably many HR-
and VR- recognizable sets of graphs. This uncountability result is linked to the
infiniteness of the signatures of the HR and VR algebras. However a result stated
in [40] says that a set of graphs of bounded tree-width is CMS2-definable if and

8 B. Courcelle

only if it is HR-recognizable. No similar result is known for VR-recognizability.
An important consequence of the Recognizability Theorem is the Filtering The-
orem.

Theorem 3 (Filtering Theorem): The intersection of an HR-equational set of
graphs with a CMS2-definable one is effectively HR-equational. The intersection
of a VR-equational set with a CMS-definable one is effectively VR-equational.

Direct constructions for particular properties like planarity (which is MS de-
finable) would be particularly long and technical.

How can one prove the Recognizability Theorem ?
One proof can be sketched as follows : let Θk be the set of monadic second-

order sentences (closed formulas) of quantifier height at most k over a fixed
relational signature, and written in a certain normal form. This set has large
cardinality but is finite. For a structure S we let Mk(S) be the level k theory of
S, i.e., the set of sentences in Θk that are true in S. The main lemma states that
Mk(S⊕T) can be computed from Mk(S) and Mk(T) by a function that depends
only on k (⊕ is disjoint union). A second (straightforward) lemma states that if
t is a transformation of structures that can be expressed by quantifier free (QF)
formulas, (this is the case of a relabelling, of the edge creation operation adda,b
and of the edge complement to take typical examples) then Mk(t(S)) can be
computed from Mk(S) by a function that depends only on k and t. Since all VR
and HR operations are expressible in terms of ⊕ and operations definable by
QF formulas, the proof can be completed as follows: one defines a congruence
on relational structures by S ≡ T iff Mk(S) = Mk(T). Technical details are
omitted but everything is on the table. The lemma about ⊕ has generalizations
involving combinations of infinite families of structures presented in [9]. The case
of a mapping t such that Mk(t(S)) can be computed from Mf(k)(S) for some
fixed function f by a function that depends only on k and t, is also interesting.
This is the case of unfolding ; such operations are discussed in [9].

Recognizability is a difficult notion to handle (the emptiness of an HR-
recognizable set of graphs of unbounded tree-width is undecidable) but MS logic
provides a handy language for specifying recognizable sets. In many cases the
expression of a graph property by a monadic second-order formula is straight-
forward. Finite automata and regular expressions make it easy to specify rec-
ognizable languages, and monadic second-order formulas play a similar role for
recognizable sets of graphs. They replace finite automata. No existing notion of
graph automaton gives an equivalence with monadic second-order logic. If graph
automata of some type would be effectively equivalent to monadic second-order
formulas for all graphs, their emptiness problem would be undecidable because
so is the corresponding problem for MS logic.

Back to equational sets.
The Filtering Theorem stated above is a direct application of the Recogniz-

ability Theorem and of the following fact : in every algebra the intersection of an
equational set and an effectively given recognizable set is effectively equational.
This generalizes the fact that the intersection of a context-free language and a
regular one is context-free. Together with the decidability of emptiness, we get

Graph Structure and MS Logic: Language Theoretical Aspects 9

that MS logic is decidable on VR-equational sets, and that CMS2 logic is decid-
able on HR-equational sets. This means that one can test if every graph of the
considered equational set satisfies the considered formula.

Could one prove or disprove mechanically (at least theoretically) some conjec-
tures of graph theory by using this theorem ?

Only those of the form : every graph in a particular VR- or HR-equational set,
or of clique-width or tree-width at most some given k, satisfies some property
expressible in MS logic. But most graph theoretic conjectures (like Hadwiger’s
Conjecture) concern all graphs, and are not restricted to equational sets. An-
other difficulty with this idea is that graph properties involving comparisons of
cardinalities are not MS expressible in general.

On which classes can one decide MS logic ?
There is a structural necessary (but not sufficient) condition.

Theorem 4 (Structural preresquisite for MS decidability): (1) Every
set of graphs having a decidable MS2 theory has bounded tree-width, hence is
a subset of some HR-equational set. (2) Every set of graphs having a decidable
C 2MS theory has bounded clique-width, hence is a subset of some VR-equational
set.

The first statement is proved in [53], and the second one in [18]. The hypoth-
esis that the C2MS theory (C2MS = MS with the even cardinality set predicate
Card2(X)) is decidable is stronger than requiring that the MS theory is de-
cidable. These proofs use the result of [50] that excluding a planar graph as a
minor implies bounded tree-width, and an extension of it to matroids. Hence in
the case of sets of graphs, there are two obstacles to the decidability of CMS (or
CMS2) logic: unbounded clique-width (or tree-width), and, for sets of bounded
clique-width or tree-width, the “internal complexity” of the considered sets. Sets
of words can be complex enough so as to forbid the decidability of MS logic, al-
though words are, considered as graphs, of tree-width 1.

By using the unfolding operation applied to directed acyclic graphs and MS
transductions, one can construct classes of graphs that are not VR equational,
that have decidable CMS-theories but (necessarily by Theorem 4) have bounded
clique-width. That such graphs have bounded clique-width follows more directly
from the fact that unfolding makes a graph into a tree. The use of unfolding
increases the “internal complexity” of the described graphs, while keeping de-
cidability of MS logic.

Are there fragments of MS logic that have decidable theories on classes of
graphs of unbounded clique-width ?

An example is first-order logic, which is decidable on square grids (but not
on all planar graphs). The satisfiability problem for existential monadic second-
order logic (sentences of the form ∃X1, . . . , Xnϕ with ϕ first-order) is undecidable
on square grids. However one might look for improvements of Theorem 4 where
the hypotheses are the decidabilities of L-theories for fragments L of MS logic.

Does the decidability of a fragment L of MS logic on a set of graphs C imply
the existence of a polynomial time algorithm for each L-expressible property over
the graphs in C ?

10 B. Courcelle

For CMS logic and clique-width, and for CMS2 logic and tree-width, the
Recognizability Theorem implies simultaneously Theorem 1 and the decidabilities
of CMS and CMS2 logics over graphs of bounded clique-width and tree-width
respectively, but, the only implication uses the detour through Theorem 4.

Couldn’t we extend the languages CMS and CMS2 while keeping decidability
of the corresponding theories on graphs of bounded clique-width and tree-width ?

No such extension exists to my knowledge. The extension of CMS logic by
an equal cardinality predicate Eq(X,Y) expressing that sets X and Y have
equal cardinality is undecidable on the set of words over a single letter. Another
possibility could be with a cardinality oracle. That is we fix a recursive set of
integers A and we let CardA(X) mean : X has cardinality in A. If A is the set
of numbers that are either a power of 2 or a power of 3, then the corresponding
extension of MS is undecidable on words. If A is the set of prime numbers the
decidability is unknown. (This extension is stronger than the extension of the
linear order of natural numbers with a predicate PA(x) expressing that x ∈ A
because bijections are not definable by monadic second-order formulas).

Can’t one define all graphs with a finite set of operations ?
Yes, one can define all linearly ordered loop-free undirected graphs from four

unary operations : addition of a new isolated vertex as new last vertex, addition
of a new edge between the first two vertices, exchange of the first two vertices
and circular shift (the first vertex becomes the last one, the second one becomes
the first, etc. . .). As single constant, one can use the empty graph. With these
operations and the one that forgets the ordering, one can define all graphs by
terms, but these terms that are nothing but lists of vertices and edges. No
interesting hierarchical structure is obtained like with the HR and VR operations.
MS logic is undecidable on the corresponding equational sets. Although “small”
and “powerful” this set of graph operations is uninteresting.

Relational structures.
The results of Theorems 1,2,3 have been stated for graphs, but their exten-

sions to relational structures over finite relational signatures are straightforward,
because most results are proved either at the Universal Algebra level or are valid
for relational structures (cf. the proof sketch of the Recognizability Theorem).
What are the relevant algebras ? One of them, generalizing the VR algebra uses
disjoint union and QF operations. Another one can be defined that extends the
HR algebra. More manageable sets of operations that generate the same equa-
tional sets and the same recognizable sets have been considered in [19], [31], [12].
In most cases, proofs in terms of relational structures are no more difficult than
for classes of graphs and give more general statements.

A challenging open problem: Is it true that if a set of relational structures
has a decidable CMS theory, then it is the image of a set of binary trees under
an MS transduction ? If true, this would generalize Theorem 4 (2) but the tools
used for its proof do not extend obviously. I consider this question as the main
one in the area of relationships between MS logic and graph structure. The
corresponding extension of Theorem 4 (1) is not difficult.

Graph Structure and MS Logic: Language Theoretical Aspects 11

Here is a last result that indicates how nicely recognizability and MS logic fit
together.

Theorem 5 ([12]): The inverse image of a recognizable set of relational struc-
tures under a CMS transduction is recognizable.

In this statement, recognizability is understood with respect the algebra based
on disjoint union and QF operations. This result generalizes the fact that the
inverse image of a CMS definable set of relational structures under a CMS trans-
duction is CMS definable.

Acknowledgement. I thank A. Blumensath, M. Fellows and I. Walukiewicz
for many useful comments on a first draft of this overview.

The first 11 references are books and survey articles.

References

1. Blumensath, A., Colcombet, T., Löding, C.: Logical Theories and Compatible Op-
erations. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and automata: History
and Perspectives, pp. 73–106. University Press, Amsterdam (2008)

2. Courcelle, B.: The Expression of Graph Properties and Graph Transformations in
Monadic Second-Order Logic. In: Rozenberg, G. (ed.) Handbook of Graph Gram-
mars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400.
World Scientific, Singapore (1997)

3. Courcelle, B.: Graph Structure and Monadic Second-order Logic. Cambridge Uni-
versity Press, Cambridge (in preparation), http://www.labri.fr/perso/courcell

4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)
5. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,

Cambridge (to appear)
6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006)
7. Grohe, M.: Logic, Graphs, and Algorithms. In: Flum, J., Grädel, E., Wilke, T.

(eds.) Logic and automata: History and Perspectives, pp. 357–422. Amsterdam
University Press (2008)

8. Hell, P., Nešetřil, J.: Graphs and homomorphisms. Oxford University Press, Oxford
(2004)

9. Makowsky, J.: Algorithmic uses of the Feferman-Vaught Theorem. Ann. Pure Appl.
Logic 126, 159–213 (2004)

10. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formations. Foundations, vol. 1. World Scientific, Singapore (1997)

11. Tutte, W.: Graph Theory. Addison–Wesley, Reading (1984)
12. Blumensath, A., Courcelle, B.: Recognizability, Hypergraph Operations, and Log-

ical Types. Inf.Comput. 204, 853–919 (2006)
13. Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of

Small Treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
14. Bodlaender, H.: Treewidth: Characterizations, Applications, and Computations.

In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

http://www.labri.fr/perso/courcell

12 B. Courcelle

15. Brandstädt, A., Dragan, F., Le, H., Mosca, R.: New Graph Classes of Bounded
Clique-Width. Theory Comput. Syst. 38, 623–645 (2005)

16. Brandstädt, A., Engelfriet, J., Le, H., Lozin, V.: Clique-Width for 4-Vertex For-
bidden Subgraphs. Theory Comput. Syst. 39, 561–590 (2006)

17. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: Progress on Perfect
Graphs. Mathematical programming, Ser. B 97, 405–422 (2003)

18. Courcelle, B., Oum, S.: Vertex-minors, Monadic Second-Order Logic, and a Con-
jecture by Seese. J. Comb. Theory, Ser. B 97, 91–126 (2007)

19. Courcelle, B.: The Monadic Second-Order Logic of Graphs VII: Graphs as Rela-
tional Structures. Theor. Comput. Sci. 101, 3–33 (1992)

20. Courcelle, B.: The Monadic Second-Order Logic of Graphs X: Linear Orderings.
Theor. Comput. Sci. 160, 87–143 (1996)

21. Courcelle, B.: The Monadic Second-Order Logic of Graphs XI: Hierarchical De-
compositions of Connected Graphs. Theor. Comput. Sci. 224, 35–58 (1999)

22. Courcelle, B.: The Monadic Second-Order Logic of Graphs XII: Planar Graphs and
Planar Maps. Theor. Comput. Sci. 237, 1–32 (2000)

23. Courcelle, B.: The Monadic Second-Order Logic of Graphs XIV: Uniformly Sparse
Graphs and Edge Set Quantifications. Theor. Comput. Sci. 299, 1–36 (2003)

24. Courcelle, B.: The Monadic Second-Order Logic of Graphs XV: On a conjecture
by D. Seese. J. Applied Logic 4, 79–114 (2006)

25. Courcelle, B.: The Monadic Second-Order Logic of Graphs XVI: Canonical graph
decompositions. Logical Methods in Computer Science 2 (2006)

26. Courcelle, B.: Circle Graphs and Monadic Second-order logic. Journal of Applied
Logic (in press)

27. Courcelle, B., Engelfriet, J.: A Logical Characterization of the Sets of Hypergraphs
Defined by Hyperedge Replacement Grammars. Mathematical Systems Theory 28,
515–552 (1995)

28. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-Rewriting Hypergraph Gram-
mars. J. Comput. Syst. Sci. 46, 218–270 (1993)

29. Courcelle, B., Makowsky, J.: Fusion in Relational Structures and the Verification
of Monadic Second-Order Properties. Mathematical Structures in Computer Sci-
ence 12, 203–235 (2002)

30. Courcelle, B., Makowsky, J., Rotics, U.: Linear Time Solvable Optimization Prob-
lems on Graphs of Bounded Clique-Width. Theory Comput. Syst. 33, 125–150
(2000)

31. Courcelle, B., Weil, P.: The Recognizability of Sets of Graphs is a Robust Property.
Theor. Comput. Sci. 342, 173–228 (2005)

32. Courcelle, B., Walukiewicz, I.: Monadic Second-Order Logic, Graph Coverings and
Unfoldings of Transition Systems. Ann. Pure Appl. Logic 92, 35–62 (1998)

33. Cunnigham, W.: Decomposition of Directed Graphs. SIAM Algor. Discrete
Meth. 3, 214–228 (1982)

34. Engelfriet, J., van Oostrom, V.: Logical Description of Contex-Free Graph Lan-
guages. J. Comput. Syst. Sci. 55, 489–503 (1997)

35. Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Clique-width Minimization is
NP-hard. In: 38th Annual ACM Symposium on Theory of Computing, pp. 354–362
(2006)

36. Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes.
Theor. Comput. Sci. 37, 157–191 (2004)

37. Frick, M., Grohe, M.: The Complexity of First-order and Monadic second-order
Logic Revisited. Ann. Pure Appl. Logic 130, 3–31 (2004)

Graph Structure and MS Logic: Language Theoretical Aspects 13

38. Gallai, T.: Transitiv Orientierbare Graphen. Acta Math. Acad. Sci. Hungar 18, 25–
66 (1967); Translation in English by Maffray, F. Preissmann, M.: In: Ramirez Al-
fonsin,J.L., Reed, B.A.: (eds.), Perfect Graphs, pp. 25-66, Wiley, New York (2001)

39. Grädel, E., Hirsch, C., Otto, M.: Back and Forth Between Guarded and Modal
Logics. ACM Trans. Comput. Log. 3, 418–463 (2002)

40. Lapoire, D.: Recognizability Equals Monadic Second-Order Definability for Sets of
Graphs of Bounded Tree-Width. In: Meinel, C., Morvan, M. (eds.) STACS 1998.
LNCS, vol. 1373, pp. 618–628. Springer, Heidelberg (1998)

41. Hlinený, P., Oum, S.: Finding Branch-Decompositions and Rank-Decompositions.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–
174. Springer, Heidelberg (2007)

42. Klarlund, N.: Mona & Fido: The Logic-Automaton Connection in Practice. In:
Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidelberg
(1998)

43. Madelaine, F.: Universal Structures and the Logic of Forbidden Patterns. In: Ésik,
Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 471–485. Springer, Heidelberg (2006)

44. Makowsky, J., Marino, J.: Tree-width and the Monadic Quantifier Hierarchy.
Theor. Comput. Sci. 303, 157–170 (2003)

45. Makowsky, J., Pnueli, Y.: Arity and Alternation in Second-Order Logic. Ann. Pure
Appl. Logic 78, 189–202 (1996); Erratum: Ann. Pure Appl. Logic 92, 215 (1998)

46. Mezei, J., Wright, J.: Algebraic Automata and Context-Free Sets. Information and
Control 11, 3–29 (1967)

47. Nešetřil, J., de Mendez, P.O.: Linear Time Low Tree-width Partitions and Al-
gorithmic Consequences. In: Proc. Symp. Theory of Computation, pp. 391–400
(2006)

48. Oum, S.: Rank-width and Vertex-minors. J. Comb. Theory, Ser. B 95, 79–100
(2005)

49. Oum, S., Seymour, P.: Approximating Clique-width and Branch-width. J. Comb.
Theory, Ser. B 96, 514–528 (2006)

50. Robertson, N., Seymour, P.: Graph Minors. V. Excluding a Planar Graph. J. Comb.
Theory, Ser. B 41, 92–114 (1986)

51. Robertson, N., Seymour, P.: Graph minors. VIII. A Kuratowski Theorem for Gen-
eral Surfaces. J. Comb. Theory, Ser. B 48, 255–288 (1990)

52. Robertson, N., Seymour, P.: Graph Minors. XVI. Excluding a Non-planar Graph.
J. Comb. Theory, Ser. B 89, 43–76 (2003)

53. Seese, D.: The Structure of Models of Decidable Monadic Theories of Graphs. Ann.
Pure Appl. Logic 53, 169–195 (1991)

54. Soguet, D.: Génération Automatique d’Algorithmes Linéaires, Doctoral disserta-
tion, Paris-Sud University, France (July 2008)

55. Wanke, E.: k-NLC Graphs and Polynomial Algorithms. Discrete Applied Mathe-
matics 54, 251–266 (1994)

Internet Ad Auctions: Insights and Directions

S. Muthukrishnan

Google Inc., 76 9th Av, 4th Fl., New York, NY, 10011
muthu@google.com

Abstract. On the Internet, there are advertisements (ads) of different
kinds: image, text, video and other specially marked objects that are
distinct from the underlying content of the page. There is an industry
behind the management of such ads, and they face a number of algorith-
mic challenges. This note will present a small selection of such problems,
some insights and open research directions.

1 Introduction

Everyday we interact with the Internet in several ways. For example, we read
news from an online source, go to a portal to check email or start at a search
engine to navigate the web or for discovery. We belong to some explicit social
network and interact with “friends” online. We plan and execute projects or
events. Through these activities, we express our interests, intent, an implicit
openness to discover new things, not only individually, but also as members of
different groups. These are the signals we generate on the Internet.

This Internet world is valuable to businesses. They seek to benefit from this
online world not only by transacting their business but also by marketing them-
selves. Marketing is predominantly done via advertisements (ads), using the
many signals. The ads could be in different forms from text snippets to im-
ages and even videos. These ads provide some information and seek to get the
attention of the users, and ultimately induce some action, direct or indirect.

There is now an industry of companies that enable the process above. This
includes companies that bring users to their site, procure ads and manage the
ad presentation and billing processes, as well as companies, that are mediators,
merely placing ads where they are slotted and needed in others’ properties. For
most part, the ad placement is determined by auctions, so there is focus on the
strategizing and gaming aspects of the behavior of advertisers and ad placement
companies. In addition, there are companies that enable advertisers as well as
content providers to strategize and optimize their goals across multiple parties.

All of this generates many algorithmic challenges. In this paper, we present
an overview Internet ad auctions typically used. We will present some insights
and directions for research. In many cases, the directions are only abstractions
that are aimed at spurring some theoretical research thought and are not direct
business problems. We believe that Internet ad auctions is an area of research
where novel ideas will have great impact in practice because large scale Internet
ad systems exist, are successful, and can be modified with reasonable effort. This

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 14–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Internet Ad Auctions: Insights and Directions 15

is an evolving area, and this write-up covers a small vantage point only; we will
maintain an updated version of the write-up over time.

2 Basics

In this section, we describe the type of ads, the process of ad campaign devel-
opment and an overview of the auction mechanism that is involved.

2.1 Types of Ads

There are different types of Internet ads, depending on the nature of signals used
as well as the nature of ads. We give a few examples.

Sponsored search ads. When a user poses a query at a search engine, the
search engine returns search results together with advertisements that are placed
into positions, usually arranged linearly down the page, top to bottom. On most
major search engines, the assignment of ads to positions is determined by an
auction among all advertisers who placed a bid on a keyword that matches the
query. The user might click on one or more of the ads, in which case (in the
pay-per-click model) the advertiser receiving the click pays the search engine a
price determined by the auction. This is known as sponsored search ads.

Content ads. Users go to several sites for their intrinsic content. For exam-
ple, this includes content providers such as established news sources or more
individualistic blog sites and other publishing sites. Hence, content at such sites
matches users’ interests or intent. Content providers use these signals derived
from their content to target ads to users. This is known as content ads.

Display ads. Users go to portals and other pivotal sites as starting points of
their interaction with the Internet. Advertisers seek to get such users’ attention
by display of ads which may not be directly determined by the content of such
sites. Banners and pop-ups are examples of such display ads.

Social networking ads. Users belong to one or more social networks, and inter-
act with friends and contacts. The signal of such friends, friends’ signals and so
on, may be used to present ads to a user. Such ads are social networking ads.

2.2 Life of an Ad

Planning and execution of an ad campaign involves at least three mains stages.

– Targeting. Advertisers determine the potential target for ad campaigns. Tar-
geting may take the form of demo or psycho-graphics and rely on users’
signals.

– Ad placement and optimization. Advertisers strategize with budgets and
prices for favored placement of their ads and optimize the overall impact
of their budgets.

16 S. Muthukrishnan

– Ad effectiveness. Any ad campaign needs to evaluate its over all impact. In
offline ad media, effectiveness of an ad may have to be measured via surveys
or coupons etc. In Internet ads, there are other measures of ad effectiveness
including click-through as well as change in traffic levels due to an ad.

Life of an ad starts with its targeting, proceeds to production, optimization
and execution of the ad campaign, and finally, evaluation of the effectiveness of
the campaign. Algorithmic problems arise in each of these stages.

2.3 Ordered Ad Auctions

We describe the popular Internet ad auctions formally, and call them ordered
ad auctions. An ordered ad auction is defined by a tuple (N,K, v, α, β). The set
N = {1, . . . n} is the set of bidders (advertisers) and the set K = {1, . . . , n} is
the set of positions, ordered top to bottom. Each bidder i ∈ N is associated with
two values, vi which is her valuation for a click and αi which is her click-through
rate (ctr). Each position � ∈ K is associated with a click-through multiplier β�.
We have β1 = 1 and β� > β�+1 thereafter, ie., the position multiplier goes down
top to bottom. The standard assumption is that the actual α of bidder i in
position j is separable [7], that is, it is the product of the bidder’s ctr αi and the
position multiplier βj : if bidder i is placed at position j then she receives a click
with probability αi,j = αiβj . The value of vi is known only to bidder i while all
the other parameters are publicly known.

The ad placement is determined by an auction. Advertiser i specifies a bid
bi which is the maximum they wish to pay. The rules of the auction determine
the ordering of the k chosen ads in these positions, as well as their pricing. We
describe two well known auctions.

GSP. The most natural ordering is to sort by decreasing bid, but that does not
take into account the quality of ads and their suitability to users. The Generalized
SecondPrice (GSP)mechanismranks thebidders by biαi.Wlog assume thatbidder
i is assigned to position i. The price that the bidder at position i pays per click is

PGSPj =
bi+1αi+1

αi
.

This is the ordering and pricing currently in use by search engines like Yahoo!
and Google.

VCG. There is implementation of the well known Vickrey-Clarke-Groves (VCG)
mechanism [6,1,3]. This mechanism ranks the bidders by biαi, which can be
thought of as the expected advertiser value if bi = vi. Wlog assume that bidder
i is assigned to position i. The VCG allocation maximizes the social welfare,
which is the sum of the bidders’ expected value, i.e.,

∑
i∈N viαiβi. The VCG

mechanism charges each bidder the total value lost to other bidders caused by
her presence in the auction. The VCG mechanism has the property that the

Internet Ad Auctions: Insights and Directions 17

bidders’ dominant strategy is to bid their true value, i.e., bi = vi.1 Formally, the
VCG price for position j is [5,4]

PV CGj =
∑

i>j

biαi(βi−1 − βi)
αjβj

.

Note that βj =
∑
i>j(βi−1 − βi) and therefore PV CGj ≤ bj+1αj+1/αj .

Ordered ad auctions described above occur in sponsored search where the key-
words that match the search query entered by the user determines the advertisers
in the auction. Such ordered ads are also used in content ads where keywords
that suitably match the content on a web page determine the advertisers. More
generally, various properties of the users as well as the content can jointly de-
termine the pool of advertisers in the auction.

As described above, advertisers are charged only for clicks. In alternative mod-
els, advertisers may pay for just appearing (impressions) or only if they acquire
users according to a suitable definition of “acquire” (users buy products or spend
time at the advertiser’s website familiarizing themselves with the products, etc).

There is an overview of sponsored search auctions in [20], and a nice introduc-
tion to the area of mechanism design [21] which applies to Internet ad auctions.
Several workshops, conferences and meetings address Internet ad auction prob-
lems. Recent plenary talk [22] discusses some of the algorithmic challenges in
content ads.

3 Some Directions

This paper does not describe the issues involved in any detail. Instead, we prefer
to present certain directions for research thought. Most of these problems have
to be formalized more precisely and depending on the creative approaches taken,
will lead to many different research problems.

3.1 Game Theory of GSP in Practice

Since GSP is the most widely used mechanism in practice for ordered ad auctions,
it is worthwhile to understand its strengths. This is typically done using game
theory.

A commonly accepted utility of bidder i at position j is:

ui(j) = αiβj(vi − pj),

where pj is the price per click and is a function of all the bids. For advertisers with
this utility, GSP mechanism is not truthful [7], ie., they can gain some by not
revealing their true values as bids. In contrast, VCG mechanism is truthful. Still,
1 A dominant strategy is a strategy that a bidder always prefers regardless of the other

players’ strategies. A mechanism is said to be truthful if revealing the true valuation
is a dominant strategy for every bidder.

18 S. Muthukrishnan

recent papers [4,6,7] show that there exists an equilibrium of GSP that is identical
in prices and positions to the truthful VCG equilibrium. This characterization
gives a nice way to understand the properties of GSP.

Problem 1. In practice, the GSP mechanism is implemented with certain tweaks,
for example, each advertiser has an advertiser-specific minimum price, or certain
positions have a set reserve price, or more generally, each advertiser and position
pair may have a minimum price. What are natural variations of GSP with these
tweaks and what are the equilibrium properties of the resulting auctions?

Recently, the tweak of just adding advertiser-specific minimum price was studied,
and the authors show that GSP has a nice equilibrium even with this tweak [14].
The proof structure in [4,6,7] does not work and a significantly new proof ap-
proach was developed in [14]. In presence of the other tweaks stated in the
problem above, even modifying GSP suitably may present challenges.

3.2 Multiparty Modeling

Let us examine the commodities being sold: these are clicks at various positions.
To determine the best allocation, we need to understand the value of these
commodities. The probability of a click on an ad depends on the ad being shown,
the user seeing the ad provided it is shown, and then conditioned on that, the
user clicking the ad. Of these, the last two are user-dependent. Therefore, the
game we study has in fact three parties: users, advertisers and ad providers. So
far, we assumed that the probability of user clicking on ad i at position j is
αi,j = αiβj , independent of other ads. In general, this is unrealistic [2] and it
exogenizes the role of the user. A more principled approach would be to assume
that the user is not strategic, but model the behavior of the user, and conditioned
on this model, study the game between the advertisers and the ad provider.

More precisely, consider the following markov model for user behavior.

Problem 2. User scans the positions from the top. Consider position i with ad
j. User chooses to click on the ad with probability dependent on the ad j, say
p(j), and chooses to scan down the list with probability q(i, j) dependent on the
ad seen as well as current position. Assume this markov user model. Determine
an allocation of ads to slot with maximum total expected value.

One such an allocation is found, we can use pricing as determined by the VCG
mechanism to get a truthful auction. See [9] for a development of this approach,
for a restricted model when q(i, j) is only a function of ad j. The rationale behind
the model is that the suitability of the ad to their task as well as the fatigue of
exploring many of them determines the likelihood of an user continuing to scan
the ad list.

A more generally scenario emerges in content ads as described below.

Problem 3. We have the content provider (say a blog writer) who has some flex-
ibility in choosing the story they wish to tell as well as the words to describe their
story (for example, draw analogies, use quotations, etc). The content provider

Internet Ad Auctions: Insights and Directions 19

will (a) choose the story that is likely to generate large number of readers, (b)
choose the words which are likely to be used by the ad provider to target ads (c)
indirectly influence the choice of quality ads shown to the readers, and thereby
(c) generate most revenue for themselves from the advertisers. Thus, the con-
tent provider is a strategic player. Formalize and study mechanism design in
this world of four players, ie., content providers, readers, advertisers, and ad
providers.

3.3 Optimal Mechanism

Consider the problem of designing an “optimal” mechanism for ordered ad auc-
tions. We will consider the Bayesian case.

Problem 4. Say each of the n bidders has their value in [0, 1] drawn independently
randomly from a distribution F . There are k ordered positions with decreasing
position-dependent click-through rates and assume separability of ctr’s. What is
the optimal mechanism, that is, a mechanism that maximizes the expected profit?

If k = 1, the optimal Bayesian mechanism was shown by Meyerson [15], and it is
a VCG auction that involves setting a reserve price for the position, and selling
only if the instance of the values has one that exceeds the reserve price. In the
problem above, we are interested in extending it to k position as suitable for
ordered ad auctions. See [16] for a discussion of Bayesian and worst case optimal
mechanism design.

3.4 Target Size Estimation

Early in the life of an ad is the step of targeting ads. In order to do that,
often, advertisers need to estimate the size of their target group, say based on
demographics. This is computed typically from data accumulated via surveys
and other means which are expensive and do not have complete coverage. To
address this, we abstract the following.

Problem 5. We have d attributes which are say hierarchical2. We are given sev-
eral d+ 1 tuples for preprocessing, where the first d tuples are the attributes and
the d + 1th attribute is the size. Each query specifies a d tuple of attributes and
the output is an estimate of its size based on some model of data and size dis-
tribution. Devise a theoretical way to address the estimate quality vs complexity
of estimation in this problem.

A natural model is to assume that the sizes are uniformly distributed within
the region specified by the d attributes in each tuple. There are heuristic ways
to project this model to get size estimate for query region, but a theoretically
sound approach that quantifies the information complexity vs accuracy tradeoff
will have impact.
2 For example, time is hierarchical; it is represented as a tree with root being the year,

its children being the months, their children being partial weeks, down to days,
hours and so on. The attribute salary may not be hierarchical, since [50k, 100k] and
[75k, 150k] may be valid ranges.

20 S. Muthukrishnan

3.5 Mechanisms for Heterogeneous Ads

Not all ads are equal. Here is a basic problem.

Problem 6. We have ads of Types I and T. We can either put one ad of Type I
or two ordered ads of type T in the space provided. Design a GSP like mechanism
for running this auction. In particular, can you formalize and satisfy the property
that an advertiser pays the smallest amount needed to obtain their allotment?

3.6 Mechanisms for Heterogeneous Utilities

There has been a lot of research that assumes some silo or the other of advertis-
ers. In practice, we get a mixture of advertisers. Some care about impressions,
others care about clicks. Some care about profit maximization and others about
appearing in some position, no matter the cost. Classical game theory provides
insights into mechanisms for specific classes of utility functions, but in practice,
one gets a mixture of utility functions.

Problem 7. Consider a collection of advertisers with mixed utilities in terms of
impressions/clicks/acquisition, profit/position or other suitable parameters. De-
sign a truthful, intuitive mechanism for such a collection and characterize the
equilibrium behavior and advertiser dynamics.

The authors in [18], propose a general model and design a stable matching based
mechanism which is truthful for a rich set of advertisers. They also propose an
efficient algorithm to implement the mechanism. Alternative models and mech-
anisms, with richer mix of advertisers, will be of great interest.

3.7 Ad Effectiveness Estimation

An important task is to estimate the effectiveness of ads. While clicks are a
natural measure, in some cases such as in branding or display or offline media
ads, we need indirect ways to measure effectiveness, say in terms of increased
traffic at sites of advertisers, or call backs or innovative methods such as 2d
barcodes [23]. Motivated by this, we abstract the following.

Problem 8. We are given two disjoint sets of target groups C and A. Target
groups in A are shown ads during time period [0, T] and target groups in C are
not shown ads. We have time series measurement of activity that pertains to
the ad of each target group in C and A (eg, the measurement is the number
of visits to the advertiser’s website for each time instant) measured over time
(. . . , 0, . . . , T, . . .). The task is to design a concise measure of the change in
measurements in A after the ad was shown wrt prior time when the ad was
not shown and also wrt other target groups in C during the entire time (since
they were not shown ads). Assume the richest model of dependence among the
different timeseries of measurements that makes the problem computationally
feasible.

Internet Ad Auctions: Insights and Directions 21

3.8 Inferring Profiles: Graph Learning

Many inference problems for ad targeting and elsewhere can be abstracted as
follows. There are entities with associated metadata and links. Some of the en-
tities are labeled, and we need to infer labels for the others. We can infer the
label for an entity using its metadata. But, instead, we wish to infer the label
based on just the link structure between the entities and the known labeling. For
example, say each entity is a blog profile, and the label of our interest is the age
of the blogger. Some of the blog profiles have age value entered (truthful or not)
and others have missing age value. It will be beneficial to infer some age value
for the unlabeled bloggers. This will be useful for targeting ads, for example,
if the advertiser wants their ad shown only to those above a certain age. The
problem we state below models this (and other cases with labels like say gender
or interest in rock music, etc.) informally.

Problem 9. The input is a graph G = (V,E) with some nodes v ∈ V with a label
L(v). Output is L(u) for all u ∈ V .

See [12] for a random walk approach and see [10] for the Machine Learning
approach to this problem. More remains to be done, in particular, in novel ap-
proaches and re-formulations of this problem. We propose the following.

Problem 10. Initially we are given a graph H with a labeling L : V (H) → [k].
Then, for each edge e of H, and independently, we remove e with probability
pi,j, where i and j are the labels of the end-points of e. Now, we present the
resulting graph G, sans the labels, to the algorithm. Design a decoding algorithm
which will produce a maximum likelihood labeling of the nodes of G, with high
probability.

If H were the complete graph on n nodes, results in [11] apply and such decoding
is possible. For general H , preliminary results on this problem are in [19]. Results
for special cases of H or improved approximate decoding results are of great
interest; also, the labeling could be a probability distribution over the label set,
and algorithms for such cases are of interest.

3.9 Reservation Auction

We have so far considered spot auctions only, that is, the auction takes place
at the instant when the commodity is available. In certain cases, typically with
display ads, advertisers need to be able reserve ad spots ahead of time. Motivated
by this, we abstract the following problem.

Problem 11. There are ad positions available at each time instant. Bids arrive
online; each bid is for a subset of ad positions at some specific instant in the
future. Bids must be accepted or rejected when they arrive. Assume reservations
once accepted may be rejected later, for a bump fee. Design a mechanism for
making these decisions online and still result in an allocation which is com-
parable to offline mechanisms in revenue and welfare, together with desirable
game-theoretic properties.

22 S. Muthukrishnan

For the case when each bidder requires a single slot only, some positive results
appear in [26].

3.10 Budget Optimization and Bidding

Sometimes it is required to view ordered ad auctions from the viewpoint of
advertisers. They need tools to strategize and develop a bidding method with
multiple keywords and targeting groups.

Problem 12. Consider a particular advertiser. We are given budget U , a keyword-
query graph G and distribution of how many clicks we get at what cost for each bid
value on each query in the GSP auction, assuming all other parameters remains
fixed. The goal is to output a bid for each keyword so that the expected number of
clicks obtained by the advertiser is maximized, subject to the condition that budget
is not exceeded. Also, characterize the equilibrium if all advertisers follow the click-
maximizing strategy in GSP auction.

A bidding strategy (bidding uniformly on all keywords) and its variants are
explored in [24]. Certain basic dynamics have been understood [25], but more
remains to be done.

4 Concluding Remarks

This writeup provide some insight into Internet ad auctions and directions for
further research. Internet ad auctions face algorithmic challenges, and will remain
a rich area of research for some time. It is also likely to be useful research area
because large scale auction systems exist and are successful; new research ideas
can modify them or rework them completely with reasonable effort, and have
the potential for great impact.

Acknowledgements

I sincerely thank my colleagues at Google.

References

1. Clarke, E.: Multipart pricing of public goods. Public Choice 11, 17–33 (1971)
2. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison

of click position-bias models. In: WSDM 2008: Proceedings of the international
conference on Web search and web data mining, pp. 87–94. ACM Press, New York
(2008)

3. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)
4. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the general-

ized second price auction: Selling billions of dollars worth of keywords. In: Second
workshop on sponsored search auctions (2006)

Internet Ad Auctions: Insights and Directions 23

5. Varian, H.: Position auctions. International Journal of Industrial Organiza-
tion 25(6), 1163–1178 (2007)

6. Vickrey, W.: Counterspeculation, auctions and competitive-sealed tenders. Fi-
nance 16(1), 8–37 (1961)

7. Aggarwal, G., Goel, A., Motwani, R.: Truthful auctions for pricing search keywords.
In: ACM Conference on Electronic Commerce (EC) (2006)

8. Feldman, J., Muthukrishnan, S.: Algorithmic methods for sponsored search. In: Liu,
Z., Xia, C. (eds.) Performance Evaluation and Modelling. Springer, Heidelberg (to
appear, 2008)

9. Aggarwal, G., Feldman, J., Muthukrishnan, S., Pál, M.: Sponsored search auctions
with Markovian users (submitted, 2008)

10. Graph Labelling Workshop - ECML/PKDD (2008),
http://graphlab.lip6.fr/pmwiki.php

11. McSherry, F.: Spectral partitioning of random graphs. In: Proceedings of the 42th
Annual IEEE Symposium on Foundations of Computer Science (2001)

12. Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran,
D., Aly, M.: Video Suggestion and Discovery for YouTube: Taking Random Walks
Through the View Graph WWW (2008)

13. Aggarwal, G., Ailon, N., Constantin, F., Even-Dar, E., Feldman, J., Frahling, G.,
Henzinger, M., Muthukrishnan, S., Nisan, N., Pal, M., Sandler, M., Siridopoulos,
A.: Theory research at Google. In: SIGACT News (to appear, 2008)

14. Even-Dar, E., Feldman, J., Mansour, Y., Muthukrishnan, S.: Sponsored search with
bidder-specific minimum prices. In: [13] (2008)

15. Meyerson, R.: Optimal auction design. Mathematics of Operations Research 6,
58–73 (1981)

16. Hartline, J.: Lectures on optimal mechanism design. In: [17],
http://www.ece.northwestern.edu/∼hartline/omd.pdf

17. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.): Algorithmic Game
Theory. Cambridge University Press, Cambridge (2007)

18. Aggarwal, G., Muthukrishnan, S., Pal, D., Pal, M.: General Auction Mechanism
for Search Advertising. (manuscript, 2007),
http://www.cs.uwaterloo.ca/ dpal/papers/auction/
stable-matching-auctions.pdf

19. Feldman, J., Muthukrishnan, S., Sidiropoulos, A.: Graph labeling in the planted
graph model. (manuscript, 2008) See [13]

20. Lahaie, S., Pennock, D., Saberi, A., Vohra Sponsored, R.: search auctions. In: [17]
(2007)

21. Nisan, N.: Introduction to Mechanism Design (for Computer Scientists). In: [17]
(2007)

22. Broder, A.: Computational advertising. In: Proc. ACM-SIAM SODA, p. 992 (2008)
23. Print ads 2D barcodes,

http://www.google.com/adwords/printads/ads/barcode/
24. Feldman, J., Muthukrishnan, S., Pal, M., Stein, C.: Budget optimization in search-

based advertising auctions. In: Proc. ACM EC (2007)
25. Borgs, C., Chayes, J., Immorlica, N., Jain, K., Etesami, O., Mahdian, M.: Dynamics

of bid optimization in online advertisement auctions. In: Proc. ACM EC (2007)
26. Constantin, F., Feldman, J., Muthukrishnan, S., Pal, M.: Online Ad Slotting With

Cancellations. (manuscript, 2008) See [13]

http://graphlab.lip6.fr/pmwiki.php
http://www.ece.northwestern.edu/~hartline/omd.pdf
http://www.cs.uwaterloo.ca/~dpal/papers/auction/stable-matching-auctions.pdf
http://www.cs.uwaterloo.ca/~dpal/papers/auction/stable-matching-auctions.pdf
http://www.google.com/adwords/printads/ads/barcode/

The Complexity of

Boolean Formula Minimization

David Buchfuhrer1,� and Christopher Umans2,��

1 Computer Science Department
California Institute of Technology

Pasadena, CA 91125
dave@cs.caltech.edu

2 Computer Science Department
California Institute of Technology

Pasadena, CA 91125
umans@cs.caltech.edu

Abstract. The Minimum Equivalent Expression problem is a natural
optimization problem in the second level of the Polynomial-Time Hierar-
chy. It has long been conjectured to be ΣP

2 -complete and indeed appears
as an open problem in Garey and Johnson [GJ79]. The depth-2 variant
was only shown to be ΣP

2 -complete in 1998 [Uma98], and even resolving
the complexity of the depth-3 version has been mentioned as a challeng-
ing open problem. We prove that the depth-k version is ΣP

2 -complete
under Turing reductions for all k ≥ 3. We also settle the complexity of
the original, unbounded depth Minimum Equivalent Expression problem,
by showing that it too is ΣP

2 -complete under Turing reductions.

1 Introduction

Circuit minimization problems are natural optimization problems that lie in
the second level of the Polynomial-Time Hierarchy (PH). The general form of
such a problem is: given a Boolean circuit, find the smallest Boolean circuit that
computes the same function. The input and output circuit may be required to be
circuits of a particular form, e.g., Boolean formulas, or bounded-depth circuits.
These problems are central problems in the field of logic synthesis, where fairly
large instances are routinely solved using heuristics [DGK94]. They are also the
prime examples of natural problems that should be complete for the classes of the
second level of the PH. Indeed, versions of these problems inspired the definition
of the PH in the early 70s by Meyer and Stockmeyer [MS72, Sto76], and Garey
and Johnson use the formula variant to motivate the definition of the second
level of the PH [GJ79].

Completeness proofs for circuit minimization problems have been hard to find.
The DNF version of circuit minimization was only proven to be ΣP2 complete
� Supported by NSF CCF-0346991 and BSF 2004329.

�� Supported by NSF CCF-0346991, BSF 2004329, a Sloan Research Fellowship, and
an Okawa Foundation research grant.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 24–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Complexity of Boolean Formula Minimization 25

in 1998 by Umans [Uma98]; the other variants have remained prominent open
problems. The only non-trivial hardness result for the formula variant – called
Minimum Equivalent Expression – is a PNP|| -hardness result of Hemaspaandra
and Wechsung in 1997 [HW97]. One reason reductions for these problems are
difficult is that one direction of the reduction entails proving a lower bound
for the type of circuit under consideration. This shouldn’t be a absolute barrier,
though, for two reasons. First, we have lower-bound proof techniques for Boolean
formulas and bounded-depth circuits; nevertheless incorporating these into a
reduction seems tricky. Second, a reduction need not entail strong lower bounds
and in principle even slightly non-trivial lower bounds could suffice. A similar
difficulty for potential reductions showing the (conjectured) NP-hardness of a
related problem was noted by Cai and Kabanets [KC00], although there, the use
of weak lower bounds is not even an option, under a complexity assumption.

Proving ΣP2 -completeness of the depth-3 variant was proposed [UVSV06] as
a challenging first step, one that might begin to utilize techniques for proving
lower bounds for bounded depth circuits (e.g., the Switching Lemma). In this
paper we resolve, in one shot, the depth-3 case, as well as the depth-k variants
for all k ≥ 3. The same techniques show in addition that the unbounded depth
Minimum Equivalent Expression problem is ΣP2 -complete under Turing reduc-
tions. We are able to achieve our results by exploiting the second way around
the apparent barrier of proving circuit lower bounds: our reductions entail cir-
cuit lower bounds, but we get by with very weak ones, that with some effort are
incorporated naturally into the structure of the reduction.

1.1 Description of the Reduction

In this section we give a high-level description of the reduction, emphasizing a
few interesting features before delving into the technical details.

The problem we reduce from is succinct set cover, which was defined and
shown to be ΣP2 -complete in [Uma99b]:

Problem 1.1 (succinct set cover (SSC)). Given a DNF formula D over vari-
ables v1, . . . , vm, x1, . . . , xn and an integer k, is there a subset I ⊆ {1, 2, . . . n}
with |I| ≤ k and D ∨

∨
i∈I xi ≡ 1?

This can be seen as a succinct version of Set Cover, in which the sets are implicitly
specified by the ones of the formulas D, x1, x2, . . . , xn, and D is mandatory in
any set cover (e.g., because it covers some point not covered by any of the other
sets).

Throughout this paper, we assume that the formula D accepts the all-true as-
signment, as it only requires polynomial time to check this and the SSC instance
is trivially false otherwise.

Our reductions exploit the special structure of this “succinct” set cover in-
stance. In particular, all of the sets other than the one implicitly specified by D
have an extremely simple form (they are just halfspaces), and in our reduction to
minimum equivalent expression the choice of whether they are included or
excluded from a cover will manifest itself relatively easily in the size of minimum

26 D. Buchfuhrer and C. Umans

equivalent expression. However, D may be a complicated function, one whose
minimum formula size is not readily apparent. To circumvent this problem, we
will use a Turing Reduction (actually a non-adaptive, or truth-table, reduction)
which first ascertains the minimum formula size of D, and then asks one further
query on a formula that incorporates D and other components, to determine
whether or not the original instance of succinct set cover is a positive in-
stance. This provides a somewhat rare example of a natural problem for which a
Turing reduction seems crucial (in the sense that we do not know of any simple
modification or alternative methods that would give a many-one reduction).

More specifically, the main idea of our reduction is to consider the following
formula, derived from an instance of succinct set cover:

D ∨ [z ∧ (x1 ∨ · · · ∨ xn)] (1)

where z is a new variable. Notice that when z is false , this formula is equivalent
to just D, which (intuitively) forces a minimum equivalent formula to devote
part of its size to computing an “unpolluted” copy of D. When z is true, the
formula covers exactly the union of all of the “sets” in the instance of succinct

set cover. That problem asks whether the disjunction of k or fewer xi literals
suffice to cover everything not covered by D. If the variables indexed by I ⊆
{1, 2, . . . , n} suffice, then a very economical equivalent formula to the one above
is D ∨

[
z ∧

(∨
i∈I xi

)]
. By forcing a minimum equivalent formula to already

compute a copy of D, we can ensure that the most efficient way to compute the
above equivalent formula is indeed of this intended form. We can then determine
whether or not there is a cover of size k by asking whether (1) has an equivalent
formula of size k plus whatever we determined the minimum equivalent formula
size of D to be.

To make this actually work requires some modifications. For example, because
the sets in the original instance cover all points in the domain, D ∨ z is already
a small equivalent formula which does not depend at all on whether or not the
instance of succinct set cover was a positive instance. But, we can solve this
problem by modifying D initially to not accept the assignment in which every
variable is set to true.

A more general technique that we use in several places in the reductions
is “weighting” some variables in order to control the form of candidate small
equivalent expressions. This is accomplished by replacing a single variable y
with a conjunction of new variables, y1∧ · · ·∧ yw, where w is the desired weight.
We show that after this replacement, a minimum equivalent expression must be
at least as large as the “w-minimum” expression (in which the size of a formula
is measured by the number of occurrences of variables other than y plus w times
the number of occurrences of the variable y).

We use this technique, for example, to weight z so highly that there can be
only one occurrence of it; this then forms the conceptual pivot from which we
argue that the subtrees of the formula surrounding that occurrence of z must
compute D, and separately, a disjunction of as many variables as there are sets
in a minimum cover of the original succinct set cover instance.

The Complexity of Boolean Formula Minimization 27

Outline. In Section 2 we define general notation, and the variants of the problems
we will be considering. In Section 3 we give the reductions. We conclude in
Section 4 with some open problems.

2 Preliminaries

Given a Boolean formula F , we use |F | to mean the size of the formula F , and
F for the negation of the formula F . Similarly, for a variable x, x is the negation
of x.

Restrictions. Given a function f : {true, false}n → {true, false} and a function
ρ : [n] → {true, false, free}, we define the restriction of f to ρ, fρ to be the
function which fixes the ith input to ρ(i) if ρ(i) is not equal to free, and leaves
it as an input otherwise. Similarly, if F is a formula for f , we define Fρ to be the
formula in which every instance of the ith input variable is replaced with ρ(i) if
ρ(i) = free, and is unchanged otherwise. Note that Fρ is a formula for fρ.

Weighted formulae. If the variables xi of some function f have associated weights
w(xi), then the w-weighted size of a formula for f is the sum of the weights of
the variables occurring at the leaves (in their multiplicity). The usual measure
of formula size is the w-weighted size when w(xi) = 1 for all xi. Note that, as
usual, size counts the number of literals at the leaves, and not the (∨,∧,¬) gates.

Given a weight function w, we can take a formula F and create a formula
F ′ which has minimum formula size that is at least the minimum w-weighted
formula size of F . Formula F ′ is obtained by substituting x

(1)
i ∧x(2)

i ∧· · ·∧x(w(xi))
i

for every occurrence of xi in F . Note that by moving negations to the variable

level, we are substituting x
(1)
i ∨ x

(2)
i ∨ · · · ∨ x

(w(x))
i for every occurrence of xi.

We call F ′ the w-expanded version of F . The following lemma demonstrates the
usefulness of this transformation:

Lemma 2.1. Let F be a formula and w a weight function for F . Let F ′ be the
w-expanded version of F . Then the minimum size of a formula equivalent to F ′

is at least the minimum w-weighted size of a formula equivalent to F .

Proof. Consider a minimum formula F̂ ′ equivalent to F ′. For each xi, let 1 ≤
ji ≤ w(xi) be the integer for which x

(ji)
i occurs least among the xi-leaves of F̂ ′.

Consider the restriction ρ that for each i sets x
(j)
i to true for j = ji. By our

choice of ji, |F̂ ′| is at least the w-weighted size of F̂ ′ρ. But the formula F̂ ′ρ clearly
is equivalent to F , so its w-weighted size is an upper bound on the minimum
w-weighted size of a formula equivalent to F . ��

2.1 The Problems

As mentioned in the introduction, we will reduce from the ΣP2 -complete prob-
lem succinct set cover. It will be convenient to work with a slightly modified

28 D. Buchfuhrer and C. Umans

version in which the goal is for the succinctly specified sets to cover everything
except the “all-true” assignment.

Problem 2.1 (modified succinct set cover (MSSC)). Given a DNF formula
D on variables v1, v2, . . . , vm, x1, x2, . . . , xn and an integer k, is there a subset
I ⊆ {1, 2, . . . n} with |I| ≤ k and for which D ∨

∨
i∈I xi ≡ (

∨m
i=1 vi ∨

∨n
i=1 xi)?

It’s easy to see that this variant of succinct set cover is ΣP2 -complete by
reducing from succinct set cover:

Theorem 2.1. mssc is ΣP2 -complete under Turing reductions.

Proof. We are given an instance of SSC: a DNF D on variables v1, v2, . . . , vm, x1,
x2, . . . , xn and an integer k. We next produce the instance D′ , defined by D′ =
D ∧ (

∨m
i=1 vi ∨

∨n
i=1 xi) (multiplied out into DNF) paired with the same integer

k. If there exists I ⊆ [n] of size at most k for which D ∨
∨
i∈I xi ≡ 1 then

clearly D′ ∨
∨
i∈I xi accepts everything except the “all-true” assignment, and

vice versa. ��

Remark 1. In both SSC and MSSC, the instances produced by the reduction
have the property that taking I = {1, 2, . . . , n} is a feasible solution.

The central problem we are concerned with in this paper is:

Problem 2.2 (minimum equivalent expression (MEE)). Given a Boolean
(∧,∨,¬)-formula F and an integer k, is there an equivalent (∧,∨,¬)-formula of
size at most k?

We also consider the constant-depth versions. When discussing constant-depth
formulas, as usual, we allow arbitrary fanin AND and OR gates and we use the
convention that all NOT gates occur at the variable level.

Problem 2.3 (minimum equivalent depth d expression (MEEd)). Given a
depth d Boolean formula F and an integer k, is there an equivalent depth d
formula of size at most k?

While distributing the NOT gates to the variable level clearly does not affect
formula size, it’s not as clear that finding the minimum depth-d formula is equiv-
alent to finding the minimum depth-d formula with an OR gate at the root. The
latter variant, defined below, will be easier to work with.

Problem 2.4 (minimum equivalent depth d expression with a top OR

gate (MEEd−OR)). Given a depth d Boolean formula F and an integer k, is
there an equivalent depth d formula with top OR gate, of size at most k?

In Theorem 3.3 we reduce MEEd−OR to MEEd, so that Σp2 -hardness for the
latter follows from the Σp2 -hardness for the former.

The Complexity of Boolean Formula Minimization 29

3 Main Results

In this section we prove:

Theorem 3.1. For every d ≥ 3, the problem MEEd is ΣP2 -complete under poly-
nomial time Turing reductions.

Theorem 3.2. The problem MEE is ΣP2 -complete under polynomial time Tur-
ing reductions.

These theorems are proved via Theorem 3.3 and the reductions in Sections 3.1
and 3.2. Theorem 3.3 allows us to restrict our attention to the MEEd−OR prob-
lem, rather than the general MEEd problem. Its proof is contained in the full
version of this paper.

Theorem 3.3. For every d � 3, there is a polynomial-time reduction from
MEEd−OR to MEEd.

3.1 Main Reduction

The following is a Turing Reduction from MSSC to MEEd−OR. We describe
the steps of a Turing Machine with access to an oracle for MEEd−OR:

– We are given an instance of MSSC: a DNF D on variables v1, v2, . . . , vm, x1,
x2, . . . , xn and an integer k. Let w be the weighting function with w(xi) = 1
for all i and w(vi) = n+ 1 for all i, and let D′ be the w-expanded version of
D. Note that D′ has only depth 3, as we are expanding a DNF formula.

– We make at most log |D′| calls to the oracle to find the size u of the smallest
equivalent depth-d formula with top OR gate for D′, using binary search.

– Define the formula E involving fresh variables yi and z as follows:

E = D ∨ [(x1 ∨ x2 ∨ · · · ∨ xn ∨ y1 ∨ · · · ∨ yu+n) ∧ z].

Let w′ be the weighting function with w′(xi) = 1 for all i, w′(vi) = n + 1
for all i, w′(yi) = 1 for all i and w′(z) = 2u + k + n + 1, and let F be
the w′-expanded version of E. We will label the “copies” of z used in the
expanded version z1, z2, . . . , z2u+k+n+1. Note that F has only depth 3.

– We ask the oracle if F has an equivalent depth-d formula with top OR gate,
of size at most 4u + 2k + 2n + 1. We will show that the answer is “yes” iff
the original MSSC instance was a positive instance.

Remark 2. Note that since this reduction utilizes logarithmically many adaptive
oracle calls, it can be transformed using standard techniques into a nonadaptive
reduction utilizing polynomially many oracle calls.

The remainder of this section is devoted to proving the following theorem:

Theorem 3.4. Let F̂ be a minimum equivalent depth-d formula with top OR
gate for F . Then |F̂ | � 4u + 2k + 2n + 1 iff there exists I ⊆ {1, 2, . . . , n} with
|I| ≤ k and and for which D ∨

∨
i∈I xi ≡ (

∨m
i=1 vi ∨

∨n
i=1 xi) .

30 D. Buchfuhrer and C. Umans

∨

D̂
∧

Z X

Fig. 1. The desired form of an equivalent formula for F . Here D̂ is a minimum depth-d
formula with top OR gate equivalent to D′, Z =

∧2u+k+n+1
i=1 zi, and X is of the form∨

i∈I xi ∨
∨u+n

i=1 yi.

As a point of reference, Figure 1 shows the “intended” form of a minimum
equivalent depth-d formula for F . Of course for one direction of the reduction
we will need to show that a small formula must have this form, which is a
somewhat involved argument.

In the forward (easy) direction, we claim that if the instance of MSSC is a
positive instance, then there is a depth-d formula equivalent to F , of the form
pictured in Figure 1, and with size at most 4u+2k+2n+1. Let D̂ be a depth-d
formula with top OR gate equivalent to D′ of size u, and let I ⊆ {1, 2, . . . , n}
be a set of size at most k for which D ∨

∨
i∈I xi ≡ (

∨m
i=1 vi ∨

∨n
i=1 xi) , (such

a set I exists because the MSSC instance is a positive instance). Then D̂ ∨[(∨2u+k+n+1
i=1 zi

)
∧

(∨
i∈I xi ∨

∨u+n
i=1 yi

)]
is a depth-d formula equivalent to F

of size 4u + 2k + 2n + 1. Furthermore, it is of the form pictured in Figure 1.
In the other direction, we assume that the MSSC instance is a negative in-

stance, and we wish to show that there is no depth-d formula with top OR gate
equivalent to F of size at most 4u + 2k + 2n + 1. Let F̂ be a minimum depth-d
formula for F .

We will derive from F̂ a minimum depth-d formula for F that is of the form
pictured in Figure 1. We prove this in the next three subsections. Note that if F̂
has size larger than 4u+2k+2n+1, then we are done; therefore we will assume
the contrary in what follows.

The z variable. First, we show that there is some i for which zi occurs exactly
once in F̂ and that it does not occur negated.

Lemma 3.1. If a formula for F has size at most 4u + 2k + 2n + 1, then there
is some i such that zi occurs exactly once.

Proof. If the formula is of size at most 4u+ 2k + 2n+ 1 and yet contains two or
more copies of each zi, then this is a contradiction as the number of occurrences
of zi variables alone is 2(2u+ k + n+ 1) = 4u+ 2k + 2n+ 2 > 4u+ 2k + 2n+ 1.

The Complexity of Boolean Formula Minimization 31

Thus, some zi must occur at most once. Now, since we are assuming that D
came from a negative instance of MSSC, we know that D rejects some assignment
to its variables other than the all-true assignment. On the other hand E accepts
this assignment when the z variable is true. This implies that E depends on
z and that F (the w′-expanded version of E) depends on each zi. So some zi
occurs exactly once. ��

Fix an i for which zi occurs exactly once. Now, let ρ be the restriction that
restricts all zj for j = i to true, and leaves all other variables free. From now on
we will be working with F̂ρ, which has only a single z variable.

Lemma 3.2. Let f be the function corresponding to F̂ρ. Further, let ρ0 restrict
zi to false, leaving all other variables free and ρ1 restrict zi to true, leaving all
other variables free. If zi appears negated in F̂ρ, then fρ1 ⇒ fρ0 .

Proof. Consider any restriction σ that assigns all variables except zi to 0/1 and
leaves zi free. (F̂ρ)σ takes in the single input zi. Since there are no negations other
than at the variable level, (F̂ρ)σ is monotone in zi. Thus, fσ(true) ⇒ fσ(false).
Since this is true for all σ, fρ1 ⇒ fρ0 . ��

Now, if we substitute false for zi in F̂ρ, the function that this formula computes
is equivalent to D′, and if we substitute true, it accepts everything except the
“all-true” assignment to the x, y, and w-weighted v variables. Defining f, ρ0, ρ1

as in Lemma 3.2 (and again using the fact that D comes from a negative instance
of MSSC) we have that fρ1 ⇒ fρ0 . Lemma 3.2 then tells us that zi occurs non-
negated in the formula F̂ρ.

Properties of F̂ρ. In the remainder of the proof, we will use ALLTRUE as
shorthand for the all-true assignment to the variables of F̂ρ – namely, the x
variables, y variables, the w′-expanded v variables, and zi. Similarly ALLTRUE
refers to the function that accepts every assignment to those variables except
ALLTRUE. For future reference, we record a few useful properties of F̂ρ, for
which straightforward proofs appear in the full version of this paper:

Lemma 3.3. The following properties regarding F̂ρ hold:

1. |F̂ρ| ≤ |F̂ | − (2u + k + n)
2. F̂ρ is a minimum formula
3. When zi is true, F̂ρ is equivalent to the formula ALLTRUE with zi set to

true.
4. When zi is false, F̂ρ is equivalent to D′.

The X subformula. In this section we show (Lemma 3.5) that a minimum
formula accepting at least all of the assignments to the v, x and y variables
not accepted by D′ and not accepting the “all-ones” assignment is of the form(∨

i∈I xi ∨
∨u+n
i=1 yi

)
. We will eventually use this to argue that zi’s sibling sub-

formula in F̂ρ has the intended form, and in a technical part of Section 3.1.

32 D. Buchfuhrer and C. Umans

The following general lemma will be useful.

Lemma 3.4. Let t1, t2, . . . , tn be a set of variables, and S a subset of {0, 1}n.
A minimum formula accepting at least S and not the all-true assignment is of
the form

∨
i∈I ti for some I ⊆ {1, 2, . . . , n}.

Proof. Let T be a formula accepting at least S and rejecting the all-true assign-
ment. Suppose that T depends on � variables. Then |T | � �. Furthermore, in
each assignment accepted by T , one of these variables is set to false , as T does
not accept all-true. Therefore, if T depends on variables ti for i ∈ I, the formula
T ′ =

∨
i∈I ti accepts at least everything that T accepts. Furthermore T ′ does

not accept all-true and |T ′| = � � |T |.
Thus, given a minimum formula T that accepts at least S but not all-true,

we can find another minimum formula accepting at least S but not all-true, of
the desired form. ��

Applying the lemma in our setting yields the following, whose proof appears in
the full version of this paper:

Lemma 3.5. Let S be the set of assignments to the y variables plus the variables
of D′ (the w-expanded v variables and the x variables), that are not accepted by
D′. Then a minimum formula accepting at least S but not the all-true assignment
to these variables is of the form

∨
i∈I xi ∨

∨u+n
i=1 yi for some I ⊆ {1, 2, . . . , n}.

Position of the z variable. Finally, we show (Lemma 3.9) that there is a
minimum depth-d formula with top OR gate, equivalent to F̂ρ, in which zi occurs
directly under a second-level AND gate. We begin with two general lemmas

Lemma 3.6. LetA be a sub-formula of formulaG, and suppose formulaB implies
G. Then, the formula obtained by replacing A with A ∨B in G is equivalent to G.

Proof. Because all of the negations have been pushed to the variable level, flip-
ping the result of a non-input gate from false to true can only change the output
of the formula from false to true, and not the reverse. Since we are replacing
A with A ∨ B, this can only change the result of the top gate of A from false
to true. Furthermore, since B implies G, this can only occur when G is already
true, and thus it will not change the output. ��

Lemma 3.7. Let A be a sub-formula of formula G that implies G. Then, the
formula G′ obtained by replacing A with false in G, and then taking the disjunc-
tion of this new formula with A is equivalent to G.

Proof. In the case that A is true, then G must be true because A implies G. In
this case G′ will also be true, as A occurs directly beneath the top-level OR in
G′. In the case that A is false, G′ is equivalent to G with A replaced by false ,
so G′ has the same result as G in this case as well. ��

Note that the transformation in Lemma 3.7 does not increase the size of the
formula, nor its depth if G already has a top OR gate. We now describe how the
above general lemmas will be applied to F̂ρ:

The Complexity of Boolean Formula Minimization 33

Lemma 3.8. Suppose that F̂ρ has a sub-formula A∧I. If I∧ALLTRUE implies
F̂ρ, then there is an equivalent depth-d formula with top OR gate, F̂ ′ρ, where
either |F̂ ′ρ| < |F̂ρ| or |F̂ ′ρ| = |F̂ρ| and A ∧ I occurs at the second level.

Proof. By assumption I ∧ ALLTRUE implies F̂ρ, and so A ∧ I ∧ ALLTRUE
does as well. If A ∧ I ∧ ALLTRUE is equivalent to A ∧ I, then A ∧ I implies
F̂ρ. Then by Lemma 3.7, there is an equivalent formula F̂ ′ρ with |F̂ ′ρ| = |F̂ρ| and
A ∧ I occuring at the second level.

Otherwise A ∧ I accepts ALLTRUE. Since A ∧ I accepts ALLTRUE, A must
accept ALLTRUE, so A ∨ ALLTRUE ≡ 1. Thus, I ∧ (A ∨ ALLTRUE) is
equivalent to I. Thus, by Lemma 3.6, we can replace A ∧ I with I, resulting in
a formula F̂ ′ρ which is equivalent to F̂ρ and |F̂ ′ρ| < |F̂ρ|. ��

Lemma 3.9. There is a depth-d formula with top OR gate, F̂ ′ρ, that is equivalent
to F̂ρ and of no larger size, in which zi occurs exactly once, non-negated, and
directly under a second-level AND gate.

Proof. The proof is by case analysis. There are four cases depending on where
zi occurs in F̂ρ: under the top-level OR gate, under an AND gate below the
second level, under an OR gate below the third level, or under an OR gate at
the third level. In each case, we either derive a contradiction or show that the
formula can be transformed to the desired case of the zi occurring directly under
a second-level AND gate, without increasing size.

The full proof appears in the full version of this paper. ��

Finishing up. We now finish our proof using Lemma 3.10.

Lemma 3.10. There is a minimum depth-d formula with top OR gate equivalent
to F , of the form pictured in Figure 2.

Proof. By Lemma 3.9, there is a minimum depth-d formula with top OR gate
equivalent to F̂ρ that is of the form in Figure 2, but with the Z subformula

∨

A
∧

B Z

Fig. 2. The required form of a minimum depth-d formula with top OR gate equivalent
to F

34 D. Buchfuhrer and C. Umans

replaced by zi. Replacing zi with
∧2u+k+n+1
j=1 zj, we obtain a depth-d formula

for F , of the form pictured in Figure 2, of size at most |F̂ρ| + 2u + k + n. By
Lemma 3.3 (1), this quantity is a lower bound on the size of a minimum depth-d
formula with top OR gate equivalent to F , so it must be minimum. ��

Now we are finally able to argue that |F̂ | must be larger than 4u + 2k + 2n + 1.
First, observe that by Lemma 3.10, there is a depth-d formula equivalent to F
of the form pictured in Figure 2 whose size is the same as the size of F̂ . In
this formula, when Z is set to false, the function simplifies to just A, and by
the definition of F , this must be equivalent to D′, and hence it must have size
at least u. On the other hand, when Z is set to true, the formula must accept
every assignment in which at least one variable is set to false. This means that
B must accept everything not accepted by D′ except the “all-true” assignment.
By Lemma 3.5, we know that we can assume B to be a disjunction of negated
variables, and that it must have size at least u+ n+ k + 1 (because the original
MSSC instance was a negative instance). Adding the sizes of A and B to the
number of zi variables in Z, we have a formula of size at least 4u+ 2k + 2n+ 2.
We conclude that |F̂ | � 4u + 2k + 2n + 2 > 4u + 2k + 2n + 1 as required.

This completes the proof of Theorem 3.4.

3.2 The Unbounded Depth Case

The reduction for MEE is the same as the reduction in the previous section (3.1).
We never used the depth-d restriction in any of the arguments in that reduction;
it was only mentioned in the context of ensuring that various manipulations
maintained depth-d, a constraint that is no longer operative for the unbounded
depth case.

It is still convenient in the reduction to think of formulas with alternating
levels of unbounded-fanin AND and OR gates, and here we simply note that
discussing the size of such formulas is the same as discussing the size of standard,
fanin-2 (∧,∨,¬)-formulas.

Proposition 1. If F is a formula with unbounded-fanin AND and OR gates of
size s, then there is an equivalent formula F ′ with fanin-2 AND and OR gates of
size s. Similarly if there is a formula F with fanin-2 AND and OR gates of size
s, there is an equivalent formula F ′ with unbounded-fanin AND and OR gates
of size s.

4 Conclusions and Open Problems

The most natural open problems remaining are to give many-one reductions for
the problems in this paper (rather than Turing reductions), and to resolve the
complexity of the circuit version of the problem. Our techniques here rely heavily
on the fact that we are dealing with formulas rather than circuits.

Another important direction is to study the approximability of the problems
in this paper. For the depth-2 case (DNF minimization) it is known that the

The Complexity of Boolean Formula Minimization 35

problems are inapproximable to within very large (Nε) factors [Uma99a]. Our
reductions are quite fragile and do not seem to give any hardness of approxima-
tion results for these problems.

Finally, we note that the complexity of the “ΠP
2 ” versions of all of these

problems remain open. These are problems of the form: given a Boolean circuit
(of some specified form), is it a minimum circuit (of the specified form). Even
for depth two (DNFs), this problem is not known to be ΠP

2 -complete, although
it is conjectured to be complete for that class.

References

[DGK94] Devadas, S., Ghosh, A., Keutzer, K.: Logic synthesis. McGraw-Hill, New
York (1994)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York (1979)

[HW97] Hemaspaandra, E., Wechsung, G.: The minimization problem for Boolean
formulas. In: FOCS, pp. 575–584 (1997)

[KC00] Kabanets, V., Cai, J.-Y.: Circuit minimization problem. In: STOC, pp.
73–79 (2000)

[MS72] Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular ex-
pressions with squaring requires exponential space. In: FOCS, pp. 125–129.
IEEE, Los Alamitos (1972)

[Sto76] Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput.
Sci. 3(1), 1–22 (1976)

[Uma98] Umans, C.: The minimum equivalent DNF problem and shortest impli-
cants. In: FOCS, pp. 556–563 (1998)

[Uma99a] Umans, C.: Hardness of approximating ΣP
2 minimization problems. In:

FOCS, pp. 465–474 (1999)
[Uma99b] Umans, C.: On the Complexity and Inapproximability of Shortest Impli-

cant Problems. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.)
ICALP 1999. LNCS, vol. 1644, pp. 687–696. Springer, Heidelberg (1999)

[UVSV06] Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-
level logic minimization. IEEE Trans. on CAD of Integrated Circuits and
Systems 25(7), 1230–1246 (2006)

Optimal Cryptographic Hardness of Learning

Monotone Functions�

Dana Dachman-Soled, Homin K. Lee, Tal Malkin,
Rocco A. Servedio, Andrew Wan, and Hoeteck Wee

Columbia University
{dglasner,homin,tal,rocco,atw12,hoeteck}@cs.columbia.edu

Abstract. A wide range of positive and negative results have been
established for learning different classes of Boolean functions from uni-
formly distributed random examples. However, polynomial-time algo-
rithms have thus far been obtained almost exclusively for various classes
of monotone functions, while the computational hardness results ob-
tained to date have all been for various classes of general (nonmono-
tone) functions. Motivated by this disparity between known positive
results (for monotone functions) and negative results (for nonmonotone
functions), we establish strong computational limitations on the efficient
learnability of various classes of monotone functions.

We give several such hardness results which are provably almost op-
timal since they nearly match known positive results. Some of our re-
sults show cryptographic hardness of learning polynomial-size monotone
circuits to accuracy only slightly greater than 1/2 + 1/

√
n; this accu-

racy bound is close to optimal by known positive results (Blum et al.,
FOCS ’98). Other results show that under a plausible cryptographic
hardness assumption, a class of constant-depth, sub-polynomial-size cir-
cuits computing monotone functions is hard to learn; this result is close
to optimal in terms of the circuit size parameter by known positive re-
sults as well (Servedio, Information and Computation ’04). Our main
tool is a complexity-theoretic approach to hardness amplification via
noise sensitivity of monotone functions that was pioneered by O’Donnell
(JCSS ’04).

1 Introduction

More than two decades ago Valiant introduced the Probably Approximately Cor-
rect (PAC) model of learning Boolean functions from random examples [Val84].
Since that time a great deal of research effort has been expended on trying to un-
derstand the inherent abilities and limitations of computationally efficient learn-
ing algorithms. This paper addresses a discrepancy between known positive and
negative results for uniform distribution learning by establishing strong compu-
tational hardness results for learning various classes of monotone functions.
� Supported by NSF award CNS-0716245, DARPA grant HR0011-07-1-0012, NSF

CAREER award CCF-0347282, NSF CAREER CCF-03-047839, NSF award SBE-
0245014, NSF award CCF-0523664, and a Sloan Foundation Fellowship.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 36–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Cryptographic Hardness of Learning Monotone Functions 37

1.1 Background and Motivation

In the uniform distribution PAC learning model, a learning algorithm is given
access to a source of independent random examples (x, f(x)) where each x is
drawn uniformly from the n-dimensional Boolean cube and f is the unknown
Boolean function to be learned. The goal of the learner is to construct a high-
accuracy hypothesis function h, i.e., one which satisfies Pr[f(x) = h(x)] ≤ ε
where the probability is with respect to the uniform distribution and ε is an
error parameter given to the learning algorithm. Algorithms and hardness re-
sults in this framework have interesting connections with topics such as discrete
Fourier analysis [Man94], circuit complexity [LMN93], noise sensitivity and in-
fluence of variables in Boolean functions [KKL88, KOS04, OS07], and cryptog-
raphy [BFKL93, Kha95]. For these reasons, and because the model is natural
and elegant in its own right, the uniform distribution learning model has been
intensively studied for almost two decades.

Monotonicity makes learning easier. For many classes of functions, uni-
form distribution learning algorithms have been devised which substantially im-
prove on a naive exponential-time approach to learning via brute-force search.
However, despite intensive efforts, researchers have not yet obtained poly(n)-
time learning algorithms in this model for various simple classes of functions.
Interestingly, in many of these cases restricting the class of functions to the cor-
responding class of monotone functions has led to more efficient – sometimes
poly(n)-time – algorithms. We list some examples:

1. A simple algorithm learns monotone O(log n)-juntas to perfect accuracy
in poly(n) time, and a more complex algorithm [BT96] learns monotone
Õ(log2(n))-juntas to any constant accuracy in poly(n) time. In contrast, the
fastest known algorithm for learning arbitrary k-juntas runs in time n.704k

[MOS04].
2. The fastest known uniform distribution learning algorithm for the general

class of s-term DNF, due to Verbeurgt [Ver90], runs in time nO(log s) to learn
to any constant accuracy. In contrast, for s-term monotone DNF [Ser04] gives
an algorithm which runs in sO(log s) time. Thus the class of 2O(

√
logn)-term

monotone DNF can be learned to any constant accuracy in poly(n) time,
but no such result is known for 2O(

√
logn)-term general DNF.

3. The fastest known algorithm for learning poly(n)-size general decision trees
to constant accuracy takes nO(logn) time (this follows from [Ver90]), but
poly(n)-size decision trees that compute monotone functions can be learned
to any constant accuracy in poly(n) time [OS07].

4. No poly(n)-time algorithm can learn the general class of all Boolean functions
on {0, 1}n to accuracy better than 1

2 + poly(n)
2n , but a simple polynomial-

time algorithm can learn the class of all monotone Boolean functions to
accuracy 1

2 + Ω(1)√
n

[BBL98]. We note also that the result of [BT96] men-

tioned above follows from a 2Õ(
√
n)-time algorithm for learning arbitrary

38 D. Dachman-Soled et al.

monotone functions on n variables to constant accuracy (it is easy to see that
no comparable algorithm can exist for learning arbitrary Boolean functions
to constant accuracy).

Cryptography and hardness of learning. Essentially all known
representation-independent hardness of learning results (i.e., results which apply
to learning algorithms that do not have any restrictions on the syntactic form of the
hypotheses they output) rely on some cryptographic assumption, or an assumption
that easily implies a cryptographic primitive. For example, under the assumption
that certain subset sum problems are hard on average,Kharitonov [Kha95] showed
that the class AC1 of logarithmic-depth, polynomial-size AND/OR/NOT circuits is
hard to learn under the uniform distribution. Subsequently Kharitonov showed
[Kha93] that if factoring Blum integers is 2n

ε

-hard for some fixed ε > 0, then even
the class AC0 of constant-depth, polynomial-size AND/OR/NOT circuits similarly
cannot be learned inpolynomial timeunder the uniformdistribution. In laterwork,
Naor and Reingold [NR04] gave constructions of pseudorandom functions with
very low circuit complexity; their results imply that if factoring Blum integers is
super-polynomially hard, then even depth-5 TC0 circuits (composed of MAJ and
NOT gates) cannot be learned in polynomial time under uniform. We note that
all of these hardness results apply even to algorithms which may make black-box
“membership queries” to obtain the value f(x) for inputs x of their choosing.

Monotonicity versus cryptography? Given that cryptography precludes ef-
ficient learning while monotonicity seems to make efficient learning easier, it is
natural to investigate how these phenomena interact. One could argue that prior
to the current work there was something of a mismatch between known positive
and negative results for uniform-distribution learning: as described above a fairly
broad range of polynomial-time learning results had been obtained for various
classes of monotone functions, but there were no corresponding computational
hardness results for monotone functions. Can all monotone Boolean functions
computed by polynomial-size circuits be learned to 99% accuracy in polynomial
time from uniform random examples? As far as we are aware, prior to our work
answers were not known even to such seemingly basic questions about learning
monotone functions as this one. This gap in understanding motivated the re-
search presented in this paper (which, as we describe below, lets us answer “no”
to the above question in a strong sense).

1.2 Our Results and Techniques: Cryptography Trumps
Monotonicity

We present several different constructions of “simple” (polynomial-time com-
putable) monotone Boolean functions and prove that these functions are hard
to learn under the uniform distribution, even if membership queries are allowed.
We now describe our main results, followed by a high-level description of how
we obtain them.

In [BBL98] Blum et al. showed that arbitrary monotone functions cannot
be learned to accuracy better than 1

2 + O(log n)√
n

by any algorithm which makes

Optimal Cryptographic Hardness of Learning Monotone Functions 39

poly(n) many membership queries. This is an information-theoretic bound which
is proved using randomly generated monotone DNF formulas of size (roughly)
nlogn. A natural goal is to obtain computational lower bounds for learning
polynomial-time-computable monotone functions which match, or nearly match,
this level of hardness (which is close to optimal by the (1

2 + Ω(1)√
n

)-accuracy al-
gorithm of Blum et al. described above). We prove near-optimal hardness for
learning polynomial-size monotone circuits:

Theorem 1 (informal). If one-way functions exist, then there is a class of
poly(n)-size monotone circuits that cannot be learned to accuracy 1

2 + 1
n1/2−ε for

any fixed ε > 0.

Our approach yields even stronger lower bounds if we make stronger assump-
tions:

– Assuming the existence of subexponential one-way functions, we improve the
bound on the accuracy to 1/2 + polylog(n)/n1/2.

– Assuming the hardness of factoring Blum integers, our hard-to-learn func-
tions may be computed in monotone NC1.

– Assuming that Blum integers are 2n
ε

-hard to factor on average (the same
hardness assumption used in Kharitonov’s work [Kha93]), we obtain a lower
bound for learning constant-depth circuits of sub-polynomial size that almost
matches the positive result in [Ser04]. More precisely, we show that for any
(sufficiently large) constant d, the class of monotone functions computed by
depth-d AND/OR/NOT circuits of size 2(logn)O(1)/(d+1)

cannot be learned to
accuracy 51% under the uniform distribution in poly(n) time. In contrast,
the positive result of [Ser04] shows that monotone functions computed by
depth-d AND/OR/NOT circuits of size 2O((logn)1/(d+1)) can be learned to any
constant accuracy in poly(n) time.

These results are summarized in Figure 1.

Proof techniques. A natural first approach is to try to “pseudorandomize”
[BBL98]’s construction of random nlogn-term monotone DNFs. While we were
not able to do this directly, it turns out that a closely related approach does yield
some results along the desired lines. In the full version of the paper (available
online), we present and analyze a simple variant of the [BBL98] information-
theoretic construction and then show how to “pseudorandomize” the variant.
Since our variant gives a weaker quantitative bound on the information-theoretic
hardness of learning than [BBL98], this gives a construction of polynomial-
time-computable monotone functions which, assuming the existence of one-way
functions, cannot be learned to accuracy 1

2 + 1
polylog(n) under the uniform distri-

bution. While this answers the question posed above (even with “51%” in place
of “99%”), the 1

polylog(n) factor is rather far from the O(log n)√
n

factor that one
might hope for as described above.

In Section 2 we use a different construction to obtain much stronger quanti-
tative results; another advantage of this second construction is that it enables

40 D. Dachman-Soled et al.

Hardness assumption Complexity of f Accuracy bound Ref.

none random nlog n-term mono.
DNF

1
2 + ω(log n)

n1/2 [BBL98]

OWF (poly) poly-size monotone circuits 1
2 + 1

n1/2−ε Thm. 1

OWF (2nα

) poly-size monotone circuits 1
2 + poly(log n)

n1/2 Thm. 3

factoring BI (poly) monotone NC1-circuits 1
2 + 1

n1/2−ε FV

factoring BI (2nα

) AND/OR/NOT circuits of

size 2(log n)O(1)/(d+1)
and

depth d

1
2 + o(1) FV

Fig. 1. Summary of known hardness results for learning monotone Boolean functions.
The meaning of each row is as follows: under the stated hardness assumption, there is
a class of monotone functions computed by circuits of the stated complexity which no
poly(n)-time membership query algorithm can learn to the stated accuracy. In the first
column, OWF and BI denote one-way functions and Blum Integers respectively, and
“poly” and “2nα

” means that the problems are intractable for poly(n)- and 2nα

-time
algorithms respectively (for some fixed α > 0). Recall that the poly(n)-time algorithm
of [BBL98] for learning monotone functions implies that the best possible accuracy

bound for monotone functions is 1
2 + Ω(1)

n1/2 . “FV” means the result is established in the
full version of this paper.

us to show hardness of learning monotone circuits rather than just circuits com-
puting monotone functions. We start with the simple observation that using
standard tools it is easy to construct polynomial-size monotone circuits comput-
ing “slice” functions which are pseudorandom on the middle layer of the Boolean
cube {0, 1}n. Such functions are easily seen to be mildly hard to learn, i.e., hard
to learn to accuracy 1 − Ω(1)√

n
. We then use the elegant machinery of hardness

amplification of monotone functions which was pioneered by O’Donnell [O’D04]
to amplify the hardness of this construction to near-optimal levels (rows 2–4 of
Figure 1). We obtain our result for constant depth, sub-polynomial-size circuits
(row 5 of Figure 1) by augmenting this approach with an argument which at a
high level is similar to one used in [AHM+06], by “scaling down” and modifying
our hard-to-learn functions using a variant of Nepomnjaščĭı’s theorem [Nep70].

1.3 Preliminaries

We consider Boolean functions f : {0, 1}n→{0, 1}. We view {0, 1}n as endowed
with the natural partial order x ≤ y iff xi ≤ yi for all i = 1, . . . , n. A Boolean
function f is monotone if x ≤ y implies f(x) ≤ f(y).

We establish that a class C of functions is hard to learn by showing that for a uni-
form random f ∈ C, the expected error of any poly(n)-time learning algorithm L
is close to 1/2 when run with f as the target function. Thus we bound the quantity

Pr
f∈C,x∈{0,1}n

[Lf(1n)→h;h(x) = f(x)] (1)

Optimal Cryptographic Hardness of Learning Monotone Functions 41

where the probability is also taken over any internal randomization of the learn-
ing algorithm L. We say that class C is hard to learn to accuracy 1

2 + ε(n) if
for every poly(n)-time membership query learning algorithm L (i.e., p.p.t. or-
acle algorithm), we have (1) < 1

2 + ε(n) for all sufficiently large n. As noted
in [BBL98], it is straightforward to transform a lower bound of this sort into a
lower bound for the usual ε, δ formulation of PAC learning.

2 Lower Bounds Via Hardness Amplification of
Monotone Functions

In this section we prove our main hardness results, summarized in Figure 1, for
learning various classes of monotone functions under the uniform distribution
with membership queries.

Let us start with a high-level explanation of the overall idea. Inspired by the
work on hardness amplification within NP initiated by O’Donnell [O’D04, HVV06],
we study constructions of the form

f(x1, . . . , xm) = C(f ′(x1), . . . , f ′(xm))

where C is a Boolean “combining function” with low noise stability (we give
precise definitions later) which is both efficiently computable and monotone.
Recall that O’Donnell showed that if f ′ is weakly hard to compute and the
combining function C has low noise stability, then f is very hard to compute.
This result holds for general (non-monotone) functions C, and thus generalizes
Yao’s XOR lemma, which addresses the case where C is the XOR of m bits (and
hence has the lowest noise stability of all Boolean functions, see [O’D04]).

Roughly speaking, we establish an analogue of O’Donnell’s result for learn-
ing. Our analogue, given in Section 2.2, essentially states that for certain well-
structured1 functions f ′ that are hard to learn to high accuracy, if C has low
noise stability then f is hard to learn to accuracy even slightly better than 1/2.
Since our ultimate goal is to establish that “simple” classes of monotone func-
tions are hard to learn, we shall use this result with combining functions C that
are computed by “simple” monotone Boolean circuits. In order for the overall
function f to be monotone and efficiently computable, we need the initial f ′

to be well-structured, monotone, efficiently computable, and hard to learn to
high accuracy. Such functions are easily obtained by a slight extension of an
observation of Kearns et al. [KLV94]. They noted that the middle slice f ′ of a
random Boolean function on {0, 1}k is hard to learn to accuracy greater than
1 − Θ(1/

√
k) [BBL98, KLV94]; by taking the middle slice of a pseudorandom

function instead, we obtain an f ′ with the desired properties. In fact, by a result
of Berkowitz [Ber82] this slice function is computable by a polynomial-size mono-
tone circuit, so the overall hard-to-learn functions we construct are computed
by polynomial-size monotone circuits.

1 As will be clear, the proof requires that f ′ be balanced and have a “hard-core set.”

42 D. Dachman-Soled et al.

Organization. In Section 2.2 we adapt the analysis in [O’D04, HVV06] to
reduce the problem of constructing hard-to-learn monotone Boolean functions
to constructing monotone combining functions C with low noise stability. In
Section 2.3 we show how constructions and analyses from [O’D04, MO03] can be
used to obtain a “simple” monotone combining function with low noise stability.
In Section 2.4 we establish Theorems 2 and 3 (lines 2 and 3 of Figure 1) by making
different assumptions about the hardness of the initial pseudorandom functions.
Finally, by making specific number-theoretic assumptions (namely, the hardness
of factoring Blum integers), we obtain hard-to-learn monotone Boolean functions
that can be computed by very simple circuits (lines 4 and 5 of Figure 1); we defer
the formal statements and proofs of these results to the full version.

2.1 Preliminaries

Functions. Let C : {0, 1}m→{0, 1} and f ′ : {0, 1}k→{0, 1} be Boolean func-
tions. We write C ◦ f ′⊗m to denote the Boolean function over ({0, 1}k)m given
by

C ◦ f ′⊗m(x) = C(f ′(x1), . . . , f ′(xm)), where x = (x1, . . . , xm).

For g : {0, 1}k→{0, 1}, we write slice(g) to denote the “middle slice” function:

slice(g)(x) =

⎧
⎪⎨

⎪⎩

1 if |x| > �k/2�
g(x) if |x| = �k/2�
0 if |x| < �k/2�.

It is immediate that slice(g) is a monotone Boolean function for any g.

Bias and noise stability. Following the analysis in [O’D04, HVV06], we shall
study the bias and noise stability of various Boolean functions. Specifically, we
adopt the following notations and definitions from [HVV06]. The bias of a 0-1
random variable X is defined to be

Bias[X] def= |Pr[X = 0]− Pr[X = 1]|.

Recall that a probabilistic Boolean function h on {0, 1}k is a probability distri-
bution over Boolean functions on {0, 1}k (so for each input x, the output h(x)
is a 0-1 random variable). The expected bias of a probabilistic Boolean function
h is

ExpBias[h] def= Ex[Bias[h(x)]].

Let C : {0, 1}m→{0, 1} be a Boolean function and 0 ≤ δ ≤ 1
2 . The noise stability

of C at noise rate δ, denoted NoiseStabδ[C], is defined to be

NoiseStabδ[C] def= 2 · Pr
x,η

[C(x) = C(x⊕ η)]− 1

where x ∈ {0, 1}m is uniform random, η ∈ {0, 1}m is a vector whose bits are
each independently 1 with probability δ, and ⊕ denotes bitwise XOR.

Optimal Cryptographic Hardness of Learning Monotone Functions 43

2.2 Hardness Amplification for Learning

Throughout this subsection we write m for m(n) and k for k(n). We shall
establish the following:

Lemma 1. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function.
Let G′ be the family of all 22k

functions from {0, 1}k to {0, 1}, where n = mk
and k = ω(logn). Then the class C = {f = C ◦ slice(g)⊗m | g ∈ G′} of Boolean
functions over {0, 1}n is hard to learn to accuracy

1
2

+
1
2

√
NoiseStabΘ(1/

√
k)[C] + o(1/n).

This easily yields Corollary 1, which is an analogue of Lemma 1 with pseudoran-
dom rather than truly random functions, and which we use to obtain our main
hardness of learning results.

Proof of Lemma 1: Let k,m be such that mk = n, and let C : {0, 1}m→{0, 1}
be a Boolean combining function. We prove the lemma by upper bounding

Pr
g∈G′,x∈{0,1}n

[
Lf (1n)→ h; h(x) = f(x)

]
(2)

where L is an arbitrary p.p.t. oracle machine (running in time poly(n) on input
1n) that is given oracle access to f

def= C◦slice(g)⊗m and outputs some hypothesis
h : {0, 1}n→{0, 1}.

We first observe that since C is computed by a uniform family of circuits of
size poly(m) ≤ poly(n), it is easy for a poly(n)-time machine to simulate oracle
access to f if it is given oracle access to g. So (2) is at most

Pr
g∈G′, x∈{0,1}n

[
Lg(1n)→ h; h(x) = (C ◦ slice(g)⊗m)(x)

]
. (3)

To analyze the above probability, suppose that in the course of its execution L
never queries g on any of the inputs x1, . . . , xm ∈ {0, 1}k, where x = (x1, . . . , xm).
Then the a posteriori distribution of g(x1), . . . , g(xm) (for uniform random g ∈ G′)
given the responses to L’s queries that it received from g is identical to the dis-
tribution of g′(x1), . . . , g′(xm), where g′ is an independent uniform draw from G′:
both distributions are uniform random over {0, 1}m. (Intuitively, this just means
that if L never queries the random function g on any of x1, . . . , xm, then giving L
oracle access to g does not help it predict the value of f on x = (x1, . . . , xm).) Since
L runs in poly(n) time, for any fixed x1, . . . , xm the probability that L queried g

on any of x1, . . . , xm is at most m·poly(n)
2k . Hence (3) is bounded by

Pr
g,g′∈G′, x∈{0,1}n

[
Lg(1n)→ h; h(x) = (C ◦ slice(g′)⊗m)(x)

]
+

m · poly(n)
2k

. (4)

The first summand in (4) is the probability that L correctly predicts the value
C ◦ slice(g′)⊗m(x), given oracle access to g, where g and g′ are independently

44 D. Dachman-Soled et al.

random functions and x is uniform over {0, 1}n. It is clear that the best possible
strategy for L is to use a maximum likelihood algorithm, i.e., predict according
to the function h which, for any fixed input x, outputs 1 if and only if the random
variable (C ◦ slice(g′)⊗m)(x) (we emphasize that the randomness here is over the
choice of g′) is biased towards 1. The expected accuracy of this h is precisely

1
2

+
1
2

ExpBias[C ◦ slice(g′)⊗m]. (5)

Now fix δ
def=

(
k

�k/2�
)
/2k = Θ(1/

√
k) to be the fraction of inputs in the “middle

slice” of {0, 1}k. We observe that the probabilistic function slice(g′) (where g′

is truly random) is “δ-random” in the sense of ([HVV06], Definition 3.1), i.e.,
it is balanced, truly random on inputs in the middle slice, and deterministic on
all other inputs. This means that we may apply a technical lemma [HVV06,
Lemma 3.7]) to slice(g′) (see also [O’D04]) to obtain

ExpBias[C ◦ slice(g′)⊗m] ≤
√

NoiseStabδ[C]. (6)

Combining (4), (5) and (6) and recalling that k = ω(logn), we obtain Lemma 1.
��

Corollary 1. Let C : {0, 1}m→{0, 1} be a polynomial-time computable function.
Let G be a pseudorandom family of functions from {0, 1}k to {0, 1} which are
secure against poly(n)-time adversaries, where n = mk and k = ω(logn). Then
the class C = {f = C ◦ slice(g)⊗m | g ∈ G} of Boolean functions over {0, 1}n is
hard to learn to accuracy

1
2

+
1
2

√
NoiseStabΘ(1/

√
k)[C] + o(1/n).

Proof. The corollary follows from the fact that (3) must differ from its pseudo-
random counterpart,

Pr
g∈G, x∈{0,1}n

[
Lg(1n) → h; h(x) = (C ◦ slice(g)⊗m)(x)

]
, (7)

by less than 1/n2 (in fact by less than any fixed 1/ poly(n)). Otherwise, we would
easily obtain a poly(n)-time distinguisher that, given oracle access to g, runs L
to obtain a hypothesis h and checks whether h(x) = (C ◦ slice(g)⊗m)(x) for a
random x to determine whether g is drawn from G or G′. ��

By instantiating Corollary 1 with a “simple” monotone function C having low
noise stability, we obtain strong hardness results for learning simple monotone
functions. We exhibit such a function C in the next section.

2.3 A Simple Monotone Combining Function with Low Noise
Stability

In this section we combine known results of [O’D04, MO03] to obtain:

Optimal Cryptographic Hardness of Learning Monotone Functions 45

Proposition 1. Given a value k, let m = 3�d2d for �, d satisfying 3� ≤ k6 <
3�+1 and d ≤ O(k.35). Then there exists a monotone function C : {0, 1}m →
{0, 1} computed by a uniform family of poly(m)-size, log(m)-depth monotone
circuits such that

NoiseStabΘ(1/
√
k)[C] ≤ O

(k6 logm

m

)
. (8)

Note that in this proposition we may have m as large as 2Θ(k.35) but not larger.
O’Donnell[O’D04] gave a lower bound of Ω(log2m

m) on NoiseStabΘ(1/
√
k)[C] for

every monotone m-variable function C, so the above upper bound is fairly close
to the best possible (within a polylog(m) factor if m = 2k

Θ(1)
).

Following [O’D04, HVV06], we use the “recursive majority of 3” function and
the “tribes” function in our construction. We require the following results on
noise stability:

Lemma 2 ([O’D04]). Let Rec-Maj-3� : {0, 1}3�→{0, 1} be defined as follows:
for x = (x1, x2, x3) where each xi ∈ {0, 1}3�−1

,

Rec-Maj-3�(x)
def
= Maj(Rec-Maj-3�−1(x

1),Rec-Maj-3�−1(x
2),Rec-Maj-3�−1(x

3)).

Then for � ≥ log1.1(1/δ), we have NoiseStabδ[Rec-Maj-3�] ≤ δ−1.1(3�)−.15.

Lemma 3 ([MO03]). Let Tribesd : {0, 1}d2d→{0, 1} denote the “tribes” func-
tion on d2d variables, i.e., the read-once 2d-term monotone d-DNF

Tribesd(x1, . . . , xd2d)
def
= (x1 ∧ · · · ∧ xd) ∨ (xd+1 ∧ · · · ∧ x2d) ∨ · · · .

Then if η ≤ O(1/d), we have NoiseStab 1−η
2

[Tribesd] ≤ O
(
ηd2

d2d

)
≤ O

(
1
2d

)
.

Lemma 4 ([O’D04]). If h is a balanced Boolean function and ψ : {0, 1}r →
{0, 1} is arbitrary, then for any δ we have

NoiseStabδ[ψ ◦ h⊗r] = NoiseStab 1
2−

NoiseStabδ [h]
2

[ψ].

Proof of Proposition 1: We take C to be Tribesd ◦Rec-Maj-3⊗d2
d

� . Since
Rec-Maj-3� is balanced, by Lemma 4 we have

NoiseStabδ[C] = NoiseStab 1
2−

NoiseStabδ[Rec-Maj-3�]
2

[Tribesd].

Setting δ = Θ(1/
√
k) and recalling that 3� ≤ k6, we have � ≥ log1.1(1/δ) so we

may apply Lemma 2 to obtain

NoiseStabΘ(1/
√
k)[Rec-Maj-3�] ≤ Θ((

√
k)1.1)(k6)−.15 = O(k−.35).

Since O(k−.35) ≤ O(1/d), we may apply Lemma 3 with the previous inequalities
to obtain

NoiseStabΘ(1/
√
k)[C] ≤ O

(1
2d

)
.

The bound (8) follows from some easy rearrangement of the bounds on k,m, d
and �. It is easy to see that C can be computed by monotone circuits of depth
O(�) = O(logm) and size poly(m), and the proposition is proved. ��

46 D. Dachman-Soled et al.

2.4 Nearly Optimal Hardness of Learning Polynomial-Size
Monotone Circuits

Given a value of k, let m = 3�d2d for �, d as in Proposition 1. Let G be a
pseudorandom family of functions {g : {0, 1}k→{0, 1}} secure against poly(n)-
time adversaries, where n = mk. Since we have k = ω(logn), we may apply
Corollary 1 with the combining function from Proposition 1 and conclude that
the class C = {C ◦ slice(g)⊗m | g ∈ G} is hard to learn to accuracy

1
2

+ O
(k3

√
logm√
m

)
+ o(1/n) ≤ 1

2
+ O

(k3.5
√

log n√
n

)
. (9)

We claim that in fact the functions in C can be computed by poly(n)-size mono-
tone circuits. This follows from a result of Berkowitz [Ber82] which states that if
a k-variable slice function is computed by a AND/OR/NOT circuit of size s and
depth d, then it is also computed by a monotone AND/OR/MAJ circuit of size
O(s + k) and depth d + 1. Combining these monotone circuits for slice(g) with
the monotone circuit for C, we obtain a poly(n)-size monotone circuit for each
function in C.

By making different assumptions on the hardness of pseudorandom function
families (in fact, the assumptions may be made about one-way functions–a more
formal treatment is given in the full version), we obtain quantitative relation-
ships between k (the input length for the pseudorandom functions) and n (the
running time of the adversaries against which they are secure), and thus different
quantitative hardness results from (9) above:

Theorem 2. Suppose that standard one-way functions exist. Then for any con-
stant ε > 0 there is a class C of poly(n)-size monotone circuits that is hard to
learn to accuracy 1

2 + 1
n1/2−ε .

Proof. If poly(n)-hard one-way functions exist then for any arbitrarily small
constant c there exists a pseudorandom family of functions from {0, 1}k→{0, 1}
with k = nc; this corresponds to taking d = C log k for C a large constant in
Proposition 1. The claimed bound on (9) easily follows. (We note that while not
every n is of the required form mk = 3�d2dk, it is not difficult to see that this
and our subsequent theorems hold for all (sufficiently large) input lengths n by
padding the hard-to-learn functions.) ��

Theorem 3. Suppose that subexponentially hard (2n
α

for some fixed α > 0)
one-way functions exist. Then there is a class C of poly(n)-size monotone circuits
that is hard to learn to accuracy 1

2 + polylog(n)
n1/2 .

Proof. As above, but now we take k = logC n for some sufficiently large constant
C (i.e., d = c log k for a small constant c). ��

Optimal Cryptographic Hardness of Learning Monotone Functions 47

References

[AHM+06] Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., Saks, M.: Minimizing
DNF Formulas and AC0

d Circuits Given a Truth Table. In: CCC, pp. 237–
251 (2006)

[BBL98] Blum, A., Burch, C., Langford, J.: On learning monotone boolean func-
tions. In: 39th FOCS, pp. 408–415 (1998)

[Ber82] Berkowitz, S.J.: On some relationships between monotone and non-
monotone circuit complexity. Technical Report, University of Toronto
(1982)

[BFKL93] Blum, A., Furst, M., Kearns, M., Lipton, R.: Cryptographic Primitives
Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1993)

[BT96] Bshouty, N., Tamon, C.: On the Fourier spectrum of monotone functions.
Journal of the ACM 43(4), 747–770 (1996)

[HVV06] Healy, A., Vadhan, S., Viola, E.: Using Nondeterminism to Amplify Hard-
ness. SIAM Journal on Computing 35(4), 903–931 (2006)

[Kha93] Kharitonov, M.: Cryptographic hardness of distribution-specific learning.
In: 25th STOC, pp. 372–381 (1993)

[Kha95] Kharitonov, M.: Cryptographic lower bounds for learnability of Boolean
functions on the uniform distribution. JCSS 50, 600–610 (1995)

[KKL88] Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean func-
tions. In: 29th FOCS, pp. 68–80 (1988)

[KLV94] Kearns, M.J., Li, M., Valiant, L.G.: Learning boolean formulas. J.
ACM 41(6), 1298–1328 (1994)

[KOS04] Klivans, A., O’Donnell, R., Servedio, R.: Learning intersections and thresh-
olds of halfspaces. JCSS 68(4), 808–840 (2004)

[LMN93] Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier trans-
form and learnability. Journal of the ACM 40(3), 607–620 (1993)

[Man94] Mansour, Y.: Learning Boolean functions via the Fourier transform, pp.
391–424. Kluwer Academic Publishers, Dordrecht (1994)

[MO03] Mossel, E., O’Donnell, R.: On the noise sensitivity of monotone functions.
Random Struct. Algorithms 23(3), 333–350 (2003)

[MOS04] Mossel, E., O’Donnell, R., Servedio, R.: Learning functions of k relevant
variables. J. Comput. & Syst. Sci. 69(3), 421–434 (2004)

[Nep70] Nepomnjaščĭl, V.A.: Rudimentary predicates and Turing calculations.
Math Dokl. 11, 1462–1465 (1970)

[NR04] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. Journal of the ACM 51(2), 231–262 (2004)

[O’D04] O’Donnell, R.: Hardness amplification within NP. JCSS 69(1), 68–94 (2004)
[OS07] O’Donnell, R., Servedio, R.: Learning monotone decision trees in polyno-

mial time. SIAM Journal on Computing 37(3), 827–844 (2007)
[Raz85] Razborov, A.: Lower bounds on the monotone network complexity of the

logical permanent. Mat. Zametki 37, 887–900 (1985)
[Ser04] Servedio, R.: On learning monotone DNF under product distributions. In-

formation and Computation 193(1), 57–74 (2004)
[Val84] Valiant, L.: A theory of the learnable. CACM 27(11), 1134–1142 (1984)
[Ver90] Verbeurgt, K.: Learning DNF under the uniform distribution in quasi-

polynomial time. In: 3rd COLT, pp. 314–326 (1990)

On Berge Multiplication for Monotone Boolean

Dualization�

Endre Boros1, Khaled Elbassioni2, and Kazuhisa Makino3

1 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003
boros@rutcor.rutgers.edu

2 Max-Planck-Institut für Informatik, 66111 Saarbrücken, Germany
elbassio@mpi-sb.mpg.de

3 Department of Mathematical Informatics, University of Tokyo, Tokyo, 113-8656,
Japan

makino@mist.i.u-tokyo.ac.jp

Abstract. Given the prime CNF representation φ of a monotone Boolean
function f : {0, 1}n �→ {0, 1}, the dualization problem calls for finding the
corresponding prime DNF representation ψ of f . A very simple method
(called Berge multiplication [2, Page 52–53]) works by multiplying out the
clauses of φ from left to right in some order, simplifying whenever possible
using the absorption law. We show that for any monotone CNF φ, Berge
multiplication can be done in subexponential time, and for many inter-
esting subclasses of monotone CNF’s such as CNF’s with bounded size,
bounded degree, bounded intersection, bounded conformality, and read-
once formula, it can be done in polynomial or quasi-polynomial time.

1 Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function. A function is called monotone
(also called positive) if for every pair of vectors x, y ∈ {0, 1}n, x ≤ y (i.e., xi ≤ yi
for all i) always implies f(x) ≤ f(y). Any monotone function f has a unique
prime conjunctive normal form (CNF) expression

φ(x) =
∧

C∈C

(∨

i∈C
xi

)
, (1)

where C is Sperner (i.e., I ⊆ J holds for I, J ∈ C with I = J). It is well-
known that C corresponds to the set of all prime implicates of f . The well-
known monotone Boolean dualization problem is to find the corresponding prime
disjunctive normal form (DNF) representation of f :

ψ(x) =
∨

D∈D

(∧

i∈D
xi

)
, (2)

� The first author is thankful for the partial support by NSF (CBET-0735910). The
second and third authors thank the partial support by DIMACS, the National Sci-
ence Foundation’s Center for Discrete Mathematics and Theoretical Computer Sci-
ence.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 48–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Berge Multiplication for Monotone Boolean Dualization 49

whereD is Sperner and corresponds to the set of all prime implicants of f . Equiv-
alently, the problem is to compute, for an explicitly given hypergraph C ⊆ 2V ,
the transversal hypergraph D, consisting of all minimal transversals D of H (i.e.,
all minimal subsets D ⊆ V such that D∩C = ∅ for all C ∈ C). This problem has
received considerable attention in the literature (see e.g., [9,11,23,25]), since it is
known to be polynomially or quasi-polynomially equivalent with many problems
in various areas, such as artificial intelligence (e.g., [9,17]), database theory (e.g.,
[24]), distributed systems (e.g., [16]), machine learning and data mining (e.g.,
[6,15]), mathematical programming (e.g., [4,19]), matroid theory (e.g., [21]), and
reliability theory (e.g., [26]).

While the size of the output DNF ψ can be exponential in the size of φ, it is
open (for more than 25 years now, e.g., [3,10,22,23,25]) whether ψ can be com-
puted in output-polynomial (or polynomial total) time, i.e., in time polynomial in
the combined size of φ and ψ. Any such algorithm for the monotone dualization
problem would significantly advance the state of the art of the problems in the
application areas mentioned above. This is witnessed by the fact that these prob-
lems are cited in a rapidly growing body of literature and have been referenced
in various survey papers and complexity theory retrospectives, e.g. [10,12,23,25].

In 1996, Fredman and Khachiyan [14] established a remarkable result that the
monotone dualization problem can be solved in quasi-polynomial time O(nN)+
No(logN), where N = |φ| + |ψ|, thus putting the problem somewhere between
polynomiality and NP-completeness. They achieved this by presenting a quasi-
polynomial time algorithm for the decision-version of the problem: given two
monotone Boolean formulae φ and ψ in CNF and DNF respectively, is φ ≡ ψ ?
Furthermore, for several special classes of monotone formulae φ, the problem is
known to be solvable in polynomial time, e.g., when every clause has bounded-
size [5,9], when every variable has bounded degree [7,11], when clauses have
bounded intersection-size [20], for read-once formulae [8], etc.

A very simple method to solve the monotone dualization problem, called left-to-
right multiplication, or sometimes Berge multiplication (see [2, Page 52–53]), works
by traversing the clauses of the input CNF in some order, say j = 1, . . . ,m =
|φ|, multiplying out clause Cj with the DNF obtained for C1 ∧ . . . ∧ Cj−1, and
simplifying the DNF’s using the absorption law (i.e., the identity x ∨ (x ∧ y) =
x for all Boolean x, y) whenever possible (see Figure 1). We remark that many
practical algorithms for monotone dualization are obtained from the left-to-right
multiplication by putting several heuristic ideas (see e.g., [1,18]).

It is not difficult to come up with examples for which this method exhibits
an exponential blow-up in the input-output size, e.g., the intermediate DNFs are
exponential in the input size, while the final output is polynomially-bounded.
Consider for instance, a CNF φ =

∧
1≤i,j≤n(xi ∨ yj) on the set of 2n variables

{x1, . . . , xn, y1, . . . , yn}. One can easily check that the corresponding prime DNF
is (x1 ∧ . . . ∧ xn) ∨ (y1 ∧ . . . ∧ yn). On the other hand, if we start by multiply-
ing the clauses (x1 ∨ y1), . . . , (xn ∨ yn), then we get 2n clauses, which will be
canceled out later in the process. More interestingly, Takata [27] gave an exam-
ple for which the left-to-right multiplication method exhibits a superpolynomial

50 E. Boros, K. Elbassioni, and K. Makino

blow-up, under any ordering of the clauses of the input CNF. He also suggested
a generalization of the multiplication method which was shown to be output
quasi-polynomial in [13].

In view of this result, it is natural to ask whether there is an example where
an exponential blow-up is unavoidable under any ordering of the clauses. In
this paper, we answer this question in the negative. Namely, we show that, for
any monotone CNF, there is an ordering of the clauses such that the size of the
intermediate DNF at any stage of the left-to-right multiplication is bounded by a
subexponential in the input-output size. Furthermore, we show that, for several
interesting well-known classes of monotone CNF formulae such as read-once,
bounded degree, bounded clause-size, etc., there are orderings of the clauses
that guarantee (quasi-)polynomial blow-up’s. The only result we are aware of
this type is the one for bounded degree formulae [7].

To formally state our results, let us consider a monotone CNF φ = C1 ∧ · · · ∧
Cm, and let π ∈ Sm be a permutation of the clauses, where Sm denotes the set
of all permutations of m elements. For j = 1, . . . ,m, let φπj denote the CNF

having the first j clauses in φ according to the ordering π, i.e., φπj
def=

∧j
l=1 Cπ(l).

For a CNF (resp., DNF) ϕ, we denote by |ϕ| the number of clauses (resp.,
terms). Denote by ν(π) the size of a maximum intermediate DNF produced
during the left-right multiplication, i.e., ν(π) def= max1≤j≤m |(φπj)∗|, where, for
a monotone CNF ϕ, ϕ∗ denotes the prime DNF corresponding to ϕ. Then we
have the following theorem.

Theorem 1. Let φ be a prime monotone CNF with n variables and m clauses.
Then

(i) If φ has bounded clause-size, bounded degree, bounded intersection-size, or
bounded degeneracy, then there exists a permutation π of the clauses in φ
such that ν(π) = |φ∗|O(1).

(ii) If φ has bounded conformality or read-once representation, then there exists
a permutation π of the clauses in φ such that ν(π) = |φ∗|O(logm).

(iii) For any prime monotone CNF φ, there exists a permutation π of the clauses
in φ such that ν(π) ≤ n

√
n+1|φ∗|

√
n lnm.

Furthermore, such permutations can be found in polynomial time in n and m.

The formal definitions of the types of CNF’s stated in (i) and (ii) will be given in
Sections 3 and 4. We remark that there is a prime monotone CNF φ with read-
once representation such that ν(π) = |φ∗|Ω(log logm) holds for any permutation
π of clauses in φ [27].

It is easy to see that, for a given permutation π, the left-to-right multiplication
takes polynomial time in n, m, and ν(π), where more careful analysis can be
found in Section 2. Thus, the theorem above gives an upper bound on the running
time of the left-to-right multiplication procedure.

Corollary 1. The following three statements hold.

On Berge Multiplication for Monotone Boolean Dualization 51

(i) If φ is a prime monotone CNF that has bounded clause-size, bounded de-
gree, bounded intersection-size, or bounded degeneracy, then the left-to-right
multiplication for φ can be done in output-polynomial time.

(ii) If φ is a prime monotone CNF that has bounded conformality or read-
once representation, then the left-to-right multiplication for φ can be done in
output-quasi-polynomial time.

(iii) For any prime monotone CNF, the left-to-right multiplication can be done
in output-subexponential time.

The rest of the paper is organized as follows. In the next section, we state our
notation and present several properties of left-to-right multiplication used in the
following sections. In Section 3, we show that the left-to-right multiplication
based on reverse lexicographic ordering of clauses is an efficient way of dualizing
monotone CNF’s with bounded clause-size, bounded degree, or bounded clause-
intersections. In Section 4, we present a more general technique for ordering the
clauses of an input CNF, and derive from it the above stated results for general
monotone CNF’s and for some special classes.

2 Preliminaries

Let φ = φ(x1, . . . , xn) be a formula. We denote by V (φ) the set of variables in φ.
For convenience, if φ is a monotone CNF (resp. DNF) and C is a clause (resp.,
term) in φ, we shall write C ∈ φ, and view C also as the index set C ⊆ V (φ) of
the variables that it contains. This way, one can also view φ as a subfamily of
2V (φ), each of which represents a clause (resp., term), and thus use ordinary set
operations on it. A monotone CNF φ is prime if for all C,C′ ∈ φ, C ⊆ C′ implies
that C = C′ (see (1)). If φ is a monotone CNF formula, we denote by φ∗ a prime
DNF formula representing the same monotone Boolean function as φ (see (2)).
As mentioned in the Introduction, any monotone function has a unique prime
CNF (DNF) expression. In this paper we consider the following problem:

Problem Monotone Boolean Dualization

Input: The prime CNF φ of a monotone Boolean function.
Output: The prime DNF φ∗.

For a given monotone CNF φ we use the notation: n = |V (φ)| and m = |φ|.
The left-to-right multiplication given in Figure 1 is one of the simplest proce-

dures to solve the Monotone Boolean Dualization. Here function Min(·)
takes the conjunction of a monotone prime DNF ρ and a monotone clause C,
and returns a prime monotone DNF ρ′ that is equivalent to ρ ∧ C. It is not
difficult to see that for all j = 1, . . . ,m, ψj in Figure 1 satisfies ψj = (φπj)

∗, and
hence the left-to-right multiplication correctly computes φ∗ (= ψm).

Proposition 1. For a prime monotone CNF φ and a permutation π ∈ Sm,
LR-Mult(φ, π) can be implemented to run in O(nmν(π)min{m, ν(π)}) time.

52 E. Boros, K. Elbassioni, and K. Makino

Procedure LR-Mult(φ, π):
Input: The prime CNF φ = ∧m

j=1Cj of a monotone Boolean function and
a permutation π ∈ Sm.

Output: The prime DNF φ∗.

ψ0:= ∅
for j = 1, . . . , m

ψj := Min(ψj−1 ∧ Cπ(j))
return ψm

Fig. 1. The left-to-right multiplication

For a monotone CNF φ and i ∈ V (φ), we denote by φ(i) the subformula of
φ consisting of all clauses containing variable xi, and let degφ(i) = |φ(i)| be
the degree of xi in φ. For a subset S ⊆ V (φ) of variables, denote by φS the
CNF formula obtained form φ by fixing xi = 1 for all i ∈ V (φ)\S. Equivalently,
φS =

∧
C∈φ:C⊆S

(∨
i∈C xi

)
. Thus we call φS the projection of φ on S. The reason

that we are interested in projections is the following.

Proposition 2 ([22]). Let φ be a monotone CNF. For any S ⊆ V (φ), we have
|φ∗S | ≤ |φ∗|.

Clearly, we have |(φ ∧ φ′)∗| ≤ |φ∗||(φ′)∗| for any CNF’s φ and φ′, and thus the
above proposition implies the following claims.

Lemma 1. Let φ ba a monotone CNF. If φ′ = φS1 ∧ φS2 ∧ · · · ∧ φSk
for some

subsets S� ⊆ V (φ), � = 1, .., k, then we have |(φ′)∗| ≤ |φ∗|k.

Lemma 2. Let φ =
∧m
j=1 Cj be a monotone CNF, and let π ∈ Sm be a per-

mutation of the clauses of φ such that for every j = 1, . . . ,m there exists some
subsets Sj,� ⊆ V , � = 1, . . . , kj such that

φπj = φSj,1 ∧ φSj,2 ∧ · · · ∧ φSj,kj
(3)

holds. Let k = max{k1, . . . , km}. Then ν(π) ≤ |φ∗|k, and thus LR-Mult(φ, π)
computes φ∗ in O(nm|φ∗|kmin{m, |φ∗|k}) time.

In the following sections we show various techniques to find such an ordering π
of φ which guarantees a small k in the above statement.

3 Reverse Lexicographic Orderings

Assume that V = V (φ) (= {1, 2, . . . , n}) and for subsets A,B ⊆ V let us denote
by L = L(A,B) their last common elements, i.e., L is the maximal subset L ⊆
A ∩ B such that for all i1 ∈ (A ∪ B) \ L and i2 ∈ L we have i1 < i2. We say
that A precedes B if max(A\L(A,B)) < max(B \L(A,B)). Finally, we say that
{C1, C2, . . . , Cm} is the reverse lexicographic labeling of φ (or that the clauses of
φ are in reverse lexicographic order), if Cj1 precedes Cj2 for all 1 ≤ j1 < j2 ≤ m.

On Berge Multiplication for Monotone Boolean Dualization 53

Clearly, the reverse lexicographic order of the clauses is determined uniquely by
the ordering of the variable indices in V . To denote this dependence, let us use
Lσ(A,B) for the last common elements of A and B, when V is ordered by a
permutation σ ∈ Sn, and call the corresponding ordering of the clauses of φ the
σ-reverse lexicographic order of φ, denoted by πσ.

Given a permutation σ ∈ Sn, let μσ(φ) def= max1≤j<m |Lσ(Cπσ(j), Cπσ(j+1))|.
Note that the value of μσ(φ) can be computed in O(nm) time.

To simplify our notations, let us assume that σ = (1, . . . , n) and πσ =
(1, . . .m), i.e., {C1, . . . , Cm} is the σ-reverse lexicographic labeling of φ. Given
an index 1 ≤ j < m, let us introduce Lj = Lσ(Cj , Cj+1), λ = |Lj |, and
φj = φπσ

j (= C1 ∧ · · · ∧ Cj). By definition, we have λ ≤ μσ(φ). Furthermore,
let Lj = {i1, i2, . . . , iλ}, where i1 < · · · < iλ, and i0 is the largest element in
Cj+1 \ Lj. Clearly, {i0, . . . , iλ} are the last λ + 1 elements of Lj+1.

Let [i] = {1, . . . , i} and consider the following subsets of V :

S� = [i� − 1] ∪
λ⋃

k=�+1

{ik} for all � = 0, . . . , λ. (4)

Lemma 3. For all 1 ≤ j < m we have φj = φS0 ∧ · · · ∧ φSλ
.

Lemma 4. For every j = 1, 2, . . . ,m we have k (≤ 1 + μσ(φ)) subsets Sj,1,
Sj,2, . . . , Sj,k of V such that (3) holds.

Theorem 2. For every CNF φ and permutation σ ∈ Sn, |ν(πσ)| ≤ |φ∗|1+μσ(φ).
Thus LR-Mult computes φ∗ in O(nm|φ∗|1+μσ(φ) min{m, |φ∗|1+μσ(φ)}) time.

Proof. The theorem follows from Proposition 1 and Lemma 4. ��
We shall show in the next subsections that even with σ = (1, 2, . . . , n), the
class of CNF’s φ for which μσ(φ) is a fixed constant includes several well-known
classes, proving that LR-Mult provides an efficient dualization for all these cases.
Before turning to special types of CNF’s, let us observe a useful property of the
sets introduced in (4).

Lemma 5. For every � = 0, . . . , λ, the sets in (φS0 ∪ φS1 ∪ · · · ∪ φS�
) \

(
φS�+1∪

· · · ∪ φSλ
) all contain L = {i�+1, . . . , iλ} as their last elements according to πσ.

Unless otherwise stated, let us assume in the sequel that σ = (1, 2, . . . , n) and
eliminate it from our notations, and let π = πσ.

3.1 Degenerate CNF’s

Given a CNF φ, let us denote by Δ(φ) = maxi∈V degφ(i) the maximum de-
gree of a variable in φ. For a given k, we say that φ has bounded occurrences if
Δ(φ) ≤ k. More generally, a CNF φ is said to be k-degenerate [11], for an integer
k ∈ Z+, if for any S ⊆ V , mini∈S degφS

(i) ≤ k. Equivalently, φ is k-degenerate
if and only if there exists a permutation σ ∈ Sn of the variables such that, for all

54 E. Boros, K. Elbassioni, and K. Makino

i = 1, . . . , n, degφ[i]
(i) ≤ k. Here we note that such a permutation can be com-

puted in O(nm) time [11]. This class includes for instance formulae of bounded
occurrences, bounded hypertree-width; see [11]. The following statement thus
generalizes the results of [7].

Theorem 3. If φ is a k-degenerate CNF and σ is a permutation of variables
such that degφ[i]

(i) ≤ k for all i = 1, . . . , n, then we have ν(πσ) ≤ |φ∗|nk−1, and
thus LR-Mult computes φ∗ in O(nkm|φ∗|min{m,nk−1|φ∗|}) time.

Proof. Assume without loss of generality that σ = (1, . . . , n) is a permutation
of variables such that degφ[i]

(i) ≤ k for all i = 1, . . . , n. Let j be an integer in
[m− 1]. If Lj = ∅, then φj = φS0 and hence |(φj)∗| ≤ |φ∗|. On the other hand,
if Lj = ∅, then by Lemma 5, the clauses in

(
φS0 ∪ φS1 ∪ · · · ∪ φSλ−1

)
\ φSλ

all
contain iλ as their last element, and we cannot have more than k−1 such clauses,
since degφ[iλ]

(iλ) ≤ k and iλ ∈ Cj+1. This implies |(φj)∗| ≤ nk−1|(φSλ
)∗| ≤

nk−1|φ∗|. ��
We remark that for CNFs with bounded occurrences, any ordering σ of variables
produces a good left-to-right multiplication.

3.2 CNF’s with Bounded (k, r)-Intersections

Given a CNF φ, let D1(φ) and D2(φ) respectively denote the dimension and
intersection size of φ, i.e., D1(φ) = maxC∈φ |C| and D2(φ) = maxC,C′∈φ

C �=C′
|C∩C′|.

For a given r we say that φ has bounded dimension and intersections if D1(φ) ≤ r
and D2(φ) ≤ r, respectively.

We generalize classes of monotone CNF’s with bounded occurrences, bounded
dimension, and bounded intersection as follows. Let k ≥ 1 and r ≥ 0 be integers.
We denote by A(k, r) the class of of monotone CNF formulae with (k, r)-bounded
intersections [20]: φ ∈ A(k, r) if for any k distinct clauses of φ, Cj1 , . . . , Cjk , we
have |

⋂k
�=1 Cj� | ≤ r. Note that Δ(φ) ≤ k iff φ ∈ A(k + 1, 0), D1(φ) ≤ r iff φ ∈

A(1, r), and D2(φ) ≤ r iff φ ∈ A(2, r), and hence, the class A(k, r) contains the
bounded size, bounded degree, and bounded intersections CNF’s as subclasses.

Lemma 6. Let φ ∈ A(k, r) and let σ be an arbitrary permutation of variables.
Then, for any index j with 1 ≤ j < m,

|(φπσ

j)∗| ≤

⎧
⎨

⎩

|φ∗|r if λ < r
|φ∗|r+1 if λ = r
nk−2|φ∗|r+1 if λ > r,

where λ = |Lj | (= |Lσ(Cπσ(j), Cπσ(j+1))|).

Lemma 7. Let φ ∈ A(k, r) and let σ be an arbitrary permutation of variables.
Then, for any index j with 1 ≤ j < m, λ < r holds for k = 1, and λ ≤ r holds
for k = 2, where λ = |Lj | (= |Lσ(Cπσ(j), Cπσ(j+1))|).

From Lemmas 6 and 7, we have the following theorem.

On Berge Multiplication for Monotone Boolean Dualization 55

Theorem 4. Let φ ∈ A(k, r) and let σ ∈ Sn be an arbitrary permutation. Then

ν(πσ) ≤

⎧
⎨

⎩

|φ∗|r if k = 1
|φ∗|r+1 if k = 2
nk−2|φ∗|r+1 if k ≥ 3,

and thus LR-Mult computes φ∗ in

O(nm|φ∗|rmin{m, |φ∗|r}) time if k = 1,
O(nm|φ∗|r+1 min{m, |φ∗|r+1}) time if k = 2, and
O(nk−1m|φ∗|r+1 min{m,nk−2|φ∗|r+1}) time if k ≥ 3.

As a corollary, for prime monotone CNFs φ with bounded degree Δ(φ) ≤ k,
LR-Mult computes φ∗ in O(nkm|φ∗|min{m,nk−1|φ∗|}) time, which matches
Theorem 3.

4 Multiplication-Tree Orderings

Given a monotone CNF φ, we build a binary tree T, which we call a multiplication
tree, each node v of which is associated with a monotone CNF φ(v) as follows:

(I) if v is a leaf then φ(v) is an individual clause of φ and every clause of φ
appears uniquely in a leaf of T;

(II) if v is an internal node, then it has two children u and w such that φ(v) =
φ(u)∧φ(w), i.e., φ(v) is the conjunction of the subset of clauses of φ appearing
in the leaves of the subtree of T rooted at v.

For a binary multiplication tree T, we fix a planar embedding of T and let πT
be the order of clauses defined by the left-to-right traversal of the leaves of T.
Namely, πT is obtained in the depth-first search from the root of T in which at
each node, the left child is visited before the right one.

Note that any ordering π of clauses in φ can be represented by π = πT

for some multiplication tree. Denote by N (T) the set of nodes of the tree T.
For a node v ∈ N (T), let φv be the subformula of φ obtained by the left-to-
right traversal of the leaves of T upto the right-most leaf of the subtree rooted
at v: φv = φπTr (=

∧r
i=1 CπT(i)), where r is the number of leaves, counted

from the left-most leaf of T, up to the right-most leaf of the subtree rooted
at v. In what follows we denote by ν(T) the size of a maximum intermediate
DNF produced during LR-Mult(φ, πT): ν(T) = ν(πT) = maxv∈N (T){|(φv)∗|}.
We denote respectively by p(v), left(v), and right(v), the parent, left and right
children of node v ∈ N (T).

A binary multiplication tree T is called proper if for every v ∈ N (T), the
set φ(left(v)) is a projection of φ(v), i.e., there exists a set S ⊆ V (φ) such that
φ(v)S = φ(left(v)). Call a node v ∈ N (T) an L-node (resp., R-node) if v is the
left (resp., right) child of its parent in T. Define the right-depth of v ∈ N (T),
denoted by d(v), to be one plus the number of R-nodes in the path from the root
r(T) of T to v, and define the right-depth of T, by d(T) = maxv∈N (T) d(v).

56 E. Boros, K. Elbassioni, and K. Makino

Procedure Construct-Tree-A(φ, v):
Input: A prime monotone CNF φ and a node v of the tree.
Output: A proper binary multiplication tree for φ rooted at v.

φ(v):= φ
if |φ(v)| > 1

Construct the left and right children left(v) and right(v) of v
i:= argmin{degφ(i) : i ∈ V (φ)}
Call Construct-Tree-A(φV (φ)\{i}, left(v))
Call Construct-Tree-A(φ(i), right(v))

Fig. 2. Procedure Construct-Tree-A to construct a proper multiplication tree for φ

Theorem 5. Let φ be a monotone CNF. If T be a proper binary multiplication
tree of φ, then we have ν(T) ≤ |ψ∗|d(T).

4.1 Quasi-polynomial Cases

Conformal CNF’s. There are several equivalent definitions for conformal
CNF’s (see [2, Page 90]). The most convenient for our purposes is the following:
For an integer k ≥ 1, a monotone CNF φ is called k-conformal if for every subset
of variables X ⊆ V (φ), X is contained in a clause of φ whenever each subset of
X of cardinality at most k is contained in a clause of φ. One can easily verify
that φ ∈ A(k, r) implies that φ is (k + r)-conformal. Thus the class of CNF’s
with bounded conformality includes as a special case the CNF’s with bounded
intersections considered in the previous section.

Although the prime DNF representation of a k-conformal CNF can be com-
puted in polynomial time if k is constant [20], we can only show a quasi-
polynomial bound for the left-to-right multiplication.

Lemma 8. Let φ =
∧m
j=1 Cj be a k-conformal prime monotone CNF. Then

there is a proper binary multiplication tree T with d(T) ≤ k lnm + 1.

Proof. We use the procedure in Figure 2, combined with the following claim.

Claim (C1). Let φ′ ⊆ φ be a subformula of φ such that |φ′| > 1. Then there
exists an infrequent variable i ∈ V (φ′): |φ′(i)| ≤ (1 − 1

k)|φ′|.
We now argue that the right-depth of T is logarithmic. Consider a node v ∈
N (T), and let u1, . . . , uh be the R-nodes in the path from r(T) to v, ordered by
increasing distance from r(T). Then by the selection of the branching variable,
|φ(u�)| ≤ (1 − 1/k)|φ(p(u�))| for all � ∈ [h]. It follows that |φ(u1)| ≤ (1 −
1/k)|φ| = (1− 1/k)m and |φ(u�+1)| ≤ (1− 1/k)|φ(u�)| for all � ∈ [h], and hence
|φ(uh)| ≤ (1 − 1/k)hm. Since |φ(uh)| ≥ 1, we get h ≤ k lnm. ��

Theorem 6. Let φ =
∧m
j=1 Cj be a k-conformal prime monotone CNF. Then

Procedure Construct-Tree-A produces a permutation πT of the clauses such
that ν(πT) ≤ |φ∗|k lnm+1, and thus LR-Mult computes φ∗ in O(nm|φ∗|k lnm+1

min{m, |φ∗|k lnm+1}) time.

On Berge Multiplication for Monotone Boolean Dualization 57

CNF’s of read-once expressions. A formula ϕ is called read-once if it can
be written as an ∧−∨ formula in which every variable in V (ϕ) appears exactly
once. A well-known equivalent definition is that φ is a prime monotone CNF,
which can be represented by a read-once expression, if and only if |C ∩ t| =
1 for every clause C ∈ φ and every term t ∈ φ∗.

Lemma 9. Let φ =
∧m
j=1 Cj be a prime monotone CNF with a read-once expres-

sion. Then there is a proper binary multiplication tree T with d(T) ≤ logm+ 1.

Proof. We use the following claim to construct T by the procedure in Figure 2.

Claim (C2). Let φ′ ⊆ φ be a subformula of φ such that |φ′| > 1. Then there
exists an infrequent variable i ∈ V (φ′): |φ′(i)| ≤ 1

2 |φ′|.

The rest of the proof is the same as in Lemma 8. ��

Theorem 7. Let φ =
∧m
j=1 Cj be a prime monotone CNF which can be repre-

sented by a read-once expression. Then Procedure Construct-Tree-A produces
a permutation πT of the clauses such that ν(πT) ≤ |φ∗|logm+1, and thus LR-Mult
computes φ∗ in O(nm|φ∗|logm+1 min{m, |φ∗|logm+1}) time.

4.2 General Monotone CNF’s

In this section, we consider general monotone CNFs, and show that by use of
the procedure in Figure 3, the left-to-right multiplication can always be done in
subexponential time. The procedure constructs a proper binary multiplication
tree for φ which is almost identical to the procedure in Figure 2, except that the
minimum-degree variable is computed with respect to the CNF φ′ containing
only small clauses of φ. We begin with the following two simple lemmas.

Lemma 10. Let φ be a prime monotone CNF, and let k be a positive integer
with k < n/2. If every clause of φ has size at least n− k, then any permutation
π has ν(π) ≤ nk+1.

Procedure Construct-Tree-B(φ, v):
Input: A prime monotone CNF φ and a node v of the tree.
Output: A proper binary multiplication tree for φ rooted at v.

φ(v):= φ
if |φ(v)| > 1

Construct the left and right children left(v) and right(v) of v

φ′:=
∧

{C ∈ φ : |C| ≤ |V (φ)| −
√

|V (φ)|}
i:= argmin{degφ′(i) : i ∈ V (φ)}
Call Construct-Tree-B(φV (φ)\{i}, left(v))
Call Construct-Tree-B(φ(i), right(v))

Fig. 3. Procedure Construct-Tree-B to construct a proper multiplication tree for φ

58 E. Boros, K. Elbassioni, and K. Makino

Lemma 11. Let φ be a prime monotone CNF, let k be a positive integer, and
let φ′ be a subformula of φ. If every clause of φ′ has size at most n−k, then there
exists an infrequent variable i ∈ V (φ) with respect to φ′: |φ′(i)| ≤ (1− k

n)|φ′|.

Let us now show that the procedure in Figure 3 produces a multiplication tree
with small right-depth.

Theorem 8. Let φ =
∧m
j=1 Cj be a prime monotone CNF. Then Procedure

Construct-Tree-B produces a permutation πT of the clauses such that ν(πT) ≤
n
√
n+1|φ∗|

√
n lnm, and thus LR-Mult computes φ∗ in O(n

√
n+2m|φ∗|

√
n lnm

min{m,n
√
n+1|φ∗|

√
n lnm}) time.

Proof. Consider any leaf v ∈ N (T) and let P be the path from the root r(T) to
v. For a node w in P, let V (w) = V (φ(w)) and φ′(w) =

∧
{C ∈ φ(w) : |C| ≤

|V (φ(w))|−
√
|V (φ(w))|}. Note that there is a node w of P such that φ′(w) = ∅.

Let w0 be the closest such node to the root, and let u1, u2, . . . , uh be the R-nodes
in the path P between r(T) and w0, ordered by increasing distance from r(T).

For � = 0, 1, . . . , h, let n� = |V (u�)|, where we assume u0 = r(T). Note that

V (u�) ⊆ V (p(u�)) ⊆ V (u�−1) and φ′(u�) ⊆ φ′(p(u�)) ⊆ φ′(u�−1),

for � = 1, . . . , h. In particular, Lemma 11 implies |φ′(u�)| ≤ (1− 1√
n�−1

)|φ′(u�−1)|,
for � = 1, . . . , h, and thus |φ′(uh)| ≤ (1 − 1/

√
n0)h|φ′(u0)|. Since |φ′(uh)| ≥ 1,

we conclude that d(w0) = l + 1 ≤
√
n lnm + 1, where n = n0.

From Theorem 5, we know that |(φv)∗| ≤ |φ∗|d(w0)−1|(φ′′)∗|, where φ′′ ⊆
φ(w0) consists of clauses in φ(w0)∩φv . By definition of w0, we have |φ′(w0)| = 0
and thus φ(w0) consists only of clauses of size at least |V (φ(w0))|−

√
|V (φ(w0))|.

Thus |(φ′′)∗| ≤ n
√
n+1 by Lemma 10, and hence

|(φv)∗| ≤ |φ∗|d(w0)−1n
√
n+1 ≤ n

√
n+1|φ∗|

√
n lnm.

References

1. Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hy-
pergraph transversals and its application in mining emerging patterns. In: ICDM,
pp. 485–488 (2003)

2. Berge, C.: Hypergraphs. Elsevier-North Holand, Amsterdam (1989)
3. Bioch, J.C., Ibaraki, T.: Complexity of identification and dualization of positive

Boolean functions. Information and Computation 123(1), 50–63 (1995)
4. Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., Makino, K.: Dual-bounded

generating problems: All minimal integer solutions for a monotone system of linear
inequalities. SIAM J. Comput. 31(5), 1624–1643 (2002)

5. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean
functions. Optim. Methods Softw. 10, 147–156 (1998)

6. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On maximal frequent and
minimal infrequent sets in binary matrices. Annals of Mathematics and Artificial
Intelligence 39(3), 211–221 (2003)

On Berge Multiplication for Monotone Boolean Dualization 59

7. Domingo, C., Mishra, N., Pitt, L.: Efficient read-restricted monotone CNF/DNF
dualization by learning with membership queries. Machine Learning 37(1), 89–110
(1999)

8. Eiter, T.: Exact transversal hypergraphs and application to Boolean μ-functions.
Journal of Symbolic Computation 17(3), 215–225 (1994)

9. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

10. Eiter, T., Gottlob, G.: Hypergraph Transversal Computation and Related Prob-
lems in Logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA
2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

11. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

12. Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualiza-
tion: A brief survey. Discr. Applied Math. (2007), doi:10.1016/j.dam.2007.04.017

13. Elbassioni, K.M.: On the Complexity of the Multiplication Method for Mono-
tone CNF/DNF Dualization. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168, pp. 340–351. Springer, Heidelberg (2006)

14. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)

15. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph
transversals, and machine learning. In: PODS 1997, pp. 209–216 (1997)

16. Ibaraki, T., Kameda, T.: A theory of coteries: Mutual exclusion in distributed
systems. IEEE Trans. Parallel and Dist. Sys. 4(7), 779–794 (1993)

17. Kavvadias, D.J., Papadimitriou, C.H., Sideri, M.: On horn envelopes and hyper-
graph transversals. In: ISAAC 1993, pp. 399–405 (1993)

18. Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal hy-
pergraph generation. J. Graph Algorithms Appl. 9(2), 239–264 (2005)

19. Khachiyan, L.: Transversal hypergraphs and families of polyhedral cones. In: Ad-
vances in Convex Analysis and Global Optimization, honoring the memory of K.
Carathéodory, pp. 105–118. Kluwer Academic Publishers, Dordrecht (2000)

20. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V.: On the dualization of hyper-
graphs with bounded edge-intersections and other related classes of hypergraphs.
Theor. Comput. Sci. 382(2), 139–150 (2007)

21. Khachiyan, L., Boros, E., Elbassioni, K., Gurvich, V., Makino, K.: On the com-
plexity of some enumeration problems for matroids. SIAM J. Disc. Math. 19(4),
966–984 (2005)

22. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G.: Generating all maximal inde-
pendent sets: NP-hardness and polynomial-time algorithms. SIAM J. Comput. 9,
558–565 (1980)

23. Lovász, L.: Combinatorial optimization: some problems and trends. DIMACS Tech-
nical Report 92-53, Rutgers University (2000)

24. Mannila, H., Räihä, K.J.: Design by example: An application of armstrong rela-
tions. J. Comput. and Syst. Sci. 33(2), 126–141 (1986)

25. Papadimitriou, C.H.: NP-completeness: A retrospective. In: Degano, P., Gorri-
eri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 2–6.
Springer, Heidelberg (1997)

26. Ramamurthy, K.G.: Coherent Structures and Simple Games. Kluwer Academic
Publishers, Dordrecht (1990)

27. Takata, K.: On the sequential method for listing minimal hitting sets. In: DM &
DM 2002: Proc. Workshop on Discr. Math. and Data Mining, pp. 109–120 (2002)

Diagonal Circuit Identity Testing and Lower

Bounds

Nitin Saxena�

Hausdorff Center for Mathematics
Endenicher Allee 60

D-53115 Bonn, Germany
ns@hcm.uni-bonn.de

Abstract. In this paper we give the first deterministic polynomial time
algorithm for testing whether a diagonal depth-3 circuit C(x1, . . . , xn)
(i.e. C is a sum of powers of linear functions) is zero. We also prove
an exponential lower bound showing that such a circuit will compute
determinant or permanent only if there are exponentially many linear
functions. Our techniques generalize to the following new results:

1. Suppose we are given a depth-4 circuit (over any field F) of the form:

C(x1, . . . , xn) :=
k∑

i=1

L
ei,1
i,1 · · · Lei,s

i,s

where, each Li,j is a sum of univariate polynomials in F[x1, . . . , xn].
We can test whether C is zero deterministically in poly(size(C),
maxi{(1 + ei,1) · · · (1 + ei,s)}) field operations. In particular, this
gives a deterministic polynomial time identity test for general depth-
3 circuits C when the d :=degree(C) is logarithmic in the size(C).

2. We prove that if the above circuit C(x1, . . . , xn) computes the de-
terminant (or permanent) of an m×m formal matrix with a “small”

s = o
(

m
log m

)
then k = 2Ω(m). Our lower bounds work for all fields

F. (Previous exponential lower bounds for depth-3 only work for
nonzero characteristic.)

3. We also present an exponentially faster identity test for homoge-
neous diagonal circuits (deterministically in poly(nk log(d)) field op-
erations over finite fields).

Keywords: arithmetic circuit, identity testing, depth 3, depth 4, deter-
minant, permanent, lower bounds.

1 Introduction

Identity Testing is the problem of checking whether a given arithmetic circuit
C(x1, . . . , xn), computing a polynomial over a field F, is the zero circuit. Ideally
� This work was done while the author was a postdoc in Centrum voor Wiskunde en

Informatica, Amsterdam under BRICKS AFM1 and NWO VICI grants.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 60–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Diagonal Circuit Identity Testing and Lower Bounds 61

we would like to do identity testing deterministically in time polynomial in the
size of the circuit C but no such algorithm is known. The simplest known general
algorithm is randomized which was discovered independently by Schwartz [20]
and Zippel [22]: it evaluates the given circuit at a random point and accepts if
and only if the circuit evaluates to zero at that point. There are more involved
randomized algorithms that use fewer random bits [2]. Besides being a natural
algebraic problem, special cases of identity testing also appear in primality test-
ing [3], testing equivalence of read-once branching programs [6], graph matching
problems [15], interpolating sparse multivariate polynomials [7] and proving com-
plexity theory results such as IP=PSPACE [21], NP=PCP(O(logn), O(1)) [5].
Solving identity testing becomes all the more important by the work of Impagli-
azzo and Kabanets [11] who showed that – finding a deterministic algorithm for
identity testing is, roughly, equivalent to proving circuit lower bounds for NEXP.

In this paper we consider arithmetic circuits of depth 4 and solve the identity
testing problem for a natural restricted case. Our basic technique is to express the
multiplication gate (a0+a1x1+· · ·+anxn)d in a dual form

∑
j fj,1(x1) · · · fj,n(xn).

In full generality our dual form expresses a product-of-sum-of-univariates as a
sum-of-product-of-univariates effectively (see Remark 1). Our technique of com-
puting the dual is a new way to unfold a multiplication gate in an arithmetic cir-
cuit. The dual of a multiplication gate is obtained by using the tools of formal
power series (of ex), polynomial interpolation and working over local algebras.
This dual computation is faster than a brute-force expansion and may have other
applications. Finally, we also show that in the special case of homogeneous diago-
nal circuits we can actually do better and give a poly(nk log d) time identity test.

1.1 Known Results

There are deterministic algorithms known for identity testing only over restricted
classes of arithmetic circuits. Raz and Shpilka [19] gave a deterministic polyno-
mial time identity test for noncommutative arithmetic formulas. Dvir and Sh-
pilka [8] attempted a characterization of zero depth-3 circuits and obtained a
poly(n, 2logk−1 d) time identity test. Kayal and Saxena [14] used Chinese remain-
dering over local rings and gave a poly(ndk) time identity test for depth-3 circuits
which is clearly a polynomial time identity test if k, the top fanin of the circuit,
is bounded. In this work we allow the top fanin to be unbounded but impose
the restriction that each multiplication gate has only “few” distinct functions as
input. All these identity tests are non-black-box, i.e. they look inside the circuit
instead of just evaluating it at points. Recently, there has been some attempts
towards black-box identity testing for depth-3 circuits (see [12]). A black-box
identity test even for depth-4 circuits would have important repercussions for
the general identity testing problem [4].

In this paper we also prove exponential lower bounds for computing deter-
minant or permanent by certain restricted depth-4 circuits. These restricted
depth-4 circuits are the ones for which we give a deterministic polynomial time
identity test. Grigoriev, Karpinski and Razborov [9,10] have also shown such

62 N. Saxena

lower bounds for general depth-3 circuits but assuming a nonzero characteristic.
Our lower bounds are new in the sense that they hold over all fields.

1.2 Definitions and Statement of Results

We will use poly(M,N) to refer to a real function in M and N whose value
is upper bounded by (MN)c1 for all M,N > c2 where c1, c2 > 0 are absolute
constants. When using poly(M,N) we will not specify the value of c1, c2 as
our main interest in this paper is only in their existence. We will use [n] to
refer to the set {1, . . . , n}. We will denote the characteristic of a field F (i.e.
smallest integer t > 0 such that t = 0 in F or zero if there is no such t) by
char(F). An algebra R over a field F is simply a ring containing F. In this paper
only finite dimensional commutative algebras appear, i.e. there is an integer
N > 0 and basis elements b1, . . . , bN ∈ R such that any element in R can be
uniquely expressed as

∑N
i=1 αibi with αi’s in F. We call N the dimension of the

algebra R over F, denoted by dim(R). It is a simple exercise to see that basic
operations (e.g. multiplication of two elements) in R can be done using poly(N)
field operations (in F).

Our main concern in this paper are depth-3 (or depth-4) circuits. For the
purposes of identity testing (also lower bounds for determinant and permanent)
the hardest case is when the circuit has an addition gate at the top. These circuits
are called ΣΠΣ (or ΣΠΣΠ). It is clear that the output of such a ΣΠΣ circuit
C(x1, . . . , xn) would be:

∑k
i=1 �i,1 · · · �i,di , where the �i,j = (ai,j,0 + ai,j,1x1 +

· · · + ai,j,nxn) are linear functions over a field F. We call k the top fanin of C,
di the degree of the i-th multiplication gate and d = maxi{di} the degree of
C. The size of an arithmetic circuit is the number of addition, multiplication
and input gates in its representation as a directed acyclic graph. Clearly, in the
above setting size(C) is dominated by knd. It is easy to see that by brute-force
we can check whether a ΣΠΣ circuit C is a zero circuit in time polynomial in
k ·

(
n+d
d

)
but this is generally exponential in size(C).

In this paper we start with the case where each of the multiplication gates in
C has only one distinct linear function as input. We call such a C a diagonal
circuit and it looks like: C(x1, . . . , xn) =

∑k
i=1 bi · �di

i , where the bi’s are in F
and the �i’s are linear functions. Our techniques extend upto depth-4 circuits of
the form:

C(x1, . . . , xn) =
k∑

i=1

L
ei,1
i,1 · · ·L

ei,s

i,s (1)

where the Li,j ’s are not linear functions but sums of univariate polynomials, i.e.
for all i ∈ [k], j ∈ [s]:

Li,j(x1, . . . , xn) = gi,j,1(x1) + · · ·+ gi,j,n(xn)

where gi,j,j′ ∈ F[xj′]. Our first main theorem is:

Theorem 1. Over any field F, let C be a circuit given as in Equation (1). Then
we can deterministically check whether C is a zero circuit in poly(size(C),maxi{
(1 + ei,1) · · · (1 + ei,s)}) field operations.

Diagonal Circuit Identity Testing and Lower Bounds 63

Thus, when s is constant or when s is logarithmic but ei,j ’s are constants we
get a deterministic polynomial time identity test.

The lower bounds that we get, basically show that if a depth-3 circuit (or
a restricted depth-4 circuit) computes determinant (or permanent) then either
some of the multiplication gates have “lots” of distinct functions as inputs or
the top fanin of the circuit is exponential. Our second main theorem is:

Theorem 2. Over any field F, if the circuit in Equation (1) expresses the deter-
minant (or permanent) of a general m×m matrix with parameters s = o

(
m

logm

)
,

n = m2 and d = poly(m) then k = 2Ω(m).

Note that determinant (or permanent) of an m×m matrix is just a sum of m!
monomials. A monomial y1 · · · ym can be expressed as a sum of powers of 2O(m)

linear forms. Hence, determinant can be expressed by a sum of powers of at most
O(m!) linear forms and our lower bounds show that this is almost tight.

1.3 Our Techniques

We use non-black-box methods, i.e. we heavily use the structure of the given
circuit. We use tools that previously have been used to understand noncommu-
tative formulas, for example by Nisan, Wigderson [16,17], Raz and Shpilka [19].
We apply these old tools in a nontrivial way to understand depth-3 and depth-4
(commutative) circuits. For clarity let us note here the two old theorems in a
generalized form.

A circuit D(x1, . . . , xn), over an algebra R over a field F, is called noncom-
mutative if each of its multiplication gate has ordered inputs and the variables
x1, . . . , xn do not commute, i.e. for all i = j, xi · xj = xj · xi. The output
D(x1, . . . , xn) is a formal expression in the ring R{x1, . . . , xn} of polynomi-
als over noncommutative variables x1, . . . , xn. Clearly, any commutative cir-
cuit C(x1, . . . , xn) can be turned into a noncommutative circuit C̃(x1, . . . , xn)
by imposing an order on the inputs to its multiplication gates and assuming
xi · xj = xj · xi for all i = j. But now circuits C and C̃ are computing differ-
ent polynomials and it may happen that C is a zero circuit but C̃ is a nonzero
circuit. However, if C̃ is a zero circuit then C is surely a zero circuit as well. A
circuit is called a formula if the fan-out of every gate in the circuit is at most one.
Noncommutative formulas are easier to analyze compared to the commutative
ones and the following identity test is relevant to us:

Theorem 3 (Theorem 2.5 of [19] generalized over algebras). Let R be
an algebra over a field F. Given a noncommutative formula C(x1, . . . , xn) ∈
R{x1, . . . , xn} we can verify deterministically in poly(size(C), dim(R)) field op-
erations whether C is zero.

The second result relevant to us is an extension of Theorem 5.1 of [19] that
proves lower bounds for pure circuits using the partial derivative space (see the
proof idea in Lemma 5.3 of [19]).

64 N. Saxena

Theorem 4 (Theorem 5.1 of [19] generalized over algebras). Let R be
an algebra over a field F, r ∈ R \ {0}, r′ ∈ R and let det(x1,1, . . . , xn,n) denote
the determinant of a formal n × n matrix ((xi,j)). If det(x1,1, . . . , xn,n) · r − r′

can be expressed as a circuit:

C(x1,1, . . . , xn,n) =
k∑

i=1

fi,1,1(x1,1) · · · fi,n,n(xn,n)

where the fi,j1,j2 ’s are univariate polynomials over R, then k · dim(R) = 2Ω(n).
A similar lower bound holds for the permanent as well.

Proof (Sketch). Since determinant is a multilinear polynomial we can ignore the
nonlinear terms in the fi,j1,j2 ’s. Now if we look at the suitably defined partial
derivative space (as in [19]) of the circuit C then it has rank, over F, at most
k·dim(R) because there are k multiplication gates and the coefficients in fi,j1,j2 ’s
are themselves of dimension dim(R) over F. On the other hand it is known that
the corresponding rank of determinant is 2Ω(n).

Our main contribution is a novel way to transform the multiplication gates of a
circuit, hence the overall circuit, to a form on which we can apply Theorems 3
and 4. Our basic technique is to use the formal power series ex = 1+x+ x2

2! + · · ·
and polynomial interpolation to express the multiplication gate (a0+a1x1+· · ·+
anxn)d in a dual form:

∑
j fj,1(x1) · · · fj,n(xn). Now this is a nice circuit as the

variables x1, . . . , xn in it are “separated” and we can invoke the known tricks.
For example, it can be viewed as a circuit in which the variables x1, . . . , xn
do not commute, thus by Theorem 3 we get a deterministic polynomial time
identity test for diagonal circuits. Also, by the lower bounds of Theorem 4 we
get that a diagonal circuit can compute determinant or permanent only if it is
of exponential size. These ideas generalize to circuits with s > 1 in Equation
(1) but require more algebraic sophistication as then we work with the formal
power series on larger local algebras instead of working on the base field F.

1.4 Organization

The paper is organized as follows. In section 2 we present our results for the
basic case of diagonal circuits over zero characteristic. In section 3 we show
how to extend our results to restricted depth-4 circuits over zero characteristic.
In section 4 we extend the previous results to nonzero characteristic. Finally,
in section 5 we present an exponentially faster identity test for homogeneous
diagonal circuits (deterministically in poly(nk log(d)) field operations over finite
fields). Some of the proofs have been omitted from the extended abstract due to
space constraints.

2 Diagonal Depth-3 Circuits

The aim of this section is to define a dual expression for multiplication gates
of the form (a0 + a1x1 + · · · + anxn)d and use that form to give an identity

Diagonal Circuit Identity Testing and Lower Bounds 65

test for diagonal circuits and to prove lower bounds. We will assume throughout
this section that the base field F is of characteristic zero. We will use the fairly
standard notation [m]f(x1, . . . , xn) to denote the coefficient of the monomial m
in a polynomial (more generally, a power series) f . For example, [xyz](x + y +
z)3 = 6.

2.1 Dual of a Multiplication Gate

The following lemma formalizes and computes the dual of an affine power.

Lemma 1. Let a0, a1, . . . , an be in a field F of zero characteristic. Then we can
compute univariate polynomials fi,j’s in poly(nd) field operations such that for
t = (nd + d + 1):

(a0 + a1x1 + · · ·+ anxn)d =
t∑

i=1

fi,1(x1) · · · fi,n(xn)

Proof. We will prove this using the formal power series: exp(x) = 1+x+ x2

2! +· · · ,
where exp(x) = ex and e is the base of natural logarithm. Define the degree d

truncation of the series to be Ed(x) = 1 + x + · · ·+ xd

d! . Observe that:

(d!)−1 · (a0 + a1x1 + · · ·+ anxn)d = [zd] exp ((a0 + a1x1 + · · ·+ anxn) · z)
= [zd] exp(a0z) · exp(a1x1z) · · · exp(anxnz)

= [zd] Ed(a0z) · Ed(a1x1z) · · ·Ed(anxnz)

The productEd(a0z)·Ed(a1x1z) · · ·Ed(anxnz) can be viewed as a univariate poly-
nomial in z of degree (nd+d). Hence, its coefficient of zd can be computed by eval-
uating the polynomial at (nd+d+1) distinct points α1, . . . , αnd+d+1 ∈ F (remem-
ber F is large enough) and by interpolation we can compute β1, . . . , βnd+d+1 ∈ F
such that:

[zd] Ed(a0z) ·Ed(a1x1z) · · ·Ed(anxnz)

=
nd+d+1∑

i=1

βi ·Ed(a0αi) ·Ed(a1αix1) · · ·Ed(anαixn)

This is the dual form of (a0+a1x1+· · ·+anxn)d as required. It is routine to verify
that all the univariate polynomials Ed(·) in the above sum can be computed in
poly(nd) field operations.

2.2 Identity Test and Lower Bounds

The dual form of multiplication gates obtained in Lemma 1 is easy to analyze.
We give the ideas in the following theorems.

Theorem 5. Over zero characteristic, identity testing for diagonal circuits can
be done in deterministic polynomial time (poly(nkd) field operations).

66 N. Saxena

Proof. Suppose we are given a diagonal circuit C:

C(x1, . . . , xn) =
k∑

i=1

bi · �di

i

Then by Lemma 1 we can compute the dual form of each of the k multiplication
gates such that:

C(x1, . . . , xn) =
k∑

i=1

ndi+di+1∑

j=1

fi,j,1(x1) · · · fi,j,n(xn) (2)

where the univariate polynomials fi,j,j′ ’s are of degree at most di.
Now observe that the variables in the circuit on the RHS of Equation (2) can

be assumed to be noncommutative without affecting the output, i.e. circuit C.
Thus, if we apply the identity testing algorithm of Theorem 3 to the circuit on
the RHS of Equation (2) we will correctly know whether C is zero or not. Hence,
C can be verified for zeroness deterministically in poly(nkd) field operations.

Theorem 6. Over zero characteristic, if a diagonal circuit expresses the deter-
minant (or permanent) of a formal m ×m matrix with n = m2 variables and
degree d = poly(m) then the top fanin k = 2Ω(m).

Proof. Suppose a diagonal circuit C computes the determinant of a general m×m
matrix. Then by Lemma 1 determinant is being computed by a circuit as given
in Equation (2). Now the exponential lower bound of Theorem 4 applies and we
get that poly(ndk) = 2Ω(m) implying k = 2Ω(m).

3 Extension to Restricted Depth-4 Circuits

In this section we extend the results of the last section to depth-4 circuits (with
some success). The starting point is a dual expression for multiplication gates
of the form Le11 · · ·Les

s where the Li’s are sums of univariate polynomials in
F[x1, . . . , xn]. The proof is along the same lines as presented before but now we
will work in local algebras over F. Finally, we use that form to give identity test
and prove lower bounds. We will again assume throughout this section that the
base field F is of characteristic zero.

3.1 Dual of a Multiplication Gate

We compute the dual form of a multiplication gate of the form:

M(x1, . . . , xn) = (g1,1(x1)+ · · ·+g1,n(xn))e1 · · · (gs,1(x1)+ · · ·+gs,n(xn))es (3)

which means that we express M as an expression:
∑t
i=1 fi,1(x1) · · · fi,n(xn)

where the fi,j ’s are univariate polynomials over an F-algebra R (unlike the di-
agonal case where we worked over F). This expression with variables x1, . . . , xn
“separated” we call a dual of the multiplication gate. The following lemma shows
that such a dual is computable but we pay a price in terms of the dimension of
algebra R which is (e1 + 1) · · · (es + 1).

Diagonal Circuit Identity Testing and Lower Bounds 67

Lemma 2. Let M(x1, . . . , xn) be the multiplication gate of Equation (3) over a
field F of zero characteristic and e = (e1 + · · ·+ es). Then we can compute uni-
variate polynomials fi,j’s over an algebra R := F[z1, . . . , zs]/(ze1+1

1 , . . . , zes+1
s)

in poly(size(M), dim(R)) field operations such that for t = (ne + 1):

M(x1, . . . , xn) · ze11 · · · zes
s =

t∑

i=1

fi,1(x1) · · · fi,n(xn) over R

Remark 1. Note that we can informally describe the above equation as: a product-
of-sums-of-univariates can be written as a sum-of-products-of-univariates. This
justifies our continued usage of the phrase “dual form”.

Proof. We will again prove this using the formal power series: exp(x) = 1 + x +
x2

2! + · · · , where exp(x) = ex and e is the base of natural logarithm. Recall that
the degree d truncation of the series is Ed(x) = 1 + x + · · ·+ xd

d! . Let L1, . . . , Ls
be the distinct factors of M (that are now not linear functions but sums of
univariate polynomials). Observe that:

(e1! · · · es!)−1 · Le11 · · ·Les
s = [zeze11 · · · zes

s] exp(L1z1z) · · · exp(Lszsz)
= [zeze11 · · · zes

s] exp(L1z1z + · · ·+ Lszsz)
= [zeze11 · · · zes

s] exp ((g1,1z1 + · · ·+ gs,1zs)z) · · ·
· · · exp ((g1,nz1 + · · ·+ gs,nzs)z)

= [zeze11 · · · zes
s] Ee ((g1,1z1 + · · ·+ gs,1zs)z) · · ·

· · ·Ee ((g1,nz1 + · · ·+ gs,nzs)z) (4)

Note that the last product can be viewed as a univariate polynomial in z of degree
ne. Hence, its coefficient of ze can be computed by evaluating the polynomial
at (ne + 1) distinct points α1, . . . , αne+1 ∈ F (remember that F is large enough)
and by interpolation we can compute β1, . . . , βne+1 ∈ F such that:

[zeze11 · · · zes
s] Ee ((g1,1z1 + · · ·+ gs,1zs)z) · · ·Ee ((g1,nz1 + · · ·+ gs,nzs)z)

= [ze11 · · · zes
s]

ne+1∑

i=1

βi ·Ee ((g1,1z1 + · · ·+ gs,1zs)αi) · · ·

· · ·Ee ((g1,nz1 + · · ·+ gs,nzs)αi)

Notice that the monomials having nonzero coefficients in the above sum are of the
form zt11 · · · ztss such that t1 + · · ·+ ts = e = e1 + · · ·+ es. Thus, if we look at the
above sum modulo the ideal (ze1+1

1 , . . . , zes+1
s) then the surviving monomials

zt11 · · · ztss would be those that have t1 � e1, . . . , ts � es which together with
t1 + · · ·+ ts = e = e1 + · · ·+ es uniquely determines the surviving monomial as
ze11 · · · zes

s . Consequently, we can summarize the above computations as, over R:

(e1! · · · es!)−1 · Le11 · · ·Les
s · ze11 · · · zes

s

=
ne+1∑

i=1

βi · Ee ((g1,1z1 + · · ·+ gs,1zs)αi) · · ·Ee ((g1,nz1 + · · ·+ gs,nzs)αi) .

68 N. Saxena

This is the dual form of M as required. Notice that there is a nonconstant
factor ze11 · · · zes

s appearing on the LHS but since this factor is a nonzero element
of the algebra R, the dual form will be good enough for our purposes. It is
routine to verify that the univariate polynomials Ee(·) over R in this sum can
be computed in poly(size(M), dim(R)) field operations and that the dimension
of R is (e1 + 1) · · · (es + 1).

3.2 Identity Test and Lower Bounds

We can now apply the dual form of Lemma 2 to k multiplication gates and work
on a bigger algebra. We formalize this idea in the following theorems.

Theorem 7. Given a circuit C over a field F of zero characteristic:

C(x1, . . . , xn) =
k∑

i=1

L
ei,1
i,1 · · ·L

ei,s

i,s

where the Li,j’s are sums of univariate polynomials and (wlog) for all i, ei,1 = 0.
We can test whether C is a zero circuit deterministically in poly(size(C),maxi{
(1 + ei,1) · · · (1 + ei,s)}) field operations.

Proof. Let us apply the dual form of Lemma 2 to the i-th multiplication gate
Mi, with ei := (ei,1 + · · · + ei,s), and compute the univariate polynomials
fi,j1,j2 ’s, for all 1 � j1 � ti = (nei + 1) and j2 ∈ [n], over the algebra Ri :=
F[zi,1, . . . , zi,s]/(z

ei,1+1
i,1 , . . . , z

ei,s+1
i,s) in poly(size(Mi), dim(Ri)) field operations

such that:

L
ei,1
i,1 · · ·L

ei,s

i,s · z
ei,1
i,1 · · · z

ei,s

i,s =
ti∑

j1=1

fi,j1,1(x1) · · · fi,j1,n(xn) over Ri (5)

With the aim of getting a dual form of the circuit C let us define a commutative
algebra R that contains the algebras corresponding to each multiplication gate,
i.e. R1, . . . , Rk, as “orthogonal” subalgebras and in which the following (k − 1)
relations hold: z

e1,1
1,1 · · · z

e1,s

1,s = · · · = z
ek,1
k,1 · · · z

ek,s

k,s . Explicitly, the algebra R is:
F[zi,j | ∀i ∈ [k], ∀j ∈ [s]]/I, where the ideal I is generated by the following three
sets of relations:

– z
ei,j+1
i,j = 0, for all i ∈ [k], j ∈ [s].

– zi,j · zi′,j′ = 0, whenever i = i′.
– z

ei,1
i,1 · · · z

ei,s

i,s = z
ei′,1
i′,1 · · · z

ei′,s

i′,s , for all i, i′ ∈ [k].

Note that the first set of relations just make R1, . . . , Rk as subalgebras of R
while the other two sets impose relations on certain zero-divisors in R (ei,1 = 0
implies that z

ei,1
i,1 · · · z

ei,s

i,s is a zero-divisor of R). The second set of relations are
put in so that the dimension of R gets down to roughly sum of the dimensions
of R1, . . . , Rk. Note that the dimension of R over the base field F is exactly∑k
i=1(1 + ei,1) · · · (1 + ei,s)− 2(k − 1) which is nonzero.

Diagonal Circuit Identity Testing and Lower Bounds 69

Now by using the third set of relations in R and summing up Equation (5)
for all the k multiplication gates, we get over the algebra R:

C(x1, . . . , xn) · ze1,1
1,1 · · · z

e1,s

1,s =
k∑

i=1

L
ei,1
i,1 · · ·L

ei,s

i,s · z
ei,1
i,1 · · · z

ei,s

i,s

=
k∑

i=1

ti∑

j1=1

fi,j1,1(x1) · · · fi,j1,n(xn) (6)

This last expression can be viewed as a noncommutative formula in variables
x1, . . . , xn over the algebra R. Clearly, it is zero iff C(x1, . . . , xn) · ze1,1

1,1 · · · z
e1,s

1,s

is zero over R iff C is zero over F. Thus, it is sufficient to test the circuit on
the RHS of Equation (6) for zeroness. This can be done by applying the identity
testing algorithm of Theorem 3, now working over the algebra R. Hence, we
can deterministically verify whether C is zero in poly(size(C), dim(R)) field
operations as required.

Theorem 8. Following the notation of the last theorem, if C expresses the
determinant (or permanent) of a formal m × m matrix with parameters s =
o
(

m
logm

)
, n = m2 and (e1 + · · ·+ ek) := e = poly(m) then k = 2Ω(m).

Proof. Suppose the circuit C computes the determinant of a general m × m
matrix. Recall that C has a dual form as given in Equation (6). Thus, we can
apply Theorem 4 to deduce that poly(nek, dim(R)) = 2Ω(m) implying:

poly (nek,maxi{(1 + ei,1) · · · (1 + ei,s)}) = 2Ω(m)

As the ei,j ’s are at most poly(m) the above implies poly(nek,ms) = 2Ω(m) which
using the hypothesis further implies k = 2Ω(m).

4 Extension to the Nonzero Characteristic Case

In the last section we defined the dual form of a multiplication gate Le11 · · ·Les
s ,

where the Li’s are sums of univariates over a field F of zero characteristic. In
this section we note how to obtain the dual form when the characteristic of F is
a prime p > 1. Note that over such a field the expressions used in the proof of
Lemma 2 may not be well defined, for example if p|d! then 1

d! is undefined in F.
We can show that such issues can be taken care of by working in a local algebra
over a Galois ring of characteristic pb instead of working over F. This finishes
the proofs of our main Theorems 1 and 2.

5 A Faster Identity Test for Diagonal Circuits

Identity testing for homogeneous diagonal circuits can be made exponentially
faster in the degree d of the circuit. Unfortunately, we only know how to do this

70 N. Saxena

over a finite field F with an extra assumption that d < char(F) (we do believe it
should be possible to do this in general). The main idea to speed up the identity
test is that if the degree d of a diagonal circuit C is large compared to fanin k
then an argument using Vandermonde’s matrix shows that C can be zero only
if each multiplication gate is zero, which can be tested in time poly(nk log(d)).
Thus, wlog we can assume d � k and the identity test given in this paper tests∑k
i=1 bi · �di = 0 deterministically in poly(nk) field operations.

6 Conclusion

In this work we gave a deterministic polynomial time identity test for restricted
depth-4 circuits. Our basic idea was to define a dual operation on the multi-
plication gates in a depth-3 circuit that converts a product gate into a sum of
product of univariate polynomials over a local algebra. This dual is efficiently
computable when the multiplication gate has “few” distinct linear functions as
input. In the case of a general multiplication gate of a depth-3 circuit of degree d
the dual computation takes exponential time: poly(n2d). This dual computation
can be viewed as a new way to unfold a given depth-3 circuit better than the
direct brute-force expansion. We leave it as an open question to improve this
duality to solve the identity testing problem for general depth-3 circuits.

Kayal [13] has observed that Theorems 1 and 2 for depth-3 circuits can also
be obtained (nontrivially) by using the space of partial derivatives first defined
by Nisan and Wigderson [17]. The basic reason is that the space of partial
derivatives of a diagonal circuit has “low” rank and this can be exploited to give
an identity test and proving lower bounds. However, in the case of our restricted
depth-4 circuits the space of partial derivatives typically has “high” rank. For
example, the partial derivative space of (x2

1 + · · · + x2
n)n is of rank more than

2n. Thus, the dual form analyzes the restricted depth-4 circuits in ways stronger
than the partial derivative space.

Acknowledgements

I would like to thank Harry Buhrman and Ronald de Wolf for various useful dis-
cussions during the course of this work. I thank Neeraj Kayal and Avi Wigderson
for providing insightful observations on a preliminary version of this paper.

References

1. Adleman, L.M., Lenstra, H.W.: Finding irreducible polynomials over finite fields.
In: 18th ACM Symposium on Theory of Computing, pp. 350–355. ACM Press,
New York (1986)

2. Agrawal, M., Biswas, S.: Primality and identity testing via Chinese remaindering.
Journal of the ACM 50(4), 429–443 (2003)

3. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Annals of Mathematics 160(2),
781–793 (2004)

Diagonal Circuit Identity Testing and Lower Bounds 71

4. Agrawal, M., Vinay, V.: Arithmetic Circuits: A Chasm at Depth Four (preprint,
2008)

5. Arora, S., Safra, S.: Probabilistic Checking of Proofs: A New Characterization of
NP. Journal of the ACM 45(1), 70–122 (1998)

6. Blum, M., Chandra, A.K., Wegman, M.N.: Equivalence of free Boolean graphs can
be tested in polynomial time. Information Processing Letters 10, 80–82 (1980)

7. Clausen, M., Dress, A., Grabmeier, J., Karpinski, M.: On zero-testing and interpo-
lation of k-sparse multivariate polynomials over finite fields. Theoretical Computer
Science 84(2), 151–164 (1991)

8. Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007)

9. Grigoriev, D., Karpinski, M.: An Exponential Lower Bound for Depth 3 Arithmetic
Circuits. In: 30th ACM Symposium on Theory of Computing, pp. 577–582. ACM
Press, New York (1998)

10. Grigoriev, D., Razborov, A.A.: Exponential Lower Bounds for Depth 3 Arithmetic
Circuits in Algebras of Functions over Finite Fields. Appl. Algebra Eng. Commun.
Comput. 10(6), 465–487 (2000)

11. Impagliazzo, R., Kabanets, V.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity 13(1/2), 1–46 (2004)

12. Karnin, Z., Shpilka, A.: Deterministic black box polynomial identity testing of
depth-3 arithmetic circuits with bounded top fan-in. ECCC Report TR07-042
(2007)

13. Kayal, N.: Private Communication. Summer (2007)
14. Kayal, N., Saxena, N.: Polynomial Identity Testing for Depth 3 Circuits. Compu-

tational Complexity 16(2), 115–138 (2007)
15. Lovasz, L.: On determinants, matchings, and random algorithms. In: Fundamentals

of Computing Theory, pp. 565–574. Akademia-Verlag (1979)
16. Nisan, N.: Lower bounds for non-commutative computation. In: 23rd ACM Sym-

posium on Theory of Computing, pp. 410–418. ACM Press, New York (1991)
17. Nisan, N., Wigderson, A.: Lower bounds on arithmetic circuits via partial deriva-

tives. Computational Complexity 6(3), 217–234 (1997)
18. Raz, R.: Multi-linear formulas for permanent and determinant are of super-

polynomial size. In: 36th ACM Symposium on Theory of Computing, pp. 633–641.
ACM Press, New York (2004)

19. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative
models. Computational Complexity 14(1), 1–19 (2005)

20. Schwartz, J.T.: Fast Probabilistic Algorithms for Verification of Polynomial Iden-
tities. Journal of the ACM 27(4), 701–717 (1980)

21. Shamir, A.: IP=PSPACE. Journal of the ACM 39(4), 869–877 (1992)
22. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: International Sym-

posium on Symbolic and Algebraic Computation, pp. 216–226. Springer, Heidel-
berg (1979)

Cell-Probe Proofs and Nondeterministic

Cell-Probe Complexity

Yitong Yin�

Department of Computer Science, Yale University
yitong.yin@yale.edu

Abstract. We study the nondeterministic cell-probe complexity of static
data structures. We introduce cell-probe proofs (CPP), a proof system for
the cell-probe model, which describes verifications instead of computa-
tions in the cell-probe model. We present a combinatorial characterization
of CPP. With this novel tool, we prove the following lower bounds for the
nondeterministic cell-probe complexity of static data structures:

– We show that there exist data structure problems which have super-
constant nondeterministic cell-probe complexity. In particular, we
show that for the exact nearest neighbor search (NNS) problem or
the partial match problem in high dimensional Hamming space, there
does not exist a static data structure with Poly(n) cells, each of
which contains no(1) bits, such that the nondeterministic cell-probe
complexity is O(1), where n is the number of points in the data set
for the NNS or partial match problem.

– For the polynomial evaluation problem, if single-cell nondeterminis-
tic probes are sufficient, then either the size of a single cell is close
to the size of the whole polynomial, or the total size of the data
structure is close to that of a naive data structure that stores results
for all possible queries.

1 Introduction

We study the problem of nondeterministic cell-probe complexity of static data
structures.

Given a set Y of data instances, and a set X of possible queries, a data
structure problem can be abstractly defined as a function f mapping each pair
consisting of a query x ∈ X and a data instance y ∈ Y to an answer. One of
the most well-studied examples of data structure problems is the “membership
query”: X = [m] is a data universe, Y =

(
[m]
n

)
, and f(x, y) = 1 if x ∈ y and

f(x, y) = 0 if otherwise.
There are some other important examples of data structure problems:

Exact nearest neighbor search (NNS): given a metric space U , let
X = U and Y =

(
U
n

)
, and for every x ∈ X and y ∈ Y , f(x, y) is defined as

the closest point to x in y according to the metric.
� Supported by a Kempner Foundation Fellowship and NSF grant CNS-0435201.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 73

Partial match: X = {0, 1, ∗}d, Y =
({0,1}d

n

)
, and f(x, y) ∈ {0, 1} such that

for every x ∈ X and y ∈ Y , f(x, y) = 1 if and only if there exists z ∈ y
having either xi = zi or xi = ∗ for every i.
Polynomial evaluation: X = 2k is a finite field, Y = 2kd is the set of all
(d − 1)-degree polynomials over the finite field 2k, and f(x, y) returns the
value of y(x).

A classic computational model for static data structures is the cell-probe
model [11]. For each data instance y, a table of cells is constructed to store y.
This table is called a static data structure for some problem f . Upon a query x,
an all-powerful algorithm tries to compute f(x, y), based on adaptive random
access (probes) to the cells.

The cell-probe model is a clean and general model for static data structures
and serves as a great tool for the study of lower bounds. Previous research on
static data structures in the cell-probe model has focused on the complexity of
adaptive cell-probes. In this work, we focus on the complexity of nondeterministic
cell-probes and the tradeoff between the number of probes needed and with
space. We speculate that it is an important problem because: (1) in considering
the complexity of data structures, nondeterminism is a very natural extension
to the cell-probe model; (2) instead of adaptive computations, nondeterministic
cell-probes capture the question of verification, which is a natural and important
aspect of data structures.

Although nondeterministic cell-probe complexity is an important problem,
there are few general tools and techniques for studying it, especially for the case
of static data structures. In fact, because of the great generality of the cell-
probe model, even for deterministic cell-probe complexity, super-constant lower
bounds for static data structures are rare. Nondeterminism grants the cell-probe
model extra power and makes non-trivial lower bounds even rarer. For many
standard examples of data structure problems, such as membership query, it is
easy to construct a data structure that has standard space usage and constant
nondeterministic cell-probe complexity.

It is thus worth asking whether there exists any data structure problem such
that in data structures with feasible sizes (polynomial in the size of data set),
the nondeterministic cell-probe complexity is super-constant. More importantly,
it calls for a general technique to prove lower bounds on the nondeterministic
cell-probe complexity of static data structures.

1.1 Our Contribution

In this paper, we initiate the study of nondeterministic cell-probe complexity
for static data structures. As a first step, we characterize the power of a single-
cell nondeterministic probe. Although at first glance this may seem like a very
restricted case, by applying a trivial parameter reduction, we show that the case
of a single-cell probe is actually a canonical case for all nondeterministic cell-
probe mechanisms, and is thus sufficient to prove super-constant lower bounds
for general nondeterministic cell-probe mechanisms.

74 Y. Yin

We introduce cell-probe proofs, a proof system in the cell-probe model. This
notion of proofs corresponds to considering verifications instead of computations
in the cell-probe model. Unlike the fully adaptive computations in the traditional
cell-probe model, the formulation of cell-probe proofs shows a combinatorial
simplicity. We introduce a combinatorial structure that fully characterizes which
problems have single-cell proofs, and general cell-probe proofs are reduced to
this case.

With these novel tools, we show following lower bounds on nondeterministic
cell-probe complexity:

– We show that there exist static data structure problems with super-constant
nondeterministic cell-probe complexity. In particular, we show that for the
exact nearest neighbor search (NNS) problem or partial match problem in
high dimensional Hamming space, there does not exist a static data structure
with Poly(n) cells, each of which contains no(1) bits, such that the nonde-
terministic cell-probe complexity is O(1), where n is the number of points
in the data set for the NNS or partial match problem.

– For the polynomial evaluation problem, if for a static data structure, the
single-cell nondeterministic probes are sufficient to answer queries, then ei-
ther the size of the single cell is close to the size of the whole polynomial, or
the total size of the data structure is close to that of the naive data structure
that stores results for all possible queries.

1.2 Related Work

To the best of our knowledge, there is no general technique for proving lower
bounds for nondeterministic cell-probe complexity of static data structures. Nor
do there exist any non-trivial lower bounds for this question. Previous work on
static data structures in the cell-probe model have focused on the complexity of
adaptive cell-probes. The most important tool for proving such lower bounds is
asymmetric communication complexity as introduced by Miltersen et al. in [10].

In [6], Fredman and Saks introduce the chronogram method. This powerful
technique is specialized for proving the query/update trade-off for dynamic data
structures, especially for the problems which are hard only in the dynamic case.
It is worth noting that the chronogram method can prove nondeterministic lower
bounds for certain dynamic data structure problems. This is formally addressed
by Husfeldt and Rauhe in [7], and recently by Demaine and Pătraşcu in [5].
However, as pointed in [7], this is only a by-product of the nondeterministic
nature of chronogram method and can only yield amortized query/update trade-
offs for dynamic data structure problems with a certain property. Because of the
unique structure of the chronogram method, this technique can not be utilized
to prove lower bounds for static data structures.

2 Cell-Probe Proofs

A static data structure problem or just data structure problem, is rep-
resented as a boolean function f : X × Y → {0, 1}. For the purposes of proving

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 75

lower bounds, we only consider decision problems. We refer to each y ∈ Y as
data and each x ∈ X as a query. For each pair of x and y, f(x, y) specifies the
result of the query x to the data structure that represents the data y.

In the cell-probe model (c.f. [11,6]), the data instance y is preprocessed and
stored in cells, and for each query x, the value of f(x, y) is decided by adaptive
probes to the cells. Formally, a cell-probe scheme consists of a table structure
and a query algorithm. The table structure T : Y × I → {0, 1}b specifies a
table Ty : I → {0, 1}b for each data instance y, which maps indices of cells
to their contents. Given a query x, the query algorithm makes a sequence of
probes i1, i2, . . . to the cells, where ik depends on x and all previous cell probes
〈i1, Ty(i1)〉, 〈i2, Ty(i2)〉, . . . , 〈ik−1, Ty(ik−1)〉. The value of f(x, y) is decided at
last based on the collected information.

In this work, we focus on nondeterministic cell-probes. Given a query x
to a data instance y, a set of t cells i1, i2, . . . , it are probed nondeterministi-
cally, such that the value of f(x, y) is decided based on the probed information
〈i1, Ty(i1)〉, 〈i2, Ty(i2)〉, . . . , 〈it, Ty(it)〉.

In order to formally characterize nondeterministic cell-probes for data struc-
tures, we introduce a new concept, cell-probe proofs, which formalizes the
notion of proofs and verifications in the cell-probe model. For a specific data
structure problem f , a cell-probe proof system (CPP) may be defined for f as
described below.

We can think of a cell-probe proof system as a game played between an hon-
est verifier and an untrusted prover. Both of them have unlimited computational
power. Given an instance of data, a table of cells is honestly constructed accord-
ing to the rules known to both prover and verifier. Both the prover and the
verifier know the query, but only the prover can observe the whole table and
thus knows the data. The prover tries to convince the verifier about the result
of the query to the data by revealing certain cells. After observing the revealed
cells, the verifier either decides the correct answer, or rejects the proof, but can
not be tricked by the prover into returning a wrong answer.

Formally, a cell-probe proof system (CPP) consists of three parts:

– A table structure T : Y ×I → {0, 1}b. For any data y, a table Ty : I → {0, 1}b
is a mapping from indices of cells to their contents.

– A prover P . For every x and y, Pxy ⊆ I is a set of cells. We refer to Pxy as
a proof and {〈i, Ty(i)〉 | i ∈ Pxy} as a certificate.

– A verifier v, which maps the queries with the certificates to the answers
{0, 1,⊥}. Given an instance of data y, for any query x, both of the following
conditions hold:

(Completeness) ∃Pxy ⊆ I : v(x, {〈i, Ty(i)〉 | i ∈ Pxy}) = f(x, y), and

(Soundness) ∀P ′ ⊆ I : v(x, {〈i, Ty(i)〉 | i ∈ P ′}) =
{

f(x, y)
⊥ .

An (s, b, t)-CPP is a CPP such that for every x and y: (1) the table has s
cells, i.e. |I| = s; (2) each cell contains b bits; (3) each proof consists of t cell
probes, i.e. |Pxy| = t.

76 Y. Yin

Example: For the membership problem[11], where X = [m] and Y =
(
[m]
n

)
, and

f(x, y) = 1 if and only if x ∈ y, a naive construction shows a 2-cell proof: with a
sorted table storing y, if x ∈ y, the proof is the cell that contains x, if x ∈ y, the
proof consists of two consecutive cells which are the predecessor and successor
of x. The same CPP also works for predecessor search[2].

The notion of cell-probe proofs captures the necessary information to answer
queries, and characterizes the nondeterministic probes in the cell-probe model.
It is natural to see that for a cell-probe scheme, for any query, the cells probed
by an adaptive algorithm contain a cell-probe proof. This can be seen as a data
structure counterpart of P ⊆ NP .

It is important to note that although a data structure problem is nothing
but a boolean function, CPP is very different from the certificate complexity of
boolean functions [4]. In CPP, the prover and the verifier communicate with each
other via a table structure, which distinguishes CPP from standard certificate
complexity. For any data structure problem, the table structure can always store
the results for all queries, making one cell-probe sufficient to prove the result,
which is generally impossible in the model of certificate complexity.

Unlike adaptive cell-probes, CPP has a static nature, which is convenient for
reductions. As stated by the following lemma, any CPP can be trivially reduced
to 1-cell proofs.

Lemma 1 (reduction lemma). For any data structure problem f , if there
exists an (s, b, t)-CPP, then there exists an (st, bt, 1)-CPP.

Proof. Just store every t-tuple of cells in the (s, b, t)-CPP as a new cell in the
(st, bt, 1)-CPP. ��

3 Characterization of CPPs

We now introduce a combinatorial characterization of CPP. Given a set system
F ⊆ 2Y , for any y ∈ Y , we let F(y) = {F ∈ F | y ∈ F}. For convenience, for
a partition P of Y , we abuse this notation and let P(y) denote the set F ∈ P
that y ∈ F .

Definition 1. We say a set system F ⊆ 2Y is an s× k-partition of Y , if F is
a union of s number of partitions of Y , where the cardinality of each partition
is at most k.

This particular notion of partitions of Y fully captures the structure of cell-probe
proofs. In this extended abstract, we only provide the characterization of 1-cell
proofs. As shown by Lemma 1, this is a canonical case for cell-probe proofs.

Theorem 1. There is an (s, b, 1)-CPP for f : X × Y → {0, 1}, if and only if
there exists an s × 2b-partition F of Y , such that for every x ∈ X and every
y ∈ Y , there is an F ∈ F(y) that |f(x, F)| = 1.

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 77

Proof. (=⇒) Given a table structure T : Y × I → {0, 1}b, define the map of
the table structure as a s × 2b matrix M such that Mij = {y ∈ Y | Ty(i) = j},
i.e. Mij is the set of such data set y that the content of the i’s cell of the table
storing y is j. It is clear that each row i of M is a partition of Y with at most
2b partition sets, because each data set y has one and only one value of Ty(i),
and there are at most 2b possible values for a cell, therefore the matrix M is an
s× 2b-partition F of Y , where each Mij is an F ∈ F .

If there is an (s, b, 1)-CPP of f , due to the completeness of CPP, for every
x ∈ X and every y ∈ Y , there exists a cell i that 〈i, j〉 becomes the certificate
where j = Ty(i), and due to the soundness of CPP, there must not be any other
y′ ∈ Y such that Ty′(i) = j and f(x, y′) = f(x, y). Note that by definition of M ,
Mij contains all y′ such that Ty′(i) = j, thus |f(x,Mij)| = 1.

(⇐=) Assuming that F is an s× 2b-partition of Y such that for every x and
every y there is an F ∈ F(y) that |f(x, F)| = 1, we rewrite F in the form of an
s × 2b matrix M that Mij is the F ∈ F which is indexed as the jth partition
set in the ith partition. We can define our table structure T : Y × I → {0, 1}b
in the way that Ty(i) is assigned with the unique j that y ∈ Mij . Because each
row of M is a partition of Y , such T is well-defined.

For every x ∈ X and every y ∈ Y , there is an F ∈ F(y) that |f(x, F)| = 1,
i.e. there is an Mij � y that |f(x,Mij)| = 1, then we use 〈i, j〉 as the certificate.
Since for every x and y, there exists such i, the corresponding CPP is complete,
and since f(x, ·) is constant on such Mij , the CPP is also sound. ��
Let Y x0 = {y ∈ Y | f(x, y) = 0} and Y x1 = {y ∈ Y | f(x, y) = 1}. An alternative
characterization is that there is a (s, b, 1)-CPP for a problem f : X×Y → {0, 1},
if and only if there exists an s× 2b-partition F of Y , such that {Y x0 , Y x1 }x∈X is
contained by the union-closure of F . Note that this statement is equivalent to
the statement in Theorem 1, so we state it without proof. With this formulation,
we get some intuition about 1-cell proofs, that is, a problem f : X × Y → {0, 1}
has simple proofs, if and only if there exists some set system F ⊆ 2Y with a
simple structure, such that the complexity of F matches the complexity of the
problem.

4 Nearest Neighbor Search

We consider the decision version of nearest neighbor search, λ-near neighbor
(λ-NN), in a high dimensional Hamming cube {0, 1}d. Here X = {0, 1}d, Y =
({0,1}d

n

)
and f(x, y) ∈ {0, 1} answers whether there exists a point in y within

distance λ from the x. As in [3,1], we assume that d = ω(logn) ∩ no(1) to make
the problem non-trivial.

We prove that with the above setting, there does not exist a (Poly(n), no(1), 1)-
CPP for the λ-NN problem, thus due to Lemma 1, a super-constant lower bound
holds for the problem. To show this, we show the same lower bound for the partial
match problem[9,8], which is an instantiation of the λ-NN problem as shown in [3].

The partial match problem is defined as follow: The domain is a Hamming cube
{0, 1}d, where d = ω(logn) ∩ no(1), and each data instance y is a set of n points

78 Y. Yin

from the domain, i.e. Y =
({0,1}d

n

)
. The set of queries is X = {0, 1, ∗}d. Given a

data instance y ∈
({0,1}d

n

)
and a query x ∈ {0, 1, ∗}d, f(x, y) = 1 if and only if

there is a z ∈ y such that z matches x except for the bits assigned with “∗”.

Theorem 2. There is no (s, b, 1)-CPP for the partial match problem, if s =
Poly(n) and b = no(1).

Proof. We denote the problem as f . From the characterization of (s, b, 1)-CPP
given in Theorem 1, it is sufficient to show that for any s× 2b partition F of Y ,
there exist x ∈ X and y ∈ Y such that for all F ∈ F(y), |f(x, F)| = 2. We prove
this with the probabilistic method. With some distribution of x and y, we show
that for any s× 2b partition F of Y , Pr[∀F ∈ F(y), |f(x, F)| = 2] > 0.

For the rest of the proof, we assume that y is uniformly selected from Y , and
x is generated by uniformly choosing r = 2 logn bits and fixing each of them
uniformly and independently at random with 0 or 1, and setting the other bits
to “∗”.

We then prove two supporting lemmas. Recall that for a partition P of Y ,
P(y) denotes the set F ∈ P that y ∈ F .

Lemma 2. For any partition P of Y , if |P| ≤ 2b, where b = no(1), then

Pr
y

[

|P(y)| ≤
(

2d

n

)/
2n

Ω(1)
]

≤ n−ω(1) .

Proof. We let P = {F1, F2, . . . , Fk} where k ≤ 2b, and let pi = |Fi|/|Y |. Because
P is a partition of Y , we know that

∑
i pi = 1. We define a random variable

Z = |P(y)|/|Y |. Since y is picked uniformly at random from Y , it holds that
Z = pi with probability pi. Since there are at most 2b different P(y), by union
bound,

Pr
y

[

|P(y)| ≤
(

2d

n

)/
2n

Ω(1)
]

≤ 2b · Pr
[
Z = pi where pi ≤ 2−n

Ω(1)
]

= 2b−n
Ω(1)

= n−ω(1) . ��

For simplicity, we generalize the notation of f to arbitrary point set A ⊆ {0, 1}d,
where f(x,A) is conventionally defined to indicate whether there is a z ∈ A that
matches x

Lemma 3. For any A ⊆ {0, 1}d, if |A| > (1− 2−k)2d for k = 1
2 log n, then

Pr
x

[f(x,A) = 0] ≤ n−ω(1) .

Proof. We let B = {0, 1}d\A be the complement of A in the d-dimensional cube.
Note that |B| < 2d−k. According to our definition of the distribution of x, x is
in fact a random (d − r)-dimensional subcube in {0, 1}d, and f(x,A) = 0 only

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 79

if the cube specified by x is contained in B. This chance is maximized when B
itself is a cube. Thus without loss of generality, we can assume that B is the set
of z ∈ {0, 1}d whose first k bits are all ones. Therefore,

Pr
x

[f(x,A) = 0] ≤ Pr
x

[x’s first k bits are all ones] ≤
(
d−k
r−k

)

(
d
r

) ≤
(r

d

)k
=n−ω(1) . ��

We then prove that for all s × 2b partitions F of Y , the probability Pr[∃F ∈
F(y), f(x, F) = {1}] and Pr[∃F ∈ F(y), f(x, F) = {0}] are both very small.

For any F ∈ F(y), we have y ∈ F , thus ∃F ∈ F(y), f(x, F) = {1} implies
that f(x, y) = 1, therefore for an arbitrary s× 2b partition F of Y ,

Pr
x,y

[∃F ∈ F(y), f(x, F) = {1}] ≤ Pr
x,y

[f(x, y) = 1]

≤ Pr
x,y

[∃z ∈ y, x matches z]

≤ n · 2−r

= o(1) .

To bound the probability Pr[∃F ∈ F(y), f(x, F) = {0}], we observe that each
s × 2b partition F is just a union of s many partitions of Y , each of which is
with cardinality at most 2b, therefore, by union bounds, it holds that

Pr
x,y

[∃F ∈ F(y), f(x, F) = {0}] ≤ s · Pr
x,y

[f(x,P(y)) = {0}] . (1)

for some partition P of Y where |P| ≤ 2b. It is then sufficient to show that for
arbitrary such partition P , the probability Pr[f(x,P(y)) = {0}] is very small.

We choose a threshold k = 1
2 logn, and separate the case that |P(y)| ≤

(
(1−2−k)2d

n

)
and the case that |P(y)| >

(
(1−2−k)2d

n

)
. According to Lemma 2, for

any partition P of Y with |P| ≤ 2b, the probability that |P(y)| ≤
(
(1−2−k)2d

n

)
=

(
2d

n

)
/2n

Ω(1)
is at most n−ω(1).

We let Ay =
⋃
P(y) =

⋃
y′∈P(y) y

′. Note that Ay ⊆ {0, 1}d, and f(x,P(y)) =

{0} implies that f(x,Ay) = 0. For such P(y) that |P(y)| >
(
(1−2−k)2d

n

)
, by

the Pigeonhole Principle, it holds that |Ay| ≥ (1 − 2−k)2d. Due to Lemma 3,
f(x,Ay) = 0 with prohibitively small probability. Putting these together, it holds
for an arbitrary partition P of Y with |P| ≤ 2b that

Pr
x,y

[f(x,P(y)) = {0}] ≤ Pr
y

[

|P(y)| ≤
(

(1− 2−k)2d

n

)]

+ Pr
x,y

[

f(x,P(y)) = {0}
∣
∣
∣
∣ |P(y)| >

(
(1− 2−k)2d

n

)]

≤ n−ω(1) + Pr
x

[
f(x,Ay) = 0

∣
∣
∣ |Ay| > (1− 2−k)2d

]

≤ n−ω(1) .

80 Y. Yin

Combining with (1), we have that

Pr
x,y

[∃F ∈ F(y), f(x, F) = {0}] ≤ s · n−ω(1) = o(1) .

Therefore, for an arbitrary s× 2b partition F of Y , it holds that

Pr
x,y

[∀F ∈ F(y), |f(x, F)| = 2] ≥ 1− Pr
x,y

[∃F ∈ F(y), f(x, F) = {1}]

−Pr
x,y

[∃F ∈ F(y), f(x, F) = {0}]

≥ 1− o(1) .

It follows that for any s× 2b partition F of Y , where s = Poly(n) and b = no(1),
there exist x ∈ X and y ∈ Y such that for every F ∈ F(y), it holds that
|f(x, F)| = 2. By Theorem 1, there is no (s, b, 1)-CPP for f with the above
range of s and b. ��

In [3], it is shown that the partial match problem can be reduced to the λ-
NN problem. Because the reduction only involves mapping between instances
of problems, the existence of an (s, b, 1)-CPP for λ-NN implies the existence of
a CPP for partial match with essentially the same parameters. The following
corollary is implied.

Corollary 1. There does not exist a (Poly(n), no(1), 1)-CPP for the nearest
neighbor search problem with n points in d-dimensional Hamming space where
d = ω(logn) ∩ no(1).

Due to Lemma 1, the following super-constant lower bound on the nondetermin-
istic cell-probe complexity holds.

Corollary 2. There does not exist a (Poly(n), no(1), O(1))-CPP for the near-
est neighbor search problem or the partial match problem with n points in d-
dimensional Hamming space where d = ω(logn) ∩ no(1).

5 Polynomial Evaluation

Let 2k be a finite field. Let Y = 2kd be the set of all polynomials of degree
≤ (d − 1) over the finite field 2k. Throughout this section, we assume that
d ≤ 2k.

Let X = 22k be the set of all pairs of elements of the finite field 2k. A decision
version of the polynomial evaluation problem f is defined as: for every query
(x, z) ∈ X and every data instance g ∈ Y , f((x, z), g) = 1 if g(x) = z and
f((x, z), g) = 0 otherwise. Intuitively, a polynomial g is preprocessed and stored
as a data structure, so that for each query (x, z), the data structure answers
whether g(x) = z.

There are two naive upper bounds for one-cell proofs:

1. A (1, kd, 1)-CPP: store the whole polynomial in a single cell, and on each
query, one probe reveals the whole polynomial;

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 81

2. A (2k, k, 1)-CPP: each cell corresponds to an input x, and the cell stores the
value of g(x), thus on each query (x, z), one probe to the cell corresponding
to x answers whether g(x) = z.

We are going to prove that the above naive upper bounds are essentially
optimal for single-probe proofs. We show that for any (s, b, 1)-CPP, either b is
close to large enough to store a whole polynomial as in (1), or the total storage
size s · b is exactly as large as in (2).

We first prove two lemmas. For any subset P ⊆ Y , let τ(P) = |{x ∈ 2k |
∀g1, g2 ∈ P, g1(x) = g2(x)}|, which represents the number of such assignments
of x that all polynomials in P yield the same outcome. It is trivial to see that
for |P | ≤ 1, τ(P) = 2k.

Lemma 4. If |P | > 1, it holds that

τ(P) ≤ d− log |P |
k

.

Proof. We write τ(P) briefly as τ . Let x1, x2, . . . , xτ be such that all polynomials
in P yield the same outcomes. We arbitrarily pick other xτ+1, xτ+2, . . . , xd. For
any two different polynomials g1, g2 ∈ P , it can never hold that g1(xi) = g2(xi)
for all i = τ + 1, τ + 2, . . . , d, since if otherwise, g1 ≡ g2 by interpolation. Recall
that g is a polynomial over the finite field 2k, thus for an arbitrary g ∈ P and
an arbitrary x, there are at most 2k possible values for g(x). Therefore, due to
Pigeonhole Principle, in order to guarantee that no two polynomials in P agree
on all xτ+1, xτ+2, . . . , xd, it must hold that 2k(d−τ) ≥ |P |, i.e. τ(P) ≤ d− log |P |

k .
��

Lemma 5. Given a partition P of Y , let g be a uniformly random polynomial
in Y . E{τ(P(g))} represents the expected number of the input xs such that all
polynomials in the partition block P(g) yield the same outcome, where the expec-
tation is taken over random g. For any partition P of Y such that |P| ≤ 2b and
b < k(d− 1)− log k, it holds that

E{τ(P(g))} ≤ b

k
.

Proof. Let P1, P2, . . . , P2b denote the partition blocks, and let q1, q2, . . . , q2b be
the respective cardinalities. Naturally we have that

∑2b

i=1 qi = 2kd. We assume
that qi = 0 for i = 1, 2, . . . ,m0, qi = 1 for i = m0 + 1,m0 + 2, . . . ,m, and qi > 1
for i > m. For those Pi that i ≤ m, |Pi| = qi ≤ 1, thus τ(Pi) = 2k. According to
Lemma 4,

E{τ(P(g))} =
m0∑

i=1

0
2kd

τ(Pi) +
m∑

i=m0+1

1
2kd

τ(Pi) +
2b

∑

i=m+1

qi
2kd

τ(Pi)

≤ (m−m0) ·
2k

2kd
+

2b
∑

i=m+1

qi
2kd

(

d− log qi
k

)

. (2)

82 Y. Yin

Recall that
∑2b

i=m+1 qi = 2kd−
∑m
i=1 qi = 2kd−m+m0. According to Lagrange

multipliers, (2) is maximized when all qi for i = m + 1,m + 2, . . . , 2b are equal.
Thus (2) is less than or equal to

m−m0

2k(d−1)
+

2kd −m + m0

2kd

(

d− log(2kd −m + m0)− log(2b −m)
k

)

.

Let ε = m−m0
2kd . The above formula becomes

2kε + (1 − ε)
(

d− log 2kd(1− ε)− log 2b(1− 2−b(2kdε + m0))
k

)

≤ 2kε +
1
k

(1− ε)
(
b + log(1− 2kd−bε)− log(1− ε)

)
.

Note that 0 ≤ ε < 2b−kd. By standard analysis, if b < k(d − 1) − log k, the
above function of ε is maximized when ε = 0, i.e. E{τ(P(g))} ≤ b

k . ��

With the above lemmas, we can prove the following theorem.

Theorem 3. For any (s, b, 1)-CPP for the polynomial evaluation problem with
parameters k and d where d ≤ 2k, either b ≥ k(d− 1)− log k or s · b ≥ k · 2k.

Proof. We will prove that there does not exist an (s, b, 1)-CPP for the polynomial
evaluation problem if b < k(d− 1)− log k and s · b < k · 2k.

Let x be a uniformly random element of 2k, and let g be a uniformly ran-
dom polynomial from Y . For any partition P of Y that |P| ≤ 2b, according to
Lemma 5,

Pr
x,g

[∀g1, g2 ∈ P(g), g1(x) = g2(x)] =
1
2k

E{τ(P(g))} ≤ b

k2k
.

Therefore, for any s× 2b partition F of Y , it holds that,

Pr
x,g

[∃F ∈ F(g), ∀g1, g2 ∈ F, g1(x) = g2(x)]

≤ s · Pr
x,g

[∀g1, g2 ∈ P(g), g1(x) = g2(x)]

≤ s · b
k2k

< 1 ,

where the first inequality is due to the observation that F is a union of s instances
of 2b-partitions of Y . Therefore, for any s× 2b partition F of Y ,

Pr
x,g

[∀F ∈ F(g)∃g1, g2 ∈ F, g1(x) = g2(x)] > 0 .

By probabilistic methods, we know that for any s × 2b partition F of Y , there
exists some (x, z) ∈ X and some g ∈ Y such that g(x) = z, but for all F ∈ F(g),
there exists h ∈ F such that h(x) = z.

According to Theorem 1, we know that there does not exist (s, b, 1)-CPP with
the given range of s and b. ��

Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity 83

Acknowledgment. I would like to thank James Aspnes for helpful discussions
and editing assistance, and Dana Angluin for her comments on an early version
of the paper.

References

1. Barkol, O., Rabani, Y.: Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model. Journal of Computer and System Sci-
ences 64(4), 873–896 (2002)

2. Beame, P., Fich, F.: Optimal bounds for the predecessor problem and related prob-
lems. Journal of Computer and System Sciences 65(1), 38–72 (2002)

3. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest
neighbor search and related problems. In: Proceedings of the thirty-first annual
ACM Symposium on Theory of Computing, pp. 312–321 (1999)

4. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science 288(1), 21–43 (2002)

5. Demaine, E., Pătraşcu, M.: Logarithmic lower bounds in the cell-probe model.
SIAM Journal of Computing 35(4), 932–963 (2006)

6. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of the twenty-first annual ACM Symposium on Theory of Computing,
pp. 345–354 (1989)

7. Husfeldt, T., Rauhe, T.: Hardness results for dynamic problems by extensions of
Fredman and Saks’ chronogram method. In: Proceedings of the 25th International
Colloquium on Automata, Languages and Programming, pp. 67–78 (1998)

8. Indyk, P., Goodman, J., O’Rourke, J.: Nearest neighbors in high-dimensional
spaces. In: Handbook of Discrete and Computational Geometry, ch. 39 (2004)

9. Jayram, T., Khot, S., Kumar, R., Rabani, Y.: Cell-probe lower bounds for the
partial match problem. Journal of Computer and System Sciences 69(3), 435–447
(2004)

10. Miltersen, P., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmet-
ric communication complexity. Journal of Computer and System Sciences 57(1),
37–49 (1998)

11. Yao, A.: Should tables be sorted? Journal of the ACM 28(3), 615–628 (1981)

Constructing Efficient Dictionaries in

Close to Sorting Time�

Milan Ružić

ITU Copenhagen, Denmark
milan@itu.dk

Abstract. The dictionary problem is among the oldest problems in com-
puter science. Yet our understanding of the complexity of the dictionary
problem in realistic models of computation has been far from complete.
Designing highly efficient dictionaries without resorting to use of random-
ness appeared to be a particularly challenging task. We present solutions
to the static dictionary problem that significantly improve the previously
known upper bounds and bring them close to obvious lower bounds. Our
dictionaries have a constant lookup cost and use linear space, which was
known to be possible, but the worst-case cost of construction of the struc-
tures is proportional to only log log n times the cost of sorting the input.
Our claimed performance bounds are obtained in the word RAM model
and in the external memory models; only the involved sorting procedures
in the algorithms need to be changed between the models.

1 Introduction

Dictionaries are among the most fundamental data structures. A dictionary
stores a set S which may be any subset of universe U , and it answers member-
ship queries of type “Is x in S?”, for any x ∈ U . The elements of S may be
accompanied by satellite data which can be retrieved in case x ∈ S. The size of
the set S is standardly denoted by n.

We consider universes whose elements can be viewed as integers or binary
strings. In this paper we concentrate on static dictionaries — a static dictio-
nary is constructed over a given set S that remains fixed. Dynamic dictionaries
allow further updates of S through insertions and deletions of elements. Even
static dictionaries are sometimes used as stand-alone structures, but more often
they appear as components of other algorithms and data structures, including
dynamic dictionaries.

The dictionary problem has been well studied and many solutions have been
given. They offer different characteristics regarding space usage, time bounds,
model of computation, and universe in question. A challenge is to simultaneously
achieve good characteristics on all the terms. We consider only dictionaries with
realistic space usage of O(n) registers of size Θ(log |U |) bits. In the usual case

� Extended abstract. Additional details and proofs can be found in a version on the
author’s web page.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 84–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constructing Efficient Dictionaries in Close to Sorting Time 85

when |U | is at least polynomially larger than n this amount of space is necessary
(ignoring constant factors) regardless of presence of satellite data. Algorithms
involved in construction of a dictionary may be randomized — they require a
source of random bits and their time bounds are either expectations or hold
with high probability. Randomized dictionaries reached a stage of high develop-
ment and theoretically there is little left to be improved. On the other hand, the
progress on deterministic dictionaries was much slower. While in the dynamic
case we have some reason to believe that there is a considerable gap between at-
tainable worst-case performance for deterministic dictionaries and the attainable
expected performance for randomized dictionaries, there is not any evidence of
a required gap in the static case.

A theoretical interest in deterministic dictionaries comes from the question of
what resources are necessary to implement an efficient dictionary structure —
and random bits are a resource. Having guaranteed time bounds, deterministic
structures can be used in systems with strict performance demands. A sufficiently
simple deterministic dictionary having comparable performance to a randomized
dictionary would make the randomized structure obsolete. Unfortunately, the
new solutions described here are not simple enough to be competitive in practice,
except possibly in some special cases.

In this paper we focus on dictionaries with constant lookup time. Because of
faster construction time, dictionaries with slightly slower lookups may sometimes
be of interest. For example, a structure supporting searches in time O(log logn)
can be built in linear time on sorted input [17].

1.1 The Word RAM Model and Related Work

The word RAM is a common computational model in data structures literature.
It has the machine word size of w bits and a standard instruction set, resembling
the primitive instructions of the language C. Execution of any instruction takes
one unit of time. A usual assumption for RAM dictionaries is that the elements
of U fit in one machine word1. Contents of a word may be interpreted either
as an integer from {0, . . . , 2w − 1} or as a bit string from {0, 1}w. For more
information see, e.g., [11].

We will list some important results for deterministic dictionaries with constant
query time. Each of those results required a different idea, and a new insight into
properties and possibilities of some family of hash functions. A seminal work by
Fredman, Komlós, and Szemerédi [8] showed that in the static case it is possible
to construct a linear space dictionary with a constant lookup time for arbitrary
word sizes (no assumptions about relative values of w and n). This dictionary
implementation is known as the FKS scheme. Besides a randomized version
with expected O(n) construction time, they also gave a deterministic construc-
tion algorithm with a running time of O(n3w). A bottleneck was choosing of
appropriate hash functions. Any universal family of hash functions [6] contains

1 This assumption simplifies analysis. Some schemes, including ours, scale well when
keys are multi-word strings.

86 M. Ružić

functions suitable for use in the FKS scheme. Raman [16] devised a determin-
istic algorithm for finding good functions from a certain universal family, with
a running time of O(n2w); this implies the same time bound for construction
of the FKS dictionary. For w = nΩ(1), an efficient static dictionary can be built
in time O(n) on a sorted sequence of keys. This follows from a generalization
of the fusion trees of Fredman and Willard [9], and it was observed by Hagerup
[11]. The previously fastest deterministic dictionary with constant lookup time
is a result of Hagerup, Miltersen and Pagh [12]. Their construction method has
a running time of O(n logn). There exists an issue with compile-time computa-
tion of a special constant that is required for each w, because the only known
computation method is a brute-force search that takes time 2Ω(w)w.

Allowing randomization, the FKS scheme can be dynamized to support up-
dates in amortized expected constant time [7]. The lower bound result in the
same paper states that a deterministic dynamic dictionary, based on pure hash-
ing schemes, with worst-case lookup time of t(n) must have amortized insertion
time of Ω(t(n) ·n1/t(n)) (this lower bound does not hold in general however, e.g.
see the result of Pagh [15]). A standard dynamization technique [14] applied to
the static dictionary from [12] yields a similar type of trade-offs: lookups in time
O(t(n)), insertions in time O(n1/t(n)), and deletions in time O(log n), where t
is a “reasonable” parameter function. The method in [18] was devised as an
alternative to the method from [12] that eliminates the problem with the high
compile-time demand. The dynamic dictionaries from [18] almost match the dy-
namic result from [12] — the difference is that update bounds are amortized,
instead of worst-case. An illustration of complete independence from the word
size w is that the structures from [18] can be easily adapted to the Real RAM
model to work with arbitrary real numbers. This is not a feature of any other
known hashing method.

1.2 External Memory Models

Real computers don’t have one plain level of memory but a memory hierarchy.
Transfers of data between levels of memory are often a dominant term in execu-
tion times. The theoretical I/O-model was introduced to model behavior of algo-
rithms in such a setting [1]. The I/O-model was generalized to the cache-oblivious
model [10], where the algorithm does not know the size of the internal memory
M and the block size B. That is, the analysis of an algorithm should be valid for
any values of B and M . Comparison-based sorting of n integers (which occupy
one memory cell) takes Θ(Sort(n)) I/Os [10], where Sort(n) = n

B logM/B
n
B .

From the structures mentioned for the word RAM model, it can be observed
that the methods of Raman [16] and Ružić [18] can easily be adapted to the ex-
ternal memory models and attain analogous bounds — respectively O(n

2

B log |U |)
and O(n

1+ε

B) I/Os. We take the block size parameter B to represent the number
of lg |U |-bit items that can fit in a memory block. For the dictionary from [12],
no better bound than O(n logn) I/Os can be stated. The main problem was
with the dictionary for universes of size polynomial in n, which is a component
of the construction from [12].

Constructing Efficient Dictionaries in Close to Sorting Time 87

1.3 Background of Our Techniques

Our contribution consists of two parts. One part is a very efficient dictionary for
universes of size nO(1). Beside its use in composition with methods that perform
universe reduction, this case has a significance of its own. The most prominent
example of stand-alone use of dictionaries for “small” universes is representation
of a graph. In the problem of storing and (random) accessing edges of a graph,
the universe is of quadratic size. The problem is also of interest to some situations
in practice, since in reality integer keys are not often very large relative to n.
The main part of our structure uses the same kind of hash functions that were
used in [12] for this case. The construction algorithm from [12] runs in time
Θ(n log n). Interestingly, those functions are very similar to the functions from
[19] where construction time was Θ(n2). We devised a different and more efficient
construction algorithm.

The other part of the contribution is a follow-up on our technique of making
deterministic signatures from [17]. That paper introduced a new type of hash
functions and associated algorithms for injectively mapping a given set of keys
to a set of signatures of O(log n) bits (a brief outline of the method is given
in Section 3.1). The methods are computationally efficient in various models
of computation, especially for keys of medium to large lengths. More precisely,
when given keys have a length of at least log3+ε n bits, the algorithms for se-
lecting perfect hash functions have a linear running cost on sorted input. The
performance of evaluation is optimal2. Those functions have rather succinct de-
scriptions, and they might have an application outside of dictionary structures.
In our quest for a faster construction in the case w = logO(1) n we will give
up the requirement of complete injectiveness, and replace it with considerably
weaker and rather specific properties. These weaker functions will be meaningful
only within our dictionary construction.

1.4 Our Results

The result for the case of universes of polynomial size is summarized in the
following theorem.

Theorem 1. Suppose that a set of n integers from the universe {0, 1, . . . , nO(1)}
is given. A static linear space dictionary on that set can be deterministically con-
structed on a word RAM in time O(n log logn), so that lookups to the dictionary
take constant time. In the cache-oblivious model, and hence in the I/O model as
well, a similar structure can be built using O(Sort(n) log logn) I/Os.

The method is discussed in Section 2. The obtained structure complements ad-
ditional results from [17] in the external memory setting, such as a static prede-
cessor structure for variable and unbounded length binary strings.
2 For the word RAM model, in the conference version evaluation time of O(log log w

log n
)

was stated. However, with even a slightly simpler method the time is cut down to
O(1). We make a brief explanation of that in this paper; the explanation will also
appear in the journal version of [17].

88 M. Ružić

In the second part of the paper (Section 3) we give an overview of the struc-
tures and associated procedures that are efficient in the case that w = logO(1) n.
In conjunction with the earlier results, this implies the claimed results for the
general case, which are formally expressed in the following theorems. In the per-
formance bounds we plugged in the currently known upper bounds on sorting
(which may be optimal).

Theorem 2. In the cache-oblivious model, a static linear space dictionary on
a set of n keys can be deterministically constructed using O(Sort(n) log logn)
I/Os, so that lookups to the dictionary take O(1) I/Os.

Theorem 3. In the word RAM model, a static linear space dictionary on a set
of n keys can be deterministically constructed in time O(n(log logn)2), so that
lookups to the dictionary take time O(1).

We could have also listed results for strings, etc. The stated general bounds do
not match the actual times in every case. We make remarks on some meaningful
special cases, when performance is better.

Remark 1. Suppose that log |U | = Ω(log n log log n). The construction cost of
the dictionary referred to in Theorem 2 is O(Sort(n)) I/Os.

Remark 2. Supposing that w > log3+ε n and that the input set of keys is sorted,
time taken to build the dictionary from Theorem 3 is O(n).

Remark 3. Supposing that w = O(log n log logn), time taken to build the dic-
tionary from Theorem 3 is O(n log logn).

At the moment, our fast static dictionaries do not yield an improvement for dy-
namic deterministic dictionaries. It is one of major challenges in data structures
research to either significantly improve performance of dynamic dictionaries, or
to prove general lower bounds that would definitely establish a gap between de-
terministic and randomized dictionaries. How far deterministic dictionaries can
go remains unknown, even in the static case.

2 Universes of Polynomial Size

Notation and comments. We use the symbol ⊕ to denote bitwise exclusive or
operation. The number of collisions of a function h on a subset A of its domain
represents the value |{ {x, y} : h(x) = h(y) ∧ x, y ∈ A ∧ x = y}|. For multisets
A and B, the value |{ {x, y} ∈ A × B : x = y}|, which may be thought of as
the number of collisions between the multisets, is denoted by coll(A,B). For a
multiset A, A⊕y stands for the multiset {x⊕y}x∈A. Because of space restrictions,
we will give only a high-level description of the construction. Explanations of
subprocedures and second-level structures will appear in a full version of the
paper.

Suppose that φ : U → {0, 1}Φ and ψ : U → {0, 1}Ψ are functions such that
the combined function (φ, ψ) is 1-1 on U . An easy choice is to take φ to be

Constructing Efficient Dictionaries in Close to Sorting Time 89

the projection on the Φ highest order bits, and ψ to be the projection on the
Ψ lowest order bits of binary representations of keys. We will assume here that
lgn ≤ Ψ < lg n + O(1) and Φ + lgΦ + lg Ψ ≤ Ψ . This assumption implies that
in a basic form the structure allows universes of size O(n2/(logn)2). Yet, such
a structure can easily be built upon to support universes of size nc, for any
constant c.

The main hash function is of type

h(x) = ψ(x)⊕ aφ(x) ,

where (ai) is an array of Ψ -bit elements, with i ∈ {0, 1}Φ. Our aim is to set values
of the array elements in a way that makes the function h have no more than
3Φ2n collisions on a given set S ⊂ U . It will become clear that this is always
possible. After the function h is fixed, buckets of elements colliding under h
need to be resolved. This is much easier than the original problem, since the
average size of buckets is small. If the size of a bucket is less than Φ3Ψ then a
structure specialized for small sets will handle it. The total number of elements
in the remaining (“large”) buckets is O(nΦΨ). This can be seen by analyzing
the function

∑
i bi under constraint

∑
i

(
bi
2

)
≤ 3Φ2n and with variable domains

[Φ3Ψ, ∞). Let S′ be the subset of S comprising the elements that fall in the
“large” buckets. Constructing an efficient dictionary over S′ will be an easier
task, because we can afford to spend O(|S′|ΦΨ +2Ψ) construction time on it. No
additional new techniques are required to design these second-level structures.

We will now give an overview of the algorithm for selecting values of the
elements of the array a. The array a is initially set to all-zeros. Values of ar-
ray elements will be decided in stages, with each stage being responsible for
a separate set of bit positions. In our numbering of bit positions, position 0
refers to the most-significant bit position. Let i∗ = �lg Ψ − lg lgΦ − 1�. There
will be a total of 2i∗ + 2 = O(log Ψ) stages. In the stages numbered 1, 2, . . . , i∗
the sizes of the active sets of bit positions decrease roughly geometrically, while
in the remaining i∗ + 2 stages they have the same (small) size. Let p0 = 0,
pi = �(1 − 2−i)Ψ� − i · �lgΦ� for 0 < i ≤ i∗, and pi = pi−1 + �lgΦ� for
i∗ < i ≤ 2i∗ + 2. In the ith stage bits at positions between pi−1 and pi − 1
(inclusive) are decided on all elements of a.

The last i∗ + 2 stages can be replaced with different and shorter sequences.
Yet, in this presentation of the algorithm we keep the chosen setting because it
is relatively simple and incurs a relatively small increase in the overall constant
factor. Operation in all the stages is done by the same procedure, parameterized
by values pi−1 and pi. We introduce symbols ηi to denote 2pi−pi−1+�lgΦ�.

After the ith stage of the algorithm, the projection of h(x) on the high-order
pi bits is known. In other words, for any x ∈ U the value of h(x) div 2Ψ−pi is
fixed after the ith stage. To describe operation of the algorithm in stage i, we
will define sets T (v, j, k), v ∈ {0, 1}pi−1, 0 ≤ j ≤ Φ, 0 ≤ k < 2Φ−j (whenever
we talk about sets T (v, j, k) the stage number i is assumed to be fixed). Sets
T (v, j, k) are defined recursively as follows:

– For any v ∈ {0, 1}pi−1, T (v, Φ, 0) = {x ∈ S | h(x) div 2Ψ−pi−1 = v}.

90 M. Ružić

– For j < Φ, if |T (v, j + 1, k div 2)| < ηi then T (v, j, k) = ∅.
– For j < Φ, if |T (v, j + 1, k div 2)| ≥ ηi then

T (v, j, k) = {x ∈ T (v, Φ, 0) | k2j ≤ φ(x) < (k + 1)2j} .

Only non-empty sets T (v, j, k) are of interest to us. For any fixed v, subset
relation on the family of non-empty sets T (v, j, k) can be described by a binary
tree, with nodes labeled by pairs (j, k). Sets T (v, j, k) that correspond to leaves
of that tree are those that satisfy j = 0 or T (v, j−1, 2k)∪T (v, j−1, 2k+1) = ∅.
Let {Svl}v, l be the collection of all such “leaf” sets, over v ∈ {0, 1}pi−1. The
collection {Svl} is a partition of the set S.

No matter how the elements of the array a are modified in current and later
stages, that is on bit positions from pi−1 to Ψ − 1, the number of collisions that
h may create is bounded by

∑
v

∑
l1<l2

|Svl1 | · |Svl2 | plus a bound on the total
number of collisions within the sets Svl. If a set Svl has size greater than ηi then
it has to be one of the sets T (v, 0, k). However, the set {x ∈ S | φ(x) = k} ⊃
T (v, 0, k) is always mapped injectively by h. This follows from the definition
of the function h, the fact that (φ, ψ) is 1-1 on U , and the properties of xor
operation. Therefore collisions may happen only within the sets Svl such that
|Svl| < ηi. An upper bound on the total number of collisions that may happen
within the sets Svl is 1

2nηi, which can easily be seen by analyzing the function
1
2

∑n
j=1 b2j under constraint

∑
j bj = n and over domain [0, ηi]n. The goal of

processing in stage i is to modify the values in the array a so that the number
of collisions of h on S does not exceed

ηi
n

2
+

1
2pi−pi−1

∑

v

∑

l1<l2

|Svl1 | · |Svl2 | , (1)

when the stage ends. By solving appropriate recurrences, the following technical
lemma can be shown.

Lemma 1. If modifications to the array a by the selection algorithm make the
number of collisions of h on S not exceed (1) at the end of stage i, for each i,
then the final number of collisions will be less than 3Φ2n.

The term
∑
v

∑
l1<l2

|Svl1 | · |Svl2 | from (1) can be re-expressed in an algorith-
mically more useful form. Each set T (v, j, k) is the union of some sets Svl.
Thus, we may write |T (v, j, k)| =

∑
|Svl|, where the sum is over all l such

that Svl ⊂ T (v, j, k). The product |Svl1 | · |Svl2 |, for some l1, l2, will be a term
in the expanded expression for a product of type |T (v, j, 2k)| · |T (v, j, 2k + 1)|.
Actually it will appear as a component of exactly one such product — in the
mentioned binary tree the node with label (j+1, k) has to be the lowest common
ancestor of the nodes that correspond to the sets Svl1 and Svl2 . As a result, it
holds that:

∑

v

∑

l1<l2

|Svl1 | · |Svl2 | =
∑

v

Φ−1∑

j=0

2Φ−j−1−1∑

k=0

|T (v, j, 2k)| · |T (v, j, 2k + 1)| .

Constructing Efficient Dictionaries in Close to Sorting Time 91

After we specified the goal of processing in every stage, we proceed to giving
a high-level description of the sequence of operations done at each stage. We
introduce multiset variables X(v, j, k), and we implicitly initialize all of them to
∅. In the outermost loop of the procedure, j takes values from 0 to Φ − 1. We
describe principal operations performed for a fixed j. First, for all “leaf” sets
T (v, j, k), i.e. those that equal one of the sets Svl, we make the assignment

X(v, j, k) = {(h(x) div 2Ψ−pi) mod 2pi−pi−1 | x ∈ T (v, j, k)} ,

where values h(x) are taken to be determined by the current state of the array a.
We effectively calculated the projections of the current values h(x), x ∈ T (v, j, k),
on the bits at positions pi−1 through pi − 1. The multisets can be stored as sets
of element-multiplicity pairs. For each k, 0 ≤ k ≤ 2Φ−j−1− 1, the algorithm will
find a value δ ∈ {0, 1}pi−pi−1 such that

∑

v

coll(X(v, j, 2k), X(v, j, 2k+1)⊕δ) ≤ 1
2pi−pi−1

∑

v

|T (v, j, 2k)|·|T (v, j, 2k+1)|

and then make assignments X(v, j + 1, k) = X(v, j, 2k) ∪ (X(v, j, 2k + 1) ⊕ δ),
where the union is in the multiset sense. The elements of the array a are modified
so that al = al ⊕ 0pi−1δ 0Ψ−pi, for (2k + 1)2j ≤ l < (2k + 2)2j. At the end of
the current iteration of the loop over j, the equality

X(v, j + 1, k) = {(h(x) div 2Ψ−pi) mod 2pi−pi−1 | x ∈ T (v, j + 1, k)} ,

holds for every non-leaf set T (v, j + 1, k).
It is not hard to formally verify that a procedure conforming with this high-

level description meets the specified goal of reducing the number of collisions of
the function h on the set S. We leave out the explanations of subprocedures,
such as for determining and arranging sets Svl, and for finding suitable δ values.
We mention that the following fact is used in the performance analysis.

Lemma 2. There can be at most 4nΦ+1
ηi

non-empty multisets X(v, j, k).

3 Larger Universes

3.1 Background on Signature Functions

The basic type of functions used in [17] is f(x, s, a) = x div 2s + a · (x mod 2s),
where a is a parameter chosen from {1, 2, . . . , nc − 1}, c ≥ 2. The parameter
s has a value dependent only on the domain of x, for example s = � 1

2 lg |U |�
The integer division and modulo functions were chosen as they are perhaps the
simplest of all pairs of functions (φ, ψ) such that (φ, ψ) is 1-1 on U , and so that
both functions map to a (significantly) smaller universe. In a more general form,
we write f(x, a) = φ(x) + a · ψ(x). Suppose that K is the number of keys that
can be packed in a machine word. With c = 3.42, on a given set of n keys a
value for the parameter a that makes the function f injective on the set can be

92 M. Ružić

found in time O(n(log n)2 logK
K + logn). The basic function can be combined in

different ways to achieve larger reduction of universe. The ultimate goal is to
have a function that maps original keys to signatures of size O(log n) bits. One
approach is to view keys as strings over some chosen alphabet, and then apply
function f on the characters and combine the values in some way. We will see
two concrete methods that fall under this approach.

Let x[i]σ denote the ith character of key x viewed as a string over the alphabet
{0, . . . , 2σ−1}. If σ is not too small, e.g. σ > 4 lgn, we may apply f to individual
characters and concatenate the resulting values, viewed as binary strings. We use
the same function parameter for all characters; thus, the length-reduced value for
key x can be written as f(x[0]σ, s, a)f(x[1]σ, s, a) . . . f(x[q−1]σ, s, a), where x is
zero-padded to make x[q−1] a σ-bit value (if necessary). The process is repeated
with different multipliers and possibly different alphabets at subsequent levels of
reduction. We will later refer to this way of combining function f as the parallel
reduction.

To make the mapping to the reduced universe injective on S it is not necessary
to make f injective on all character values that appear in the keys. Also, by
making a special relation between alphabet sizes at different reduction levels,
it is possible to improve performance of both construction and evaluation of
the final function. The composed function that maps keys to a range of size
O(log n log w

logn) bits can be expressed as a certain dot product. For explanations
about this string approach of combining function f and details about operations
that need to be performed see [17]. Here we note one fact, initially overlooked,
that simplifies and improves evaluation procedure. On a word RAM, dot product
of integer vectors packed into single words can be computed in constant time
when one operand is a constant. The constant operand can be preprocessed
during the construction procedure — the order of the fields within the operand is
reversed offline, during the construction. The dot product can later be computed
via standard multiplication. To prevent overflows from spoiling the result, the
operands are split into two components and two multiplications are performed.
The fields of the components alternate between zero fields and fields retained
from the original operands.

A bit different method is to serially apply function f on reduced suffixes of the
key. Namely, we want to find multipliers a0, a1, . . . , aq−2 such that the function

a0 · x[0]σ + (. . . + (aq−3 · x[q − 3]σ + (aq−2 · x[q − 2]σ + x[q − 1]σ)) . . .) (2)

is injective on S. The final function has a similar form as before, and it is
again evaluated as a dot product. However the composition of the function is
represented differently, and the process of parameter selection is different. The
multiplier selection algorithm is applied q− 1 times, as suggested by the expres-
sion in (2). We will call this way of combining function f as the suffix reduction.
Here we may set σ = O(log n), and thus have a smaller range of the final func-
tion. Beside the cost of calling the multiplier selection procedure q − 1 times,
there is a preparation task of partitioning the keys so that the elements in the
sets {x1[0], x2[0], . . . , xn[0]}, {x1[1], . . . , xn[1]}, . . ., {x1[q− 1], . . . , xn[q− 1]} are

Constructing Efficient Dictionaries in Close to Sorting Time 93

grouped together. The cost of this partitioning is proportional to lg q times the
cost of reading the keys (they may be packed into words). The selection of mul-
tipliers is the dominant task. If the input set of keys is the output of the parallel
reduction method, then q = O(log(w/ log n)).

An injective function composed of the functions generated by the method of
parallel reduction and the method of suffix reduction can be evaluated in con-
stant time on a word RAM. One upper bound on time required to compute the
description of such a function is O(n + n log3 n

w log3 w
logn + logw logn), assuming

the the input is already sorted. It is apparent that for log3+ε n < w < 2
n

log n the
construction algorithm runs in linear time on sorted input. We may use fusion
trees to cover the extreme case w ≥ 2

n
log n efficiently. In this paper we show an

improved complexity of dictionary construction in the case w = logO(1) n.

3.2 Speed-Up of the Suffix Reduction

The outlined method of making deterministic signatures produces perfect hash
functions with ranges of polynomial size. The functions have rather succinct
descriptions, and they might have an application outside of dictionary struc-
tures. Here we will give up the injectiveness requirement, and replace it with
considerably weaker properties. These weaker functions will be useful only when
combined with additional data structures, foremost a dictionary structure for
universes of polynomial size. The variant of the suffix reduction method that
we introduce is particularly efficient in the external memory models. Yet it also
produces some useful results in the word RAM model.

The multiplier selection procedure is again called q − 1 times, but each time
with an input set of size O(n/(log n)2). There will be no limit on the num-
ber of collisions that the final function may cause. Yet the function will have
some properties that will allow the initial searching problem to be reduced ei-
ther to a problem over a universe of size O(σ) bits, or to a problem over a set
of size O(log2 n). The high level idea is to look for clusters of elements that
already piled up and will hash to equal values by the final function, and to
prevent further collisions between already formed clusters. Sorting operations
(over shorter keys) will dominate the running times. Suppose that values for the
parameters al, al+1, . . . , aq−2 were selected. If two keys x and y share the prefix
of length l and the function values on their suffixes of length q − l collide, i.e.
al ·x[l]σ+al+1 ·x[l+1]σ+ . . .+x[q−1]σ = al ·y[l]σ+al+1 ·y[l+1]σ+ . . .+y[q−1]σ,
then x and y will certainly be mapped to the same value by the final function.
On the other hand, if the length l prefixes of x and y differ, it does not mat-
ter what are the values of the partial function on their suffixes of length q − l,
since the separation of their hash values will be decided at a later time. The
construction algorithm will keep track of sufficiently large clusters of elements
that are certain to collide given the already selected multipliers. Different clus-
ters will be ensured to map to different values. However keys not yet belonging
to any cluster are able to join existing clusters or form new ones. The time
of joining a cluster for a given key, specified by a prefix length, is possible to
determine quickly during lookups. Some pieces of information related to this

94 M. Ružić

joining point will enable us to substantially reduce the search space. To be pre-
cise, the reduced search space will consist of keys of length O(σ) bits. If we
set σ = Θ(log n) then the method can be composed with the structure from
Section 2.

The computationally dominant process in the construction algorithm will usu-
ally be sorting. The procedure performs O(q) sorting operations over sets of
O(n) keys of length O(σ) bits. In the external memory models this amounts to
O(Sort(n)) I/Os (with the block size B expressed in terms of lg |U |-bit items,
where U is the universe of keys that are input to the method). Combining this
with the result from Section 2 produces the result stated in Theorem 2. In the
word RAM model, the total sorting time is in general O(nq log log n), based on
[13]. When σ = Θ(log n) we may use radix sort and get a time bound of O(nq),
which explains Remark 3.

3.3 Speed-Up of the Parallel Reduction

This section provides a sketch of the proof of Theorem 3 for the remaining case
ω(logn log logn) < w < log3+ε n. The approach is conceptually very similar to
the approach that led to the speed-up of the method of suffix reduction, but the
details are different and the computation is more involved. Consider partially
reduced keys, after some number of levels of the parallel reduction. We call a
prefix value heavy if it is shared by at least (lg n)2 partially reduced keys. We
ensure that the current level of reduction avoids any collisions between heavy
prefixes. For this purpose, it is convenient to maintain the trie of the partially
reduced set (see [17]). It is again possible to substantially reduce the search space
for a given key by using information related the key’s point of joining a cluster
of piled up elements.

In order to determine the level at which a key joined a cluster in constant time,
we need to evaluate partially reduced values of the key for all levels in constant
time. This is possible if Ω(K2) copies of a key can fit in a single machine word,
where K is the number of reduction levels; for w = logO(1) n we have that
K = O(log logn). To provide such a situation we use two levels of the searching
problem reduction from Section 3.2, using the setting q = O(log logn). Hence
the incurred construction cost from these two reduction steps is O(n(log logn)2).

The construction of this version of the parallel reduction function has a time
cost proportional to K times the sorting time. For w = logO(1) n we again get
a bound of O(n(log logn)2). Since through the method of parallel reduction we
map the keys to a range of size O(log n log w

logn) bits, at the bottom end we
again employ the suffix reduction but this time paired with the dictionary for
polynomial-size universes.

Acknowledgment. The author wishes to thank Mihai Pǎtraşcu for interesting
and helpful discussions on this subject, and in particular for pointing out that
dot product with a constant vector can be easily computed in O(1) time.

Constructing Efficient Dictionaries in Close to Sorting Time 95

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Albers, S., Hagerup, T.: Improved parallel integer sorting without concurrent writ-
ing. In: Proceedings of the 3rd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 463–472 (1992)

3. Alon, N., Naor, M.: Derandomization, witnesses for Boolean matrix multiplication
and construction of perfect hash functions. Algorithmica 16(4-5), 434–449 (1996)

4. Andersson, A.: Sublogarithmic searching without multiplications. In: Proc. 36th
Symposium on Foundations of Computer Science (FOCS), pp. 655–663 (1995)

5. Brodal, G.S., Fagerberg, R.: On the limits of cache-obliviousness. In: Proc. 35th
Annual ACM Symposium on Theory of Computing, pp. 307–315 (2003)

6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. of Comput.
Syst. Sci. 18(2), 143–154 (1979)

7. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., auf der Heide, F.M., Rohnert,
H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput. 23(4), 738–761 (1994)

8. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. J. ACM 31(3), 538–544 (1984)

9. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

10. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proceedings of the 40th Symposium on Foundations of Computer Sci-
ence (FOCS), pp. 285–298 (1999)

11. Hagerup, T.: Sorting and searching on the word RAM. In: Meinel, C., Morvan, M.
(eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg (1998)

12. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algor. 41(1),
69–85 (2001)

13. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. J. Al-
gor. 50(1), 96–105 (2004)

14. Overmars, M.H., van Leeuwen, J.: Worst-case optimal insertion and deletion meth-
ods for decomposable searching problems. Inf. Proc. Lett. 12(4), 168–173 (1981)

15. Pagh, R.: A trade-off for worst-case efficient dictionaries. Nordic J. Comput. 7(3),
151–163 (2000)

16. Raman, R.: Priority queues: Small, monotone and trans-dichotomous. In: Dı́az, J.
(ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg (1996)

17. Ružić, M.: Making deterministic signatures quickly. In: Proceedings of the 18th
ACM-SIAM Symposium on Discrete Algorithms, pp. 900–909. ACM, SIAM (2007);
Preliminary full version is available on the author’s web page

18. Ružić, M.: Uniform deterministic dictionaries. ACM Transactions on Algo-
rithms 4(1) (2008)

19. Tarjan, R.E., Yao, A.C.-C.: Storing a sparse table. Commun. ACM 22(11), 606–611
(1979)

On List Update with Locality of Reference�

Susanne Albers and Sonja Lauer

University of Freiburg, Georges Köhler Allee 79, 79110 Freiburg, Germany
{salbers,lauers}@informatik.uni-freiburg.de

Abstract. We present a comprehensive study of the list update prob-
lem with locality of reference. More specifically, we present a combined
theoretical and experimental study in which the theoretically proven and
experimentally observed performance guarantees of algorithms match or
nearly match. In the first part of the paper we introduce a new model
of locality of reference that is based on the natural concept of runs. Us-
ing this model we develop refined theoretical analyses of popular list
update algorithms. The second part of the paper is devoted to an ex-
tensive experimental study in which we have tested the algorithms on
traces from benchmark libraries. It shows that the theoretical and ex-
perimental bounds differ by just a few percent. Our new bounds are
substantially lower than those provided by standard competitive analy-
sis. Another result is that the elegant Move-To-Front strategy exhibits
the best performance, which confirms that it is the method of choice in
practice.

1 Introduction

The list update problem is one of the most extensively studied online problems,
with a tremendous body of work over the past 40 years. The problem consists
in maintaining a set of items as an unsorted linear list. More specifically, a
linear linked list of items is given. A list update algorithm is presented with
a sequence of requests that must be served in their order of occurrence. Each
request specifies an item in the list. In order to serve a request, a list update
algorithm must access the requested item, i.e. it has to start at the front of
the list and search linearly through the items until the desired item is found.
Accessing the i-th item in the list incurs a cost of i. Immediately after an access,
the requested item may be moved at no extra cost to any position closer to the
front of the list. These exchanges are called free exchanges. All other exchanges
of two consecutive items in the list cost 1 and are called paid exchanges . The goal
is to serve the request sequence so that the total cost is as small as possible. We
are interested in online algorithms that serve each request without knowledge of
any future requests.

While early work on the list update problem evaluated online algorithms
assuming that requests are generated according to probability distributions, re-
search over the past 20 years has focused on competitive analysis [24]. Here an
� Work supported by the German Research Foundation, projects AL 464/4-2 and 5-1.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 96–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On List Update with Locality of Reference 97

online algorithm is compared to an optimal offline algorithm. Given a request
sequence σ, let A(σ) denote the cost incurred by online algorithm A in serving
σ, and let OPT (σ) denote the optimum offline cost. Algorithm A is called c-
competitive if there exists a constant α such that A(σ) ≤ c ·OPT (σ) + α holds
for all σ and all size lists.

In 1985 Sleator and Tarjan proved that the Move-To-Front algorithm is 2-
competitive [24]. This elegant strategy simply moves an item to the front of
the list whenever it is requested. Since then, algorithms with an improved com-
petitiveness have been developed. While the competitive ratios are of course
constant, there is a substantial gap between the theoretical bounds and the
performance ratios of the algorithms observed in practice. More precisely, the
ratios in practice are much smaller than their theoretical counterparts. The rea-
son is that competitive analysis considers arbitrary request sequences, whereas
sequences arising in practice have a special structure: They exhibit locality of
reference, i.e. that at any point in time only a small set of items is referenced.

There has been considerable research interest in studying the paging prob-
lem with locality of reference, see e.g. [2,11,15,18,20] because, in paging, the
gap between the theoretical and experimental performance values is even super-
constant. However, hardly any work has been presented for the classical list
update problem. In fact, references [8,16] point out that locality is an essential
aspect in the list update problem and that a good model is required to properly
evaluate the performance of algorithms.

Previous results: We focus on the results that have been developed in the
framework of competitive analysis. As mentioned above Sleator and Tarjan [24]
showed that Move-To-Front is 2-competitive. This is the best factor determinis-
tic online algorithms can achieve [19]. Bachrach and El-Yaniv [7] devised deter-
ministic MRI and PRI families of algorithms. These families attain competitive
ratios of 2 and 3, respectively. We next turn to randomized algorithms. The first
randomized strategy was presented by Irani [17]. Her Split algorithm is 1.9375-
competitive. Reingold et al. [22] presented an elegant BIT algorithm that is
1.75-competitive. This factor is substantially below the deterministic bound of 2.
The BIT algorithm can be generalized to a family of Counter strategies [22].
A Timestamp family of algorithms was developed in [1]. It achieves a compet-
itiveness equal to the Golden Ratio Φ ≈ 1.62. The best randomized algorithm
currently known is COMB which is 1.6-competitive [3]. Interestingly, COMB is
a combination of BIT and a (deterministic) element of the Timestamp family.
The factor of 1.6 is close to best lower bound of 1.50084 shown by Ambühl [5]
on the performance of randomized list update algorithms.

Experimental studies for the list update problem have been presented by
Rivest [23], Bentley and McGeoch [9] and Bachrach et al. [8]. They analyzed
popular algorithms on request sequences generated by probability distributions
and Markov sources, on sequences derived from text and Pascal files as well
as on sequences extracted from the Calgary Corpus [13]. The results are not
unanimous. A conclusion is that the ranking of algorithms depends on the degree
of locality in the input.

98 S. Albers and S. Lauer

The only previous paper addressing list update with locality of reference is a
technical report by Angelopoulos et al. [6]. They adapt a locality model intro-
duced in [2] for the paging problem and prove that Move-To-Front is superior
to other algorithms.

Our contribution: We present a comprehensive study of the list update prob-
lem with locality of reference. The goal is to provide a refined analysis of the
problem in which theoretical and empirical results match or nearly match. To
this end our study integrates theoretical and experimental work.

First, in Section 2, we introduce a new model of locality of reference that is
based on the natural concept of runs . A run is a sequence of requests to the same
item. We define a number of parameters that characterize request sequences in
terms of the occurrence of long runs. Using these parameters we will be able to
accurately estimate the performance of list update algorithms. We also define a
model of so-called λ-locality that characterizes classes of input sequences with
respect to their degree of locality. Loosely speaking, the more long runs there
are, the higher the locality. As we shall see, our new concepts properly capture
locality of reference in the list update problem, both from a theoretical and
practical point of view.

In Section 3 we present refined theoretical analyses of list update algorithms.
We concentrate on the most popular strategies that have received the most
attention recently, namely Move-To-Front , BIT and COMB . In order to be able
to analyze COMB, we have also evaluated a member of the Timestamp family. Of
course, we have also investigated an optimal offline strategy. For each algorithm
we have analyzed the total service cost incurred on a request sequence, where
cost is expressed in terms of our new locality parameters. Interestingly, for Move-
To-Front , our cost analysis is exact. Furthermore, for each online algorithm, we
have evaluated its performance relative to that of an optimal offline algorithm.
Here Move-To-Front achieves an excellent performance ratio that even tends
down to 1 as the degree of locality increases.

In Section 4, we present a comprehensive experimental study in which we have
evaluated our list update algorithms on real-world traces from benchmark li-
braries. Obviously, the list update problem is a solution to the classical dictionary
problem. In this context, in practice, requests are memory accesses. Secondly,
list update has interesting applications in data compression, see e.g. [10,12].
Therefore, in our experiments we consider as input (a) memory access strings
(47 traces) and (b) sequences arising in data compression routines (44 traces). In
our tests we first analyze the traces with respect to their locality characteristics.
It shows that the parameters introduced in Section 2 are indeed sensible.

Next, in the experiments, for each algorithm and each input sequence, we have
computed the total service cost. Furthermore, for each online algorithm and each
input, we have determined the experimentally observed competitiveness , which
is the total service cost of the algorithm divided by the total cost incurred by an
optimal offline strategy. In general, our theoretically proven and experimentally
observed bounds are very close and differ by just a few percent. As for the
total service cost, Move-To-Front exhibits an error of 0 because our theoretical

On List Update with Locality of Reference 99

bound is exact. For the other three online algorithms BIT , Timestamp and
COMB, the average relative error between the theoretical and experimentally
observed values is 3–4% on the memory access traces and 7–9% on the data
compression sequences. As far as performance ratios relative to the optimum
are concerned, the average relative errors between our theoretical bounds and
the experimentally observed competitive ratios are a bit higher. Move-To-Front
exhibits average relative errors of 0.3% on the memory traces and of 0.7% on the
data compression sequences. The other three strategies incur average errors of
3–4% on the memory traces and of 8–10% on the data compression sequences.

In our study, the theoretical and experimental performance ratios of the algo-
rithms are much lower than the corresponding standard competitive ratios. In
particular, Move-To-Front shows the best performance with ratios in the range
of 1.2–1.3. This confirms that Move-To-Front is the method of choice in practice.

2 A New Model for Locality of Reference

Informally speaking, a request sequence exhibits locality of reference if, at any
time, it references only a small set of items. If an item is requested, it is likely to
be requested again soon. This description suggests the concept of runs , where a
run is a subsequence of requests to the same item. In the best case, when there
is a high degree of locality, an item is requested many times in a row before a
different element is referenced. Unfortunately, real-world request sequences may
contain only few of these pure long runs. However, long runs may occur if we
focus on small item sets and, in particular, on item pairs: If, at any time, item x is
more significant than y, then this relation is likely to hold also in the near future
and we encounter several requests to x before the next reference to y arises. Thus
long runs occur if we project request sequences to smaller item sets or item pairs.
A request sequence exhibits a high degree of locality if a substantial portion of
the requests belongs to long runs. In the following we introduce a formal model
of locality of reference based on this generalized notion of runs.

Let L be the set of items in the list to be maintained. Consider a fixed request
sequence σ. For any two items x, y ∈ L with x = y, let σxy be the request
sequence that is derived from σ when deleting all requests that are neither to
x nor to y, i.e. only the requests to x and y survive. Any maximal subsequence
of consecutive requests to the same item in σxy is called a run. Let r(σxy) be
the number of runs in σxy. A run is short if it consists of one request only. A
run consisting of at least two requests is long. Let s(σxy) and l(σxy) denote the
number of short and long runs, respectively, in σxy. Then s(σxy) + l(σxy) =
r(σxy).

Online algorithms typically perform well on long runs, relative to an optimal
offline algorithm. In order to properly evaluate our algorithms, we need some
further definitions. A long run ρ is called a prefixed long run if it is preceded
by one or more short runs; otherwise ρ is called an independent long run. Again
let lp(σxy) and li(σxy) be the number of prefixed and independent long runs,
respectively. We have lp(σxy)+ li(σxy) = l(σxy). Consider two long runs ρ′ and ρ

100 S. Albers and S. Lauer

such that ρ′ occurs earlier than ρ in σxy. Run ρ′ precedes ρ if the last request of
ρ′ is followed by the first request of ρ in σxy or if ρ′ and ρ are separated by short
runs only. A long run ρ which is not equal to the first long run in σxy represents
a long run change if ρ and the preceding long run ρ′ reference different items.
The first long run ρ in σxy represents a long run change if ρ and the first request
of σxy reference the same item (imagining that σxy was preceded by a long run
to just the other item of {x, y}). Let lc(σxy) be the number of long run changes
in σxy. We have lc(σxy) ≤ l(σxy). Furthermore, li(σxy) ≤ lc(σxy) because each
independent long run, except for possibly the first one, is immediately preceded
by another long run, which references a different item. The number of long run
changes will be particularly important in lower bounding the cost incurred by
an optimal offline algorithm. Hence, it will allow us to derive good upper bounds
on the relative performance ratios of online strategies.

We next introduce some definitions regarding the beginning and end of σxy.
Let fb(σxy) be equal to 1 if the item first requested in σxy precedes the other
item of {x, y} in the initial list; otherwise let fb(σxy) = 0. Moreover, let f ′b(σxy)
be equal to 1 if fb(σxy) = 1 and σxy starts with a short run followed by a long
run; otherwise f ′b(σxy) = 0. Finally, let fe(σxy) be equal to 1 if (a) σxy consists
of a single request and the referenced item is stored after the other item of {x, y}
in the initial list or if (b) σxy ends with a short run but is preceded by a long
run. Otherwise fe(σxy) = 0.

So far we have defined a number of values for a particular request sequence
σxy. We now sum these values over all pairs of items x and y. For any pair
x, y ∈ L with x = y and for any value v ∈ {r, s, l, li, lp, lc, fb, f ′b, fe}, let v(σ) =∑
{x,y}⊆L,x �=y v(σxy). For instance, r(σ) is the total number of runs in σ, while

s(σ) and l(σ) represent the total number of short and long runs, respectively.
All the definitions presented so far refer to a given request sequence σ and,

using these definitions, we will be able to accurately evaluate the performance
of list update algorithms on such a σ. Next, we introduce a model of locality of
reference that applies to classes of request sequences which may be generated
by a particular application. Intuitively, request sequences exhibit a high degree
of locality if there are many long runs. However, in order to obtain meaningful
results we have to work with a refined definition. Again, the number of long run
changes is crucial. We say that a class Σ of request sequences exhibits λ-locality,
for some 0 ≤ λ ≤ 1, if for any σ ∈ Σ inequality lc(σ)/r(σ) ≥ λ holds, i.e. the
number of long run changes represents at least a fraction of λ among all the runs.
Note that, for a given request sequence, lc(σ) accounts for all the independent
long runs and, depending on the input, for a smaller or larger fraction of the
prefixed long runs. If a sequence consists of long runs only, we have λ = 1.

A reader may wonder why our locality model does not incorporate the length
of long runs. This parameter is irrelevant for algorithms performance because
after the second request of a long run competitive algorithms have moved the
referenced item ahead of the other item in the list and no further cost is incurred
on the run.

On List Update with Locality of Reference 101

3 Analyzing Online and Offline Algorithms

We analyze the costs incurred by an optimal offline algorithm OPT and by
online algorithms on a request sequence σ. Due to space limitations, the proofs
of all lemmas, theorems and corollaries are omitted. They are presented in detail
in the full version of the paper.

Lemma 1. The cost incurred by OPT is at least OPT (σ) ≥ 1
2 (r(σ) + lc(σ) +

fe(σ)) − fb(σ) + |σ|.

We next turn to online algorithms and start with deterministic strategies.

Algorithm Move-To-Front (MTF): Move the requested item to the front of
the list.

Lemma 2. The cost incurred by MTF is MTF (σ) = r(σ) − fb(σ) + |σ|.

For any request sequence σ, let α(σ) = (|σ| − fb(σ))/r(σ). Furthermore, let
β(σ) = lc(σ)/r(σ) be the fraction of the long run changes relative to the total
number of runs. The following theorem gives a refined bound on the performance
ratio of MTF . It implies, in particular, that MTF is 2-competitive.

Theorem 1. For any request sequence σ, the cost incurred by MTF is at most
2+2α(σ)

1+2α(σ)+β(σ) times that payed by OPT.

An immediate consequence of the above theorem is the following corollary. It
implies that MTF can achieve a competitiveness as low as 1 on request sequences
that exhibit a high degree of locality, i.e. that satisfy λ-locality with values of λ
close to 1.

Corollary 1. On request sequences exhibiting λ-locality, MTF achieves a com-
petitive ratio of at most 2

1+λ .

Algorithm Timestamp (TS): Insert the requested item, say x, immediately
in front of the first item in the list that precedes x in the current list and was
requested at most once since the last request to x. If there is no such item or if
x is requested for the first time, do not change the position of x.

Lemma 3. The cost incurred by TS is TS(σ) ≤ r(σ)+li(σ)−lp(σ)+f ′b(σ)+|σ|.

We observe that TS is better than MTF if the number of prefixed long runs
is larger than the number of independent long runs plus f ′b(σ). Let α′(σ) =
(fb(σ) + f ′b(σ))/r(σ) and γ(σ) = (li(σ) − lp(σ))/r(σ).

Theorem 2. For any request sequence σ, the cost incurred by TS is at most
2+2α(σ)+2α′(σ)+2γ(σ)

1+2α(σ)+β(σ) times that payed by OPT.

We have li(σ) ≤ lc(σ) and f ′b(σ) ≤ fb(σ) ≤ |L|(|L| − 1)/2. Hence the above
theorem also yields that TS is 2-competitive. As lp(σ) can be 0 and li(σ) can
be as high as lc(σ), we observe that TS does not achieve improved competitive
ratios on request sequences satisfying λ-locality.

102 S. Albers and S. Lauer

Next we study randomized algorithms.

Algorithm BIT: Maintain a bit b(x) for each item x ∈ L. These bits are
initialized independently and uniformly at random to a value in {0, 1}. On a
request, complement the bit of the referenced item. If the bit value changes to 1,
move the item to the front of the list.

Lemma 4. The expected cost incurred by BIT is BIT (σ) ≤ 3
4r(σ) + 1

4 l(σ) +
1
2 li(σ) + 1

4fe(σ) + |σ|.

Define δ(σ) = (1
2 l(σ) + li(σ) + 2fb(σ))/r(σ).

Theorem 3. For any request sequence σ, the expected cost incurred by BIT is
at most 1.5+2α(σ)+δ(σ)

1+2α(σ)+β(σ) times that payed by OPT.

It is not hard to show that the above theorem also implies that BIT is 1.75-
competitive. Taking into account that l(σ) ≤ r(σ) and li(σ) ≤ lc(σ), we obtain
the following corollary, which yields that BIT attains a competitiveness of 1.5
on request sequences with a high degree of locality, i.e. with values of λ close
to 1.

Corollary 2. On request sequences exhibiting λ-locality, BIT achieves a com-
petitive ratio of min{1.75, 2+λ

1+λ}.

Algorithm Combination (COMB): With probability 4/5 serve the request
sequence using BIT , and with probability 1/5 serve the sequence using TS.

Lemma 5. The expected cost incurred by COMB is COMB(σ) ≤ 1
5 (4r(σ) +

4li(σ) + fe(σ) + f ′b(σ)) + |σ|.

Let ζ(σ) = (li(σ) + 5
4fb(σ) + 1

4f
′
b(σ))/r(σ).

Theorem 4. For any request sequence σ, the expected cost incurred by COMB
is at most 1.6+2α(σ)+1.6ζ(σ)

1+2α(σ)+β(σ) times that payed by OPT.

We have li(σ) ≤ lc(σ) and f ′b(σ) ≤ fb(σ) ≤ |L|(|L| − 1)/2. Hence the above
theorem also implies that COMB is 1.6-competitive. Since li(σ) can be as high
as lc(σ), algorithm COMB does not achieve improved competitive ratios on
request sequences satisfying λ-locality.

4 Experimental Study

In our experimental study we have implemented all the algorithms analyzed
in Section 3. The main purpose of our study is to compare the experimentally
observed performance of the algorithms to the bounds stated in Theorems 1–
4 as well as Corollaries 1 and 2. In order to get meaningful results we have
tested the algorithms on real-world request sequences from benchmark libraries.
Clearly, self-organizing linear lists represent a solution to the classical dictionary
problem. A second important application of self-organizing linear lists is data

On List Update with Locality of Reference 103

compression. Since the latter application has gained considerable popularity and
importance recently, we report on the corresponding results in this extended
abstract and address the findings with respect to the dictionary application in
the full version of the paper.

Data compression schemes: Bentley et al. [10] showed that self-organizing
linear lists can be used to build locally adaptive data compression schemes. The
best compression results are achieved when the scheme is combined with the
famous Burrows-Wheeler transformation [12]. In fact the common open source
data compression program bzip2 consists of a Burrows-Wheeler transformation
followed by Move-To-Front and Huffman encodings. We briefly describe the ap-
proach.

In data compression we are given a string S that shall be compressed, i.e. that
shall be represented using fewer bits. The string S consists of symbols, where
each symbol is element of an alphabet X = {x1, . . . , xn}. The idea of data
compression schemes using linear lists, proposed by Bentley et al., is to convert
the string S of symbols into a string I of integers. An encoder maintains a linear
list of symbols contained in X and reads the symbols in the string S. Whenever
the symbol xi has to be compressed, the encoder looks up the current position
of xi in the linear list, outputs this position and updates the list using a list
update algorithm. Here one can use MTF or any other list update strategy. If
symbols to be compressed are moved closer to the front of the list, then frequently
occurring symbols can be encoded with small integers. Clearly, when the string
I is actually stored or transmitted, each integer in the string should be coded
again using a variable length prefix code.

The refined compression scheme by Burrows and Wheeler first applies a re-
versible transformation to the string S. The purpose of this transformation is
to group together instances of a symbol xi occurring in S so that the resulting
string S′ exhibits a high degree of locality of reference. Due to space limitation
we refer the reader to [12] for details on the Burrows-Wheeler transformation
and its efficient implementation. The transformed string S′ is then encoded using
the algorithm by Bentley et al. as described in the previous paragraph. Alphabet
X , i.e. the set of entries in the self-organizing linear list, is the ASCII alphabet
with its 256 different characters. The initial list is given by the initial numerical
order of the ASCII characters. In the string S, each byte represents a symbol.
For large files to be compressed, the Burrows-Wheeler transformation is applied
not to the entire file but rather to blocks of uniform size; the block size may be
chosen by a user.

Data sets and their locality characteristics: In our experiments we selected
files available at the repository named Canterbury Corpus [14], which is the
standard benchmark library for evaluating data compression algorithms. The
corpus contains files of different types. In addition to text files such as books
and papers there are source code files, pictures, office documents, object files,
and many more. A description of the corpus can be found at [14].

104 S. Albers and S. Lauer

In our tests we selected all the files from the Canterbury Corpus. We applied
the Burrows-Wheeler transformation to each of these files. We chose a block size
of 9 · 105 bytes, which is the default and also the maximum allowable block size
in bzip2. If the file size exceeds the block size, then, as described above, the
file is split into several blocks of the chosen size. The sequences obtained from
the Burrows-Wheeler transformation are the request sequences on which the list
update algorithms have to be evaluated. Recall that each byte of the sequence
forms a request. We remark that we actually do not compress files; instead we
evaluate list update algorithms on these realistic benchmark sequences.

The full version of the paper contains detailed tables presenting the charac-
teristics of our (transformed) request sequences. Due to space limitations, in this
extended abstract we report the main facts. The length of the request sequences
differs vastly among the test instances. There are short sequences consisting of
only 3721 requests and long sequences of up to 9 · 105 references, which occur
when a file is split into several blocks. Moreover, the number of different bytes
(ASCII characters) requested differs vastly. In text files typically about 80 to 90
different characters are requested. In object files all the 256 ASCII characters
are referenced.

For each of the request sequences we have determined the values r, s, l, lp, li, lc
as introduced in Section 2. We have also determined fb, f

′
b, fe but, for brevity, will

not discuss them. Instead of giving the absolute values of r, s, l, lp, li, lc we present
the interesting relations. First, it shows that among all the runs of a request se-
quence, about 60% to 65% are long runs. The fraction can go as high as 80%, for
some files. Next, we analyzed the distribution of the prefixed and independent long
runs among all the long runs. Again, in most cases, the majority of the long runs
are independent long runs (fractions can go as high as 80%), indicating that long
runs are usually followed by long runs. Finally, we studied the number of long run
changes relative to the number of long runs. Here the interesting observation is
that the ratio lc/l is typically 5% to 10% higher than li/l. This demonstrates that
the definition of lc was indeed sensible in Section 2 as it yields more expressive
lower bounds on the cost of OPT , compared to li. A final remark is that, for files
split into several blocks, all the numbers for the various blocks are consistent, i.e.
the characteristics do not change within the file.

Performance results: We have executed the online algorithms analyzed in
Section 3 on all the request sequences described above and recorded their cost.
As for the randomized strategies BIT and COMB, they were executed 16 times
on each sequences and, for any sequence, the average cost was taken. Since the
offline version of the list update problem is NP-hard [4] and the best known offline
algorithm takes O(2nn!m) time [21], where n = |L| and m = |σ|, computing the
true optimum offline cost is impossible for our request sequences. Therefore, we
computed the pairwise optimum, which is equal to

∑
{x,y}⊆L,x �=yOPT (σxy)+|σ|.

Here OPT (σxy) denotes the cost incurred by an optimal offline algorithm OPT
in serving σxy on a two-item list consisting of x and y only. This cost is easy
to determine because an optimal strategy on a two-item list moves a referenced
item to the front of the list whenever it is requested at least twice in a row. The

On List Update with Locality of Reference 105

pairwise optimum is usually used as approximation of the optimum offline cost,
even in standard competitive analysis.

In our performance analysis we have first evaluated the costs incurred by
the algorithms on all the sequences. For each algorithm we compared the costs
observed in the experiments to those implied by the theoretical bounds of Lem-
mas 1–5. For any A ∈ {MTF,TS,BIT ,COMB,OPT}, we recorded the ex-
perimentally observed cost. Using the values r, s, l, li, lp, lc, fb, f

′
b, fe obtained for

our request sequences, we derived theoretical bounds applying Lemmas 1–5. In-
stead of reporting these bounds, we focus on the relative errors. The relative
error, for a given strategy A and request sequence σ, is the absolute value of
the difference between the experimental and theoretical costs, divided by the
experimental value.

The full paper contains a detailed description of the errors. Due to space
limitations, in this extended abstract we summarize the results on the relative
errors using box plots, which is a standard method to display numerical data.
We refer the reader to the left chart of Figure 1. For each algorithm, the bold line
within the box represents the median data point. The box includes 50% of the
data points, where 25% is located above and 25% below the median. The upper
(respectively lower) whisker is the maximum (respectively minimum) data point
that can be found within a distance of 1.5 of the inter-quartile range. All other
points are outliers. It shows that all the errors are very small, indicating that
the bounds developed in Lemmas 1–5 very well approximate the experimentally
observed cost. As for OPT , or the pairwise optimum, the average relative error
is below 0.5%. The incurred error for MTF is 0 because the bound given in
Lemma 2 is exact. For the other three online strategies, the average relative
errors are between 7% and 8%; the medians are even below 2%.

For comparison with previous experimental studies [7,8] we have also analyzed
the average service cost incurred by the algorithms on a single request. These
average costs are all very small, typically in the range between 1.8 and 5, which
confirms that the request sequences exhibit a high degree of locality and that
the algorithms respond well to this property.

The main results of our experimental study is a careful comparison of the
experimentally observed competitiveness to the theoretical bounds developed in
Theorems 1–4. The comparision is done for each online algorithm and each of
our request sequences. Again, the full paper contains a detailed presentation.
Here we summarize the results by considering average values. The right chart
of Figure 1 depicts, for each algorithm, the average performance values, over all
files. The average experimentally observed competitiveness is shown as grey bars
while the average theoretical bounds are shown in white. A first, very positive
finding is that the experimentally observed and theoretical performance ratios
are very close to each other. Hence our locality model and theoretical analyses are
indeed sensible. The best results are achieved for MTF . Here the average relative
error is below 0.7%. For almost all of the files, the actual error is substantially
smaller because a few files contribute very high errors to the average value. For
the other three online algorithms the average relative errors are higher, ranging

106 S. Albers and S. Lauer

between 8% and 10%, but these values are still reasonable. Again, for many files
we have very small errors; high contributions in the average relative errors just
come from a few files.

A second important result is that the experimentally observed competitiveness
as well as the performance ratios implied by Theorems 1–4 are much lower than
the standard competitive ratios of the algorithms. Recall that MTF and TS
are 2-competitive while BIT and COMB achieve competitive ratios of 1.75
and 1.6, respectively. In our experiments, MTF shows the best behavior with
performance ratios between 1.2 and 1.3. The other three algorithms TS, BIT
and COMB are slightly worse, with ratios that are typically in the range between
1.3 and 1.6. There is no clear winner among these three algorithms. For each
strategy there are some sequences where this stategy outperforms the other
two.

Finally, our experimental study analyzes the performance of MTF and BIT
in terms of λ-locality. For both algorithms, the competitive performance under
λ-locality is higher than the theoretical bounds of Theorems 1 and 3. This is
not surprising because Corollaries 1 and 2 consider asymptotic algorithm per-
formance, ignoring the request sequence length |σ|, i.e. an additive 1 per request,
in both the online and offline cost. However, since the average service cost of the
algorithms is small, the additive values of 1 make a difference in performance.
Further details are given in the full version of the paper.

0.
0

0.
1

0.
2

0.
7

0.
6

0.
5

0.
4

0.
3

OPT MTF TS BIT COMB

1.
2

1.
4

1.
6

1.
8

2.
0

1.
0

average theoretical
upper bound

average observed
competitiveness

COMBBITMTF TS

Fig. 1. Left chart: Relative errors of the upper bounds on the service costs given by
Lemmas 1–5 when compared to the actual costs observed. Right chart: Average upper
bounds on the performance ratios as implied by Theorems 1–4 (white bars) compared
to the average experimentally observed competitiveness (grey bars).

On List Update with Locality of Reference 107

References

1. Albers, S.: Improved randomized on-line algorithms for the list update problem.
SIAM Journal on Computing 27, 670–681 (1998)

2. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Journal
of Computer and System Sciences 70, 145–175 (2005)

3. Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP
algorithm for the list update problem. Information Processing Letters 56, 135–139
(1995)

4. Ambühl, C.: Offline list update is NP-hard. In: Paterson, M. (ed.) ESA 2000. LNCS,
vol. 1879, pp. 42–51. Springer, Heidelberg (2000)

5. Ambühl, C., Gärtner, B., von Stengel, B.: A new lower bound for the list update
problem in the partial cost model. Theoretical Computer Science 268, 3–16 (2001)

6. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of refer-
ence: MTF outperforms all other algorithms. Technical Report CS-2006-46, School
of Computer Science, University of Waterloo (2006)

7. Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications:
Recent empirical evidence. In: Proc. 8th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 53–62 (1997)

8. Bachrach, R., El-Yaniv, R., Reinstädtler, M.: On the competitive theory and prac-
tice of online list accessing algorithms. Algorithmica 32, 201–245 (2002)

9. Bentley, J.L., McGeoch, C.C.: Amortized analyses of self-organizing sequential
search heuristics. Communication of the ACM 28, 404–411 (1985)

10. Bentley, J.L., Sleator, D.S., Tarjan, R.E., Wei, V.K.: A locally adaptive data com-
pression scheme. Communications of the ACM 29, 320–330 (1986)

11. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. Journal of Computer and System Sciences 50, 244–258 (1995)

12. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
DEC SRC Research Report 124 (1994)

13. Calgary Corpus, http://links.uwaterloo.ca/calgary.corpus.html
14. The Canterbury Corpus, http://corpus.canterbury.ac.nz/
15. Fiat, A., Mendel, M.: Truly online paging with locality of reference. In: Proc. 38rd

Annual Symposium on Foundations of Computer Science, pp. 326–335 (1997)
16. Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. ACM Computing Sur-

veys 17, 295–312 (1985)
17. Irani, S.: Two results on the list update problem. Information Processing Letters 38,

301–306 (1991)
18. Karlin, A., Phillips, S., Raghavan, P.: Markov paging. In: Proc. 33rd Annual Sym-

posium on Foundations of Computer Science, pp. 24–27 (1992)
19. Karp, R., Raghavan, P.: Personal communication cited in [22] (1990)
20. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. In: Proc. 35th

Annual Symposium on Foundations of Computer Science, pp. 394–400 (1994)
21. Reingold, N., Westbrook, J.: Optimum off-line algorithms for the list update prob-

lem. Technical Report YALEU/DCS/TR-805, Yale University (1990)
22. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms

for the list update problem. Algorithmica 11, 15–32 (1994)
23. Rivest, R.: On self-organizing sequential search heuristics. Communications of the

ACM 19, 63–67 (1976)
24. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Communications of the ACM 28, 202–208 (1985)

http://links.uwaterloo.ca/calgary.corpus.html
http://corpus.canterbury.ac.nz/

A New Combinatorial Approach for Sparse

Graph Problems

Guy E. Blelloch, Virginia Vassilevska, and Ryan Williams

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
{guyb,virgi,ryanw}@cs.cmu.edu

Abstract. We give a new combinatorial data structure for representing
arbitrary Boolean matrices. After a short preprocessing phase, the data
structure can perform fast vector multiplications with a given matrix,
where the runtime depends on the sparsity of the input vector. The data
structure can also return minimum witnesses for the matrix-vector prod-
uct. Our approach is simple and implementable: the data structure works
by precomputing small problems and recombining them in a novel way.
It can be easily plugged into existing algorithms, achieving an asymp-
totic speedup over previous results. As a consequence, we achieve new
running time bounds for computing the transitive closure of a graph,
all pairs shortest paths on unweighted undirected graphs, and finding
a maximum node-weighted triangle. Furthermore, any asymptotic im-
provement on our algorithms would imply a o(n3/ log2 n) combinatorial
algorithm for Boolean matrix multiplication, a longstanding open prob-
lem in the area. We also use the data structure to give the first asymp-
totic improvement over O(mn) for all pairs least common ancestors on
directed acyclic graphs.

1 Introduction

A large collection of graph problems in the literature admit essentially two solu-
tions: an algebraic approach and a combinatorial approach. Algebraic algorithms
rely on the theoretical efficacy of fast matrix multiplication over a ring, and re-
duce the problem to a small number of matrix multiplications. These algorithms
achieve unbelievably good theoretical guarantees, but can be impractical to im-
plement given the large overhead of fast matrix multiplication. Combinatorial
algorithms rely on the efficient preprocessing of small subproblems. Their the-
oretical guarantees are typically worse, but they usually lead to more practical
improvements. Combinatorial approaches are also interesting in that they have
the capability to tackle problems that seem to be currently out of the reach of
fast matrix multiplication. For example, many sparse graph problems are not
known be solvable quickly with fast matrix multiplication, but a combinatorial
approach can give asymptotic improvements. (Examples are below.)

In this paper, we present a new combinatorial method for preprocessing an
n × n dense Boolean matrix A in O(n2+ε) time (for any ε > 0) so that sparse
vector multiplications with A can be done faster, while matrix updates are not
too expensive to handle. In particular,

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 108–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Combinatorial Approach for Sparse Graph Problems 109

– for a vector v with t nonzeros, A · v can be computed in O(n
logn (t/κ + n/�))

time, where � and κ are parameters satisfying
(
�
κ

)
≤ nε, and

– row and/or column updates to the matrix can be performed in O(n1+ε) time.

The matrix-vector multiplication can actually return a vector w of minimum
witnesses; that is, w[i] = k iff k is the minimum index satisfying A[i, k] ·v[k] = 0.
The data structure is simple, does not use devious “word tricks” or hide any
large constants, and can be implemented on a pointer machine.1 We apply our
data structure to four fundamental graph problems: transitive closure, all pairs
shortest paths, minimum weight triangle, and all pairs least common ancestors.
All four are known to be solvable in n3−δ time for some δ > 0, but the algorithms
are algebraic and do not exploit the potential sparsity of graphs. With the right
settings of the parameters � and κ, our data structure can be applied to all the
above four problems, giving the best runtime bounds for sparse problems to date.

Transitive Closure: We have a directed graph on n nodes and m edges, and
wish to find all pairs of nodes (u, v) whether there is a path from u to v in the
graph. Transitive closure has myriad applications and a long history of ideas.
The best known theoretical algorithms use O(M(n)) time [10,13] where M(n)
is the complexity of n × n Boolean matrix product, and O(mn/ logn + n2)
time [5,3]. Algebraic matrix multiplication implies an O(nω) algorithm, where
ω < 2.376 [6], and combinatorial matrix multiplication gives an O(n3/ log2 n)
runtime [2,14,18]. Our data structure can be used to implement transitive closure
in O(mn(log(n

2

m)/ log2 n) + n2) time. This constitutes the first combinatorial
improvement on the bounds of O(n3/ log2 n) and O(mn/ logn + n2) that follow
from Four Russians preprocessing, and it establishes the best known running
time for general sparse graphs.

All Pairs Shortest Paths (APSP): We want to construct a representation of a
given graph, so that for any pair of nodes, a shortest path between the pair
can be efficiently obtained from the representation. The work on APSP is deep
and vast; here we focus on the simplest case where the graph is undirected and
unweighted. For this case, Galil and Margalit [11] and Seidel [15] gave O(nω)
time algorithms. These algorithms do not improve on the simple O(mn + n2)
algorithm (using BFS) when m = o(nω−1). The first improvement over O(mn)
was given by Feder and Motwani [9] who gave an O(mn log(n

2

m)/ logn) time
algorithm. Recently, Chan presented new algorithms that take Ô(mn/ logn)
time.2 We show that APSP on undirected unweighted graphs can be computed
in O(mn log(n

2

m)/ log2 n) time. Our algorithm modifies Chan’s O(mn/ logn +
n2 logn) time solution, implementing its most time-consuming procedure effi-
ciently using our data structure.
1 When implemented on the w-word RAM, the multiplication operation runs in

O(n
w

(t/k+n/�)). In fact, all of the combinatorial algorithms mentioned in this paper
can be implemented on a w-word RAM in O(T (n)(log n)/w) time, where T (n) is the
runtime stated.

2 The Ô notation suppresses poly(log log n) factors.

110 G.E. Blelloch, V. Vassilevska, and R. Williams

All Pairs Weighted Triangles: Here we have a directed graph with an arbitrary
weight function w on the nodes. We wish to compute, for all pairs of nodes
v1 and v2, a node v3 that such that (v1, v3, v2, v1) is a cycle and

∑
i w(vi) is

minimized or maximized. The problem has applications in data mining and pat-
tern matching. Recent research has uncovered interesting algebraic algorithms
for this problem [17], the current best being O(n2.575), but again it is somewhat
impractical, relying on fast rectangular matrix multiplication. (We note that
the problem of finding a single minimum or maximum weight triangle has been
shown to be solvable in nω+o(1) time [8].) The proof of the result in [17] also
implies an O(mn/ logn) algorithm. Our data structure lets us solve the problem
in O(mn log(n

2

m)/ log2 n) time.

Least Common Ancestors on DAGs: Given a directed acyclic graph G on n
nodes and m edges, fix a topological order on the nodes. For all pairs of nodes
s and t we want to compute the highest node in topological order that still has
a path to both s and t. Such a node is called a least common ancestor (LCA)
of s and t. The all pairs LCA problem is to determine an LCA for every pair of
vertices in a DAG. In terms of n, the best algebraic algorithm for finding all pairs
LCAs uses the minimum witness product and runs in O(n2.575) [12,7]. Czumaj,
Kowaluk, and Lingas [12,7] gave an algorithm for finding all pairs LCAs in a
sparse DAG in O(mn) time. We improve this runtime to O(mn log(n

2

m)/ logn).

1.1 On the Optimality of Our Algorithms

We have claimed that all the above problems (with the exception of the last
one) can be solved in O(mn log(n2/m)/ log2 n) time. How does this new runtime
expression compare to previous work? It is easier to see the impact when we let
m = n2/s for a parameter s. Then

mn log(n2/m)
log2 n

=
n3

log2 n
· log s

s
(1)

Therefore, our algorithms yield asymptotic improvements on “medium density”
graphs, where the number of edges is in the range n2−o(1) ≤ m ≤ o(n2).

At first glance, such an improvement may appear small. We stress that our al-
gorithms have essentially reached the best that one can do for these problems,
without resorting to fast matrix multiplication or achieving a major breakthrough
in combinatorial matrix algorithms. As all of the above problems can be used to
simulate Boolean matrix multiplication, (1) implies that an O

(
mn log(n2/m)

f(n) log2 n

)
al-

gorithm for any of the above problems and any unbounded function f(n) would
entail an asymptotic improvement on combinatorial Boolean matrix multiplica-
tion, a longstanding open problem. Note that an O

(
mn

f(n) logn

)
combinatorial al-

gorithm does not imply such a breakthrough: let m = n2/s and f(n) = o(log n)
and observe mn/(f(n) logn) = n3/(sf(n) logn); such an algorithm is still slow
on sufficiently dense matrices.

A New Combinatorial Approach for Sparse Graph Problems 111

1.2 Related Work

Closely related to our work is Feder and Motwani’s ingenious method for com-
pressing sparse graphs, introduced in STOC’91. In the language of Boolean ma-
trices, their method runs in Õ(mn1−ε) time and decomposes an n × n matrix
A with m nonzeros into an expression of the form A = (A1 ∗ A2) ∨ A3, where
∗ and ∨ are matrix product and pointwise-OR, A1 is n×mnε, A2 is mnε × n,
A1 and A2 have O(m log(n2/m)

log n) nonzeros, and A3 has O(n1+ε) nonzeros. Such a
decomposition has many applications to speeding up algorithms.

While a (log n)/ log(n2/m) factor of savings crops up in both approaches, our
approach is markedly different from graph compression; in fact it seems orthog-
onal. From the above viewpoint, Feder-Motwani’s graph compression technique
can be seen as a method for preprocessing a sparse Boolean matrix so that mul-
tiplications of it with arbitrary vectors can be done in O

(
m log(n2/m)

logn

)
time. In

contrast, our method preprocesses an arbitrary matrix so that its products with
sparse vectors are faster, and updates to the matrix are not prohibitive. This
sort of preprocessing leads to a Feder-Motwani style improvement for a new set
of problems. It is especially applicable to problems in which an initially sparse
graph is augmented and becomes dense over time, such as transitive closure.

Our data structure is related to one given previously by the third author [18],
who showed how to preprocess a matrix over a constant-sized semiring in O(n2+ε)
time so that subsequent vector multiplications can be performed in O(n2/ log2 n)
time. Ours is a significant improvement over this data structure in two ways: the
runtime of multiplication now varies with the sparsity of the vector (and is never
worse thanO(n2/ log2 n)), and our data structure also returns minimum witnesses
for the multiplication. Both of these arenon-trivial augmentations that lead to new
applications.

2 Preliminaries and Notation

Define H(x) = x log2(1/x)+ (1−x) log2(1/(1−x)). H is often called the binary
entropy function. All logarithms are assumed to be base two. Throughout this
paper, when we consider a graph G = (V,E) we let m = |E| and n = |V |.
G can be directed or undirected; when unspecified we assume it is directed. We
define δG(s, v) to be the distance in G from s to v. We assume G is always weakly
connected, so that m ≥ n−1. We use the terms vertex and node interchangeably.
For an integer �, let [�] refer to {1, . . . , �}.

We denote the typical Boolean product of two matrices A and B by A · B.
For two Boolean vectors u and v, let u ∧ v and u∨ v denote the componentwise
AND and OR of u and v respectively; let ¬v be the componentwise NOT on v.

A minimum witness vector for the product of a Boolean matrix A with a
Boolean vector v is a vector w such that w[i] = 0 if ∨j(A[i][j] · v[j]) = 0, and if
∨j(A[i][j] · v[j]) = 1, w[i] is the minimum index j such that A[i][j] · v[j] = 1.

112 G.E. Blelloch, V. Vassilevska, and R. Williams

3 Combinatorial Matrix Products with Sparse Vectors

We begin with a data structure which after preprocessing stores a matrix while
allowing efficient matrix-vector product queries and column updates to the ma-
trix. On a matrix-vector product query, the data structure not only returns the
resulting product matrix, but also a minimum witness vector for the product.

Theorem 1. Let B be a d × n Boolean matrix. Let κ ≥ 1 and � > κ be in-
teger parameters. Then one can create a data structure with O(dnκ� ·

∑κ
b=1

(
�
b

)
)

preprocessing time so that the following operations are supported:

– given any n×1 binary vector r, output B ·r and a d×1 vector w of minimum
witnesses for B·r in O(d log n+ d

logn

(
n
� + mr

κ

)
) time, where mr is the number

of nonzeros in r;
– replace any column of B by a new column in O(dκ

∑κ
b=1

(
�
b

)
) time.

The result can be made to work on a pointer machine as in [18]. Observe
that the näıve algorithm for B · r that simulates Θ(log n) word operations on a
pointer machine would take O(dmr

logn) time, so the above runtime gives a factor of
κ savings provided that � is sufficiently large. The result can also be generalized
to handle products over any fixed size semiring, similar to [18].

Proof of Theorem 1. Let 0 < ε < 1 be a sufficiently small constant in the
following. Set d′ = " d

ε logn�# and n′ = "n/�#. To preprocess B, we divide it into
block submatrices of at most "ε logn# rows and � columns each, writing Bji to
denote the j, i submatrix, so

B =

⎡

⎢
⎣

B11 . . . B1n′

...
. . .

...
Bd′1 . . . Bd′n′

⎤

⎥
⎦ .

Note that entries from the kth column of B are contained in the submatrices
Bjk/�� for j = 1, . . . , d′, and the entries from kth row are in Bk/��i for i =
1, . . . , n′. For simplicity, from now on we omit the ceilings around ε logn.

For every j = 1, . . . , d′, i = 1, . . . , n′ and every � length vector v with at most
κ nonzeros, precompute the product Bji · v, and a minimum witness vector w
which is defined as: for all k = 1, . . . ε logn,

w[k] =
{

0 if (Bji · v)[k] = 0
(i− 1)� + w′ if Bji[k][w′] · v[w′]=1 and∀w′′ < w′, Bji[k][w′′] · v[w′′]= 0.

Store the results in a look-up table. Intuitively, w stores the minimum witnesses
for Bji ·v with their indices in [n], that is, as if Bji is construed as an n×n matrix
which is zero everywhere except in the (j, i) subblock which is equal to Bji, and
v is construed as a length n vector which is nonzero only in its ith block which
equals v. This product and witness computation on Bji and v takes O(κε log n)
time. There are at most

∑κ
b=1

(
�
b

)
such vectors v, and hence this precomputation

A New Combinatorial Approach for Sparse Graph Problems 113

takes O(κ log n
∑κ
b=1

(
�
b

)
) time for fixed Bji. Over all j, i the preprocessing takes

O(dn
� logn · κ logn

∑κ
b=1

(
�
b

)
) = O(dnκ�

∑κ
b=1

(
�
b

)
) time.

Suppose we want to modify column k of B in this representation. This requires
recomputing Bjk/�� · v and the witness vector for this product, for all j =
1, . . . , n′ and for all length � vectors v with at most κ nonzeros. Thus a column
update takes only O(dκ

∑κ
b=1

(
�
b

)
) time.

Now we describe how to compute B · r and its minimum witnesses. Let mr
be the number of nonzeros in r. We write r = [r1 · · · rn′]T where each ri is a
vector of length �. Let mri be the number of nonzeros in ri.

For each i = 1, . . . , n′, we decompose ri into a union of at most "mri/κ#
disjoint vectors rip of length � and at most κ nonzeros, so that ri1 contains the
first κ nonzeros of ri, ri2 the next κ, and so on, and ri = ∨prip. Then, for each
p = 1, . . . , "mri/κ#, rip has nonzeros with larger indices than all rip′ with p′ < p,
i.e. if rip[q] = 1 for some q, then for all p′ < p and q′ ≥ q, rip′ [q′] = 0.

For j = 1, . . . , d′, let Bj = [Bj1 . . . Bjn′]. We shall compute vj = Bj · r
separately for each j and then combine the results as v = [v1, . . . , vd′]T . Fix
j ∈ [d′]. Initially, set vj and wj to be the all-zeros vector of length ε logn. The
vector wj shall contain minimum witnesses for Bj · r.

For each i = 1, . . . , n′ in increasing order, consider ri. In increasing order for
each p = 1, . . . , "mri/κ#, process rip as follows. Look up v = Bji · rip and its
witness vector w. Compute y = v ∧ ¬vj and then set vj = v ∨ vj . This takes
O(1) time. Vector y has nonzeros in exactly those coordinates h for which the
minimum witness of (Bj ·r)[h] is a minimum witness of (Bji ·rip)[h]; since over all
i′ and p′ the nonzeros of ri′p′ partition the nonzeros of r, this minimum witness is
not a minimum witness of any (Bji′ ·ri′p′)[h] with i′ = i or p′ = p. In this situation
we say that the minimum witness is in rip. In particular, if y = 0, rip contains
some minimum witnesses for Bj · r and the witness vector wj for Bj · r needs
to be updated. Then, for each q = 1, . . . , ε logn, if y[q] = 1, set wj [q] = w[q].
This ensures that after all i, p iterations, v =

∨
i,p (Bji · rip) = Bj · r and wj is

the product’s minimum witness vector. Finally, we output B · r = [v1 · · · vd′]T

and w = [w1 . . . wd′]. Updating wj can happen at most ε logn times, because
each wj [q] is set at most once for q = 1, . . . , ε logn. Each individual update
takes O(log n) time. Hence, for each j, the updates to wj take O(log2 n) time,
and over all j, the minimum witness computation takes O(d log n). Computing
vj = Bj · r for a fixed j takes O(

∑n′

i=1"mri/κ#) ≤ O(
∑n′

i=1(1 + mri/κ)) time.
Over all j = 1, . . . , d/(ε logn), the computation of B · r takes asymptotically

d

logn

n/�∑

i=1

(
1 +

mri
κ

)
≤ d

logn

(n

�
+

mr
κ

)
.

In total, the running time is O(d log n + d
logn (n� + mr

κ)). �

Let us demonstrate what the data structure performance looks like with a par-
ticular setting of the parameters � and k. From Jensen’s inequality we have:

Fact 1. H(a/b) ≤ 2a/b log(b/a), for b ≥ 2a.

114 G.E. Blelloch, V. Vassilevska, and R. Williams

Corollary 1. Given a parameter m and 0 < ε < 1, any d×n Boolean matrix A
can be preprocessed in O(dn1+ε) time, so that every subsequent computation of
AB can be determined in O(de log n+ md log(ne/m)

log2 n
) time, for any n× e Boolean

matrix B with at most m nonzeros.

Proof. When m ≥ en
2 , the runtime in the theorem is Ω(end/ log2 n), and can be

achieved via Four Russians processing. If m ≤ en1−ε then ε logn ≤ log enm and
running a standard sparse matrix multiplication with logn bit operations in O(1)
time achieves O(md/ log n) ≤ O(md log(en/m)

log2 n
) time. If en1−ε < m < en

2 , apply
Theorem 1 with � = ε enm · (log n)/ log(enm), and κ = ε(logn)/ log(enm) ≥ 1. Then
by Fact 1 and m < en

2 , we can show that
(
�
κ

)
≤ nε. Hence the preprocessing step

takes O(dn1+εm/(ne)) = O(dn1+ε) time. Matrix-vector multiplication with a
vector of mi nonzeros takes O

(
d logn + d

logn

(
m log(en/m)
e log n + mi log(en/m)

logn

))
time.

If mi is the number of nonzeros in the ith column of B, as
∑
imi = m, the full

matrix product A · B can be done in O
(
de logn + md log(en/m)

log2 n

)
time. �

It follows that Boolean matrix multiplication for n × n matrices can be done
in O(n2+ε + mn log n

2

m / log2 n) time, provided that at least one of the matrices
has only m nonzeros. We note that such a result could also be obtained by con-
struing the sparse matrix as a bipartite graph, applying Feder-Motwani’s graph
compression to represent the sparse matrix as a product of two sparser matrices
(plus a matrix with n2−δ nonzeros), then using an O(mn/ logn) Boolean matrix
multiplication algorithm on the resulting matrices. However, given the complex-
ity of this procedure (especially the graph compression, which is involved) we
believe that our method is more practical. Theorem 1 also leads to two other
new results almost immediately.

Minimum Witnesses for Matrix Multiplication. The minimum witness product
of two n × n Boolean matrices A and B is the n × n matrix C defined as
C[i][j] = minnk=1{k | A[i][k] · B[k][j] = 1}, for every i, j ∈ [n]. This product
has applications to several graph algorithms. It has been used to compute all
pairs least common ancestors in DAGs [12,7], to find minimum weight triangles
in node-weighted graphs [17], and to compute all pairs bottleneck paths in a
node weighted graph [16]. The best known algorithm for the minimum witness
product is by Czumaj, Kowaluk and Lingas [12,7] and runs in O(n2.575) time.
However, when one of the matrices has at most m = o(n1.575) nonzeros, nothing
better than O(mn) was known (in terms of m) for combinatorially computing
the minimum witness product. As an immediate corollary of Theorem 1, we
obtain the first asymptotic improvement for sparse matrices: an algorithm with
O(mn log(n2/m)/ log2 n) running time.

Corollary 2. Given n × n Boolean matrices A and B, where B has at most
m nonzero entries, all pairs minimum witnesses of A · B can be computed in
O(n2 + mn log(n2/m)/ log2 n) time.

A New Combinatorial Approach for Sparse Graph Problems 115

Minimum Weighted Triangles. The problem of computing for all pairs of nodes
in a node-weighted graph a triangle (if any) of minimum weight passing through
both nodes can be reduced to finding minimum witnesses as follows ([17]). Sort
the nodes in order of their weight in O(n log n) time. Create the adjacency matrix
A of the graph so that the rows and columns are in the sorted order of the
vertices. Compute the minimum witness product C of A. Then, for every edge
(i, j) ∈ G, the minimum weight triangle passing through i and j is (i, j, C[i][j]).
From this reduction and Corollary 2 we obtain the following.

Corollary 3. Given a graph G with m edges and n nodes with arbitrary node
weights, there is an algorithm which finds for all pairs of vertices i, j, a triangle
of minimum weight sum going through i, j in O(n2 + mn log(n

2

m)/ log2 n) time.

4 Transitive Closure

The transitive closure matrix of an n node graph G is the n×n Boolean matrix
A for which A[i][j] = 1 if and only if node i is reachable from node j in G.
In terms of n, the complexity of computing the transitive closure of an n node
graph is equivalent to that of multiplying two Boolean n× n matrices [1], thus
the best known algorithm in terms of n is O(nω). However, when the sparsity of
G is taken into account, it is unclear how to use an algorithm for sparse matrix
multiplication to solve transitive closure in the same runtime. While Feder and
Motwani’s [9] graph compression implies an O(mn log(n

2

m)/ log2 n) algorithm for
sparse matrix product, this result gives little insight on how to compute the
transitive closure of a sparse graph—since the number of edges in the transitive
closure is independent of m in general, maintaining a graph compression will not
suffice. In contrast, the data structure of Theorem 1 is perfectly suited for use
with a dynamic programming algorithm for transitive closure.

Theorem 2. Transitive closure can be computed in O(n2 +mn log(n
2

m)/ log2 n)
time on graphs with n nodes and m edges.

Proof. We first compute the strongly connected components of G in O(m + n)
time. We then contract them in linear time to obtain a DAG G′. Clearly, if we
have the transitive closure matrix of G′, we can recover the transitive closure
matrix of G with an extra O(n2) additive overhead: for every edge (u, v) in the
transitive closure graph of G′, go through all pairs of vertices (i, j) such that i
is in u and j is in v and add 1 to the transitive closure matrix of G. Hence it
suffices for us to compute the transitive closure of a DAG G′.

First, we topologically sort G′ in O(m + n) time. Our transitive closure al-
gorithm is based on a dynamic programming formulation of the problem given
by Cheriyan and Mehlhorn [5], later also mentioned by Chan [3]. The algorithm
proceeds in n iterations; after the kth iteration, we have computed the transitive
closure of the last k nodes in the topological order. At every point, the current
transitive closure is maintained in a Boolean matrix R, such that R[u][v] = 1 iff
u is reachable from v. Let R[·][v] denote column v of R. Let p be the (k + 1)st

116 G.E. Blelloch, V. Vassilevska, and R. Williams

node in reverse topological order. We wish to compute R[·][p], given all the vec-
tors R[·][u] for nodes u after p in the topological order. To do this, we compute
the componentwise OR of all vectors R[·][u] for the neighbors u of p.

Suppose R is a matrix containing columns R[·][u] for all u processed so far,
and zeros otherwise. Let vp be the outgoing neighborhood vector of p: vp[u] = 1
iff there is an arc from p to u. Construing vp as a column vector, we want to
compute R · vp. Since all outgoing neighbors of p are after p in the topological
order, and we process nodes in reverse order, correctness follows.

We now show how to implement the algorithm using the data structure of
Theorem 1. Let R be an n × n matrix such that at the end of the algorithm
R is the transitive closure of G′. We begin with R set to the all zero matrix.
Let κ ≥ 1, and � > κ be parameters to be set later. After O((n2κ/�)

∑κ
b=1

(
�
b

)
)

preprocessing time, the data structure for R from Theorem 1 is complete.
Consider a fixed iteration k. Let p be the kth node in reverse topological order.

As before, vp is the neighborhood column vector of p, so that vp has outdeg(p)
nonzero entries. Let 0 < ε < 1 be a constant. We use the data structure to
compute rp = R · vp in O(n1+ε + n2/(� logn) + outdeg(p) · n/(κ logn)) time.
Then we set rp[p] = 1, and R[·][p] := rp, by performing a column update on R

in O(nκ
∑κ
b=1

(
�
b

)
) time. This completes iteration k. Since there are n iterations

and since
∑
p outdeg(p) = m, the overall running time is asymptotic to

n2κ

�

κ∑

b=1

(
�

b

)

+ n2+ε +
n3

� logn
+

mn

κ logn
+ n2κ

κ∑

b=1

(
�

b

)

.

If for some ε′ > 0, m ≤ n2−ε′
, then we can ignore the O(n2+ε) preprocessing

step and execute the original algorithm, in O(mn/ logn) ≤ O(mn log n
2

m / log2 n)
time. Otherwise, we set � and κ to minimize the running time. Similar to Corol-
lary 1, we set n3

� logn = mn
κ logn , (implying � = κn2/m), and nε =

∑�m/n2

b=1

(
�
b

)
.

For m ≤ n2/2,
∑m�/n2

b=1

(
�
b

)
= O(2�H(m/n2)) = O(2�

m
n2 log n2

m). Hence we want

�mn2 log n
2

m = lognε, and � = ε′ n2 log n
m log(n2/m) , κ = ε′ logn

log(n2/m) for ε′ < ε suffices.

Since for all ε′ > 0, m ≥ n2−ε′
, we can pick any ε′ < ε and we will have

κ ≥ 1. For sufficiently small ε′ the runtime is Ω(n2+ε), and the final runtime is
O(n2 + mn log(n2/m)/ log2 n). �

5 APSP on Unweighted Undirected Graphs

Our data structure can also be applied to solve all pairs shortest paths (APSP)
on unweighted undirected graphs, yielding the fastest algorithm for sparse graphs
to date. Chan [4] gave two algorithms for this problem, which constituted the
first major improvement over the O(mn log(n2/m)

logn + n2) obtained by Feder and
Motwani’s graph compression [9]. The first algorithm is deterministic running
in O(n2 logn + mn/ logn) time, and the second one is Las Vegas running in
O(n2 log2 logn/ logn + mn/ logn) time on the RAM. To prove the following
Theorem 3, we implement Chan’s first algorithm, along with some modifications.

A New Combinatorial Approach for Sparse Graph Problems 117

Theorem 3. The All Pairs Shortest Paths problem in unweighted undirected
graphs can be solved in O(n2+ε + mn log(n2/m)/ log2 n) time, for any ε > 0.

By running our algorithm when m = Ω(n1+ε log2 n) for some ε > 0 and Chan’s
second algorithm otherwise, we obtain the following result.

Theorem 4. On the probabilistic RAM, the APSP problem on unweighted undi-
rected graphs can be solved in O(n2 log2 logn/ logn+mn log(n2/m)/ log2 n) time,
with high probability.

To be able to prove Theorem 3, let us focus on a particular part of Chan’s first
algorithm that produces the bottleneck in its runtime. The algorithm contains
a subprocedure P (d), parameterized by an integer d < n. The input to P (d) is
graph G = (V,E), a collection of n/d vertices {s1, . . . , sn/d}, and a collection of
n/d disjoint vertex subsets {S1, . . . , Sn/d}, such that ∀ i ∈ [n/d], every s ∈ Si

has distance at most 2 from si. P (d) outputs the | ∪i Si| × n matrix D, such
that for every s ∈ ∪iSi and v ∈ V , D[s][v] = δG(s, v). Notice, | ∪i Si| ≤ n. This
procedure P (d) is significant for the following reason:

Lemma 1 (Implicit in Chan [4]). If P (d) can be implemented in O(T (P (d)))
time, then APSP on unweighted undirected graphs is in O(T (P (d))+n2 ·d) time.

Setting d = nε, Theorem 3 is obtained from the following lemma.

Lemma 2. P (d) is implementable in O(n2+ε+mn
d +mn log(n2/m)

log2 n
) time, ∀ε > 0.

Proof. First, we modify Chan’s original algorithm slightly. As in Chan’s algo-
rithm, we first do breadth-first search from every si in O(mn/d) time over-
all. When doing this, for each distance � = 0, . . . , n − 1, we compute the sets
Ai� = {v ∈ V | δG(si, v) = �}. Suppose that the rows (columns) of a matrix
M are in one-to-one correspondence with the elements of some set U . Then, for
every u ∈ U , let ū be the index of the row (column) of M corresponding to u.

Consider each (si, Si) pair separately. Let k = |Si|. For � = 0, . . . , n − 1, let
B� = ∪�+2

j=�−2A
i
�, where Aij = {} when j < 0, or j > n− 1.

The algorithm proceeds in n iterations. Each iteration � = 0, . . . , n − 1 pro-
duces a k× |B�| matrix D�, and a k× n matrix OLD (both Boolean), such that
for all s ∈ Si, u ∈ B� and v ∈ V ,

D�[s̄][ū] = 1 iff δG(s, u) = � and OLD[s̄][v̄] = 1 iff δG(s, v) ≤ �.

At the end of the last iteration, the matrices D� are combined in a k×n matrix
Di such that D[s̄][v̄] = � iff δG(s, v) = �, for every s ∈ Si, v ∈ V . At the end of
the algorithm, the matrices Di are concatenated to create the output D.

In iteration 0, create a k×|B0| matrix D0, so that for every s ∈ Si, D0[s̄][s̄] =
1, and all 0 otherwise. Let OLD be the k×n matrix with OLD[s̄][v̄] = 1 iff v = s.

Consider a fixed iteration �. We use the output (D�−1, OLD) of iteration �−1.
Create a |B�−1| × |B�| matrix N�, such that ∀u ∈ B�−1, v ∈ B�, N�[ū][v̄] = 1 iff
v is a neighbor of u. Let N� have m� nonzeros. If there are b� edges going out of
B�, one can create N� in O(b�) time: Reuse an n× n zero matrix N , so that N�

118 G.E. Blelloch, V. Vassilevska, and R. Williams

will begin at the top left corner. For each v ∈ B� and edge (v, u), if u ∈ B�−1,
add 1 to N [ū][v̄]. When iteration � ends, zero out each N [ū][v̄].

Multiply D�−1 by N� in O(k · |B�−1|1+ε+m�k log(n
2

m)/ log2 n) time (applying
Corollary 1). This gives a k × |B�| matrix A such that for all s ∈ Si and v ∈
B�, A[s̄][v̄] = 1 iff there is a length-� path between s and v. Compute D� by
replacing A[s̄][v̄] by 0 iff OLD[s̄][v̄] = 1, for each s ∈ Si, v ∈ B�. If D�[s̄][v̄] = 1,
set OLD[s̄][v̄] = 1.

Computing the distances from all s ∈ Si to all v ∈ V can be done in O(m +
∑n−1
�=1

(
k · |B�−1|1+ε + m�k log(n2/m)/ log2 n + b�

)
) time. However, since every

node appears in at most O(1) sets B�,
∑n−1
�=0 |B�| ≤ O(n),

∑
� b� ≤ O(m) and∑

�m� ≤ O(m). The runtime becomes O(kn1+ε + mk log(n2/m)/ log2 n + m).
When we sum up the runtimes for each (si, Si) pair, since the sets Si are disjoint,
we obtain asymptotically

n/d∑

i=1

(

m + |Si| ·
(

n1+ε +
m log(n2/m)

log2 n

))

=
mn

d
+ n2+ε +

mn log(n2/m)
log2 n

.

As the data structure returns witnesses, we can also return predecessors. �

6 All Pairs Least Common Ancestors in a DAG

To our knowledge, the best algorithm in terms of m and n for finding all pairs
least common ancestors (LCAs) in a DAG, is a dynamic programming algorithm
by Czumaj, Kowaluk and Lingas [12,7] which runs in O(mn) time. We improve
the runtime of this algorithm to O(mn log(n2/m)/ logn) using the following
generalization of Theorem 1, the proof of which is omitted. Below, for an n× n
real matrix B and n × 1 Boolean vector r, B $ r is the vector c with c[i] =
maxk=1,...,n(A[i][k] · r[k]) for each i ∈ [n]. This product clearly generalizes the
Boolean matrix-vector product.

Theorem 5. Let B be a d × n matrix with β-bit entries. Let 0 < ε < 1 be
constant, and let κ ≥ 1 and � > κ be integer parameters. Then one can create
a data structure with O(dnκ� · " β

log n# ·
∑κ
b=1

(
�
b

)
) preprocessing time so that the

following operations are supported on a pointer machine:

– given any n × 1 binary vector r, output B $ r in O(dnε + dβ
logn

(
n
� + mr

κ

)
)

time, where mr is the number of nonzeros in r;
– replace any column of B by a new column in O(dκ" β

logn#
∑κ
b=1

(
�
b

)
) time.

Due to space limitations, the proof of the following is also omitted.

Theorem 6. The all pairs least common ancestors problem on n node and m
edge DAGs can be solved in O(mn log(n2/m)/ logn) time.

A New Combinatorial Approach for Sparse Graph Problems 119

7 Conclusion

We have introduced a new combinatorial data structure for performing matrix-
vector multiplications. Its power lies in its ability to compute sparse vector prod-
ucts quickly and tolerate updates to the matrix. Using the data structure, we
gave new running time bounds for four fundamental graph problems: transitive
closure, all pairs shortest paths on unweighted graphs, maximum weight triangle,
and all pairs least common ancestors.

Acknowledgments. This research was supported in part by NSF ITR grant
CCR-0122581 (The Aladdin Center).

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.: The design and analysis of computer algo-
rithms. Addison-Wesley Longman Publishing Co., Boston (1974)

2. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economical con-
struction of the transitive closure of an oriented graph. Soviet Math. Dokl. 11,
1209–1210 (1970)

3. Chan, T.M.: All-pairs shortest paths with real weights in O(n3/ log n) time. In:
Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp.
318–324. Springer, Heidelberg (2005)

4. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn)
time. In: Proc. SODA, pp. 514–523 (2006)

5. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks on the
random access computer. Algorithmica 15(6), 521–549 (1996)

6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symbolic Computation 9(3), 251–280 (1990)

7. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common
ancestors in directed acyclic graphs. TCS 380(1–2), 37–46 (2007)

8. Czumaj, A., Lingas, A.: Finding a heaviest triangle is not harder than matrix
multiplication. In: Proc. SODA, pp. 986–994 (2007)

9. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up
algorithms. In: Proc. STOC, pp. 123–133 (1991)

10. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure.
In: Proc. FOCS, pp. 129–131 (1971)

11. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length
edges. JCSS 54, 243–254 (1997)

12. Kowaluk, M., Lingas, A.: LCA Queries in Directed Acyclic Graphs. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 241–248. Springer, Heidelberg (2005)

13. Munro, J.I.: Efficient determination of the transitive closure of a directed graph.
Inf. Process. Lett. 1(2), 56–58 (1971)

14. Rytter, W.: Fast recognition of pushdown automaton and context-free languages.
Information and Control 67(1–3), 12–22 (1985)

15. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
JCSS 51, 400–403 (1995)

120 G.E. Blelloch, V. Vassilevska, and R. Williams

16. Shapira, A., Yuster, R., Zwick, U.: All-pairs bottleneck paths in vertex weighted
graphs. In: Proc. SODA, pp. 978–985 (2007)

17. Vassilevska, V., Williams, R., Yuster, R.: Finding the Smallest H-Subgraph in Real
Weighted Graphs and Related Problems. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 262–273. Springer, Heidelberg
(2006)

18. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocess-
ing required). In: Proc. SODA, pp. 995–1001 (2007)

How to Explore a Fast-Changing World
(Cover Time of a Simple Random Walk

on Evolving Graphs)

Chen Avin1, Michal Koucký2, and Zvi Lotker1

1 Communication Systems Engineering, Ben Gurion University of the Negev, Israel
{avin,zvilo}@cse.bgu.ac.il

2 Institute of Mathematics, Academy of Sciences of the Czech Republic
koucky@math.cas.cz

Abstract. Motivated by real world networks and use of algorithms
based on random walks on these networks we study the simple random
walks on dynamic undirected graphs with fixed underlying vertex set,
i.e., graphs which are modified by inserting or deleting edges at every
step of the walk. We are interested in the expected time needed to visit
all the vertices of such a dynamic graph, the cover time, under the as-
sumption that the graph is being modified by an oblivious adversary. It
is well known that on connected static undirected graphs the cover time
is polynomial in the size of the graph. On the contrary and somewhat
counter-intuitively, we show that there are adversary strategies which
force the expected cover time of a simple random walk on connected dy-
namic graphs to be exponential. We relate this result to the cover time
of static directed graphs. In addition we provide a simple strategy, the
lazy random walk, that guarantees polynomial cover time regardless of
the changes made by the adversary.

1 Introduction

A random walk on a graph is a simple process of visiting the nodes of the graph
in some random sequential order. The walk starts at some fixed node, and at each
step it moves to a neighbor of the current node chosen at random. The random
walk is called simple when the next node is chosen uniformly at random from the
set of neighbors. In the context of communication networks (e.g., Internet, wireless
ad-hoc networks and sensor networks) and information networks (e.g., peer-to-
peer file sharing networks and distributed databases), a random walk on a network
(graph) will result when messages are sent at random from device to device.

Since this process presents locality, simplicity, low memory-overhead and ro-
bustness to changes in the network structure applications based on random-walk
techniques are becoming more and more popular in the networking community.
In recent years, different authors have proposed the use of random walk for a
large variety of tasks and networks; to name but a few: querying in sensor and
ad-hoc networks [18,5,1], searching in peer-to-peer networks [12], gossiping [16],
PageRank and search engines on the web [13].

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 121–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 C. Avin, M. Koucký, and Z. Lotker

One of the main reasons that random walk techniques are so appealing for
networking application is their robustness to dynamics. Many communication
networks are subject to dramatic structural changes created by mobility, sleep
modes, channel fluctuations, device failures, nodes joining or leaving the system
and other factors. Topology-driven algorithms are at a disadvantage for such
networks, since they incur high overhead to maintain up-to-date topology and
routing information such as routing tables, clusters and spanning trees. In con-
trast, algorithms that require no knowledge of network topology, such as the
random walk, are at an advantage.

While at first glance, the process of a token wandering randomly in the net-
work may seem overly simplistic and highly inefficient, many encouraging results
prove that it is comparable to other approaches that have been used over the
years. One important property of random walks on graphs that needs to be eval-
uated to study the efficiency of the approach is the cover time [2]. The cover
time CG of a graph G is the expected time (measured by number of steps or in
our case by the number of messages) taken by a simple random walk to visit
all the nodes in G. Methods on bounding the cover time of graphs have been
thoroughly investigated with the major result being that cover time is always
at most polynomial for undirected graphs. More precisely, it has been shown by
Aleliunas et al. in their seminal work [3] that CG is always O(mn), where m is
the number of edges in the graph and n is the number of nodes. Tighter bounds
for many classes of graphs have been established and they can be found in the
extensive literature on the subject.

Since real-world networks change over time researches have recently started to
study random walks on such dynamic graphs. Motivated by robotic exploration
of the Web, Cooper and Frieze [7] studied the question of covering a graph that
grows over time. They considered a particular model of so-called web graphs and
showed that a simple random walk on the graph fails to visit a constant fraction
of nodes if a new node appears and is connected to the graph after every constant
number of steps of the walk.

Motivated by sensor networks we consider a similar question on a different
model of dynamic graphs. We consider dynamic graphs with fixed number of
nodes where connections between the nodes appear and disappear over the time.
The question that we study is the cover time of such graphs.

1.1 Overview of Our Results

We show that somewhat counter-intuitively, there are dynamic graphs of the type
given above that have exponential cover time when explored by a simple random
walk. (For the sake of clarity let us say that our examples are deterministic but
oblivious to the actual random walk.) Moreover, we show that a random walk on
any directed graph G can be simulated (in a way we define later) by a random
walk on an undirected dynamic graph that we construct from G; this gives yet
another justification to our previous claim. Our examples are also valid when
we allow the random walk to make more than a single step between each graph
change. Indeed, we can allow up-to n1−ε steps before making each change and

How to Explore a Fast-Changing World 123

still obtain an exponential cover time. Although one could question whether our
graphs could appear in a real-word scenario we do not consider these graphs
to be far-fetched: for example a particular implementation of sensor networks
with links (network interfaces) going to sleep periodically or nodes switching
communication frequencies could exhibit such behavior.

In addition to these negative results we also show several positive results.
Most importantly we show that a lazy random walk (also known as a max-degree
random walk in literature [15]) does not suffer from these issues. We define
as a lazy random walk a walk that picks each adjacent edge with probability
1/dmax, where dmax is the maximum degree of the graph, and with the remaining
probability it stays at the current vertex. We show that a lazy random walk
covers any connected dynamic graph in time polynomial in the size of the graph.
Furthermore, we also show that when the dynamic graph itself is obtained by
sampling from a certain probability distribution, a simple random walk will also
cover such a graph in expected polynomial time.

2 Models and Preliminaries

2.1 Random Walks on Graphs

Let G(V,E) be an undirected graph, with V the set of nodes and E the set of
edges. Let n = |V | and m = |E|. For v ∈ V , let N(v) = {u ∈ V | (v, u) ∈ E} be
the set of neighbors of v and d(v) = |N(v)| the degree of v. A d-regular graph is
a graph in which the degree of all the nodes is d.

The simple random walk on a graph G is a walk on G where the next node
is chosen uniformly at random from the set of neighbors of the current node,
i.e., when the walk is at node v, the probability to move in the next step to u is
P (v, u) = 1

d(v) for (v, u) ∈ E and 0 otherwise.
The hitting time, Huv, is the expected time for a random walk starting at u

to arrive at v for the first time, and the commute time, Cuv, is the expected time
for a random walk starting at u to first arrive at v and then return to u. Let
Hmax be the maximum hitting time over all the pairs of nodes in G.

The cover time CG of a graph G is the expected time taken by a simple
random walk on G to visit all the nodes in G. Formally, for v ∈ V , let Cv be
the expected number of steps needed for the simple random walk starting at v
to visit all the nodes in G, and the cover time of G is CG = maxv Cv. The cover
time of graphs and methods of bounding it have been extensively investigated
[17]. Results for the cover time of specific graphs vary from the optimal cover
time of Θ(n logn) associated with the complete graph to the worst case of Θ(n3)
associated with the lollipop graph [9,8].

2.2 Evolving Graphs Model

The most general model to describe a dynamic network is called the Evolving
Graph model. We will use a similar definition as in [14,11,10].

124 C. Avin, M. Koucký, and Z. Lotker

Definition 1 (Evolving Graphs). Let G = G1, G2, . . . be an infinite sequence
of graphs on the same vertex set V . We call this sequence an evolving graph.
We say that G has the graph property X if every graph Gi in the sequence has
the property X.

In simple words at time i the structure of the evolving graph G is Gi. For an
integer τ ≥ 1, an evolving graph G is evolving with rate 1

τ if for all i ≥ 1,
Gi = Gi+1 implies, Gi+1 = Gi+1+j for all j ∈ {0, . . . , τ − 1}.

A simple random walk on evolving graph G is defined as follows: assume that
at time i the walker is at node v ∈ V , and let N(v) be the set of neighbors of
v in Gi, then the walker moves to one of its neighbors from N(v) uniformly at
random.

The strength and the weakness of the above model have the same origin, its
generality. On the positive side, it captures many interesting scenarios of dy-
namic networks, but on the other hand, most natural problems are NP-complete
such as finding strongly connected components and the equivalence of minimum
spanning tree [10].

2.3 Constructive Evolving Graphs Model

Evolving graphs do not capture the underlying mechanism of how (or why) the
graph evolves. In many situations the evolving graph itself is a product of some
random process. (For example this is the case of web graphs considered in [7].)
We will use the following definition to capture the underlying process in the case
it is a Markov chain. A special case of such graphs is considered in Section 5.

Definition 2 (Markovian Evolving Graphs). Let the space set G be a set
of graphs with the same set V of nodes, let G1 ∈ G and let P be a probability
transition matrix on G. A Markovian evolving graph M = (G, G1, P) is an
evolving graph M1,M2, . . . obtained by the Markov chain given by P with the
initial state G1. Thus for any sequence of graphs G2, G3, · · · ∈ G and any t > 1,
Pr[Mt = Gt | Mt−1 = Gt−1] is given by the appropriate entry of P .

It is clear that a Markovian evolving graph is a random variable. By a random
walk on a Markovian evolving graph we understand a random walk on the out-
come of the random variable. When considering the expected cover time of a
random walk on a Markovian evolving graph we consider the expectation over
the choice of both the evolving graph and the random walk.

3 Exponential Hitting Time of Evolving Graphs

In this section we address the cover time of the simple random walk on evolving
graphs by studying the maximum hitting time. Clearly the cover time must be
at least as large as the maximum hitting time. First, we mention some technical
issues. On static graphs the cover time is finite only for connected graphs. This is
not the case for evolving graphs as we will see in Section 5. For simplicity though

How to Explore a Fast-Changing World 125

we restrict our discussion mostly to evolving graphs in which every graph in the
sequence G is connected. (In the Markovian model we require that every graph
in the set G is connected, and call G connected if that is the case). Moreover
we require that all graphs have a self-loop for each of the nodes. This is simply
a technical condition to avoid pathological cases such as the walk switching
forever between two nodes. In the case of static graphs this is a standard way of
enforcing ergodicity. An evolving graph G that has the above properties we call
an explorable evolving graph.

Now one can easily claim the following for explorable evolving graphs (a sim-
ilar claim can be made for Markovian evolving graphs):

Claim 3. Let G be an explorable evolving graph, then the cover time of G is
bounded by nO(n).

We outline the argument here. Let V be the set of vertices of G. Fix two vertices
u and v from V . For i ≥ 1, let Vi be the set of vertices that could be visited within
first i steps of a simple random walk on G starting from u. Since G is connected it
must be the case that for each i, Vi � Vi+1 unless Vi = V . In particular, Vn must
contain all vertices of G and in particular v. Thus, the probability of reaching v
starting from u is at least n−n. Indeed, this is true for any two vertices u and v
and starting from any time t. A standard argument now implies that the cover
time is at most nO(n).

Requiring connectivity at each step of the evolving graph may look like a very
strong condition that should imply polynomial cover time and maximum hitting
time. Surprisingly we show that this is not the case.

Theorem 4. There exists an explorable evolving graph G, such that the maxi-
mum hitting time of the simple random walk on G is Ω(2n).

One can think of this result in the following way: consider a random walk on an
evolving graph that is controlled by an oblivious adversary that is deciding what
will be the next graph at each time step. In such a case the adversary, although
unaware of the random walk location, can force the walk to step exponential
number of steps before exploring the whole graph. We give below the basic
details of the proof.
Proof of Theorem 4. Let G1 be the star of size n (with the addition of a self-
loop at each node) where nodes called 1, 2, . . . , n− 2 and n are always the leafs
and node called n− 1 is always the center. The random walk starts at the node
originally called 1 and we will bound the hitting time to the node called n.
The adversary is the following deterministic process: At each time step vertices
1, . . . , n − 1 will trade their places, i.e., the adversary changes the edges by
changing the names of the nodes. The adversary uses the following renaming
strategy: for 1 ≤ i ≤ n − 1, node i changes its name to i + 1(modn− 1). Note
that node n does not change its name, nodes 1, . . . , n− 2 increase their name by
one, node n− 1 becomes 1.

The only way to reach node n is through the center. By induction on i =
2, . . . , n−2 one can see the following. Unless we have already reached the center

126 C. Avin, M. Koucký, and Z. Lotker

Fig. 1. The gadget H� (dashed lines show node transformations)

of the star the only way to be at the leaf named i after the adversary move is
to be at the leaf named i − 1 before the adversary renaming. That implies we
must have used a self-loop at that random step. Hence, to get to the leaf named
n− 2 we must have had a sequence of n− 3 random steps all taking a self-loop.
To get to the center we have to stay at leaf n− 2. All in all to be at the center
after the adversary move the random walk must have made a sequence of n− 2
consecutive self-loop steps. That happens with probability 2−n+2 in a sequence
of n − 2 consecutive steps. Therefore the expected time before we observe the
random walk to make such a sequence of steps is Ω(2n). �
We would like to point out that all graphs in G are isomorphic and rapidly
mixing (the cover time of each of them is in fact O(n logn)). This fact shows
that common tools like spectral analysis cannot be applied näıvely to dynamic
graphs.

3.1 Simulating Directed Graphs

One way to understand the results of the previous section is by relating random
walks on explorable evolving graphs to random walks on static directed graphs.
In fact we can simulate a simple random walk on a directed graph G by a
careful choice of evolving graph G. We will use the following gadget H to replace
every directed edge of G. For � > 0, the gadget H� is a sequence of graphs
H0
� , H

1
� , H

2
� , H

0
� , H

1
� , H

2
� , H

0
� , . . . with vertices L, R, s0 and si,j , for i = 1, . . . , �

and j = 0, 1, 2. The graph Hk
� is obtained from the graph in Fig. ?? by mapping

vertices L→ L, R → R, s0 → c0 and si,k → ci, si,k+1 mod 3 → bi, si,k+2 mod3 →
ai, i = 1, . . . , �. (We deviate here from our convention of having self-loops at
every node for the sake of simplicity of the analysis. As it will be clear in the
next section with minor modification of bounds our claims would be true even if
we would add a self-loop to every node.) The main property of a simple random
walk on H is summarized in the following lemma.

Lemma 5. Let � > 0, H� = H0
� , H

1
� , H

2
� , H

0
� , H

1
� , H

2
� , H

0
� , . . . and ε = �(1/2)�+

(3/4)�. Consider a simple random walk on H�. If the walk starts at vertex L then
the probability of returning to L before visiting R is at least 1 − ε. Moreover if
the walk starts at vertex R then the probability of returning to R before visiting
L is at most ε.

How to Explore a Fast-Changing World 127

We omit the proof of this lemma due to space constraints. Thus the gadget
H� has essentially the same effect for a simple random walk as a directed edge
from R to L with a self-loop at L. Given a directed graph G with a self-loop at
every vertex we can replace all its directed edges between different vertices by a
copy of H� to obtain a sequence of graphs G on which a simple random walk will
simulate a simple random walk on G (up-to some error ε). Of course, replacing
several edges incoming to a vertex by the gadget will introduce several self-loops
to that vertex. To avoid that we can collapse the vertices c0 from these gadgets
into one thus obtaining an equivalent of one self-loop. (This collapse will affect
ε slightly but no more than by a factor polynomial in the number of replaced
edges.) We also remove the original self-loops from the graph G.

If we perform a simple random walk on G and we restrict ourselves to observing
only visits to the vertices of the original graph G we will observe essentially the
same probability distribution as of a simple random walk on G. In particular, if
we choose � = nk+1, for k > 1 and n being the size of G, then the probability of
observing an edge being traversed in the opposite direction in the first 2n

k

steps
is at most 2−O(nk+1). Since for example the maximal hitting time on any strongly
connected directed graph is bounded by 2O(n logn) this error is negligible.

4 Slowly Evolving Graphs

The previous section has shown that there are evolving graphs for which a simple
random walk essentially fails as a means of exploring it. All our examples so far
considered graphs that evolve at rate one. This would not really be a typical
case in a real-world application. The rate at which graphs evolve is usually
slower compared to unit operations such as sending a packet. So could it be the
case that a simple random walk covers in polynomial time all graphs evolving
at lower rate? In this section we show that this is not the case. Namely for any
constant 0 < ε < 1 and an integer n large enough, we provide an example of
an evolving graph on O(n) vertices that evolves at rate 1

n1−ε so that a simple
random walk needs expected time 2Ω(nε) to cover the graph. Indeed the graph
is essentially the gadget from the previous section with the speed of evolution
slowed down.

Let F i� be the graph Hi
� from the previous section modified by adding possibly

several self-loops to each vertex so that the probability of staying at the same
vertex is precisely one half. (So in particular vertices of degree two will receive
two self-loops and vertices of degree four will receive four of them. We remark
that our claim would be true even without these self-loops but in some cases for
trivial reasons. So to capture the most general situation we introduce the loops.)

For 0 < ε < 1 and an integer n ≥ 21/(1−ε), we define an evolving graph Gεn to
consist of repeated sequence F 0

2n, F
0
2n, . . . , F

0
2n, F

1
2n, F

1
2n, . . . , F

1
2n, F

2
2n, . . . , F

2
2n,

where each block of consecutive F i2n’s consists of n1−ε copies of F i2n. Clearly Gεn
evolves at rate 1

n1−ε . We claim:

Theorem 6. The cover time of Gεn is 2Ω(nε).

128 C. Avin, M. Koucký, and Z. Lotker

In order to prove the theorem we analyze a concept that we call a random walk
on a line with a drift. A random walk on a line with a drift is a simple random
walk on a line of size n where each � = n1−ε steps, a step biased towards the
same direction is taken. We show that such a walk requires in expectation an
exponential number of steps to traverse the line in the direction opposite to the
bias. Due to space limitations we omit the detailed analysis from this version
(see [6] for the proof).

5 Polynomial Cover Time of Dynamic Graphs

We turn our attention to cases where the cover time of evolving graphs is ”good”,
i.e., polynomial. Our first example is of a simple Markovian case.

Definition 7 (Bernoulli evolving graph). Let G be a set of graphs with the
same set V of nodes and let P̄ be a probability distribution over G. A Bernoulli
evolving graph B = (G, P̄) is a Markovian evolving graph in which the rows of
the transition matrix P are identical and equal to P̄ and the initial graph G1 is
taken at random according to P̄ , i.e., the random graphs Gi, are i.i.d.

We show that the bound for the cover time of the simple random walk on
Bernoulli evolving graphs is very similar to the bound of static graphs; essen-
tially when the process is time invariant and the graph is always connected then
the bound of Aleliunas et al. [3] can be extended to dynamic graphs.

Theorem 8. For any explorable Bernoulli evolving graph, B = (G, P̄), the cover
time of the simple random walk on B is O(n3 logn) and the maximum hitting
time is O(n3).

The property that G is connected is not necessary to obtain a polynomial bound
on the cover time as the following statement shows. (We omit proofs of both of
these theorems due to space limitations.)

Theorem 9. Let B = (G, P̄) be a Bernoulli evolving graph, G be the set of all
maximum matching of the complete graph (any such graph is disconnected) and
P̄ is the uniform distribution over G. The cover time of the simple random walk
on B is the same as the cover time of the complete graph, n logn(1 + o(1)).

5.1 d-Regular Dynamic Graphs

It is known that simple random walks on regular, connected, non-bipartite static
graph have cover time of O(n2) [17]. Interestingly, it turns out that a similar
result holds true for regular, connected, non-bipartite evolving graphs.

Theorem 10. For any d-regular connected non-bipartite evolving graph G the
cover time of the simple random walk on G is O(d2n3 ln2 n).

How to Explore a Fast-Changing World 129

We will need the following lemma proof of which omitted is due to space limi-
tations:

Lemma 11. Let G be an undirected d-regular (multi)graph on n vertices and p =
(p1, . . . , pn) be a probability distribution on its vertices. Let AG be the transition
matrix of a simple random walk on G. Then:

1. ∥
∥
∥
∥pAG −

I
n

∥
∥
∥
∥

2

2

≤
∥
∥
∥
∥p−

I
n

∥
∥
∥
∥

2

2

.

2. If G is connected non-bipartite
∥
∥
∥
∥pAG −

I
n

∥
∥
∥
∥

2

2

≤
(

1− 1
d2n2

) ∥
∥
∥
∥p−

I
n

∥
∥
∥
∥

2

2

.

Here I stands for a vector of ones of an appropriate dimension.

As an immediate corollary to the previous lemma we obtain:

Corollary 12. Let G = G1, G2, . . . be a sequence of d-regular graphs on the
same vertex set V = {1, . . . , n}. For integers 0 ≤ � ≤ t let at least � of the graphs
G1, . . . , Gt be non-bipartite connected. If p0 is the initial probability distribution
on V and we perform a simple random walk on G starting from p0, then the
probability distribution pt of the walk after t steps satisfies:

∥
∥
∥
∥pt −

I
n

∥
∥
∥
∥

2

2

≤
(

1− 1
d2n2

)� ∥∥
∥
∥p0 −

I
n

∥
∥
∥
∥

2

2

.

A technique similar to [4] gives the following lemma.

Lemma 13. Let Y0, Y1, Y2, . . . be a sequence of random variables with range
V = {1, . . . , n} satisfying for all u, v ∈ V and i > 0, Pr[Yi = u|Yi−1 = v] ≥
1/2n. If t = min{i; {Y0, Y1, . . . , Yi} = V } then the expectation E[t] ≤ 3n lnn +
O(
√
n lnn).

Proof. For every � > 0 and every v ∈ V , Pr[v ∈ {Y�+1, . . . , Y�+3n lnn}] < (1 −
1/2n)3n lnn < e−(3/2) lnn=n−3/2. Thus, Pr[∃v ∈ V ; v ∈ {Y�+1, . . . , Y�+3n lnn}] <
n · n−3/2 = 1/

√
n. For each integer k ≥ 0, if we set � = k · 3n lnn then the

probability that Y�+1, . . . , Y�+3n lnn does not cover whole V is at most 1/
√
n.

Thus the expected k before V is covered is at most 1/(1−1/
√
n) = 1+O(1/

√
n).

Hence the expected cover time of V is bounded by E[t] ≤ 3n lnn+O(
√
n lnn). �

Now, we can prove Theorem 10.

Proof of Theorem 10. Let X0, X1, . . . be a random walk on G. For an integer
i ≥ 0, define Yi = Xi·4d2n2 lnn. Pick u, v ∈ V . For i > 1, let pi be the proba-
bility distribution of Yi conditioned on Yi−1 = v. By Corollary 12,

∥
∥pi − I

n

∥
∥2

2
≤

(
1− 1

d2n2

)4d2n2 lnn
< n−4. Hence, all coordinates of the vector (pi − I

n) are in
absolute value smaller than 1/n2. Thus Pr[Yi = u|Yi−1 = v] ≥ 1

n −
1
n2 ≥ 1/2n,

provided that n ≥ 2. Applying Lemma 13 yields the result. �

130 C. Avin, M. Koucký, and Z. Lotker

6 Random Walk Strategy

Consequently to the previous section the following simple strategy for the ran-
dom walk guarantees that an evolving graph will be covered in expected poly-
nomial time:

Definition 14 (Lazy Random Walk). At each step of the walk pick a vertex
v from V (G) uniformly at random and if there is an edge from the current vertex
to the vertex v then we move to v otherwise we stay at the current vertex.

In effect what this strategy does is that it makes the graph n-regular; every
edge adjacent to the current vertex is picked with the probability 1/n and with
the remaining probability we use one of many self-loops. If we have an a priori
upper bound dmax on the maximum degree of the dynamic graph we can achieve
a slightly faster cover time. In that case we can reformulate the strategy as
follows:

At each step of the walk with probability 1− (d(u)/(dmax + 1)) stay at
the current vertex u and with the remaining probability pick uniformly
at random one of the neighbors v of the current vertex and move to v.

We call this strategy dmax-lazy random walk. (In literature such a walk is
sometimes called max-degree random walk [15].) If the only upper bound on the
maximum degree that we have is n then this strategy becomes the previous one.
We claim the following as an immediate corollary of Theorem 10:

Theorem 15. For any connected evolving graph G with maximum degree dmax

the cover time of the dmax-lazy random walk on G is O(d2
maxn

3 ln2 n).

Indeed these strategies do not even require the dynamic graph to be connected
at each step. By Corollary 12 and Lemma 13 as long as the dynamic graph
is connected for polynomial fraction of the time, the cover time of a random
walk using our strategy will still be polynomial. In that case we can obtain the
following generalization of Theorem 15.

Theorem 16. Let G = G1, G2, . . . be an evolving graph with maximum de-
gree dmax. Let ε > 0 be such that for every integer �, at least ε� graphs among
G1, G2, . . . , G� are connected. Then the cover time of the dmax-lazy random walk
on G is O(ε−1d2

maxn
3 ln2 n).

The constant in the big-O is a universal constant that is independent of G.
We point out that the strategy can be modified so that the a priori knowledge

of dmax and n is not necessary. First, we can assume that dmax = n. Second, we
can try different estimates for n as follows. We start with the estimate n = 10.
Then we always walk for n5 ln2 n steps as in the n-lazy random walk, where n is
the current estimate, and after that we double our estimate of n. One can show
that this strategy will provide O(n5 ln2 n) expected cover time of the random
walk on a connected evolving graph with n vertices.

How to Explore a Fast-Changing World 131

7 Conclusions

In this paper we demonstrate that the cover time of the simple random walk on
dynamic graphs is significantly different from the case of static graphs. While
the latter was well known to be polynomial, the former is shown here to be
exponential on some evolving graphs. Moreover, we show that even if the ran-
dom walk takes many steps before the graph evolves the cover time can still be
exponential.

We prove that in order to accelerate the cover time one can use a lazy random
walk and reduce the cover time to polynomial. This approach has been used
previously on static graphs in order to sample nodes uniformly at random, but
contrary to our situation, it can be shown that it cannot accelerate the cover
time for static graphs.

To summarize, the main results presented here provide theoretical justification
to the wide use of random-walk-techniques in dynamic networks. Nevertheless,
one must pay careful attention to the network dynamics when choosing the
implementation of the random walk.

Acknowledgements. Part of this work was done while Michal Koucký was
visiting Ben Gurion University. Michal Koucký was supported in part by grant
GA ČR 201/07/P276, project No. 1M0021620808 of MŠMT ČR and Institutional
Research Plan No. AV0Z10190503.

References

1. Alanyali, M., Saligrama, V., Sava, O.: A random-walk model for distributed compu-
tation in energy-limited network. In: Proc. of 1st Workshop on Information Theory
and its Application, San Diego (2006)

2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs (un-
published, 1999), http://stat-www.berkeley.edu/users/aldous/RWG/book.html

3. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks,
universal traversal sequences, and the complexity of maze problems. In: 20th An-
nual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, pp.
218–223. IEEE, New York (1979)

4. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. In: 20th ACM Symposium on Parallelism in Algorithms
and Architectures (to appear, 2008)

5. Avin, C., Brito, C.: Efficient and robust query processing in dynamic environments
using random walk techniques. In: Proc. of the Third International Symposium on
Information Processing in Sensor Networks, pp. 277–286 (2004)

6. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world. Tech.
Rep. pre-116, Institute of Mathematics of the Academy of Sciences of the Czech
Republic (2007), http://www.math.cas.cz/preprint/pre-116.pdf

7. Cooper, C., Frieze, A.: Crawling on simple models of web graphs. Internet Math-
ematics 1, 57–90 (2003)

8. Feige, U.: A tight lower bound on the cover time for random walks on graphs.
Random Structures and Algorithms 6(4), 433–438 (1995)

 http://stat-www.berkeley.edu/users/aldous/RWG/book.html
http://www.math.cas.cz/preprint/pre-116.pdf

132 C. Avin, M. Koucký, and Z. Lotker

9. Feige, U.: A tight upper bound on the cover time for random walks on graphs.
Random Structures and Algorithms 6(1), 51–54 (1995)

10. Ferreira, A.: Building a reference combinatorial model for manets. Network,
IEEE 18(5), 24–29 (2004)

11. Ferreira, A., Goldman, A., Monteiro, J.: On the evaluation of shortest journeys in
dynamic networks. In: Sixth IEEE International Symposium on Network Comput-
ing and Applications (NCA 2007), pp. 3–10 (2007)

12. Gkantsidis, C., Mihail, M., Saberi, A.: Random walks in peer-to-peer networks. In:
INFOCOM 2004. Twenty-third Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 1, p. 130 (2004)

13. Henzinger, M., Heydon, A., Mitzenmacher, M., Najork, M.: Measuring index qual-
ity using random walks on the Web. WWW8 / Computer Networks 31(11-16),
1291–1303 (1999)

14. Jarry, A., Lotker, Z.: Connectivity in evolving graph with geometric properties. In:
DIALM-POMC 2004: Proceedings of the 2004 Joint Workshop on Foundations of
Mobile Computing, NY, USA, pp. 24–30. ACM Press, New York (2004)

15. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM Journal on Com-
puting 18(6), 1149–1178 (1989)

16. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proc. of the 44th Annual IEEE Symposium on Foundations of Computer
Science, pp. 482–491 (2003)

17. Lovász, L.: Random walks on graphs: A survey. In: Combinatorics, Paul Erdos is
eighty, Keszthely, vol. 2 (1993); Bolyai Soc. Math. Stud. János Bolyai Math. Soc.,
Budapest, 2, 353–397 (1996)

18. Sadagopan, N., Krishnamachari, B., Helmy, A.: Active query forwarding in sensor
networks (acquire). Journal of Ad Hoc Networks 3(1), 91–113 (2005)

Networks Become Navigable

as Nodes Move and Forget

Augustin Chaintreau1, Pierre Fraigniaud2,�, and Emmanuelle Lebhar2,��

1 Thomson, Paris, France
Augustin.Chaintreau@thomson.net

2 CNRS and University Paris Diderot, France
Pierre.Fraigniaud@liafa.jussieu.fr, Emmanuelle.Lebhar@liafa.jussieu.fr

Abstract. We propose a dynamic process for network evolution, aim-
ing at explaining the emergence of the small world phenomenon, i.e., the
statistical observation that any pair of individuals are linked by a short
chain of acquaintances computable by a simple decentralized routing al-
gorithm, known as greedy routing. Our model is based on the combina-
tion of two dynamics: a random walk (spatial) process, and an harmonic
forgetting (temporal) process. Both processes reflect natural behaviors
of the individuals, viewed as nodes in the network of inter-individual ac-
quaintances. We prove that, in k-dimensional lattices, the combination
of these two processes generates long-range links mutually independently
distributed as a k-harmonic distribution. We analyze the performances
of greedy routing at the stationary regime of our process, and prove that
the expected number of steps for routing from any source to any target
in any multidimensional lattice is a polylogarithmic function of the dis-
tance between the two nodes in the lattice. Up to our knowledge, these
results are the first formal proof that navigability in small worlds can
emerge from a dynamic process for network evolution. Our dynamica
process can find practical applications to the design of spatial gossip and
resource location protocols.

Keywords: Small world phenomenon, dynamic process, routing, spatial
gossip, resource location, random walks.

1 Introduction

Models relating geography and social-network friendship enable a good under-
standing of the small world phenomenon, a.k.a., six degrees of separation between
individuals [13, 31]. In these models, the probability of befriending a particular
person is assumed to be inversely proportional to the number of closer people,
fitting with what was observed experimentally (cf. [30]). Under this assump-
tion, it was proved that, using ad hoc probability distributions, many classes of
� Additional supports from the ANR projects ALADDIN and ALPAGE, and from the

COST Action 295 DYNAMO.
�� Additional supports from the ANR project ALADDIN, and from the COST Action

295 DYNAMO.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 133–144, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 A. Chaintreau, P. Fraigniaud, and E. Lebhar

graphs are navigable, that is, a simple decentralized routing procedure enables
efficient routing from any source to any target. (By efficient, we mean, as it is
standard in this framework, that routing from any source s to any target t takes
a polylogarithmic expected number of steps). For instance, such a navigability
property is satisfied in multi-dimensional meshes [26], in graphs of bounded ball
growth [15], and more generally in graphs of bounded doubling dimension [35].
In all these cases, a graph G, that may not only represent geography but also
other proximity measures like professional activities, religious beliefs, etc., is en-
hanced with additional links chosen at random. More precisely, every node is
given some long-range links pointing at other nodes in the graph. For each long-
range link added at a node u, the probability that the head of this link is v is
inversely proportional to the size of the ball of radius distG(u, v) centered at u
in G, hence depending on the density of G around u. This setting applies to
weighted graphs too [28], and to infinite graphs as well [15]. For instance, in the
k-dimensional lattice Zk, the probability that u has a long-range link pointing
at v is essentially proportional to 1/dk where d is the distance between u and
v in the lattice. This choice of the long-range links enables greedy routing1 to
perform in polylogarithmic expected number of steps (as a function of the dis-
tance in the lattice between the source and the target), and it was shown to be
necessary.

1.1 Navigability as an Emerging Property

In [27] (Problem 7), Jon Kleinberg asks about ”what kinds of growth processes
or selective pressures might exist to cause networks to become more efficiently
searchable”. Many attempts have been made to explain how the density-based
distribution of the long-range links can emerge with time from the evolution
of a network. Inspired by the world wide web or by P2P file-sharing systems,
all the models we are aware of have considered the augmentation process (or
rewiring) of a static graph used by its nodes for searching information. Our
work uses a different approach, starting from the following observations. On the
one hand, individuals usually communicate with people they have met in the
past. We thus assume that long-range connections are between remote people
who have met once in the past. In other words, long-range links are emerging
from nodes mobility, that we model by random walks in this paper. On the
other hand people tend to forget some of their former acquaintance with time.
This forgetting mechanism represents the well understood fact that one cannot
maintain close relationships with an explosive number of people. Thus we couple
the random walk process with a forgetting process, and prove that this ideal
setting is sufficient to insure polylogarithmic navigability with simply one long-
range connection per node.
1 Greedy routing [26] aims at modeling the routing strategy performed by the individ-

uals in Milgram experiment. In a graph G enhanced with long-range links, a node
u handling a message of destination t selects among all its neighbors, including its
long-range contact(s), the one that is the closest to the target t according to the
distance in the base graph G, and forwards the message to that node.

Networks Become Navigable as Nodes Move and Forget 135

The main contribution of this paper is therefore to show that navigability
emerges from the combination of two separate processes: a spatial process and a
temporal process. Our model also provides a setting for the analysis of dynamic
social networks (see e.g. [7] for an example of application to spatial gossip).

1.2 Rewiring Processes

Clauset and Moore [11] proposed the following rewiring process for the multidi-
mensional lattice, inspired by the actions of surfers on the web. While routing
from a source s to a target t, if the target is not reached after τ steps, then
the long-range link of s is rewired to point at the current node x. The thresh-
old τ is set based on the distance (in the lattice) between s and t, and on the
expected time of greedy routing from s to t when the k-dimensional lattice is
augmented using the k-harmonic distribution [26]. The simulation results pre-
sented in [11] show that the distribution f of the link lengths converges to the
k-harmonic distribution. Sandberg and Clarke [33] proposed a different rewiring
process, based on Freenet feedback mechanisms [10]. This iterative process se-
lects, at each phase, two nodes s and t uniformly at random, and constructs the
greedy path s = x0, x1, . . . , xk−1, xk = t from s to t. For every i ∈ {0, 1, . . . , k},
the long-range link of xi is rewired with probability p, to point at t. The k + 1
decisions (rewiring or not) are taken mutually independently. This process is an-
alyzed in [32]. It is proved that, under some hypotheses, the process converges.
Moreover, the stationary distribution f of the link lengths can be fully charac-
terized. In the k-dimensional lattice, it is close to the k-harmonic distribution
when p is set appropriately, and simulations show that greedy routing in rings
and meshes enhanced using the stationary distribution f performs as efficiently
as when these networks are enhanced using the 1- and 2-harmonic distributions,
respectively.

For both [11] and [33], the complete formal analysis of the process remains
open (even the formal characterization of the stationary distribution of the pro-
cesses described in [11] remains open). The difficulty of the analysis is due to the
dependencies between the long-range links generated by the processes. In par-
ticular, the computation of the greedy routing performances is a challenge when
the long-rank links are not mutually independent. So, building further theory
upon these two models looks quite difficult.

In this paper, we propose a dynamic network model based on the combination
of two simple processes: a random walk process, and a harmonic forgetting pro-
cess.We prove that the combination of these two processes generates long-range
links mutually independently distributed as a distribution that resembles the
density-based distribution, and from which navigability provably emerges.

1.3 Sketch of Our Network Evolution Process

In our network evolution process, called move-and-forget, or m&f for short, in-
dividuals are modeled by tokens moving from node to node in the k-dimensional
lattice Zk, for some fixed integer k ≥ 1 (the dimension of the lattice may be
related to the number of proximity criteria used by the individuals for routing).

136 A. Chaintreau, P. Fraigniaud, and E. Lebhar

Initially, each node is occupied by exactly one token. These tokens are moved
mutually independently during the execution of the dynamic process, according
to a random walk.

Tokens are attached to the heads of the long-range links, whose tails are the
nodes from where the tokens initially started their random walks. Using the
analogy of individuals moving in the geographical world, each long-range link
indicates an acquaintance between an individual located at a fixed geographical
point (where the token initially stood) and some individual located at some
geographical coordinates (where the token currently stands).

The random walk process is coupled with another dynamic: nodes may forget
their contacts through their long-range links. The motivation for our forgetting
process is that individuals may loose touch with former friends, but they meet
new people among which some may become friends. Since older acquaintances
indicate stronger relationships, they have less probability to be forgotten than
recent ones. We assume that whenever an acquaintance has been known for
twice longer, she or he is twice less likely to be forgotten now. Therefore a
long-range link of age a, that is a long-range link that survived a steps of the
forgetting process, is forgotten with probability φ(a) ∝ 1/a. When a long-range
link is forgotten by a node, it is rewired to point at this node (hence creating
a self-loop). The token at the head of the forgotten link is removed, and a new
token is launched at the node. (A new local relationship replaces an old remote
relationship).

Note that m&f is defined independently from the dimension k of the lattice:
tokens execute random walks, and they are forgotten with a probability that
depends only of their ages.

1.4 Our Results

We prove that, for any fixed integer k ≥ 1, the m&f rewiring process sketched
above converges in the k-dimensional lattice to a stationary regime where the
distribution f of the link lengths that resembles the k-harmonic distribution.
Precisely, we prove that there exists d0 ≥ 0 and two positive constants c and c′,
such that, for any d = (d1, . . . , dk) ∈ Zk with |di| ≥ d0 for all i ∈ {1, . . . , k}, we
have

c

‖ d ‖k · ln1+ε ‖ d ‖
≤ f(d) ≤ c′ lnk/2 ‖ d ‖

‖ d ‖k · ln1+ε ‖ d ‖

where ε > 0 is a fixed (arbitrary small) parameter of m&f, and ‖ · ‖ denotes the
�∞ norm.

Moreover, m&f guarantees the mutual independence of the long-range links.
As a consequence, the performances of greedy routing in the lattice enhanced
using the distribution f can be analyzed formally. We prove that the expected
number of steps of greedy routing from any source s to any target t at distance
d in the k-dimensional lattice satisfies

E[Xs,t] ≤ O(ln2+ε d).

Networks Become Navigable as Nodes Move and Forget 137

Table 1. Properties of known network evolution processes compared to m&f

Convergence Navigability

A. Clauset and C. Moore (2003) Simulations Simulations
O. Sandberg and I. Clarke (2007) Proof Simulations
Move-and-forget (m&f) Proof Proof

Therefore, greedy routing performs polylogarithmically as a function of the dis-
tance between the source and the target. In particular, the performances of
greedy routing are essentially the same as the ones obtained by Kleinberg [26]
using the ad hoc k-harmonic distribution [26].

Up to our knowledge, these results are the first formal proof that navigability
in small worlds can emerge from a dynamic process for network evolution (see
Table 1). Moreover, m&f is simple (by just coupling two simple dynamics),
naturally distributed (each node takes care of just its token), robust (the loss
of one token simply requires to launch a new token), and scalable (by direct
adaptations of the infinite lattice setting to square toroidal meshes of arbitrary
sizes).

Last but not least, m&f can find practical applications, including the design
of distributed spatial gossip and resource location protocols.

The omitted proofs of the results in this extended abstract can be found in [8].

1.5 Related Works

The search for a network evolution process that could explain the emergence
of the small world phenomenon in social networks started with the pioneering
work of Watts and Strogatz [36] who proposed a rewiring process in the cycle,
generating networks possessing small diameter and large clustering coefficient,
simultaneously. Adding random matchings to cycles, as in [5], yields graphs with
small diameter, but non necessarily with large clustering coefficient. As far as
navigability is concerned, these networks do not support efficient decentralized
routing mechanisms [26]. Preferential attachment model [2, 34] enables the de-
sign of efficient search procedures under specific circumstances (see [18] and the
references therein), the recent lower bounds in [14] show that polylogarithmic
routing cannot be achieved in general in such networks. As far as we know, the
only network evolution models from which polylogarithmic routing emerges are
the aforementioned ones [11, 33].

Following up the seminal work of Kleinberg [26], a large literature has been
dedicated to the analysis of greedy routing in graphs enhanced by long-range
links set according to various kinds of probability distributions (see, e.g., [1,
15, 16, 17, 35]). These papers proved that several large classes of graphs can be
enhanced by long-range links so that greedy routing performs in polylogarithmic
expected number of steps. A lower bound of Ω(n1/

√
logn) expected number of

steps for greedy routing in arbitrary graphs has been proved in [20], and an
upper bound of O(n1/3) has been proved in [19]. Lower bounds for the cycle can
be found in [3,4,21].

138 A. Chaintreau, P. Fraigniaud, and E. Lebhar

Token at node v

Long-range link
of node u

Token
trajectory

Node u

Forgotten token

Rewired long-
range link

(a) (b)

New token

Fig. 1. Dynamic of the long-range links in m&f

2 The Move-and-Forget (m&f) Rewiring Process

2.1 Process Description

Random walks. Let k ≥ 1 be an integer. The rewiring process move-and-forget
(m&f for short) assumes that each node in the k-dimensional lattice Zk is ini-
tially occupied by exactly one token. These tokens move mutually independently
according to random walks. That is, each token is given a set of k fair coins ci,
i = 1, . . . , k. At each step of its walk, each token flips its k coins, and moves in
the ith dimension of the lattice in the positive direction if ci is head, and in the
negative direction if it is tail. More precisely, let X(t) ∈ Zk denotes the position
of a token in the lattice after t steps of m&f, assuming that the token initially
started at node (u1, . . . , uk) ∈ Zk. We have X(0) = (u1, . . . , uk), and, for t ≥ 1,
X(t) = (X1(t), . . . , Xk(t)) satisfies

Xi(t) =
{

Xi(t− 1) + 1 with probability 1/2;
Xi(t− 1)− 1 with probability 1/2. (1)

Setting of the long-range links. Tokens are attached to the heads of the
long-range links, whose tails are the nodes from where the tokens initially started
their random walks (see Figure 1(a)). The head of a long-range link is called the
long-range contact of the tail of this link. Hence the long-range contact of a node
u is the node v currently occupied by the token launched by node u.

Forgetting process. Nodes may forget their contacts through their long-range
links. More precisely, a long-range link of age a ≥ 0, that is a long-range link
that survived a steps of the forgetting process, is forgotten with probability φ(a).
When a long-range link is forgotten by a node, it is rewired to point at this node
(see Figure 1(b)). The token at the head of the forgotten link is removed, and a
new token is launched at the node. This new token starts another random walk
in Zk. Hence, if A(t) ∈ N denotes the age of the long-range link of some node
u, that is the number of steps between time t and the last time this link was
rewired during the execution of m&f, and if C(t) denotes the long-range contact
of node u at step t, then we have C(t) = X(A(t)).

The forgetting function φ has a huge impact on the distribution of the long-
range link lengths. In this paper, we will consider φ(a) ∝ 1/a. The precise setting

Networks Become Navigable as Nodes Move and Forget 139

of φ will appear more complex for technical reasons only2 (series convergence for
infinite lattices, normalization, etc.). In fact, its behavior essentially reflects a
decreasing of the forgetting probability that is inversely proportional to the age
of the relationships. The precise setting of φ is described in the next section which
explains the connections between the random walk X , the forgetting function φ,
and the distribution f of the long-range link lengths.

2.2 Setting of the Forgetting Function

We first prove that the age of the long-range link resulting from the execution
of m&f at a node has a stationary distribution.

Lemma 1. For any function φ in [0, 1) such that the series of general term
Πj
i=1(1− φ(i)) is finite, (A(t))t≥0 is a Markov chain which is irreducible, aperi-

odic, and positive recurrent, with stationary probability distribution π where

π(a) =
Πa
i=1(1 − φ(i))

∑
j≥0 Πj

i=1(1− φ(i))
,

for all a ≥ 0.

Definition 1. We define the forgetting probability φ as the following function:

φ(a) =

{
0 if a = 0, 1, or 2;

1− a−1
a

(
ln(a−1)

ln a

)1+ε

if a ≥ 3;
(2)

where ε > 0 is arbitrary small.

Note that φ(a) = 1
a + o

(
1
a

)
. Indeed,

(ln(a− 1)
ln a

)1+ε

=
(
1 +

ln(1− 1/a)
ln a

)1+ε

= 1− 1 + ε

a lna
+ o

(1
a ln a

)

If φ is defined according to Eq. (2), then Lemma 1 enables to give a close
formula for π.

Lemma 2. If φ is defined according to Eq. 2, then there exists a constant c > 0
such that π(0) = π(1) = π(2) = c and for any a ≥ 3,

π(a) =
c

a ln1+ε a
.

2 For instance, one needs
∑

a≥0 φ(a) to diverge since otherwise the Markov chain
A(t) would be transient, and links could survive infinitely with positive probability.
However, on the one hand, just setting φ(a) = 1/a would make A(t) recurrent null
(and thus for any a we would have Pr{A(t) = a} converging to 0 as t goes to
infinity), but, on the other hand, setting φ(a) = 1/aα with α < 1 would not yield
navigability.

140 A. Chaintreau, P. Fraigniaud, and E. Lebhar

Finally, the relationship between the stationary distribution of the long-range
link ages and the stationary distribution of the long-range link lengths is made
explicit in the following lemma.

Lemma 3. The distribution of the long-range links converges to the distribution
f satisfying, for any d ∈ Zk,

f(d) =
∑

a≥0

π(a) · Pr{X(a) = d}.

3 Analysis of the Dynamic Process m&f

In this section, we analyze the stationary distribution of the long-range link
lengths in the k-dimensional lattice, and prove that this distribution resembles
the k-harmonic distribution.

Theorem 1. There exist d0 ≥ 0 and two positive constants c and c′ such that,
for any d = (d1, . . . , dk) ∈ Zk with |di| ≥ d0 for all i ∈ {1, . . . , k}, we have

c

‖ d ‖k · ln1+ε ‖ d ‖
≤ f(d) ≤ c′ lnk/2 ‖ d ‖

‖ d ‖k · ln1+ε ‖ d ‖

where ε > 0 is the fixed parameter of m&f, and ‖ · ‖ denotes the �∞ norm.

To prove the theorem, we first prove that, for large distances d, a random walk
of age a cannot be of length d unless a ≥ Ω(d2). More precisely, we establish an
exponentially small upper bound for the probability for a long-range link to be
of length d at age a = o(d2). Second, we prove that if the age a is sufficiently
large, then the chance for a random walk to reach a given distance d at age a is
proportional to 1√

a
. Summing this probability over all values of a larger than d2

allows us to conclude that the transform of the age distribution π described in
Lemma 3 is approaching the k-harmonic distribution.

We compute an estimation of Pr {X(a) = d} when a is sufficiently large. We
will use the following asymptotic equivalent of the binomial coefficient, that can
be derived by application of the Stirling formula. Let ni and mi be two sequences
of positive integers such that ni →∞, mi →∞, and ni−mi →∞ when i grows
to infinity. Then, as i grows to infinity

(
ni
mi

)

∼ 1√
2π
·
√

ni
mi · (ni −mi)

· nni

i

mmi

i · (ni −mi)ni−mi
. (3)

Lemma 4. Let X be a random walk in Z. For any C > 0, ζ > 0, there exists
d0 > 1 such that, for any |d| ≥ d0 and a ≥ d2

C·ln |d| , we have

(1− ζ) ·
√

2
π · a exp

(

−3d2

4a

)

≤ Pr {X(a) = d} ≤ (1 + ζ) ·
√

2
π · a exp

(

−d2

4a

)

.

Networks Become Navigable as Nodes Move and Forget 141

We are now ready to prove of the lower bound of Theorem 1. For the sake of
simplicity, let us first assume that the dimension of the lattice is 1. In this case,
one can apply the results from the previous section directly. For any a ≥ 3

4d
2 we

have

exp
(

−3d2

4a

)

≥ 1/e .

Therefore, for any ζ > 0, there exists d0 large enough and a ≥ 3
4d

2 such that
Lemma 4 yields:

Pr {X(a) = d} ≥ 1− ζ

e

√
2
π

1√
a
.

Thus :

f(d) =
∑

a≥0

Pr {X(a) = d}π(a) ≥ 1− ζ

e

√
2
π

∑

a≥ 3
4d

2

1
a3/2 · ln1+ε(a)

.

More generally, in the k-dimensional lattice, let us denote the position of the
random walk by X(a) = (X1(a), · · · , Xk(a)). From the setting of m&f, each Xi is
an unbiased random walk in dimension 1, and the Xis are mutually independent.
We can thus apply all the results from the previous section independently for
each coordinate of d = (d1, . . . , dk). Assuming that

|di| ≥ d0 for all i ∈ {1, . . . , k},

we can apply Lemma 4 to every dimension. We get:

a≥ 3
4
‖ d ‖2=⇒ ∀i ∈ {1, . . . , k} , Pr {Xi(a)=di} ≥

1− ζ

e

√
2
π

1√
a

exp
(

−3d2
i

4a

)

.

For a ≥ 3
4 ‖ d ‖2, we have,

3
4
d2
i

a
≤ 3

4
‖ d ‖2

a
≤ 1 and thus exp

(

−3d2
i

4a

)

≥ 1/e.

As a consequence, by Lemma 4,

Pr {X(a) = d} = Pr {X1(a) = d1, . . . , Xk(a) = dk} ≥
(

1− ζ

e

√
2
π

1√
a

)k

hence

f(d) =
∑

a≥0

Pr {X(a) = d}πA(a) ≥
(

1− ζ

e

√
2
π

)k
∑

a≥ 3
4‖d‖2

c

a1+(k/2) · ln1+ε(a)
.

The lower bound is then a direct consequence of the following result with N =
3‖d‖2

4 .

142 A. Chaintreau, P. Fraigniaud, and E. Lebhar

Lemma 5. For any ε > 0, and any N ≥ e2(1+ε), we have

2/(k + 1)
Nk/2 ln1+εN

≤
∑

a≥N

1
a1+(k/2) ln1+ε a

≤ 2/k
(N − 1)k/2 ln1+ε(N − 1)

. (4)

Due to lack of space, the proof of the upper bound of Theorem 1 is omitted. It
uses similar arguments for large values of a and uses a Chernoff bound for small
values of a, given by the following lemma.

Lemma 6. Let X be a random walk in Z. Then, for any age a > 0 and any
distance d ∈ Z, we have Pr {X(a) = d} ≤ 2 · exp

(
− d2

32·a

)
.

4 Applications

In the previous section, we have shown that the distribution f of the long-
range link lengths is provably converging to a distribution that resembles the
k-harmonic distribution. In this section, we show that greedy routing can be
formally analyzed at the stationary state of this distribution. Greedy routing
can be formally analyzed for two reasons: (1) The distribution f of the long-
range links constructed by m&f can be bounded formally (cf. Theorem 1); (2)
The long-range links resulting from m&f are mutually independent. Based on
these two facts, we can establish the theorem below.

Theorem 2. In the k-dimensional lattice augmented with the long-range links
at the stationary distribution of the dynamic process m&f, the expected number
of steps of greedy routing from any source node s to any target node t at distance
d is O(ln2+ε d).

In the rest of the section, we discuss how m&f can find practical applications to
the design of spatial gossip and resource location protocols.

Gossip-based protocols, a.k.a., epidemic algorithms [12], have been introduced
as a methodology for designing robust and scalable communication schemes in
distributed systems. Roughly, in each step, each node u chooses some other
node v, and sends a message to it. By applying such scheme at each node, an
information originated at some source s will eventually reach its target(s). This
methodology can be adapted to various problems, including information spread-
ing, resource location, etc. In [24], Kempe et al. introduced spatial gossip, which
allowed them to derive efficient solutions for many communication problems. In
spatial gossip, nodes are arranged with uniform density in the k-dimensional
Euclidean space, and, at each step of the gossip protocol, node u chooses node v
with probability ∝ 1/d�k where � > 0 is a fixed parameter, and d is the distance
between u and v. In particular, it is shown that, for � ∈ (1, 2), spatial gossip
enables to propagate information at distance d in time polylogarithmic in d.
In [25], Kempe and Kleinberg showed that spatial gossip enables to solve larger
classes of problems, including MST construction and permutation routing. In
particular, they prove that permutation routing using spatial gossip with � = 1
performs in polylogarithmic expected number of steps.

Networks Become Navigable as Nodes Move and Forget 143

In [7], we show how the m&f process could facilitate the implementation of
the protocols in [24,25] for networks that take advantage of node mobility, as in,
e.g., [9,22,23].

References

1. Abraham, I., Gavoille, C.: Object Location Using Path Separators. In: 25th ACM
Symp. on Principles of Distributed Computing (PODC), pp. 188–197 (2006)

2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Review of
modern physics 74, 47–97 (2002)

3. Aspnes, J., Diamadi, Z., Shah, G.: Fault-tolerant routing in peer-to-peer systems.
In: 21st ACM Symp. on Principles of Distributed Computing (PODC), pp. 223–232
(2002)

4. Barrière, L., Fraigniaud, P., Kranakis, E., Krizanc, D.: Efficient Routing in Net-
works with Long Range Contacts. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180,
pp. 270–284. Springer, Heidelberg (2001)

5. Bollobás, B., Chung, F.: The diameter of a cycle plus a random matching. SIAM
J. Discrete Math. 1(3), 328–333 (1988)

6. Bremaud, P.: Markov Chains, Gibbs Field, Monte Carlo Simulation and Queues.
Springer, Heidelberg (1999)

7. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Opportunistic spatial gossip over mobile
social networks. In: 1st ACM SIGCOMM Workshop on Online Social Net (WOSN)
(to appear, 2008)

8. Chaintreau, A., Fraigniaud, P., Lebhar, E.: Networks Become Navigable as Nodes
Move and Forget. Technical Report, arXiv:0803.0248v1 (2008)

9. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Scott, J., Gass, R.: Impact of
Human Mobility on Opportunistic Forwarding Algorithms. IEEE Trans. Mob.
Comp. 6(6), 606–620 (2007)

10. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In: Federrath, H. (ed.) Designing
Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg
(2001)

11. Clauset, A., Moore, C.: How Do Networks Become Navigable? Technical Report,
arXiv:0309.415v2 (2003)

12. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Mainte-
nance. Operating Systems Review 22(1), 8–32 (1988)

13. Dodds, P., Muhamad, R., Watts, D.: An experimental study of search in global
social networks. Science 301(5634), 827–829 (2003)

14. Duchon, P., Eggeman, N., Hanusse, N.: Non-Searchability of Random Power
Law Graphs. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878. Springer, Heidelberg (2007)

15. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Could any graph be turned
into a small-world? Theoretical Computer Science 355(1), 96–103 (2006)

16. Flammini, M., Moscardelli, L., Navarra, A., Perennes, S.: Asymptotically Optimal
Solutions for Small World Graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS,
vol. 3724, pp. 414–428. Springer, Heidelberg (2005)

17. Fraigniaud, P.: Greedy routing in tree-decomposed graphs: a new perspective on the
small-world phenomenon. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 791–802. Springer, Heidelberg (2005)

144 A. Chaintreau, P. Fraigniaud, and E. Lebhar

18. Fraigniaud, P., Gauron, P., Latapy, M.: Combining the Use of Clustering and
Scale-Free Nature of User Exchanges into a Simple and Efficient P2P System. In:
Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 1163–1172.
Springer, Heidelberg (2005)

19. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal Aug-
mentation Schemes for Network Navigability: Overcoming the

√
n-Barrier. In: 19th

ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 1–9
(2007)

20. Fraigniaud, P., Lebhar, E., Lotker, Z.: A Doubling Dimension Threshold
Θ(log logn) for Augmented Graph Navigability. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)

21. Giakkoupis, G., Hadzilacos, V.: On the complexity of greedy routing in ring-based
peer-to-peer networks. In: 26th ACM Symp. on Princ. of Dist. Comp. (PODC)
(2007)

22. Grossglauser, M., Tse, D.: Mobility Increases the Capacity of Ad Hoc Wireless
Networks. IEEE/ACM Trans. on Net. 10(4), 477–486 (2002)

23. Jain, S., Fall, K., Patra, R.: Routing in a delay tolerant network. In: Proc. ACM
SIGCOMM (2004)

24. Kempe, D., Kleinberg, J., Demers, A.: Spatial gossip and resource location proto-
cols. In: 33rd ACM Symposium on Theory of Computing, pp. 163–172 (2001)

25. Kempe, D., Kleinberg, J.: Protocols and impossibility results for gossip-based com-
munication mechanisms. In: 43st IEEE Symp. on Foundations of Computer Science,
pp. 471–480 (2002)

26. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: 32nd
ACM Symp. on Theory of Computing (STOC), pp. 163–170 (2000)

27. Kleinberg, J.: Complex networks and decentralized search algorithm. In: Interna-
tional Congress of Mathematicians (ICM), Madrid (2006)

28. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating Low-Dimensional and Hier-
archical Population Networks. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS,
vol. 4168. Springer, Heidelberg (2006)

29. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
Journal of the American society for information science and technology 58(7),
1019–1031 (2007)

30. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. In: Proc. of the Natl. Academy of Sciences of the USA,
vol. 102/3, pp. 11623–11628 (2005)

31. Milgram, S.: The Small-World Problem. Psychology Today, pp. 60–67 (1967)
32. Sandberg, O.: Neighbor Selection and Hitting Probability in Small-World Graphs.

Annals of Applied Probability (to appear, 2008)
33. Sandberg, O., Clarke, I.: The evolution of navigable small-world networks. Tech.

Report 2007:14, Chalmers University of Technology (2007)
34. Simon, H.: On a class of skew distribution functions. Biometrika 42(3/4), 425–440

(1955)
35. Slivkins, A.: Distance estimation and object location via rings of neighbors. In:

24th Annual ACM Symp. on Princ. of Dist. Comp. (PODC), pp. 41–50 (2005)
36. Watts, D., Strogatz, S.: Collective Dynamics of Small-World Networks. Nature 393,

440–442 (1998)

Fast Distributed Computation of Cuts Via

Random Circulations

David Pritchard�

Department of Combinatorics and Optimization, University of Waterloo
dagpritchard@math.uwaterloo.ca

Abstract. We describe a new circulation-based method to determine
cuts in an undirected graph. A circulation is an oriented labeling of edges
with integers so that at each vertex, the sum of the in-labels equals the
sum of out-labels. For an integer k, our approach is based on simple
algorithms for sampling a circulation (mod k) uniformly at random. We
prove that with high probability, certain dependencies in the random
circulation correspond to cuts in the graph. This leads to simple new
linear-time sequential algorithms for finding all cut edges and cut pairs
(a set of 2 edges that form a cut) of a graph, and hence 2-edge-connected
and 3-edge-connected components.

In the model of distributed computing in a graph G = (V, E) with
O(log |V |)-bit messages, our approach yields faster algorithms for several
problems. The diameter of G is denoted by D. Previously, Thurimella [J.
Algorithms, 1997] gave a O(D+

√
|V | log∗ |V |)-time algorithm to identify

all cut vertices, 2-edge-connected components, and cut edges, and Tsin
[Int. J. Found. Comput. Sci., 2006] gave a O(|V | + D2)-time algorithm
to identify all cut pairs and 3-edge-connected components.

We obtain simple O(D)-time distributed algorithms to find all cut
edges, 2-edge-connected components, and cut pairs, matching or improv-
ing previous time bounds on all graphs. Under certain assumptions these
new algorithms are universally optimal, due to a Ω(D)-time lower bound
on every graph. These results yield the first distributed algorithms with
sub-linear time for cut pairs and 3-edge-connected components. Let Δ
denote the maximum degree. We obtain a O(D + Δ/ log |V |)-time dis-
tributed algorithm for finding cut vertices; this is faster than Thurimella’s
algorithm on all graphs with Δ, D = O(

√
|V |). The basic distributed al-

gorithms are Monte Carlo, but can be made Las Vegas without increasing
the asymptotic complexity.

1 Introduction

Let G = (V,E) be a connected undirected graph. A part of G is said to be a cut
if, after deleting it from G, the remaining graph is disconnected. Define a cut

� Funded in part by a NSERC PGS-D scholarship. The author wishes to thank Ra-
makrishna Thurimella, Graeme Kemkes, Carlos Hoppen, Jochen Könemann and
Glencora Borradaile for comments on earlier versions of the paper.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 145–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 D. Pritchard

vertex to be a vertex v such that {v} is a cut; define a cut edge to be an edge e
such that {e} is a cut (i.e., a bridge); and define a cut pair to be a cut consisting
of two edges e, f such that neither e nor f is a cut edge. For brevity we call all of
these objects small cuts. In a network the small cuts are relevant because they
represent the critical points where local failures can cause global disruption. Our
primary motivation is to efficiently find all small cuts of an undirected graph;
we consider the sequential, distributed, and parallel models of computation.

The fundamentally new idea in this paper is to use random circulations to find
small cuts. Informally, in a circulation we transport quantities of a commodity
along the edges of a graph, so that the net accumulation at each vertex is zero.
When the shipment quantities are taken modulo some integer k, there are only
finitely many possible circulations, and our first contribution is the observation
that it is easy to sample uniformly from the family of all circulations on a fixed
graph.

For S ⊂ V , let δ(S) denote the edges with exactly one end in S. An induced
edge cut is a set of the form δ(S) for some S; we observe that cut edges and
cut pairs are induced edge cuts. A well-known principle behind our method,
made precise in Proposition 1, is that the net flow of any circulation across
any induced edge cut is 0. At a high level, our algorithms depend on the near-
converse: for certain edge sets F that are not induced edge cuts, the net flow of
a uniformly random circulation on F is uniformly random, hence nonzero with
high probability.

The Distributed Model. Our approach improves known time bounds in the
distributed computing model with congestion. This model, denoted CONGEST
(e.g. by Peleg [1, §2.3]), works as follows. The computation takes place in the
graph G = (V,E) where each vertex is a computer and each edge is a bidi-
rectional communication link; i.e., we study the problem of having a network
compute the small cuts of its own topology. There is no globally shared memory,
only local memory at each vertex. Initially only local topology is known: each
vertex knows its ID value, which is unique, and its neighbours’ IDs. Time elapses
in discrete rounds. In each round, every vertex performs local computations and
may send one message to each of its neighbors, to be received at the start of
the next round. The time complexity of a distributed algorithm is the number of
rounds that elapse, and the message complexity is the total number of messages
that are sent.

In the CONGEST model, every message must be at most O(log V) bits long.
The model does not bound the memory capacity or computational power of the
vertices, although our algorithms use time and space polynomial in |V | at each
vertex. Let D denote the diameter of (V,E), i.e. D := maxu,v∈V distG(u, v). The
message size bound, in addition to making the algorithms more practical, affects
what is possible in the model, as the following example from Lotker, Patt-Shamir
& Peleg [2] shows. On the one hand, if messages are allowed to be arbitrarily
long, any graph property whatsoever can be trivially computed in D time1. On
1 In D rounds each vertex broadcasts its local topology to all other vertices, then each

vertex deduces the global topology and solves the problem with a local computation.

Fast Distributed Computation of Cuts Via Random Circulations 147

the other hand, Lotker et al. gave a family of graphs with D = 3, such that in
CONGEST on this family, a Ω(4

√
|V |/

√
log |V |)-time lower bound holds to find

the minimum spanning tree (MST).
Determining whether a task in this model can be accomplished in O(D) +

o(|V |) time, or better yet O(D) time, is a fundamental problem. For finding all
cut edges and cut pairs of a graph, we give new affirmative answers by providing
O(D)-time algorithms.

1.1 Existing Results

Our results apply to three common models of computation: sequential, dis-
tributed, and parallel. Abusing notation for readability, we sometimes abbreviate
|V | to V and |E| to E.

Sequential. In the usual sequential (RAM) model of computing, Tarjan in the
1970s was the first to obtain linear-time (O(V + E)-time) algorithms to find all
cut vertices [3], cut edges [3], and cut vertex-pairs (cuts C ⊂ V with |C| = 2)
[4]. These algorithms are based on depth-first search (DFS). Galil & Italiano, in
1991, gave the first linear-time algorithm to compute all cut pairs, by reducing
to the cut vertex-pair problem.

Distributed. Here we only mention results valid in CONGEST , ignoring results
with Ω(n) message size such as one of Chang [5]. Cut Edges/Vertices. Two
early distributed algorithms for cut edges and vertices, by Ahuja & Zhu [6] and
Hohberg [7], use DFS. The smallest time complexity of any known distributed
DFS algorithm is Θ(V); as such, the algorithms of Ahuja & Zhu and Hohberg
have Ω(V) time complexity. Huang [8] gave a non-DFS-based algorithm with
Θ(V) time complexity. A breakthrough by Thurimella [9] was an algorithm that
is asymptotically faster than Θ(V) on some graphs (a so-called sub-linear al-
gorithm). Precisely, Thurimella obtained time complexity2 O(D +

√
V log∗ V)

for cut edges and cut vertices, using a sub-linear MST subroutine. Cut Pairs.
For cut pairs, Jennings and Motyckova [10] gave a distributed algorithm with
worst-case time and message complexity Θ(n3), and Tsin [11] recently obtained
a DFS-based algorithm with improved time complexity O(D2 + V).

Distributed Optimality. Distributed Θ(V)-time algorithms for cut edges are
optimal (up to a constant factor) on some graphs: e.g. it is straightforward to
see, even guaranteed that G is either a |V |-cycle or a |V |-path, not all edges
can determine if they are cut edges in less than |V |/2 − 2 rounds. One term
for this property is existentially optimal, due to Garay, Kutten and Peleg [12].
However, as Thurimella’s algorithm [9] showed, there are some graphs on which
Θ(V) time is not asymptotically optimal. The stronger term universally optimal
[12] applies to algorithms which, on every graph, have running time within a
constant factor of the minimum possible.

2 log∗ x is the number of times which log must be iteratively applied to x before
obtaining a number less than 1.

148 D. Pritchard

Parallel. In the PRAM model, optimal O(log V)-time and O(V + E)-work Las
Vegas algorithms have been given by Tarjan & Vishkin [13] for cut edges and
cut vertices, and Fussell, Ramachandran & Thurimella [14] (using the reduction
of Galil & Italiano [15]) for cut pairs. These algorithms require optimal spanning
forest subroutines of Halperin & Zwick [16].

1.2 Our Contributions

Since our algorithms are randomized, we differentiate between two types of al-
gorithms: Monte Carlo ones have deterministically bounded running time but
may be incorrect with probability 1/V and Las Vegas ones are always correct
and have bounded expected running time3. (Note, a Las Vegas algorithm can
always be converted to Monte Carlo, so Las Vegas is generally better).

Sequential. The random circulation approach yields new linear-time algorithms
to compute all cut edges and cut pairs of the Las Vegas type. As far as we are
aware, our linear-time cut pair algorithm is the first one that does not rely on
either DFS (e.g., see references in Tsin [17]) or open ear decomposition (e.g., see
references in Fussell et al. [14]).

Distributed. We remark that all existing distributed algorithms mentioned for
finding small cuts are deterministic. The random circulation approach yields
faster distributed algorithms for small cuts of the Las Vegas type. For cut edges
and pairs, we obtain O(D)-time algorithms. Compared to the previous best time
of O(D+

√
V log∗ V) for cut edges, we remove the dependence on |V |. Compared

to the previous best time of O(D2 + V) for cut pairs, we obtain a quadratic
speedup on every graph. For cut vertices, we obtain a O(D + Δ/ logV)-time
algorithm where Δ is the maximum degree. Compared to the previous best time
of O(D+

√
V log∗ V) for cut vertices, this is faster on graphs with Δ,D = O(

√
V).

We also obtain the first sub-linear distributed algorithm for 3-edge-connected
components, using a connected components subroutine of Thurimella [9]. In
Table 1 we depict our main results and earlier work, showing both time and
message complexity.

Universal Optimality. If we assume distributed algorithms must act globally
in a natural sense — either by initiating at a single vertex, or by reporting
termination — then a Ω(D)-time lower bound holds for the problems of finding
cut edges or cut pairs, on any graph. Hence under natural conditions, our O(D)-
time algorithms for cut edges and cut pairs are universally optimal.

Parallel. In the PRAM model, we obtain new optimal O(log V)-time and O(V +
E)-work Las Vegas algorithms for finding cut pairs and cut edges. Our algorithms
require spanning forest subroutines of Halperin & Zwick [16]. These results are
deferred to the full version of the paper.

3 More generally, our algorithms can obtain error probability ≤ 1/V c for any constant
c without changing the asymptotic complexity.

Fast Distributed Computation of Cuts Via Random Circulations 149

Table 1. Comparison of our three main distributed results (denoted by †) to the best
previously known algorithms

Cuts Found Time Messages

[6] ’89 Vertices & Edges O(V) O(E)

[9] ’95 Vertices & Edges O(D +
√

V log∗ V) O(E · (D +
√

V log∗ V))
[11] ’06 Pairs O(V + D2) O(E + V · D)
Theorem 7† Edges O(D) O(E)
Theorem 10† Pairs O(D) O(min{V 2, E · D})
Theorem 8† Vertices O(D + Δ/ log V) O(E(1 + Δ/ log V))

1.3 Other Related Work

Circulations have applications in diverse fields. Hoffman’s Circulation Theorem
[18] is a min-max relation for circulations from which many other min-max re-
lations can be derived. In planar graphs, nowhere-zero circulations modulo k
correspond to vertex k-colourings of the dual graph (e.g. see [19] and its refer-
ences). Circulations also appear in the most efficient flow algorithm for planar
directed graphs, due to Borradaile & Klein [20]. We defer further discussion to
the full version.

Our usage of uniformly random circulations appears to be novel. The most
similar work is a method of Benjamini & Lovász [21] to compute the genus of an
embedded graph G while “observing” part of it. The similarity is that they use
random perturbation and balancing steps to compute a “near-circulation” on G
and the dual graph of G. Their computational model is significantly different, e.g.
they allow a face to modify the values of all its incident edges in a single time step.

1.4 Organization of the Paper

Section 2 contains definitions and basic results pertaining to circulations. In
Section 3 we define random circulations and show how to construct them effi-
ciently. In Section 4 we show how random circulations yield algorithms for small
cuts, and give sequential implementations. In Section 5 we precisely define our
distributed model and give our distributed results. In Section 5.2 we introduce
a useful technique, fundamental cycle-cast, which may be of independent inter-
est. For space reasons we defer the following to the full version of the paper:
Ω(D)-time lower bounds assuming a single initiator or termination confirma-
tion; some details of the distributed implementation; k-connected-components
(e.g. distributed 3-edge-connected components in O(D +

√
V log∗ V) time); and

Las Vegas implementation (we only discuss Monte Carlo versions here). See the
preprint version http://arXiv.org/abs/cs/0702113 for some of these details.

2 Preliminaries

In this paper the set notation {u, v} denotes an undirected edge of G = (V,E),
which can be oriented in two ways, denoted (u, v) and (v, u). For a set F of edges

http://arXiv.org/abs/cs/0702113

150 D. Pritchard

A

B

C

D

E

F

G

H

I

J
2

1

3

3

7

4

2

2

2

2 4
0 0

φ(A, B) = 0 φ(B, A) = 0
φ(C, B) = 2 φ(B, C) = −2
φ(B, D) = 2 φ(D, B) = −2
φ(C, D) = 1 φ(D, C) = −1

...
...

Fig. 1. A circulation φ. We have labeled edges in the direction of positive flow. Note
that the net flow at each vertex is 0, i.e. conservation holds.

let
−→
F denote the 2|F | orientations of edges in F . An F -orientation is a subset of−→

F consisting of exactly 1 orientation of each e ∈ F . Let Zk denote the integers
modulo k. For v ∈ V the notation Γ (v) denotes the set of neighbours of v.

Definition 1. A circulation on G is a function φ :
−→
E → R with the following

two properties.

Antisymmetry: φ(u, v) = −φ(v, u) for all {u, v} ∈ E.
Conservation:

∑
v∈Γ (u) φ(u, v) = 0 holds for all vertices u.

A k-circulation is a function φ :
−→
E → Zk that satisfies Antisymmetry and

Conservation when equality is replaced by equivalence modulo k.

We illustrate a circulation in Figure 1. Although our notation is chosen for brevity,
there are alternatives, e.g. we could equivalently define, for an E-orientation E′, a
circulation as a function φ : E′ → R so that for each u ∈ V ,

∑
v:(v,u)∈E′ φ(v, u) =

∑
v:(u,v)∈E′ φ(u, v) is satisfied.
For U � V, the induced directed edge cut δ+(U) is the set of directed edges

(u, v) with u ∈ U, v ∈ U. The following result is folklore but see, e.g., [19, p. 7]
for a proof.

Proposition 1 (Circulations vanish across induced cuts). Let φ be a k-
circulation on G, and let U ⊂ V. Then

∑

(u,v)∈δ+(U)

φ(u, v) = 0.

We immediately obtain the following corollary (see also [19, p. 8]).

Corollary 1. If {u, v} is a cut edge of G and φ is a circulation on G then
φ(u, v) = φ(v, u) = 0.

Proof. Let U be the connected component of G\{{u, v}} containing u. Now
apply Proposition 1; the only member of δ+(U) is (u, v) and so we obtain
φ(u, v) = 0. By antisymmetry, φ(v, u) = 0. ��

We now explain a tool which allows one to construct circulations; it appears
implicitly in the book of Bondy & Murty [22, Ex. 12.1.1]. The idea is that for
any spanning tree, we can choose any circulation values on the non-tree edges,
and then there is a unique extension to a circulation on the whole graph.

Fast Distributed Computation of Cuts Via Random Circulations 151

Proposition 2. Let T be any spanning tree of G and let φ0 :
−−−−−→
E\E(T)→ Zk be

antisymmetric. There is a unique circulation φ on G such that φ(u, v) = φ0(u, v)
for all {u, v} ∈ E\E(T).

Proof (Sketch). For a leaf node v incident to {u, v} ∈ E(T), the value of φ(u, v)
must equal −

∑
t φ0(t, v) to satisfy conservation at v. The idea is to then delete

{u, v} from T and repeat. We give pseudocode in Algorithm 1 but the formal
proof is deferred to the full version. ��

Algorithm 1. Input: tree T , antisymmetric φ0 on E\E(T). Output: circulation
φ extending φ0.
1: Initialize φ := φ0, S := T. � S is the subtree of T where φ is not yet defined
2: Root T at an arbitrary vertex r.
3: while S has any edges do
4: Let v be any leaf of S with v �= r and let u be the unique neighbor of v in S.
5: Define φ(v, u) := −

∑
w∈Γ (v)\{u} φ(v, w). � Satisfy conservation at v

6: Define φ(u, v) := −φ(v, u). � Satisfy antisymmetry
7: Delete {u, v} from S.

8: Output φ.

3 Random Circulations

We begin this section by showing that it is easy to uniformly sample from the
set of all k-circulations. The basic idea is to feed a “random” φ0 in to Algorithm
1. More precisely, we pick the values of φ0 randomly and independently (up
to antisymmetry) from Zk. We denote this algorithm by Rand-k-Circ(T) and
illustrate it in Algorithm 2.

Algorithm 2. Input: a connected graph G. Output: the cut edges of G.

1: procedure Rand-k-Circ(T)
2: for each edge {u, v} ∈ E\E(T) do
3: Pick x ∈ Zk uniformly and independently at random and set φ0(u, v) =

x, φ0(v, u) = −x.

4: Return the unique circulation that extends φ0 by calling Algorithm 1.

Theorem 1. Let φ∗ be a circulation on G and T be a spanning tree of G. Let
φ be the output of Rand-k-Circ(T). Then

Pr[φ = φ∗] = 1/k|E|−|V |+1, (1)

and the distribution produced by Rand-k-Circ(T) over all k-circulations is
uniform.

152 D. Pritchard

Proof. The tree T has |V | − 1 edges, so |E\E(T)| = |E| − |V | + 1. Clearly, the
probability that φ0 agrees with φ∗ on E\E(T) is exactly 1/k|E|−|V |+1. But fur-
thermore, by Proposition 2, φ = φ∗ if and only if φ0 and φ∗ agree on E\E(T),
hence we obtain Equation (1). Since 1/k|E|−|V |+1 does not depend on φ∗, uni-
formity follows. ��

Note, Theorem 1 implies that different choices of T have no effect on the output
of Rand-k-Circ(T). Because of this we later refer to a “random k-circulation,”
meaning to sample a k-circulation uniformly at random by calling Rand-k-Circ

with any spanning tree. We will make repeated use of the following corollary to
show that φ “behaves randomly” on certain edge sets.

Corollary 2. Let D ⊂ E be such that G\D is connected, and D′ be a D-
orientation. Let φ be a random k-circulation. The values of φ on D′ are uniformly
and independently distributed over Zk.

Proof. Since G\D is connected, it contains a spanning tree T of G. By Theorem
1, the distribution of φ is the same as if φ were generated by running Rand-

k-Circ with this choice of T . When calling Rand-k-Circ on this T , each e ∈
E\E(T) ⊃ D incurs a uniform, independent sample x ∈ Zk on line 3. (Notice
that if x is uniformly distributed over Zk, so is −x). The result then follows. ��

Note that Corollary 2 holds regardless of what spanning tree was actually used
to generate φ.

4 Sequential Algorithms

In this section we show how to use random circulations to probabilistically deter-
mine the cut edges, cut pairs, and cut vertices of a graph. These are the Monte
Carlo versions of the algorithms.

4.1 Finding All Cut Edges

Proposition 3. Let {u, v} ∈ E and φ be a random k-circulation on G. Then
Pr[φ(u, v) = 0] is 1 if {u, v} is a cut edge and 1/k otherwise.

Proof. If {u, v} is a cut edge then Corollary 1 applies. Otherwise by Corollary
2 the value φ(u, v) is a uniformly random element of Zk, since G\{{u, v}} is
connected. ��

Thus, provided we pick k large enough, it is likely that the cut edges are exactly
{{u, v} | φ(u, v) = 0}. We provide pseudocode in Algorithm 3 and prove its
correctness.

Theorem 2. Algorithm 3 correctly determines the cut edges with probability
1− 1/V and can be implemented in O(E) sequential time.

Proof. The algorithm chooses k = |V ||E|. A union bound, in conjunction with
Proposition 3, shows that the probability of error is at most |E|/k = 1/|V |.
As is standard, we assume the machine word size is Ω(logV). The subroutine

Fast Distributed Computation of Cuts Via Random Circulations 153

Algorithm 3. Input: a connected graph G. Output: the cut edges of G.

1: Let k = |V ||E| and let φ be a random k-circulation on G.
2: Output all edges {u, v} for which φ(u, v) = 0.

Rand-k-Circ performs O(E) random choices and arithmetic operations, each
of which take O(1) time since k is O(log V) bits long. ��

4.2 Finding All Cut Pairs and Cut Classes

For cut pairs and cut vertices we work with circulations only modulo k = 2. This
is convenient because x = −x for all x ∈ Z2, and hence we can unambiguously
refer to φ(e) for an edge e without specifying an orientation. The cycle space
of an undirected graph is the family of subsets of E with even degree at each
vertex, see e.g. Bondy & Murty [22, §12.1]. We remark that 2-circulations are
the same as characteristic vectors of members of the cycle space.

Proposition 4, whose proof we omit, leads to our approach for finding cut
pairs.

Proposition 4 (Cut pairs are induced). If {e, f} is a cut pair then {e, f} =
δ(U) for some U ⊂ V .

Proposition 5. Let e, f be two distinct edges that are not cut edges. If φ is a
random 2-circulation on G, then Pr[φ(e) = φ(f)] = 1 if {e, f} is a cut pair, and
1/2 otherwise.

Proof. If these two edges form a cut pair, using Proposition 4 and Proposition
1, we know that φ(e) + φ(f) ≡ 0 (mod 2) and so φ(e) = φ(f). Now suppose
otherwise, that {e, f} is not a cut pair. Then G\{e, f} is connected, and by
Corollary 2 the values of φ on e and f are independent and uniform over Z2

whence Pr[φ(e) = φ(f)] = 1/2. ��

Proposition 5 gives us a probabilistic proof of the following fact.

Corollary 3 (Transitivity of cut pairs). If {e, f} and {f, g} are cut pairs,
then so is {e, g}.

Proof. Note that e, f, g are not cut edges. Let φ be a random 2-circulation on G.
By Proposition 5, φ(e) = φ(f) and φ(f) = φ(g). So φ(e) = φ(g) with probability
1. By Proposition 5, {e, g} must be a cut pair. ��

Definition 2. A cut class is an inclusion-maximal subset K of E such that
|K| > 1 and every pair {e, f} ⊆ K is a cut pair.

Corollary 3 implies that any two distinct cut classes are disjoint. Hence, even
though there may be many cut pairs, we can describe them all compactly — e.g.
in O(E) space in the sequential model — by listing all cut classes of the graph.

Let Zb2 denote the set of b-bit binary strings. For φ : E → Zb2, let φi(e) denote
the ith bit of φ(e).

154 D. Pritchard

Definition 3. A b-bit circulation is obtained by concatenating b 2-circulations
{φi}bi=1. A (uniformly) random b-bit circulation is obtained by concatenating b
independent uniformly random 2-circulations {φi}bi=1.

Let ⊕ denote the bitwise xor operation. Notice that φ : E → Zb2 is a b-bit cir-
culation if and only if

⊕
e∈δ(u) φ(e) = 0 holds for each u ∈ V . The results of

Sections 2 and 3 apply to b-bit circulations; for example, we can obtain Rand-

b-Bit-Circ, a modified version of Rand-k-Circ that generates a uniformly
random b-bit circulation, by replacing

∑
in Line 5 of Algorithm 1 by

⊕
, replac-

ing Zk in Line 3 of Algorithm 2 by Zb2, and ignoring occurrences of the unary −
operator. Propositions 3 and 5 give probability bounds of 1/2b in place of 1/2
when use random b-bit circulations instead of random 2-circulations, due to the
independence of each bit.

We now give our simple linear-time algorithm to find all cut classes. The idea
is to compute a random b-bit circulation for large enough b that φ(e) = 0 only
for cut edges, and so that φ labels the cut classes of other edges. Pseudocode is
given in Algorithm 4.

Algorithm 4. Input: a connected graph G. Output: the cut classes of G.

1: Let b = �log2(|V ||E|2) and let φ be a random b-bit circulation on G.
2: For each x ∈ Zb

2\{0}, if |{e ∈ E | φ(e) = x}| ≥ 2, then output the cut class
{e ∈ E | φ(e) = x}.

Theorem 3. Algorithm 4 correctly determines the cut pairs with probability 1−
1/V and can be implemented in O(E) sequential time.

Proof. There are |E| edges and Proposition 3 shows that Pr[φ(e) = 0] ≤ 1/2b

for each non-cut edge e. There are at most
(
E
2

)
pairs {e, f} of non-cut edges that

are not cut pairs and Proposition 5 shows that Pr[φ(e) = φ(f)] ≤ 1/2b for each
such pair. Hence, by a union bound and our choice b = "log2(|V ||E|2)#, the total
probability of error is at most |E|/2b +

(
E
2

)
/2b ≤ 1/V .

The subroutine Rand-b-Bit-Circ performs O(E) random choices and xor op-
erations on b-bit binary strings, each of which take O(1) time since b = O(log V).
To implement Line 2 in Algorithm 4 we sort all edges e according to the key
φ(e). In particular, we use a three-pass radix sort (i.e., we consider each value
in Zb2 as a three-digit number in base 2b/3 = O(E) — see Cormen, Leiserson &
Rivest [23, §9.3]), which runs in time O(E). ��

4.3 Finding All Cut Vertices

As we show in this section, the cut δ(v) properly contains smaller induced edge
cuts iff v is a cut vertex. The essential idea behind our approach is to detect these
induced edge cuts, in order to determine the cut vertices. We detect induced edge
cuts via Proposition 1, which says that circulations vanish across induced edge
cuts. To do so efficiently, we rephrase the detection problem as one of finding
linearly dependent rows of a binary matrix. Hence we need the following fact,
when Z2 is viewed as a field.

Fast Distributed Computation of Cuts Via Random Circulations 155

Fact 1. In a matrix over Z2, a set C of columns is linearly dependent if and
only if some nonempty subset of C sums to the zero column vector (mod 2).

Our approach works as follows. We generate a random b-bit circulation φ for
some suitably large b; denote the ith bit of φ(e) by φi(e). Let d(v) := |δ(v)|, the
degree of v. Let Δ denote the maximum degree. For each vertex v, let M [v] be a
matrix with b rows indexed 1, . . . , b, and d(v) columns indexed by δ(v); then fill
the entries of M [v] according to M

[v]
ie = φi(e). The following two complementary

claims, whose proofs we defer to the full version, underlie our approach.

Claim 1. If v is a cut vertex then rank(M [v]) ≤ d(v)− 2.

Claim 2. Let v ∈ V and assume that v is not a cut vertex. Let ∅ � D � δ(v).
The probability that the columns of M [v] indexed by D sum to the zero vector
(mod 2) is 2−b.

Next we show that for b = "Δ + 2 log2 |V |#, it is very likely that rank(M [v]) <
d(v)−1 iff v is a cut vertex. Thus our approach, with pseudocode given in Algo-
rithm 5, is correct with high probability. It is not very efficient in the sequential
model, but still runs in poly(V) time.

Algorithm 5. Input: a connected graph G. Output: the cut vertices of G.

1: Let b = �Δ + 2 log2 |V | and let φ be a random b-bit circulation on G.
2: for each vertex v of G, if rank(M [v]) < d(v) − 1 then output v.

Theorem 4. Algorithm 5 correctly determines the cut vertices with probability
1− 1/V .

Proof. Claim 1 shows that all cut vertices are output. Consider a vertex v that
is not a cut vertex and let D be a subset of δ(v) of size d(v)−1. By Claim 2, Fact
1, and a union bound, the probability that the columns of M [v] corresponding
to D are linearly dependent is at most 2d(v)−12−b ≤ 1/|V |2; so with probability
1− |V |−2, we have rank(M [v]) ≥ |D| = d(v)− 1 and v is not output. By another
union bound, the probability that any vertex is misclassified by Algorithm 5 is
at most |V |/|V |2 = 1/|V |. ��

5 Distributed Implementation

Our algorithms make the following three assumptions: first, the network is syn-
chronous; second, there is a distinguished leader vertex at the start of computa-
tion; third, every node begins with a unique O(log V)-bit ID. These assumptions
are standard in the sense that they are made by the best previous distributed al-
gorithms [6,9,11] for small cuts. Nonetheless, these assumptions can be removed
at a cost if desired, e.g. using the synchronizer of Awerbuch and Peleg [24] at a
polylog(V) factor increase in complexity, Peleg’s [25] O(D)-time leader election

156 D. Pritchard

algorithm, or by randomly assigning IDs in the range {1, . . . , |V |3} (resulting in
additional failure probability at most

(
V
2

)
/|V |3 due to ID collisions).

Although only vertices can store data in the distributed model, we maintain
data for each edge e (e.g., to represent a tree) by having both endpoints of e
store the data. At the end of the algorithm, we require that the correct result
is known locally, so each node stores a boolean variable indicating whether it is
a cut node, and similarly for edges. To indicate cut pairs, each edge must know
whether it is in any cut pair, and in addition we must give every cut class a
distinct label. Previous work also essentially uses these representations.

When stating distributed algorithms, the assumptions of a leader, synchrony,
unique IDs, andO(log V)-bit messages are implicit. Our algorithms use a breadth-
first search (BFS) tree with a root r as the basis for communication. One reason
that BFS trees are useful is that they can be constructed quickly (e.g., see Peleg
[1, §5.1]), as follows.

Proposition 6. There is a distributed algorithm to construct a BFS tree in
O(D) time and O(E) messages.

For a tree T , the level l(v) of v ∈ V is the distance in T between v and r. The
height h(T) of tree T is the maximum vertex level in T . Any BFS tree T has
h(T) ≤ D and this is important because several fundamental algorithms based
on passing information up or down the tree take O(h(T)) time. The parent of u
is denoted p(u). The level of tree edge {u, p(u)} is the level of u.

5.1 Random Circulations, Cut Edges, and Cut Vertices

When we construct a random circulation, we require at termination that each v
knows φ(v, u) for each u ∈ Γ (v).

Theorem 5. There is a distributed algorithm to sample a uniformly random
k-circulation in O(D) time and O(E) messages, when k = poly(V).

Proof. We implement Rand-k-Circ distributively. Since k = poly(V), any value
in Zk can be sent in a singleO(log V)-bit message. We compute a BFS tree T , using
Proposition 6. Then for each non-tree edge {u, v} in parallel, the endpoint with the
higher ID (say, u) sets φ(u, v) to a random value in Zk, sends the value φ(u, v) to
v, and then v sets φ(v, u) := −φ(u, v). In the following h(T) rounds, for i = h(T)
down to 1, for all level-i tree edges {v, p(v)} in parallel, vertex v assigns φ(v, p(v)) a
value so that conservation is satisfied at v (like in Algorithm 1), notifies p(v) of this
value with a message, and then p(v) sets φ(p(v), v) := −φ(v, p(v)). Termination
occurs after r computes its incident φ values. This takes O(D + h(T)) = O(D)
time and O(E) messages, as claimed. ��

Theorem 6. There is a distributed algorithm to sample a uniformly random
b-bit circulation in O(D) time and O(E) messages, when b = O(log V).

Proof. Any value in Zb2 can be sent in a single O(log V)-bit message. Thus, analo-
gous to the proof of Theorem 5, we implement Rand-b-Bit-Circ distributively.

��

Fast Distributed Computation of Cuts Via Random Circulations 157

Theorem 5 yields our distributed cut edge algorithm.

Theorem 7. There is a distributed algorithm to compute all cut edges with prob-
ability 1− 1/V in O(D) time and using O(E) messages.

Proof. We implement Algorithm 3 distributively, obtaining the required correct-
ness probability by Theorem 2. For k = |V ||E|, we use Theorem 5 to compute a
random k-circulation in the required complexity bounds. Then we identify {u, v}
as a cut edge if φ(u, v) = 0. ��

A straightforward implementation of Algorithm 5 results in our cut vertex algo-
rithm, as follows.

Theorem 8. There is a distributed algorithm to compute all cut vertices with
probability 1 − 1/V in O(D + Δ/ logV) time and using O(E(1 + Δ/ logV))
messages.

Proof (Sketch). Using Theorem 6 and a pipelining technique — which we defer to
the full version — we can sample a random b-bit circulation in O(D + b/ logV)
time using O(E(1 + b/ logV)) messages. We take b = "Δ + 2 log2 |V |# as in
Algorithm 5. Since local computations are free in the distributed model, each
vertex v can immediately compute rank(M [v]). ��

5.2 Fundamental Cycle-Cast (fc-cast)

We now define a new distributed technique. A non-tree edge is an edge e ∈
E\E(T). For a spanning tree T and non-tree edge e, the unique cycle in T ∪{e}
is called the fundamental cycle of T and e, and we denote it by Ce. We call
our new technique fundamental cycle-cast, or fc-cast for short, and informally
it allows simultaneous processing on all fundamental cycles. Let each vertex v
store some data d[v] of length O(log V) bits. WOLOG d[v] includes the ID, level,
and parent ID of v. At the end of the fc-cast, each non-tree edge e will know
d[u] for every vertex u in the fundamental cycle of T and e. We defer the proof
of Theorem 9 to the full version.

Theorem 9. There is a distributed algorithm Fc-Cast using O(h(T)) time and
O(min{E · h(T), V 2}) messages that, for each non-tree edge e, for each v ∈ Ce,
sends d[v] to both endpoints of e.

5.3 Distributed Cut Pair Algorithm

It is not obvious how to implement our sequential cut pair algorithm (Algorithm
4) distributively: although the cut classes are properly labeled with high prob-
ability by φ, in order for edge e to know whether it belongs to any cut pair,
it needs to determine if any other f has φ(e) = φ(f), and this cannot be done
using local information (i.e., in O(1) rounds). We use fc-cast to overcome this
obstacle. The following claim, whose proof we omit, relates fundamental cycles
to cut classes.

158 D. Pritchard

Claim 3. Let K be a cut class. Then K ⊂ Ce for some e ∈ E\E(T).

To describe our cut pair algorithm we use a variant of a standard technique, the
convergecast (e.g., see Peleg [1, §4.2]). Informally, it allows each node to inde-
pendently query its descendants. Let desc(v) denote the set of v’s descendants,
including v itself. For each v ∈ V , and each u ∈ desc(v), let w[u, v] be a boolean
variable stored at u. We state the protocol and then give its application to cut
pairs.

Proposition 7. There is a distributed algorithm Converge-Cast using
O(h(T)) time and O(V · h(T)) messages so that each v ∈ V determines whether
any u ∈ desc(v) has w[u, v] = true.

Theorem 10. There is a distributed algorithm to compute all cut classes with
probability 1− 1/V in O(D) time and using O(min{E · D, V 2}) messages.

Proof. We will use two claims below; their proofs are deferred to the full version.
As in Algorithm 4, for b = "log2(|V ||E|2)# we compute a random b-bit circulation
φ on G, using Theorem 6. Denote the following assumption by (�).

For all edges e, f that are not cut edges, φ(e) = φ(f) if and only if {e, f} is a
cut pair. (�)

By the analysis in the proof of Theorem 3, we may assume that (�) holds without
violating the required bound of 1/V on the probability of error.

It remains only for each edge to determine whether it is a member of any
cut pair, since then φ labels the cut classes. For each vertex v = r let d[v] :=
φ(v, p(v)). We run Fc-Cast, and as a result, the endpoints of each non-tree edge
e can compute the multiset Φe := {φ(f) | f ∈ Ce}. The following claim lets each
non-tree edge determine if it is a member of any cut pair.

Claim 4. A non-tree edge e is in a cut pair if and only if φ(e) occurs multiple
times in Φe.

To deal with tree edges, for each v ∈ V and each u ∈ desc(v), define

w[u, v] := (∃e ∈ δ(u)\E(T) such that {v, p(v)} ∈ Ce and φ(v, p(v)) occurs
multiple times in Φe).

and note that w[u, v] can be determined by u after the fc-cast. We run Converge-

Cast.

Claim 5. Tree edge {v, p(v)} is in a cut pair if and only if ∃u ∈ desc(v) such
that w[u, v] = true.

By Proposition 7, after the convergecast, each tree edge can use Claim 5 to
determine if it is a member of any cut pair. Adding up the complexity associated
with constructing a BFS tree and a random circulation, the fc-cast, and the
converge-cast, we obtain O(D+D+D+D) time and O(E+E+min{ED, V 2}+
VD) = O(min{ED, V 2}) messages, as claimed. ��

Fast Distributed Computation of Cuts Via Random Circulations 159

References

1. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
2. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter

graphs. Distributed Computing 18(6), 453–460 (2006); Preliminary version In:
Proc. 20th PODC, pp. 63–71 (2001)

3. Tarjan, R.: Depth first search and linear graph algorithms. SIAM J.Comput. 1(2),
146–160 (1972)

4. Hopcroft, J., Tarjan, R.: Dividing a graph into triconnected components. SIAM J.
Comp. 2(3), 135–158 (1973)

5. Chang, E.J.H.: Echo algorithms: Depth parallel operations on general graphs. IEEE
Trans. Softw. Eng. SE-8, 391–401 (1982)

6. Ahuja, M., Zhu, Y.: An efficient distributed algorithm for finding articulation
points, bridges, and biconnected components in asynchronous networks. In: Veni
Madhavan, C.E. (ed.) FSTTCS 1989. LNCS, vol. 405, pp. 99–108. Springer, Hei-
delberg (1989)

7. Hohberg, W.: How to find biconnected components in distributed networks. J.
Parallel Distrib. Comput. 9(4), 374–386 (1990)

8. Huang, S.T.: A new distributed algorithm for the biconnectivity problem. In: Proc.
1989 International Conf. Parallel Processing, pp. 106–113 (1989)

9. Thurimella, R.: Sub-linear distributed algorithms for sparse certificates and bicon-
nected components. J. Algorithms 23(1), 160–179 (1997); Preliminary version In:
Proc. 14th PODC, pp. 28–37 (1995)

10. Jennings, E., Motyckova, L.: Distributed computation and incremental main-
tainance of 3-edge-connected components. In: Proc. 3rd SIROCCO, pp. 224–240
(1996)

11. Tsin, Y.H.: An efficient distributed algorithm for 3-edge-connectivity. Int. J. Found.
Comput. Sci. 17(3), 677–702 (2006)

12. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM J.Comput. 27(1), 302–316 (1998)

13. Tarjan, R.E., Vishkin, U.: An efficient parallel biconnectivity algorithm. SIAM
J.Comput. 14(4), 862–874 (1985); Preliminary version In: Proc. 25th FOCS, pp.
12–20 (1984)

14. Fussell, D.S., Ramachandran, V., Thurimella, R.: Finding triconnected components
by local replacement. SIAM J.Comput. 22, 587–616 (1993)

15. Galil, Z., Italiano, G.: Reducing edge connectivity to vertex connectivity. SIGACT
News 22, 57–61 (1991)

16. Halperin, S., Zwick, U.: Optimal randomized EREW PRAM algorithms for finding
spanning forests. J. Algorithms 39(1), 1–46 (2001); Preliminary version In: Proc.
7th SODA, pp. 438–447 (1996)

17. Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theory Comput.
Systems 40(2), 125–142 (2005)

18. Hoffman, A.: Some recent applications of the theory of linear inequalities to ex-
tremal combinatorial analysis. In: Proc. 10th AMS Symp. on Appl. Math., pp.
113–127 (1960)

19. Zhang, C.Q.: Integer flows and cycle covers of graphs. Marcel Dekker, New York
(1997)

160 D. Pritchard

20. Borradaile, G., Klein, P.: An O (n log n) algorithm for maximum st-flow in a di-
rected planar graph. In: Proc. 17th SODA, pp. 524–533 (2006)

21. Benjamini, I., Lovász, L.: Harmonic and analytic functions on graphs. J.
Geom. 76(1), 3–15 (2003); Preliminary version In: Proc. 43rd FOCS, pp. 701–710
(2002)

22. Bondy, A., Murty, U.: Graph Theory with Applications. North-Holland, Amster-
dam (1976)

23. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

24. Awerbuch, B., Peleg, D.: Network synchronization with polylogarithmic overhead.
In: Proc. 31st FOCS, pp. 514–522 (1990)

25. Peleg, D.: Time-optimal leader election in general networks. J. Parallel Distrib.
Comput. 8(1), 96–99 (1990)

Finding a Maximum Matching in a Sparse

Random Graph in O(n) Expected Time

Prasad Chebolu, Alan Frieze�, and Páll Melsted

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh PA15213
U.S.A.

Abstract. We present a linear expected time algorithm for finding max-
imum cardinality matchings in sparse random graphs. This is optimal
and improves on previous results by a logarithmic factor.

1 Introduction

A matching M in a graph G = (V,E) is a set of vertex disjoint edges. The
problem of computing a matching of maximum size is central to the theory of
algorithms and has been subject to intense study. Edmond’s landmark paper [3]
gave the first polynomial time algorithm for the problem. Micali and Vazirani [6]
reduced the running time to O(mn1/2) where n = |V | and m = |E|. These are
worst-case results. In terms of average case results we have Motwani [7] and Bast,
Mehlhorn, Schäfer and Tamaki [2] who have algorithms that run in O(m log n)
expected time on the random graph Gn,m, in which each graph with vertex set
[n] and m edges is equally likely.

One natural approach to finding a maximum matching is to use a simple al-
gorithm to find an initial matching and then augment it. This will not work in
the worst-case, but as we will show, it can be used to obtain an O(n) expected
time algorithm for graphs with constant average degree (O(m) in general). For
a simple algorithm we go to the seminal paper of Karp and Sipser [5]. They
describe a simple greedy algorithm and show that whp it will in linear time
produce a matching that is within o(n) of the maximum. Aronson, Frieze and
Pittel [1] proved that whp the Karp-Sipser algorithm is off from the maximum
by at most Õ(n1/5). In this paper we show that whp we can take the output
of the Karp-Sipser algorithm and augment it in o(n) time to find a truly maxi-
mum matching. Our failure probability will be o(1/ logn) and so we get a linear
expected time algorithm if we back it up with the algorithm from [2]. We will
define an algorithm Match and prove

Theorem 1. Let 2m = cn where c is a sufficiently large constant. Let G =
Gn,m. Then the algorithm Match finds a maximum matching in G in O(n) ex-
pected time.
� Supported in part by NSF Grant CCF-0502793.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 161–172, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 P. Chebolu, A. Frieze, and P. Melsted

1.1 The Karp-Sipser Algorithm

This is a simple greedy algorithm. If the current graph G has a vertex of degree
one, then it chooses one such vertex v at random and adds the unique edge (u, v)
to the matching it has found so far and deletes the vertices u, v and continues. If
the current graph has minimum degree at least two then it picks a random edge
(u, v), adds this to the matching and deletes u, v and continues. The algorithm
stops when G has no edges. Algorithm 1 below is a formal description.

Algorithm 1. Karp-Sipser Algorithm
procedure KSGreedy(G)

M ← ∅
while G �= ∅ do

if G has vertices of degree 1 then
Select a vertex v uniformly at random from the set of vertices of degree 1
Let (v, u) be the edge incident to v

else
Select an edge (v, u) uniformly at random

end if
M ← M ∪ (v, u)
G ← G \ {v, u}

end while
return M

end procedure

We identify two phases in the execution of the Karp-Sipser algorithm. Phase
one starts at the beginning and ends when the current graph has minimum at
least degree two. We note that if M1 is the set of edges chosen in Phase 1 then
there is some maximum cardinality matching that contains M1, i.e. no mistakes
have been made so far.

Let the current graph at the beginning of Phase 2 be denoted by G′. As
shown in [5], almost all vertices of G′ are matched by the Karp-Sipser algorithm
when G is a random graph. This result was improved in [1] to show in fact
that whp all but Õ(n1/5) vertices of G′ are matched. When G (Gn,m, G′ is
distributed as G′ (Gδ≥2

n′,m′ where G′ has n′ vertices and m′ edges and Gδ≥2
n′,m′ is

uniformly chosen from simple graphs with n′ vertices, m′ edges and minimum
degree ≥ 2. The values m′, n′ are random variables which will be concentrated
around their known means. It was further shown in Frieze and Pittel [4] that
whp G′ consists of a single giant component plus a collection of vertex disjoint
cycles. The expected number of vertices on isolated cycles is O(1). It is shown
that whp, a maximum cardinality matching of G′ matches every vertex except
one for each isolated odd cycle and one vertex if the giant component of G′

is odd [4]. (This is an existence result, non-algorithmic). So, after running the
Karp-Sipser algorithm and dealing with isolated odd cycles, our task will whp
be to match together Õ(n1/5) isolated vertices.

Finding a Maximum Matching in a Sparse Random Graph 163

1.2 Outline Decription of Match

We will take the output of the Karp-Sipser algorithm, remove small cyclic com-
ponents and deal with them separately. We then take the isolated vertices of the
graph in pairs and try to match them together using alternating paths. We will
show that this can be done in o(n) time whp. Our augmenting path phase will
use all of the edges of the graph. The reader will be aware that the Karp-Sipser
algorithm has conditioned the edges of the graph. We will show however that
we can find a large set of edges A and show that they have an understandable
conditional distribution. This distribution will be simple enough that we can
make use of A to show that we succeed whp. Intuitively, we can do this be-
cause the Karp-Sipser algorithm only “looks” at a small number of edges and
discards most of the edges incident with the pair u, v chosen at each step. Deal-
ing with conditioning is a central problem in Probabilistic Analysis. Oft times it
is achieved by the use of concentration. Here the problem is more subtle. Note
that one cannot simply run the Karp-Sipser algorithm on a random subgraph
Gn,m1 ⊆ Gn,m and then use the m−m1 random edges. This is because Phase 1
on the sub-graph will leave extra isolated vertices.

Algorithm 2 below is a formal description of Match. Note that the Augment
algorithm takes a graph and a matching as arguments and returns an improved
matching.

Algorithm 2. Algorithm Match
1: procedure Main(G)
2: (M, G′) ← KS-Greedy(G) � G′ is the graph G after Phase 1 of KS-Greedy
3: G′ ← Remove-small-components(G′)
4: M ′ ← Augment(G′, M ∩ G′)
5: return M � M ′

6: end procedure
1: procedure Remove-small-components(G)
2: Pick an arbitrary vertex u ∈ G and run a breadth first search starting from u
3: if the connected component containing u, Cu, has size less than log2 n then
4: G ← G \ Cu

5: end if
6: return G
7: end procedure

The rest of the paper is structured as follows: We describe our augmenting
path algorithm in the next section. Then in Section 3 we discuss the conditioning
imposed by the Karp-Sipser algorithm. Then in Section 4 we add the final touches
to the proof.

2 Augmenting Path Algorithm

A vertex is said to be unmatched if it is not incident to a matching edge. Given
an unmatched vertex u, an augmenting tree Tu will be a tree of even depth rooted

164 P. Chebolu, A. Frieze, and P. Melsted

at u such that an edge between vertices at depth 2k to 2k + 1 is not a matching
edge and edges going from vertices at depth 2k+1 to 2k+2 are matching edges,
for k ≥ 0. We refer to the nodes at levels 2k as even nodes of the tree and nodes
at level 2k−1 as odd nodes for k ≥ 1. We refer to the leaves of Tu as the front of
the tree. Our growth procedure ensures that the leaves are always even vertices.

A blossom rooted at v is a cycle of odd length where the edges on the path
starting and ending at v alternate between matching and non-matching edges.

Given two augmenting trees Tu, Tv, rooted at u, v respectively, a hit edge is
an edge (x, y) such that x is an even node in Tu and y is an odd node in Tv.
Note that given a hit edge (x, y) the subtree of Tv rooted at y can be taken from
Tv and added to Tu, by removing the edge from y to its parent node in Tv (see
figure 2). An edge (x, y) s.t. x and y are even nodes of the same tree is called a
blossom edge.

Throughout the algorithm we will keep track of which vertices we have seen
before, labeling some vertices as exposed. This is mainly to keep track of which
vertices have “no randomness” left because we have seen all the vertices they
are adjacent to. The algorithm Augment(G,M) takes as input a graph G and a
matching M . The algorithm runs in rounds, where in each round we try to find
an augmenting path between two unmatched vertices. If such a path is found,
the matching is augmented, if not the algorithm returns Failure and we resort
to an alternate algorithm. This is repeated until there is at most one unmatched
vertex left, and then the current matching is returned. Clearly, if the algorithm
does not fail then it finds a maximum cardinality matching.

In each round of the algorithm two augmenting trees are maintained, Tu, Tv,
which are rooted at two unmatched vertices u and v. The trees are grown one
at a time until we either find an augmenting path or the trees cannot be grown
further. For each of u, v we maintain a list of blossom edges and hit edges en-
countered so far.

The smaller of the two trees is grown, unless one tree has ≤ n.59 unexposed
vertices at the front and the other has > n.59 unexposed vertices at the front.

Suppose Tu is to be grown. Then for each vertex x on the front of Tu and
each non-matching edge (x, y) we do one of the following:

1. If y belongs to neither of the trees and is matched, add it to Tu along with
its matching edge (y, y′)

2. If y is unmatched we have an augmenting path from u to y

3. If y is an even vertex of Tv then the path from u to x in Tu, with the edge
(x, y) and the path from y to v in Tv forms an augmenting path

4. If y is an odd vertex of Tv then (x, y) is a hit edge, append it to the list of
hit edges for u.

5. If y is an even vertex of Tu then (x, y) along with the paths from x, y to
their most common ancestor in Tu form a blossom, append (x, y) to the list
of blossom edges for u.

6. If y is an odd vertex of Tu we do nothing.

After examining all edges incident to x, label it as exposed.

Finding a Maximum Matching in a Sparse Random Graph 165

u
v

e1

e2

e3

e4

e5

e6

Tu
Tv

Fig. 1. The trees Tu and Tv are shown with bold edges. The edges ei correspond to
cases i in the algorithm for i = 1, . . . , 6.

u
v

e4

Tu
Tv

x

y

Fig. 2. The trees Tu and Tv after using the hit edge e4

If an augmenting path is found then the round is finished. If the tree doesn’t
grow we inspect first the list of hit edges and see if we can grow the tree using
them. If there are no hit edges we inspect the list of blossom edges. For each
blossom found contract the blossom into a supernode and add this supernode
to the front of the tree and try to grow from there. If the tree still doesn’t grow
exit the round and report failure. Examples of the 6 cases for the edge (x, y)
are shown in Figure 1 and examples for hit edges and blossoms are shown in
Figures 2 and 3.

2.1 Tree Expansion

We will show that there exist constants α1, α2 independent of c and a constant
c0 such that for c ≥ c0 and 2m = cn the following Lemmas hold. Proofs of these
lemmas are left to the full paper. Note that we can choose α2 to be arbitrarily
small, but this would simply increase the bound on c0.

166 P. Chebolu, A. Frieze, and P. Melsted

u
v

e5

Tu
Tv

B

e′

Fig. 3. The trees Tu and Tv after using the blossom edge e5. Note that the blossom B
is contracted and the edge e′ becomes a part of the new tree.

Lemma 1. The following will hold with probability 1−O(n−2). For G ∼ Gδ≥2
n,m

and all matchings M of G and all augmenting trees T with c−1α1 logn ≤ |T | ≤
n.99. T will expand to a new front of size s ∈

[
9c
10 |T |,

11c
10 |T |

]
in one round.

Lemma 2. Let G ∼ Gδ≥2
n,m, then with probability 1 − O(n−1+3α2) there do not

exist two cycles of length a and b, at distance d apart for any a, b, d such that
a + b + d ≤ α2 logc n

Lemma 3. Let G ∼ Gδ≥2
n,m, then with probability 1−O(n−2) there does not exist

a set S with logn ≤ |S| ≤ n.99 that has more than (1 + ε)|S| edges inside S for
all ε > 0.

Lemma 4. Let G be a graph such that Lemmas 1, 2 and 3 hold. For all match-
ings M of G, if Augment(G,M) returns Failure, then the trees grown must be
of size Ω(n.8).

3 Karp-Sipser Conditioning

We now view G as an ordered set of edges and look at an equivalent version
of the Karp-Sipser algorithm. In the analysis of Karp-Sipser on random graphs
we have two sources of randomness. One is the random graph itself and the
other one is the random choices made by the algorithm. In order to simplify
the analysis we change the choices into deterministic ones and simply randomize
the order in which the edges are stored and take them in this (random) order.
This is equivalent to original algorithm. We now state the modified Karp-Sipser
algorithm. We assume the graph is given as G = (e1, . . . , em) an ordered set of
edges. We call say that edge e ∈ G has index i if it is the i-th edge in the list,
i.e. e = ei. Note that every graph in the support of Gδ≥2

n,m will yield m! ordered
sets of edges, so from now on we will think of Gδ≥2

n,m as a family of ordered sets
of edges. (We only need to concern ourselves with Phase 2 of the Karp-Sipser
algorithm and we have replaced m′, n′ by m,n for notational convenience).

Finding a Maximum Matching in a Sparse Random Graph 167

1: procedure KS
∗(G)

2: M ← ∅
3: while G = ∅ do
4: if G has vertices of degree 1 then
5: Of all edges incident to vertices of degree 1, let e have the lowest

index
6: Let e = (v, u) where v has degree 1.
7: else
8: Let e = (v, u) be the edge of lowest index in G
9: end if

10: M ←M ∪ (v, u)
11: G← G \ {u, v}
12: end while
13: return M
14: end procedure

3.1 Witness Edges

In addition to the edges of the matching we define edges based on the run of the
algorithm. We split the vertices of the graph into three classes, regular, pendant
and unmatched. A vertex is regular if when it was removed from the graph, it
had degree 2 or more. A vertex is said to be a pendant vertex if when it was
removed it had degree exactly 1 and is the endpoint of a matching edge in M .
Unmatched vertices are those vertices that are not incident to matching edges.
We say that an edge e is regular if both of its endpoints are regular, i.e. it was
removed from the graph in line 8. For each of these vertices we define witness
edges.

– For a regular vertex v, it is removed from the graph when the edge e is
picked as a matching edge. Since it has degree at least 2, there are other
edges incident to it at the time it is removed. Pick the one with the lowest
index and define it to be the regular witness edge for v.

– For a pendant vertex or an unmatched v. Find the last point of time when
v has degree at least 2, an edge e = (x, y) is removed from the graph and
v is incident to at least one of them (perhaps both), say x. We then define
(v, x) to be the pendant witness edge for v.

– For an unmatched vertex v, it has a pendant witness edge, and since it is
never picked for a matching its last edge is incident to some matching edge
e = (x, y), say x, we then define (v, x) to be the removal witness edge for v.

– In case of any ambiguities, define pendant witness edges first and then re-
moval witness edges. Use the lowest index of edges to break all ties. This
can happen if a vertex goes from having degree 3 to pendant or from having
degree 2 to degree 0 if it is incident to both endpoints of a matched edge.

– Note that an edge e can be a regular witness edge for one vertex and a
pendant or removal witness edge for another vertex.

168 P. Chebolu, A. Frieze, and P. Melsted

Let W be the set of witness edges. Regular and pendant vertices are incident
to matching edges and their witness edges. Unmatched vertices are incident to
two witness edges. Hence the graph defined by M and W has minimum degree
2 and size at most 2n.

We think of the graph G as an ordered set of m boxes filled with edges. Suppose
we know the output of KS∗, M , W and also the order in which the matching and
witness edges were added to M and W , but the underlying graph is unknown
to us. This corresponds to m ordered boxes, of which the ones corresponding to
M and W have been opened. We wish to figure out what the unopened boxes
could possibly contain. The following lemma provides necessary and sufficient
conditions for a graph G to yield M and W as the output of KS∗.

Lemma 5. Let G be a graph such that the algorithm KS∗ will produce the match-
ing set M and witness set W . If e is an edge of G that belongs neither to M
nor W then KS∗ will produce the same matching and witness set when run on
G′′ = G \ {e}. Let e′ = (u, v) be an edge not in G that satisfies conditions 1,2,3
below. Then KS∗ will produce the same matching and witness set M and W
when run on G′ = G ∪ {e′}.

1. If both u and v are regular vertices and say u was removed from the graph
before v then (u, v) can appear in any box that comes after the regular witness
edge for u.

2. If u is a regular vertex and v is either a pendant or unmatched vertex . We
need v to have degree at least 2 at the time when u is removed. Thus we
need (u, v) to appear in a box that comes after the regular witness edge for
u. Additionally if the pendant witness for v is incident to the matching edge
of u we need (u, v) to appear in a box that comes after the pendant witness
for v.

3. If neither u nor v are regular vertices, then the edge (u, v) cannot appear in
the graph.

Note that it is possible to add an edge to the graph that will produce the same
set of matching edges, but a different witness set. Since we want to condition on
both sets, and the exact order in which they were produced we are not interested
in such cases.

3.2 Probability Space

We describe the probability space after we sample a random graph from Gδ≥2
n,m

and run KS∗ on the graph and condition on the output matching edges M , as
well as the witness edges W . Given the output M and W and Rules 1-3 we can
find all graphs that would give M and W as the output of KS∗ and generate one
uniformly at random.

First note that for each box i that is not in M or W we can create a list of
edges Ei that could go into that box, from Rules 1-3 we see that this list depends
only on M and W and is independent of the contents of other boxes. Also note
that all the rules state that an edge can go into any box that comes after some

Finding a Maximum Matching in a Sparse Random Graph 169

specified box, thus we have Ei ⊆ Ej when i < j. This leads us to the following
algorithm for generating a random graph from the distribution Gδ≥2

n,m|M,W , i.e.
conditioned on the output of KS∗.

1: procedure Generate-Random(M ,W)
2: for unfilled boxes i do
3: Ei ← { all edges e that can go into box i}
4: end for
5: G←M ∪W
6: for unfilled boxes i in increasing order do
7: Select e uniformly at random from Ei
8: G← G ∪ {e}
9: Remove e from Ej for all j > i

10: end for
11: return G
12: end procedure

Each G that outputs M and W can be generated with Generate-Random in
exactly one way and that any graph G produced by Generate-Random will pro-
duce M and G when we run KS∗ on G. This shows that Generate-Random will
give a uniformly random graph from Gδ≥2

n,m|M,W .

4 Final Proof

In Section 3.2 we gave a complete description of the probability space. However
this is not enough to finish the proof of Theorem 1, we must dig deeper into the
analysis of KSGreedy. We begin by listing some definitions and lemmas from the
paper that we will need.

In [1] it is shown that G(t) is distributed uniformly at random from the set
of all graphs with v0(t) vertices of degree 0, v1(t) vertices of degree 1, v(t)
vertices of degree at least 2 and m(t) edges, we denote this sequence by v(t) =
(v0(t), v1(t), v(t),m(t)). Furthermore, the sequence v(t) is a Markov chain. Thus
the analysis of the algorithm is done by tracking the sequence v(t). Additionally
we define z(t) by

2m(t)− v1(t)
v(t)

=
z(t)(ez(t) − 1)

f(z(t))

where f(z) = ez − z − 1. Conditional on v(t), the degrees of vertices of degree
at least 2 is distributed as independent copies of a truncated Poisson random
variable Z, where

P(Z = k) =
zk

k!f(z)
k = 2, 3, . . .

conditional on
∑
v:deg(v)≥2 Zv = 2m(t)− v1(t).

As our input is taken from Gδ≥2
n,m we start in the state v(0) = (0, 0, n,m), i.e.

with v1(0) = 0. For t1 < t2 such that v1(t1) = v1(t2) = 0 and v1(t) > 0 for
t1 < t < t2 we look at the edges and vertices removed from t1 to t2, i.e. the

170 P. Chebolu, A. Frieze, and P. Melsted

graph G(t1)\G(t2) and call it a batch. Note that each batch contains the regular
matching edge removed at time t1 and hence a batch is a connected set.

4.1 Good Matching Edges

Let τ0 be the last time such that the number of vertices removed from the graph
is at most n.99. We refer to vertices removed before τ0 as early vertices and those
removed after as late. We say that a matching edge e is a good matching edge
if it is early, both of its endpoints are regular and the regular witness edges for
both of its endpoints have index less than m/2.

Note that for t = 0, . . . , τ0 we have removed at most n.99 vertices and O(n.99)
edges, thus

2m(t)− v1(t)
v(t)

= (1 + o(1))
2m(0)− v1(0)

v(0)
= (1 + o(1))c

and z(t) = (1 + o(1))z(0) and z(t) is bounded away from 0 by a constant.
Corollary 3 of [1] then gives that E[v1(t + 1) − v(t)] ≤ −α for some positive
constant α. Using this α in Lemmas 13 and 14 in [1] gives the following lemma

Lemma 6.

P

(

∃t ≤ τ0 : v1(t) >
4 log3 n

α

)

= O(n−4)

and

P (∃t ≤ τ0 − T : v1(t) = 0, v1(t′) > 0 for t < t′ ≤ t + T) = O(n−4)

for T = 16 log3 n
α3 .

This shows that for t ≤ τ0 each batch corresponds to an interval of time of length
at most O(log3 n) and that the total number of pendant vertices (at the time of
removal) is O(log6(n)), which implies that the number of vertices in a batch is
also O(log6(n)).

This also shows that during the first τ0 time steps there will be at least
Ω

(
n.99

log6(n)

)
times when v1(t) = 0 and thus at least that many regular edges are

added to the matching set.

Lemma 7. There are Ω
(
n.99

log6 n

)
good matching edges in G.

4.2 The Batch Graph

We split the edges removed up to time τ0 into batches B1, . . . , Bl and create a
Batch Graph GB , with vertices B1, . . . , Bl and we put an edge between Bi and
Bj if dist(Bi, Bj) ≤ 20 logc(log n).

Lemma 8. The probability that there exists a connected component in GB of
size at least 1000 is O(n−4).

Finding a Maximum Matching in a Sparse Random Graph 171

Lemma 9. Let T be an augmenting tree of size |T | = Ω(n.02). Then, whp, at
there are at least |T |

log n late vertices on the front of the tree.

Lemma 10. Let T be an augmenting tree with o(n.8) exposed vertices and s =
Ω̃(n.03) unexposed vertices at the front. Then, whp, there are Ω̃(s

n.02) unex-
posed vertices at the front, whose matching edge in the augmenting tree is a good
matching edge.

4.3 Putting It All Together

Proof of Theorem 1: We show that in each round the algorithm will always
find an augmenting path and will find one by exposing at most Õ(n.59) new
vertices. This implies that the amount of work done in the i-th round is Õ(i·n.59),
since we could in the worst case visit all previously exposed vertices. So the total
work would be Õ(l2n.59) = Õ(n.99) = o(n), where l is the total number of rounds
and l = Õ(n.2) since the number of unmatched vertices is Õ(n.2).

Consider the i-th round and assume we’ve only exposed Õ(i · n.59) = o(n.8)
vertices. By Lemma 4 we know that whp the algorithm will be able to grow
the trees and that we can assume that the trees Tu and Tv both have at least
n.59 unexposed vertices at the front. If the algorithm found an augmenting path
before the first time this happened then we’ve exposed only Õ(n.59) vertices,
since there are at most O(log n) levels of the tree and each level has ≤ n.59

unexposed vertices. Assume therefore that we have two sets of unexposed vertices
at the fronts Su and Sv such that |Su|, |Sv| ≥ n.59.

By Lemma 9 we know that there are at least |Su|
logn late unexposed vertices

in |Su|, call this set S′u. Since only o(n.8) vertices have been exposed so far,
Lemma 10 applies and there are at least Ω̃

(
|Sv |
n.02

)
vertices in Sv that are end-

points of good matching edges, call this set S′v. Thus we have that there are
at least (|S′u| − 1)|S′v| = Ω̃(n1.16) potential edges that could go in any of
the m/2 − 2n − o(n.8) currently open boxes with index ≥ m/2. The num-
ber of such edges dominates a binomially distributed random variable X (
Bin(

(

Ω(n), Ω̃
(
n1.16

(n
2)

))

, which has a mean of Ω̃(n.16) and thus is positive with

probability 1 − exp−Ω(n.15). This edge going between the fronts will guarantee
that an augmenting path is found by inspecting either one of the augmenting
trees. Thus the probability that we fail in the ith round is at most exp−Ω(n.15).

Since we repeat this for Õ(n.2) rounds the probability of failure is O(n−a) for
any constant a > 0.

5 Conclusion

We have shown that a maximum matching can be found in O(n) expected time
if the average degree is a sufficiently large constant. It is easy to extend this to

172 P. Chebolu, A. Frieze, and P. Melsted

the case where the average degree grows with n. It is much more challenging
to try to extend the result to any constant c. Karp and Sipser showed that if
c < e then whp Phase 1 leaves o(n) vertices for Phase 2. In the paper [1], it
was shown that for c < e, only a few vertex disjoint cycles are left, whp. So the
problematical range is e ≤ c < c0.

References

1. Aronson, J., Frieze, A.M., Pittel, B.: Maximum matchings in sparse random graphs:
Karp-Sipser revisited. Random Structures and Algorithms 12, 111–177 (1998)

2. Bast, H., Mehlhorn, K., Schäfer, G., Tamaki, H.: Matching Algorithms are Fast in
Sparse Random Graphs. Theory of Computing Systems 39, 3–14 (2006)

3. Edmonds, J.: Paths, Trees and Flowers. Canadian Journal of Mathematics 17, 449–
467 (1965)

4. Frieze, A.M., Pittel, B.: Perfect matchings in random graphs with prescribed mini-
mal degree. In: Trends in Mathematics, pp. 95–132. Birkhauser Verlag, Basel (2004)

5. Karp, R.M., Sipser, M.: Maximum Matchings in Sparse Random Graphs. In: Pro-
ceedings of the 22nd Annual IEEE Symposium on Foundations of Computer Science,
pp. 364–375 (1981)

6. Micali, S., Vazirani, V.V.: An O(
√

V E) Algorithm for Finding Maximum Match-
ing in General Graphs. In: Proceedings of the 21st Annual IEEE Symposium on
Foundations of Computer Science, pp. 17–27 (1980)

7. Motwani, R.: Average-case Analysis of Algorithms for Matchings and Related Prob-
lems. Journal of the ACM 41, 1329–1356 (1994)

Function Evaluation Via Linear Programming in

the Priced Information Model

Ferdinando Cicalese�,1 and Eduardo Sany Laber2

1 AG Genominformatik, Technical Faculty, Bielefeld University, Germany
2 Departamento de Informática, PUC – Rio de Janeiro, Brazil

Abstract. We determine the complexity of evaluatingmonotone Boolean
functions in a variant of the decision tree model introduced in [Charikar et
al. 2002]. In thismodel, reading different variables can incur different costs,
and competitive analysis is employed to evaluate the performance of the
algorithms. It is known that for a monotone Boolean function f, the size of
the largest certificate, aka PROOF (f), is a lower bound for γ(f), the best
possible competitiveness achievable by an algorithm on f . This bound has
been proved to be achievable for some subclasses of the monotone Boolean
functions, e.g., read once formulae, threshold trees. However, determining
γ(f) for an arbitrary monotone Boolean function has so far remained a
major open question, with the best known upper bound being essentially
a factor of 2 away from the above lower bound.

We close the gap and prove that for any monotone Boolean function
f , γ(f) = PROOF (f). In fact, we prove that γ(f) ≤ PROOF (f) holds
for a class much larger than the set of monotone Boolean functions. This
class also contains all Boolean functions.

1 Introduction

The decision tree is perhaps the simplest model of computation for studying
the complexity of Boolean functions. In the classical variant of this model, a
Boolean function is to be evaluated by querying about the initially unknown
input. Each query asks the value of a single variable and it is charged a unitary
cost. No other computational cost is taken into account. Then, the decision tree
complexity DC(f) of a function f is defined as the number of queries that an
optimal algorithm for evaluating f needs to make on the most costly input.
This is, in fact, the depth of the tree induced by the optimal algorithm. Clearly,
DC(f) ≤ n for all functions on n variables. Conversely, a large part of the
Boolean functions are known to be evasive, i.e., to satisfy DC(f) = n [18]. In
a certain way, this shows that the model is “too simple” to characterize the
complexity of large classes of functions in an algorithmically meaningful way: in
fact, for each evasive function, any algorithm has the same “optimal” behavior.
There are basically two ways out of here: to restrict the classes of functions

� Supported by the Sofja Kovalevskaja Award 2004 of the Alexander von Humboldt
Foundation and the Bundesministerium für Bildung und Forschung.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 173–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 F. Cicalese and E.S. Laber

one focuses on or to slightly change the model in a way that allows more
discriminative power. Both ways have been considered in the literature. Several
subclasses of Boolean functions have been studied in the basic and in other
variants of the decision tree model by, e.g., considering statistical knowledge
on the input together with average case analysis, or by allowing randomization
(see, e.g., [21,20,19] and references quoted therein). However, only very few non-
trivial classes of functions have been completely characterized so far [19,12].
Conversely, for many classes studied, the gap between the best known bounds
is still significant (see, e.g., [13,19], also, [2,10] include comprehensive surveys of
the known results).

In this paper, we follow the more recent approach proposed by Charikar et al.
in [3]. We assume that different variables can incur different reading costs and
we employ competitive analysis to measure the performance of the evaluation
algorithms. In particular, we study the following model.

Problem Statement. A function f over a set of variables V = {x1, x2, . . . , xn}
has to be evaluated for a fixed but unknown assignment σ, i.e., a choice of the
values for the variables of V . Each variable xi has an associated non-negative
cost c(xi) which is the cost incurred to probe xi, i.e., to read its value xi(σ).
For each i = 1, . . . , n, the cost c(xi) is fixed and known beforehand. The goal is
to adaptively identify and probe a minimum cost set of variables U ⊆ V whose
values uniquely determine the value of f for the given assignment, regardless of
the values of the variables not probed. The cost c(U) of U is the sum of the costs
of the variables it contains, i.e., c(U) =

∑
x∈U c(x). We use f(σ) to denote the

value of f w.r.t. σ, i.e., f(σ) = f(x1(σ), . . . , xn(σ)).
A set of variables U ⊆ V is a proof for f with respect to a given assignment σ

for the variables of V if the value f(σ) is determined by the values that σ assigns
to the variables of U regardless of the values assigned to the other variables.

An evaluation algorithm A for f is a rule to adaptively read the variables in
V until the set of variables read so far is a proof for the value of f . The cost of
algorithm A for an assignment σ is the total cost incurred by A to evaluate f
under the assignment σ. Given a cost function c(·), we let cfA(σ) denote the cost
of the algorithm A for an assignment σ and cf (σ) the cost of the cheapest proof
for f under the assignment σ. We say that A is ρ-competitive if cfA(σ) ≤ ρcf (σ),
for every possible assignment σ. We use γAc (f) to denote the competitive ratio
of A, that is, the minimum ρ for which A is ρ-competitive. The best possible
competitive ratio for any deterministic algorithm, then, is γfc = minA γAc (f),
where the minimum is computed over all possible deterministic algorithms A.

With the aim of evaluating the dependence of the competitive ratio on the
structure of f , one defines the extremal competitive ratio γA(f) of an algorithm
A as γA(f) = maxc γAc (f). The best possible extremal competitive ratio for
any deterministic algorithm, then, is γ(f) = minA γA(f). This last measure is
meant to capture the structural complexity of f independent of a particular cost
assignment and algorithm. For instance, consider the Boolean function

f = (x1 AND x2) OR (x2 AND x3) OR (x3 AND x4) (1)

Function Evaluation Via Linear Programming 175

together with the costs c(x1) = 3, c(x2) = 5, c(x3) = 4 and c(x4) = 1. For
the assignment σR = (1, 0, 1, 1), we have f(σR) = 1 and U = {x3, x4} as the
only proof of minimum cost. Therefore, cf (σR) = 4 + 1. On the other hand,
for the assignment σS = (1, 0, 0, 0), we have f(σS) = 0 and the cheapest proof
is {x2, x4}. Thus, cf (σS) = 5 + 1. Let now A be an algorithm that reads first
x1, then x2, and so on, just skipping a variable xi if, due to the values read
so far, the value of xi cannot affect the value of f . Thus, it is not hard to
verify that cfA(σR) = 13, since A reads the variables x1, x2, x3, x4. Furthermore,
cfA(σS) = 12, since in this case, A reads x1, x2 and x3.

Beside its important theoretical aspects, function evaluation problems arise in
several domains of computer science. In automatic diagnosis problems, a given
system has to be checked by performing some tests whose costs can be different.
This typically means evaluating some (Boolean) function and looking for the
cheapest testing procedure (see, e.g., [1] and references therein). Applications
are found in a variety of fields, e.g., telecommunications [16], manufacturing [7],
computer networks [8], satisficing search problems [10], computer aided medical
systems [17]. Also, the function evaluation problem arises in query optimization,
a major issue in databases [14].

Related Work. The extremal competitive ratio was proposed by Charikar et
al. in [3]. In the same paper, they present bounds on the extremal competitive
ratio for monotone Boolean functions and some non-Boolean functions as the
function “minimum of a list” and the function “searching a sorted list”. Most
of these bounds were improved in subsequent papers [11,4,5]. For some results
regarding the measure γfc see also [3,6].

For monotone Boolean functions, Charikar et al. proved that for every func-
tion f representable by an AND/OR tree it holds γ(f) = PROOF (f), where
PROOF (f) is the size of the largest minimal proof for f . In addition, they men-
tion that the inequality γ(f) ≤ 2×PROOF (f) holds for every monotone Boolean
function f . This follows from the existence of an exponential time algorithm
that achieves this bound. In [4], the authors observed that γ(f) ≥ PROOF (f)
holds for any monotone Boolean function and a polytime algorithm1 was pre-
sented showing that γ(f) is slightly smaller than 2×PROOF (f). In [5], γ(f) =
PROOF (f) is proved for the classes of threshold tree functions (a class that
includes AND/OR trees) and monotone Boolean functions for which no variable
appears in more than 3 minterms. Determining whether γ(f) = PROOF (f)
holds for every monotone Boolean function f has so far remained a major open
question.

Our Results. We prove that γ(f) = PROOF (f) for all monotone Boolean
functions. Actually, our main result is much more general: we prove γ(f) ≤
PROOF (f) for any non constant function f : S1 × · · · × Sn → R whose domain
is given by the Cartesian product of the domains of the individual variables.
The class of such functions, which we denote by F×, contains the whole class

1 The time bound assumes that, given a σ, the algorithm can obtain f(σ) in polytime.

176 F. Cicalese and E.S. Laber

of (total) Boolean functions. This seems a rather interesting result, considering
how few assumptions are made on the structure of the functions in question.

We achieve the above bound by employing an LP-based approach (LPA) to
the design of algorithms for the function evaluation problem. The LPA is based
on the solution of a linear program defined on the set of the minimal proofs of
the function under consideration. The same linear program had been used for
a variant of the problem in which the costs are unknown beforehand [6]. The
optimal solution of this LP is used to capture the impacts of the variables of f
in the process of evaluating f . The competitiveness of an algorithm obtainable
by this approach is directly provided by the cost of the optimal solution for the
linear program. Through an elegant geometric argument we are able to prove
that this cost is not larger than PROOF (f) for any f ∈ F×.

Finding the optimal solution for our linear program can be a hard problem
due to its potentially huge number of constraints. Therefore, when, in practical
applications, also the cost of the computation, other than just the cost of probing
the variables, is to be taken into account, suboptimal feasible solutions that are
easy to compute might be preferable. We point out that for AND/OR trees
and threshold trees, subclasses of monotone Boolean functions which have been
studied in the literature, polynomial time algorithms with competitive ratio γ(f)
can be obtained through our linear programming based approach. In addition,
when monotone Boolean functions are represented by their list of minterms
(minimal proofs that guarantee that the function evaluates to 1) we can use our
approach to isolate, in polynomial time, up to n strategies such that at least one
of them has competitive ratio γ(f). These results are presented in Section 3.1

Though we focus mainly on monotone Boolean functions, our linear program-
ming approach has much broader applicability since it does not rely on any
structure of the (class of) function(s) under consideration. We discuss how to
employ it for other basic problems studied under the priced information frame-
work, such as finding the minimum, sorting and searching [3,11,15]. We show
that LPA allows us to devise algorithms with the best known competitive ratio
for finding the minimum and for sorting.

We remark that the LPA extends the General Approach introduced in [4]. In
fact, this can be considered a restriction of the LPA, in which the impact of a
variable takes values in {0, 1/p} for some (implementation dependent) integer
0 < p ≤ n. Due to this constraint, the General Approach suffers from some
intrinsic limitations [4] that are not inherited by the new methodology we present
here. As an example, our main result, γ(f) = PROOF (f) for monotone Boolean
function f , cannot be proved with the General Approach.

2 Preliminaries

Let f be a function over a set of variables V = {x1, x2, . . . , xn}. In this paper we
shall always assume that V does not contain redundant variables, i.e., the value
of f depends upon the value of all the variables in V.

Function Evaluation Via Linear Programming 177

Let Y ⊆ V and let σ be an assignment for the variables of Y . We use fY,σ
to denote the function over V \ Y obtained from f by fixing the values of the
variables in Y as given by σ. Consider, e.g., the function f in (1). Let Y =
{x2, x4} and σ = (x2 = 1, x4 = 1). Then, we have fY,σ = x1 OR x3. In general,
throughout this paper, Y will denote the set of variables read so far by the
algorithm that evaluates f, and σ will be the assignment given by the values
obtained when the variables of Y are read. We will usually write fY instead of
fY,σ whenever the assignment σ is clear from the context.

Given an assignment σ for the variables of V and a set of variables Y ⊆ V ,
we use σY to denote the assignment σ restricted to the variables of Y , i.e., σY is
the assignment for the variables of Y satisfying x(σY) = x(σ) for every x ∈ Y .

Let v be a value in the range of f. A v-witness for f is a set of variables C ⊆ V
such that there is an assignment σ, with f(σ) = v, for which C is a proof for f
with respect to σ.

We say that C ⊆ V is a v-certificate for f if C is a v-witness for f and it
is minimal, i.e., for any x ∈ C, the set C \ {x} is not a v-witness for f. More
generally, we say that a set C ∈ V is a certificate for f if there exists a v such
that C is a v-certificate for f. Note that for all assignments σ, every proof for f
with respect to σ contains a certificate. Moreover, we have that PROOF (f) is
the size of the largest certificate for f.

Recall that F× denotes the class of functions whose domain is given by the
Cartesian product of the domains of the single variables. In other words, the class
F× is the set of functions whose variables’ values can be chosen independently
of each other. For instance, a function g : {(0, 1), (1, 0), (1, 1)} → {0, 1}, is not
in F×. In fact, for g, both variables have individually domain {0, 1} but the
function is not defined in (0, 0). In the last section, we will cope with some
special functions not in F×.

Proposition 1. Let f be a non-constant function in F×. Let u and v be distinct
values in the range of f and C,D ⊆ V be a u-witness and v-witness for f
respectively. Then, C ∩D = ∅.

The above proposition holds because otherwise we could construct an assignment
σ for f such that f(σ) = v and f(σ) = u.

Proposition 2. Let V be the set of variables of a function f. Then, for every
Y ⊂ V and for every assignment σ for the variables of Y , we have PROOF (fY,σ)
≤ PROOF (f).

Monotone Boolean functions. In this paper, by a Boolean function, we shall
classically understand a total Boolean function, i.e., such that, the function is
defined over the complete domain {0, 1}n. A Boolean function f over the set of
variables V = {x1, . . . , xn} is monotone (increasing) iff f(σ) ≤ f(σ′), for each
pair of assignments σ and σ′ such that xi(σ) ≤ xi(σ′), for i = 1, . . . , n.

For monotone Boolean functions, 0-certificates are called maxterms and 1-
certificates are called minterm. As an example, in the function presented in (1),
{x1, x2} is a minterm and {x2, x4} is a maxterm. We use k(f) and l(f) to denote

178 F. Cicalese and E.S. Laber

the size of the largest minterm and the largest maxterm of a monotone Boolean
function f respectively. Then, PROOF (f) = max{k(f), l(f)}.

The following result was first proved in [3] for the class of AND/OR trees and
generalized to arbitrary monotone Boolean functions in [4].

Theorem 1. If f is a monotone Boolean function then γ(f) ≥ max{k(f), l(f)}.

3 The Linear Programming Approach

We shall now describe our general schema for the design of algorithms for eval-
uating functions. We call this methodology the Linear Programming Approach
(LPA). As suggested by the name itself, this schema is based on the solution
of a linear program defined on the variables of the function under consideration
and constrained on its certificates.

The linear program LPf (see below) is used in the LPA to estimate how
important a variable is in the process of evaluating f , that is, its impact. It tries
to capture the intuitive idea that the relevance of a variable is proportional to the
number of certificates it appears in and inversely proportional to the size of these
certificates (small certificates tend to include variables with higher impact).

The linear programming approach consists of reading a variable that mini-
mizes the ratio between its evaluation cost and its impact as estimated by the
solution available for the linear program LPf . The cost function is then updated
(scaled) in order to charge to every potential proof a fraction of the cost spent
by the method. The procedure is then recursively applied on the new instance
obtained by fixing the value of the variable just read and using the scaled cost.

The Linear Programming Approach. Let f be the function to evaluate and
V its set of variables. Let P = {P ⊆ V | P is a certificate for f}. We define the
following linear program LPf where we have one non-negative real variable s(x)
for each variable x ∈ V and one constraint for each certificate P ∈ P .

LPf :

{

Minimize
∑

x∈V
s(x) :

∑

x∈P
s(x) ≥ 1, ∀P ∈ P and s(x) ≥ 0, ∀x ∈ V

}

The procedure below formalizes the linear programming approach. An im-
plementation of this meta-algorithm is then obtained by fixing the rule used to
choose at each iteration the feasible solution of LPfY , where Y is the set of
variables already probed.

LPA(f, V, c)
Y ← ∅;
While the value of f is unknown

Let sY be a feasible solution for LPfY .

Let u be the unread variable x that minimizes c(x)
sY (x)

Read(u)

For each v ∈ V \ Y do c(v) ← c(v) − sY (v) × c(u)
sY (u)

Y = Y ∪ {u}
End While
Return the value of f

Function Evaluation Via Linear Programming 179

We shall now present a lemma that is a key tool for the analysis of the im-
plementations of LPA. More precisely, this lemma allows to straightforwardly
give an upper bound on the competitiveness of an implementation of the linear
programming approach in terms of the feasible solution selected for the linear
program. Therefore, in the different implementations presented, we shall simply
verify the feasibility of the solution used for the linear program LPf and provide
a bound on the corresponding objective function. Then, we shall employ this
lemma to state the competitiveness of the resulting algorithm.

Lemma 1. Let LP be an implementation of LPA and, for each Y ⊂ V let sY (·)
be the feasible solution used by LP when the set of variables already read is Y.

Then, γLP(f) ≤ maxY⊂V
{∑

x∈V \Y sY (x)
}

Proof. If f has only one variable the result holds. We assume as induction hy-
pothesis that the result holds for every function that depends on less than n
variables. Let f be a function that depends on n variables and let c(·) be a cost
function such that γLP

c (f) = γLP(f). Furthermore, let σ be an assignment for f

which maximizes cfLP(σ)/cf (σ). Let u be the first variable selected by LP. Let
us denote s∅(·) with s(·). Then,

cfLP(σ) ≤
∑

v∈V
s(v)

(
c(u)
s(u)

)

+ c̃
f{u}
LP (σV \{u}) =

c(u)
s(u)

∑

v∈V
s(v)+ c̃

f{u}
LP (σV \{u}), (2)

where c̃ denotes the new cost function after that the costs of the variables in V
have been decreased in the For loop of the LPA pseudo-code.

Let X be the cheapest proof for f w.r.t. cost function c(·) and assignment
σ. Moreover, let X ′ be the cheapest proof for f{u} w.r.t. cost function c̃ and
assignment σV \{u}. Note that X \ {u} is also a proof for f{u} w.r.t. assignment
σV \{u}. By the definition of the linear program LPf we have

∑
v∈X s(v) ≥ 1.

Then,

c(X) =
∑

v∈X
s(v)

(
c(u)
s(u)

)

+ c̃(X \ {u}) ≥ c(u)
s(u)

∑

v∈X
s(v) + c̃(X ′) ≥ c(u)

s(u)
+ c̃(X ′).

(3)
Putting together (2) and (3) and noting that c̃

f{u}
LP (σV \{u})/c̃(X ′) ≤ γLP(f{u}),

we have that γLP(f) = γLP
c (f) =

cfLP(σ)
c(X)

≤
c(u)
s(u)

∑
v∈V s(v) + c̃

f{u}
LP (σV \{u})

c(u)
s(u) + c̃(X ′)

≤

≤ max

{
∑

v∈V
s(v), γLP(f{u})

}

. Since f{u} depends on less than n variables, the

induction hypothesis yields

γLP(f) ≤ max

⎧
⎨

⎩

∑

v∈V
s(v), max

Y⊂V \{u}

∑

x∈V \Y
sY (x)

⎫
⎬

⎭
≤ max
Y⊂V

∑

v∈V \Y
sY (v).

180 F. Cicalese and E.S. Laber

Note that the previous lemma does not rely on any assumption on the structure
of f . It also motivates the following definition.

Definition 1. The fractional cover number of a function f is defined by Δ(f) =
maxY⊂V

{∑
x∈V \Y s∗Y (x)

}
, where s∗Y (·) denotes the optimal solution of LPfY .

Using this definition, Lemma 1 states that for every function f , we have γ(f) ≤
Δ(f). We shall now prove for any function f ∈ F× an upper bound on the
fractional cover number of f in terms of the size of its largest proof.

For a point v = (v1, . . . , vn) ∈ Rn, we use ‖v‖p to denote the �p-norm of v,
i.e., ‖v‖p = p

√∑n
i=1 vpi . Given two points p,q ∈ Rn we shall denote with p · q

their dot product, i.e., p · q =
∑n
j=1 piqi.

We shall need the following simple technical result.

Proposition 3. Let S ⊂ Rn be a convex set and let u be a point in Rn. In
addition, let v be a point in S closest to u in �2-norm. Then, ‖u−w‖2 ≥ ‖v−w‖2
for all w ∈ S .

Lemma 2. Let f ∈ F× be a non-constant function. Then, Δ(f)≤PROOF (f).

Proof. We shall show that for any function f ∈ F× there exists a feasible solution
s for the linear program LPf that has �1-norm not larger than PROOF (f). We
shall use the following geometric construction. For each value v in the range of
f we consider the convex hull of the characteristic vectors of the v-certificates of
f. We take the point p with the smallest �2-norm in the union of these convex
hulls. Let p be in the convex hull of the v-certificates and take w = v in the
range of f. We prove that the desired s is given by the closest point (in �2-norm)
to p among the points in the convex hull of the w-certificates of f.

Let Q be the range of f . Note that |Q| ≥ 2, because f is not constant. For
each v ∈ Q, let Pv denote the set of v-certificates for f. Thus, P =

⋃
v∈Q Pv.

For each P ∈ P , let pP = (pP1 , . . . , pPn) ∈ [0, 1]n be defined by pPi = 1 if
xi ∈ P, and pPi = 0, otherwise.2 Abusing notation, let us denote with conv(v)
the convex hull of the set {pP | P ∈ Pv}.
Claim. Let v, v′ ∈ Q with v = v′. Then, y · pP ′ ≥ 1 holds for each y ∈ conv(v)
and for each proof P ′ ∈ Pv′ .
Proof of the Claim For each pair of proofs P ∈ Pv, P ′ ∈ Pv′ , Proposition 1
assures that P ∩ P ′ = ∅. Thus, pP · pP ′ ≥ 1.

Since y ∈ conv(v) we have that y =
∑
P∈Pv

λPpP , where
∑
P∈Pv

λP = 1 and
λP ≥ 0, for each P ∈ Pv. Thus, we have y · pP ′

=
∑
P∈Pv

λPpP · pP ′ ≥ 1. The
proof of the claim is complete.

Now, let us rewrite LPf in the following equivalent way.

LPf :

{

Minimize ‖s‖1 : s · pP ≥ 1, for every P ∈
⋃

v

Pv and s ≥ 0

}

2 We look at the certificates of Pv as vectors in Rn with 0 and 1 coordinates.

Function Evaluation Via Linear Programming 181

Let z be a point with minimum �2 norm among the points in
⋃
v∈Q conv(v),

i.e., ‖z‖2 ≤ ‖y‖2, for each y ∈
⋃
v∈Q conv(v). Let v be such that z ∈ conv(v).

In addition, let v∗ be an arbitrarily chosen element in Q − {v}. Let z∗ be the
point in conv(v∗) closest to z in the �2-norm, i.e., ‖z − z∗‖2 ≤ ‖z − y∗‖2, for
any y∗ ∈ conv(v∗). We shall prove that z∗ is a feasible solution for LPf and
‖z∗‖1 ≤ PROOF (f).

For the latter, it is enough to observe that z∗ ∈ conv(v∗) implies that z∗ =∑
P∈Pv∗ λPpP , for some non-negative scalars λP such that

∑
P∈Pv∗ λP = 1.

Thus, ‖z∗‖1 = ‖
∑
P∈Pv∗ λPpP ‖1 =

∑
P∈Pv∗ λP |P | ≤ PROOF (f).

We now prove the feasibility of z∗. By the above claim, we immediately have
that z∗ · pP ≥ 1 for any P ∈ Pu, with u ∈ Q, u = v∗. It remains to prove that
z∗ · pP ≥ 1, for each P ∈ Pv∗ .

By Proposition 3, we have ||z∗ − y∗||2 ≤ ||z − y∗||2, for each y∗ ∈ conv(v∗).
In particular, for each P ∈ Pv∗ , we have

(||z∗ − pP ||2)2 ≤ (||z− pP ||2)2. (4)

Recall that for any p and q it holds that (‖p− q‖2)2 = (‖p‖2)2 + (‖q‖2)2 −
2p · q. Thus, (4) becomes

(||z∗||2)2 − 2z∗ · pP ≤ (||z||2)2 − 2z · pP . (5)

By the choice of z we have that ||z||2 ≤ ||z∗||2, which together with (5) yields
z∗ · pP ≥ z · pP ≥ 1, where the last inequality follows by the above claim.

Summarizing, we have shown that for any function f satisfying the hypoth-
esis, the optimal solution s∗ of LPf , has cost not greater than PROOF (f). In
particular, for every restriction fY of f, denoting with s∗Y the optimal solution of
LPfY , we have ‖s∗Y ‖1 ≤ PROOF (fY) ≤ PROOF (f). This concludes the proof.

Directly from Lemmas 1 and 2 and Theorem 1 we have the following results.

Theorem 2. Let f = f(x1, x2, . . . , xn) be a non-constant function in F×. Then,
γ(f) ≤ PROOF (f).

Corollary 1. For every monotone Boolean function γ(f) = PROOF (f).

Some remarks on the issue of efficiency. We have shown that an optimal
implementation of the LPA can be used to obtain an algorithm for evaluating
monotone Boolean functions with the optimal extremal competitive ratio. By an
optimal implementation we mean one that always uses the optimal solution to
the LPf . We shall now touch upon the issue of whether or when this can be done
efficiently. Due to the space limitation, we shall defer a more formal treatment
of the following material to the full version of the paper.

Let f be a monotone Boolean function over n variables. Clearly the existence
of a polynomial time implementation of the LPA for f critically depends on the
representation of f which is given. We shall here assume that f is given as the
list of its minterms. Let A be the binary matrix whose rows are given by the
characteristic vectors of the minterms of f , indexed over the set of the n variables

182 F. Cicalese and E.S. Laber

of f . Let B be the binary matrix whose rows are the characteristic vectors of the
maxterms of f, i.e., the minimal hitting sets of the family of the minterms. An
optimal implementation of the LPA has to find the vector of minimum �1-norm
in the polyhedron A = {p | Ap ≥ 1, Bp ≥ 1,p ≥ 0}. We observe that the
the number of maxterms can be exponential in the size of the representation of
f . Furthermore, the separation problem of LPf consists of solving the hitting
set problem, a well known NP-complete problem. Therefore, for all practical
purposes, rather than trying to directly solve LPf , it seems reasonable to look
for “good” feasible solutions for LPf that can be constructed in polynomial time.
To this aim, we can try to construct another polyhedron B with the following
properties: (i) it is contained in the polyhedron A and (ii) linear functions can
be optimized over it in polynomial time. Clearly, the point of minimum �1-norm
in B gives us a feasible solution for LPf in polynomial time. We aim at having
such minimum in B not much larger than the minimum in A.

Let M = {z ∈ [0, 1]n | Az ≥ 1} and define B = {p | p ≥ 0, Ap ≥ 1, p · z ≥
1 ∀z ∈ M}. Since every row y in the maxterm matrix B satisfies Ay ≥ 1, we
have that y ∈ M and then B ⊆ A, as desired. Moreover, although B is defined
by an infinite number of constraints (one for any z ∈ M) the corresponding
separation problem can be solved in polynomial time. In fact, given a point
p ∈ Rn, we can use the linear program LPB : { Minimize p · z : Az ≥ 1, z ≥ 0}
to verify whether p is in B or not. It is easy to see that p ∈ B if and only if
the cost of the optimal solution to LPB is not smaller than 1 and Ap ≥ 1. In
addition, if u (v) is the characteristic vector of an arbitrary minterm (maxterm)
of f then z = u + v belongs to B and ||z||1 ≤ 2PROOF (f). By a more refined
construction we can prove that there exists a point p ∈ B such that ‖p‖1 ≤
2PROOF (f) −

√
k(f), �(f). This implies that an implementation of the LPA

that as feasible solution of LPf uses the point with minimum �1 norm of B
has competitive ratio at most 2PROOF (f)−

√
k(f), �(f), and is polytime. This

matches the competitiveness of the best known polytime algorithm for evaluating
monotone Boolean functions[4]. We do not know if this bound is tight or not,
that is, whether a precise estimation of the minimum �1-norm over all points in
B could improve the factor of 2 in the competitive ratio.

Optimizing a linear function over the polyhedron B can be slow for practical
applications since one needs to use the ellipsoid method. However, by using the
theory of blocking polyhedra (see, e.g., [9, Ch. 30]), it is possible to prove that B is
the projection into Rn of the polyhedron C = {(y,w) | y ∈ Rn, w ∈ Rm+ , ‖w‖1 =
1, Ay ≥ 1, y ≥ wTA}, defined in Rm+n, where m is the number of minterms.
Since C is defined by a polynomial (in fact linear) number of constraints, the
point of minimum �1-norm in B can be quickly obtained by projecting in Rn the
point of C which minimizes the sum of the first n coordinates.

We remark that for functions that have a compact circuit representation we
can obtain a polynomial time algorithm if the separation problem for LPf is
solvable in polynomial time. This is the case, e.g., of previously studied classes
of functions like threshold trees and, AND/OR trees (see, e.g., [3,4,5,6]).

Function Evaluation Via Linear Programming 183

The existence of a polytime algorithm with competitive ratio PROOF (f) for
evaluating monotone Boolean functions remains an open problem.

4 Final Remarks: Beyond Monotone Boolean Functions

In this section we shall give more evidence of the power of the LPA and its broad
applicability. We shall first discuss the case of arbitrary Boolean functions and
then outline how the LPA can be used to obtain efficient and highly competitive
algorithms for the functions: finding the minimum and sorting.

Arbitrary Boolean functions. Since the class of boolean functions belong
to F× it follows from Theorem 2 that γ(f) ≤ PROOF (f) for every boolean
function f . Then, it it is natural to ask whether Corollary 1 holds without the
monotonicity assumption, that is, whether γ(f) = PROOF (f) for every boolean
function f . We now give an example showing that γ(f) can be smaller than
PROOF (f). Let, e.g., f = (z AND x1) OR (z AND x2) OR (z̄ AND x3) OR
(z̄ AND x4). We have PROOF (f) ≥ 4 since {x1, x2, x3, x4} is a 0-certificate for
the assignment (x1 = 0, x2 = 0, x3 = 0, x4 = 0, z = 0). A careful inspection
shows that Δ(f) = 3 which implies, by Lemma 1, that γ(f) < PROOF (f).

We shall note however that γ(f) = Δ(f) for the above function. In fact, we
do not know any example for which γ(f) < Δ(f). The above example can be
generalized to show that that γ(f) can be much smalller than PROOF (f).

Sorting and Finding the minimum. The LPA can be implemented to pro-
vide very competitive solutions to the problems of ”sorting” and ”finding the
minimum” in the context of function evaluation with costs. We want to com-
pute the functions fsort ≡ sort(v1, . . . , vn) and fmin ≡ min{v1, . . . , vn} when
v1, . . . , vn are variables taking values in some totally ordered set. As is customary,
the performance of algorithms for such problems is in terms of the comparisons
that it performs We shall assume that each pair of variables, vi, vj has an as-
sociated cost c(vi, vj) to be paid to compare them. Different comparisons may
incur different costs.

As model we use a complete weighted graph in which the set of vertices is
given by the set of variables S = {v1, . . . , vn} and each edge represents the
comparison between the incident variables. The weight of an edge is the cost
incurred to execute the comparison it represents. We can view the outcome
of the comparison as the operation of disclosing the orientation of the edge,
assuming that the orientation goes from the smaller to the larger variable. A
feasible assignment σ is a transitive orientation of the edges. In the case of fmin,
a proof for the identification of the minimum w.r.t. a feasible assignment σ is a
set of edges P such that, when oriented according to σ, there is a vertex v which
reaches every other vertex in the graph GP = (S, P). For fsort a minimal proof
is a Hamiltonian path such that at least one of its two possible orientations is
compatible with the assignment σ. The following summarizes our results.

Proposition 4. Let f ∈ {fsort, fmin}. Then, Δ(f) = n− 1.

184 F. Cicalese and E.S. Laber

This implies the bound γ(fmin) ≤ n− 1 previously given in [3,11]. The exact
value γ(fmin) = n−2 was given in [4] by an ad hoc implementation of the General
Approach. Moreover, by Proposition 4, it also follows that γLPA(fsort) ≤ n− 1
which improves (the constant of) the best known result for sorting [11]. The
problem of determining the exact value of γ(fsort) remains open.

Final open questions. We have shown that in the class of monotone Boolean
functions and also in some special proper superclass of it we have γ(f) = Δ(f).
On the other hand, we know that for some functions outside F× like fmin we can
prove a strict inequality, in fact, n− 2 = γ(fmin) < Δ(fmin) = n− 1. Another
negative example is given by the function searching for an element in a sorted
list, also considered in [3]. In this case, we have O(log n) ≤ γ(f) << Δ(f) = n.

An interesting question is the following. “Does γ(f) = Δ(f) hold for each
f ∈ F×?” This class already contains all the (total) Boolean functions.

References

1. Boros, E., Ünlüyurt, T.: Diagnosing double regular systems. Annals of Mathematics
and Artificial Intelligence 26(1-4), 171–191 (1999)

2. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science 288(1), 21–43 (2002)

3. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.M., Raghavan, P., Sahai,
A.: Query strategies for priced information. Journal of Computer and System Sci-
ences 64(4), 785–819 (2002)

4. Cicalese, F., Laber, E.S.: A new strategy for querying priced information. In: Proc.
of STOC 2005, pp. 674–683. ACM Press, New York (2005)

5. Cicalese, F., Laber, E.S.: An Optimal Algorithm for Querying Priced Information:
Monotone Boolean Functions and Game Trees. In: Brodal, G.S., Leonardi, S. (eds.)
ESA 2005. LNCS, vol. 3669, pp. 664–676. Springer, Heidelberg (2005)

6. Cicalese, F., Laber, E.S.: On the competitive ratio of evaluating priced functions.
In: Proc. of SODA 2006, pp. 944–953 (2006)

7. Duffuaa, S.O., Raouf, A.: An optimal sequence in multicharacteristics inspection.
J. Optim. Theory Appl. 67(1), 79–86 (1990)

8. Gillies, D.W.: Algorithms to schedule tasks with and/or precedence constraints.
PhD thesis, Champaign, IL, USA (1993)

9. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics. The
Mit Press - North-Holland (1996)

10. Greiner, R., Hayward, R., Jankowska, M., Molloy, M.: Finding optimal satisficing
strategies for and-or trees. Artificial Intelligence 170(1), 19–58 (2006)

11. Gupta, A., Kumar, A.: Sorting and selection with structured costs. In: Proc. of
FOCS 2001, pp. 416–425. IEEE, Los Alamitos (2001)

12. Heiman, R., Newman, I., Wigderson, A.: On read-once threshold formulae and
their randomized decision tree complexity. TCS 107(1), 63–76 (1993)

13. Heiman, R., Wigderson, A.: Randomized vs. deterministic decision tree complexity
for read-once boolean functions. Comput. Complexity 1, 311–329 (1991)

14. Hellerstein, J.M.: Optimization techniques for queries with expensive methods.
ACM Transactions on Database Systems 23(2), 113–157 (1998)

15. Kannan, S., Khanna, S.: Selection with monotone comparison cost. In: Proc. of
SODA 2003, pp. 10–17. ACM/SIAM (2003)

Function Evaluation Via Linear Programming 185

16. Louis AnthonyCox, J., Qiu, Y., Kuehner, W.: Heuristic least-cost computation
of discrete classification functions with uncertain argument values. Ann. Oper.
Res. 21(1-4), 1–30 (1989)

17. Qiu, Y., Anthony Cox Jr., L., Davis, L.: Guess-and-verify heuristics for reducing
uncertainties in expert classification systems. In: Dubois, D., Wellman, M.P. (eds.)
UAI, pp. 252–258. Morgan Kaufmann, San Francisco (1992)

18. Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency ma-
trices. TCS 3(3), 371–384 (1976)

19. Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity
of evaluating game trees. In: Proc. of FOCS 1986, pp. 29–38. IEEE, Los Alamitos
(1986)

20. Snir, M.: Lower bounds on probabilistic linear decision trees. TCS 38, 69–82 (1985)
21. Tarsi, M.: Optimal search on some game trees. JACM 30(3), 389–396 (1983)

Improved Approximation Algorithms for

Budgeted Allocations�

Yossi Azar1, Benjamin Birnbaum2, Anna R. Karlin2, Claire Mathieu3,
and C. Thach Nguyen2

1 Microsoft Research and Tel-Aviv University
azar@tau.ac.il

2 University of Washington
{birnbaum,karlin,ncthach}@cs.washington.edu

3 Brown University
claire@cs.brown.edu

Abstract. We provide a 3/2-approximation algorithm for an offline
budgeted allocations problem with applications to sponsored search auc-
tions. This an improvement over the e/(e−1) approximation of Andelman
and Mansour [1] and the e/(e − 1) − ε approximation (for ε ≈ 0.0001)
of Feige and Vondrak [2] for the more general Maximum Submodular
Welfare (SMW) problem. For a special case of our problem, we improve
this ratio to

√
2. We also show that the problem is APX-hard.

1 Introduction

The rising economic importance of online sponsored search advertising has led
to a great deal of research focused on developing its theoretical underpinnings.
(See e.g., [3] for a survey.) Since search engines such as Google, Yahoo! and
MSN depend on sponsored search for a significant fraction of their revenue,
a key problem is how to optimally allocate ads to keywords (user searches)
so as to maximize search engine revenue [1,4,5,6,7]. In this direction, Mehta
et al. [7] studied a stylized version of the problem, which we call the Online
Budgeted Allocation problem. In their model, there is a set of bidders U and a
set of keywords V . Each bidder i ∈ U has a known daily budget Bi and a non-
negative bid bij for every keyword j ∈ V . The keywords arrive one-by-one in an
online fashion, with the bids for keyword j revealed only when j arrives. At each
keyword arrival, the algorithm (i.e., the search engine) allocates the keyword
to one of the bidders (i.e., displays that bidder’s ad as one of the sponsored
search results the user sees). The total profit extracted by the algorithm from
each bidder is the minimum of the budget Bi of that bidder and the sum of the
bij ’s for keywords j allocated to it. The goal is to find an allocation of keywords
to bidders that maximizes the total profit extracted by the algorithm. Mehta
et al. [7] presented an algorithm that achieves an optimal competitive ratio of

� This research was supported by the Israeli Science Foundation, NSF Grant CCF-
0635147, and by an NSF Graduate Research Fellowship.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 186–197, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Approximation Algorithms for Budgeted Allocations 187

e/(e− 1) for the case when the bids are much smaller than the budgets, a result
also proved by Buchbinder et al. [4]. When there is no restriction on the values
of the bids relative to the budgets, the best known competitive ratio is 2 [8].

Surprisingly, the approximability of the offline version of Budgeted Allocation,
in which the algorithm can see all of the bids before allocating keywords, is still
not well understood. Lehmann et al. [8] showed that the problem is NP-hard,
and Andelman and Mansour [1] provided the first non-trivial approximation
ratio of e/(e− 1). Feige and Vondrak [2] improved this ratio to e/(e− 1)− ε (for
ε ≈ 0.0001) for the more general SMW problem.

In this paper, we give improved approximation algorithms for two versions of
the offline Budgeted Allocation problem. In the uniform version, each keyword
j has a single price bj . If a bidder i is interested in j, its bid bij is equal to bj .
Otherwise, its bid bij is 0. The non-uniform version removes this restriction, so
that the bij values can be arbitrary for each i and j.

1.1 Our Results

We provide a deterministic 3/2-approximation algorithm for the non-uniform
Budgeted Allocation problem (Section 2). This improves the previous best-
known approximation ratio of e/(e− 1)− ε (for ε ≈ 0.0001) [2]. For the uniform
version of the problem, we improve the approximation ratio to

√
2 (Section 3).

In both these algorithms, we assume that the maximum bid is no larger than
the smallest budget, i.e. maxi,j bij ≤ miniBi.

We also show that the problem is APX-hard (Section 4).

1.2 Related Work

As discussed above, before this work, the first non-trivial approximation ratio
for Budgeted Allocation was e/(e− 1), due to Andelman and Mansour [1]. For
the special case in which the bidders all have the same budget, these authors
were able to lower this ratio to approximately 1.39. Our algorithms apply to the
more general case in which the budgets may be different for different bidders.

Two recent unpublished works also study the Budgeted Allocation problem
and provide better approximation ratios than those obtained in this paper: In-
dependently of our work, Chakrabarty and Goel [9] have provided two elegant
algorithms, an iterative rounding algorithm and a primal-dual algorithm, both
of which achieve an approximation ratio of 4/3, matching the integrality gap of
the linear program used in this and other papers. Their paper also shows that it
is NP -hard to approximate Budgeted Allocation to a factor better than 16/15,
which subsumes the result in this paper on APX-hardness. In addition, build-
ing on our approach, Srinivasan [10] has recently provided another LP-rounding
algorithm that achieves an approximation ratio of 4/3.

The Budgeted Allocation problem is an important special case of SMW, the
problem of maximizing utility in a combinatorial auction in which the utility
functions are submodular. In the combinatorial auction setting the keywords are
items to be sold. SMW has been widely studied [2,8,11,12,13,14]. For submodular

188 Y. Azar et al.

auctions using the value query model, the best approximation algorithm gives
a factor e/(e − 1) [14]. This ratio has been shown to be the best possible for
this model [12,13]. For the stronger demand query model it is possible to do at
least slightly better, that is e/(e − 1) − ε (for ε ≈ 0.0001) [2]. For solving the
Budgeted Allocation problem using the SMW demand query model one needs
to provide a polynomial-time demand query oracle. As noted by [15], one can
use a knapsack-type FPTAS algorithm to provide an approximate oracle that is
good enough for solving the problem.

The Budgeted Allocation problem is also similar to the generalized assignment
problem (GAP) [2,15,16,17]. The main difference between Budgeted Allocation
and GAP is that in GAP every keyword (or item, in GAP parlance) has a weight
and each bidder (or bin) has a fixed capacity that cannot be exceeded, whereas
in Budgeted Allocation, budgets can be exceeded, but no extra profit is obtained
from doing so. The best approximation algorithm for GAP does slightly better
than e/(e− 1) [2].

2 The 3/2-Approximation Algorithm

In this section, we describe the 3/2-approximation for the non-uniform version
of the problem.

2.1 High-Level Idea

Our algorithms use linear program rounding. We represent the Budgeted Allo-
cation problem with the same natural integer program used in [1,9,10], in which
the 0-1 variables xij represent whether keyword j is allocated to bidder i:

max
∑

i∈U
min(Bi,

∑

j∈V
bijxij) s.t.

{∑
i∈U xij ≤ 1 ∀j ∈ V

xij ∈ {0, 1} ∀i ∈ U, j ∈ V
.

Let L be the linear relaxation of this integer program in which the second con-
straint is replaced by x ≥ 0. (The upper-bound of 1 is guaranteed by the other
constraint.) Rounding the optimal solution carefully is what allows us to beat
the factor of e/(e− 1) of Andelman and Mansour [1].

For any fractional allocation x, define the graph G induced by x to be the
bipartite graph over U∪V with an edge {i, j} for every xij > 0, with weight wij =
bijxij .1 Rounding x can be viewed as a transformation of G into another graph
in which the degree of every keyword is 1. Our algorithms do this iteratively,
at each step modifying local structures so that the degree of at least one new
keyword is reduced to 1. Some weight in the objective function will be lost at
each step, but we use a charging argument to bound this loss by 1/3 of the
original value of x.
1 Notice that in a fractional solution, we can assume without loss of generality that

no bidder’s budget is exceeded. Therefore, the value of x is equal to the sum of the
edge weights in G.

Improved Approximation Algorithms for Budgeted Allocations 189

The first observation for the proofs is that one can assume that the graph
G induced by a feasible fractional solution to L has a special structure. This
observation was made for optimal fractional solutions by [1], proved in [18], and
used by [9,10]. We use a slightly stronger version that holds for any feasible
solution. This will allow us to assume that this special structure holds after
each rounding step, not just at the beginning. Say that bidder i is saturated if
min(Bi,

∑
j∈V bijxij) = Bi and is unsaturated otherwise.

Lemma 1. Any feasible solution x of L with induced graph G can be trans-
formed, in polynomial time, to another feasible solution x̃ that has an induced
graph that is a subgraph of G and that is a forest with at most one unsaturated
bidder per tree.

Proof. The proof follows by standard arguments and is very similar to the proof
in [18]. It can be found in the full version of this paper.2

For a graph G induced by a fractional solution, say that a bidder is active if it
has at least one neighbor of degree 2 or more in G, and is inactive otherwise. In
our charging argument for the 3/2-algorithm, we charge to the weight allocated
to bidders when they move from being active to inactive. (Since this happens at
most once for each bidder, each unit of profit in the optimal fractional solution
is charged at most once.)

We call the process of transforming a subgraph to reduce the degrees of the
keywords rounding the subgraph. In general, this process will remove some of the
edges and transfer some of the weight removed to the edges that remain, while
respecting the constraints of the LP. For example, suppose that two keywords
j1 and j2 are allocated fractionally to bidder i and fractionally to some other
bidders i1 and i2, as shown in Fig. 1. One way to round this part of the graph
would be to remove the edges {i, j1} and {i2, j2}. Once this is done, i has some
unused budget that can be used to transfer an additional fraction of j2 from i2
to i. In general, transferring weight in this manner will be essential to obtaining
our approximation ratio.

The main idea of our proof is that in every tree with active bidders, there
is a small local structure involving only a constant number of nodes, such that
if we round that structure so as to minimize the resulting loss in the objective
function, the loss is at most 1/3 of the budget spent by the bidders that become
inactive.

2.2 The Algorithm

Our 3/2-approximation algorithm is given below by Algorithm 1. At each it-
eration of the while loop, our algorithm looks for one of the interesting nodes
(Definition 4) and rounds keywords in the associated structure. For each of the
four types of interesting nodes, we describe a rounding subroutine used by the

2 The full version of this paper is available at
http://www.cs.washington.edu/homes/birnbaum/budgetedallocation.pdf.

http://www.cs.washington.edu/homes/birnbaum/budgetedallocation.pdf

190 Y. Azar et al.

i2

j2

i

j1

i1

i2

j2

i

j1

i1

Fig. 1. One way to round a path that has three bidders. When edge {i, j1} is removed,
this frees up some budget in i to accommodate some of the weight of j2 that was
originally allocated to i2.

algorithm. We will show that the loss of these subroutines can be charged to the
nodes that become inactive, which we will use to prove that Algorithm 1 is a
3/2-approximation.

Theorem 2. Algorithm 1 is a polynomial-time 3/2-approximation for the Bud-
geted Allocation problem.

Algorithm 1. 3/2-approximation algorithm for Budgeted Allocation

Input: Set of bidders U , set of keywords V ; for each i, j, bid bij of bidder i for
keyword j; and for each bidder i, budget Bi.

Output: Allocation of keywords to bidders.
solve the following LP to get an optimal solution x with induced graph G:

max
∑

i∈U

min(Bi,
∑

j∈V

bijxij) s.t.

{ ∑
i∈U xij ≤ 1 ∀j ∈ V

0 ≤ xij ∀i ∈ U, j ∈ V
.

transform G into a forest with ≤ 1 unsaturated bidder per tree (Lemma 1).
while G contains active bidders do

Round the subgraph associated to an interesting node according to its type;
Transform G into a forest with ≤ 1 unsaturated bidder per tree (Lemma 1);

end
allocate each keyword to its unique adjacent bidder in G.

Root each tree of G at the unsaturated bidder if there is one, or at an arbitrary
bidder if there is not.

Definition 3. Consider a path i1, j1, i2, j2, . . . , ik−1, jk−1, ik consisting of 2k−1
nodes, starting and ending with a bidder, such that

– the k − 1 keywords j1, j2, . . . , jk−1 all have degree exactly 2,

Improved Approximation Algorithms for Budgeted Allocations 191

– bidder i1 is the highest node on the path, called “root” of the path,
– for all other bidders i2, i3, . . . , ik, any keyword not on the path that is adjacent

to the bidder has degree exactly 1.

We call the graph formed by this path and all the degree-1 keywords that are
neighbors of i1, i2, . . . , ik a k-chain.

Definition 4. In a tree of G, we say that a node is interesting if it has one of
the following four types.

1. The root of the tree, if the tree consists of a 2-chain (Fig. 2(a)).
2. A bidder v whose subtree contains at least one 3-chain rooted at v (Fig. 2(b)).
3. A bidder v who is the root of more than one 2-chain and who is not the root

of a k-chain, for k > 2 (Fig. 2(c)).
4. A keyword with at least 2 children, such that each child is a root of a 1-chain

or a 2-chain (Fig. 2(d)).

Before we describe the rounding subroutines, we establish the correctness of
Algorithm 1.

Lemma 5. A tree that has a keyword of degree more than 1 must have at least
one interesting node.

Proof. A straightforward proof can be found in the full version of this paper.

Hence, in the forest produced by Algorithm 1, every keyword has degree 1, and
the output is an integer allocation.

This lemma, along with the analysis of the rounding subroutines described be-
low, will give us all of the ingredients we need to prove that Algorithm 1 is a 3/2-
approximation.

(a)

...

...

(b)

...

(c)

...

...

(d)

Fig. 2. Examples of the four types of interesting nodes with their associated subgraphs,
as defined in Definition 4. For each type, the interesting node is shown with an extra
circle.

192 Y. Azar et al.

Proof of Theorem 2. Lemma 5 proves that when Algorithm 1 terminates, it re-
turns a graph in which each keyword has degree 1. Each rounding step described
below clearly takes polynomial time and makes at least one new bidder become
inactive. Hence, the running time of the algorithm is polynomial.

For each rounding, we will associate each unit lost to 1/3 of the weight spent
by a bidder that becomes inactive. Since each bidder becomes inactive only once,
the total weight lost must be no larger than 1/3 of the weight of the optimal
fractional solution. Therefore, the algorithm returns a solution with weight at
least 2/3 of the optimal fractional solution and hence with weight at least two
thirds of the optimal integral solution. ��

2.3 The Rounding Subroutines

To simplify the exposition, we assume, without loss of generality, that all of the
bids and budgets have been scaled so that the maximum bid is 1 (and hence the
minimum budget is at least 1).

Type 1 Rounding

Rounding. Let i be the interesting node, j be its child of degree 2, and k be its
grandchild. By Lemma 1, bidder k is saturated, while bidder i may have some
unused budget s ≥ 0.

Consider two ways to round the 2-chain rooted at i. In the first way, we remove
the edge {i, j}. In the second way, we remove the edge {k, j} and transfer as much
as possible of the removed weight to the edge {i, j} while maintaining feasibility.
Of those two ways, we choose the one that incurs the smaller loss in the objective
function.

Analysis. Since this rounding makes both i and k inactive, we can charge their
total value, which is at least max(1, 2 − s). The following lemma states the
performance of this rounding.

Lemma 6. Let L be the total weight lost by the rounding. Then L ≤ 1
4 max(1,

2− s).

Proof. The proof is technical and can be found in the full version of this paper.

Type 2 and Type 3 Roundings

Rounding. In type 2 rounding, we have a path with two keywords of degree
2; we consider all four possible ways of allocating each of those two keywords
integrally to one of its two neighbors, transferring as much weight as possible in
each allocation while respecting the LP constraints.

In type 3 rounding, we take a partial subtree rooted at the interesting node
consisting of two of the paths below it. Together, these two paths define a path
with two keywords of degree 2. We then proceed as in type 2 to define an integer
allocation of those two keywords.

Improved Approximation Algorithms for Budgeted Allocations 193

Analysis. In all cases, two saturated bidders become inactive. We show that the
loss in the objective function is no more than 2/3 (Lemma 7), and charge it to
the total value of the two bidders that become inactive, which is at least 2.

More precisely, consider a path i1, j1, i2, j2, i3 where j1 and j2 are keywords.
We show four ways to round this path so that one of the edges {i1, j1}, {i2, j1}
and one of the edges {i2, j2}, {i3, j2} is removed in a way that loses no more
than 2/3 (Lemma 7). If this path is a 3-chain rooted at i1, then this procedure
makes i2 and i3 inactive. Hence, we can charge the loss to the total value of i2
and i3, which is at least 2. On the other hand, if i2 is the highest node on this
path, j1 and j2 are degree-2 keywords and i1 and i3 do not have any degree-2
children, then this procedure makes i1 and i3 inactive. Hence, we can charge the
loss to the total value of i1 and i3, which is at least 2.

Let γ = bi2j1/bi1j1 , β = bi2j2/bi3j2 , a = xi1j1bi1j1 , b = xi2j1bi1j1 , c = xi2j2bi3j2
and d = xi3j2bi3j2 . Then wi1j1 = a, wi2j1 = bγ, wi2j2 = cβ and wi3j2 = d. This
situation is illustrated in Fig. 3(a).

We consider four ways to round the path, illustrated in Figs. 3(b)-3(e). In
the first way (Fig. 3(b)), we remove the edges {i1, j1} and {i3, j2}, losing a + d.
In the second way (Fig. 3(c)), we remove the edges {i2, j1} and {i2, j2}, losing
bγ + cβ. In the third way (Fig. 3(d)), we remove the edges {i1, j1} and {i2, j2}
and move part of the removed weight to {i2, j1}. If the entire amount of j1 that
was previously allocated to i1 were allocated to i2, then wi2j1 would increase by
xi1j1bi2j1 = (a/bi1j1)bi2j1 = aγ. The budget freed up at i2 from the removal of
edge {i2, j2} is cβ. Thus, wi2j1 can be increased to at least bγ + min(aγ, cβ),
causing a loss of a + cβ −min(aγ, cβ) = a + max(0, cβ − aγ). In the fourth way
(Fig. 3(e)), we remove the edges {i2, j1} and {i3, j2} and transfer as much as
possible of the removed weight to {i2, j2}, causing a loss of d+ max(0, bγ− dβ).

Again, we choose the way that incurs the smallest loss. The following lemma
states that this loss is never greater than 2/3.

a

bγ

d

cβ

i1

j1

i2

j2

i3

(a)

bγ

cβ

i1

j1

i2

j2

i3

(b)

a

d

i1

j1

i2

j2

i3

(c)

bγ +
min(aγ,cβ)

d

i1

j1

i2

j2

i3

(d)

cβ +
min(bγ,dβ)

a

i1

j1

i2

j2

i3

(e)

Fig. 3. A path with three bidders (a) and four ways to round that path (b)-(e)

194 Y. Azar et al.

Lemma 7. Let

L = min (a + d, bγ + cβ, a + max(0, cβ − aγ), d + max(0, bγ − dβ)) .

Then L ≤ 2
3 .

Proof. The proof is technical and can be found in the full version of this paper.

Type 4 Rounding

Let v be the interesting node of type 4, and let u be its parent. Let h and k
be the number of 1-chains and 2-chains rooted at children of v, respectively. We
consider three cases based on the value of h and k:

1. There are no 2-chains attached to v (k = 0). Then h > 1.
Rounding. Among the edges adjacent to v, retain the edge of largest weight

and delete all others.
Analysis. We lose at most h/(h+ 1) and make at least h saturated bidders

inactive. Therefore, we can charge the loss to these nodes.
2. There are no 1-chains attached to v (h = 0). Then k > 1. Let p1, p2, . . . pk

be v’s children.
Rounding. We first round the path consisting of the edges {u, v}, {v, p1}

and the 2-chain rooted at p1, losing at most 2/3 by Lemma 7. After this
step, either p1 or u is disconnected from v. We repeat the above step
with the path containing the edge joining v and the other node (either
u or p1), {v, p2} and the 2-chain rooted at p2. We repeat this k times.

Analysis. We lose at most 2k/3 and make 2k saturated bidders inactive:
p1, p2, . . . pk and their grandchildren. Hence, we can charge the loss to
these nodes.

3. Both h > 0 and k > 0.
Rounding. We choose one 1-chain rooted at, say, q, and one 2-chain rooted

at, say, p and round the path containing q, v, p and the 2-chain rooted
at p.

Analysis. We lose at most 2/3 by Lemma 7 and make two saturated bidders
inactive: p’s grandchild and either q or p. Hence, we can charge the loss
to these nodes.

3 A
√

2-Approximation Algorithm for the Uniform
Problem

In this section, we provide an algorithm that improves the approximation ratio
to
√

2 for the uniform case of the problem. The main observation that leads to
this improvement is that in the proof of Theorem 2, there was some weight that
we could have charged to but that we did not use. For example, consider the
type 2 rounding shown in Figure 3(b). We charged the loss of the rounding to the
weight allocated to bidders i2 and i3, which must be at least 2 since these bidders
are saturated. We can do better than this, however. In the rounding, a weight of

Improved Approximation Algorithms for Budgeted Allocations 195

a is deallocated from i1. Because we rebalance according to Lemma 1 between
every rounding, this is weight that will never be charged to again. Therefore,
instead of charging to 2, we can actually charge to 2 + a.

To make this more precise, we define an active edge to be an edge that is
adjacent to an active bidder. During each rounding, the sum of the weights on
active edges will decrease, both from active edges becoming inactive and from
active edges being deleted or losing weight. Define the accountable amount of
a rounding to be the amount by which this quantity decreases. We will show
that the loss of each rounding can be charged to (1− 1/

√
2) of the accountable

amount of that rounding. Since each unit of accountable amount is charged at
most once, this suffices to prove the approximation ratio.

The structure of Algorithm 2, our
√

2-approximation, is the same as that
of Algorithm 1. The only difference is in the rounding subroutines and their
analysis. Instead of choosing the rounding that minimizes the loss at each step,
we choose the one that minimizes the ratio between the loss and the accountable
amount. In the remainder of this section we prove the following.

Theorem 8. Algorithm 2 is a polynomial-time
√

2-approximation for the uni-
form version of the Budgeted Allocation problem.

Proof. As in Theorem 2, the algorithm terminates in polynomial time and out-
puts an integral solution. For each rounding subroutine, we show that we can
charge the loss to 1− 1/

√
2 of the accountable amount. This implies that Algo-

rithm 2 returns a solution of value at least 1/
√

2 of optimal. ��

We believe that Theorem 8 applies to the non-uniform version of the problem,
but we have not been able to prove this, since it seems to involve calculations
that are significantly more complicated than those in the proof of Lemma 7.

3.1 The Rounding Subroutines

For convenience, we define x to be 2 −
√

2. For each rounding subroutine, we
show that the ratio of the loss to the accountable amount is no greater than
x/2 = 1− 1/

√
2.

Type 1 Rounding

The rounding and analysis for type 1 is the same as for Algorithm 1. By Lemma 6,
the ratio of the loss to the accountable amount is no greater than 1/4 < x/2.

Type 2 Rounding

Rounding. Let i1 be the interesting node and i1, j1, i2, j2, i3 be the 3-chain as-
sociated with i1, and let a = wi1j1 , b = wi2j1 , c = wi2j2 and d = wi3j2 . Of the
four ways to round this chain described in Fig. 3, we choose the rounding that
minimizes the ratio of the loss over the accountable amount.

196 Y. Azar et al.

Analysis. The four ways to round the chain incur losses of a+d, b+c, max(a, c),
and max(b, d), respectively. (Recall that in the uniform version β = γ = 1.) To
derive the accountable amounts of the roundings, note that the first rounding
makes i2 and i3 inactive, and thus makes all edges adjacent to these nodes
inactive; the sum of these edges is at least 2, since these bidders are saturated.
Furthermore, it also removes the active edge {i1, j1}. Thus, the accountable
amount of the first rounding is 2 + a. Similarly, the accountable amount of the
second, third and fourth roundings are 2, 2 + a and 2, respectively. Hence, the
following lemma shows that the we can always choose a rounding such that the
ratio of the loss to the accountable amount is no greater than x/2.

Lemma 9. Let

R = min
(
a + d

2 + a
,
b + c

2
,
max(a, c)

2 + a
,
max(b, d)

2

)

.

Then R ≤ x/2.

Proof. The proof is technical and can be found in the full version of this paper.

Type 3 and Type 4 Roundings

The rounding subroutine and analysis for type 3 interesting nodes is similar
to the rounding and analysis for type 2 interesting nodes. The rounding and
analysis for type 4 interesting nodes is quite involved, though the main ideas
are similar. The details of type 3 and type 4 rounding can be found in the full
version of this paper.

4 APX-Hardness

In this section, we show the following result.

Theorem 10. Budgeted Allocation is APX-hard, even in the uniform version.

Proof. The proof is a simple reduction from 3D-Matching, and can be found in
the full version of this paper.

References

1. Andelman, N., Mansour, Y.: Auctions with Budget Constraints. In: Hagerup, T.,
Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111. Springer, Heidelberg (2004)

2. Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improv-
ing the factor of 1 - 1/e. In: FOCS 2006, pp. 667–676 (2006)

3. Lahaie, S., Pennock, D., Saberi, A., Vohra, R.: Sponsored search auctions. In:
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game
Theory, pp. 699–716. Cambridge University Press, Cambridge (2007)

4. Buchbinder, N., Jain, K., Naor, J.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

Improved Approximation Algorithms for Budgeted Allocations 197

5. Goel, G., Mehta, A.: Online budgeted matching in random input models with
applications to adwords. In: SODA 2008, pp. 982–991 (2008)

6. Mahdian, M., Nazerzadeh, H., Saberi, A.: Allocating online advertisement space
with unreliable estimates. In: EC 2007, pp. 288–294 (2007)

7. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM 54(5), 22 (2007)

8. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior 55(2), 270–296 (2006)

9. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and im-
proved lower bounds for submodular welfare maximization and GAP (manuscript,
2008)

10. Srinivasan, A.: Budgeted allocations in the full-information setting (manuscript,
2008)

11. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combina-
torial auctions with submodular bidders. In: SODA 2006, pp. 1064–1073 (2006)

12. Khot, S., Lipton, R., Markakis, E., Mehta, A.: Inapproximability Results for Com-
binatorial Auctions with Submodular Utility Functions. In: Deng, X., Ye, Y. (eds.)
WINE 2005. LNCS, vol. 3828, pp. 92–101. Springer, Heidelberg (2005)

13. Mirrokni, V., Schapira, M., Vondrak, J.: Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions (manuscript, 2007)

14. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: STOC 2008 (to appear, 2008)

15. Fleischer, L., Goemans, M., Mirrokni, V., Sviridenko, M.: Tight approximation
algorithms for maximum general assignment problems. In: SODA 2006, pp. 611–
620 (2006)

16. Chekuri, C., Khanna, S.: A PTAS for the multiple knapsack problem. In: SODA
2000, pp. 213–222 (2000)

17. Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming 62, 461–474 (1993)

18. Andelman, N.: Online and strategic aspects of network resource management al-
gorithms. PhD thesis, Tel Aviv University (2006)

The Travelling Salesman Problem in

Bounded Degree Graphs�

Andreas Björklund1, Thore Husfeldt1, Petteri Kaski2, and Mikko Koivisto2

1 Lund University, Department of Computer Science,
P.O.Box 118, SE-22100 Lund, Sweden

andreas.bjorklund@logipard.com, thore.husfeldt@cs.lu.se
2 Helsinki Institute for Information Technology HIIT, Department of Computer

Science, University of Helsinki, P.O.Box 68, FI-00014 University of Helsinki, Finland
petteri.kaski@cs.helsinki.fi, mikko.koivisto@cs.helsinki.fi

Abstract. We show that the travelling salesman problem in bounded-
degree graphs can be solved in time O

(
(2 − ε)n

)
, where ε > 0 depends

only on the degree bound but not on the number of cities, n. The algo-
rithm is a variant of the classical dynamic programming solution due to
Bellman, and, independently, Held and Karp. In the case of bounded in-
teger weights on the edges, we also present a polynomial-space algorithm
with running time O

(
(2 − ε)n

)
on bounded-degree graphs.

1 Introduction

There is no faster algorithm known for the travelling salesman problem than
the classical dynamic programming solution from the early 1960s, discovered by
Bellman [2,3], and, independently, Held and Karp [9]. It runs in time within a
polynomial factor of 2n, where n is the number of cities. Despite the half a cen-
tury of algorithmic development that has followed, it remains an open problem
whether the travelling salesman problem can be solved in time O(1.999n) [15].

In this paper we provide such an upper bound for graphs with bounded max-
imum vertex degree. For this restricted graph class, previous attemps have suc-
ceeded to prove such bounds when the degree bound, Δ, is three or four. In-
deed, Eppstein [6] presents a sophisticated branching algorithm that solves the
problem in time 2n/3nO(1) = O(1.260n) on cubic graphs (Δ = 3) and in time
O(1.890n) for Δ = 4. Recently, Iwama and Nakashima [10] improved the for-
mer bound to O(1.251n). These algorithms run in space polynomial in n. Very
recently, Gebauer [7] gave an exponential-space algorithm that runs in time
(Δ − 1)n/2nO(1) and can also list the Hamiltonian cycles, improving the time
bound for Δ = 4 to O(1.733n). However, for Δ > 4 none of these techniques
seems to improve upon O(2n).

� This research was supported in part by the Swedish Research Council, project “Exact
Algorithms” (A.B., T.H.), and the Academy of Finland, Grants 117499 (P.K.) and
109101 (M.K.).

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 198–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Travelling Salesman Problem in Bounded Degree Graphs 199

We show that, perhaps somewhat surprisingly, with minor modifications the
classical Bellman–Held–Karp algorithm can be made to run in time O

(
(2− ε)n

)
,

where ε > 0 depends only on the degree bound:

Theorem 1. The travelling salesman problem for an n-vertex graph with max-
imum degree Δ = O(1) can be solved in time ξnΔnO(1) with

ξΔ = (2(Δ+1) − 2Δ− 2)1/(Δ+1) .

Our main contribution is indeed more analytical than algorithmic, and largely
relies on exploiting variants of a beautiful lemma due to Shearer [5] (“Shearer’s
Entropy Lemma”) that in a combinatorial context enables one to derive upper
bounds for the size of a set family based on the sizes of its projections.

We used this lemma recently in connection with analysing expedited versions
of the FFT-like algorithm of Yates to solve covering problems for bounded-degree
graphs via Moebius inversion [4], realising only later that classical algorithms for
the travelling salesman problem yield to the same analytical tools. In general, this
approach seems to be new and quite versatile for bounding the running time of
dynamic programming algorithms on restricted graph classes; to illustrate this,
we prove a stronger bound for regular triangle-free graphs:

Theorem 2. The travelling salesman problem for a triangle-free n-vertex graph
where every vertex has degree Δ = O(1) can be solved in time ηnΔnO(1) with

ηΔ =
(
22Δ − (Δ + 1)2Δ+1 + 2(Δ2 + 1)

)1/(2Δ)
.

To motivate a yet further illustration, we observe that the algorithms in The-
orems 1 and 2 both require exponential space, which immediately prompts the
question whether there exists a polynomial-space algorithm with running time
O

(
(2− ε)n

)
on bounded-degree graphs. This turns out to be the case if the edge

weights are bounded integers.
Indeed, a classical polynomial-space algorithm due to Karp [11] and, indepen-

dently, Kohn, Gottlieb, and Kohn [12], can be made to run in time O
(
(2− ε)n

)

on bounded-degree graphs, again with only minor tailoring.
Somewhat perplexingly, we characterise the running time of the polynomial-

space algorithm in terms of the connected dominating sets of the input graph. To
properly state the result, we recall the definitions here. For a graph G and a set
W ⊆ V of vertices, the set W is a connected set if the induced subgraph G[W]
is connected; and, a dominating set if every vertex v ∈ V is in W or adjacent
to a vertex in W . Denote by C the family of connected sets of G, and by D the
family of dominating sets of G.

Theorem 3. The travelling salesman problem for an n-vertex graph with
bounded integer weights can be solved in time |C ∩D|nO(1) and in space nO(1).
In particular, for maximum degree Δ it holds that |C ∩D| ≤ γnΔ + n, where

γΔ = (2Δ+1 − 2)1/(Δ+1) .

200 A. Björklund et al.

Table 1. The constants in Theorems 1, 2, and 3 for small values of Δ

Δ 3 4 5 6 7 8 · · ·

βΔ 1.9680 1.9874 1.9948 1.9978 1.9991 1.9999 · · ·
γΔ 1.9343 1.9744 1.9894 1.9955 1.9980 1.9991 · · ·
ξΔ 1.6818 1.8557 1.9320 1.9672 1.9840 1.9921 · · ·
ηΔ 1.6475 1.8376 1.9231 1.9630 1.9820 1.9912 · · ·

Remark. Table 1 displays the constants in Theorems 1, 2, and 3 for small values of
Δ. We expect there to be room for improvement in each of the derived bounds. In
particular, in this regard we would like to highlight the question of asymptotically
tight upper bounds for |C|, |D|, and |C ∩ D| on bounded-degree graphs (cf.
Lemma 3). Such bounds should be of independent combinatorial interest, and
we fully expect better bounds to occur in the literature, even if we were unable
to find these.

Organisation. The combinatorial analysis tools are established in Sect. 2. We
establish a precursor to Theorem 1 in Sect. 3 using a simple argument that
illustrates the main ideas of our approach, but leads to a weaker running time
bound βnΔnO(1) with βΔ = (2Δ+1 − 1)1/(Δ+1). Theorems 1, 2, and 3 are proved
in Sects. 4, 5, and 6, respectively.

1.1 Conventions

We consider the directed, asymmetric variant of the travelling salesman problem.
A problem instance consists of an n-element ground set V and a weight d(u, v) ∈
{0, 1, . . .}∪{∞} for all distinct u, v ∈ V . A tour is a permutation (v1, v2, . . . , vn)
of V . The weight of a tour is d(v1, v2) + d(v2, v3) + · · ·+ d(vn−1, vn) + d(vn, v1).
Given a problem instance, the task is to find the minimum weight of a tour. For
further background on the travelling salesman problem, we refer to [1,8,13].

We associate with each problem instance an undirected graph G with vertex
set V and edge set E such that any two distinct u, v ∈ V are joined by an edge
{u, v} if and only if d(u, v) < ∞ or d(v, u) < ∞. Unless explicitly indicated
otherwise, all graph-theoretic terminology refers to the graph G. For standard
graph-theoretic terminology we refer to [14].

2 Combinatorial Preliminaries

We are interested in upper bounds for the sizes of certain set families associated
with a graph with maximum degree Δ. Our starting point is the following lemma
due to Shearer (see [5]).

Lemma 1 (Chung, Frankl, Graham, and Shearer [5]). Let V be a finite
set with subsets A1, A2, . . . , Ar such that every v ∈ V is contained in at least

The Travelling Salesman Problem in Bounded Degree Graphs 201

δ subsets. Let F be a family of subsets of V . For each 1 ≤ i ≤ r define the
projections Fi = {F ∩Ai : F ∈ F}. Then,

|F|δ ≤
r∏

i=1

|Fi| .

First, we bring the lemma into a format that is more useful for our present
purposes. For instance, we will find it handy to leave out a constant number s of
special subsets. The following lemma abstracts and to a certain extent generalises
an analysis we have presented earlier [4, Theorem 3.2].

Lemma 2. Let V be a finite set with r elements and with subsets A1, A2, . . . , Ar
such that every v ∈ V is contained in exactly δ subsets. Let F be a family of
subsets of V and assume that there is a log-concave function f ≥ 1 and an
0 ≤ s ≤ r such that the projections Fi = {F ∩Ai : F ∈ F} satisfy |Fi| ≤ f(|Ai|)
for each s + 1 ≤ i ≤ r. Then,

|F| ≤ f(δ)r/δ
s∏

i=1

2|Ai|/δ .

Proof. Let ai = |Ai| and note that a1 +a2 + · · ·+ar = δr. By Lemma 1, we have

|F|δ ≤
s∏

i=1

2ai

r∏

i=s+1

f(ai) ≤
s∏

i=1

2ai

r∏

i=1

f(ai) . (1)

Since f is log-concave, Jensen’s inequality gives

1
r

r∑

i=1

log f(ai) ≤ log f
(
(a1 + a2 + · · ·+ ar)/r

)
= log f(δ) .

Taking exponentials and combining with (1) gives

|F|δ ≤ f(δ)r
s∏

i=1

2ai ,

which yields the claimed bound. ��

For Theorem 1 it suffices to consider the special case where the Ai are defined in
terms of neighbourhoods of the vertices of G. For each v ∈ V , define the closed
neighbourhood N(v) by

N(v) = {v} ∪ {u ∈ V : u and v are adjacent in G} .

Begin by defining the subsets Av for v ∈ V as Av = N(v). Then, for each u ∈ V
with degree d(u) < Δ, add u to Δ− d(u) of the sets Av not already containing
it (it does not matter which). This ensures that every vertex u ∈ V is contained
in exactly Δ + 1 sets Av. Fig. 1(a) shows an example. For each v ∈ V , call the
set Av so obtained the region of v.

202 A. Björklund et al.

v

(a) (b)

Fig. 1. (a) The region Av of a vertex v in a graph with Δ = 5. (b) Impossible projection
for a connected set C ∈ C, |C| ≥ 2; if only the black vertex belongs to C then C cannot
be connected, because all of v’s neighbours belong to Av.

Lemma 3. An n-vertex graph with maximum vertex degree Δ has at most βnΔ+n
connected sets and at most γnΔ + n connected dominating sets, where

βΔ = (2Δ+1 − 1)1/(Δ+1), γΔ = (2Δ+1 − 2)1/(Δ+1) .

Proof. Recall that by C we denote the family of connected sets and by D the
family of dominating sets. Let C′ = C \ {{v} : v ∈ V }. Then for every C′ ∈ C′

and every region Av, C′ ∩ Av = {v}; see Fig. 1(b). Thus the number of sets in
the projection C′v = {F ∩Av : F ∈ C} is at most 2|Av| − 1. To obtain the bound
on connected sets, apply Lemma 2 with the log-concave function f(a) = 2a − 1
and s = 0. To obtain the upper bound for |C ∩D|, observe that, in addition to
the singleton projection excluded for a connected set, also the empty projection
is excluded for each region in the case of a connected dominating set. ��

3 Connected Sets

This section establishes Theorem 1, but with a weaker bound; the purpose is to
show a very straightforward argument for an O

(
(2 − ε)n

)
upper bound.

Our starting point is the dynamic programming solution, which we proceed to
recall. Select an arbitrary reference vertex s ∈ V . For T ⊆ V and v ∈ T , denote
by D(T, v) the minimum weight of a directed path (in the complete directed
graph with vertex set V and edge weights given by d) from s to v that consists
of the vertices in T . The minimum weight of a tour is then solved by computing

min
v∈V

D(V, v) + d(v, s) .

To construct D(T, v) for all s ∈ T ⊆ V and all v ∈ T , the algorithm starts with
D({s}, s) = 0, and evaluates the recurrence

D(T, v) = min
u∈T\{v}

D(T \ {v}, u) + d(u, v) . (2)

The values D(T, v) are stored a table when they are computed to avoid redun-
dant recomputation,an idea sometimes called memoisation. The space and time
requirements are within a polynomial factor of 2n, the number of subsets T ⊆ V .

Our idea to expedite this will restrict the family of subsets for which (2)
is ever evaluated. To this end, consider any prefix (v1, v2, . . . , vk) of a finite-
weight tour with v1 = s. The set of vertices T = {v1, v2, . . . , vk} satisfies certain

The Travelling Salesman Problem in Bounded Degree Graphs 203

connectivity properties that we want to exploit. In the present section, we use
merely the trivial observation that T must be a connected set. Put otherwise,
D(T, v) = ∞ unless T is a connected set. Thus, it suffices to evaluate (2) not
over all subsets of V , but only over the family of connected sets C. A bottom-up
evaluation of (2) with memoisation gives an algorithm for solving the travelling
salesman problem within time |C| up to polynomial factors. (Indeed, whether
T ∈ C can be tested in polynomial time by, e.g., depth-first search; furthermore,
for every T ∈ C with |T | > 1 there exists at least one v ∈ T with T \ {v} ∈ C –
consider the leaves of a spanning tree of G[T] – which enables T to be discovered
from T \ {v}.) With Lemma 3 this gives O

(
(2− ε)n

)
running time when G has

maximum degree O(1).

4 Transient Sets

This section establishes Theorem 1, which amounts to a more careful analysis of
sets of vertices T occurring in prefixes of a tour with finite weight. For example,
such a set T cannot contain all vertices adjacent to a vertex v /∈ T∪N(s), because
then the tour necessarily either avoids v or gets stuck at v without returning
to s.

In precise terms, a vertex set T ⊆ V is transient with endpoint u ∈ T if it is
connected, s ∈ T , and the following holds for every vertex v /∈ N(s) ∪N(u):

1. if v belongs to T , then so do at least two of its adjacent vertices;
2. if v does not belong to T , then neither do at least two of its adjacent vertices.

Note that testing if a vertex set is transient is a polynomial time task, we merely
need to run a depth-first-search and checking each vertex neighbourhood for the
two properties above.

Let Tu denote the family of vertex sets that are transient with endpoint u.
Observe that any prefix (v1, v2, . . . , vk) of a finite-weight tour with v1 = s and

vk = u has the property that {v1, v2, . . . , vk} ∈ Tu. It thus suffices to consider
the recurrence

D(T, v) = min
u∈T\{v}
T\{v}∈Tu

D(T \ {v}, u) + d(u, v) , (3)

where we tacitly assume that the minimum of an empty set is ∞.
A top-down evaluation of (3) with memoisation leads to running time bounded

by, up to polynomial factors,
∑

u∈V
|Tu| ≤ nmax

u∈V
|Tu| . (4)

To derive an upper bound for the size of Tu, consider an arbitrary u ∈ V and
set δ = Δ + 1. Call a vertex v ∈ V special if N(v) ∩

(
N(s) ∪ N(u)

)
= ∅, and

observe that there are at most 2(1 + Δ2) < 2δ2 special vertices.
Now consider a non-special v ∈ V and an arbitrary T ∈ Tu. Let av = |Av|.

We can rule out the following projections Av ∩ T ; see Fig. 2 for an example.

204 A. Björklund et al.

v

Fig. 2. A non-special region Av (left) and the impossible intersections of Av with a
(black) transient set

1. v ∈ T and |Av ∩ T | = 1, so v has no neighbours in T . The tour never enters
or leaves v. This can happen only if v is special.

2. v ∈ T but |Av ∩T | = 2, so v has at most one neighbour in T . The tour never
leaves v. This can happen only if v is special. There are at least av − 1 such
cases (more if Av contains vertices not connected to v).

3. v /∈ T but Av \ {v} ⊆ T , so all of v’s neighbours are in T . When the tour
arrives in v it cannot leave. This can happen only if v is special.

4. v /∈ T but |Av ∩ T | = av − 2, so v has at most one neighbour also not
in T . When the tour arrives in v it cannot leave. This can happen only if
v is special. There are av − 1 such cases (more if Av contains vertices not
connected to v).

In total, we can rule out 2av of the 2av potential projections. We now want to
apply Lemma 2. To this end, we have to be slightly more careful as regards the
arbitrary construction of the regions Av (recall Sect. 2). In particular, whenever
v is special, we want |Av| ≤ δ. For all large enough n and δ = O(1) this is easily
arranged by not inserting additional vertices into a special Av when |Av| = δ.
Thus, we can apply Lemma 2 with f(a) = 2a − 2a and at most 2δ2 special
projectors Av, each of size at most δ. We conclude that

|Tu| ≤ (2δ − 2δ
)n/δ22δ2 . (5)

Theorem 1 follows, with the asymptotic notation absorbing a factor n from (4)
and a constant factor from (5).

5 Triangle-Free Graphs

To prove Theorem 2 we analyse the vertex sets of tour prefixes using a family
of subsets Be centered around every edge. The argument is somewhat more
involved, but the bound becomes slightly better. We assume that G is regular
with degree Δ = O(1) and contains no triangles.

Consider again the vertices T = {v1, v2, . . . , vk} on a prefix of a finite-weight
tour, v1 = s, vk = u. Suppose that e is an edge joining two vertices, x and y.
Then, provided that e is again non-special, that is, sufficiently far from both s
and u, we can again rule out certain projections of T to Be:

The Travelling Salesman Problem in Bounded Degree Graphs 205

x y

1. 2. 3. 4.

5. 6. 7. 8. 9.

Fig. 3. Some impossible projections for regular triangle-free graphs. Be is the vertex
subset at the top. The black vertices are in T , the grey vertices can be in T or not.

1. if both x and y belong to T then either the tour travels along e, in which
case x and y each must have another neighbour in T , or the edge e is not on
the tour, in which case x and y each must have two other neighbours in T .

2. if only one of the vertices, say x, belongs to T then it must have two other
neighbours in T . Moreover, the other vertex y cannot be completely sur-
rounded by neighbours in T .

There are a number of symmetrical cases to these, all of which are checked in con-
stant time around every edge. See Fig. 3 for an example; a detailed enumeration
of the cases appears as part of the analysis below.

For each edge e in G, define Be as the union of the closed neighbourhoods of
its endpoints,

Be = N(x) ∪N(y), e joins x and y .

Because G is triangle-free and Δ-regular, each vertex v ∈ V belongs to exactly
δ = Δ2 sets Be.

We now turn to a detailed analysis of the projections Be ∩ T . To this end,
partition Be into Be = {x}∪{y}∪M(x)∪M(y), where M(x) = N(x)\{x, y} and
M(y) = N(y) \ {x, y}. We have |M(x)| = |M(y)| = Δ− 1 because G is triangle-
free. Call an edge e special if Be ∩

(
N(s)∪N(u)

)
= ∅. Because Δ = O(1), there

are O(1) special edges.
For a non-special e, we can rule out the following (non-disjoint) types of

intersections Be ∩ T , exemplified in Fig. 3.

1. x ∈ T , y /∈ T , |M(x) ∩ T | ≤ 1. The tour would never leave x. There are
Δ2Δ−1 such cases.

2. Symmetrically, y ∈ T , x /∈ T , |M(y) ∩ T | ≤ 1. There are Δ2Δ−1 such cases.
3. x ∈ T , y /∈ T , |M(y) ∩ T | ≥ Δ− 2. The tour would never reach and leave y.

There are Δ2Δ−1 such cases.
4. Symmetrically, y ∈ T , x /∈ T , |M(x) ∩ T | ≥ Δ − 2. There are Δ2Δ−1 such

cases.

206 A. Björklund et al.

5. x ∈ T, y ∈ T , M(x) ∩ T = ∅, and M(y) ∩ T = ∅. The tour never leaves x.
There are 2Δ−1 − 1 such cases.

6. Symmetrically, x ∈ T, y ∈ T , M(y) ∩ T = ∅, and M(x) ∩ T = ∅. There are
2Δ−1 − 1 such cases.

7. x ∈ T , y ∈ T , M(x) ∩ T = M(y) ∩ T = ∅. The tour cannot leave {x, y}.
There is 1 such case.

8. x /∈ T , y /∈ T , M(x) ⊆ T . The tour cannot leave x. There are 2Δ−1 such
cases.

9. Symmetrically, x /∈ T , y /∈ T , M(y) ⊆ T . There are 2Δ−1 such cases.

In calculating the total number of forbidden intersections, observe that Types
1 and 3 are not disjoint (symmetrically, Types 2 and 4 are not disjoint). Both
pairs of types have Δ2 cases in common. Also, Types 8 and 9 are not disjoint;
there is 1 case in common. Thus, in total we can rule out

4Δ2Δ−1 + 2(2Δ−1 − 1) + 1 + 2 · 2Δ−1 − 2Δ2 − 1 = (Δ + 1)2Δ+1 − 2(Δ2 + 1)

projections, so the number of projections is bounded by

22Δ − (Δ + 1)2Δ+1 + 2(Δ2 + 1) .

We can apply Lemma 2 with δ = Δ2, r = |E| = Δn/2, the resulting bound is
(
22Δ − (Δ + 1)2Δ+1 + 2(Δ2 + 1)

)r/δ ·O(1) ,

which establishes Theorem 2 with (4) and (5).

6 Polynomial Space

For Theorem 3 our starting point is an algorithm of Karp [11], and, indepen-
dently, Kohn, Gottlieb, and Kohn [12]. We assume that the weights d(u, v) are
bounded, that is, d(u, v) ∈ {0, 1, . . . , B} ∪ {∞}, B = O(1).

The algorithm is most conveniently described in terms of generating polyno-
mials. Select an arbitrary reference vertex, s ∈ V , and let U = V \ {s}. For each
X ⊆ U , denote by q(X) the polynomial over the indeterminate z for which the
coefficient of each monomial zw counts the directed closed walks (in the complete
directed graph with vertex set V and edge weights given by d) through s that
(i) avoid the vertices in X ; (ii) have length n; and (iii) have finite weight w.

We can compute q(X) for a given X ⊆ U in time polynomial in n by solving
the following recurrence and setting q(X) = p(n, s). Initialise the recurrence for
each vertex u ∈ V \X with

p(0, u) =

{
1 if u = s;
0 otherwise.

For convenience, define z∞ = 0. For each length � = 1, 2, . . . , n and each vertex
u ∈ V \X , let

p(�, u) =
∑

v∈V \X
p(�− 1, v)zd(v,u) .

The Travelling Salesman Problem in Bounded Degree Graphs 207

Note that due to our assumption on bounded weights, each p(�, u) has at most
a polynomial number of monomials with nonzero coefficients.

By the principle of inclusion–exclusion, the monomials of the polynomial

Q =
∑

X⊆U
(−1)|X|q(X) (6)

count, by weight, the number of directed closed walks through s that (i) visit
each vertex in U at least once; and (ii) have length n. Put otherwise, what is
counted by weight are the directed Hamilton cycles. It follows immediately that
the travelling salesman problem can be solved in space polynomial in n and in
time 2nnO(1). This completes the description of the algorithm.

Let us now analyse (6) in more detail, with the objective of obtaining an algo-
rithm with better running time on bounded-degree graphs. It will be convenient
to work with a complemented form of (6), that is, for each S ⊆ U , let

r(S) = q(U \ S) ,

and rewrite (6) in the form

Q = (−1)n
∑

S⊆U
(−1)|S|r(S) . (7)

We want to reduce the number of S ⊆ U that need to be considered in (7). To
this end, observe that the induced subgraph G[{s} ∪ S] need not be connected.
Associate with each S ⊆ U the unique f(S) ⊆ U such that G[{s} ∪ f(S)] is the
connected component of G[{s}∪S] that contains s. Observe that r(S) = r

(
f(S)

)

for all S ⊆ U . This observation enables the following partition of the subsets of
U into f -preimages of constant r-value. For each T ⊆ U , let

f−1(T) = {S ⊆ U : f(S) = T } ,

and rewrite (7) in the partitioned form

Q = (−1)n
∑

T⊆U
r(T)

∑

S∈f−1(T)

(−1)|S| . (8)

The inner sum in (8) turns out to be determined by the connected dominating
sets of G.

Lemma 4. For every T ⊆ U it holds that

∑

S∈f−1(T)

(−1)|S| =

{
(−1)|T | if {s} ∪ T is a connected dominating set of G;
0 otherwise.

Proof. Consider an arbitrary T ⊆ U . The preimage f−1(T) is clearly empty if
G[{s}∪T] is not connected. Thus in what follows we can assume that G[{s}∪T]
is connected. For a set W ⊆ V , denote by N̄(W) the set of vertices in W or

208 A. Björklund et al.

adjacent to at least one vertex in W . Observe that f(S) = T holds for an S ⊆ U
if and only if S ⊇ T and S ∩ N̄({s} ∪ T) = T . In particular, if V \ N̄({s} ∪ T)
is nonempty, then f−1(T) contains equally many even- and odd-sized subsets.
Conversely, if V \ N̄({s} ∪ T) is empty (that is, {s} ∪ T is a dominating set of
G), then f−1(T) = {T }. ��

Using Lemma 4 to simplify (8), we have

Q = (−1)n
∑

T⊆U
{s}∪T∈C∩D

(−1)|T |r(T) . (9)

To arrive at an algorithm with running time |C∩D|nO(1) and space usage nO(1),
it now suffices to list the elements of C∩D in space nO(1) and with delay bounded
by nO(1).

The following listing strategy can be considered folklore and is here sketched
for interests of self-containment only. Observe that C ∩D is an up-closed family
of subsets of V , that is, if a set is in the family, then so are all of its supersets.
Furthermore, whether a given W ⊆ V is in C ∩D can be decided in time nO(1).
These observations enable the following top-down, depth-first listing algorithm
for the sets in C ∩D. Initially, we visit the set V if and only if G is connected;
otherwise C ∩D is empty. Whenever we visit a set Y ⊆ V , we first list it, and
then consider each of its maximal proper subsets Y \ {y}, y ∈ Y , in turn. We
recursively visit Y \{y} if both (i) Y \{y} ∈ C∩D; and (ii) Y is the maximum (say,
w.r.t. lexicographic order of subsets of V) minimal proper superset of Y \ {y} in
C ∩D.

Theorem 3 now follows from Lemma 3.

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

2. Bellman, R.: Combinatorial Processes and Dynamic Programming. In: Bellman,
R., Hall Jr., M. (eds.) Proceedings of Symposia in Applied Mathematics. Combi-
natorial Analysis, vol. 10, pp. 217–249. American Mathematical Society (1960)

3. Bellman, R.: Dynamic Programming Treatment of the Travelling Salesman Prob-
lem. J.Assoc.Comput.Mach. 9, 61–63 (1962)

4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Moebius Inversion
and Graphs of Bounded Degree. In: 25th International Symposium on Theoretical
Aspects of Computer Science (STACS 2008). Dagstuhl Seminar Proceedings 08001,
pp. 85–96. IBFI Schloss Dagstuhl (2008)

5. Chung, F.R.K., Frankl, P., Graham, R.L., Shearer, J.B.: Some Intersection Theo-
rems for Ordered Sets and Graphs. J.Combinatorial Theory Ser.A 43, 23–37 (1986)

6. Eppstein, D.: The Traveling Salesman Problem for Cubic Graphs. J.Graph Algo-
rithms Appl. 11, 61–81 (2007)

7. Gebauer, H.: On the Number of Hamilton Cycles in Bounded Degree Graphs. In:
Fourth Workshop on Analytic Algorithmics and Combinatorics (ANALCO 2008).
SIAM, Philadelphia (2008)

The Travelling Salesman Problem in Bounded Degree Graphs 209

8. Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Varia-
tions. Kluwer, Dordrecht (2002)

9. Held, M., Karp, R.M.: A Dynamic Programming Approach to Sequencing Prob-
lems. J.Soc.Indust.Appl.Math. 10, 196–210 (1962)

10. Iwama, K., Nakashima, T.: An Improved Exact Algorithm for Cubic Graph TSP.
In: Lin, G. (ed.) COCOON. LNCS, vol. 4598, pp. 108–117. Springer, Heidelberg
(2007)

11. Karp, R.M.: Dynamic Programming Meets the Principle of Inclusion and Exclu-
sion. Oper.Res.Lett. 1, 49–51 (1982)

12. Kohn, S., Gottlieb, A., Kohn, M.: A Generating Function Approach to the Trav-
eling Salesman Problem. In: ACM Annual Conference (ACM 1977), pp. 294–300.
ACM Press, New York (1977)

13. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley,
Chichester (1985)

14. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice–Hall (2001)
15. Woeginger, G.J.: Exact Algorithms for NP-Hard Problems: A Survey. In: Jünger,

M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You
Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

Treewidth Computation and Extremal

Combinatorics�

Fedor V. Fomin and Yngve Villanger

Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

{fedor.fomin,yngve.villanger}@ii.uib.no

Abstract. For a given graph G and integers b, f ≥ 0, let S be a subset
of vertices of G of size b+1 such that the subgraph of G induced by S is
connected and S can be separated from other vertices of G by removing f
vertices. We prove that every graph on n vertices contains at most n

(
b+f

b

)

such vertex subsets. This result from extremal combinatorics appears to
be very useful in the design of several enumeration and exact algorithms.
In particular, we use it to provide algorithms that for a given n-vertex
graph G
– compute the treewidth of G in time O(1.7549n) by making use of

exponential space and in time O(2.6151n) and polynomial space;
– decide in time O((2n+k+1

3)k+1 · kn6) if the treewidth of G is at most k;
– list all minimal separators of G in time O(1.6181n) and all potential

maximal cliques of G in time O(1.7549n).
This significantly improves previous algorithms for these problems.

1 Introduction

The aim of exact algorithms is to optimally solve hard problems exponentially
faster than brute-force search. The first papers in the area date back to the
sixties and seventies [19,27]. For the last two decades the amount of literature
devoted to this topic has been tremendous and it is impossible to give here a list
of representative references without missing significant results. Recent surveys
[14,21,26,29] provide a comprehensive information on exact algorithms. It is
very natural to assume the existence of strong links between the area of exact
algorithms and some areas of extremal combinatorics, especially the part of
extremal combinatorics which studies the maximum (minimum) cardinalities of
a system of subsets of some set satisfying certain properties. Strangely enough,
there are not so many examples of such links in the literature, and the majority of
exact algorithms are based on the so-called branching (backtracking) technique
which traces back to the works of Davis, Putnam, Logemann, and Loveland
[11,12].

In this paper, we prove a combinatorial lemma which appears to be very
useful in the analysis of certain enumeration and exact algorithms. For a vertex

� This research was partially supported by the Research Council of Norway.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 210–221, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Treewidth Computation and Extremal Combinatorics 211

v of a graph G and integers b, f ≥ 0, let t(b, f) be the maximum number of
connected induced subgraphs of G of size b + 1 such that the intersection of all
these subgraphs is nonempty and each such a subgraph has exactly f neighbors
(a neighbor of a subgraph H is a vertex of G \H which is adjacent to a vertex
of H). Then the combinatorial lemma states that t(b, f) ≤

(
b+f
b

)
(and it is easy

to check that this bound is tight). This can be seen as a variation of Bollobáss
Theorem [7], which is one of the corner-stones in extremal set theory. (See Section
9.2.2 of [22] for detailed discussions on Bollobáss Theorem and its variants.)

We use this combinatorial result to obtain faster algorithm for a number of
problems related to the treewidth of a graph. The treewidth is a fundamental
graph parameter from Graph Minors Theory by Robertson and Seymour [25] and
it has numerous algorithmic applications, see the surveys [4,6]. The problems to
compute the treewidth is known to be NP-hard [1] and the best known approx-
imation algorithm for treewidth has a factor

√
logOPT [13]. It is an old open

question whether the treewidth can be approximated within a constant factor.
Treewidth is known to be fixed parameter tractable. Moreover, for any fixed k,
there is a linear time algorithm due to Bodlaender [3] computing the treewidth
of graphs of treewidth at most k. Unfortunately, huge hidden constants in the
running time of Bodlaender’s algorithm is a serious obstacle to its implemen-
tation. For small values of k, the classical algorithm of Arnborg, Corneil and
Proskurowski [1] from 1987 which runs in time O(nk+2) can be used to decide
if the treewidth of a graph is at most k. The first exact algorithm computing
the treewidth of an n-vertex graph is due to Fomin et al. [15] and has running
time O(1.9601n). Later these results were improved in [16,28] to O(1.8899n).
Both algorithms use exponential space. The fastest polynomial space algorithm
for treewidth prior to this work is due to Bodlaender et al. [5] and runs in time
O(2.9512n).

Our results. We introduce a new (exponential space) algorithm computing
the treewidth of a graph G on n vertices in time O(1.7549n) and a polyno-
mial space algorithm computing the treewidth in time O(2.6151n). We also
show that if the treewidth of G is at most k, then it can be computed in time
O((2n+k+1

3)k+1 · kn6). This is a refinement of the classical result of Arnborg et
al. Running times of all these algorithms strongly depend on possibilities of fast
enumeration of specific structures in a graph, namely, potential maximal cliques,
and minimal separators [5,8,9,15,28]. The new combinatorial lemma is crucial in
obtaining new combinatorial bounds and enumeration algorithms for minimal
separators and potential maximal cliques, which, in turn, provides faster algo-
rithms for treewidth.

Similar improvements in running times from O(1.8899n) to O(1.7549n) can
be obtained for a number of results in the literature on problems related to
treewidth (we skip definitions here). For example, by combining the ideas from
[15] it is possible to compute the fill-in of a graph in time O(1.7549n). Another
example are the treelength and the Chordal Sandwich problem [24] which also
can be solved in time O(1.7549n) by making use of our technique.

212 F.V. Fomin and Y. Villanger

The remaining part of the paper is organized as follows. In the next section
we provide definitions and preliminary results. In Section 3, we prove our main
combinatorial tool. By making use of this tool, in Section 4, we prove combinato-
rial bounds on the number of minimal separators and potential maximal cliques
and obtain algorithm enumerating these structures. These results form the basis
for all our algorithms computing the treewidth of a graph presented in Sections
5, 6, and 7. Some of the proofs have been removed due to space restrictions, for
a full version see [17].

2 Preliminaries

We denote by G = (V,E) a finite, undirected and simple graph with |V | = n
vertices and |E| = m edges. For any non-empty subset W ⊆ V , the subgraph
of G induced by W is denoted by G[W]. We say that a vertex set S ⊆ V is
connected if G[S] is connected.

The neighborhood of a vertex v is N(v) = {u ∈ V : {u, v} ∈ E} and for a
vertex set S ⊆ V we set N(S) =

⋃
v∈S N(v) \ S. A clique C of a graph G is a

subset of V such that all the vertices of C are pairwise adjacent.

Minimal separators. Let u and v be two non adjacent vertices of a graph
G = (V,E). A set of vertices S ⊆ V is an u, v-separator if u and v are in
different connected components of the graph G[V \ S]. A connected component
C of G[V \ S] is a full component associated to S if N(C) = S. S is a minimal
u, v-separator of G if no proper subset of S is an u, v-separator. We say that S
is a minimal separator of G if there are two vertices u and v such that S is a
minimal u, v-separator. Notice that a minimal separator can be strictly included
in another one. We denote by ΔG the set of all minimal separators of G.

We need the following result due to Berry et al. [2] (see also Kloks et al. [23])

Proposition 1 ([2]). There is an algorithm listing all minimal separators of
an input graph G in O(n3|ΔG|) time.

The following proposition is an exercise in [18].

Proposition 2 (Folklore). A set S of vertices of G is a minimal a, b-separator
if and only if a and b are in different full components associated to S. In partic-
ular, S is a minimal separator if and only if there are at least two distinct full
components associated to S.

Potential maximal cliques. A graph H is chordal (or triangulated) if every
cycle of length at least four has a chord, i.e. an edge between two non-consecutive
vertices of the cycle. A triangulation of a graph G = (V,E) is a chordal graph
H = (V,E′) such that E ⊆ E′. H is a minimal triangulation if for any set E′′

with E ⊆ E′′ ⊂ E′, the graph F = (V,E′′) is not chordal.
A set of vertices Ω ⊆ V of a graph G is called a potential maximal clique if

there is a minimal triangulation H of G such that Ω is a maximal clique of H .
We denote by ΠG the set of all potential maximal cliques of G.

Treewidth Computation and Extremal Combinatorics 213

The following result on the structure of potential maximal cliques is due to
Bouchitté and Todinca.

Proposition 3 ([8]). Let K ⊆ V be a set of vertices of the graph G = (V,E).
Let C(K) = {C1(K), . . . , Cp(K)} be the set of the connected components of G[V \
K] and let S(K) = {S1(K), S2(K), . . . , Sp(K)} where Si(K), i ∈ {1, 2, . . . , p},
is the set of those vertices of K which are adjacent to at least one vertex of the
component Ci(K). Then K is a potential maximal clique of G if and only if:

1. G[V \K] has no full component associated to K, and
2. the graph on the vertex set K obtained from G[K] by completing each Si ∈
S(K) into a clique, is a complete graph.

The following result is also due to Bouchitté and Todinca.

Proposition 4 ([8]). There is an algorithm that, given a graph G = (V,E) and
a set of vertices K ⊆ V , verifies if K is a potential maximal clique of G. The
time complexity of the algorithm is O(nm).

Treewidth. A tree decomposition of a graph G = (V,E) is a pair (χ, T) in
which T = (VT , ET) is a tree and χ = {χi|i ∈ VT } is a family of subsets of V
such that: (1)

⋃
i∈VT

χi = V ; (2) for each edge e = {u, v} ∈ E there exists an
i ∈ VT such that both u and v belong to χi; and (3) for all v ∈ V , the set of
nodes {i ∈ VT |v ∈ χi} forms a connected subtree of T . To distinguish between
vertices of the original graph G and vertices of T , we call vertices of T nodes and
their corresponding χi’s bags. The maximum size of a bag minus one is called
the width of the tree decomposition. The treewidth of a graph G, tw(G), is the
minimum width over all possible tree decompositions of G.

An alternative definition of treewidth is via minimal triangulations. The
treewidth of a graph G is the minimum of ω(H) − 1 taken over all triangula-
tions H of G. (By ω(H) we denote the maximum clique-size of a graph H .)

Our algorithm for treewidth is based on the following result.

Proposition 5 ([15]). There is an algorithm that, given a graph G together
with the list of its minimal separators ΔG and the list of its potential maximal
cliques ΠG, computes the treewidth of G in O(n3 (|ΠG|+ |ΔG|) time. Moreover,
the algorithm constructs an optimal triangulation for the treewidth.

3 Combinatorial Lemma

The following lemma is our main combinatorial tool.

Lemma 1 (Main Lemma). Let G = (V,E) be a graph. For every v ∈ V , and
b, f ≥ 0, the number of connected vertex subsets B ⊆ V such that

(i) v ∈ B,
(ii) |B| = b + 1, and

(iii) |N(B)| = f

is at most
(
b+f
b

)
.

214 F.V. Fomin and Y. Villanger

Proof. Let v be a vertex of a graph G = (V,E). For b + f = 0 Lemma trivially
holds. We proceed by induction assuming that for some k > 0 and every b and
f such that b + f ≤ k − 1, Lemma holds. For b and f such that b + f = k we
define B as the set of sets B satisfying (i), (ii), (iii). We claim that

|B| ≤
(
b + f

b

)

.

Since the claim always holds for b = 0, let us assume that b > 0.
Let N(v) = {v1, v2, . . . , vp}. For 1 ≤ i ≤ p, we define Bi as the set of all

connected subsets B such that

– Vertices v, vi ∈ B,
– For every j < i, vj ∈ B,
– |B| = b + 1,
– |N(B)| = f .

Let us note, that every set B satisfying the conditions of the lemma is in some
set Bi for some i, and that for i = j, Bi ∩ Bj = ∅. Therefore,

|B| =
p∑

i=1

|Bi|. (1)

For every i > f + 1, |Bi| = 0 (this is because for every B ∈ Bi, the set N(B)
contains vertices v1, . . . , vi−1 and thus is of size at least f + 1.) Thus (1) can be
rewritten as follows

|B| =
f+1∑

i=1

|Bi|. (2)

Let Gi be the graph obtained from G by contracting edge {v, vi} (removing
the loop, reduce double edges to single edges, and calling the new vertex by v)
and removing vertices v1, . . . , vi−1. Then the cardinality of Bi is equal to the
number of the connected vertex subsets B of Gi such that

– v ∈ B,
– |B| = b,
– |N(B)| = f − i + 1.

By the induction assumption, this number is at most
(
f+b−i
b−1

)
and (2) yields that

|B| =
f+1∑

i=1

|Bi| ≤
f+1∑

i=1

(
f + b− i

b− 1

)

=
(
b + f

b

)

.

��

The inductive proof of the Main Lemma can be easily turned into a recursive
polynomial space enumeration algorithm (we skip the proof here).

Lemma 2. All vertex sets of size b + 1 with f neighbors in a graph G can be
enumerated in time O(n

(
b+f
b

)
) by making use of polynomial space.

Treewidth Computation and Extremal Combinatorics 215

4 Combinatorial Bounds

In this section we provide combinatorial bounds on the number of minimal sep-
arators and potential maximal cliques in a graph. Both bounds are obtained by
applying the Main Lemma on the respectice problems.

4.1 Minimal Separators

Theorem 1. Let ΔG be the set of all minimal separators in a graph G on n
vertices. Then |ΔG| = O(1.6181n).

Proof. For 1 ≤ i ≤ n, let f(i) be the number of all minimal separators in G of
size i. Then

|ΔG| =
n∑

1

f(i). (3)

Let S be a minimal separator of size αn, where 0 < α < 1. By Proposition 2,
there exists two full components C1 and C2 associated to S. Let us assume that
|C1| ≤ |C2|. Then |C1| ≤ (1−α)n/2. From the definition of a full component C1

associated to S, we have that N(C1) = S. Thus, f(αn) is at most the number
of connected vertex sets C of size at most (1−α)n/2 with neighborhoods of size
|N(C)| = αn. Hence, to bound f(αn) we can use the Main Lemma for every
vertex of G.

By Lemma 1, we have that for every vertex v, the number of full components
of size b + 1 = (1− α)n/2 containing v and with neighborhoods of size αn is at
most (

b + αn

b

)

≤
(

(1 + α)n/2
b

)

.

Therefore

f(αn) ≤ n ·
(1−α)n/2∑

i=1

(
i + αn

i

)

< n ·
(1−α)n/2∑

i=1

(
(1 + α)n/2

i

)

. (4)

For α ≤ 1/3, we have

(1−α)n/2∑

i=1

(
(1 + α)n/2

i

)

< 2(1+α)n/2 < 22n/3 < 1.59n,

and thus

n/3∑

i=1

f(i) = O(1.59n). (5)

For α ≥ 1/3, one can use the well known fact that the sum
∑�j/2�
k=1

(
j−k
k

)
is

equal to the (j + 1)-st Fibonacci number to show that

216 F.V. Fomin and Y. Villanger

(1−α)n/2∑

i=1

(
(1 + α)n/2

i

)

< n · ϕn,

where ϕ = (1 +
√

5)/2 < 1.6181n is the golden ratio.
Therefore,

n∑

i=n/3

f(i) = O(1.6181n). (6)

Finally, the theorem follows from the formulas (3),(5) and (6). ��

4.2 Potential Maximal Cliques

Definition 1 ([8]). Let Ω be a potential maximal clique of a graph G and let
S ⊂ Ω be a minimal separator of G. We say that S is an active separator for Ω,
if Ω is not a clique in the graph obtained from G by completing all the minimal
separators contained in Ω, except S. A potential maximal clique Ω containing
an active separator (for Ω) is called a nice potential maximal clique.

We need the following result by Bouchitté and Todinca.

Proposition 6 ([9]). Let Ω be a potential maximal clique of G = (V,E), let u
be a vertex of G, and let G′ = G[V \ {u}]. Then one of the following holds:

1. Either Ω, or Ω \ {u} is a potential maximal clique of G′;
2. Ω = S ∪ {u}, where S is a minimal separator of G;
3. Ω is a nice potential maximal clique.

Let Πn be the maximum number of nice potential maximal cliques that can be
contained in a graph on n vertices. Proposition 6 is useful to bound the number
of potential maximal cliques in a graph by the number of minimal separators
ΔG and Πn.

Lemma 3. For any graph G = (V,E), |ΠG| ≤ n(n|ΔG|+ Πn).

Proof. Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i
j=1 vj . The proof

of the lemma follows from the following claim ΠG[Vi+1] ≤ ΠG[Vi] + n|ΔG| + Πn
which can be proved by making inductive use of Proposition 6. ��

Definition 2. Let Ω ∈ ΠG, v ∈ Ω, and Cv be the connected component of
G[V \ (Ω \ {v})] containing v. We call the pair (Cv , v) by vertex representation
of Ω.

Lemma 4. Let (Cv, v) be a vertex representation of Ω. Then Ω = N(Cv)∪{v}.

Treewidth Computation and Extremal Combinatorics 217

Proof. By Proposition 3, every vertex u ∈ Ω \ {v}, is either adjacent to v, or
there exists a connected component C of G[V \Ω] such that u, v ∈ N(C). Since
C ⊂ Cv, we have that Ω \ {v} ⊆ N(Cv). Every connected component C of
G[V \ Ω] that contains v ∈ N(C) is contained in Cv and N(C) ⊂ Ω for every
C, therefore Ω \ {v} = N(Cv). ��

We need also the following result from [28].

Proposition 7 ([28]). Let Ω be a nice potential maximal clique of size αn in
a graph G. There exists a vertex representation (Cv, v) of Ω such that |Cv| ≤
" 2(1−α)n

3 #.
Now everything is settled to apply Main Lemma.

Lemma 5. The number of nice potential maximal cliques in a graph G = (V,E)
is O(1.7549n).

Proof. By Proposition 7, for every nice potential maximal clique Ω of cardinality
αn, there exists a vertex representation (Cv, v) of Ω such that |Cv| ≤ "2n(1 −
α)/3#. Let b + 1 be the number of vertices in Cv. By Lemma 1, for every vertex
v, the number of such pairs (Cv, v) is at most

2(1−α)n/3∑

i=1

(
(2 + α)n/3

i

)

.

As in the proof of Theorem 1, for α ≤ 2/5 the above sum is O(1.7549n). For
α ≥ 2/5, by making use of the fact that

∑�j/2�
k=1

(
j−k
2k

)
is equal to the (j + 1)-st

number of the sequence {ai}∞i=0 such that ai = 2ai−1−ai−2 +ai−3, with a0 = 0,
a1 = 1, and a2 = 2, it is possible to show that the value of the above sum, and
thus the number of nice potential maximal cliques, is O(1.7549n). ��

By combining Lemma 3, 5 and Theorem 1 we arrive at the main result of this
subsection.

Theorem 2. For any graph G, |ΠG| = O(1.7549n).

5 Exponential Space Exact Algorithm for Treewidth

Our algorithm computing the treewidth of a graph is based on Proposition 5.
By making use of Proposition 5 we need to know how to list minimal separators
and potential maximal cliques. By Proposition 1 and Theorem 1, all minimal
separators can be listed in time O(1.6181n). The proof of the following lemma
is postponed till the full version of this paper.

Lemma 6. For any graph G on n vertices, the set of potential maximal cliques
can be listed in O(1.7549n) time.

As an immediate corollary of Proposition 1 and Lemma 6, we have the following
result.

218 F.V. Fomin and Y. Villanger

Theorem 3. The treewidth of a graph on n vertices can be computed in time
O(1.7549n).

6 Computing Treewidth at Most k

In this section we show how the lemma bounding the number of connected
components can be used to refine the classical result of Arnborg et al. [1].

By Proposition 5, the treewidth of a graph can be computed in O(n3 (|ΠG|+
|ΔG|)) time if the list of all minimal separators ΔG and the list of all potential
maximal cliques ΠG of G are given. Actually, the results of Proposition 5 can
be strengthened (with almost the same proof as in [16]) as follows. Let ΔG[k]
be the set of minimal separators and let ΠG[k] be the set of potential maximal
cliques of size at most k.

Lemma 7. Given a graph G with sets ΔG[k] and ΠG[k+1], it can be decided in
time O(n3 (|ΠG[k+1]|+ |ΔG[k]|)) if the treewidth of G is at most k. Moreover, if
the treewidth of G is at most k, an optimal tree decomposition can be constructed
within the same time.

By Lemma 2 and Equation (4),

|ΔG[k]| ≤ kn ·
(n−k)/2∑

i=1

(
(n + k)/2

i

)

≤ kn2 ·
(

(n + k)/2
k

)

, (7)

and it is possible to list all vertex subsets containing all separators from ΔG[k]
in time O(kn2 ·

(
(n+k)/2

k

)
)). For each such a subset one can check in time O(n2)

if it is a minimal separator or not, and thus all minimal separators of size at
most k can be listed in time O(kn4 ·

(
(n+k)/2

k

)
).

Let Πn[k] be the maximum number of nice potential maximal cliques of size
at most k that can be in a graph on n vertices. By Proposition 7,

|Πn[k]| ≤ kn ·
(n−k)2/3∑

i=1

(
(2n + k)/3

i

)

≤ kn2 ·
(

(2n + k)/3
k

)

,

and by making use of Proposition 4, all nice potential maximal cliques of size at
most k can be listed in time O(kn5 ·

(
(2n+k)/3

k

)
).

Finally, we use nice potential maximal cliques and minimal separators of size
k to generate all potential maximal cliques of size at most k.

Lemma 8. For every graph G on n vertices, |ΠG[k]| ≤ n(|ΔG[k]| + Πn[k])
and all potential maximal cliques of G of size at most k can be listed in time
O(kn6 ·

(
(2n+k)/3

k

)
).

Proof. Let v1, v2, ..., vn be an ordering of V and let Vi =
⋃i
j=1 vj . By Propo-

sition 6 and Lemma 3, every potential maximal clique of G[Vi] either is a nice
potential maximal clique of G[Vi], or is a potential maximal clique of G[Vi−1], or

Treewidth Computation and Extremal Combinatorics 219

is obtained by adding vi to a minimal separator or a potential maximal clique
of G[Vi−1]. This yields that |ΠG[k]| ≤ n(|ΔG[k]| + Πn[k]). To list all potential
maximal cliques, for each i, 1 ≤ i ≤ n, we list all minimal separators and nice
potential maximal cliques in G[Vi]. This can be done in time O(kn6 ·

(
(2n+k)/3

k

)
).

The total number of all such structures is at most kn3 ·
(
(2n+k)/3

k

)
. By making

use of dynamic programing, one can check if adding vi to a minimal separator or
potential maximal clique of G[Vi−1] creates a potential maximal clique in G[Vi],
which by Proposition 4 can be done in time O(n3). Thus, dynamic programming
can be done in O(kn6 ·

(
(2n+k)/3

k

)
) steps. ��

Now putting Lemma 7, Lemma 8 and Equation (7) together, we obtain the main
result of this section.

Theorem 4. There exists an algorithm that for a given graph G and integer
k ≥ 0, either computes a tree decomposition of G of the minimum width, or
correctly concludes that the treewidth of G is at least k + 1. The running time of
this algorithm is O(kn6 ·

(
(2n+k+1)/3

k+1

)
) = O(kn6 · (2n+k+1

3)k+1) .

7 Polynomial Space Exact Algorithm for Treewidth

The algorithm used in Proposition 1 requires exponential space because it is
based on dynamic programming which keeps a table with all potential maximal
cliques. As a consequence our O(1.7549n) time algorithm for computing the
treewidth also uses O(1.7549n) space.

When restricting to polynomial space, we cannot store all the minimal sepa-
rators and all the potential maximal cliques. The idea used to avoid this is to
search for a “central” potential maximal clique or a minimal separator in the
graph which can safely be completed into a clique. A similar idea is used in [5],
however the improvement in the running time of our algorithm, is due to the
following lemma and the technique used for listing minimal separators. Both
results are, again, based on the Main Lemma.

Lemma 9. For a given graph G = (V,E) and 0 < α < 1, one can list in time
O(mn2 · 2n(1−α)) and polynomial space all potential maximal cliques of G such
that for every potential maximal clique Ω from this list, there is a connected
component of G[V \Ω] of size at least αn.

Proof. Let Ω be a potential maximal clique satisfying the conditions of the
lemma, and let C be the connected component of size at least αn. By Proposition
3, N(C) is a minimal separator contained in Ω and Ω \N(C) = ∅. Let (Cu, u)
be a vertex representation of Ω, where u ∈ Ω \N(C). Since u is not adjacent to
any vertex in C, we have that Cu ∩ C = ∅. To find Ω, we try to find its vertex
representation by a connected vertex set such that the closed neighborhood of
this set is of size at most n(1 − α). By the Main Lemma, the number of such
sets is at most

n ·
n(1−α)∑

i=1

(
n(1− α)

i

)

= n · 2n(1−α),

220 F.V. Fomin and Y. Villanger

and by Lemma 2, all these sets can be listed in O(n · 2n(1−α)) steps and within
polynomial space. Finally, for each set we use Lemma 4 and Proposition 4 to
check in time O(mn) if the set is a potential maximal clique. ��

We also use the following result which is a slight modification of the result from
[5], where it is stated in terms of elimination orderings.

Proposition 8 ([5]). For a given graph G = (V,E) and a clique K ⊂ V , there
exists a polynomial space algorithm, that computes the optimum tree decomposi-
tion (χ, T) of G, subject to the condition that the vertices of K form a bag which
is a leaf of T . This algorithm runs in time O∗(4n−|K|).

Theorem 5. The treewidth of a graph G = (V,E) can be computed inO(2.6151n)
time and polynomial space.

Acknowledgement. We are grateful to Saket Saurabh for many useful com-
ments, and to the anonymous referee pointing out that one of the bounds
matched the golden ratio.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)

2. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph.
Int. J. Found. Comput. Sci. 11, 397–403 (2000)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209, 1–45 (1998)

5. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.:
On Exact Algorithms for Treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006.
LNCS, vol. 4168, pp. 672–683. Springer, Heidelberg (2006)

6. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial Optimization on Graphs of
Bounded Treewidth. The Computer Journal (to appear)

7. Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hungar, 447–452 (1965)
8. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal

separators. SIAM J. Comput. 31, 212–232 (2001)
9. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.

Comput. Sci. 276, 17–32 (2002)
10. Buneman, P.: A characterization of rigid circuit graphs. Discrete Math. 9, 205–212

(1974)
11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.

Comm. ACM 5, 394–397 (1962)
12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. Assoc.

Comput. Mach. 7, 201–215 (1960)
13. Feige, U., Hajiaghayi, M.T., Lee, J.R.: Improved approximation algorithms for

minimum-weight vertex separators. In: STOC, pp. 563–572. ACM press, New York
(2005)

Treewidth Computation and Extremal Combinatorics 221

14. Fomin, F., Grandoni, F., Kratsch, D.: Some new techniques in design and anal-
ysis of exact (exponential) algorithms. Bulletin of the European Association for
Theoretical Computer Science 87, 47–77 (2005)

15. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth
and minimum fill-in. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

16. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM J. Comput. (accepted)

17. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics,
arXiv:0803.1321v1

18. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

19. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of SIAM 10, 196–210 (1962)

20. Ho, C.-W., Lee, R.C.T.: Counting clique trees and computing perfect elimination
schemes in parallel. Inform. Process. Lett. 31, 61–68 (1989)

21. Iwama, K.: Worst-case upper bounds for k-SAT. Bulletin of the European Associ-
ation for Theoretical Computer Science 82, 61–71 (2004)

22. Jukna, S.: Extremal combinatorics with applications in computer science. Springer,
Berlin (2001)

23. Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM J. Com-
put. 27, 605–613 (1998)

24. Lokshtanov, D.: On the Complexity of Computing Treelength. In: Kučera, L.,
Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 276–287. Springer, Heidelberg
(2007)

25. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7, 309–322 (1986)

26. Schöning, U.: Algorithmics in Exponential Time. In: Diekert, V., Durand, B. (eds.)
STACS 2005. LNCS, vol. 3404, pp. 36–43. Springer, Heidelberg (2005)

27. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM Jour-
nal on Computing 6, 537–546 (1977)

28. Villanger, Y.: Improved exponential-time algorithms for treewidth and minimum
fill-in. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 800–811. Springer, Heidelberg (2006)

29. Woeginger, G.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M.,
Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!
LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

Fast Scheduling of Weighted Unit Jobs
with Release Times and Deadlines

C. Greg Plaxton�

University of Texas at Austin
1 University Station C0500
Austin, Texas 78712–0233

plaxton@cs.utexas.edu

Abstract. We present a fast algorithm for the following classic scheduling prob-
lem: Determine a maximum-weight schedule for a collection of unit jobs, each
of which has an associated release time, deadline, and weight. All previous algo-
rithms for this problem have at least quadratic worst-case complexity. This job
scheduling problem can also be viewed as a special case of weighted bipartite
matching: each job represents a vertex on the left side of the bipartite graph;
each time slot represents a vertex on the right side; each job is connected by
an edge to all time slots between its release time and deadline; all of the edges
adjacent to a given job have weight equal to the weight of the job. Letting U
denote the set of jobs and V denote the set of time slots, our algorithm runs in
O(|U | + k log2 k) time, where k ≤ min{|U |, |V |} denotes the cardinality of a
maximum-cardinality matching. Thus our algorithm runs in nearly linear time, a
dramatic improvement over the previous quadratic bounds.

1 Introduction

We address the classic scheduling problem in which the input is a collection of jobs,
each with an associated release time, deadline, and weight, and our objective is to sched-
ule a maximum-weight subset of the jobs. For the reader who is familiar with Graham’s
notation for scheduling problems, this problem is denoted (1 | rj ; pj = 1 |

∑
wjUj),

where Uj is a 0-1 variable indicating whether job j is successfully scheduled. A num-
ber of special cases and variants of this scheduling problem have been studied for many
years; see the scheduling survey of Graham et al. [8] for additional pointers to the
early literature in this area. Various well-known algorithms textbooks include a detailed
treatment of the special case in which all jobs are released at time zero, for which it is
relatively straightforward to design a nearly linear time algorithm [1, pp. 207–214], [3,
pp. 399–401], [9, pp. 161–168].

The unweighted version of the above scheduling problem is equivalent to a special
case of bipartite matching called “convex” bipartite matching. Since we find it conve-
nient to present our results in the matching framework, we now develop the necessary
definitions. A subset A of a totally ordered set (S,≤) is said to be convex if the follow-
ing condition holds for all x, y, and z in S: If x and y belong to A and x ≤ z ≤ y, then

� Supported by NSF Grants ANI–0326001 and CCF–0635203.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 222–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines 223

z belongs to A. A convex bipartite graph is a bipartite graph together with a bipartition
(U, V) of the vertices, and a total order≤ on the vertices of V , such that the neighbors
of any vertex u in U form a convex subset of V .

Glover presented a simple greedy algorithm [7] for maximum-cardinality convex bi-
partite matching that admits an O(|V |+ |U | log |U |)-time implementation using an el-
ementary priority queue data structure. Later, van Emde Boas used a fast priority queue
to obtain an O(|V |+ |U | log log |U |)-time implementation of Glover’s algorithm [15].
Lipski and Preparata [11] used Tarjan’s fast union-find data structure [14] to devise a
different algorithm running in time O(|U |+ |V |α(|V |)), where α is a functional inverse
of Ackermann’s algorithm. Gabow and Tarjan [5] show that this application of union-
find falls into a category admitting a linear-time implementation, thereby reducing the
Lipski-Preparata time bound to O(|U | + |V |). Another line of work focused on elim-
inating the dependence of the running time on |V | [6,12]. This research culminated in
the O(|U |)-time algorithm of Steiner and Yeomans [13].

The scheduling problem considered in this paper corresponds to the weighted variant
of convex bipartite matching in which each vertex of U has an associated weight, and
the weight of any edge is given by that of its endpoint in U . It is worth remarking that
other weighted variants of the convex bipartite matching problem can be contemplated.
One possibility is to allow each edge to have an arbitrary weight, but since the com-
plete bipartite graph is convex, this weighted variant is equivalent to general weighted
bipartite matching. A weighted variant of convex bipartite matching that is incompa-
rable to the one considered in the present paper is obtained by associating a weight
with each vertex in V , and defining the weight of each edge as that of its endpoint in
V . For this “right-weighted” (i.e., V -weighted) variant, Katriel [10] has recently ob-
tained an O(|E| + |V | log |U |)-time algorithm to find a maximum-weight matching.
Since the input size is Θ(|U | + |V |) words, and |E| could be as large as Θ(|U | · |V |),
this algorithm has quadratic complexity. Another weighted variant of convex bipartite
matching — this time more general than the one considered in the present paper — is
obtained by associating a weight with each vertex in U ∪ V , and defining the weight of
each edge as the sum of the weights of its two endpoints. If the input graph admits a
U -perfect matching, Katriel’s O(|E|+ |V | log |U |)-time algorithm can be used to find a
maximum-weight |U |-perfect matching. Since many bipartite graphs — including, for
example, all bipartite graphs such that |U | > |V |— do not admit a U -perfect matching,
Katriel’s algorithm addresses only a special case of this weighted variant.

Throughout the remainder of this paper, we focus on the “left-weighted” (i.e., U -
weighted) variant of convex bipartite matching that corresponds to scheduling weighted
unit jobs with release times and deadlines. Any left-weighted (or right-weighted) bipar-
tite matching instance is well-known to form a matroid, where the independent sets of
the matroid are those subsets U ′ of vertices on the left such that there exists a matching
M that matches every vertex in U ′. Thus, left-weighted convex bipartite matching can
be addressed using the framework of the matroid greedy algorithm. Indeed, all efficient
algorithms for left-weighted convex bipartite matching that have been proposed to date,
including the algorithm presented in this paper, exploit this framework. In the next para-
graph, we describe a simple O(|U | log |U |+ |U | · |V |)-time algorithm of this sort. This
algorithm, which we refer to in this paper as the greedy algorithm, produces a matching

224 C.G. Plaxton

that we call the greedy matching. The fast matching algorithm presented in this paper,
which we refer to as the hierarchically greedy algorithm, maintains a hierarchical rep-
resentation of a collection of matchings that includes the greedy matching. We establish
the correctness of the hierarchically greedy algorithm by relating its behavior to that of
the greedy algorithm.

Here is a description of the greedy algorithm. First, we sort the vertices in U in
nonincreasing order of weight, initialize an independent set Z to the empty set, and
initialize a matching M to the empty matching. Then, we iteratively attempt to grow
the independent set Z by considering each successive vertex u in U (according to the
sorted order previously determined) and adding it to Z if the resulting set remains inde-
pendent. In order to simplify the task of determining whether u can be added to Z , we
maintain the invariant that M is the greedy matching of Z that is produced by Glover’s
unweighted convex bipartite matching algorithm. Glover’s algorithm attempts to match
the vertices v in |V |, from lowest to highest, using a natural “earliest deadline” rule that
the vertex in Z matched to v is the as yet unmatched vertex adjacent to v (if any) that
has the smallest number of remaining opportunities to be matched. (If a tie occurs, it is
broken according to a fixed ordering of the vertices in U .) Using a naive representation
of the greedy matching M in the form of an array of length V , in O(|V |) time we can
determine whether Glover’s algorithm successfully matches all vertices in I ∪ {u}, and
if so, update Z and M appropriately. Upon termination of the greedy algorithm, the
greedy matching M is a maximum-weight matching.

Lipski and Preparata [11] use the matroid greedy framework to develop a left-
weighted convex bipartite matching algorithm which, while somewhat different from
the greedy algorithm described above, has a similar time complexity of O(|U |2 + |U | ·
|V |). Dekel and Sahni [4] present a parallel algorithm for left-weighted convex bipartite
matching that uses O(|U |2) processors and O(log2 |U |) time, and which is based on a
sequential algorithm with O(|U |2) complexity.

In this paper, we introduce a data structure that maintains a hierarchical representa-
tion of a collection of matchings that includes the greedy matching. This data structure
allows us to implement each iteration of the matroid greedy algorithm in amortized
polylogarithmic time. As a result, we obtain a nearly linear time algorithm for left-
weighted convex bipartite matching. The remainder of this paper is organized as fol-
lows. Section 2 contains some preliminary definitions. Section 3 presents an efficient
dynamic data structure for a special class of convex bipartite graphs. Section 4 presents
our “hierarchically greedy” matching algorithm. Section 5 discusses the time complex-
ity of this algorithm. Section 6 offers some concluding remarks.

2 Preliminaries

In this section, we specify the formal representation of a convex bipartite graph, or
CBG, that will be used throughout the remainder of the paper. We also define certain
special kinds of CBGs.

Instead of working with “jobs” and “time slots”, we find it convenient to introduce
more abstract types “ping” and “pong”, which we define as follows. A pong is an ele-
ment of some totally ordered universe, such as the integers. A ping u is characterized by

Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines 225

four attributes: pongs u.first and u.last, a positive weight u.weight, and a unique integer
ID u.id. We define three total orders over the set of all pings: under the first-ID total or-
der, ping u is at most u′ if (u.first, u.id) is lexicographically at most (u′.first, u′.id);
under the last-ID total order, ping u is at most u′ if (u.last, u.id) is lexicographi-
cally at most (u′.last, u′.id); under the weight-ID total order, ping u is at most u′ if
(u.weight, u.id) is lexicographically at most (u′.weight, u′.id). We primarily make use
of the last-ID total order. For this reason, we adopt the convention that all ping compar-
isons are resolved according to the last-ID total order unless stated otherwise.

A pair (U, V), where U is a set of pings and V is a set of pongs, represents a CBG as
follows: (1) we identify each ping in U with a vertex on the LHS; (2) we identify each
pong in V with a vertex on the RHS; (3) there is an edge from ping u to pong v if and
only if u.first ≤ v ≤ u.last.

A CBG (U, V) is proper if {u.first, u.last} ⊆ V for all pings u in U . A CBG (U, V)
is simple if |U | ≥ |V | and v ≤ u.last for all pings u in U and all pongs v in V . A
CBG (U, V) is nice if |U | ≤ |V | + 1 and (U, V) is simple and admits a matching of
cardinality |V |. A nice CBG (U, V) with |U | = |V | is said to be in-kilter; otherwise, it
is out-of-kilter.

3 A Dynamic Data Structure for Nice CBGs

In this section, we develop a dynamic data structure for maintaining a nice CBG subject
to a collection of six operations. Three of these operations are applicable when the nice
CBG is in an in-kilter state; the other three are applicable in out-of-kilter states.

The three in-kilter operations are as follows. The first is pingAdd(u), where ping u
does not belong to U and (U ∪ {u}, V) is simple; this operation adds the ping u to U .
The second is pongDrop(v), where pong v belongs to V ; this operation removes the
pong v from V . The third is print(), which prints out a perfect matching of (U, V).

The three out-of-kilter operations are as follows. The first is pongAdd(v), where
pong v does not belong to V and (U, V ∪{v}) is simple and admits a perfect matching;
this operation adds the pong v to V . The second is pingDrop(u), where ping u belongs
to U and (U \ {u}, V) admits a perfect matching; this operation removes the ping u
from U . The third is pingDrop(), which takes no arguments; this operation removes
from U the maximum ping u in U such that (U \ {u}, V) admits a perfect matching.

Notice that the precondition of each of the above operations ensures that the CBG
remains nice. Our goal is to implement the print() operation in linear time, and each of
the other five operations in logarithmic time. The only significant challenge is to imple-
ment the pingDrop() operation efficiently. To do so, we first find it useful to introduce
a few definitions and lemmas related to simple CBGs.

For any simple CBG (U, V), we define the following auxiliary functions: (1) let
A(U, V) denote {u.first | u ∈ U} ∪ V ; (2) for any pong v in A(U, V), let f(U, V, v)
denote the number of pings u in U such that v ≤ u.first minus the number of pongs v′ in
V such that v ≤ v′; (3) let g(U, V) denote the maximum, over all pongs v in A(U, V),
of f(U, V, v) (if A(U, V) is empty, then g(U, V) is zero). The proof of the following
lemma is straightforward and is omitted.

226 C.G. Plaxton

Lemma 1. For any simple CBG (U, V), the size of a maximum cardinality matching is
|U | − g(U, V).

For any simple CBG (U, V) such that A(U, V) is nonempty, let us define h(U, V) as
the maximum pong in A(U, V) such that g(U, V) = f(U, V, v). The proof of the next
lemma follows easily from Lemma 1.

Lemma 2. For any simple CBG (U, V) such that |U | > |V |, and any ping u in U , the
size of a maximum cardinality matching of (U, V) is equal to that of (U \{u}, V) if and
only if h(U, V) ≤ u.first.

Lemma 2 leads to the following useful characterization of the set of pings over which
the maximization occurs in the definition of pingDrop().

Lemma 3. For any out-of-kilter nice CBG (U, V), and any ping u in U , (U \ {u}, V)
admits a perfect matching if and only if h(U, V) ≤ u.first.

Lemma 3 suggests a two-phase approach for implementing pingDrop(): (1) compute
the pong h(U, V); (2) compute the maximum ping u in U such that h(U, V) ≤ u.first.

We now discuss how to implement the first phase in logarithmic time. By Lemma 1,
for any out-of-kilter nice CBG (U, V), we have g(U, V) = 1, and hence h(U, V) is the
maximum pong in A(U, V) such that f(U, V, v) = 1. To implement the first phase, we
maintain an augmented red-black tree with a node for each pong v in A(U, V); the key
of each node is the associated pong. We augment a node x by maintaining the following
three auxiliary fields: an integer “count” field equal to |{u ∈ U | u.first = v}| − Δ,
where v is the key of node x and Δ is equal to 1 if v belongs to V , and 0 otherwise; an
integer “sum” field that is equal to the sum of all count fields in the nodes of the subtree
rooted at x; an integer “maximum suffix sum” field that is equal to the maximum,
over all suffixes (including the empty suffix) of the key-ordered sequence of nodes in
the subtree rooted at x, of the sum of the counts in the suffix. It is straightforward to
argue that all of these fields can be maintained in logarithmic time whenever a ping
is added to or removed from U , and whenever a pong is added to or removed from V .
Furthermore, given the augmented red-black tree structure that we have just described, it
is straightforward to determine the maximum pong in A(U, V) such that f(U, V, v) = 1
in logarithmic time, and hence to implement the first phase in logarithmic time.

To implement the second phase, we maintain a second augmented red-black tree
with a node for each ping in U . The nodes are sorted according to the first-ID ordering,
that is, the key associated with the node for a ping u is (u.first, u.id). We augment each
red-black tree node with a “max” field equal to the maximum ping (with respect to
the last-ID ordering) in the nodes of the corresponding subtree. It is straightforward to
maintain the max fields in logarithmic time whenever a ping is added to or removed
from U . Furthermore, given this tree, and the pong threshold h(U, V) determined in the
first phase, it is straightforward to implement the second phase in logarithmic time.

As remarked in the preceding paragraphs, it is straightforward to maintain our two
augmented red-black trees in logarithmic time whenever the nice CBG is modified via
an operation that adds or drops a ping or pong. It remains to describe how to implement
the print() operation in linear time. One simple approach is to maintain a third red-black

Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines 227

tree containing the pongs of V . A perfect matching of an in-kilter nice CBG can then
be obtained by matching each ping in the second augmented red-black tree described
above (the one sorted by the first-ID ordering) to the pong of equal rank in the third tree.
In fact, it is not necessary to maintain such a third red-black tree, because we can use
inorder traversals of the first and second red-black trees to produce a sorted list of the
pongs in V in linear time. Thus our data structure for maintaining a dynamic nice CBG
consists of just two augmented red-black trees. (Remark: The implementation of the
print() operation described above does not, in general, produce the greedy matching.
If we wish to produce the greedy matching, we can do so in O(|U | log |U |) time via
a suitable linear sequence of calls to the pongDrop(v) and pingDrop() operations. To
avoid modifying the data structure, we can first create a copy in linear time.)

4 A Hierarchically Greedy Algorithm

In this section we present a hierarchically greedy algorithm for computing a maximum-
weight matching of a given CBG (U, V). It is convenient to assume that (U, V) is
proper. In the context of establishing the upper bound of Theorem 1, our assumption
that (U, V) is proper is made without loss of generality, since we can easily preprocess
(U, V) in O(|U | log |U |+|V | log |V |) time to obtain an equivalent CBG — with respect
to the maximum-weight matchings — that is proper. The preprocessing phase removes
all pings with degree zero, and for each of the remaining pings u, assigns u.first to the
minimum pong v in V such that u.first ≤ v, and assigns u.last to the maximum pong v
in V such that v ≤ u.last.

Like the greedy algorithm described in Section 1, our hierarchically greedy algorithm
is based on the framework of the matroid greedy algorithm. As such, the algorithm it-
erates through the pings in decreasing order with respect to the weight-ID ordering.
While the greedy algorithm maintains a specific matching — the greedy matching —
at each iteration, our hierarchically greedy algorithm maintains a representation of a
collection of matchings that includes the greedy matching. We say that an iteration of
the greedy algorithm is successful if it adds a ping to the greedy matching; otherwise,
it is unsuccessful. It turns out that, at any given iteration, all of the matchings in the
collection maintained by the hierarchically greedy algorithm induce the same set of
matched pings and pongs. It follows that an iteration of the hierarchically greedy algo-
rithm successfully inserts the current ping into the set of matched pings if and only if
the corresponding iteration of the greedy algorithm is successful.

It remains to describe how the hierarchically greedy algorithm performs the inser-
tion attempt associated with a general iteration of the matroid greedy algorithm. It is
straightforward to prove that the attempt to insert a ping u in a given iteration is unsuc-
cessful if and only if there exist pongs v and v′ in V such that v ≤ u.first ≤ u.last ≤ v′

and the number of pings u′ previously successfully inserted for which v ≤ u.first ≤
u.last ≤ v′ is equal to the number of pongs in V that belong to the interval [v, v′]. We
refer to such an interval of pongs [v, v′] as a tight interval, and we say that a pong in
V is tight if it belongs to some tight interval. Initially, none of the pongs in V are tight,
but as more pings are successfully inserted, certain pongs become (and remain) tight.

228 C.G. Plaxton

Our hierarchically greedy algorithm maintains a conservative estimate (i.e., a subset)
of the current set of tight pongs in V . The pongs associated with this estimate are said to
be marked tight. Once a pong is marked tight, it continues to be marked tight thereafter.
When we attempt to insert a ping u, we first determine whether all of the pongs v in V
such that u.first ≤ v ≤ u.last are marked tight. If so, we conclude that the insertion is
unsuccessful, and proceed to the next iteration. We call such an unsuccessful insertion
good because it is relatively inexpensive to process; other unsuccessful insertions are
said to be bad.

4.1 An Augmented Binary Search Tree

Our hierarchical greedy algorithm makes use of an augmented BST with |V | nodes,
one for each pong in V . The key of each node α in the augmented BST, which is
denoted α.key, is the associated pong. Since V is not updated through the course of the
algorithm, the structure of the augmented BST is static. In analyzing the performance
of the algorithm, we assume only that the augmented BST has depth O(log |V |). We
maintain several additional fields for each node α in the augmented BST: α.left, which
is a pointer to the left child of α (α.left = 0 if there is no left child); α.right, which is a
pointer to the right child of α (α.right = 0 if there is no right child); α.parent, which is
a pointer to the parent of α (α.parent = 0 if α is the root); α.keyMin, which is equal to
the minimum, over all nodes β in the subtree rooted at α, of β.key; α.size, which is equal
to the total number of nodes in the subtree rooted at α; α.occupant, which is of type
“pointer to node”, and which either points to some ancestor of α, or takes on one of two
special values 0 and +∞; α.occupantMax, which is equal to the “maximum”, over all
nodes β in the subtree rooted at α, of β.occupant. In order to make the latter definition
precise, we need to specify how to determine the maximum of two node pointers. We
consider the special pointer value +∞ to be the highest possible pointer value, and the
special pointer value 0 to be the lowest possible pointer value. To compare two pointers
to actual nodes α and β, we instead compare α.size with β.size, breaking ties arbitrarily.

Each node of the augmented BST also contains a nice CBG that is represented by
two augmented red-black trees as discussed in Section 3. These nice CBGs are such
that the total size of the augmented BST remains linear throughout.

As indicated earlier, the structure of the augmented BST is static. All occupant fields
(and hence also the occupantMax fields) are initialized to +∞ to indicate that all of
the pongs are unmatched. The nice CBG associated with each node is initialized to
the empty CBG. After initialization, the only attributes of a node that are subject to
modification are the occupant and occupantMax fields, and the associated nice CBG.

4.2 Key Invariant

Due to space limitations, our proof of correctness is not included in this extended ab-
stract. Instead we simply state a key invariant of the data structure, which holds in any
quiescent state, that is, before and after any insertion attempt. The invariant completely
characterizes the state of the augmented BST in terms of the set of pongs in V that
have been marked tight and the state of the greedy algorithm after the same number of
insertion attempts. To define the invariant, we consider executing the greedy and hierar-
chically greedy algorithms side by side, one insertion attempt at a time. In any quiescent

Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines 229

state, we define a mapping from the edges of the greedy matching to the nodes of the
augmented BST as follows: Map edge (u, v) to the LCA of the node with key v and
the node with key u.last. We claim that the set of pings (resp., pongs) of the nice CBG
associated with any node α is exactly the set of ping (resp., pong) endpoints of the
edges of the greedy matching that are mapped to node α. The preceding claim charac-
terizes the set of |V | nice CBGs associated with the nodes of our augmented BST in this
quiescent state. It remains only to characterize the values of the occupant fields, since
the occupant values determine the occupantMax values, and all of the other augmented
BST fields are static. For any pong v in V , let α denote the augmented BST node with
α.key = v. If pong v is unmatched in the greedy matching, then α.occupant = +∞. If
pong v is matched in the greedy matching and is marked tight, then α.occupant = 0. If
v is matched to ping u in the greedy matching and is not marked tight, then α.occupant
is a pointer to the augmented BST node to which edge (u, v) is mapped, i.e., to the LCA
of the node with key v and the node with key u.last.

The aforementioned invariant asserts a close correspondence between the successive
quiescent states of the greedy and hierarchically greedy algorithms. The main idea un-
derlying our full proof of correctness is to extend this correspondence to non-quiescent
states. We do so by starting with the greedy algorithm and transforming it into the
hierarchically greedy algorithm via a sequence of code transformations. A suitable cor-
respondence is established between each pair of successive algorithms in this sequence.

4.3 Methods

In this section we describe the methods supported by the node object of the augmented
BST introduced in Section 4.1.

The print method is invoked on the root node at the end of the hierarchically greedy
algorithm in order to output a maximum-weight matching. When invoked on the root
node, the print method traverses each node α of the augmented BST, and invokes the
print operation of Section 3 on the nice CBG associated with α. Each of these |V |
print operations produces a piece of the overall output matching. The invariant stated
in Section 4.2 ensures that the nice CBG associated with any augmented BST node is
in-kilter in any quiescent state, and hence the nice CBG print operation is applicable in
any such state. The overall running time of the print method is O(|U | + |V |). (If we
wish to produce the greedy matching, then we need to print the greedy matching of each
nice CBG; by the analysis of the print operation in Section 3, this increases the running
time by an O(log k) factor, where k ≤ min{|U |, |V } denotes the maximum number of
pings/pongs in any of the nice CBGs.)

The second major node method is insert. Pseudocode for the insert method is pro-
vided below. Each of the |U | insertion attempts performed by the hierarchically greedy
algorithm corresponds to an invocation of this method at the root of the augmented BST.
The lone argument of the insert method is the ping associated with the current insertion
attempt. The insert method is defined in terms of three other node methods: add, tight,
and tighten. We discuss each of these three methods below.

insert(Ping u)
Pong v := u.first

230 C.G. Plaxton

if tight(v, u.last) = 0 then
Node ∗p := add(u, v)
if p = 0 then

tighten(v, p→key)

The tight method takes two pong arguments v and v′, and returns a boolean value in-
dicating whether every pong v′′ in V such that v ≤ v′′ ≤ v′ has been marked tight. By
exploiting the occupantMax field of the augmented BST, this method is easy to imple-
ment in O(log |V |) time. But to establish our best time bound for left-weighted convex
bipartite matching, we need a more efficient implementation of the tight method, so
we maintain a separate union-find data structure [14]. The idea is to break the sorted
sequence of pongs in V into maximal contiguous subsequences of pongs in which ei-
ther: (1) all of the pongs in a subsequence have been marked tight, or (2) none of the
pongs in a subsequence have been marked tight. Each such subsequence corresponds
to a single set in our union-find data structure. Along with each set, we store a bit in-
dicating whether the pongs in the set have been marked tight. The roots of the sets are
linked together in a doubly-linked list, which is kept in sorted order based on the pong
values. To implement the tight method, we simply look up the two pong arguments in
the union-find data structure to determine whether they both belong to the same set,
and if so, whether that set consists of pongs that have been marked tight. In the fore-
going pseudocode for the insert method, we use a call to the tight method to determine
whether to immediately reject a given insertion attempt.

The tighten method takes two pong arguments v and v′. For every pong v′′ in V
such that v ≤ v′′ ≤ v′, this method marks v′′ tight by ensuring that the occupant field
in the node with key v′′ is equal to zero (i.e., if it was not already zero, this method
sets it to zero), and makes any necessary adjustments to the occupantMax fields. This
method also performs corresponding unions to the union-find data structure mentioned
in the preceding paragraph. (The sorted doubly-linked list of roots in the union-find
data structure enables us to perform these union operations efficiently.) By exploiting
the occupantMax field (i.e., there is no need for this method to descend into a subtree
rooted at a node with occupantMax field equal to zero), we can easily execute an invo-
cation of the tighten method in O((k + 1) log |V |) time, where k denotes the number
of nonzero occupant fields that are set to zero as a result of the invocation. In the above
pseudocode for the insert method, we invoke the tighten method on the root node of the
augmented BST to update our data structures after a bad unsuccessful insertion attempt.
Accordingly, the quantity k in the preceding expression is guaranteed to be positive on
any invocation of the tighten method. Furthermore, once we set the occupant field of
some node to zero in tighten, it remains zero thereafter. It follows from the foregoing
remarks that the total cost of all invocations of the tighten method is O(|V | log |V |).

The pseudocode for the add method is given below. If the insertion attempt associated
with the add invocation is successful, add returns 0. Otherwise, add indicates failure by
returning a pointer to a node in the augmented BST; this pointer is used to determine
the second pong argument of the subsequent invocation of the tighten method. Recall
that each augmented BST node has an associated nice CBG. In the pseudocode for the
add method, the calls to pingAdd(u) and pingDrop(u) act on the associated nice CBG.
The same holds for the calls to pongAdd(v), pingDrop(), and pingAdd(u) appearing

Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines 231

in the pseudocode for the resolve method below, and for the calls to pongDrop(v) and
pongAdd(v) appearing in the pseudocode for the drop method below. Our proof of
correctness establishes that each call acting on the associated nice CBG satisfies the
required precondition specified in Section 3. The add method is defined in terms of the
node method resolve, which we discuss next.

Node ∗add(Ping u, Pong v)
if occupantMax = 0 then

return this
else if v > key then

return right→add(u, v)
else if u.last < key then

return left→add(u, v)
pingAdd(u)
p := resolve(v)
if p = 0 then

pingDrop(u)
return p

The pseudocode for the resolve method is given below. Like the add method, resolve
returns 0 on success, and a pointer to a node on failure. The resolve method is defined
in terms of the node methods add, drop, occupy, and search. We have already defined
the add method; drop, occupy, and search are defined below.

Node ∗resolve(Pong v)
Node ∗p, ∗q := search(v)
if q = 0 then

Pong v := q →key
Node ∗r := q →occupant
p := if r = +∞ then 0 else r →drop(v)
if p = 0 then

pongAdd(v)
occupy(q)

else
Ping u := pingDrop()
p := if key = u.last then this else right→add(u, right→keyMin)
if p = 0 then

pingAdd(u)
return p

When the search method is invoked at a node α, it takes as argument a pong v that is
either equal to α.key, or is equal to β.key for some node β in the left subtree of α. The
search method returns a pointer to a node, determined as follows. Let S denote the set
of all nodes β in the subtree rooted at α such that v ≤ β.key ≤ α.key, and β.occupant
is either +∞ or the address of a proper ancestor of α. If S is empty, then 0 is returned.
Otherwise, a pointer to the node β in S minimizing β.key is returned. By making use

232 C.G. Plaxton

of the occupantMax field, it is straightforward to implement the search method in time
proportional to the depth of the subtree rooted at node α.

When the occupy method is invoked at a node α, it takes as argument a nonzero
pointer to a node returned by a just-completed call to the search method at node α. As
such, the argument of the occupy method is a pointer to some β in the subtree rooted
at node α such that β.occupant is either +∞ or the address of a proper ancestor of
α. The occupy method sets β.occupant to point to α, and then updates occupantMax
fields as necessary, starting at β and repeatedly “bubbling up” to the parent until the
occupantMax field is unchanged or we attempt to move to the parent of the root. The
running time is proportional to the depth of the subtree rooted at node α.

The pseudocode for the drop method is given below. Like the add method, drop
returns 0 on success, and a pointer to a node on failure. The drop method is defined in
terms of the resolve method discussed above.

Node ∗drop(Pong v)
pongDrop(v)
Node ∗p := resolve(v)
if p = 0 then

pongAdd(v)
return p

5 Analysis

Due to space limitations, we are not able to include our analysis of the running time of
the hierarchically greedy algorithm in this extended abstract. In the full version of the
paper, we prove the following theorem. The proof uses separate arguments to bound the
total cost of the successful, good unsuccessful, and bad unsuccessful insertions.

Theorem 1. The hierarchically greedy algorithm of Section 4 computes a maximum-
weight matching of a given CBG (U, V) in O(|U | log |U | + |V | log2 |V |) time using
O(|U |+ |V |) space.

With some extra preprocessing work, we can further improve the running time of the
algorithm of Section 4. By employing a preprocessing phase based on the O(|U |)-
time unweighted convex bipartite matching algorithm of Steiner and Yeomans [13],
the O(|V | log2 |V |) term can be improved to O(k log2 k), where k ≤ min{|U |, |V |}
denotes the size of a maximum-cardinality matching. The following theorem can then
be obtained via an O(|U | + k log2 k)-time preprocessing phase that discards all but
O(k log k) of the pings in U , while ensuring that we can still produce a maximum-
weight matching using the remaining pings. The complete details of the two prepro-
cessing phases are nontrivial and are provided in the full paper.

Theorem 2. A maximum-weight matching of a proper CBG (U, V) can be computed
in O(|U | + k log2 k) time and O(|U | + |V |) space, where k ≤ min{|U |, |V |} denotes
the size of a maximum-cardinality matching.

Notice that in order to achieve the time bound of Theorem 2 we need to assume — as
in the work of Steiner and Yeomans [13] — that the input CBG (U, V) is proper.

Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines 233

6 Concluding Remarks

Recently, Brodal et al. [2] have designed a data structure based on the Dekel-Sahni algo-
rithm for the problem of maintaining an unweighted maximum matching in a dynamic
convex bipartite graph. It allows for vertices to be inserted or deleted from either U or
V in O(log2 |U |) amortized time. The interface supported by the data structure includes
a constant-time “status query” that can be used to determine whether a given vertex is
in the current maximum matching. Also, a “pair query” is provided that takes as argu-
ment a matched vertex and returns the current match of that vertex. The amortized cost
of a pair query is shown to be O(

√
|U | log2 |U |) and Ω(

√
|U |). We plan to investigate

whether the techniques of the present paper can be used to obtain improved bounds for
some of the dynamic operations considered in [2].

References

1. Brassard, G., Bratley, P.: Fundamentals of Algorithmics. Prentice Hall, Englewood Cliffs
(1996)

2. Brodal, G.S., Georgiadis, L., Hansen, K.A., Katriel, I.: Dynamic matchings in convex bipar-
tite graphs. In: Proceedings of the 32nd International Symposium on Mathematical Founda-
tions of Computer Science, pp. 406–417 (August 2007)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, McGraw-Hill, Cambridge (2001)

4. Dekel, E., Sahni, S.: A parallel matching algorithm for convex bipartite graphs and applica-
tions to scheduling. Journal of Parallel and Distributed Computing 1, 185–205 (1984)

5. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union.
Journal of Computer and System Sciences 30, 209–221 (1985)

6. Gallo, G.: An O(n log n) algorithm for the convex bipartite matching problem. Operations
Research Letters 3, 313–316 (1984)

7. Glover, F.: Maximum matching in convex bipartite graphs. Naval Research Logistic Quar-
terly 14, 313–316 (1967)

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approxi-
mation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathemat-
ics, 287–326 (1979)

9. Horowitz, E., Sahni, S.: Fundamentals of Computer Algorithms. Computer Science Press,
New York (1978)

10. Katriel, I.: Matchings in node-weighted convex bipartite graphs. INFORMS Journal on Com-
puting (December 2007); Published online in Articles in Advance (print version to in appear,
2008)

11. Lipski Jr., W., Preparata, F.P.: Efficient algorithms for finding maximum matchings in convex
bipartite graphs and related problems. Acta Informatica 15, 329–346 (1981)

12. Scutellà, M.G., Scevola, G.: A modification of Lipski-Preparata’s algorithm for the maxi-
mum matching problem on bipartite convex graphs. Ricerca Operativa 46, 63–77 (1988)

13. Steiner, G., Yeomans, J.S.: A linear time algorithm for determining maximum matchings in
convex, bipartite graphs. Computers and Mathematics with Applications 31, 91–96 (1996)

14. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22,
215–225 (1975)

15. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space.
Information Processing Letters 6, 80–82 (1977)

Approximation Algorithms for Scheduling

Parallel Jobs: Breaking the Approximation
Ratio of 2�

Klaus Jansen and Ralf Thöle

Institut für Informatik, Universität zu Kiel, Germany
{kj,rth}@informatik.uni-kiel.de

Abstract. In this paper we study variants of the non-preemptive paral-
lel job scheduling problem where the number of machines is polynomially
bounded in the number of jobs. For this problem we show that a schedule
with length at most (1 + ε)OPT can be calculated in polynomial time,
which is the best possible result (in the sense of approximation ratio),
since the problem is strongly NP-hard.

For the case when all jobs must be allotted to a subset of machines
with consecutive indices a schedule with length at most (1.5 + ε)OPT
can be calculated in polynomial time. The previously best known results
are algorithms with absolute approximation ratio 2.

1 Introduction

In classical scheduling theory, each job is executed by only one processor at
a time. In the last years however, due to the rapid development of parallel
computer systems, new theoretical approaches have emerged to model scheduling
on parallel architectures (for an overview about scheduling of multiprocessor jobs
see [2,5,13]).

We study variants of the non-preemptive parallel job scheduling problem.
An instance of this problem is given by a list L := {J1, . . . , Jn} of jobs and
for each job Jj an execution time pj and the number of required machines qj
is given. A schedule S = ((s1, r1), . . . , (sn, rn)) is a sequence of starting times
sj ≥ 0 together with the set of assigned machines rj ⊆ {1, . . . ,m} (|rj | = qj) for
j ∈ {1, . . . , n}. A schedule is feasible if each machine executes at most one job
at the same time. The length of a schedule is defined as its latest job completion
time Cmax = max{sj + pj |j ∈ {1, . . . , n}}. The objective is to find a feasible
schedule of minimal length. This problem is denoted P |sizej |Cmax (for more
information on this three field notation see [5]).

P |sizej |Cmax is strongly NP-hard, since already the problem P5|sizej |Cmax, is
strongly NP-hard [6], and, unless P = NP , there is no approximation algorithm
� Research supported by a PPP funding “Approximation algorithms for d-dimensional

packing problems” 315/ab D/05/50457 granted by the DAAD, and by EU research
project AEOLUS, Algorithmic Principles for Building Efficient Overlay Computers,
EU contract number 015964.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 234–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximation Algorithms for Scheduling Parallel Jobs 235

with a performance ratio better than 1.5 for P |sizej |Cmax [11]. Furthermore,
Johannes [11] has shown that no list-scheduling algorithm can perform better
than 2.

The best known algorithm with polynomial running time for this problem was
implicitly given by Garey & Graham [7]. They proposed a list-based algorithm
with approximation ratio 2 for a resource-constrained scheduling problem. In this
scheduling problem one or more resources are given and for the duration of its
execution time each job requires a certain amount of each resource. As pointed
out by Ludwig & Tiwari [14] this resource-constrained scheduling problem can
be used to model P |sizej |Cmax by using the available processors as the single
resource. The existence of a polynomial time approximation scheme (PTAS) for
the case that the number of available processors is a constant, Pm|sizej |Cmax,
was presented in [1,9].

A problem closely related to P |sizej |Cmax is the StripPacking-problem (ie.
packing of rectangles in a strip of width 1 while minimizing the packing heigth).
The main difference is that machines assigned to a job need to be contiguous in a
solution to the StripPacking-problem. We denote the corresponding Scheduling-
problem by P |linej|Cmax. Turek et al. [18] pointed out, that using contiguous
machine assignments is desirable in some settings (for example to maintain a
physical proximity of processors allotted to a job). One of the first results for
the StripPacking-problem was given by Coffman et al. [3]. They proved that the
level-based algorithm NFDH (Next Fit Decreasing Height) has approximation
ratio 3. The currently best known algorithms with absolute approximation ratio
were given independently by Schiermeyer [16] and Steinberg [17], who presented
algorithms with ratio 2. Coffman et al. [3] also analyzed the asymptotic perfor-
mance of NFDH, which is 2 OPT+hmax, where OPT, hmax denote the height
of an optimal solution and the height of the tallest rectangle, respectively. An
AFPTAS for this problem was presented by Kenyon & Rémila [12]. Recently,
Jansen & Solis-Oba [10] presented an asymptotic polynomial time approximation
scheme (APTAS) with additive term 1 at the cost of a higher running time.

New results. In this paper we focus on the natural case when the number
of machines is polynomial in the number of jobs (in most scenarios the number
of machines will be even lower than the number of jobs). We will denote this
problem by Ppoly|sizej |Cmax or by Ppoly|linej |Cmax in the contiguous case.
Using a reduction from 3-Partition [8], it is easy to see that these problems are
strongly NP-hard.

For the case that all machines assigned to a job have contiguous addresses we
show the existence of an algorithm with approximation ratio 1.5.

Theorem 1. For every ε > 0 and every instance I of Ppoly|linej |Cmax there
exists an algorithm A with A(I) ≤ (1.5 + ε)OPT(I) and running time polyno-
mial in n, where A(I) is the length of the schedule for instance I generated by
algorithm A and OPT(I) is the length of an optimal schedule for instance I.

The previous best known result for this problem is the above mentioned 2-ap-
proximation algorithm for the resource-constrained problem by Ludwig & Ti-
wari [14].

236 K. Jansen and R. Thöle

In the general case (non-contiguous addresses) we show the existence of a
polynomial time approximation scheme (PTAS).

Theorem 2. For every ε > 0 and every instance I of Ppoly|sizej |Cmax there
exists an algorithm A with A(I) ≤ (1+ε)OPT(I) and running time polynomial in
n, where A(I) is the length of the schedule for instance I generated by algorithm
A and OPT(I) is the length of an optimal schedule for instance I.

The previous best known result for this problem is a 2-approximation algorithm
based on list scheduling by Garey & Graham [7]. This is the best possible result
(in the sense of approximation ratio), since the problem is strongly NP-hard.

A similar problem is the scheduling of so called malleable jobs, where the
number of required machines for each job is not known a priori; the execution
time of each job depends on the number of allotted machines. That is, instead
of pj , qj each job Jj has an associated function pj : {1, . . . ,m} → Q+ that gives
the execution time pj(�) of Jj in terms of the number � of processors that are
assigned to Jj . For this Scheduling-problem Turek et al. [18] and Ludwig &
Tiwari [14] presented algorithms with approximation ratio 2 for both cases (con-
tiguous and non-contiguous) without additional properties. Mounié et al. [15]
gave an algorithm for scheduling monotonic malleable tasks with approximation
ratio (1.5 + ε). For the special case of identical malleable tasks Decker et al. [4]
presented an approximation algorithm with ratio 1.25. In the full version of this
paper we will show how the algorithms for both non-malleable cases can be
extended to solve the corresponding malleable versions with the same approxi-
mation ratios (without monotonic properties of the processing times).

Structure. In Sect. 2 we present the algorithm for scheduling jobs on ma-
chines with contiguous addresses. In Sect. 2.1 we show how an optimal solution
can be transformed into a nearly optimal solution with simpler structure. After
these preliminary steps we explain in Sect. 2.2 the pre-positioning of a subset
of the rectangles and introduce a linear program (LP) formulation for the as-
signment of the remaining rectangles. In Sect. 2.3 we outline how to pack the
rectangles according to the fractional solution of the LP. In Sect. 3 we present
the scheduling algorithm for the case that the machines allotted to each job are
not required to have contiguous addresses.

2 Contiguous Parallel Job Scheduling

Since each job is required to be executed on contiguous machines, an instance of
the Scheduling-problem can be translated directly into a StripPacking-instance;
create for each job Ji a rectangle Ri = (wi, hi) with width wi = qi/m and height
hi = pi (where qi is the number of required machines and pi is the execution time
of Ji). The objective is then to find an orthogonal, axis parallel arrangement of
all rectangles into a strip of width 1 and minimal height (without rotations).
Thus, the StripPacking- and the Scheduling-notation can be used synonymously
in the contiguous case. In this paper we use the StripPacking-notation since this
notation is more descriptive.

Approximation Algorithms for Scheduling Parallel Jobs 237

2.1 Near-Optimal Packing with Simple Structure

The following construction of a nearly optimal solution with simple structure
based on a given optimal solution is similar to the solution constructed in [10].

Let 0 < ε′ ≤ 1 and let L = {R1, . . . , Rn} be a Scheduling-instance and for each
rectangle (job) Ri let wi be its width and hi be its height. A packing (schedule)
P for instance L is given as a set of pairs P = {(x1, y1), . . . , (xn, ym)}, where
each pair (xi, yi) ∈ R2

≥0 denotes the position of the lower left corner of rectangle
Ri in the strip. Note that in this case the representation of the schedule by a
packing is sufficient since the subset of assigned processors is well-defined by
the first assigned processor. We assume that the lower left corner of the strip
coincides with the origin of a Cartesian system of coordinates. A packing P is
valid if the rectangles do not overlap and xi + wi ≤ 1 for all i ∈ {1, . . . , n}. The
height of packing P is given by h(P) := maxi∈{1,...,n}(yi + hi).

Bounded height. Since we want to divide the solution into a constant num-
ber of slots, we need to know the height of an optimal solution, at least up to
the required accuracy ε′. By using the StripPacking-algorithm of Steinberg [17],
we can find a solution for the StripPacking-instance of height v ≤ 2 OPT,
where OPT is the height of an optimal solution. Let C := {(1 + 0ε′)v/2, (1 +
1ε′)v/2, . . . , (1 + "1/ε′#ε′)v/2}, then there exists a value v∗ ∈ C such that OPT ≤
v∗ ≤ (1 + ε′)OPT. Obviously we only have to consider "1/ε′# + 1 different
candidates to find the right one. For simplicity we divide the height of each
rectangle by v∗, such that the height of an optimal solution for the scaled in-
stance is bounded by 1. In the following we show the existence of an algorithm
that packs all rectangles of a scaled instance into a strip of height at most
(1.5 + ε′). This height bound is sufficient to prove Theorem 1, since rescaling
yields v∗ (1.5 + ε′) ≤ (1.5 + 4ε′)OPT.

Partitioning the set of rectangles. In the following we assume that the
instance is already scaled such that an optimal packing P ∗ has height h(P ∗),
where (1−ε′) < h(P ∗) ≤ 1. Let ε be the largest value of the form ε = 1/(2a) for an
integer a such that ε ≤ ε′

/13. First we create a gap in size between tall and low
rectangles and between wide and narrow restangles by removing middle-sized
rectangles with small total area. Let σ0 := 1, σ1 := ε, and σk := (σk−1)

8/σ3
k−1 for

all k ≥ 2. Define L>1/2 :=
{
Ri ∈ L|hi > (1+ε)/2

}
, and Lk := {Ri ∈ L\L>1/2|wi ∈

(σk, σk−1] or hi ∈ (σk, σk−1]}. Define for each subset L′ ⊆ L the total area of L′

by A(L′) =
∑
Ri∈L′(wihi).

Lemma 1. There exists k ∈ {2, . . . , 4/ε+ 1} such that A(Lk) ≤ ε/2A(L).

Choose the smallest value k satisfying the conditions of Lemma 1 and define δ :=
σk−1 and s := 8/δ3. For simplicity we define the following sets and call rectangles
belonging to each set accordingly: Lta := {Ri ∈ L|hi > δ} tall rectangles,
Llo := {Ri ∈ L|hi ≤ δs} low rectangles, Lwi := {Ri ∈ L|wi > δ} wide rectangles,
and Lna := {Ri ∈ L|wi ≤ δs} narrow rectangles. We will denote the subset of
low-wide rectangles in the following with Llo-wi := Llo ∩ Lwi.

Rounding and shifting tall rectangles. A crucial part of the simple struc-
ture are the positions and heights of the tall rectangles. Let P be an optimal

238 K. Jansen and R. Thöle

0

iδ2
(i + 1)δ2

1

(a) Original packing

1 + 2δ

tall rectangles

low-wide rectangles

container

(b) Packing with simpler structure

Fig. 1. Rounding and shifting rectangles

packing for all rectangles. First we increase the height of each tall rectangle
Ri ∈ Lta to the nearest multiple of δ2. Then, we shift the rectangles up until all
rectangles Ri ∈ Lta have their corners placed at points (x′i, y

′
i), such that there

exists some integer ki with x′i = xi and y′i = kiδ
2. Since tall rectangles have

height at least δ, these transformations increase the total height of packing P
by at most 1/δ(2δ2) = 2δ (see Fig. 1).

Containers for low rectangles. Since we want to increase only the height
but not the width of the packing, we cannot round up the width of the wide
rectangles. Instead we introduce containers, into which all low-wide (Llo-wi) and
a subset of the low-narrow rectangles will be packed. Consider a scaled and
shifted packing P . Draw horizontal lines spaced by a distance δ2 across the
strip (due to the rounding and shifting, the lower and upper sides of the tall
rectangles lie along two of these lines). These lines split the strip into at most
(1+2δ)/δ2 horizontal rectangular regions that we call slots (see Fig. 1). A container
is a rectangular region inside a slot whose left boundary is either the right side
of a tall rectangle or the left side of the strip, and whose right boundary is
either the left side of a tall rectangle or the right side of the strip (see Fig. 1).
In the following we consider only containers that contain at least one low-wide
rectangle. As in [10], we can show, that a packing can be transformed such that
all non-empty containers have width wmax(C) + iδs for i ∈ N, where wmax(C) is
the sum of the width of at most 1/δ low-wide rectangles. This limits the number
of possible widths for the containers; however, some of the rectangles previously
packed in C might not fit anymore, but the total area of all non-fitting rectangles
is bounded by δ.

2.2 Pre-positioning

The next step is to determine the positions of the containers and of a subset of the
tall rectangles (critical rectangles). On the one hand we have to make sure that
all discarded rectangles have height bounded by 1/2. On the other hand we have to

Approximation Algorithms for Scheduling Parallel Jobs 239

make sure that the pre-positioning has a polynomial running time. In particular,
we can only enumerate the positions of a constant number of tall rectangles and
containers. From here on let C be the set of containers and let L′ta ⊆ Lta \L>1/2

be the subset of K tall rectangles with largest area for some constant K (see
full version), and let L′ = C ∪ L′ta. Note that |C| ≤ (1+2δ)/δ3 ≤ 2δ−3 and thus
|L′| ≤ K+2δ−3. In order to determine the positions of the critical rectangles, first
we enumerate assignments of the K tall rectangles L′ta and of the containers C to
slots and snapshots. Then we describe a dynamic program that assigns the tall
rectangles from L>1/2 to snapshots without enumerating all possibilities. Using
these assignments we set up a linear program (LP). If this LP has a solution,
we have found a fractional solution for the packing problem. Furthermore, if
almost all low-wide rectangles fit into the containers, we show that the fractional
solution can be transformed into a feasible integral solution by discarding some
rectangles with small total area.

Slot assignment. We split again the strip into horizontal slots of height δ2.
A slot assignment for L′ is a mapping f : L′ →M where M = {1, . . . , (1+2δ)/δ2}
corresponds to the set of slots. For a given slot assignment f the set of slots that
will be used for packing a rectangle Rj ∈ L′ is given by {f(Rj), . . . , f(Rj) +
γj − 1}, where γjδ

2 = hj is the height of rectangle Rj (in particular γj = 1
if Rj is a container). Since the number of different mappings f is bounded by
O(n(1+2δ)/δ2), we can consider all mappings f in polynomial time and for each
mapping try to find a packing for L that is consistent with f .

Snapshots. In order to handle the x position of the rectangles we introduce
snapshots. We use the snapshots to model the relative horizontal positions of all
rectangles in L′. Consider a packing for L′. Trace vertical lines extending the
sides of the rectangles in L′ (see Fig. 2). The region between two of these adjacent
lines is called a snapshot. If we index all snapshots from left to right, every
rectangle Rj ∈ L′ appears in a sequence of consecutive snapshots Sαj , . . . ,Sβj ,
where αj denotes the index of the first snapshot in which rectangles Rj occurs
and βj denotes the index of the last snapshot. In Fig. 2 rectangle R1 is contained
in snapshot S1, while R2 is contained in snapshots S2, S3, S4, thus α1 = 1, β1 =
1, α2 = 2 and β2 = 4. More formally, an assignment of rectangles in L′ to
snapshots is given by two functions α, β : L′ → {1, . . . , g}, where g denotes the
number of snapshots. Since |L′| ≤ K + 2δ−3 the maximum number of snapshots
g in any packing for L′ is at most g ≤ 2(K + 2δ−3), and thus the number of
different assignments of L′ to snapshots is polynomial, O(g2|L′|).

Dynamic program for L>1/2-rectangles. In general we cannot consider all
assignments of rectangles in L>1/2 to snapshots, because there might be up to
n rectangles in L>1/2. In the following we introduce an algorithm that allows
us to enumerate a subset of all snapshot assignments for L>1/2 such that the
size of the subset is polynomially bounded in n and there exists one snapshot
assignment in this subset that is equivalent (up to renaming) to a snapshot
assignment induced by an optimal packing. Rectangles in L>1/2 that intersect
more than one snapshot are handled separately, since our packing algorithm can
only be used for tall rectangles that do not intersect more than one snapshot.

240 K. Jansen and R. Thöle

t0 t1 t2 t3 t4 t5 t6t7t8

R1

R2

tall rectangles ∈ L′

container (∈ L′)

rectangles ∈ L>1/2

Fig. 2. Packing of rectangles and containers and induced snapshots

We guess the set of tall rectangles intersecting snapshot boundaries, which can
be done in polynomial time since there are at most g of these rectangles. In
order to pack these rectangles we simply add them to L′ (the set of K tall
rectangles and containers). This modification increases the size of L′ such that
|L′| ≤ 3(K + 2δ−3), but this does not increase the vector sizes, that we define in
the following, since the snapshots introduced by these added rectangles obviously
do not allow further L>1/2 rectangles to be packed in them (height > 1/2). Note
that, due to the scaling of all tall rectangles and due to the height bound of 1
for all rectangles, L>1/2 can be partitioned into (1−ε)/(2δ2) < 1/(2δ2) sets L

>1/2
i

(i ∈ I := {(1+ε)/(2δ2) + 1, . . . , 1/δ2}), where each set L
>1/2
i contains all rectangles

of height si := iδ2, that is L
>1/2
i := {Rj ∈ L>1/2|hj = si}. Consider a packing

of all rectangles and snapshots as defined above. Then we can define a vector
vi = (vi1, . . . , v

i
g) for each height si, i ∈ I, where vij ∈ {0, . . . ,m} is chosen

such that vij · 1/m is the sum of widths of all rectangles of height si contained in
snapshot Sj and height si. We assume that a rectangle is contained in a snapshot,
if its left side is contained in it. Since the width of the strip is bounded by 1, the
value of every component is bounded by m. Thus, a rough upper bound for the
number of feasible vectors for each height si is given by (m+1)g. The algorithm
to calculate all feasible vectors for a given height si works as follows.

Assume that L
>1/2
i = {R1, . . . , Rki}. Starting with the set V := {(0, . . . , 0)}

we replace in step l ∈ {1, . . . , ki} each vector v ∈ V with all vectors that can be
generated by adding γl := wl ·m to one of its components. After each step remove
all duplicate vectors. Removing all duplicates ensures that after each step the
number of vectors is bounded by (m + 1)g. Using this bound it is easy to see
that the overall running time for height si is bounded by O(g2(m+1)g+2), since
ki = |L>1/2

i | ≤ |L>1/2| ≤ m, and for each step l at most g · (m + 1)g vectors are
generated; furthermore, at most g2(m + 1)g log (m + 1) comparisons are needed
for the removal of duplicate vectors. Obviously the vector vi induced by the
given packing can be found among the generated vectors. Let V i denote the set
of vectors generated for this height class L

>1/2
i .

Approximation Algorithms for Scheduling Parallel Jobs 241

Repeating this computation for every height class L
>1/2
i (i ∈ I) leads to |I| ≤

1/(2δ2) sets of at most (m + 1)g vectors. Since each set contains at least the
null vector and thus each set is not empty, we can build the direct product
V :=

∏
i∈I V

i of these sets. V contains at most ((m + 1)g)1/(2δ2) elements and
each of these elements consists of one vector for each height class. One element
v = (v1, . . . , v|I|) ∈ V corresponds to the vectors induced by the given packing.

In our packing algorithm we try each vector v ∈ V consisting of components
vi, i ∈ I and use these vectors vi to pack the tall rectangles into the snapshots.
Using the described version of the dynamic program results only in (many)
vectors, but for our packing algorithm we also need to know what combination
of rectangles leads to the given width per snapshot. This can be achieved by
extending the dynamic program such that for each vector a component consists
not only of the current width, but also of a set of rectangles. During the vector
generation step, a rectangle is added to this set, if its width is added to the
corresponding width component. Due to this modification the space needed to
store the vectors increases but is still polynomial in n; the runtime of the dynamic
program is not affected significantly.

Linear Program. In this subsection we present a linear program (LP), which
allows us to calculate the width of all snapshots, and thus determine the positions
of all rectangles in L′. We now assume that we have chosen a slot assignment f ,
functions α, β, and v ∈ V consisting of vectors vi of widths for each height class.
Since all low-wide rectangles and a subset of the low-narrow rectangles get packed
into the containers, we do not need to consider them in the LP. For convenience
we call the subset of the low-narrow rectangles that are packed into the containers
LClo-na, and the remaining low-narrow rectangles Llo-na. We construct LClo-na by
greedily taking low-narrow rectangles as long as their total area plus the total
area of all low-wide rectangles does not exceed the total area of the containers.
We discard the first low-narrow rectangle that exceeds the total area in order
to assure that enough space can be reserved for the remaining rectangles in
the following LP. This discarded rectangle has area at most δ2s, in fact we will
show, that this discarded rectangle can be packed along with the rectangles from
Llo-na (see Sect. 2.3). We will denote the total area of the remaining rectangles
from Llo-na as A(Llo-na). Since f, α, β are fixed, we can calculate the set of free
slots (i.e. the slots not occupied by L′ rectangles) for each snapshot. These free
slots will be used for packing the remaining tall rectangles and for the small
rectangles from Llo-na. In order to formulate constraints to ensure that enough
space is reserved for these rectangles we introduce configurations. We define a
configuration as a pair (SN, Π), where SN is a subset of the free slots reserved for
rectangles from Llo-na and Π is a partition of the remaining free slots into sets
of consecutive slots reserved for rectangles from Lta \L′. Every subset F ∈ Π of
cardinality l = |F | is reserved to pack rectangles from Lta of height lδ2. Let nj
denote the number of different configurations for each snapshot Sj and let cji :=
(SNji , Π

j
i) denote the different configurations for snapshot Sj , i ∈ {1, . . . , nj}.

Let nji (l) := |{F ∈ Πj
i : |F | = l}| denote the number of sets of cardinality l

in Πj
i . The total width of all rectangles in Lta \ L′ of height l is denoted as

242 K. Jansen and R. Thöle

Wl. The variables xji , j ∈ {1, . . . , g}, i ∈ {1, . . . , nj} are used to determine the
width of each configuration cji . Additional variables tj , j ∈ {1, . . . , g}, are used
to determine the width of each snapshot Sj .

LP(f, α, β, v) : t0 = 0, tg ≤ 1
tj ≥ tj−1 ∀j ∈ {1, . . . , g}
tβj − tαj = wj ∀Rj ∈ L′

∑nj

i=1
nji (l)x

j
i ≥

1
m

vlj ∀j ∈ {1, . . . , g}, l ∈ I
∑g

j=1

∑nj

i=1
nji (l)x

j
i ≥Wl ∀l ∈M

∑g

j=1

∑nj

i=1
xji |SNji |δ2 ≥ A(Llo-na)

∑nj

i=1
xji ≤ tj − tj−1 ∀j ∈ {1, . . . , g}

xj1, . . . , x
j
nj
≥ 0 ∀j ∈ {1, . . . , g}

Since g, nj, |L′|, |M |, |I| are independent of n, this linear program can be solved
in polynomial time. If LP(f, α, β, v) has no feasible solution we construct a new
LP with a new combination of f, α, β, v.

2.3 Packing the Rectangles

Due to the page limit we present here only a brief outline of the actual packing
of the rectangles. A complete description is given in the full version of this
paper. A crucial step is to sort and adopt the configurations. On the one hand,
this allows us to pack the tall rectangles L>1/2 and on the other hand, this
assures that the fragmentation of the space reserved for low-narrow rectangles is
limited. The pre-positioned rectangles are packed according to the LP-solution.
The remaining tall rectangles get fractionally packed in a greedy manner. We
pack the containers using a modified version of the algorithm by Kenyon &
Rémila [12]. The remaining low-narrow rectangles are packed using a NFDH
approach. Overall we can show that almost all rectangles can be packed. In
particular, the remaining rectangles have a small total area and maximum height
bounded by (1+ε)/2 and thus can be packed in an additional strip with height
bounded by ε + 9δ + (1+ε)/2. Stacking these strips on top of each other leads to
a strip with total height bounded by 1.5 + ε′.

3 Non-contiguous Parallel Job Scheduling

In the following we construct a polynomial time approximation scheme (PTAS)
for the non-contiguous machine indices case. The first steps for this algorithm are
basically the same as before. We transform the problem into a packing problem,
guess the height of an optimal schedule in order to scale the instance, such
that the height of an optimal solution for the scaled instance is bounded by 1.

Approximation Algorithms for Scheduling Parallel Jobs 243

Instead of the 2-approximation algorithm for the StripPacking-problem, we use a
2-approximation algorithm for this Scheduling-problem by Garey & Graham [7].
We again partition the rectangles, but for this setting it is sufficient to partition
the set into tall, low-narrow, and low-wide rectangles, and we reduce the search
space by scaling and shifting the tall rectangles in the same manner as before (see
Sect. 2.1). After this step the algorithms differ significantly. We use a dynamic
program to find a distribution of the tall rectangles among the slots. Then we
pack the tall rectangles according to the distribution in a canonical way. The
remaining space is merged into one bin per slot. We pack the low rectangles into
these bins using again the modified Kenyon & Rémila algorithm. Then, creating
a feasible packing can be done by a simple greedy algorithm.

Partitioning the set of rectangles. Let ε′ denote the requested accuracy
and let ε ≤ ε′

/9 be the largest value of the form ε = 1/a for some integer value
a. Let σ0 := 1, σ1 := ε, and σk := σ3

k−1/2·72 for all k ≥ 2. Define Lk := {Ri ∈
L|hi ∈ (σk, σk−1] or wi ∈ (σk, σk−1]}. It is easy to see, that there exists k ∈
{2, . . . , 2/ε + 1} such that A(Lk) ≤ εA(L) (see Lemma 1). Choose the smallest
value k ∈ {2, . . . , 2/ε + 1} such that A(Lk) ≤ εA(L), and let δ := σk−1, and
γ := σk. Define Lta := {Ri ∈ L|hi > δ} tall rectangles, Llo-wi := {Ri ∈ L|hi ≤
γ, wi > δ} low-wide rectangles, and Llo-na := {Ri ∈ L|hi ≤ γ, wi ≤ γ} low-
narrow rectangles.

Shifting and Rounding. Shifting and rounding is done the same way as
before. Again this leads to the existence of a packing with height bounded by
1 + 2δ (see Sect. 2.1).

Dynamic program for tall rectangles. Draw horizontal lines spaced by a
distance δ2 across the strip starting with the x-axis as first such line. Note that,
due to the rounding and shifting the lower side of each tall rectangle corresponds
to one of these horizontal lines. We say that rectangle Ri is in slot j if its lower
bound corresponds to the jth horizontal line. Since we cannot enumerate all
possible assignments of tall rectangles to slots in polynomial time, we use a
dynamic programming approach. Due to the height bound of 1 and the rounding,
we can partition the set of tall rectangles Lta into height classes Lita := {Rj ∈
Lta|hj = iδ2}, i ∈ I := {1, . . . , 1/δ2}. Note that we partition all tall rectangles
in this case, not only L>

1/2. For each height class i ∈ I we define a vector
vi = (vi1, . . . , v

i
(1+2δ)/δ2), such that each entry vij denotes the total width of all

tall rectangles with height iδ2 in slot j ∈ J := {1, . . . , (1+2δ)/δ2}. The algorithm
to calculate all feasible vectors for a given height class i works as follows. Assume
that Lita = {R1, . . . , Rki}. Starting with a set V i := {(0, . . . , 0)} we replace in
step l ∈ {1, . . . , ki} each vector v ∈ V i with all vectors that can be generated by
adding wl to one of its components. After each step remove all duplicate vectors.
Similar arguments as in Sect. 2.2 show that the number of vectors generated and
the running time of the algorithm is polynomially bounded in m. After repeating
this computation for each height class Lita, we can again build the direct product
of all sets of vectors V :=

∏
i∈I V

i and again there is an element v ∈ V that
corresponds to the vectors of widths induced by an optimal solution. Analogous
to the first case, we extend our dynamic program such that for each component

244 K. Jansen and R. Thöle

(a) First slot (b) Second slot (c) Third slot

. . .

(d) (e) All slots

Fig. 3. Canonical packing for tall rectangles

Fig. 4. Split bins to pack slots

of each vector a set of associated rectangles is stored. Let L(vij) be this set of
rectangles associated with vij . We call an element v ∈ V feasible, if for each slot
the total width of all rectangles intersecting this slot and of all rectangles in
this slot is not greater than m. In contrast to the previous case not all elements
v ∈ V are feasible.

Canonical packing for the tall rectangles. Given a feasible vector v ∈ V ,
we can pack all tall rectangles using the following simple algorithm (see Fig. 3).
The algorithm starts with the first slot and packs left aligned all tall rectangles
L(vi1), i ∈ I into it. This is obviously possible, since the vector is feasible. Now
assume that we have packed all slots prior to slot j. The free space in slot j
is sufficient to pack all rectangles assigned by vij , i ∈ I, since v is feasible, and
furthermore, the free space in this slot is also free in all following slots. This
allows us to pack all rectangles given by vij left aligned into slot j.

Bins for the low rectangles. Given a feasible combination of vectors v ∈ V ,
the total width for each slot that is not occupied by tall rectangles is fixed. Let
wfj denote the total width of the free space for slot j and define for each slot j

a bin Cj of width wfj and height δ2. If we find a packing of all low rectangles
into these bins, and know the positions of the tall rectangles, we can simply split
the bins into slices of width 1/m and add them successively left aligned to the
free space of each corresponding slot (see Fig. 4). Since there exists a packing
for all rectangles into the strip, the total area of the bins is not smaller than
the total area of the remaining low-wide rectangles together with the low-narrow
rectangles. We can show, that almost all rectangles are packable using a modified
version of the algorithm by Kenyon & Rémila [12].

Analysis. Overall we discarded rectangles with total area bounded by ε+2δ.
Packing these rectangles using NFDH and due to the fact the all these rectan-
gles have height bounded by δ yields an additional height of 2(ε+ 2δ)+ δ. Thus,

Approximation Algorithms for Scheduling Parallel Jobs 245

the height of the resulting strip is bounded by (1+2δ)+(2ε+5δ)≤ 1+9ε ≤ 1+ε′,
if we stack these to strips on top of each other. Thus, we can prove Theorem 2,
since rescaling yields v∗(1 + ε′) ≤ (1 + 3ε′)OPT.

References

1. Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: Scheduling independent
multiprocessor tasks. Algorithmica 32(2), 247–261 (2007)

2. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on
Scheduling: From Theory to Applications. Springer, Heidelberg (2007)

3. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Comput-
ing 9(4), 808–826 (1980)

4. Decker, T., Lücking, T., Monien, B.: A 5/4-approximation algorithm for scheduling
identical malleable tasks. Theor. Comput. Sci. 361(2), 226–240 (2006)

5. Drozdowski, M.: Scheduling multiprocessor tasks – an overview. European Journal
of Operational Research 94(2), 215–230 (1996)

6. Du, J., Leung, J.Y.-T.: Complexity of scheduling parallel task systems. SIAM J.
Disc. Math. 2(4), 473–487 (1989)

7. Garey, M.R., Graham, R.L.: Complexity results for multiprocessor scheduling un-
der resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

9. Jansen, K., Porkolab, L.: Linear-time approximation schemes for scheduling mal-
leable parallel tasks. Algorithmica 32(3), 507–520 (2002)

10. Jansen, K., Solis-Oba, R.: New Approximability Results for 2-Dimensional Packing
Problems. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 103–
114. Springer, Heidelberg (2007)

11. Johannes, B.: Scheduling parallel jobs to minimize the makespan. Journal of
Scheduling 9(5), 433–452 (2006)

12. Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research 25, 645–656 (2000)

13. Leung, J.Y.-T. (ed.): Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. Chapman and Hall/CRC (2004)

14. Ludwig, W., Tiwari, P.: Scheduling malleable and nonmalleable parallel tasks. In:
Proc. 5th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 167–176 (1994)

15. Mounie, G., Rapine, C., Trystram, D.: A 3
2 -approximation algorithm for scheduling

independent monotonic malleable tasks. SIAM Journal on Computing 37(2), 401–
412 (2007)

16. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van
Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

17. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal of Computing 26(2), 401–409 (1997)

18. Turek, J., Wolf, J.L., Yu, P.S.: Approximate algorithms for scheduling parallelizable
tasks. In: Proc. 4th ACM Symp. on Parallel Alg. and Architectures (SPAA), pp.
323–332 (1992)

A PTAS for Static Priority Real-Time

Scheduling with Resource Augmentation

Friedrich Eisenbrand� and Thomas Rothvoß

Institute of Mathematics
École Polytechnique Féderale de Lausanne, 1015 Lausanne, Switzerland

{friedrich.eisenbrand,thomas.rothvoss}@epfl.ch

Abstract. We present a polynomial time approximation scheme for the
real-time scheduling problem with fixed priorities when resource augmen-
tation is allowed. For a fixed ε > 0, our algorithm computes an assign-
ment using at most (1+ε)·OPT +1 processors in polynomial time, which
is feasible if the processors have speed 1 + ε. We also show that, unless
P = NP , there does not exist an asymptotic FPTAS for this problem.

1 Introduction

In this paper, we are concerned with a scheduling problem described by Liu
and Layland [11], which has received considerable attention in the real-time and
embedded-systems community. Here one is given a set of tasks T = {T1, . . . , Tn},
where each task T is characterized by two positive values, its period p(T) and
its running time c(T). The task T releases a job requiring running time c(T) at
each integer multiple of its period.

c(T1) = 1
p(T1) = 2

c(T2) = 2
p(T2) = 5

� � �

0 1 2 3 4 5 6 7 8 9 10

If several tasks T ′ ⊆ T are assigned to one processor, then this assignment is
feasible if each job, being released by some task T at time i · p(T) is finished at
time (i+1)·p(T), whereby jobs stemming from tasks with smaller period preempt

� Supported by Deutsche Forschungsgemeinschaft (DFG) within Priority Programme
1307 ”Algorithm Engineering”.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 246–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A PTAS for Static Priority Real-Time Scheduling 247

those stemming from tasks with larger period. Ties are broken in an arbitrary
but fixed way. In this case, we also speak about an assignment in which each
task is feasible itself. Liu and Layland [11] have shown that this rate-monotonic
scheduling is optimal, meaning if there is a feasible priority assignment, then the
one in which the priority of a task T equals 1/p(T) is also feasible.

The picture above shows a feasible set T ′ = {T1, T2} of tasks. The arrows
indicate the points in time, where the two tasks T1 and T2 release jobs. At time
0, the first job of T1 as well as the first job of T2 are released. Since the period
of T1 is smaller than the period of T2, the first job of T1 is executed, until it is
finished at time 1. Now the first job of T2 is executed, but interrupted by the
second job of T1 at time 2. The execution of the first job of T2 is resumed at
time 3 and finished at time 4. Notice that the processor is idle for one time unit
at time 9 and that the schedule repeats at the least common multiple of the
periods which is 10. All jobs finish in time. The set T ′ is feasible.

The static-priority real-time scheduling problem is now to determine a parti-
tioning of a task-set T into T1, . . . , Tk, such that each Ti is a feasible set of tasks
for one processor and the number k of processors is minimized. In the real-time
literature, this problem is also known as the static-priority real-time scheduling
problem with implicit deadlines, since the deadlines are implicitly given by the
periods of the tasks.

Related Work. If the periods p(T) of all tasks in T are one, then the scheduling
problem is simply the well known bin packing problem. This is because a set of
tasks T ′ ⊆ T would be feasible on one processor if and only if the sum of their
running times is bounded by one. Recall that for bin packing an asymptotic
PTAS [4] and even an asymptotic FPTAS exists [8].

The utilization of T ′ is defined as util(T ′) =
∑
T∈T ′ c(T)/p(T). If T ′ is fea-

sible, then the utilization util(T ′) is at most 1. However, T ′ can be infeasible,
even if util(T ′) < 1. Consider, for example, again the task system T ′ depicted
on the cover page. If we increase the running time of T1 by any ε > 0, then
the set T ′ is no longer feasible and its utilization is util(T ′) = (9 + 5 · ε)/10.
Liu and Layland [11] have shown that T ′ is feasible, if util(T ′) is bounded by
n′(21/n′ − 1), where n′ = |T ′|. This bound tends to ln 2 and the condition is
not necessary for feasibility, as the example with all periods equal to one shows.
Stronger, but still not necessary conditions for feasibility are given in [10,2,12].

It is a longstanding open problem, whether there exists a polynomial time
algorithm which decides whether a set T ′ of tasks is feasible on one processor.
A first result in this direction using resource augmentation was presented by
Fisher and Baruah [5]. In their paper, the authors show that one can efficiently
decide whether a set of tasks is feasible, or infeasible on a faster processor of
speed 1 + ε. Our approximation scheme can be understood as an extension of
their algorithm, which additionally approximates the task-distribution problem.

The sufficient condition util(T ′) � n′(21/n′ − 1) allows to use first-fit and
next-fit algorithms as in the case of bin packing. The currently best ratio for
such strategies is 7/4 due to [10]. We refer to [3] for a survey of approximation
algorithms based on first-fit and next-fit and to the article [1] for an overview

248 F. Eisenbrand and T. Rothvoß

on complexity issues of real-time scheduling. The literature on approximation
schemes, especially in scheduling, is extensive. We refer to [13] for a recent ac-
count.

Results. We show that, for each ε > 0 there exists a polynomial time algorithm
which computes a partitioning using at most (1 + ε) · OPT (T) + 1 subsets.
Each subset is feasible on a processor of speed 1 + ε. Here OPT (T) denotes
the minimum number of processors to feasibly schedule T . Our result is the
first PTAS for the real-time scheduling problem with resource augmentation.
Furthermore we show that real-time scheduling is harder to approximate than
bin packing. Unless P = NP , there does not exist an algorithm which has an
additive gap of O(n1−ε) for any fixed ε > 0. This implies that there does not exist
an asymptotic FPTAS for real-time scheduling without resource augmentation.

The main insights which lead to our PTAS with resource augmentation are
twofold.

i) Apart from the standard rounding of the instance, we describe the concept of
local feasibility. The effect of far-scattered periods prevents the application
of bin packing techniques. The concept of local feasibility considers these
effects only for those tasks, whose periods are close or local to the period of
the task in consideration. A local feasible schedule is feasible on a slightly
faster machine.

ii) In bin packing, small items are first discarded from the instance and then
distributed with first-fit. Since the utilization is not a good lower bound
for the real-time scheduling problem, a similar approach does not work. We
provide a much different technique to treat small tasks. We re-set periods
and group small tasks with the same period into one large task. A proba-
bilistic argument shows that the optimum of the modified instance does not
grow to much.

2 Preliminaries and Simplifying Assumptions

In [11] it is shown that a set T of tasks is feasible on one processor, if the first
job of each task T ∈ T finishes before its period p(T), or in other words, if the
response time of each task is smaller than its period.

This response time r of a task T is calculated as follows. A task T ′ with
higher priority interrupts T exactly "r/p(T ′)# many times. Each time, this task
consumes its processing time c(T ′). Therefore r is the smallest fix-point of the
response function

fT (r) = c(T) +
∑

T ′∈T \{T}:p(T ′)�p(T)

"r/p(T ′)# · c(T ′). (1)

The task system is feasible if there exists for each T a number r∗T � p(T) with
fT (r∗T) � r∗T . Notice that one has for each a ∈ N>0 fT (a·r) � a·fT (r). This shows
that the task system T is feasible if and only if there exists an r∗T for each T ∈ T

A PTAS for Static Priority Real-Time Scheduling 249

with p(T)/2 � r∗T � p(T) and fT (r∗T) � r∗T . The vector r∗ = (r∗T1
, . . . , r∗Tn

) is a
certificate of feasibility of the task-system T = {T1, . . . , Tn}. Similarly, we say
that the task-system is feasible on a processor of speed β > 0 if there exists a
vector r∗ = (r∗T1

, . . . , r∗Tn
) with p(T)/2 � r∗T � p(T) and fT (r∗T) � β · r∗T . The

next Lemma will be used several times in the sequel. A proof can be found in
the full version of this paper.

Lemma 1. Let T be a set of tasks, then the following holds.

i) If util(T) � γ with γ > 0, then T is feasible on a processor of speed
(1/ ln(2)) · γ.

ii) util(T) � OPT (T) � (2/ ln(2)) · util(T) + 1.
iii) If T is feasible on a processor of speed β and a second set T ′ has utilization

at most ε, then T ∪ T ′ is feasible on a processor of speed β + 2ε.

Simplifying Assumptions. The number 1/ε can be assumed to be an integer.
Furthermore, we round each period up to the next power of (1+ ε). If a solution
of this rounded instance is feasible, then it is also feasible for the original instance
on a processor of speed (1 + ε).

Next, choose k ∈ {0, . . . , (1/ε)−1} such that the utilization uk of tasks, having
their period in an interval [(1/ε)i, (1/ε)i+1[with i ≡ k (mod 1/ε), is minimized.
Clearly uk � ε · util(T). Thus we may remove all tasks, contributing to uk and
schedule them in a first-fit manner on (2/ ln 2) ·OPT + 1 additional processors,
using Lemma 1.ii). This process yields a partitioning of the tasks into blocks
B1, . . . ,Bμ with the following properties.

i) If pi and pj are periods of tasks in Bi and Bj with i < j, then (1/ε) ·pi � pj .
ii) The number of different periods of tasks in one block Bi is bounded by

((1/ε)− 1) · log1+ε(1/ε) � 1/ε3 which is a constant.

3 Real-Time Scheduling Is Harder Than Bin Packing

Due to its relation to bin packing, a natural question to ask at this point is
whether real-time scheduling can be approximated as well as bin packing. The
algorithm of Karmarkar and Karp [8] computes a solution to the bin packing
problem in polynomial time, which has an additive approximation guarantee.
More precisely, given an instance I the algorithm computes a solution APX(I)
with APX(I) − OPT (I) � O(log2(OPT (I)). An analogous result cannot hold
for real-time scheduling unless P = NP .

Theorem 2. If P = NP , there is no ε > 0 such that there exists a polynomial
algorithm which computes an approximate solution APX(T) for each instance
T with

APX(T)−OPT (T) � |T |1−ε.

250 F. Eisenbrand and T. Rothvoß

Proof. The proof of this theorem is by reduction from 3-PARTITION. An in-
stance of 3-PARTITION is a multiset of 3 · n numbers a1, . . . , a3n ∈ R+. The
problem is to decide, whether this set can be partitioned into triples, such that
the sum of the numbers of each triple is exactly one. 3-PARTITION is strongly
NP-complete see [6]. The idea is now to construct a set of tasks T = T1∪· · ·∪Tk
such that the following holds.

a) All tasks in Tj have the same period and Tj consists of 3n tasks with utiliza-
tion a1,a3n respectively.

b) If a subset T ′ ⊆ T contains 3 tasks and the periods of the tasks in T ′ are
not all equal, then T ′ is infeasible.

With such a construction at hand one needs k · n processors if 3-PARTITION
has a solution while one needs at least n · k + k/2 processors if 3-PARTITION
does not have a solution. If there exists an algorithm which computes a solution
APX(T) with APX(T)−OPT (T) � (3 ·k ·n)1−ε for some ε > 0, then one could
use it to test whether 3-PARTITION has a solution, since (3 · k · n)1−ε < k/2
for k = Ω(n1/ε).

What remains to show, is how to construct such an instance T = T1∪· · ·∪Tk
as above. If we define new weights a′i = m/3+ai

m+1 , then this new instance of 3-
PARTITION is equivalent to a1, . . . , a3n, since three new weights sum up to one
if and only if the corresponding old weights sum up to one. This shows that we
can assume that the weights a1, . . . , a3n are between 1/3− 1/m and 1/3 + 1/m
for an arbitrary m ∈ Z+.

Next we consider the periods pj = 1+ j/(4 ·k) for j = 1, . . . , k. Those periods
are between 1+1/(4 ·k) and 1+1/4. The group Tj consists now of tasks having
period pj and utilization a1, . . . , a3n respectively, which implies a). To show b),
consider a set T ′ = {T1, T2, T3} of three tasks, where the period of T3 is strictly
larger than the period of T1. We argue that T3 is infeasible, if T ′ is scheduled
on one processor. Consider a fix-point r of the response function of T3

r = c(T3) +
⌈

r

p(T1)

⌉

c(T1) +
⌈

r

p(T2)

⌉

c(T2). (2)

Since c(T3) = util(T3) · p(T3) one has r � c(T3)/(1 − util{T1, T2}) which im-
plies that r � p(T3)(1 − 9/(m + 6)). Notice that p(T3) � p(T1) + 1/(4k), thus
p(T3)/p(T1) � 1 + 1/(4k · p(T1)) � 1 + 1/(5k). If one chooses m = 90k, then
r/p(T1) > 1 and it follows that " r

p(T1)# in (2) is at least 2. This means that
r � c(T3) + 2c(T1) + c(T2) � 4(1/3 − 1/m) which is larger than 5/4 � p(T3).
This implies that T3 is infeasible. ��

Corollary 3. Unless P = NP , there does not exist an asymptotic FPTAS for
real-time scheduling.

Proof. An asymptotic FPTAS [7] is an algorithm, whose running time is polyno-
mial in n and 1/ε and which yields a solution of cost at most (1+ε)·OPT+p(1/ε)
for some polynomial p. Assume that such an asymptotic FPTAS exists. We

A PTAS for Static Priority Real-Time Scheduling 251

assume w.l.o.g. that p(1/ε) = ε−α for a fixed exponent α > 0. Then with
ε = (1/n)1/(2α) the algorithm computes a solution with

APX −OPT � ε ·OPT + (1/ε)α � n1−1/(2α) + n1/2,

which is a contradiction to Theorem 2. ��

4 Local Feasibility and an Algorithm to Schedule Large
Tasks

Consider the response function (1) for a task T . For local feasibility of T , the
tasks T ′ with p(T ′) � ε · p(T) contribute only with their utilization to the
response function and the rounding operation in (1) is ignored. Thus the local
response function f localT (r) is defined as

c(T) + r · util ({T ′ : p(T ′) � ε · p(T)}) +
∑

T ′∈T \{T}
ε·p(T)<p(T ′)�p(T)

"r/p(T ′)# · c(T ′). (3)

The task T is local feasible, if there exists a number p(T)/2 � r∗T � p(T)
with f localT (r∗T) � r∗T . In other words, the contribution of the rounding operation
is only taken into account for tasks which are close or local to the task in
consideration. The other tasks contribute only with their utilization.

We now show that, if an assignment is locally feasible (each task is locally
feasible), then it is feasible on processors of speed 1+ 2ε. We can therefore relax
feasibility to local feasibility, which will later allow us to optimally distribute
large tasks.

Lemma 4. If a set of tasks T is local feasible on one processor, then it is feasible
on a processor of speed 1 + 2ε.

Proof. Let r∗T be the certificate for local feasibility of T ∈ T , i.e., one has
p(T)/2 � r∗T � p(T) and f localT (r∗T) � r∗T . It is enough to show that fT (r∗T) �
(1 + 2 ε)f localT (r∗T) holds. The difference between fT (r∗T) and f localT (r∗T) can be
bounded by

∑

T ′: p(T ′)�ε·p(T)

c(T ′).

Since 1 � 2 ε · r∗T /p(T ′) this difference is bounded by

2 ε r∗T ·
∑

T ′∈T :p(T ′)�ε·p(T)

c(T ′)/p(T ′) � 2 ε · f localT (r∗T)

and the result follows. ��

252 F. Eisenbrand and T. Rothvoß

4.1 A Dynamic Program to Schedule Large Tasks

We describe now an algorithm which optimally distributes a set of tasks in in
polynomial time if we additionally assume that each utilization is bounded from
below by the constant ε and an increase of speed by 1 + O(ε) is allowed.

If we round all running times c(T) down such that the utilization of T becomes
the nearest integer multiple of ε2, then due to the reason that each c(T)/p(T) is
at least ε, a feasible schedule for the new task system yields a feasible assignment
for the original task system, if the machines have speed 1 + O(ε). Therefore we
can also assume that each task T has utilization c(T)/p(T) ∈ ε2Z.

Let B1, . . . ,Bμ be the block-partitioning of the task system T = {T1, . . . , Tn}
(see section 2). How many different types of tasks, can be present in one block
Bi? The number of different periods of Bi is bounded by 1/ε3. The number
of different utilization-values of tasks in T is bounded by 1/ε2. Therefore, the
number of different types of tasks in each block is bounded by a constant. The
tasks are distributed with a dynamic programming algorithm to compute an
optimal assignment of T such that each task is locally feasible. This is done,
block-wise.

A vector a = (a0, ..., a1/ε2) with ai ∈ Z is called a configuration, whereby ai
denotes the number of processors whose utilization is exactly i · ε2. We require
that

∑
i ai = n. Consider the following table entries.

A(a, �) =

⎧
⎨

⎩

1 if tasks in B1, ...,B� can be scheduled in a locally feasible way
such that utilization bounds of configuration a are met

0 otherwise

Note that a has fixed dimension, thus the table has a polynomial number of en-
tries. We now describe, how to compute A(a, �) efficiently. Let b = (b0, . . . , b1/ε2)
be a processor configuration from a distribution of the tasks B1, . . . ,B�−1. Then
LocalRTS(B�, b, a) is defined to be 1, if the tasks in block B� can be additionally
distributed among the processors, such that the bounds of configuration a are
met. The base cases are

A(a, 1) = LocalRTS(B1, (n, 0, ..., 0), a)

For all � > 1 note that A(a, �) = 1 if and only if there exists a b ∈ Z1/ε2+1 with
0 � bi � ai for all i and

A(b, �− 1) = 1 and LocalRTS(B�, b, a) = 1

After computing all entries, the optimal number of processors can be read out
of the table.

It remains to show, how to determine LocalRTS efficiently. The block B� has
only a constant number of different task-types, each having a utilization, which
is lower-bounded by a constant. Suppose that B� has tasks, whose running-
time and period are from the tuples (c1, p1), . . . , (ck, pk). A pattern is a vector
(x1, . . . , xk) ∈ Nk0 which represents a set of tasks with these types of total uti-
lization at most 1 (the set, defined by the pattern, contains xi times task type

A PTAS for Static Priority Real-Time Scheduling 253

(ci, pi)). There is only a constant number of patterns, which can be used to
distribute the tasks in B�. This shows that LocalRTS can be computed in poly-
nomial time with integer programming in fixed dimension [9]. Details of the
model are described in the full version of this paper. We have the following
result.

Theorem 5. Let T = {T1, . . . , Tn} be a set of tasks and let ε > 0 be a con-
stant such that c(T)/p(T) � ε for all T ∈ T . Then we can distribute the tasks
using OPT (T) many processors in polynomial time, such that the tasks on each
processor are feasible if the processors have speed 1 + O(ε).

5 Small Tasks

The well known approximation algorithms for bin packing [4,8] use the fact that
small items of weight at most ε can first be discarded from the instance and then
be added in a first-fit way after the larger items have been packed. If a new bin
had to be opened to pack the small items, then the weight of each bin, except
possibly the last bin, exceeds 1− ε. If m bins are then open, then (m− 1)(1− ε)
is a lower bound on OPT (I) which implies that m � (1 + 2ε)OPT (I) + 1.

For the real-time scheduling problem, an analogous approach to deal with
tasks having small utilization does not work. This is again because a subset of
tasks might be infeasible, even if its utilization only slightly exceeds ln(2). In
this section we describe a tailored procedure to eliminate small tasks. It has two
steps.

I) In a first step, we discard tasks and re-set periods such that the utilization
of each period is at least ε6. Here, the utilization of a period p is the sum
of the utilization of the tasks having period p. The total utilization of the
discarded tasks is bounded by O(ε) · util(T).

II) In a second step we cluster small tasks of the same period into groups, each
of which will be identified into one single task having utilization ε6.

After these discards, re-setting of periods and identification of small tasks, we
obtain a new instance T̃ . If OPT denotes the minimum number of processors to
feasibly schedule T , then T̃ can be scheduled using (1+O(ε))·OPT+1 processors
of speed 1 + O(ε). The next sections describe these two steps in detail.

Periods with Small Utilization

Let p be a period of a task in T . The utilization of this period is the sum of the
utilizations of tasks, having period p

util(p) =
∑

T∈T :p(T)=p

c(T)/p.

Suppose now that B1, . . . ,Bμ is the partitioning of T into blocks and let Bi be the
first block having utilization � ε2. Let j be minimal such that util(Bi∪· · ·∪Bj) �

254 F. Eisenbrand and T. Rothvoß

ε2. If this utilization is larger than ε, then we discard Bi, . . . ,Bj−1 from T .
Otherwise, we re-set the period of each task to an arbitrary value sandwiched
between the smallest and the largest period of a task in Bi ∪ · · · ∪ Bj. Thereby
the utilization of this period is at least ε2. We repeat this procedure until such
a block Bi having utilization ε2 cannot be found anymore. The utilization of the
tasks which are discarded with this procedure is bounded by ε · util(T). With
first-fit, these tasks can be scheduled on O(ε) ·OPT + 1 additional processors.

Define pmin(T) = min{p(T) | T ∈ T } and pmax(T) = max{p(T) | T ∈ T }.
The next lemma shows that re-setting the periods of the tasks in Bi∪· · ·∪Bj to an
arbitrary period in [pmin(Bi∪· · ·∪Bj), pmax(Bi∪· · ·∪Bj)] is a feasible operation,
if we are to run the tasks on machines of speed 1 + O(ε). More precisely, the
lemma implies that, if the tasks could be scheduled on k machines before the
re-setting operation, then they can be scheduled on k machines of speed 1+O(ε)
after the re-setting operation.

Lemma 6. Suppose that T1 ∪ · · · ∪Tk is a feasible task system with the property
that pmax(Ti) � ε·pmin(Tj) whenever i < j. Let I ⊆ {1, . . . , k} be a set of indices i
with util(Ti) � ε and let T ∗ be an instance emerging from T1∪· · ·∪Tk by assigning
for each i ∈ I to each task T ∈ Ti an arbitrary period in [pmin(Ti), pmax(Ti)]
while keeping the utilization of the tasks invariant. The tasks T ∗ are feasible on
a processor with speed 1 + O(ε).

Proof. By Lemma 4 it is enough to show that each such changed task is locally
feasible on a processor of speed 1 +O(ε). For this purpose, suppose that T ∈ Ti
and let T ∗ be the task stemming from T by changing its period. Furthermore
let T ∗i be the changed tasks Ti. Lemma 1.iii) shows that (T \ Ti)∪T ∗i is feasible
on a processor of speed 1 + O(ε). Thus, after changing the periods in Ti only,
the system is feasible on a processor of speed 1 + O(ε).

In particular T ∗ is local feasible on a processor of speed 1 + O(ε). Scaling
the periods in the other sets Tj , j = i leaves the local response function for T ∗

unchanged. This shows the claim. ��

After applying the procedure described above, the situation is now as follows.
Each block of the task system has utilization at least ε2. Choose γ = ε6 and
remove the tasks of all periods having utilization less than γ. Recall that the
number of periods in each block is bounded by 1/ε3, thus we remove a utilization
of at most γ/ε3 = ε3 from each block. Comparing this to the total utilization of
each block, one observes that this removed tasks can be scheduled, using again
O(ε) ·OPT + 1 many extra processors.

Periods with Large Utilization

Each period has now a utilization of at least γ = ε6. Next, we partition T into
Tlarge, T1, . . . , Tq such that Tlarge contains all tasks with utilization at least γ,
the tasks in Ti have the same period pi and γ � util(Ti) � 3 · γ.

The idea is now to treat the tasks in the sets Ti with period pi as one single
task having period pi and utilization util(Ti). By doing so, we lose some flexibility

A PTAS for Static Priority Real-Time Scheduling 255

to distribute small tasks. Those belonging to one group must be assigned to the
same processor. The next theorem establishes that we do not loose too much in
terms of optimality, if we again allow processors of speed 1+O(ε). The theorem
is proved by applying a Chernoff-type argument.

Theorem 7. Let γ = ε6 and let T be a set of tasks which can be partitioned
into subsets Tlarge, T1, . . . , Tq such that the following conditions hold.

a) Tlarge contains all tasks with utilization at least γ.
b) The tasks in Ti have the same period pi and γ � util(Ti) � 3 · γ.

If T ′ denotes the instance stemming from identifying each set Ti as one task with
period pi and running time

∑
T∈Ti

c(T), then for ε � 1
3 one can schedule T ′ on

(1 + O(ε)) ·OPT (T) + 1

machines of speed 1 + O(ε).

Proof. We have to show that there exists a solution which uses at most (1 +
O(ε))OPT (T) + 1 processors of speed 1 + O(ε), in which the tasks of each Ti
are scheduled together on one processor. To do so, consider an optimal schedule
for T which uses the processors P1, . . . , Pk. Clearly, we can identify the tasks
S ⊆ Ti which are assigned to the same processor Pj into one task with period pi
and processing time

∑
T∈S c(T). Therefore, we can assume that each processor

contains at most one task from each set Ti. In the new solution the tasks in
each set Ti are scheduled on one processor. This is done using randomization. If
a processor does not contain a task from Ti, then Ti will not be assigned to it.
Otherwise suppose that T ∈ Ti is assigned to the processor P . The probability
that all tasks in Ti are assigned to P will be util(T)/util(Ti).

For a task T ∈ T let ET be event that fT (r∗T) exceeds (1 + 2ε) · r∗T . We next
show that the probability of ET is bounded by ε. This means that the expected
utilization of the tasks which exceed their deadline even on the faster processors
is bounded by ε · util(T). By removing those tasks and by scheduling them on a
set of new processors in a first-fit manner, we only require an additional number
of at most (2/ ln 2) · ε ·OPT (T) + 1 processors and the result follows.

We show this first for a task T ∈ Tlarge. Suppose T ∈ Tlarge is assigned to
processor P . Let I ⊆ {1, . . . , q} be the set of indices corresponding to the sets Ti
whose tasks Ti on P have higher priority than T . Let T ′large be the set of tasks
in Tlarge that lie on P and have higher priority than T . To bound Pr[ET] we
inspect the response function

fT (r) = c(T) +
∑

T ′∈T ′
large

⌈
r

p(T ′)

⌉

· c(T ′) + r ·
∑

i∈I

pi
r
·
⌈

r

pi

⌉

· c(Ti)/pi.

Since T meets its deadline, there exists a number r∗T with p(T)/2 � r∗T � p(T)
and fT (r∗T) � r∗T . From this, we can conclude that the number ai = pi

r∗
T
· "r∗T /pi#

satisfies 1 � ai � 2.

256 F. Eisenbrand and T. Rothvoß

After randomly redistributing the tasks in T1, . . . , Tq the evaluation of the
response function at r∗T is a random variable of the form

c(T) +
∑

T ′∈T ′
large

⌈
r∗T

p(T ′)

⌉

· c(T ′) + r∗T ·
∑

i∈I
ai ·Xi

where the Xi ∈ {0, util(Ti)} are independent random variables. For X :=
∑

ajXj
one has E[X] � 1. It is sufficient to show that Pr[X � E[x] + ε] � ε. This can
be done with a variant of the Chernoff bound. Choose

α := max
i
{ai · util(Ti)} � 2 · 3ε6 = 6ε6.

A Chernoff-type argument yields, that

Pr[X � E[X] + ε] = Pr
[

X �
(

1 +
ε

E[X]

)

E[X]
]

� e
− 1

6ε6
ε2

3E[X]2
E[X] � ε,

where the last inequality follows from E[X] � 1 and ε � 1/3.
If T ∈ Ti for some i, then the above analysis can be applied after the observa-

tion that c(T) grows at most up to 3 · γ · p(T). This can be bounded by 6 · γ · r∗T
which is bounded by ε · r∗T . ��

By combining the treatment of periods with small utilization and periods with
large utilization, we obtain the main result of this section.

Theorem 8. Let T be a set of tasks and ε < 1/3. There is a polynomial time
algorithm which discards a subset T ′ with util(T ′) � O(ε) · util(T), constructs
an instance T̃ such that each task of T̃ has utilization of at least ε6 and T̃ can be
scheduled on (1+O(ε)) ·OPT (T)+1 processors of speed 1+O(ε). Furthermore,
each feasible packing of T̃ ∪T ′ on k processors of speed 1+O(ε) yields a feasible
packing of the original task set T on k processors of speed 1 + O(ε).

Notice that we had to discard tasks of utilization O(ε) · util(T) processors three
times in this paper. If we collect all discarded tasks and then schedule this tasks
once in a first-fit manner, this requires at most O(ε) ·OPT + 1 processors. Thus
by combining Theorem 8 with Theorem 5, we obtain the main result of this
paper.

Theorem 9. For each ε > 0 there exists a polynomial time algorithm, which
partitions a set of tasks T into T1, . . . , Tk such that each Ti is feasible on a
processor of speed 1 + O(ε) and k � (1 + O(ε)) ·OPT + 1.

References

1. Baruah, S., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity.
In: Leung, J.Y.-T. (ed.) Handbook of Scheduling — Algorithms, Models, and Per-
formance Analysis, ch. 28. Chapman & Hall/CRC, Boca Raton (2004)

A PTAS for Static Priority Real-Time Scheduling 257

2. Davari, S., Dhall, S.K.: On-line algorithms for allocating periodic-time-critical tasks
on multiprocessor systems. Informatica (Slovenia) 19(1) (1995)

3. Dhall, S.K.: Approximation algorithms for scheduling time-critical jobs on multi-
processor systems. In: Leung, J.Y.-T. (ed.) Handbook of Scheduling — Algorithms,
Models, and Performance Analysis, ch. 32, Chapman & Hall/CRC, Boca Raton
(2004)

4. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in
linear time. Combinatorica 1(4), 349–355 (1981)

5. Fisher, N., Baruah, S.: A fully polynomial-time approximation scheme for fea-
sibility analysis in static-priority systems with arbitrary relative deadlines. In:
ECRTS 2005: Proceedings of the 17th Euromicro Conference on Real-Time Sys-
tems (ECRTS 2005), pp. 117–126. IEEE Computer Society, Los Alamitos (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, San Francisco
(1979)

7. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algo-
rithms 13(3), 502–524 (1992)

8. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd annual symposium on foundations of
computer science, Chicago, Ill., pp. 312–320. IEEE, New York (1982)

9. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8(4), 538–548 (1983)

10. Liebeherr, J., Burchard, A., Oh, Y., Son, S.H.: New strategies for assigning real-
time tasks to multiprocessor systems. IEEE Trans. Comput. 44(12), 1429–1442
(1995)

11. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

12. Oh, Y., Son, S.H.: Allocating fixed-priority periodic tasks on multiprocessor sys-
tems. Real-Time Syst. 9(3), 207–239 (1995)

13. Schuurman, P., Woeginger, G.: Approximation schemes – a tutorial. In: Möhring,
R.H., Potts, C.N., Schulz, A.S., Woeginger, G.J., Wolsey, L.A. (eds.) Lectures on
Scheduling (to appear, 2007)

Optimal Monotone Encodings�

Noga Alon�� and Rani Hod

Schools of Mathematics and Computer Science, Raymond and Beverly Sackler
Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel

{nogaa,ranihod}@post.tau.ac.il

Abstract. Moran, Naor and Segev have asked what is the minimal r =
r(n, k) for which there exists an (n, k)-monotone encoding of length r, i.e.,
a monotone injective function from subsets of size up to k of {1, 2, . . . , n}
to r bits. Monotone encodings are relevant to the study of tamper-proof
data structures and arise also in the design of broadcast schemes in
certain communication networks.

To answer this question, we develop a relaxation of k-superimposed
families, which we call α-fraction k-multi-user tracing ((k, α)-FUT fami-
lies). We show that r(n, k) = Θ(k log(n/k)) by proving tight asymptotic
lower and upper bounds on the size of (k, α)-FUT families and by con-
structing an (n, k)-monotone encoding of length O(k log(n/k)).

We also present an explicit construction of an (n, 2)-monotone encod-
ing of length 2 log n+O(1), which is optimal up to an additive constant.

1 Introduction

In their pursuit of history-independent schemes that use a write-once mem-
ory, motivated by cryptographic applications, Moran et al. [14] have considered
monotone injective functions that map subsets of size up to k of [n] into 2[r]

(all subsets of [r]), henceforth called (n, k)-monotone encodings of length r, or
ME(n, k, r). They have shown the existence of an (n, k)-monotone encoding of
length O(k logn log(n/k)) and raised the question of determining the minimal
r = r(n, k) for which an ME(n, k, r) exists.

A counting argument shows that r(n, k) ≥ log
(∑k

i=0

(
n
i

))
= Ω(k log(n/k))

is required for any injective encoding, without even considering monotonicity. In
this paper, we show that a monotone encoding of length O(k log(n/k)) exists,
establishing that r(n, k) = Θ(k log(n/k)), thus settling the open problem raised
in [14]. We limit ourselves to k ≤ n/2 since the trivial identity encoding is
optimal for k > n/2.

Throughout the paper we use [n] to denote {1, 2, . . . , n}. We denote subsets of
[n] of size k and up to k by

(
[n]
k

)
and

(
[n]
≤k

)
, respectively. All logarithms are binary

unless stated otherwise. Floor and ceiling signs are omitted whenever these are
not crucial.
� Due to space limitations we refer the reader to a longer version available at
http://www.math.tau.ac.il/∼nogaa/PDFS/publications.html

�� Research supported in part by the Israel Science Foundation and by a USA-Israeli
BSF grant.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 258–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimal Monotone Encodings 259

Paper Organization. In the rest of this section we present our contribution
and consider previous work. In Section 2 we present a probabilistic construction
of FUT families and a deterministic construction of ME based on FUT families.
In Section 3 we prove a lower bound on the length of FUT families and another
lower bound on the length of ME. In Section 4 we present an explicit construction
of an ME(n, 2, 2 logn+O(1)). Most proofs have been omitted from this extended
abstract due to lack of space.

1.1 A First Attempt: Superimposed Families

A general representation of a monotone function f is f(S) =
⋃
S′⊆S g(S′) for

some function g(S). For f to be injective as well, we need all the relevant unions
to be distinct.

A family of subsets of [r] is called k-superimposed if all the unions of up to
k sets from it are distinct. Clearly, a k-superimposed family F = {Ai}ni=1 of
cardinality n translates to an ME(n, k, r) f defined by f(S) =

⋃
i∈S Ai.

Probabilistic and explicit constructions of k-superimposed families of cardi-
nality n are known for r = O

(
k2 log(n/k)

)
(see, for example, [7,8,1]), yield-

ing the same upper bound on the length of (n, k)-monotone encodings. How-
ever, in [7,16,9] it was shown that for n > k2, k-superimposed families require
r = Ω((k2/ log k) logn); Thus, an approach based solely on k-superimposed fam-
ilies will not achieve optimal monotone encodings.

Inspecting the monotone encoding induced by a k-superimposed family, we
observe that only the “linear” terms g({i}) = Ai are non-empty. In a way, using
“higher-order” terms can be regarded as a form of adaptive encoding (obtained
in a non-adaptive fashion) since collisions in the unions of lower-order terms can
be resolved by a higher-order term.

1.2 Our Contribution

A general monotone encoding does not need the strict distinct-unions require-
ment of superimposed families. We consider the following relaxation of superim-
posed families.

Definition 1. Let F = {Ai}ni=1 be a family of subsets of [r] and let S ⊆ [n].
We denote

⋃
i∈S Ai by AS . An element j ∈ S is said to be F-identifiable (with

respect to S) if Aj has a unique element not present in any other subset Ai ∈ F
that is covered by AS; that is, if Aj ⊆

⋃
{Ai ∈ F : i = j, Ai ⊆ AS} . An element

j ∈ S is said to be F-obscured (with respect to S) if it is not F-identifiable.

Definition 2. Let k ≥ 2, n ≥ 2k and 0 < α < 1. A family F = {Ai}ni=1 of
subsets of [r] is called α-fraction k-multi-user tracing, or (k, α)-FUT, if for any
S ∈

(
[n]
≤k

)
, more than α|S| of its elements are F-identifiable.1

We prove almost tight upper and lower bounds on (k, 1− ε)-FUT families.

1 Or all of them, if |S| ≤ 1/α.

260 N. Alon and R. Hod

Theorem 1. There exists a constant c1 > 0 such that for all k ≥ 2, n ≥ 2k
and 1

k ≤ ε ≤ 1
2 there exists a (k, 1 − ε)-FUT family of cardinality n, where

r = c1(k/ε) log(n/k).

Theorem 2. There exists a constant c2 > 0 such that for all k ≥ 2, 1
k ≤ ε ≤ 1

2 ,
any (k, 1− ε)-FUT family of cardinality n ≥ k/ε must have r ≥ c2

k/ε
log(k/ε) logn.

Note that for 0 < ε ≤ 1
k any (k, 1 − ε)-FUT family is actually k-superimposed

since the number of obscured elements is strictly less than one. Substituting
ε = 1

k in Theorems 1 and 2 yields the known asymptotic upper and lower bounds
for k-superimposed families.

Back to monotone encodings, we form an optimal ME(n, k,O (k log(n/k)))
by chaining

(
2−tk, 1

2

)
-FUT families of cardinality n for t = 0, 1, . . . , log k. This

yields the following theorem.

Theorem 3. There exists a constant c3 > 0 such that for all integers n ≥ 4 and
2 ≤ k ≤ n/2 there exists an (n, k)-monotone encoding of length r = c3k log(n/k).

Definition 3. For integers 0 ≤ k ≤ n we denote
⌈
log

(∑k
i=0

(
n
i

))⌉
by ρ(n, k).

We also present a lower bound on the length of monotone encodings.

Theorem 4. There exists a constant c4 > 0 such that r(n, k) > (1 + c4)ρ(n, k)
for sufficiently large n and some k = k(n).

When k is small, constant factors may have a significant impact. In Section 4
we present an explicit construction for k = 2 that is optimal up to an additive
constant, yielding the following theorem.

Theorem 5. There exists a constant c5 > 0 such that for all integers n ≥ 4,
there exists an explicit (n, 2)-monotone encoding of length ρ(n, 2) + c5.

1.3 Related Work

Single and Multi-user Tracing Families. Although we described (k, α)-
FUT families as a relaxation of superimposed families, they can also be seen as
an extension of single-user tracing (SUT) families, an even simpler relaxation of
superimposed families introduced by Csűrös and Ruszinkó [6]. Given the union
of up to k subsets of a SUT family, we are able to identify at least one of them.
While the lower bound remains Ω (k log(n/k)), SUT families of cardinality n
were shown by Alon and Asodi [2] to exist for r = O (k log(n/k)).

Laczay and Ruszinkó [12] extended SUT families in another direction, con-
sidering j-out-of-k multi-user tracing (MUTj) families, ensuring that given the
union of up to k subsets we are able to identify at least j of them.2 By definition,
a MUT1 family is equivalent to a SUT family; Alon and Asodi [3] proved that
MUTj families exist for r = O

(
(k + j2) log(n/k)

)
, effectively creating MUT√k

families for the same cost as SUT families. Nevertheless, MUTj families are also
j-superimposed, hence we cannot use them for j = ω(

√
k log k) while maintain-

ing linear dependence in k.
2 Or all of them, if the given union is a union of less than j subsets.

Optimal Monotone Encodings 261

Non-adaptive Conflict Resolution. Komlós and Greenberg [11] solved a
problem similar to monotone encoding using techniques very similar to ours.
They considered non-adaptive conflict resolution (NACR) in a multiple access
OR channel. Here is a quick description of NACR.

A communication channel is shared by n stations, some of which may
want to broadcast a message. Multiple concurrent broadcasts cancel out
and the stations involved are notified of this.
Each station has a scheme, or a list of available time slots. Each active
station will try to broadcast its message on every available time slot; it
will deactivate if it succeeds (i.e., if it was the only station broadcasting
on this time slot).
An epoch, or a sequence of time-slots, is called successful if no active
stations remain (due to successful broadcasting) until the epoch ends.
A scheme set is valid if for all choices of initial k active stations, the
epoch succeeds. What is the minimal length (in time slots) needed for a
valid scheme set to exist?

Although the problem of monotone encodings can be reformulated in a similar
language, two major differences exist between ME and NACR.

1. In NACR, stations are aware of their success/failure, i.e., they know whether
there were 0, 1 or ≥ 2 concurrent broadcasts. In ME, an outside observer is
required to identify active stations seeing only the channel activity indicator
(0 or ≥ 1 broadcasts).

2. In NACR, an active station will stop once it has successfully broadcast its
message. In ME, the situation is analogous to stations that remain active
and cannot change their schemes. However, stations in ME are aware of each
other, and are allowed to broadcast more if other stations are active.

For instance, the following valid NACR scheme set for n = 3, k = 2 uses
three time slots: S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}. Nevertheless, the activity
indicator of the channel gives no hint of which stations are active when any two
of them are active!

Assume that the message each station broadcasts specifies its identifying num-
ber and consider the actual channel data rather than the channel activity indi-
cator. This allows a successful broadcast to identify3 the transmitting station.
Thus, we may convert4 an NACR solution to an ME at the cost of a factor of
logn. Although presented in a different perspective, the (n, k)-monotone encod-
ing of length O(k logn log(n/k))) shown in [14] proceeds essentially along these
lines.
3 Some action is needed to ensure that multiple concurrent broadcasts are not misin-

terpreted as valid messages. For instance, encode 0 as ‘01’ and 1 as ‘10’, doubling
the length of the data.

4 Further modifications are necessary to work out the second difference as well, but
the length of the data remains unaffected.

262 N. Alon and R. Hod

Cryptographic Applications. In [14], monotone encodings are used to main-
tain a tamper-proof deterministic data structure that represents a subset of
size up to k of [n]. Instead of relying on cryptographic assumptions, the data
structure is made tamper-proof by storing it on a write-once memory, i.e., all
bits are initially 0 and can only be turned to 1. This imposes the monotonicity
requirement.

Since elements are inserted one by one, another security-motivated require-
ment is that the representation of the data structure is independent of the order
in which elements are inserted (for example, to ensure privacy in voting schemes).
This rules out “adaptive” solutions like writing down the elements sequentially
using logn bits per element. This requirement is expressed in ME by taking

(
[n]
≤k

)

(that is, unordered subsets) as the domain of the encoding.

2 The Construction

2.1 FUT Families

The upper bound stated in Theorem 1 is implied by the following probabilistic
construction.

Let k ≥ 2 and 1
k ≤ ε ≤ 1

2 . Let d = (2/ε) log(2en/k) and r = 16kd =
O ((k/ε) log(n/k)). Let h1, . . . , hn be n random functions from [d] to [16k], i.e.,
the values hj(i) for i ∈ [d] and j ∈ [n] are chosen independently and equiprobably
from [16k] and let F = {A1, . . . , An} ⊂ 2[r] be their representations as sets; that
is, Aj = {16ki− hj(i) + 1 : i ∈ [d]} ⊂ [r].

Definition 4. A family F of sets is said to have property A if for t ∈ [2k] and
for all distinct A1, . . . , At ∈ F , Aj is covered by the union of {Ai : i ∈ [t], i = j}
for less than εt values of j ∈ [t]. In other words, more than (1 − ε)t of the sets
have a unique element in

⋃t
i=1 Ai.

Proposition 2.1. With positive probability, property A holds for F as selected
above.

Proposition 2.2. Any family for which property A holds is (k, 1 − ε)-FUT;
Thus, with positive probability, F as selected above is (k, 1− ε)-FUT.

Proof. Let S ⊂ [n], |S| ≤ k and consider I = {i ∈ [n] : Ai ⊆ AS}. Obviously,
S ⊆ I. By the definition of I, all i ∈ I \S are F -obscured since Ai is covered by
AS . Assume that |I| ≥ 2k. By property A, applied to some subset S ⊂ I ′ ⊆ I of
cardinality 2k, more than (1 − ε)2k ≥ k ≥ |S| elements of I ′ are F -identifiable,
which is absurd as they all reside in S.5 Thus, |I| < 2k. By property A, more
than (1−ε)|I| ≥ (1−ε)|S| elements of I are F -identifiable. Again, they all reside
in S. ��
5 To be exact, these elements are F-identifiable with respect to I ′ and not I , but it is

all the same since AI′ = AS = AI .

Optimal Monotone Encodings 263

2.2 Monotone Encodings

Equipped with the tool we have just developed, we move on to describing a
function as stated by Theorem 3.

We construct f :
(
[n]
≤k

)
→ 2[r] inductively. Initialize the construction6 with the

trivial case k = 1. Let f ′ :
([n]
≤k/2

)
→ 2[r′] be a monotone encoding for subsets

of size up to k/2 and let F = {Ai}ni=1 ⊂ 2[r′′] be a (k, 1
2)-FUT family. Shift F

by r′ to make its support disjoint from [r′]. All involved sets are now subsets of
the ground set [r], where r = r′ + r′′. We define f(S) = AS ∪ f ′(S′), where S′

consists of all F -obscured elements of S (note that S′ is well-defined given F).
Since a (k, 1

2)-FUT family exists for r = 2c1k log(n/k), the size of the ground
set for the entire construction is

log k∑

t=0

2c12−tk log
(n

2−tk

)
≤ 2c1k

∞∑

t=0

2−t (t + log(n/k)) = O (k log(n/k)) .

Proposition 2.3. The function f is injective, i.e., f(S) = f(T) for S = T .

Proposition 2.4. The function f is monotone, i.e., f(S) ⊆ f(T) for S ⊆ T .

3 Lower Bounds

3.1 FUT Families

First we show a lower bound of Ω(k log(n/k)) on the length of constant fraction
user-tracing families.

Proposition 3.1. For all k ≥ 2, any (k, 1
2)-FUT family of cardinality n ≥ k

must have r ≥ 1
4k log(n/k).

Next, we establish the lower bound stated in Theorem 2 by using a modified
version of a technique from [16]. As the bound of Proposition 3.1 holds for any
(k, 1− ε)-FUT family, ε ≤ 1

2 , we henceforth assume ε < 1
4 . Let k ≥ 2, 1

k ≤ ε < 1
4

and let F = {Ai}ni=1 ⊆ 2[r] be a (k, 1 − ε)-FUT family, where n ≥ k/ε. We
modify F in two phases, as follows.

1. As long as F contains a set F of cardinality at least β = 4r/k, remove F
from F and remove its elements from all other sets of F . Call the resulting
family F ′.

2. As long as F ′ contains a set F such that any 4ε-fraction of it is covered
by some other set from F ′, and in particular, it is covered by the union
of t ≤ 1/(4ε) other sets A1, . . . , At ∈ F ′, remove F and {Ai}ti=1 from F ′.
Call the resulting family F ′′.

6 Another way to initialize the construction is with an ME(n,
√

k, O(k log(n/
√

k)))
induced by a

√
k-superimposed family as described in Section 1.1.

264 N. Alon and R. Hod

Claim 3.2. Phase 1 stops after at most k/4 iterations.

Proof. Every iteration discards at least β elements from the ground set. We
begin with r elements, so we stop after at most r/β = k/4 iterations. ��

Claim 3.3. Phase 2 stops after less than εk iterations.

We now have a family F ′′ of cardinality greater than n − k with the following
property: every F ∈ F ′′ has a subset of 4ε|F | elements unique to F . Let γ =
16ε/k. Every such unique subset is of cardinality 4ε|F | ≤ 4εβ = γr; Thus,

n− k + 1 ≤ |F ′′| ≤
∣
∣
∣
∣

(
[r]
≤ γr

)∣
∣
∣
∣ =

γr∑

t=0

(
r

t

)

≤ 1 + γr

(
r

γr

)

≤ 1 + γr

(
re

γr

)γr
.

Taking logarithms we get

Ω(logn) ≤ (logn)− 1 ≤ log(n− k) ≤ γr log
e

γ
+ o(r) = O

(

r
ε

k
log

k

ε

)

.

Therefore, r = Ω
(

k/ε
log(k/ε) logn

)
.

3.2 Monotone Encodings

As we already stated, r(n, k) ≥ ρ(n, k) by a counting argument. The triv-
ial identity encoding implies that r(n, k) ≤ n. Obviously, r(n, 1) = ρ(n, 1) =
"log(1 + n)#. Theorem 3 states that r(n, k) = Θ(ρ(n, k)). In Section 4 we will
prove that r(n, 2) ≤ ρ(n, 2)+O(1). The following simple proposition shows that
sometimes r(n, 2) ≥ ρ(n, 2) + 1.

Proposition 3.4. r(5, 2) = 5 > 4 = ρ(5, 2).

Proof. Assume that r(5, 2) ≤ ρ(5, 2) = "log(1 + 5 + 10)# = 4 for the sake of
contradiction and let f :

(
[5]
2

)
→ 2[4] be an ME(5, 2, 4). Without loss of generality,

f(∅) = ∅. There must be some i ∈ [5] such that |f({i})| ≥ 2, since {f({i})}5i=1

cannot all reside in
(
[4]
1

)
. Without loss of generality, assume that {1, 2} ⊆ f({1}).

We have reached a contradiction, as f({1, 2}), f({1, 3}), f({1, 4}), f({1, 5})
are 4 distinct subsets of 2[4] that properly contain {1, 2}. Thus, r(5, 2) ≥ 5. But
obviously r(5, 2) ≤ 5, hence r(5, 2) = 5. ��

The proof of Proposition 3.4 extends to show that for some choices of n and k,
r(n, k) exceeds ρ(n, k) by more than an additive constant.

Lemma 3.5. Let f :
(
[n]
≤k

)
→ 2[n−1] be an ME(n, k, n − 1) and let 0 ≤ m ≤ k.

Then, there exists S ∈
(

[n]
≤m

)
such that |f(S)| ≥ 2m.

To establish the stronger result, we need the following corollary of Stirling’s
approximation formula, where H(α) = α log 1

α + (1 − α) log 1
1−α is the binary

entropy function.

Optimal Monotone Encodings 265

Claim 3.6. log
(
t
αt

)
= tH(α)− 1

2 log (2πα(1 − α)t) + o(1).

Proposition 3.7. There exists a constant δ > 0 such that r
(
n, 1−δ

2 n
)

= n for
sufficiently large n.

Proof. Let k = 1−δ
2 n and let m =

(
1
2 − δ

)
n = k − δ

2n. Assume for the sake of
contradiction that r(n, k) ≤ n−1 and let f :

(
[n]
≤k

)
→ 2[n−1] be an ME(n, k, n−1).

By Lemma 3.5, there exists some S of cardinality at most m such that |f(S)| ≥
2m = (1 − 2δ)n. Consider {S ∪ T : T ∈

([n]\S
(δ/2)n

)
}. These are at least

(
n−m
(δ/2)n

)

sets in
(
[n]
≤k

)
whose images under f are all distinct and (properly) contain f(S).

Therefore, for sufficiently small δ and sufficiently large n,

log
(
n−m

(δ/2)n

)

= log
((

1
2 + δ

)
n

(δ/2)n

)

>

(
1
2

+ δ

)

nH

(
δ

1 + 2δ

)

− 1
2

logn

> 2δn = n− 2m > |[n− 1] \ f(S)| ,

which is a contradiction. Thus, r(n, k) ≥ n and hence r(n, k) = n. ��

Another useful entropy-related estimation we need is

Claim 3.8. H
(

1−δ
2

)
= 1− δ2

2 ln 2 + O(δ4).

We are now ready to prove the lower bound on r(n, k) of Theorem 4.

Proof (of Theorem 4). Choose k = k(n) = 1−δ
2 n, where δ is the constant from

Proposition 3.7. By Claim 3.8,

ρ(n, k) = log

(
k∑

i=0

(
n

i

))

< nH

(
k

n

)

= nH

(
1− δ

2

)

= n

(

1− δ2

2 ln 2
+ O(δ4)

)

Hence, r(n, k) = n > (1 + c4)ρ(n, k) for large enough n and sufficiently small
c4 > 0. ��

In Proposition 3.7 we needed δ to satisfy
(

1
2 + δ

)
H(δ

1+2δ) > 2δ, e.g., pick δ =
0.2276. Thus, the largest value of c4 in Theorem 4 that follows from the proof
is roughly 0.038.

4 Tighter Bounds for k = 2

The ME construction presented in Section 2 is optimal up to a constant factor.
Yet, it is interesting to see how small this constant can get and whether we can
beat MEs induced by superimposed families, even for small values of k where
asymptotic superiority still does not apply.

Trivially, r(n, 1) = "log(n + 1)#, as we just need n different non-empty subsets
of [r]. Hence, the first interesting case is k = 2. The obvious lower bound7 is

7 As Proposition 3.4 demonstrated, ρ(n, 2) is not tight for some values of n.

266 N. Alon and R. Hod

ρ(n, 2) = "2 logn#− 1 + o(1). We prove Theorem 5 by explicitly constructing an
(n, 2)-monotone encoding of length ρ(n, 2) + O(1).

In contrast to the r(n, 2) ≤ 2 logn + O(1) bound of Theorem 5, Coppersmith
and Shearer [5] have shown that for r < (2.0008− o(1)) log n, no family {Ai}ni=1

of n subsets of [r] exists for which {Ai ∪Aj}1≤i<j≤n are all different.

4.1 Construction Time Again

A monotone function f over the domain
(
[n]
≤2

)
can be defined by8 Ai = f({i})

for i ∈ [n] and Aij = Aji = f({i, j}) \ (Ai ∪Aj) for {i, j} ∈
(
[n]
2

)
. Assuming that

{Ai : i ∈ [n]} and {Aij : {i, j} ∈
(
[n]
2

)
} have disjoint supports, it is sufficient to

require three conditions for the function to be injective:

(i) Ai = Aj for i = j.
(ii) Aij = ∅ for i = j if ∃i′ such that Ai ∪Aj = Ai′ .
(iii) Aij = Ai′j′ for {i, j} = {i′, j′} satisfying Ai ∪Aj = Ai′ ∪Aj′ .

As we now strive for a result optimal up to an additive constant, we cannot
continue neglecting the effects of rounding.

Definition 5. For x ∈ R, define �x# = {�x� , "x#}.

Let p = 1− 1√
2
≈ 0.29 and select minimal a and b ∈ �pa# subject to

(
a
b

)
≥ n. Select

distinctA1, . . . , An ∈
(
[a]
b

)
. Obviously, these satisfy condition (i). In addition, |Ai∪

Aj | > b for i = j, so condition (ii) is satisfied as well, albeit in the null sense.
Condition (iii) will be satisfied by an appropriate selection of Aij ∈ 2[s], where s =

"logBmax#,Bmax = maxA⊆[a] B(A) andB(A) =
∣
∣
∣
{
{i, j} ∈

(
[n]
2

)
: Ai ∪Aj=A

}∣
∣
∣ .

In simple words, we differentiate between the B(A) pairs colliding at A by labeling
each one with a unique number between 1 and B(A) ≤ Bmax ≤ 2s.

Thus, we only need to determine Bmax to get an (n, 2)-monotone encoding
of length r = a + s. By symmetry,9 B(A) depends only on |A|. For 0 ≤ m ≤ a,
denote the value of B([m]) by B(m). Clearly,

B(m) =

{
1
2

(
m
b

)(
b

m−b
)

= m!
2(m−b)!2(2b−m)! , b < m ≤ 2b,

0 , otherwise.

Proposition 4.1. B(m) has a single maximum, achieved at m∗ ∈ �b/2p#.

A Rough Estimate. We now bound the difference between r and the lower
bound ρ(n, 2). First, we use Claim 3.6 to get a quick estimate, neglecting o(1)
terms and the effects of rounding. Let n =

(
a
b

)
and recall that m∗ ≈ b/2p ≈

pa/2p = a/2. Note also that 1 + 1
2H(2p) = (2 − p)H(p) for our choice of p.

Hence,
8 Without loss of generality we may assume f(∅) = ∅.
9 For this analysis we assume that n =

(
a
b

)
. If n <

(
a
b

)
, B(A) will decrease for some

values of A, but the maximum Bmax should remain unaffected.

Optimal Monotone Encodings 267

r − ρ(n, 2) ≈ (a + logBmax)− (2 logn− 1)

= a + log
(
m∗

b

)

+ log
(

b

m∗ − b

)

− 1− 2 log
(
a

b

)

+ 1

≈ a + log
(
a/2
pa

)

+ log
(

pa

(1− p)pa

)

− 2 log
(

a

pa

)

≈ a +
[
(a/2)H(2p)− 1

2 log (2π2p(1− 2p)(a/2))
]

+
[
paH(1− p)− 1

2 log
(
2π(1− p)p2a

)]
− 2

[
aH(p)− 1

2 log (2πp(1− p)a)
]

= a
(
1 + 1

2H(2p) + pH(p)− 2H(p)
)

+ 1
2 log

(2πp(1− p)a)2

(2πp(1− 2p)a)(2π(1− p)p2a)

=
1
2

log
1− p

p(1− 2p)
= log(1 +

√
2) ≈ 1.272 .

Next we delve into details to check where the estimation above is inaccurate. We
lose a little due to the following reasons: (1) While p ≈ b

a is irrational, a and b
must be integers; (2) If n is just a little bigger than

(
a
b

)
, we are forced to increase

either a or b. It can be verified for small values of a and b that the o(1) terms
cause no further loss.

Proposition 4.2. Let n =
(
a
b

)
. Then, the first loss is bounded by 10 bits.

Proposition 4.3. The second loss is bounded by one bit.

Thus, we have proved that our construction is optimal up to an additive constant
c = 11. Empirical results show that the first loss is always close to log(1+

√
2) ≈

1.272, so the correct value of this constant is 3, but to avoid further complication
in the proof we settled for the above estimate.

5 Concluding Remarks and Open Problems

5.1 Encoding and Decoding Algorithms

Proposition 2.3 fuels a recursive algorithm to decode S from f(S):

1. Separate f(S) to AS and f ′(S′).
2. Determine S′ by running the algorithm recursively on f ′(S′).
3. Find all sets Ai ⊆ AS .
4. Add j to S′′ if some x ∈ AS is present solely in Aj .
5. Return S′ ∪ S′′.

A quick calculation shows that the running time of the whole decoding al-
gorithm is O (nk log(n/k)). This is rather expensive as it is exponential in
r = O (k log(n/k)) for k = poly log n. The encoding algorithm suffers from the
same behaviour, as basically it determines S′ similarly and encodes it recursively.

Our explicit construction for k = 2, however, has polynomial-time encoding
and decoding algorithms. We will use the following algorithms as subroutines.

268 N. Alon and R. Hod

Claim 5.1. Fix integers a ≥ b ≥ 0. Let ϕab be the lexicographic isomorphism
from

(
[a]
b

)
to [

(
a
b

)
] and let ψab : [

(
a
b

)
]→

(
[a]
b

)
be its inverse. There exist poly(a, b)-

time algorithms computing ϕab (S) given S and ψab (m) given m.

Proposition 5.2. The (n, 2)-monotone encoding presented in Section 4 and its
inverse can be computed in poly logn-time (per input).

5.2 Open Problems

Exact Constructions. In spite of Proposition 3.4, we believe that usually
r(n, 2) = ρ(n, 2). For a fixed n, the following method can be used to check if
r(n, 2) = ρ(n, 2). First, we assign f(∅) to ∅ and all singletons {f({i})}ni=1 to
small subsets of 2[ρ(n,2)]. Next, we build the bipartite constraints graph:

– On one side U =
(
[n]
2

)
we have all pairs,

– On the other side V ⊂ 2[ρ(n,2)] we have all unassigned targets;
– An edge connects {i, j} ∈ U and A ∈ V iff f({i}) ∪ f({j}) ⊆ A.

A matching that saturates U in this graph translates into an ME(n, 2).10

Using Hopcroft-Karp’s maximum-cardinality bipartite matching algorithm,
we verified that a saturating matching exists for 23 ≤ n ≤ 250. Especially
interesting is n = 90 since 1+90+

(
90
2

)
= 212, rendering the monotone encoding

surjective as well. This suggests the following conjecture.

Conjecture 1. For all n ≥ 23, r(n, 2) = ρ(n, 2).

Maybe the following stronger version is true as well.

Conjecture 2. For every fixed k ≥ 2, r(n, k) = ρ(n, k) for only a finite number
of values of n.

Note that in the notation above, almost always |U | < |V |, i.e., there is some
‘extra’ space. Indeed, this is a simple consequence of the ABC Conjecture, as we
explain next.

Masser and Oesterlé conjectured in 1985 that for any ε > 0 there exists a
constant Kε > 0 such that for every triple of coprime positive integers a, b, c
satisfying a+ b = c we have c ≤ Kε(rad(abc))1+ε, where rad(m) is defined as the
product of all distinct prime divisors of m. This is known as the ABC Conjecture
(see [13,15]) and has numerous number-theoretic consequences including the
following one.

Claim 5.3. For any fixed M we have 2ρ(n,2) = 1+n+
(
n
2

)
+M for only a finite

number of values of n, under the assumption that the ABC Conjecture holds.

Corollary 5.4. For any fixed M we have 2ρ(n,2) ≥ 1 +n+
(
n
2

)
+M , i.e., |V | ≥

|U |+ M for all but a finite number of values of n, under the same assumption.

10 It is possible that r(n, 2) = ρ(n, 2) and still the graph does not contain a matching
saturating U , as the values of {f({i})}n

i=1 we have chosen are not necessarily those
leading to an optimal encoding.

Optimal Monotone Encodings 269

In other words, the matching is almost never required to be nearly perfect. It
seems likely that the assertion of the last two claims can be proved without
relying on any unproven conjectures, using the theory of imaginary quadratic
fields, but as this is not very essential for our purpose in this paper, we include
only the conditional simple proof above.

Explicit Constructions, General Case. Although the ME construction of
Theorem 3 is explicit, it relies on using FUT families of various sizes as building
blocks, for which we only presented a probabilistic construction. A bipartite
graph G = (U, V,E) in which the degree of every vertex u ∈ U is s is called a
(k, δ)-expander if any U ′ ⊂ U of size at most k has at least δs|U ′| neighbors in V .
(k, 1 − ε)-expanders for some small ε > 0, called lossless expanders, may assist
us in building FUT families as any (k, 1 − ε)-expander yields a (k, 1 − 2ε)-FUT
family; However, the best known explicit constructions of these (see [4,10]) do
not suffice for the recursive chaining procedure of Theorem 3.

References

1. Alon, N.: Explicit construction of exponential sized families of k-independent sets.
Discrete Mathematics 58(2), 191–193 (1986)

2. Alon, N., Asodi, V.: Tracing a single user. European Journal of Combina-
torics 27(8), 1227–1234 (2006)

3. Alon, N., Asodi, V.: Tracing many users with almost no rate penalty. IEEE Trans-
actions on Information Theory 53(1), 437–439 (2007)

4. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors
and constant-degree lossless expanders. In: Proceedings of the 34th Annual ACM
STOC, pp. 659–668 (2002)

5. Coppersmith, D., Shearer, J.: New bounds for union-free families of sets. Electronic
Journal of Combinatorics 5(1), 39 (1998)

6. Csűrös, M., Ruszinkó, M.: Single user tracing and disjointly superimposed codes.
IEEE Transactions on Information Theory 51(4), 1606–1611 (2005)

7. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Problemy
Peredachi Informatsii 18(3), 158–166 (1982)

8. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel Journal of Mathematics 51(1-2), 79–89 (1985)

9. Füredi, Z.: A note on r-cover-free families. Journal of Combinatorial Theory Series
A 73(1), 172–173 (1996)

10. Guruswami, V., Umans, C., Vadhan, S.: Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. In: Proceedings of the 22nd IEEE CCC,
pp. 96–108 (2007)

11. Komlós, J., Greenberg, A.: An asymptotically fast nonadaptive algorithm for con-
flict resolution in multiple-access channels. IEEE Transactions on Information The-
ory 31(2), 302–306 (1985)

12. Laczay, B., Ruszinkó, M.: Multiple user tracing codes. In: Proceedings of IEEE
ISIT 2006, pp. 1900–1904 (2006)

13. Masser, D.W.: Note on a conjecture of Szpiro. Astérisque 183, 19–23 (1990)

270 N. Alon and R. Hod

14. Moran, T., Naor, M., Segev, G.: Deterministic History-Independent Strategies for
Storing Information on Write-Once Memories. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer, Hei-
delberg (2007)

15. Oesterlé, J.: Nouvelles approches du “théorème” de Fermat. Astérisque 161/162,
165–186 (1988)

16. Ruszinkó, M.: On the upper bound of the size of the r-cover-free families. Journal
of Combinatorial Theory Series A 66(2), 302–310 (1994)

Polynomial-Time Construction of Linear

Network Coding

Kazuo Iwama1,�, Harumichi Nishimura2,��, Mike Paterson3,� � �,
Rudy Raymond4, and Shigeru Yamashita5,†

1 School of Informatics, Kyoto University, Japan
iwama@kuis.kyoto-u.ac.jp

2 School of Science, Osaka Prefecture University, Japan
hnishimura@mi.s.osakafu-u.ac.jp

3 Department of Computer Science and DIMAP, University of Warwick, UK
msp@dcs.warwick.ac.uk

4 Tokyo Research Laboratory, IBM Japan, Japan
raymond@jp.ibm.com

5 Graduate School of Information Science, Nara Inst. of Science & Technology, Japan
ger@is.naist.jp

Abstract. Constructing k independent sessions between k source-sink
pairs with the help of a linear operation at each vertex is one of the
most standard problems in network coding. For an unbounded k, this
is known to be NP-hard. Very recently, a polynomial-time algorithm
was given for k = 2 [Wang and Shroff, ISIT 2007], but was open for a
general (constant) k. This paper gives a polynomial-time algorithm for
this problem under the assumption that the size of the finite field for the
linear operations is bounded by a fixed constant.

1 Introduction

The max-flow min-cut theorem is a fundamental law for communication net-
works. So, it was remarkable when Ahlswede, Cai, Li and Yeung showed that
this law can be bypassed by network coding [2]. They gave a small and nice ex-
ample called the Butterfly network. As shown in Figure 1, the Butterfly network
has two source-sink pairs (s1, t1) and (s2, t2), and it is easily seen that if we
remove a single link, i.e., the one from s0 to t0, then there is no path from s1 to
t1 or from s2 to t2 any longer. Therefore, we cannot achieve two disjoint paths
for the two source-sink pairs in order to send two bits, x from s1 to t1 and y

� Supported in part by Scientific Research Grant, Ministry of Japan, 16092101 and
19200001.

�� Supported in part by Scientific Research Grant, Ministry of Japan, 19700011.
� � � Supported in part by DIMAP (Centre for Discrete Mathematics and its Ap-

plications), EPSRC, UK, and by Scientific Research Grant, Ministry of Japan,
16092101.

† Supported in part by Scientific Research Grant, Ministry of Japan, 16092218 and
19700010.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 271–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 K. Iwama et al.

s1 s2

s0

t1t2
t0

x y

Fig. 1. Butterfly network

x

yx

y

x⊕y

x⊕y x⊕y

y= x⊕(x⊕y) x= (x⊕y)⊕y

x y

Fig. 2. Coding scheme

x

yx

y

x⊕y

x⊕y x⊕y

x y

t1 t2

x,ys

Fig. 3. Multicast example

from s2 to t2, simultaneously. However, if we allow “coding” at each vertex, then
we can consider, for instance, the protocol in Figure 2 and two bits x and y can
now be transmitted simultaneously! After [2], network coding became instantly
popular and the large literature has investigated the possibility and applications
of network coding (see the network coding home page [11]).

Network coding has several different models, but the two major ones are
(i) the k-source-sink pair model (also called the multiple-source unicast model)
and (ii) the multicast model. A typical example of (i) is the butterfly network,
where k = 2. The latter model has only one source (and many sinks) but usually
the source has multiple inputs. For example, the model in Figure 3 has one
source s with two inputs x, y, and two sinks t1 and t2 which both require x
and y in a single round. (An obvious necessary condition is that there must be a
sufficient number of links from the source vertex, two in the case of Figure 3, and
similarly for each sink.) There is a large literature for this model: for example,
(A) Li, Yeung and Cai [18] showed that a network coding exists if and only
if a linear network coding exists (i.e., the operation at every vertex is a linear
combination of inputs on a finite field alphabet), (B) the maximum size of an
alphabet in the linear coding can be bounded by a relatively small number [9,10],
and (C) such a network coding (if any) can be found in polynomial time [10,7,13].

The k-source-sink pair model, requiring independent sessions between sources
and sinks as in the Butterfly, is much more difficult. In fact, this model is es-
sentially the same as the most general model where (not necessarily pairwise)
sources and sinks may have multiple inputs and multiple outputs, respectively [4].
Compared to the multicast model, (A′) linear coding is not sufficient, i.e., there
exist graphs that do not admit linear network coding but admit vector-linear
network coding (vector-linear operations instead of linear operations are allowed
at each vertex) [16,19], (B′) the maximum alphabet size is not known even if
we only consider linear coding, and (C′) if k is not bounded, then whether a
given graph has a linear network coding is NP-complete for any fixed alphabet
size [16].

Although (A′) shows a limit of linear coding, linear network coding is still
popular because of its simplicity and in fact admits several nice features (e.g.,
exponentially larger bandwidth) compared to conventional routing (e.g., [1,8]).
Therefore, considering (C′) also, our natural question for the k-pair model is

Polynomial-Time Construction of Linear Network Coding 273

whether there is a polynomial-time algorithm for deciding the possibility of linear
network coding for a small constant k, which has been one of the most important
open questions in the field.

Very recently there was some important progress toward this goal; Wang
and Shroff [22,23] showed that the problem is solvable in polynomial time if
k = 2. The proof exploits nontrivial graph theoretic properties, which further-
more implies that (i) linear coding is enough and (ii) two is enough for the
size of its alphabet. Thus the question was answered almost completely for
k = 2, but at the same time, the above two facts suggest that the case of
k = 2 is somewhat special and it is hard to extend their approach to a general
(constant) k.

1.1 Our Contribution

In this paper we present an algorithm that decides, given a directed acyclic graph
and k source-sink pairs, whether or not a linear network coding exists. It runs
in time O(ng(a,k)) where n is the number of vertices in the graph and g(a, k) is a
function depending only on k and a, the maximum size of the field F we can use
for linear coding. Thus, if both k and a are constants, then this is a polynomial-
time algorithm. Unfortunately it is not known if such a (i.e., depending only
on k and not on n) is enough for a linear network coding.

Here is the basic idea: we first show, using a similar idea to that in [14], that
the given graph can be transformed, with a sacrifice of a quadratic increase in
its size, into another graph whose maximum indegree is two. Then the number
of different linear operations at each vertex is at most |F|2, which is constant
since we assumed that |F| is bounded by a constant. Thus far, we have a trivial
exponential-time algorithm by considering (|F|2)n2

combinations of linear oper-
ations for all vertices. To decrease this complexity, we first prove the key lemma
stating that the number of “real” coding vertices can be bounded by a constant
(only dependent on k). “Real” means that the output state of the gate (vertex)
depends on both input states. In other words, in all the other gates the output
state depends on only one of the two input states.

Roughly speaking, what remains to be done in those gates is to select one of
the two inputs and connect it to the output. It turns out that this is equivalent
to finding vertex-disjoint paths between h (again bounded by a constant) pairs
of vertices, which is known as the Disjoint Paths Problem. For directed acyclic
graphs, the general problem for unrestricted h is still NP-hard, but fortunately
polynomial-time algorithms for constant h were found by Fortune et al. [5].

1.2 Related Work

As mentioned in [15], there are many variables to consider in network coding.
Here we list some of them which are closely related to this paper.

Alphabet size. The complexity of the problem with respect to the size of
the alphabet (the size of the finite field in the case of linear network coding)

274 K. Iwama et al.

is subtle, since if the size is larger we can use more powerful operations but at
the same time we need to transmit more information in each round. However,
from a practical viewpoint, it is obviously better to use smaller alphabets. In the
multicast model, an upper bound of the alphabet size for linear network coding,
O(h) where h is the number of sinks, was shown by Ho et al. [9] based on the
algebraic framework in [12]. This upper bound (and the algebraic argument in
[12,9]) was used in a polynomial-time algorithm by Harvey et al. [7]. Another (in
fact, the first) polynomial-time algorithm, also with alphabet size bounded by
O(h), was given by Jaggi et al. [10]. On the other hand, the lower bound on the
alphabet size of Ω(

√
h) is shown in [16,21], and deciding the smallest alphabet

size is NP-hard [16].
Much less is known for the k-source-sink pair model. There is a network coding

that has a doubly-exponential lower bound (in the graph size n) on alphabet size
[17]. However, this lower bound example does not admit linear network coding
(but admits a vector-linear coding), and its k increases with n. So, the maximum
alphabet size, especially whether it depends only on k, is still open for both
linear and general network codings. Interestingly, there is a graph which admits
network coding for the (unique) finite field of size 4 but not for any finite field
whose size is not a square number (for example, 5, 7, 8) [17].

Coding operations. Linear coding over a finite-field alphabet is one of the
most useful and popular settings. As mentioned before, linear coding is enough
for any graph in the multicast model and for many “natural” graphs in other
models. However, there exist counter examples: in [19] it is shown that some
graph class from [16] and a simple graph by Koetter do not have a linear network
coding even if their alphabet sizes are arbitrarily large, but do have vector-
linear network coding over an alphabet of size four (actually F2

2). From simply
transforming Koetter’s graph to a graph in the k-pair model by the method
in [4], it also turns out that this situation, i.e., insufficiency of linear coding,
happens as early as k = 8. (Recall that linear coding is sufficient when k=2.)
Dougherty et al. [3] found an example that does not have a vector linear network
coding over any alphabet, but has a network coding over a size-four alphabet if
we allow some non-linear operations.

The number of encoding vertices. Recall that this issue is also very impor-
tant in this paper. Several studies on reducing the number of encoding vertices
do exist, but all of them focus on the multicast model. For the multicast model
with two inputs (as in Figure 3), Tavory et al. [21] showed that the number of
encoding vertices to construct a network coding is independent of the size of the
graph, and Fragouli and Soljanin [6] independently proved that it is bounded
by the number of the sinks. For the case of three or more inputs, Langberg et
al. [14,13] gave an efficient construction of network coding in which the number
of encoding vertices is independent of the size of the graph (only dependent on
the numbers of inputs and sinks). This might seem to be closely related to our
present result but the property specific to the multicast model plays a key role
in their proof.

Polynomial-Time Construction of Linear Network Coding 275

l1
l2 ld

v

Fig. 4. Vertex v

X1 X2 Xd

+

a1X1+a2X2+...+adXd

Fig. 5. Linear gate replacing v

2 Network Coding

There are only a finite number of different finite fields if their size is fixed.
Therefore we do not lose generality if we fix a finite field itself. For a finite field
F, Linear Network Coding over F (LNC(F)) is the following decision problem:
we are given a directed acyclic graph (DAG) G = (V,E) (|V | = n, |E| = m) and
a requirement R. In this paper we do not discuss specific values of exponents for
polynomials representing the complexity, and thus we simply use n as the size of
the graph though it is n+m precisely. For each vertex v ∈ V , its incoming edges
have labels l1, l2, . . . , ld where d is the indegree of v. R is a set of source-sink
pairs, given as {(s1, t1), . . . , (sk, tk)}, where, for all i, j, (i) si, ti ∈ V , si = sj (for
i = j) and ti = tj (for i = j), and (ii) the indegree of si and the outdegree of
ti are both zero. Consider a mapping σ, called a gate assignment mapping, such
that for a vertex v of indegree d, σ(v) is given as σ(v) = (a1, . . . , ad) where each
ai is in F.

Then σ maps the graph G to a linear circuit in the following sense: suppose
that σ(v) = (a1, . . . , ad) for a vertex v. Then as shown in Figures 4 and 5, we re-
place the vertex v by the linear gate computing a1X1 +a2X2 + · · ·+adXd, where
Xi is the state (in F) of the incoming edge with label li. So, we can consider
that ai is assigned to the edge labeled by li. In this paper, we assume that all
outgoing edges from a single vertex have the same output state. However, this
assumption can be removed by increasing (polynomially) the number of vertices
by a method similar to Lemma 1 given later. Thus, this restriction does not lose
generality. Source vertices receive global inputs (x1, x2, . . . , xk) ∈ Fk of the cir-
cuit and sink vertices hold global outputs (y1, . . . , yk) ∈ Fk of the circuit. Note
that yi is a function, denoted by fi(x1, . . . , xk), depending on the k global input
values in general. LNC(F) asks whether some gate assignment mapping σ can
yield fi(x1, . . . , xk) = xi for all 1 ≤ i ≤ k. If such σ exists, we say that σ realizes
the requirement R and also that a network coding exists for the graph G and the
requirement R. To summarize:

Linear Network Coding over F (LNC(F))
Instance: A pair (G,R) where G is a DAG and R is a set of k source-sink

pairs.
Question: Is there a network coding, i.e., is there a gate assignment mapping

(over F) which realizes (G,R)?

276 K. Iwama et al.

Assumption: We assume that the number k of source-sink pairs is a constant.

Now we introduce a restriction to the graph which does not lose generality: a
DAG G is said to be 2/1-restricted if the (indegree, outdegree) pair for each
vertex is only either (2, 1) or (1, 2), except for sources and sinks.

Lemma 1. ([14]) If LNC(F) is solvable for 2/1-restricted graphs in polynomial
time, then it is solvable for general graphs in polynomial time.

Thus, without loss of generality we can assume that our graph contains k (0, 1)
vertices (sources), k (1, 0) vertices (sinks) and all the others are (2, 1) or (1, 2)
vertices. For such a G, a gate assignment mapping is given as σ(v) = (a1, a2)
(where a1, a2 ∈ F) for (2, 1) vertices v and σ(v) = a (where a ∈ F) for (1, 2)
and (1, 0) vertices v. Hence the number of different operations at each vertex is
at most |F|2 and so the number of all different mappings is O(|F|2n), which is a
trivial upper bound for the complexity of the problem (it is straightforward to
check for each assignment whether it actually realizes R).

In the following two sections, we shall explain how to reduce the time com-
plexity to polynomial. In the next section, we first prove that we need only a
constant number, C, of “real” (2, 1) vertices. If σ(v) = (a1, a2), “real” means
neither a1 nor a2 is zero, and we call such a vertex a coding vertex. Note that
if (at least) one of them is zero, then the corresponding incoming edge can be
“cut” and the vertex effectively becomes a (1, 1) vertex. Thus the number of
different cases to determine the positions of those coding vertices is at most(
n
C

)
, which is bounded by a polynomial. Since the number of different coding

operations at each vertex is also constant (at most |F|2), we can check all the
possibilities just by increasing the complexity by a constant factor. For each set
of fixed positions and coding operations for those coding vertices, all we have
to do further is to decide how to change the other (2, 1) vertices to (effective)
(1, 1) vertices. An exhaustive search would still need exponential time for this
purpose, but as shown in Section 4, we can use the disjoint-paths problem for
which polynomial-time algorithms are known.

3 Main Lemma

We prove the key lemma which bounds the number of coding vertices.

Lemma 2. If R is realized by some gate assignment mapping, then it is realized
by another mapping for which the number of coding vertices is at most |F|3k.

Proof. We need several new definitions. Consider the linear circuit T that is
induced from the requirement R = {(s1, t1), . . . , (sk, tk)} and a gate assignment
mapping σ realizing R. Let x1, . . . , xk ∈ F be the global inputs (at the sources)
of T . Then the input and output values of each gate g (which corresponds to
a coding vertex) can be written in the form

∑k
i=1 aixi where ai ∈ F. First, we

define the following change of functionality of a gate. Let g be a gate which

Polynomial-Time Construction of Linear Network Coding 277

g2

g1
1α

2α

vu

u+ 1β v

el

er

v
u

u+ 2β v

Fig. 6. Gates g1 and g2 of the same type

produces output αX + βY for left input X and right input Y . The left-side
γ-change of g means that we change g to the gate which produces output (α +
γ)X + βY . In particular, if γ = −α we call the change the left-side cut of g.
Similarly we define the right-side γ-change of g and the right-side cut of g. Note
that by the left-side γ-change, the output value Og of g changes to Og + γX
(that is, changes by +γX). Secondly, we define the effect of a gate g on the
i-th global output yi (at sink ti) of T . This is defined as the value of yi (in F)
when all the inputs of T are set to 0 while the output value of g is forced to 1
(regardless of the input of g), or equivalently, is defined as the sum of products
of all the σ values assigned to the edges on the paths from g to the i-th global
output. Similarly we can define the effect of g on the left input or the right input
of another gate. The following lemma follows easily from the linearity of gates.

Lemma 3. Let e ∈ F be the effect of a gate g on the i-th output yi of T . If the
output value of g is changed (due to a change of its functionality) by +μ, then
the value of yi is changed by +eμ. A similar statement holds for the left and the
right inputs of a gate, instead of yi.

Finally, we define the notion of a type of each gate. Let a = (a1, . . . , ak), b =
(b1, . . . , bk) and e = (e1, . . . , ek), where all ai, bi, ei are in F. A gate g is of type
(a, b, e) if the left-side and right-side inputs of g are

∑k
i=1 aixi and

∑k
i=1 bixi,

respectively, and the effect of g on the j-th output of T is ej . The following
lemma is straightforward from Lemma 3.

Lemma 4. Fix arbitrary global input values and let g1 and g2 be two gates of
the same type where g1 is not a descendant of g2 (see Figure 6). Suppose that the
output value of g1 is changed (again due to a change of its functionality) by −μ
and suppose that then the output value of g2 is similarly changed by +μ. Then
the outputs of T do not change their values.

Now suppose that the number of gates in T is larger than |F|3k. Then there
are two gates g1 and g2 whose types are the same, (a, b, e) say. Let g1(X,Y) =
α1X+β1Y and g2(X,Y) = α2X+β2Y (without loss of generality, we can assume
that none of α1, β1, α2, β2 are 0). Again assume that g1 is not a descendant of g2

278 K. Iwama et al.

(see Figure 6). Then we have the following lemma (Lemma 5), which completes
the proof of Lemma 2.

Lemma 5. Let g1 and g2 be as above. Then there must be a left-side cut (and/or
a right-side cut) of g1 and a left-side α′2-change (and/or a right-side β′2-change)
of g2 such that the functionality of the circuit does not change.

Proof. Let el and er be the effects of g1 on the left and right inputs of g2,
respectively (see Figure 6). Then, we consider the following three cases: (i) α1el =
1 (ii) β1er = 1 (iii) α1el = β1er = 1. We only analyze cases (i) and (iii) since the
analysis of (ii) is similar to (i). Fix arbitrary global input values and let u and v
be the values of (both) gi’s left and right inputs, respectively.

Case (i): α1el = 1. We show that after the left-side cut of g1 the output value
of g1 is changed by −α1u and there is a choice of α′2 such that the output value
of g2 is changed by +α1u after the left-side α′2-change of g2. Then, the lemma
follows from Lemma 4. In fact, by the left-side cut of g1 the output value of g1

is changed from α1u + β1v to β1v. Thus, the output of g1 is changed by −α1u.
Then, by Lemma 3, the left and right input values of g2 are changed by −elα1u
and −erα1u, respectively. This means that the left and right inputs of g2 take
the values u− elα1u and v − erα1u, respectively. (Recall that g2 is of the same
type as g1, which means that its previous input values were u and v.) By the
left-side α′2-change of g2, the output value of g2 then changes by

α′2(u − elα1u) = α′2(1− elα1)u. (1)

By setting α′2 = α1(1 − elα1)−1, the right-hand side of Equation (1) is +α1u.
Thus the output value of g2 changes by +α1u.

Case (iii): α1el = β1er = 1. First we carry out the left-side and the right-side
cuts of g1. Then, the output value of g1 is changed by −(α1u+β1v). By Lemma 3
the left and right input values of g2 are changed by

−el(α1u + β1v) = − 1
α1

(α1u + β1v) = −u− β1

α1
v

and
−er(α1u + β1v) = − 1

β1
(α1u + β1v) = −v − α1

β1
u,

respectively. Thus, the left and right inputs of g2 take values u−u− β1
α1

v = − β1
α1

v
and v − v − α1

β1
u = −α1

β1
u, respectively. Then by the left-side α′2-change and the

right-side β′2-change of g2, the output value of g2 changes by

−α′2
β1

α1
v − β′2

α1

β1
u.

By setting α′2 = −α1 and β′2 = −β1 of g2, we can verify that the output value
of g2 changes by +(α1u + β1v). Therefore, the lemma follows from Lemma 4 in
this case also.

This concludes the proof of Lemma 2. �

Polynomial-Time Construction of Linear Network Coding 279

4 Polynomial-Time Algorithms

Recall that our graph includes only (2, 1) and (1, 2) vertices excepting sources
(i.e., (0, 1) vertices) and sinks (i.e., (1, 0) vertices). Fix a gate assignment map-
ping σ. Then σ defines a linear circuit, T , as described in Section 2. Now we
introduce a procedure which simplifies T :

Call an edge dead if it is assigned 0 by σ.
(i) Remove all dead edges.
(ii) If all outgoing edges of a vertex v are removed, then remove all its incoming

edges, too.
(iii) Repeat (ii) until no further removal is possible.

The resulting circuit is said to be reduced and includes the following vertices: (i) k
source vertices (all of them should remain if σ realizes the requirement R), (ii) k
sink vertices (similarly as above), (iii) vertices having two remaining incoming
edges, called coding vertices, (iv) vertices having two remaining outgoing edges,
called fork vertices, and (v) all other vertices, called path vertices, such that for
each of them there remains a single incoming and a single outgoing edge. We
say that a mapping σ is reduced if it directly defines a reduced circuit (i.e., if
0-assigned edges are removed, then no further simplification is possible). Proofs
for the following two lemmas are straightforward and omitted.

Lemma 6. Suppose that there exists a gate assignment mapping σ which real-
izes a requirement R. Then there exists a reduced mapping σ′ such that: (i) σ′

realizes R; and (ii) the number of coding vertices of σ′ is less than or equal to
the number of coding vertices of σ.

Lemma 7. If σ is reduced, then the circuit defined by σ has the same numbers
of coding vertices and fork vertices.

Now we are ready to prove our main result.

Theorem 1. LNC(F) can be solved in polynomial time.

Proof. For a given (G,R), suppose that there is a gate assignment mapping
which realizes R. Then, by Lemma 2, there is such a mapping σ which includes
only a finite number C of coding vertices. This implies, by Lemma 6, that there is
a reduced mapping σ′ which realizes R and includes at most C coding vertices.
Lemma 7 guarantees that the circuit defined by σ′ includes at most C fork
vertices whose two outgoing edges are assigned non-zero values by σ′. Thus to
prove the existence of σ, it suffices to find a reduced mapping σ′ which (i) includes
at most C coding vertices and at most C fork vertices and (ii) realizes R. For
(i), our basic strategy is enumeration in polynomial time of all such mappings
without considering the requirement R. Checking (ii) can obviously be done in
polynomial time.

For the enumeration, we first select from V a set of (at most) C positions
(vertices) for C coding vertices and (at most) C positions for C fork vertices.

280 K. Iwama et al.

ui

wi

vi

pi

Fig. 7. Inserting ui, vi, wi at a code vertex

yi

xi

zi

qi

Fig. 8. Inserting xi, yi, zi at a fork vertex

qk11 1
xkwi

Fig. 9. Assigning 1 to all vertices on the path

Note that the total number of such selections is O(
(
n
C

)
·
(
n
C

)
) = O(n2C), and is

bounded by a polynomial since C is constant. Suppose that a single selection
consists of (2, 1) vertices p1, . . . , pC for the coding vertices and (1, 2) vertices
q1, . . . , qC for the fork vertices. Then we make another change to the graph G as
follows: insert vertices ui, vi, wi into the three edges of pi and xi, yi, zi into the
three edges of qi as shown in Figures 7 and 8. After this modification, let

OUT = {s1, . . . , sk, w1, . . . , wC , y1, . . . , yC , z1, . . . , zC}
IN = {t1, . . . , tk, u1, . . . , uC , v1, . . . , vC , x1, . . . , xC}.

The key observation is that a sequence of vertices of path vertices in (v)
defined by σ′ constitutes a “path” in graph G which starts from some vertex
in OUT and ends with some vertex in IN. Furthermore, any two such paths
are obviously vertex-disjoint, i.e., these paths define a matching between OUT
and IN. Conversely, suppose that we are given fixed OUT and IN (let |OUT| =
|IN| = L) and a (complete) matching M = {(a1, b1), (a2, b2), . . . , (aL, bL)} ⊆
OUT × IN. Then this matching (together with the set of fork vertices and a
concrete operation at each of the coding vertices) defines a linear circuit, and
whether or not such a circuit is defined by some σ′ is equivalent to whether
or not there are vertex-disjoint paths connecting each aj to bj , without going
through any pi or qi (where 1 ≤ i ≤ C). If L is constant, then this test can be
done in time polynomial in n [5]. If such paths exist, then we can construct the
circuit and the corresponding gate assignment mapping σ′. It is straightforward
to check whether σ′ realizes the requirement R of network coding. Note that
without loss of generality we can assign 1 to the vertices on the path as shown in
Figure 9, since all the multiplicative constants on the path can be accumulated
into the constant on edge (xk, qk). Algorithm 1 shows the formal description of
our algorithm.

Since C is constant, the number of repetitions of Line 2 is bounded by a
polynomial. For fixed CODE and FORK, the number of repetitions of Line 4

Polynomial-Time Construction of Linear Network Coding 281

Algorithm 1. Our Algorithm for Linear Network Coding of k Source-sink Pairs.
1: Compute the maximum number C of coding vertices by Lemma 2.
2: for each CODE ⊆ V , FORK ⊆ V such that |CODE| = |FORK| ≤ C do
3: Insert vertices as in Figures 7 and 8 for vertices in CODE and FORK and com-

pute OUT and IN.
4: for each matching M ⊆ OUT × IN do
5: Check if there are disjoint paths for M in G′ where G′ is the graph obtained

by removing all vertices (and their incoming and outgoing edges) in CODE ∪
FORK (but vertices in IN and OUT and all vertices in V − CODE ∪ FORK).

6: if No then
7: Go to end.
8: else
9: for each gate assignment mapping σ for G′ such that σ assigns (i) 1 to all

the edges in the selected paths above, (ii) any a ∈ F − {0} to each of the
edges to or from vertices in CODE∪FORK, and (iii) 0 to all the other edges
do

10: Check if σ realizes R.
11: if Yes then
12: Answer YES and halt.
13: end if
14: end for
15: end if
16: end for
17: end for
18: Answer NO and halt.

is bounded by a constant. The number of repetitions of Line 9 is also bounded
by a constant. Line 5 can be done in polynomial time by [5], and all the other
instructions can obviously be executed in polynomial time. Thus the total run-
ning time is also polynomial. The correctness of the algorithm follows from the
observation given in the previous pages.

5 Concluding Remarks

Our algorithm runs in polynomial time. However, its exponent is obviously not
small. Seeking more efficient algorithms is an obvious future task. Fixed param-
eter tractability of the problem also seems interesting, but it is known that the
disjoint paths problem for DAGs is W [1]-hard [20]. Therefore, in order to design
FPT algorithms, we have to bypass the main subroutine solving this problem,
which does not seem easy.

References

1. Adler, M., Harvey, N.J., Jain, K., Kleinberg, R.D., Lehman, A.R.: On the capacity
of information networks. In: Proc. 17th ACM-SIAM SODA, pp. 241–250 (2006)

2. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE
Transactions on Information Theory 46, 1204–1216 (2000)

282 K. Iwama et al.

3. Dougherty, R., Freiling, C., Zeger, K.: Insufficiency of linear coding in network
information flow. IEEE Transactions on Information Theory 51, 2745–2759 (2005)

4. Dougherty, R., Zeger, K.: Nonreversibility and equivalent constructions of multiple-
unicast networks. IEEE Transactions on Information Theory 52, 5067–5077 (2006)

5. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci. 10, 111–121 (1980)

6. Fragouli, C., Soljanin, E.: Information flow decomposition for network coding.
IEEE Transactions on Information Theory 52, 829–848 (2006)

7. Harvey, N.J., Karger, D.R., Murota, K.: Deterministic network coding by matrix
completion. In: Proc. 16th ACM-SIAM SODA, pp. 489–498 (2005)

8. Harvey, N.J., Kleinberg, R.D., Lehman, A.R.: Comparing network coding with
multicommodity flow for the k-pairs communication problem. MIT LCS Technical
Report 964 (September 2004)

9. Ho, T., Karger, D.R., Médard, M., Koetter, R.: Network coding from a network
flow perspective. In: Proc. IEEE International Symposium on Information Theory
(2003)

10. Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen,
L.M.G.M.: Polynomial time algorithms for multicast network code construction.
IEEE Transactions on Information Theory 51, 1973–1982 (2005)

11. Koetter, R.: Network coding home page,
http://tesla.csl.uiuc.edu/∼koetter/NWC/

12. Koetter, R., Médard, M.: Beyond routing: An algebraic approach to network cod-
ing. In: Proc. 21st Annual Joint Conference of the IEEE Computer and Commu-
nications Societies, pp. 122–130 (2002)

13. Langberg, M., Sprintson, A., Bruck, J.: Network coding: A computational perspec-
tive. In: Proc. 40th Conference on Information Sciences and Systems (2006)

14. Langberg, M., Sprintson, A., Bruck, J.: The encoding complexity of network coding.
IEEE Transactions on Information Theory 52, 2386–2397 (2006)

15. Lehman, A.R.: Network Coding. PhD thesis. MIT, Cambridge (2005)
16. Lehman, A.R., Lehman, E.: Complexity classification of network information flow

problems. In: Proc. 15th ACM-SIAM SODA, pp. 142–150 (2004)
17. Lehman, A.R., Lehman, E.: Network coding: Does the model need tuning? In:

Proc. 16th ACM-SIAM SODA, pp. 499–504 (2005)
18. Li, S.-Y.R., Yeung, R.W., Cai, N.: Linear network coding. IEEE Transactions on

Information Theory 49, 371–381 (2003)
19. Médard, M., Effros, M., Ho, T., Karger, D.: On coding for non-multicast networks.

In: Proc. 41st Annual Allerton Conference on Communication, Control and Com-
puting (2003)

20. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–
493. Springer, Heidelberg (2003)

21. Tavory, A., Feder, M., Ron, D.: Bounds on linear codes for network multicast.
ECCC Technical Report 33 (2003)

22. Wang, C.-C., Shroff, N.B.: Beyond the butterfly – A graph-theoretic characteriza-
tion of the feasibility of network coding with two simple unicast sessions. In: Proc.
IEEE International Symposium on Information Theory (2007)

23. Wang, C.-C., Shroff, N.B.: Intersession network coding for two simple multicast
sessions. In: Proc. 45th Annual Allerton Conference on Communication, Control
and Computing (2007)

http://tesla.csl.uiuc.edu/~koetter/NWC/

Complexity of Decoding Positive-Rate

Reed-Solomon Codes

Qi Cheng1 and Daqing Wan2

1 School of Computer Science
The University of Oklahoma

Norman, OK73019
qcheng@cs.ou.edu

2 Department of Mathematics
University of California
Irvine, CA 92697-3875
dwan@math.uci.edu

Abstract. The complexity of maximum likelihood decoding of the Reed-
Solomon codes [q − 1, k]q is a well known open problem. The only known
result [4] in this direction states that it is at least as hard as the discrete
logarithm in some cases where the information rate unfortunately goes to
zero. In this paper, we remove the rate restriction and prove that the same
complexity result holds for any positive information rate. In particular,
this resolves an open problem left in [4], and rules out the possibility of
a polynomial time algorithm for maximum likelihood decoding problem
of Reed-Solomon codes of any rate under a well known cryptographical
hardness assumption. As a side result, we give an explicit construction
of Hamming balls of radius bounded away from the minimum distance,
which contain exponentially many codewords for Reed-Solomon code of
any positive rate less than one. The previous constructions in [2][7] only
apply to Reed-Solomon codes of diminishing rates. We also give an ex-
plicit construction of Hamming balls of relative radius less than 1 which
contain subexponentially many codewords for Reed-Solomon code of rate
approaching one.

1 Introduction

Let Fq be a finite field of q elements and of characteristic p. A linear error-
correcting [n, k]q code is defined to be a linear subspace of dimension k in Fnq . Let
D = {x1, · · · , xn} ⊆ Fq be a subset of cardinality |D| = n > 0. For 1 ≤ k ≤ n,
let f run over all polynomials in Fq[x] of degree at most k − 1, the vectors of
the form

(f(x1), · · · , f(xn)) ∈ Fnq

constitute a linear error-correcting [n, k]q code. If D = F∗q , it is famously known
as the Reed-Solomon code. If D = Fq, it is known as the extended Reed-Solomon
code. We denote them by RSq[q−1, k] and RSq[q, k] respectively. We simply call
it a generalized Reed-Solomon code if D is an arbitrary subset of Fq.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 283–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 Q. Cheng and D. Wan

Remark 1. In some code theory literature, RSq[q−1, k] is called primitive Reed-
Solomon code, and a generalized Reed-Solomon code [n, k]q is defined to be

{(y1f(x1), · · · , ynf(xn))|f ∈ Fq[x], deg(f) < k},

where y1, y2, · · · , yn are nonzero elements in Fq.

The minimal distance of a generalized Reed-Solomon [n, k]q code is n − k +
1 because a non-zero polynomial of degree at most k − 1 has at most k − 1
zeroes. The ultimate decoding problem for an error-correcting [n, k]q code is the
maximum likelihood decoding: given a received word u ∈ Fnq , find a codeword
v such that the Hamming distance d(u, v) is minimal. When the number of
errors is reasonably small, say, smaller than n −

√
nk, then the list decoding

algorithms of Guruswami-Sudan [8] gives a polynomial time algorithm to find
all the codewords for the generalized Reed-Solomon [n, k]q code.

When the number of errors increases beyond n−
√
nk, it is not known whether

there exists a polynomial time decoding algorithm. The maximum likelihood
decoding of a generalized Reed-Solomon [n, k]q code is known to be NP-complete
[6]. The difficulty is caused by the combinatorial complication of the subset D
with no structures. In fact, there is a straightforward way to reduce the subset
sum problem in D to the deep hole problem of a generalized Reed-Solomon
code, which can then be reduced to the maximum likelihood decoding problem
[3]. Note that the subset sum problem for D ⊆ Fq is hard only if |D| is much
smaller than q.

In practical applications, one rarely uses the case of arbitrary subset D. The
most widely used case is when D = F∗q with rich algebraic structures. This
case is essentially equivalent to the case D = Fq. For simplicity, we focus on
the extended Reed-Solomon code RSq[q, k] in this paper, all our results can be
applied to the Reed-Solomon code RSq[q − 1, k] with little modification. The
maximum likelihood decoding problem of RSq[q, k] is considered to be hard, but
the attempts to prove its NP-completeness have failed so far. The methods in
[6][3] can not be specialized to RSq[q, k] because we have lost the freedom to
select D. The only known complexity result [4] in this direction says that the
decoding of RSq[q, k] is at least as hard as the discrete logarithm in F∗qh for h
satisfying

h ≤ √q − k, h ≤ q
1

2+ε + 1 and h ≤
k − 4

ε − 2
4
ε + 1

for any ε > 0. The main weakness of this result is that
√
q has to be greater

than k, which implies that the information rate k/q goes to zero. But in the real
world, we tend to use the Reed-Solomon codes of high rates.

1.1 Our Results

Our main result of this paper is to remove this restriction. Precisely, we show
that

Complexity of Decoding Positive-Rate Reed-Solomon Codes 285

Theorem 1. For any c ∈ [0, 1], there exists an infinite explicit family of Reed-
Solomon codes

{RSq1 [q1, k1], RSq2 [q2, k2], · · · , RSqi [qi, ki], · · ·}

with qi = Θ(i2 log2 i) and ki = (c + o(1))qi such that if there is a polynomial time
randomized algorithm solving the maximum likelihood decoding problem for the
above family of codes, then there is a polynomial time randomized algorithm solv-
ing the discrete logarithm problem over all the fields in {F

q
h1
1

,F
q

h2
2

, · · · ,F
q

hi
i

, · · ·},
where hi is any integer less than q

1/4+o(1)
i .

The discrete logarithm problem over finite fields is well studied in computational
number theory. It is not believed to have a polynomial time algorithm. Many
cryptographical protocols base their security on this assumption. The fastest
general purpose algorithm [1] solves the discrete logarithm problem over finite
field F∗qh in conjectured time

exp(O((log qh)1/3(log log qh)2/3)).

Thus, in the above theorem, it is best to take hi as large as possible (close to
q
1/4+o(1)
i) in order for the discrete logarithm to be hard. If h = q1/4+o(1), this

complexity is subexponential on q. The above theorem rules out a polynomial
time algorithm for the maximum likelihood decoding problem of Reed-Solomon
code of any rate under a cryptographical hardness assumption.

By a direct counting argument, for any positive integer r < q−k, there exists
a Hamming ball of radius r containing at least

(
q
r

)
/qq−r−k many codewords in

Reed-Solomon code RSq[q, k]. Thus, if k = �cq� for a constant 0 < c < 1, we set
r = �q − k − q1/4� and the number of code words in the Hamming ball will be
exponential in q. However, finding such a Hamming ball deterministically is a
hard problem. There is some work done on this problem [7][2], but all the results
are for codes of diminishing rates. Our contribution to this problem is to remove
the rate restriction.

Theorem 2. For any c ∈ (0, 1), there exists a deterministic algorithm that given
a positive integer i, outputs a prime power q, a positive integer k and a vector
v ∈ Fqq such that

– q = Θ(i2 log2 i) and k = (c + o(1))q, and
– the Hamming ball centered at v and of radius q − k − q1/4+o(1) contains

exp(Ω(q)) many codewords in RSq[q, k], and
– the algorithm runs in time iO(1).

Our construction allows the information rate to be positive. However, the ratio
between the Hamming ball radius q−k−q1/4+o(1) and the minimum distance q−
k+1, which is known as the relative radius of the Hamming ball, is approaching
1, as is in [7][2]. The following result shows that we can decrease the relative
radius to a constant less than 1 if we work with codes with information rates
going to one.

286 Q. Cheng and D. Wan

Theorem 3. For any real number ρ ∈ (2/3, 1), there is a deterministic algo-
rithm that, given a positive integer i, outputs a prime power q = iO(1), a positive
integer k = q − o(

√
q) and a vector v ∈ Fqq such that the Hamming ball cen-

tered at v and of radius [ρ(q − k + 1)] contains at least qi many codewords in
RSq[q, k]. The algorithm has time complexity iO(1). Note that the information
rate is 1− o(1).

It would be interesting for future research to extend the result to all ρ ∈ (1/2, 1)
and to prove a similar result with the information rate positive and the relative
radius less than 1.

Given a real number ρ ∈ (0, 1), the codes where some Hamming balls of
relative radius ρ contain superpolynomially many codewords are called ρ-dense.
It was known in [5] how to efficiently construct such codes for any ρ ∈ (1/2, 1),
but finding the center of such a Hamming ball in deterministic polynomial time
was left open. In this paper, we solve this problem if the relative radius falls in
the range (2/3, 1) using Reed-Solomon codes of rate approaching one. This result
derandomizes an important step in the inapproximability result for minimum
distance problem of a linear code in [5]. However, to completely derandomize
the reduction there, one needs to find a linear map from a dense Hamming ball
into a linear subspace. This is again an interesting future research direction.

1.2 Techniques

Our earlier paper [4] proved Theorem 1 for c = 0 (in that case we have hi ≤
q
1/2+o(1)
i). The main result of our earlier paper was to show that the maximum

likelihood decoding of RSq[q, k] is at least as hard as the discrete logarithm over
Fqh if every element in Fqh can be represented as products of k + h distinct
elements from α+ Fq where α satisfies Fq[α] = Fqh . The number of representa-
tions corresponds to the number of codewords in certain Hamming ball of radius
q − k − h.

In this paper, we shall be concentrating on 0 < c ≤ 1. We shall show that the
case c = 1 follows from the case c = 0 by a dual argument. The main new idea
for the case 0 < c < 1 is to exploit the role of subfields contained in Fq. Assume
that q = q̃2 and h = q1/4+o(1) is a positive integer. We have Fq̃ ⊆ Fq ⊆ Fqh .
Let α be an element in Fqh such that Fq̃[α] = Fq[α] = Fqh . We observe that
if every element in Fqh can be written as a product of g1 many distinct α + a
with a ∈ Fq̃, then for any nonnegative integer g2 ≤ q − q̃, every element in Fqh

can be written as a product of g1 + g2 many distinct α + a with a ∈ Fq. This
observation enables us to prove the main technical lemma that for any constant
0 < c < 1, any element in Fqh can be written as a product of �cq� distinct factors
in {α + a|a ∈ Fq} for q large enough.

2 Previous Work for Rate c = 0

For readers’ convenience, in this section, we sketch the main ideas in our earlier
paper [4]. This will be the starting point of our new results in the present paper.

Complexity of Decoding Positive-Rate Reed-Solomon Codes 287

Let h ≥ 2 be a positive integer. Let h(x) be a monic irreducible polynomial in
Fq[x] of degree h. Let α be a root of h(x) in an extension field. Then, Fq[α] = Fqh

is a finite field of qh element. We have

Theorem 4. Let h < g < q be positive integers. If every element of F∗qh can
be written as a product of exactly g distinct linear factors of the form α + a
with a ∈ Fq, then the discrete logarithm in F∗qh can be efficiently reduced in
random time qO(1) to the maximum likelihood decoding of the Reed-Solomon
code RSq[q, g − h].

Proof. In [4], the same result was stated for the weaker bounded distance de-
coding. Since the specific words used in [4] have exact distance q − g to the
code RSq[q, g− h], the bounded distance decoding and the maximum likelihood
decoding are equivalent for those special words. Thus, we may replace bounded
distance decoding by the maximum likelihood decoding in the above statement.
We now sketch the main ideas.

Let h(x) be a monic irreducible polynomial of degree h in Fq[x]. We shall
identify the extension field Fqh with the residue field Fq[x]/(h(x)). Let α be the
class of x in Fq[x]/(h(x)). Then, Fq[α] = Fqh . Consider the Reed-Solomon code
RSq[q, g − h]. For a polynomial f(x) ∈ Fq[x] of degree at most h− 1, let uf be
the received word

uf = (
f(a)
h(a)

+ ag−h)a∈Fq .

By assumption, we can write

f(α) =
g∏

i=1

(α + ai),

where ai ∈ Fq are distinct. It follows that as polynomials, we have the identity

g∏

i=1

(x + ai) = f(x) + t(x)h(x),

where t(x) ∈ Fq[x] is some monic polynomial of degree g − h. Thus,

f(x)
h(x)

+ xg−h + (t(x)− xg−h) =
∏g
i=1(x + ai)

h(x)
,

where t(x) − xg−h ∈ Fq[x] is a polynomial of degree at most g − h − 1 and
thus corresponds to a codeword. This equation implies that the distance of the
received word uf to the code RSq[q, g − h] is at most q − g. If the distance is
smaller than q−g, then one gets a monic polynomial of degree g with more than
g distinct roots. Thus, the distance of uf to the code is exactly q − g.

Let Cf be the set of codewords in RSq[q, g − h] that has distance exactly
q − g to the received word uf . The cardinality of Cf is then equal to 1

g! times
the number of ordered ways that f(α) can be written as a product of exactly g

288 Q. Cheng and D. Wan

distinct linear factors of the form α + a with a ∈ Fq. For error radius q − g, the
maximum likelihood decoding of the received word uf is the same as finding a
solution to the equation

f(α) =
g∏

i=1

(α + ai),

where ai ∈ Fq being distinct.
To show that the discrete logarithm in F∗qh can be reduced to the decoding of

the words of the type uf , we apply the index calculus algorithm. Let b(α) be a
primitive element of F∗qh . Taking f(α) = b(α)i for a random 0 ≤ i ≤ qh − 2, the
maximum likelihood decoding of the word uf gives a relation

b(α)i =
g∏

j=1

(α + aj(i)),

where aj(i) ∈ Fq are distinct for 1 ≤ j ≤ g. This gives the congruence equation

i ≡
g∑

j=1

logb(α)(α + aj(i)) (mod qh − 1).

Repeating the decoding and let i vary, this would give enough linear equations
in the q variables logb(α)(α + a) (a ∈ Fq)). Solving the linear system modulo
qh − 1, one finds the values of logb(α)(α + a) for all a ∈ Fq. To compute the
discrete logarithm of an element v(α) ∈ F∗qh with respect to the base b(α), one
applies the decoding to the element v(α) and finds a relation

v(α) =
g∏

j=1

(α + bj),

where the bj ∈ Fq are distinct. Then,

logb(α) v(α) ≡
g∑

j=1

logb(α)(α + bj) (mod qh − 1).

In this way, the discrete logarithm of v(α) is computed. The detailed analysis
can be found in [4]. �
The above theorem is the starting point of our method. In order to use it, one
needs to get good information on the integer g satisfying the assumption of
the theorem. This is a difficult theoretical problem in general. It can be done
in some cases, with the help of Weil’s character sum estimate together with a
simple sieving. Precisely, the following result was proved for g in [4].

Theorem 5. Let h < g be positive integers. Let

N(g, h) =
1
g!

(
qg −

(
g
2

)
qg−1

qh − 1
− (1 +

(
g

2

)

)(h− 1)gqg/2
)

.

Complexity of Decoding Positive-Rate Reed-Solomon Codes 289

Then every element in F∗qh can be written in at least N(g, h) ways as a product
of exactly g distinct linear factors of the form α + a with a ∈ Fq.

If for some constant ε > 0, we have

q ≥ max(g2, (h− 1)2+ε), g ≥ (
4
ε

+ 2)(h + 1),

then
N(g, h) ≥ qg/2/g! > 0.

The main draw back of the above theorem is the condition q ≥ g2, which trans-
lates to the condition that the information rate (g − h)/q goes to zero in appli-
cations.

3 The Result for Rate c = 1

Now we show that Theorem 1 holds when the information rate approaches one.

Proposition 6. Let g, h be positive integers such that for some constant ε > 0,
we have

q ≥ max(g2, (h− 1)2+ε), g ≥ (
4
ε

+ 2)(h + 1).

Then, every element in F∗qh can be written in at least N(g, h) ways as a product
of exactly q − g distinct linear factors of the form α + a with a ∈ Fq.

To prove this proposition, we observe that the map that sends β ∈ F∗qh to
∏
a∈Fq

(α + a)/β is one-to-one from F∗qh to itself. Proof: Note that

∏

a∈Fq

(α + a) = 0.

Given an element β ∈ F∗qh , from Theorem 5, we have that
∏
a∈Fq

(α + a)/β
can be written in at least N(g, h) ways as a product of exactly g distinct linear
factors of the form α+a with a ∈ Fq, hence β can be written in at least N(g, h)
ways as a product of exactly q − g distinct linear factors of the form α + a with
a ∈ Fq. �
It follows from Theorem 4 that we have the following two results.

Proposition 7. Suppose that

q ≥ max(g2, (h− 1)2+ε), g ≥ (
4
ε

+ 2)(h + 1).

Then the maximum likelihood decoding RSq[q, q−g−h] is as hard as the discrete
logarithm over the finite field F∗qh .

Note that the rate (q − g − h)/q approaches 1 as q increases for g = O(
√
q) and

h = O(g) = O(
√
q).

290 Q. Cheng and D. Wan

Proposition 8. Suppose that

q ≥ max(g2, (h− 1)2+ε), g ≥ (
4
ε

+ 2)(h + 1).

Let h(x) be an irreducible polynomial of degree h over Fq and let f(x) be a
nonzero polynomial of degree less than h over Fq. Then in Reed-Solomon code
RSq[q, q− g − h], the Hamming ball centered at (f(a)h(a) + aq−g−h)a∈Fq of radius g

contains at least q
g/2

g! many codewords.

Note if we set g = "√q#, then the number of codewords is greater than 2
√
q,

which is subexponential.

Proof of Theorem 3: The relative radius of the Hamming ball in the above
proposition is g

g+h+1 . If g = "(4
ε + 2)(h + 1)#, then the relative radius is ap-

proaching to
4
ε +2
4
ε +3

= 2ε+4
3ε+4 . Select ε such that

ρ =
2ε + 4
3ε + 4

.

Note that ε can be large if ρ is close to 2/3. If g = "q 1
2+ε #, the number of

codewords is at least
qg/2

g!
> (
√
q/g)g = q

εg
2(2+ε) .

To make sure that this number is greater than qi, we need g > 2(2+ε)i
ε . It is

satisfied if we let q to be the least prime power that is greater than

(
2(2 + ε)i

ε
)2+ε = iO(1).

We then calculate g = "q 1
2+ε # and solve h from the equation g = "(2

ε +2)(h+1)#.
Finally we find an irreducible polynomial h(x) of degree h over Fq using the
algorithm in [9]. �

4 The Result for Rate 0 < c < 1

We now consider the positive rate case with 0 < c < 1. For this purpose, we take
q = qm1 with m ≥ 2. Let α be an element in Fqh with Fq1 [α] = Fqh . Since

Fq1 [α] ⊆ Fq[α] ⊆ Fqh ,

we also have Fqh = Fq[α].

Theorem 9. Let q = qm1 with m ≥ 2. Let g1 and g2 be non-negative integers
with g2 ≤ q − q1. Let

N(g1, g2, h,m)=
1
g1!

(
qg11 −

(
g1
2

)
qg1−1
1

qmh1 − 1
− (1 +

(
g1

2

)

)(mh− 1)g1qg1/21

) (
q − q1

g2

)

Complexity of Decoding Positive-Rate Reed-Solomon Codes 291

Then, every element in F∗qh can be written in at least N(g1, g2, h,m) ways as a
product of exactly g1 + g2 distinct linear factors of the form α + a with a ∈ Fq.

If for some constant ε > 0, we have

q1 ≥ max(g2
1 , (mh− 1)2+ε), g1 ≥ (

4
ε

+ 2)(mh + 1)

then

N(g1, g2, h,m) ≥ q
g1/2
1

g1!

(
q − q1

g2

)

> 0.

Proof. Since g2 ≤ q− q1, we can choose g2 distinct elements b1, · · · , bg2 from the
set Fq − Fq1 . For any element β ∈ F∗qh = F∗

qmh
1

, since Fq1 [α] = Fqmh
1

, we can
apply Theorem 5 to deduce that

β

(α + b1) · · · (α + bg2)
= (α + a1) · · · (α + ag1),

where the ai ∈ Fq1 are distinct. The number of such sets {a1, a2, a3, · · · , ag1} ⊆
Fq1 is greater than

1
g1!

(
qg11 −

(
g1
2

)
qg1−1
1

qmh1 − 1
− (1 +

(
g1

2

)

)(mh− 1)g1qg1/21

)

.

Since Fq1 and its complement Fq − Fq1 are disjoint, it follows that

β = (α + b1) · · · (α + bg2)(α + a1) · · · (α + ag1)

is a product of exactly g1 + g2 distinct linear factors of the form α + a with
a ∈ Fq. �
We now take g1 = �q1/2m� = �√q1� and g2 = �cq� − g1 in the above theorem.
Thus, g1 + g2 = �cq�. We need g2 satisfying the inequalities

0 ≤ g2 ≤ q − q1 = q − q1/m.

That is,
0 ≤ �cq� − �q1/2m� ≤ q − q1/m.

The left side inequality is satisfied if q1 ≥ c−2/(2m−1). The right side inequality
is satisfied if q1 ≥ (1− c)−1/(m−1). Thus, we obtain

Theorem 10. Let m ≥ 2 and h ≥ 2 be two positive integers such that q = qm1 .
Let 0 < c < 1 be a constant such that

q1 ≥ max((mh− 1)2+ε, (
4
ε

+ 2)(mh + 1)2, c
−2

2m−1 , (1− c)
−1

m−1)

for some constant ε > 0. Then, every element in F∗qh can be written as a product
of exactly �cq� distinct linear factors of the form α + a with a ∈ Fq.

Combining this theorem together with Theorem 4, we deduce

292 Q. Cheng and D. Wan

Theorem 11. Let m ≥ 2 and h ≥ 2 be two positive integers such that q = qm1 .
Let 0 < c < 1 be a constant such that

q1 ≥ max((mh− 1)2+ε, (
4
ε

+ 2)(mh + 1)2, c
−2

2m−1 , (1− c)
−1

m−1)

for some constant ε > 0. Then, the maximum likelihood decoding of the Reed-
Solomon code RSq[q, �cq�−h] is at least as hard (in random time qO(1) reduction)
as the discrete logarithm in F∗qh .

Taking m = 2 in this theorem, we deduce Theorem 1.

Proposition 12. Let h be a positive integer and 0 < c < 1 be a constant. Let
q1 be a prime power such that

q1 ≥ max((2h− 1)2+ε, (
4
ε

+ 2)(2h + 1)2, c−2/3, (1− c)−1) (1)

for some constant ε > 0. Let q = q2
1. Let h(x) be an irreducible polynomial

of degree h over Fq whose root α satisfies that Fq1 [α] = Fqh . Let f(x) be a
nonzero polynomial over Fq of degree less than h. Then in the Reed-Solomon
code RSq[q, �cq�−h], the Hamming ball centered at (f(a)h(a) +a�cq�−h)a∈Fq of radius
q − �cq� contains at least exp(Θ(q)) many codewords.

Proof: The number of codewords in the ball is greater than

q
�√q1�/2
1

�√q1�!

(
q − q1

�cq� − √q1

)

,

which is greater than
(

q−q1
�cq�−√q1

)
= exp(Θ(q)). �

Proof of Theorem 2. Let q to be the square of the i-th prime power (listed in
increasing order). Assume that i is large enough such that

√
q ≥ max(c−2/3, (1−

c)−1). We then let ε to be 1/ log q and h to be the largest integer satisfying (1).
It remains to find an irreducible polynomial of degree h over Fq, whose root α
satisfies that Fq1 [α] = Fqh . Let p be the characteristic of Fq. We can use α such
that Fp[α] = Fqh . We need to find an irreducible polynomial of degree h logp q
over Fp. It can be done in time polynomial in p and the degree [9]. Then we
factor the polynomial over Fq and take any factor to be h(x). As for f(x), we
may simply let f(x) = 1. �

5 Conclusion and Future Research

In this paper, we show that the maximum likelihood decoding of the Reed-
Solomon code is at least as hard as the discrete logarithm for any given infor-
mation rate. In our result, we assumed that the cardinality of the finite field is
composite. While this is not a problem in practical applications, e.g. q = 256 is

Complexity of Decoding Positive-Rate Reed-Solomon Codes 293

quite popular, it would be interesting to remove this restriction, that is, allowing
prime finite fields as well.

Many important questions about decoding Reed-Solomon codes remain open.
For example, little is known about the exact list decoding radius of Reed-Solomon
codes. In particular, does there exist a Hamming ball of relative radius less than
one that contains super-polynomial many codewords in Reed-Solomon codes of
rate less than one?

References

1. Joux, N.S.A., Lercierand, R., Vercauteren, F.: The number field sieve in the medium
prime case. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 326–344.
Springer, Heidelberg (2006)

2. Ben-Sasson, E., Kopparty, S., Radhakrishnan, J.: Subspace polynomials and list
decoding of Reed-Solomon codes. In: 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 207–216 (2006)

3. Cheng, Q., Murray, E.: On deciding deep holes of Reed-Solomon codes. In: Cai,
J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 296–305.
Springer, Heidelberg (2007)

4. Cheng, Q., Wan, D.: On the list and bounded distance decodability of Reed-Solomon
codes. SIAM Journal on Computing 37(1), 195–209 (2007); Special Issue on FOCS
2004

5. Dumer, I., Micciancio, D., Sudan, M.: Hardness of approximating the minimum
distance of a linear code. IEEE Transactions on Information Theory 49(1), 22–37
(2003)

6. Guruswami, V., Vardy, A.: Maximum-likelihood decoding of Reed-Solomon codes is
NP-hard. IEEE Transactions on Information Theory 51(7), 2249–2256 (2005)

7. Guruswami, V., Rudra, A.: Limits to list decoding Reed-Solomon codes. IEEE
Transactions on Information Theory 52(8), 3642–3649 (2006)

8. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory 45(6), 1757–1767 (1999)

9. Shoup, V.: New algorithms for finding irreducible polynomials over finite fields.
Mathematics of Computation 54, 435–447 (1990)

Computational Complexity of the Distance

Constrained Labeling Problem for Trees
(Extended Abstract)

Jǐŕı Fiala1, Petr A. Golovach2,�, and Jan Kratochv́ıl1

1 Institute for Theoretical Computer Science��

and Department of Applied Mathematics,
Charles University, Prague, Czech Republic

{fiala,honza}@kam.mff.cuni.cz
2 Institutt for informatikk,

Universitetet i Bergen, Norway
petr.golovach@ii.uib.no

Abstract. An L(p, q)-labeling of a graph is a labeling of its vertices by
nonnegative integers such that the labels of adjacent vertices differ by at
least p and the labels of vertices at distance 2 differ by at least q. The
span of such a labeling is the maximum label used. Distance constrained
labelings are an important graph theoretical approach to the Frequency
Assignment Problem applied in mobile and wireless networks.

In this paper we show that determining the minimum span of an
L(p, q)-labeling of a tree is NP-hard whenever q is not a divisor of p.
This demonstrates significant difference in computational complexity of
this problem for q = 1 and q > 1. In addition, we give a sufficient and
necessary condition for the existence of an H(p, q)-labeling of a tree in the
case when the metric on the label space is determined by a strongly vertex
transitive graph H . This generalizes the problem of distance constrained
labeling in cyclic metric, that was known to be solvable in polynomial
time for trees.

1 Introduction

Distance constrained graph labelings stem from the highly practical problem of
assigning frequencies to transmitters in order to avoid, or minimize, undesired
interference. Suppose that the metric in the frequency space is expressible by a
graph H . An H(p, q)-labeling of a graph G is defined as a mapping f : V (G) →
V (H) such that distH(f(u), f(v)) ≥ p for any two adjacent vertices u, v ∈ V (G),
and distH(f(u), f(v)) ≥ q for any two nonadjacent vertices u, v ∈ V (G) which
have a common neighbor (i.e., are at distance 2 in G). Here the vertices of
the graph G correspond to the transmitters in the network, and the edges of
G express possible interference. This general approach was first studied in the
� Supported by Norwegian Research Council.

�� Supported by the Ministry of Education of the Czech Republic as project
1M0021620808.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 294–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Complexity of the Labeling Problem of Trees 295

connection to locally injective graph homomorphisms [7]. Two special cases have
been introduced and intensively studied before — the case of linear metric, where
H = Pλ+1 is the path of length λ, and the cyclic metric corresponding to the
case H = Cλ.

These mappings are referred to as L(p, q)- and C(p, q)-labelings, respectively.
In both cases λ is the span of the labeling. We define the linear span Lp,q(G)
as the minimum span of an L(p, q)-labeling of G. Analogously, the cyclic span
Cp,q(G) is the minimum span of a labeling with the cyclic metric.

The concept of L(2, 1)-labeling was introduced by Roberts [18,11]. The exact
values for special graphs and graph classes have been determined several works,
cf. surveys [14,19,2] Griggs and Yeh [11] conjectured that L2,1(G) ≤ Δ2(G),
where Δ(G) denotes the maximum degree in G. This upper bound has been
recently proven true for every sufficiently large Δ(G) by Havet et al. [13].

Distance constrained graph labelings provide a rather interesting graph in-
variant from the computational complexity point of view. Griggs and Yeh [11]
proved that it is NP-hard to determine L2,1(G), while Fiala et al.[8] proved that
deciding L2,1(G) ≤ k is NP-complete for every fixed k ≥ 4. Rather interesting is
the complexity for restricted graph classes. Chang and Kuo [4] described a poly-
nomial time algorithm for determining the L2,1(G) if G is a tree, but already for
series-parallel graphs this problem becomes NP-complete [5]. The computational
complexity of determining the Lp,q(G) if G is a tree for q > 1 has been open
since then. It was explicitly asked by D. Welsh [private communication during a
graph coloring workshop at DIMACS in 1999] with a hope for a generalization
of the method of Chang and Kuo. While this works easily for an arbitrary p > 2
and q = 1, the case q > 1 kept resisting all attempts. Intuitively, the difference
between q = 1 and q > 1 relates to the difference between systems of distinct
and distant representatives [10]. Resolving this question is the main result of this
paper.

Formally, we consider the following decision problem:

L(p, q)-Labeling

Instance: A graph G and an integer λ.
Question: Does G allow an L(p, q)-labeling of span λ?

Note that p, q are fixed parameters while λ (and, of course, G) are part of the
input. We prove the following result.

Theorem 1. For positive integers p and q, the L(p, q)-Labeling problem re-
stricted to trees is solvable in polynomial time only if q divides p, otherwise it is
NP-complete.

The polynomial part is now a folklore. It has been proved already in [11] that an
optimum labeling using only labels of the form ap+ bq always exists, and hence
L(rp, rq)-Labeling is equivalent to L(p, q)-Labeling. In particular, when q
divides p we get the L(pq , 1)-Labeling problem which is solvable in polynomial
time by a slight modification of an algorithm by Chang and Kuo [4,3]. We note
here that it is sufficient to prove the NP-hardness part of the theorem for the
case of mutually prime p and q.

296 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

The NP-hardness part of the theorem is proved by a reduction from the prob-
lem of deciding the existence of a system of distant representatives in systems
of symmetric sets. The construction extends the approach initiated in [9] where
the NP-hardness of extending a prelabeling to a complete L(p, q)-labeling was
proved. The main idea is a construction of trees that allow only specific labels
on their roots. The main difficulty, that we successfully managed to overcome,
was to keep the size of such trees polynomial. These constructions are presented
in Section 3 and the proof of Theorem 1 is concluded in Section 5.

It is interesting to note that Lp,q(T) can be approximated well for trees by
qΔ(T). Griggs and Yeh proved that Δ(T)q+p−q ≤ Lp,q(T) ≤ Δ(T)q+2p−q−1
holds for positive integers p ≥ q and a tree T [11]. But perhaps a bit surprising
is the fact that in the cyclic metric the span of a tree is uniquely determined by
its maximum degree. Liu and Zhu [16] proved that Cp,q(T) = qΔ(T)+2p− q for
every tree T and p ≥ q. In particular, the Cp,q-span of a tree can be computed
in linear time. We further explore this phenomenon and show that it is due to
the fact that cycles are transitive graphs. We prove a necessary and sufficient
condition for the existence of an H(p, q)-labeling of a tree T when H is a strongly
transitive graph in Theorem 2. This result has several applications. For instance,
the minimum n such that an input tree T has a Qn(p, q)-labeling (where Qn is
the n-dimensional cube) can be determined in polynomial time for q = 1 and
q = 2. These results are presented in Section 6.

2 Preliminaries and Notation

For integers i and j, we denote by [i, j] the interval {i, i + 1, i + 2, . . . , j}. By
convention, [i, j] = ∅ if j < i. Analogously, if i ≡ j (mod q), we denote by
[i, j]≡q the q-stepped interval {i, i + q, i + 2q, . . . , j}. For a positive integer k,
we write [k] := [1, k]. The binary operators div and mod stand for the integral
division and the remainder of the division.

We consider undirected graphs without loops or multiple edges. In a graph
G, the symbol NG(u) denotes the set of vertices adjacent to u, i.e., the (open)
neighborhood of u. We also define the closed neighborhood as NG[u] := NG(u) ∪
{u}. The subscripts G will be omitted if there is no danger of confusion which
graph G is being considered. The symbol Δ(G) stands for the maximum degree
of a vertex in the graph G.

A graph is connected if every pair of vertices can be connected by a path.
For vertices u, v ∈ VG, the distance distG(u, v) is the length of a shortest path
between u and v.

We adopt standard notions from graph theory: the path Pn on n vertices; the
cycle Cn; a star — a connected graph with at most one vertex of degree greater
than one; a tree — a connected graph with no cycle; and a hypercube Qn — a
graph on binary words of length n where two such words are adjacent if they
differ only at one position. For more details we refer to the classical monograph
by Harary [12] or to a more recent textbook by Matoušek and Nešetřil [17].

Complexity of the Labeling Problem of Trees 297

When exploring L(p, q)-labelings in the first part of the paper, we assume that
the label set is a set [0, λ]. Thus an L(p, q)-labeling of G of span λ is a mapping
l : VG → [0, λ] such that for any pair of adjacent vertices u and v, it holds that
|l(u)− l(v)| ≥ p, and for any pair of nonadjacent vertices u and v that share a
common neighbor, it holds that |l(u)− l(v)| ≥ q.

For a fixed λ we define the reversed mapping on [0, λ] by a → ā := λ − a.
Observe that for any L(p, q)-labeling l of span λ, the reversed labeling l̄ defined
by l̄(u) := l(u) is also an L(p, q)-labeling. We extend the reversing to sets by
S = {ā | a ∈ S}.

We extend any mapping f defined on vertices of a graph G into a mapping
on sets of vertices by letting f(W) :=

⋃
u∈W {f(u)} for each W ⊂ VG.

In the context of fixed p, q and λ we say that a label a ∈ [0, λ] is feasible for
a vertex u ∈ VG if there exists an L(p, q)-labeling l of G of span λ such that
l(u) = a. The set of feasible labels for u is called the feasible set of u in G.
Observe that every feasible set S is reversable: S = S. If a symmetric set S is
expressed as the union of a set and its reverse S = S′ ∪ S′, we abbreviate this
expression by the notation S = S′ ∪ · · ·. Finally, we say that a label a is forced
on a vertex u ∈ VG if {a, ā} is the feasible set of u.

3 Auxiliary Constructions for the Case p > q

Throughout the coming three sections we assume that p > q > 1 and that p
and q are relatively prime. In our construction we also use a third parameter,
an integer k, whose value will be specified later in the polynomial reduction. We
will use λ := 2p + kq and d := k + (p div q) + 1.

Construction 1. For given p > q > 1 and k ≥ 2, let T 1 be the only tree with
a vertex u of degree two which is a common neighbor of vertices w and w′ of
degree d. The other neighbors of w and w′ are of degree k + 2. All remaining
vertices are leaves.

Construction 2. For given p > q > 1 and k ≥ 2, let T 2 be the tree obtained
from T 1 by adding k leaves to u. Denote by v some leaf adjacent to u. (See
Fig. 1.)

Lemma 1. If p, q and k satisfy the assumptions of Constructions 1 and 2, then
[p, p̄]≡q is the feasible set for u in T1 and [q, 2p]≡q ∪ · · · is the feasible set for v
in T2.

Note that for each choice of a ∈ [p, p̄]≡q and b ∈ [q, a − p]≡q ∪ [a + p, q̄]≡q, a
labeling l of T 2 exists where l(u) = a and l(v) = b.

To simplify the next construction we define d′ := d− 2 = k − 1 + (p div q).

Construction 3. For given p > q > 1, k ≥ 2p
q + 1 and i ∈ [k− 1], let T 3

i be the
tree constructed as follows: Take the disjoint union of i copies of the tree T 1 and

298 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

k − 1

d− 1 timesd− 1 times

k + 1 k + 1 k + 1 k + 1 k + 1 k + 1

u

v

w w′
...

......
...

......
...

Fig. 1. The tree T 1 (solid lines) and tree T 2 (solid and dotted lines)

i d′ − i

u

. . .

w

v

. . .

Fig. 2. The tree T 3
i

d′ − i copies of T 2. Then insert a new vertex w and connect it to the i vertices
u of trees T 1 as well as to the d′ − i vertices v of trees T 2.

Rename the vertices such that only u of the first copy of T 1 and v of the last
copy of T 2 keep their names. (See Fig. 2.)

Lemma 2. Assume that p, q, k, and i satisfy the assumptions of Construction 3.
Then

– the set [p + q, p + iq]≡q ∪ · · · is the feasible set for u in T 3
i ,

– [(d′ − i)q, q̄]≡q ∪ · · · is the feasible set for v in T 3
i , and

– q is forced on w.

Proof. Let l be a hypothetical labeling. We show that this labeling is unique
upto an isomorphism of T 3

i and upto reversion of the labeling.
Observe that for the closed neighborhood of w it holds that l(N [w]) ⊆ [q, q̄],

since for every vertex in this set we identify vertices labeled by 0 and λ at
distance at most two. (This follows from the labeling described in Lemma 1.)

As the degree of w is at least k we exclude the case l(w) ∈ [p + q, p + q]
by the same argument as in Lemma 1. Assume without loss of generality that
l(w) ∈ [q, p + q]. Consequently, for the open neighborhood of w we get that
l(N(w)) ⊆ [p + q, q̄].

Complexity of the Labeling Problem of Trees 299

We also assume without loss of generality that l(u) < l(v): if the maximal
label on N(w) was on some vertex u of the first copies, then l(N(w)) ⊂ [p, p̄].
This interval is not long enough to accommodate k + 1-many q-distant labels.

If we choose v such that it receives the maximal label on N(w), we see that
l(v) ≡ 2p (mod q). Hence, at least once the distance between consecutive labels
on N(w) is at least q + (p mod q).

The only way how labels of N(w) can be arranged into the interval [p + q, q̄]
is to use the arithmetic progression [p + q, p + iq]≡q on the first i copies of
u, and then after the gap q + (p mod q) to use the set [(d′ − i)q, q̄]≡q on the
copies of v. In all other ways a gap greater than q would be used at least twice,
and the above arrangement is already tight: the smallest possible label on v is
p + iq + q + (p mod q) = 2p + kq − (k − 1 + (p div q)− i)q.

As the smallest label used on N(w) is p + q, the label q is forced on w.
The above described labeling of N(w) can be extended to the rest of the tree

T 3
i . In the copies of T1, the labels of u and w comply with the labelings mentioned

after Lemma 1. In the remaining d′ − i copies of T 2, we choose l(u) = p + q if
l(v) > 2p+ q and l(u) = p̄ otherwise. The choice of k in the Definition 3 assures
that this partial labeling can be extended on each copy of T 2.

In the following two lemmas we show constructions of trees that force exact
labels on some vertices.

Construction 4. For p > q > 1 and an even k ≥ 2p
q + 1, take the disjoint

union of k−2 trees: one copy of T 3
1 , one copy of T 3

k
2
, and two copies of each tree

T 3
i for i ∈ [2, k2 − 1]. Insert an extra new vertex w and make it adjacent to each

of the k − 2 vertices u. The resulting graph is the tree T 4. Rename the vertices
such that ui is the vertex u of T 3

i , i.e., of one of the two isomorphic copies when
i ∈ [2, k2 − 1]. (See Fig. 3.)

Lemma 3. If p, q and k satisfy the assumptions of Construction 4, then in T 4,
p + iq is forced on ui for each i ∈ [k2], and 2q is forced on w.

Construction 5. For p > q > 1 and an even k ≥ 2p
q + 1, construct the tree T 5

from the disjoint union of pairs of trees T 3
i for i ∈ [k2] by adding an extra new

vertex w and making it adjacent to all vertices v. Rename the vertices such that
for each i, vi is the vertex v of one of the two copies of T 3

i .

. . .

u2u1

w

u3 u k
2

u k
2 −1

T 3
1 T 3

2 T 3
2 T 3

3
T 3

k
2 −1

T 3
k
2 −1

T 3
k
2

Fig. 3. The Tree T 4

300 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

. . .

w

v1 v2 vk
2

T 3
1 T 3

2T 3
1

T 3
k
2

T 3
k
2

Fig. 4. The Tree T 5

Lemma 4. Suppose p, q, and k satisfy the assumptions of Construction 5. Then
in T 5, p + k

2 q is forced on w, and for every i ∈ [k2], iq is forced on vi.

Let Λ(k, p, q) (called the set of applicable labels) be the set of labels that are
forced on some vertex ui of T 4 or on some vi of T 5. By Lemmas 4 and 5,

Λ(k, p, q) :=

(
[
p + q, p +

kq

2

]

≡q
∪

[
q,

kq

2

]

≡q

)

∪ · · ·

4 Symmetric Systems of q-Distant Representatives

As a technical tool for proving NP-hardness results we use the following problem
of finding distant representatives:

System of q-distant representatives Sq-DR

Parameter: A positive integer q.
Instance: A collection of sets Ri, i ∈ [m] of integers.
Question: Is there a collection of elements ri ∈ Ri, i ∈ [m] that pairwise
differ by at least q

It is known that the S1-DR problem allows a polynomial time algorithm (by
finding a maximum matching in a bipartite graph), while for all q ≥ 2 the Sq-DR
problem is NP-complete, even if each set Ri has at most three elements [10].

We adjust the Sq-DR problem so that it can be used to prove NP-hardness
for the L(p, q)-Labeling problem for trees. Since every L(p, q)-labeling l comes
together with the reversed labeling l̄, we need a stronger concept of systems of
q-distant representatives where the sets are λ-symmetric, i.e., Ri = Ri for every
i ∈ [m]. Moreover, we say that a set R is 2q-sparse if the distance between any
two elements in R is at least 2q.

Lemma 5. For any p > q > 1, the Sq-DR problem remains NP-complete even
when restricted to instances where each Ri

– is of size at most 6,
– is 2q-sparse
– is λ-symmetric for λ = 2p + (6n + 2(p div q) + 4)q, and
– is a subset of Λ(6n + 2(p div q) + 4, p, q) ∩

(
[p + 2q, p + 3nq] ∪ · · ·

)

where n is a suitable integer.

Complexity of the Labeling Problem of Trees 301

w

rm rm+1 rm+n

two trees for each element of S1

. . .

r1

s1
.

T 5 T 5

T 4

T 5 T 4 T 5

Fig. 5. The final tree T 6

5 Proof of Theorem 1 for p > q

Proof. Assume an instance (Ri)i∈[m+n] of the Sq-DR problem with properties
described in Lemma 5, and let |Ri| = 4 or 6 for i ∈ [m] and |Rm+i| = 2
for i ∈ [n]. We construct a tree T 6 with special vertices ri such that these
vertices share a common neighbor and force for every i ∈ [m + n] that ri can
not be labeled by any label outside the set Ri under any L(p, q)-labeling of span
λ of T 6.

Assume that the set Ri, i ∈ [m] consists of elements {a, b, b̄, ā} with a < b.
We choose an auxiliary set Si ⊂ [q, p+(3n+1)q] of applicable labels such that

{q, a−q, a+q, b−q, b+q, p+(3n+1)q} ⊂ Si. The set Si contains also sufficiently
many other labels such that the distance between consecutive elements of Si is
at least q but strictly less than 2q with only two exceptions: a − q, a + q and
b− q, b+ q. (A construction of such set can be given explicitly, but we would like
to avoid excessive formalism.) As the set Ri is 2q-sparse, each Si is nonempty.

Analogously, we construct the sets Si for all Ri with six elements.
We construct tree T 6 as follows:

1. For each Ri with four or six elements
(a) Insert into T 6 a new copy of T 4 and rename its vertex u k

2
by si

(b) For each element p+ jq of Si add two copies of the tree T 4 and make si
adjacent to both vertices uj .

(c) Analogously, for each jq ∈ Si add two copies of the tree T 5 and make si
adjacent to both vertices vj .

(d) Add an extra new leaf ri adjacent to si
2. For each Ri = {jq, jq} add a copy of T 5 and rename its vj by ri.
3. Finally, connect these m + n partial trees by a new common neighbor w of

all vertices ri, i ∈ [m + n]. (See Fig. 5.)

We argue that for every i ∈ [n] only the set Ri is feasible for the vertex ri in
each partial tree constructed in the first step of the construction. As λ2 is forced
on si and both 0 and λ appear on l(N(si)) inside the copy of T 4 we get that
l(ri) ∈ [q, kq2] ∪ · · ·.

302 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

The elements of Si are forced on N(si), so only l(ri) ∈ (0 ∪ Ri ∪ [p + (3n +
2)q, p + kq

2]) ∪ · · ·. By the choice of k = 6n + 2(p div q) + 4 we have kq
2 =

(3n + p div q + 2)q < p + (3n + 2)q and hence l(ri) ∈ Ri.
Observe that the labelings giving pairs of uj of step 1b) λ-symmetric labels

can be simply combined altogether with any label of ri from the set Ri to get
an L(p, q)-labeling of the partial tree.

We conclude the proof by showing that the entire T 6 allows an L(p, q)-labeling
of span λ if and only if the set system (Ri)i∈[m+n] allows a system of q-distant
representatives.

Given a labeling l, the labels of vertices ri provide valid representatives for
Ri. This is since vertices ri are mutually at distance two and we have shown
that their labels can only belong to sets Ri (for i > m this follows directly from
Lemma 4).

In the opposite direction, we label each ri by the representative of Ri and
use the corresponding labelings of the partial trees described above. Then w
can be labeled by 0 as l(ri) > q for every i ∈ [m + n] as well as it holds that
0 ∈ N(l(vj)) for every feasible labeling of T 5 which was added in the second step
(consult Lemma 4).

Though the practical motivation for L(p, q)-labelings implies that p ≥ q, the
notion itself makes sense also for p < q. The NP-hardness result prevails as well.

6 H(p, q)-Labelings for Transitive Target Graphs

Consider the following graph labeling problem with a condition at distance two:

(p, q)-Distance Labeling (p, q)-DL

Instance: Graphs G and H .
Question: Does G allow an H(p, q)-labeling?

We emphasize that the target graph H is a part of the input of the problem.
The problem of determining Lp,q(G) and Cp,q(G) is equivalent to the (p, q)-DL

problem restricted to graphs H being paths and cycles. In contrary to our former
result on NP-completeness of the (p, q)-DL problem for q > 1, G being a star
and an arbitrary target graph H [6], the (p, q)-DL problem becomes easy when
G is a tree and the target graph H is a cycle:

Proposition 1 (Leese and Noble [15], Liu and Zhu [16]). Let T be a tree,
and p ≥ q be nonnegative integers. Then a Cλ(p, q)-labeling of T exists if and
only if λ ≥ qΔ(T) + 2p− q.

We show now that the change of the complexity of the labeling problem for
linear and circular metrics follows from the fact that cycles are vertex-transitive.
Recall that a graph H is (strongly) vertex transitive if for every two vertices
x, y ∈ VH , the graph H allows an automorphism f swapping vertices x and y,
i.e., f(x) = y and f(y) = x.

Complexity of the Labeling Problem of Trees 303

Theorem 2. Let H be a vertex transitive graph, and p, q be positive integers.
An H(p, q)-labeling of a tree T exists if and only if the graph H contains vertices
x, y1, y2, . . . , yΔ(T) such that distH(x, yi) ≥ p and distH(yi, yj) ≥ q hold for every
distinct i, j ∈ [Δ(T)].

Proof. Observe that the existence of an H(p, q)-labeling of T immediately gives
the existence of vertices x, y1, . . . , yΔ(T).

For the opposite implication we construct the labeling by induction. The
H(p, q)-labeling will satisfy the property that for every vertex u of T and its
neighbors v1, . . . vk, the graph H allows an automorphism g such that the labels
satisfy l(u) = g(x) and for every i ∈ [k] it holds that l(vi) = g(yj) for some
j ∈ Δ(T).

Firstly, select an arbitrary vertex r of T , and make the tree rooted in r. Also
define l(r) = x and extend the labeling l on N(r) such that distinct neighbors
of r are mapped onto distinct yi’s. Clearly, the required automorphism g is the
identity.

Assume that the labeling is already defined on a vertex u and its parent
v, but not yet at the children of u. Let g be the automorphism of H used to
distribute labels on N [v] and f be the automorphism swapping vertices l(u) and
l(v). We now compose both automorphisms h := f ◦ g and extend the labeling
on the whole neighborhood of u by using distinct vertices of h(y1), . . . , h(yΔ(T))
as labels.

Note that Proposition 1 is a corollary of Theorem 2 since every cycle is vertex
transitive. The (p, q)-DL problem for trees is solvable in polynomial time for
those classes of target graphs for which the condition of the existence of vertices
x and y1, . . . , yΔ(T) can be answered in polynomial time. In particular, this
applies for vertex transitive graphs of restricted treewidth as follows from well
known results by Arnborg et al. [1].

Corollary 1. Let G be a class of vertex transitive graphs with bounded treewidth.
Then the (p,q)-DL problem, restricted to input graphs G that are trees and graph
H from the class G, can be solved in polynomial time.

We now consider the case when H is an n-dimensional hypercube Qn and q =
1, 2.

Corollary 2. Let T be a tree, and H be an n-dimensional hypercube Qn. Then
a tree T allows an H(p, 1)-labeling if and only if

Δ(T) ≤
(
n

p

)

+
(

n

p + 1

)

+ · · ·+
(
n

n

)

.

Also, T has an H(p, 2)-labeling if and only if

Δ(T) ≤
(
n

p

)

+
(

n

p + 2

)

+
(

n

p + 4

)

+

304 J. Fiala, P.A. Golovach, and J. Kratochv́ıl

Proof. Every hypercube is vertex transitive. Choose x ∈ VQn arbitrarily.
The first claim follows directly from the fact that the number of vertices in

Qn that are at distance at least p from x is exactly
(
n
p

)
+

(
n
p+1

)
+ · · ·+

(
n
n

)
.

Let Ui be the set of vertices at distance i from x. It is well known that |Ui| =(
n
i

)
. Define U := Up∪Up+2 ∪Up+4 ∪ This U is an independent set and every

vertex of U is at distance at least p from x. Let W := Up−2 ∪Up−4 ∪Up−6 ∪
As the union U ∪ W is a maximum independent set in Qn, the set U is a
maximum independent set among vertices that are at distance at least p from
x. By Theorem 2 the tree T allows an H(p, 2)-labeling if and only if Δ(T) ≤ |U |
and the other claim follows.

Note that for q ≥ 3 the problem of finding x, y1, . . . , yΔ(T) in Qn becomes harder,
since it requires to compute the set of vertices that are pairwise at distance at
least three — in particular none of the layers Ui, i < n can be taken completely.

Finally, observe that for p = q = 2 the search for x, y1, . . . , yΔ(T) in a general
graph H is equivalent to the test whether H allows an independent set of size
at least Δ(T) + 1.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Calamoneri, T.: The L(h, k)-labeling problem: A survey and annotated bibliogra-
phy. Computer Journal 49(5), 585–608 (2006)

3. Chang, G.J., Ke, W.-T., Liu, D.D.-F., Yeh, R.K.: On L(d, 1)-labelings of graphs.
Discrete Mathematics 220(1–3), 57–66 (2000)

4. Chang, G.J., Kuo, D.: The L(2, 1)-labeling problem on graphs. SIAM Journal on
Discrete Mathematics 9(2), 309–316 (1996)

5. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Distance constrained labelings of graphs
of bounded treewidth. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 360–372. Springer, Heidelberg
(2005)

6. Fiala, J., Golovach, P. A., and Kratochv́ıl, J.: Distance constrained labelings of
trees. Tech. Rep. ITI Series 2008–369, Charles University (2007)

7. Fiala, J., Kratochv́ıl, J.: Partial covers of graphs. Discussiones Mathematicae Graph
Theory 22, 89–99 (2002)

8. Fiala, J., Kratochv́ıl, J., Kloks, T.: Fixed-parameter complexity of λ-labelings.
Discrete Applied Mathematics 113(1), 59–72 (2001)

9. Fiala, J., Kratochv́ıl, J., Proskurowski, A.: Distance constrained labeling of precol-
ored trees. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS 2001.
LNCS, vol. 2202, pp. 285–292. Springer, Heidelberg (2001)

10. Fiala, J., Kratochv́ıl, J., Proskurowski, A.: Systems of distant representatives. Dis-
crete Applied Mathematics 145(2), 306–316 (2005)

11. Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM
Journal on Discrete Mathematics 5(4), 586–595 (1992)

12. Harary, F.: Graph theory. Addison-Wesley Series in Mathematics IX. Addison-
Wesley, Reading (1969)

Complexity of the Labeling Problem of Trees 305

13. Havet, F., Reed, B., Sereni, J.-S.: L(2,1)-labelling of graphs. In: Huang, S.-T. (ed.)
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pp.
621–630. SIAM, Philadelphia (2008)

14. Král, D.: Mixed hypergraphs and other coloring problems. Discrete Mathemat-
ics 307(7-8), 923–938 (2007)

15. Leese, R.A., Noble, S.D.: Cyclic labellings with constraints at two distances. Elec-
tronic Journal of Combinatorics 11(1) (2004)

16. Liu, D.D.-F., Zhu, X.: Circulant distant two labeling and circular chromatic num-
ber. Ars Combinatoria 69, 177–183 (2003)

17. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics. Oxford University
Press, Oxford (1998)

18. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Discrete
Mathematics 93(2–3), 229–245 (1991)

19. Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete
Mathematics 306(12), 1217–1231 (2006)

The Randomized Coloring Procedure with

Symmetry-Breaking

Sriram Pemmaraju1 and Aravind Srinivasan2,�

1 Dept. of Computer Science,
The University of Iowa, Iowa City, IA 52242-1419, USA

sriram@cs.uiowa.edu
2 Dept. of Computer Science and Institute for Advanced Computer Studies,

University of Maryland, College Park, MD 20742, USA
srin@cs.umd.edu

Abstract. A basic randomized coloring procedure has been used in prob-
abilistic proofs to obtain remarkably strong results on graph coloring.
These results include the asymptotic version of the List Coloring Con-
jecture due to Kahn, the extensions of Brooks’ Theorem to sparse graphs
due to Kim and Johansson, and Luby’s fast parallel and distributed al-
gorithms for graph coloring. The most challenging aspect of a typical
probabilistic proof is showing adequate concentration bounds for key
random variables. In this paper, we present a simple symmetry-breaking
augmentation to the randomized coloring procedure that works well in
conjunction with Azuma’s Martingale Inequality to easily yield the req-
uisite concentration bounds. We use this approach to obtain a number of
results in two areas: frugal coloring and weighted equitable coloring. A β-
frugal coloring of a graph G is a proper vertex-coloring of G in which no
color appears more than β times in any neighborhood. Let G = (V, E)
be a vertex-weighted graph with weight function w : V → [0, 1] and
let W =

∑
v∈V w(v). A weighted equitable coloring of G is a proper k-

coloring such that the total weight of every color class is “large”, i.e.,
“not much smaller” than W/k; this notion is useful in obtaining tail
bounds for sums of dependent random variables.

1 Introduction and Summary of Results

The randomized coloring procedure refers to a simple randomized algorithm for
coloring graphs that has been used in probabilistic proofs over the past two
decades, to obtain remarkably strong results on graph coloring. Some of these
results are existential, whereas some lead to polynomial-time algorithms. These
results include the asymptotic version of the List Coloring Conjecture due to
Kahn [16], and Kim [18] and Johansson’s [14] extensions of Brooks’ Theorem for

� Supported in part by NSF Award CCR-0208005, NSF ITR Award CNS-0426683, and
NSF Award CNS-0626964. Part of this work was done while on sabbatical at the
Network Dynamics and Simulation Science Laboratory of the Virginia Bioinformatics
Institute, Virginia Tech.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 306–319, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Randomized Coloring Procedure with Symmetry-Breaking 307

graphs with lower-bounded girth. The randomized coloring procedure has also
been used by Luby [22] to obtain fast parallel and distributed algorithms for
graph coloring. In its simplest form, the procedure is:

Each vertex v picks a tentative color uniformly at random from its color
palette. With high probability the tentative coloring may not be proper;
it is repaired by uncoloring each vertex v that receives the same color as
a neighbor.

The randomized coloring procedure allows us to claim the existence of a proper,
partial coloring of the graph, having certain desired properties. This coloring
can be extended to a complete proper coloring in a variety of ways (for example,
greedily). Variants of this procedure involve vertices making a non-uniform color
choice or each vertex having an activation probability. For example, in Johans-
son’s extension of Brooks’ Theorem for triangle-free graphs [14], it is important
that some colors are used more than others and to ensure this, a non-uniform
probability distribution is used for the choice of colors. In Luby’s parallel al-
gorithm for graph coloring [22] each node has an activation probability of 1/2;
the algorithm starts by flipping an unbiased coin for each vertex and only those
vertices that are activated in this step take further part in the coloring procedure.

In the iterative or incremental version of this procedure, the partial coloring
obtained after one application of the procedure is not completed deterministi-
cally; instead the coloring is incrementally extended by repeating the procedure.
Specifically, after one application of the procedure we argue that (i) sufficient
progress has been made and (ii) the partial coloring has the desired properties
with positive (though, typically very small) probability. A “good” partial color-
ing is then fixed and we extend this coloring by performing the next iteration
of the randomized coloring procedure. This incremental version of the proce-
dure is extremely powerful and the results [14,16,18,22] mentioned above, are
obtained thus. The incremental randomized coloring procedure is a special case
of the general technique variously referred to as the “semi-random method,” the
“pseudo-random method,” or the “Rödl Nibble.”

In this paper, we present a simple symmetry-breaking augmentation to the
randomized coloring procedure. This symmetry-breaking approach, when used in
conjunction with Azuma’s Martingale Inequality, allows us to use the incremental
randomized coloring procedure to prove a number of new results (mentioned
below). In its simplest form, our approach starts by picking a permutation π
of the vertex set V of the given graph G. Depending on the application, the
permutation π can be arbitrary or random or dictated by the structure of G.
As in the standard randomized coloring procedure, in the first step, vertices
pick tentative colors. Then, in the uncoloring step, a vertex v is uncolored only
if there is a neighbor of lower rank in π that has received the same tentative
color. Thus the difference between the symmetry-breaking approach and the
standard randomized procedure is only in which neighbors are examined in the
uncoloring step.

The most challenging aspect of a typical probabilistic-method proof is showing
the adequate concentration of key random variables. For example, for the first

308 S. Pemmaraju and A. Srinivasan

result of this paper, we need to show that after an iteration of the randomized
coloring, a constant fraction of the neighbors of each vertex get colored. Let
the random variable Pv denote the number of neighbors of vertex v that get
permanently colored in one iteration of the coloring procedure. It can be shown
that E[Pv] = α ·degree(v) for some constant 0 < α < 1; we need to show that Pv
is sharply concentrated around E[Pv]. In establishing the concentration of Pv,
we need to take into account the fact that even though vertices independently
chose tentative colors, the permanent acquisition of colors by vertices may be
highly correlated. Recall that a vertex u permanently acquires a color x if u has
tentatively chosen x and no neighbor of u has. To get around such “dependence”
problems, concentration inequalities such as Azuma’s Inequality that do not
require independence, have been used widely. However, obtaining sharp enough
concentration bounds using Azuma’s Inequality is not always easy. Consider the
following version of the inequality [23]:

Lemma 1. [Azuma’s Inequality] Let X be a random variable determined by
n trials T1, T2, . . . , Tn, such that for each i, and any two possible sequences of
outcomes t1, t2, . . . , ti−1, ti and t1, t2, . . . , ti−1, t

′
i:

∣
∣
∣E[X |T1 = t1, . . . , Ti = ti]− E[X |T1 = t1, . . . , Ti = t′i]

∣
∣
∣ ≤ ci (1)

then
Pr

[
|X − E[X]| > t

]
≤ 2e−t

2/(2
∑
c2i). (2)

The difficulty in using Azuma’s Inequality arises from the need to show that∑
i c

2
i is small. For example, if each ci is shown to be bounded above by a

small constant, then the resulting bound in (2) is e−εt
2/n for a positive con-

stant ε. The “n” here is problematic, as it may be considerably larger than
E[X]. The more desirable concentration bound is e−Ω(εt2/E[X]). For our ran-
dom variable Pv, n may be as large as Δ2 (Δ being the maximum degree of
the graph), whereas E[Pv] is linear in Δ. This is because the permanent acqui-
sition of colors by vertices in the neighborhood of v depends on the tentative
choices of colors by vertices in the distance-2 neighborhood of v. The symmetry-
breaking approach provides critical help in showing that

∑
i c

2
i is small, usually

O(E[X]). For example, to show that Pv is concentrated around E[Pv], we con-
sider Uv = 〈u1, u2, . . . , u�〉, the sequence of vertices at distance at most two from
v, arranged in increasing rank according to π. Letting Ti denote the tentative
choice of a color by ui, we observe that changing Ti does not affect any of the
lower ranked vertices; only the higher ranked vertices. However, (1) only con-
siders the expected effect of changing Ti on higher ranked vertices, rather than
the worst-case effect. These observations play a critical role in proving a better
bound on

∑
i c

2
i ; see, e.g., the proofs of Lemmas 4 and 6.

Results and Notation. We apply randomized coloring with symmetry-breaking
to obtain a number of results in two areas: frugal coloring and weighted equitable
coloring. Our results include existential bounds, polynomial-time algorithms, and

The Randomized Coloring Procedure with Symmetry-Breaking 309

polylog-time distributed algorithms. We state our specific results next. All loga-
rithms here are natural logarithms, unless specified otherwise. We use e to denote
the base of the natural logarithm, and for any positive integer h, [h] to denote
the set {1, 2, . . . , h}. For a vertex v, N(v) denotes the set of neighbors of v in
some graph G that is clear from the context; deg(v) denotes |N(v)|. We make
use of the following version of the Lovász Local Lemma.

Lemma 2. [Lovász Local Lemma] Consider a set E of events such that for
each A ∈ E, Pr[A] ≤ p < 1, and A is mutually independent of a set of all but at
most d other events from E. If 4pd ≤ 1, then with positive probability, none of
the events in E occur.

Frugal coloring. A β-frugal coloring of a graph G is a proper vertex-coloring of
G in which no color appears more than β times in any neighborhood. Frugal
coloring is a useful subroutine in total coloring [10] and can also be used as a
subroutine for efficient channel-allocation schemes in multi-channel, multi-radio
wireless networks [11]. We obtain four results (F1)-(F4) for frugal coloring; let Δ
denote the maximum degree and n denote the number of vertices of the graph.

(F1) Every graph has a (Δ + 1)-coloring that is O(log2Δ
log logΔ)-frugal. Such a col-

oring can be computed in polynomial time. Furthermore, there is a distributed
algorithm that can compute an O(logΔ · logn

log logn)-frugal, (Δ + 1)-coloring in
O(log n) communication rounds.

Hind, Molloy, and Reed [10] show that any graph has a O(log5 Δ)-frugal, (Δ+1)
coloring, and also show a lower bound of Ω(logΔ/ log logΔ) on the frugality of
any (Δ + 1)-coloring. Thus our result improves on the Hind-Molloy-Reed up-
per bound and is “logΔ” away from being optimal1. Result (F1) is obtained
via O(logΔ) iterations of the randomized coloring procedure with symmetry-
breaking and a proof that shows that in each iteration, each color is used
O(logΔ/ log logΔ) times in each neighborhood. In order to tightly control the
coloring procedure, we also assign activation probabilities to vertices before each
iteration; those vertices which are not activated, sleep through the iteration.

(F2) Let g be the maximum number of nodes at distance within C0 logΔ from
any vertex in the given graph G, where C0 is an absolute constant. Then G has
a (Δ + 1)-coloring that is t-frugal, where t = O

(
log g

log(log g/ logΔ)

)
.

This result subsumes the bound of (F1), since g ≤ ΔO(logΔ). Note that if g ≤
ΔO(1), then t is just O(logΔ). This result is particularly applicable to “growth-
bounded” graphs [8,21] which are graphs for which the number of nodes within
distance r from any node grows much smaller than Δr (typically, as a polynomial
in r). Thus, even for graphs with exponential growth (the number of nodes at a
distance r can be poly(Δ, 2r)), we still obtain an O(logΔ) bound on the frugality.

1 In recent personal communication, Molloy and Reed have mentioned that they have
proved the existence of an O(log Δ/ log log Δ)-frugal (Δ +1)-coloring; their paper is
currently under preparation.

310 S. Pemmaraju and A. Srinivasan

For this result, we again use iterative randomized coloring, but carefully exploit
the fact that each iteration is local in the graph, and that there are only O(logΔ)
iterations: this is the reason for our definition of g going only up to distance
O(logΔ).

(F3) Let G be a d-inductive graph. Then G has a (d+1)-coloring that is t-frugal,
where t = O(Δd · log1+εΔ) for any constant ε > 0 whenever d < 2Δ/ logΔ, and
t = O(Δd ·

log2Δ
log(d logΔ/Δ)) when d ≥ 2Δ/ logΔ.

Recall that a graph is said to be d-inductive if there is an ordering v1, v2, . . . , vn of
its vertex set such that every vertex vi has at most d neighbors in {v1, v2, . . . , vi−1}.
For instance, planar graphs are 5-inductive. Any such ordering v1, v2, . . . , vn is
called a d-inductive ordering. A greedy algorithm that considers vertices of a
d-inductive graph G in d-inductive order and assigns to each vertex the smallest
available color, succeeds in producing a proper (d+1)-vertex coloring of G. Note
that no (d + 1)-coloring can have frugality better than Δ/(d + 1) and therefore
our result provides upper bounds that are within O(polylog(Δ)) of the Δ/(d+1)
lower bound. Also note that since any graph with maximum vertex degree Δ is
Δ-inductive, our result (F1) on arbitrary graphs can be viewed as a special case
of this result.

(F4) Let G be an n-vertex graph with maximum degree Δ and girth at least 5.
Then G has an O(Δ/ logΔ)-coloring that is O(log2Δ

log logΔ)-frugal. Such a coloring
can be computed in polynomial time. Furthermore, an O(Δ/ logΔ)-coloring that
is O(logΔ · logn

log logn)-frugal can be constructed by a distributed algorithm in
O(log n) rounds of communication.

This result generalizes the result of Kim [18] and the result of Grable and Pan-
conesi [7]. In 1948 Brooks showed that any connected graph with maximum
degree Δ, with the exception of odd cycles and the (Δ + 1)-clique, has a Δ-
coloring. In 1968 Vizing asked if this bound could be improved for “sparse
graphs” of certain kinds — graphs with large girth, for example. This ques-
tion remained unanswered until the work of [14] showed that any triangle-free
graph has chromatic number O(Δ/ logΔ). Building on this and a result due to
[18] for graphs with girth at least 5, the paper [7] presents a simple randomized
distributed algorithm that produces an O(Δ/ logΔ)-coloring of a triangle-free
graph with high probability, in O(log n) communication rounds. This algorithm
requires that Δ ≥ log1+δ n for any constant δ > 0, whereas the existential result
of [14] holds for any Δ. We extend the analysis of [7,18] to obtain (F4). We do
not require our symmetry-breaking approach for the polynomial-time algorithm
guaranteed by (F4).

Weighted Equitable Coloring. An equitable coloring of a graph is a proper ver-
tex coloring such that the sizes of any two color classes differ by at most 1. If a
k-coloring of an n-vertex graph G is equitable, then the size of every color class
is in {"n/k#, �n/k�}. In a pivotal result, Hajnal and Szemerédi [9] showed that
every graph G with maximum degree at most Δ has an equitable k-coloring for

The Randomized Coloring Procedure with Symmetry-Breaking 311

every k ≥ Δ+ 1. Recently, Kierstead and Kostochka [17] have presented a short
proof of this result, along with a polynomial-time algorithm for computing such
a coloring. Equitable colorings naturally arise in scheduling, partitioning, and
load balancing [1,3,12,20,25,26]. Pemmaraju [24] and Janson and Ruciński [13]
have used equitable colorings to derive large-deviation bounds for sums of ran-
dom variables that exhibit limited dependence. Let X = {X1, X2, . . . , Xn} be a
collection of bounded random variables with Xi ∈ [0, 1] for all i, let S =

∑
iXi,

and let μ = E[S]. It is well-known that if the Xi’s are independent then the
following bounds on the tail probabilities of S, due to Chernoff [5], hold:

Pr[S ≥ (1+ε)μ] ≤ F+(μ, ε) .=
(

eε

(1 + ε)(1+ε)

)μ

; Pr[S ≤ (1−ε)μ] ≤ F−(μ, ε) .= e−με2/2.

(3)

Researchers have attempted to extend the Chernoff bounds to situations where
the Xi’s exhibit limited dependence. We will model the “limited dependence”
as usual by a dependency graph G of X : G is an undirected graph with vertices
{1, 2, . . . , n} such that if {i1, i2, . . . , i�} is any independent set in G, then the ran-
dom variables Xi1 , Xi2 , . . . , Xi� are mutually independent. If the Xi’s have the
same mean and G can be equitably k-colored, then the following tail-bounds hold
[24]: Pr[S ≥ (1 + ε)μ] ≤ 4k

e F+(μ, ε)1/k, and Pr[S ≤ (1 − ε)μ] ≤ 4k
e F−(μ, ε)1/k,

where F+(μ, ε) and F−(μ, ε) are from (3). Observe that if k, the palette size of
the equitable coloring, is small then these bounds are quite good relative to the
Chernoff bounds.

The above bounds apply only in the case where the Xi’s have the same mean.
To deal with the general case of arbitrary Xi ∈ [0, 1] using a similar approach, one
needs to consider weighted equitable colorings. Let G = (V = [n], E) be a vertex-
weighted graph with weight function w : V → [0, 1] such that w(i) = E[Xi],
and let W = μ = E[S] =

∑
v∈V w(v). Informally, a weighted equitable coloring

of G is a proper k-coloring such that the total weight of every color class is
“large”, i.e., “not much smaller” than W/k. (A classical equitable coloring is the
special case with unit weight for all vertices.) Call a k-coloring of G with λ being
the minimum weight of all color classes, a (k, λ)-coloring. Using the approach of
[13,24], such a coloring can be used to show that

Pr[S ≥ (1 + ε)μ] ≤ k · F+(λ, ε); Pr[S ≤ (1− ε)μ] ≤ k · F−(λ, ε). (4)

Hence, given k, we aim for as large a λ as possible. We prove two results (E1),
(E2) for k = Δ+1 colors, where Δ denotes the maximum degree of G. We prove
result (E3) for d-inductive graphs with k = d + 1.
(E1) A (Δ + 1, λ)-coloring exists, with λ ≥

(
1− 1

e

)
W
Δ+1 −O(

√
W log(Δ + 1)).

(E2) There is a constant c > 0 such that a (Δ + 1, λ)-coloring exists, with
λ ≥

⌊
cW

Δ log(Δ+1)

⌋
.

When W > Δ2+Ω(1), the lower bound in (E1) simplifies to (1− 1/e− o(1)) W
Δ+1 ,

which is to within a constant of the best possible. Result (E2) holds for all
values of W relative to Δ and in particular holds for “small” W as well. As

312 S. Pemmaraju and A. Srinivasan

shown by (4), these results yield bounds on the tail probabilities of sums of
arbitrary bounded random variables. (E1) is obtained via a single iteration of
randomized coloring with symmetry-breaking; (E2) is obtained by combining [9]
and (E1) with a partitioning approach. We note that for a slightly smaller choice
of c, we can also obtain (E2) by combining [9] and a second-moment analysis
with partitioning; however, we are not aware of any other approach that yields
our result (E1).
(E3) Every d-inductive graph has a (d + 1, λ)-coloring with λ ≥ 1

e ·
W
d+1 −

O
(√

W
d+1Δ log(d + 1)

)
.

When W > Δ · d1+Ω(1), the lower bound in (E3) simplifies to (1
e − o(1)) Wd+1 .

Note that since a graph with maximum degree Δ is a Δ-inductive graph, result
(E3) can be viewed as a generalization of result (E1), with the small change that
the leading constant is 1/e instead of 1− 1/e. This result extends known results
on classical equitable colorings of d-inductive graphs [4,19]. Bollobas and Guy
[4] consider the equitable coloring of 1-inductive graphs (i.e., forests) whereas
Kostochka et al. [19] consider d-inductive graphs for arbitrary d. Specifically,
Kostochka et al. [19] show that every d-inductive graph has an equitable coloring
with at most 16d colors (provided Δ < n/15). Here, in result (E3), we relax the
notion of “equitability” while requiring that exactly d + 1 colors be used. Like
(E1), result (E3) is also obtained via one iteration of the randomized coloring
procedure, but with π being an arbitrary d-inductive vertex ordering.
Organization. Due to space constraints, we only present proofs of results (F1)
and (E1) in this paper; these appear in the next two sections. For result (F1) we
only present the existential proof, postponing the algorithmic results to the full
version of the paper. We highlight the use of symmetry-breaking and Azuma’s
Inequality in our proofs.

2 Frugal Coloring for Arbitrary Graphs

In this section we prove result (F1). This follows by repeated application of the
following result, that describes what happens in one iteration of randomized
coloring procedure.

Theorem 1. Let G = (V,E) be a graph with maximum vertex degree Δ. Suppose
that associated with each vertex v ∈ V , there is a palette P (v) of colors, where
|P (v)| ≥ deg(v) + 1. Furthermore, suppose |P (v)| ≥ Δ/4 for all vertices v in G.
Then, for some subset C ⊆ V , there is a list coloring of the vertices in C such
that:

(a) G[C] is properly colored.
(b) For every vertex v ∈ V and for every color x, there are at most 9 · logΔ

log logΔ
neighbors of v colored x.

(c) For every vertex v ∈ V , the number of neighbors of v not in C is at most
Δ(1− 1

e5) + 27
√
Δ logΔ.

The Randomized Coloring Procedure with Symmetry-Breaking 313

(d) For every vertex v ∈ V , the number of neighbors of v in C is at most Δ
e5 +

27
√
Δ logΔ.

Before we prove this theorem, we show how repeated applications of it yield
result (F1), proving the existence of an O

(
log2Δ

log logΔ

)
-frugal, (Δ + 1)-coloring of

a graph G with maximum degree Δ. Start by associating the palette of colors
[Δ + 1] to each vertex. Letting P0(v) denote the initial palette of a vertex v,
we have P0(v) = [Δ + 1] for all v ∈ V . Let G0 = G. For each i ≥ 0, we apply
Theorem 1 to obtain a partial coloring of Gi. Let Gi+1 denote the subgraph
of Gi induced by vertices that are not colored in this partial coloring of Gi.
The palette of colors Pi+1(v) associated with a vertex v in Gi+1 is obtained by
deleting from Pi(v) all colors used by neighbors of v in the partial coloring of
Gi. Let degi(v) denote the degree of vertex v in Gi. Let Δi denote the maximum
vertex degree of Gi and let pi denote the minimum palette size in Gi. Thus,
Δ0 = Δ and p0 = Δ + 1. Note that initially the requirements of Theorem 1
are satisfied. Suppose that for some i ≥ 0, the requirements of the theorem are
satisfied. That is, (i) |Pi(v)| ≥ degi(v) + 1 for all vertices v and (ii) pi ≥ Δi/4.
Since the palette of a vertex loses at most as many colors as neighbors that are
colored, it is still true that |Pi+1(v)| ≥ degi+1(v) + 1 for all v in Gi+1. Theorem
1(c) implies that Δi+1 ≤ Δi(1 − 1

e5) + 27
√
Δi logΔi and Theorem 1(d) implies

that pi+1 ≥ pi − Δi

e5 − 27
√
Δi logΔi. Thus the worst case behavior of Δi and pi

is captured by the recurrences:

Δi+1 = Δi

(

1− 1
e5

)

+27
√

Δi logΔi; pi+1 = pi−
Δi
e5
−27

√
Δi logΔi. (5)

The above recurrences can be solved to obtain the following bounds on Δi
and pi.

Lemma 3. Let α = (1− 1/e5). For all i for which Δi ≥ 109, Δi ≤ 2Δ0 ·αi and
pi ≥ Δ0

2 αi.

This implies that, provided pi+1 and Δi+1 are large enough, it is the case that
pi+1 ≥ Δi+1/4, thereby permitting the next application of the above theorem.
To get a (Δ + 1)-coloring of the desired frugality, we repeatedly obtain partial
colorings by applying the Theorem 1 until Δi < 109. Given the rate of decay
of Δi, letting α = (1 − 1/e5), we see that at most log1/α

(
2Δ0
109

)
= O(logΔ)

applications of the theorem are needed. Since the palette at every vertex has at
least one more color than the number of neighbors of the vertex, a greedy list
coloring algorithm will succeed in completing the coloring of the graph. Clearly,
what we have constructed is a (Δ + 1)-proper vertex coloring of G. In each
round i, each color appears in a neighborhood at most 9 logΔi/ log logΔi =
O(logΔ/ log logΔ) times. The final round adds only O(1) copies of any color to
any neighborhood, yielding a (Δ+1)-coloring that is O(log2 Δ/ log logΔ)-frugal.
We have thus proved result (F1).

Proof of Theorem 1. We start by describing a randomized coloring procedure
that will produce, with positive probability, a partial coloring of G with the four

314 S. Pemmaraju and A. Srinivasan

desired properties. Let π be an arbitrary permutation of V . This establishes a
ranking of the vertices. For any vertex v and color x ∈ P (v), let L(v, x) be the
set of neighbors u of v such that u has a lower rank than v in π and u contains
x in its palette P (u). Each vertex v computes the quantity

qv =
1

|P (v)|
∑

x∈P (v)

∏

u∈L(v,x)

(

1− 1
|P (u)|

)

.

This is the probability that no lower ranked neighbor of v will tentatively pick
the color picked by v. Vertex v will use the value of qv to determine its “sleep
probability.” For each vertex v ∈ V , independently pick a color x ∈ Pv uniformly
at random. We say that x is the tentative color of v. After picking a tentative
color, v either goes off to sleep for the rest of this round or stays awake and
attempts to make its tentative color permanent. Specifically, vertex v stays awake
with probability av = 1

qv ·e5 and it dozes off with probability (1 − av). Later we
will show that qv is never smaller than 1/e5 and therefore av ≤ 1. If v dozes
off, then it remains uncolored at the end of the procedure. Note that v dozes
off only after picking a tentative color and even though it may fall asleep, this
choice of tentative color by v may have an influence on whether a neighbor gets
permanently colored or not. If v stays awake, then it checks if there is a neighbor
u ∈ N(v) of smaller rank in π, that has the same tentative color as v. If no such
u exists, then v is permanently colored x. The vertex subset C consists of all
vertices that are permanently colored at the end of the procedure. The rest of
the vertices are said to be uncolored.

For any vertex v ∈ V and color x ∈ C, let Tv,x be the indicator ran-
dom variable that equals 1 if x is picked as v’s tentative color. Note that
Pr[Tv,x = 1] = 1/|P (v)| and therefore E[Tv,x] = 1/|P (v)|. For every v ∈ V
and x ∈ C, let Nv,x be the random variable that equals the number of neighbors
of v permanently colored x. Since a vertex has to be tentatively colored x before
it can be permanently colored x, Nv,x ≤

∑
u∈N(v) Tu,x. By linearity of expec-

tation, E[
∑
u∈N(v) Tu,x] =

∑
u∈N(v) 1/|P (u)| ≤ Δ

Δ/4 = 4. Note that the lower
bound on the palette sizes plays a critical role here. Since the Tu,x are mutually
independent, we can use the Chernoff bound to show that

∑
u∈N(v) Tu,x exceeds

9 · logΔ
log logΔ with probability less than 1

Δ6 . Therefore, for any vertex v and any
color x,

Pr
[

Number of neighbors of v colored x exceeds 9 · logΔ

log logΔ

]

<
1
Δ6

. (6)

For any vertex v ∈ V , let Rv be the indicator random variable that equals 1 if
v is permanently colored at the end of the coloring procedure. Note that v is per-
manently colored if v stayed awake and if no lower-ranked neighbor picked the
same tentative color as vertex v did. Therefore, the probability that Rv equals
1, is Pr[Rv = 1] = av · 1

|P (v)| ·
∑
x∈P (v)

∏
u∈L(v,x)

(
1− 1

|P (u)|

)
= av · qv. Recall

that av was chosen to be 1
qv ·e and therefore Pr[Rv = 1] = 1/e5. However, for the

The Randomized Coloring Procedure with Symmetry-Breaking 315

“go to sleep” step of the coloring procedure to be well-defined, we need to show
that av ≤ 1. We do this by showing a lower bound of 1/e5 on qv. Recall that
qv is the probability that no neighbor will choose the same tentative color as v.
This probability is minimized when vertex v’s palette is as small as possible, v
has as many neighbors as possible, each of these neighbors have palettes that are
as small as possible, and finally each of these palettes is identical to v’s palette.
Therefore,

qv =
1

|P (v)| ·
∑

x∈P (v)

∏

u∈L(v,x)

(

1− 1
|P (u)|

)

≥ 1
|P (v)| ·

∑

x∈P (v)

(

1− 1
Δ/4

)Δ

=
(

1− 4
Δ

)Δ

≥ 1
e5 .

Since qv ≥ 1/e5, it follows that av = 1/(qve5) ≤ 1.
Let Pv denote the number of neighbors of v that are permanently colored by

the procedure. Note that Pv =
∑
u∈N(v) Ru. Then by linearity of expectation,

E[Pv] =
∑
u∈N(v) E[Ru] = deg(v)/e5. Since the random variables Ru are not

mutually independent for u ∈ N(v), the Chernoff bound cannot be applied to
show the concentration of Pv about its expectation. Instead, we apply Azuma’s
inequality in Lemma 4 to show the following concentration bound for Pv. The
vertex-ordering imposed by the permutation π, will play a crucial role in this
lemma.

Lemma 4

Pr
[∣
∣
∣
∣Pv −

deg(v)
e5

∣
∣
∣
∣ > 27

√
Δ logΔ

]

<
2

Δ4.5
. (7)

Proof. Let Uv = 〈u1, u2, . . . , um〉 be the sequence of vertices at distance at most
two from v, arranged in increasing rank according to π. Note that m ≤ Δ2. Let
Si indicate whether vertex ui has decided to go to sleep or not and let Ci denote
the tentative color choice of vertex ui. Let Ti = (Si, Ci). Clearly, Pv is completely
determined by the trials T1, T2, . . . , Tm. Referring to Azuma’s Inequality, let D

denote the absolute difference in conditional expectation
∣
∣
∣E[Pv|T1 = t1, . . . , Ti =

ti] − E[Pv|T1 = t1, . . . , Ti = t′i]
∣
∣
∣. Let ti = (si, ci) and t′i = (s′i, c

′
i). Provided ui

is a neighbor of v, the difference between ti and t′i may contribute at most 1 to
the above difference. Any other contribution to this difference is due to vertices
uj such that (i) j > i, (ii) uj is a neighbor of both ui and v, and (iii) uj picks
as a tentative color either ci or c′i. To make this more precise, let Si be the set
{uj | j > i and uj is adjacent to both ui and v}. Thus, Si is the set of vertices
satisfying conditions (i) and (ii) above. For any uj ∈ Si, the probability that uj
picks ci or c′i as its tentative color is 2/|P (uj)|. Note that uj has to pick one or the
other color to many any contribution to D. The quantity 2/|P (uj)| is bounded
above by 8/Δ, since |P (uj)| ≥ Δ/4. Therefore, the expected contribution of uj
to the quantity D is at most 8/Δ. So, the expected contribution of all of Si to D
is bounded above by 8|Si|/Δ. Referring to Azuma’s Inequality, we can therefore
take ci = 1 + 8|Si|/Δ for each i : ui ∈ N(v) and ci = 8|Si|/Δ for all other
i. Now note that since Si is a subset of the set of neighbors of v, |Si| ≤ Δ for
every i. Also,

∑m
i=1 |Si| is bounded above by Δ2. This is because for every vertex

316 S. Pemmaraju and A. Srinivasan

uj ∈ Si, there is a unique corresponding edge {ui, uj} in the graph G. Noting
that there are at most Δ2 edges incident on neighbors of v, we get the upper
bound on

∑m
i=1 |Si|. The two inequalities, |Si| ≤ Δ and

∑m
i=1 |Si| ≤ Δ2 together

imply that
∑m
i=1 |Si|2 ≤ Δ3. Hence,

m∑

i=1

c2i =
∑

i:ui∈N(v)

(

1 +
8|Si|
Δ

)2

+
∑

i:ui �∈N(v)

(
8|Si|
Δ

)2

≤ 64
Δ2

·
m∑

i=1

|Si|2 +
16
Δ
·
m∑

i=1

|Si|+ Δ ≤ 81Δ

Finally, plugging the value t = 27 ·
√
Δ logΔ and

∑m
i=1 c2i ≤ 81Δ into Azuma’s

Inequality (see (2)), we get the desired result.

Let Bv denote the “bad event” that for some color x, vertex v has more than
9 logΔ

log logΔ neighbors colored x or |Pv − deg(v)
e5 | > 27

√
Δ logΔ. Using Inequalities

(6), (7), and the union bound we get that Pr[Bv] < (Δ+1)/Δ6+2/Δ4.5 ≤ 4/Δ4.5.
If vertices u and v are more than four hops away from each other in G, then Bu
and Bv are mutually independent. Therefore, Bv is independent of all except at
most Δ4 other bad events. Applying the Lovász Local Lemma (see Lemma 2)
yields the theorem.

Remark on constants. In this section we have explicitly specified constants so
that a careful reader may verify our calculations completely. However, we have
not attempted to optimize these constants. For example, it is possible to show
that Δi and pi decay at a rate of (1− 1

e1+ε) (rather than (1− 1
e5)) for any ε > 0.

The choice of ε here affects various constants in the proof including the constant
in the asymptotic notation used to specify the frugality of the coloring.

3 Weighted Almost-Equitable Colorings

In this section we prove result (E1). Let G = (V = [n], E) be a vertex-weighted
graph with weight function w : V → [0, 1]. Let π be a permutation of (1, 2, . . . , n)
picked uniformly at random from the set of all permutations of (1, 2, . . . , n). Run
one round of our random coloring procedure described in Section 2, but without
any nodes falling asleep. For any color x and for any vertex v let P (v, x) denote
the event that v is (permanently) colored x, at the end of one round of the
random coloring procedure.

Lemma 5. Pr[P (v, x)] ≥
(
1− 1

e

)
1

Δ+1 .

Proof. Let L(v) be the subset of neighbors of vertex v that are ranked before v by

π. Then, Pr[P (v, x)] = 1
Δ+1

∑deg(v)
j=0

1
deg(v)+1 ·

(
1− 1

(Δ+1)

)j
. In this expression,

the term “ 1
(Δ+1)” is the probability that color x is tentatively picked by v, the

summation is over all possible sizes of L(v), the term “ 1
deg(v)+1” is the probability

The Randomized Coloring Procedure with Symmetry-Breaking 317

that exactly j of the neighbors of v are ranked below v in π, and the term
“(1− 1

(Δ+1))
j” is the probability that none of these j neighbors that are ranked

below v, pick x as their tentative color. This expression can be simplified to yield

Pr[P (v, x)] =
1

deg(v) + 1

(

1−
(

1− 1
(Δ + 1)

)deg(v)+1
)

.

Noting that the r.h.s. above achieves the minimum value at deg(v) = Δ, we
obtain

Pr[P (v, x)] ≥ 1
Δ + 1

(

1−
(

1− 1
(Δ + 1)

)Δ+1
)

≥ 1
Δ + 1

·
(

1− 1
e

)

.

The above lemma implies that the expected weight of any color class is at
least (1 − 1/e) · W/(Δ + 1). We now show that the weight of any color class
is concentrated around its expectation and in particular the weight of a color
class is much smaller than (1− 1/e) ·W/(Δ+ 1) only with small probability. As
usual, we employ Azuma’s Martingale inequality to prove this result; again the
symmetry-breaking approach plays a critical role.

Lemma 6. Let x ∈ [Δ+1] and let Wx denote the total weight of vertices colored
x. Then for any fixed c > 0,

Pr
[

Wx <

(

1− 1
e

)

· W

(Δ + 1)
− c

√
W log(Δ + 1)

]

≤ 1
(Δ + 1)c2/18

.

Proof. Let Ti be the tentative choice of a color by the vertex of rank i in π. Wx is
completely determined by the outcomes of the trials T1, T2, . . . , Tn. Now consider
the difference in conditional expectations from Azuma’s Martingale Inequality:

ci=
∣
∣
∣E[Wx | T1 = t1, T2 = t2, . . . , Ti = ti]−E[Wx | T1 = t1, T2 = t2, . . . , Ti = t′i]

∣
∣
∣.

Let v be the vertex of rank i in π. The above difference is at most

ci ≤ w(v) +
2

Δ + 1

∑

u∈U(v)

w(u),

where U(v) is the set of neighbors of v ranked higher than v in π. The first term
“w(v)” in the above bound is due to the change in the tentative color of v from
ti to t′i. The second term is the expected change in Wx; note that this occurs
only at vertices in U(v). Using the fact that every vertex weight is in [0, 1], we
get that ci ≤ 1 + 2Δ/(Δ + 1) < 3. Also,

n∑

i=1

ci ≤
∑

v∈V
w(v) +

2
Δ + 1

∑

v∈V

∑

u∈U(v)

w(u) ≤W +
2Δ

Δ + 1
·
∑

v∈V
w(v) < 3W.

318 S. Pemmaraju and A. Srinivasan

Finally,
∑n
i=1 c2i < 3

∑n
i=1 ci < 9W . Therefore, the bound in Azuma’s Inequality

simplifies to

exp
(

−t2

2
∑n
i=1 c2i

)

≤ exp
(
−c2W log(Δ + 1)

18W

)

=
1

(Δ + 1)c2/18
.

From this we get, using Azuma’s Inequality,

Pr
[

Wx <

(

1− 1
e

)

· W

Δ + 1
− c ·

√
W log(Δ + 1)

]

<
1

(Δ + 1)c2/18
.

Since we have Δ + 1 color classes, using the union bound we get that

Pr
[

∃x∈ [Δ + 1] : Wx<

(

1− 1
e

)

· W

Δ + 1
− c ·

√
W log(Δ + 1)

]

≤ (Δ + 1)
(Δ + 1)c2/18

.

Choosing c ≥ 5 guarantees that with positive probability, for every color x ∈
[Δ + 1], the weight Wx of the vertices colored x is at least

(
1− 1

e

)
· W
Δ+1 − c ·

√
W log(Δ + 1). This proves result (E1).

Acknowledgment. We thank Mike Molloy for his helpful comments and en-
couragement, and the referees for their comments that helped improve the paper.

References

1. Baker, B., Coffman, E.: Mutual exclusion scheduling. Theor. Comput. Sci. 162,
225–243 (1996)

2. Beck, J.: An algorithmic approach to the Lovász Local Lemma. Random Structures
and Algorithms 2, 343–365 (1991)

3. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling computer
and manufacturing processes, 2nd edn., p. 485. Springer, Berlin (2001)

4. Bollobás, B., Guy, R.K.: Equitable and proportional coloring of trees. Journal of
Combinatorial Theory, Series B 34, 177–186 (1983)

5. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. American Statistical Association Journal 58, 13–30 (1963)

6. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some
related questions. In: Hajnal, A., et al. (eds.) Infinite and Finite. Colloq. Math.
Soc. J. Bolyai, vol. 11, pp. 609–627. North Holland, Amsterdam (1975)

7. Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks-Vizing color-
ings. Journal of Algorithms 37, 85–120 (2000)

8. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: Proc. IEEE Symposium on Foundations of Computer
Science (2003)

9. Hajnal, A., Szemerédi, E.: Proof of a conjecture of Erdös. In: Erdös, P., Rényi, A.,
Sós, V.T. (eds.) Combinatorial Theory and its Applications, vol. II, pp. 601–603.
North-Holland, Amsterdam (1970)

10. Hind, H., Molloy, M., Reed, B.: Total colouring with Δ+polylog(Δ) colours. SIAM
Journal on Computing 28, 816–821 (1998)

The Randomized Coloring Procedure with Symmetry-Breaking 319

11. Hou, Y.T., Kumar, V.S.A., Marathe, M.V., Srinivasan, A.: Personal communica-
tion (2006)

12. Irani, S., Leung, V.: Scheduling with conflicts, and applications to traffic signal
control. In: Proceedings of the 7th Annual ACM-SIAM symposium on discrete
algorithms, held in Atlanta, GA, pp. 85–94. SIAM, Philadelphia (1996)

13. Janson, S., Ruciński, A.: The infamous upper tail. Random Structures and Algo-
rithms 20, 317–342 (2002)

14. Johansson, A.: Asymptotic choice number for triangle free graphs. In DIMACS
Technical Report, 91-5 (1996)

15. Johansson, Ö.: Simple distributed Δ+1-coloring of graphs. Information Processing
Letters 70, 229–232 (1999)

16. Kahn, J.: Asymptotically good list-colorings. J. Combinatorial Theory, Series A 73,
1–59 (1996)

17. Kierstead, H.A., Kostochka, A.V.: A Short Proof of the Hajnal-Szemeredi Theorem
on Equitable Coloring. Combinatorics, Probability, and Computing (to appear)

18. Kim, J.H.: On Brooks’ Theorem for Sparse Graphs. Combinatorics, Probability,
and Computing 4, 97–132 (1995)

19. Kostochka, A.V., Nakprasit, K., Pemmaraju, S.V.: On Equitable Coloring of d-
Degenerate Graphs. SIAM J. Discret. Math. 19(1), 83–95 (2005)

20. Krarup, J., de Werra, D.: Chromatic optimisation: Limitations, objectives, uses,
references. Eur. J. Oper. Res. 11, 1–19 (1982)

21. Krauthgamer, R., Lee, J.R.: Navigating nets: simple algorithms for proximity
search. In: Proc. ACM-SIAM Symposium on Discrete Algorithms (2004)

22. Luby, M.: Removing randomness in parallel computation without a processor
penalty. Journal of Computer and System Sciences 47(2), 250–286 (1993)

23. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer,
Heidelberg (2000)

24. Pemmaraju, S.V.: Equitable colorings extend Chernoff-Hoeffding bounds. In: Pro-
ceedings of the 5th International Workshop on Randomization and Approximation
Techniques in Computer Science (APPROX-RANDOM 2001), pp. 285–296 (2001)

25. Smith, B.F., Bjorstad, P.E., Gropp, W.D.: Domain decomposition. Parallel multi-
level methods for elliptic partial differential equations, p. 224. Cambridge Univer-
sity Press, Cambridge (1996)

26. Tucker, A.: Perfect graphs and an application to optimizing municipal services.
SIAM Review 15, 585–590 (1973)

The Local Nature of List Colorings for Graphs of High
Girth�

Flavio Chierichetti1 and Andrea Vattani2

1 CS Department, Sapienza University of Rome
chierichetti@di.uniroma1.it

2 CSE Department, University of California San Diego
avattani@ucsd.edu

Abstract. We consider list coloring problems for graphs G of girth larger than
c logΔ−1 n, where n and Δ ≥ 3 are, respectively, the order and the maximum
degree of G, and c is a suitable constant. First, we determine that the edge and total
list chromatic numbers of these graphs are χ′

l(G) = Δ and χ′′
l (G) = Δ+1. This

proves that the general conjectures of Bollobás and Harris (1985), Behzad and
Vizing (1969) and Juvan, Mohar and Škrekovski (1998) hold for this particular
class of graphs.

Moreover, our proofs exhibit a certain degree of “locality”, which we exploit
to obtain an efficient distributed algorithm able to compute both kinds of optimal
list colorings.

Also, using an argument similar to one of Erdös, we show that our algorithm
can compute k-list vertex colorings of graphs having girth larger than c logk−1 n.

1 Introduction

Graph coloring is a fundamental problem in computer science and combinatorics. Ap-
plications arise in many different areas, such as networks, resource allocations and
VLSI design. For many coloring problems, though, no efficient algorithms are known
to exist. This led to considering restrictions of coloring problems to special classes of
graphs.

In this paper we consider (list) edge, total and vertex colorings for graphs of high
girth (that is, for graphs having no small cycles), with special emphasis on distributed
algorithms. In the list edge coloring problem, we have a graph G and, for each of its
edges e, a list of colors available for e. The goal is to compute a proper coloring using
colors from the lists, where a coloring is proper if adjacent edges have different colors.
The list edge chromatic number (or list chromatic index) of G, denoted χ′l(G), equals
the minimum integer t such that, for each possible assignment of lists of t colors to the
edges of G, a proper coloring of G exists. The edge chromatic number (or chromatic
index) χ′(G) of G is the minimum integer t such that, if all the edges of G are assigned
the same list of t colors, a proper coloring of G exists.

� This work was partially supported by a grant of Yahoo! Research and by the MIUR PRIN
Project “Web Ram: web retrieval and mining”. The main part of this work was carried out at
the Computer Science Department of Sapienza University of Rome.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 320–332, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Local Nature of List Colorings for Graphs of High Girth 321

The list vertex coloring problem, and the list and non-list vertex chromatic numbers
χl(G), χ(G), are analogous, except that in this case the vertices are the elements of the
graph to be properly colored. In the list total coloring problem both vertices and edges
have lists, and the problem is to color the graph in such a way that any two adjacent
or incident objects, whether edges or vertices, have different colors. We use χ′′(G) and
χ′′l (G) to denote, respectively, the total chromatic number and the list total chromatic
number of G.

In this paper we show that, if G is a graph with n vertices, maximum degree Δ ∈
{1, 2}, and girth at least c logΔ−1 n (for a suitable constant c), then χ′(G) = χ′l(G) = Δ
and χ′′(G) = χ′′l (G) = Δ + 1.

Our constructive proofs highlight a local property of the coloring operations, that we
use to obtain such optimal colorings efficiently in a distributed setting.

From an existential point of view, our results settle, for the case of high girth graphs,
a conjecture of Bollobás and Harris [3] (that states χ′(G) = χ′l(G)), a conjecture of
Behzad and Vizing [2] (χ′′(G) ≤ Δ + 2) and a related conjecture of Juvan, Mohar,
Škrekovski [11] (χ′′(G) = χ′′l (G)), all of which were formulated for general graphs.
The first two conjectures date back to more than two decades ago, while the third one
is more recent.

Also, by extending an argument of Erdös [7], we show that list vertex colorings can
be obtained efficiently by a distributed algorithm. In this case, though, the number of
colors used may not be optimal.

1.1 Main Results

We now state more precisely our results. Recall that no chromatic number is greater
than its list counterpart.

Theorem 1. If G is a graph with n nodes, Δ(G) =2, having girth g(G)>4"logΔ−1 n#+
1, then χ′l(G)=Δ(G).

Theorem 2. If G is a graph with n nodes, Δ(G) ∈ {1, 2}, having girth g(G) >
4"logΔ

2 �
n#+ 3, then χ′′l (G) = Δ + 1.

These theorems imply that, if the girth of a graph is high enough and the graph is not a
collection of paths and cycles, then that graph is both Class-1 and Type-1 (a graph G is
Class-1 if χ′(G) = Δ and it is Type-1 if χ′′(G) = Δ + 1).

The constraint Δ = 2 is necessary for trivial reasons, since any cycle Cn has
g(Cn) = n, Δ(Cn) = 2, and (a) if n mod 2 = 0 then χ′(Cn) = Δ + 1, while
(b) if n mod 3 = 0 then χ′′(Cn) = Δ + 2. For the total chromatic number even
the requirement Δ = 1 is needed as any matching is Type-2 (a graph G is Type-2 if
χ′′(G) ≥ Δ + 2).

As for the girth requirement, we show the existence of an infinite family of Class-2
graphs (a graph G is Class-2 if χ′(G) = Δ + 1) having a girth three times smaller than
the one required in Thm. 1.

Proposition 1. For each element of an infinite sequence of increasing degrees {Δi}∞i=1,
there exists an infinite family of graphs {Gj(Δi)}∞j=1 of maximum degree Δi and in-
creasing order nj , such that g(Gj(Δi)) ≥ 4

3 logΔi−1 nj − O(1) and χ′(Gj(Δi)) =
Δi + 1.

322 F. Chierichetti and A. Vattani

On the other hand, we were not able to obtain an infinite family of Type-2 graphs having
reasonably large girth.

Erdös [7] gave an upper bound on the vertex chromatic number of graphs of high
girth. His argument can be extended to show the following:

Theorem 3. Let k ≥ 3. If G is a graph with n nodes and g(G) > 2"logk−1 n#, then
χl(G) ≤ k.

The proofs of theorems 2 and 3 are omitted from this extended abstract for lack of
space.

1.2 Algorithmic Consequences

An interesting feature of our method is that it illustrates a certain local nature of list col-
orings for high girth graphs.For instance, for list edge colorings we show the following.
Assume that the whole graph G is colored except for one last edge e. Then, to color e
it is enough to re-color a neighborhood of e of radius O(log n). Analogous properties
hold for list total and list vertex colorings. These properties lead to efficient distributed
implementations of our algorithms.

Theorem 4. The list colorings of Theorems 1, 2, 3 can be computed in O(log3 n)-many
communication rounds, in the synchronous, message passing model of computation.

All the three kinds of colorings will be computed by the same algorithm.
We remark that this algorithm can be simulated sequentially in polynomial-time, as

every node in the network only performs polynomially many operations in every round
of the protocol.

2 Related work

A well-known result of Vizing [19] shows that the chromatic index χ′(G) of any graph
G of maximum degree Δ is either Δ or Δ + 1. A conjecture of Bollobás and Harris
[3] states that the list chromatic index χ′l(G) is equal to χ′(G). For total coloring, a
conjecture independently suggested by Behzad [2] and Vizing states that χ′′(G) ≤ Δ+
2. A more recent conjecture by Juvan, Mohar, Škrekovski [11] states that the list total
chromatic number χ′′l (G) equals χ′′(G).

On the other hand, it is known [8] that the gap between the chromatic number χ(G)
and the list chromatic number χl(G) of a graph can be logarithmic in its order.

There has been a lot of work in trying to prove the first two conjectures. For arbitrary
graphs G, Kahn [12] proved that the list chromatic index is χ′l(G) ≤ (1+o(1))Δ, while
Molloy and Reed [17] proved that the the total chromatic number is χ′′(G) ≤ Δ + c,
for some (rather large) constant c. Exact values are known only for special classes of
graphs; we now comment on these kinds of results as they are more directly related to
ours.

The relationship between girth and list edge chromatic number has been studied in
[13], where it is shown that, if g(G) ≥ 8Δ(lnΔ + 1.1), then χ′l(G) ≤ Δ + 1 (and
thus χ′′l (G) ≤ Δ + 3). Our requirement on the girth is less stringent for large enough

The Local Nature of List Colorings for Graphs of High Girth 323

Δ (e.g. already for Δ logarithmic in n). Note that, even for smaller Δ, we establish a
better bound of Δ (resp. Δ + 1) for the list edge (resp., total) chromatic number.

Another approach uses the concept of degeneracy of a graph, i.e. the maximum
smallest degree of its subgraphs. Vizing showed (see for instance [10]) that any graph G
with degeneracy≤ Δ/2 belongs to Class-1. One can show that for high enough Δ(G),
the degeneracy of our graphs (that is, graphs with girth as high as we need) is small
enough for Vizing’s result to hold. On the other hand, for small maximum degrees,
there are graphs that satisfy our requirement and not Vizing’s (for instance, take two
cycles intersecting on a single edge).

In [9,20], the authors give parallel algorithms for computing Δ and Δ + 1 edge and
total colorings of graphs of small degeneracy. Their results are not directly comparable
to ours. While their requirement is weaker than ours for large enough Δ, there exist
graphs of small degree that satisfy our requirement and not theirs. The main difference,
however, is that our results hold for the more general case of list colorings, as opposed
to non-list ones. Also, our method leads to efficient distributed algorithms, while their
parallel algorithms do not seem to be efficiently distributable.

Borodin et al. attacked the problem from another point of view. The maximum aver-
age degree (MAD) of a graph is the maximum of the average degrees of its subgraphs. In
[4], they show that, if Δ(G) ≥ 4 and the MAD is “small enough”, then χ′l(G) = Δ(G)
and χ′′l (G) = Δ(G) + 1. The result extends to list chromatic index for Δ(G) = 3. The
relationship between this result and that in the present paper is unclear and intriguing.
Let m(g, n) be the maximum number of edges of graphs having girth g and order n, and
let M(g, n) := n1+1/�(g−1)/2�. A well-known bound states that m(g, n) ≤ M(g, n),
and improving this is known to be a challenging open problem (see for instance [16]).
It can be shown that if our result is subsumed by that of [4] then a sharper bound holds
for m(g, n) at least for the girths we require. More precisely, for these girths, the bound
would have to be improved non trivially, by at least a 1√

2
factor. Be as it may, our

proof is conceptually different and it highlights an interesting local property of list col-
orings that leads directly to efficient distributed algorithms. Our result holds even for
Δ(G) = 3 in the case of list total coloring.

As for vertex colorings, it was shown by Erdös [7] that graphs of high enough girth
have small chromatic number — his proof can be modified to give an upper bound on
their list chromatic number; our distributed algorithm can color the vertices of these
graphs using a number of colors equal to that upper bound.

The distributed (non list) edge coloring problem has been the object of a lot of study
(see [5,6,18] and references therein). All the previous works we are aware of considered
the edge coloring problem for general graphs, obtaining suboptimal colorings.

3 List Edge Coloring

In this section we prove Theorem 1. Here we are interested in the existential result de-
ferring the algorithmic discussion to a later section. The idea of the proof is as follows.
Suppose by induction that we have list-colored the entire graph except for one last edge
e = uv. The following local property holds. No matter how G−e is colored, it is always
possible to reassign the colors inside a neighborhood of e of radius O(log n) in such a

324 F. Chierichetti and A. Vattani

way that there will be a free color for e, drawn from e’s list. More precisely, the neigh-
borhood to be re-colored consists of two disjoint BFS trees, each of which is rooted at
one of the two endpoints of e. The basis of the induction is trivial, since we can start
with any edge and assign it any color from its list.

The local nature of the re-coloring operation will be later exploited to show that such
list-colorings can be obtained by means of efficient distributed algorithms.

The above discussion motivates the following definitions. From now on, let G be the
graph we are list coloring and let Δ = Δ(G) denote its maximum degree. Henceforth,
we will use the term coloring to mean list coloring.

Definition 1. A Δ-tree is a rooted tree of maximum degree at most Δ whose leaves are
all at the same distance from the root. Furthermore, the degree of the root is < Δ.

The intuition that drives this and the following definitions is that, after removing e = uv
from G, we want to consider two BFS trees T (u) and T (v) starting from e’s endpoints
and show that they can always be re-colored in such a way that there will be a free color
for e, regardless of how G − e is colored initially. The degree of the roots is < Δ by the
removal of e. Intuitively, we do not consider leaves above the lowest level as they are
not affected by the rest of the graph’s coloring.

The next definition captures the idea of a tree T whose set of possible colorings is
constrained by the coloring of G − e. Henceforth, we will denote by T (u) a tree that is
rooted at u.

Definition 2. Let T (r) be a Δ-tree. G is an augmentation of T (r) if it is obtained
from T (r) by adding edges and paths of length two connecting only leaves of T (r).
Furthermore, it must be Δ(G) = Δ and degG(r) < Δ.

The constraints on a Δ-tree T given by the list coloring of G − e can be succinctly
expressed by coloring the edges of an augmentation G of T .

Definition 3. Let T be a Δ-tree. Given a Δ-list assignment L to E(T), an augmen-
tation G of T and a coloring γ of G, we say that the triple (L, G, γ) is legal if γ is a
proper coloring of G that agrees with L.

Note that every Δ-tree has at least a legal triple, say, the identical list-assignment, the
trivial augmentation G = T , and any of its proper colorings. We now define a notion
of “freedom” of Δ-trees. Intuitively, a tree T is t-free if, regardless of how G − e is
colored, we can always re-color it in such a way that t colors become available at the
root.

Definition 4. Let T (r) be a Δ-tree. T (r) is at least t-free if, for each list L of Δ colors
and each legal triple (L, G, γ), there exists some set C ⊆ L of t colors such that for all
c ∈ C, there exists a proper coloring γc of G such that

– γc(e) = γ(e), for all e ∈ E(G) − E(T (r)),
– γc(e) ∈ L(e), for all e ∈ E(T (r)), and
– γc do not assign the color c to any edge incident to r.

We now show some basic properties of Δ-trees that will be used later in the proofs.

The Local Nature of List Colorings for Graphs of High Girth 325

– Each Δ-tree is at least 1-free, as for each of its legal triples, using the coloring of
the triple, at most Δ− 1 colors will be unavailable at the root, thus at least a color
will remain in any list L of cardinality Δ.

– No Δ-tree is at least (Δ + 1)-free (again by |L| = Δ).

A tree is exactly t-free (or, simply, t-free) if it is at least t-free, but not at least (t + 1)-
free. If a tree is t-free we say that it has t degrees of freedom.

Lemma 1. Let T be a Δ-tree T that is exactly t-free, let L be a set of Δ colors, and
C ∈

(
L
t

)
. Then, there exists a legal triple (L, G, γ) such that, for all and only c ∈ C,

there exists a proper coloring γc of G that satisfies

– γc(e) = γ(e), for all e ∈ E(G) − E(T),
– γc(e) ∈ L(e), for all e ∈ E(T), and
– γc do not assign the color c to any edge incident to r.

Proof. Since T is not at least (t + 1)-free, there exists a legal triple R which does not
leave t+1 colors available at the root. But since T is at least t-free, all legal triples allow
the choice of t colors at the root. So R allows exactly t colors. We can obtain all possible
sets C ⊆ L of t colors from R just by renaming the colors of the coloring of R. ��

Observation 1. If the root of a Δ-tree T has exactly k children and one of them is at
least (k + 1)-free, the degree of freedom of T does not change if that child is deleted.

Proof. Let u be that child and let T (u) denote its subtree. By deleting u the degree
of freedom does not decrease. To see that it does not increase either, let T ′ be the tree
obtained by removing T (u) from T . Take any color c available at the root of T ′. We
show that c is also available at the root of T . Color T ′ as to have c available at the root;
also color all the edges of T , excluding those of T (u), in the same manner. Now the
only uncolored edge incident to the root has at least 2 colors available, for T (u) is at
least (k + 1)-free and we used at most k − 1 colors for the other edges incident to the
root. Thus, we can choose a color other than c to color the edge connecting u to the root
to complete the coloring, that is c is available for T . ��

Observation 2. Each minimum t-free tree T (r) has Δ− t children.

Proof. If T = T (r) has less than Δ− t children, then it is necessarily more than t-free,
for less than Δ− t colors are blocked at its root.

To show that Δ − t is also an upper bound, let r (the root of T) have k ≥ Δ − t
children. Let T1, . . . , Tk be their corresponding subtrees.

By the minimality of T , observation 1 cannot be applied to it. That is, each tree Ti
(1 ≤ i ≤ k) is at most k-free.

By lemma 1, given any set C of k colors, for all 1 ≤ i ≤ k, there exists an augmen-
tation of Ti such that in every proper coloring of Ti the colors available at its root are a
subset of C.

These augmentations of the Ti’s, taken together, constitute an augmentation for T
that forces every edge incident to r to take a color from C. Since there are k such edges
and |C| = k, the set of colors of those edges must be C in any proper coloring. So
exactly Δ− k colors are available at the root of T . That is, T is at most (Δ − k)-free.
Since k ≥ Δ− t, this can only be true for k = Δ− t. ��

326 F. Chierichetti and A. Vattani

The next definition is pivotal.

Definition 5. Let T ht be the set of t-free Δ-trees of height h. Also, let nht be the order
of any smallest t-free tree in T ht (or∞ if that set is empty).

Recall our goal: we start with a list coloring of G − e, e = uv, and grow two BFS trees
T (u) and T (v) with the aim of showing that they can be re-colored in such a way that
(a) the coloring in G − (T (u) ∪ T (v)) remains unchanged and (b) there is an available
color for e. We will do this by showing that if the height of T (u) and T (v) is large
enough then they both are at least

(⌈
Δ
2

⌉
+ 1

)
-free and hence there is at least one spare

color for e to complete the coloring. In what follows we will characterize precisely the
minimum order of a tree of height h that is t-free, i.e. nht . We will then show that if
we grow T (u) and T (v) at sufficient depth ĥ, their size will be less than the minimal
size nĥt , for t = 1, . . . ,

⌈
Δ
2

⌉
, and therefore their degree of freedom must be at least

⌈
Δ
2

⌉
+ 1, and this ensures the existence of an available color for e. The orders nht are

pinned down in the next couple of lemmas by a double induction.

Lemma 2. The following holds:

(i) n0
1 = 1 and n0

t = ∞ for t ≥ 2;
(ii) n1

t = Δ− t + 1, for t ≥ 1;
(iii) nht = 1 + (Δ− t)min1≤i≤Δ−t n

h−1
i , for t ≥ 1, h ≥ 2.

Proof. For (i) it is sufficient to note that T 0
1 contains only the tree composed of a single

node. We can augment it with Δ − 1 edges properly colored with 1, . . . , Δ − 1; with
L = {1, 2, . . . , Δ} we obtain the 1-freedom of the tree. Also (ii) is trivial, if we observe
that, for t ≥ 1, T 1

t contains only one tree, the star with Δ−t edges. The endpoints of the
star are “roots” of tree of height 0. At least t colors are available at the root, regardless
of how a legal triple for the star is chosen. Also, in the worst case, no more than t colors
can be available at the root because its list contains just Δ colors and, by lemma 1, the
set of colors of the edges can be forced to be any set of Δ− t colors.

Observations 1-2 imply that every smallest tree in T ht (that is, one having order nht)
has to have a root with Δ − t children, each of which is at most (Δ − t)-free. Thus,
this tree consists of a root connected to Δ − t smallest trees in

⋃Δ−t
i=1 T

h−1
i . Now (iii)

follows. ��

Lemma 3. The following properties hold:

– O: For odd h ≥ 1, nh1 = Δ
2 nhΔ−1 and nht =

(
nhΔ−1 − 1

)
(Δ− t) + 1, for 2 ≤ t ≤

Δ− 1;
– O′: For odd h ≥ 3, nh2 ≥ nh3 ≥ · · · ≥ nhΔ

2 �−1
≥ nh1 ≥ nhΔ

2 �
≥ · · · ≥ nhΔ−1;

– E: For even h ≥ 2, nhΔ−1 ≤ nh1 ≤ nht , for 2 ≤ t ≤ Δ− 2.

Furthermore, for h ≥ 1, nhΔ−1 = min1≤t≤Δ−1 nht .

Proof. The three properties imply the minimality of nhΔ−1, for h ≥ 1. We show them
by induction on h, starting with the base cases. For h = 1, the value of nhΔ−1 and O

The Local Nature of List Colorings for Graphs of High Girth 327

follow from (ii) of lemma 2. For h = 2, (iii) andO imply that n2
t = (Δ− t)n1

Δ−t+1 =
(Δ− t)(t+1)+1. So the sequence {n2

t}Δ−1
t=1 is bitonic: it starts by increasing and then

decreases until the end. Thus to obtain E (which in turn implies the lemma for h = 2)
it is sufficient to verify that n2

Δ−2 ≥ n2
1 ≥ n2

Δ−1.
Now, assuming that for even h− 1 ≥ 2 property E holds, we prove that propertyO

holds for h. By (iii) and E we have that

nht = 1 + (Δ− t) min
1≤i≤Δ−t

nh−1
i =

{
1 + (Δ− 1)nh−1

Δ−1 t = 1
1 + (Δ− t)nh−1

1 2 ≤ t ≤ Δ− 1

This proves property O for 2 ≤ t ≤ Δ − 1. We consider t = 1 separately. By the
equation above for t = 1 and (iii), we have that nh1 = 1 + (Δ − 1)nh−1

Δ−1 = 1 + (Δ −
1)(nh−2

1 + 1).
Also, respectively by (iii), E , O (that hold inductively), we get

nhΔ−1 = 1 + nh−1
1 = 2 + (Δ− 1) min

1≤i≤Δ−1
nh−2
i = 2 + (Δ− 1)

2
Δ

nh−2
1

which is equivalent to nh−2
1 = (nhΔ−1 − 2) Δ

2(Δ−1) . By substituting this term in the

previous equation we obtain nh1 = Δ
2 nhΔ−1. Thus propertyO is proved.

To prove O′, we first note that the sequence {nht }Δ−1
t=2 is decreasing by property O.

So it is sufficient to prove that nhΔ
2 �
≤ nh1 ≤ nhΔ

2 �−1
.

To prove nh1 ≥ nhΔ
2 �

we apply O equations on both terms, to get the following

equivalent inequality:

Δ

2
nhΔ−1 ≥ (nhΔ−1 − 1)

⌊
Δ

2

⌋

+ 1 ⇐⇒ nhΔ−1

{
Δ

2

}

≥ 1−
⌊
Δ

2

⌋

where {x} = x−�x� is the fractional part of x. The LHS of the last inequality is always
non-negative, while the RHS is non-positive for Δ ≥ 3. This proves nhΔ

2 �
≤ nh1 .

For the other inequality, nh1 ≤ nhΔ
2 �−1

, we proceed in an analogous way

(
nhΔ−1 − 1

)
(⌊

Δ

2

⌋

+ 1
)

+ 1 ≥ Δ

2
nhΔ−1 ⇔ nhΔ−1

(

1−
{

Δ

2

})

≥
⌊
Δ

2

⌋

The last inequality is implied by 1
2n
h
Δ−1 ≥ �Δ2 �which is in turn implied by nhΔ−1 ≥ Δ,

which is true for any h ≥ 2 just because n1
1 = Δ by (ii) and nht > nh

′

t′ for each t, t′ as
long as h > h′, as it can be inferred from (iii).

It remains to prove that for all even h ≥ 4 property E holds. Again, we assume that
propertiesO and O′ hold for h− 1. For 1 ≤ t ≤ "Δ2 #, using respectively (iii), O′ and
O we obtain

nht = 1 + (Δ− t) min
1≤i≤Δ−t

nh−1
i = 1 + (Δ− t)

(
(nh−1
Δ−1 − 1)t + 1

)

The RHS is non-decreasing for 2t ≤ Δ − (nh−1
Δ−1 − 1)−1. This is implied by t < Δ/2

assuming that nh−1
Δ−1 ≥ 2 (which holds for h ≥ 3 as proven previously). Analogously,

for "Δ2 #+ 1 ≤ t ≤ Δ− 1, we obtain

328 F. Chierichetti and A. Vattani

nht = 1 + (Δ− t) min
1≤i≤Δ−t

nh−1
i = 1 + (Δ− t)nh−1

1 = 1 + (Δ− t)
Δ

2
nh−1
Δ−1

which decreases in its range of t. To complete the proof of property E , it remains to
verify that nhΔ

2 �
≥ nhΔ

2 �+1
and nh1 ≥ nhΔ−1. Using the previous expressions, the

former inequality is equivalent to

(

Δ−
⌈
Δ

2

⌉) (

(nh−1
Δ−1 − 1)

⌈
Δ

2

⌉

+ 1
)

≥
(

Δ−
(⌈

Δ

2

⌉

+ 1
))

Δ

2
nh−1
Δ−1

which is implied by nh−1
Δ−1 ≥ Δ (already proven for h ≥ 3). Again by the previous

expressions, it is straightforward to check that nh1 ≥ nhΔ−1 holds when Δ ≥ 3. ��

Lemma 4. A Δ-tree T of order n, Δ ≥ 3 and height h ≥ 2 logΔ−1 n is at least
("Δ2 #+ 1)-free.

Proof. The number n of nodes of T is at most (Δ− 1)
h
2 . Lemma 2 and 3 imply that

min
1≤i≤Δ−1

nhi = nhΔ−1 =

⎧
⎨

⎩

2 (Δ−1)� h
2 �−1

Δ−2 + (Δ− 1)
h
2 � h even

2 (Δ−1)� h
2 �−1

Δ−2 h odd

If h is even then nhΔ−1 > (Δ− 1)
h
2 . For h odd we have nhΔ−1 > (Δ− 1)

h−1
2 ; thus, by

O,

nhΔ
2 �

> (Δ− 1)
h−1

2

⌊
Δ

2

⌋

+ 1 > (Δ− 1)
h
2 ,

where the last inequality holds for Δ ≥ 3. Therefore, since n ≤ (Δ− 1)
h
2 , if h is even

we have n < nhΔ−1 = min1≤i≤Δ−1 nhi . It follows that T has to be Δ-free.
Analogously, if h ≥ 3 is odd, n < nhΔ

2 �
≤ nh1 ≤ nhΔ

2 �−1
≤ · · · ≤ nh3 ≤ nh2 by O′,

so T is at least ("Δ2 #+1)-free. For the case h = 1, a similar argument holds by (ii). ��

Proof (of Thm. 1). We are given a graph G of maximum degree Δ ≥ 3 with girth
> 1 + 2R where R = "2 logΔ−1 n# is the lower bound on the height of a tree stated
in lemma 4. We are also given a Δ-list assignment L for the edges of G. We color
the edges one at a time, starting with any edge and assigning it a color from its list.
Assume by induction that G − e is colored, where e = {u, v}. Grow two BFS trees
T (u) and T (v), respectively rooted at nodes u and v, up to distance R from their roots.
From the girth assumption, these BFS’ will be composed of disjoint trees. Consider the
subtrees T ′(u) and T ′(v), respectively of T (u) and T (v), induced by the root-leaf paths
of length exactly R. Both T ′(u) and T ′(v) are Δ-trees of two possible heights: either R
or 0. Any tree having height R is ("Δ2 #+ 1)-free by lemma 4, and any tree of height 0
has no edge to color. That is, there must exist a color c ∈ L(e), unused at both endpoints
of e that can be used to color e. After having colored the edges in T ′(u)∪ T ′(v) ∪ {e},
re-coloring the rest of the edges in T (u)∪T (v)− (T ′(u)∪T ′(v)) is an easy matter (as
they induce a forest of rooted trees having no constraints on their leaves). ��

The Local Nature of List Colorings for Graphs of High Girth 329

We conclude by explicitly stating that the re-coloring operations of the previous theorem
can be performed in a local manner.

Lemma 5. Let G be a graph of order n, maximum degree Δ ≥ 3 and girth greater than
2R + 1 where R = "2 logΔ−1 n#. Given any Δ-list assignment for the edges of G, any
proper partial coloring of G, and any uncolored edge e = {u, v} of G, it is possible to
properly color e, by changing the colors of the already colored edges of the trees rooted
at u and v having height ≤ R.

3.1 Class-2 Graphs of High Girth

We now sketch the proof of Prop. 1 which basically states that the girth requirement of
Thm. 1 is within a factor of 3 of the optimal one. To this aim we give an infinite family
of Class-2 graphs having girth≥ 4

3 logΔ−1 n−O(1).
These graphs can be obtained by manipulating the graphs of high girth of [15]. We

will give a function that maps regular graphs of order n and girth g to Class-2 graphs of
odd order 2n− 1 having girth ≥ g. This will prove the proposition.

Let G be a Δ-regular graph of order n and let G′ be the graph that G is mapped into;
G′ will either be a Δ-regular graph, or a graph having 2n− 2 nodes of degree Δ and a
single node of degree Δ − 1 — this implies that G′ is “overfull” and, thus, belongs to
Class-2 (a graph having m edges, n nodes and maximum degree Δ belongs to Class-2
if it is “overfull” — that is, if m >

⌊
n
2

⌋
Δ).

To obtain G′, delete any node v from G. The graph G′ will consist of two disjoint
copies of G − v and of a new node v′. The new edges are as follows. Take any subset
of "Δ/2# nodes of degree Δ − 1 in a copy of G − v and connect each of them to its
respective node in the other copy. Finally, connect node v′ to each of the remaining
2�Δ/2� nodes of degree Δ− 1.

4 Algorithms

In this section we sketch some algorithmic consequences of our theorems for list color-
ings, with special emphasis on distributed algorithms that are our main focus. In partic-
ular, we will sketch the proof of theorem 4.

We consider the classic model suggested by Linial [14] of a synchronous, message-
passing distributed network. The running time of an algorithm is given by the number
communication rounds. In each round a processor can broadcast a message to all of
its neighbors, receive messages from all of them, and perform any amount of local
computation. An algorithm is efficient if its running time is at most poly-logarithmic in
the network size.

All list colorings can be computed efficiently in a distributed setting by means of
some sort of meta-algorithm. We will see that this algorithm can be implemented in such
a way that each processor actually performs only a polynomial amount of computation.
Thus it could also be simulated sequentially in polynomial time. The meta-algorithm
operates on a conflict graph C of the input graph G. For vertex coloring C = G; for edge
coloring, C is the line graph of G; for total coloring, C is the so-called total graph of G,
i.e. there is a node in C for every edge or vertex in G and two nodes are adjacent in C if

330 F. Chierichetti and A. Vattani

their respective elements are adjacent, or incident, in G. The meta-algorithm produces
a vertex coloring of C, regardless of the requested type of coloring.

The main idea is that the local nature of list colorings illustrated in the previous sec-
tions allows to color several nodes of C in parallel. For these operations not to interfere,
it is sufficient to ensure that the corresponding re-coloring trees do not overlap. This can
be achieved by selecting, in each phase of the algorithm, the nodes to re-color according
to a network decomposition of a power of C. Recall that an (α, β)-decomposition of
a graph G is a partition of the nodes of G into β-weakly-connected components, each
labeled with an integer in {1, . . . , α}, such that two adjacent components have differ-
ent labels (two components are adjacent if at least one edge in G hits both of them). A
β-weakly-connected component of G is a subset of the nodes of G such that any two
nodes of the subset are at distance at most β in G. For the sake of brevity, we use the
word cluster to refer to a β-weakly-connected component. In [1] the authors give a
randomized distributed algorithm that obtains (O(log n), O(log n))-decompositions in
O(log n) many rounds.

Lemma 5 gives a logarithmic bound on the depth of the trees to be considered for
the edge re-coloring operations. The following lemmas, that we state without proof for
lack of space, give analogous bounds for the vertex and total re-coloring operations.

Lemma 6. Let G be a graph of order n and girth greater than 2R + 1, where R =
"logk−1 n# with k ≥ 3. Given any k-list assignment for the nodes of G, any proper par-
tial coloring of G, and any uncolored node v of G, it is possible to properly color v by
changing the colors of the already colored nodes of the tree rooted at v of
height≤ R.

Lemma 7. Let G be a graph of order n, maximum degree Δ ≥ 3 and girth greater than
2R+ 1 where R = "2 logΔ

2 �
n#+ 1. Given any (Δ+ 1)-list assignment for edges and

nodes of G, any proper partial coloring of G, and any uncolored edge e = {u, v} of G,
it is possible to properly color e, u and v, by changing the colors of the already colored
nodes and edges of the trees rooted at u and v having height≤ R.

Note that for each kind of coloring, the depth of the trees to be re-colored is bounded
by some d ∈ O(log n). To ensure non-interference between different re-coloring opera-
tions, we compute a decomposition of Ct, for t = 2d+O(1), where Ct, the t-th power
of C, is the graph such that V (Ct) = V (C) and where two nodes are connected in Ct

whenever they are at distance at most t in C.
In each cluster, the re-coloring operations will all be handled by just one of its nodes.

This node (or leader) can be chosen as the one having the smallest ID of the cluster.
The re-coloring operations of equally-labeled clusters can be performed in parallel, as
their distance in C is greater than or equal t. The meta-algorithm is as follows. For each
label k, in parallel, each leader of a k-colored cluster,

1. gathers all the information about its cluster K and its neighbors;
2. colors, locally, the nodes of K with respect to the edges of C;
3. broadcasts the new colors to the nodes in K .

This algorithm runs for O(T +αβt) communication rounds, where T is the time needed
to compute the (α, β)-decomposition of Ct. Using the randomized algorithm in [1], we
have α = β = O(log n) and T = O(t log n) = O(log2 n). This proves thm. 4.

The Local Nature of List Colorings for Graphs of High Girth 331

So far, we have neglected to discuss how a leader can (locally) compute the re-
coloring of a tree. In Linial’s model, each node of the network is allowed to perform an
unlimited amount of computation, thus the tree re-colorings (the most complex opera-
tions performed by the leaders) could just be obtained by exhaustive search. Nonethe-
less, the re-colorings can be computed in polynomial time. First, note that to re-color a
tree it is sufficient to compute the list of available colors of a generic object in the tree
(i.e., edge and/or node depending on the type of coloring), given the lists of its chil-
dren in the tree. This can be solved efficiently by means of a reduction to the maximum
bipartite matching problem.

The proof of the following proposition is omitted for lack of space.

Proposition 2. The recoloring of a tree can be computed in time O(n · Δ7/2) for list
edge coloring, in time O(n · Δ9/2) for list total coloring and in time O(n · k) for list
vertex coloring.

Acknowledgments

We greatly thank Alessandro Panconesi for his guidance and for his constant encour-
agement, advice and support. We also thank Zoltán Füredi, Alexandr V. Kostochka,
Ravi Kumar, Mike Molloy, Romeo Rizzi and Aravind Srinivasan for useful comments
and tips.

References

1. Anil Kumar, V.S., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end packet-
scheduling in wireless ad-hoc networks. In: Proc. 15th ACM-SIAM Symp. on Discrete Alg
(SODA 2004), pp. 1021–1030 (2004)

2. Behzad, M.: The total chromatic number. Comb. Math. and its Appl. (Proc. Conf., Oxford
1969). Academic Press, London (1971)

3. Bollobás, B., Harris, A.J.: List colorings of graphs. Graphs and Combinatorics 1, 115–127
(1985)

4. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of multi-
graphs. J. Comb. Theory, Series B 71 (1997)

5. Czygrinow, A., Handckowiak, M., Karonski, M.: Distributed O(Δ log n)-Edge-Coloring Al-
gorithm. In: Proc. 9th Europ. Symp. on Alg. (2001)

6. Dubhashi, D., Grable, D., Panconesi, A.: Nearly-optimal, distributed edge-colouring via the
nibble method. Theoretical Computer Science 203 (1998)

7. Erdös, P.: On circuits and subgraphs of chromatic graphs. Mathematika 9, 170–175 (1962)
8. Erdös, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proc. West Coast Conf. on

Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, pp. 125–
157 (1979)

9. Isobe, S., Zhou, X., Nishizeki, T.: Total colorings of degenerate graphs. Combinatorica 27,
167–182 (2007)

10. Jensen, T.R., Toft, B.: Graph Coloring Problems. John Wiley & Sons, New York (1995)
11. Juvan, M., Mohar, B., Škrekovski, R.: List Total Colourings of Graphs. Comb., Prob. and

Comp. 7(2) (1998)

332 F. Chierichetti and A. Vattani

12. Kahn, J.: Asymptotics of the List Chromatic Index for Multigraph. Random Struct. &
Alg. 17, 117–156 (2000)

13. Kostochka, A.V.: List edge chromatic number of graphs with large girth. Discrete Math. 101
(1992)

14. Linial, N.: Locality in distributed graph algorithms. SIAM J. on Comp. 21(1), 193–201
(1992)

15. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)
16. Matoušek, J.: Lecture Notes in Discrete Geometry. Springer, New York (2002)
17. Molloy, M., Reed, B.: A bound on the Total Chromatic Number. Combinatorica 18, 241–280

(1998)
18. Panconesi, A., Srinivasan, A.: Fast randomized algorithms for distributed edge coloring.

SIAM J. on Comp. 26(2) (1997)
19. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3, 25–30

(1964)
20. Zhou, X., Nishizeki, T.: Edge-coloring and f -coloring for various classes of graphs. J. Graph

Algorithms and Applications 3(1) (1999)

Approximating List-Coloring on a Fixed Surface

Ken-ichi Kawarabayashi�

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

k keniti@nii.ac.jp

Abstract. It is well-known that approximating the chromatic number
within a factor of n1−ε cannot be done in polynomial time for any ε > 0,
unless coRP = NP . Also, it is known that computing the list-chromatic
number is much harder than the chromatic number (assuming that the
complexity classes NP and coNP are different). In fact, the problem
of deciding if a given graph is f -list-colorable for a function f : V →
{k − 1, k} for k ≥ 3 is Πp

2 -complete.

In this paper, we are concerned with the following questions:

1. Given a graph embedded on a surface of bounded genus, what is its
list-chromatic number ?

2. Given a graph embedded on a surface of bounded genus with list-
chromatic number k, what is the least l (l ≥ k) such that the graph
can be efficiently and legally colored given a list (coloring scheme)
of order l ?

The seminal result of Thomassen [19] gives rise to answers for these prob-
lems when a given graph is planar. In fact, he gave a polynomial time al-
gorithm to 5-list-color a planar graph. Thomassen’s result together with
the hardness result (distinguishing between 3, 4 and 5 list-colorability
is NP-complete for planar graphs and bounded genus graphs) gives an
additive approximation algorithm for list-coloring planar graphs within
2 of the list-chromatic number.

Our main result is to extend this result to bounded genus graphs. In
fact, our algorithm gives a list-coloring when each vertex has a list with
at least χl(G) + 2 colors available. The time complexity is O(n).

It also generalizes the other deep result of Thomassen [20] who gave
an additive approximation algorithm for graph-coloring bounded genus
graphs within 2 of the chromatic number.

This theorem can be compared to the result by Kawarabayashi and
Mohar(STOC’06) who gave an O(k)-approximation algorithm for list-
coloring graphs with no Kk-minors. For minor-closed graphs, there is a
2-approximation algorithm for graph-coloring by Demaine, Hajiaghayi
and Kawarabayashi (FOCS’05), but it seems that there is a huge gap
between list-coloring and graph-coloring in minor-closed family of graphs.
On the other hand, this is not the case for bounded genus graphs, as we
pointed out above.

� Research partly supported by JSPS Postdoctoral Fellowship for Research Abroad.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 333–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 K.-i. Kawarabayashi

1 Introduction

1.1 Coloring and List-Coloring

Graph coloring is arguably the most popular subject in graph theory. Also, it
is one of the central problems in combinatorial optimization, since it is one
of the hardest problems to approximate. In general, the chromatic number is
inapproximable in polynomial time within factor n1−ε for any ε > 0, unless
coRP = NP , cf. Feige and Kilian [8]. An interesting variant of the classical
problem of properly coloring the vertices of a graph with the minimum possible
number of colors arises when one imposes some restrictions on the colors or
the number of colors available to particular vertices. This variant received a
considerable amount of attention by many researchers, and that led to several
beautiful conjectures and results. This subject, known as list-coloring, was first
introduced in the second half of the 1970s, in two papers by Vizing [25] and
independently by Erdős, Rubin and Taylor [7].

If G = (V,E) is a graph, and f is a function that assigns to each vertex of v
in G a positive integer f(v), we say that G is f -choosable (or f -list-colorable)
if for every assignment of sets of integers S(v) ⊆ Z, where |S(v)| = f(v) for all
v ∈ V (G), there is a proper vertex coloring c : V → Z so that c(v) ∈ S(v) for
all v ∈ V (G). We sometimes call f(v) assignment of colors . The smallest inte-
ger k such that G is f -choosable for f(v) = k (v ∈ V (G)) is the list-chromatic
number χl(G). If G is f -choosable for f(v) = k (v ∈ V (G)), we sometimes
call G has a list-coloring using at most k colors. Clearly, χ(G) ≤ χl(G), and
there are many graphs for which χ(G) < χl(G). A simple example is the com-
plete bipartite graph K2,4, which is not 2-choosable. Another well-known ex-
ample is the complete bipartite graph K3,3. In fact, it is easy to show that
for every k, there exist bipartite graphs whose list-chromatic number is bigger
than k.

The problem of computing the list-chromatic number of a given graph is
thus difficult, even for small graphs with a simple structure. It is shown in [10]
that the problem of deciding if a given graph is f -list-colorable for a function
f : V → {k − 1, k} for k ≥ 3 is Πp

2 -complete. Hence if the complexity classes
NP and coNP are different, as is commonly believed, the problem is strictly
harder than the NP-complete problem of deciding if the chromatic number is k
(if k ≥ 3).

1.2 List-Coloring Planar Graphs

Although there are many negative results as stated above, there are some positive
results, which are mainly connected to the Four Color Theorem. One celebrated
example is Thomassen’s result on planar graphs [19]. It says that every planar
graph is 5-choosable, and its proof is within 20 lines and gives rise to a linear
time algorithm to 5-list-color planar graphs. In contrast with the Four Color
Theorem, there are planar graphs that are not 4-choosable [23]. These were
conjectured by Erdős, Rubin and Taylor [7].

Approximating List-Coloring on a Fixed Surface 335

1.3 List-Coloring Bounded Genus Graphs and Our Main Result

In this paper, we are interested in bounded genus graphs. Our main target is to
extend the result of Thomassen [19] to the bounded genus graphs. We develop an
additive approximation algorithm for list-coloring bounded genus graphs within
2 of the list-chromatic number. Our main result is the following.
Theorem 1. Suppose G is embedded on a fixed surface. Then there is a lin-
ear time additive approximation algorithm to list-color G within two of the list-
chromatic number of G.
Theorem 1 is actually more specific in the following sense.
1. The list-chromatic number of a bounded genus graph can be computed ex-

actly when it is not 3, 4, or 5 (Similarly, such graphs can be efficiently colored
given a list of order k with k ≥ 6).

2. For k = 3, 4, 5, the list-chromatic number (say, k) of a bounded genus graph
can be calculated up to an additive approximation of min(2, 6 − k) (And
moreover, one can efficiently and legally list-color the graph given a list of
order min(k + 2, 6)).

Let us make some remarks at this moment. The bound χl(G)+2 is essentially
best possible, even for planar graphs, since it is ΠP

2 -complete to decide whether
or not they are 4-list-colorable [24], and they are 3-list-colorable. This implies
that distinguishing between 3, 4 and 5 list-colorability is NP-complete for graphs
on any fixed surface. This also means that unless coRP = NP , one cannot
approximate the list-chromatic number of planar graphs and bounded genus
graphs within 1 of the list-chromatic number χl(G).

Let us now give some remarks concerning graph-coloring. Improving to an
χ(G)+1 approximation algorithm for graph-coloring of graphs on a fixed surface
would be probably very hard. In fact, distinguishing between 3 and 4 colorability
is NP-complete for graphs on any fixed surface, and distinguishing between 4
and 5 colorability for graphs on a fixed surface would require a significant gener-
alization of the Four Color Theorem, which would characterize the 4-colorability
of graphs in fixed surfaces. Apart from planar graphs (which is exactly the Four
Color Theorem), it is not known how to test the 4-colorability of graphs on a
fixed surface in polynomial time.

Leaving the plane to consider graphs on surfaces of higher genus, the chromatic
and list chromatic number can increase. However, for graphs which obey certain
local planarity conditions, one can deduce similar properties as for planar ones.
We say that a graph G embedded in a surface S is locally planar if it does not
contain short noncontractible cycles. Quantitatively, we introduce the edge-width
of G as the length of a shortest cycle which is noncontractible in S. Thomassen
proved in [20] that graphs in S with sufficiently large edge-width are 5-colorable.
He asked if they are also 5-choosable. This was answered affirmatively in [4].
Theorem 2. For every surface S there exists a constant w such that every graph
that can be embedded in S with edge-width at least w is 5-choosable.
The method used in this paper for the proof of Theorem 1 is quite different from
that in [4].

336 K.-i. Kawarabayashi

1.4 Overview of the Algorithm

Roughly, the algorithm proceeds as follows. If χl(G) = 2, then we can easily
recognize this and 4-list-color the whole graph by using the result by Erdős,
Rubin and Taylor [7]. So, we may assume that χl(G) ≥ 3.

The idea is to delete disjoint disks (each of which bounds a planar graph on a
fixed surface) as many as possible. Then the resulting graph has bounded tree-
width. To see this, if the tree-width is huge, then by the result of Thomassen
[21], there must be a big grid-minor, whose inside induces a planar graph. Con-
versely, if there is no big grid minor, whose inside induces a planar graph, then
the tree-width of the whole graph is bounded. Since we have already deleted
the disks, so there would not be a big grid-minor, whose inside induces a pla-
nar graph. Hence after deleting finitely many disks, the resulting graph has
bounded tree-width. The methods of dynamic programming can be applied suc-
cessfully for list-colorings once we have a desired tree-decomposition, see [1,24,9].
Also, by the algorithm of Bodlaender [2], once we know the tree-width of small
order, we can construct a tree-decomposition in linear time. Hence we know
the list-chromatic number of the resulting graph G′. Actually, we can list-color
G′ too.

It remains to extend the list-coloring of G′ to each of the deleted disks using at
most max{χl(G′)+2, 5} colors. As we mentioned, we may assume that χl(G) ≥ 3.
The key is that Thomassen’s result tells us that if a given graph is planar, and
each of the vertices on the boundary has a list with three colors available, and
the rest of vertices have lists with five colors available, then we can list-color the
whole graph. Since we are allowed to list-color each of the deleted disks using
at most max{χl(G′) + 2, 5} colors, so we have extra two colors for the vertices
on the boundary of each deleted disk. If we can save another one color in the
list of each vertex on the boundary of these disks, we will be able to list-color
the graph in each of the disks. This is the main issue here, and to overcome this
difficulty, we will need Thomassen’s recent extension [22] of his result in [19].

More specifically, the algorithm facilitates a 3 step solution:

1. Delete at most 2 colors from every vertex list in the boundary of each disk
(as well as a small buffer zone inside each disk).

2. After deleting all the flat disks, color the rest of the graph together with
the disk boundary and the buffer using the new list. This can be done by
tree-width bounded method and dynamic programming. In fact, we will get
an optimal coloring.

3. Using the original list, color the interior of each disk, possibly re-coloring
some vertices in the buffer zone.

All of these steps can be done in linear time. In Step 2, we will get an optimal
coloring. So, in Step 3, we would get a list-coloring using at most χl(G) + 2
colors, since for each vertex in the boundary of each disk, we are allowed to use
another 2 colors that are deleted in Step 1.

Approximating List-Coloring on a Fixed Surface 337

2 Definitions and Preliminaries

2.1 Definitions

For basic graph theoretical notation, we refer the reader to the book of Diestel
[5]. So we assume basic notations in graph theory.

Before we give an algorithm, we need the following lemma. We say that the
disk is flat if it is embedded into a sphere.

Lemma 1. For any graph G on a fixed surface, there is a polynomial time al-
gorithm to find flat disjoint disks D1, . . . , Dl such that deletion of them results
in a graph on a fixed surface without a flat disk containing 10 nested cycles.

This can be certainly done in polynomial time, in fact, in linear time. Most of
the techniques are introduced in [17]. In [14,15], Reed, Robertson, Schrijver and
Seymour used this technique to give a linear time algorithm for the k disjoint
paths problem for planar graphs for fixed k.

2.2 List-Coloring Planar Graphs

Let G be a graph. A list-assignment is a function L which assigns to every vertex
v ∈ V (G) a set L(v) of natural numbers, which are called admissible colors for
that vertex. An L-coloring of the graph G is an assignment of admissible colors
to all vertices of G, i.e., a function c : V (G) → N such that c(v) ∈ L(v) for
every v ∈ V (G), and for every edge uv we have c(u) = c(v). If k is an integer
and |L(v)| ≥ k for every v ∈ V (G), then L is a k-list-assignment . The graph is
k-choosable if it admits an L-coloring for every k-list-assignment L. Sometimes,
we call it k-list-colorable.

In order to get our algorithm, we need to know which kind of graphs are
2-list-colorable. The following result gives the answer.

Lemma 2 ([7]). A graph is 2-choosable if and only if it is bipartite graph plus
some structures, which can be easily recognized.

The following is the well-known result due to Thomassen [19].

Theorem 3 (Thomassen [19]). Let G be a plane graph with outer facial walk
C, and let a, b be adjacent vertices on C. Let L be a list-assignment for G such
that L(a) = {α}, L(b) = {β}, where β = α, every vertex on C \ {a, b} has at
least three admissible colors, and every vertex that is not on C has at least five
admissible colors. Then G can be L-colored.

Finally, we need the following recent result, which is a generalization of Theorem
3. To state this result, we need some definition. Let G be a near-triangulation,
i.e., each face, except for the outer face boundary, is a triangle. Suppose that the
outer face boundary of C consists of a vertex set v1, . . . , vl−1 in this clockwise
order. If the interior of G consists of the edges v1v2, v1v4, . . . , v1vl−1, then we call
G a broken wheel. We also call it a generalized wheel. We call v1 its major vertex

338 K.-i. Kawarabayashi

and vlv1v2 its principal path. We also say that vlv1, v1v2 are the principal edges
and that vl, v2 are the principal neighbors of v1. If k ≥ 4, then this generalized
wheel is clearly not 3-extendable with respect to its principal path. If the interior
of G consists of a vertex u and all edges from u to the outer cycle, then G is
a wheel. We also call that a generalized wheel, and again, we call v1 its major
vertex and vlv1v2 its principal path. It is easy to see that this generalized wheel
is not 3-extendable with respect to its principal path when k is odd and k ≥ 5.
Finally, if G1, G2 are generalized wheels and we identify a principal edge in one
of them with a principal edge in the other in such a way that their major vertices
are identified, then the resulting graph is also called a generalized wheel. Its two
principal edges are those which are principal edges in one of the graphs, but
not part of the identification above. Again, it is easy to see that this generalized
wheel is not 3-extendable with respect to its principal path unless it contains a
vertex of even degree or degree 3 inside the outer cycles. We can now state the
theorem.

Theorem 4 (Thomassen [22]). Let G be a plane graph with outer facial walk
C, and let a, b, c be a path of length 2 on C. Let L be a list-assignment for G
such that L(a) = {α}, L(b) = {β}, L(c) = {γ}, where β = α and β = γ, every
vertex on C \ {a, b, c} has at least three admissible colors, and every vertex that
is not on C has at least five admissible colors. Then G can be L-colored, unless
G contains the generalized wheel W with the principal path abc such that each
vertex of C \ {a, b, c} has exactly three colors in its list.

Let us remark that the proofs of Theorems 3 and 4 can be translated into linear
time algorithms to list-color a planar graph, if such a coloring exists.

3 Main Lemma

In this section, we prove the following lemma, which is a key for our algorithm.
This is concerning Steps 1 and 3 in the overview. This lemma deals with a
flat disk, and shows how we save three colors in the list of each vertex on the
boundary of each deleted disks. Then we shall 5-list-color all the vertices in the
disk by Theorems 3 and 4. As we pointed out before, we may assume that the
list-chromatic number of G is at least 3, otherwise, we are able to list-color the
whole graph by Lemma 2. So the main challenge is to list-color the graphs inside
disks using at most χl(G) + 2 ≥ 5 colors.

Before that, we need some definition. By a block , we mean a maximal con-
nected subgraph B of G such that no vertex of B is a cutvertex of B. Let us
observe that any two blocks have at most one vertex in common, and clearly a
vertex of G is a cutvertex if and only if it is contained in more than one block
of G. Every connected graph G has a block decomposition (T,B) where T is a
tree and B = {Bv|v ∈ V (T)} is a collection of subsets of vertices of G indexed
by the vertices of T such that the following hold:

Approximating List-Coloring on a Fixed Surface 339

i. for every v ∈ V (T), G[Bv] is either an edge or a block of G,
ii. for every edge uv of T , |Bv ∩Bu| = 1, and
iii. every edge of G is contained in Bv for some v ∈ V (T).

Observe that for any edge uv ∈ E(T), the vertex in Bu ∩ Bv is a cut vertex of
the graph. See [5] for more details.

Lemma 3. Suppose D is a flat disk, and C is the outer face boundary of this
disk. Let V (D) be the vertices in the disk D. Let W be a vertex set in V (D)−V (C)
such that every vertex in W has at least 3 neighbors in C. Suppose furthermore
that every vertex in V (D) has a list with at least k ≥ 5 colors available. Then
we can delete two colors from the list of each vertex in C ∪ W such that the
following is possible:

Suppose a precoloring of C ∪W , which only uses the colors in the new (trun-
cated) list of each vertex in C ∪W , is given. Then this precoloring of C (not
C ∪W !) can be extended to a coloring of V (D).

Proof. Note that, in the statement of Lemma 3, we shall possibly re-color the
vertices of W (but we shall not re-color the vertices in C). The vertices in W
are called ”buffer zone” in the overview section, section 1.4.

Our first goal is to delete two colors from the list of each vertex in C ∪W
so that, for any precoloring of C ∪W , which only uses the colors in the new
(truncated) list of each vertex in C ∪W , each vertex v in W (except for at most
three vertices in each block of V (D)−C, which we call exceptional vertices, and
we shall specify later) still has three colors {c1, c2, c3} in its list in such a way
that any color of c1, c2, c3 are not used in the precoloring of N(v) ∩ V (C). More
specifically, one color of c1, c2, c3, say c1, comes from the precoloring of C ∪W .
The other two colors, c2 and c3, are deleted. Let us prove our first goal. We are
not interested in the vertices in V (C)−N(W). To achieve our purpose, we just
delete arbitrary two colors from the list of each vertex in V (C)−N(W). Hence,
hereafter, we are only interested in the vertices in W ∪N(W).

It is clear that V (D)−V (C) consists of block decompositions. Take one block
decomposition (T,B). Note that W appears on the outer face boundary of this
block decomposition. We fix a root r of T . Take all the vertices of Br ∩W . If
Br ∩W = ∅, then our purpose for Br can be achieved. So assume Br ∩W = ∅.
We also specify one vertex c in the outer face boundary of Br ∩W , and delete
two colors a, b from the list of c (We assume that both colors a and b are in the
list of c.). Let v1, . . . , vl be the vertices of W on the face boundary of Br that
appear in the clockwise order, where c = v1. We also put d = vl. Later, d will
play a role. Note that d may not exist if |Br ∩W | = 1.

Let us now remark that we will appoint d as exceptional if c, u, d consists of a
2-path, where u ∈ V (C) is a neighbor of both c and d. In this case, our argument
below may be problematic. We just delete two colors from the list of u, as we
shall see below, and this may result in a conflict with our purpose. The reader
may wonder why this does not harm. The idea is to use Theorem 3. It allows us
to precolor at most two adjacent vertices in the outer face boundary. So, we are
allowed to precolor the edge ud when we apply Theorem 3. Therefore, our goal

340 K.-i. Kawarabayashi

here is to delete two colors from the list of each vertex in (Br ∩W) ∪ (N(Br ∩
W) ∩ V (C)).

Let vi,1 be the vertex in N(vi) ∩ C that appears first, and vi,2 be the vertex
in N(vi) ∩ C that appears last in the clockwise order, for i = 1, . . . , l. We first
delete a, b from the list of each vertex in N(v1)∩V (C). If a, b is in the list of v1,2,
then we delete a, b from the list of v1,2. Else, we delete a, a′ or b, a′ or a′, b′ from
the list, where both a′ and b′ are in the list of v1,2. Suppose, say, we delete x, y
from the list of v1,2. If v2,1 = v1,2, then we select arbitrary two colors in the list
of v2,1, and delete two colors from the list. Note that v2,1 = v1,2 could happen.
In this case, of course, we delete x, y from the list of v2,1. Suppose we delete
x′, y′ from the list of v2,1. Delete x′, y′ from the list of v2. If v2 does not have
x′ or y′ in the list, then we select arbitrary color(s) in the list of v2, and delete
two colors from the list. So whenever v2 has x′ or y′ in the list, we shall delete.
We keep doing this procedure until vl. Note that we are following the outer face
boundary of Br in the clockwise order, therefore, there are no overlaps (besides
v2,1 = v1,2, vl,2 = v1,1, etc.). The problem could be the list of vl,2 since vl,2 could
have already lost two colors from the list because vl,2 could be v1,1. But in this
case, c, v1,1 = vl,2, d consist of a path of length 2, and d is now an exceptional
vertex. We jsut delete a, b from v1,1 = vl,2. Then we are done with Br ∩W .

Let Br′ be a child of Br with a cutvertex v. Note that v may not be in W . If v
is not in W , then we perform the same procedure as we described in the previous
paragraph, starting with an arbitrary vertex in Br′ ∩W (If Br′ ∩W = ∅, then
our purpose for Br′ can be achieved.). We shall delete two colors in each list of
the vertices in ((W ∩Br′)∪ (N(Br′ ∩W)∩V (C)). Let u in W be a vertex, which
is closest to v in the outer face boundary of Br′ (Note that u may not exist if
|Br′ ∩W | = 0 or 1. But in these cases, it is easy to achieve our goal.). Since
we have already performed our procedure in Br, so we may already delete two
colors from the list of v. We appoint v as c, and appoint u as d.

Let us now remark that we will appoint d as excpetional if c, u, d consists
of a 2-path, where u ∈ V (C) is a neighbor of both c and d. In this case, this
argument may be problematic. We just delete two colors from the list of u, as
above, and this may result in a conflict with our purpose. (In this case, we shall
call d an exceptional vertex. We also observe that since two colors in the list
of c may be already deleted from the previous procedure for Br, so we call it
an exceptional vertex too). The reader may wonder why this does not harm.
The idea is to use Theorem 3 or Theorem 4. It allows us to precolor at most
two or three adjacent vertices in the outer face boundary. So we are allowed to
precolor the edge ud or the 2-path cud when we apply Theorem 3 or Theorem
4. Therefore, our goal here is to delete two colors from the list of each vertex in
(Br ∩W) ∪ (N(Br ∩W) ∩ V (C)).

We delete two colors in each list of the vertices in ((W ∩Br′)∪ (N(Br′ ∩W)∩
V (C)), as we did in the previous paragraph, starting with c, and ending with d.
Note that two colors in the list of c may be already deleted from the previous
procedure for Br. For u = d, we do exactly as we did in the previous paragraph.
(N(v)∩V (C))∩(N(u)∩V (C)) may not be empty. In this case, u,N(v)∩V (C), v

Approximating List-Coloring on a Fixed Surface 341

consist of a path of length 2, in which case, both c and d are exceptional vertices.
Note that we just delete a, b from the list of N(v) ∩ V (C), as we did above.

In this way, we can keep doing this procedure from the root of T to the leaves,
for all the block decompositions in V (D)−C. So, we are now able to delete two
colors from the list of each vertex of C ∪W . In fact, we just delete two colors
from the list of vertices in C∩W , and if there are exceptional vertices, then they
form a path of length 1 or 2 in a block of the block decomposition (T,B).

Having had this situation, we shall prove our main assertion in Lemma 3.
Suppose that W ∪ C is precolored (from the new truncated lists). So, each

vertex v in W has a list with one color, which is not used in the coloring of
N(v) ∩ C at this moment. Let us keep in mind that, as we proved before, for
any vertex v in W (except for exceptional vertices), the precoloring of N(v)∩C
does not use two deleted colors of v.

It suffices to list-color each component of V (D) − V (C). Again, fix one of
a block tree, say, a block decomposition (T,B), in V (D) − V (C). Fix a root
r. Let c, d be the vertices as defined above. Then for each list of each vertex
v of (Br ∩W) − {c, d}, we put the two deleted colors back to the list of v. If
v1,1 = vl,2, then we can put the two colors of d back to its list. Otherwise, since
d is exceptional, we may need to deal with the case when c, v1,1, d is precolored,
and they consist of a 2-path. For each vertex v in the outer face boundary of Br,
which is not in W , we just delete at most two colors from its list, but make sure
that any of colors in the new list of v does not contain the colors of the coloring
in N(v) ∩ V (C). This is possible since v has at most two neighbors in C.

Then it is easy to see that, currently, each vertex v in the outer face boundary
of Br−{c, d} has a list with at least three colors, and these colors do not appear
in the precoloring of N(v)∩C. d may be precolored, but in this case, c, v1,1, d is
a 2-path and we may assume that they are all precolored (if we give a color to
c). Otherwise, d has a list with at least three colors.

Then we can list-color all the vertices in Br or Br ∪ {v1,1} by Theorem 3 or
Theorem 4 from the current lists. Note that, if the block Br is the generalized
wheel as in Theorem 4, then the vertices between c and d on the outer face
boundary has a list with at least four colors available, since there are no vertices
of W between c and d on the outer face boundary. So the obstruction in Theorem
4 cannot happen.

Let Br′ be a child of Br with a cutvertex v. Let u be as in the previous proof.
Then we assume that v is precolored. We then perform the same procedure as
we described in the previous paragraph.

In this way, we can keep list-coloring all the vertices in the block decomposition
(T,B) from the root of T to the leaves, for all the block decompositions in D−C.
This completes the proof. ��
Let us observe that this argument is algorithmic, since we know that there are
linear time algorithms for Theorems 3 and 4, respectively. Other arguments are
easy to implement in linear time.

342 K.-i. Kawarabayashi

4 Algorithm

Now we are ready to describe our algorithm.

Input: A graph G on a fixed surface.

Output: Give a number c that is at most χl(G) + 2. Also if each vertex has a
list with c ≤ χl(G)+ 2 colors available, then the output gives a desired coloring.
The time complexity is O(n).

Description

Step 1. Check whether G is 2-choosable or not. If it is, then just list-color the
graph G using Lemma 2, and output it. Otherwise, go to Step 2.

Step 2. Apply Lemma 1 to delete disjoint disks D1, . . . , Dl so that there is no
flat disk that contains 10 nested cycle in the resulting graph.

Actually, we shall adjust each disk so that each vertex in the resulting graph
is adjacent to only one flat disk that was deleted. This can be done, for instance,
by putting the vertices on the outer cycle C of each deleted flat disk back to the
resulting graph.

Let G′ be the resulting graph. Note that this operation tells us that C in
Lemma 3 for each deleted disk is now in G′.

Let W be all the vertices in G−G′ each of which has at least 3 neighbors in
G′. Then we add W to G′. Let G′′ be the resulting graph. So this operation tells
us that W in Lemma 3 for each deleted disk is now in G′′.

Hence both W and C in Lemma 3 are in G′′

Step 3. Determine χl(G′′). At this moment, we may assume that χl(G) ≥ 3.
So output c = max{χl(G′′)+ 2, 5}. This can be done by the tree-width bounded
method since G′′ has small tree-width. But let us remark that at this moment,
we do not give a valid coloring to G′′ yet. We need to delete two colors from the
list of each vertex in C and W as in Lemma 3 for each deleted disk. This will
be done in Step 4.

Step 4. At this moment, χl(G) ≥ 3, and hence we may assume that each vertex
in G has a list with max{χl(G′′) + 2, 5} colors available. For each deleted disk
D, we first add W to D, and then add the first nested cycle C of the deleted
disk D to D. Note that C and W are as in Lemma 3. Then for this resulting
disk D′ and the vertices inside the disk, we perform the algorithm of Lemma 3
with C and W . Note that C and W in Lemma 3 are, at the moment, both in
D′ and in G′′. When we perform the algorithm, as in the first half of the proof
of Lemma 3, we first delete at most two colors from the list of each vertex in C
and W . Then we apply the tree-width bounded method to G′′. We now have a
valid coloring of G′′ from the new truncated list. Then we extend the coloring
of C to the vertices inside the disk D′ by possibly re-coloring the vertices of W ,
as we did in the second half of the proof of Lemma 3.

Finally, we put the coloring together. This completes the description of the
algorithm.

Approximating List-Coloring on a Fixed Surface 343

For the correctness, if χl(G) is at most 2, then Lemma 2 gives the answer,
and hence Step 1 works.

For Step 2, it is clear that no vertex of the resulting graph G′ is surrounded
by 20 nested cycles since we just put the outer cycle of each flat disk back to G′.
So, by the result of Thomassen [21], the tree-width of G′ is bounded. We also
need to prove that in Step 2, after adding W to G′, the resulting graph G′′ has
still bounded tree-width. Since we only add the first neighborhood of each disk
to G′, so the size of grid minor in G′′ could increase only by factor 2 from G′.
Therefore, by the mini-max formula of tree-width and the size of grid-minors,
which is proved in [6,13,16,18], the tree-width of G′′ is still bounded. So, in Step
3, we can determine the list-chromatic number of G′′ in linear time.

At Step 4, we can assume that each vertex of G has a list with at least
max{χl(G′′) + 2, 5} colors available. Before coloring G′′, as proved in Lemma 3,
for each deleted disk D and C,W for D as in Lemma 3, we can arrange lists of
vertices in C in the boundary of the disk D (as well as a small buffer zone W
inside the disk) so that we can apply Thomassen’s results [19,22] to the vertices
inside the disk D. We then give a valid coloring of G′′ by the tree-width bounded
method We have to extend the coloring of G′′ to the vertices inside the disk.
In fact, to color the vertices inside the disk, we shall use the original list of
V (D)− V (C)−W , but possibly re-coloring some vertices in the buffer zone W
(each vertex in W is on the boundary of D). Each vertex in W , except for the
exceptional vertices as in Lemma 3, has a list with at least three colors available.
We shall color the vertices in V (D) − V (C) using the list of each vertex in W
and in V (D)− V (C)−W). This can be done as in the second half of the proof
of Lemma 3, and hence we can extend the precoloring of C to all the vertices of
V (D)− C.

Therefore, if each list of the vertices in the disk has at least five colors in its
list, then we can list-color all the vertices inside the disk. Now we just put all the
colorings of deleted disks and G′′ together. Lemma 3 tells us that this coloring
is valid. This is clearly an additive approximation algorithm for list-coloring
bounded genus graphs within 2 of the list-chromatic number.

This completes the correctness of the algorithm.
The time complexity is O(n), since the tree-width bounded part takes linear

time, deleting the flat disks takes linear time by Lemma 1, list-coloring the
vertices in the deleted disks takes linear time by Theorems 3 and 4, and the rest
of the algorithm just takes linear time. ��

References

1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Discrete Appl. Math. 23, 11–24 (1989)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decomposition of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

3. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Algorithmic graph minor the-
ory: Decomposition, approximation, and coloring. In: 46th Annual Sumposium on
Foundations of Computer Science (FOCS 2005), pp. 637–646 (2005)

344 K.-i. Kawarabayashi

4. DeVos, M., Kawarabayashi, K., Mohar, B.: Locally planar graphs are 5-choosable.
J. Combin. Theory Ser. B (to appear)

5. Diestel, R.: Graph Theory, 2nd edn. Springer, Heidelberg (2000)
6. Diestel, R., Gorbunov, K.Y., Jensen, T.R., Thomassen, C.: Highly connected sets

and the excluded grid theorem. J. Combin. Theory Ser. B 75, 61–73 (1999)
7. Erdős, P., Rubin, Taylor: Choosability in graphs. In: Proc. West-Coast conference

on Combinatorics, Graph Theory and Computing. Arcata Califonia, Congressus
Numerantium vol. XXVI, pp. 125–157 (1979)

8. Feige, U., Kilian, J.: Zero-knowledge and the chromatic number. J. Comput. System
Sci. 57, 187–199 (1998)

9. Fellows, M., Fomin, F., Lokshtanov, D., Rosamond, F., Saurabh, S., Szeider, S.,
Thomassen, C.: On the complexity of some colorful problems parameterized by
treewidth. In: Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA. LNCS, vol. 4616,
pp. 366–377. Springer, Heidelberg (2007)

10. Gutner, S.: The complexity of planar graph choosability. Discrete Math. 159, 119–
130 (1996)

11. Kawarabayashi, K., Mohar, B.: Approximating the chromatic number and the list-
chromatic number of minor-closed family of graphs and odd-minor-closed family
of graphs. In: Proceedings of the 38th ACM Symposium on Theory of Computing
(STOC 2006), pp. 401–416 (2006)

12. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Univ. Press, Bal-
timore (2001)

13. Reed, B.: Tree width and tangles: a new connectivity measure and some appli-
cations. In: Surveys in Combinatorics, 1997, London. London Math. Soc. Lecture
Note Ser, vol. 241, pp. 87–162. Cambridge Univ. Press, Cambridge (1997)

14. Reed, B.: Rooted Routing in the Plane. Discrete Applied Mathematics 57, 213–227
(1995)

15. Reed, B., Robertson, N., Schrijver, A., Seymour, P.D.: Finding disjoint trees in
planar graphs in linear time. Graph structure theory (Seattle, WA, 1991). Contemp.
Math, vol. 147, pp. 295–301. Amer. Math. Soc., Providenc (1993)

16. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph. J. Com-
bin. Theory Ser. B 41, 92–114 (1986)

17. Robertson, N., Seymour, P.D.: Graph minors. XI. Circhits on a surface. J. Combin.
Theory Ser. B 60, 72–106 (1994)

18. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.
Combin. Theory Ser. B 62, 323–348 (1994)

19. Thomassen, C.: Every planar graph is 5-choosable. J. Combin. Theory Ser. B 62,
180–181 (1994)

20. Thomassen, C.: Color-critical graphs on a fixed surface. J. Combin. Theory
Ser. B 70, 67–100 (1997)

21. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces.
J. Combin. Theory Ser. B 70, 306–311 (1997)

22. Thomassen, C.: Exponentially many 5-list-colorings of planar graphs. J. Combin.
Theory Ser. B 97, 571–583 (2007)

23. Voigt, M.: List colourings of planar graphs. Discrete Math. 120, 215–219 (1993)
24. Tuza, Z.: Graph colorings with local constraints—a survey. Discuss. Math. Graph

Theory 17, 161–228 (1997)
25. Vizing: Coloring the vertices of a graph in prescribed colors. Metpdy Diskret. Anal.

v Teorii Kodov i Schem 29, 3–10 (1976) (in Russian)

Asymptotically Optimal Hitting Sets

Against Polynomials

Markus Bläser1, Moritz Hardt2, and David Steurer2

1 Saarland University, Saarbrücken, Germany
2 Princeton University, Princeton, NJ

Abstract. Our main result is an efficient construction of a hitting set
generator against the class of polynomials of degree di in the i-th vari-
able. The seed length of this generator is log D + Õ(log1/2 D). Here,
log D =

∑
i log(di +1) is a lower bound on the seed length of any hitting

set generator against this class. Our construction is the first to achieve
asymptotically optimal seed length for every choice of the parameters di.
In fact, we present a nearly linear time construction with this asymptotic
guarantee. Furthermore, our results extend to classes of polynomials pa-
rameterized by upper bounds on the number of nonzero terms in each
variable. Underlying our constructions is a general and novel framework
that exploits the product structure common to the classes of polynomials
we consider. This framework allows us to obtain efficient and asymptot-
ically optimal hitting set generators from primitives that need not be
optimal or efficient by themselves.

As our main corollary, we obtain the first blackbox polynomial identity
tests with an asymptotically optimal randomness consumption.

1 Introduction

Consider a class of polynomials F in n variables over some field K. A hitting
set against F is a set of points H ⊆ Kn such that no polynomial in F vanishes
on all points in H . To give an example of a hitting set, consider the class F of
nonzero polynomials of degree at most di in the i-th variable. If we fix arbitrary
sets Si ⊆ K of size di + 1 assuming |K| > di, then the set H = S1 × · · · × Sn is
a hitting set against F of size D =

∏
i(di + 1) (see, for instance, [1]). It is easy

to argue that the size of this hitting set is optimal. But even for di = 1 the set
is so large that we would like to have an efficient implicit representation of it.
This would typically be a be a function called hitting set generator computable
by a small circuit on log |S| inputs that serve the purpose of a random seed. A
second observation is that there are polynomials in F vanishing on all except
a single point in H . Here, it would be more desirable if the non-roots of any
polynomial in F had high density in H . This requirement is met by the well-
known Schwartz-Zippel Lemma [2,3,4]: If we replace each Si by a set of 2ndi
points (rather than di+1 points), then any polynomial in F vanishes on at most
half of the points in H . However, the size of H increased to (2n)n ·

∏
di. Even

in terms of log |S| this increase in size is only of lower order for large enough

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 345–356, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

346 M. Bläser, M. Hardt, and D. Steurer

degree di. It is natural to ask whether this increase in size is inherent. It turns
out the answer is negative. In this paper, we present efficient constructions of
hitting sets for which the quantity log |S| is asymptotically optimal, but at the
same time our hitting sets will have high density in the above sense.

The main motivation for our work is the closely related problem of polyno-
mial identity testing. Here, we assume we are given access to a polynomial in
some implicit representation. The problem is to distinguish the case where the
given polynomial is identically zero from the case where the polynomial is a
member of some class F ⊆ K[x1, . . . , xn]. Provided with a hitting set generator
against F , this can be done by picking a random seed and testing if the given
polynomial is zero at the point produced by the generator. While the zero poly-
nomial will always be zero on this point, any polynomial in F will evaluate to a
nonzero value with high probability given that the hitting set has high density.
Notice, these steps only require blackbox access to the polynomial. That is, we
need not make any structural assumption about the input representation of the
polynomial.

The study of polynomial identity testing was initiated by the work of DeMillo,
Lipton, Schwartz and Zippel [2,3,4]. Many interesting problems have since turned
out to reduce to checking polynomial identities [5,6,7,8,9,10,11]. Similarly, several
results in complexity theory [12,13,14,15] involve hitting set generators against
polynomials as a subroutine. What remained wide open after this initial work is
the question how much randomness is required in testing polynomial identities.

There were two successful approaches: One is giving deterministic identity
tests for restricted classes of arithmetic circuits [16,17,18,19]. As it turned out,
testing general arithmetic circuits for identity in even subexponential determinis-
tic time is linked to circuit lower bounds [20,16]. The other approach has been to
minimize the seed length of hitting set generators against more general classes
of polynomials [21,22,23,24]. In this work we continue the study of the latter
problem. In this case, there is a natural lower bound on the number of random
bits required that we are trying to match:

Suppose a class of polynomials F ⊆ K[x1, . . . , xn] contains a linear space
W ⊆ F ∪ {0} of dimension at least d. Then, a dimension argument [22] shows
that any hitting set generator of density 1− ε against F requires seed length at
least r ≥ log(d/ε). Here, we appealed to the following definition.

Definition 1. A hitting set generator of density α > 0 against a class of poly-
nomials F is a function G : {0, 1}r → Kn such that for all f ∈ F we have
Pr[f(G(z)) = 0] ≥ α where the seed z ∈ {0, 1}r is drawn uniformly at random.

We are interested in uniform constructions of hitting set generators. That is, we
will consider classes of polynomials F (t) given by a parameter t and we want
to have a construction algorithm which on input of t and ε > 0 constructs a
circuit that computes a hitting set generator G of density 1 − ε against F (t).
The running time of this algorithm will be measured in terms of the description
length |t|; the runtime also serves as an upper bound on the size of the circuit.

Asymptotically Optimal Hitting Sets Against Polynomials 347

1.1 Our Result

We introduce a general framework for obtaining efficient and asymptotically op-
timal constructions from primitives that need not be optimal or even efficient
by themselves. Our framework requires the target class of polynomials to ex-
hibit a typical product structure that we formalize. We exploit this structure by
working with product operations on hitting set generators. Crucial primitives
in our framework are hitting set generators which besides their seed have an
additional source of randomness, called random advice. Random advice captures
excess in randomness that can be shared when computing the product of two
generators. Our constructions will generally be the product of several generators
each working on one subset of the variables. A simple approximation algorithm
determines a partition of the variables so as to minimize seed length, runtime or
the required field size of our construction.

We say a polynomial f has degree d = (d1, . . . , dn), if di is an upper bound
on the degree of the i-th variable in f . We let F (d) ⊆ K[x1, . . . , xn] denote the
class of nonzero degree-d polynomials in n variables. We use the abbreviation
D =

∏n
i=1(di + 1) throughout our work.

Theorem 1. Given a degree d, we can efficiently construct a hitting set gen-
erator G of density 1/2 against F (d) over any field of characteristic zero such
that the seed length of G is logD + O(

√
logD · log logD).

Since the quantity D is the dimension of the space F (d) ∪ {0}, the dimension
lower bound implies that the seed length is asymptotically optimal for the entire
family of parameters d1, . . . , dn where n, di ∈ IN. Our result also holds over large
enough finite fields. Here, the requirement on the size of the field is roughly the
same as in the Schwartz-Zippel Lemma. It is worth noting, over fields of char-
acteristic zero, our construction does not depend on the size of the coefficients
of the polynomials; the dependence on each degree di is only logarithmic.

We also show how to obtain a nearly linear time construction at the cost
of slightly more but still asymptotically optimal seed length. More generally
we have the trade-off between runtime O(log1+δ D) and seed length logD +
O(log1−δD · log logD) where δ ∈ (0, 1/2). A similar trade-off holds for the re-
quired size of finite fields.

Sparse Polynomials. We extend our work to classes of polynomials where we are
given an upper bound on the number of nonzero terms. Our notion of sparsity is
analogous to the previous notion of degree. We say a polynomial f has sparsity
m = (m1, . . . ,mn), if f has at most mi nonzero terms when written as a uni-
variate polynomial in the i-th variable. For a tuple m = (m1, . . . ,mn) and an
integer d ∈ IN, we define F (m, d) as the class of nonzero sparsity-m polynomials
of total degree at most d. Henceforth, let M =

∏n
i=1 mi.

Theorem 2. Given sparsity m and degree d ≤M , we can efficiently construct
a hitting set generator G of density 1/2 against F (m, d) over any large enough
finite field, say, |K| ≥ poly(Mnd), such that the seed length of G is logM +
O(
√

logM · log d · log logM).

348 M. Bläser, M. Hardt, and D. Steurer

The lower bound shows that any hitting set generator of positive density against
F (m, d) has seed length at least logM , provided that d is sufficiently large, i.e.,
d ≥

∑n
i=1 mi. Hence, the seed length of our generator is asymptotically optimal

whenever log d = o(logM/(log logM)c) for some absolute constant c.

Theorem 3. Given δ > 0, m, and d, we can construct in time polynomial in
n log d · log1/δM a hitting set generator G of density 1/2 against F (m, d) over
any field of characteristic zero such that the seed length of G is (1 + δ) logM +
O(log logM + log log d).

In the above theorem, for log log d = o(logM), the seed length can be made arbi-
trarily close in a multiplicative sense to the lower bound logM at the expense of
a higher running time. This trade-off is comparable to the time-approximation
trade-off in polynomial time approximation schemes (PTAS). The theorem is
weaker than our other results in that it gives only quasi-polynomial time con-
structions of generators with asymptotically optimal seed length. However, in
contrast to all previously known constructions against F (m, d), the dependence
of the seed length on the total degree is not logarithmic but doubly-logarithmic.
We obtain this exponential improvement by combining Descartes’ Rule of Signs
with an improved version of a reduction in [23].

1.2 Previous Work

The Schwartz-Zippel Lemma gives a generator against F (d) of seed length
logD + n logn which is asymptotically optimal for large degree, i.e., logD =
ω(n logn). Only recently, Bogdanov [24] obtained improvements in the case
where the total degree d of the polynomials is much smaller than the num-
ber of variables n, e.g., d = O(log n). Several results are concerned with the
case where logD is comparable to n. Chen and Kao [21] achieve the seed length∑n
i=1"log(di + 1)#. Their construction works only for polynomials with integer

coefficients and has some dependence on the size of those coefficients. Lewin and
Vadhan [22] generalize the techniques of Chen and Kao to fields of positive char-
acteristic. While these upper bounds are as good as logD for some configurations
of the parameters, they come arbitrarily close to logD+n in general. As we think
of logD = Θ(n), this is not asymptotically optimal. In fact, speaking in terms of
the size of hitting sets, this is a multiplicative excess of order 2n. Furthermore,
both constructions have a polynomial runtime dependence on each degree di. As
soon as a single degree di is superpolynomial in n, their algorithms are not effi-
cient. Notice, this range of di is natural even if logD = O(n). Small arithmetic
circuits can compute polynomials of very high degree in a single variable.

In the arithmetic circuit model, Agrawal and Biswas [10] give a polynomial
identity test that uses logD random bits. However, in this case we have no lower
bound. In particular, if P = coRP, then there is a deterministic polynomial time
arithmetic circuit identity test [4,25]. However, a particular tool introduced in
their work turns out to give us hitting set generators of the optimal seed length
logD over finite fields. This tool will be used and discussed later. We will see

Asymptotically Optimal Hitting Sets Against Polynomials 349

how to achieve asymptotically the same seed length over significantly smaller
finite fields (that is, |K| > Do(1) as opposed to |K| > D).

When it comes to sparse polynomials, Klivans and Spielman [23] construct a
hitting set generator of seed length O(log(mnd)) against the class of n-variate
polynomials of total degree d and at most m nonzero terms. This is better than
previous work when logm = o(n log d). Although we use techniques from this
work, our results are strictly speaking incomparable to those of Klivans and
Spielman, since we consider a different class of “sparse” polynomials. However,
we can think of the quantity M =

∏
mi as some approximation of the number

of nonzero terms m. Notice that always M ≥ m and in general M can be strictly
larger than m. The polynomial 1 + x1 · · ·xn has only two nonzero terms, but
mi = 2 for all i ∈ [n] and thus M = 2n. In general, we may assume M ≥ 2n,
since all variables with mi = 1 can be fixed to an arbitrary nonzero constant.

Below we compare our results to the previous work in terms of the normalized
size of the hitting set that we can efficiently represent and the time it takes to
compute the implicit representation itself (neglecting constants and polylogarith-
mic factors). The density is fixed to be a constant, say, 1/2. We put q = log |K|
when K is finite.

Size/D Runtime Source
char(K) = 0 char(K) > 0

nn log D log D Schwartz-Zippel [4,3,2]

2n poly(nd) poly(dq) Chen-Kao, Lewin-Vadhan [21,22]

1 2O(log D) poly(q log D)
for |K| ≥ D

Kronecker substitution [10]

D1/ log1/2 D poly(log D) — This work, Thm. 1

Do(1) log D
poly(q log D)

for |K| ≥ Do(1) This work, cf. Thm. 5

Size/M

d · Mc poly(log M · log d) poly(q log M) Klivans-Spielman [23]

log d · Mδ poly(log1/δ M · log d) — This work, Thm. 2

d · M
log1/2 d

log1/2 M — poly(q · log M) This work, Thm. 3

2 Direct Products, Shared Advice, and Balanced Factors

In this section we give the technical exposition of our framework. It consists of
three parts, product operations on hitting set generators and classes of polyno-
mials, the notion of random advice, and an algorithmic approach working with
these tools.

Definition 2 (Direct product). For two generators G1 : {0, 1}r1 → Kn1 and
G2 : {0, 1}r2 → Kn2 , we define the direct product G1 ⊗ G2 : {0, 1}r1+r2 →
Kn1+n2 to be the function defined by G1 ⊗G2 (z1z2) = (G1(z1), G2(z2)).

Clearly, if both G1 and G2 can be constructed efficiently, then so can the product
G1 ⊗G2.

350 M. Bläser, M. Hardt, and D. Steurer

Now, suppose we have two hitting set generators with high density against two
classes F1 and F2, respectively. We want to identify a large class of polynomials
F1F2 against which the direct product still has high density.

Definition 3 (Schwartz-Zippel product). Let F1 ⊆ K[x1] and F2 ⊆ K[x2]
be two classes of polynomials on disjoint sets of variables x1 and x2, respectively.
Let ni = |xi|. We define the Schwartz-Zippel product F1F2 to be the set of
polynomials f ∈ K[x1,x2] such that f as a polynomial in x2 has a coefficient
g ∈ K[x1] satisfying the following two properties: (1) g is a member of F1, and
(2) for every a1 ∈ Kn1 with g(a1) = 0 ∈ K, the polynomial f(a1,x2) ∈ K[x2]
is a member of F2.

Intuitively, this is the same product structure required in the well-known proof
of the Schwartz-Zippel Lemma. As desired, the next lemma is an immediate
consequence of the definition.

Lemma 1. Let G1 and G2 be two generators, and let F1 ⊆ K[x1] and F2 ⊆
K[x2] be two classes of polynomials. Suppose that G1 has density α1 against F1

and G2 has density α2 against F2. Then, the direct product G1⊗G2 has density
α1α2 against the Schwartz-Zippel product F1F2.

We introduce hitting set generators with an additional source of randomness,
called random advice.

Definition 4 (Advised generator). We call a function G : {0, 1}a×{0, 1}r →
Kn an advised generator with seed length r(G) := r and advice length a(G) :=
a. We say an advised generator G has quality 1 − ε against a class F of poly-
nomials, if the generator G(y, ·) has density 1 − ε/2 against F with probability
1− ε/2 for a randomly chosen string y ∈ {0, 1}a. Formally,

Pry∈{0,1}a

(
∀f ∈ F. Prz∈{0,1}r [f(G(y, z)) = 0] ≥ 1− ε

2

)
≥ 1− ε

2 .

We define the advice-less generator Ḡ : {0, 1}a+r → Kn corresponding to G to
be the function defined by Ḡ(yz) = G(y, z). Here yz denotes the string obtained
from y and z by concatenation.

Fact 4. If G has quality α against F , then Ḡ has density α against F .

Definition 5 (Shared advice product). For two advised generators
G1 : {0, 1}a1 × {0, 1}r1 → Kn1 and G2 : {0, 1}a2 × {0, 1}r2 → Kn2 with
a = max{a1, a2}, we define the shared-advice product G1 ⊗ G2 : {0, 1}a ×
{0, 1}r1+r2 → Kn1+n2 to be the function defined by G1 ⊗ G2 (y, z1z2) =
(G1(y, z1), G2(y, z2)). Here we assume that Gi ignores all but the first ai ad-
vice bits.

We can compute the shared-advice product at a moderate loss of quality.

Lemma 2. Let {Gi}i∈[k] be a set of advised generators, and let {Fi}i∈[k] be a
set of classes of polynomials. Suppose the generator Gi has quality 1− ε against
Fi. Then, the shared-advice product G =

⊗
iGi has quality 1 − kε against the

Schwartz-Zippel product
∏
i∈[k] Fi.

Asymptotically Optimal Hitting Sets Against Polynomials 351

Proof. With probability 1 − kε/2, each generator Gi(y, ·) has density 1 − ε/2
against Fi. Condition on this event. By Lemma 1, the direct product G(y, ·) =⊗
iGi(y, ·) has density (1− ε/2)k > 1− kε/2 against

∏
i Fi. ��

Balanced Factors. The previous discussion gives rise to the following construc-
tion approach. Recall, our goal is a hitting set generator against some class of
polynomials F ⊆ K[x1, . . . , xn]. In a first step we identify classes F1, . . . , Fk such
that F is contained in the Schwartz-Zippel product

∏
i∈[k] Fi. We think of these

classes Fi as factors of F . This step induces a partition of the variables into k
parts. We will design advised generators Gi against each Fi, each working on
one subset of the variables. Then we combine them into one generator G using
the shared advice product. Our final candidate is the seedless generator Ḡ.

A large number of factors k decreases the relative amount of advice. On the
other hand, the quality of G suffers as k grows. Varying over k gives rise to
interesting trade-offs. But once we fix k we want to determine a partition that
minimizes the seed length of our construction.

So, suppose we can associate a weight with each variable such that the total
weight of a set of variables corresponds to the length of advice needed by a
generator Gi operating on this set of variables. Since we can share advice, the
goal is to find a partition of the variables that distributes the weight equally
among all parts. For technical reasons, we can allow that parts containing only
a single variable have large weight.

Lemma 3. Given a positive integer k and a polynomial ring K[x] with non-
negative weights w : [n] → IR≥0 on the variables, we can efficiently compute a
partition (S1, . . . , Sk) of the set S = [n] of variables such that each part Si either
contains only a single variable or else the total weight of the variables in Si is
at most w(Si) ≤ 4w(S)/k.

Proof. There are at most �k/2� variables with w(i) > 2w(S)/k. Each of these
variables is put in a singleton set. The remaining variables are distributed among
the at least "k/2# remaining sets using a greedy algorithm that aims to minimize
the maximum weight of a set. ��

3 Polynomials of a Given Degree

We begin with the basic building blocks in our construction. For univariate
polynomials we will need a simple generator that picks a random field element
from a large enough range. We define the trivial generator with seed length r to
be the generator G : {0, 1}r → K that outputs a field element that corresponds
in fixed way to its seed. For example, if char(K) = 0 or char(K) ≥ 2r, G would
output the field element corresponding to the binary number encoded by its
seed, that is, G(z0 · · · zr−1) =

∑r−1
i=0 zi(1 + 1)i ∈ K.

Proposition 1. The trivial generator G with seed length log(d/ε) + O(1) has
density 1− ε against the class of univariate polynomials over a field K of degree
at most d, provided that K has size at least d/ε.

352 M. Bläser, M. Hardt, and D. Steurer

We also need the Kronecker substitution as introduced by [10] for our parame-
ters.

Lemma 4. Let d = (d1, . . . , dn) ∈ INn and define the Kronecker substitution as
kr(X) = (XD1 , . . . , XDn), where Di =

∏
j<i(dj +1). Then, for every f ∈ F (d),

we have that f ′ = f(kr(X)) ∈ K[X] is a univariate polynomial of degree at
most D− 1 such that any two distinct monomials w and w′ in f map to distinct
monomials in f ′. In particular, f ′ is not identically zero in K[X].

Remark 1. Over finite fields of cardinality at least D/ε, this lemma immediately
gives us a generator G of density 1 − ε and optimal seed length. We simply
combine the previous lemma with Proposition 1. More precisely, we generate
points of the form kr(s) where the element s is drawn uniformly at random
from a subset of the field of size D/ε.

Over fields of characteristic zero the bit size of kr(s) is at least D which is
exponential in the desired runtime of our algorithm. It turns out, we can reduce
the points of the hitting set modulo a (logD)-bit prime number. However, this
step seems to require at least logD additional random bits. Indeed, any method
of computing an N -bit prime number in time poly(N) that we are aware of
requires Ω(N) random bits. Computing an N -bit prime number efficiently with
o(N) random bits (or no random bits at all) is an intriguing open problem.
Cramer’s conjecture about prime gaps would imply such an algorithm. However,
even if we assume the Generalized Riemann Hypothesis, the gaps between N -bit
primes are only known to be bounded by 2N/2 · poly(N). And even if this were
a density result, it would only imply an algorithm using N/2 random bits.

Surprisingly, we can circumvent this problem by modeling the additional
O(logD) random bits as random advice. This way, we can exploit our frame-
work in order to reduce the random advice to o(logD) bits and thus achieve an
asymptotically optimal result.

Proposition 2. Let K be of characteristic zero. For any degree d and any ε > 0
we can construct a hitting set generator G of quality 1− ε against F (d) in time
polynomial in log(D/ε). Furthermore, r(G) = log(D/ε) + O(1) and a(G) =
O(log(D/ε)).

Proof (Sketch). First, the generator G uses its advice string y in order to ob-
tain a number p = p(y) > 2D/ε such that Pry[p(y) is prime] > 1 − ε/2. This
can be done efficiently with an advice string of length O(log(D/ε)). An efficient
algorithm for generating an N -bit prime number with high probability does not
need more than O(N +log(1/ε)) random bits Second, G uses its seed to choose a
random field element s from the range R = {1, . . . , "2D/ε#}. Finally, G outputs
the point b which is obtained by reducing kr(s) component-wise modulo p. We
claim whenever p(y) is a prime number, then G(y, ·) has density 1 − ε against
F (d). This can be shown by arguing since f is nonzero, we have that f(kr(X))
vanishes on at most D − 1 in R points modulo p. The contrapositive of this

Asymptotically Optimal Hitting Sets Against Polynomials 353

argument follows from a standard argument involving a Vandermonde matrix
modulo p in which we observe that f(kr(s)) = f(b) mod p. ��

We proceed to prove a more general version of Theorem 1.

Theorem 5. Let d = (d1, . . . , dn) and ε > 0. Then, for any k ∈ {1, . . . , n}, we
can efficiently construct a hitting set generator of density 1− ε against F (d) and
seed length log(D/ε) + O(k log(k/ε)) + O(log(D/ε)/k). The construction works
for any field of characteristic zero and any finite field of size at least 2

ε ·k ·D4/k.

Proof. Define the weight of the variable xi as w(i) = log(di + 1). Apply Bal-
anced Factors (Lemma 3) with the given choice of k so as to obtain a partition
of the coordinates [n] into sets S1, . . . , Sk. Let di denote the restriction of d
to the coordinates in Si. For each i ∈ [k] we will construct an advised genera-
tor Gi against F (di) of quality 1 − ε/2k. If |Si| = 1, then we obtain Gi from
Proposition 1. In this case a(Gi) = 0. Whenever |Si| > 1, we obtain Gi from
Proposition 2 in case K is of characteristic zero. Consider the advised gener-
ator G =

⊗
i∈[k]Gi. This is a generator against the Schwartz-Zippel product

∏
i∈[k] F (di) which is a superset of F (d). Its quality follows from Lemma 2. No-

tice, r(G) =
∑k
i=1 r(Gi) =

∑k
i=1 log(Di)+O(k log(k/ε)) where Di =

∏
j∈Si

(dj+
1). But,

∑
i log(Di) = logD. Hence, r(G) = logD+O(k log(k/ε)). On the other

hand, a(G) = maxiO(log(Di) + log(1/ε)). But the Balanced Factors Lemma
guarantees log(Di) = w(Si) ≤ 4w(S)/k = 4 logD/k. Therefore, we obtain the
desired generator by combining seed and advice of G (see Fact 4). If K is a
finite field, we obtain the above Gi directly via 1. The required field size is
maxi 2kDi/ε ≤ 2kD4/k/ε. ��

For k = "
√

logD/ log(1/ε)# we obtain Theorem 1.

Nearly Linear Time. The larger we choose k the more efficient is our construc-
tion. Notice the trivial generators from Proposition 1 can be constructed in time
linear in their seed length. But to construct a generator from Proposition 2 we
need more time. Let us say time N̄ c for some constant c > 1 where N̄ is the length
of the input parameters. In the context of the above theorem, let N = logD.
For simplicity fix the density to be some constant. The Balanced Factors Lemma
guarantees that the seed and advice length of any advised generator used in our
construction is bounded by O(N/k). Hence, the time it takes to construct all
advice generators will be no more than O(k · (N/k)c) = O(N c/kc−1). As we
set k = N/(logN)c+1, the over all construction time becomes Õ(N). The seed
length remains within (1 + o(1))OPT. More generally, setting k = N1−δ for
any δ ∈ (0, 1/2) gives us the trade-off between time N1+(c−1)δ and seed length
N + Õ(N1−δ). It is easy to see that the exponent c need not be larger than
2. The prime number required in the proof of Lemma 4 can be computed once
in cubic time (e.g., using the Rabin-Miller primality test) and passed on to all
generators. Provided with this prime number, each generator can be constructed
in quadratic time.

354 M. Bläser, M. Hardt, and D. Steurer

4 Polynomials with a Given Number of Nonzero Terms

Let K be a sufficiently large finite field. In this section, we give an efficient con-
struction of hitting set generators against F (m, d) with asymptotically optimal
seed length, provided log d is sufficiently smaller than logM . In the previous
section, our basic building blocks were generators against the target class F (d)
that have optimal seed length, but require some amount of advice. For the tar-
get class F (m, d), however, we do not have advised generators with optimal seed
length, even if we allow an arbitrary amount of advice. Instead we will start from
generators that have a close to optimal seed length against certain subclasses
F (w,W) ⊆ F (m, d). Specifically, for a set of monomials W and a monomial
w ∈ W , we let F (w,W) be the set of polynomials over K that are in the linear
span of W but not in the span of W \ {w}. In other words, F (w,W) consists of
all polynomials f ∈ K[x] such that w has a nonzero coefficient in f and all other
monomials of f are in W . Note that all polynomials in F (w,W) are nonzero.

Proposition 3. Given m, d, and ε > 0, we can efficiently construct an advised
generator G with r(G) = logM + O(log nd/ε) and a(G) = O(log(dM/ε)) such
that G has quality 1− ε against every class F (w,W) ⊆ F (m, d).

The proposition crucially relies on a multivariate to univariate reduction intro-
duced by Klivans and Spielman [23]. This reduction maps a point b ∈ K to
the tuple (b�k

i−1�p)i∈[n] where p is prime, k is a random number and �ki−1�p
denotes the remainder of ki−1 modulo p. In our case, p and k will be generated
independently using the advice string (so that the substitution depends on the
advice). The point b is simply drawn from a large enough range using the seed.
Intuitively, the proposition then asserts that for every choice of w and W , most
of the advice strings y give a generator G(y, ·) that is dense against F (w,W).
Precisely, this will happen if the reduction induced by the advice string is “isolat-
ing” with respect to w and W . That is, no distinct monomial w′ collides with w
under the given reduction. But Klivans and Spielman showed that this isolation
behavior occurs with high probability.

We remark that that possibly no single advice string above yields a generator
that is dense against F (m, d).

Using Proposition 3 as our basic building block, our construction against
F (m, d) essentially works as follows. First, we compute a balanced partition
(S1, . . . , Sk) of the coordinates [n] (Lemma 3). Here we use w(j) = logmj as
the weight function. Then, from the above proposition, we obtain generators
Gi that have high quality against any class F (wi,Wi) contained in F (mi, d),
where mi is the restriction of m to the coordinates in Si. Since the partition
(Si)i∈[k] was balanced, the shared-advice product G =

⊗
iGi has only advice

length about 1
k logM . On the other hand, the seed length of G is close to the

lower bound logM . We claim that the advice-less generator Ḡ corresponding to
G has high density against F (m, d). By Lemma 2, G has high quality against
any product

∏
i F (wi,Wi) with F (wi,Wi) ⊆ F (mi, d). This implies that Ḡ has

high density against the union of all such products. Finally, Ḡ has high density

Asymptotically Optimal Hitting Sets Against Polynomials 355

against F (m, d), because every polynomial in F (m, d) is contained in one of the
products

∏
i F (wi,Wi).

The details of the proof of Proposition 3 and Theorem 3 follow along the lines
of our discussion and are omitted from this extended abstract. They will appear
in the full version of the paper.

Over Fields of Characteristic Zero. Let K be a field of characteristic zero. Lipton
and Vishnoi [26] point out the fact that a univariate polynomial with at most
m nonzero terms has at most m positive rational roots over K (a consequence
of Descartes’ Rule of Signs).

Proposition 4. For every ε > 0, the trivial generator with seed length
log(m/ε) + O(1) has density 1 − ε against the class of univariate polynomials
with at most m nonzero terms.

Let F (W) denote the set of nonzero polynomials in the linear span of W .

Proposition 5. Given ε > 0, m, and d, we can construct an advised generator
G with r(G) = logM/ε+O(1) and a(G) = O(log(Mn/ε · log d)) in time 2a(G) =
poly(Mn/ε · log d) such that G has quality 1 − ε against every class F (W) ⊆
F (m, d).

As in Proposition 3, the above generator first reduces the multivariate polyno-
mial to a univariate one using the same substitution. Then it applies the genera-
tor from Proposition 4 against the resulting univariate polynomial. In contrast to
the trivial generator, which was used in Proposition 3, this generator has no de-
pendence on the degree of the polynomial. Another difference to Proposition 3 is
that the construction time depends polynomially on the magnitude of the prime
p number which is used to reduce the degrees in the substitution (b�k

i−1�p)i∈[n].
This is because over characteristic zero, the magnitude of the points blows up
exponentially. In the case of sparse polynomials we do not know how to reduce
the bit size of the points as we did in Proposition 2.

The doubly logarithmic dependence on d in the advice length is achieved by
analyzing the effect of using a uniformly random prime in the substitution. This
analysis improves the one given in [23] exponentially with respect to d. It is the
main technical ingredient for the proof of Proposition 5. The proof of Theorem 3
follows our general framework and uses the previous two propositions as building
blocks. Both proofs are omitted from this extended abstract.

References

1. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8(1-2), 7–29
(1999)

2. De Millo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing.
IPL 7 (1978)

3. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proc. ISSAC, pp.
216–226. Springer, Berlin (1979)

356 M. Bläser, M. Hardt, and D. Steurer

4. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM 27, 701–717 (1980)

5. Chari, S., Rohatgi, P., Srinivasan, A.: Randomness-optimal unique element isola-
tion with applications to perfect matching and related problems. SIAM J. Com-
put. 24(5), 1036–1050 (1995)

6. Lovász, L.: On determinants, matchings, and random algorithms. In: FCT, pp.
565–574 (1979)

7. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987)

8. Blum, M., Chandra, A.K., Wegman, M.N.: Equivalence of free boolean graphs can
be decided probabilistically in polynomial time. IPL 10, 80–82 (1980)

9. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM 42(1),
269–291 (1995)

10. Agrawal, M., Biswas, S.: Primality and identity testing via chinese remaindering.
J. ACM 50(4), 429–443 (2003)

11. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math (2) 160(2),
781–793 (2004)

12. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)
13. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive

proof systems. J. ACM 39(4), 859–868 (1992)
14. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.

J. ACM 45(1), 70–122 (1998)
15. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and

the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)
16. Agrawal, M.: Proving lower bounds via pseudo-random generators. In: Ramanujam,

R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 92–105. Springer, Heidelberg
(2005)

17. Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007)

18. Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. In: Proc.
21st CCC, pp. 9–17. IEEE, Los Alamitos (2006)

19. Shpilka, A.: Interpolation of depth-3 arithmetic circuits with two multiplication
gates. In: Proc. 39th STOC, pp. 284–293. ACM, New York (2007)

20. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. Comput. Complex. 13(1/2), 1–46 (2004)

21. Chen, Z.Z., Kao, M.Y.: Reducing randomness via irrational numbers. SIAM J.
Comput. 29(4), 1247–1256 (2000)

22. Lewin, D., Vadhan, S.: Checking polynomial identities over any field: Towards a
derandomization? In: Proc. 30th STOC, pp. 437–438. ACM, New York (1998)

23. Klivans, A., Spielman, D.A.: Randomness efficient identity testing of multivariate
polynomials. In: Proc. 33th STOC, pp. 216–223. ACM, New York (2001)

24. Bogdanov, A.: Pseudorandom generators for low degree polynomials. In: Proc. 37th
STOC, pp. 21–30. ACM, New York (2005)

25. Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of
straight-line programs. J. ACM 30(1), 217–228 (1983)

26. Lipton, R., Vishnoi, N.: Deterministic identity testing for multivariate polynomials.
In: Proc. SODA, pp. 756–760. ACM, New York (2003)

The Smoothed Complexity of Edit Distance

Alexandr Andoni1,� and Robert Krauthgamer2,��

1 MIT
andoni@mit.edu

2 Weizmann Institute and IBM Almaden
robert.krauthgamer@weizmann.ac.il

Abstract. We initiate the study of the smoothed complexity of sequence
alignment, by proposing a semi-random model of edit distance between
two input strings, generated as follows. First, an adversary chooses two
binary strings of length d and a longest common subsequence A of them.
Then, every character is perturbed independently with probability p,
except that A is perturbed in exactly the same way inside the two strings.

We design two efficient algorithms that compute the edit distance
on smoothed instances up to a constant factor approximation. The first
algorithm runs in near-linear time, namely d1+ε for any fixed ε > 0. The
second one runs in time sublinear in d, assuming the edit distance is not
too small. These approximation and runtime guarantees are significantly
better then the bounds known for worst-case inputs, e.g. near-linear time
algorithm achieving approximation roughly d1/3, due to Batu, Ergün,
and Sahinalp [SODA 2006].

Our technical contribution is twofold. First, we rely on finding matches
between substrings in the two strings, where two substrings are consid-
ered a match if their edit distance is relatively small, a prevailing tech-
nique in commonly used heuristics, such as PatternHunter of Ma, Tromp
and Li [Bioinformatics, 2002]. Second, we effectively reduce the smoothed
edit distance to a simpler variant of (worst-case) edit distance, namely,
edit distance on permutations (a.k.a. Ulam’s metric). We are thus able to
build on algorithms developed for the Ulam metric, whose much better
algorithmic guarantees usually do not carry over to general edit distance.

1 Introduction

The edit distance (aka Levenshtein distance) between two strings is the number
of insertions, deletions, and substitutions needed to transform one string into
the other. This distance is of key importance in several fields, such as compu-
tational biology and text processing, and consequently computational problems
involving the edit distance were studied extensively, both theoretically and ex-
perimentally, see e.g. the detailed survey on edit distance by Navarro [Nav01].
Despite extensive research, the worst-case guarantees currently known for algo-
rithms dealing with edit distance are quite poor, especially in comparison to the
� Work done in part while visiting IBM Almaden Research Center.

�� Work supported in part by a grant from the Fusfeld Research Fund.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 357–369, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

358 A. Andoni and R. Krauthgamer

Hamming distance (which is just the number of substitutions to transform one
string into the other).

The most basic problem is to compute the edit distance between two strings
of length d over alphabet Σ. The worst-case running time known for this prob-
lem has not improved in three decades — the problem can be solved using
dynamic programming in time O(d2) [WF74], and in time O(d2/ log2 d) when
the alphabet has constant size [MP80]. Unfortunately, such near-quadratic time
is prohibitive when working on large datasets, which is common in areas such
as computational biology. The gold standard is to achieve a linear-time algo-
rithm, or even sublinear in several cases, which has triggered the study of very
efficient distance estimation algorithms – algorithms that compute an approxi-
mation to the edit distance. In particular, the best quasi-linear time algorithm,
due to Batu, Ergün, and Sahinalp [BES06], achieves d1/3+o(1) approximation
(improving over [BJKK04]), and the only known sublinear time algorithm, due
to Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld and Sami [BEK+03],
decides whether the edit distance is O(dα) or Ω(d) in time O(dmax{α/2,1−2α}).
In fact, distance estimation with sublogarithmic approximation factor was re-
cently proved impossible in a certain model of low communication complexity
[AK07]. In practice, this situation is mitigated by heuristic algorithms. In com-
putational biology settings for instance, tools such as BLAST [AGM+90] are
commonly used to solve the problem quickly, essentially by relying on heuristic
considerations that sacrifice some sensitivity.

We initiate the study of the smoothed complexity of sequence alignment,
by proposing a semi-random model of edit distance (the input is a worst-case
instance modified by a random perturbation), and design for it very efficient
approximation algorithms. Specifically, an adversary chooses two strings and a
longest common subsequence of them, and every character is perturbed indepen-
dently with probability 0 ≤ p ≤ 1, except that every character in the common
subsequence is perturbed in the same way in the two strings. Semi-random mod-
els appeared in the literature in other contexts, but to the best of our knowledge,
not for sequence alignment problems; see Sect. 1.2 for more details. Our algo-
rithms for the smoothed model approximate the edit distance within a constant
factor in linear, and even sublinear time.

Why study semi-random models of sequence alignment? First, they elude
the extreme difficulty posed by worst-case inputs, while avoiding the naivete of
average-case (random) inputs. Using these models as a theoretical testbed for
practical algorithms may lead to designing new algorithmic techniques, and/or to
providing rigorous explanation for the empirical success of well-known heuristics.
Second, studying algorithms for semi-random models may be viewed as an attack
on the worst-case complexity. It is difficult to quantify the progress we manage
to make in this direction, but we certainly achieve much better performance
guarantees on a very large collection of inputs (including random inputs as an
extreme case), by delineating rather general assumptions on the input, under
which we have efficient algorithms.

The Smoothed Complexity of Edit Distance 359

1.1 Our Contribution

A smoothed model. Let 0 < p ≤ 1 be a perturbation probability. In our smoothed
model for edit distance, an input consisting of two strings, x and y, is generated
as follows. (A more formal description is given in Sect. 1.3.)

1. An adversary chooses two strings x∗, y∗ ∈ {0, 1}d, and a longest common
subsequence A of x∗, y∗.

2. Every character in x∗ and y∗ is replaced independently with probability p
by a random bit, except that the perturbation of A inside x and that of A
inside y are identical.

Results. We start by investigating the typical properties of a smoothed instance
(x, y), including proving that the expected edit distance ed(x, y) is comparable
to that of the generating strings, ed(x∗, y∗).

Our first result is a deterministic algorithm that approximates the edit dis-
tance within a constant factor, and its smoothed runtime complexity is near-
linear. Specifically, for any desired 0 < ε < 1, the algorithm always obtains
O(1

εp log 1
εp) approximation, and with high probability over the randomness in

the smoothing, runs in time O(d1+ε). For comparison, the algorithm of Batu,
Ergün, and Sahinalp [BES06] for worst-case inputs requires a similar running
time of O(d1+ε) and achieves approximation d(1−ε)/3+o(1).

Our second result is a sublinear time algorithm for smoothed instances. Specif-
ically, for every desired 0 < ε < 1, the algorithm computes a O(1

εp log 1
εp) ap-

proximation to ed(x, y) in time O(d1+ε/
√

ed(x, y)). For comparison, recall that
the algorithm of Batu et al. [BEK+03] for worst-case inputs can only distinguish
a polynomially large gap in the edit distance, and only at the highest regime
Ω(d).

Techniques. Our algorithms are based on two new technical ideas. The first one
is to find matches of blocks (substrings) of length L = O(1

p log d) between the
two strings, where two blocks are considered a match if they are at a small
edit distance (say εL). This same idea, but in a more heuristic form, is used
by practical tools. In particular, PatternHunter [MTL02] uses such a notion of
matches (to identify “seeds”), significantly improving over BLAST [AGM+90],
which considers only identical blocks to be a match. Thus, our smoothed analysis
may be viewed as giving some rigorous explanation for the empirical success of
such techniques.

The second idea is to reduce the problem to edit distance on permutations (in
worst-case), called in the literature Ulam’s distance, or the Ulam metric. Here
and throughout, a permutation is a string in which every symbol appears at
most once.1 The Ulam metric is a submetric of edit distance, but the algorith-
mic bounds known for it are significantly better than those for the general edit
distance. In particular, Ulam’s distance between permutations of length d can be

1 It is sometimes convenient, though not crucial, to use an alphabet Σ with size larger
than d. We then define a permutation as a string whose characters are all distinct.

360 A. Andoni and R. Krauthgamer

computed in linear time O(d log d), e.g. using Patience Sorting. The main chal-
lenge we overcome is to design a reduction that distorts distances by at most a
constant factor. Indeed, there is an easy reduction with distortion L = O(1

p log d),
that follows simply because with high probability, in each string, the blocks of
length L are all distinct, see [CK06, Section 3.1].

1.2 Related Work

Average-case analysis of edit distance. Random models for edit distance were
studied in two contexts, for pattern matching and for nearest neighbor searching.
In the former, the text is typically assumed to be random, i.e., each character
is chosen uniformly and independently from the alphabet, and the pattern is
usually not assumed to be random. We refer the reader to the survey [Nav01,
Section 5.3] for details and references. For nearest neighbor search, the average-
case model is quite similar, see [NBYST01, GP06].

Our model is considerably more general than the random strings model. In
particular, the average-case analysis often relies on the fact that no short sub-
string of the text is identical to any substring of the pattern, to quickly “reject”
most candidate matches. In fact, for distance estimation, it is easy to distinguish
the case of two random strings from the case of two (worst-case) strings at a
smaller edit distance — just choose one random block of logarithmic length in
the first string and check whether it is close in edit distance to at least one
block in the second string. We achieve a near-linear time algorithm for a more
adversarial model, albeit by allowing constant factor approximation.

Smoothed complexity and semi-random models. Smoothed analysis was pio-
neered by Spielman and Teng [ST04] as a framework aimed to explain the
practical success of heuristics that do not admit traditional worst-case anal-
ysis. They analyzed the simplex algorithm for linear programming, and since
then researchers investigated the smoothed complexity of several other problems,
mostly numerical ones, but also some discrete problems. An emerging principle
in smoothed analysis is to perform property-preserving perturbation [ST03], ex-
ample of which is our model. Specifically, our model may be seen as performing
a perturbation of x∗ and y∗ that preserves the common subsequence A.

In combinatorial optimization problems, smoothed analysis is closely related
to an earlier notion of semi-random models, which were initiated by Blum and
Spencer [BS95]. This research program encompasses several interesting ques-
tions, such as what algorithmic techniques are most effective (spectral methods?),
and when is the optimum solution likely to be unique, hard to find, or easy to
certify, see e.g. [FM97, FK01] and the references therein.

To the best of our knowledge, smoothed analysis and/or semi-random models
were not studied before for sequence alignment problems.

Distance estimation. Algorithms for distance estimation are studied also in other
scenarios, using different notions of efficiency. One such model is the communica-
tion complexity model, where two parties are each given a string, and they wish
to estimate the distance between their strings using low communication. The

The Smoothed Complexity of Edit Distance 361

sketching model falls into this category, with further restriction to simultaneous
communication protocols. A communication lower bound was recently proved
in [AK07] for the edit distance metric, even on permutations, and it holds for
approximations as large as Ω(log d/ log log d).

1.3 Preliminaries

Strings. Let x be a string of length d over alphabet Σ. A position in the string is
an index i ∈ [d]. We write x[i] or xi to denote the symbol appearing in position i
in x. Let [i : j] denote the sequence of positions (i, i+ 1, . . . , j). We write x[i : j]
or x[i:j] for the corresponding substring of x. A block is a substring, often of a
predetermined length.

A variant of edit distance. Let x, y be two strings. Define ed(x, y) to be the
minimum number of character insertions and deletions needed to transform x
into y. Character substitution are not allowed, in contrast to ed(x, y), but a
substitution can be simulated by a deletion followed by an insertion, and thus
ed(x, y) ≤ ed(x, y) ≤ 2 ed(x, y). Observe that

ed(x, y) = |x|+ |y| − 2 LCS(x, y),

where LCS(x, y) is the length of the longest common subsequence of x and y.

Alignments. For two strings x, y of length d, an alignment is a function A : [d] →
[d]∪{⊥} that is monotonically increasing on A−1([d]) and satisfies x[i] = y[A(i)]
for all i ∈ A−1([d]). Define the length (or size) of the alignment as len(A) =
|A−1([d])|, i.e., the number of positions in x that are matched by A. Let the cost
of A be cost(A) = 2(d − len(A)) = 2|A−1(⊥)|, i.e. the number of positions in x
and in y that are not matched by A. Observe that an alignment between x and
y corresponds exactly to a common subsequence to x and y. Thus, if A is an
alignment between x and y, then

cost(A) = 2(d− len(A)) ≥ 2d− 2 LCS(x, y) = ed(x, y),

with equality if and only if A is an alignment of maximum length.

Block matches. Consider two strings x, y and a block length L ∈ [d]. For blocks
x[i:i+L−1] and y[j:j+L−1] of length L, we let edA(x[i:i+L−1], y[j:j+L−1]) be the
number of positions k ∈ [i : i + L − 1] such that A(k) ∈ [j : j + L − 1]. We let
match(x[i:i+L−1]) denote the block y[j:j+L−1], where j ∈ [d − L + 1] minimizes
ed(x[i:i+L−1], y[j:j+L−1]), breaking ties arbitrarily. For an alignment A between x
and y, let matchA(i, L) be the block y[j:j+L−1], where j ∈ [d−L + 1] minimizes
edA(x[i:i+L−1], y[j:j+L−1]). Slightly abusing notation, we sometimes let match
and matchA represent the corresponding position j (instead of the substring
y[j:j+L−1]), but the distinction will be clear from the context.

Smoothed model. Let 0 ≤ p ≤ 1, let x∗, y∗ ∈ {0, 1}d be two strings, and fix
a maximum-length alignment A∗ between x∗ and y∗. Let x, y ∈ {0, 1}d be the
strings obtained from x∗, y∗ respectively, by replacing, independently with prob-
ability p, each character with a random one, except that the positions aligned by

362 A. Andoni and R. Krauthgamer

A∗ are kept correlated. Formally, let πx ∈ {0, 1}d be a string where each πx[j] is
drawn independently to be 1 with probability p/2 and 0 otherwise, and let πy be
defined similarly (and independently), except for position j ∈ A∗([d]), for which
we set πy [j] = πx[(A∗)−1(j)]. Now let x[i] = x∗[i] + πx[i] and y[i] = y∗[i] + πy[i],
where addition is done modulo 2. We call the pair (x, y) a smoothed instance of
edit distance, and denote its distribution by SMOOTHp(x∗, y∗, A∗).

2 Typical Properties of Smoothed Instances

We first show that the edit distance of a smoothed instance is likely to be similar
to that of the strings used to generate it. We then turn our attention to the dis-
tance between different substrings of the smoothed strings x and y. Specifically,
we show that blocks of length L = O(p−1 log d) are likely to be far from each
other in terms of edit distance, with the few obvious exceptions of overlapping
blocks and blocks that are aligned via the original alignment A∗.

Besides the inherent interest, these bounds are useful in the smoothed analysis
of our algorithms carried out in subsequent sections.

2.1 Edit Distance of a Smoothed Instance

Theorem 1. Let A∗ be an optimal alignment between x∗, y∗ ∈ {0, 1}d, and fix
0 < p ≤ 1. Then a smoothed instance (x, y) ∈ SMOOTHp(x∗, y∗, A∗) satisfies

Pr
(x,y)

[
Ω(p

log(1/p)) ed(x∗, y∗) ≤ ed(x, y) ≤ ed(x∗, y∗)
]
≥ 1− 2−Ω(p) ed(x∗,y∗).

Proof. Observe that ed(x, y) ≤ ed(x∗, y∗) always holds (i.e. with probability 1).
We proceed to show that with high probability, ed(x, y) ≥ Ω(p

log(1/p))·ed(x∗, y∗),
which by Sect. 1.3 would complete the proof. We let U denote the unaligned
positions in x under A∗, i.e. U = (A∗)−1(⊥) and |U | = 1

2 ed(x∗, y∗).
Consider a potential alignment A between x and y, i.e. a map A : [d] -→ [d] ∪

{⊥} that is monotonically increasing on A−1([d]), and suppose that cost(A) =
2|A−1(⊥)| is at most α · ed(x∗, y∗) for a small 0 < α ≤ 1/4 to be chosen later.
For A to be an actual alignment, we must additionally have that x[i] = y[A(i)]
for every position i /∈ A−1(⊥), and in particular for every position i ∈ U \
A−1(⊥). The number of such positions is at least |U |−|A−1(⊥)| ≥ 1

2 ed(x∗, y∗)−
1
2α ed(x∗, y∗) ≥ 1

4 ed(x∗, y∗). For each of them, x∗[i] is perturbed independently
of y∗[A(i)], and thus x[i] = y[A(i)] occurs with probability at least p/2. These
events might not be mutually independent due to correlations via A∗, but it
is easy to see that for at least half of such i, the probability is at least p/2
even when conditioned on earlier events (namely, x[i] is independent of x[i′] and
y[A(i′)] for all i′ < i). Thus, the probability that A is an actual alignment is at
most

Pr
[
x[i] = y[A(i)] for all i ∈ U \A−1(⊥)

]
≤

(
1− p

2

)ed(x∗,y∗)/8

≤ e−p·ed(x∗,y∗)/16.

The Smoothed Complexity of Edit Distance 363

We will apply a union bound on all potential alignments, and thus it suffices
to have an upper bound on the number of different values taken by A|U , the
restriction of A to the positions in U . We note that A|U is determined by the
number of insertions and deletions occurring between every two successive posi-
tions in U (including the insertions and deletions before the first position in U
and after the last position in U). Thus we can count the number of A|U as:

#{A|U} ≤
(|U | + 1

2α ed(x∗, y∗)
1
2α ed(x∗, y∗)

)3

≤
(

e(1+α)
α

)1.5α ed(x∗,y∗)

≤ (1
α2)1.5α ed(x∗,y∗).

Choosing α = cp
log(1/p) for a sufficiently small constant c > 0, we get by a union

bound Pr
[
ed(x, y) ≤ α ed(x∗, y∗)

]
≤ e[3α ln(1/α)−p/16]·ed(x∗,y∗) ≤e−(p/32) ed(x∗,y∗).

�

2.2 Edit Distance between Different Blocks

Our next lemma concerns typical distances between two blocks from x and y.
The main technical difficulty in this lemma, beyond technique used to prove
Theorem 1, is that here we consider blocks whose perturbations are correlated,
e.g. overlapping blocks in the same string, thus impeding direct concentration
bounds. The proof of this lemma is deferred to the full version of the article.

Lemma 1. Let A∗ be an optimal alignment between x∗, y∗ ∈ {0, 1}d and fix 0 <
p ≤ 1. Let L ≥ C

p log d for a sufficiently large constant C > 0, and let ca, cb, cc >

0 be sufficiently small constants. Then with probability at least 1 − d−Ω(C), a
smoothed instance (x, y) ∈ SMOOTHp(x∗, y∗, A∗) satisfies the following for all
i, j ∈ [d]:

(a). ed(x[i:i+L−1], x[j:j+L−1]) ≥ ca · min{pL, |j − i|}, and similarly in y.
(b). If edA∗(x∗

[i:i+L−1], y
∗
[j:j+L−1]) ≥ L/4, then ed(x[i:i+L−1], y[j:j+L−1]) ≥ cb·pL.

(c). Let k∗ = matchA∗(i, L), then
ed(x[i:i+L−1], y[j:j+L−1]) ≥ min {cc · pL, cc · |j − k∗|

− edA∗ (x∗
[i:i+L−1], y

∗
[k∗:k∗+L−1])

}
.

Furthermore, if |j − k∗| ≥ L, then ed(x[i:i+L−1], y[j:j+L−1]) ≥ cc · pL.

3 Near-Linear Time Distance Estimation

Our first algorithm is guaranteed to give a correct answer for any input strings,
but has an improved runtime for smoothed inputs, coming from a distribution
SMOOTHp(x∗, y∗, A∗).

Theorem 2. For every ε > 0 and p > 0 there is a deterministic algorithm that,
given as input two strings x, y ∈ {0, 1}d, approximates ed(x, y) within factor
O(1

εp log 1
εp), and on a p-smoothed instance, with high probability its running

time is O(d1+ε).

364 A. Andoni and R. Krauthgamer

We will need three lemmas, the first two of which do not deal directly with
smoothed instances and may be useful in other scenarios as well.

Lemma 2. Consider a bipartite graph G = ([d], [d], E), and call two edges
(i, j) ∈ E and (k, l) ∈ E intersecting if (i − k)(j − l) ≤ 0. Then a maximum-
cardinality subset of non-intersecting edges can be found in time O(d+ |E| log d)
by reducing the problem to Patience Sorting.

Proof (sketch). Construct a string z of length |E| as follows. Start with an
empty string. For each node i = 1, . . . , d, append to the end of z the list of
symbols (j1,−i), . . . , (jk,−i) where j1 > j2 > . . . > jk are the neighbors of i,
i.e. {j1, . . . jk} = {j | (i, j) ∈ E}. Then the longest increasing subsequence of
z (when the order on (j,−i) is lexicographic) gives a maximum-size subset of
non-intersecting edges. We can find it using Patience Sorting. ��

Lemma 3. Fix an optimal alignment A between two strings x, y ∈ {0, 1}d. Let
L ∈ [d] divide d. Partition x into successive blocks of length L, denoted (Xi)

d/L
i=1 ,

and let Yi = matchA(Xi). Then
∑d/L
i=1 edA(Xi, Yi) ≤ 2 ed(x, y). Hence, for every

ε > 0, the number of indices i ∈ [d/L] such that ed(Xi, Yi) > εL is at most
4
εL · ed(x, y).

Proof (sketch). For i ∈ [d/L], let MINi and MAXi, respectively, be the posi-
tions of the first and last aligned symbol in Xi, i.e., MINi = min{j ∈ [iL−i+1 :
iL] | A(j) ∈ [d]} and similarly for MAXi. Let uxi be the number of unaligned
positions in Xi = x[iL−L+1:iL], i.e. uxi = |{j ∈ [iL − L + 1 : iL] | A(j) = ⊥}|.
Also, let uyi be the number of unaligned position in y[A(MINi) : A(MAXi)].

If A(MAXi) − A(MINi) < L, then edA(Xi, Yi) = uxi . If A(MAXi) −
A(MINi) ≥ L, then edA(Xi, Yi) ≤ uxi + uyi . Observing that each of

∑
i u
x
i

and
∑
i u
y
i is bounded by ed(x, y) proves the first part. The second part follows

immediately because for such blocks edA(Xi, Yi) ≥ 1
2 ed(Xi, Yi) > 1

2εL. ��

Lemma 4. Let C > 1 and 0 < c′ < 1 be sufficiently large and sufficiently
small constants, respectively, and let L = C

p log d. Let A∗ be a maximum-length
alignment between x∗, y∗ ∈ {0, 1}d. Then for every i ∈ [d] there is j∗i ∈ [d] such
that, for (x, y) ∈ SMOOTHp(x∗, y∗, A∗), with probability at least 1− d−2, for all
j with |j − j∗i | > L we have ed(x[i:i+L−1], y[j:j+L−1]) > c′pL.

Proof. Take j∗i = matchA∗(x∗[i:i+L−1]). If edA∗(x∗[i:i+L−1], y
∗
[j∗i :j∗i +L−1]) < L/4,

then for all j with |j − j∗i | > L we have edA∗(x∗[i:i+L−1], y
∗
[j:j+L−1]) ≥ L − L/4.

Otherwise, for all j we have edA∗(x∗[i:i+L−1], y
∗
[j:j+L−1]) ≥ L/4. In both cases the

conclusion results by applying Lemma 1(b). ��

Proof (of Theorem 2). We use as a building block a near neighbor (NN) data
structure under edit distance, defined as follows. Preprocess a database of m
strings each of length L, so that given a query string, the algorithm returns
all database strings at distance ≤ εL from the query. We will construct such

The Smoothed Complexity of Edit Distance 365

data structure at the end, and for now assume it can be implemented with
preprocessing P (m,L) and query time Q(m,L) + O(|output|), where output is
the list of points reported by the query.

Let C > 1 and L be as in Lemma 4 and assume ε < c′p. Our algorithm
proceeds in two stages. The first one uses the NN data structure to find, for
each position in x, a few “candidate matches” in y, presumably including the
correct match (under optimal alignment) for a large fraction of positions in x.
The second stage views the candidate matches between positions in x and in y
as the edge-set E of a bipartite graph and applies the algorithm from Lemma 2,
thereby reconstructing an alignment.

Let us describe the algorithm in more detail. The first stage builds an NN
data structure on all the substrings of length L in y. Then, it partitions x into
successive blocks x[iL−L+1:iL], and for each such block, queries the NN data
structure to identify all blocks in y that are within distance εL. For each such
block in y, collect all the character matches between the two blocks, i.e., ev-
ery zero in the block in x with every zero in the block in y, and same for
ones. Let E be the resulting list of all candidate matches. The second stage
simply applies Lemma 2 to this list E to retrieve an alignment between x
and y. The reported approximation to ed(x, y) is then twice the cost of this
alignment.

Next we argue the correctness of the algorithm. Consider an optimal alignment
A between x and y. Lemma 3 guarantees that for all but 4 ed(x, y)/εL blocks
from x, there exists a corresponding block y[si:si+L−1] at distance ≤ εL. Since
the algorithm detects all pairs of blocks at distance ≤ εL, the lemma implies
that all but O(1

ε) ed(x, y) of aligned pairs from the alignment A will appear in
the list of candidate matches. The algorithm will then compute an alignment A′

that has at least d−O(1
ε) ed(x, y) aligned pairs. Concluding, the algorithm will

output a distance D such that ed(x, y) ≤ D ≤ O(1
ε) ed(x, y).

Next we show that, with high probability, the running time of the algorithm
is O(dL log d+P (d, L)+ d

L ·Q(d, L)). Indeed, by Lemma 4, for each query block
x[iL−L+1:iL], only blocks y[j:j+L−1] for |j − j∗iL−L+1| ≤ L can be at distance εL.
Thus, for each position in x[iL−L+1:iL], we have at most 3L candidate matches,
hence |E| ≤ O(dL). We can now conclude that the first stage runs in O(P (d, L)+
d/L · (Q(d, L) + L2)), and the second stage runs in O(|E| log d) = O(dL log d).

Finally, it remains to describe the NN data structure. We achieve P (m,L) =
m logm · 2L·O(ε log 1/ε) preprocessing and Q(m,L) = O(L) query time. The data
structure simply prepares all answers in advance: for each string σ in the database
and every string τ at edit distance ≤ εL from σ, store the pair (σ, τ) in a trie
keyed by τ . To query a string q, the algorithm accesses the trie using q as the key,
and for every pair (η, q) returned by the trie, it reports the string η. Recall that
a trie with t strings of length L, has query time O(L), and preprocessing time
O(tL log t). Thus, Q(m,L) ≤ O(L) and since there are at most

(
2L
εL

)3
strings at

edit distance ≤ εL from a given string,

P (m,L) ≤ O(m logm ·
(
2L
εL

)4 · L) ≤ m logm · 2L·O(ε log(1/ε)).

366 A. Andoni and R. Krauthgamer

The overall running time becomes d1+O(p−1ε log(1/ε)) for O(1/ε) approxima-
tion. To complete the proof, apply the above to ε′ = Θ(εp/ log 1

pε). The resulting
running time is d1+ε and the approximation is O(1/ε′) = O(1

εp log 1
εp). ��

4 Sublinear Time Distance Estimation

We now present a sublinear time algorithm that estimates the edit distance of
a smoothed instance (x, y) within a constant factor. Full proof of the following
theorem is deferred to the full version of this paper.

Theorem 3. For every ε > 0 there is a randomized algorithm that, given
as input (x, y) ∈ SMOOTHp(x∗, y∗, A∗), approximates ed(x, y) within factor
O(1

εp log 1
εp) in time O(d1+ε/

√
ed(x, y)), with success probability at least 1−d−2

(over the randomness in the smoothing operation and the algorithm’s coins).

The high-level approach is to map the smoothed instance (x, y) to a pair of per-
mutations (P,Q), such that the edit distance between x and y is approximately
equal to the Ulam distance between P and Q. We can then estimate the Ulam
distance between P and Q using an off-the-shelf sublinear algorithm for estimat-
ing Ulam distance. Specifically, we use the following algorithm of [AIK08].

Theorem 4 ([AIK08]). There exists a randomized algorithm that, given access
to two permutations P,Q of length d, approximates ed(P,Q) up to a constant
factor in time Õ(d/

√
ed(P,Q)), with success probability at least 2/3.

The first key observation is that every algorithm for Ulam distance estimation
can work independently of the actual names of symbols it reads from P,Q.
Specifically, when the algorithm queries one character, say position i in P , it
suffices to know whether it is identical to a previously queried character Q[j],
and vice versa. This observation can be leveraged in the following way: if at the
time that Ulam algorithm asks to query P [i], the matching character Q[j] (i.e.
position j such that P [i] = Q[j]) was not queried yet, then we may “delay”
revealing the actual symbol P [i] until Q[j] is queried (if at all, as the running
time is sublinear). Hence, for the sake of analysis we may decide (by relabeling
symbols) that Q is a fixed permutation, say the identity (Q[j] = j for all j ∈ [d]).
In the sequel, P,Q will be permutation of length d over the alphabet Σ = [2d].

Our construction of P,Q is based on the following principle. Let A be an
alignment between x and y. Then we can construct P (while Q is the identity) so
that A is the optimal alignment between P and Q, as follows: set P [i] = Q[A(i)]
whenever A(i) ∈ [d], and set P [i] = d+i whenever A(i) = ⊥. To be useful for our
sublinear algorithm (when x, y is a smoothed instance), the alignment A must
have cost O(ed(x, y)), and furthermore it has to be computable “on the fly”.
More precisely we require that, for queried positions i, j in P,Q respectively, if
A(i) = j, then we can detect this by only querying x[i], possibly together with a
small local neighborhood around x[i] and around y[j] (in particular, the question
whether A(i) ?= j is independent of the rest of the strings x, y). We term this

The Smoothed Complexity of Edit Distance 367

property “locality”; ensuring locality of the alignment A we construct is the
main technical part of the proof of the theorem. We note that, for worst-case
strings (x, y), constructing a near-optimal alignment A that satisfies the locality
property seems hard; for a smoothed instance, on the other hand, we show this
is possible, due to, in part, Lemma 1 and a stronger version of Lemma 3. For
the sake of presentation, we show how to construct P directly.

4.1 Reducing Smoothed Instances to Ulam’s Metric

We proceed to show how to efficiently translate a smoothed instance of edit
distance into an instance of Ulam’s distance, while distorting the distance by
only a constant factor.

As mentioned above we set Q to be the identity permutation, and construct P
as a function of x and y. (We now define the entire permutation P , even though
only a sublinear portion of it will be queried by the algorithm.) The basic idea
appears simple. First, we partition P into blocks of length L = O(1

p log d). Then,
each such block x[i:i+L−1] we match to its closest block in y, say y[j:j+L−1], and
define P[i:i+L−1] based on Q[j:j+L−1] and ed(x[i:i+L−1], y[j:j+L−1]) only. Namely,
it is such that ed(P[i:i+L−1], Q[j:j+L−1]) = ed(x[i:i+L−1], y[j:j+L−1]). One differ-
ence from our earlier high-level description using A is that we work at the level
of blocks, not single characters. But the main problem we now face is that some
characters may repeat in P , because the blocks we match against in y may have
overlaps. Once we fix this issue, we can apply a form of Lemma 3 to argue that
ed(P,Q) is approximately ed(x, y). Unfortunately, a straightforward fix to the
above issue would introduce dependencies between different blocks in P , vio-
lating the locality requirement. We thus need additional transformations of P ,
under which each block can locally certify it does not interfere with other blocks.

Lemma 5 (Reduction Lemma). Fix ε > 0, 0 < p < 1, and and an optimal
alignment A∗ between strings x∗, y∗. Let (x, y) ∈ SMOOTHp(x∗, y∗, A∗) and let
L = C

p log d for a large constant C > 0. Then there exists two permutations P

and Q = (1, 2, . . . d) such that, with high probability, the following hold:

Distance. Ω(1) · ed(x, y) ≤ ed(P,Q) ≤ O(log 1/p
p + 1

εp) · ed(x, y).
Locality. For k ∈ [d/L], j ∈ [kL− L + 1 : kL], and sk = match(x[kL−L+1:kL]),
• P [j] can be computed from only sk, x[kL−2L+1:kL+L−1], and
y[sk−4L+1:sk+5L−1], in time O(L3).
• Unless P [j] = d+ j, we have: P [j] ∈ [d], ed(x[kL−L+1:kL], y[sk:sk+L−1]) ≤ εpL

and ed(x[kL−L+1:kL], y[z:z+L−1]) > Ω(pL) for all z s.t. |z − sk| ≥ 2L.

Next we describe the construction of the permutation P , deferring the proof of
the distance and locality properties to the full version of the paper.

Proof (Sketch). Some positions in P will be “invalidated”, which means that we
set P [j] = d + j for such a position j. However for the other positions we will
have P [j] ∈ [d]. We construct P in three stages: first we define a permutation P 1,
then we invalidate some of the positions in P 1 to obtain P 2, and again invalidate
more positions to obtain the final P .

368 A. Andoni and R. Krauthgamer

Let L = C
p log d denote the block length. Partition x into d/L blocks of length

L, called Xk, and for each k ∈ [d/L], let Yk = match(Xk). Let M be the set of
k’s such that ed(Xk, Yk) ≤ εpL. Let sk be the starting position of Yk and let
ck = ed(Xk, Yk).

We construct P 1 by setting, for every k ∈ M , P 1
[kL−L+1:kL] to be equal to

the block Q[sk : sk + L − 1], except that the first ck symbols are invalidated
(and thus ed(P 1

[kL−L+1:kL], Q[sk:sk+L−1]) = ck). For k ∈ [d/L] \M , we simply
invalidate the entire block P 1

[kL−L+1:kL].
In the second stage, we construct P 2 from P 1. We start by defining a set

F ⊆ M . For k ∈ M , k ≥ 1, consider a block Xk and the matching Yk. We put
k into F iff either of the following holds: (i) k − 1 ∈ M , or (ii) k − 1 ∈ M and
sk − sk−1 > 2L. We obtain P 2 by invalidating all blocks P 1

[sk:sk+L−1] for k ∈ F .
In the third stage, to obtain from P 2 a permutation P , we invalidate all

positions j ∈ [d] such that P 2[j] occurs also somewhere else in P 2 (all such
symbols are invalidated concurrently). ��

5 Conclusions

It seems challenging to obtain a distance estimation algorithm whose smoothed
running time is quasi-linear, i.e. d · logO(1) d, or whose approximation is indepen-
dent of the smoothing parameter p at the expense of only O(1/p) increase in the
runtime. Perhaps more important is to extend the smoothed analysis framework
to other problems, such as nearest neighbor search (or pattern matching). One
may hope to match the O(log log d) approximation that was recently obtained
for the Ulam metric [AIK08].

Acknowledgments. We thank Dick Karp for useful discussions at an early
stage of this research.

References

[AGM+90] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: A ba-
sic local alignment search tool. J. of Molecular Biology 215(3), 403–410
(1990)

[AIK08] Andoni, A., Indyk, P., Krauthgamer, R.: Overcoming the �1 non-
embeddability barrier: Algorithms for product metrics (manuscript, 2008)

[AK07] Andoni, A., Krauthgamer, R.: The computational hardness of estimat-
ing edit distance. In: 48th Annual IEEE Symposium on Foundations of
Computer Science, pp. 724–734. IEEE, Los Alamitos (2007)

[BEK+03] Batu, T., Ergün, F., Kilian, J., Magen, A., Raskhodnikova, S., Rubin-
feld, R., Sami, R.: A sublinear algorithm for weakly approximating edit
distance. In: Proceedings of the Symposium on Theory of Computing,
pp. 316–324 (2003)

[BES06] Batu, T., Ergün, F., Sahinalp, C.: Oblivious string embeddings and edit
distance approximations. In: Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pp. 792–801 (2006)

The Smoothed Complexity of Edit Distance 369

[BJKK04] Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approxi-
mating edit distance efficiently. In: Proceedings of the Symposium on
Foundations of Computer Science, pp. 550–559 (2004)

[BS95] Blum, A., Spencer, J.: Coloring random and semi-random k-colorable
graphs. J. Algorithms 19(2), 204–234 (1995)

[CK06] Charikar, M., Krauthgamer, R.: Embedding the ulam metric into �1.
Theory of Computing 2(11), 207–224 (2006)

[FK01] Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Com-
put. Syst. Sci. 63(4), 639–673 (2001)

[FM97] Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Ran-
dom Structures and Algorithms 10(1-2), 5–42 (1997)

[GP06] Gollapudi, S., Panigrahy, R.: A dictionary for approximate string search
and longest prefix search. In: 15th ACM international conference on In-
formation and knowledge management, pp. 768–775. ACM, New York
(2006)

[MP80] Masek, W.J., Paterson, M.: A faster algorithm computing string edit
distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

[MTL02] Ma, B., Tromp, J., Li, M.: PatternHunter: faster and more sensitive ho-
mology search. Bioinformatics 18(3), 440–445 (2002)

[Nav01] Navarro, G.: A guided tour to approximate string matching. ACM Com-
put. Surv. 33(1), 31–88 (2001)

[NBYST01] Navarro, G., Baeza-Yates, R., Sutinen, E., Tarhio, J.: Indexing methods
for approximate string matching. IEEE Data Engineering Bulletin 24(4),
19–27 (2001); Special issue on Text and Databases. Invited paper

[ST03] Spielman, D.A., Teng, S.-H.: Smoothed analysis: Motivation and discrete
models. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS,
vol. 2748. Springer, Heidelberg (2003)

[ST04] Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM 51(3), 385–463
(2004)

[WF74] Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J.
ACM 21(1), 168–173 (1974)

Randomized Self-assembly for Approximate

Shapes

Ming-Yang Kao1 and Robert Schweller2

1 Department of Electrical Engineering and Computer Science, Northwestern
University, Evanston, IL 60208, USA

kao@northwestern.edu
2 Department of Computer Science, University of Texas-Pan American, Edinburg,

TX 78539, USA
schwellerr@cs.panam.edu

Abstract. In this paper we design tile self-assembly systems which as-
semble arbitrarily close approximations to target squares with arbitrarily
high probability. This is in contrast to previous work which has only con-
sidered deterministic assemblies of a single shape. Our technique takes
advantage of the ability to assign tile concentrations to each tile type
of a self-assembly system. Such an assignment yields a probability dis-
tribution over the set of possible assembled shapes. We show that by
considering the assembly of close approximations to target shapes with
high probability, as opposed to exact deterministic assembly, we are able
to achieve significant reductions in tile complexity. In fact, we restrict
ourselves to constant sized tile systems, encoding all information about
the target shape into the tile concentration assignment. In practice, this
offers a potentially useful tradeoff, as large libraries of particles may be
infeasible or require substantial effort to create, while the replication of
existing particles to adjust relative concentration may be much easier.
To illustrate our technique we focus on the assembly of n × n squares, a
special case class of shapes whose study has proven fruitful in the devel-
opment of new self-assembly systems.

Keywords: Self-Assembly, Randomized Algorithms, Approximation
Algorithms.

1 Introduction

Self-assembly is the process by which simple objects autonomously assemble into
complexes. This phenomenon is common in nature and is the mechanism behind
many natural occurrences such as crystal growth. Current research is particularly
interested in understanding and harnessing the power of self-assembly for the
purpose of massive fabrication of nanoscale devices such as computer circuits.
In particular, researchers have identified DNA molecules as a promising medium
in which to design controlled self-assembly systems for nanomanufacturing and
biologically based computing.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 370–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Randomized Self-assembly for Approximate Shapes 371

The leading theoretical model for self-assembly is the tile assembly model
introduced by Winfree [15]. The tile assembly model extends the theory of Wang
tilings of the plane [14] by adding a natural mechanism for growth. Informally,
particles of a self-assembly system are modeled by four-sided Wang tiles, each
with a type of glue assigned to each side. The tiles float about in the plane and
stick together when they bump if the affinity between touching glues is strong
enough. In this way, the particles or tiles of the system self-assemble into a
complex pattern or shape. The goal is then as follows: Given a target shape or
pattern, design a system of tiles that will assemble into the target. The quality
or efficiency of the system is then measured by how few distinct tile types are
used. This measurement is motivated by the fact that each distinct type of tile
must be manufactured if the system is to be implemented.

The tile model of self-assembly is primarily motivated by a DNA based im-
plementation. Double and triple crossover DNA molecules have been designed
that can act as four-sided building blocks (tiles) for DNA self-assembly [7,9].
Experimental work has been done to show the effectiveness of using these tiles
to assemble DNA crystals and perform DNA computation [10,11,16,17].

Traditional work in this field has taken the approach of encoding information
about the target shape into the tile types of the system [12,1,2,3,13]. In par-
ticular, Rothemund et al. [12] and Adleman et al.[1] show how the assembly of
n×n squares can be assembled using Θ(logn

log log n) distinct tile types. However, the
design of large sets of distinct tile types can be problematic. Many mediums of
self-assembly may have small practical limitations on the number of glues or tiles
that can be manufactured. Even in the most promising scenario of DNA self-
assembly in which glues and tiles are encoded with long strands of DNA, there
is an associated computational complexity with the design of large sets of DNA
glues, as well as the likely need to redesign DNA tile structure for increasingly
large tile sets.

In contrast, recent work has be done examining the possibility of encoding
the complexity of the target shape outside of the particles in the system entirely.
In [8], we showed that there exists a constant sized tile set that can effectively
be programmed to assemble any n× n square with affecting a short sequence of
temperatures in the system. Further, Demaine et. al. [6] showed how constant size
tile sets can build arbitrary shapes by mixing intermediate self-assembly batches
together in a sequence of stages. However, with these techniques the complexity
of the target shape is contained within a sequence of laboratory steps, rather
than within the system of particles itself.

In this paper we take a new approach. We do encode the complexity of the
target shape within the particles of the system itself. But, we avoid the problems
of encoding complexity into the distinct tile types of the system. Rather, we
encode the complexity into the relative concentrations of tiles in the system.
While completely encoding the complexity of the target shape into the particles
of the system, we use only a O(1) size set of distinct tiles. In many instances,
in particular in the case of DNA, design of distinct, new particles or tiles is
much more difficult than creating a large number of copies of a given particle

372 M.-Y. Kao and R. Schweller

or tile type. Thus, the implementation of a set of relative tile concentrations for
a small, universal set of tile types is potentially a more practical approach than
the implementation of a completely new set of tiles. Further, for systems based
on an implementation other than DNA, there are likely even more difficulties
for the design of large distinct tile systems. In particular, the design of different
glues based on protein-protein interactions is very limited, making a scheme with
a fixed number of required glue types even more desirable.

1.1 Our Technique

Our motivating example in this paper is the assembly of n×n squares. The key
to the assembly of an n × n square is the ability to create a supertile that en-
codes an arbitrary length logn binary string [12]. At a high level, our technique
is to design a fixed size tile set that is capable of encoding, with high precision,
such a string into a supertile as a function of tile concentration assignment. In
particular, we design a tile set that assembles a large two dimensional array of
tiles whose inner pattern of tiles constitutes a sampling of tile types. The rel-
ative number of occurrences of certain tile types within this structure provides
sampled information about the relative tile concentration assignment of the tile
set. By combining this sampling array with tiles capable of counting and per-
forming arithmetic, this sampled information can be extracted into the form of
a binary string displayed on the surface of the assembled supertile. Once the
estimated binary string is displayed it is a straightforward extension to utilize
binary counters, as in [12], to complete an n× n square where the n is specified
by the estimated binary string.

To make this technique work, we need to accomplish two contradictory objec-
tives: First, the dimensions of the sampling array supertile must be small so that
they do not go beyond the width or height of the target n × n square. Second,
the area of the sampling array must be large enough so that the sample obtained
yields a provable accuracy guarantee from Chernoff bounds.

1.2 Our Results

Our results are summarized as follows. First, we consider the (ε, δ)-approximate
assembly of n × n squares. A system is said to achieve an (ε, δ)-approximate
assembly of an n× n square if the system will assemble an n′ × n′ square with
probability at least 1 − δ such that (1 − ε)n ≤ n′ ≤ (1 + ε)n. We show that for
any ε and δ and sufficiently large n (as a function of ε and δ), there exists a tile
set of size O(1) that achieves an (ε, δ)-approximate assembly of an n×n square.
In contrast, the best result for the exact, deterministic assembly of n×n squares
requires O(logn

log logn) distinct tiles.

1.3 Related Work

Our results build on a recent technique proposed by Becker et al. [5] showing
that if we wish to assemble several shapes, it is possible to reduce the total com-
plexity needed by assembling the shapes together using a combined tile system

Randomized Self-assembly for Approximate Shapes 373

rather than by assembling the shapes individually using separate tile systems.
Specifically, they provide O(1) size tile sets that build squares and rectangles of
expected dimension n, where the n is specified by tile concentrations. While this
is an initial step towards concentration based control, their techniques yield a
large variance and thus do not provide the precise control achieved in our work.

Previous research has considered the use of tile concentration assignments for
the purpose optimizing assembly time [1]. However, they do not consider the
effect concentration assignment has on the final assembled shape.

1.4 Paper Layout

The remainder of this paper is organized as follows. In Section 2 we introduce the
tile assembly model. In Section 3 we discuss a preliminary, low precision tech-
nique for controlling the expected size of a target shape. In Section 4 we introduce
a randomized sampling technique to assemble high precision approximations of
target binary numbers. In Section 5 we apply the randomized sampling tech-
nique to the assembly of (ε, δ)-approximate squares to obtain our main result.
In Section 6 we conclude with a discussion of future research directions.

2 Basics

2.1 Definitions

To describe the tile self-assembly model, we make the following definitions. A
tile t in the model is a four sided Wang tile denoted by the ordered quadruple
(north(t), east(t), south(t),west(t)). The entries of the quadruples are glue types
taken from an alphabet Σ representing the north, east, south, and west edges of
the Wang tile, respectively. A tile system is an ordered quadruple 〈T, s,G, τ, P 〉
where T is a set of tiles called the tileset of the system, τ is a positive integer
called the temperature of the system, s ∈ T is a single tile called the seed tile,
G is a function from Σ2 to {0, 1, . . . , τ} called the glue function of the system,
and P is a function denoting a probability distribution over the set of tiles in
T representing the relative concentrations of each tile type. It is assumed that
G(x, y) = G(y, x), and there exists a null in Σ such that ∀x ∈ Σ, G(null, x) =
0. In this paper we assume the glue function is such that G(x, y) = 0 when x = y
and denote G(x, x) by G(x) (see [3,4] for the effect of removing this restriction).
|T | is referred to as the tile complexity of the system. In this paper we also only
consider temperature τ = 2.

Define a configuration to be a mapping from Z2 to T
⋃
{empty}, where empty

is a special tile that has the null glue on each of its four edges. The shape of a
configuration is defined as the set of positions (i, j) that do not map to the empty
tile. For a configuration C, a tile t ∈ T is said to be attachable at the position
(i, j) if C(i, j) = empty and G(north(t), south(C(i, j+1)))+G(east(t),west(C(i+
1, j))) + G(south(t), north(C(i, j − 1))) + G(west(t), east(C(i − 1, j))) ≥ τ . For
configurations C and C′ such that C(x, y) = empty, C′(i, j) = C(i, j) for all
(i, j) = (x, y), and C′(x, y) = t for some t ∈ T , define the act of attaching tile t

374 M.-Y. Kao and R. Schweller

to C at position (x, y) as the transformation from configuration C to C′. For a
given tile system T, if a supertile B can be obtained from a supertile A by the
addition of a single tile we write A→T B. Further, we denote A→T as the set
of all B such that A→T B and →∗

T as the transitive closure of →T .
Define the adjacency graph of a configuration C as follows. Let the set of

vertices be the set of coordinates (i, j) such that C(i, j) is not empty. Let there
be an edge between vertices (x1, y1) and (x2, y2) iff |x1 − x2| + |y1 − y2| = 1.
We refer to a configuration whose adjacency graph is finite and connected as a
supertile. For a supertile S, denote the number of non-empty positions (tiles)
in the supertile by size(S). We also note that each tile t ∈ T can be thought
of as denoting the unique supertile that maps position (0, 0) to t and all other
positions to empty. Throughout this paper we will informally refer to tiles as
being supertiles.

2.2 The Assembly Process

Deterministic Assembly. Assembly takes place by growing a supertile start-
ing with tile s at position (0, 0). Any t ∈ T that is attachable at some position
(i, j) may attach and thus increase the size of the supertile. For a given tile
system, any supertile that can be obtained by starting with the seed and at-
taching arbitrary attachable tiles is said to be produced. If this process comes to
a point at which no tiles in T can be added, the resultant supertile is said to
be terminally produced. For a given shape Υ , a tile system Γ uniquely produces
shape Υ if for each produced supertile A, there exists some terminally produced
supertile A′ of shape Υ such that A →∗

T A′. That is, each produced supertile
can be grown into a supertile of shape Υ . This definition of unique assembly is
introduced in [3] and differs slightly from previous work [12,1,1] in that we do
not require that a unique supertile be terminally assembled. The tile complexity
of a shape Υ is the minimum tile set size required to uniquely assemble Υ .

Probabilistic Assembly. In addition to considering tile systems that uniquely
assemble a given shape, we can consider systems that can potentially build mul-
tiple shapes, but will build one of a desired class of shapes with high probability.
To study this model we can think of the assembly process as a Markov chain
where each producible supertile is a state and transitions occur with non-zero
probability from supertile A to each B ∈ A →T . For each B ∈ A →T , let tB
denote the tile added to A to get B. The transition probability from A to B is
defined to be

TRANS(A,B) =
P (tB)

∑
C∈A→T

P (tC)
.

The probability that a tile system T terminally assembles a supertile A is thus
defined to be the probability that the Markov chain ends in state A. Further,
the probability that a system terminally assembles a shape Υ is the probability
the chain ends in a supertile state of shape Υ .

Randomized Self-assembly for Approximate Shapes 375

3 Low Precision Technique (Line Approximation)

Becker et al. [5] first considered the assignment of tile type concentrations for
the control of assembled shapes. They consider a tileset of 5 tile types whose set
of terminally produced supertiles is the set of all squares. Further, they show
how for any given n, a corresponding tile concentration assignment ensures that
the expected dimension of the assembled square is n. A modified version of this
tile set is described in Figure 1.

x xAx BxS s s

C D
c

c
d

m
h

k

d

k
mm

k k

k

k

hh
k k

c

k

S xAx

k

s

k c

xA
k

xA
k

xA
k

B
k

C dh
k

D
c

m m

k
h

k

m

k

m

k

m

k
C dh
k

h
k

h
k

D
c

m m

k

m

k

m

k
C dh
k

D
c

m
h

k
h

k
h

k

m

k

m

k
C dh
k

D
c

m
h

k
h

k
h

k

m

k
h

k
C dh
k

D
c

m
h

k
h

k
h

k
h

k
h

k
C
k

dhh
k

h
k

h
k

h
k

h
k

h
k

CB = (1 - c)p

CA = (1 - c)(1 - p)

Fig. 1. With S as the seed tile, these tiles can assemble into all n × n squares with
n ≥ 3. The concentrations of tile types A and B are denoted as CA and CB . With
p = 1

n
and c being the sum of all tile concentrations other than those for A and B, the

expected dimension of the assembled square is n.

The basic method of this tile system is the assembly of the line consisting of
the seed, tile A, and the final tile B. As the line grows from left to right, each
position can potentially be filled with an A tile, in which case the line continues
to grow, or a B tile, in which case the line stops growing. If the probability of
placing the B tile is p and placing the A tile is 1 − p, then the length of the
assembled line follows a geometric distribution and has expected length 1

p . An
expected dimension of n can thus be achieved by setting concentrations so that
p = 1

n .
With this method, a square is assembled whose dimension is determined by a

single line of tiles whose length is a random variable with a geometric distribu-
tion. The problem with this technique is that the length of the line has a high
variance. Our improved technique will create a different supertile for encoding
the target dimension n. This supertile will provided an estimate for the target
dimension that follows a binomial distribution instead of a geometric distribu-
tion. With this technique it is then possible to apply Chernoff bounds to achieve
much more precise results.

376 M.-Y. Kao and R. Schweller

4 The Basic Idea (Sampling Approximation)

Our goal is to assemble a supertile that encodes an x-bit binary string b. Let n
be the value of the string when interpreted as a binary number. We will say that
our scheme builds an (ε, δ)-approximate version of n if the supertile assembled
encodes a value of n′, (1 − ε)n ≤ n′ ≤ (1 + ε)n, with probability at least 1 − δ.
For the low precision technique, the encoding of the target n is simply the length
of the assembled a, b line. Note that this does not yield an (ε, δ)-approximate
scheme for small ε and δ.

Our technique combines the line approximation with tiles capable of per-
forming binary counting and binary division. First consider the line technique
modified in Figure 2 so that there are two types of A tile, one of them red.
Conditional on the event that one of the two types of A tiles is placed, we can
control with tile concentrations that the probability of placing a red tile be some
desired value q.

Now consider the random variable R denoting the sum of all red tiles placed
before the final B tile is placed. Let L denote the length of the line. R then has a
binomial distribution with μ = qL. The goal is then to add to this construction
(1) tiles capable of computing R, (2) tiles for computing L, and (3) tiles capable
of performing division, in particular, tiles for computing R

L . With such tiles,
we can assemble a string of tiles that encode the random variable L

R . By setting
q = 1

n , this random variable has expectation L
qL = n. And since R has a binomial

distribution, we can apply Chernoff bounds to bound the tail probabilities of
this variable when its expectation qL is high enough. While we cannot control
L with high precision, we can ensure that with high probability it is sufficiently
large, making the expectation of R large as well. In more detail, the tiles for the
construction are as follows.

Sampling Line. The sampling line consists of the seed tile S and the three tiles
in Figure 2. The expected length of the line will be 1

p , and the expected ratio of
the length to the number of red tiles will be n. Further, with high probability (at
least 1− δ) the sampling line will be long enough to guarantee that this fraction
is within an ε factor of the target n.

Double Counter. Tiles capable of counting in binary are known [12]. Straight-
forward modifications are possible to permit the simultaneous counting of multi-
ple values as shown in Figure 2. Here each column of tiles represents two counts,
one for the total length of the sampling line covered from the seed up until the
current column, and the other the number of red tiles covered. These numbers
are represented in binary with the duple label of the tile in the ith row represent-
ing the ith bit of the length counter as the first coordinate and the ith bit of the
red tile counter as the second. Exact details for this construction are omitted in
this extended abstract.

Binary Division. Work has been done to show how to perform arithmetic
with self-assembly [15]. We can apply a modified set of division tiles to compute

Randomized Self-assembly for Approximate Shapes 377

S

B

xx

x

x A'

Ax

x CB = (1 - c)p

CA' = (1 - c)(1 - p)q

CA = (1 - c)(1 - p - (1 - p)q)

0,0 1,0 0,0

1,0

1,0

1,0 0,0

1,0

0,1

0,0

1,0

1,1

1,0

1,0

0,1

1,0

1,0

1,1

0,1

0,0

0,0

1,0

0,1

0,0

1,0

1,0

1,1

0,0

0,0

1,0

1,1

0,0

1,1

1,0

0,1

1,0

0,1

1,0

0,1

1,0

1,1

1,0

1,1

1,0

0,1

1,0

1,1

1,0

1,1

1,0

0,1

0,0

0,1

0,0

0,0

0,1

1,0

0,0

1,0

0,1

0,0

0,0

1,0

0,1

1,0

0,0

1,0 1,0 1,0 1,0

A A A A A A A A A AA' BA A A AA' A' A'S

0
0
1

Binary
Division...

Output Estimate

Fig. 2. With S as the seed tile, these tiles form the sampling line. The concentrations
of each tile are noted as CA, CA′ , and CB. Here q = 1

n
and p is any value at most

1 − (1 − δ)
ε2

(1+ε)23n ln 3
δ . The value c denotes the total concentration from all other tiles

within the tile system. These tiles create a line, sampling a red tile with a density of
1/n. A binary counter sums up the total length, as well as the total number of red
tiles. These two values are then divided to yield an estimate for n.

L
R from the values L and R encoded in the double counter. Details are omitted
in this extended abstract.

Theorem 1. For any given ε, δ ≤ 0 and positive integer n, the sampling approx-
imation tile system creates an estimate whose value n′ is such that (1 − ε)n ≤
n′ ≤ (1 + ε)n with probability at least 1− δ.

Proof. Let L be the random variable denoting the length of the sampling line
and the R be the random variable denoting the number of red tiles in the line.
From the assigned tile concentrations, L is has a geometric distribution with
mean 1

p and R has a binomial distribution with mean qL. By applying Chernoff
bounds we get that

P [R > (1 +
ε

1 + ε
)qL] < exp(−qLε2/3(1 + ε)2) (1)

and
P [R < (1− ε

1 + ε
)qL] < exp(−qLε2/2(1 + ε)2). (2)

Our goal is now to ensure that L is large enough so that the above equations
are bounded by (1 − δ

3). Since L has a geometric distribution, for any positive

integer x we have that P [L > x] = (1 − p)x. Thus, for x = (1+ε)23n log 3
δ

ε2 and

p = 1− (1 − δ
3)

ε2

(1+ε)23n log 3
δ , we get that (1 − p)x = 1− δ

3 . Thus,

P [L >
(1 + ε)23n log 3

δ

ε2
] = 1− δ

3
. (3)

Further, by plugging x into the right hand sides of equations (1) and (2), we
get that (1 − ε

1+ε)qL ≤ R ≤ (1 + ε
1+ε)qL with probability at least 1− 2δ

3 when
L ≥ x. Combining this with the probability bound from equation (3) yields the
following

(1 − ε

1 + ε
)qL ≤ R ≤ (1 +

ε

1 + ε
)qL with probability at least 1− δ. (4)

378 M.-Y. Kao and R. Schweller

Finally, now consider the tile system’s estimate of LR . From equation (4) we
get that with probability at least 1− δ

L
(1+ ε

1+ε)qL ≤
L

R
≤ L

(1− ε
1+ε)qL

(5)

⇒ (1+ε)n
1+2ε ≤ L

R
≤ (1 + ε)n (6)

⇒ (1− ε)n ≤ L

R
≤ (1 + ε)n. (7)

This completes the proof of Theorem 1. ��

5 n × n Squares

In this section we apply the basic technique of sampling approximation to the
assembly of approximate n× n squares. As shown in [12], there exists a general
set of square building tiles of constant size that, given a supertile that encodes
a length logn binary string n′ (the string encoded is not exactly n but uniquely
identifies it) will uniquely assemble into an n × n square. The key is then to
efficiently build such a supertile. This can be done trivially with log n distinct
tile types, while a more efficient method yields O(log

log logn) tile types [1], which
is optimal for almost all n. We instead will use the sampling approximation to
achieve the result with only O(1) total tiles.

However, there is a problem with directly using the line approximation from
Section 4. To approximate a value n′ with small values of ε and δ, the length of
the sample line must be many times larger than n′. As n′ can be almost as large
as n, the length of the estimation line will far exceed the width n of the square
and will thus fail to build the square.

However, we can get around this problem by taking advantage of the extra
dimension of the square. That is, while the width of the square is n, there is
actually n2 space within the bounds of the square. It is plausible then that an
approximation line of length many times n, broken up into pieces of length at
most n, could fit within the boundary of an n × n square. We do exactly this
with what we call the approximation frame.

5.1 Approximation Frame

The basic idea for the approximation frame is to use two separate line approxi-
mations, one line growing east of the seed and another growing north. Then, for
each of the tiles in the vertical line, create a sampling line that grows east up
to the length of the initial horizontal line approximation. By further providing
sufficient space between each tile in the vertical approximation line, we can use
counter tiles to sum the number of red tiles in each approximation line. Each in-
dividual sum for each sampling line can then be summed to gain a total number
of red tiles, as well as the total length, to compute an estimate for the target n′.

Randomized Self-assembly for Approximate Shapes 379

The key to this technique is two fold. First, we need to be able to say with
high probability that both dimensions of the frame are small enough so that they
do not exceed the width n of the target square. Second, we need that with high
probability the total length of all the approximation lines, which is the length of
the initial horizontal approximation line multiplied by the length of the initial
vertical approximation line, is sufficiently large to provide an accurate estimate
of the target n′. In this section we show that for any given ε and δ this is possible
for large enough n′.

In Figure 3 the high level structure of the approximation frame is described.
Starting from the seed tile, a sampling line grows east with length X , which
has expectation 1

px
, and the expected ratio of red tiles to the total length equal

to q = 1
n′ . A double counter computes both the length and the number of red

tiles, as in the basic sampling line. However, in this case the final value of the
counter seeds a new row of tiles that grows back in the direction of the seed,
again sampling a red tile with probability q. This return row places the black
S′ tile which seeds a new approximation line, this time growing north. However,
each placement of a C tile in this approximation line is buffered by a distance
of logX tiles, i.e., the length of the counter that computes the length X . It is
straightforward to maintain this buffer by using the initial length between S and
S′ as a yardstick. A diagonal growth of tiles, depicted as the grey tiles in the
figure, can translate a vertical length into a horizontal length, and vice versus.
With these tiles the original length between S and S′ can be placed before each
C tile until the final D is placed. Let Y denote the length of this approximation

1,0 0,0

1,0

1,0

1,0 0,0

1,0

0,1

0,0

1,0

1,1

1,0

1,0

0,1

1,0

1,0

1,1

0,1

0,0

0,0

1,0

0,1

0,0

1,0

1,0

1,1

0,0

0,0

1,0

S B

D

A A A A AA A A'A'

*C

C

C

1,0 0,0

1,0

1,0

1,0 0,0

1,0

0,0

0,0

1,0

1,1

1,0

1,0

0,1

1,0

1,0

1,1

0,0

0,0

0,1

1,0

0,0

0,0

1,1

1,0

1,0

0,0

0,1

1,0

1,0 0,1

1,0

1,0 0,1

1,0

1,00,01,10,0

Compute
gray/red

Sum running
total of red
and gray with
new row
estimates.

Estimate for n'

**

1,0 0,0

1,0

1,0

1,0 0,0

1,0

0,1

0,0

1,0

1,1

1,0

1,0

0,1

1,0

1,0

1,1

0,1

0,0

0,0

1,0

0,1

0,0

1,0

1,0

1,1

0,0

0,0

1,0

S B

D

Length X: E[X] = 1/p where p is the
probability of placing the black B tile.

Length Y(1+log X) :
E[Y] = 1/q where
q is the probability
of placing the black
D tile.

Length 1+log X

The length between
C tiles is log X and
is determined by the
width of the very
first counter.

A A A A AA A A'A '

*C

C

C

(a) (b)

* *

0,1

0,0

1,1

1,0

1,1

0,0

0,1

1,0

*

0,1

0,0

1,0

1,0

1,1

0,0

0,0

1,0

0,01,00,10,1 1,0

1,01,11,10,0 1,0

1,10,00,00,0 0,0 1,0

1 0 1

Fig. 3. This is a high level schemata for how the estimation frame can be used to build
n × n squares

380 M.-Y. Kao and R. Schweller

line when only counting the C and D tiles. Thus, the total length is Y logX
with expectation logX

py
if py is the probability of placing D instead of C.

For each C, a new sampling line is constructed, with the distinction that the
length is deterministically equal to the initial random length X . For each of these
rows a double counter is used to calculate the length and number of red tiles.
Since the maximum bits of the double counter is the same as with the initial
count, we are guaranteed to have enough room for the counter to complete.

Finally, tiles for summation are used along the east side of the frame to cal-
culate the total sum of red tiles as well as the total length of the sampling lines
(which is XY). A final division is performed to compute the ratio of length to
red tiles for the estimate.

Dimensions of Frame. As initially mentioned in this section, one potential
problem with this construction is that the estimation frame can grow to exceed
n in one of its dimensions, making the assembly of any square of dimension at
most n impossible. The dimensions of the frame are as follows.

Horizontal Dimension. The length of the sampling line is X , the diagonal
tiles for propagating the height of the double counter extend to at most and
additional logX , and the tiles for summation of all double counters can be
implemented to extend to at most logXY . The total length is thus at most
X + 2 logX + log Y .

Vertical Dimension. The total height of the frame is at most Y logX for
the line approximation, plus the space used to compute the ratio of the total
sample length divided by the number of red tiles. The exact amount of space for
division depends on the implementation, but a straightforward implementation
of division using using tiles for simulating the execution of a Turing machine
can divide an x bit input using space within an x× 3x3 box. Growing the larger
dimension in the vertical direction and noting that the sum is at most log3 XY
yields a total length of Y logX + (logXY)3.

5.2 Approximate Squares

Theorem 2 is the main theorem of this paper.

Theorem 2. For any given ε, δ ≤ 1 and n
logn ≥ c

log3(1/ δ
4)(1+ε)2

log 1
1− δ

4
ε2

, c a constant,

there exists a tile system that with probability at least 1 − δ will assemble an
m×m square with (1− ε)n ≤ m ≤ (1 + ε)n.

Proof. Consider a sufficiently large n. Let n′ = n − 2 logn and consider the
approximation frame tile system to estimate n′. That is, set tile concentrations
such that the probability q of placing a red tile for each of the sampling lines in
the frame is 1

n′ . Let X denote the horizontal length of the sampling line growing
east of the seed tile, and let Y denote the length of the line growing north of the
seed tile (not counting the size logX buffer between each C tile).

First, we want to ensure that X and Y are short enough so that the en-
tire frame will fit within the boundary of the target square. These bounds are

Randomized Self-assembly for Approximate Shapes 381

1
0
0
1
1

1 0 0 1 1

Binarycounter0
0
0
0
0

1 0 0 1 1

Fanout n' estimate to
seed two seperate binary
counters

0 0 0 0 0

Fill in remaining yellow area of square with
a single filler tile type.

Estimation Frame

Compute
ratio of
length
to red
tiles

Binary
counter

Fig. 4. This is a high level schemata for how the estimation frame can be used to build
n × n squares

nx = n−4 logn for X and ny = n
logn −8 log2 n−1 for Y . We also want to ensure

that the total length of all sampling lines is sufficiently long to guarantee a good
approximation. The following probability assignments ensure both constraints
are met with high probability. Let the probability of placing the B and D tiles
be px = 1− δ

4

1
nx and py = 1− δ

4

1
ny , respectively.

First we show that X ≤ nx and Y ≤ ny with probability at least 1− δ
2 . Since

X has a geometric distribution, we have that

P [X > nx] = (1− p)nx , (8)

= (1− (1− (
δ

4
)

1
nx))nx , (9)

=
δ

4
and, (10)

P [Y > ny] =
δ

4
. (11)

Having shown that the frame will fit within the dimensions of the target
square, we now show that the total length of all sampling lines XY will be
sufficiently large under the assumption of a large n′.

382 M.-Y. Kao and R. Schweller

Since X has the geometric distribution, we have that

P [X > nx
log(1− δ

4)
log(δ4)

] = (1− (1− (
δ

4
)

1
nx))

nx
log(1− δ

4)

log(δ
4) (12)

= 1− δ

4
and, (13)

P [Y > ny
log(1− δ

4)
log(δ4)

] = 1− δ

4
. (14)

Now consider the total length of the sample lines XY . With a similar analysis
as is done for Theorem 1 we know that an (ε, δ)-approximation of n′ can be
achieved if the total length of the sample lines is

XY ≥
3n′(1 + ε)2 log 1

δ/4

ε2
. (15)

From equations 13 and 14, we have that with probability greater than 1− δ
2

XY ≥ nxny(
log(1− δ

4)
log δ4

)2 (16)

= Ω(
n2

logn
)(

log(1 − δ
4)

log δ4
)2. (17)

Combining equation 17 with inequality 15 shows that an (ε, δ)-estimate can
be achieved in the case for a constant c where

n

logn
≥ c

log3(1/ δ4)(1 + ε)2

log 1
1− δ

4
ε2

. (18)

Given an (ε, δ)-approximation of n′, it is straightforward to add a group of
tiles that fanout the n′ estimate into two identical copies which seed a binary
counter. Each binary counter will begin counting down (decrementing rather
than incrementing) until 0 is reached. The two counters then form the two axis
of an n′+2 logn′ square. Given this, it is straight forward to fill in the rest of the
square at temperature 2 with a constant number of tiles. Thus, the approxima-
tion accuracy for the estimate n′ yields a corresponding approximation accuracy
for the dimension of the square assembled and thus proves Theorem 2. ��

6 Future Work

This work is a preliminary theoretical look into the feasibility of precisely control-
ling assembled structures by manipulating tile concentrations. There are many
directions for continued research.

One direction is to consider the probabilistic assembly of approximate scal-
ings of general shapes. That is, given a tile system that assembles a given shape,

Randomized Self-assembly for Approximate Shapes 383

modify the system so that a factor n magnification of the input shape is as-
sembled. Along this line, it is should be possible to achieve (ε, δ)-approximate
scalings with no increase in tile complexity for a large class of assembled shapes.

Another direction for future work is the design of probabilistic self-assembly
systems for the assembly of exact shapes. That is, how can a tile system be
designed so that a target shape is assembled exactly (no ε error factor) with
high probability? It would be interesting to know if an alternate technique, or
an improved version of our technique, could achieve this for n × n squares. An
alternate approach would be to consider 3 dimension assemblies, such as n×n×n
cubes. In such a case, our approximation frame would be able to achieve a much
higher asymptotic accuracy in n. With a tighter analysis, it is plausible that this
could yield the exact assembly of cubes with high probability.

Yet another research direction involves the assembly of general shapes. In [13]
a technique for the assembly of general scaled shapes is presented. To work,
this technique first requires the assembly of a binary string of tiles encoding a
description of the target shape. An interesting direction would be to combine
this technique with the approximation frame from this paper to provide the
input string assembled with O(1) tile complexity. As the input string for the
general shape system must be exact, a key step would be to ensure that the
approximation frame is large enough to provide enough binary digits that contain
no error (with high probability).

Finally, as our work here is theoretical, an important next step is simula-
tion and lab experimentation to test and validate our results. Such experiments
will likely provide key insights regarding how our model and technique can be
improved.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for
self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing, pp. 740–748 (2001)

2. Adleman, L., Cheng, Q., Goel, A., Huang, M., Kempe, D., Espanes, P., Rothemund,
P.: Combinatorial optimization problems in self-assembly. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing, pp. 23–32 (2002)

3. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., de Espanes, P.M.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Jour-
nal on Computing 34, 1493–1515 (2005)

4. Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T.: Complexities for
generalized models of self-assembly. In: Proceedings of the fifteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 880–889 (2004)

5. Becker, F., Remila, E., Rapaport, I.: Self-assemblying classes of shapes with a min-
imum number of tiles, and in optimal time. In: Proceedings of the 26th Conference
on Foundations of Software Technology and Theoretical Computer Science (2006)

6. Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R.,
Souvaine, D.: Staged self-assembly: Nanomanufacture of arbitrary shapes with O(1)
glues. In: Proceedings of the 13th International Meeting on DNA Computing (2007)

384 M.-Y. Kao and R. Schweller

7. Fu, T.-J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–
3220 (1993)

8. Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithms, pp. 571–580 (2006)

9. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, H.J., Seeman,
N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover
complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

10. Lagoudakis, M.G., Labean, T.H.: 2D DNA self-assembly for satisfiability. In: Pro-
ceedings of the 5th DIMACS Workshop on DNA Based Computers, June 26 1999,
pp. 459–468 (1999)

11. Reif, J.: Local parallel biomolecular computation. In: Proceedings of the 3rd Annual
DIMACS Workshop on DNA Based Computers, June 23-26 (1997)

12. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled
squares. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, pp. 459–468 (2000)

13. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Tenth Inter-
national Meeting on DNA Computing, pp. 344–354 (2005)

14. Wang, H.: Proving theorems by pattern recognition. Bell System Technical Jour-
nal 40, 1–42 (1961)

15. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology, Pasadena (1998)

16. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998)

17. Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of
DNA: Some theory and experiments. In: Proceedings of the 2nd International Meet-
ing on DNA Based Computers, June 10-12 1996, pp. 191–213 (1996)

Succinct Data Structures for Retrieval

and Approximate Membership�

(Extended Abstract)

Martin Dietzfelbinger1 and Rasmus Pagh2

1 Technische Universität Ilmenau, 98684 Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

2 IT University of Copenhagen, 2300 København S, Denmark
pagh@itu.dk

Abstract. The retrieval problem is the problem of associating data
with keys in a set. Formally, the data structure must store a function
f : U → {0, 1}r that has specified values on the elements of a given set
S ⊆ U , |S| = n, but may have any value on elements outside S. All
known methods (e. g. those based on perfect hash functions), induce a
space overhead of Θ(n) bits over the optimum, regardless of the evalu-
ation time. We show that for any k, query time O(k) can be achieved
using space that is within a factor 1+ e−k of optimal, asymptotically for
large n. The time to construct the data structure is O(n), expected. If
we allow logarithmic evaluation time, the additive overhead can be re-
duced to O(log log n) bits whp. A general reduction transfers the results
on retrieval into analogous results on approximate membership, a prob-
lem traditionally addressed using Bloom filters. Thus we obtain space
bounds arbitrarily close to the lower bound for this problem as well.
The evaluation procedures of our data structures are extremely simple.
For the results stated above we assume free access to fully random hash
functions. This assumption can be justified using space o(n) to simulate
full randomness on a RAM.

1 Introduction

Suppose we want to build a data structure that is able to distinguish between
girls’ and boys’ names, in a collection of n names. Given a string not in the set
of names, the data structure may return any answer. It is clear that in the worst
case this data structure needs at least n bits, even if it is given access to the list
of names. The previously best solution that does not require the set of names to
be stored uses more than 1.22n bits. Surprisingly, as we will see in this paper,
n + o(n) bits is enough, still allowing fast queries. If “global” hash functions,
shared among all data structures, are available the space usage drops all the
way to n+O(log logn) bits whp. This is a rare example of a data structure with

� The main ideas for this paper were conceived while the authors were participating
in the 2006 Seminar on Data Structures at IBFI Schloss Dagstuhl, Germany.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 385–396, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 M. Dietzfelbinger and R. Pagh

non-trivial functionality and a space usage that essentially matches the entropy
lower bound.

1.1 Problem Definition and Motivation

The dictionary problem consists of storing a set S of n keys, and r bits of data
associated with each key. A lookup query for x reports whether or not x ∈ S, and
in the positive case reports the data associated with x. We will denote the size of
S by n, and assume that keys come from a set U of size nO(1). In this paper, we
restrict ourselves to the static problem, where S and the associated data are fixed
and do not change. We study two relaxations of the static dictionary problem
that allow data structures using less space than a full-fledged dictionary:

• The retrieval problem differs from the dictionary problem in that the set S
does not need to be stored. A retrieval query on x ∈ S is required to report the
data associated with x, while a retrieval query on x ∈ S may return any r-bit
string.
• The approximate membership problem consists of storing a data structure that
supports membership queries in the following manner: For a query on x ∈ S it
is reported that x ∈ S. For a query on x ∈ S it is reported with probability
at least 1 − ε that x ∈ S, and with probability at most ε that x ∈ S (a “false
positive”). For simplicity we will assume that ε is a negative power of 2.

Our model of computation is a unit cost RAM with a standard instruction
set. For simplicity we assume that a key fits in a single machine word, and that
associated values are no larger than keys. Some results will assume free access
to fully random hash functions, such that any function value can be computed
in constant time. (This is explicitly stated in such cases.)

The approximate membership problem has attracted significant interest in
recent years due to a number of applications, mainly in distributed systems
and database systems, where false positives can be tolerated and space usage
is crucial (see [4] for a survey). Often the false positive probability that can be
tolerated is relatively large, say, in the range 1%− 10%, which entails that the
space usage can be made much smaller than what would be required to store S
exactly.

The retrieval problem shows up in situations where the amount of data associ-
ated with each key is small, and it is either known that queries will only be asked
on keys in S, or where the answers returned for keys not in S do not matter. As
an example, suppose that we have ranked the URLs of the World Wide Web on
a 2r step scale, where r is a small integer. Then a retrieval data structure would
be able to provide the ranking of a given URL, without having to store the URL
itself. The retrieval problem is also the key to obtaining a space-optimal RAM
data structure that answers range queries in constant time [1,19].

1.2 Previous Results

Approximate membership. The study of approximate membership was initiated
by Bloom [2] who described the Bloom filter data structure which provides an

Succinct Data Structures for Retrieval and Approximate Membership 387

elegant, near-optimal solution to the problem. Bloom showed [2,4] that a space
usage of n log2(1/ε) log2 e bits suffices for a false positive probability of ε. Carter
et al. [7] showed that n log2(1/ε) bits are required for solving the approximate
membership problem when |U | . n (see also [12] for details). Thus Bloom filters
have space usage within a factor log2 e ≈ 1.44 of the lower bound, which is tight.

Another approach to approximate membership is perfect hashing. A function
h : U → [n] is a minimal perfect hash function for S if it maps the keys of S ⊆ U
bijectively to [n] = {0, . . . , n − 1}, where n = |S|. Hagerup and Tholey [16]
showed how to store a minimal perfect hash function h in a data structure of
n log2 e + o(n) bits such that h can be evaluated on a given input in constant
time. This space usage is optimal. Now store an array of n entries where, for each
x ∈ S, entry h(x) contains a log2(1/ε)-bit hash signature q(x). When looking
up a key x, we answer “x ∈ S” if and only if the hash signature at entry h(x)
is equal to q(x). The origin of this idea is unknown to us, but it is described
e.g. in [4]. The space usage for the resulting data structure differs from the lower
bound n log2(1/ε) by the space required for the minimum perfect hash function,
and improves upon Bloom filters when ε ≤ 2−4 and n is sufficiently large.

Mitzenmacher [18] considered the encoding problem where the task is to rep-
resent and transmit an approximate set representation (no fast queries required).
However, even in this case existing techniques have a space overhead similar to
that of the perfect hashing approach.

Retrieval. The retrieval problem has traditionally been addressed through the
use of perfect hashing. Using the Hagerup-Tholey data structure yields a space
usage of nr + n log2 e + o(n) bits with constant query time. Recently, Chazelle
et al. [8] presented a different approach to the problem. Each key is associated
with k = O(1) locations in an array with O(n) entries of r bits. The answer
to a retrieval query on x is found by combining the values of entries associated
with x, using bit-wise XOR. In place of the XOR operation, any abelian group
operation may be used. In fact, this idea was used earlier by Majewski, Wormald,
Havas, and Czech [17] and by Seiden and Hirschberg [23] to address the special
case of order-preserving minimal perfect hashing. It is not hard to see that these
data structure in fact solve the retrieval problem. The main result of [17] is that
for k = 3 a space usage of around 1.23nr bits is possible, and this is the best
possible using the construction algorithm of [8,17] (other values of k give worse
results). Though this space usage is larger than when using perfect hashing,
asymptotically for large n, the simplicity and the lack of lower order terms
in the space usage that may dominate for small n makes it interesting from
a practical viewpoint. A particular feature is that (like for Bloom filters) all
memory lookups are nonadaptive, i.e., the memory addresses can be determined
from the query only. This can be exploited by modern CPU architectures that
are able to parallelize memory lookups (see e.g. [24]). In fact, Chazelle et al. also
show how approximate membership can be incorporated into their data structure
by extending array entries to r + log2(1/ε) bits. This generalized data structure
is called a Bloomier filter. Again, the space usage is a constant factor higher,
asymptotically, than the solution based on perfect hashing.

388 M. Dietzfelbinger and R. Pagh

Approximate membership by retrieval. We observe that there exists a simple re-
duction from approximate membership problem to the retrieval problem. Though
it is used in the approximate membership data structure based on perfect hash-
ing, we do not believe that it has been stated in this generality before (for a
proof, see the full version of this paper [12]).

Observation 1. Assuming free access to fully random hash functions, any static
retrieval data structure can be used to implement an approximate membership
data structure having false positive probability 2−r, with no additional cost in
space, and O(1) extra time.

If we drop the assumption of fully random hash functions being provided for free,
only a o(1) term has to be added to the false positive probability (for details
see [12]).

Parallel work. Immediately after a draft full version of this work appeared ([12],
March 26, 2008), we were informed that E. Porat had independently worked on
the same problems. His results are described in a report ([22], April 11, 2008).
He also uses linear equations, however without restricting the weight of rows.
The resulting problems with construction and evaluation time are circumvented
by using a two-level splitting technique similar to the one used in [16]. The space
usage is asymptotically smaller than in our Theorem 1(a).

1.3 New Contributions

Our main contribution shows that the approach of Chazelle et al. [8], Majewski et
al. [17], and Seiden and Hirschberg [23] can be used to achieve space for retrieval
that is very close to the lower bound, while retaining efficient evaluation.

Theorem 1. There exist data structures for the retrieval problem having the
following space and time complexity on a unit cost RAM with free access to a
fully random hash function (c > 0 is any constant): (a) For any fixed γ > 0, for
any sufficiently large n, and for every r with 1 ≤ r ≤ c logn: space (1+γ)nr bits,
constant query time O(1+log(1

γ)), and expected construction time O(n); (b) For
any sufficiently large n and every r with 1 ≤ r ≤ c logn: space nr + O(log logn)
bits whp.1, query time O(log n), and expected construction time O(n3).

The basic data structure and query evaluation algorithm is the same as in [8].
The new contribution is to analyze a different construction algorithm (suggested
in [23]) that is able to achieve a space usage arbitrarily close to the optimum.
Our analysis needs tools and theorems from linear algebra, while that of [8] was
based on elementary combinatorics ([23] provided only experimental results).
To get a data structure that allows expected linear construction time we devise
a new variant of the data structure and query evaluation algorithm, retaining
simplicity and non-adaptivity. (We note that the data structure of [22] has an
adaptive evaluation procedure, using many auxiliary tables.)
1 “whp.” means with probability 1 − O(1

poly(n)).

Succinct Data Structures for Retrieval and Approximate Membership 389

The papers on Bloom filters, and the work of Chazelle et al. [8] all make
the assumption of access to fully random hash functions. We state that our data
structures can be realized on a RAM, with a small additional cost in space (proof
in [12]).

Theorem 2. In the setting of Theorem 1, for some ε > 0, we can avoid the
assumption of fully random hash functions and get data structures with the fol-
lowing space and time complexities :
(a) Space (1 + γ)nr bits, query time O(1 + log(1

γ)), expected construction time
O(n), for any constant γ > 0;
(b) Space nr + O(n1−ε) bits, query time O(log n), expected construction time
O(n1+δ), for an arbitrary constant δ > 0.

1.4 Overview of Paper

Section 2 describes our basic retrieval data structure and its analysis. This leads
to part (a) of Theorem 1, except that the construction time is O(n3). For lack
of space, the approach to the proof of part (b) is only sketched briefly. Section 3
completes the proof of part (a) of Theorem 1 by showing how the construction
algorithm can be made to run in linear time. Section 4 describes a close rela-
tionship between the space requirements for dictionary implementations based
on the multiple-choice paradigm (like k-ary cuckoo hashing [15]) and the space
requirements for retrieval structures.

2 Retrieval in Constant Time and Almost Optimal Space

In this section, we give the basic construction of a data structure for retrieval
with constant time lookup operation and (1 + δ)nr space. As a technical basis,
we first describe results by Calkin [6].

2.1 Calkin’s Results

All calculations are over the field GF(2) = Z2 with 2 elements. We consider
binary matrices M = (pij)1≤i≤n,0≤j<m with n rows and m columns. If M is
such a matrix, then row vector (pi0, . . . , pi,m−1) is called pi, for 1 ≤ i ≤ n.

Theorem 3 (Calkin [6, Theorem 1.2]). For every k > 2 there is a constant
βk < 1 such that the following holds : Assume the n rows p1, . . . , pn of a matrix
M are chosen at random from the set of binary vectors of length m and weight
(number of 1s) exactly k. Then we have the following:
(a) If n/m ≤ β < βk, then Pr(M has full row rank)→ 1 (as n→∞).
(b) If n/m ≥ β > βk, then Pr(M has full row rank) → 0 (as n→∞).
Furthermore, βk − (1− (e−k/(ln 2))→ 0 for k →∞ (exponentially fast in k).

Remark 1. (a) The case k = 2 is omitted in this discussion. The threshold value
for this case is β2 = 2, as is well known from the theory of random graphs. In

390 M. Dietzfelbinger and R. Pagh

Table 1. Approximate threshold values from Theorem 3, using (1) and (2)

k 3 4 5 6

βk 0.88949 0.96714 0.98916 0.99622

βappr
k 0.9091 0.9690 0.9893 0.99624

β−1
k 1.1243 1.034 1.011 1.0038

[17] and [3] this fact is used for constructing perfect hash functions, in a way
that implicitly includes the construction of retrieval structures.
(b) A closer look into the proof of Theorem 1.2 in [6] reveals that for each k
there is some ε = εk > 0 such that in the situation of Theorem 3(a) we have
Pr(M has full row rank) = 1−O(n−ε). The following values are suitable: ε3 = 2

7 ,
ε4 = 5

7 , εk = 1 for k ≥ 5.
(c) According to [6], the threshold value βk is characterized as follows: Define

f(α, β) = − ln 2− α lnα− (1 − α) ln(1 − α) + β ln(1 + (1− 2α)k), (1)

for 0 < α < 1. Let βk be the minimal β so that f(α, β) attains the value 0 for
some α ∈ (0, 1

2). Using a computer algebra system, it is easy to find approximate
values for βk and β−1

k for small k, see Table 1. Calkin further proves that

βk = 1− e−k

ln 2
− 1

2 ln 2

(
k2 − 2k +

2k
ln 2

− 1
)
· e−2k ±O(k4) · e−3k, (2)

as k →∞. It seems that the approximation obtained by omitting the last term in
(2) is quite good already for small values of k. (See the row for βappr

k in Table 1.)

2.2 The Basic Retrieval Data Structure

Now we are ready to describe a retrieval data structure. Assume f : S → {0, 1}r
is given, for a set S = {x1, . . . , xn}. For a given (fixed) k ≥ 3 let 1 + δ > β−1

k be
arbitrary and let m = (1 + δ)n. We can arrange the lookup time to be O(k) and
the number of bits in the data structure to be mr = (1 + δ)nr plus lower order
terms.

We assume that we have access to a mapping A : U →
(
[m]
k

)
, x -→ Ax, where

(
X
k

)
= {Y ⊆ X | |X | = k}, so that A is fully random on S. We write Ax =

{h1(x), . . . , hk(x)} (the order is irrelevant). It must be possible to repeatedly
choose a new function A if the need arises. We need to store an index to identify
the function A that was actually used. It is not hard to see that using standard
hash functions with ranges [m], [m− 1], . . . , [m− k + 1], such random sets with
exactly k elements can be constructed in time O(k). (For details see [12].)

The construction starts from = {x1, . . . , xn} and the bit strings ui = f(xi) ∈
{0, 1}r, 1 ≤ i ≤ n. We consider the matrix

M = (pij)1≤i≤n,0≤j<m, with pij = 1 if j ∈ Axi and pij = 0 otherwise. (3)

Succinct Data Structures for Retrieval and Approximate Membership 391

Theorem 3(a) (with Remark 1(b)) says that M has full row rank with proba-
bility 1 − O(n−ε) for some ε > 0. Assume n is so large that this happens with
probability at least 3

4 . If M does have full row rank, the column space of M is
all of {0, 1}n, hence for all u ∈ {0, 1}n there is some a ∈ {0, 1}m with M · a = u.
More generally, we arrange the bit strings u1, . . . , un ∈ {0, 1}r as a column vec-
tor u = (u1, . . . , un)T. We stretch notation a bit (but in a natural way) so that
we can multiply binary matrices with vectors of r-bit strings: multiplication is
just bit/vector multiplication and addition is bitwise XOR. It is then easy to
see, working with the components of the ui separately, that there is a (column)
vector a = (a0, . . . , am−1)T with entries in {0, 1}r such that M · a = u.

We can rephrase this as follows (using ⊕ as notation for bitwise XOR): For
a ∈ ({0, 1}r)m and x ∈ U define

ha(x) =
⊕

j∈Ax

aj . (4)

Then for an arbitrary sequence (u1, . . . , un) of prescribed values from {0, 1}r
there is some a ∈ ({0, 1}r)m with ha(xi) = ui, for 1 ≤ i ≤ n. Such a vector a ∈
({0, 1}r)m, together with an identifier for the function A used in the successful
construction, is a data structure for retrieving the value ui = f(xi), given xi.
There are k accesses to the data structure, plus the effort to calculate the set
Ax from x.

Remark 2. A similar construction (over arbitrary fields GF(q)) was described
by Seiden and Hirschberg [23]. However, those authors did not have Calkin’s
results, and so could not give theoretical bounds on the number m of columns
needed. Also, our construction generalizes the approach of [8] and [17], where it
was required that M could be transformed into echelon form by permuting rows
and columns, which is sufficient, but not necessary, for M to have full row rank.
Using these constructions it is not possible to work with m ≤ 1.22n [17].

Some details of the construction are missing. We describe one of several possible
ways to proceed. —From S, we first calculate the sets Axi , 1 ≤ i ≤ n, in time
O(n). Using Gaussian elimination, we can check whether the induced matrix
M = (pij) has full row rank. If this is not the case, we start all over with a new
mapping A : x -→ Ax. This is repeated until a suitable matrix M is obtained. The
expected number of repetitions is 1+O(n−ε). For a matrix M with independent
rows Gaussian elimination will also yield a “pseudoinverse” of M , that is, an
invertible n×n-matrix C (coding a sequence of elementary row transformations
without row exchanges) with the property that in C · M the n unit vectors
eT
i = (0, . . . , 0, 1, 0, . . . , 0)T occur as columns:

∀i, 1 ≤ i ≤ n, ∃ bi ∈ [m]: column bi of C ·M equals eT
i . (5)

Given u = (u1, . . . , un) ∈ {0, 1}n we wish to find a ∈ {0, 1}m such that

(C ·M) · a = C · u = u′ = (u′1, . . . , u
′
n)

T. (6)

392 M. Dietzfelbinger and R. Pagh

Since C ·M has the unit vectors in columns b1, . . . , bn, we can easily read off a
special a that solves (6): Let aj = 0 for j /∈ {b1, . . . , bn}, and let abi = u′i for
1 ≤ i ≤ n. Exactly the same formula works if u, u′, and a are vectors of r-bit
strings. — We have established the following.

Theorem 4. Assume that a mapping A : U →
(
[m]
k

)
is available that is fully

random on S (with the option to choose such functions repeatedly and indepen-
dently). Let k > 2 be fixed, let 1 + δ > β−1

k , and assume n is sufficiently large.
Then given S = {x1, . . . , xn} and a sequence (u1, . . . , un) of prescribed elements
in {0, 1}r, we can find a vector a = (a0, . . . , am−1) with elements in {0, 1}r such
that ha(xi) = ui, for 1 ≤ i ≤ n. The expected construction time is O(n3), and
the scratch space needed is O(n2).

Remark 3. At the first glance, the time complexity of the construction seems
to be forbiddingly large. However, using a trick (“split-and-share” described in
[11] and in [12]) makes it possible to obtain a data structure with the same
functionality and space bounds (up to a o(n) term) in time O(n1+δ) for any
given δ > 0. In Section 3 we show how to construct a retrieval structure with
essentially the same space requirements in expected linear time.

We briefly give some ideas how Theorem 1(b) can be proved. The basic approach
is similar to the above, but we use k(x) hash functions for key x, where k(x), x ∈
S, are independent random variables, each approximately binomially distributed
with expectation Θ(log n), and a range size m = n. Theorem 2(a) in [9] entails
that the resulting square matrix will be regular with probability at least 0.28.
It takes O(n3) time to test one matrix; trying O(log n) sets of hash functions
will be sufficient whp. to find a set of hash functions that induces a matrix with
full rank. Storing the index of this set of functions takes an extra O(log logn)
bits. The rest of the construction is similar to the above. A lookup then requires
evaluating O(log n) hash functions. A splitting trick can be used to reduce the
construction time to O(n1+δ), without changing the functionality, leading to
Theorem 2(b). (Details in [12].)

3 Retrieval in Almost Optimal Space, with Linear
Construction Time

In this section we show how, using a variant of the retrieval data structure
described in Section 2.2, we can achieve linear expected construction time and
still get arbitrarily close to optimal space. This will prove Theorem 1(a). The
reader should be aware that the results in this section hold asymptotically, only
for rather large n.

Using the notation of Sections 2.1 and 2.2, we fix some k and some δ > 0
such that (1 + δ)βk > 1. Further, some constant ε > 0 is fixed. We assume that
the required fully random hash functions and mappings from keys to sets are
at our disposal, and in case the construction fails we can choose a new set of
such functions, even repeatedly. (In [12] it is explained how this can be justified.)

Succinct Data Structures for Retrieval and Approximate Membership 393

Define b = 1
2

√
logn. We assume that ε and δ are so small that (1+ε)2(1+δ) < 4,

and hence that b · 2(1+ε)2(1+δ)b2 = o(n/(log n)3).
Assume f : S → {0, 1}r is given, the value f(x) being denoted by ux. The

global setup is as follows: We use one fully random hash function ϕ to map S into
the range [m0] with m0 = n/b. In this way, m0 blocks Bi = {x ∈ S | ϕ(x) = i},
0 ≤ i < m0, are created, each with expected size b. The construction has two
parts: a primary structure and a secondary structure for the “overflow keys”
that cannot be accommodated in the primary structure. This is similar to the
global structure of a number of well-known dictionary implementations. For the
primary structure, we try to apply the construction from Section 2.2 to each of
the blocks separately, but only once, with a fixed set of k hash functions. This
construction may fail for one of two reasons: (i) the block may be too large —
we do not allow more than b′ = (1 + ε)b keys in a block if it is to be treated in
the primary structure, or (ii) the construction from Section 2.2 fails because the
row vectors in the matrix Mi induced by the sets Ax, x ∈ Bi, are not linearly
independent.

For the primary structure, we set up a table T with (1 + δ)(1 + ε)n entries,
partitioned into m0 segments of size (1+ δ)(1+ ε)b = (1+ δ)b′. Segment number
i is associated with block Bi. If the construction from Section 2.2 fails, we set all
the bits in segment number i to 0 and use the secondary structure to associate
keys in Bi with the correct values. As secondary structure we choose a retrieval
structure as in [8,17], built on the basis of a second set of three hash functions,
which are used to associate sets A′x ⊆ [1.3n′] with the keys x ∈ S′, and a
table T ′[0..1.3n′ − 1]. This uses space 1.3n′r bits, where n′ is the size of the set
S′ of keys for which the construction failed (the “overflow keys”). Of course,
the secondary structure associates a value f ′(x) with any key x ∈ S. Rather
than storing information about which blocks succeed we compensate for the
contribution from f ′(x) as follows: If the construction succeeds for Bi, we store
(1 + δ)b′ vectors of length r in segment number i of table T so that x ∈ Bi is
associated with the value f(x)⊕f ′(x). On a query for x ∈ U , calculate i = ϕ(x),
then the offset di = (i−1)(1+ δ)b′ of the segment for block Bi in T ′, and return

⊕

j∈Ax

T [j + di] ⊕
⊕

j∈A′
x

T ′[j].

It is clear that for x ∈ S the result will be f(x): For x ∈ S′ the two terms are
0 and f(x), and for x ∈ S′ the two terms are f ′(x) and f(x)⊕ f ′(x). Note that
the accesses to the tables are nonadaptive: all k + 3 lookups may be carried out
in parallel. In fact, if T and T ′ are concatenated this can be seen as the same
evaluation procedure as in our basic algorithm (4), the difference being that the
hash functions were chosen in a different way (e.g., do not all have the same
range).

Lemma 1. The expected number of overflow keys is o(n).

The proof is a standard application of Chernoff bounds—we refer to [12] for
details. The overall space is (1 + δ)(1 + ε)n(r + 1/b) + c|S′|r bits (apart from

394 M. Dietzfelbinger and R. Pagh

lower order terms). If γ > 0 is given, we may choose ε and δ (and k) so that this
bound is smaller than (1 + γ)nr for n large enough.

Lemma 2. The primary structure can be constructed in time O(n).

Proof : It is clear that linear time is sufficient to find the blocks Bi and identify
the blocks that are too large. Now consider a fixed block Bi of size at most
(1 + ε)b. We must evaluate |Bi| · k hash functions to find the sets Ax, x ∈ Bi,
and can piece together the matrix Mi that is induced by these sets in time
O(b) (assuming one can establish a word of O(b) 0s in constant time and set
a bit in such a word given by its position in constant time). The whole matrix
has fewer than logn bits and fits into a single word. This makes it possible to
use precomputed tables to speed up the computations we need. (The number
of relevant matrixes is o(n

(logn)3) so that it is possible to calculate and store
pseudoinverses and some matrix-vector products that we need in time and space
o(n). The details can be found in the full paper [12].)

Now assume a bit vector u = (u1, . . . , u|Bi|)
T ∈ {0, 1}|Bi|, is given. Using

Ci and a lookup table we can find Ci · u in constant time. A bit vector a =
(aj)1≤j≤(1+δ)b′ that solves Mi ·a = u can then be found in time O(b). This leads
to an overall construction time of O(n) for the whole primary structure.

If the values in the range are bit vectors f(x) = ux ∈ {0, 1}r, x ∈ Bi, a
construction in time O(nr) follows trivially. We may improve this time bound
by arranging lookup tables that make it possible to multiply Ci even with vectors
U = (u1, . . . , u|Bi|) of bit vectors of length up to O(log n) in constant time. �
Note that the lookup tables are needed only by the construction algorithm, and
not as part of the resulting data structure.

4 Retrieval and Dictionaries by Balanced Allocation

In several recent papers, the following scenario for (statically) storing a set
S ⊆ U of keys was studied. A set S = {x1, . . . , xn} ⊆ U is to be stored in
a table T[0..m − 1] of size m = (1 + δ)n as follows: To each key x we asso-
ciate a set Ax ⊆ [m] of k possible table positions. Assume there is a mapping
σ : {1, . . . , n} → [m] that is one-to-one and satisfies σ(i) ∈ Axi , for 1 ≤ i ≤ n.
(In this case we say (Ax, x ∈ S) is suitable for S.) Choose one such mapping and
store xi in T[σ(i)]. Examples of constructions that follow this scheme are cuckoo
hashing [20], k-ary cuckoo hashing [15], blocked cuckoo hashing [13,21], and per-
fectly balanced allocation [10]. In [5,14] threshold densities for blocked cuckoo
hashing were determined exactly. These schemes are the most space-efficient dic-
tionary structures known, among schemes that store the keys explicitly in a hash
table. For example, k-ary cuckoo hashing [15] works in space m = (1+εk)n with
εk = e−Θ(k). Perfectly balanced allocation [10] works in optimal space m = n
with Ax consisting of 2 contiguous segments of [n] of length O(log n) each.

Here, we point out a close relationship between dictionary structures of this
kind and retrieval structures for functions f : S → R, whenever the range R is

Succinct Data Structures for Retrieval and Approximate Membership 395

not too small. We will assume that R = F for a finite field F with |F| ≥ n.
(Using a simple splitting trick, this condition can be attenuated to |F| ≥ nδ.)
From Section 2.2 we recall equation (3) where the matrix M = (pij)1≤i≤n, 0≤j<m
was defined from the sets Ax, x ∈ S.

Observation 2. (For arbitrary fields F.) If the 1s in M can be replaced by
elements of F in such a way that the resulting matrix M ′ = (p′ij) has full row
rank over F, then (Ax, x ∈ S) is suitable for S.

Proof : If M ′ has full row rank, it has an n × n submatrix N with nonzero
determinant. By the definition of the determinant there must be a mapping
σ : {1, . . . , n} → [m] with

∏
p′iσ(i) = 0, hence piσ(i) = 1 for 1 ≤ i ≤ n. �

Observation 2 implies that Calkin’s bounds give upper space bounds for dictio-
nary constructions like k-ary cuckoo hashing, which match values observed in
experiments in [15]. Surprisingly, for fields that are not too small, the observa-
tion also works the other way around: existence of a dictionary implies existence
of a retrieval structure.

Theorem 5. Assume a mapping x -→ Ax is given that is suitable for S. Then the
following holds : If g1, . . . , gk : S → F are random, then with probability ≥ 1− n

|F|
the matrix M ′ = (p′ij)1≤i≤n0≤j<m, where p′ij = g�(xi) if j = h�(xi) and p′ij = 0
otherwise, has full row rank over F.

The proof uses the Schwartz-Zippel Theorem; it is given in the full paper [12].
The theorem implies the following: If the mapping x -→ Ax is suitable for S,

if |F| ≥ 2n, and if we have hash functions g1, . . . , gk : U → F that are random
on S, then with probability at least 1

2 we can build a retrieval structure for a
function f : S → F consisting of a table T [0..m − 1] with entries from F with
f(x) =

∑
1≤�≤k g�(x) · T [h�(x)]. If we can switch to new functions g1, . . . , gk if

necessary, this construction succeeds in O(1) iterations in the expected case and
in O(log n) iterations whp.

For example, from the dictionary constructions in [13] or [10], resp., we obtain
retrieval structures with a table of size ≤ (1 + e−k)nr and lookup time O(k),
or optimal size n and lookup time O(log n), resp. In both cases for one retrieval
operation we need to access only two contiguous segments of the table T , which
makes these implementations very cache-friendly.

Acknowledgement. The authors thank Philipp Woelfel for several motivating
discussions on the subject.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Optimal static range reporting in one dimen-
sion. In: Proc. 33rd ACM STOC, pp. 476–482 (2001)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

396 M. Dietzfelbinger and R. Pagh

3. Botelho, F.C., Pagh, R., Ziviani, N.: Simple and space-efficient minimal perfect
hash functions. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 139–150. Springer, Heidelberg (2007)

4. Broder, A.Z., Mitzenmacher, M.: Network applications of Bloom filters: A sur-
vey. In: Proc. 40th Annual Allerton Conference on Communication, Control, and
Computing, pp. 636–646. ACM Press, New York (2002)

5. Cain, J.A., Sanders, P., Wormald, N.C.: The random graph threshold for k-
orientiability and a fast algorithm for optimal multiple-choice allocation. In: Proc.
18th ACM-SIAM SODA, pp. 469–476 (2007)

6. Calkin, N.J.: Dependent sets of constant weight binary vectors. Combinatorics,
Probability and Computing 6(3), 263–271 (1997)

7. Carter, L., Floyd, R.W., Gill, J., Markowsky, G., Wegman, M.N.: Exact and ap-
proximate membership testers. In: Proc. 10th ACM STOC, pp. 59–65 (1978)

8. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient
data structure for static support lookup tables. In: Proc. 15th ACM-SIAM SODA,
pp. 30–39 (2004)

9. Cooper, C.: On the rank of random matrices. Random Struct. Algorithms 16(2),
209–232 (2001)

10. Czumaj, A., Riley, C., Scheideler, C.: Perfectly Balanced Allocation. In: Arora, S.,
Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003.
LNCS, vol. 2764, pp. 240–251. Springer, Heidelberg (2003)

11. Dietzfelbinger, M.: Design strategies for minimal perfect hash functions. In: Proc.
4th Int. Symp. on Stochastic Algorithms: Foundations and Applications (SAGA).
LNCS, vol. 4665, pp. 2–17. Springer, Heidelberg (2007)

12. Dietzfelbinger, M., Pagh, R.: Succinct data structures for retrieval and approximate
membership, Technical Report, arXiv:0803.3693v1 [cs.DS] (March 26, 2008)

13. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoret. Comput. Sci. 380(1–2), 47–68 (2007)

14. Fernholz, D., Ramachandran, V.: The k-orientability thresholds for Gn,p. In: Proc.
18th ACM-SIAM SODA, pp. 459–468 (2007)

15. Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.G.: Space efficient hash tables with
worst case constant access time. Theory Comput. Syst. 38(2), 229–248 (2005)

16. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

17. Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A family of perfect hashing
methods. Computer J. 39(6), 547–554 (1996)

18. Mitzenmacher, M.: Compressed Bloom filters. IEEE/ACM Transactions on Net-
working 10(5), 604–612 (2002)

19. Mortensen, C.W., Pagh, R., Pǎtraşcu, M.: On dynamic range reporting in one
dimension. In: Proc. 37th ACM STOC, pp. 104–111 (2005)

20. Pagh, R., Rodler, F.F.: Cuckoo Hashing. J. Algorithms 51, 122–144 (2004)
21. Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: Proc.

16th ACM-SIAM SODA, pp. 830–839 (2005)
22. Porat, E.: An optimal Bloom filter replacement based on matrix solving, Technical

Report, arXiv:0804.1845v1 [cs.DS] (April 11, 2008)
23. Seiden, S.S., Hirschberg, D.S.: Finding succinct ordered minimal perfect hash func-

tions. Inf. Process. Lett. 51(6), 283–288 (1994)
24. Zukowski, M., Heman, S., Boncz, P.A.: Architecture-conscious hashing. In: Proc.

Int. Workshop on Data Management on New Hardware (DaMoN), Chicago, 8
pages, Article No. 6 (2006)

Competitive Weighted Matching

in Transversal Matroids

Nedialko B. Dimitrov� and C. Greg Plaxton��

University of Texas at Austin
1 University Station C0500
Austin, Texas 78712–0233

{ned,plaxton}@cs.utexas.edu

Abstract. Consider a bipartite graph with a set of left-vertices and a
set of right-vertices. All the edges adjacent to the same left-vertex have
the same weight. We present an algorithm that, given the set of right-
vertices and the number of left-vertices, processes a uniformly random
permutation of the left-vertices, one left-vertex at a time. In processing a
particular left-vertex, the algorithm either permanently matches the left-
vertex to a thus-far unmatched right-vertex, or decides never to match
the left-vertex. The weight of the matching returned by our algorithm is
within a constant factor of that of a maximum weight matching.

1 Introduction

Motivated by applications related to auctions, mechanism design, and revenue
management, Babaioff et al. recently introduced a generalization of the secretary
problem called the online matroid problem [1]. In the online matroid problem,
the goal is to build a maximum weight independent set, but we are constrained
from knowing the full input to the problem. Instead, a uniformly random permu-
tation of the matroid elements is revealed, one element at a time, and we must
immediately decide whether to include the revealed element in the independent
set. In such a setting, an online algorithm is said to be c-competitive if it is able
to produce an independent set with weight within a factor of c of the weight of a
maximum weight independent [2]. We say that an online algorithm is competitive
if it is c-competitive for some constant c.

Babaioff et al. present competitive algorithms for the online matroid problem
on bounded left-degree transversal matroids and graphic matroids. They also
present a reduction showing that if we have a competitive algorithm for a matroid
M , then we can construct a competitive algorithm for a truncated version of M .
Babaioff et al. leave open the general online matroid problem and the central case
of transversal matroids. As discussed later in this section, the case of transversal
matroids unifies the existing results on the online matroid problem. In this paper
we present a competitive online algorithm for weighted matching in transversal
� Supported by an MCD Fellowship from the University of Texas at Austin.

�� Supported by NSF Grants CCF–0635203 and ANI–0326001.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 397–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

398 N.B. Dimitrov and C.G. Plaxton

matroids, generalizing the results of Babaioff et al. Along with the reduction
in Babaioff et al., our results also lead to competitive algorithms on truncated
transversal matroids.

Informally, the online weighted transversal matroid matching problem can be
described as follows. Consider a bipartite graph, with a set of left-vertices and
a set of right-vertices. All edges adjacent to the same left-vertex have the same
weight – we associate this weight with the left-vertex. The weighted transver-
sal matroid matching problem (WTMM) asks us to find a maximum weight
matching in this bipartite graph, and is solvable with the standard matroid
greedy algorithm. In the online weighted transversal matroid matching problem
(OWTMM), we are initially given only the total number of left-vertices, and
then a uniformly random permutation of the left-vertices is revealed, one left-
vertex at a time. When a vertex is revealed, we learn of both its weight and
its incident edges. Upon seeing a particular left-vertex, without knowing the
details of the remaining unrevealed left-vertices, we must immediately decide
which right-vertex to match it to, if any. An open problem left by Babaioff et
al. is to find an algorithm for OWTMM returning a matching with expected
weight within a constant of the optimal matching in the corresponding WTMM
problem. Theorem 1 presents such an algorithm.

In the literature, a transversal matroid is often specified by a set of elements
E, and a set of subsets A1, . . . , An of E [8]. A subset I = {a1, . . . , ak} of E is con-
sidered independent if there is an injective function f mapping I to {A1, . . . , An}
such that x ∈ f(x) for all inputs x. In our presentation, the set of elements E cor-
responds to the left-vertices, the sets A1, . . . , An correspond to the right-vertices,
and there is an edge between an element of E and a set Aj if the element belongs
to the set. An independent set then corresponds to a set of left-vertices for which
there exists a matching to the right-vertices.

Perhaps the most well studied online matroid problem is the secretary prob-
lem, which first appeared as a folklore problem in the 1950’s and has a long
history [4,5]. The problem was first solved by Lindley, who also presents a com-
petitive algorithm for the secretary problem [9]. Competitive algorithms also
exist for uniform matroids [7], bounded left-degree transversal matroids, graphic
matroids, and truncated matroids [1]. For general matroids, the best known
competitive ratio is O(log r) where r is the rank of the matroid [1].

With the exception of truncated matroids, where the result depends on
Karger’s matroid sampling theorem [6], all of the matroids for which a com-
petitive algorithm is known are a special case of the transversal matroid. For
example, the secretary problem is a transversal matroid with a single right-
vertex. The uniform matroid of rank r is a transversal matroid on a complete
bipartite graph with r right-vertices. Of course, bounded left-degree transversal
matroids are a special case of the transversal matroids. And, finally, the compet-
itive results for graphic matroids follow from a reduction to bounded-left degree
transversal matroids. Thus, indeed, transversal matroids play a central role to
the theory. For some remarks on the strong connection between general matroids
and transversal matroids, see Section 8.

Competitive Weighted Matching in Transversal Matroids 399

(a) Example 1 (b) Example 2

Fig. 1. Two example transversal matroids exhibiting the tension between using sam-
pled heavy left-vertices for pricing and over-pricing the right-vertices. The figures are
meant only to be illustrative, but can be extended to become counter-examples for
certain pricing strategies. In 1(a), we do not want to price all the right-vertices at 2,
since we would miss many left-vertices of weight 1. In 1(b), we want to price the bottom
right-vertex at 2, since otherwise we would miss the infinite weight left-vertex.

1.1 Algorithm Motivations

Recall that the secretary problem is OWTMM with a single right-vertex and
consider the following classic algorithm for the secretary problem. We sample
the first m/2 left-vertices we see, rejecting all of them, but recording their edge
weights. We set a price for the right-vertex equal to the maximum weight edge
we see in the sample. We then match the right-vertex with the first non-sampled
left-vertex whose edge weight exceeds the price, if we see such a left-vertex. The
algorithm is competitive since with probability at least 1/4, the second heaviest
edge is sampled and the heaviest edge is not sampled.

This simple sample-and-price algorithm is the motivation for most of the com-
petitive algorithms known for online matroid problems, again with the exception
of truncated matroids. However, extending this algorithm to work for all, general
transversal matroids is not straightforward. For example, Babaioff et al. show
that a sample-and-price algorithm with an adaptive sampling time which sets
the same price for all the right-vertices does not work. Babaioff et al. also show
that a more complicated scheme, where the price required of a non-sampled
left-vertex is determined by a circuit of sampled left-vertices also does not work.

One of the main issues that arises in trying to generalize the sample-and-price
algorithm is a tension between the need to use sampled heavy left-vertices to
price the right-vertices and the requirement that we not over-price too many
right-vertices. Consider the example in Figure 1(a). If in the sample we see the
left-vertex of weight 2, we should not over-price all the right-vertices at 2, since
that prevents us from matching a large number of vertices of weight 1. The figure
is only meant as an illustration, but can be extended to a counter-example by
adding logm clones of the left-vertex of weight 2. On the other hand, consider the
example in Figure 1(b). If we do not set a price of 2 for the bottom-most right-
vertex, we would prematurely match that right-vertex to a left-vertex of weight
1 instead of the infinite weight left-vertex. It is natural to consider more complex
pricing schemes, such as dynamic prices that change throughout processing, or

400 N.B. Dimitrov and C.G. Plaxton

picking a random subset of the neighbors of a heavy left-vertex and pricing only
those neighbors. However, it is both unclear if such schemes are effective and
it is difficult to analyze them as they often introduce complicated probabilistic
dependencies. It is this tension that leads Babaioff et al. to consider bounded
left-degree transversal matroids.

For our results, we avoid the difficulties arising from more complex schemes
with the concept of “candidate edges.” The candidate edges we introduce have
the following important properties. First, each left-vertex i has exactly zero or
one candidate edges, uniquely determined by the sampled left-vertices heavier
than i. In other words, given the sampled left-vertices heavier than i, the candi-
date edge is the same regardless of whether i is sampled, or where in the random
order of non-sampled vertices it appears. Second, the candidate edges of the
sampled left-vertices constitute a matching that is within a constant-factor of
the max-weight matching on the sampled subgraph.

The analysis following from our definition of candidate edges is essentially the
original sample-and-price analysis from the secretary problem, but applied to
each right-vertex separately. The algorithm prices right-vertices using only the
candidate edges. Furthermore, a non-sampled left-vertex can only be matched
using its candidate edge. For a particular right-vertex, as in the secretary prob-
lem, we hope that the second-heaviest left-vertex with a candidate edge to the
right-vertex is sampled, but the heaviest left-vertex with a candidate edge to the
right vertex not sampled. Similarly to the secretary problem, this happens with
at least 1/4 probability.

The overall argument structure is as follows. In Section 2, we define some
useful notation. In Section 3, we define candidate edges and show that they
constitute a matching with weight within a constant factor of optimal on the
sampled subgraph. In Section 4, to avoid any confusion from probabilistic de-
pendencies, we analyze sampled and non-sampled matchings through counting
arguments. Our counting argument immediately imply that a matching resulting
from candidate edges of non-sampled left-vertices has expected weight within a
constant factor of the expected weight of the matching of candidate edges of sam-
pled left-vertices. In Section 5, we show that the expected weight of the sampled
candidate edge matching is within a constant factor of the max-weight matching
on the entire graph. This completes the main technical arguments, since the non-
sampled matching is within a constant factor of the sampled matching, which is
within a constant of the optimal matching on the whole graph. In Section 6, we
present a small but clarifying intermediate algorithm between the final online
algorithm and the counting arguments presented earlier. Finally, in Section 7,
we present the online algorithm and conclude the analysis.

2 Definitions

In this section, we formally define some quantities and notation we will use
throughout the paper.

Fix a set of n right-vertices, numbered 0 to n− 1.

Competitive Weighted Matching in Transversal Matroids 401

Fix a set of m left-vertices, where each left-vertex i is described by a triple
of 1) a real number weight, w(i) 2) a unique integer ID and 3) a subset of the
right vertices, Right(i). We define a total order on the left-vertices: we say a
left-vertex i is less than a left-vertex i′ if w(i) > w(i′) or w(i) = w(i′) and i
has a smaller unique integer ID. We draw the reader’s attention to the fact that
smaller left-vertices have greater weight. From here on, we use the integers to
denote the left-vertices, with 0 denoting the minimum left-vertex, 1 denoting
the second minimum left-vertex and so forth. We draw the reader’s attention to
the fact that the ordering on the left-vertices is the same as the ordering on the
corresponding integers.

For a nonempty subset A of left-vertices or right-vertices let Min(A) return
the minimum vertex, as defined by the corresponding total order.

An edge is a pair (i, j), where i is a left-vertex and j belongs to Right(i).
A matching is a set of edges M such that each vertex appears in at most one
edge. For a matching M , let Left(M), Right(M), denote the left-vertices, right-
vertices, in the matching, respectively.

For a set of left-vertices, A, we say w(A) =
∑
i∈A w(i). For a matching M ,

we say w(M) = w(Left(M)).
To facilitate our proofs, we define the following notation. For a subset of left-

vertices L, let Prefix(L, i) = {i′ ∈ L | i′ < i}. Similarly, for a matching M , let
Prefix(M, i) = {(i′, j) ∈M | i′ < i}.

3 Algorithm A

In this section we define candidate edges and show the two main properties
discussed in Section 1.1. The first property, “each left-vertex i has exactly zero
or one candidate edges, uniquely determined by the sampled left-vertices heavier
than i” corresponds to Lemmas 1 and 2. The second property, “the candidate
edges of the sampled left-vertices constitute a matching that is within a constant-
factor of the max-weight matching on the sampled subgraph” corresponds to
Lemma 5.

First, we define a function Cands(i,M) that receives a left-vertex i and a
matching M , and returns an edge set. The Cands(i,M) function is as follows:

M ′ := Prefix(M, i)
A := Right(i)− Right(M ′)
if A = ∅

return ∅
else

return {(i,Min(A))}

Lemma 1. For any left-vertex i and matching M , Cands(i,M) either returns
the empty set, or {(i, j)}, where j is a right-vertex unmatched in Prefix(M, i).

Proof. Follows from the definition of Cands. ��

402 N.B. Dimitrov and C.G. Plaxton

Lemma 2. For any left-vertex i and matchings M and M ′ with Prefix(M, i) =
Prefix(M ′, i), we have Cands(i,M) = Cands(i,M ′).

Proof. Follows from the definition of Cands. ��

We now define an algorithm for WTMM. Algorithm AlgA(L) takes a subset of
left-vertices L and returns a matching and the algorithm is performed as follows:

M := ∅
for i in increasing order in L

M := M ∪ Cands(i,M)
return M

Recall that the total order on left-vertices is defined such that i is less than i′ if
w(i) > w(i′) or w(i) = w(i′) and i has a smaller unique integer ID.

Lemma 3. For a subset of left-vertices L, let M = AlgA(L), then M is a
matching on L and M = ∪k∈LCands(k,M).

Proof. We prove the lemma by first proving the following loop invariant in
AlgA(L): M is a matching on Prefix(L, i) and M = ∪k∈Prefix(L,i)Cands(k,M).

The claimed invariant hold initially since M := ∅ and i = Min(L). Suppose
the claim is true for M and i on entering the loop on which we process i. Let
M ′ = M ∪ Cands(i,M) and i′ be the next left-vertex in order from L.

Let A = Cands(i,M). We split the analysis in two cases. First, suppose A = ∅.
Then, M ′ = M and the claim holds for M ′ and i′ simply because it holds
for M and i. Second, suppose A = {(i, j)}, for a right-vertex j unmatched in
Prefix(M, i) (Lemma 1). Since Prefix(L, i′) = Prefix(L, i) ∪ {i}, the first part of
the invariant holds.

For the second part of the invariant, we have M ′ = M ∪ Cands(i,M) =⋃
k∈Prefix(L,i) Cands(k,M) ∪ Cands(i,M) =

⋃
k∈Prefix(L,i′) Cands(k,M), which

equals
⋃
k∈Prefix(L,i′) Cands(k,M ′). The second equality holds because the loop

invariant holds for M and i, the third equality holds by the definition of i′; and
the final equality holds by Lemma 2. This proves the invariant.

The lemma statement follows from following the same reasoning as in the
inductive step above, but taken for the final iteration of the loop. ��

Lemma 4. Let M∗ be a max-weight matching on L and M be the matching
returned by AlgA(L). If (i, j) ∈M∗ and i is unmatched in M , then there is a i′

such that (i′, j) ∈M and w(i′) ≥ w(i).

Proof. By Lemma 3, M = ∪k∈LCands(k,M). Since i is not matched in M and
by Lemma 1, we have ∅ = Cands(i,M). By the definition of Cands, the empty
set can only be returned if Right(i) ⊆ Right(Prefix(M, i)). In other words, every
right-vertex in Right(i) is matched to a left-vertex less than i in M , completing
the proof. ��

Lemma 5. Let M∗ be a max-weight matching on L, and M be the matching
returned by AlgA(L). Then w(M) ≥ 1

2w(M∗).

Competitive Weighted Matching in Transversal Matroids 403

Proof. By summing the inequality in Lemma 4 over left-vertices matched in
M∗ −M , we have w(M) ≥ w(M∗ −M). By definition of intersection, we have
w(M) ≥ w(M∗∩M). Combining the two inequalities, we have 2w(M) ≥ w(M∗).

��

4 Counting Arguments

In this section, to avoid confusion with probabilistic dependencies, we analyze
sampled and non-sampled matchings through counting arguments. As stated in
Section 1.1, our counting arguments, in specific Lemma 13, immediately imply
that a matching resulting from candidate edges of non-sampled left-vertices has
expected weight at least 1/4 of the expected weight of the matching of candidate
edges of sampled left-vertices. From this section we only export Lemma 6, which
is used to connect the counting arguments with the final online algorithm, and
Lemma 13.

Let α be a binary string and αi be the ith character in the string. Intuitively,
the reader should think of a 0 in the ith position of α as sampling the left-vertex
i and of a 1 in the ith position as not sampling i. For two binary strings α and
β, let αβ denote concatenation. For a binary string α of length at most m, we
define the sets of edges M0(α),M2(α), E0(α) recursively as follows.

M0(ε) = E0(ε) = ∅
M2(α) = Cands(|α|,M0(α))

M0(α0) = M0(α) ∪M2(α)
M0(α1) = M0(α)
E0(α0) = E0(α)
E0(α1) = E0(α) ∪M2(α)

Finally, we also define E1(α) = M0(α)∪E0(α) and M1(α) to be {(i, j) ∈ E0(α) |
j appears at most once in E0(α)}. It is not difficult to show that M0(α), M1(α)
and M2(α) are matchings while E0(α) and E1(α) are sets of edges.

We give the reader a loose intuitive interpretation of these definitions. Intu-
itively, one can think of processing the left-vertices in order of increasing weight
as we increase the length of α. Then, M2(α) represents the |α|th candidate edge;
M0(α) represents a matching created from the sampled left-vertices; E0(α) rep-
resents a set of edges created from the non-sampled left-vertices such that each
non-sampled left-vertex appears at most once; E1(α) represents a set of all can-
didate edges, regardless of whether the corresponding left-vertex is sampled; and
M1(α) represents a matching created from the non-sampled left-vertices.

Lemma 6. For a binary string α of length at most m, let A = {i | αi = 0}
and B = {i | αi = 1}. We have, M0(α) =

⋃
i∈A Cands(i,M0(α)) and E0(α) =⋃

i∈B Cands(i,M0(α)).

404 N.B. Dimitrov and C.G. Plaxton

Proof. We prove the claim by induction on the length of α. For α = ε, the claim
follows from the definition of M0(ε) and E0(ε). The inductive claim follows from
Lemma 2 and the recursive definitions of M0(α) and E0(α). ��

For a set of edges A, let deg(A, j) denote the degree of the right-vertex j in A.
For a left-vertex i and a right-vertex j, we partition the set of binary strings to
assist in our counting arguments as follows.

α ∈ S0(i, j) if |α| < i, deg(E1(α), j) = 0
α ∈ S1(i, j) if |α| = i, deg(E1(α), j) = 0,M2(α) = {(i, j)}
α ∈ S2(i, j) if deg(E0(α), j) = deg(E1(α), j) = 1, α = βγ, β ∈ S1(i, j)
α ∈ S3(i, j) if deg(E0(α), j) = 1, deg(E1(α), j) > 1, α = βγ, β ∈ S2(i, j)
α ∈ S4(i, j) otherwise.

We give the reader some intuitive interpretation of the above sets. For a
particular pair (i, j): S0(i, j) represents strings where j has never been returned
by Cands and we have not yet reached i; S1(i, j) represents strings where Cands
has never before returned j, we have just now reached i and Cands returns
{(i, j)}; S2(i, j) represents strings where j has been returned exactly once by
Cands, when j was returned by Cands it was along with i and i was non-
sampled; S3(i, j) represents strings where the first time Cands returned j it was
along with i and i was non-sampled, then j was returned again with some other,
sampled vertex i′; Finally, S4(i, j) represents all other strings.

Due to space limitations, the proofs of Lemmas 7 and 11 bellow are omitted
from this extended abstract. The reader is referred to our companion technical
report for the proofs of these lemmas [3].

Lemma 7. For any right-vertex j, left-vertex i and integer k such that i < k ≤
m, we have |S2(i, j) ∩ {0, 1}k|+ 2|S3(i, j) ∩ {0, 1}k| = 2k−i−1|S1(i, j)|.

Lemma 8. For any right-vertex j, left-vertex i and integer k such that i < k ≤
m, we have |(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|.

Proof. By Lemma 7, we have that |S2(i, j) ∩ {0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| is
equal to 2k−i−1|S1(i, j)|. We can increase the left-hand side to get 2|S2(i, j) ∩
{0, 1}k| + 2|S3(i, j) ∩ {0, 1}k| ≥ 2k−i−1|S1(i, j)|. Since S2(i, j) and S3(i, j) are
disjoint, we have |(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k| ≥ 2k−i−2|S1(i, j)|. ��

Lemma 9. For any right-vertex j and integer k such that k ≤ m, we have∑
α∈{0,1}k w(M1(α), j) ≥

∑
0≤i<k w(i)2k−i−2|S1(i, j)|, where w(M1(α), j) is de-

notes the weight of the left-vertex matched to j in M1(α) or zero if j is un-
matched.

Proof. By the definitions of M1,S2 and S3, the left-hand side of the claimed
inequality is equal to

∑
0≤i<k w(i)|(S2(i, j) ∪ S3(i, j)) ∩ {0, 1}k|, since (i, j) ∈

M1(α) implies α ∈ (S2(i, j) ∪ S3(i, j)). Applying Lemma 8 gives the desired
result. ��

Competitive Weighted Matching in Transversal Matroids 405

Lemma 10. For any integer k such that k ≤ m, we have
∑
α∈{0,1}k w(M1(α)) ≥

∑
0≤i<k

∑
0≤j<n w(i)2k−i−2|S1(i, j)|.

Proof. Follows from summing the result of Lemma 9 over all 0 ≤ j < n. ��

Lemma 11. For any right-vertex j and integer k such that k ≤ m, we have∑
α∈{0,1}k w(M0(α), j) ≤

∑
0≤i<k w(i)2k−i|S1(i, j)|, where w(M0(α), j) is equal

to the weight of the left-vertex matched to j in M0(α) or zero if j is unmatched.

Lemma 12. For any integer k such that k ≤ m, we have
∑
α∈{0,1}k w(M0(α)) ≤

∑
0≤i<k

∑
0≤j<n w(i)2k−i|S1(i, j)|.

Proof. Follows from summing the result of Lemma 11 over all 0 ≤ j < n. ��

Lemma 13. For any integer k such that k ≤ m, we have
∑
α∈{0,1}k w(M1(α)) ≥

1
4

∑
α∈{0,1}k w(M0(α)).

Proof. Follows from Lemmas 12 and 10. ��

5 Analysis under a Probability Distribution

In this section we begin working with probability distributions and show that the
expected weight of the sampled candidate edge matching is within a constant
factor of the max-weight matching on the entire graph (Lemma 15). We tie
these results with Section 4, to show that the expected weight of the non-sampled
matching is within a constant the weight of a max-weight matching on the entire
graph (Lemma 17), completing the main technical portion of the argument. The
only result exported from this section is Lemma 17.

Define a function Sample, which takes an m-bit binary string string α such
that Sample(α) = {i | αi = 0}. We introduce a probability distribution P on
strings m-bit binary strings α. In P each αi independently has an equal chance
of αi = 0 and αi = 1.

Lemma 14. Let M∗ be a max-weight matching and Mα denote a max-weight
matching on Sample(α) for a binary string α. Then, Exp[w(Mα)] ≥ 1

2w(M∗).

Proof. We have Exp[w(Mα)] ≥
∑
i∈Left(M∗) Pr[αi = 0]w(i) = 1

2w(M∗), where
the first step follows from the linearity of expectation and observing that the
matching Mα as a weight at least as big as the weight of a matching M ′

α =
{(i, j) ∈M∗ | αi = 0}. ��

Lemma 15. Let M∗ be a max-weight matching. Then, the following inequality
holds Exp[w(AlgA(Sample(α)))] ≥ 1

4w(M∗).

Proof. Let Mα be a max-weight matching on Sample(α), for a string α. Then,
we have Exp[w(AlgA(Sample(α)))] ≥ Exp[12w(Mα)] ≥ 1

4w(M∗), where the first
step follows from Lemma 5 and the second step follows from Lemma 14 and the
linearity of expectation. ��

406 N.B. Dimitrov and C.G. Plaxton

Lemma 16. Let α be any m-bit binary string and A = Sample(α). We have
M0(α) = AlgA(A).

Proof. Follows from the definition of AlgA and M0. ��

Lemma 17. Let M∗ be a max-weight matching. We have Exp[w(M1(α))] ≥
1
16w(M∗).

Proof. Follows from Lemmas 13, 15, and 16. ��

6 Intermediate Algorithm

In this section we analyze a useful intermediate algorithm between the counting
arguments and the final online algorithm. In specific, in the counting argument,
we process the non-sampled left-vertices in decreasing order of weight. In this
section we use Lemma 6 to argue that we can process the non-sampled left-
vertices in an arbitrary order. This is similar to what happens in the original
sample-and-price algorithm in the secretary problem. In the secretary problem,
we depend on the fraction of time when the second highest bidder is sampled and
the highest bidder is not. When this happens, we can process the non-sampled
bidders in an arbitrary order, since only one of them meets the required price.

We define an algorithm AlgB(α) that receives as input m-bit binary string α,
and returns a matching. The AlgB(α) function is as follows:

M := AlgA(Sample(α))
A := {0, . . . ,m} − Sample(α)
E := ∅
for i in arbitrary order from A:

E := E ∪ Cands(i,M)
return the matching of pairs (i, j) in E where j appears at

most once in E

Lemma 18. For any m-bit binary string α, we have AlgB(α) = M1(α).

Proof. Follows from Lemmas 16 and 6 and the definition of M1(α). ��

7 Online Algorithm

In this section, we define and analyze the final online algorithm, which is closely
related to the algorithm in Section 6. The main difference between the two
algorithms is that the online algorithm relies on the random permutation of left-
vertices for sampling whereas our results discuss a sampling method where each
element has an equal chance of being sampled or not. With Lemma 20 we show
that the two sampling methods induce the same distribution. The main theorem
follows.

Define the online algorithm as follows. Initially, we are given the set of right-
vertices, and the total number of left-vertices we will see, m. The algorithm
ONLINE proceeds in two phases.

Competitive Weighted Matching in Transversal Matroids 407

First phase:
k := Bin(m, 1

2), where Bin is the binomial distribution.
Reject the first k vertices, not matching them to anything.
Let B be the set of all the rejected vertices.
M0 := AlgA(B)

Second phase:
We are given M0 from the first phase.
We build a matching M1, initialized to ∅.
On receiving a left-vertex i:

A := Cands(i,M0)
if A = ∅ and the right-vertex in A is unmatched in M1

M1 := M1 ∪A
return M1

Lemma 19. Let α be a m-bit binary string, B = Sample(α) and MB
1 be a

matching returned by ONLINE when B is sampled in the first phase. Then,
w(MB

1) ≥ w(AlgB(α)).

Proof. ONLINE and AlgB perform the same operations on the vertices that are
not sampled, with the small optimization that ONLINE matches a right vertex
j to the first left-vertex i such that {(i, j)} = Cands(i,M0), while AlgB does not
match any right-vertex j that is returned twice by Cands. ��

Lemma 20. Consider a set A of m elements. Let P be the probability distribu-
tion where each a ∈ A independently has an equal chance of being sampled or
not sampled. Let P ′ be the probability distribution where we first pick a k from
Bin(m, 1

2), and then we sample the first k elements from a uniformly random
permutation of A. Then the probability distributions P and P ′ are equal.

Proof. Each subset of A is sampled with the same probability in both cases. ��

Theorem 1. Let M∗ be a max-weight matching. Given a uniformly random
permutation of the left-vertices, ONLINE returns a matching whose weight is
least 1

16w(M∗) in expectation.

Proof. Follows from Lemmas 17, 18, 19, and 20. ��

8 Concluding Remarks

In this section we make some remarks on the strong connection between transver-
sal matroids and general matroids. The connection comes from the following
characterization of a basis: B is a basis of a matroid M iff B is a minimal
set having non-empty intersection with every co-circuit of M [10]. With this
characterization, one can think of a general matroid as a bipartite graph in the
following way. Let the matroid elements be the left-vertices and co-circuits be
the right-vertices. Let there be an edge between an element and a co-circuit if

408 N.B. Dimitrov and C.G. Plaxton

the element belongs to the co-circuit. An independent set in the general ma-
troid is then a combinatorial structure which is close to a matching, but not
the same. Consider taking a particular element into an independent set we are
constructing. On taking in the element, we cover all the co-circuits containing
that element because they have non-empty intersection with the constructed
independent set. After that, to increase the independent set, we can only take
elements which cover some uncovered co-circuits. Perhaps it is possible to come
up with a sample-and-price scheme for pricing co-circuits to extend the results
of this paper to general matroids, solving the online matroid problem?

References

1. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete algorithms, pp. 434–443 (January 2007)

2. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

3. Dimitrov, N.B., Plaxton, C.G.: Competitive weighted matching in transversal ma-
troids. Technical Report TR–08–04, Department of Computer Science, University
of Texas at Austin (January 2008)

4. Ferguson, T.: Who solved the secretary problem? Statistical Science 4, 282–289
(1989)

5. Freeman, P.R.: The secretary problem and its extensions: A review. International
Statistical Review 51, 189–206 (1983)

6. Karger, D.: Random sampling and greedy sparsification for matroid optimizaiton
problems. Mathematical Programming 82, 41–81 (1998)

7. Kleinberg, R.: A multiple-choice secretary algorithm with applications to online
auctions. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
algorithms, pp. 630–631 (January 2005)

8. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Dover Publica-
tions, Mineola (2001)

9. Lindley, D.V.: Dynamic programming and decision theory. Applied Statistics 10,
39–51 (1961)

10. Oxley, J.: What is a matroid? Cubo. 5, 179–218 (2003)

Scheduling for Speed Bounded Processors

Nikhil Bansal1, Ho-Leung Chan2, Tak-Wah Lam3, and Lap-Kei Lee3

1 IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY
nikhil@us.ibm.com

2 Computer Science Department, University of Pittsburgh
hlchan@cs.pitt.edu

3 Department of Computer Science, University of Hong Kong, Hong Kong
{twlam, lklee}@cs.hku.hk

Abstract. We consider online scheduling algorithms in the dynamic speed scal-
ing model, where a processor can scale its speed between 0 and some maximum
speed T . The processor uses energy at rate sα when run at speed s, where α > 1
is a constant. Most modern processors use dynamic speed scaling to manage their
energy usage. This leads to the problem of designing execution strategies that are
both energy efficient, and yet have almost optimum performance.

We consider two problems in this model and give essentially optimum possible
algorithms for them. In the first problem, jobs with arbitrary sizes and deadlines
arrive online and the goal is to maximize the throughput, i.e. the total size of jobs
completed successfully. We give an algorithm that is 4-competitive for throughput
and O(1)-competitive for the energy used. This improves upon the 14 throughput
competitive algorithm of Chan et al. [10]. Our throughput guarantee is optimal
as any online algorithm must be at least 4-competitive even if the energy concern
is ignored [7]. In the second problem, we consider optimizing the trade-off be-
tween the total flow time incurred and the energy consumed by the jobs. We give
a 4-competitive algorithm to minimize total flow time plus energy for unweighted
unit size jobs, and a (2 + o(1))α/ ln α-competitive algorithm to minimize frac-
tional weighted flow time plus energy. Prior to our work, these guarantees were
known only when the processor speed was unbounded (T = ∞) [4].

1 Introduction

In the last few years, the increasing computing power of processors has caused dramatic
increase in their energy consumption. This not only leads to high cooling costs but also
to substantially reduced battery life in laptops and other mobile devices. Companies
such as IBM, Intel and AMD have made power aware design a key priority and even
scrapped the development of faster processors in favor of lower power ones. To be
more energy efficient, many modern processors now adopt the technology of dynamic
speed (voltage) scaling (see, e.g., [13,21,23]), where the processor can adjust its speed
dynamically in some range without any overhead. For example, IBM’s PowerPC 970FX
[1] allows the operating system to dynamically vary the speed (with zero overhead) at
various discrete points from 2.5GHz to 625MHz while the power consumption reduces
from 100W to less than 10W. In general, the rate of energy usage varies approximately

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 409–420, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

410 N. Bansal et al.

as sα with speed s, where α is typically 2 or 3 [9,20]1. Most research in dynamic voltage
scaling has focused on how to exploit this capability to reduce energy consumption
without an apparent reduction in the functionality offered by the system.

A theoretical investigation of dynamic speed scaling was initiated by the seminal
paper of Yao, Demers and Shenker [24]. They considered a model where the proces-
sor can run at any speed between 0 and infinity, incurring an energy (cost) of sα per
time unit when run at speed s. We call this the infinite speed model. In this model,
Yao et al. studied the problem where jobs with arbitrary sizes and deadlines are re-
leased over time in an online manner. The goal is to find a schedule that completes
all jobs by their deadlines while minimizing the total energy used. They gave an al-
gorithm that is 2α−1αα-competitive for energy, and proposed another algorithm OA.
Bansal, Kimbrel and Pruhs [3] showed that OA is αα-competitive and this ratio is tight
(OA is discussed in further detail later). They gave another algorithm BKP which is
about 2eα+1-competitive for large α, and moreover showed that any algorithm must
be Ω((4/3)α)-competitive (as a function of α). The deadline scheduling problem has
also been considered for other measures such as minimizing the maximum speed and
minimizing the maximum temperature [3].

For scheduling jobs without deadlines, a commonly used Quality of Service (QoS)
measure is the flow time or more generally the weighted flow time. The flow time of a
job is the time taken to complete a job since it is released. Clearly, minimizing flow time
and minimizing energy usage are orthogonal objectives. To understand their tradeoffs,
Albers and Fujiwara [2] proposed combining the dual objectives into a single objec-
tive of total flow time plus energy.2 Albers and Fujiwara focused on scheduling jobs of
unit size, and they gave an 8.3e((3 +

√
5)/2)α-competitive algorithm for minimizing

unweighted flow time plus energy. Bansal, Pruhs and Stein [4] considered the more gen-
eral problem of minimizing weighted flow time plus energy. They gave a 4-competitive
algorithm for jobs of unit size and weight. They also gave a μεγ-competitive algo-
rithm for jobs of arbitrary size and weight, where ε can be any positive constant,
με = max{(1 + 1/ε), (1 + ε)α} and γ = max{2, 2(α−1)

α−(α−1)1−1/(α−1) }. There are a
large number of other related works for dynamic speed scaling (in the infinite speed
model) and more generally for power management. We refer the readers to a survey by
Irani and Pruhs [15] for more details.

Even though the infinite speed model is rather unsatisfying to model a real processor,
it is a convenient theoretical model to work with. Typically it allows the algorithm to
focus only on the speed setting aspect. For example in the deadline scheduling problem
described above, as all jobs can always be completed, any algorithm can be assumed
to schedule jobs by Earliest Deadline First (EDF) and hence it only needs to specify
the speed at any given time. Moreover, the only relevant measures of the quality of
the schedule are energy related. Another important reason is that it gives the online
algorithm flexibility to recover from past mistakes; for example if the algorithm realizes
that it has been working too slowly thus far, it can always try to catch up by speeding
up. This often makes the algorithm design easier and more amenable to analysis.

1 This does not hold at very low speeds due to leakage power effects that do not scale with speed.
2 Without loss of generality, by changing the units of time or energy if necessary, it can be

assumed that the user is willing to spend one unit of energy to improve one unit of flow time.

Scheduling for Speed Bounded Processors 411

Recently Chan et al. [10] introduced the bounded speed model, where the proces-
sor speed can vary between 0 and some maximum T . They considered the deadline
scheduling problem in this model. Note that when the maximum speed is bounded, even
the optimal offline algorithm may not be able to complete all jobs. A natural objective
is to maximize the throughput, defined as the total work of jobs that are successfully
completed by their deadlines. In traditional scheduling (where speed is fixed) Koren
and Shasha [16] gave an algorithm Dover which is 4-competitive on throughput. More-
over Baruah et al. [7] showed that this is the best possible throughput competitive ratio
for any online algorithm. Thus running Dover at speed T is clearly 4-competitive for
throughput; however it can be arbitrarily worse with respect to energy. Chan et al. [10]
considered energy efficient algorithms for throughput maximization. They designed an
online algorithm that is 14-competitive for throughput, and its energy consumption is
at most O(1) times that of any offline solution that maximizes the throughput.

1.1 Our Results

We consider two problems in the bounded speed model: energy efficient algorithms for
throughput maximization, and that for minimizing weighted flow time.

Throughput maximization. We first discuss the throughput maximization problem.
Our main result is an algorithm Slow-D which matches the optimum throughput guar-
antee of Koren and Shasha [16] while being O(1)-competitive for energy.

Theorem 1. There is an online algorithm Slow-D that is 4-competitive with respect to
throughput and (αα + α24α)-competitive with respect to energy.

Roughly speaking, Slow-D is a combination of OA and Dover. At any time, if all the
remaining jobs can be completed using speed T , Slow-D admits all jobs and runs at the
same speed as OA; otherwise, i.e., not all jobs can be completed, Slow-D uses the same
job selection rule as Dover and runs at speed T . Hence, Slow-D uses a more sophisti-
cated job selection method than the 14-competitive algorithm of [10], and differs from
Dover by running at a slower speed when there is little work remaining. To prove the
competitive ratio of Slow-D, the main novelty is a tighter analysis which accounts for
the jobs that Dover can complete but Slow-D may miss due to the slower speed.

The setting we have considered so far is overloaded in that there may be too much
work and no algorithm can finish all the jobs even running at the maximum speed at
all times. A special case is the underloaded setting where all jobs can be completed
by running at the maximum speed at all times. In traditional scheduling with a fixed
speed processor, running EDF clearly completes all jobs and hence is 1-competitive
for throughput. Yet no energy efficient algorithm can be 1-competitive with respect to
throughput3. However, we can show that near-optimum throughput can be achieved in
the underloaded setting. In particular, we have devised an algorithm called TimeSlot(ε)
that is (1 + ε)-competitive for throughput and (1 + 1/ε)ααα-competitive for energy.
Details will be given in the full paper.

3 To be 1-competitive, an algorithm must always run at maximum speed on whatever little work
has arrived thus far, otherwise the adversary can release new jobs to make the algorithm fail to
complete all jobs.

412 N. Bansal et al.

To achieve 1-competitiveness in throughput, we consider resource augmentation
where the online algorithm is allowed to relax its maximum speed to make up for
its lack of future knowledge. In the fixed speed setting without energy concern, Lam
and To [17] gave a 1-throughput competitive algorithm using a 2T -speed processor.
Chan et al. [10] gave an energy efficient algorithm that is (1 + 1/ε)-competitive for
throughput by relaxing the maximum speed to (1 + ε)T . We can show that for the
overloaded setting, there is an online algorithm that is 1-competitive for throughput and
(1 + 2/ε)α(αα +α24α)-competitive for energy when using maximum speed (2 + ε)T ;
and for the underloaded setting, there is an online algorithm that is 1-competitive for
throughput and (1 + 1/ε)ααα-competitive for energy when using maximum speed
(1 + ε)T .

Minimizing weighted flow time. We now discuss minimizing weighted flow time plus
energy in the bounded speed model. Our results are obtained by first obtaining a guaran-
tee for weighted fractional flow time plus energy (see Section 2 for definition) and then
rounding it. We first consider the case of jobs with unit size and weight. We are able to
show that there are online algorithms that are respectively 2-competitive for fractional
flow time plus energy, and 4-competitive for total flow time plus energy.

In this paper we focus on the case of jobs with arbitrary size and weight. Note
that when the maximum speed T is very small (say Tα is less than the smallest job
weight), any algorithm must work at speed T whenever there is unfinished work. In
this case, the problem reduces to the classic problem of minimizing weighted flow time
on a fixed speed processor, without any energy concern [11, 6, 8]. For this problem it
has been recently shown that no O(1)-competitive algorithm is possible without re-
source augmentation [5]. Thus we need to relax the maximum speed of the online
algorithm to (1 + ε)T in order to be O(1)-competitive for total weighted flow time
plus energy.

Theorem 2. For jobs with arbitrary size and weight, there is an online algorithm that
is ((2 + o(1))α/ lnα)-competitive for fractional weighted flow time plus energy. Fur-
thermore, there is an online algorithm that given any ε > 0, uses a processor with
maximum speed (1 + ε)T , and is με((2 + o(1))α/ lnα)-competitive for total weighted
flow time plus energy, where με = max{(1 + 1/ε), (1 + ε)α}.

Note that both guarantees mentioned above essentially match those of [4] for the special
case of the infinite speed model. Our results here are based on generalizing and extend-
ing the analysis in [4]. As we will discuss in Section 2, the algorithms in the infinite
speed model set the speed such that at any time the rate of increase of flow time is equal
to the rate of increase of energy. However, this is not always possible in the bounded
speed model, which makes the analysis substantially harder.

Discrete speed levels. Our results can be easily adapted to discrete speed levels. The
idea is to set the maximum speed to the highest speed level and round up the speed
function to the next higher level. It maintains the performance on throughput and flow-
time, while the energy usage is increased by at most a factor of Δα, where Δ is the
maximum ratio of two consecutive non-zero speed levels.

Scheduling for Speed Bounded Processors 413

2 Preliminaries

Throughout the paper we assume jobs arrive online over time. We use r(J), p(J), d(J)
and w(J) (wherever applicable) to denote the release time, size (processing require-
ment), deadline and weight respectively of a job J . We consider scheduling algorithms
for a single processor, and assume that jobs can be preempted arbitrarily without any
penalty. The throughput of a schedule is defined as the total size of jobs that are success-
fully completed by their deadlines (no partial credit is obtained for incomplete jobs). All
our results for throughput assume that the jobs are unweighted.

Given a schedule, the flow time of a job is the amount of time since this job is released
until it completes. Equivalently, flow time of a job is simply its total cost if it pays one
unit for each unit of time until it completes. The fractional flow time of a job is defined
as its total cost if at each time unit it pays an amount equal to its unfinished fraction.
The weighted flow time of a job and the fractional weighted flow time are defined
analogously. Often fractional weighted flow time is much more convenient to work
with. The (online) Highest Density First (HDF) algorithm, which at any time works
on the job with the highest weight to size ratio, is optimal for minimizing fractional
weighted flow time. On the other hand, no O(1)-competitive online algorithm exists for
weighted flow time [5]. Note that at any time the total weighted flow time increases at
a rate equal to the total weight of currently unfinished jobs, and the total energy usage
increases at a rate sα where s is the current speed. To trade off energy and flow time,
a natural algorithm first proposed by Albers and Fujiwara [2] and analyzed in [4], is to
set the speed s such that sα is equal to the unfinished weight. However, this cannot be
done in the bounded speed model as the unfinished weight can be much larger than Tα.

Algorithm OA. We explain the Optimal Available (OA) algorithm proposed by Yao,
Demers and Shenker [24] for the infinite speed model. Note that in the infinite speed
model it suffices to specify the speed at any time (jobs are always scheduled by EDF).
Roughly speaking, the OA algorithm is the “laziest” possible algorithm that at any
time works at the average speed just enough to complete all jobs feasibly. Formally,
let pt(x) denote the amount of unfinished work at time t that has deadline within the
next x units, then pt(x)/x is a lower bound on the average rate at which any feasible
algorithm must work. At any time t, OA works at speed sOA(t) = maxx pt(x)/x. For
example, consider the instance where a job of size 1 and deadline n arrives at each of
the times 0, 1, 2, . . . , n − 1. The optimum schedule works at speed 1, and incurs total
energy of n. On the other hand, OA starts with speed 1/n during [0, 1], and has speed
1/n+. . .+1/(n−i) during [i, i+1] for i = 0, . . . , n−1. Note that during [n−1, n], OA
consumes energy at rate about (lnn)α, which is substantially larger than that consumed
by the optimum solution at any time. Interestingly however, OA is αα-competitive with
respect to energy [3].

Another useful view of OA is the following. At any time t, OA computes the opti-
mum energy schedule for the unfinished work assuming that no more jobs will arrive,
and proceeds accordingly. When more jobs arrive in the future it recomputes this sched-
ule and continues. Let stOA(t′) denote the speed function (for times t′ > t) computed by
OA at time t, assuming no more jobs arrive after time t. stOA is a decreasing piecewise

414 N. Bansal et al.

step function, i.e., it has speed sj during Ij = [tj , tj+1] for j = 0, 1 . . ., where s0 >
s1 > s2 > . . ., and t0 = t. Moreover, only jobs with deadlines in the interval Ij are
executed during Ij . The intervals Ij change when new jobs arrive, but for a fixed t′ the
computed speed stOA(t′) can only increase with time t.

3 Energy Efficient Throughput Maximization

Recall that no algorithm can be better than 4-competitive for throughput even without
energy concern. Moreover, executing Dover at the maximum speed T is 4-competitive
for throughput, but it does not guarantee energy efficiency. In this section, we give an
energy efficient algorithm Slow-D that is optimally competitive for throughput.

3.1 Algorithm Description

Consider the execution of OA with an unbounded speed processor. Let sOA(t) denote
the speed of OA at time t, and without loss of generality we assume that OA follows
the EDF policy. We design an algorithm Slow-D that simulates OA and makes deci-
sions based on its own state and that of OA. At any time t, Slow-D works at speed
s̃(t) = min{sOA(t), T }. Note that unlike OA (which works in infinite speed model),
Slow-D may not complete all the jobs, so we need to specify carefully a job selection
and execution strategy.

We first define the notion of down-time(t) that is critically used by Slow-D. At any
time t, consider the schedule stOA computed by OA assuming no new jobs arrive. We
define down-time(t) as the latest time t′ ≥ t such that the speed stOA(t′) ≥ T . If
sOA(t) < T , and no such t′ exists, we set down-time(t) to be the last time before t
when the speed was at least T (or 0 if the speed was always below T). By the nature
of OA, down-time(t) is a non-decreasing function of t no matter how jobs arrive. At
any time t, we label all released jobs (including those OA has completed) based on
down-time(t). A job J is called t-urgent if d(J) ≤ down-time(t), and is called t-
slack otherwise. Note that a t-slack job may turn into a t′-urgent job at a later time
t′ > t. However, since down-time is non-decreasing, a t-urgent jobs stays urgent until it
completes or is discarded. We call a job slack if it always remains slack during its entire
lifespan; otherwise, it is called urgent. We now describe Slow-D.

Slow-D stores all released jobs in two queues Qwork and Qwait. At any time t, it pro-
cesses the job in Qwork with the earliest deadline at speed s̃(t) = min{sOA(t), T }. As
we shall see Qwait is empty whenever Qwork is empty. Slow-D admits jobs as follows:

Job arrival. Consider a job J released at time rj . J is admitted to Qwork if
either J is rj -slack, or J and the remaining work of all rj-urgent jobs in Qwork

can be completed using speed T . Otherwise, J is admitted to Qwait. Note that
jobs admitted to Qwait are all urgent.
We say that an urgent period begins at rj if Qwork contains no urgent job before
rj and J is an urgent job admitted into Qwork.
Latest starting time (�st) interrupt. Whenever a job J in Qwait reaches its
latest starting time, i.e., current time t = d(J) − (p(J)/T), it raises an �st in-
terrupt. At an interrupt we either discard J or else expel all t-urgent jobs in
Qwork to make room for J as follows:

Scheduling for Speed Bounded Processors 415

In the current urgent period4, let J0 be the last job admitted from Qwait to
Qwork (if no jobs have been admitted from Qwait so far, let J0 be a dummy
job of size zero admitted just before the current period starts). Consider all
the jobs ever admitted to Qwork that have become urgent after J0 has been
admitted to Qwork, and let W denote the total original size of these jobs. If
p(J) > 2(p(J0)+W), all t-urgent jobs in Qwork are expelled and J is admitted
to Qwork.
Job completion. When a job J completes at time t, remove it from Qwork. If
Qwork contains no more t-urgent job, the current urgent period ends.

Note that the above urgent period is defined in such a way that at any time t during
an urgent period, only t-urgent job is being processed.

3.2 Analysis

As Slow-D works at speed min(stOA, T), the energy competitiveness follows directly
from the result of [10].

Theorem 3. [10] Any algorithm that works according to the speed function s̃(t) =
min(stOA, T) is (αα + α24α)-competitive for energy against any offline algorithm that
maximizes the throughput.

Our goal now is to show that Slow-D is 4-competitive with respect to throughput. We
partition the job sequence I into three sets. Let I� be the set of jobs admitted to Qwait

upon arrival (these may join Qwork later after raising �st interrupts). Among the jobs ad-
mitted immediately to Qwork upon arrival, we let Is denote those that are slack through
their lifespan, and let It denote the ones that become urgent at some time before they
expire. Note that Is, It and I� are disjoint. Indeed, Is and It ∪ I� are respectively the
sets of all slack jobs and all urgent jobs in I .

We first show that all slack jobs are completed by Slow-D.

Lemma 1. Slow-D completes all jobs in Is.

Proof. Consider the execution of slack jobs under the unbounded speed OA. Since these
jobs never become urgent, they are always executed at speed strictly less than T by OA.
On the other hand, whenever OA runs at speed T or above, OA is working on an urgent
job. To ease our discussion, for any time t, we call t a peak time if OA is running at
speed T or above; otherwise, t is said to be a leisure time. At any leisure time t, Slow-D
as well as OA can only work on some t-slack job (because down-time(t) < t and all
t-urgent jobs must have deadline before t). A t-slack job can never been executed at
any peak time before t by OA; yet this might be possible for Slow-D. Together with the
fact that both Slow-D and OA are using EDF, we conclude that at any leisure time t,
Slow-D does not lag behind OA on any t-slack job (including any slack job). Thus all
the slack jobs are completed by Slow-D. ��

We will show that Slow-D completes enough jobs in It and I�. In particular, we consider
each urgent period P = [SP , EP] separately and derive a lower bound of the total size

4 As we shall see �st interrupts occur only during urgent periods.

416 N. Bansal et al.

of urgent jobs that Slow-D completes in P . The following lemma is key to our lower
bound. It requires two notations: join(P) denotes the total size of jobs in It that become
urgent at some time in P . Let J∗ be the latest-deadline job in I� that is released during
P (irrespective of whether it is admitted to Qwork later or not). We define a secured
interval P ′ = [S′P , E

′
P] for P , where S′P = SP and E′P = max{d(J∗), EP }.

Lemma 2. For any urgent period P , the total size of urgent jobs completed by Slow-D
is at least 1

4 of (join(P) + |P ′| × T).

Before proving Lemma 2, we show how it implies our main result. Let p(It) be the total
size of all jobs in It. Let span(I�) be the union of the spans of all jobs in I�, which may
consist of a number of disjoint intervals, and let |span(I�)| be the total length of these
intervals.

Lemma 3. The total size of urgent jobs completed by Slow-D is at least 1
4 (p(It) +

|span(I�)| × T).

Proof. Let C be the collection of all urgent periods. By Lemma 2, the total size of
urgent jobs completed by Slow-D over all urgent periods is at least 1

4

∑
P∈C(join(P)+

|P ′| × T).
For each job J ∈ It, J joins Qwork during some urgent period, so p(It) =∑
P∈C join(P). Similarly, for each job J ∈ I�, J is released during some urgent pe-

riod, so |span(I�)| ≤
∑
P∈C |P ′|. Summing the above two equality and inequality, we

obtain
∑
P∈C(join(P) + |P ′| × T) ≥ p(It) + |span(I�)| × T. ��

Theorem 4. Slow-D is 4-competitive on throughput.

Proof. Let p(Is) be the total size of all jobs in Is. By Lemma 1 and 3, the total size of
jobs completed by Slow-D is at least p(Is)+ (1/4)× (p(It)+ |span(I�)|×T). Clearly,
any offline algorithm can complete at most p(Is) work on jobs in Is, at most p(It) work
on jobs in It and at most |span(I�)|×T work on jobs in I�, which implies the result. ��

The rest of this section proves Lemma 2. Consider an arbitrary urgent period P =
[SP , EP]. At SP , some urgent jobs start to appear in Qwork. These jobs may be re-
leased at SP , or already in Qwork before SP but just become urgent as down-time(SP)
becomes greater than their deadlines. As time goes on, more urgent jobs may appear
in Qwork, and jobs in Qwait may raise �st interrupts. Assume that k jobs J1, J2, ..., Jk
in Qwait are admitted successfully to Qwork during P at times L1 ≤ L2 ≤ · · · ≤ Lk,
respectively. For notational convenience, we let J0 and Jk+1 be jobs of size zero, ad-
mitted at L0 = SP just before any urgent job appears in Qwork and at Lk+1 = EP just
after all urgent jobs are removed from Qwork, respectively. Note that during P , Slow-D
always runs at speed T and works on urgent jobs. It completes at least Jk and all jobs
in Qwork that are found to be urgent after Jk is admitted and before EP , as these urgent
jobs are not expelled by an interrupt.

We now show a useful property about �st interrupts of jobs in I�.

Lemma 4. Every job J ∈ I� that is released during an urgent period P must raise an
�st interrupt in P (irrespective of whether it is admitted to Qwork later or not).

Scheduling for Speed Bounded Processors 417

Proof. Consider the time r(J) during P when J is released. Since J was placed in
Qwait, there was more than T (d(J)− r(J)− (p(J)/T)) urgent work in Qwork at r(J).
At time progresses, more jobs in It may join Qwork, or some jobs in I� may be admitted
successfully. In either case, the total amount of admitted urgent work can only increase.
Thus, EP > r(J) + (d(J) − r(J) − (p(J)/T)) = d(J) − (p(J)/T) which is exactly
when J raises the interrupt. ��

To lower bound the work completed by Slow-D in P , we refine the notation join as
follows: For any i, i′ such that 0 ≤ i < i′ ≤ k + 1, let join(Ji, Ji′) be the total size of
jobs in It that become urgent after Ji and before Ji′ are admitted to Qwork. Note that
join(P) = join(J0, Jk+1).

Following the above discussion of P , the total size of urgent jobs that Slow-D com-
pletes during P is at least p(Jk) + join(Jk, Jk+1). To prove Lemma 2, if suffices to
show that p(Jk) + join(Jk, Jk+1) is at least 1

4 (join(P) + |P ′| × T). We prove this via
an inductive argument whose statement is described by Lemma 5.

Lemma 5. For any urgent period P = [SP , EP] and its secured interval P ′, we have
that (1) p(Ji) ≥ join(J0, Ji)+(Li−SP)×T , for i = 0, 1, . . . , k, and (2) join(J0, Jk)+
|P ′| × T ≤ 4× p(Jk) + 3× join(Jk, Jk+1).

Proof. We prove Statement (1) by induction. For i = 0, p(J0) = 0, join(J0, Ji), and
(L0 − SP) all equal to zero. Assume the claim is true for i. For i + 1 (s.t. i + 1 ≤ k),

join(J0, Ji+1) + (Li+1 − SP)× T

= join(J0, Ji) + join(Ji, Ji+1) + ((Li+1 − Li) + (Li − SP))× T

≤ p(Ji) + join(Ji, Ji+1) + (Li+1 − Li)× T (by induction)

≤ 2× (p(Ji) + join(Ji, Ji+1)) < p(Ji+1) .

The second last step follows as the maximum work Slow-D can process during
[Li, Li+1] is at most (p(Ji)+ join(Ji, Ji+1)). The final step follows as Ji+1 is admitted
from Qwait.

Before proving Statement (2), we observe the following bounds of J∗:

(d(J∗)− Ep)× T ≤ p(J∗) ≤ 2(p(Jk) + join(Jk, Jk+1)) .

The first inequality follows from Lemma 4. If J∗ is admitted to Qwork, then J∗ = Ji
for some i ≤ k; otherwise, p(J∗) ≤ 2(p(Ji) + join(Ji, Ji+1)) for some i ≤ k. In both
cases, p(J∗) ≤ 2(p(Jk) + join(Jk, Jk+1)). Thus,

join(J0, Jk) + |P ′| × T = join(J0, Jk)+(EP−SP)× T + max{d(J∗)−EP , 0} × T

≤ join(J0, Jk) + (Lk − SP)× T + (EP − Lk)× T + p(J∗)
≤ p(Jk) + (EP − Lk)× T + p(J∗) (by (1))
≤ p(Jk) + p(Jk) + join(Jk, Jk+1) + p(J∗)
≤ 4× p(Jk) + 3× join(Jk, Jk+1) . ��

418 N. Bansal et al.

4 Minimizing Weighted Flow Time Plus Energy

We first consider the problem of minimizing the total fractional weighted flow time
plus energy on a variable speed processor, in the bounded speed setting. Let wa(t)
and wo(t) denote the total fractional weight of jobs in the online algorithm and some
fixed optimum schedule at time t. Consider the algorithm that works at speed sa(t) =
min{wa(t)1/α, T } and schedules jobs using HDF. We prove Theorem 5, which matches
the guarantee of [4] up to lower order terms, who showed it for the case of T = ∞. Then
by the same technique in [4], we can use this result to obtain a competitive algorithm for
total (integral) weighted flow time plus energy using a processor with maximum speed
(1+ ε)T (recall that the speed augmentation is necessary to obtain a constant guarantee
for this measure). We begin with a useful lemma relating the total fractional weight of
jobs under both online and any offline algorithm.

Lemma 6. For any offline algorithm, at any time t we have that wa(t)− wo(t) ≤ Tα.

Proof. Clearly the result holds if wa(t) ≤ Tα, and hence we consider the case when
wa(t) ≥ Tα. Thus at the current time t, the speed sa(t) = T . Let t0 be the latest time
before t such that the speed just before t0 (we denote this time by t−0) is less than T .
Consider the set S of jobs that arrive during [t0, t] and let w(S) denote their total weight.
Let w̃ denote the amount of fractional weight completed by the offline algorithm by
time t restricted to the jobs in S. As our algorithm always schedules the highest density
job, the amount of fractional weight completed by our algorithm during [t0, t] when
considered over all possible jobs (and not just jobs in S) is at least w̃. Thus it follows
that wa(t)−wa(t−0) ≤ w(S)− w̃ ≤ wo(t). This implies that wa(t)−wo(t) ≤ wa(t−0)
which is at most Tα since sa(t−0) < T . ��

Theorem 5. The algorithm described above is 2α/(α − (α − 1)1−1/(α−1)) = ((2 +
o(1))α/ lnα)-competitive with respect to fractional weighted flow time plus energy.

Proof. For notational ease, we will drop the time t from the notation, since all variables
are understood to be functions of t. We will show that there is a potential function Φ,
such that the value of the function is 0 at the beginning and at end of the schedule, never
increases upon the release of a job, and satisfies the condition dΦdt ≤ c(wo+sαo)−(wa+
sαa) for some c ≥ 1. As observed by [4], this proves that the algorithm is c-competitive
for total fractional weighted flow plus energy. In fact as wa ≥ sαa for our algorithm, it
suffices to show that

dΦ

dt
≤ c(wo + sαo)− 2wa . (1)

Consider the potential function Φ= η
(β+1)

∫∞
0

(
wa(h)β+1−(β + 1)wa(h)βwo(h)

)
dh,

where β = 1− 1/α, and wa(h) and wo(h) are the total fractional weight of active jobs
that have an inverse density (defined as the size of a job divided by its weight) of at least
h under our algorithm and for some fixed optimum schedule respectively. The constant
η will be chosen appropriately later.

That the potential function does not increase upon job arrival follows from Lemma 10
in [4] which implies that the content of the integral wa(h)β+1 − (β + 1)wa(h)βwo(h)
never increases when both wa(h) and wo(h) are increased by the same amount. Thus

Scheduling for Speed Bounded Processors 419

we analyze the case when a job is being executed. The analysis starts similar to [4]. We
let ma and mo be the inverse density of the job being executed by our algorithm and
the optimum schedule at the current time. Then we have

dΦ

dt
= −η(

∫ ∞

0

(wa(h)β − βwa(h)β−1wo(h))
dwa(h)

dt
− wa(h)β

dwo
dt

dh)

= −η(
∫ ma

0

(wa(h)β − βwa(h)β−1wo(h))
sa
ma

dh) + η(
∫ mo

0

wa(h)β
so
mo

dh)

≤ −η(wβasa − βwβ−1
a wosa) + η

∫ mo

0

wβa
so
mo

dh)

= −ηwβasa + ηβwβ−1
a wosa + ηwβa so

≤ −ηwβasa + ηβwβ−1
a wosa + η(μβwa + βsαo) . (2)

The second step follows from the HDF nature of our algorithm. The final step follows
by applying Young’s inequality with a = wβa , b = s0, p = 1/β, and q = α, and

μ = (α− 1)−1/(α−1), which gives wβaso ≤ μβwa +
(

1
μ

)αβ (
sα

o

α

)
= μβwa + βsαo .

We now show that (1) holds. We divide the analysis in three different cases. In each
case we show that dΦ/dt ≤ −η(1−μβ)wa+η(w0 +sαo). Setting η = 2/(1−μβ), this
implies a competitive ratio of 2/(1− μβ), which by substituting the values of μ and β
gives our claimed guarantee. The first case is when wo ≥ wa ≥ Tα. Observe that in
this case sa = T . Starting with (2),

dΦ

dt
≤ η(−wβaT + βwβ−1

a woT + μβwa + βsαo)

< η(−wβaT + wβ−1
a woT + μβwa + sαo) (as β < 1)

= η(wβ−1
a (wo − wa)T + μβwa + sαo)

≤ η(wβ−1
a (wo − wa)w1/α

a + μβwa + sαo) (as wa > Tα and wo > wa)

= −η(1− μβ)wa + ηwo + ηsαo .

The second case is when wa ≥ Tα and wa > wo. Again, sa = T . 79

dΦ

dt
≤ η(−wβ

asa + βwβ−1
a wosa + μβwa + βsα

o)

= −ηwβ−1
a (wa − βwo)T + ημβ wa + ηsα

o (as β < 1)

≤ −ηwβ−1
a (wa − βwo)(wa − wo)

1/α + ημβwa+ηsα
o (Lemma 6 and (wa−βwo) > 0)

≤ −ηwβ−1
a w1−β

a (wa − wo)
β(wa − wo)

1/α + ημβwa + ηsα
o

= −η(1 − μβ)wa + ηwo + ηsα
o .

The third step follows as (wa − wo) < Tα by Lemma 6. The fourth step follows by
using that fact that (1 − βx) ≥ (1 − x)β for any 0 ≤ β ≤ 1 and 0 ≤ x < 1, which
implies that (wa − βwo) ≥ w1−β

a (wa − wo)β .

Finally we consider the case that wa < T . Here sa = w
1/α
a , and this is exactly

the case handled by [4]. We reprove it here for completeness. dΦdt ≤ −ηwβasa +
ηβwβ−1

a wosa+ηβμwa+ηβsαo = −η(1−βμ)wa+ηβwo+ηβsαo ≤ −η(1−βμ)wa+
ηwo + ηsαo . Thus the result follows. ��

420 N. Bansal et al.

References

1. http://www-03.ibm.com/chips/power/powerpc/newsletter/
sep2004/technical2.html

2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633. Springer, Heidelberg
(2006)

3. Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and tempera-
ture. Journal of the ACM 51(1) (2007)

4. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc. SODA, pp.
805–813 (2007)

5. Bansal, N., Chan, H.L.: Weighted flow time does not have O(1) competitive algorithms
(manuscript)

6. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. In: Proc. SODA, pp. 508–516
(2003)

7. Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: On-line schedul-
ing in the presence of overload. In: Proc. FOCS, pp. 100–110 (1991)

8. Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A., Pruhs, K.: Online Weighted Flow
Time and Deadline Scheduling. In: Proc. RANDOM-APPROX, pp. 36–47 (2001)

9. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Well-
man, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and
modeling challenges for next-generation microprocessors. IEEE Micro. 20(6), 26–44 (2000)

10. Chan, H.L., Chan, W.T., Lam, T.W., Lee, L.K., Mak, K.S., Wong, P.: Energy efficient online
deadline scheduling. In: Proc. SODA, pp. 795–804 (2007)

11. Chekuri, C., Khanna, S., Zhu, A.: Algorithms for minimizing weighted flow time. In: Proc.
STOC, pp. 84–93 (2001)

12. Dertouzos, M.L.: Control robotics: the procedural control of physical processes. In: Proc.
IFIP Congress, pp. 807–813 (1974)

13. Grunwald, D., Levis, P., Farkas, K.I., Morrey, C.B., Neufeld, M.: Policies for dynamic clock
scheduling. In: Proc. OSDI, pp. 73–86 (2000)

14. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cam-
bridge (1952)

15. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT News (2005)
16. Koren, G., Shasha, D.: Dover : An optimal on-line scheduling algorithm for overloaded

uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)
17. Lam, T.W., To, K.K.: Performance Guarantee for Online Deadline Scheduling in the Presence

of Overload. In: Proc. SODA, pp. 755–764 (2001)
18. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocations for tree-structured tasks. In:

Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 283–296. Springer, Heidelberg (2005)
19. Li, M., Yao, F.: An efficient algorithm for computing optimal discrete voltage schedules.

SIAM J. Comput. 35(3), 658–671 (2005)
20. Mudge, T.: Power: A first-class architectural design constraint. Computer 34(4), 52–58 (2001)
21. Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating

systems. In: Proc. SOSP, pp. 89–102 (2001)
22. Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best response for your erg. In:

Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 14–25. Springer, Hei-
delberg (2004)

23. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy. In:
Proc. OSDI, pp. 13–23 (1994)

24. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc.
FOCS, pp. 374–382 (1995)

http://www-03.ibm.com/chips/power/powerpc/newsletter/sep2004/technical2.html
http://www-03.ibm.com/chips/power/powerpc/newsletter/sep2004/technical2.html

Faster Algorithms for Incremental Topological
Ordering�

Bernhard Haeupler1, Telikepalli Kavitha2, Rogers Mathew2,
Siddhartha Sen1, and Robert E. Tarjan1,3

1 Princeton University, Princeton NJ 08544
{haeupler, sssix, ret}@cs.princeton.edu

2 Indian Institute of Science, Bangalore, India.
{kavitha, rogers}@csa.iisc.ernet.in

3 HP Laboratories, Palo Alto CA 94304

Abstract. We present two online algorithms for maintaining a topological order
of a directed acyclic graph as arcs are added, and detecting a cycle when one is
created. Our first algorithm takes O(m1/2) amortized time per arc and our second
algorithm takes O(n2.5/m) amortized time per arc, where n is the number of
vertices and m is the total number of arcs. For sparse graphs, our O(m1/2) bound
improves the best previous bound by a factor of log n and is tight to within a
constant factor for a natural class of algorithms that includes all the existing ones.
Our main insight is that the two-way search method of previous algorithms does
not require an ordered search, but can be more general, allowing us to avoid the
use of heaps (priority queues). Instead, the deterministic version of our algorithm
uses (approximate) median-finding; the randomized version of our algorithm uses
uniform random sampling. For dense graphs, our O(n2.5/m) bound improves the
best previously published bound by a factor of n1/4 and a recent bound obtained
independently of our work by a factor of log n. Our main insight is that graph
search is wasteful when the graph is dense and can be avoided by searching the
topological order space instead. Our algorithms extend to the maintenance of
strong components, in the same asymptotic time bounds.

1 Introduction

We consider two related problems on dynamic directed graphs: cycle detection and
maintaining a topological order. These problems are closely connected, since a directed
graph has a topological order if and only if it is acyclic. We present two algorithms
for maintaining a topological order that asymptotically improve the best known time
bounds for both sparse and dense graphs.

A topological order of a directed graph is a total order of the vertices such that
for every arc (v, w), v < w. A directed graph has a topological order (and generally
more than one) if and only if it is acyclic [9]. Given a fixed n-vertex, m-arc graph, a

� This paper combines the best results of [12] and [7]. The former gives two incremental
topological ordering algorithms, with amortized time bounds per arc addition of O(m1/2 +
(n log n)/m1/2) and O(n2.5/m). The latter, which was written with knowledge of the former,
gives an algorithm with a bound of O(m1/2).

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 421–433, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

422 B. Haeupler et al.

topological order can be found in O(n +m) time by either of two algorithms: repeated
deletion of sources [13,14] or depth-first search [28]. The former method extends to the
enumeration of all possible topological orderings.

In some applications, the graph is not fixed but changes over time. The incremental
topological ordering problem is that of maintaining a topological order of a directed
graph as arcs are added, stopping when addition of an arc creates a cycle. This prob-
lem arises in incremental circuit evaluation [2], pointer analysis [21], management of
compilation dependencies [17,19], and deadlock detection [3].

In considering the incremental topological ordering problem, we shall assume that
the vertex set is fixed and specified initially, and that the arc set is initially empty. Our
ideas easily extend to support vertex as well as arc additions, with a time of O(1) per
vertex addition. Our methods also allow arc deletions, since deletion of an arc cannot
create a cycle nor invalidate the current topological order, but our time bounds are only
valid if there are no arc deletions. Our algorithms also extend to the maintenance of
strong components under arc additions, in the same asymptotic time bounds, but we
omit the details here because of space constraints.

One could of course recompute a topological order after each arc addition, but this
would require O(n + m) time per arc. Our goal is to do better. The incremental cy-
cle detection and topological ordering problems have received much attention, espe-
cially recently. Shmueli [27] applied depth-first search to test for cycles in a directed
graph subject to arc additions and deletions. As a heuristic to improve its efficiency, his
method maintains a topological ordering, although he did not describe it as such. For the
topological ordering problem, Marchetti-Spaccamela et al. [18] gave a one-way search
algorithm that takes O(n) amortized time per arc addition. Alpern et al. [2] gave a two-
way search algorithm that handles batched arc additions and has a good time bound in
an incremental model of computation. Katriel and Bodlaender [11] showed that a vari-
ant of the algorithm of Alpern et al. takes O(min{m1/2 logn,m1/2 + (n2 logn)/m})
amortized time per arc addition. Liu and Chao [15] tightened this analysis to Θ(m1/2 +
n1/2 logn) per arc addition. Pearce and Kelly [20] gave an algorithm that they claimed
was fast in practice on sparse graphs, although it has an inferior asymptotic time bound.
Kavitha and Mathew [12] improved the results of Liu and Chao by presenting another
variant of the algorithm of Alpern et al. with an O(m1/2 + (n logn)/m1/2) amortized
time bound per arc addition. Ajwani et al. [1] gave an algorithm with an amortized time
per arc addition of O(n2.75/m), better for dense graphs than the bound of Kavitha and
Mathew. Independent of our work, Liu and Chao [16] modified the algorithm of Ajwani
et al. to obtain an Õ(n2.5/m) amortized time bound per arc addition.

We generalize the two-way search method introduced by Alpern et al. and used in
later algorithms by observing that the method does not require an ordered search (used
in all previous algorithms) to be correct. This allows us to refine the general method into
one that avoids the use of heaps (priority queues), but instead uses either approximate
median-finding or random selection, resulting in an O(m1/2) amortized time bound per
arc addition. The randomized version of our algorithm is especially simple.

For dense graphs, we observe that graph search itself is wasteful because it can do
unnecessary arc traversals. By searching the current topological order instead, we obtain

Faster Algorithms for Incremental Topological Ordering 423

an O(n2.5/m) amortized time bound per arc addition. This algorithm is also simple,
although its analysis relies on a linear program bound developed by Ajwani et al.

The body of our paper comprises five sections. Section 2 describes the two-way
search method, verifies its correctness, and analyzes its running time. Section 3 re-
fines the method to yield an algorithm fast for sparse graphs. Section 4 describes an
alternative approach that avoids graph search and yields an algorithm fast for dense
graphs. Section 5 analyzes the running time of this algorithm. Section 6 examines lower
bounds and other issues. In particular, we show in this section that on sparse graphs our
O(m1/2) amortized time bound is tight to within a constant factor for a natural class of
algorithms that includes all the existing ones.

2 Topological Ordering Via Two-Way Search

We develop our topological ordering algorithm through refinement of a general method
that encompasses many of the older algorithms. By vertex order we mean the current
topological order. We maintain the vertex order using a data structure such that testing
the predicate “x < y” for two vertices x and y takes O(1) time, as does deleting a vertex
from the order and reinserting it just before or just after another vertex. The dynamic
ordered list implementations of Dietz and Sleator [6] and Bender et al. [4] meet these
requirements: their methods take O(1) time worst-case for an order query or a deletion,
and O(1) time for an insertion, amortized or worst-case depending on the structure.
For us an amortized bound suffices. In addition to a topological order, we maintain the
outgoing and incoming arcs of each vertex. This allows two-way search. Initially the
vertex order is arbitrary and all sets of outgoing and incoming arcs are empty.

To add an arc (v, w) to the graph, proceed as follows. Add (v, w) to the set of arcs
out of v and to the set of arcs into w. If v > w, search forward from w and backward
from v until finding either a cycle or a set of vertices whose reordering will restore
topological order.

A vertex x is forward if there is a path from w to x of arcs traversed forward, back-
ward if there is a path from x to v of arcs traversed backward. A vertex is scanned if it
is forward and all its outgoing arcs have been traversed, or it is backward and all its in-
coming arcs have been traversed. To do the search, traverse arcs forward from forward
vertices and backward from backward vertices until either a forward traversal reaches
a backward vertex x or a backward traversal reaches a forward vertex x, in which case
there is a cycle, or until there is a vertex s such that all forward vertices less than s and
all backward vertices greater than s are scanned.

In the former case, stop and report a cycle consisting of a path from w to x traversed
forward, followed by a path from x to v traversed backward, followed by (v, w). In the
latter case, restore topological order as follows. Let X be the set of forward vertices
less than s and Y the set of backward vertices greater than s. Find topological orders
$X and $Y of the subgraphs induced by X and Y , respectively. Assume s is not forward;
the case of s not backward is symmetric. Delete the vertices in X ∪ Y from the current
vertex order and reinsert them just after s, in order $Y followed by $X . (See Figure 1.)

424 B. Haeupler et al.

w v
s

v w

s

X Y Y X

Fig. 1. Restoring topological order after two-way search. Since s is not forward, the vertices in Y
are inserted (in topological order) just after s, followed by the vertices in X.

Theorem 1. The two-way search method is correct.

Proof. Omitted. See [7]. ��

This method requires O(1) time plus O(1) time per arc traversed, plus any overhead
needed to guide the search. To obtain a good time bound we need to minimize both the
number of arcs traversed and the search overhead. In our discussion we shall assume
that no cycle is created. Only one arc addition, the last one, can create a cycle; the last
search takes O(m) time plus overhead.

We need a way to charge the search time against graph changes caused by arc addi-
tions. To measure such changes, we count pairs of related graph elements, either vertex
pairs, vertex-arc pairs, or arc-arc pairs: two such elements are related if they are on a
common path. The number of related pairs is initially zero and never decreases. There
are at most

(
n
2

)
< n2/2 vertex-vertex pairs, nm vertex-arc pairs, and

(
m
2

)
< m2/2

arc-arc pairs. For sparse graphs, the related arc-arc pairs are of most use to us.
We limit the search in three ways to make it more efficient. First, we restrict it to

the affected region, the set of vertices between w and v. Specifically, only arcs (u, x)
with u < v are traversed forward, and only arcs (y, z) with z > w are traversed back-
ward. This suffices to attain an O(n) amortized time bound per arc addition. The bound
comes from a count of newly-related vertex-arc pairs: each arc (u, x) traversed forward
is newly related to v, each arc (y, z) traversed backward is newly related to w. The al-
gorithm of Marchetti-Spaccamela et al. [18] is the special case that does just a one-way
search forward from w using s = v, with one refinement and one difference: it does a
depth-first search, and it maintains the topological order as an explicit mapping between
the vertices and the integers from 1 to n.

One-way search allows a more space-efficient graph representation, since we need
only forward incidence sets, not backward ones. But two-way search has a better time
bound if it is suitably limited. We make the search balanced: each traversal step is
of two arcs concurrently, one forward and one backward. There are other balancing
strategies [2,11,12], but this simple one suffices for us. Balancing by itself does not
improve the time bound; we need a third restriction. We call an arc (u, x) traversed for-
ward and an arc (y, z) traversed backward compatible if u < z. Compatibility implies
that (u, x) and (y, z) are newly related. We make the search compatible: each traversal
step is of two compatible arcs; the search stops when there is no pair of untraversed
compatible arcs.

Faster Algorithms for Incremental Topological Ordering 425

Theorem 2. Compatible search is correct.

Proof. Omitted. ��

Lemma 1. If the searches are compatible, the amortized number of arcs traversed dur-
ing searches is O(m1/2) per arc addition.

Proof. We count related arc-arc pairs. Consider a compatible search of 2k arc traversals,
k forward and k backward. Order the arcs (u, x) traversed forward in increasing order
on u, breaking ties arbitrarily. Let (u, x) be the "k/2#th arc in the order. Arc (u, x) and
each arc following (u, x) has a compatible arc (y, z) traversed backward. Compatibility
and the ordering of forward traversed arcs imply that u < z. Thus each such arc (y, z)
is newly related to (u, x) and to each arc preceding (u, x), for a total of at least (k/2)2

newly related pairs.
We divide searches into two kinds: those that traverse at most m1/2 arcs and those

that traverse more. Searches of the first kind satisfy the bound of the lemma. Let 2ki be
the number of arcs traversed during the ith search of the second kind. Since 2ki > m1/2

and
∑
i(ki/2)2 < m2/2,

∑
i ki < 2

∑
i ki

2/m1/2 = 8
∑
i(ki/2)2/m1/2 < 4m3/2.

Thus there are O(m1/2) arc traversals per arc addition. ��

We still need a way to implement compatible search. The most straightforward is to
make the search ordered: traverse arcs (u, x) forward in non-decreasing order on u and
arcs (y, z) backward in non-increasing order on z. This requires two heaps (priority
queues) to store unscanned forward and unscanned backward vertices. In essence this
is the algorithm of Alpern et al. [2], although they use a different balancing strategy.
The heap overhead is O(log n) per arc traversal, resulting in an amortized time bound
of O(m1/2 logn) per arc addition. More-complicated balancing strategies lead to the
improvements [11,12,15] in this bound for non-dense graphs mentioned in Section 1.

3 Compatible Search Via a Soft Threshold

The running time of an ordered search can be reduced further, even for sparse graphs, by
using a faster heap implementation, such as those of van Emde Boas [31,30], Thorup
[29], and Han and Thorup [8]. But we can do even better, avoiding the use of heaps
entirely, by exploiting the flexibility of compatible search. We guess the value of the
threshold s and traverse arcs forward only from vertices less than or equal to s and
backward only from vertices greater than or equal to s. When we run out of unscanned
vertices on one side or the other, we revise our guess of s. Since this method does not
know the final value of s until it stops, it can do extra work, but with a careful choice of
s this extra work only costs a constant factor.

In addition to the soft threshold s, the algorithm maintains two hard thresholds, l
and h, such that all forward vertices less than l and all backward vertices greater than
h are scanned. It maintains the invariant l ≤ s ≤ h. It also maintains partitions of
the candidate forward vertices into A ∪ B and of the candidate backward vertices into
C ∪D. Set B contains forward vertices temporarily bypassed because they are greater
than s (but less than h); set D contains backward vertices temporarily bypassed because

426 B. Haeupler et al.

they are less than s (but greater than l). We call the vertices in B∪D far. The remaining
candidate vertices, those in A ∪ C, are near. The algorithm is as follows. Initialize l to
w, h to v, s to v (or w), A to {w}, C to {v}, and B, D, X , and Y to empty. Then repeat
an applicable one of the following cases until A ∪B or C ∪D is empty (see Figure 2):

Case 1f. A = ∅: set l = s, A = B, B = D = ∅, and choose s ∈ A.
Case 1b. C = ∅: set h = s, C = D, B = D = ∅, and choose s ∈ C.

In the remaining cases, A and C are non-empty. Choose u ∈ A and z ∈ C.

Case 2f. u > s: delete u from A; if u < h, insert u in B.
Case 2b. z < s: delete z from C; if z > l, insert z in D.

In the remaining cases l ≤ u ≤ s ≤ z ≤ h.

Case 3f. All arcs from u are traversed: move u from A to X .
Case 3b. All arcs to z are traversed: move z from C to Y .
Case 4. There are untraversed arcs (u, x) and (y, z): choose two such arcs and traverse
them. If x is backward or y is forward, stop and report a cycle. If x is unreached and
less than h, make it forward and add it to A. If y is unreached and greater than l, make
it backward and add it to C.

A B

w v

s

D

l h

CD C

Fig. 2. Compatible search via a soft threshold. In this example A is empty, so Case 1f applies: l
is moved to s and a new s is selected from the vertices in B (which becomes the new A).

If the search stops without detecting a cycle, set s = h if A ∪ B is empty, s = l
otherwise. Delete from X all forward vertices no less than s and from Y all backward
vertices no greater than s. Reorder the vertices as described in Section 2.

Theorem 3. Compatible search with a soft threshold is correct.

Proof. Omitted. See [7]. ��

Lemma 2. The running time of compatible search via a soft threshold is O(1) plus
O(1) per arc traversed plus O(1) for each time a vertex becomes near.

Faster Algorithms for Incremental Topological Ordering 427

Proof. Each case either traverses two arcs and adds at most two vertices to A ∪ C, or
permanently deletes a vertex from A ∪ C, or moves a vertex from A ∪ C to B ∪D, or
moves one or more vertices from B ∪ D to A ∪ C. The number of times vertices are
moved from A ∪C to B ∪D is at most the number of times vertices become near. ��
The algorithm is correct for any choice of soft threshold, but only a careful choice
makes it efficient. Repeated cycling of vertices between near and far is the remaining
inefficiency. We choose the soft threshold to limit such cycling no matter how the search
proceeds. A good deterministic choice is to let the soft threshold be the median or an
approximate median of the appropriate set (A or C); an ε-approximate median of a
totally ordered set of g elements is any element that is less than or equal to at least εg
elements and greater than or equal to at least εg elements, for some constant ε > 0. The
(exact) median is a 1/2-approximate median. Finding the median or an approximate
median takes O(g) time [5,26]. An alternative is to choose the soft threshold uniformly
at random from the appropriate set. This gives a very simple yet efficient randomized
algorithm.

Lemma 3. If each soft threshold is an ε-approximate median of the set from which
it is chosen, then the number of times a vertex becomes near is O(1) plus O(1) per
arc traversed. If each soft threshold is chosen uniformly at random, then the expected
number of times a vertex becomes near is O(1) plus O(1) per arc traversed.

Proof. The value of l never decreases as the algorithm proceeds; the value of h never
increases. Let k be the number of arcs traversed. Suppose each soft threshold is an
ε-approximate median. The first time a vertex is reached, it becomes near. Each subse-
quent time it becomes near, it is one of a set of g vertices that become near, as a result
of being moved from B to A or from D to C. The two cases are symmetric; consider
the former. No matter what happens later, at least εg vertices have become near for the
last time. Just after s is changed, at least εg vertices in A are no less than s, and at least
εg vertices in A are no greater than s. Just before the next time s changes, l = s or
h = s. In the former case, all vertices no greater than s can never again become near;
in the latter case, all vertices no less than s can never again become near. We charge the
group of g newly near vertices to the vertices that become near for the last time. The
total number of times vertices can become near is at most (2 + k)/ε: there are at most
2 + k forward and backward vertices and at most 1/ε times a vertex can become near
per forward or backward vertex.

Essentially the same argument applies if the soft threshold is chosen uniformly at
random. If a set of g vertices becomes near, the expected number that become near for
the last time is at least

∑
1≤i≤g/2(2i)/g = (g/2 + 1)/2 > g/4 if g is even, at least

"g/2#+
∑

1≤i<�g/2�(2i)/g = "g/2#2/g > g/4 if g is odd. The total expected number
of times vertices can become near is at most 4(2 + k). ��
Theorem 4. The amortized time for incremental topological ordering via compati-
ble search is O(m1/2) per arc addition, worst-case if each soft threshold is an ε-
approximate median of the set from which it is chosen, expected if each soft threshold
is chosen uniformly at random.

Proof. Immediate from Lemmas 1–3. ��

428 B. Haeupler et al.

4 The Dense Case: Topological Search

The compatible search method described in Section 3 is efficient for sparse graphs. In
dense graphs, graph search becomes wasteful because it can do unnecessary arc traver-
sals, in particular of arcs that end at vertices beyond the stopping threshold. One way to
reduce the overhead of graph search is to sort the incident arc lists by end vertex. Unfor-
tunately, keeping the arc lists sorted seems to require more than O(m3/2) time, giving
no actual improvement. The O(n2.75)-time algorithm of Ajwani et al. uses this idea but
keeps the arc lists partially sorted, trading off search time against arc list reordering
time.

We do better for dense graphs by avoiding graph search and instead searching the
topological order. We change the representations of both the graph and the vertex order.
For the former we use a matrix M : M(v, w) = 1 if (v, w) is an arc, 0 otherwise.
For the latter we use an explicit 1-1 mapping I : V → {1, . . . , n}; we also maintain
I−1. For a given new arc (v, w) with I(v) > I(w), we visit the vertices in topological
order forward from w and backward from v, accessing consecutive entries of I−1 until
finding either a cycle or a set of vertices whose reordering will restore topological order.
This is a form of ordered two-way search in which the ordering comes for free because
we search the order, not the graph. The difficulty lies in finding the set of vertices that
need to be reordered, because we can no longer depend on arc traversals to find paths.

We explain our algorithm in detail now. We maintain the set of forward vertices F , or
those that can be reached from w, and backward vertices R, or those that can reach v, as
deques [13] (double-ended queues). To add an arc (v, w) with I(w) = i and I(v) = j,
proceed as follows. Set M(v, w) = 1. If v > w, initialize F to {w} and R to {v}
and do an ordered two-way search forward from i and backward from j in I−1[i..j].
For each index k visited by the forward search, determine if the vertex x = I−1[k] is
forward by querying M(f, x) for each f ∈ F . If any of the queries evaluates to 1, add
x to the back of F . The backward search is symmetric. Stop the search when an index t
is reached such that all vertices in I−1[i..t] have been visited by the forward search and
all vertices in I−1[t..j] have been visited by the backward search. (See Figure 3.)

As in our sparse algorithm, we limit the search in several ways to make it more
efficient. First, we restrict it to the affected region I−1[i..j]. We also make the search
balanced: we alternate searching forward and backward to balance the size of F and R.
The forward search runs until it adds a vertex to F , then the backward search runs until
it adds a vertex to R, and so on.

w v

i t j

I-1:

hcraesdrawkcabhcraesdrawrof

Fig. 3. The forward and backward search meet at index t

Faster Algorithms for Incremental Topological Ordering 429

At the end of the search phase, we can determine if (v, w) creates a cycle using the
following lemma:

Lemma 4. The new arc (v, w) creates a cycle if and only if I−1[t] ∈ F ∩R or there is
an arc (x, y) such that x ∈ F and y ∈ R.

Proof. Omitted. See [12]. ��

We still need to reorder the vertices in F and R to restore topological order. We can use
the method described in Section 2, but this breaks the 1-1 mapping between the vertices
and {1, . . . , n}. We take a much simpler approach: we reuse the indices of the vertices
in F ∪R (and possibly some other indices we have not seen yet) to reorder the vertices.
Begin by deleting all the vertices of F ∪ R from their current locations in I−1. The
vertices in F must find new indices in I−1[t..j] and the vertices in R must find new
indices in I−1[i..(t− 1)]. Extend the forward search to I−1[t..j]; the backward search
is extended symmetrically to I−1[i..(t− 1)]. For each index k ∈ {t, . . . , j}, delete the
vertex at the front of F and place it in I−1[k] if I−1[k] is empty. Otherwise if the vertex
x = I−1[k] is forward, remove x from its current location and add it to the end of F
and place the vertex at the front of F into I−1[k].

At the beginning of the reordering phase the size of F and R are equal to within
1 because they are balanced during the search phase. Consider the forward search;
the backward search is symmetric. If the forward search started first during the search
phase, then F has at most 1 more vertex than R, the last vertex being at index t itself.
It follows that the number of empty indices in I−1[t..j] equals the size of F after the
vertices in F ∪R are deleted from I−1. Each time a forward vertex is found during the
reordering phase it is added to F and its location in I−1 is filled by an existing vertex of
F . Each empty index is filled by a vertex from F . Thus the number of empty indices in
I−1[k..j] for k ≥ t always equals the size of F when the forward search is at k. When
k = j there are no empty indices left and all vertices in F have been placed in I−1[t..j].

It is easy to see that the reordering scheme above preserves the relative order of the
vertices in F and the relative order of the vertices in R. The reordering is effectively a
cyclic permutation of the forward and backward vertices in the affected region. Vertices
that are not forward or backward, and all vertices outside the affected region, are unaf-
fected by the algorithm. Combining the above argument with Lemma 4 and Theorem 1,
we have:

Theorem 5. Topological search is correct.

5 Bounding the Running Time

To bound the running time of the algorithm, observe that its work comes in two forms:
searching the topological order between i and j and maintaining the sets F and R, and
checking for a cycle prior to the reordering phase. Since the two-way search is ordered,
the latter time can be bounded using a count of related vertex pairs (all pairs in F × R
prior to the reordering phase are newly related).

Lemma 5. The time required to check for cycles over all arc additions is O(n2).

430 B. Haeupler et al.

It is instructive to observe that balanced search is not required for Lemma 5. Balanced
search is used to draw an equivalence between the total movement of vertices during
reordering and the work performed by the algorithm to maintain the sets F and R. Let
Ie be the topological order before adding arc e = (v, w) and let I ′e be the topological
order after adding e. Balanced search allows us to show the following:

Lemma 6. The time required to maintain F and R for a new arc e is
∑
x∈V |Ie(x) −

I ′e(x)|.

Proof. Consider the forward search; the backward search is symmetric. Any vertex
x ∈ F belongs to the set F while the forward search moves from Ie(x) to I ′e(x) in
I−1. During this time, each non-empty index k causes the algorithm to check if the
vertex I−1[k] is adjacent to x. Since x is involved in only one such query per index, the
total work attributable to x is |Ie(x)− I ′e(x)|. To see why x does not do more than this
amount of work, it suffices to observe that F and R are balanced prior to reordering and
that I ′e(x) must lie in {t, . . . , j}.

Now, we use a result from [1] to bound the total movement of vertices, which in turn
bounds the total running time of our algorithm.

Lemma 7.
∑
x∈V |Ie(x) − I ′e(x)| over all arcs e is O(n2.5).

Proof. The reordering phase of our algorithm performs a cyclic permutation of the
vertices inserted into F ∪ R. We can view this permutation as a sequence of swaps
between pairs of vertices (x, y) where x ∈ R and y ∈ F . Prior to a swap I(x) > I(y).
If a pair (x, y) is swapped during a permutation, then it is never swapped again in
any future permutation because x and y are newly related by the path created from
x to v followed by the arc (v, w) followed by the path from w to y. Let d(x, y) =
I(x) − I(y), the difference between x and y when they are swapped as a result of a
permutation. By the previous argument d(x, y) is uniquely defined. Ajwani et al. [1]
used a linear program to show that

∑
d(x, y) = O(n2.5), where the summation is over

all pairs (x, y) that get swapped during some permutation. Thus it suffices to decompose
a permutation into a sequence of swaps to prove this lemma.

Let Fe be the set of vertices added to F as a result of processing arc e; define Re
analogously. (Fe and Re contain vertices inserted during both the search and reordering
phases of the algorithm.) Let Fe = {w0, w1, . . . , wp}, where w0 = w and O(w0) <
. . . < O(wp), and let Re = {v0, v1, . . . , vq}, where v0 = v and O(v0) > . . . > O(vq).
We decompose the permutation of Fe ∪Re as follows. For each vertex x ∈ Re starting
with vq and in increasing order, swap x with the vertices in Fe in decreasing order,
starting with the first vertex wr ∈ Fe that is less than x. That is, swap x successively
with the vertices in {wr, . . . , w0}. After the swaps are complete the new index of x is
I ′e(x) and all vertices in Fe are higher than x, so we have:

Ie(x) − I ′e(x) =
∑

y∈{wr,...,w0}
d(x, y) (1)

Repeat this process for the next vertex (vq−1) and so on until all vertices in Re are
less than all vertices in Fe. Since the swaps only use existing indices of Fe ∪Re in I−1

Faster Algorithms for Incremental Topological Ordering 431

and since the relative order of the vertices in each set is preserved, it follows that the
final order of the vertices is: vq, vq−1, . . . , v0, w0, . . . , wp−1, wp. We can bound the total
movement of the vertices as follows. Let πe be the permutation due to arc e; (x, y) ∈ πe
means that the pair (x, y) is swapped in πe.

∑

x∈V
|Ie(x) − I ′e(x)| =

∑

x∈Re

(Ie(x) − I ′e(x)) +
∑

y∈Fe

(I ′e(y)− Ie(y)) (2)

= 2
∑

x∈Re

(Ie(x) − I ′e(x)) (3)

= 2
∑

x∈Re

∑

y:(x,y)∈πe

d(x, y) (4)

= 2
∑

(x,y)∈πe

d(x, y).

Equation 3 follows from 2 because
∑
x∈V Ie(x) =

∑
x∈V I ′e(x). Equation 4 follows

from Equation 1. Since each pair (x, y) is swapped at most once over all permutations,
the above sum is identical to the result of Ajwani et al. within a factor of 2 and we have∑
x∈V |Ie(x)− I ′e(x)| = 2

∑
(x,y)∈πe

d(x, y) = O(n2.5). ��

6 Lower Bounds and Other Issues

A natural question to ask is whether the time bounds we have obtained for our algo-
rithms are tight, and more generally whether there are faster algorithms for either sparse
or dense graphs or both. For the sparse case, Katriel and Bodlaender [11] give a class of
examples on which our soft threshold algorithm takes Ω(m1/2) time per arc addition;
thus our analysis is tight. For the dense case, our topological search algorithm takes
Ω(n2/m) time per arc addition in the worst case by a general lower bound below. We
do not know whether our bound of O(n2.5/m) for this algorithm is tight, although the
solution of the LP used in the analysis is Θ(n2.5): there may be additional constraints
in the behavior of the algorithm that are not captured by the LP.

More generally, Ramalingam and Reps [23] gave a class of examples in which n− 1
arc additions force Ω(n logn) vertex reorderings, no matter what topological order is
maintained. Katriel [10] gave a class of examples on which any algorithm that (1) only
reorders vertices within the affected region and (2) maintains the vertex order as an
explicit mapping from the vertices to {1, . . . , n} must do Ω(n2) vertex reorderings for
n arc additions. Our topological search algorithm is subject to this bound, although our
soft threshold algorithm is not. We have obtained the following related result:

Theorem 6. There is a class of examples on which any algorithm that only reorders
vertices within the affected region must do Ω(nm1/2) vertex reorderings for n arc ad-
ditions.

Proof. Omitted. See [7]. ��
All existing algorithms are subject to this bound. The theorem implies that our soft
threshold algorithm is within a constant factor of minimum-time on sparse graphs (m =
O(n)) among algorithms that reorder only within the affected region.

432 B. Haeupler et al.

If both additions and deletions are allowed, there is no known solution for either
the topological ordering or cycle detection problem better than running an O(m)-time
static algorithm after each graph change. There has been quite a bit of work on the
harder problem of maintaining full reachability information for a dynamic graph. See
[24,25].

We have used amortized running time as our measure of efficiency. An alternative
way to measure efficiency is to use an incremental competitive model [22], in which
the time spent to handle an arc addition is compared against the minimum work that
must be done by any algorithm, given the same current topological order and the same
arc addition. The minimum work that must be done is the minimum number of ver-
tices that must be reordered, which is the measure that Ramalingam and Reps used in
their lower bound. But no existing algorithm handles an arc addition in time polynomial
in the minimum number of vertices that must be reordered. To obtain positive results,
some researchers have measured the performance of their algorithms against the mini-
mum sum of degrees of vertices that must be reordered [2] or a more-refined measure
that counts out-degrees of forward vertices and in-degrees of backward vertices [20].
For these models, appropriately balanced forms of ordered search are competitive to
within a logarithmic factor [2,20]. In such a model, our sparse-efficient algorithm is
competitive to within a constant factor.

Alpern et al. and Pearce and Kelly consider batched arc additions as well as single arc
additions. Generalizing compatible search and topological search to efficiently handle
batched arc additions is a topic for future work.

Acknowledgement

The last author thanks Deepak Ajwani for his presentation at the 2007 Data Structures
Workshop at Bertinoro that motivated the work in Sections 2 and 3.

References

1. Ajwani, D., Friedrich, T., Meyer, U.: An O(n2.75) algorithm for online topological order-
ing. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 53–64. Springer,
Heidelberg (2006)

2. Alpern, B., Hoover, R., Rosen, B.K., Sweeney, P.F., Zadeck, F.K.: Incremental evaluation of
computational circuits. In: SODA 1990, pp. 32–42 (1990)

3. Belik, F.: An efficient deadlock avoidance technique. IEEE Trans. on Comput. 39(7) (1990)
4. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified algo-

rithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

5. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. of
Comput. and Syst. Sci. 7(4), 448–461 (1973)

6. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: STOC 1987, pp.
365–372 (1987)

7. Haeupler, B., Sen, S., Tarjan, R.E.: Incremental topological ordering and strong component
maintenance (2008)

8. Han, Y., Thorup, M.: Integer sorting in O(n
√

log log n) expected time and linear space. In:
FOCS 2002, pp. 135–144 (2002)

Faster Algorithms for Incremental Topological Ordering 433

9. Harary, F., Norman, R.Z., Cartwright, D.: Structural Models : An Introduction to the Theory
of Directed Graphs. John Wiley & Sons, Chichester (1965)

10. Katriel, I.: On algorithms for online topological ordering and sorting. Technical Report MPI-
I-2004-1-003, Max-Planck-Institut für Informatik, Saarbrücken, Germany (2004)

11. Katriel, I., Bodlaender, H.L.: Online topological ordering. ACM Trans. on Algor. 2(3), 364–
379 (2006)

12. Kavitha, T., Mathew, R.: Faster algorithms for online topological ordering (2007)
13. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1. Addison-

Wesley, Reading (1973)
14. Knuth, D.E., Szwarcfiter, J.L.: A structured program to generate all topological sorting ar-

rangements. Inf. Proc. Lett. 2(6), 153–157 (1974)
15. Liu, H.-F., Chao, K.-M.: A tight analysis of the Katriel-Bodlaender algorithm for online

topological ordering. Theor. Comput. Sci. 389(1-2), 182–189 (2007)
16. Liu, H.-F., Chao, K.-M.: An Õ(n2.5)-time algorithm for online topological ordering (2008)
17. Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: On-line graph algorithms for incremen-

tal compilation. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 70–86. Springer,
Heidelberg (1994)

18. Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: Maintaining a topological order under
edge insertions. Inf. Proc. Lett. 59(1), 53–58 (1996)

19. Omohundro, S.M., Lim, C.-C., Bilmes, J.: The Sather language compiler/debugger imple-
mentation. Technical Report TR-92-017, International Computer Science Institute, Berkeley
(1992)

20. Pearce, D.J., Kelly, P.H.J.: A dynamic topological sort algorithm for directed acyclic graphs.
J. of Exp. Algorithmics 11, 1–7 (2006)

21. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Online cycle detection and difference propagation for
pointer analysis. In: SCAM 2003, pp. 3–12 (2003)

22. Ramalingam, G., Reps, T.W.: On the computational complexity of incremental algorithms.
Technical Report CS-TR-1991-1033, University of Wisconsin-Madison (1991)

23. Ramalingam, G., Reps, T.W.: On competitive on-line algorithms for the dynamic priority-
ordering problem. Inf. Proc. Lett. 51(3), 155–161 (1994)

24. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed graphs. In:
FOCS 2002, pp. 679–688 (2002)

25. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs with an
almost linear update time. In: STOC 2004, pp. 184–191 (2004)

26. Schönhage, A., Paterson, M., Pippenger, N.: Finding the median. J. of Comput. and Syst.
Sci. 13(2), 184–199 (1976)

27. Shmueli, O.: Dynamic cycle detection. Information Processing Letters 17(4), 185–188
(1983)

28. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. on Comput. 1(2), 146–
160 (1972)

29. Thorup, M.: Integer priority queues with decrease key in constant time and the single source
shortest paths problem. J. of Comput. Syst. Sci. 69(3), 330–353 (2004)

30. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space.
Inf. Proc. Lett. 6(3), 80–82 (1977)

31. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority
queue. Mathematical Systems Theory 10, 99–127 (1977)

Dynamic Normal Forms and Dynamic

Characteristic Polynomial

Gudmund Skovbjerg Frandsen1 and Piotr Sankowski2

1 University of Aarhus, Denmark
gudmund@daimi.au.dk

2 Warsaw University, Poland and University of Rome ”La Sapienza”, Italy
piotr.sankowski@gmail.com

Abstract. We present the first fully dynamic algorithm for comput-
ing the characteristic polynomial of a matrix. In the generic symmetric
case our algorithm supports rank-one updates in O(n2 log n) random-
ized time and queries in constant time, whereas in the general case the
algorithm works in O(n2k log n) randomized time, where k is the num-
ber of invariant factors of the matrix. The algorithm is based on the
first dynamic algorithm for computing normal forms of a matrix such
as the Frobenius normal form or the tridiagonal symmetric form. The
algorithm can be extended to solve the matrix eigenproblem with rela-
tive error 2−b in additional O(n log2 n log b) time. Furthermore, it can be
used to dynamically maintain the singular value decomposition (SVD) of
a generic matrix. Together with the algorithm the hardness of the prob-
lem is studied. For the symmetric case we present an Ω(n2) lower bound
for rank-one updates and an Ω(n) lower bound for element updates.

Introduction. The computation of the characteristic polynomial (CP) of a ma-
trix and the eigenproblem are two important problems in linear algebra and they
find an enormous number of applications in mathematics, physics and computer
science. Till now almost nothing about the dynamic complexity of these problems
has been known. The CP problem is essentially equivalent to the computation of
the Frobenius Normal Form (FNF), known also as rational canonical form. All
of the efficient algorithms for CP are based on the FNF computation [1–4]. The
fastest static algorithms for computing CP are either based on fast matrix multi-
plication and work in Õ(nω) time [4, 1] or they are so called black-box approaches
working in Õ(nm) time [2, 3], where m is the number of nonzero entries in the ma-
trix. The latter bound holds only in the generic case, whereas the fastest general
algorithm works in O(μnm) [3], where μ is the number of distinct invariant fac-
tors of the matrix. All of these results have been obtained very recently. In this
paper we are trying to understand the dynamic complexity of these fundamental
problems by devising efficient algorithms and by proving matching lower bounds.
Note, that in this paper and in all of the papers cited above, we study the arith-
metic complexity of the problem, i.e., the notion of time is equivalent to the count
of arithmetic operations and discrete control operations. More strictly speaking
we work in the real RAM model, for details see [5].

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 434–446, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Normal Forms and Dynamic Characteristic Polynomial 435

In the first part of the paper we consider the problem of computing the normal
form of a real (complex) n × n dynamic matrix A. We assume that the matrix
can be changed with use of rank-one updates, i.e., for two n dimensional vectors
a and b we allow updates of the form A := A + abT . We want to dynamically
compute matrices Q and F such that A = Q−1FQ, where Q is the unitary
similarity transformation and F is the normal form in question. The algorithm
should support queries to F as well as vector queries to Q, i.e., given vector v
it should be able to return Qv or Q−1v. We present the following fully dynamic
randomized algorithms for this problem:

– for generic symmetric matrices — an algorithm for tridiagonal normal form
supporting updates in O(n2 logn) worst-case time,

– for general matrices — an algorithm for Frobenius normal form (for definition
see Section 1.1) supporting updates in O(kn2 logn) worst-case time, where
k is the number of invariant factors of the matrix.

The queries for F are answered in O(1) time and the queries to Q in O(n2 logn)
worst-case time. After each update the algorithms can compute the character-
istic polynomial explicitly and hence support queries for CP in constant time.
These are the first known fully dynamic algorithms for the CP and normal form
problems. Our results are based on a general result which can be applied to any
normal form, under condition of availability of a static algorithm for computing
the normal form of a sparse matrix. For the completeness of the presentation
we have included the full algorithm for generic symmetric matrices, whereas the
included algorithm for Frobenius normal form is the most universal result.

This algorithm can be extended to solve the dynamic eigenproblem, i.e., we
are asked to maintain with relative error 2−b the eigenvalues λ1, . . . , λn and
a matrix Q composed of eigenvectors. In generic case, our algorithm supports
updates in O(n log2 n log b + n2 log n) worst-case time, queries to λi in constant
time and vector queries to Q in O(n2 logn) worst-case time. You should note
that the relative error 2−b is immanent even in the exact arithmetic model, i.e.,
the eigenvalues can only be computed approximately (for more details please
see [6]).

Let A be a real (complex) m× n matrix, m ≥ n. The singular value decompo-
sition (SVD) for A consists in two orthogonal (unitary) matrices U and V and a
diagonal matrix Σ = diag(σ1, . . . , σn) with nonnegative real entries (the singular
values) such that A = UΣV T . Usually the entries of Σ are sorted σ1 ≥ · · · ≥ σn ≥
0 and in that case Σ is unique. We define Σk to be diag(σ1, . . . , σk, 0, . . . , 0). The
dynamic SVD problem considers maintaining the SVD under rank one updates
and 2 query operations, one operation returns elements of Σ, another returns the
k-rank approximation to A, i.e., given r and v return UΣrV

T v. Here, again the
results are with a relative error 2−b. Our algorithm for SVD supports updates in
O(n log2 n log b + n2 logn) worst-case time in the generic case, queries to Σ in
constant time and r-rank approximation query in O(n2 logn) worst-case time.

Accompanying the above upper bounds, we provide some lower bounds for
the problem of computing the characteristic polynomial. The lower bounds are
formulated in the model of history dependent algebraic computation trees [7].

436 G.S. Frandsen and P. Sankowski

One should note that our algorithms for computing the CP fit into this model. We
use the technique developed and used by [7] for proving Ω(n) lower bounds for
several dynamic matrix problems. The technique has been used later to prove an
Ω(n) lower bound for the matrix rank problem [8]. Here, we significantly extend
the technique to show an Ω(n2) lower bound for the problem of computing the
characteristic polynomial in the case of column updates. This is the first known
result of this type. A column update can be realized with the use of one rank-one
update. Additionally, we provide Ω(n) lower bounds for the CP problem in the
case of element updates.

The paper is organized as follows. In the next subsection we motivate our
study by reviewing possible applications within the scope of computer science.
Nevertheless, note that the eigenproblem is THE method to study physical sys-
tems and our result could be applied to speed-up the physical computations in
case when system parameters can be changed. In Section 1 we introduce the
algorithms mentioned above. Section 2 includes the description of the obtained
lower bound.

Applications and Earlier Work. Our result delivers a general framework
for solving many problems that are based on the computation of matrix normal
forms and on the solution of the matrix eigenproblem. Hence it generalizes a
large number of problem specific solutions and can be directly applied to a
broad spectrum of problems. Until now, it has been known how to dynamically
compute the lowest coefficient of the CP, i.e., the determinant [9] and the rank
of the matrix [8]. Our paper generalizes these two results as the CP can be used
for both computing the determinant and in a rather simple way for computing
the matrix rank [10, 11].

Our algorithms can be used to maintain dynamic information about the spec-
trum of a graph. Spectral graph theory has a large number of applications (see
e.g. [12]) and delivers a way to compute numerous information about the graph.
One of the possible applications is a dynamic testing of graph isomorphism,
where one of the basic tools is a characteristic polynomial of the adjacency or
Laplacian matrix [13].

Our algorithms for computing eigenvalues and eigenvectors can be used for
both dynamically approximating the size of the graph partition and for finding
good candidates for partition, e.g., the second smallest eigenvalue is related
to the minimum partition size [14, 15]. There are several spectral methods for
finding partitions and clusters in the graphs which can be used together with
our algorithm [16, 17]. Clustering methods find application in image recognition
and processing [16], where dynamic algorithms may be useful to process image
changes.

Another direct application of our results is the dynamic maintenance of the
stationary distribution of the finite Markov chain. For this problem slightly faster
algorithms, working in O(n2) time, based on Sherman-Morison formula has been
presented in [18–20]. However, our result is more general and can be used to check
if the stationary distribution is unique or to compute the convergence time to
stationary distribution by finding second largest eigenvalue [21], etc..

Dynamic Normal Forms and Dynamic Characteristic Polynomial 437

The SVD of a matrix may be directly used for finding the nearest matrix of a
rank at most r by zeroing all singular values except the r largest [22]. For such
a use only the leftmost r columns of U and V need to be known. Our concrete
dynamic algorithm below allows application of the rank r approximation matrix
to a vector in time O(m2 logm) for any r. Indirectly dynamic SVD has many
applications, e.g., for image analysis [23], in databases [24] and for data mining
(recommender systems) [25].

In the case when addition of an entire vector or deletion of the last column
of the matrix is allowed algorithms that take O((m + n)min(m,n)) time per
operation are known [26, 27]. Brand [25] has described an algorithm for rank
one updates of the SVD (similar to our model) that takes time O(mr + r3) for
maintaining a rank r approximation. Hence our solution improves these results
as well.

1 Dynamic Characteristic Polynomial - Upper Bounds

In this section we show the algorithms for dynamically computing the character-
istic polynomial, computing normal form and solving matrix eigenproblem. We
show that the CP problem is strongly related to the static problem of computing
the CP of a sparse or structured matrix. Standard methods for computing CPs
transform the matrix to a normal form from which the characteristic polynomial
can be easily computed. If the normal form has O(n) non-zero entries and its CP
can be computed in O(n2) time, it is called a thin normal form. For example, the
Frobenious or the tridiagonal normal forms are thin. We assume, we are given a
static algorithm that computes a thin normal form, a transition matrix and its
inverse with use of O(n) matrix-vector multiplications and O(f(n)) additional
operations. We show how to convert this algorithm into a dynamic algorithm
for computing a thin normal form supporting updates in O(n2 logn + f(n))
amortized time and queries in constant time. This result automatically implies
a dynamic algorithm for computing the CP. Next we move to the application
of this result and show implementations of this solution in the symmetric and
general case. If the algorithm has some additional properties, we can turn it into
a dynamic worst-case time algorithm. Finally we show how to extend the result
to dynamically solve the matrix eigenproblem and SVD problem.

1.1 Amortized Bound

In the algorithm we keep the n × n matrix A over the field F in the following
lazy form:

A = Q−1
0 Q−1

1 . . . Q−1
k−1Q

−1
k TQkQk−1 . . .Q1Q0, (1)

where k ≤ "logn#, the matrices Qi, for i = 1, . . . , n, are some similarity transfor-
mations and T is a thin normal form. In each update we recompute the lazy form
of the matrix and afterwards we compute its characteristic polynomial with use
of the matrix T . We initialize the algorithm with the matrix A0 and compute
its normal form A0 = Q−1

0 T0Q0. Moreover, after n updates we reinitialize the

438 G.S. Frandsen and P. Sankowski

algorithm. Let us consider the sequence of t rank-one updates given by vectors
ai and bi, for i = 1, . . . , t, and let Ai denote the matrix after the i-th update,
i.e.:

Ai = A0 +
i∑

j=1

ajb
T
j .

Let:
t = 2j1 + 2j2 + . . . + 2jk , (2)

where j1 > j2 > . . . > jk. We require that the lazy form (1) fulfils the following:

A2j1+...+2ji = Q−1
0 Q−1

1 . . . Q−1
i−1Q

−1
i TiQiQi−1 . . . Q1Q0, (3)

for i = 1, . . . , k and for Ti in the thin normal form. Now consider a new update
numbered t+ 1. We have t+ 1 = 2j1 + 2j2 + . . .+ 2jk′ + 2j

′
, for some k′ ≤ k and

j′ < jk′ . Thus we have to compute a new lazy form fulfilling:

A + at+1b
T
t+1 = Q−1

0 Q−1
1 . . . Q−1

k′ Q′
−1
k′+1TQ′k′+1Qk′ . . .Q1Q0. (4)

Note that in order to recompute this form we have to discard the matrices
Qk′+1, . . . , Qk and compute a matrix Q′k′+1. Hence applying (3) we have:

A + at+1b
T
t+1 = A2j1+...+2j

k′ +
2j1+...+2j

k′ +2j′
∑

j=2j1+...+2j
k′ +1

ajb
T
j =

= Q−1
0 Q−1

1 . . .Q−1
k′−1Q

−1
k′ Tk′Qk′Qk′−1 . . . Q1Q0 +

2j1+...+2j
k′ +2j′

∑

j=2j1+...+2j
k′ +1

ajb
T
j =

= Q−1
0 . . . Q−1

k′

⎛

⎝Tk′ +
2j1+...+2j

k′ +2j′
∑

j=2j1+...+2j
k′ +1

Qk′ . . . Q0ajb
T
j Q

−1
0 . . . Q−1

k′

⎞

⎠Qk′ . . . Q0.

Thus we have to compute the normal form of the matrix Dt+1:

Dt+1 := Tk′ +
2j1+...+2j

k′ +2j′
∑

j=2j1+...+2j
k′ +1

Qk′ . . .Q0ajb
T
j Q

−1
0 . . .Q−1

k′ . (5)

Note that the vectors aj,k′ = Qk′ . . . Q0aj and bTj,k′ = bTj Q
−1
0 . . . Q−1

k′ , for j ≤ t,
are computed at the time when the algorithm was recomputing the lazy form
after the j-th update. At the time of the j-th update k was greater than k′ and
so the matrices Q0, . . . , Qk′ have not changed since then. Thus we only need
to compute the vectors at+1,k′ and bt+1,k′ when we are performing the t + 1-
th update — this takes O(n2 logn) time. The multiplication of a vector by the
matrix Dt+1 takes O(n2j

′
) time. Hence for the computation of the normal form

of Dt+1 we need O(n22j
′
+ f(n)) time.

Dynamic Normal Forms and Dynamic Characteristic Polynomial 439

Let us now compute the total cost of performing n updates:

– for the initialization of the lazy form we need O(n3 + f(n)) time,
– for the computation of vectors aj,i and bj,i for i = 1, . . . , k we require O(n ·

n2 logn) = O(n3 logn) time,
– for the normal forms of Di we need O(nf(n) +

∑log n�
j=1 2logn�−jn22j) =

O(n3 logn+nf(n)) time, because we spend O(n22j) time for computing the
normal form n

2j times, namely every 2j-th update.

Thus finally we get.

Theorem 1. If there exists an algorithm for computing a given thin normal
form, transition matrix and its inverse by performing O(n) matrix-vector prod-
ucts and O(f(n)) additional operations then there exists a dynamic algorithm
that maintains the characteristic polynomial and the thin normal form support-
ing rank one updates in O(n2 logn+f(n)) amortized time, queries to the normal
form in constant time and vector queries to the transition matrix in O(n2 logn)
time.

Generic Symmetric Case. Let us move to the implementations of Theorem 1
and let us for the moment assume that the n× n matrix A remains symmetric
during the updates, i.e., we consider only updates of the form A := A + aaT ,
where a is an arbitrary n dimensional vector. We want to compute a unitary
matrix Q and a symmetric tridiagonal matrix T such that A = QTQT . The
following is the result which can be obtained with the use of standard Lanczos
method. For the completeness of the presentation the details of the proofs of the
following theorems are included in Appendix A[28].

Theorem 2. There exists an algorithm for computing a tridiagonal form of a
symmetric generic matrix (when the characteristic polynomial equals the mini-
mal polynomial) with use of n matrix-vector products and O(n2) additional op-
erations. The algorithm is randomized and succeeds with high probability.

Lemma 1. The symmetric tridiagonal form is thin.

Combining Theorem 1, Lemma 1 and Theorem 2 we get the O(n2 log n) amor-
tized updated time dynamic algorithm for computing the CP and the tridiagonal
form of the generic symmetric matrix.

General Case. In the general case we use the following results due to Eberly [2],
who showed how the Frobenius normal form of a sparse matrix can be computed.
Frobenius normal form FA of a matrix A is a block diagonal matrix with com-
panion matrices of monic polynomials f1, . . . , fk on the diagonal, where fi is
divisible by fi+1, for 1 ≤ i ≤ k − 1 and V AV −1 = FA. The companion matrix
of a monic polynomial xd + gd−1x

d−1 + . . . + g1x + g0 ∈ F [x] is a d × d matrix
defined as:

440 G.S. Frandsen and P. Sankowski

Cg =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 −g0

1 . . . 0 −g1

. . .
...

...

0 . . . 1 −gd−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The polynomials f1, . . . , fk are the invariant factors of A and k is the number
of invariant factors. We have χA(λ) =

∏k
i=1 fk(λ) and so FA is thin as it can be

used to compute the CP in O(n2) time.

Theorem 3 (Eberly ’00). There exists an algorithm for computing Frobenius
normal form F of the matrix A together with the transition matrix V and its
inverse with use of O(n) matrix-vector products and O(kn2+n2 log2 n) additional
operations, where k is the number of invariant factors of A. The algorithm is
randomized and may fail with arbitrarily small probability.

Using the above theorem together with Theorem 1 we obtain the O(kn2 log2 n)
amortized updated time dynamic algorithm for computing the CP and the Frobe-
nius form of the matrix.

Remark 1. The time bound in the above theorem can be reduced to O(kn2 +
n2 logn) by keeping the inverse of the transition matrix in the lazy form as
given in Section 4.4 of [2]. Then the matrix-vector multiplication by the inverse
can be carried out in O(n2) time. We skip the details due to page limitation of
this extended abstract. The same holds for all the following results, i.e., with
little effort one can always obtain an O(kn2 logn) time algorithm instead of the
O(kn2 log2 n) time algorithm. In the next theorems we use the O(kn2 +n2 logn)
time bound, but postpone the details to the full version of this paper.

1.2 Worst-Case Bound

The algorithm presented in the previous section works in amortized time bound.
Here we show how to modify it to work in worst-case time using rebuilding
technique. However, as we keep a set of logn matrices we have to be very careful
devising the rebuilding in order to guarantee the same worst-case time. Notice,
that the standard technique, so called global rebuilding, in which we use two
copies of the structure used alternately for answering queries, does not work
here due to the multilevel recomputations. Here, we can only rebuild small parts
of the structure, so one may call the used technique local rebuilding. Moreover
due to non-uniqueness of the standard forms we also have to guarantee that the
small recomputed parts remain consistent during the execution of the algorithm.
In order to guarantee that the normal forms remain consistent we cannot discard
transition matrices, but we have to multiply them. We cannot use standard or
even fast matrix multiplication because it is too slow for our purposes. However,
we can show that transition matrices can be multiplied faster without using
classical matrix multiplication. All the details of the techniques used to prove
the following theorem are included in Appendix B[28].

Dynamic Normal Forms and Dynamic Characteristic Polynomial 441

Theorem 4. There exists an algorithm that:
– for the generic matrices maintains tridiagonal normal form and supports

updates in O(n2 logn) worst-case time,
– for the general matrices with k invariant factors maintains Frobenius normal

form and supports updates in O(kn2 logn) worst-case,

the queries to CP and the normal form are supported in constant time, whereas
vector queries to transition matrix are supported in O(n2 logn) time.

1.3 Dynamic Matrix Eigenproblem

Theorem 4 presented in the previous section can be extended to solve the matrix
eigenproblem.

Theorem 5. There exists a dynamic algorithm for the matrix eigenproblem sup-
porting rank one updates:
– in O(n2 logn + n log2 n log b) worst-case time for symmetric matrices,
– in O(kn2 logn + n log2 n log b) worst-case time for general matrices with k

invariant factors.

The computations are carried out with relative error 2−b, the queries to the eigen-
values are answered in constant time and vector queries to eigenvector matrix in
O(n2 logn) worst-case time.

Proof. Note that the eigenvalues and eigenvectors of the maintained tridiagonal
or Frobenius normal form F can be computed in O(n2 logn+n log2 n log b) time
with use of the algorithm given by Pan and Chen [6]. The eigenvalues of F are
of course the same as the eigenvalues of the maintained matrix. However, the
eigenvectors have to be multiplied by Q−1

0 Q−1
1 . . .Q−1

k Q0 what takes O(n2 logn)
time for each eigenvector. ��

1.4 Dynamic Singular Value Decomposition

Our algorithm for dynamic SVD is an application of the earlier results for dy-
namic eigenvalues and eigenvectors of symmetric matrices. The details and the
proof of the following theorem are in Appendix C[28].

Theorem 6. There exists a dynamic algorithm for SVD of a generic matrix
supporting rank one updates in O(n2 logn + n log2 n log b) worst-case time. The
computations are carried out with relative error 2−b and the queries to the sin-
gular values are answered in constant time, whereas queries for r-rank approxi-
mation are answered in O(n2 logn + nm) worst-case time.

2 Dynamic Characteristic Polynomial - Lower Bounds

Problems considered. Let si(A) or simply si denote the ith coefficient of
the characteristic polynomial of the n × n matrix A over the field F , i.e.,

442 G.S. Frandsen and P. Sankowski

χA(λ) = det(λI −A) = λn +
∑n
i=1(−1)isiλn−i. We let our basic dynamic alge-

braic problem D associated with the characteristic polynomial consist in finding
an efficient algorithm that after an initial preprocessing of A = {aij} can handle
operations changeij(v) that alters aij to v and operations queryi that returns
the current value of si(A). To get stronger lower bounds, we also consider the
problem Di where we restrict ourselves to a single queryi that may be auto-
matically appended to all change operations that are thus required to maintain
si(A). We also consider the very restricted simple problem, D′i, where we are
only required to maintain information about whether si(A) is zero or nonzero.
All the above problems have variants that consider vector updates, i.e., changing
an entire row and/or column of the matrix A instead of changing single entries
of A. Similarly, all problems may be restricted to symmetric matrices, so change
operations are paired symmetrically.

Model of computation. Our basic model of computation is the history de-
pendent algebraic computation trees from [7]. A standard algebraic computation
tree has computation nodes +, ·,−, / and branching nodes (zero tests) [29]. For
the field of real numbers, all continuous operations including square root used
in the Lanczos algorithm, can be supported [5], and we also allow branching
based on inequality tests. Each operation is assigned not one tree but many
trees, namely one for each history where history means all discrete information
obtained so far such as the sequence of operations applied earlier and the re-
sults of branching tests in earlier operations. The memory consists of variables
holding field values that are preserved between operations. The variables may
be written and read by the computation trees. The complexity of a solution is
the maximal height of any tree in it. All our algorithms are within this basic
model. We state explicitly, when our lower bounds are valid in a weaker model
only (such as straightline programs).

Results. The following theorem is immediate from the lower bound for dynamic
computation of the determinant [7].

Theorem 7. Let the field F be infinite. The problem D has complexity Ω(n).

If we allow the more general column updates, then the lower bound can be
improved to Ω(n2). Actually, this is a corollary to a stronger result we prove,
namely a lower bound for maintaining whether a single coefficient is zero.

Theorem 8. Let the field F contain the real numbers. Let 1 ≤ l ≤ n.
The problem D′l has complexity Ω(min(l, n− l)) for symmetric matrices.
The problem D′l has complexity Ω(min(l, n−l)2) for symmetric matrices when

using vector updates.

The proof of this result is based on a strengthening of the lower bound for matrix
rank from [8].

Theorem 9. Let F be an algebraically closed field or the real numbers. Consider
dynamic computation of rank(M) where M ∈ F (3n+1)2 , M is symmetric (vector

Dynamic Normal Forms and Dynamic Characteristic Polynomial 443

updates must be paired into symmetric row-column updates) and rank(M) must
remain one of 2n and 2n + 2. This problem has complexity at least n2/4.

Proof (of Theorem 9). The proof uses a reduction from matrix vector multipli-
cation verification (MVMV), where the MVMV problem consists in verifying
that Mx = y for square matrix M and column vectors x and y. The MVMV
problem was introduced in [8], where a lower bound was shown for algebraically
closed fields and element updates. Our main contribution is to extend the lower
bound for MVMV to be valid for real numbers and vector updates, combined
with an observation that the reduction from MVMV need only use the rank of
symmetric matrices. For details see Appendix D[28].

Proof (of Theorem 8). It is known that the rank of a symmetric real matrix is
precisely the number of nonzero roots of its characteristic polynomial [10]. Hence,
for a matrix M as given in the statement of Theorem 9, we may distinguish
between the two possible ranks simply by checking whether s2n+2 is zero. By
embedding M in a larger matrix M1 that has zeros elsewhere:

M1 =

[
M 0

0 0

]

,

we have the lower bound Ω(l2) on deciding whether sl is zero for n× n matrix
when l ≤ 2

3n. Similarly, by embedding M in the upper left corner of a larger
matrix M2 that has an identity matrix in the lower right corner:

M2 =

[
M 0

0 I

]

,

we have the lower bound Ω((n − l)2) on deciding whether sl is zero for n × n
matrix when l > 2

3n. Combining the two bounds, we get Ω(min(l, n − l)2) for
all l. When adjusting the arguments towards single element updates rather than
vector updates, one may similarly prove the lower bound Ω(min(l, n − l)) for
all l. ��

For the problem of maintaining the value of a coefficient rather than simply
maintaining whether the coefficient is zero, we can prove slightly stronger lower
bounds for element updates than those of Theorem 8 but partly in a more
restrictive model (proof in Appendix E[28]).

Theorem 10. Let the field F be infinite.
The problem Dl has a straightline solution of complexity O(1) for l = 1, 2.
The problem Dl has complexity Ω(max(l, n/l)) for l ≥ 3.
The problem Dl has complexity Ω(n) for l ≥ 3, when the model of computation

is restricted to history dependent straightline programs without division, i.e. using
operations +,−, · only.

444 G.S. Frandsen and P. Sankowski

3 Conclusion and Open Problems

In this paper we have proven that several fundamental problems in linear alge-
bra allow to construct fully dynamic algorithms. We were able to show almost
square worst-case time randomized dynamic algorithms in the generic case for
the problems of computing: characteristic polynomial, tridiagonal symmetric
form, Frobenius normal form, eigenvalues, eigenvectors, singular value decom-
position and polynomial evaluated at the matrix. What is more important, the
algorithms are practically applicable, i.e., work in worst-case time and the con-
stant hidden in big-O is rather small. Moreover, we have been able to prove
strong lower bounds for the problems. Hence, we have presented an extensive
study of the arithmetic complexity of the problem. Nevertheless, our results rise
a question whether similar but numerically correct algorithms can be obtained.
We have decided to keep this issue out of the scope of the paper due to its size
limitations. The following question are left open as well.

– The computation of the determinant can be carried out in subquadratic time
in the case of element updates [9]. Is it possible to get similar algorithms in
the case of CP?

– Can the query complexity for the eigenvectors in the above algorithm be
reduced from O(n2 logn) time to Õ(n) time? This is possible when we are
willing to spend O(n2.5) time on updates — details will be included in the
full version of the paper.

– It would be consistent with Theorem 10 if s√n could be maintained by
computation trees of complexity

√
n, so an open problem is to extend the

Ω(n) lower bound for Dl (l ≥ 3) to be valid for algebraic computation trees
with division.

– It would be consistent with the above results if one could maintain singularity
of a matrix with a dynamic algorithm of complexity O(1). In particular
Theorem 8 gives Ω(n) bounds on the complexity of D′l only for the middle
range of l values. This leads to the open problem of proving an Ω(n) bound
for D′l for general l.

– It is the first time an Ω(n2) lower bound for a dynamic matrix problem has
been obtained. Can it extended to work for dynamic transitive closure?

Acknowledgements. This work was partially supported by the EU within the
6th Framework Programme under contract 001907 “Dynamically Evolving, Large
Scale Information Systems” (DELIS), by the Future and Emerging Technologies
Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project
ARRIVAL) and by the Polish Ministry of Science, grant KBN-1P03A01830.

References

1. Giesbrecht, M.: Nearly optimal algorithms for canonical matrix forms. SIAM Jour-
nal on Computing 24(5), 948–969 (1995)

2. Eberly, W.: Asymptotically efficient algorithms for the Frobenius form. Paper 723-
26, Department of Computer Science, University of Calgary (2003)

Dynamic Normal Forms and Dynamic Characteristic Polynomial 445

3. Villard, G.: Computing the Frobenius normal form of a sparse matrix. In: The
Third International Workshop on Computer Algebra in Scientific Computing, pp.
395–407. Springer, Heidelberg (2000)

4. Storjohann, A.: Deterministic computation of the frobenius form. In: FOCS, pp.
368–377 (2001)

5. Ben-Amram, A., Galil, Z.: On pointers versus addresses. J. Assoc. Comput.
Mach. 39, 617–648 (1992)

6. Pan, V., Chen, Z.: The complexity of the matrix eigenproblem. In: STOC 1999:
Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pp. 507–516. ACM Press, New York (1999)

7. Frandsen, G., Hansen, J., Miltersen, P.: Lower bounds for dynamic algebraic prob-
lems. Inform. and Comput. 171(2), 333–349 (2001)

8. Frandsen, P., Frandsen, G.: Dynamic matrix rank. In: Bugliesi, M., Preneel, B., Sas-
sone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 395–406. Springer,
Berlin (2006)

9. Sankowski, P.: Dynamic Transitive Closure via Dynamic Matrix Inverse. In: FOCS,
pp. 509–517 (2004)

10. Ibarra, O., Moran, S., Rosier, L.: A note on the parallel complexity of computing
the rank of order n matrices. Inform. Process. Lett. 11(4-5), 162 (1980)

11. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. In: STOC, pp. 338–339. ACM Press, New York (1986)

12. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in
Mathematics, vol. 92. American Mathematical Society (1997)

13. Babai, L., Grigoryev, D., Mount, D.: Isomorphism of graphs with bounded eigen-
value multiplicity. In: STOC 1982: Proceedings of the fourteenth annual ACM
symposium on Theory of computing, New York, NY, USA, pp. 310–324 (1982)

14. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-
nal 23(98), 289–305 (1973)

15. Spielman, D., Teng, S.H.: Spectral partitioning works: Planar graphs and finite
element meshes. In: FOCS, pp. 96–105 (1996)

16. Weiss, Y.: Segmentation using eigenvectors: A unifying view. In: ICCV (2), pp.
975–982 (1999)

17. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm.
In: Proceedings of Advances in Neural Information Processing Systems 14 (2001)

18. Meyer, C.D., J.S.: Updating finite markov chains by using techniques of group
matrix inversion. J. Statist. Comput. Simulat. 11, 163–181 (1980)

19. Funderlic, R.E., Plemmons, R.J.: Updating lu factorizations for computing sta-
tionary distributions. SIAM J. Algebraic Discrete Methods 7(1), 30–42 (1986)

20. Seneta, E.: Sensivity analysis, ergodicity coefficients, and rank-one updates for
finite markov chains. Numerical Solutions of Markov Chains, 121–129 (1991)

21. Diaconis, P., Stroock, D.: Geometric bounds for eigenvalues of Markov chains. Ann.
Appl. Probab. 1(1), 36–61 (1991),
http://www.ams.org/mathscinet-getitem?mr=92h:60103

22. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. Johns Hopkins Stud-
ies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1996)

23. Chandrasekaran, S., Manjunath, B.S., Wang, Y.F., Winkeler, J., Zhang, H.:
An eigenspace update algorithm for image analysis. Graph. Models Image Pro-
cess 59(5), 321–332 (1997)

24. Kanth, K., Agrawal, D., Singh, A.: Dimensionality reduction for similarity search-
ing in dynamic databases. In: Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, NY, USA, pp. 166–176 (1998)

446 G.S. Frandsen and P. Sankowski

25. Brand, M.: Fast online svd revisions for lightweight recommender systems. In:
Barbará, D., Kamath, C. (eds.) SDM. SIAM, Philadelphia (2003)

26. Gu, M., Eisenstat, S.C.: A stable and fast algorithm for updating singular value de-
composition. Technical Report YALE/DCS/TR-966, Yale University, New Haven,
CT (1993)

27. Gu, M., Eisenstat, S.: Downdating the singular value decomposition. SIAM Journal
on Matrix Analysis and Applications 16(3), 793–810 (1995)

28. Frandsen, G.S., Sankowski, P.: Dynamic normal forms and dynamic characteristic
polynomial. Research Series RS-08-2, BRICS, Department of Computer Science,
University of Aarhus (2008), http://www.brics.dk/RS/08/2/index.html

29. Bürgisser, P., Clausen, M., Shokrollahi, M.: Algebraic complexity theory.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 315. Springer, Berlin (1997)

30. Bini, D., Pan, V.: Polynomial and Matrix Computations. Birkhäuser (1994)
31. Eberly, W., Kaltofen, E.: On randomized lanczos algorithms. In: ISSAC 1997: Pro-

ceedings of the 1997 international symposium on Symbolic and algebraic com-
putation, pp. 176–183. ACM Press, New York (1997)

Algorithms for ε-Approximations of Terrains�

Jeff M. Phillips

Department of Computer Science, Duke University, Durham, NC 27708
jeffp@cs.duke.edu

Abstract. Consider a point set D with a measure function μ : D → R.
Let A be the set of subsets of D induced by containment in a shape from
some geometric family (e.g. axis-aligned rectangles, half planes, balls, k-
oriented polygons). We say a range space (D, A) has an ε-approximation
P if

max
R∈A

∣
∣
∣
∣
μ(R ∩ P)

μ(P)
− μ(R ∩ D)

μ(D)

∣
∣
∣
∣ ≤ ε.

We describe algorithms for deterministically constructing discrete
ε-app- roximations for continuous point sets such as distributions
or terrains. Furthermore, for certain families of subsets A, such as
those described by axis-aligned rectangles, we reduce the size of
the ε-approximations by almost a square root from O(1

ε2 log 1
ε
) to

O(1
ε

polylog 1
ε
). This is often the first step in transforming a continu-

ous problem into a discrete one for which combinatorial techniques can
be applied. We describe applications of this result in geo-spatial analysis,
biosurveillance, and sensor networks.

1 Introduction

Representing complex objects by point sets may require less storage and may
make computation on them faster and easier. When properties of the point
set approximate those of the original object, then problems over continuous or
piecewise-linear domains are now simple combinatorial problems over point sets.
For instance, when studying terrains, representing the volume by the cardinality
of a discrete point set transforms calculating the difference between two terrains
in a region to just counting the number of points in that region. Alternatively,
if the data is already a discrete point set, approximating it with a much smaller
point set has applications in selecting sentinel nodes in sensor networks. This pa-
per studies algorithms for creating small samples with guarantees in the form of
discrepancy and ε-approximations, in particular we construct ε-approximations
of size O(1

ε polylog1
ε).

� Work on this paper is supported by a James B. Duke Fellowship, by NSF under a
Graduate Research Fellowship and grants CNS-05-40347, CFF-06-35000, and DEB-
04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH
grant 1P50-GM-08183-01, by a DOE grant OEGP200A070505, and by a grant from
the U.S. Israel Binational Science Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 447–458, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

448 J.M. Phillips

ε-approximations. In this paper we study point sets, which we call domains
and we label as D, which are either finite sets or are Lebesgue-measureable sets.
For a given domain D let A be a set of subsets of D induced by containment in
some geometric shape (such as balls or axis-aligned rectangles). The pair (D,A)
is called a range space. We say that P is an ε-approximation of (D,A) if

max
R∈A

∣
∣
∣
∣
|R ∩ P |
|P | − |R ∩D|

|D|

∣
∣
∣
∣ ≤ ε,

where | · | represents the cardinality of a discrete set or the Lebesgue measure
for a Lebesgue-measurable set. A is said to shatter a discrete set X ⊆ D if each
subset of X is equal to R ∩X for some R ∈ A. The cardinality of the largest
discrete set X that A can shatter is known as the VC-dimension. A classic result
of Vapnik and Chervonenkis [28] states that for any range space (D,A) with
constant VC-dimension v there exists a subset P ⊂ D consisting of O(vε2 log vε)
points that is an ε-approximation for (D,A). Furthermore, if each element of P
is drawn uniformly at random from D such that |P | = O(vε2 log v

εδ), then P is an
ε-approximation with probability at least 1− δ. Thus, for a large class of range
spaces random sampling produces an ε-approximation of size O(1

ε2 log 1
ε).

Deterministic construction of ε-approximations. There exist determinis-
tic constructions for ε-approximations. When D is the unit cube [0, 1]d there are
constructions which can be interpreted as ε-approximations of size O(1

ε2d/(d+1))
for half spaces [16] and O(1

ε2d/(d+1) logd/(d+1) 1
εpolylog(log 1

ε)) for balls in d-
dimensions [5]. Both have lower bounds of Ω(1

ε2d/(d+1)) [2]. See Matoušek [17]
for more similar results or Chazelle’s book [9] for applications. For a domain
D, let Rd describe the subsets induced by axis-parallel rectangles in d dimen-
sions, and let Qk describe the subsets induced by k-oriented polygons (or more
generally polytopes) with faces described by k predefined normal directions.
More precisely, for β = {β1, . . . , βk} ⊂ Sd−1, let Qβ describe the set of con-
vex polytopes such that each face has an outward normal ±βi for βi ∈ β. If β
is fixed, we will use Qk to denote Qβ since it is the size k and not the actual
set β that is important. When D = [0, 1]d, then the range space (D,Rd) has
an ε-approximation of size O(1

ε logd−1 1
εpolylog(log 1

ε)) [12]. Also, for all homo-
thets (translations and uniform scalings) of any particular Q ∈ Qk, Skriganov
constructs an ε-approximation of size O(1

ε logd−1 1
εpolylog(log 1

ε)). When D is a
discrete point set of size n, ε-approximations of size O((1

ε log 1
ε)

2− 2
v+1) exist for

bounded VC-dimension v [19], and can be constructed in time O(n · 1
ε2v logv 1

ε).
In this spirit, for R2 and a discrete point set of size n, Suri, Toth, and Zhou [26]
construct an ε-approximation of size O(1

ε log(εn) log4(1
ε log(εn))) in the context

of a streaming algorithm which can be analyzed to run in time O(n(1
ε log4 1

ε)
3).

Our results. We answer the question, “for which ranges spaces can we construct
ε-approximations of size O(1

ε polylog1
ε)?” by describing how to deterministically

construct an ε-approximation of size O(1
ε polylog1

ε) for any domain which can
be decomposed into or approximated by a finite set of constant-size polytopes
for families Rd and Qk. In particular:

Algorithms for ε-Approximations of Terrains 449

– For a discrete point set D of cardinality n, we give an algorithm for gen-
erating an ε-approximation for (D,Qk) of size O(1

ε log2k 1
εpolylog(log 1

ε)) in
O(n 1

ε3 polylog1
ε) time. This requires a generalization of the iterative point

set thinning algorithm by Chazelle and Matoušek [10] that does not rely on
VC-dimension. This implies similar results for Rd as well.

– For any d-dimensional domain D that can be decomposed into n k′-
oriented polytopes, we give an algorithm for generating an ε-approximation
of size O((k + k′)1

ε log2k 1
εpolylog(log 1

ε)) for (D,Qk) in time O((k +
k′)n 1

ε4 polylog1
ε).

We are interested in terrain domains D defined to have a base B (which may,
for instance, be a subset of R2) and a height function h : B → R. Any point
(p, z) such that p ∈ B and 0 ≤ z ≤ h(p) (or 0 ≥ z ≥ h(p) when h(p) < 0) is in
the domain D of the terrain.

– For a terrain domain D where B and h are piecewise-linear with n lin-
ear pieces, our result implies that there exists an ε-approximation of
size O(k 1

ε log4 1
εpolylog(log 1

ε)) for (D,Qk), and it can be constructed in
O(n · 1

ε4 polylog1
ε) time.

– For a terrain domain D where B ⊂ R2 is a rectangle with diameter d and h
is smooth (C2-continuous) with minimum height z− and largest eigenvalue
of its Hessian λ, we give an algorithm for creating an ε-approximation for
(D,R2 × R) of size O(1

ε log4 1
εpolylog(log 1

ε)) in time O(λd
2

z−
1
ε5 polylog1

ε).

These results improve the running time for a spatial anomaly detection prob-
lem in biosurveillance [1], and can more efficiently place or choose sentinel nodes
in a sensor network, addressing an open problem [21].

Roadmap. We introduce a variety of new techniques, rooted in discrepancy the-
ory, to create ε-approximations of size O(1

ε polylog1
ε) for increasingly difficult

domains. First, Section 2 discusses Lebesgue and combinatorial discrepancy. Sec-
tion 3 generalizes and improves a classic technique to create an ε-approximation
for a discrete point set. Section 4 describes how to generate an ε-approximation
for a polygonal domain. When a domain can be decomposed into a finite, disjoint
set of polygons, then each can be given an ε-approximation and the union of all
these point sets can be given a smaller ε-approximation using the techniques in
Section 3. Section 5 then handles domains of continuous, non-polygonal point
sets by first approximating them by a disjoint set of polygons and then using the
earlier described techniques. Section 6 shows some applications of these results.

2 Lebesgue and Combinatorial Discrepancy

Lebesgue discrepancy. The Lebesgue discrepancy is defined for an n-point
set P ⊂ [0, 1]d relative to the volume of a unit cube [0, 1]d. 1 Given a range space
([0, 1]d,A) and a point set P , the Lebesgue discrepancy is defined
1 Although not common in the literature, this definition can replace [0, 1]d with an

hyper-rectangle [0, w1] × [0, w2] × . . . × [0, wd].

450 J.M. Phillips

D(P,A) = sup
R∈A

|D(P,R)|, where D(P,R) = n · |R ∩ [0, 1]d| − |R ∩ P |.

Optimized over all n-point sets, define the Lebesgue discrepancy of ([0, 1]d,A) as

D(n,A) = inf
P⊂[0,1]d,|P |=n

D(P,A).

The study of Lebesgue discrepancy arguably began with the Van der Cor-
put set Cn [27], which satisfies D(Cn,R2) = O(log n). This was generalized to
higher dimensions by Hammersley [13] and Halton [12] so that D(Cn,Rd) =
O(logd−1 n). However, it was shown that many lattices also provide O(log n)
discrepancy in the plane [17]. This is generalized to O(logd−1 n log1+τ logn) for
τ > 0 over Rd [22,23,6]. For a more in-depth history of the progression of these
results we refer to the notes in Matoušek’s book [17]. For application of these re-
sults in numerical integration see Niederreiter’s book [20]. The results on lattices
extend to homothets of any Qk ∈ Qk for O(log n) discrepancy in the plane [22]
and O(logd−1 n log1+τ logn) discrepancy, for τ > 0, in Rd [24], for some constant
k. A wider set of geometric families which include half planes, right triangles,
rectangles under all rotations, circles, and predefined convex shapes produce
Ω(n1/4) discrepancy and are not as interesting from our perspective.

Lebesgue discrepancy describes an ε-approximation of ([0, 1]d,A), where ε =
f(n) = D(n,A)/n. Thus we can construct an ε-approximation for ([0, 1]d,A) of
size gD(ε,A) as defined below. (Solve for n in ε = D(n,A)/n).)

gD(ε,A) =

{
O(1

ε logτ 1
ε polylog(log 1

ε)) for D(n,A) = O(logτ n)
O((1/ε)1/(1−τ)) for D(n,A) = O(nτ)

(1)

Combinatorial discrepancy. Given a range space (X,A) where X is a finite
point set and a coloring function χ : X → {−1,+1} we say the combinatorial
discrepancy of (X,A) colored by χ is

discχ(X,A) = max
R∈A

discχ(X ∩R) where

discχ(X) =
∑

x∈X
χ(x) = |{x ∈ X : χ(x) = +1}| − |{x ∈ X : χ(x) = −1}| .

Taking this over all colorings and all point sets of size n we say

disc(n,A) = max
{X:|X|=n}

min
χ:X→{−1,+1}

discχ(X,A).

Results about combinatorial discrepancy are usually proved using the par-
tial coloring method [4] or the Beck-Fiala theorem [8]. The partial coloring
method usually yields lower discrepancy by some logarithmic factors, but is
nonconstructive. Alternatively, the Beck-Fiala theorem actually constructs a
low discrepancy coloring, but with a slightly weaker bound. The Beck-Fiala
theorem states that for a family of ranges A and a point set X such that

Algorithms for ε-Approximations of Terrains 451

maxx∈X |{A ∈ A : x ∈ A}| ≤ t, disc(X,A) ≤ 2t − 1. So the discrepancy
is only a constant factor larger than the largest number of sets any point is in.

Srinivasan [25] shows that disc(n,R2) = O(log2.5 n), using the partial coloring
method. An earlier result of Beck [3] showed disc(n,R2) = O(log4 n) using the
Beck-Fiala theorem [8]. The construction in this approach reduces to O(n) Gaus-
sian eliminations on a matrix of constraints that is O(n)×O(n). Each Gaussian
elimination step requires O(n3) time. Thus the coloring χ in the construction
for disc(n,R2) = O(log4 n) can be found in O(n4) time.We now generalize this
result.

Lemma 1. disc(n,Qk) = O(log2k n) for points in Rd and the coloring that gen-
erates this discrepancy can be constructed in O(n4) time, for k constant.

The proof combines techniques from Beck [3] and Matoušek [18].

Proof. Given a class Qk, each potential face is defined by a normal vector from
{β1, . . . , βk}. For j ∈ [1, k] project all points along βj . Let a canonical interval be
of the form

[
t
2q ,

t+1
2q

)
for integers q ∈ [1, logn] and t ∈ [0, 2q). For each direction

βj choose a value q ∈ [1, logn] creating 2q canonical intervals induced by the
ordering along βj . Let the intersection of any k of these canonical intervals along
a fixed βj be a canonical subset. Since there are logn choices for the values of
q for each of the k directions, it follows that each point is in at most (log n)k

canonical subsets. Using the Beck-Fiala theorem, we can create a coloring for X
so that no canonical subset has discrepancy more than O(logk n).

Each range R ∈ Qk is formed by at most O(logk n) canonical subsets. For
each ordering by βi, the interval in this ordering induced by R can be described
by O(log n) canonical intervals. Thus the entire range R can be decomposed into
O(logk n) canonical subsets, each with at most O(logk n) discrepancy.

Applying the Beck-Fiala construction of size n, this coloring requires O(n4)
time to construct.

Corollary 1. disc(n,Rd) = O(log2d n) and the coloring that generates this dis-
crepancy can be constructed in O(n4) time, for d constant.

A better nonconstructive bound exists due to Matoušek [18], using the partial
coloring method. For polygons in R2 disc(n,Qk) = O(k log2.5 n

√
log(k + logn)),

and for polytopes in Rd disc(n,Qk) = O(k1.5�d/2� logd+1/2 n
√

log(k + logn)).
For more results on discrepancy see Beck and Chen’s book [7].

Similar to Lebesgue discrepancy, the set P = {p ∈ X | χ(p) = +1} generated
from the coloring χ for combinatorial discrepancy disc(n,A) describes an ε-
approximation of (X,A) where ε = f(n) = disc(n,A)/n. Thus, given this value
of ε, we can say that P is an ε-approximation for (X,A) of size

g(ε,A) =

{
O(1

ε logτ 1
ε polylog(log 1

ε)) for disc(n,A) = O(logτ n)
O((1/ε)1/(1−τ)) for disc(n,A) = O(nτ).

(2)

The next section will describe how to iteratively apply this process efficiently to
achieve these bounds for any value of ε.

452 J.M. Phillips

3 Deterministic Construction of ε-Approximations for
Discrete Point Sets

We generalize the framework of Chazelle and Matoušek [10] describing an al-
gorithm for creating an ε-approximation of a range space (X,A). Consider any
range space (X,A), with |X | = n, for which there is an algorithm to gener-
ate a coloring χ that yields the combinatorial discrepancy discχ(X,A) and can
be constructed in time O(nw · l(n)) where l(n) = o(n). For simplicity, we refer
to the combinatorial discrepancy we can construct discχ(X,A) as disc(n,A) to
emphasize the size of the domain, and we use equation (2) to describe g(ε,A),
the size of the ε-approximation it corresponds to. The values disc(n,A), w, and
l(n) are dependent on the family A (e.g. see Lemma 1), but not necessarily its
VC-dimension as in [10]. As used above, let f(n) = disc(n,A)/n be the value
of ε in the ε-approximation generated by a single coloring of a set of size n —
the relative error. We require that, f(2n) ≤ (1− δ)f(n), for constant 0 < δ ≤ 1;
thus it is a geometrically decreasing function.

The algorithm will compress a set X of size n to a set P of size O(g(ε,A)) such
that P is an ε-approximation of (X,A) by recursively creating a low discrepancy
coloring. We note that an ε-approximation of an ε′-approximation is an (ε+ ε′)-
approximation of the original set.

We start by dividing X into sets of size O(g(ε,A)),2 here ε is a parameter.
The algorithm proceeds in two stages. The first stage alternates between merging
pairs of sets and halving sets by discarding points colored χ(p) = −1 by the
combinatorial discrepancy method described above. The exception is after every
w + 2 halving steps, we then skip one halving step. The second stage takes the
one remaining set and repeatedly halves it until the error f(|P |) incurred in the
remaining set P exceeds ε

2+2δ . This results in a set of size O(g(ε,A)).

Algorithm 3.1. Creates an ε-approximation for (X,A) of size O(g(ε,A)).
1: Divide X into sets {X0, X1, X2, . . .} each of size 4(w + 2)g(ε,A). 2

2: repeat {Stage 1}
3: for w + 2 steps do {or stop if only one set is left}
4: Merge: Pair sets arbitrarily (i.e. Xi and Xj) and merge them into a single

set (i.e. Xi := Xi ∪ Xj).
5: Halve: Halve each set Xi using the coloring χ from disc(Xi, A) (i.e. Xi =

{x ∈ Xi | χ(x) = +1}).
6: Merge: Pair sets arbitrarily and merge each pair into a single set.
7: until only one set, P , is left
8: repeat {Stage 2}
9: Halve: Halve P using the coloring χ from disc(P, A).

10: until f(|P |) ≥ ε/(2 + 2δ)

2 If the sets do not divide equally, artificially increase the size of the sets when neces-
sary. These points can be removed later.

Algorithms for ε-Approximations of Terrains 453

Theorem 1. For a finite range space (X,A) with |X | = n and an algorithm to
construct a coloring χ : X → {−1,+1} such that

– the set {x ∈ X : χ(x) = +1} is an α-approximation of (X,A) of size
g(α,A) with α = discχ(X,A)/n (see equation (2)).

– χ can be constructed in O(nw · l(n)) time where l(n) = o(n).

then Algorithm 3.1 constructs an ε-approximation for (X,A) of size O(g(ε,A))
in time O(ww−1n · g(ε,A)w−1 · l(g(ε,A)) + g(ε,A)).

Proof. Let 2j = 4(w + 2)g(ε,A), for an integer j, be the size of each set in the
initial dividing stage (adjusting by a constant if δ ≤ 1

4). Each round of Stage 1
performs w + 3 Merge steps and w + 2 Halve steps on sets of the same size
and each subsequent round deals with sets twice as large. The union of all the
sets is an α-approximation of (X,A) (to start α = 0) and α only increases in
the Halve steps. The ith round increases α by f(2j−1+i) per Halve step. Since
f(n) decrease geometrically as n increases, the size of α at the end of the first
stage is asymptotically bounded by the increase in the first round. Hence, after
Stage 1 α ≤ 2(w + 2)f(4(w + 2)g(ε,A)) ≤ ε

2 . Stage 2 culminates the step before
f(|P |) ≥ ε

2+2δ . Thus the final Halve step creates an εδ
2+2δ -approximation and

the entire second stage creates an ε
2 -approximation, hence overall Algorithm 3.1

creates an ε-approximation. The relative error caused by each Halve step in
stage 2 is equivalent to a Halve step in a single round of stage 1.

The running time is also dominated by Stage 1. Each Halve step of a set of
size 2j takes O((2j)wl(2j)) time and runs on n/2j sets. In between each Halve

step within a round, the number of sets is divided by two, so the running time is
asymptotically dominated by the first Halve step of each round. The next round
has sets of size 2j+1, but only n/2j+w+2 of them, so the runtime is at most 1

2 that
of the first Halve step. Thus the running time of a round is less than half of that
of the previous one. Since 2j = O(wg(ε,A)) the running time of the Halve step,
and hence the first stage is bounded by O(n·(w ·g(ε,A))w−1 ·l(g(ε,A))+g(ε,A)).
Each Halve step in the second stage corresponds to a single Halve step per
round in the first stage, and does not affect the asymptotics.

We can invoke Theorem 1 along with Lemma 1 and Corollary 1 to compute
χ in O(n4) time (notice that w = 4 and l(·) is constant), so g(ε,Qk) =
O(1

ε log2k 1
εpolylog(log 1

ε)) and g(ε,Rd) = O(1
ε log2d 1

εpolylog(log 1
ε)). We obtain

the following important corollaries.

Corollary 2. For a set of size n and over the ranges Qk an ε-approximation of
size O(1

ε log2k 1
εpolylog(log 1

ε)) can be constructed in time O(n 1
ε3 polylog1

ε).

Corollary 3. For a set of size n and over the ranges Rd an ε-approximation of
size O(1

ε log2d 1
εpolylog(log 1

ε)) can be constructed in time O(n 1
ε3 polylog1

ε).

Weighted case. These results can be extended to the case where each point
x ∈ X is given a weight μ(x). Now an ε-approximation is a set P ⊂ X and a
weighting μ : X → R such that

454 J.M. Phillips

max
R∈A

∣
∣
∣
∣
μ(P ∩R)

μ(P)
− μ(X ∩R)

μ(X)

∣
∣
∣
∣ ≤ ε,

where μ(P) =
∑
p∈P μ(p). The weights on P may differ from those on X . A

result from Matoušek [15], invoking the unweighted algorithm several times at
a geometrically decreasing cost, creates a weighted ε-approximation of the same
asymptotic size and with the same asymptotic runtime as for an unweighted
algorithm. This extension is important when we combine ε-approximations rep-
resenting regions of different total measure. For this case we weight each point
relative to the measure it represents.

4 Sampling from Polygonal Domains

We will prove a general theorem for deterministically constructing small ε-
approximations for polygonal domains which will have direct consequences on
polygonal terrains. A key observation of Matoušek [15] is that the union of ε-
approximations of disjoint domains forms an ε-approximation of the union of
the domains. Thus for any geometric domain D we first divide it into pieces for
which we can create ε-approximations. Then we merge all of these point sets into
an ε-approximation for the entire domain. Finally, we use Theorem 1 to reduce
the sample size.

Instead of restricting ourselves to domains which we can divide into cubes of
the form [0, 1]d, thus allowing the use of Lebesgue discrepancy results, we first
expand on a result about lattices and polygons.

Lattices and polygons. For x ∈ R, let �x� represent the fractional part of
x, and for α ∈ Rd−1 let α = (α1, . . . , αd−1). Now given α and m let Pα,m =
{p0, . . . , pm−1} be a set of m lattice points in [0, 1]d defined pi = (im , �α1i�
, . . . , �αd−1i�). Pα,m is irrational with respect to any polytope in Qβ if for all
βi ∈ β, for all j ≤ d, and for all h ≤ d − 1, the fraction βi,j/αh is irrational.
(Note that βi,j represents the jth element of the vector βi.) Lattices with α
irrational (relative to the face normals) generate low discrepancy sets.

Theorem 2. Let Q ∈ Qβ′ be a fixed convex polytope. Let β, β′ ⊂ Sd−1 be sets of
k and k′ directions, respectively. There is an ε-approximation of (Q,Qβ) of size
O((k + k′)1

ε logd−1 1
εpolylog(log 1

ε)).

This ε-approximation is realized by a set of lattice points Pα,m ∩ Q such that
Pα,m is irrational with respect to any polytope in Qβ∪β′ .

Proof. Consider polytope tQh and lattice Pα,m, where the uniform scaling factor
t is treated as an asymptotic quantity. Skriganov’s Theorem 6.1 in [24] claims

max
v∈Rd

D(Pα,m, tQh + v) = O

⎛

⎝td−1ρ−θ +
∑

f

Sf (Pα,m, ρ)

⎞

⎠

Algorithms for ε-Approximations of Terrains 455

where
Sf (Pα,m, ρ) = O(logd−1 ρ log1+τ log ρ)

for τ > 0, as long as Pα,m is irrational with respect to the normal of the face f of
Qh and infinite otherwise, where θ ∈ (0, 1) and ρ can be arbitrarily large. Note
that this is a simplified form yielded by invoking Theorem 3.2 and Theorem 4.5
from [24]. By setting ρθ = td−1,

max
v∈Rd

D(Pα,m, tQh + v) = O(h logd−1 t log1+τ log t). (3)

Now by noting that as t grows, the number of lattice points in tQh grows by
a factor of td, and we can set t = n1/d so (3) implies that D(Pα,m, tQh) =
O(h logd−1 n log1+τ logn) for |Pα,m| = m = n and tQh ⊂ [0, 1]d.

The discrepancy is a sum over the set of h terms, one for each face f , each of
which is small as long as Pα,m is irrational with respect to f ’s normal βf . Hence
this lattice gives low discrepancy for any polytope in the analogous family Qβ
such that Pα,m is irrational with respect to Qβ . Finally we realize that any subset
Q ∩Qk for Q ∈ Qβ′ and Qk ∈ Qβ is a polytope defined by normals from β′ ∪ β
and we then refer to gD(ε,Qβ∪β′) in (1) to bound the size of the ε-approximation
from the given Lebesgue discrepancy.

Remark 1. Skriganov’s result [24] is proved under the whole space model where
the lattice is infinite (tQh is not confined to [0, 1]d), and the relevant error is
the difference between the measure of tQh versus the cardinality |tQh ∩ Pα,m|,
where each p ∈ Pα,m represents 1 unit of measure. Skriganov’s main results in
this model is summarized in equation (3) and only pertains to a fixed polytope
Qh instead of, more generally, a family of polytopes Qβ, as shown in Theorem 2.

Samples for polygonal terrains. Combining the above results and weighted
extension of Theorem 1 implies the following results.

Theorem 3. We can create a weighted ε-approximation of size O((k + k′)1
ε ·

log2k 1
εpolylog(log 1

ε)) of (D,Qk) in time O((k + k′)n 1
ε4 polylog1

ε) for any d-
dimensional domain D which can be decomposed into n d-dimensional convex
k′-oriented polytopes.

Proof. We divide the domain into n k′-oriented polytopes and then approximate
each polytope Qk′ with a point set Pα,m∩Qk′ using Theorem 2. We observe that
the union of these point sets is a weighted ε-approximation of (D,Qk), but is
quite large. Using the weighted extension of Theorem 1 we can reduce the point
sets to the size and in the time stated.

This has applications to terrain domains D defined with a piecewise-linear base
B and height function h : B → R. We decompose the terrain so that each linear
piece of h describes one 3-dimensional polytope, then apply Theorem 3 to get
the following result.

Corollary 4. For terrain domain D with piecewise-linear base B and height
function h : B → R with n linear pieces, we construct a weighted ε-approximation
of (D,Qk) of size O(k 1

ε log4 1
εpolylog(log 1

ε)) in time O(kn 1
ε4 polylog1

ε).

456 J.M. Phillips

5 Sampling from Smooth Terrains

We can create an ε-approximation for a smooth domain (one which cannot be de-
composed into polytopes) in a three stage process. The first stage approximates
any domain with a set of polytopes. The second approximates each polytope
with a point set. The third merges all point sets and uses Theorem 1 to reduce
their size.

This section mainly focuses on the first stage. More formally, we can approx-
imate a non-polygonal domain D with a set of disjoint polygons P such that P
has properties of an ε-approximation.

Lemma 2. If |D \ P | ≤ ε
2 |D| and P ⊆ D then max

R∈A

∣
∣
∣
∣
|R ∩ P |
|P | − |R ∩D|

|D|

∣
∣
∣
∣ ≤ ε.

Proof. No range R ∈ A can have
∣
∣
∣
|R∩P |
|P | − |R∩D|

|D|

∣
∣
∣ > ε because if |D| ≥ |P |

(w.l.o.g.), then |R ∩D| − |D|
|P | |R ∩ P | ≤ ε|D| and |R ∩ P | |D||P | − |R ∩D| ≤ ε|D|.

The first part follows from |D|
|P | ≥ 1 and is loose by a factor of 2. For the second

part we can argue

|R ∩ P | |D||P | − |R ∩D| ≤ |R ∩ P | 1
1− ε

2

− |R ∩D| ≤ |R ∩D| 1
1− ε

2

− |R ∩D|

=
ε
2

1− ε
2

|R ∩D| ≤ ε|R ∩D| ≤ ε|D|.

For terrain domains D defined with a base B and a height function h : B → R,
if B is polygonal we can decompose it into polygonal pieces, otherwise we can
approximate it with constant-size polygonal pieces according to Lemma 2. Then,
similarly, if h is polygonal we can approximate the components invoking Corol-
lary 4; however, if it is smooth, then we can approximate each piece according
to Lemma 2.

We can improve further upon this approach using a stretched version of the
Van der Corput Set and dependent on specific properties of the terrain. Consider
the case where B is a rectangle with diameter dD and h is C2 continuous with
minimum value z−D and where the largest eigenvalue of its Hessian is λD. For such
a terrain D, interesting ranges R2×R are generalized cylinders where the first 2
dimensions are an axis-parallel rectangle and the third dimension is unbounded.
We can state the following result (proved in the full version).

Theorem 4. For a domain D with rectangular base B ⊂ R2 and with a C2-
continuous height function h : B → R we can deterministically create a weighted
ε-approximation of (D,R2×R) of size O

((
λDd

2
D

z−
Dε

) (
1
ε log4 1

εpolylog(log 1
ε)

))
. We

reduce the size to O(1
ε log4 1

εpolylog(log 1
ε)) in time O

((
λDd

2
D

z−
D

)
1
ε5 polylog1

ε

)
.

This generalizes in a straightforward way for B ∈ Rd. Similar results are possible
when B is not rectangular or when B is not even piecewise-linear. The techniques
of Section 4 are necessary if Qk is used instead of R2, and are slower by a factor
O(1

ε).

Algorithms for ε-Approximations of Terrains 457

6 Applications

Creating smaller ε-approximations improves several existing algorithms.

Biosurveillance. Let M and B be two points sets in R2. An important anomaly
detection problem for biosurveillance [14,1] reduces to finding a range (from some
family of ranges such as R2) that maximizes a statistical discrepancy function
on M and B, such as dP (mR, bR) = mR ln mR

bR
+(1−mR) ln 1−mR

1−bR , where mR =
|R∩M |/|M | and bR = |R∩B|/|B|. Using the results in this paper we can prove
the following:

Theorem 5. Let |M ∪ B| = n. A range R ∈ R2 such that |dP (mR, bR) −
maxr∈R2 dP (mr, br)| ≤ ε can be deterministically found in O(n 1

ε3 polylog(log 1
ε)+

1
ε4 polylog(log 1

ε)) time.
A range R ∈ R2 such that |dP (mR, bR)−maxr∈R2 dP (mr, br)| ≤ ε + δ can be

deterministically found in O(n 1
ε3 polylog(log 1

ε) + 1
δ

1
ε2 polylog(log 1

ε)) time.

This can be generalized to when M and B are terrain domains. This case arises,
for example, when each point is replaced with a probability distribution.

Sensor Networks. Let D be a set of points describing the location of sensors.
If P ⊆ D is an ε-sentinel of (D,A), then for all R ∈ A (1) if |R ∩ D| ≥ ε|D|
then |R ∩ P | ≥ ε 3

4 |P |, and (2) if |R ∩ P | ≥ ε 3
4 |P | then |R ∩D| ≥ ε|D|

2 . Previous
work constructs ε-sentinels for half spaces [21] of size O(1

ε) and in expected time
O(nε logn) or for any A with bounded VC-dimension v [11] of size O(1

ε log 1
ε)

and in time O(n 1
ε2v logv 1

ε). Noting that an ε
4 -approximation can be used as an

ε-sentinel, we can state the following.

Theorem 6. For a discrete point set D of size n, we can compute ε-sentinels
for (D,Qk) of size O(1

ε log2k 1
εpolylog(log 1

ε)) in time O(n 1
ε3 polylog(log 1

ε)).
Furthermore, we can create O(nε/ log2k 1

ε) disjoint sets of ε-sentinels in
O(n 1

ε3 log(nε)polylog(log 1
ε)) total time.

We can extend this result to place an ε-sentinel to cover a polygonal domain D

as well. Details and further results are in the full version.

Acknowledgments. I would like to thank Pankaj Agarwal for many helpful
discussions including finding a bug in an earlier version of the proof of Lemma
1, Shashidhara Ganjugunte, Hai Yu, Yuriy Mileyko, and Esther Ezra for a care-
ful proofreading, Jirka Matoušek for useful pointers, Subhash Suri for posing
a related problem, and Don Rose for discussions on improving the Beck-Fiala
Theorem.

References

1. Agarwal, D., McGregor, A., Phillips, J.M., Venkatasubramanian, S., Zhu, Z.: Spa-
tial scan statistics: Approximations and performance study. In: Proceedings 12th
ACM SIGKDD Knowledge Discovery & Data Mining, pp. 24–33 (2006)

458 J.M. Phillips

2. Alexander, R.: Principles of a new method in the study of irregularities of distri-
bution. Inventiones Mathematicae 103, 279–296 (1991)

3. Beck, J.: Balanced two-coloring of finite sets in the square I. Combinatorica 1,
327–335 (1981)

4. Beck, J.: Roth’s estimate on the discrepancy of integer sequences is nearly sharp.
Combinatorica 1, 319–325 (1981)

5. Beck, J.: Irregularities of distribution I. Acta Mathematics 159, 1–49 (1987)
6. Beck, J.: Probabilistic diophantine approximation, I Kronecker sequences. Annals

of Mathematics 140, 451–502 (1994)
7. Beck, J., Chen, W.: Irregularities of Distribution. Cambridge University Press,

Cambridge (1987)
8. Beck, J., Fiala, T.: ”integer-making” theorems. Disc. App. Math. 3, 1–8 (1981)
9. Chazelle, B.: The Discrepancy Method. Cambridge University Press, Cambridge

(2000)
10. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimiza-

tion problems in fixed dimensions. Journal of Algorithms 21, 579–597 (1996)
11. Gandhi, S., Suri, S., Welzl, E.: Catching elephants with mice: Sparse sampling

for monitoring sensor networks. In: Proceedings 5th Embedded Networked Sensor
Systems, pp. 261–274 (2007)

12. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in
evaluating multidimensional integrals. Numerical Mathematics 2, 84–90 (1960)

13. Hammersly, J.M.: Monte Carlo methods for solving multivariable problems. Annals
of New York Acadamy of Science 86, 844–874 (1960)

14. Kulldorff, M.: A spatial scan statistic. Comm. in Stat.: T&M 26, 1481–1496 (1997)
15. Matoušek, J.: Approximations and optimal geometric divide-and-conquer. In: Pro-

ceedings 23rd Symposium on Theory of Computing, pp. 505–511 (1991)
16. Matoušek, J.: Tight upper bounds for the discrepancy of halfspaces. Discrete and

Computational Geometry 13, 593–601 (1995)
17. Matoušek, J.: Geometric Discrepancy. Springer, Heidelberg (1999)
18. Matoušek, J.: On the discrepancy for boxes and polytopes. Monatsh. Math. 127,

325–336 (1999)
19. Matoušek, J., Welzl, E., Wernisch, L.: Discrepancy and approximations for bounded

VC-dimension. Combinatorica 13, 455–466 (1993)
20. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.

SIAM, Philadelphia (1992)
21. Shrivastava, N., Suri, S., Tóth, C.D.: Detecting cuts in sensor networks. ACM

Transactions on Sensor Networks 4(10) (2008)
22. Skriganov, M.: Lattices in algebraic number fields and uniform distributions mod-

ulo 1. Leningrad Mathematics Journal 1, 535–558 (1990)
23. Skriganov, M.: Constructions of uniform distributions in terms of geometry of

numbers. St. Petersburg Mathematics Journal 6, 635–664 (1995)
24. Skriganov, M.: Ergodic theory on SL(n), diophantine approximations and anoma-

lies in the lattice point problem. Inventiones Mathematicae 132, 1–72 (1998)
25. Srinivasan, A.: Improving the discrepancy bound for sparse matrices: Better ap-

proximations for sparse lattice approximation problems. In: Proceedings of the 8th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 692–701 (1997)

26. Suri, S., Tóth, C.D., Zhou, Y.: Range counting over multidimensional data streams.
In: Proceedings 20th Symposium on Computational Geometry, pp. 160–169 (2004)

27. van der Corput, J.G.: Verteilungsfunktionen I. Aka. Wet. Ams. 38, 813–821 (1935)
28. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Prob. and its Applic. 16, 264–280 (1971)

An Approximation Algorithm for Binary

Searching in Trees

Eduardo Laber and Marco Molinaro

Informatics Department of PUC-Rio, Brazil
Address: Rua Marquês de São Vicente 225, RDC, 4o andar, CEP 22453-900, Rio de

Janeiro - RJ, Brazil
{laber,mmolinaro}inf.puc-rio.br

Abstract. In this work we consider the problem of computing efficient
strategies for searching in trees. As a generalization of the classical bi-
nary search for ordered lists, suppose one wishes to find a (unknown)
specific node of a tree by asking queries to its arcs, where each query
indicates the endpoint closer to the desired node. Given the likelihood of
each node being the one searched, the objective is to compute a search
strategy that minimizes the expected number of queries. Practical appli-
cations of this problem include file system synchronization and software
testing. Here we present a linear time algorithm which is the first con-
stant factor approximation for this problem. This represents a significant
improvement over previous O(log n)-approximation.

1 Introduction

Searching in ordered structures is a fundamental problem in theoretical computer
science. In one of its most basic variants, the objective is to find a special element
of a totally ordered set by making queries which iteratively narrow the possible
locations of the desired element. This can be generalized to searching in more
general structures which have only a partial order for their elements instead of
a total order [1,2,3,4,5].

In this work, we focus on searching in structures that lay between totally
ordered sets and the most general posets: we wish to efficiently locate a particular
node in a tree. More formally, as input we are given a tree T = (V,E) which
has a ‘hidden’ marked node and a function w : V → R that gives the likelihood
of a node being the one marked. For example, T could be modeling a network
with one defective unit. In order to discover which node of T is marked, we can
perform edge queries : after querying the arc (i, j) of T (j being a child of i)1,
we receive an answer stating that either the marked node is a descendant2 of j
(called a yes answer) or that the marked node is not a descendant of j (called
a no answer).

A search strategy is a procedure that decides the next query to be posed
based on the outcome of previous queries. As an example, consider the strategy
1 Henceforth, when we refer to the arc (i, j), j is a child of i.
2 We consider that a node is a descendant of itself.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 459–471, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

460 E. Laber and M. Molinaro

for searching the tree T of Figure 1.a represented by the decision tree D of Figure
1.b. A decision tree can be interpreted as a strategy in the following way: at each
step we query the arc indicated by the node of D that we are currently located.
In case of a yes answer, we move to the right child of the current node and
we move to its left child otherwise. We proceed with these operations until the
marked node is found. Let us assume that 4 is the marked node in Figure 1.a. We
start at the root of D and query the arc (3, 4) of T , asking if the marked node
is a descendant of node 4 in T . Since the answer is yes, we move to the right
child of (3, 4) in D and we query the arc (4, 6) in T . In this case, the outcome
of the query (4, 6) is no and then we move to node (4, 5) of D. By querying this
node we conclude that the marked node of T is in indeed 4.

1

2 3

4

5 6

(a) (3, 4)

(1, 2)

(1, 3)

(4, 6)

(4, 5)

1 3 4 5

2 6

(b)

yesno

yes

yes

yes

yes

no

no

no

no

Fig. 1. (a) Tree T . (b) Example of a decision tree for T ; Internal nodes correspond to
arcs of T and leaves to nodes of T .

We define the average number of queries of a strategy S as
∑
v∈V svw(v),

where sv is the number of queries needed to find the marked node when v is the
marked node. Therefore, our optimization problem is to find the strategy with
minimum expected number of queries. We make a more formal definition of a
strategy by means of decision trees in Section 2.

Besides generalizing a fundamental problem in theoretical computer science,
searching in posets (and in particular in trees) also has practical applications
such as in file system synchronization and software testing [5]. We remark that
although these applications were considered in the ‘worst case’ version of this
problem, taking into account the likelihood that the elements are marked (for
instance via code complexity measures in the former example) may lead to im-
proved searches.

Statement of the results. Our main result is a linear time algorithm that pro-
vides the first constant factor approximation for the problem of binary searching
in trees. The algorithm is based on the decomposition of the input tree into
special paths. A search strategy is computed for each of these paths and then
combined to form a strategy for searching the original tree. This decomposition
is motivated by the fact that the problem of binary searching in paths is eas-
ily reduced to the well-solved problem of searching in ordered lists with access
probabilities.

We shall notice that the complexity of this problem remains open, which
contrasts with its ‘worst case’ version that is polynomially solvable [3,4,5]. In fact,
the ‘average case’ version studied here is one more example of problems related to

An Approximation Algorithm for Binary Searching in Trees 461

searching and coding whose complexities are unknown [6,7]. Another interesting
example is the Huffman coding problem with unequal cost letters [8,9].

Related work. Searching in totally ordered sets is a very well studied problem
[10]. In addition, many variants have also been considered, such as when there
is information about the likelihood of each element being the one marked [11],
or where each query has a different fixed cost and the objective is to find a
strategy with least total cost [12,13,14]. As a generalization of the latter, [15,16]
considered the variant when the cost of each query depends on the queries posed
previously.

The most general version of our problem when the input is a poset instead of
a tree was first considered by Lipman and Abrahams [2]. Apart from introducing
the problem, they present an optimized exponential time algorithm for solving
it. In [17], Kosaraju et. al. present a greedy O(log n)-approximation algorithm.
In fact, their algorithm handles more general searches, see [18,19] for other more
general results. To the best of our knowledge, this O(log n)-approximation algo-
rithm is the only available result, with theoretical approximation guarantee, for
the average case version of searching in trees. Therefore, our constant approxi-
mation represents a significant advance for this problem.

The variant of our problem where the goal is to minimize the number of queries
in the worst case for searching in trees, instead of minimizing the average case,
was first considered by Ben-Asher et. al. [3]. They have shown that it can be
solved in O(n4 log3 n) via dynamic programming. Recent advances [4,5] have
reduced the time complexity to O(n3) and then O(n). In contrast, the more
general version where the input is a poset instead of a tree is NP-hard [1].

2 Preliminaries

First we need to fix some notation. For any tree T and node j ∈ T , we denote
by Tj the subtree of T composed by all descendants of j. In addition, we denote
the root of a tree T by r(T). We also extend the set difference operation to trees:
given trees T 1 = (V 1, E1) and T 2 = (V 2, E2), T 1−T 2 is the forest of T 1 induced
by the nodes V 1−V 2. Furthermore, we extend the weight function to a subtree
T ′ in a standard way w(T ′) =

∑
v∈T ′ w(v). Finally, for any multiset W of non-

negative real values, we define its entropy as H(W) = −
∑
w∈W w log w∑

w′∈W w′ .
Every query strategy for a tree T can be represented by a binary decision

tree D such that a path of D indicates what queries should be made at each
step. On a decision tree D, each internal node of D corresponds to a query for a
different arc of T and each leaf of D corresponds to a different node of T (these
correspondences shall become clear later). In addition, each internal node u of
D satisfies a search property that can be described as follows. If u corresponds
to a query for the arc (i, j), then: (i) u has exactly one right subtree and one left
subtree; (ii) all nodes of the right subtree of u correspond to either a query for
an arc in Tj or to a node in Tj; (iii) all nodes of the left subtree of u correspond
to either a query for an arc in T − Tj or to a node in T − Tj.

462 E. Laber and M. Molinaro

For any decision tree D, we use u(i,j) to denote the internal node of D which
corresponds to a query for the arc (i, j) of T and uv to denote the leaf of D
which corresponds to the node v of T .

From the example presented in the introduction, we can infer an important
property of the decision trees. Consider a tree T and a search strategy given by
a decision tree D for T . If v is the marked node of T , the number of queries
posed to find the marked node is the distance (in arcs) from the root of D to uv.

For any decision tree D, we define d(u, v,D) as the distance between nodes u
and v in D (when the decision tree is clear from the context, we omit the last
parameter of this function). Thus, the expected (with respect to w) number of
queries it takes to find the marked node using the strategy given by the decision
tree D, or simply the cost of D, is given by:

cost(D,w) =
∑

v∈T
d(r(D), uv, D)w(v)

Therefore, the problem of computing a search strategy for (T,w) which min-
imizes the expected number of queries can be recast as the problem of finding a
decision tree for T with minimum cost, that is, that minimizes cost(D,w) among
all decision trees D for T . The cost of such minimum cost decision tree is denoted
by OPT(T,w).

Now we present properties of decision trees which are crucial for the analysis
of the proposed algorithm. Consider a subtree T ′ of T ; we say that a node u is
a representative of T ′ in a decision tree D if the following conditions hold: (i)
u is a node of D that corresponds to either an arc or a node of T ′ (ii) u is an
ancestor of all other nodes of D which correspond to arcs or nodes of T ′. The
next lemma, whose proof is deferred to the full version of this paper, asserts the
existence of a representative for each subtree of T .

Lemma 1. Consider a tree T and a decision tree D for T . For each subtree T ′

of T , there is a unique node u ∈ D which is the representative of T ′ in D.

We denote the representative of T ′ (with respect to some decision tree) by u(T ′).
The second property is given by the following lemma:

Lemma 2. Consider a tree T , a weight function w and a decision tree D for
T . Then for every subtree T ′ of T ,

∑
v∈T ′ d(u(T ′), uv, D)w(v) ≥ OPT(T ′, w).

The idea of the proof is to construct a decision tree D′ for T ′ based on D in the
following way: the nodes of D′ are the nodes of D which correspond to the arcs
and nodes of T ′; there is an arc from u to v in D′ iff u is the closest ancestor of
v in D, among the nodes of D′ (Figure 2).

By construction, the distance between two nodes u and v in D′ is not greater
than their distance in D. In addition, u(T ′) is the root of D′, so we have:

cost(D′, w) =
∑

v∈T ′

d(u(T ′), uv, D′)w(v) ≤
∑

v∈T ′

d(u(T ′), uv, D)w(v)

An Approximation Algorithm for Binary Searching in Trees 463

1

2 3

4 5

6

(a)

7

(1, 3)

1

3

(b)

(1, 2)

(2, 5)

5

(2, 4)

(4, 6)

4 6(5, 7)

7

2

(c)

(2, 5)

5

(2, 4)

(4, 6)

4 6

(5, 7)

7

2

Fig. 2. (a) Tree T . (b) A decision tree D for T , with nodes corresponding to nodes and
arcs of T2 in gray. (c) Decision tree D′ for T2 constructed by connecting the nodes of
D corresponding to nodes and arcs of T2.

As one can prove that D′ is a valid decision tree for T ′, we have that
OPT(T ′, w) ≤ cost(D′, w) and consequently

∑
v∈T ′ d(u(T ′), uv, D)w(v) ≥

OPT(T ′, w).

3 An Algorithm for Binary Searching in Trees

In this section we present our algorithm for binary searching in trees. A crucial
observation employed by the algorithm is that our problem of searching in trees
can be efficiently solved when the input tree is a path. This is true because it
can be easily reduced to the well-solved problem of searching a hidden marked
element from a total order set U in a sorted list L ⊆ U of elements where each
element U has a given probability of being the marked one [11]. Due to this corre-
spondence, an approximate strategy for searching in lists gives an approximation
(with the same guarantee) for searching in path-like trees.

Motivated by this observation, the algorithm decomposes the input tree into
special paths, finds decision trees for each of these paths (with modified weight
functions) and combine them into a decision tree for the original tree. In our
analysis, we obtain a lower bound on the optimal solution and an upper bound
on the returned solution in terms of the costs of the decision trees for the paths.
Thus, the approximation guarantee of the algorithm is basically a constant times
the guarantee of the approximation used to compute the decision trees for the
paths. Throughout the text, we present the execution and analysis of the algo-
rithm over an instance (T,w), where T is rooted at node r.

For every node u ∈ T , we define the cumulative weight of u as the sum of
the weights of its descendants, namely w(Tu). A heavy path Q of T is defined
recursively as follows: r belongs to Q; for every node u in Q, the non-leaf children
of u with greatest cumulative weight also belongs to Q.

Let Q = (q1 → . . .→ q|Q|) be a heavy path of T . We define T qi = Tqi −Tqi+1 ,
for i < |Q| and T q|Q| = Tq|Q| . In addition, we define T jqi as the jth heaviest
maximal subtree rooted at a child of qi not in Q (Figure 3). Finally, let ni
denote the number of children of qi which do not belong to Q and define eji as
the arc of T connecting the node qi to the subtree T jqi .

464 E. Laber and M. Molinaro

1

T 1
3

3

5

T 1

T 2
3

T 3

T 5

T 1
1

T 1
5

Fig. 3. Example of structures T qi and T j
qi

. (a) Tree T with nodes of the heavy path in
black.

Now we explain the high level structure of the solution returned by the algo-
rithm. The main observation is that we can break the task of finding the marked
node in three stages: first finding the node qi of Q such that T qi contains the
marked node, then querying the arcs {eji}j to discover which tree T j

′

qi contains
the marked node or that the marked node is qi, and finally (if needed) locate the
marked node in T j

′

qi . The algorithm follows this reasoning: it computes a decision
tree for the heavy path Q, then a decision tree for querying the arcs {eji} and
recursively computes a decision tree for each tree T jqi .

Now we present the algorithm itself, which consists of the following five steps:

(i) Find a heavy path Q of T and then for each qi ∈ Q define w′(qi) =
w(T qi)/w(T).

(ii) Calculate a decision tree DQ for the instance (Q,w′) using the approxima-
tion algorithm presented in [11].

(iii) Calculate recursively a decision tree Dji for each instance (T jqi , w).
(iv) Build a decision tree Di for each T qi as follows. The leftmost path of Di

consists of nodes corresponding to the arcs e1
i , . . . , e

ni

i , with a node uqi
appended at the end. In addition, for every j, Dji is the right child of the
node corresponding to eji in Di (Figure 4).

(v) Construct the decision tree D for T by replacing the leaf uqi of D by Di,
for each qi ∈ Q (Figure 5).

It is not difficult to see that that the decision tree D computed by the algo-
rithm is a valid decision tree for T .

qi

e1
i e2

i e3
i

(a)

T 1
qi

T 2
qi

T 3
qi

D1
i

D2
i

D3
i

ue1
i

ue2
i

ue3
i

uqi

(b)

Fig. 4. Illustration of Step (iv) of the algorithm. (a) Tree T with heavy path in bold.
(b) Decision tree Di for T i.

An Approximation Algorithm for Binary Searching in Trees 465

(a)

uq1 uq2
uq3

uq4

D1

(b)

D2
D3

D4

Fig. 5. Illustration of Step (v) of the algorithm. (a) Decision tree DQ built at Step
(ii). (b) Decision tree D constructed by replacing the leaves {uqi } by the decision trees
{Di}.

3.1 Upper Bound

As the trees {T jqi} and Q form a partition of the nodes of T , we analyze the
distance of the root of D to the nodes in each of these structures separately in
order to upper bound the cost of D.

First, consider a tree T jqi and let x be a node in T jqi . Noticing that ux is a leaf
of the tree Dji , the path from r(D) to ux in D must contain the node r(Dji).
Then, by the construction made in Step (iv), the path from r(D) to ux in D has
the form (r(D) � ue1i → ue2i → . . .→ uej

i
� r(Dji) � ux). Notice that the path

(r(D) � ue1i) in D is the same as the path (r(D) � uqi) in DQ. In addition,
the path from r(Dji) to ux is the same in D and in Dji . Employing the previous
observations, we have that the length of the path (r(D) � ue1i → ue2i → . . . →
uej

i
� r(Dji) � ux) is:

d(r(D), ux, D) = d(r(D), uqi , DQ) + j + d(r(Dji), ux, D
j
i)

Now we consider a node qi ∈ Q. Again due to the construction made in
Step (iv) of the algorithm, it is not difficult to see that the path from r(D)
to uqi in D traverses the leftmost path of Di, that is, this path has the form
(r(D) � ue1i → ue2i → . . .→ ueni

i
→ uqi). Because the path (r(D) � ue1i) in D

is the same as the path (r(D) � uqi) in DQ, it follows that the length of the
path from the root of D to uqi is d(r(D), uqi , DQ) + ni.

Weighting distance to reach nodes in {T jqi} and in Q, we find the cost of D:

cost(D,w) =
∑

qi∈Q
d(r(D), uqi , DQ)w(T qi) +

∑

qi∈Q

∑

j

j · w(T jqi)

+
∑

qi∈Q

∑

j

∑

x∈T j
qi

d(r(Dji), ux, D
j
i)w(x) +

∑

qi∈Q
niw(qi)

= w(T) · cost(DQ, w′) +
∑

qi∈Q

∑

j

j · w(T jqi)

+
∑

qi∈Q

∑

j

cost(Dji , w) +
∑

qi∈Q
niw(qi)

466 E. Laber and M. Molinaro

Now all we need is to upper bound the first term of the previous equality.
Notice that cost(DQ, w′) is exactly the cost of the approximation computed at
Step (ii) of the algorithm. As mentioned previously, in this step we use the result
from [11] which guarantees an upper bound of H({w′(qi)})+ 2 for cost(DQ, w′).
Substituting this bound on the last displayed equality and observing that w(T) ·
H({w′(qi)}) = H({w(T qi)}), we have:

cost(D,w) ≤ H({w(T qi)}) + 2 · w(T) +
∑

qi∈Q

∑

j

j · w(T jqi)

+
∑

qi∈Q

∑

j

cost(Dji , w) +
∑

qi∈Q
niw(qi) (1)

3.2 Entropy Lower Bound

In this section we present a lower bound on the cost of an optimal decision tree
for (T,w). Hence, let D∗ be a minimum cost decision tree for (T,w), and let r∗

be the root of D∗.
Consider a tree T jqi and let x be a node in T jqi . By definition, the representative

of T jqi in D∗ (the node u(T jqi)) is an ancestor of the node ux in D∗. Notice that
the representative of T jqi is a node in D∗ that corresponds to some arc (i′, j′) of
T jqi (that is u(T jqi) = u(i′,j′)) and that (i′, j′) is also an arc of T qi . Therefore, the

definition of representative again implies that u(T jqi) is a descendant of u(T
j

qi).
Combining the previous observations, we have that the path in D∗ from r∗ to
ux has the form (r∗ � u(T qi) � u(T jqi) � ux).

Now consider a node qi ∈ Q; again by the definition of representative, the path
from r∗ to uqi can be written as (r∗ � u(T qi) � uqi). Adding the weighted paths
for nodes in {T jqi} and in Q, we can write the cost of D∗ as:

OPT(T,w) =
∑

qi

d(r∗, u(T qi))w(T qi) +
∑

qi

∑

j

d(u(T qi), u(T jqi))w(T jqi)

+
∑

qi

∑

j

∑

x∈T j
qi

d(u(T jqi), ux)w(x) +
∑

qi

d(u(T qi), uqi)w(qi) (2)

Now we lower bound each term of the last equation. The idea to analyze the
first term is the following: it can be seen as the cost of the decision tree D∗

under a cost function where the representative of T qi , for every i, has weight
w(T qi) and all other nodes have weight zero. Since D∗ is a binary tree, we can
use Shannon’s Coding Theorem to guarantee that the first term of (2) is lower
bounded by H({w(T qi)})/ log 3− w(T)(formal proof in the full paper).

Now we bound the second term of (2). Fix a node qi ∈ Q; consider two
different trees T jqi and T j

′

qi such that d(r∗, u(T jqi)) = d(r∗, u(T j
′

qi)). We claim that
u(T jqi) and u(T j

′

qi) are siblings in D∗. Because their distances to r∗ are the same,
u(T jqi) cannot be a neither a descendant nor an ancestor of u(T j

′

qi). Therefore,
they have a common ancestor, say u(v,z), and one of these node is in the right

An Approximation Algorithm for Binary Searching in Trees 467

subtree of u(v,z) and the other in the left subtree of u(v,z). It is not difficult to
see that u(v,z) can only correspond to either (qi, j) or (qi, j′). Without loss of
generality suppose the latter; then the right child of u(v,z) corresponds to an
arc/node of T j

′

qi , and therefore u(T j
′

qi) must be this child. Due to their distance
to r∗, it follows that u(T jqi) must be the other child of u(v,z).

As a consequence, we have that for any level � of D∗, there are at most two
representatives of the trees T jqi located at �. This together with the fact that T jqi
is the jth heaviest tree rooted at a child of qi guarantees that

ni∑

j=1

d(u(T qi), u(T jqi))w(T jqi) ≥
ni∑

j=1

�(j − 1)/2�w(T jqi) ≥
ni∑

j=1

(
j

2
− 3

2

)

w(T jqi) (3)

and the last inequality gives a bound for the second term of (2).
Directly employing Lemma 2, we can lower bound the third term of (2) by∑
qi,j

OPT(T jqi , w).
Finally, for the fourth term we fix qi and note that the path in D∗ connecting

u(T qi) to uqi must contain the nodes corresponding to arcs e1
i , . . . , e

ni

i (otherwise
when traversing D∗ and reaching uqi we would not have enough knowledge to
infer that qi is the marked node, contradicting the validity of D∗). Applying
this reasoning for each qi, we conclude that last term of (2) is lower bounded by∑
qi

ni · w(qi).
Therefore, applying the previous discussion to lower bound the terms of (2)

we obtain that:

OPT(T,w) ≥ H({w(T qi)})
c

− 5w(T)
2

+
∑

qi,j

j · w(T jqi)
2

+
∑

qi,j

OPT(T jqi , w) +
∑

qi

niw(qi) (4)

3.3 Alternative Lower Bounds

When the value of the entropy H({w(T qi)}) is large enough, it dominates the
term −5w(T)/2 in inequality (4) and leads to a sufficiently strong lower bound.
However, when this entropy assumes a small value we need to adopt a different
strategy to devise an effective bound.

First alternative lower bound. In order to reduce the additive that appears in
(4), we use almost the same derivation that leads from (2) to (4); however, we
simply lower bounded the first summation of (2) by zero. This gives:

OPT(T,w) ≥ −3w(T)
2

+
∑

qi,j

j · w(T jqi)
2

+
∑

qi,j

OPT(T jqi , w) +
∑

qi∈Q
niw(qi) (5)

Second alternative lower bound. Now we devise a lower bound without an addi-
tive factor; however it also does not contain the important term

∑
qi∈Q ni ·w(qi).

468 E. Laber and M. Molinaro

Consider a tree T jqi and a node v ∈ T jqi . By the definition of representative,
u(T jqi) is an ancestor of uv in D∗, thus d(r∗, uv, D∗) = d(r∗, u(T jqi), D

∗) +
d(u(T jqi), uv, D

∗). Because {T jqi} and Q form a partition of nodes of T , the cost
OPT(T,w) can be written as:

OPT(T,w) =
∑

qi,j

d(r∗, u(T jqi))w(T jqi) +
∑

qi∈Q
d(r∗, uqi)w(qi)

+
∑

qi,j

∑

v∈T j
qi

d(u(T jqi), uv)w(v)

First, as the trees {T jq|Q|
} do not contain any arcs, {u(T jq|Q|

)} and {uqi} cannot
be the root of D∗. Therefore, at most one distance d(r∗, u(T jqi)) (for qi = q|Q|) of
the first two summations of the previous inequality can be equal to zero, and all
others must have value of at least one. But the construction of the heavy path
guarantees that for qi = q|Q| the weight of each of the trees {T jqi} is at most
w(T)/2. As a consequence, the first two summations of the inequality can be
lower bounded by w(T)/2. Combining this fact with a lower bound for the last
summation provided by Lemma 2 (with T ′ = T jqi) we have:

OPT(T,w) ≥ w(T)
2

+
∑

qi,j

OPT(T jqi , w) (6)

3.4 Approximation Guarantee

We proceed by induction over the number of nodes of T , where the base case
is the trivial one when T has only one node. Notice that because each tree
T jqi is properly contained in T , the inductive hypothesis asserts that Dji is an
approximate decision tree for T jqi , namely cost(Dji , w) ≤ αOPT(T jqi , w) for some
constant α. The analysis needs to be carried out in two different cases depending
on the value of the entropy (henceforth we use H as a shorthand for H({w(T qi)}).

Case 1: H/ log 3 ≥ 3w(T). Applying this bound to inequality (4) we have:

OPT(T,w) ≥ H

6 log 3
+

∑

qi,j

j · w(T jqi)
2

+
∑

qi,j

OPT(T jqi , w) +
∑

qi

niw(qi) (7)

Employing the entropy hypothesis to the first term of inequality (1) and using
the inductive hypothesis we have:

cost(D,w) ≤ H(3 log 3 + 2)
3 log 3

+
∑

qi,j

(
j · w(T jqi)

)
+

∑

qi,j

αOPT(T jqi , w) +
∑

qi

niw(qi)

Setting α ≥ 2(3 log 3 + 2) it follows from the previous inequality and from
inequality (7) that cost(D,w) ≤ αOPT(T,w).

An Approximation Algorithm for Binary Searching in Trees 469

Case 2: H/ log 3 ≤ 3w(T). Applying the entropy hypothesis and the inductive
hypothesis to inequality (1) we have:

cost(D,w)≤(3 log 3 + 2)w(T)+
∑

qi,j

(
j · w(T jqi)

)
+

∑

qi,j

αOPT(T jqi , w)+
∑

qi

niw(qi)

Adding (α− 1) times inequality (6) to inequality (5) we have:

αOPT(T,w) ≥ (α− 4)w(T)
2

+
∑

qi,j

j · w(T jqi)
2

+
∑

qi,j

αOPT(Dji , w) +
∑

qi

niw(qi)

Setting α ≥ 2(3 log 3 + 2) + 4 we have that cost(T,w) ≤ αOPT(T,w). There-
fore, the inductive step holds for both cases when α ≥ 2(3 log 3 + 2) + 4.

3.5 Efficient Implementation

Notice that in order to implement the Step (iv) of the algorithm, we need to
sort the trees {T jqi}. As a heavy path decomposition can be computed in linear
time [6], it is easy to see that all steps of the steps of the algorithm, besides the
sorting at Step (iv), can be implemented in linear time. Hence we resort to an
‘approximate sorting’ to provide a linear time implementation of algorithm.

Fix a node qi in Q. Without loss of generality, we assume there are more than
three trees {T jqi} (that is ni > 3), otherwise we could sort them in constant time.
In order to simplify the analysis, we use wj = w(T jqi) and let W = maxj{wj}.
Then we have the sequence WQ = (w1, w2, . . . , wni), which is nondecreasing by
the definition of the trees {T jqi}. Now we partition WQ into blocks with similar
weights: for 0 ≤ j < ni, the j-block contains all elements of WQ with weights
in the interval [W/2j−1,W/2j) and the ni-block will contain all elements with
weights in [W/2ni−1, 0]. Notice that because WQ is ordered, it is the concatena-
tion of these blocks. Defining sj as the index of the first element of the j-block3,
we have that the for j < ni the j-block is the sequence (wsj , wsj+1, . . . , wsj+1−1)
and the ni-block is the sequence (wsni

, wsni
+1, . . . , wni).

Now we say that WQ′ is an approximate sorting of the weights {wj} if
WQ′ contains first all elements 1-block of WQ, then all elements of the 2-
block of WQ and so on. The sequence WQ′ can be thought as a permu-
tation of WQ where only elements on the same j-block can be permuted.
Defining WQ′ = (wσ(1), wσ(2), . . . , wσ(ni)), it follows that the subsequence
(wσ(sj), wσ(sj+1), . . . , wσ(sj+1)) contains the same elements of the j-block of WQ.
As there are only ni blocks, we can find an approximate sorting in linear time
using a bucketing strategy.

We claim that
∑ni

j=1 j ·wσ(j) ≤ 3
∑ni

j=1 j ·wj . For every 0 ≤ j < ni, it follows
from the definition of j-block and the relationship between the elements of WQ′

and the blocks of WQ that for every 0 ≤ j < ni:

sj+1−1∑

k=sj

k · wk ≥
W

2j

sj+1−1∑

k=sj

k =
1
2

⎛

⎝ W

2j−1

sj+1−1∑

k=sj

k

⎞

⎠ ≥ 1
2

sj+1−1∑

k=sj

k · wσ(k) (8)

3 In order to avoid a heavier notation, we assume that each j-block is nonempty.

470 E. Laber and M. Molinaro

In addition, because for every k ≥ sni we have wσ(k) ≤ W/2ni , the sum∑ni

k=sni
k ·wσ(k) can be upper bounded by n2

i (W/2ni). Therefore, for ni > 3 this
term can be upper bounded by W . Combining with the fact that

∑ni

k=1 k·wk ≥W
we have that

∑ni

k=sni
k · wσ(k) ≤

∑ni

k=1 k · wk.
Using the previous inequality together with inequality (8), we have:

ni∑

k=1

k · wσ(k) =
ni−1∑

j=1

sj+1−1∑

k=sj

k · wσ(k) +
ni∑

k=sni

k · wσ(j) ≤ 2
ni−1∑

j=1

sj+1−1∑

k=sj

k · wk

+
ni∑

k=1

k · wk ≤ 3
ni∑

k=1

k · wk

Now suppose that our algorithm uses the approximate permutation σ to sort
the trees {T jqi}. It is easy to see this only impacts the second term of the right

hand side of equation (1), with
∑
j j · w(T jqi) being replaced by

∑
j j · w(T σ(j)qi).

Recalling that wj = w(T jqi), the previous argument implies that this approximate
sorting introduces a multiplicative factor of three in second term of (1) and it is
straight forward to check this does not alter the guarantee of the algorithm.

Theorem 1. There is a linear time algorithm which provides a constant factor
approximation for the problem of binary searching in trees.

References

1. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.: Searching in random partially
ordered sets. Theor. Comput. Sci. 321, 41–57 (2004)

2. Lipman, M., Abrahams, J.: Minimum average cost testing for partially ordered
components. IEEE Transactions on Information Theory 41, 287–291 (1995)

3. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM Journal on
Computing 28 (1999)

4. Onak, K., Parys, P.: Generalization of binary search: Searching in trees and forest-
like partial orders. In: FOCS, pp. 379–388 (2006)

5. Mozes, S., Onak, K., Weimann, O.: Finding an Optimal Tree Searching Strategy
in Linear Time. In: SODA (2008)

6. Doüıeb, K., Langerman, S.: Near-entropy hotlink assignments. In: Azar, Y., Er-
lebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 292–303. Springer, Heidelberg
(2006)

7. Barkan, A., Kaplan, H.: Partial alphabetic trees. J. Algorithms 58, 81–103 (2006)
8. Karp, R.: Minimum-redundancy coding for the discrete noiseless channel. IRE

Trans. Inform. Theory 7, 27–39 (1961)
9. Golin, M., Kenyon, C., Young, N.: Huffman coding with unequal letter costs. In:

STOC (2002)
10. Knuth, D.: The art of computer programming, volume 3: sorting and searching.

Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)
11. de Prisco, R., de Santis, A.: On binary search trees. Inf. Process. Lett. 45, 249–253

(1993)
12. Knight, W.: Search in an ordered array having variable probe cost. SIAM J. Com-

put. 17, 1203–1214 (1988)

An Approximation Algorithm for Binary Searching in Trees 471

13. Laber, E., Milidiú, R., Pessoa, A.: Strategies for searching with different access
costs. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 236–247. Springer,
Heidelberg (1999)

14. Laber, E., Milidiú, R., Pessoa, A.: On binary searching with non-uniform costs. In:
SODA, pp. 855–864 (2001)

15. Navarro, G., Baeza-Yates, R., Barbosa, E., Ziviani, N., Cunto, W.: Binary searching
with nonuniform costs and its application to text retrieval. Algorithmica 27, 145–
169 (2000)

16. Szwarcfiter, J., Navarro, G., Baeza-Yates, R., de, S., Oliveira, J., Cunto, W., Zi-
viani, N.: Optimal binary search trees with costs depending on the access paths.
Theor. Comput. Sci. 290, 1799–1814 (2003)

17. Kosaraju, R., Przytycka, T., Borgstrom, R.: On an optimal split tree problem.
In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS,
vol. 1663. Springer, Heidelberg (1999)

18. Laber, E., Nogueira, L.: On the hardness of the minimum height decision tree
problem. Discrete Applied Mathematics 144, 209–212 (2004)

19. Chakaravarthy, V., Pandit, V., Roy, S., Awasthi, P., Mohania, M.: Decision trees
for entity identification: approximation algorithms and hardness results. In: PODS,
pp. 53–62 (2007)

Algorithms for 2-Route Cut Problems

Chandra Chekuri1,� and Sanjeev Khanna2,��

1 Dept. of Computer Science, University of Illinois, Urbana, IL 61801
chekuri@cs.uiuc.edu

2 Dept. of CIS, Univ. of Pennsylvania, Philadelphia, PA 19104
sanjeev@cis.upenn.edu

Abstract. In this paper we study approximation algorithms for multi-
route cut problems in undirected graphs. In these problems the goal is
to find a minimum cost set of edges to be removed from a given graph
such that the edge-connectivity (or node-connectivity) between certain
pairs of nodes is reduced below a given threshold K. In the usual cut
problems the edge connectivity is required to be reduced below 1 (i.e. dis-
connected). We consider the case of K = 2 and obtain poly-logarithmic
approximation algorithms for fundamental cut problems including single-
source, multiway-cut, multicut, and sparsest cut. These cut problems are
dual to multi-route flows that are of interest in fault-tolerant networks
flows. Our results show that the flow-cut gap between 2-route cuts and
2-route flows is poly-logarithmic in undirected graphs with arbitrary ca-
pacities. 2-route cuts are also closely related to well-studied feedback
problems and we obtain results on some new variants. Multi-route cuts
pose interesting algorithmic challenges. The new techniques developed
here are of independent technical interest, and may have applications to
other cut and partitioning problems.

1 Introduction

We study multi-route cut problems in undirected graphs which generalize well-
known and standard (1-route) cut problems. Consider a single pair of nodes s, t
in an edge-weighted G = (V,E) with ce denoting the weight/cost of edge e ∈ E.
Then a K-route cut for s, t is a subset E′ ⊆ E such that removing E′ would
leave at most K − 1 edge-disjoint paths between s and t. In other words s and
t are not K-edge-connected in G[E \E′]; we say that s, t are K-separated by E′

or that E′ is a K-route cut. A regular s-t cut is a 1-route cut. We are interested
in finding a minimum weight K-route cuts for K > 1. In this paper we focus
on K = 2 as the first non-trivial case in this class of problems. We consider
several natural and well-studied cut problems such as the single-source multiple-
sink cut, multiway cut, and multicut in this new setting. We also consider two
� Supported in part by NSF grants CCF-0728782 and CNS-0721899, and US-Israel

BSF grant 2002276.
�� Supported in part by a Guggenheim Fellowship, by NSF Award CCF-0635084, and

by US-Israel BSF grant 2002276.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 472–484, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Algorithms for 2-Route Cut Problems 473

orthogonal generalizations in the definition of the cut: the first is to find a set of
edges that reduces the node-connectivity, and the second is to find node-weighted
cuts instead of edge-cuts. We start by motivating the study of the multi-route
cut problems.

Our primary inspiration comes from the fact that multi-route cuts are the
natural dual problems to multi-route flows. To describe multi-route flows it is
useful to consider the standard (1-route) flow between s and t in a graph G
as an assignment of non-negative numbers to the set of all the paths P from
s to t. Let PK denote the set of all tuples (p1, p2, . . . , pK) where pi ∈ P and
the paths p1, p2, . . . , pK are edge-disjoint. A tuple (p1, p2, . . . , pK) of this form is
called an elementary K-flow. A K-route flow between s, t is simply an assign-
ment of non-negative numbers to elementary K-flows. Multi-route flows arise in
several applications where fault-tolerance to edge (or node) failures is relevant
[20,1,5,6,2], and are implicitly used in LP-relaxations for connectivity problems
such as the survivable network design problem (SNDP). Kishimoto [20], building
on some earlier work, introduced multi-route flows. For any K, the maximum
K-route flow between s and t can be computed via the ellipsoid method for
linear programming. Kishimoto [20] gave an algorithm that requires solving at
most K regular maximum flows. Aggarwal and Orlin [1] simplified the ideas
and analysis in [20] (see also [3]), and showed several interesting applications of
multi-route flows to combinatorial problems. Just as a regular s-t minimum-cut
upper bounds the s-t maximum flow, a minimum K-route cut bounds the maxi-
mum K-route flow. However, for K > 1, the flow-cut equivalence no longer holds
even for a single pair s, t. Thus it is of interest to study the two following ques-
tions. What is the gap between the maximum K-route flow and the minimum
K-route cut for a single pair as well as more general multi-pair settings? What is
the complexity of finding minimum K-route cuts? Some of these questions have
been raised in the recent work Bruhn et al. [7] who studied multi-route flows and
cuts in the single source setting for unit-capacity graphs and suggested several
open problems, including some of which we study in this paper.

Another motivation for multi-route cuts, and in particular for 2-route-cuts,
comes from feedback problems in undirected graphs. The input to a feedback
problem is a graph with either edge or node weights, and a set of (simple)
cycles C that is usually specified implicitly. The goal is to remove edges (or
nodes) of minimum-cost such that the remaining graph has no cycle from C.
These problems have received considerable attention in the past and have several
applications. In the subset feedback problem, a set of terminals S ⊆ V defines C;
a cycle C ∈ C iff C contains a terminal. An O(1)-approximation is known for this
problem even in the node-weighted setting [14]. We observe that a 2-route cut
corresponds to removing edges (or nodes) such that the remaining graph does
not have 2-edge-disjoint (or 2-node-disjoint) paths between specified terminal
pairs. In undirected graphs, a 2-route cuts for node-disjoint paths give rise to
new and interesting feedback problems, e.g., the 2-route multiway-cut problem
corresponds to the feedback problem where C is the set of cycles that contain at

474 C. Chekuri and S. Khanna

least two terminals from a given terminal set S ⊆ V . Note that the edge-disjoint
2-route cuts require more than simple cycles to be removed (see Fig 2).

Finally, we remark that 2-route cuts, and more generally K-route cuts, are
algorithmically challenging. Many of the techniques that have been developed
for the regular cut problems cannot be applied directly. We develop some new
techniques in this paper and we believe that a proper and full understanding of
these problems would require new algorithmic ideas of broader applicability. We
discuss the technical challenges in more detail after we describe our results.

2-route Cut Problems: In this paper we restrict our attention to K = 2 and
study several natural 2-route cut problems in undirected graphs. In particular
we consider the following problems in undirected graph G = (V,E).

– Single-source multiple-sink. Given a source s and multiple sinks t1, t2, . . . , th,
find a minimum weight cut to 2-separate s from ti for 1 ≤ i ≤ h.

– Multiway-cut. Given h terminals s1, s2, . . . , sh, find a minimum weight cut
that 2-separates si from sj for each i = j.

– Multicut. Given h node pairs s1t1, s2t2, . . . , shth, find a minimum weight cut
that 2-separates si from ti for 1 ≤ i ≤ h.

– Sparsest cut. Given h node pairs s1t1, s2t2, . . . , shth, find a cut that mini-
mizes the ratio of the cut cost to the number of pairs that are 2-separated.

Results: We first describe our results for the case of edge-disjoint 2-route cut
problems in edge-weighted graphs. We obtain poly-logarithmic approximations
for the four 2-route cut problems that we mentioned above. In particular, we
achieve approximation ratios of O(log n), O(log n log h) and O(log2 n logh) for
the single-source, multiway-cut and multicut problems respectively. The multicut
result can be used to obtain an O(log2 n log2 h) approximation for the sparsest
cut problem using standard ideas. Our results are obtained via a natural LP
relaxation whose dual corresponds to a maximum 2-route flow problem. Thus
we obtain poly-logarithmic upper bounds on 2-route flow-cut gaps.

Our techniques can be adapted to get approximation guarantees similar to the
corresponding edge-disjoint version for the single-source multiple-sink and the
multiway cut problem in the node-disjoint setting; however, the multicut problem
introduces some additional technical difficulties and we leave this as a direction
for future work. All our results, including those for node-disjoint paths version,
extend to node-weighted problems with identical performance guarantees.

It is easy to show that the 2-route cut problems considered here are at least
as hard to approximate as their 1-route counterparts (modulo constant factors).
Moreover, it is easy to show that the LP integrality gap is Ω(log n) for the 2-
route multiway-cut problem even when the terminals span the vertex set. In the
rest of the paper, we focus on the 2-route edge-disjoint cut problems in edge-
weighted graphs. Most proofs are omitted due to space limitations; please see
the author web pages for a longer version of the paper.

Algorithmic ideas: We illustrate the new algorithmic ideas needed to address
2-route problems by considering the simplest setting, namely the s, t 2-route cut

Algorithms for 2-Route Cut Problems 475

problem. An optimal solution to this problem may be obtained as follows: guess
an edge e, and output the edges in a minimum s, t cut in G − e. We leave the
proof of the optimality of this procedure as a useful exercise to the reader. For
general K, one needs to guess K−1 edges. Thus, the single pair problem for any
fixed K can be solved optimally even in directed graphs. Now consider the single-
source multiple-sink problem where we wish to 2-separate s from t1, t2, . . . , th.
When K = 1 this problem can be reduced to the single pair case by simply
connecting t1, t2, . . . , tk to a super-sink t with infinite cost edges. However, for
K ≥ 2 this reduction does not work. In fact, the 2-route single-source multiple-
sink problem is at least as hard as the regular multiway-cut problem which is
known to be APX-hard. We therefore resort to approximation algorithms and
consider the natural LP relaxation for these problems. The relaxation assigns
lengths to the edges such that for each pair siti that needs to be separated, the
minimum length of 2-edge disjoint paths between them is at least 1. The main
challenge is to round a fractional solution to this relaxation.

One of the difficulties with rounding for K-route-cuts when K ≥ 2 is that the
cut does not disconnect the graph into connected components with the source
and sink of a terminal pair in different components. In fact, for K ≥ 2, if the
original graph G is connected, then deleting the edges in any minimal solution,
would yield a residual graph that is still connected. Thus the standard technique
of using a “ball-growing” procedure to identify the set of edges to be deleted,
is not directly applicable in this setting. To concretely illustrate the difficulty
of adapting classical ball-growing techniques to our setting, consider the simple
example shown in Figure 1. It shows a feasible fractional solution for a 2-route
cut separating s from t. The shortest distance from s to t in this example is
0, while the two edge-disjoint path distance from s to t is 1. Thus any ball-
growing procedure that uses shortest path distances, will place both s and t
inside the same ball, no matter how small the radius of the ball. On the other
hand, in this example, any ball grown from s w.r.t. 2 edge-disjoint path distance
contains only vertex s if the radius is less than 1, and the entire graph if the
radius is 1. In case of former, the only edges leaving the ball have a fractional
length of 0. Thus these edges cannot be deleted in any solution with a finite
performance guarantee. In case of latter, we do not get to separate s from t.
This simple example also highlights that the two-edge-disjoint-path distance
measure behaves quite differently from the usual shortest path distance metric.
It appears that the standard region growing algorithms [21,15] and embedding
methods are difficulty to adapt to the 2-route setting.

To overcome these difficulties, we introduce a novel randomized rounding tech-
nique that allows us to reduce 2-route cut problems to 1-route problems (not in
a one-to-one correspondence). An interesting aspect of our reduction is that it
maps feasible fractional solutions to 2-route cut problems to feasible fractional
solutions to appropriate 1-route cut problems. We can then use standard round-
ing algorithms for the 1-route cut problems to output a feasible solution for the
initial 2-route cut problem. The indirect nature of this rounding process creates
technical difficulties in arguing feasibility of the final solution. We note that the

476 C. Chekuri and S. Khanna

0

s t

0
0

1/2
1/2

0

Fig. 1. Ball-growing w.r.t. 2
edge-disjoint paths distance

s t
u

Fig. 2. There is no simple cy-
cle between s and t but an edge
has to be removed to 2-separate
s from t in the edge-disjoint case

random scaling we use is non-standard and there does not appear to be a natural
deterministic analogue (yet) of the procedure. We believe these new techniques
are of independent technical interest, and may have applications to other cut
and partitioning problems.

Related Work: Cut and flow problems are ubiquitous in combinatorial op-
timization and hence we do not discuss this well known area. As mentioned
earlier, multi-route flows have been of interest since the work of Kishimoto and
others [20]. Recently, Bruhn et al. [7] considered the gap between a maximum
K-route flow and a maximum 1-route flow for the single-source multiple-sink
problem. They showed that for unit capacity undirected graphs, the maximum
1-route flow is not more than 2(1 − 1/K) times the maximum K-route flow. In
particular this implies that for any K, in unit-capacity graphs one can obtain
a simple 2(K − 1) approximation for the single-source multi-sink K-route cut
problem. We note that the unit-capacity problem is very different in nature from
the problem with general capacities for K ≥ 2. In a regular 1-route problem one
can replace an edge with integer capacity ce by ce edges of unit capacity without
changing the problem. However, for K ≥ 2 this transformation does not pre-
serve the flow! It is easy to construct examples where this transformation would
increase the K-route flow by an unbounded amount. For instance, consider a
network with two nodes s and t and two parallel edges, one with capacity 1 and
other with capacity M for some integer M ≥ 1. Then the maximum 2-route flow
between s and t is 1. However, if we replace the capacity M edge by M parallel
copies of unit capacity, the 2-route flow value increases to Ω(M).

2 Preliminaries

Given a (multi-)graph G, we will use n and m to denote the number of vertices
and edges in G respectively. For convenience, we will assume that m is polyno-
mially bounded in n. We let c(e) denote the cost of an edge e. We say that a
vertex s is K-separated from a vertex t if the maximum K-route flow from s to
t is 0.

For any two nodes s, t ∈ V , let PG� (s, t) denote the set of all tuples
(p1, p2, . . . , p�) where each pi is a path from s to t and pi and pj are edge-
disjoint for i = j. Let x : E → R+ be an assignment of non-negative weights to

Algorithms for 2-Route Cut Problems 477

the edges and for a path p let x(p) =
∑
e∈p x(e). For two nodes s, t ∈ V (G) we

let dG1 (s, t;x) denote the length of a shortest path between s and t with respect
to edge weights x in the graph G. In other words dG1 (s, t;x) = minp∈PG

1 (s,t) x(p).
We let dG2 (s, t;x) = min(p,q)∈PG

2 (s,t) x(p) + x(q) denote the minimum length of
two edge disjoint paths from s to t with respect to edge weights x. We define
dG� (s, t;x) for any integer � in a similar fashion. Finally, for any vertex s we
define BG� (s, θ;x) = {v|dG� (s, v;x) ≤ θ}. We drop the superscript G when the
graph is clear from the context.

LP Relaxation: We now describe an LP relaxation for our problems - this is a
natural generalization of the K = 1 case and has been considered earlier. Since
the multicut problem captures the other two problems in our study as special
cases, it suffices to only give a formulation for multicut.

min
∑

e∈E
c(e)x(e)

x(p) + x(q) ≥ 1 (p, q) ∈ PG2 (si, ti), 1 ≤ i ≤ h

xe ≥ 0 e ∈ E.

Recall that we restrict attention to the edge-weighted case of the 2-route edge-
disjoint cut problems. For each e ∈ E there is a variable x(e) that in the binary
case models whether e is in the cut (x(e) = 1) or not (x(e) = 0). In the LP
relaxation, we let x(e) be any non-negative number. If x is a feasible solution to
the LP then d2(si, ti;x) ≥ 1 for 1 ≤ i ≤ h.

One can solve the LP in polynomial time using the ellipsoid method: the sep-
aration oracle is a simple min-cost flow problem (can be solved by the successive
shortest path algorithm). We remark that the LP can be generalized in straight
forward fashion for K-route cuts where K is any integer. The dual of the above
LP can be seen to be a maximum 2-route multicommodity flow LP; there is a
scaling factor of K involved depending on whether one counts the total flow or
the total elementary K-flow and we ignore this issue for now.

For the single-source multiple-sink problem the pairs to be separated are sti,
1 ≤ i ≤ h and for the multiway-cut problem the pairs are sisj , i = j.

In the sequel we work with a feasible fractional solution to the LP and all our
approximation bounds will be with respect to the lower bound provided by an
optimum solution to the LP.

A Useful Lemma: The simple lemma below will be useful in our analysis.

Lemma 1. Let G = (V,E) be a graph and let x : E → [0, 1/3) be an edge weight
function. Let s ∈ V such that for all u ∈ V \ {s}, dG2 (s, u;x) ≥ 1. Then for any
cycle C containing s there is a node v in C such that dG1 (s, v;x) > 1/3.

Corollary 1. Let G = (V,E) be a graph and let x : E → [0, 1/3) be an edge
weight function. Let s ∈ V and B = B2(s, 0;x) such that for all u ∈ V \ B,
dG2 (s, u;x) ≥ 1. Then for any cycle C containing s and a node u ∈ V \B, there
is a node v ∈ C such that dG1 (s, v;x) > 1/3.

478 C. Chekuri and S. Khanna

3 Single-Source 2-Route Cuts

We are given a graph G, a source s, and a set T = {t1, t2, . . . , th} of terminals
that need to be 2-route separated from the source s. A reduction similar to
the one given in [13] for the subset feedback edge set problem can be used to
show that even the restricted case of the single-source 2-route cut problem where
T = V \ {s} is APX-hard.

We now give a rounding algorithm for single-source multi-sink problem. Let
x be a feasible fractional solution for the 2-route cut instance on G. We will
assume that in the solution x, each variable x(e) is assigned a value that is
an integral multiple of 1/n. This can be ensured by replacing each x(e) with
min{1, (�4nx(e)�)(1

n)}. Since no minimal edge-disjoint collection of paths con-
tains more than 2n edges, it is easy to see that the resulting solution is feasible;
the new solution’s cost is at most four times that of the original. For a number
α ∈ [0, 1] we let n(α) denote the number �nα� 1

n .
Now pick a radius θ ∈ (0, 1) uniformly at random. Let B = B2(s, θ;x) =

{v | dG2 (s, v;x) ≤ θ}, and let A = V \ B. Note that all terminals lie in A and
that the induced graph G[B] is 2-edge-connected. Our goal now is to alter the
original LP solution x into another solution x′ so that dG2 (s, v;x′) ≥ 1 for all
v ∈ A and dG2 (s, v;x′) = 0 for all v ∈ B.

For an edge e = (u, v), let r(e) denote the least radius r such that dG2 (s, u;x) ≤
r and dG2 (s, v;x) ≤ r. Note that r(e) is the same as the length of the shortest
(not-necessarily simple) cycle containing s and e with edge lengths given by x.
We set x′(e) as follows. If r(e) ≤ θ we set x′(e) = 0, otherwise we scale up x(e)
by a factor of 1/(r(e) − n(θ)), that is, we set x′(e) = x(e)/(r(e) − n(θ)). We
observe that e ∈ G[B] implies x′(e) = 0. An equivalent scaling process is to pick
i uniformly at random from 0, 1, . . . , n− 1 and set θ = i/n.

Lemma 2. In the solution x′, dG2 (s, u;x′) ≥ 1 for all u ∈ A. Moreover, for all
v ∈ B, u ∈ A, dG2 (v, u;x′) ≥ 1.

Proof. For clarity of exposition, let α(v) = dG2 (s, v;x) and β(v) = dG2 (s, v;x′).
Assume by way of contradiction that there is some v ∈ A such that β(v) < 1.
Among all such vertices choose w such that α(w) is largest. Let P and Q be two
edge-disjoint paths from s to w such that x′(P)+x′(Q) < 1. By the choice of w,
for any edge e ∈ P ∪Q, r(e) ≤ α(w). Walk from w to s along P to find the first
node a such that a ∈ B (a exists since s ∈ B) and let P ′ be the sub-path of P
from w to a. Using Q, define b and Q′ as above. We claim that x(P ′) + x(Q′) ≥
α(w)− θ for otherwise we can use P ′ and Q′ to find two disjoint paths between
s and w of total x length strictly less than α(w). We prove this claim after
we use it to finish the proof of the lemma. Note that for any edge e in P ′ ∪Q′,
x′(e) = x(e)/(r(e)−n(θ)) ≥ x(e)/(r(e)−θ) ≥ x(e)/(α(w)−θ). Thus, after scaling
x′(P ′ ∪Q′) ≥ 1 which implies that x′(P ∪Q) ≥ 1 contradicting our assumption.
For the second part of the lemma, we observe that dG2 (s, v;x′) = 0 for any v ∈ B.
Further, by the triangle inequality dG2 (s, u;x′) ≤ dG2 (s, v;x′) + dG2 (v, u;x′) and
hence dG2 (v, u;x′) < 1 implies dG2 (s, u;x′) < 1.

Algorithms for 2-Route Cut Problems 479

Now we prove the claim. Since a ∈ B, there are two edge disjoint paths Pa
and Qa from a to s such that x(Pa) + x(Qa) ≤ θ. Further, Pa and Qa have all
their edges in G[B]. Similarly let Pb and Qb be the paths for b. We claim that
P ′ ∪Q′ ∪Pa ∪Qa ∪Pb ∪Qb contain two edge disjoint paths from w to s of total
length at most

x(P ′)+x(Q′)+(x(Pa)+x(Qa))/2+(x(Pb)+x(Qb))/2 < α(w)−θ+θ/2+θ/2 < α(w).

It is easy to see that P ′∪Q′∪Pa∪Qa∪Pb∪Qb contains two edge disjoint paths
from w to s. To bound the total x-length of these paths, we create a fractional
flow of two units from w to s of the desired length such that no edge has more
than one unit of flow. Then the claim follows by using the fact that there exists
an integer flow of no higher cost than the fractional flow. Send one unit of flow
from w along P ′ to a which then splits the flow into a half unit along Pa and
another half along Qa. The other unit of flow is sent along Q′ and split at b for
Pb and Qb. It can be checked that no edge has more than one unit of flow and
that the x-length of this flow is equal to x(P ′) + x(Q′) + (x(Pa) + x(Qa))/2 +
(x(Pb) + x(Qb))/2. ��

We next show that the expected cost of the resulting solution is only O(log n)
times larger than the cost of the original solution.

Lemma 3. Eθ[x′(e)] = O(log n) · x(e).
Proof. Let r(e) = i/n for some integer i. Note that x′(e) = 0 if θ ≥ r(e) and
otherwise x′(e) = x(e)/(r(e) − n(θ)). Therefore

Eθ[x′(e)] =
∫ r(e)

0

x(e)
r(e)− n(θ)

· dθ = x(e)
∑

j<i

1
n
· 1
i/n− j/n

= O(log n)x(e).

��

Remark 1. Lemmas 2 and 3 hold for the following modified scaling procedure as
well: x′(e) = x(e) if θ ≥ r(e) and x′(e) = x(e)/(r(e) − n(θ)) otherwise.

The rounding procedures for 2-route multiway cut and 2-route multicut implic-
itly need the modifed analysis mentioned in the above remark. The analysis
given in Lemma 3 is tight even when there is a single terminal to be separated
from the source, and all edge weights are 1. Consider a graph G with vertices
v0 through vn. Let s = v0 and t = vn. For each 0 ≤ i < n, there are two par-
allel edges between vi and vi+1. Consider an LP solution that for each pair of
parallel edges assigns xe = 1/n on one of the edges and 0 on the other. Then
d2(s, vi) = i/n. Now consider the edge e between vn/2−1 and vn/2. With proba-
bility 1/n the initial radius r is between i/n and (i + 1)/n. When i < n/2, we
scale e by a factor roughly 1/(1/2 − i/n). Thus the expected scaling factor is
Ω(log n); a similar argument shows that this holds for Ω(n) edges.

We now complete the description of the algorithm by showing how we can
use the solution x′ to find a feasible cut. We remove any edges e such that
x′(e) ≥ 1/3. In the remaining graph let T ′ = {u | dG1 (s, u;x′) ≥ 1/3}. We solve

480 C. Chekuri and S. Khanna

a single source min-cut problem to disconnect s from T ′. Note that 3x′ is suf-
ficient to pay for both the above steps since the single source min-cut problem
has an integrality gap of 1. By Corollary 1, any cycle involving s and a node
from A contains a node from T ′. Therefore, separating T ′ from s ensures that
there is no cycle involving s and a node from A. Since all terminals are in A,
the solution is feasible. The expected cost is 3

∑
e c(e)x

′(e) which by Lemma 3
is O(log)

∑
e c(e)x(e). We can easily derandomize the procedure by using stan-

dard ideas; the proof of Lemma 3 shows the existence of a θ ∈ [0, 1) such that∑
e c(e)x

′(e) = O(log n)
∑
e c(e)x(e). We observe that there are only n distinct

values in {d2(s, v;x) | v ∈ V } that are relevant in choosing θ, hence we can try
all these values and pick the one which results in the least cost. This gives the
following theorem.

Theorem 1. Single-source 2-route cut problem has an O(log n)-approximation.

4 2-Route Multiway Cut

Let S = {s1, s2, . . . , sh} ⊆ V be a set of terminals. In the 2-route Multiway Cut
problem the goal is to find a minimum cost set of edges whose removal 2-separates
si and sj for all 1 ≤ i < j ≤ h. It is easy to show that the standard isolating cut
heuristic [11], which gives a 2(1−1/h)-approximation for the standard (1-route)
multiway cut problem, yields an Ω(h)-approximation for the 2-route variant.

Lemma 4. The integrality gap of the LP for 2-route multiway-cut is Ω(log n)
even when S = V .

Note that when S = V the problem is equivalent to the feedback edge set
problem and the LP solution for the 2-route problem is equivalent to the LP
solution for the feedback edge problem for which the Ω(log n) gap was observed
in [13] using high-girth expanders.

We give an LP rounding approach that gives an O(log n logh) approximation.
Let x be a feasible solution to the LP. As before we will assume that x(e) is an
integer multiple of 1/n. Let e = (u, v). We let ri(e) to be the smallest r such
that B2(si, r;x) contains both end points of e. We set r(e) = mini ri(e). The
algorithm consists of the following steps.

1. Pick θ uniformly at random from [0, 1/4).
2. For each e, set x′(e) = max{2x(e), x(e)/(r(e)− n(θ))}.
3. Remove edges e such that x′(e) ≥ 1/3.
4. Separate all pairs (si, v) with dG1 (si, v;x′) ≥ 1/3 by solving a multi-cut prob.
5. Output edges removed in Steps 3 and 4.

Theorem 2. The 2-route multiway cut problem has an O(log n log h)-
approximation.

Algorithms for 2-Route Cut Problems 481

5 2-Route Multicut

We now consider the 2-route multicut problem. We are given G and h pairs
s1t1, s2t2, . . . , shth and the goal is to 2-separate si from ti for 1 ≤ i ≤ h.

We give an LP rounding algorithm that essentially reduces it to the standard
multicut problem. Our algorithm is inspired by the algorithms of Calinescu,
Karloff and Rabani for multiway-cut [8] and 0-extension [9]; the underlying idea
has seen several applications subsequently. Let x be a feasible solution to the
LP. For an edge e = uv, we let ri(e) = max{d2(si, u;x), d2(si, v;x)}.

1. For each u ∈ V (G), set ρ(v) = 0.
2. Pick θ uniformly at random from [0, 1/2) and pick a random permutation σ

of {1, 2, . . . , h}.
3. For i = 1 to h do

– For v ∈ B2(sσ(i), θ;x), if ρ(v) = 0 then ρ(v) = i.
4. For each edge e:

– Find the least index j such that rσ(j)(e) ≤ θ; if no such j exists then set
j = h + 1.

– If j = 1, set x′(e) = x(e), else set x′(e) = maxi<j x(e)/(rσ(i)(e)− n(θ)).
5. Remove edges e such that x′(e) ≥ 1/10.
6. In G separate all pairs (p, q) with dG1 (p, q;x′) ≥ 1/6 via a multicut algorithm.
7. Output edges removed in Steps 5 and 6.

We observe that the first three steps of the above algorithm are similar to
the adaptation of the CKR procedure and analysis from [9] for the (1-route)
multicut problem (see lecture notes [17,10] for details of this). The only dif-
ference is that step 3 is performed with respect to 1-route distance. At the
end of step 3, the 1-route multicut algorithm outputs as solution all edges
(u, v) such that ρ(u) = ρ(v). The feasibility of this solution is immediate since
the radius of each ball is less than 1/2, and hence no ball can contain both
a source and its corresponding sink. An elegant argument from [9] can then
be used to show that the expected cost of this solution is within an O(log n)
factor of the optimal. We note that the classical region growing algorithm
of [15] may be viewed as a deterministic version of this randomized ball-growing
process.

In contrast, for 2-route multicut, a critical step is the randomized scaling
(step 4) which allows us in effect to reduce our problem to an instance of 1-
route multicut. The cost analysis of the resulting solution combines the scaling
analysis from Lemma 3 with the argument from [9] followed by the integrality
gap for the standard 1-route multicut [15]; this is not too difficult. The main
difficulty, however, is in proving the feasibility of the resulting solution. In the
setting of 2-route distance, the sets {v |ρ(v) = i} are difficult to visualize, and
the intuitive distance based arguments are no longer applicable. We rely on a
careful inductive proof to argue for the feasibility of the cut.

482 C. Chekuri and S. Khanna

5.1 Feasibility

We will show that the solution obtained in the step 7 above is indeed a feasible
solution. For clarity of exposition, assume without loss of generality that the
permutation σ is an identity permutation. For i ∈ [1..h] let Vi = {w | ρ(w) = i}.

Lemma 5. For any node w ∈ Vi and u ∈ V \ Vi, we have d2(w, u;x′) ≥ 1.

The main technical lemma needed to establish feasibility is stated below.

Lemma 6. For any i ∈ [1..h], let C be any cycle (possibly non-simple) that
involves a node w ∈ Vi and a node u ∈ V \Vi. Then after scaling in the step 4 of
the algorithm, either the cycle C has a pair of nodes p, q such that d1(p, q;x′) ≥
1/6 or there is an edge e on C such that x′(e) ≥ 1/10.

We now finish the proof of the feasibility of the solution output by the algorithm.
For any pair siti, 1 ≤ i ≤ h, we claim that ρ(si) = ρ(ti). Suppose not. Let
ρ(si) = ρ(ti) = q. Then si ∈ B2(sσ(q), θ;x) and ti ∈ B2(sσ(q), θ;x) which implies
that d2(si, ti;x) ≤ 2θ. Since θ < 1/2 this would imply that d2(si, ti;x) < 1 which
contradicts the feasibility of x.

From above and Lemma 6, for any cycle C that contains both si and ti,
either there is any edge e in C such that x′(e) ≥ 1/10 or there are nodes p, q
in C such that d1(p, q;x′) ≥ 1/6. Since the algorithm removes all edges f with
x′(f) ≥ 1/10 (in Step 5) and ensures that there is no path between nodes p, q
with d1(p, q;x′) ≥ 1/6 (in Step 6), every cycle C between si and ti is removed.

5.2 Cost Analysis

We will first analyze the cost of the solution x′. To do so, it suffices to consider the
expected scaling factor for any edge in G. Fix θ ∈ (0, 1/2) and an edge e = (u, v).
Recall that ri(e) = max{d2(si, u;x), d2(si, v;x)}. By renumbering pairs, assume
that r1(e) ≤ r2(e) ≤ ... ≤ rh(e). We will denote by f(e) the scaling factor for edge
e. Define fi(e, θ) = 1 if ri(e) ≤ θ and 1

(ri(e)−n(θ)) otherwise. The scaling factor
f(e) for edge e is determined to be fi(e, θ) only if in the random permutation
σ, the source si occurs before each one of s1, s2, ..., si−1. The probability of this
event is at most 1/i. Thus for a fixed choice of θ, the expected scaling factor for
an edge e can be bounded by Eσ[f(e)] ≤

∑h
i=1

1
i fi(e, θ).

Taking the expectation over θ, which is independent of σ, we get the expected
scaling factor for the edge e is at most

Eθ,σ[f(e)] ≤
∫ 1/2

0

h∑

i=1

1
i
fi(e, θ) · dθ

=
h∑

i=1

1
i

(∫ ri(e)

0

1
ri(e)− n(θ)

· dθ +
∫ 1/2

ri(e)

1 · dθ
)

= O(log h logn).

Algorithms for 2-Route Cut Problems 483

Thus the expected cost of the solution x′ is O(log h logn) times the cost of the
solution x. Finally, we lose another factor of O(log n) in solving the multicut
instance on x′. We thus get the following theorem.

Theorem 3. The 2-route multicut problem has an O(log h log2 n)-
approximation.

References

1. Aggarwal, C., Orlin, J.: On Multi-route Maximum Flows in Networks. Networks 39,
43–52 (2002)

2. Bagchi, A., Chaudhary, A., Kolman, P.: Short length Menger’s theorem and reliable
optical networking. Theoretical Computer Science 339, 315–332 (2005)

3. Bagchi, A., Chaudhary, A., Kolman, P., Sgall, J.: A simple combinatorial proof for
the duality of multiroute flows and cuts. TR 2004-662, Charles Univ. (2004)

4. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation Algorithms for
the Feedback Vertex Set Problem with Applications to Constraint Satisfaction and
Bayesian Inference. SIAM J. Comput. 27(4), 942–959 (1998)

5. Brightwell, G., Oriolo, G., Shepherd, F.B.: Some strategies for reserving resilient
capacity. SIAM J. on Discrete Math. 14(4), 524–539 (2001)

6. Brightwell, G., Oriolo, G., Shepherd, F.B.: Reserving Resilient Capacity for a Single
Commodity with Upper Bound Constraints. Networks 41(2), 87–96 (2003)

7. Bruhn, H., Cerny, J., Hall, A., Kolman, P.: Single Source Multiroute Flows and
Cuts on Uniform Capacity Networks. In: Proc. of ACM-SIAM SODA (2007)

8. Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences 60, 564–574 (2000)

9. Călinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for the 0-
extension problem. SIAM J. on Computing 34(2), 358–372 (2004)

10. Chekuri, C.: Lecture notes on Multicut rounding via CKR method,
http://www.cs.uiuc.edu/homes/chekuri/teaching/fall2006/lect15.pdf

11. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. on Computing 23, 864–894 (1994)

12. Even, G., Naor, J., Rao, S., Schieber, B.: Divide-and-conquer approximation algo-
rithms via spreading metrics. J. ACM 47, 585–616 (2000)

13. Even, G., Naor, J., Schieber, B., Zosin, L.: Approximating minimum subset feed-
back sets in undirected graphs with applications. SIAM J. Disc. Math. 13(2), 255–
267 (2000)

14. Even, G., Naor, J., Zosin, L.: An 8-approximation for the subset feedback vertex
set problem. SIAM J. on Computing 30(4), 1231–1252 (2000)

15. Garg, N., Vazirani, V., Yannakakis, M.: Approximate Max-Flow Min-(Multi)Cut
Theorems and Their Applications. SIAM J. Comput. 25(2), 235–251 (1996)

16. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1987)

17. Gupta, A., Ravi, R.: Lecture notes on LP solutions as Metrics: MultiCut, and
Region Growing,
http://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/
scribe/lec20.pdf

18. Günlük, O.: A new min-cut max-flow ratio for multicommodity flows. SIAM J. on
Discrete Math. 21(1), 1–15 (2007); Preliminary version In: Proc.of IPCO (2002)

http://www.cs.uiuc.edu/homes/chekuri/teaching/fall2006/lect15.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf

484 C. Chekuri and S. Khanna

19. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a
geometric embedding of minimum multiway cut. In: Proceedings of the 29th ACM
Symposium on Theory of Computing, pp. 668–678 (1999)

20. Kishimoto, W.: A method for obtaining the maximum multi-route flow in a net-
work. Networks 27(4), 279–291 (1996)

21. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999); Prelim.
version In: Proc. of IEEE FOCS (1988)

22. Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)

The Two-Edge Connectivity Survivable Network

Problem in Planar Graphs

Glencora Borradaile1,� and Philip Klein2,��

1 Department of Combinatorics and Optimization, University of Waterloo
glencora@uwaterloo.ca

2 Computer Science Department, Brown University
klein@cs.brown.edu

Abstract. Consider the following problem: given a graph with edge-
weights and a subset Q of vertices, find a minimum-weight subgraph in
which there are two edge-disjoint paths connecting every pair of ver-
tices in Q. The problem is a failure-resilient analog of the Steiner tree
problem, and arises in telecommunications applications. A more general
formulation, also employed in telecommunications optimization, assigns
a number (or requirement) rv ∈ {0, 1, 2} to each vertex v in the graph;
for each pair u, v of vertices, the solution network is required to contain
min{ru, rv} edge-disjoint u-to-v paths.

We address the problem in planar graphs, considering a popular re-
laxation in which the solution is allowed to use multiple copies of the
input-graph edges (paying separately for each copy). The problem is
SNP-hard in general graphs and NP-hard in planar graphs. We give the
first polynomial-time approximation scheme in planar graphs. The run-
ning time is O(n log n).

Under the additional restriction that the requirements are in {0, 2}
for vertices on the boundary of a single face of a planar graph, we give a
linear-time algorithm to find the optimal solution.

1 Introduction

In the field of telecommunications network design, an important requirement of
networks is resilience to link failures [19]. The goal of the survivable network
problem is to find a graph that provides multiple routes between pairs of termi-
nals. In this work we focus on edge-disjoint paths, though vertex-disjoint paths
have also been the subject of research. More formally for Z a set of non-negative
integers, the input to the Z-edge connectivity problem is a weighted, undirected
graph G and an assignment of connectivity requirements rv ∈ Z to vertices v.
The goal is to find a minimum-weight subgraph such that, for each pair u, v of
vertices, the subgraph contains at least min{ru, rv} edge-disjoint u-to-v paths.
Because it is considered unlikely that two links would fail simultaneously, some
research has focused on requiring at most two paths between vertices that need
� Work done while at Brown University.

�� Supported by NSF grant CCF-0635089. Work done while visiting MIT.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 485–501, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

486 G. Borradaile and P. Klein

to be connected. There is a wealth of literature on such low-connectivity net-
work design problems. Resende and Pardalos [19] survey the literature, which
includes heuristics, structural results, polyhedral results, computational results
using cutting planes, and approximation algorithms.

This work focuses on {0, 1, 2}-edge connectivity. We consider the well-studied
relaxation wherein the solution subgraph is allowed to contain multiple copies
of each edge of the input graph. We call such a subgraph a sub-multigraph and
the weight of the edges appearing twice in the solution is counted according to
multiplicity. For two-connectivity, at most two copies of an edge are needed. This
version of the problem, like the other variants, is SNP-hard in general graphs [6].
In [3], Berger and Grigni gave a polynomial-time approximation scheme (PTAS)
for {1, 2}-edge connectivity (ie. the spanning case) in planar multigraphs. A year
later, a PTAS was given for {0, 1}-edge connectivity (that is, the Steiner tree
problem) in planar graphs. Here we give a PTAS for the {0, 1, 2}-edge connectiv-
ity (ie. the subset case) for planar multigraphs. The running time is significantly
lower than that of [3]. In the following, OPT denotes the weight of the optimal
solution to the problem at hand.

Theorem 1. Let G be a planar graph with nonnegative edge-weights and integer
requirements rv ∈ {0, 1, 2} for each vertex v. For any 0 < ε < 1, there is an
O(n log n) algorithm that finds a sub-multigraph H of G such that for every pair
u, v of vertices, there are at least min{ru, rv} edge-disjoint u-to-v paths in H.
Further, the total weight of the edges in H is at most (1 + ε)OPT.

An important special case involves finding a sub-multigraph that achieves two-
edge connectivity between a given set Q of vertices. Our approximation scheme
addresses this problem (i.e. rv = 2 for all v ∈ Q and rv = 0 for all v /∈ Q). In
addition, for the special case where the vertices of Q are on the boundary of a
common face, we give a linear-time algorithm to find the optimal solution:

Theorem 2. There is a linear-time algorithm that, given a planar embedded
graph with edge-weights and a subset Q of the vertices on the boundary of a
single face, finds a minimum-weight two-edge-connected sub-multigraph of G
spanning Q.

For ease of exposition, we will take the the face on which the vertices Q lie to
be the outermost or infinite face of the planar embedded graph. That is, the
vertices of Q lie on the boundary of the planar graph.

Both results rely on a common observation (Theorem 3, Section 2) concern-
ing the structure of two-edge connectivity between boundary vertices of planar
graphs.

1.1 Related Work

Two-edge-connected spanning subgraph. A special case that has received much
attention is the problem of finding a minimum-weight subgraph of G in which
every pair of vertices is two-connected. This problem is called two-edge-connected

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 487

spanning subgraph, and is NP-hard [8] and max-SNP complete [6] in gen-
eral graphs. Frederickson and JáJá [9] gave a 3-approximation algorithm for
this problem. The approximation ratio was improved to 2 by Khuller and
Vishkin [14]. For the unweighted case, they gave a 1.5-approximation algorithm.
Jothi, Raghavachari, and Varadarajan [13] improved the approximation ratio
to 5/4.

In planar graphs the problem is NP-hard. Berger et al. [2] and Berger and
Grigni [3] gave PTASes for the unweighted and weighted cases, respectively,
in planar graphs. In both cases, the degrees of the polynomial depend on the
desired precision ε. All the above algorithms work for the case where the output
is not allowed to duplicate edges. For the case where duplication is allowed, the
techniques of Klein [15] can be applied to obtain a linear-time approximation
scheme.

Beyond spanning. For the more general case where a subset Q of the vertices
need only be spanned, Ravi [18] showed that Frederickson and JáJá’s approach
could be generalized to give a 3-approximation algorithm (in general graphs).
Klein and Ravi [17] gave a 2-approximation for a more general problem in which
the input specifies which pairs of vertices must be connected up. This result was
greatly generalized by Williamson, Goemans, Mihail, and Vazirani [20], Goe-
mans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [10], and Jain [12].
These algorithms did not require duplication of edges.

In their recent paper on the spanning case, Berger and Grigni raise the
question of whether there is a PTAS for finding a minimum-weight two-edge-
connected subgraph of a planar graph. In this paper, we answer that question
in the affirmative, at least when edge duplications are allowed.

1.2 Notation

For a path P , P [x, y] denotes the x-to-y subpath of P for vertices x and y of P .
For paths A and B, A◦B denotes the concatenation of A and B. For a subgraph
H of a graph G, we use V (H) to denote the set of vertices in H . We similarly
use the notation V (P), etc.

We employ the usual definitions of planar embedded graphs. For a face f ,
the cycle of edges making up the boundary of f is denoted ∂f . We assume the
planar graph G is connected and is embedded in the plane, so there is a single
infinite face, and we denote its boundary by ∂G.

For a cycle C in a planar embedded graph, C[x, y] denotes an x-to-y path in
C for vertices x and y of C. There are two such paths and the choice between the
two possibilities will be disambiguated by specifying an orientation of the cycle
(clockwise or counterclockwise). A cycle C is said to enclose the faces that are
embedded inside it. C encloses an edge/vertex if the edge/vertex is embedded
inside it or on it. In the former case, C strictly encloses the edge/vertex.

See Figure 1 for an illustration of the notion of paths crossing. A cycle is
non-self-crossing if every pair of subpaths of the cycle do not cross. Two trees
are noncrossing if no path in one crosses a path of the other.

488 G. Borradaile and P. Klein

P Q

x

y

(a)

P

Q

(b) (c)

v

(d)

Fig. 1. (a) P crosses Q. (b) P and Q are noncrossing. (c) A self-crossing cycle. (d) A
non-self-crossing cycle (non-self-crossing allows for repeated vertices, i.e. v.).

1.3 Outline

In Section 2, we establish some key properties of two-edge-connectivity between
boundary vertices of a planar graph. In Section 3, we prove Theorem 2 by giving
a linear-time algorithm for the special case of finding the minimum two-edge-
connected subgraph containing a subset of the boundary vertices of a planar
embedded graph. In Section 4, we build on the results in Section 2 to give
a decomposition of solutions to the two-edge connectivity survivable network
problem in planar graphs where all terminals are on the boundary.

The remainder of the paper is devoted to proving the PTAS of Theorem 1.
The approximation scheme employs an approach used by Borradaile, Klein, and
Mathieu [5] to obtain an approximation scheme for Steiner tree. In Section 5, we
outline the approach. In particular, what is needed is a structural theorem that
states that the interaction between different parts of an optimal solution can be
restricted to be “simple” while paying only a small penalty (in relative terms)
in weight. We restate this theorem (Theorem 4) as given in [5] for the Steiner
tree problem. The corresponding theorem for two-edge connectivity (Theorem 5)
appears in Section 6. The proof draws on the results of Sections 2 and 4 and
the corresponding structure theorem for Steiner trees. Finally, in Section 7, we
briefly outline the dynamic program that is at the heart of the computation.

2 Basic Structural Properties of Boundary Connectivity

The results of this section hold for both subgraphs and sub-multigraphs. In this
section, we investigate the structure of sub-(multi)graphs of G that achieve up
to {0, 1, 2}-edge-connectivity between vertices of ∂G.

Since we are only interested in connectivity up to and including two-edge
connectivity, we define the following: for a graph H and vertices x, y, let

cH(x, y) = min{2,maximum number of edge-disjoint x-to-y paths in H}.

For two sub-multigraphs H and H ′ of a common graph G and for a subset
S of the vertices of G, we say H ′ achieves the two-connectivity of H for S if
cH′(x, y) ≥ cH(x, y) for every x, y ∈ S. We say H ′ achieves the boundary two-
connectivity of H if it achieves the two-connectivity of H for S = V (∂G).

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 489

(a)

a

c

P1 P2

Q1'

Q2'

b

d

(b)

C

x

y

P

Q

Fig. 2. (a) An illustration of the paths in Lemma 2. (b) An illustration of the proof of
Lemma 3: there are edge-disjoint x-to-y paths that do not use edges enclosed by C.

Lemma 1 (Transitivity). For any graph H, for vertices u, v, w ∈ V (H),
cH(u,w) ≥ min{cH(u, v), cH(v, w)}

Lemma 2 (Crossing). Let G be a planar embedded graph, and let its boundary
be v1v2 . . . vn . For integers 1 ≤ i < j < k < � ≤ n, for any subgraph H of G,
cH(vi, vj) ≥ min{cH(vi, vk), cH(vj , v�)}.

Proof (Sketch). For the case of connectivity two, see Figure 2(a). Given 2 edge-
disjoint a-to-c paths (P1 and P2) and 2 edge-disjoint b-to-d paths (whose prefixes
are Q′1 and Q′2), it is easy to construct 2 a-to-b edge-disjoint paths. The proof
for connectivity one is similar but simpler. ��

Lemma 3. Let H be a sub-(multi)graph of G and let C be a non-self-crossing
cycle of H. Let H ′ be the subgraph of H obtained by removing the edges of H
that are strictly enclosed by C. H ′ achieves the boundary 2-connectivity of H.

Proof. See Figure 2(b). Without loss of generality, let C be a simple cycle that
is clockwise according to the planar embedding. Consider two vertices x and y of
∂G. We show that there are cH(x, y) edge-disjoint x-to-y paths in H that do not
use edges strictly enclosed by C. There are two non-trivial cases: cH(x, y) = 1
and cH(x, y) = 2. We omit the former case, as the latter is illustrative.

Let P and Q be edge-disjoint x-to-y paths in H . If Q does not intersect C, then
P ′ and Q are edge-disjoint paths, neither of which has a dart strictly enclosed
by C (where P ′ is as defined above). Suppose that both P and Q intersect C.
Let xQ and yQ be vertices of Q defined as for P . Suppose these vertices are
ordered xP , xQ, yQ, yP around C. Then P [x, xP] ◦ C[xP , yQ] ◦ Q[yQ, y] and
Q[x, xQ] ◦ rev (C[yP , xQ]) ◦ P [yP , y] are edge disjoint x-to-y paths that do not
use any edges enclosed by C. This case is illustrated in Figure 2(b); other cases
follow similarly.

We have shown that we can achieve the boundary two-connectivity of H
without using any edges enclosed by a cycle of H . The lemma follows. ��

Corollary 1. Let H be a subgraph of G and let H ′ be a minimal subgraph of
H that achieves the boundary two-connectivity of H. Then in H ′ every cycle C
strictly encloses no edges.

490 G. Borradaile and P. Klein

Lemma 4. Let H be a subgraph of G. Let S be a subset of V (∂G) such that,
for every x, y ∈ S, cH(x, y) = 2. Then there is a non-self-crossing cycle C in H
such that S ⊆ V (C) and the order that C visits the vertices in S is the same as
their order along ∂G.

Proof (sketch). Assume that the vertices of S are in the order s1, s2, . . . , sk along
∂G. Let ∂G[si+1, si] denote the subpath of the boundary of G between si+1 and
si that does not go through sj for j = i, i + 1. Let Pi be the si-to-si+1 path in
H (taking the indices mod k) such that the cycle Pi ◦ ∂G[si+1, si] encloses only
one si-to-si+1 path (namely, Pi). One can show that Pi does not cross Pj for
any pair i, j. The cycle C = P1 ◦ P2 ◦ · · · ◦ Pk−1 has the properties required by
the lemma. ��

3 Linear-Time Exact Algorithm for a Boundary
Two-Edge-Connectivity Problem

Here we give a linear-time algorithm for the following problem: given a weighted,
planar graph G and a subset Q of the vertices of ∂G, find a minimum-weight two-
edge-connected sub-multigraph of G that spans Q. This will prove Theorem 2,
as stated in the Introduction. The algorithm whose correctness will follow from
Lemma 4, is:
Boundary2EC(G,Q)

1. Let q1, q2, . . . be the cyclic ordering of the terminals in Q along ∂G.
2. For i = 1, . . ., let Pi be the shortest qi-to-qi+1 path in G (taking the indices

mod |Q|).
3. Return the disjoint union ∪iPi.

Using the following lemma, we show that Boundary2EC can be implemented in
linear time using the linear-time shortest path algorithm for planar graphs [11].

Lemma 5. Let a, b and c be vertices ordered along the clockwise boundary ∂G
of a planar graph G. Let Ta be the shortest-path tree rooted at a. Then there is
a shortest b-to-c path in G that is enclosed by the cycle ∂G[b, c] ◦ T [c, b].

Proof (sketch). Suppose that the shortest b-to-c path P in G is not enclosed by
the cycle ∂G[b, c] ◦ T [c, b]. Then there is a subpath of P that contradicts the
shortness of T . ��

A linear-time implementation of Boundary2EC is: compute a shortest-path
tree T rooted at terminal q1 in linear time; for each i, consider the graph Gi
enclosed by Ci = ∂G[qi, qi+1] ◦ T [qi+1, qi]; compute the shortest qi-to-qi+1 path
Pi in Gi. By Lemma 5, Pi is a shortest qi-to-qi+1 path in G. Since each edge of
G appears in at most two subgraphs Gi and Gj , the paths Pi can be computed
in linear time.

We now argue that Boundary2EC finds the minimum-weight two-edge-
connected multi-subgraph of G that spans Q. Certainly Boundary2EC re-
turns a 2-edge-connected multi-subgraph that spans Q. We show that the graph

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 491

Boundary2EC finds is of minimum weight. Let H be the optimal solution. By
Lemma 4, there is a cycle C in H that visits the vertices q1, q2, . . . in order. This
cycle can be written as L1 ◦L2 ◦ · · · where Li is a qi-to-qi+1 path. Let Pi be the
shortest qi-to-qi+1 path. Then w(P1 ◦ P2 ◦ · · ·) ≤ w(L1 ◦ L2 ◦ · · ·) ≤ w(H).

4 Decomposition Result for Boundary Connectivity

For the theorem given in this section, we have to generalize the notion of connec-
tivity requirements. Connectivity requirements so far assign an integer to each
vertex; the corresponding subgraph must ensure connectivity at least min{ru, rv}
between u and v. One can instead specify a connectivity requirements for each
pair of vertices, using a function from the set of two-element subsets of V (∂G)
(written

(
V (∂G)

2

)
) to {0, 1, 2}.

Theorem 3. Let G be a connected planar embedded graph. Let r :
(
V (∂G)

2

)
−→

{0, 1, 2} be a function specifying connectivity requirements among the boundary
vertices. There is a collection X = {X1, . . . , Xk} of subsets of V (∂G) that are
noncrossing with respect to ∂G such that a minimal subgraph H of G satis-
fies connectivity requirements r(·) iff H contains edge-disjoint non-crossing trees
T1, T2, . . . , Tk where, for each i, Ti spans Xi.

In the following we will assume for notational convenience that the boundary of
the graph G is a simple cycle; that is, a vertex appears at most once along ∂G.
Let us see why it suffices to prove the theorem with this assumption. Suppose
the boundary of G is not simple: there is a vertex v that appears at least twice
along ∂G. Partition G into two graphs G1 and G2 such that v appears exactly
once along ∂G1 and E(∂G) = E(∂G1) ∪ E(∂G2). Let x be a vertex of ∂G1 and
let y be a vertex of ∂G2. Then cG(x, y) = min{cG1(x, v), cG2 (v, y)}.

Let a1a2a3a4 · · · am be the alternating sequence of vertices and edges of ∂G
in the order in which they are encountered during a clockwise traversal. We say
{ai, ak} and {aj , a�} cross if i < j < k < �.

We start with some definitions that will lead to the definition of the sets
making up X :

– ∼2 is a relation on the vertices of ∂G: u ∼2 v if r({u, v}) = 2.
– ∼∗2 is the transitive and crossing closure of ∼2. That is, ∼∗2 is the minimal

superset of ∼2 such that if x ∼∗2 y and u ∼∗2 v and either {x, y} crosses {u, v}
or y = u, then x ∼∗2 v.

– ∼1 is a relation on the vertices of ∂G: x ∼1 y if r({x, y}) ≥ 1. Let ∼∗1 be the
transitive and crossing closure of ∼1.

– r∗1 :
(
V (∂G)

2

)
−→ {0, 1} is a requirement function such that r∗1({u, v}) = 1 iff

u ∼∗1 v.
– ∼0 is a relation on the edges of ∂G: a ∼0 b if there is no set {u, v} ⊂ V (∂G)

that crosses {a, b} such that u ∼∗2 v. It is easy to see that ∼0 is an equivalence
relation.

492 G. Borradaile and P. Klein

Let E1, . . . , E� be the equivalence classes of ∼0. For i = 1, . . . , �, let
Zi =

⋃
{endpoints of e : e ∈ Ei} ∩ V (H), and let Xi = {W ∩ Zi :

W an equivalence class of r∗1}. Let X =
⋃
iXi, and write Xi = {X1, . . . , Xk}.

There are two parts to the proof of the theorem.

Part 1: For i = 1, . . . , k, let Ti be a tree that connects Xi where the Ti’s are edge-
disjoint. Let H =

⋃
i Ti. We will show that H satisfies the original connectivity

requirements r(·), thus proving the forward direction of the theorem. We must
show (A) if r({x, y}) = 2 then cH(x, y) = 2, and (B) if r({x, y}) = 1 then
cH(x, y) ≥ 1.

Let Y1, . . . , Y� be the equivalence classes of ∼∗2. For each Yi, we will show that
H contains a cycle Ci through the vertices of Yi, which will prove (A). Let the
vertices of Yi be x0, x1, . . . , xp−1, numbered according to their occurrence in a
clockwise traversal of ∂G.

Claim 1: For j = 0, . . . , p − 1, there is some X ∈ X that contains xj and
xj+1 mod p.

Proof. Let e be the edge immediately after xj in clockwise traversal of ∂G, and
let e′ be the edge immediately before xj+1 mod p. Suppose there were a subset
{u, v} ⊂ V (∂G) that crosses {e, e′} such that u ∼∗2 v. Assume without loss of
generality that u occurs after e and before e′ in clockwise traversal of ∂G. Then
v occurs after e′ and before e. It follows that one of the following must hold:
v = xj or v = xj+1 mod p or {u, v} crosses {xj , xj+1 mod p}. In each case, since
∼∗2 is closed under crossing and transitivity, u ∼∗2 xj , contradicting the fact that
xj and xj+1 mod p are consecutive elements of Yi. This shows that e ∼0 e′, which
shows in turn shows that xj and xj+1 mod p are in a common set Z ∈ Z. Since
r({xj , xj+1}) = 2, we infer r∗1({xj , xj+1}) = 1, so there is a set X ∈ X (with
X ⊂ Z) that contains xj and xj+1. ��

Let Pj be the xj-to-xj+1 path in T (the tree that spans X). By combining these
paths for j = 0, 1, . . . , p− 1, we obtain a cycle Ci, proving (A).

Now we prove (B). Let U1, · · · , Us be all the equivalence classes of ∼∗2 such that
there is pair in Ui crosses {x, y} for every i. Assume that these sets are ordered
according to their distance from x along ∂G (in, say, the clockwise direction).
Let ui and vi be two distinct vertices of Ui chosen such that u1 is the vertex of
U1 closest to x along ∂G and us is the vertex of Us closest to y along ∂G. (See
Figure 3.)

If s = 0 then there are edges ex and ey adjacent to x and y respectively such
that ex ∼ ey. So x and y are in a common set Z ∈ Z. Since r({x, y}) = 1 and
x ∼∗1 y then r∗({x, y}) = 1 and x and y are in a common set Xi ∈ X . Therefore
Ti (and hence H) contains an x-to-y path.

Suppose that s > 0. The argument is illustrated in Figure 3. Since x ∼∗1 y and
∼∗1 is closed under crossing, x ∼∗1 ui for i = 1, . . . , s. Since ∼∗1 is closed under
transitivity, ui ∼∗1 ui+1 for j = 1, . . . , s − 1. By choice of u1, x ∼0 u1, so x and
u1 are in a common set Xi ∈ X . Therefore Ti (and hence H) contains an x-to-u1

path. Similarly H contains a us-to-y path.

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 493

x
y

u1

u2
v1 v3

v2
u3

Fig. 3. The argument for one-connectivity is illustrated. Because {x, y} crosses
{u1, u2}, a connectivity requirement arises between x and u2. Hence there is an x-to-u2

path. Moreover, for each equivalence class, there is a cycle (indicated in medium-bold)
connecting the members ui. Combining the paths with the cycles yields an x-to-y path.

By (A), H contains a ui-to-vi path for i = 1, . . . , s. For i = 1, . . . , s − 1 we
argue that H contains a ui-to-ui+1 path. Since ui ∼0 ui+1 and by the transitivity
of ∼∗1, ui and ui+1 are in a common set Xi, so Ti contains such a path. Combining
these paths, we obtain an x-to-y path in H , proving (B) and the forward direction
of Theorem 3.

Part 2: Let H be a subgraph of G that satisfies the connectivity requirements
r(·). Assume without loss of generality that H is edge-minimal subject to this
condition. We will show how to decompose H into noncrossing, edge-disjoint
subgraphs T1, . . . , Tk, so that Ti spans Xi.

By Lemmas 1 and 2, for any vertices x, y ∈ V (∂G), if x ∼∗2 y then cH(x, y) = 2.
As in the proof of Part 1, let Y1, . . . , Y� be the equivalence classes of ∼∗2. For each
Yj , let Cj be the corresponding non-self-crossing cycle in H whose existence is
guaranteed by Lemma 4. By Corollary 1, Cj does not strictly enclose any edges.

Let R be the subgraph of G consisting of ∂G ∪
⋃�
j=1 Cj . Let F be the set of

faces of R other than the infinite face and the faces in the interiors of cycles Cj .
For each face f ∈ F , let Hf be the subgraph of H consisting of edges enclosed
by ∂f .

Claim 2: For distinct faces f1, f2 ∈ F , Hf1 and Hf2 are edge-disjoint.

Proof. The set of edges strictly enclosed by f1 and the set of edges enclosed by
f2 are clearly disjoint. We need to address the case of edges not strictly enclosed
by f1, i.e. edges of ∂f1. Every edge e of R belongs either to ∂G or to some cycle
Ci, so e is on the boundary of some face not in F . Hence e is on the boundary
of at most one face in F . ��

Claim 3: For any face f ∈ F and any vertices x, y ∈ V (∂f ∩∂G), if x, y ∈ X ∈ X
then Hf contains an x-to-y path.

494 G. Borradaile and P. Klein

Proof. By Lemmas 1 and 2, if x ∼∗1 y then cH(x, y) ≥ 1. Hence H contains such
a path P . Suppose P is not a path of Hf , and consider a maximal subpath P ′

of P that is not enclosed by ∂f . By maximality, the endpoints of P ′ must lie on
∂f . Since P ′ is enclosed by ∂G, the endpoints of P ′ must lie on a subpath Q of
∂f ∩ (

⋃�
j=1 Cj). Thus Q belongs to H , and therefore to Hf . The subpath P ′ of

P can therefore be replaced by Q. Similarly replacing each such subpath yields
an x-to-y path in Hf . ��

Claim 4: Let f be a face in F , and let a, b be edges of ∂G ∩ ∂f . Then there is
some equivalence class Ei of ∼0 that contains a and b.

Proof. Assume for a contradiction that there is a subset {u, v} ⊂ V (∂G) that
crosses {a, b} such that u ∼∗2 v. There is some subset Yj containing u and v,
and therefore some cycle Cj that passes through u and v. Since the edges of
Cj belong to R, this contradicts the fact that a and b lie on the boundary of a
common face of R. ��

Now we can complete the proof of Part 2. For i = 1, . . . , k, let Wi be the set of
faces f in F such that V (∂f) intersects Zi. By Claim 4, the Wi’s are disjoint.
Let Hi =

⋃
f∈Wi

Hf . By Claim 2, the Hi’s are edge-disjoint. By Claim 3, Hi
spans Xi. By the disjointness of the Wi’s, no path in Hi1 crosses a path in Hi2 if
i1 = i2. Since the connectivity requirements are {0, 1}, each Hi contains a forest
Fi that satisfies the requirements r∗1(·) among vertices of Zi. The components of
Fi span the sets in Xi. The union of all these trees is a subgraph that, by Part 1,
satisfies connectivity requirements r(·). This completes the proof of Part 2 and
the reverse direction of Theorem 3.

5 A PTAS Framework for Connected Problems in Planar
Graphs

In this section, we review the approach used in [5] to give a PTAS for the Steiner
tree problem in planar graphs as we will use the same approach for this survivable
network problem.

The framework relies on an algorithm for finding a subgraph MG of G, called
the mortar graph [5]. The mortar graph spans Q and has total weight no more
than f(ε) times the minimum weight of a Steiner tree in G spanning Q (and so
has weight no more than f(ε) ·OPT where OPT denotes the optimal value of the
Steiner tree or the survivable network problem). The first step in constructing
MG is to find an approximate Steiner tree and recursively augmenting this with
short paths.

The mortar graph is a grid-like subgraph (the bold edges in Figure 4(a)). For
each cell or face of the mortar graph, the subgraph of G enclosed by that face
is called a brick (Figure 4(b)). The properties of bricks needed for this work are
summarized by the following lemma.

Lemma 6 (from Lemma 4 [5]). The boundary of a brick B, in counterclock-
wise order, is the concatenation of four paths WB ∪ SB ∪ EB ∪NB such that:

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 495

(B1) The set of edges B \ ∂B is nonempty.
(B2) Every terminal of Q that is in B is on NB or on SB.
(B3) NB and SB are ε-short.

A path P in a graph G is ε-short if for every pair of vertices x and y on P , the
distance from x to y along P is at most (1 + ε) times the distance from x to y
in G: distP (x, y) ≤ (1 + ε)distG(x, y).

The mortar graph and the bricks are building blocks of the structural properties
required for designing an approximation scheme. In [5], it was demonstrated that
there is a near-optimal Steiner tree whose interaction with the mortar graph is
“simple”. To formalize this notion (Theorem 4), we say that there is near-optimal
Steiner tree that joins the boundary of each brick a small number of times. A
joining vertex of graph H with a path P is a vertex of P that is the endpoint of
an edge of H \P . The intersection of a tree with a brick might not be connected,
and so the theorem applies to forests inside bricks.

Theorem 4 (Structural property of bricks for {0, 1}-edge connectivity,
Theorem 4 [5]). Let B be a plane graph with boundary N∪E∪S∪W satisfying
the brick properties of Lemma 6. Let F be a subgraph of B. There is a forest F̃
of B with the following properties:

(F1) If two vertices of N ∪S are connected in F , then they are connected in F̃ .
(F2) The number of joining vertices of F̃ with both N and S is at most α(ε).
(F3) � (F̃) ≤ (1 + cε)� (F).

In the above, α(ε) = o(ε−5.5) and c is a fixed constant.

This theorem is a key ingredient to the proof of correctness of the PTAS for
Steiner tree and will be used in proving a similar theorem (Theorem 5) for the
{0, 1, 2}-edge connectivity problem we solve here.

5.1 Approximation Scheme

The approximation scheme consists of the following steps. Only Step 5 depends
on the specifics of the optimization problem, though Step 4 depends on a constant
that comes out of the Structure Theorem for the problem.

Step 1: Find the mortar graph MG.
Step 2: Decompose MG into “parcels”, subgraphs with the following properties:

(a) Each parcel consists of the boundaries of a disjoint set of faces of MG. Since
each edge of MG belongs to the boundaries of exactly two faces, it follows
that each edge belongs to at most two parcels.

(b) The weight of all boundary edges (those edges belonging to two parcels)
is at most (1/η)weight(MG). We choose η so that this bound is
(ε/2)weight(OPT).

(c) The planar dual of each parcel has a spanning tree of depth at most η + 1.

496 G. Borradaile and P. Klein

Each parcel P corresponds to a subgraph of G, namely the subgraph consisting
of the bricks corresponding to the faces making up P . Let us refer to this sub-
graph as the filled-in version of P .
Step 3: Select a set of “artificial” terminals on the boundaries of parcels so that
for each filled-in parcel, there is a feasible (with respect to original and artifi-
cial terminals) solution whose weight is at most the parcel’s boundary plus the
weight of the intersection of OPT with the filled-in parcel, and the union over
all parcels of such feasible solutions is a feasible solution for the original graph.
Step 4: For each brick, designate as portals a constant number of vertices on
the boundary of each brick. The constant is chosen, depending on the Structure
Theorem, so that there exists a near-optimal feasible solution that is portal-
respecting, i.e. passes through a portal whenever it passes from one face of MG
to another.
Step 5: For each filled-in parcel, find a optimal portal-respecting solution. Out-
put the union of these solutions.

Step 1 can be carried out in O(n logn) time. Details are in [5,4,16]. Step 2 can
be done in linear time. It consists of doing breadth-first search in the planar dual
of MG, and then applying a “shifting” technique in the tradition of Baker [1].
Details are in [5]. Step 3 uses the fact that each parcel’s boundary consists
of edge-disjoint, noncrossing cycles. If such a cycle strictly encloses an original
terminal and does not enclose all terminals, a vertex on the cycle is designated
an artificial terminal. Under this condition, any feasible solution for the original
graph must cross the cycle; by adding the edges of the cycle, we get a feasible
solution that also spans the artificial terminal. Step 3 can be implemented in
linear time. Step 5 is achieved in linear time using dynamic programming.

Step 4 uses a simple greedy algorithm to designate portals along the boundary
∂B of a brick B so that there are at most θ + 1 portals chosen, and that each
vertex on the boundary is within distance at most weight(∂B)/θ of some portal.
We discuss the choice of θ presently.

5.2 Portal-Connected Graph

In order to make more precise the notion of a portal-respecting feasible solution,
we introduce an auxiliary graph, the portal-connected graph (PCG) of a parcel.
See Figure 4. Starting with a parcel (which consists of edges of the mortar graph),
within each face, insert a duplicate of the brick corresponding to that face, and
use artificial zero-weight edges to connect the occurrences of the portals in the
duplicate brick to the occurrences of the same vertices in the parcel.1

A path P in the filled-in parcel from a vertex x interior to a brick B to a
vertex y on the boundary of the brick B corresponds to a path P̃ in the PCG
from x to the occurrence of y in the parcel; P̃ must take a detour through an
artificial edge, and must therefore go through a portal. The increase is weight is
at most 2weight(∂B)/θ.
1 Our usage of the term PCG differs slightly from that in [5], where the PCG was

defined for the entire graph, not just a parcel.

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 497

The Structure Theorem states that the subgraph of OPT embedded strictly
inside a brick can be modified so that it touches the boundary of the brick at no
more than α(ε) vertices. Rerouting each of these connections so it occurs at a
portal incurs a weight of 2weight(∂B)/θ, for a total of 2α(ε)weight(∂B)/θ. The
sum of boundary lengths of all bricks is twice the length of the mortar graph,
which in turn is at most f(ε) times the value of OPT. The value of θ is chosen
to ensure that the total rerouting weight is at most ε times the value of OPT. In
order to find a nearly optimal solution in the filled-in parcel, therefore, it suffices
to find an optimal solution in the PCG.

Recall that the planar dual of the parcel has a spanning tree of depth η + 1.
Since each brick has at most θ + 1 portals, it follows that the planar dual of the
PCG has a spanning tree of depth at most (η + 1)(θ + 1). It follows that there
is a rooted spanning tree of the PCG (the primal) such that, for each vertex v,
there at most 2(η+1)(θ+1)+1 edges from descendents of v to non-descendents.
This spanning tree is used to guide the dynamic program (Section 7).

(a) (b) (c)

Fig. 4. The mortar graph in bold (a), the set of bricks (b), and the portal connected
graph (c)

6 Applying the PTAS Framework

Theorem 4 applies directly to the Steiner-tree problem: the intersection of a tree
with a brick is a forest and since the terminals are vertices of MG, it is enough
to maintain connectivity between vertices on the boundary of a brick. However,
for the 2-EC problem, the intersection of a solution with a brick has a more
complicated structure.

In this section we prove the following counterpart to Theorem 4 that maintains
up to 2 connectivity between vertices on the north and south boundary of a brick.

Theorem 5 (Structural property of bricks for {0, 1, 2}-edge connectiv-
ity). Let B be a plane graph with boundary N∪E∪S∪W and satisfying the brick
properties of Lemma 6. Let H be a subgraph of B. There is another subgraph
Ĥ that is the disjoint union of three forests F̂1, F̂2, F̂3 of B with the following
properties:

(H1) Ĥ achieves the 2-connectivity of H for vertices of N ∪ S.
(H2) The number of joining vertices of Ĥ with both N and S is at most 2α(ε).
(H3) � (Ĥ) ≤ (1 + cε)� (H).

498 G. Borradaile and P. Klein

In the above, α(ε) = o(ε−5.5) and c is a fixed constant.

Proof. The theorem is proved as follows. We first show that there is a subgraph
H ′ of H that is the disjoint union of a set of trees T = {T1, T2, . . . , Tk} (where k
can be very large) such that H ′ achieves the 2-connectivity of H (Theorem 3).
We then show that we can partition this set of trees into three sets such that
the disjoint union of each set is a forest. We then apply Theorem 4 to each of
these forests, proving Theorem 5.

Let H ′ be a minimal subgraph of H such that H ′ achieves the 2-connectivity
of H for vertices on N ∪ S.

By the only-if direction of Theorem 3, H ′ is the union of a set of noncrossing
edge-disjoint trees T = {T1, T2, . . .}, where each tree Ti achieves connectivity
between a set Xi of vertices of N ∪ S. Partition T into two sets:

T1 = {Ti ∈ T such that Xi ⊆ V (N) or Xi ⊆ V (S)}.
T2 = {Ti ∈ T such that Xi has vertices in both V (N) and V (S)}.

We further partition T2 into two sets. Let Ti and Tj be two trees in T2. Since Ti
and Tj do not cross each other, if the vertices Xi∩V (S) appear before Xj∩V (S)
along S then the vertices in Xi ∩ V (N) appear before Xj ∩ V (N) along N . It
follows that there is an ordering of the trees in T2 from left to right in the brick,
ordered according to the vertices in S to which they connect. Let TA be the set
of trees of T2 that are even-numbered in this ordering and let TB be the set that
are odd-numbered. That is, the trees in T2 alternate between TA and TB .

Any two trees in TA are separated by a tree in TB . Assume for a contradiction
that a cycle was formed by some trees in TA. Then the cycle would have to
strictly enclose an edge of a tree in TB . This contradicts Corollary 1. This shows
that the trees in TA form a forest. Similarly, the trees in TB form a forest.

Consider a tree Ti ∈ T1. We describe how to select a corresponding tree T̂i.
Suppose that Xi ⊆ V (N). Let T̂ be the minimal subpath of N that spans Xi.
The case where Xi ⊆ V (S) is analogous.

Let F̂1 be the disjoint union of {T̂ : T ∈ T1}. (That is, the multiplicity of
an edge in F̂1 is the sum of its multiplicities in {T̂ : T ∈ T1}.) . Let F̂A be the
forest guaranteed by Theorem 4 for the forest obtained by taking the union of
the trees in TA. Similarly define F̂B. Let Ĥ be the union of F̂1, F̂A, F̂B .

We show that Ĥ achieves the required properties.
It is clear from the construction that F̂1 does not have any joining vertices

with N or S. By Theorem 4, each of F̂A and F̂B has at most α(ε) joining vertices
with N ∪S. Therefore Ĥ has at most 2α(ε) joining vertices with N ∪S, proving
Property H2.

Since N and S are ε-short paths, � (F̂1) is at most 1+ε times the total length of
all trees in T1. By Theorem 4, � (F̂A) ≤ (1+cε)� (F̂A) and � (F̂B) ≤ (1+cε)� (F̂B).
It follows that � (Ĥ) ≤ (1 + cε)� (H), proving Property H3.

We now show that if two vertices of N ∪ S are 2-edge connected in H ′, then
they are 2-edge connected in Ĥ . Showing this for 1-edge connectivity is simpler;
the argument is omitted here. This will complete the proof. We were particular

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 499

in partitioning the trees into forests T1, TA, TB because applying Theorem 4 to a
tree with two edges incident to a vertex v ∈ ∂B could result in a tree with only
one edge incident v. This could remove edge connectivity.

Let a and b be vertices of N ∪ S that are 2-edge connected in H ′. Let C
be the minimal cycle 2-connecting x and y as guaranteed by Lemma 4 and
let Y = V (C ∩ (N ∪ S)). Let y1, y2, . . . , yk be the order of the vertices of Y
along the boundary of the brick. Let Xi be the set such that yi, yi+1 ∈ Xi and
Xi ⊆ V (∂B[yi, yi+1]) (as guaranteed by the construction given in Theorem 3).
There are two cases:

Y ⊆ V (N) or Y ⊆ V (S): Without loss of generality, assume that y1 is the first
vertex and yk is the last vertex of Y along N . Then X1, . . . , Xk−1 are subsets
of N . Xk may contain vertices of S. Let T̂i be a tree in F̂1 that spans Xi (for
i = 1, . . . , k − 1). Since F̂1 is the disjoint union of these trees, there is a path P

in F̂1 that visits each vertex y1, . . . , yk in order. If Xk spans a vertex of S then
Xk ∈ FA (without loss of generality). The vertices Xk are spanned by F̂A and
so there is a yk-to-y1 path Q in Ĥ that is edge disjoint from P . P ◦Q is a cycle
such that Y ⊆ V (P ∪Q). The vertices in Y are 2-edge connected in Ĥ .

Y ∩ V (N) = ∅ and Y ∩ V (S) = ∅ : Without loss of generality, assume that y1

and yl are the first and last vertices of Y along N . Then yk and yl+1 are the first
and last vertices of Y along S. By the argument used in the above case, there
is a path P in Ĥ that visits the vertices y1, . . . , yl in order. Likewise, there is a
path Q in Ĥ that visits the vertices yl+1, . . . , yk in order. We now argue that
there are edge-disjoint yl-to-yl+1 and yk-to-y1 paths in Ĥ by showing that Tl
(the tree corresponding to Xl) is in FA and Tk (the tree corresponding to Xk)
is in FB: by Lemma 1, there are no trees enclosed by C in H ′, so Tl and Tk are
ordered sequentially in TB. ��

7 Dynamic Program

Here we give an outline of the dynamic program used to find an optimal solution
in each filled-in parcel. As discussed at the end of Section 5.2, we use a rooted
tree such that, for each vertex v, there at most 2(η + 1)(θ + 1) + 1 edges from
descendents of v to non-descendents. Each vertex gives rise to a subproblem in
the dynamic program. Both θ and η depend polynomially on 1/ε. The interaction
between two subproblems is limited to this set of edges. Each brick in the brick
decomposition corresponds to a base case of the dynamic program. All other
base cases are trivial, corresponding to single vertices in our input graph.

For each subproblem, we consider all possible {0, 1, 2}-connectivity patterns
(or configurations) on the vertex set U . (A configuration is given by a forest with
no degree-2 vertices whose vertices correspond to 2-edge connected components
and whose edges correspond to adjacency between these components. Such a
forest corresponds to a block-cut tree of the solution it encodes.) The leaves of
the forests are identified with edges in the cut corresponding to the vertex set U .

500 G. Borradaile and P. Klein

Since there are O(θη) edges in the cut, there are at most O((θη)(θη)θη) forests
representing configurations (by way of Cayley’s formula).

It remains to show that we can solve a base case corresponding to a brick. The
number of edges between a brick and the rest of the parcel is the number of portal
edges, η, that connects the brick in the filled-in parcel. A configuration for the
brick is a set of 2-connectivity requirements between the portal edges. Given such
a set of requirements, we can use the algorithm implied by Theorem 3 to find a
set of subsets X of the portal edges such that independently connecting each set
in X will satisfy the given 2-connectivity requirements (Theorem 3). For each set
in X , we find the minimum-length Steiner tree using the algorithm of Erickson
et al. [7]. For a constant number of terminals, using the algorithm of [11], this
algorithm can be implemented to run in linear time. The resulting running time
of the dynamic program, including the dependence on ε is 2o(ε

−9.5)n.

Comments

The PTAS framework used is potentially applicable to problems where (i) the
input consists of a planar graph G with edge-weights and a subset Q of the
vertices of G (we call Q the set of terminals), and where (ii) the output spans
the terminals. Steiner tree and two-edge connectivity have been solved using this
framework. The PTAS for the subset tour problem [16] (which was the inspira-
tion for this framework) can be reframed using this technique. Recently, with
David Pritchard, we have extended this work to give a PTAS for the {0, 1, . . . , k}-
edge connectivity problem in planar multigraphs. Details will follow in a longer
version.

References

1. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs.
J. ACM 41(1), 153–180 (1994)

2. Berger, A., Czumaj, A., Grigni, M., Zhao, H.: Approximation schemes for mini-
mum 2-connected spanning subgraphs in weighted planar graphs. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 472–483. Springer, Heidelberg
(2005)

3. Berger, A., Grigni, M.: Minimum weight 2-edge-connected spanning subgraphs in
planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 90–101. Springer, Heidelberg (2007)

4. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation
scheme for Steiner tree in planar graphs. In: 18th SODA, pp. 1285–1294 (2007)

5. Borradaile, G., Klein, P., Mathieu, C.: Steiner tree in planar graphs: An O(n log n)
approximation scheme with singly exponential dependence on epsilon. In: Dehne,
F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 275–286. Springer,
Heidelberg (2007)

6. Czumaj, A., Lingas, A.: On approximability of the minimum cost k-connected
spanning subgraph problem. In: 10th SODA, pp. 281–290 (1999)

7. Erickson, R., Monma, C., Veinott, A.: Send-and-split method for minimum-
concave-cost network flows. Math. Op. Res. 12, 634–664 (1987)

The Two-Edge Connectivity Survivable Network Problem in Planar Graphs 501

8. Eswaran, K., Tarjan, R.: Augmentation problems. SIAM J. Comput. 5(4), 653–665
(1976)

9. Frederickson, G., Jájá, J.: Approximation algorithms for several graph augmenta-
tion problems. SIAM J. Comput. 10(2), 270–283 (1981)

10. Goemans, M., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, É., Williamson, D.:
Improved approximation algorithms for network design problems. In: 5th SODA,
pp. 223–232 (1994)

11. Henzinger, M., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms
for planar graphs. J. Comput. System Sci. 55(1), 3–23 (1997)

12. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica 21(1), 39–60 (2001)

13. Jothi, R., Raghavachari, B., Varadarajan, S.: A 5/4-approximation algorithm for
minimum 2-edge-connectivity. In: 14th SODA, pp. 725–734 (2003)

14. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. J.
ACM 41(2), 214–235 (1994)

15. Klein, P.: A linear-time approximation scheme for planar weighted TSP. In: 46th
FOCS, pp. 647–647 (2005)

16. Klein, P.: A subset spanner for planar graphs, with application to subset TSP. In:
38th STOC, pp. 749–756 (2006)

17. Klein, P., Ravi, R.: When cycles collapse: A general approximation technique for
constraind two-connectivity problems. In: 3rd IPCO, pp. 39–55 (1993)

18. Ravi, R.: Approximation algorithms for Steiner augmentations for two-
connectivity. Technical Report TR-CS-92-21, Brown University (1992)

19. Resende, M., Pardalos, P. (eds.): Handbook of Optimization in Telecommunica-
tions. Springer, Heidelberg (2006)

20. Williamson, D., Goemans, M., Mihail, M., Vazirani, V.: A primal-dual approxi-
mation algorithm for generalized Steiner network problems. In: 35th STOC, pp.
708–717 (1993)

Efficiently Testing Sparse GF (2) Polynomials

Ilias Diakonikolas, Homin K. Lee, Kevin Matulef,
Rocco A. Servedio, and Andrew Wan

{ilias,homin,rocco,atw12}@cs.columbia.edu, matulef@mit.edu

Abstract. We give the first algorithm that is both query-efficient and time-
efficient for testing whether an unknown function f : {0, 1}n→{0, 1} is
an s-sparse GF (2) polynomial versus ε-far from every such polynomial. Our
algorithm makes poly(s, 1/ε) black-box queries to f and runs in time n ·
poly(s, 1/ε). The only previous algorithm for this testing problem [DLM+07]
used poly(s, 1/ε) queries, but had running time exponential in s and super-
polynomial in 1/ε.

Our approach significantly extends the “testing by implicit learning” method-
ology of [DLM+07]. The learning component of that earlier work was a brute-
force exhaustive search over a concept class to find a hypothesis consistent with
a sample of random examples. In this work, the learning component is a sophis-
ticated exact learning algorithm for sparse GF (2) polynomials due to Schapire
and Sellie [SS96]. A crucial element of this work, which enables us to simu-
late the membership queries required by [SS96], is an analysis establishing new
properties of how sparse GF (2) polynomials simplify under certain restrictions
of “low-influence” sets of variables.

1 Introduction

Background and motivation. Given black-box access to an unknown function f :
{0, 1}n→{0, 1}, a natural question to ask is whether the function has a particular form.
Is it representable by a small decision tree, or small circuit, or sparse polynomial? In
the field of computational learning theory, the standard approach to this problem is to
assume that f belongs to a specific class C of functions of interest, and the goal is to
identify or approximate f. In contrast, in property testing nothing is assumed about the
unknown function f , and the goal of the testing algorithm is to output “yes” with high
probability if f ∈ C and “no” with high probability if f is ε-far from every g ∈ C.
(Here the distance between two functions f, g is measured with respect to the uniform
distribution on {0, 1}n, so f and g are ε-far if they disagree on more than an ε fraction
of all inputs.) The complexity of a testing algorithm is measured both in terms of the
number of black-box queries it makes to f (query complexity) as well as the time it
takes to process the results of those queries (time complexity).

There are many connections between learning theory and testing, and a growing body
of work relating the two fields (see [Ron07] and its references). Testing algorithms have
been given for a range of different function classes such as linear functions over GF (2)
(i.e. parities) [BLR93]; degree-dGF (2) polynomials [AKK+03]; Boolean literals, con-
junctions, and s-term monotone DNF formulas [PRS02]; k-juntas (i.e. functions which
depend on at most k variables) [FKR+04]; halfspaces [MORS07]; and more.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 502–514, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficiently Testing Sparse GF (2) Polynomials 503

Recently, Diakonikolas et al. [DLM+07] gave a general technique, called “testing
by implicit learning,” which they used to test a variety of different function classes
that were not previously known to be testable. Intuitively, these classes correspond to
functions with “concise representations,” such as s-term DNFs, size-s Boolean formu-
las, size-s Boolean circuits, and s-sparse polynomials over constant-size finite fields.
For each of these classes, the testing algorithm of [DLM+07] makes only poly(s, 1/ε)
queries (independent of n).

The main drawback of the [DLM+07] testing algorithm is its time complexity. For
each of the classes mentioned above, the algorithm’s running time is 2ω(s) as a func-
tion of s, and ω(poly(1/ε)) as a function of ε.1 Thus, a natural question asked by
[DLM+07] is whether any of these classes can be tested with both time complexity and
query complexity poly(s, 1/ε).

Our result: efficiently testing sparse GF (2) polynomials. In this paper we focus
on the class of s-sparse polynomials over GF (2). Polynomials over GF (2) (equiv-
alently, parities of ANDs of input variables) are a simple and well-studied repre-
sentation for Boolean functions. It is well known that every Boolean function has a
unique representation as a multilinear polynomial over GF (2), so the sparsity (number
of monomials) of this polynomial is a very natural measure of the complexity of f.
Sparse GF (2) polynomials have been studied by many authors from a range of differ-
ent perspectives such as learning [BS90, FS92, SS96, Bsh97a, BM02], approximation
and interpolation [Kar89, GKS90, RB91], the complexity of (approximate) counting
[EK89, KL93, LVW93], and property testing [DLM+07].

The main result of this paper is a testing algorithm for s-sparse GF (2) polynomials
that is both time-efficient and query-efficient:

Theorem 1. There is a poly(s, 1/ε)-query algorithm with the following performance
guarantee: given parameters s, ε and black-box access to any f : {0, 1}n→{0, 1}, it
runs in time poly(s, 1/ε) and tests whether f is an s-sparse GF (2) polynomial versus
ε-far from every s-sparse polynomial.

This answers the question of [DLM+07] by exhibiting an interesting and natural class
of functions with “concise representations” that can be tested efficiently, both in terms
of query complexity and running time.

We obtain our main result by extending the “testing by implicit learning” approach
of [DLM+07]. In that work the “implicit learning” step used a naive brute-force search
for a consistent hypothesis; in this paper we employ a sophisticated proper learn-
ing algorithm due to Schapire and Sellie [SS96]. It is much more difficult to “im-
plicitly” run the [SS96] algorithm than the brute-force search of [DLM+07]. One of
the main technical contributions of this paper is a new structural theorem about how
s-sparse GF (2) polynomials are affected by certain carefully chosen restrictions; this
is an essential ingredient that enables us to use the [SS96] algorithm. We elaborate on
this below.

1 We note that the algorithm also has a linear running time dependence on n, the number of
input variables; this is in some sense inevitable since the algorithm must set n bit values just to
pose a black-box query to f . Our algorithm has running time linear in n for the same reason.
For the rest of the paper we discuss the running time only as a function of s and ε.

504 I. Diakonikolas et al.

Techniques. We begin with a brief review of the main ideas of [DLM+07]. The ap-
proach of [DLM+07] builds on the observation of Goldreich et al. [GGR98] that any
proper learning algorithm for a function class C can be used as a testing algorithm for
C. (Recall that a proper learning algorithm for C is one which outputs a hypothesis h
that itself belongs to C.) The idea behind this observation is that if the function f be-
ing tested belongs to C then a proper learning algorithm will succeed in constructing a
hypothesis that is close to f , while if f is ε-far from every g ∈ C then any hypothesis
h ∈ C that the learning algorithm outputs must necessarily be far from f . Thus any
class C can be tested to accuracy ε using essentially the same number of queries that are
required to properly learn the class to accuracy Θ(ε).

The basic approach of [GGR98] did not yield query-efficient testing algorithms (with
query complexity independent of n) since virtually every interesting class of functions
over {0, 1}n requires Ω(log n) examples for proper learning. However, [DLM+07]
showed that for many classes of functions defined by a size parameter s, it is possible
to “implicitly” run a (very naive) proper learning algorithm over a number of variables
that is independent of n, and thus obtain an overall query complexity independent of n.
More precisely, they first observed that for many classes C every f ∈ C is “very close”
to a function f ′ ∈ C for which the number r of relevant variables is polynomial in s
and independent of n; roughly speaking, the relevant variables for f ′ are the variables
that have high influence in f . (For example, if f is an s-sparse GF (2) polynomial,
an easy argument shows that there is a function f ′ – obtained by discarding from f
all monomials of degree more than log(s/τ) – that is τ -close to f and depends on at
most r = s log(s/τ) variables.) They then showed how, using ideas of Fischer et al.
[FKR+04] for testing juntas, it is possible to construct a sample of uniform random ex-
amples over {0, 1}r which with high probability are all labeled according to f ′. At this
point, the proper learning algorithm employed by [DLM+07] was a naive brute-force
search. The algorithm tried all possible functions in C over r (as opposed to n) vari-
ables, to see if any were consistent with the labeled sample. [DLM+07] thus obtained a
testing algorithm with overall query complexity poly(s/ε) but whose running time was
dominated by the brute-force search. For the class of s-sparse GF (2) polynomials, their
algorithm used Õ(s4/ε2) queries but had running time at least 2ω(s) · (1/ε)log log(1/ε).

Current approach. The high-level idea of the current work is to employ a much more
sophisticated – and efficient – proper learning algorithm than brute-force search. In par-
ticular we would like to use a proper learning algorithm which, when applied to learn
a function over only r variables, runs in time polynomial in r and in the size param-
eter s. For the class of s-sparse GF (2) polynomials, precisely such an algorithm was
given by Schapire and Sellie [SS96]. Their algorithm, which we describe in Section 2.1,
is computationally efficient and generates a hypothesis h which is an s-sparse GF (2)
polynomial. But this power comes at a price: the algorithm requires access to a member-
ship query oracle, i.e. a black-box oracle for the function being learned. Thus, in order
to run the Schapire/Sellie algorithm in the “testing by implicit learning” framework, it is
necessary to simulate membership queries to an approximating function f ′ ∈ C which
is close to f but depends on only r variables. This is significantly more challenging
than generating uniform random examples labeled according to f ′, which is all that is
required in the original [DLM+07] approach.

Efficiently Testing Sparse GF (2) Polynomials 505

To see why membership queries to f ′ are more difficult to simulate than uniform
random examples, recall that f and the f ′ described above (obtained from f by dis-
carding high-degree monomials) are τ -close. Intuitively this is extremely close, dis-
agreeing only on a 1/m fraction of inputs for an m that is much larger than the number
of random examples required for learning f ′ via brute-force search (this number is
“small” – independent of n – because f ′ depends on only r variables). Thus in the
[DLM+07] approach it suffices to use f , the function to which we actually have black-
box access, rather than f ′ to label the random examples used for learning f ′; since f
and f ′ are so close, and the examples are uniformly random, with high probability all
the labels will also be correct for f ′. However, in the membership query scenario of
the current paper, things are no longer that simple. For any given f ′ which is close to
f, one can no longer assume that the learning algorithm’s queries to f ′ are uniformly
distributed and hence unlikely to hit the error region – indeed, it is possible that the
learning algorithm’s membership queries to f ′ are clustered on the few inputs where
f and f ′ disagree.

In order to successfully simulate membership queries, we must somehow consis-
tently answer queries according to a particular f ′, even though we only have oracle
access to f . Moreover this must be done implicitly in a query-efficient way, since explic-
itly identifying even a single variable relevant to f ′ requires at least Ω(logn) queries.
This is the main technical challenge in the paper.

We meet this challenge by showing that for any s-sparse polynomial f , an approx-
imating f ′ can be obtained as a restriction of f by setting certain carefully chosen
subsets of variables to zero. Roughly speaking, this restriction is obtained by randomly
partitioning all of the input variables into r subsets and zeroing out all subsets whose
variables have small “collective influence” (more precisely, small variation in the sense
of [FKR+04]). It is important that the restriction sets these variables to zero, rather than
a random assignment; intuitively this is because setting a variable to zero “kills” all
monomials that contain the variable, whereas setting it to 1 does not. Our main techni-
cal theorem (Theorem 3, given in Section 3) shows that this f ′ is indeed close to f and
has at most one of its relevant variables in each of the surviving subsets. We moreover
show that these relevant variables for f ′ all have high influence in f (the converse is
not true; examples can be given which show that not every variable that has “high influ-
ence” in f will in general become a relevant variable for f ′). This property is important
in enabling our simulation of membership queries. In addition to the crucial role that
Theorem 3 plays in the completeness proof for our test, we feel that the new insights
the theorem gives into how sparse polynomials “simplify” under (appropriately defined)
random restrictions may be of independent interest.

Organization. In Section 4, we present our testing algorithm, Test-Sparse-Poly, along
with a high-level description and sketch of correctness. In Section 2.1 we describe in
detail the “learning component” of the algorithm. In Section 3 we state Theorem 3,
which provides intuition behind the algorithm and serves as the main technical tool in
the completeness proof. Due to space limitations, the proof of Theorem 3 is presented
in Appendix A, while the completeness and soundness proofs are given in Appendices
B and C, respectively (see full version available online).

506 I. Diakonikolas et al.

2 Preliminaries and Background

GF(2) Polynomials: A GF (2) polynomial is a parity of monotone conjunctions (mono-
mials). It is s-sparse if it contains at most s monomials (including the constant-1 mono-
mial if it is present). The length of a monomial is the number of distinct variables that
occur in it; over GF (2), this is simply its degree.

Notation: For i ∈ N∗, denote [i] def= {1, 2, . . . , i}. It will be convenient to view the
output range of a Boolean function f as {−1, 1} rather than {0, 1}, i.e. f : {0, 1}n →
{−1, 1}. We view the hypercube as a measure space endowed with the uniform product
probability measure. For I ⊆ [n] we denote by {0, 1}I the set of all partial assignments
to the coordinates in I . For w ∈ {0, 1}[n]\I and z ∈ {0, 1}I , we write w � z to denote
the assignment in {0, 1}n whose i-th coordinate is wi if i ∈ [n] \ I and is zi if i ∈ I .
Whenever an element z in {0, 1}I is chosen randomly (we denote z ∈R {0, 1}I), it is
chosen with respect to the uniform measure on {0, 1}I .
Influence, Variation and the Independence Test: Recall the classical notion of in-
fluence [KKL88]: The influence of the i-th coordinate on f : {0, 1}n → {−1, 1} is

Infi(f) def= Prx∈R{0,1}n [f(x) = f(x⊕i)], where x⊕i denotes x with the i-th bit flipped.
The following generalization of influence, the variation of a subset of the coordinates
of a Boolean function, plays an important role for us:

Definition 1 (variation, [FKR+04]). Let f : {0, 1}n → {−1, 1}, and let I ⊆ [n]. We

define the variation of f on I as Vrf (I)
def
= Ew∈R{0,1}[n]\I

[
Vz∈R{0,1}I [f(w � z)]

]
.

When I = {i} we will sometimes write Vrf (i) instead of Vrf ({i}). It is easy to check
that Vrf (i) = Infi(f), so variation is indeed a generalization of influence. Intuitively,
the variation is a measure of the ability of a set of variables to sway a function’s output.
The following two simple properties of the variation will be useful for the analysis of
our testing algorithm:

Lemma 1 (monotonicity and sub-additivity, [FKR+04]). Let f : {0, 1}n → {−1, 1}
and A,B ⊆ [n]. Then Vrf (A) ≤ Vrf (A ∪B) ≤ Vrf (A) + Vrf (B).

Lemma 2 (probability of detection, [FKR+04]). Let f : {0, 1}n → {−1, 1} and
I ⊆ [n]. If w ∈R {0, 1}[n]\I and z1, z2 ∈R {0, 1}I are chosen independently, then
Pr[f(w � z1) = f(w � z2)] = 1

2Vrf (I).

We now recall the independence test from [FKR+04], a simple two query test used to
determine whether a function f is independent of a given set I ⊆ [n] of coordinates.

Independence test: Given f : {0, 1}n → {−1, 1} and I ⊆ [n], choose w ∈R

{0, 1}[n]\I and z1, z2 ∈R {0, 1}I independently. Accept if f(w � z1) = f(w � z2)
and reject if f(w � z1) = f(w � z2).

Lemma 2 implies that the independence test rejects with probability exactly
1
2Vrf (I).

Random Partitions: Throughout the paper we will use the following notion of a ran-
dom partition of the set [n] of input coordinates:

Efficiently Testing Sparse GF (2) Polynomials 507

Definition 2. A random partition of [n] into r subsets {Ij}rj=1 is constructed by inde-
pendently assigning each i ∈ [n] to a randomly chosen Ij for some j ∈ [r].

We now define the notion of low- and high-variation subsets with respect to a partition
of the set [n] and a parameter α > 0.

Definition 3. For f : {0, 1}n→{−1, 1}, a partition of [n] into {Ij}rj=1 and a param-

eter α > 0, define L(α)
def
= {j ∈ [r] | Vrf (Ij) < α} (low-variation subsets) and

H(α)
def
= [r] \ L(α) (high-variation subsets). For j ∈ [r] and i ∈ Ij , if Vrf (i) ≥ α we

say that the variable xi is a high-variation element of Ij .

Finally, the notion of a well-structured subset will be important for us:

Definition 4. For f : {0, 1}n → {−1, 1} and parameters α > Δ > 0, we say that a
subset I ⊆ [n] of coordinates is (α,Δ)-well structured if there is an i ∈ I such that
Vrf (i) ≥ α and Vrf (I \ {i}) ≤ Δ.

Note that since α > Δ, by monotonicity, the i ∈ I in the above definition is unique.
Hence, a well-structured subset contains a single high-influence coordinate, while the
remaining coordinates have small total variation.

2.1 Background on Schapire and Sellie’s Algorithm

In [SS96] Schapire and Sellie gave an algorithm, which we refer to as LearnPoly, for
exactly learning s-sparse GF (2) polynomials using membership queries (i.e. black-
box queries) and equivalence queries. Their algorithm is proper; this means that every
equivalence query the algorithm makes (including the final hypothesis of the algorithm)
is an s-sparse polynomial. (We shall see that it is indeed crucial for our purposes that
the algorithm is proper.) Recall that in an equivalence query the learning algorithm
proposes a hypothesis h to the oracle: if h is logically equivalent to the target function
being learned then the response is “correct” and learning ends successfully, otherwise
the response is “no” and the learner is given a counterexamplex such that h(x) = f(x).

Schapire and Sellie proved the following about their algorithm:

Theorem 2. [[SS96], Theorem 10] Algorithm LearnPoly is a proper exact learning
algorithm for the class of s-sparse GF (2) polynomials over {0, 1}n. The algorithm
runs in poly(n, s) time and makes at most poly(n, s) membership queries and at most
ns + 2 equivalence queries.

We can easily also characterize the behavior of LearnPoly if it is run on a function f
that is not an s-sparse polynomial. In this case, since the algorithm is proper all of its
equivalence queries have s-sparse polynomials as their hypotheses, and consequently
no equivalence query will ever be answered “correct.” So if the (ns+2)-th equivalence
query is not answered “correct,” the algorithm may infer that the target function is not
an s-sparse polynomial, and it returns “not s-sparse.”

A well-known result due to Angluin [Ang88] says that in a Probably Approximately
Correct or PAC setting (where there is a distribution D over examples and the goal
is to construct an ε-accurate hypothesis with respect to that distribution), equivalence

508 I. Diakonikolas et al.

queries can be straightforwardly simulated using random examples. This is done simply
by drawing a sufficiently large sample of random examples for each equivalence query
and evaluating both the hypothesis h and the target function f on each point in the
sample. This either yields a counterexample (which simulates an equivalence query), or
if no counterexample is obtained then simple arguments show that for a large enough
(O(log(1/δ)/ε)-size) sample, with probability 1 − δ the functions f and h must be
ε-close under the distribution D, which is the success criterion for PAC learning. This
directly gives the following corollary of Theorem 2:

Corollary 1. There is a uniform distribution membership query proper learn-

ing algorithm, which we call LearnPoly′(s, n, ε, δ), which makes Q(s, n, ε, δ)
def
=

poly(s, n, 1/ε, log(1/δ)) membership queries and runs in poly(Q) time to learn s-
sparse polynomials over {0, 1}n to accuracy ε and confidence 1− δ under the uniform
distribution.

3 On Restrictions Which Simplify Sparse Polynomials

This section presents Theorem 3, which gives the intuition behind our testing algorithm,
and lies at the heart of the completeness proof. We give the full proof of Theorem 3 in
Appendix A (see the full version).

Roughly speaking, the theorem says the following: consider any s-sparse GF (2)
polynomial p. Suppose that its coordinates are randomly partitioned into r = poly(s)
many subsets {Ij}rj=1. The first two statements say that w.h.p. a randomly chosen
“threshold value” α ≈ 1/ poly(s) will have the property that no single coordinate i,
i ∈ [n], or subset Ij , j ∈ [r], has Vrp(i) or Vrp(Ij) “too close” to α. Moreover, the
high-variation subsets (w.r.t. α) are precisely those that contain a single high variation
element i (i.e. Vrp(i) ≥ α), and in fact each such subset Ij is well-structured (part 3).
Also, the number of such high-variation subsets is small (part 4). Finally, let p′ be the
restriction of p obtained by setting all variables in the low-variation subsets to 0. Then,
p′ has a nice structure: it has at most one relevant variable per high-variation subset
(part 5), and it is close to p (part 6).

Theorem 3. Let p : {0, 1}n→{−1, 1} be an s-sparse polynomial. Fix τ ∈ (0, 1) and

Δ such that Δ ≤ Δ0
def
= τ/(1600s3 log(8s3/τ)) and Δ = poly(τ/s). Let r

def
= 4Cs/Δ,

for a suitably large constant C. Let {Ij}rj=1 be a random partition of [n]. Choose α

uniformly at random from the set A(τ,Δ)
def
= { τ

4s2 + (8�− 4)Δ : � ∈ [K]} where K is
the largest integer such that 8KΔ ≤ τ

4s2 . Then with probability at least 9/10 (over the
choice of α and {Ij}rj=1), all of the following statements hold:

1. Every variable xi, i ∈ [n], has Vrp(i) /∈ [α− 4Δ,α + 4Δ].
2. Every subset Ij , j ∈ [r], has Vrp(Ij) /∈ [α− 3Δ,α + 4Δ].
3. For every j ∈ H(α), Ij is (α,Δ)-well structured.
4. |H(α)| ≤ s log(8s3/τ).

Let p′
def
= p|0←∪j∈L(α)Ij (the restriction obtained by fixing all variables in low-variation

subsets to 0).

Efficiently Testing Sparse GF (2) Polynomials 509

5. For every j ∈ H(α), p′ has at most one relevant variable in Ij (hence p′ is a
|H(α)|-junta).

6. The function p′ is τ -close to p.

Theorem 3 naturally suggests a testing algorithm, whereby we attempt to partition
the coordinates of a function f into “high-variation” subsets and “low-variation” sub-
sets, then zero-out the variables in low-variation subsets and implicitly learn the re-
maining function f ′ on only poly(s, 1/ε) many variables. This is exactly the approach
we take in the next section.

4 The Testing Algorithm Test-Sparse-Poly

In this section we present our main testing algorithm and give high-level sketches of
the arguments establishing its completeness and soundness. The algorithm, which is
called Test-Sparse-Poly, takes as input the values s, ε > 0 and black-box access to
f : {0, 1}n→{−1, 1}. It is presented in full in Figure 1.

The first thing Test-Sparse-Poly does (Step 2) is randomly partition the coordinates
into r = Õ(s4/τ) subsets. In Steps 3 and 4 the algorithm attempts to distinguish subsets
that contain a high-influence variable from subsets that do not; this is done by using the
independence test to estimate the variation of each subset (see Lemma 2).

Once the high-variation and low-variation subsets have been identified, intuitively
we would like to focus our attention on the high-influence variables. Thus, Step 5 of
the algorithm defines a function f̃ ′ which “zeroes out” all of the variables in all low-
variation subsets. Step 6 of Test-Sparse-Poly checks that f is close to f̃ ′.

The final step of Test-Sparse-Poly is to run the algorithm LearnPoly′ of [SS96] to
learn a sparse polynomial, which we call f̃ ′′, which is isomorphic to f̃ ′ but is defined
only over the high-influence variables of f (recall that if f is indeed s-sparse, there is
at most one from each high-variation subset). The overall Test-Sparse-Poly algorithm
accepts f if and only if LearnPoly′ successfully returns a final hypothesis (i.e. does
not halt and output “fail”). The membership queries that the [SS96] algorithm requires
are simulated using the SimMQ procedure, which in turn uses a subroutine called Set-
High-Influence-Variables.

The procedure Set-High-Influence-Variable (SHIV) is presented in Figure 2. The
idea of this procedure is that when it is run on a well-structured subset of variables I ,
it returns an assignment in which the high-variation variable is set to the desired bit
value. Intuitively, the executions of the independence test in the procedure are used to
determine whether the high-variation variable i ∈ I is set to 0 or 1 under the assignment
x. Depending on whether this setting agrees with the desired value, the algorithm either
returns x or the bitwise negation of x (this is slightly different from Construct-Sample,
the analogous subroutine in [DLM+07], which is content with a random x and thus
never needs to negate coordinates).

Figure 3 gives the SimMQ procedure. When run on a function f and a collection
{Ij}j∈H of disjoint well-structured subsets of variables, SimMQ takes as input a string
z of length |H | which specifies a desired setting for each high-variation variable in
each Ij (j ∈ H). SimMQ constructs a random assignment x ∈ {0, 1}n such that the

510 I. Diakonikolas et al.

Algorithm Test-Sparse-Poly(f, s, ε)
Input: Black-box access to f : {0, 1}n→{−1, 1}; sparsity parameter s ≥ 1; error parameter
ε > 0
Output: “yes” if f is an s-sparse GF (2) polynomial, “no” if f is ε-far from every s-sparse
GF (2) polynomial

1. Let τ = Θ(ε), Δ = Θ(poly(τ, 1/s)), r = Θ(s/Δ), δ = Θ(poly(τ, 1/s)).a

2. Set {Ij}r
j=1 to be a random partition of [n].

3. Choose α uniformly at random from the set A(τ, Δ)
def
= { τ

4s2 +(8�−4)Δ : 1 ≤ � ≤ K}
where K is the largest integer such that 8KΔ ≤ τ

4s2 .

4. For each subset I1, . . . , Ir run the independence test M
def
= 2

Δ2 ln(200r) times and let

Ṽrf (Ij) denote 2 × (fraction of the M runs on Ij that the test rejects). If any subset Ij

has Ṽrf (Ij) ∈ [α − 2Δ, α + 3Δ] then exit and return “no,” otherwise continue.
5. Let L̃(α) ⊆ [r] denote {j ∈ [r] : Ṽrf (Ij) < α − 2Δ < α} and let H̃(α) denote

[r] \ L̃(α). Let f̃ ′ : {0, 1}n→{−1, 1} denote the function f |0←∪
j∈L̃(α)Ij .

6. Draw a sample of m
def
= 2

ε
ln 12 uniform random examples from {0, 1}n and evaluate

both f̃ ′ and f on each of these examples. If f and f̃ ′ disagree on any of the m examples
then exit and return “no.” If they agree on all examples then continue.

7. Run the learning algorithm LearnPoly′(s, |H̃(α)|, ε/4, 1/100) from [SS96] using
SimMQ(f, H̃(α), {Ij}j∈H̃(α), α, Δ, z, δ/Q(s, |H̃(α)|, ε/4, 1/100)) to simulate each

membership query on a string z ∈ {0, 1}|H̃(α)| that LearnPoly′ makes. If LearnPoly′

returns “not s-sparse” then exit and return “no.” Otherwise the algorithm terminates
successfully; in this case return “yes.”

a More precisely, we set τ = ε/600, Δ = min{Δ0,
(
τ/8s2)(δ/ ln(2/δ)

)
}, r = 4Cs/Δ

(for a suitable constant C from Theorem 3), where Δ0
def
= τ/

(
1600s3 log(8s3/τ)

)
and

δ
def
= 1/

(
100s log(8s3/τ)Q

(
s, s log(8s3/τ), ε/4, 1/100

))

Fig. 1. The algorithm Test-Sparse-Poly

high-variation variable in each Ij (j ∈ H) is set in the desired way in x, and it returns
the value f ′(x).

4.1 Time and Query Complexity of Test-Sparse-Poly

As stated in Figure 1, the Test-Sparse-Poly algorithm runs
LearnPoly′(s, |H̃(α)|, ε/4, 1/100) using SimMQ(f, H̃(α), {Ij}j∈H̃(α), α, Δ,

z, 1/(100Q(s, |H̃(α)|, z, 1/100))) to simulate each membership query on an input

string z ∈ {0, 1}|H̃(α)|. Thus the algorithm is being run over a domain of |H̃(α)|
variables. Since we certainly have |H̃(α)| ≤ r ≤ poly(s, 1

ε), Corollary 1 gives that
LearnPoly′ makes at most poly(s, 1

ε) many calls to SimMQ. From this point, by
inspection of SimMQ, SHIV and Test-Sparse-Poly, it is straightforward to verify
that Test-Sparse-Poly indeed makes poly(s, 1

ε) many queries to f and runs in time

Efficiently Testing Sparse GF (2) Polynomials 511

Algorithm Set-High-Influence-Variable(f, I, α, Δ, b, δ)
Input: Black-box access to f : {0, 1}n→{−1, 1}; (α, Δ)-well-structured set I ⊆ [n]; bit
b ∈ {0, 1}; failure parameter δ.
Output: assignment w ∈ {0, 1}I to the variables in I such that wi = b with probability
1 − δ

1. Draw x uniformly from {0, 1}I . Define I0 def
= {j ∈ I : xj = 0} and I1 def

= {j ∈ I :
xj = 1}.

2. Apply c = 2
α

ln(2
δ
) iterations of the independence test to (f, I0). If any of the c itera-

tions reject, mark I0. Do the same for (f, I1).
3. If both or neither of I0 and I1 are marked, stop and output “fail”.
4. If Ib is marked then return the assignment w = x. Otherwise return the assignment

w = x (the bitwise negation of x).

Fig. 2. The subroutine Set-High-Influence-Variable

Algorithm SimMQ(f,H, {Ij}j∈H , α, Δ, z, δ)
Input: Black-box access to f : {0, 1}n→{−1, 1}; subset H ⊆ [r]; disjoint subsets {Ij}j∈H

of [n]; parameters α > Δ; string z ∈ {0, 1}|H|; failure probability δ
Output: bit b which, with probability 1 − δ is the value of f ′ on a random assignment x in
which each high-variation variable i ∈ Ij (j ∈ H) is set according to z

1. For each j ∈ H , call Set-High-Influence-Variable(f, Ij , α, Δ, zj , δ/|H |) and get back
an assignment (call it wj) to the variables in Ij .

2. Construct x ∈ {0, 1}n as follows: for each j ∈ H , set the variables in Ij according to
wj . This defines xi for all i ∈ ∪j∈HIj . Set xi = 0 for all other i ∈ [n].

3. Return b = f(x).

Fig. 3. The subroutine SimMQ

poly(s, 1
ε) as claimed in Theorem 1. Thus, to prove Theorem 1 it remains only to es-

tablish correctness of the test.

4.2 Sketch of Completeness

The main tool behind our completeness argument is Theorem 3. Suppose f is indeed an
s-sparse polynomial. Then Theorem 3 guarantees that a randomly chosen α will w.h.p.
yield a “gap” such that subsets with a high-influence variable have variation above the
gap, and subsets with no high-influence variable have variation below the gap. This
means that the estimates of each subset’s variation (obtained by the algorithm in step
4) are accurate enough to effectively separate the high-variation subsets from the low-
variation ones in step 5. Thus, the function f̃ ′ defined by the algorithm will w.h.p be
equal to the function p′ from Theorem 3.

Assuming that f is an s-sparse polynomial (and that f̃ ′ is equal to p′), Theorem 3
additionally implies that the function f̃ ′ will be close to the original function (so Step
6 will pass), that f̃ ′ only depends on poly(s, 1/ε) many variables, and that all of the

512 I. Diakonikolas et al.

subsets Ij that “survive” into f̃ ′ are well-structured. As we show in Appendix B, this
condition is sufficient to ensure that SimMQ can successfully simulate membership
queries to f̃ ′′. Thus, for f an s-sparse polynomial, the LearnPoly′ algorithm can run
successfully, and the test will accept.

4.3 Sketch of Soundness

Here, we briefly argue that if Test-Sparse-Poly accepts f with high probability, then
f must be close to some s-sparse polynomial (we give the full proof in Appendix C).
Note that if f passes Step 4, then Test-Sparse-Poly must have obtained a partition of
variables into “high-variation” subsets and “low-variation” subsets. If f passes Step 6,
then it must moreover be the case that f is close to the function f̃ ′ obtained by zeroing
out the low-variation subsets.

In the last step, Test-Sparse-Poly attempts to run the LearnPoly′ algorithm using
f̃ ′ and the high-variation subsets; in the course of doing this, it makes calls to SimMQ.
Since f could be an arbitrary function, we do not know whether each high-variation
subset has at most one variable relevant to f̃ ′ (as would be the case, by Theorem 3,
if f were an s-sparse polynomial). However, we are able to show (Lemma 11) that,
if with high probability all calls to the SimMQ routine are answered without its ever
returning “fail,” then f̃ ′ must be close to a junta g whose relevant variables are the in-
dividual “highest-influence” variables in each of the high-variation subsets. Now, given
that LearnPoly′ halts successfully, it must be the case that it constructs a final hypoth-
esis h that is itself an s-sparse polynomial and that agrees with many calls to SimMQ
on random examples. Lemma 12 states that, in this event, h must be close to g, hence
close to f̃ ′, and hence close to f .

5 Conclusion and Future Directions

An obvious question raised by our work is whether similar methods can be used
to efficiently test s-sparse polynomials over a general finite field F, with query and
time complexity polynomial in s, 1/ε, and |F|. The basic algorithm of [DLM+07]
uses Õ((s|F|)4/ε2) queries to test s-sparse polynomials over F, but has running time
2ω(s|F|) · (1/ε)log log(1/ε) (arising, as discussed in Section 1, from brute-force search
for a consistent hypothesis). One might hope to improve that algorithm by using tech-
niques from the current paper. However, doing so requires an algorithm for properly
learning s-sparse polynomials over general finite fields. To the best of our knowledge,
the most efficient algorithm for doing this (given only black-box access to f : Fn→F)
is the algorithm of Bshouty [Bsh97b] which requires m = sO(|F| log |F|) logn queries
and runs in poly(m,n) time. (Other learning algorithms are known which do not have
this exponential dependence on |F|, but they either require evaluating the polynomial
at complex roots of unity [Man95] or on inputs belonging to an extension field of F
[GKS90, Kar89].) It would be interesting to know whether there is a testing algorithm
that simultaneously achieves a polynomial runtime (and hence query complexity) de-
pendence on both the size parameter s and the cardinality of the field |F|.

Efficiently Testing Sparse GF (2) Polynomials 513

Another goal for future work is to apply our methods to other classes beyond just
polynomials. Is it possible to combine the “testing by implicit learning” approach of
[DLM+07] with other membership-query-based learning algorithms, to achieve time
and query efficient testers for other natural classes?

References

[AKK+03] Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing low-degree
polynomials over GF(2). In: Proc. RANDOM, pp. 188–199 (2003)

[Ang88] Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
[BLR93] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to nu-

merical problems. J. Comp. Sys. Sci 47, 549–595 (1993); Earlier version in STOC
1990

[BM02] Bshouty, N., Mansour, Y.: Simple Learning Algorithms for Decision Trees and
Multivariate Polynomials. SIAM J. Comput. 31(6), 1909–1925 (2002)

[BS90] Blum, A., Singh, M.: Learning functions of k terms. In: Proceedings of the 3rd An-
nual Workshop on Computational Learning Theory (COLT), pp. 144–153 (1990)

[Bsh97a] Bshouty, N.: On learning multivariate polynomials under the uniform distribution.
Information Processing Letters 61(3), 303–309 (1997)

[Bsh97b] Bshouty, N.: Simple learning algorithms using divide and conquer. Computational
Complexity 6, 174–194 (1997)

[DLM+07] Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan,
A.: Testing for concise representations. In: Proc. 48th Ann. Symposium on Com-
puter Science (FOCS), pp. 549–558 (2007)

[EK89] Ehrenfeucht, A., Karpinski, M.: The computational complexity of (xor,and)-
counting problems. Technical report (preprint 1989)

[FKR+04] Fischer, E., Kindler, G., Ron, D., Safra, S., Samorodnitsky, A.: Testing juntas. Jour-
nal of Computer & System Sciences 68, 753–787 (2004)

[FS92] Fischer, P., Simon, H.U.: On learning ring-sum expansions. SIAM Journal on Com-
puting 21(1), 181–192 (1992)

[GGR98] Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learn-
ing and approximation. Journal of the ACM 45, 653–750 (1998)

[GKS90] Grigoriev, D., Karpinski, M., Singer, M.: Fast parallel algorithms for sparse mul-
tivariate polynomial interpolation over finite fields. SIAM Journal on Comput-
ing 19(6), 1059–1063 (1990)

[Kar89] Karpinski, M.: Boolean circuit complexity of algebraic interpolation problems (TR-
89-027) (1989)

[KKL88] Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In:
Proc. 29th FOCS, pp. 68–80 (1988)

[KL93] Karpinski, M., Luby, M.: Approximating the Number of Zeros of a GF [2] Polyno-
mial. Journal of Algorithms 14, 280–287 (1993)

[LVW93] Luby, M., Velickovic, B., Wigderson, A.: Deterministic approximate counting of
depth-2 circuits. In: Proceedings of the 2nd ISTCS, pp. 18–24 (1993)

[Man95] Mansour, Y.: Randomized interpolation and approximation of sparse polynomials.
SIAM Journal on Computing 24(2), 357–368 (1995)

[MORS07] Matulef, K., O’Donnell, R., Rubinfeld, R., Servedio, R.: Testing Halfspaces. Tech-
nical Report 128, Electronic Colloquium in Computational Complexity (2007)

514 I. Diakonikolas et al.

[PRS02] Parnas, M., Ron, D., Samorodnitsky, A.: Testing basic boolean formulae. SIAM J.
Disc. Math. 16, 20–46 (2002)

[RB91] Roth, R., Benedek, G.: Interpolation and approximation of sparse multivariate poly-
nomials over GF (2). SIAM J. Comput. 20(2), 291–314 (1991)

[Ron07] Ron, D.: Property testing: A learning theory perspective. In: Bshouty, N.H., Gen-
tile, C. (eds.) COLT. LNCS (LNAI), vol. 4539. Springer, Heidelberg (2007),
http://www.eng.tau.ac.il/∼danar/Public-ppt/colt07.ppt

[SS96] Schapire, R., Sellie, L.: Learning sparse multivariate polynomials over a field with
queries and counterexamples. J. Comput. & Syst. Sci. 52(2), 201–213 (1996)

http://www.eng.tau.ac.il/~danar/Public-ppt/colt07.ppt

Testing Properties of Sets of Points

in Metric Spaces

Krzysztof Onak�

Massachusetts Institute of Technology, Cambridge MA 02139, USA

Abstract. Given query access to a set of points in a metric space, we
wish to quickly check if it has a specific property. More precisely, we wish
to distinguish sets of points that have the property from those that need
to have at least an ε fraction of points modified to achieve it.

We show one-sided error testers that immediately follow from known
characterizations of metric spaces. Among other things, we give testers
for tree metrics and ultrametrics which are optimal among one-sided er-
ror testers. Our tester for embeddability into the line is optimal even
among two-sided error testers, and runs in sublinear time. We comple-
ment our algorithms with several lower bounds. For instance, we present
lower bounds for testing dimensionality reduction in the �1 and �∞ met-
rics, which improve upon lower bounds given by Krauthgamer and Sasson
(SODA 2003). All our lower bounds are constructed by using a generic
approach.

We also look at the problem from a streaming perspective, and give
a method for converting each of our property testers into a streaming
tester.

1 Introduction

Many real-world data sets are sets of points in a metric space. If the metric space
is complicated or, like high-dimensional spaces in many applications, expensive
to deal with, then a natural question is that of finding a simplified representation
of the input set of points. In many cases, we are not as much interested in the
actual points as in the distances between them. We may then consider mapping
the data set to a simpler space so that the distances between the points are
either exactly or approximately preserved.

The best example of a tool that allows for such transformation is the Johnson-
Lindenstrauss lemma (see [1] and [2]). It states that for any ε > 0, there exists
a mapping of an n-point set of points in �2 into �

O(log(n)/ε2)
2 with multiplicative

distortion 1 + ε. For instance, if small distortion is acceptable, and we have an
algorithm that runs in time exponential in the dimension, then by using the
Johnson-Lindenstrauss lemma, we may get a polynomial-time approximation
algorithm.

Another possible approach is to take advantage of profound properties of our
data sets in constructing an embedding into a simpler space. But how can one
� Supported by an Akamai Presidential Fellowship and NSF grant 0514771.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 515–526, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

516 K. Onak

efficiently discover such properties? This problem was addressed in a variety of
settings by Parnas and Ron [3] and Krauthgamer and Sasson [4], who focused on
constructing testers for multiple metric properties. By using those testers, one
may check if a data set or a metric is close to a specific property, and if that turns
out to be the case, try to use the property to construct a nice embedding into
a simpler space. We continue this line of research. In particular, we follow and
generalize the model of Krauthgamer and Sasson. We describe existing models
and previous results on them in more detail later in this section.

1.1 Property Testing

In property testing (see [5,6]), one is interested in checking if the input (for
instance, a set of points) has a specific property. We, however, do not attempt to
answer this question exactly. Instead, we try to quickly distinguish, by reading
a small part of the input, between sets of points which have the property, and
sets of points which are significantly different from any set that has the property.
We assume some notion of the distance from the property. Usually, the distance
is defined as the minimum fraction of the input that needs to be modified to
achieve the property. If the distance of an input x from the property is at least
ε, then we say that x is ε-far from the property. We now define what a tester is.

Definition 1. A (two-sided error) tester for a property P is an algorithm that
accepts an input that has property P with probability at least 2/3, and rejects
with probability at least 2/3 every input which is ε-far from P. Moreover, if the
tester never rejects any input that has property P, we say that such a tester has
one-sided error.

Note that one-sided error testers only reject an input if they find evidence that
it does not have a given property. Traditionally, the main quantities minimized
in property testing are the query complexity and the running time of a tester.

1.2 Considered Models and Previous Results

The Model of Parnas and Ron. Parnas and Ron [3] assumed that the input
metric on n points was given as an n× n matrix of distances between each pair
of points. The distance to a property was in their setting defined as the minimum
number of matrix entries that must be modified to achieve the property. They
showed one-sided error testers for verifying if the input metric embeds into �d2, if
it is a tree metric, an ultrametric or an approximate ultrametric. Their testers
choose a random subset of points of size independent of the size of the metric,
and check if the metric restricted to them has the property. We consider almost
the same set of properties in a different setting. Unfortunately, in our setting the
numbers of queries must depend on the size of the metric.

It is also worth mentioning that Abraham et al. [7] considered a related notion
of embeddings that preserve all but a small fraction of distances.

Testing Properties of Sets of Points in Metric Spaces 517

The Model of Krauthgamer and Sasson. The problem of testing a dimension
of a set of points was stated by Krauthgamer and Sasson [4]. They assumed
that their input is a set of points in a given metric space. What differentiates
their model from the model of Parnas and Ron is that the distance from a prop-
erty equals the minimum fraction of points, rather than the minimum fraction
of distances, that must be modified. Krauthgamer and Sasson asked if given a
set of points in �kp, we can efficiently determine if it isometrically embeds into
�dp, for some fixed d. They showed that for p = 2, it suffices to read a random
subset of points of size O(d/ε) to find with constant probability a certificate
that the entire set does not embed into �dp, provided it is ε-far from embeddabil-
ity into �dp. Furthermore, Krauthgamer and Sasson showed that for p = 1, any
tester for embeddability of a set of points in the �1 metric into �d1 must query
Ω(4
√
n) points. They also gave a lower bound of Ω(

√
n/Δ) for testing embed-

dability of a set of points in �m2 with distortion Δ into �d2, and a lower bound of
Ω(min{

√
n,

√
m/ logm}) for testing if a set of points in �m2 can be perturbed by

δ > 0 so that it isometrically embeds into �d2.

Our Generalized Model. We also assume that the input is a set of points. We,
however, take a more general look at the model proposed by Krauthgamer and
Sasson. As opposed to them, we do not assume anything about the metric space
the input set of points lies in. Instead, our testers have query access to a distance
oracle for the underlying metric space. The distance to a property is defined as
follows throughout the whole paper.

Definition 2. We say that a set S of points is ε-far from a property if any
subset of S of more than (1 − ε)|S| points does not have the property.

1.3 Considered Properties

For completeness, we first recall the notion of a metric space.

Definition 3. Let M be a pair 〈S, δ〉, where S is a set of points and δ is a
function from a pair of points in S to R≥0, the set of non-negative reals. We say
that M is a metric space if for any x, y, z ∈ S, δ(x, y) = δ(y, x), δ(x, y) = 0 iff
x = y, and δ(x, z) ≤ δ(x, y) + δ(y, z).

Properties that we test are easy to express via embeddings.

Definition 4. A metric space M1 = 〈S1, δ1〉 is embeddable (or embeds) into
a metric space M2 = 〈S2, δ2〉 if there exists a mapping f from S1 to S2 that
preserves distances, i.e. for any pair x and y of points in S, it holds that

δ1(x, y) = δ2(f(x), f(y)).

We now define what a tree metric and an ultrametric are. Note that every
ultrametric is a tree metric.

518 K. Onak

Definition 5. A metric M is a tree metric if it can be embedded into the
shortest-path metric of some weighted tree.

Alternatively, M = 〈S, δ〉 is a tree metric if it meets the following 4-point
condition:

∀x, y, z, w ∈ S, δ(x, y) + δ(z, w) ≤ max{δ(x, z) + δ(y, w), δ(x,w) + δ(z, y)}.

Definition 6. A metric M is an ultrametric if there exists a weighted rooted
tree T of all leaves at the same distance from the root, and M embeds into the
shortest-path metric of T with all points in M mapped to points corresponding
to the leaves of T .

Alternatively, M = 〈S, δ〉 is an ultrametric if it meets the following 3-point
condition:

∀x, y, z ∈ S, δ(x, y) ≤ max{δ(x, z), δ(y, z)}.

1.4 Our Results

Embeddability into the Line: We show an optimal O(
√

n/ε)-query one-
sided tester. We prove that any tester, including two-sided testers, must
query Ω(

√
n/ε) points even if the set of points is a subset of �21. This im-

proves upon the Ω(4
√
n) lower bound of Krauthgamer and Sasson [4].

Tree Metrics and Ultrametrics: We exhibit one-sided error testers of query
complexity O(n2/3ε−1/3). The testers are optimal among one-sided tester.

Embeddability into �21 and �d2: We exhibit one-sided testers of query com-
plexity O(n5/6ε−1/6) and O(n(d+2)/(d+3)ε−1/(d+3)), respectively. Note that
the spaces �21 and �2∞ are isometric.

Dimension Reduction Testing in �1 and �∞: We strengthen the results of
Krauthgamer and Sasson [4] on the dimension reduction. We show that any
one-sided tester for testing if a set of points in �d+1

1 embeds into �d1 must
query Ω(nd/(d+1)ε−1/(d+1)) points for sufficiently small ε. For the analogous
setting in �∞, we prove a lower bound of Ω(n2d−1/(2d−1+1)ε−1/(2d−1+1)).

Embeddability into the Line with Distortion: In any metric �p, for every
δ > 0, there exists a dimension d, and a constant C > 1 such that a one-sided
error tester for embeddability of points in �dp into the line with distortion at
most C must query Ω(n1−δ) points.

Most of our lower bounds only apply to one-sided testers, but all known testers
for these and related problems have one-sided error. Due to the space limitation,
many of our results are not included in this version of the paper.

1.5 A Streaming Perspective

The Model. We also take a look at the testing problem from a streaming per-
spective (see [8] for a survey on streaming algorithms). For our purposes, a
streaming algorithm is an algorithm that takes an input stream, and computes
a result in one pass over the input. A streaming algorithm can read the entire

Testing Properties of Sets of Points in Metric Spaces 519

input, but only once. The main quantity that is minimized in streaming is the
space complexity.

Feigenbaum et al. [9] considered a model that combines streaming and prop-
erty testing. A streaming tester takes an input stream, and accepts with proba-
bility at least 2/3, if the input has a given property, and rejects with probability
2/3, if the input does not have the property.

Our Results. We first show that the exact verification of properties considered
by us requires at least Ω(n) bits of space. This lower bound can easily be over-
come for most of properties that we consider by using stream testers. In par-
ticular, we show that for each property that we had an algorithm that used
O(n(d−1)/dε−1/d) samples in the property testing approach, there is a stream-
ing tester that needs space to keeps only O(n(d−2)/(d−1)ε−1/(d−1)) points. For
instance, for embeddability into the line, this gives a streaming tester that keeps
only O(1/ε) points.

1.6 Our Techniques

Testers via Small Subspace Characterizations. There are several properties (see
for instance [10,11]) that can be characterized by a property that holds for any
subset of points of size of at most c, for some constant c. In this case, we can
create a one-sided tester that looks for a small subset of at most c points that
do not have the property. Using this approach we get a tester for ultrametrics
which is optimal among one-sided testers.

Moreover, to build an efficient tester for embeddability into �21, we use the
algorithm of Edmonds [12] to check if a collected sample embeds into �21. In the
case of testing for embeddability into the line and for being a tree metric, this
general approach does not yield an optimal tester, but we prove that with respect
to some fixed number of points, it suffices to find a smaller group of points, and
therefore, we can improve the query complexity of the testers. For instance, in
testing for tree metrics, it essentially suffices to find a triple, not a quadruple of
points of a specific property, and therefore, the query complexity improves.

Lower Bounds for Property Testing. All our lower bounds follow from the same
approach. We construct a gadget, and make several copies of it. Any subset of
points that does not contain an entire copy of the gadget has the property, but
the whole set of points is far from the property. This implies that a one-sided
tester must read an entire copy of the gadget to reject the input. To construct
such gadgets in �1, we use a theorem of Hadlock and Hoffman [13]. We show and
use an analogue of this result in �∞.

Streaming Testers. All our lower bounds follow from a simple application of the
set disjointness lower bound [14,15]. As for algorithms, we notice that whenever
a standard property tester looks for a k-tuple of points to find evidence that the
input does not have a property, a streaming tester may draw only the first k− 1
points of the tuple in the stream, and it will notice the k-th complementing point,
when it reads it. An improvement follows from the fact that finding (k−1)-tuples
is easier than finding k-tuples.

520 K. Onak

2 Two Simple Probability Facts

We use two probability facts throughout the paper. Suppose that a set contains
many disjoint groups of elements, and by selecting elements of the set at random,
we wish to draw at least one of the groups entirely. The facts below specify what
number of samples is sufficient and what number of samples is necessary. We
omit their proof in this version of the paper.

Fact 7 (Upper bound). Let S be a set of n items where some of them con-
stitute g disjoint groups of size k each. It suffices to select min

{
2n
g1/k , n

}
=

O
(

n
g1/k

)
items at random to draw at least one of the groups entirely with con-

stant probability.

Fact 8 (Lower bound). Let S be a set of n items where some of them con-
stitute g disjoint groups of size k each. The probability that by we draw at least
one group entirely by choosing at random q items from S is not greater than
g · (q/n)k.

3 Testing Via a Small Subset Characterization

Some properties P can be expressed as a condition which says that there exists
a constant c such that a metric space M has property P if and only if every
subspace of M of at most c points has a computable property P ′. Apart from
the alternative definitions of a tree metric and an ultrametric, we list here the
following two examples:

– A metric spaces M embeds into �21 (or equivalently into �2∞) if and only if
each subset of M of at most 6 points embeds into �21 (Bandelt and Chepoi
[10]).

– A metric spaces M embeds into �d2 if and only if each subset of M of at most
d + 3 points embeds into �d2 (Menger [11]).

All properties of this form yield testers of sublinear query complexity.

Theorem 9. Let c be a constant such that a set S of points has a property
P if and only if every subset of S at most c points has a computable property
P ′. There exists a one-sided error tester for P that queries O

(
n1−1/cε−1/c

)

points. The tester finds with constant probability evidence that S does not have
P , provided S is ε-far from having it.

Proof. Let S be ε-far from P . This implies that any subset of S of at least
(1− ε)n does not have the property P .

Let S0 be equal to S. As long as |Si| > (1 − ε)n, we inductively define Si+1

and Ti+1 as follows. Since Si does not have the property P , there exists a subset
of Si of at most c points that does not have the property P ′. Let Ti+1 be any
such subset, and let Si+1 = Si\Ti+1. Eventually, we have at least εn/c disjoint

Testing Properties of Sets of Points in Metric Spaces 521

groups, each of size at most c such that any of them proves that the set does
not have P .

By Fact 7 it suffices to draw O
(
n1−1/c

(
c
ε

)1/c
)

= O
(
n1−1/cε−1/c

)
random

elements to entirely draw with constant probability at least one of these groups,
and hence to discover that S does not have P . Then, because P ′ is computable,
it suffices to verify that P ′ holds for every subset of at most c points. ��

Theorem 9 and the aforementioned characterizations yield sublinear-query
testers. Their running time can be improved, by checking if the whole sam-
ple subset has the given property. One can check if a metric on n points is a tree
metric or an ultrametric in O(n2) time [16], and check if it embeds into �21 in
O(n2 log3 n) time [12]. We summarize all the results in the corollary below.

Corollary 10. There are sublinear-query one-sided error testers if the input set
of points

– spans a tree metric (query complexity: O(n3/4ε−1/4), time O(n3/2ε−1/2)),
– spans an ultrametric (query complexity: O(n2/3ε−1/3), time O(n4/3ε−2/3)),
– embeds into �21 (query complexity: O(n5/6ε−1/6), time O(n5/3ε−1/3 log3 n)),
– embeds into �d2 (query complexity: O(n(d+2)/(d+3)ε−1/(d+3))).

4 Improved Testers

4.1 Testing Tree Metrics

We now show a slightly more efficient algorithm for testing if a metric spanned
by a set of points is a tree metric. Recall that Corollary 10 gave us a tester of
query complexity O(n3/4ε−1/4). The reason behind the complexity is that the
tester looks for quadruples of points. The lemma below implies that it really
suffices to look for triples of points, and we can therefore improve the query
complexity to O(n2/3ε−1/3). We omit the proof in this version of the paper.

Lemma 11. Let S = {x, y, s, t} be a subset of four points in a metric space
that spans a non-tree submetric. Let p be an arbitrary point in the same metric
space. There exists a subset S′ of S of size 3 such that S′ ∪{p} spans a non-tree
submetric as well.

Corollary 12. There is a one-sided error tester for being a tree metric that
queries only O(n2/3ε−1/3) points and runs in O(n4/3ε−2/3) time.

4.2 Testing Embeddability into the Line

We now show an optimal tester for embeddability into the line. The query
complexity of the tester is O(

√
n/ε). Note that this significantly improves on

O(n3/4ε−1/4), the query complexity given by Corollary 10.

Theorem 13. There is a one-sided error tester for isometric embeddability into
the line that queries O(

√
n/ε) points.

522 K. Onak

Proof. Consider first the following algorithm. Query O(1/ε) random points. If
all points in the sample are identical, accept the input. Otherwise, let p and q
be the first two different drawn points in the sample. Place p and q on the line
at distance δ(p, q). Now for any other point r in the set, the placement of p
and q uniquely determines the position of r on the line, provided the subspace
{p, q, r} embeds into the line. Draw O(

√
n/ε) new points, and if for any point r

in the new sample, the subspace {p, q, r} does not embed into the line, reject the
input. Otherwise, place all the points from the sample on the line with respect
to p and q, and verify if all the pairwise distances on the line equal the distances
in the original metric. If at least one of them is different, reject. Otherwise,
accept.

We assume that ε ≥ 1/n, since every set of points is either embeddable
into the line, or is 1/n-far from this property. This implies in particular that
1/ε = O(

√
n/ε), and thus, the query complexity of the algorithm is O(

√
n/ε).

Let us prove that the above algorithm works. Clearly, it can only reject inputs
that are not embeddable into the line. Suppose that an input is accepted by
the above algorithm with probability at least 2/3. We show that the input is
ε/2-close to a set embeddable into the line. The input can be accepted in two
different steps of the algorithm, and it must be accepted with probability at
least 1/6 in one of them. If it is accepted with probability at least 1/6 because
all points in the first sample are identical, the set must be ε/2-close to an input
that consists of n copies of a single point. Suppose now that it passes the other
two tests with probability at least 1/6 for arbitrary p and q fixed in the first
phase of the algorithm. Let S′ be the maximum size subset of the input set
such that each point r in S′ embeds into the line with respect to p and q,
and all pairwise distances for the points in S′ are preserved in this embedding.
We claim that |S′| ≥ (1 − ε/2)|S|, i.e., there is a subset of the input of size
(1− ε/2)n that isometrically embeds into the line. Firstly, the fraction of points
in S that do not embed with respect to p and q must be smaller than ε/4,
since the constant hidden in the big-Oh notation is sufficiently large to detect
every fraction greater than ε/4 of these points with probability greater than 5/6.
Secondly, the fraction of points of S in S\S′ that embed with respect to p and
q also cannot be to large. Denote the set of those points by U . Suppose that
|U | ≥ εn/4. Let Xi = S′ ∪ U , and iteratively create Xi as follows. As long as
|Xi| > |S′|, there is a pair of points (ai, bi) in Xi such that the distance between
ai and bi changes after embedding into the line with respect to p and q. We
create Xi+1 by removing these two points from Xi. If |U | ≥ εn/4, there are at
least εn/8 such disjoint pairs of points, and by Fact 7, we find such a pair with
probability greater than 5/6. Hence the size of T must be less than εn/4, and
the size of S′ is at least (1 − ε/2) · n. Therefore, the input is ε/2-close to an
input embeddable into the line, which finishes the proof of the correctness of the
algorithm. ��

One can show that there is an algorithm that for a set of s points, checks in time
O(s(T + log s)) if it exactly embeds into the line or not, where T is the time
complexity of computing the distance between two points.

Testing Properties of Sets of Points in Metric Spaces 523

Corollary 14. There is a one-sided error tester for isometric embeddability into
the line that queries O(

√
n/ε) points and runs in O(

√
n/ε(T+logn)) time, where

T is the time necessary to compute the distance between two points.

5 Lower Bounds

We give a number of lower bounds for testing. All of them follow from the same
approach. We create a constant size gadget that is repeated several times. Until
we read entirely at least one of the copies of the gadget, the subset of points
has a considered property. At the same time the whole input is far from the
property. A one-sided tester must therefore read an entire copy of the gadget,
which requires many queries. One can also show that each of our lower bounds
can be transformed into an Ω(

√
n/ε) lower bound for two-sided testers.

5.1 A Lower Bound for Testing Dimension Reduction in �1

A say that a set of points in �mp is d-dimensional if it isometrically embeds into �dp.
We now present a general lower bound for one-sided error testers, which shows
that a d-dimensionality tester with one-side error must query many points for
small ε and large d. To prove the lower bound, we make use of a nonembeddability
lemma by Hadlock and Hoffman [13]. They showed that to embed a tree metric
into �1 one needs exactly "k/2# dimensions, where k is the number of leaves in
the underlying tree. Here we only make use of the nonembeddability part of their
result.

Lemma 15 (Hadlock and Hoffman [13]). Let M = (S, δ) be a tree metric
of k ≥ 3 leaves. M does not embed into �m1 for any m < k/2.

Theorem 16. Any one-sided tester for d-dimensionality must query Ω(nd/(d+1) ·
ε−1/(d+1)) points for ε < 1/(2d + 2), even if the host space is �d+1

1 .

Proof. A one-sided tester for inputs that are ε-far from d-dimensionality needs
to detect with constant probability evidence of non-d-dimensionality. In our
case, it must read with constant probability a subset of points which is not
d-dimensional.

We will exhibit a d + 1-dimensional set which is hard for one-sided testers.
Before we pass this set to the tester, we randomly shuffle the list of the points.
Thus we can assume that the tester reads random points from the set. (Bar-
Yossef et al. [17] conduct an interesting analysis of testers for the properties
that do not depend on the order of the elements in the input).

We will define a set of points in �d+1
1 , which will not be d-dimensional. Let ei,

1 ≤ i ≤ d + 1, be the unit vector in Rd+1 of the i-th coordinate equal to 1 and
all the others equal to 0. Also define 1 and 0 to be the vectors of ones and zeros
in all coordinates, respectively.

We construct an input set S as follows. Let p = εn. First, we add n−p(2d+2)
copies of 0. Then, for each 1 ≤ i ≤ p, we add the following group Gi of 2d + 2
points:

524 K. Onak

– ui = 3i · 1,
– vij = 3i · 1− ej, for each 1 ≤ j ≤ d + 1,
– wij = 3i · 1 + ej , for each 1 ≤ j ≤ d.

Note that each Gi is the shortest-path metric of the unweighted star of 2d +
1 leaves. Thus, by Lemma 15, Gi is not d-dimensional. To turn S into a d-
dimensional set, we need to remove at least one point from each Gi, therefore
S is ε-far from d-dimensionality. On the other hand, if we remove at least one
point vij for each 1 ≤ i ≤ p, we get a d-dimensional set. Since all the points
vij , for fixed i, are symmetric in terms of the distance to the other points, we
can assume without loss of generality that we remove vi,d+1 for each i. We can
define a distance-preserving embedding f of the remaining points into �d1:

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x = 0;
3 d+1
d i · 1, if x = ui;

3 d+1
d i · 1− ej , if x = vij ;

3 d+1
d i · 1 + ej , if x = wij .

One can easily check that this embedding does preserve all the distances.
Moreover, this implies that to find evidence that S is not d-dimensional, the

tester needs to read all the vij for some i. If the tester queries q points and finds
evidence with constant probability, it follows from Fact 8 that p

(
q
n

)d+1 = Ω(1),

which implies that q = Ω
(
nd/(d+1)

ε1/(d+1)

)
. ��

6 Streaming Testers

6.1 A Linear Lower Bound for the Exact Property Verification

We now give a sketch of how to prove a lower bound for the exact verification
of properties in the streaming model. We omit many technical details. Each of
our lower bounds for property testing can easily be turned into a lower bound
for exactly checking a property in streaming. For each of those lower bounds,
we design a size-k gadget for some constant k. Whenever an entire copy of the
gadget is present in the input, the input does not have the property. We can
also break each of the gadgets into two parts of the same, or almost the same
size such that when only one of the halves is present, it does not contradict the
property. We start from an input that has n/k copies of the gadget. One of the
halves of each gadget is assigned to Alice, and the other one to Bob. Alice picks
her set of points by selecting an arbitrary subset of her halves of gadgets. So
does Bob. If Alice and Bob picked halves that compose to an entire copy of the
gadget, the union of their sets of points does not have the property. Otherwise,
it does. Clearly, we can now use any streaming algorithm for the exact property
verification to give a protocol for set disjointness on the set {1, . . . , n/k}. Alice
first simulates the algorithm on her set of points, passes the intermediate state
to Bob, and Bob continues the simulation on his set of points. In the worst case,

Testing Properties of Sets of Points in Metric Spaces 525

Alice must pass at least Ω(n/k) bits to Bob, so the amount of space used by the
streaming algorithm is at least Ω(n/k). We state a corollary for embeddability
into the line.

Lemma 17. The exact verification of embeddability into the line requires Ω(n)
bits of space in the streaming model.

6.2 A Lower Bound for Streaming Testers

The above approach can easily be modified to give a lower bound for streaming
testers. Instead of n/k different copies of the gadget, we now only have 1/(εk)
different copies, but we always repeat each of them εn times. Because of this,
whenever the subsets of {1, . . . , 1/(εk)} chosen by Alice and Bob intersect, there
are εn copies of the gadget, which makes the set of points ε-far from the property.
By the same argument as before, we get a lower bound of Ω(1/(εk)) bits of
space. In particular, the following lower bound holds for embeddability into
the line.

Lemma 18. A streaming tester for embeddability into the line must use Ω(1/ε)
bits of space.

6.3 Algorithms

Note that if there is a property tester of query complexity T , then there is a
streaming tester that keeps only T points. It collects T random points when it
goes over the stream, and at the end simulates the property tester on the sample.
Here, we show that the number of points kept can be decreased.

All our property testing algorithms look for a k-tuple of points that is used as
(a part of) a certificate that the input does not have a property. There are always
at least Ω(εn/k) such k-tuples, if the input is ε-far from a property. The im-
provement comes from the fact that it suffices to draw the first k−1 points of one
of the k-tuples, and then, going over the stream, check for each point if it com-
plements a k-tuple. By Fact 7, we only need to collect O(n(k−2)/(k−1)ε−1/(k−1))
sample points from the stream as opposed to O(n(k−1)/kε−1/k) samples in the
property testing model.

Moreover, for testing embeddability into the line (testing tree metrics), we
need two different fixed points (one fixed point). We can use for that the first
two different points (the first point) of the stream. For embeddability into the
line, we get the following lemma.

Lemma 19. There is a one-sided error streaming tester for embeddability into
the line that stores Ω(1/ε) points.

Acknowledgments. The author would like to thank Alexandru Andoni and
Ronitt Rubinfeld for useful comments on an early version of the paper.

526 K. Onak

References

1. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. In: Conference in Modern Analysis and Probability, New Haven, 1982.
Comtemporary Mathematics, vol. 26, pp. 189–206. American Mathematical So-
ciety, Providence (1984)

2. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In:
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 10–33 (2001)

3. Parnas, M., Ron, D.: Testing metric properties. Information and Computa-
tion 187(2), 155–195 (2003)

4. Krauthgamer, R., Sasson, O.: Property testing of data dimensionality. In: Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
18–27 (2003)

5. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

6. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45(4), 653–750 (1998)

7. Abraham, I., Bartal, Y., Chan, H.T.H., Dhamdhere, K., Gupta, A., Kleinberg,
J.M., Neiman, O., Slivkins, A.: Metric embeddings with relaxed guarantees. In:
FOCS, pp. 83–100 (2005)

8. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends
Theor. Comput. Sci. 1(2), 117–236 (2005)

9. Feigenbaum, J., Kannan, S., Strauss, M., Viswanathan, M.: Testing and spot-
checking of data streams. Algorithmica 34(1), 67–80 (2002)

10. Bandelt, H.J., Chepoi, V.: Embedding metric spaces in the rectilinear plane: a
six-point criterion. Discrete & Computational Geometry 15(1), 107–117 (1996)

11. Menger, K.: Untersuchungen uber allgemeine Metrik. Mathematische Annalen 100,
75–163 (1928)

12. Edmonds, J.: Embedding into �2∞ is easy, embedding into �3∞ is NP-complete.
In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 522–531 (2007)

13. Hadlock, F., Hoffman, F.: Manhattan trees. Utilitas Mathematica 13, 55–67 (1978)
14. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity

of set intersection. SIAM J. Discrete Math. 5(4), 545–557 (1992)
15. Razborov, A.A.: On the distributional complexity of disjointness. In: ICALP, pp.

249–253 (1990)
16. Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A.: Additive evolutionary trees.

Journal of Theoretical Biology 64, 199–213 (1977)
17. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Sampling algorithms: lower bounds

and applications. In: Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, pp. 266–275 (2001)

An Expansion Tester for Bounded Degree

Graphs

Satyen Kale1,� and C. Seshadhri2

1 Microsoft Research
One Microsoft Way

Redmond, WA 98052
satyen.kale@microsoft.com
2 Dept. of Computer Science,

Princeton University
35 Olden St, Princeton, NJ 08540

csesha@cs.princeton.edu

Abstract. We consider the problem of testing graph expansion (either
vertex or edge) in the bounded degree model [10]. We give a property
tester that given a graph with degree bound d, an expansion bound α,
and a parameter ε > 0, accepts the graph with high probability if its
expansion is more than α, and rejects it with high probability if it is ε-
far from any graph with expansion α′ with degree bound d, where α′ < α

is a function of α. For edge expansion, we obtain α′ = Ω(α2

d
), and for

vertex expansion, we obtain α′ = Ω(α2

d2). In either case, the algorithm

runs in time Õ(n(1+μ)/2d2

εα2) for any given constant μ > 0.

1 Introduction

With the presence of large data sets, reading the whole input may be a luxury.
It becomes important to design algorithms which run in time that is sublinear
in (or even independent of) the size of the input. Sublinear algorithms are often
achieved by dealing with a relaxed version of the decision problem. In property
testing [7,14], we wish to accept inputs that satisfy some given property, and
reject those that are sufficiently “far” from having that property. There is usually
a well-defined notion of the “distance” of an input to a given property. In recent
times, many advances have been made on algorithms for testing a variety of
combinatorial, algebraic, and geometric properties (see surveys [5,6,13]). For
property testing in graphs [7], there has been a large amount of work for testing
in dense graphs. Here, it is assumed that the graph is given as an adjacency
matrix. There are very general results about classes of properties that can tested
in time independent of the size of the graph ([1,2]).

The problem of property testing for bounded degree graphs was first dealt
with by Goldreich and Ron [8]. The input graph G is assumed that have a
constant degree bound d. The graph G is represented by adjacency lists - for
� Part of this work was done when the author was at Princeton University.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 527–538, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

528 S. Kale and C. Seshadhri

every vertex v, there is list of vertices (of size at most d) adjacent to v. This
allows testing algorithms to perform walks in the graph G. Given a property P
and positive ε < 1, the graph G is ε-far from having P if G has to be modified
at more than εnd edges for it to have property P . Note that this includes both
additions and deletions, and we want to keep the degree bound constant (usually,
we require that the degree bound d is preserved). In this model, there aren’t
any general results about testable properties as in the case of dense graphs.
Czumaj and Sohler [3] made the first attempt in this direction, and showed
testability results for classes of graphs that do not contain expanders. Using
random walks, Goldreich and Ron [9] proved that bipartiteness is testable with
Õ(
√
n) queries to the graph. In later work, Goldreich and Ron [10] posed the

question of testing expansion. Given positive parameters λ, ε < 1, they provided
a Õ(

√
n)-time algorithm that was conjectured to accept every graph G whose

second largest eigenvalue λ(G) is less than λ, and reject every graph that is ε-far
from having second eigenvalue less than λ′ (here λ′ could be much larger than
λ, but λ′ ≤ λΩ(1)). The running time is essentially tight (in n), since it has been
proven that a property tester for expansion requires Ω(

√
n) queries [9].

One of the major parts of the analysis of the algorithm of [9] for bipartiteness
deals with the expansion properties of the graph. Their main technique involves
performing random walks on the graph. In the adjacency list model, the basic
operation that we possess is that of walking in the graph, and random walks seem
like a very natural operation to perform. This immediately raises the question of
whether random walks can be used to test expansion. Furthermore, the results
of [3] show that classes of graphs which do not contain expanders can be tested.
All of this indicates that, regarding property testing in bounded degree graphs,
testing expansion is a very natural and central issue. The problem of designing a
property tester for expansion remained open for more than 6 years, until recently,
when Czumaj and Sohler [4] provided a tester for vertex expansion. We describe
this problem more formally below.

We are given an input graph G = (V,E) on n vertices with degree bound
d. Assume that d is a sufficiently large constant. Given a cut (S, S̄) (where
S̄ = V \ S) in the graph, let E(S, S̄) be the number of edges crossing the cut.
The edge expansion of the cut is E(S,S̄)

min{|S|,|S̄|} . The edge expansion of the graph is
the minimum edge expansion of any cut in the graph. The vertex expansion of
the cut is |∂S|

|S| , where ∂S is the set of nodes in S̄ that are adjacent to nodes in
S. The vertex expansion of the graph is the minimum vertex expansion of any
cut in the graph.

Hereafter, when we use the term “graph”, we are only concerned with graphs
having degree bound d. We are interested in designing a property tester for
expansion (either edge or vertex). The graph is represented by an adjacency list,
so we have constant time access to the neighbors of any vertex. Given parameters,
α > 0 and ε > 0, we want to accept to all graphs with expansion greater than α,
and reject all graphs that ε-far from having expansion less than α′ < α (where α′

is some function of α). This means that G has to be changed at least εnd edges

An Expansion Tester for Bounded Degree Graphs 529

(either removing or adding, keeping the degree bound d) to make the expansion
at least α′.

1.1 Our Results

The problem of testing vertex expansion was first discussed by Czumaj and
Sohler [4]. Their algorithm was based on that of Goldreich and Ron [10], and they
used combinatorial techniques to prove the correctness of their algorithm. Their
tester runs in time O(α−2ε−3d2√n ln(n/ε)) and has parameter α′ = Θ(α2

d2 logn).
Independently, using the same algorithm but via algebraic proof techniques,

we gave an analysis [11] which allowed us to remove the dependence of n in α′,
and we obtain α′ = Θ(α

2

d2) for vertex expansion and α′ = Θ(α
2

d) for edge expan-
sion. This improvement in α′ is significant since in most algorithmic applications
of expanders, we need the graph to have constant expansion, and our property
tester allows us to distinguish graphs which have constant expansion from those
that are far from having (a smaller) constant expansion.

However, in the initial unpublished version of this paper which appeared as a
tech report on ECCC [11], we prove that the tester rejects graphs that are ε-far
from any graph of expansion α′ with degree bound 2d, rather than degree bound
d. In this version of the paper, in addition to our previous results, we also show
how a small modification to our earlier techniques improves the degree bound
to d. We recently found out that independently, the degree bound improvement
was also obtained by Nachmias and Schapira [12] using a combination of our
techniques and those of Czumaj and Sohler.

To describe our results, we set up some preliminaries. Consider the following
slight modification of the standard random walk on the graph: starting from
any vertex, the probability of choosing any outgoing edge is 1/2d, and with the
remaining probability, the random walk stays at the current node. Thus, for a
vertex of degree d′ ≤ d, the probability of a self-loop is 1−d′/2d ≥ 1/2. This walk
is symmetric and reversible; therefore, its stationary distribution is uniform over
the entire graph. Consider a cut (S, S̄) with |S| ≤ n/2. The conductance of this
cut is the probability that, starting from the stationary distribution the random
walk leaves the set S in one step, conditioned on the event that the starting
state is in S. For our chain, the conductance thus becomes E(S, S̄)/2d|S|, which
is just the expansion of the cut divided by 2d. The conductance of the graph,
ΦG, is the minimum conductance of any cut in the graph.

Our goal is to design a property tester for graph conductance. The tester is
given two parameters Φ and ε. The tester must (with high probability1) accept
if ΦG > Φ and reject if G is ε-far from having ΦG > cΦ2 (for some absolute
constant c). Our tester is almost identical to the one described in [10]. Now we
present our main result:

Theorem 1. Given any conductance parameter Φ, and any constant μ > 0,
there is an algorithm which runs in time O(n

(1+μ)/2 log(n) log(1/ε)
εΦ2) and with high

1 Henceforth, “with high probability” means with probability at least 2/3.

530 S. Kale and C. Seshadhri

probability, accepts any graph with degree bound d whose conductance is at least
Φ, and rejects any graph that is ε-far from any graph of conductance at least cΦ2

with degree bound d, where c is a constant2 which depends on μ.

Remark: In Theorem 1, even though we have specified μ to be a constant, the
theorem still goes through even if μ were a function of n, though naturally the
conductance bound degrades. For instance, if μ = 1/ log(n), then the running
time of our algorithm matches that of [4], but the conductance bound becomes
Ω(Φ2/ log(n)).

In our bounded degree graph model, the following easy relations hold:

edge expansion = conductance/2d,

(vertex expansion)/2 ≥ conductance ≥ (vertex expansion)/2d.

Using these relations, we immediately obtain property testers for vertex and edge
expansion for a given expansion parameter α by running the property tester for
conductance with parameter Φ = α/2d, and we get the following corollary to
Theorem 1:

Corollary 1. Given any expansion parameter α, and any constant μ > 0, there
is an algorithm which runs in time O(d

2n(1+μ)/2 log(n) log(1/ε)
εα2) and with high prob-

ability, accepts any graph with degree bound d whose expansion is at least α, and
rejects any graph that is ε-far from any graph of expansion at least α′ with degree
bound d. For edge expansion, α′ = Ω(α

2

d), and for vertex expansion, α′ = Ω(α
2

d2).

Goldreich and Ron’s formulation of the problem [10] asks for a property testing
algorithm that given a parameter λ < 1, accepts any graph with second largest
eigenvalue (of the transition matrix of the lazy random walk) less than λ, and
rejects any graph that is ε-far from having second largest eigenvalue less than
λ′, for some λ′ ≤ λΩ(1). Given a graph G, the following well known inequality
(see [15]) states that the second largest eigenvalue λ(G) satisfies

1− ΦG ≤ λ(G) ≤ 1− Φ2
G/2.

Now, if we assume that λ ≤ 1− α for some constant α > 0, then we obtain a
property tester in the Goldreich-Ron formulation, for λ′ = (1− c2(1− λ)4/2) ≤
λΩ(1), since λ ≤ 1−Ω(1). Here, c is the constant from Theorem 1. We run our
property tester for conductance with parameter Φ = 1 − λ. For any graph G
with λ(G) ≤ λ, we have ΦG ≥ Φ, so the tester accepts G. Any graph G with
ΦG ≥ cΦ2 has λ(G) ≤ λ′, so the tester rejects any graph which is ε-far from
having λ(G) ≤ λ′. Thus, we have the following corollary to Theorem 1:

Corollary 2. Given any parameter λ < 1 − Ω(1), and any constant μ > 0,
there is an algorithm which runs in time O(n

(1+μ)/2 log(n) log(1/ε)
ε(1−λ)2) and with high

probability, accepts any graph with degree bound d with λ(G) ≤ λ, and rejects
any graph that is ε-far from having λ(G) ≤ λ′ with degree bound d, for some
λ′ ≤ λΩ(1).
2 We can set c = μ/400.

An Expansion Tester for Bounded Degree Graphs 531

2 Description of the Property Tester

We first define a procedure called Vertex Tester which will be used by the
expansion tester.

Vertex Tester

Input: Vertex v ∈ V .
Parameters: � = 2 lnn/Φ2 and m = 8n(1+μ)/2.

1. Perform m random walks of length � from s.
2. Let A be the number of pairwise collisions between the endpoints of

these walks.
3. The quantity A/

(
m
2

)
is the estimate of the vertex tester. If A/

(
m
2

)
≥

(1 + 2n−μ)/n, then output Reject, else output Accept.

Now, we define the Conductance Tester.

Conductance Tester

Input: Graph G = (V,E).
Parameters: t = Ω(ε−1) and N = Ω(log(ε−1)).

1. Choose a set S of t random vertices in V .
2. For each vertex v ∈ S:

(a) Run Vertex Tester on v for N trials.
(b) If a majority of the trials output Reject, then the Conductance

Tester aborts and outputs Reject.
3. Output Accept.

3 Proof of Theorem 1

Before we give the details of the proof, we give a high level exposition of the
ideas. We characterize vertices of the graph as strong or weak (this was already
implicit in the ideas of [10]). Random walks of length � starting from strong
vertices mix very rapidly, while those from weak vertices do not. We expect the
vertex tester to accept strong vertices and reject weak ones.

One of the main differences from the result of Czumaj-Sohler is that we have a
very strict definition of strong vertices. We need the mixing from strong vertices
to be very rapid, and this is what allows us to remove the dependence of n
from α′. In the main technical contribution of this paper, we prove that a bad
conductance cut will contain a sufficiently large number of weak vertices. We
get very strong quantitative bounds using algebraic techniques to analyze the
random walks starting from inside the bad cut. We then show that if there
are very few weak vertices in G (and therefore, the tester will probably accept
the graph), there is a patch-up procedure that can add εnd edges to boost the
expansion to α′ and preserves the degree bound. This completes the proof.

532 S. Kale and C. Seshadhri

3.1 Preliminaries

Let us fix some notation. The probability of reaching u by performing a random
walk of length l from v is plv,u. Denote the (row) vector of probabilities plv,u
by p l

v . The collision probability for random walks of length l starting from v is
denoted by γl(v) - this is the probability that two independent random walks
of length l starting from v will end at the same vertex. It is easy to see that
γl(v) = ‖pv‖ =

∑
v(p

l
v,u)2 (henceforth, we use ‖ · ‖ to denote the L2 norm). Let

1 denote the all 1’s vector. The norm of the discrepancy from the stationary
distribution will be denoted by Δl(v):

Δl(v)2 = ‖p l
v − 1/n‖2 =

∑

u∈V
(plv,u − 1/n)2 =

∑

u∈V
(plv,u)

2 − 1/n = γl(v) − 1/n.

Since l will usually be equal to �, in that case we drop the subscripts (or su-
perscripts). The relationship between Δ(v) and γ(v) is central to the functioning
of the tester. The parameter Δ(v) is a measure of how well a random walk from
s mixes. The parameter γ(v) can be estimated in sublinear time, and by its
relationship with Δ(v), allows us to test mixing of random walks in sublinear
time. The following is basically proven in [10]:

Lemma 1. The estimate of γ(v), viz. A/
(
m
2

)
, provided by the Vertex Tester

lies outside the range [(1− 2n−μ)γ(v), (1 + 2n−μ)γ(v)] with probability < 1/3.

Proof given in full version. For clarity of notation, we set σ = n−μ/4. We now
have the following corollary:

Corollary 3. The following holds with probability at least 5/6. For all vertices
v in the random sample S chosen by the Conductance Tester, if γ(v) <
(1+σ)/n, then the majority of the N trials of Vertex Tester run on v return
Accept. If γ(v) > (1 + 6σ)/n, then the majority of the N trials of Vertex

Tester run on v return Reject.

This is an easy consequence of the fact that we run N = Ω(log(ε−1)) trials, by
an direct application of Chernoff’s bound and using Lemma 1. We are now ready
to analyze the correctness of our tester.

First, we show the easy part. Let M denote the transition matrix of the
random walk. The top eigenvector of M is 1. We will also need the matrix
L = I−M , which is the (normalized) Laplacian (I denotes the identity matrix).
The eigenvalues of L are of the form (1− λ), where λ is an eigenvalue of M .

Lemma 2. If ΦG ≥ Φ, then the Conductance Tester accepts with probability
at least 2/3.

Proof. Let λG be the second largest eigenvalue of M . It is well known (see, e.g.,
[15]) that λG ≤ 1−Φ2

G/2 ≤ 1−Φ2/2. Thus, we have for any v ∈ V , if ev denotes
the row vector which is 1 on coordinate v and zero elsewhere,

An Expansion Tester for Bounded Degree Graphs 533

‖pv − 1/n‖2 = ‖(ev − 1/n)M �‖2

≤ ‖ev − 1/n‖2λ2�
G

≤ (1− Φ2/2)4Φ
−2 lnn

≤ 1/n2.

The second inequality follows because ev − 1/n is orthogonal to the top eigen-
vector 1. As a result, Δ(v)2 ≤ 1/n2, and γ(v) < (1 + σ)/n for all v ∈ V . By
Corollary 3, the tester accepts with probability at least 2/3. ��
We now show that if G is ε-far from having conductance Ω(Φ2), then the tester
rejects with high probability. Actually, we will prove the contrapositive : if the
tester does not reject with high probability, then G is ε-close to having conduc-
tance Ω(Φ2). Call a vertex s weak if γ(v) > (1 + 6σ)/n, all others will be called
strong. Suppose there are more than 1

25εn weak vertices. Then with probability
at least 5/6, the random sample S chosen by the Conductance Tester has a
weak vertex, since the sample has Ω(ε−1) random vertices. Thus, the Conduc-

tance Tester will reject with high probability.
Let us therefore assume that there are at most 1

25εn weak vertices. Now, we
will show that εnd edges can be added to make the conductance Ω(Φ2).

3.2 Algebraic Lemmas

We now state and prove the key algebraic lemmas connecting bad conductance
cuts to bad mixing. The quantitative bounds given here are the main tool used
to prove that if the graph G has few weak vertices, then G is close to being an
expander.

Lemma 3. Consider a set S ⊂ V of size s ≤ n/2 such that the cut (S, S) has
conductance less than δ. Then, for any integer l > 0, there exists a node v ∈ S
such that Δl(v) > (2

√
s)−1(1− 4δ)l.

Proof. Denote the size of S by s (s ≤ n/2). Let us consider the starting distri-
bution p where:

pv =
{

1/s v ∈ S
0 v /∈ S

Let u = p−1/n. Note that uM l = pM l−1/n. Let 1 = λ1 ≥ λ2 · · · ≥ λn > 0
be the eigenvalues of M and f1,f2, · · · ,fn be the corresponding orthogonal unit
eigenvectors. Note that f1 = 1/

√
n. We represent u in the orthonormal basis

formed by the eigenvectors of M as u =
∑
i αif i. Here, α1 = 0, since u · 1 = 0.

∑

i

α2
i = ‖u‖22

= s

(
1
s
− 1

n

)2

+
n− s

n2

=
1
s
− 1

n
.

534 S. Kale and C. Seshadhri

Taking the Rayleigh quotient with the Laplacian L:

u�Lu = u�Iu− u�Mu

= ‖u‖22 −
∑

i

α2
i λi.

On the other hand, using the fact that the conductance of the cut (S, S̄) is less
than δ, we have

u�Lu =
∑

i<j

Mij(ui − uj)2 < 2δds× 1
2d
× 1

s2
=

δ

s
.

Putting the above together:

∑

i

α2
iλi >

(
1
s
− 1

n

)

− δ

s

=
1− δ

s
− 1

n
.

If λi > (1 − 4δ), call it heavy. Let H be the index set of heavy eigenvalues,
and H̄ be the index set of the rest. Since

∑
i α

2
i λi is large, we expect many of

the αi corresponding to heavy eigenvalues to be large. This would ensure that
the starting distribution p will not mix rapidly. We have

∑

i∈H
α2
iλi +

∑

i∈H̄

α2
iλi >

1− δ

s
− 1

n
.

Setting x =
∑
i∈H α2

i :

x + (
∑

i

α2
i − x)(1 − 4δ) >

1− δ

s
− 1

n
.

We therefore get:

4δx +
(

1
s
− 1

n

)

(1 − 4δ) >
1− δ

s
− 1

n

∴ x >
3
4s
− 1

n

≥ 1
4s

. ∵ n ≥ 2s (1)

Note that uM l =
∑
i αiλ

lf i. Thus,

‖uM l‖22 =
∑

i

α2
i λ

2l
i

≥
∑

i∈H
α2
iλ

2l
i

>
1
4s

(1− 4δ)2l.

An Expansion Tester for Bounded Degree Graphs 535

So, ‖uM l‖2 > 1
2
√
s
(1− 4δ)l. Note that u = 1

s

∑
v∈S(ev − 1

n), and hence uM l =
1
s

∑
v∈S(evM l− 1

n). Now, evM
l− 1

n is the discrepancy vector of the probability
distribution of the random walk starting from v after l steps. Thus, by Jensen’s
inequality, we conclude that

1
s

∑

v∈S
Δl(v) ≥ ‖uM l‖ >

1
2
√
s
(1− 4δ)l.

Hence, there is some v ∈ S for which Δl(v) > (2
√
s)−1(1− 4δ)l. ��

Lemma 4. Consider sets T ⊆ S ⊆ V such that the cut (S, S̄) has conductance
less than δ. Let |T | = (1−θ)|S|. Assume 0 < θ ≤ 1

8 . Then, for any integer l > 0,

there exists a node v ∈ T such that Δl(v) > (1−2
√

2θ)
2
√
s

(1 − 4δ)l.

Proof. Let uS (resp., uT) be the uniform distribution over S (resp., T) minus 1
n .

Let s and t be the sizes of S and T resp. Let uS =
∑
i αif i and uT =

∑
i βif i

be representation of uS and uT in the basis {f1, . . . ,fn}, the unit eigenvectors
of M . Note that α1 = β1 = 0 since uS and uT are orthogonal to 1.

Since the conductance of S is less than δ, by applying inequality (1) from
Lemma 3, we have that

∑

i∈H
α2
i >

1
4s

.

We have
‖uS − uT ‖2 =

1
t
− 1

s
=

θ

(1− θ)s
≤ 2θ

s
.

Furthermore,

‖uS − uT ‖2 =
∑

i

(αi − βi)2 ≥
∑

i∈H
(αi − βi)2.

Using the triangle inequality ‖a− b‖ ≥ ‖a‖ − ‖b‖, we get that

∑

i∈H
β2
i ≥

⎡

⎣
√∑

i∈H
α2
i −

√∑

i∈H
(αi − βi)2

⎤

⎦

2

>

[
1

2
√
s
−
√

2θ√
s

]2

≥ (1 − 2
√

2θ)2

4s
.

Finally, reasoning as in Lemma 3, we get that ‖uTM l‖ > (1−2
√

2θ)

2
√
s

(1 − δ)l, and

thus, by Jensen’s inequality, there is a v ∈ T such that Δl(v) > (1−2
√

2θ)

2
√
s

(1−4δ)l.
��

This lemma immediately yields the following corollary:

Corollary 4. Consider a set S ⊆ V such that the cut (S, S̄) has conductance
less than δ. For positive θ ≤ 1

8 and any integer l > 0, there exist at least θ|S|
nodes v ∈ S such that Δl(v) > (1−2

√
2θ)

2
√
s

(1− 4δ)l.

536 S. Kale and C. Seshadhri

Using the above lemmas, we can now show that G looks almost like an expander.

Lemma 5. There is a partition of the graph G into two pieces, A and Ā := V \A,
with the following properties:
1. |A| ≤ 2

5εn.
2. Any cut in the induced subgraph on Ā has conductance Ω(Φ2).

Proof. We use a recursive partitioning technique: start out with A = {}. Let
Ā = V \ A. If there is a cut (S, S̄) in Ā with |S| ≤ |Ā|/2 with conductance less
than cΦ2, then we set A := A ∪ S, and continue as long as |A| ≤ n/2. Here, c is
a small constant to be chosen later.

We claim that the final set A has the required properties. If |A| > 2
5εn, then

consider the cut (A, Ā) in G. It has conductance at most cΦ2. Now, Corollary 4
implies (with θ = 1/10) that there are at least 1

10 |A| >
1
25εn nodes in A such

that for all such nodes v, and for b = (1−2
√

1/5)√
2

, we have

Δ�(v) >
b√
n

(1− 4cΦ2)� >
√

6σ/n

for a suitable choice of c in terms of μ (say, c = μ/200 suffices).
Thus, for all such nodes v, we have γ�(v) = Δ�(v)2 +1/n > (1+6σ)/n, which

implies that all such nodes are weak, a contradiction since there are only 1
25εn

weak nodes.
Since |A| ≤ 2

5εn < n/2, when the recursive partitioning procedure terminates,
any cut in the induced subgraph on Ā has conductance Ω(Φ2). ��

3.3 Getting an Expander

Armed with the partitioning algorithm of Lemma 5, we are ready to present
the patch-up algorithm, which changes the graph in εnd edges and raises its
conductance to Ω(Φ2). Note that we do not perform this patch-up algorithm as
part of our tester. It is merely used to show that G is close to an expander. The
trivial patch-up algorithm would just add d random edges to every vertex in A.
This would only add at most εnd edges and make the conductance Ω(Φ2). The
drawback is that the degree bound will not be preserved. We have to be more
careful to ensure that we can find a graph G′ ε-close to G which is an expander
and has a degree bound of d.

Patch-up Algorithm

1. Partition the graph into two pieces A and Ā with the properties given
in Lemma 5.

2. Remove all edges incident on nodes in A.
3. For each node u ∈ A, repeat the following process until the degree of

u becomes d − 1 or d: choose a vertex v ∈ Ā at random. If the current
degree of v is less than d, add the edge {u, v}. Otherwise, if there is
an edge {v, w} such that w ∈ Ā, remove {v, w}, and add the edges
{u, v} and {u,w} (call these newly added edges “paired”). Otherwise,
re-sample the vertex v from Ā, and repeat.

An Expansion Tester for Bounded Degree Graphs 537

To implement Step 3, we need to ensure that the set of nodes in Ā with degree
less than d or having an edge to another node in Ā is non-empty. In fact, we can
show a stronger fact:

Lemma 6. At any stage in the patch-up algorithm, there are at least 1
4 |Ā| ≥

1
4 (1 − 2ε/5)n nodes in Ā with degree less than d or having an edge to another
node in Ā.

Proof. Let X ⊆ Ā be the set of nodes of degree at most d/2 before starting the
second step, and let Y := Ā \X . Now we have two cases:

1. |X | ≥ 1
2 |Ā|: We add at most 2

5εnd edges, since |A| ≤ 2
5εn. At most half the

nodes in X can have their degree increased to d, since 2
5εnd ≤

1
2 |X | ·

d
2 , since

|X | ≥ 1
2 (1 − 2ε/5)n. Here, we assume that ε ≤ 1/4. Thus, at any stage we

have at least 1
4 |Ā| nodes with degree less than d.

2. |Y | ≥ 1
2 |Ā|: we remove at most 1

5εnd edges from the subgraph induced by
Ā. At most half of the nodes in Y can have their (induced) degrees reduced
to 0, 1

5εnd ≤
1
2 |Y | ·

d
2 , since |Y | ≥ 1

2 (1 − 2ε/5)n. Again, we assume that
ε ≤ 1/4. Thus, at any stage we have at least 1

4 |Ā| nodes with at least one
edge to some other node in Ā.

Now, we prove that the patch-up algorithm works:

Theorem 2. If there are less than 1
25εn weak vertices, then εnd edges can be

added or removed to make the conductance Ω(Φ2), while ensuring that all degrees
are at most d.

Proof. We run the patch-up algorithm on the given graph. It is easy to see that
at the end of the algorithm, every node has degree bounded by d. Also, the total
number of edges deleted is at most 2

5εnd+ 1
5εnd, and the number of edges added

is at most 2
5εnd. Thus the total number of edges changed is at most εnd.

Now, let (S, S̄) be a cut in the graph with |S| ≤ n/2. Let SA = S ∩ A, and
SĀ = S ∩ Ā. Let m := |S|. We have two cases now:

1. |SĀ| ≥ m/2: In this case, note that in the subgraph of original graph induced
on Ā, the set SĀ had conductance at least cΦ2, and hence the cut (SĀ, Ā\SĀ)
had at least 2cΦ2|SĀ|d ≥ cΦ2md edges crossing it.
For any edge {v, w} that was in the cut (SĀ, Ā \ SĀ) and was removed by
the construction, we added two new edges {u, v} and {u,w} for some u ∈ A.
Now it is easy to check that regardless of whether u ∈ SA or u /∈ SA, one of
the two edges {u, v} and {u,w} crosses the cut (S, S̄). Thus, at least cΦ2md
edges cross the cut (S, S̄), and hence it has conductance at least c2Φ

2.
2. |SĀ| ≤ m/2: In this case, for each node u ∈ SA, we chose at least d/2 random

edges connecting u to nodes in Ā (for now, disregarding one edge in every
set of paired edge from step 3.). By Lemma 6, and since |SĀ| ≤ |SA| ≤ |A| ≤
2εn/5, the probability that for any such edge, the endpoint in Ā was actually
in SĀ is at most

|SĀ|
1
4 |Ā|

≤ 2ε/5
1
4 (1− 2ε/5)

≤ 1/4

assuming ε ≤ 1/8.

538 S. Kale and C. Seshadhri

Since |SA| ≥ m/2, the total number of edges added to nodes in SA is at
least md/4 (again, disregarding one edge out of every set of paired edges).
The expected number of these edges going into SĀ is at most md/16. By the
Chernoff-Hoeffding bounds, the probability that more than md/8 randomly
chosen edges lie completely in S is less than n−Ω(md) ≤ 1/3nm+1, if we
assume d is at least a large enough constant.

Taking a union bound over all sets of size m (the number of which is
at most nm), and then summing over all m, we get the with probability
at least 2/3, none of these events happen, and thus at least at least md/8
edges cross the cut (S, S). Therefore, the conductance of this cut is at least
1/16 > Ω(Φ2), since Φ ≤ 1. ��

References

1. Alon, N., Fischer, E., Newman, I., Shapira, A.: A Combinatorial Characterization
of the Testable Graph Properties: it’s all about Regularity. In: Proc. 38th STOC,
pp. 251–260 (2006)

2. Alon, N., Shapira, A.: A Charaterization of the (Natural) Graph Properties
Testable with One-sided Error. In: Proc. 46th FOCS, pp. 429–438 (2005)

3. Czumaj, A., Sohler, C.: On Testable Properties in Bounded Degree Graphs. In:
Proc. 18th SODA, pp. 494–501 (2007)

4. Czumaj, A., Sohler, C.: Testing Expansion in Bounded Degree Graphs. In: Proc.
48th FOCS, pp. 570–578 (2007)

5. Fischer, E.: The Art of Uninformed Decisions: A Primer to Property Testing. Bul-
letin of EATCS 75, 97–126 (2001)

6. Goldreich, O.: Combinatorial property testing - A survey. In: Randomization Meth-
ods in Algorithm Design, pp. 45–60 (1998)

7. Goldreich, O., Goldwasser, S., Ron, D.: Property Testing and its Connection to
Learning and Approximation. J. ACM 45, 653–750 (1998)

8. Goldreich, O., Ron, D.: Property Testing in Bounded Degree Graphs. Algorith-
mica 32(2), 302–343 (2002)

9. Goldreich, O., Ron, D.: A Sublinear Bipartiteness Property Tester for Bounded
Degree Graphs. Combinatorica 19(3), 335–373 (1999)

10. Goldreich, O., Ron, D.: On Testing Expansion in Bounded-Degree Graphs. ECCC,
TR00-020 (2000)

11. Kale, S., Seshadhri, C.: Testing Expansion in Bounded Degree Graphs. ECCC,
TR07-076 (2007)

12. Nachmias, A., Shapira, A.: Testing the Expansion of a Graph ECCC, TR07-118
(2007)

13. Ron, D.: Property testing. In: Handbook on Randomization, vol. II, pp. 597–649
(2001)

14. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM J. Comput. 25, 647–668 (1996)

15. Sinclair, A.: Algorithms for Random Generation and Counting: a Markov Chain
Approach. Birkhaüser Progress In Theoretical Computer Science Series (1993)

Property Testing on k-Vertex-Connectivity of

Graphs

Yuichi Yoshida and Hiro Ito

School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{yyoshida@lab2.,itohiro@}kuis.kyoto-u.ac.jp

Abstract. We present an algorithm for testing the k-vertex-connectivity
of graphs with given maximum degree. The time complexity of the algo-
rithm is independent of the number of vertices and edges of graphs. A
graph G with n vertices and maximum degree at most d is called ε-far
from k-vertex-connectivity when at least εdn

2 edges must be added to or
removed from G to obtain a k-vertex-connected graph with maximum de-
gree at most d. The algorithm always accepts every graph that is k-vertex-
connected and rejects every graph that is ε-far from k-vertex-connectivity

with a probability of at least 2/3. The algorithm runs in O
(
d

(
c
εd

)k
log 1

εd

)

time (c > 1 is a constant) for given (k − 1)-vertex-connected graphs, and

O
(
d

(
ck
εd

)k
log k

εd

)
time (c > 1 is a constant) for given general graphs. It is

the first constant-time k-vertex-connectivity testing algorithm for general
k ≥ 4.

1 Introduction

In this paper we present a constant-time k-vertex-connectivity testing algorithm
for general constant k ≥ 4. For such problems only k ≤ 3 have been solved
so far.

An n-vertex graph G is called k-vertex-connected (or simply, k-connected) if
n ≥ k + 1 and deletion of any k − 1 or fewer vertices leaves a connected graph.
The maximum number k for which G is k-connected is called vertex-connectivity
(or simply, connectivity) of G. A vertex set is called vertex cut if when removing
them the resulting graph is not connected.

Property testing [14] is a relaxation of deciding problems that distinguish
that an object (e.g. graph) has predetermined property P and that it has a
large distance to having P . The distance between an object and a property is
parametrized by a positive real number 0 < ε ≤ 1. An object is called ε-far from
property P if it differs in an ε-fraction of description from any object having the
property P . Property testing algorithms with a given constant ε accept every
object that satisfies the property P with a probability of at least 2

3 , and reject
every object that is ε-far from the property P with a probability of at least
2
3 . It is known that various properties are testable in constant running time,
i.e., the size of input objects does not matter. Excellent surveys in this area are
available [5,6].

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 539–550, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

540 Y. Yoshida and H. Ito

Table 1. Summary of testing algorithm for k-connectivity

k Connectivity of given graphs Running time Reference

1 any O
(

log2 1/(εd)
ε

)
[7]

2 any min
{

O
(

log(1/(εd))
ε2d

)
, O

(
2dlog2(1/(εd))

ε

)}
[7]

3 any min
{

O
(

log(1/(εd))
ε3d2

)
, O

(
22dlog(1/(εd))

ε2d

)}
[7]

any k − 1 O
(
d

(
c
εd

)k
log 1

εd

)
(c > 1 is a constant) This work

any any O
(
d

(
ck
εd

)k
log k

εd

)
(c > 1 is a constant) This work

So far, some models have been proposed for graphs. The adjacency matrix
model is a well-studied model for dense graphs. In this model, a graph is repre-
sented as an adjacency matrix that has n2 entries. A testing algorithm is allowed
to access any entry in constant time. A graph is called ε-far from property P if
at least εn

2

2 edge modifications (additions and deletions) are needed to make G
satisfy P . However, when it comes to k-connectivity, any graph can be modified
to a k-connected graph by adding at most nk2 edges. Thus, for any graph, ε ≤ k

n

and it follows n ≤ k
ε . Hence, n can be regarded as a constant for fixed k and

ε. Thus, it is possible to construct a testing algorithm that runs in constant
time using the usual polynomial time algorithms such as max flow. This makes
it meaningless to argue about testing k-connectivity in the adjacency matrix
model.

A suitable model for testing k-connectivity of graphs is the bounded degree
model introduced in [7]. In this model, a graph is represented by an adjacency
list and the vertex degrees are bounded by a constant d. A testing algorithm has
a constant-time access to any entry in the adjacency list by making a query to
the ith neighbor of a vertex v. A graph is called ε-far from property P , if it is
necessary to modify at least ε-fraction of the adjacency list to make G satisfy
property P . An equivalent condition is that the minimum number of edges to
be added or removed, preserving the maximum degree d, to make G having
property P is at least εdn

2 . Using this model, it is known that many properties
are testable in constant time, such as k-edge-connectivity and cycle-freeness [7].
Also, various properties are testable in sublinear time, such as bipartiteness [8]
and expansion [9,4].

Property testing on k-connectivity is considered in [7]. They developed an
algorithm for k = 1, 2, 3 that runs in constant time. In this paper, we extended
their work, and show an algorithm available for any k. Its running time is also
constant, assuming k is constant. Previous results and our results are summa-
rized in Table 1. It may seem strange that the running time decreases when
d gets bigger because it appears that a graph can be tested more quickly for
larger d. However, this is not true. Since the distance between an object and
k-connectivity is measured as a fraction of dn, fixed ε, a graph that is ε-far from
k-connectivity, is no longer ε-far for some larger d.

Property Testing on k-Vertex-Connectivity of Graphs 541

Property k-edge-connectivity is similar to k-connectivity. A graph G is called
k-edge-connected if deletion of any k−1 or fewer edges leaves a connected graph.
A testing algorithm for k-edge-connectivity is presented by Goldreich and Ron
[7]. Its running time is O

(
k3 log2(1/εd)

ε3− 2
k d2− 2

k

)
for general k ≥ 4. They introduced an

excellent idea such that if a graph G is ε-far from k-edge-connectivity, then G
has sufficiently many small deficient sets. Basically, our algorithm uses this idea.
However, the structure of k-vertex-connectivity is far more complicated than
that of k-edge-connectivity. In particular, they use the fact that vertices can be
decomposed into equivalent classes with respect to edge-connectivity, and the
structure of equivalent classes can be represented as a cactus tree. Unfortunately,
it is hard to define such equivalent classes with respect to vertex-connectivity
because vertex-connectivity between two vertices does not satisfy transitivity,
unlike edge-connectivity. Instead, we employ facts known in the area of edge
augmentation. The edge augmentation problem for k-connectivity is to find the
smallest set F of edges such that G′ = (V,E + F) is k-connected. This problem
is well studied. See [12,13,10,11].

This paper is organized as follows. In Section 2, we present definitions and
terminologies that will be used in the rest of paper. In Section 3, we present an
algorithm for testing k-connectivity given (k − 1)-connected graphs. In Section
4, we present an algorithm for testing k-connectivity given general graphs. We
give our conclusions in Section 5.

2 Preliminaries

Let G = (V,E) be a graph and n denote the number of vertices. Since we are
concerned with vertex connectivity, we deal with simple graphs only. Let deg(v)
for v ∈ V denote the degree of v. For a vertex set P ⊆ V , we use Γ (P) to denote
the neighbors of P , i.e., Γ (P) = {v ∈ V \ P |∃u ∈ P, uv ∈ E}. P is called a
fragment if P, V − P − Γ (P) = ∅.

Let mk(G) denote the minimum number of edges that must be added to G to
obtain a k-connected graph. Let Md

k (G) denote the minimum number of edges
that must be added to or removed from G to obtain a k-connected graph with
maximum degree d. When the context is clear, k and d may be omitted. Clearly,
if G is ε-far from k-connectivity, εdn2 ≤ Md

k (G) by the definition. A fragment P
is called deficient if |Γ (P)| < k.

Let G = (V,E) be a (k − 1)-connected graph. A fragment P in G is called
tight if Γ (P) = k− 1. Tight sets are deficient. The maximum number of disjoint
tight sets is denoted by t(G). If a tight set P does not contain any other tight
set, P is called a minimal tight set. In general, a minimal tight set may intersect
other minimal tight sets. However, if t(G) is large, the next proposition holds.
Proposition 1. [12] Let G = (V,E) be a (k − 1)-connected graph. If t(G) ≥ k,
then all minimal tight sets in G are pairwise disjoint. ��
We say that S ⊆ V is a tight set cover if S∩P = ∅ for every tight set P . Let τ(G)
be the size of the minimum tight set cover. For a set K ⊆ V , bK(G) denotes the
number of components in G−K. Let b(G) = max{bK(G)|K ⊆ V, |K| = k − 1}.

542 Y. Yoshida and H. Ito

Two lower bounds for m(G) are a function of t(G) and b(G). Since one edge can
connect at most two disjoint tight sets, m(G) ≥

⌈
t(G)

2

⌉
. For all K ⊆ V with size

k−1, G−K must be connected in the augmented graph. Thus m(G) ≥ b(G)−1.
It clearly follows that

m(G) ≥ max
{⌈

t(G)
2

⌉

, b(G)− 1
}

. (1)

3 Testing k-Vertex-Connectivity of
(k − 1)-Vertex-Connected Graphs

In this section, we argue about testing the k-connectivity of given (k − 1)-
connected graphs.

Our algorithm depends on the fact that a (k − 1)-connected graph that is
ε-far from k-connectivity has Ω(εdn) disjoint minimal tight sets. Thus, if a given
graph is not k-connected, one of the uniformly selected Θ(1

εd) vertices belongs
to a tight set with high probability. If we can identify the tight set from a vertex
in it, we can detect that the graph is not k-connected with high probability.

In the first half of this section, we show that there exist Ω(εdn) tight sets in a
graph that is ε-far from k-connectivity. In the last half of this section, we show
an algorithm for identifying tight sets and the entire algorithm for testing the
k-connectivity of (k − 1)-connected graphs.

3.1 The Number of Disjoint Minimal Tight Sets in Graphs That
Are ε-Far from k-Connectivity

We discuss two cases with d ≥ k + 1 and d = k separately. First, we consider
the case with d ≥ k + 1. Let G be a graph that is ε-far from k-connectivity. At
least M(G) ≥ εdn

2 edges must be modified to obtain a k-connected graph with
maximum degree d. To see the relation between ε (or, M(G)) and the number
of disjoint minimal tight sets, we use m(G), which is defined in the previous
section, as an intermediate tool. After getting the relation between M(G) and
m(G), we argue about the relation between m(G) and t(G).

Let G′ be a k-connected graph that results from adding m(G) edges to G.
G′ may have vertices with degree greater than d. By counting the number of
edges that have to be modified to make the degree of all vertices be at most k,
with preserving k-connectivity, we have a bound on M(G) in terms of m(G). To
do this, we use the splitting off method. A splitting off is removing two edges
su, sv and adding uv. An edge is called critical if removing the edge decreases
the connectivity of the graph. Next the lemma is known.

Lemma 2. [1][3] Let G = (V,E) be a k-connected graph with n ≥ 2k and let
r ∈ V be a vertex such that deg(r) ≥ k+2 and every edge incident to r is critical
with respect to k-connectivity. Then either:

Property Testing on k-Vertex-Connectivity of Graphs 543

1. there exists a pair of edges incident to r that can be split off preserving k-
connectivity, or

2. for any edge pair ru, rv, there exists another edge pair sw, sz such that split-
ting off both edge pairs preserves k-connectivity,

holds. ��

Theorem 3. Let G = (V,E) be a graph with n ≥ 2k and maximum degree
d ≥ k + 1. Then M(G) ≤ 13m(G).

Proof. Let G′ be a k-connected graph that results from adding m(G) edges to
G. We define excess of G′(with respect to degree bound d) as

∑

v∈V
max(deg(v)− d, 0).

Since adding an edge to the graph increases the degree of exactly 2 vertices
by 1, excess of G′ is at most 2m(G). We show how to decrease excess of G′

preserving k-connectivity. When the excess is 0, we have a k-connected graph
with maximum degree d.

Let v be a vertex whose degree is greater than d. If some edge incident to v is
not critical, we can remove the edge and decrease the excess by at least one. If
all edges incident to v are critical, using Lemma 2, we can decrease the degree
of v with at most two splitting off. Since one splitting off causes three edge
modifications, we can decrease the excess by at least one with at most six edge
modifications. Thus, in all cases six edge modifications are sufficient to decrease
excess by one.

Since the initial excess of G′ is at most 2m(G), 12m(G) edge modifications is
sufficient to obtain a graph with maximum degree d. Hence, M(G) ≤ m(G) +
12m(G) = 13m(G). ��

Next two lemmas connect m(G) and t(G).

Lemma 4. [13] Let G be a (k−1)-connected graph. Then m(G) ≤ τ(G)−1. ��

Lemma 5. [13] If t(G) ≤ k for a (k−1)-connected graph G, then τ(G) ≤ k. ��

Suppose t(G) ≥ k. Hence, minimal tight sets are pairwise disjoint from Propo-
sition 1. From this, we can obtain τ(G) = t(G) easily. Using this fact and the
above two lemmas, we have a lower bound on t(G) in terms of m(G) as follows.

Lemma 6. Let G be a (k − 1)-connected graph. Then m(G) < max{k, t(G)}.

Proof. By Lemma 4, m(G) ≤ τ(G) − 1. If t(G) < k, then τ(G) ≤ k by Lemma
5. Thus, m(G) < k. If t(G) ≥ k, every minimal tight sets is pairwise disjoint and
t(G) = τ(G). Hence, m(G) < t(G). ��

From Theorem 3 and Lemma 6, the next theorem is easily obtained.

Theorem 7. Let G = (V,E) be a (k − 1)-connected graph with n ≥ 2k and
maximum degree d ≥ k + 1. Then, M(G) ≤ 13 max{k, t(G)}. ��

544 Y. Yoshida and H. Ito

Next, we show that similar theorems hold when d = k. We want to know how
many edge modifications are sufficient to obtain a k-connected graph with max-
imum degree k. In this case, however, the splitting off method does not work
anymore because Lemma 2 works for vertices having degrees greater than k+1.
Thus, we must employ another method.

When m(G) is large enough, m(G) is equal to its lower bound (1) as shown
in the following lemma.

Lemma 8. [11] Let G be a (k − 1)-connected graph with n ≥ k + 1 vertices. If
m(G) ≥ 20k3 then, m(G) = max

{⌈
t(G)

2

⌉
, b(G)− 1

}
. ��

Let K be a vertex cut of G with |K| = k − 1 and CK be a set of connected
components of G −K. Since G is (k − 1)-connected, each vertex in K must be
incident to every component of CK . (Otherwise, let v be a vertex in K that is
not incident to some component of CK , then K − v separates G, contradicting
(k− 1)-connectivity of G.) Thus, b(G) ≤ k because the maximum degree of G is
k. It follows that m(G) =

⌈
t(G)

2

⌉
if m(G) ≥ 20k3.

Suppose that every minimal tight set in G is a singleton (i.e., one vertex of
degree k − 1). Added m(G) =

⌈
t(G)

2

⌉
edges form parings of singletons. Thus,

none of the vertices in the resulting graph has a degree greater than k.
When m(G) is small, we remove edges and artificially increase m(G). A graph

is called minimally k-connected if it is k-connected but if removing any of the
edges the resulting graph is no longer k-connected. The following lemma holds.

Lemma 9. [2] A minimally (k − 1)-connected graph has at least (k−2)n+2
2k−3 ver-

tices of degree k − 1. ��

A vertex of degree k − 1 is a tight set itself. Thus, by removing edges we can
increase the number of tight sets and m(G) also increases. If n is large enough,
we can remove edges until m(G) gets sufficiently large.

Now, we can prove the next theorem.

Theorem 10. Let G = (V,E) be a (k− 1)-connected graph with n ≥ 120k3 and
maximum degree k, and n or k is even1. Then M(G) ≤ max{200k3, 4t(G)}

Proof. We consider two cases in terms of m(G).

1. If m(G) ≥ 20k3: If t(G) < k, then by Lemmas 4 and 5, m(G) ≤ τ(G) − 1 ≤
k − 1. This is a contradiction. Thus t(G) ≥ k. It follows that minimal tight
sets are pairwise disjoint and no tight set intersects other minimal tight sets.
Let T be a minimal tight set that is not a singleton (i.e., |T | ≥ 2). The
subgraph induced by T is connected, and hence some edge e exists in T . Since
e does not cross the boundary of any (not only minimal) tight set, removing
e from G preserves (k−1)-connectivity. Since one edge connects at most two
disjoint tight sets, removing one edge increases the number of minimal tight
sets by at most two. These two minimal tight sets are singletons because

1 Note that there is no n-vertex k-regular graph if n and k are both odd.

Property Testing on k-Vertex-Connectivity of Graphs 545

original vertex degrees are bounded by d = k. Thus, the number of minimal
tight sets that are not singletons must decrease. By removing at most t(G)
edges, we have a graph in which all minimal tight sets are singletons.
Let G′ be the resulting graph made from G by removing an edge from each
minimal tight set that is not a singleton. Here, t(G) ≤ t(G′) ≤ t(G)+ t(G) =
2t(G). By Lemma 8 and the previous argument, m(G′) ≥

⌈
t(G′)

2

⌉
≥

⌈
t(G)

2

⌉
=

m(G) ≥ 20k3. It follows that m(G′) =
⌈
t(G′)

2

⌉
. Considering parity of degree

sum,

(k − 1)t(G′) + k(n− t(G′)) ≡ kn− t(G′) ≡ t(G′) ≡ 0 (mod 2).

We use the fact that all tight sets are singletons and kn is even. The
m(G′) = t(G′)

2 edges form pairings of singleton tight sets of G′. Hence, the re-
sulting graph is a k-connected graph with maximum degree k. The number of
modified edges in this process is at most t(G)+ t(G′)

2 ≤ t(G)+ 2t(G)
2 = 2t(G).

Thus M(G) ≤ 2t(G).
2. If m(G) < 20k3: Since n ≥ 120k3, (k−2)n+2

2k−3 ≥ 40k3 holds. Thus by Lemma
9, removing at most 20k3 edges from G, we have a (k − 1)-connected graph
G′′ having at least 40k3 vertices with degree k − 1. That is, m(G′′) ≥ 20k3

and t(G′′) ≤ t(G) + 40k3. Note that this edge removal preserves (k − 1)-
connectivity of G. Using an argument similar to the previous case, M(G) ≤
20k3 + 2t(G′′) ≤ 100k3 + 2t(G). Thus, M(G) ≤ max{200k3, 4t(G)}.

Summarizing the two cases, the theorem follows. ��

To simplify the problem, we combine Theorems 7 and 10. That a graph G is
ε-far from k-connectivity means εdn2 ≤M(G). Thus, we establish the next one.

Theorem 11. Let G be a (k − 1)-connected graph which is ε-far from k-
connectivity with n > max{120k3, 400k3

εd }. Then, εdn26 ≤ t(G). ��

From this theorem we can easily show the next corollary.

Corollary 12. Let G be a (k − 1)-connected graph that is ε-far from k-
connectivity with n > max{120k3, 400k3

εd }. Then, there exist at least εdn52 disjoint
minimal tight sets each containing at most 52

εd vertices.

Proof. Suppose that there exist less than εdn
52 disjoint minimal tight sets with

at most 52
εd vertices. Then, by Theorem 11, there exist more than εdn

52 disjoint
minimal tight sets with more than 52

εd vertices. It follows that the number of
vertices is more than n, a contradiction. ��

3.2 An Algorithm for Testing k-Vertex-Connectivity of
(k − 1)-Vertex-Connected Graphs

In this subsection, we first present an algorithm for identifying a tight set T
from a given vertex s ∈ T , and next describe the entire algorithm for testing
k-connectivity given (k − 1)-connected graphs.

546 Y. Yoshida and H. Ito

� �

Algorithm ExhaustSearch(s,k,u,G)
Input

s: starting vertex
k: the number of vertices adjacent to a tight set
u: upper bound on size of tight sets.
G: graph

Output
true: if s is contained in some tight set with a size at most u
false: otherwise

begin
Perform BFS from s until (u + 1) vertices have been reached,
and Let X be the set of reached vertices.
if |X| < u + 1

return true
else if k = 0

return false
else

for each v ∈ X
if ExhaustSearch(s, k − 1, u, G − v)

return true
end if

end for
return false

end if
end

� �

Fig. 1. Tight Set Identification Algorithm

Suppose that a vertex s ∈ T and the upper bound u of the size of T is given.
We want to identify T and Γ (T). Since |T | ≤ u, BFS from s until u + 1 vertices
have been reached out of |T |. Let X be the vertices found in this BFS. Then,
X must have at least one vertex in Γ (T). We certainly don’t know which vertex
is in Γ (T). But considering u is a fixed number, we can adopt an exhaustive
search as follows. We remove one vertex from X . If it is in Γ (T) luckily, |Γ (T)|
decreases by one. To find another vertex of the rest of Γ (T), we start a BFS
again from s until u + 1 vertices have been reached. This process is repeated
k− 1 times. If all removed k− 1 vertices are luckily in Γ (T), BFS from s cannot
reach u + 1 vertices because T is completely separated from V − T . Otherwise,
BFS from s can still reach u+ 1 vertices. In this case, we change the candidates
of Γ (T) and repeat the above process for all possible combinations. Figure 1
describes this algorithm.

Clearly, the complexity of this algorithm is O(duk). Note that this algorithm
always outputs false if the graph is k-connected.

Lemma 13. Let G be a (k − 1)-connected graph with more than u vertices.
If G is k-connected, algorithm ExhaustSearch always outputs false. If G is not

Property Testing on k-Vertex-Connectivity of Graphs 547

� �

Algorithm ConnectivityTest
Output

accept: if G is k-connected
reject: otherwise

begin
if n ≤ max{120k3, 400k3

εd
}

check connectivity of G using usual polynomial time algorithms.
else

l = �log2
52
εd

for i = 1 to l

let X be a set of uniformly chosen νi = 208l
2iεd

vertices.
for each v ∈ X

if ExhaustSearch(v, k − 1, 2i, G)
return reject

end if
end for

end for
return accept

end if
end

� �

Fig. 2. Testing k-Connectivity Algorithm

k-connected and s is a vertex in a tight set T , then ExhaustSearch always outputs
true if |T | ≤ u and outputs false if |T | > u. ��

We can construct a testing algorithm by using the above algorithm as follows.
First, we randomly select Θ(1

εd) vertices. If the graph is ε-far from k-connectivity,
by Corollary 12, with high probability one of these vertices is contained in a tight
set of a size at most 52

εd . Hence, we can reject the graph using ExhaustSearch.
If the graph is k-connected, we accept it with probability one because the tight
set identification algorithm never outputs true in this case.

To make the algorithm run faster, we treat tight sets separately by their
size. Since there are more than 52

εd tight sets with a size at most 52
εd , there exists

i ≤ l = "log2
52
εd # such that G has at least 52

εdl tight sets with size ranging between
2i−1 and 2i − 1.

The details are described in Fig. 2.

Theorem 14. Let G be a (k − 1)-connected graph. Algorithm ConnectivityTest
always accepts if G is k-connected, and rejects with a probability of at least 2

3

if G is ε-far from k-connectivity. The running time is O
(
d

(
c
εd

)k log 1
εd

)
(c >

1 is a constant).

Proof. If n ≤ max{120k3, 400k3

εd }, n can be treated as a constant, and we are
done.

548 Y. Yoshida and H. Ito

If G is k-connected, algorithm ExhaustSearch always return false. Thus, the
algorithm always outputs accept.

Suppose n > max{120k3, 400k3

εd } and G is ε-far from k-connectivity. Let Ti be
a set of disjoint minimal tight sets of a size ranging between 2i−1 and 2i−1. Let
l = "log2

52
εd #. By Corollary 12,

∑l
i=1 |Ti| ≥ εdn

52 . Hence, there exists an i ≤ l so
that |Ti| ≥ εdn

52l . Since the number of vertices residing in tight sets belonging to
Ti is at least 2i−1|Ti|, the probability that a uniformly chosen vertex belongs to
Ti is at least

2i−1|Ti|
n

≥ 2iεd
104l

.

Thus, one of the uniformly chosen νi = 104l
2i−1εd vertices belongs to Ti with a

probability of at least 1 −
(
1− 2

νi

)νi

> 1 − e−2 > 2
3 . If s is such a vertex,

ExhaustSearch always returns true, and the graph will be rejected.
Overall running time is

l∑

i=1

νid(2i)k =
l∑

i=1

208l
2iεd

d2ik =
208l
ε

l∑

i=1

(2k−1)i

= O

(

d

(
52
εd

)k
log

1
εd

)

. ��

4 Testing k-Vertex-Connectivity of General Graphs

We can construct an algorithm for general graphs by using ConnectivityTest
shown in the previous section.

Algorithm ConnectivityTest depends only on the number of disjoint deficient
sets in graphs ε-far from k-connectivity. Thus, if enough deficient sets exist in a
general graph that is ε-far from k-connectivity, a similar algorithm works.

First, we show that a property similar to Theorem 3 holds even if the maxi-
mum degree of graphs is k (i.e., d = k).

Theorem 15. Let G be a graph with n ≥ 120k3 and maximum degree k. Then
M(G) ≤ max{200k3, 77m(G)}.

Proof. Suppose that M(G) > 200k3. We have a (k − 1)-connected graph with
maximum degree k by adding Mk

k−1(G) edges to G. Note that Mk
k−1(G) ≤

13mk−1(G) ≤ 13mk(G) by Theorem 3. Let G′ be the resulting graph. In this
process, at most 8mk(G) edges have been removed from the k-connected graph.
Hence G′ has at most 16mk(G) disjoint minimal tight sets. By Theorem 10,
Mk
k (G′) ≤ 4t(G′) ≤ 64mk(G). We have a k-connected graph with maximum

degree k modifying at most 13m(G)+64m(G) = 77m(G) edges, and the theorem
follows. ��

Combining Theorems 3 and 15, we have the next corollary easily.

Property Testing on k-Vertex-Connectivity of Graphs 549

Corollary 16. Let G be a graph with n ≥ 120k3. Then M(G) ≤ max{200k3,
77m(G)}. ��

Let G be a graph that is ε-far from k-connectivity with n > max{120k3, 400k3

εd }.
Since εdn2 ≤M(G), by the above corollary, εdn154 ≤ m(G). Let mi be the minimum
number of edges to be added for making G i-connected, and let Gi be the i-
connected graph that results from adding such mi edges to G. We define m0 = 0
and G0 = G. Since mk ≥ εdn

154 , some i exists so that mi −mi−1 ≥ εdn
154k . In order

to transform Gi−1 to be i-connected, we must add at least εdn
154k edges. Thus,

by Lemma 6, εdn
154k < k or t(Gi−1) > εdn

154k . In the former case, n < 154k2

εd and
it contradicts the assumption. Hence, t(Gi−1) > εdn

154k . Let ε′ = 13ε
77k , and apply

ConnectivityTest on the Gi−1 with parameter ε′ replacing ε, then it would detect
that Gi−1 is not k(> i) connected with a probability of at least 2

3 .
We next show that the detection probability of the testing algorithm directly

applied on G is high. Note that ConnectivityTest only depends on the num-
ber of deficient fragments in a given graph that is ε-far from k-connectivity. In
particular, the higher the number of deficient sets in the graph, the higher the
probability that the algorithm decides the graph is not k-connected. Since G is
a subgraph of Gi−1, the number of deficient sets in G is greater than or equal
to those in Gi−1. Thus, just applying ConnectivityTest on G with parameter
ε′ decides that G is k-connected or not with a probability of at least 2

3 . By
summarizing the above discussions, we establish the next theorem.

Theorem 17. Let ε′ = 13ε
77k and G be a graph. If G is k-connected, Connec-

tivityTest with parameter ε′ replacing ε always accepts. If G is ε-far from k-
connectivity, the algorithm rejects with a probability of at least 2

3 . The running

time of the algorithm is O
(
d

(
ck
εd

)k
log k

εd

)
(c > 1 is a constant). ��

5 Conclusions

We presented an algorithm for testing the k-connectivity of graphs with running
time O

(
d

(
c
εd

)k log 1
εd

)
for (k − 1)-connected graphs and O

(
d

(
ck
εd

)k
log k

εd

)
for

general graphs. This is the first constant-time k-connectivity testing algorithm
for general k ≥ 4.

By employing a similar method, we have developed an algorithm for test-
ing the k-edge-connectivity of digraphs. Note that only undirected graphs have
been solved even for edge-connectivity. The running time is the same as the k-
connectivity testing algorithm. The details will be reported in another article.
So, the remaining problem is testing the k-vertex-connectivity of digraphs.

References

1. Bienstock, D., Brickell, E.F., Monma, C.L.: On the structure of minimum-weight
k-connected spanning networks. SIAM J. Discret. Math. 3(3), 320–329 (1990)

2. Bollobas, B.: Extremal Graph Theory. Dover Publications (2004) (incorporated)

550 Y. Yoshida and H. Ito

3. Cheriyan, J., Jordán, T., Nutov, Z.: On rooted node-connectivity problems. Algo-
rithmica 30(3), 353–375 (2001)

4. Czumaj, A., Sohler, C.: Testing expansion in bounded-degree graphs. In: FOCS
2007: Proceedings of the 48th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 570–578 (2007)

5. Fischer, E.: The art of uninformed decisions: A primer to property testing.
BEATCS: Bulletin of the European Association for Theoretical Computer Sci-
ence 75 (2001)

6. Goldreich, O.: Combinatorial property testing (a survey) (1998)
7. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: STOC 1997:

Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pp.
406–415. ACM, New York (1997)

8. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs.
In: STOC 1998: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 289–298. ACM, New York (1998)

9. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Electronic
Colloquium on Computational Complexity (ECCC) (020) (2000)

10. Jackson, B., Jordán, T.: A near optimal algorithm for vertex connectivity aug-
mentation. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp.
312–325. Springer, Heidelberg (2000)

11. Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity aug-
mentation. J. Comb. Theory Ser. B 94(1), 31–77 (2005)

12. Jordán, T.: On the optimal vertex-connectivity augmentation. J. Comb. Theory
Ser. B 63(1), 8–20 (1995)

13. Jordán, T.: A note on the vertex-connectivity augmentation problem. J. Comb.
Theory Ser. B 71(2), 294–301 (1997)

14. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

Almost 2-SAT Is Fixed-Parameter Tractable

(Extended Abstract)

Igor Razgon and Barry O’Sullivan

Cork Constraint Computation Centre
Computer Science Department, University College Cork, Ireland

{i.razgon,b.osullivan}@cs.ucc.ie

Abstract. We consider the following problem. Given a 2-cnf formula,
is it possible to remove at most k clauses so that the resulting 2-cnf

formula is satisfiable? This problem is known to different research com-
munities in theoretical computer science under the names Almost 2-SAT,
All-but-k 2-SAT, 2-cnf deletion, and 2-SAT deletion. The status of the
fixed-parameter tractability of this problem is a long-standing open ques-
tion in the area of parameterized complexity. We resolve this open ques-
tion by proposing an algorithm that solves this problem in O(15k ∗k∗m3)
time showing that this problem is fixed-parameter tractable.

1 Introduction

We consider the following problem. Given a 2-cnf formula, is it possible to re-
move at most k clauses so that the resulting 2-cnf formula is satisfiable? This
problem is known to different research communities in theoretical computer sci-
ence under the names Almost 2-SAT, All-but-k 2-SAT, 2-cnf deletion, and 2-
SAT deletion. The status of the fixed-parameter tractability of this problem is a
long-standing open question in the area of parameterized complexity. The ques-
tion regarding the fixed-parameter tractability of this problem was first raised in
1997 by Mahajan and Raman [11,12]. This question has been posed in the book
of Niedermeier [15], being referred as one of central challenges for parameterized
algorithms design. Finally, in July 2007, this question was included by Fellows in
the list of open problems of the Dagstuhl seminar on Parameterized Complexity
[5]. In this paper we resolve this open question by proposing an algorithm that
solves this problem in O(15k ∗ k ∗m3) time. Thus we show that this problem is
fixed-parameter tractable (fpt).

Regarding the name of this problem, we call Almost 2-SAT (2-asat) the op-
timization problem whose output is the smallest subset of clauses that have to
be removed from the given 2-cnf formula so that the resulting formula is satis-
fiable. The parameterized 2-asat problem gets as additional input a parameter
k, and the corresponding decision problem is to determine whether at most k
clauses can be removed so that the resulting formula becomes satisfiable. The
algorithm proposed in this paper solves the parameterized 2-asat problem.

Overview of the Algorithm. We define a variation of the 2-asat problem
called the Annotated 2-asat problem with a single literal (2-aslasat). The

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 551–562, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

552 I. Razgon and B. O’Sullivan

input of this problem is a triple (F,L, l), where F is a 2-cnf formula, L is a
set of literals such that F is satisfiable with respect to L (i.e. F ∧

∧
l′∈L l′ is

satisfiable), l is a single literal. The task is to find a smallest subset of clauses of
F such that after their removal the resulting formula is satisfiable with respect to
(L∪{l}). The description of the algorithm for the parameterized 2-asat problem
is divided into two parts. In the first, and most important part we provide an
O(5k ∗k∗m2) time algorithm that solves the parameterized 2-aslasat problem,
where the parameter k is the maximum number of clauses to be removed and m
is the number of clauses of F . In the second part we show that the parameterized
2-asat problem can be solved by O(3k ∗m) applications of the algorithm solving
the parameterized 2-aslasat problem. The resulting runtime follows from the
product of the last two complexity expressions. The transformation of the 2-

asat problem into the 2-aslasat problem is based on iterative compression
and can be seen as an adaptation of the method employed in [8] in order to solve
the graph bipartization problem. In the following we overview the first part.

We introduce a polynomially computable lower bound on the solution size of
the 2-aslasat problem for input (F,L, l). Then we prove that if a literal l∗ is
neutral, i.e. the lower bound on the solution size for (F,L ∪ {l∗}, l) is the same
as for (F,L, l), then the solution size for (F,L∪{l∗}, l) and (F,L, l) is the same.
This theorem allows us to introduce an algorithm that selects a clause C of F
and applies the following branching rule. If C includes a neutral literal l∗ then
the algorithm applies itself recursively to (F,L∪{l∗}, l) without any branching. If
not, the algorithm produces at most three branches. On one of them it removes
C from F and decreases the parameter. On each of the other branches the
algorithm adds one of the literals of C to L and applies itself recursively without
changing the size of the parameter. The search tree produced by the algorithm is
bounded because on each branch either the parameter is decreased or the lower
bound on the solution size is increased (because the literals of the selected clause
are not neutral). Thus on each branch the gap between the parameter and the
lower bound of the solution size is decreased which ensures that the size of the
search tree exponentially depends only on k and not on the size of F .

The lower bound mentioned in the previous paragraph is obtained by rep-
resenting the 2-aslasat as a separation problem. In particular, we define the
notion of a walk of a 2-cnf formula and show that, given an instance (F,L, l) of
the 2-aslasat problem, F is insatisfiable with respect to L ∪ {l} if and only if
there is a walk from ¬L (i.e. from the set of negations of the literals of L) to ¬l or
a walk from ¬l to ¬l. Thus the 2-aslasat problem can be viewed as a problem
of finding the smallest set of clauses whose removal breaks all these walks. The
considered lower bound on the solution size is the smallest number of clauses
separating ¬L from ¬l. We show that the size of this separator equals the largest
number of clause-disjoint paths (i.e. walks without repeated clauses) from ¬L to
¬l and that it can be computed in a polynomial time by a Ford-Fulkerson-like
procedure. For this proof it is essential that F is satisfiable with respect to L.

Related Work. As said above, the parameterized 2-asat problem has been
introduced in [11]. In [10], this problem was shown to be a generalization of the

Almost 2-SAT Is Fixed-Parameter Tractable 553

parameterized graph bipartization problem, which was also an open problem at
that time. The latter problem was resolved in [16]. The additional contribution
of [16] was introducing a method of iterative compression that has had a con-
siderable impact on the design of parameterized algorithms. The most recent
algorithms based on this method are currently the best one for the undirected
Feedback Vertex Set [1] and the first parameterized algorithm for the famous
Directed Feedback Vertex Set problem [3]. For earlier results based on iterative
compression, we refer the reader to a survey article [9].

The study of parameterized graph separation problems was initiated in [13].
The technique introduced by the author allowed him to design fixed-parameter
algorithms for the multiterminal cut problem and for a more general multi-
cut problem. The latter assumed that the number of pairs of terminals to be
separated was also a parameter. The latter result was extended in [7] where
fixed-parameter algorithms for multicut problems on several classes of graphs
were proposed. The first O(ck ∗ poly(n)) algorithm for the multiterminal cut
problem was proposed in [2]. A reformulation of the main theorem of [2] is an
essential part of the parameterized algorithm for the Directed FVS problem [3]
mentioned in the previous paragraph. In the present paper, we applied the strat-
egy of proof of this theorem in order to show that adding a neutral literal to
the set of literals of the input does not increase the solution size. Along with
computing the separators, the methods of computing disjoint paths have been
investigated. The research led to intractability results [17] and parameterized
approximability results [6].

The parameterized MAX-SAT problem (a complementary problem to the one
considered in the present paper) where the goal is to satisfy at least k clauses of
arbitrary sizes also received a considerable attention from the researchers. The
best currently known algorithm for this problem runs in O(1.37k + |F |), where
|F | is the size of the given formula [4].

Structure of the Paper. In Section 2 we introduce the terminology which we
use in the rest of the paper. In Section 3 we prove that the 2-aslasat problem is
fixed-parameter tractable. In Section 4 we show that the 2-asat problem is fixed-
parameter tractable. We conclude by mentioning a number of problems known to
be fpt-equivalent to parameterized 2-asat and notice that the fixed-parameter
tractability of these problems follows as a by-product of our main result. Due to
space constraints, proofs are either omitted or replaced by sketches.1

2 Terminology

A CNF formula F is called a 2-cnf formula if each clause of F is of size at
most 2. Throughout the paper we make two assumptions regarding the 2-cnf

formulas we consider. Firstly, we assume that all the clauses are of size 2. If a
formula has a clause (l) of size 1 then this clause is represented as (l∨l). Secondly,

1 A manuscript available at http://arxiv.org/abs/0801.1300 contains a complete
description of the result of the present paper with all the proofs and technical details.

http://arxiv.org/abs/0801.1300

554 I. Razgon and B. O’Sullivan

everywhere except the very last theorem, we assume that all the clauses of any
formula are pairwise distinct, i.e. no two clauses have the same set of literals.
This assumption allows us to represent the operation of removing clauses from
a formula in a set-theoretical manner. In particular, let S be a set of clauses.
Then F \ S is a 2-cnf formula that is the conjunction of clauses of F that are
not contained in S. The result of removing a single clause C is denoted by F \C
rather than F \ {C}.

Let F , S, C, L be a 2-cnf formula, a set of clauses, a single clause, and a set
of literals, respectively. Then V ar(F), V ar(S), V ar(C), V ar(L) denote the set
of variables whose literals appear in F , S, C, and L, respectively. For a single
literal l, we denote by V ar(l) the variable of l. Also we denote by Clauses(F)
the set of clauses of F .

A set of literals L is called non-contradictory if it does not contain a literal and
its negation. A literal l satisfies a clause (l1∨ l2) if l = l1 or l = l2. Given a 2-cnf

formula F , a non-contradictory set of literals L such that V ar(F) = V ar(L) and
each clause of F is satisfied by at least one literal of L, we call L a satisfying
assignment of F . F is satisfiable if it has at least one satisfying assignment.
Given a set of literals L, we denote by ¬L the set consisting of negations of all
the literals of L. For example, if L = {l1, l2,¬l3} then ¬L = {¬l1,¬l2, l3}.

Let F be a 2-cnf formula and L be a set of literals. F is satisfiable with
respect to L if F ∧

∧
l′∈L l′ is satisfiable. The notion of satisfiability of a 2-cnf

formula with respect to the given set of literals will be very frequently used in the
paper, hence, in order to save the space, we introduce a special notation for this
notion. In particular, we say that swrt(F,L) is true (false) if F is, respectively,
satisfiable (not satisfiable) with respect to L. If L consists of a single literal l
then we write swrt(F, l) rather than swrt(F, {l}).
Definition 1 (Walk of a 2-CNF). A walk of the given 2-cnf formula F is
a non-empty sequence w = (C1, . . . , Cq) of (not necessarily distinct) clauses of
F having the following property. For each Ci one of its literals is specified as
the first literal of Ci, the other literal is the second literal, and for any two
consecutive clauses Ci and Ci+1 the second literal of Ci is the negation of the
first literal of Ci+1. The walk w is a path if all its clauses are pairwise distinct.

Let w = (C1, . . . , Cq) be a walk and let l′ and l′′ be the first literal of C1 and
the second literal of Cq, respectively. Then we say that l′ is the first literal of w,
that l′′ is the last literal of w, and that w is a walk from l′ to l′′. Let L be a set of
literals such that l′ ∈ L. Then we say that w is a walk from L. Let C = (l1 ∨ l2)
be a clause of w. Then l1 is a first literal of C with respect to w if l1 is the first
literal of some Ci such that C = Ci. A second literal of a clause with respect to
a walk is defined accordingly. In general a literal of a clause may be both a first
and a second with respect to the given walk.

Definition 2 (Culprit Sets, 2-ASAT and 2-ASLASAT Problems)

– A Culprit Set (CS) of a 2-cnf formula F is a subset S of Clauses(F) such
that F \S is satisfiable. We call the problem of finding a Smallest CS (SCS)
of F the Almost 2-SAT Problem (2-asat problem).

Almost 2-SAT Is Fixed-Parameter Tractable 555

– Let (F,L, l) be a triple where F is a 2-cnf formula, L is a non-contradictory
set of literals such that swrt(F,L) is true and l is a literal such that V ar(l) /∈
V ar(L). A CS of (F,L, l) is a subset S of Clauses(F) such that swrt(F \
S,L ∪ {l}) is true. We call the problem of finding a SCS of (F,L, l) the
Annotated Almost 2-SAT problem with single literal (2-aslasat problem).

In this paper we consider the parameterized versions of the 2-asat and 2-

aslasat problems. In particular, the input of the parameterized 2-asat problem
is (F, k), where F is a 2-cnf formula and k is a non-negative integer. The output
is a CS of F of size at most k, if one exists. Otherwise, the output is ‘NO’. The
input of the parameterized 2-aslasat problem is (F,L, l, k) where (F,L, l) is as
specified in Definition 3. The output is a CS of (F,L, l) of size at most k, if one
exists. Otherwise, the output is ‘NO’.

3 Parameterized Algorithm for the 2-ASLASAT Problem

We begin our analysis from the following Theorem.

Theorem 1. Given a 2-aslasat problem instance (F,L, l), then swrt(F,L ∪
{l}) is false if and only if F has a walk from ¬l to ¬l or a walk from ¬L to ¬l.

Theorem 1 allows us to view the 2-aslasat problem as a separation problem.
In particular, a SCS of (F,L, l) can be viewed as the smallest number of clauses
whose removal separates all walks from ¬L to ¬l and from ¬l to ¬l. Our next
step is to introduce a polynomially computable lower bound for the size of a
SCS of (F,L, l).

Consider a smallest subset S of clauses such that F \S has no path from ¬L to
¬l. We denote |S| by SepSize(F,¬L,¬l). From Theorem 1, SepSize(F,¬L,¬l)
is a lower bound on the size of an SCS of (F,L, l). In order to prove polynomial
computability of SepSize(F,¬L,¬l), we recall a well known notion of the impli-
cation graph of F . This is a digraph D whose set V (D) of vertices corresponds
to the set of literals of the variables of F and (l1, l2) is an arc in its set A(D) of
arcs if and only if (¬l1 ∨ l2) ∈ Clauses(F). It is easy to establish a one-to-one
correspondence between the walks of F and the walks of D. In particular, a
walk w = (l1 ∨ ¬l2), (l2 ∨ ¬l3), . . . , (lt−1 ∨ ¬lt) of F from l1 to ¬lt corresponds
to the walk w(D) = (¬l1,¬l2), (¬l2,¬l3), . . . , (¬lt−1,¬lt) in D from ¬l1 to ¬lt.
The opposite correspondence holds as well. Observe that in the above walk each
clause Ci = (li ∨ ¬li+1) is represented by arc ei = (¬li,¬li+1) and the first and
the second literals of Ci with respect to w correspond to the tail and the head
of ei, respectively.

This correspondence suggests that a Menger-like dependence in F might hold,
i.e. the number of clause-disjoint paths from ¬L to ¬l equals SepSize(F,¬L,¬l),
and that SepSize(F,¬L,¬l) might be computed by a Ford-Fulkerson-like pro-
cedure. This statement would immediately follow if one established a one-to-one
correspondence between the sets of clause-disjoint paths of F and the sets of
clause-disjoint paths of D. The subtle point is that this correspondence does not

556 I. Razgon and B. O’Sullivan

hold in general. The reason is that a clause (l1 ∨ l2) where l1 and l2 are distinct
is represented by two arcs of D: (¬l1, l2) and (¬l2, l1). It follows that a path of
D may correspond to a walk of F which is not a path (i.e. has repeated clauses).
Moreover, a set of arc-disjoint paths of D may correspond to a set of walks of F
which are not clause-disjoint.

Fortunately, it is sufficient for us to establish the correspondence only between
the paths from ¬L in F and the paths from L in D. Taking into account that
swrt(F,L) is true, by definition of the 2-aslasat problem, this correspondence
can be shown based on the following lemma.

Lemma 1. Let F be a 2-cnf formula and let L be a set of literals such that
swrt(F,L) is true. Let C = (l1 ∨ l2) be a clause of F and let w be a walk of F
from ¬L containing C and assume that l1 is a first literal of C with respect to
w. Then l1 is not a second literal of C with respect to any walk from ¬L.

It immediately follows from this lemma that there are no two paths p1 and p2 of
D starting at L such that (¬l1, l2) participates in p1, while (¬l2, l1) participates
in p2 because it would mean that in the corresponding walks in F , l1 is the first
literal of C with respect to one of them and the second literal with respect to
the other. Thus Lemma 1 eliminates the above obstacle to establishing the de-
sired correspondence. Formalizing this argument allows us to prove the following
theorem.

Theorem 2. Given a 2-aslasat problem instance (F,L, l), SepSize(F,¬L,¬l)
equals the largest number of clause-disjoint paths from ¬L to ¬l in F as well as
the largest number of arc-disjoint paths from L to ¬l in D.

Based on Theorems 1 and 2, we can give an informal outline of a parameterized
algorithm for the 2-aslasat problem. For the main case of this algorithm we
have an instance (F,L, l) of the problem where L is non-empty and select a
clause C = (l1 ∨ l2) such that l1 ∈ ¬L. We branch on the removal/non-removal
of this clause. If this clause is not removed then any satisfying assignment with
respect to L must contain ¬l1 and, hence, also must contain l2 in order to satisfy
C. Therefore, we can say that we branch on the removal of this clause, or the ad-
dition of l2 to L. The first branch decreases the parameter but the second branch
does not. Hence the second branch is problematic for the design of the param-
eterized algorithm. One fortuitous case occurs if SepSize(F,¬(L ∪ {l2}),¬l) >
SepSize(F,¬L,¬l). According to the combination of Theorem 1 and Theorem
2, this condition means that adding l2 to L increases a polynomially computable
lower bound on the size of a SCS of (F,L, l). Therefore if C satisfies this for-
tuitious case then both branches decrease the gap between parameter and the
lower bound: one by decreasing the parameter, the other by increasing the lower
bound. It can be shown that if only such fortuitious clauses are selected then
the algorithm terminates in O∗(ck). However what about the case where adding
l2 to L does not increase the lower bound? The following Theorem proves that
in this case the size of a SCS of (F,L, l) is not increased as well and, hence,

Almost 2-SAT Is Fixed-Parameter Tractable 557

the non-removal decision can be safely made regarding C. That is, the branching
is applied only for the fortuitious case, which leads to a parameterized algorithm.

Definition 3 (Neutral Literal). Let (F,L, l) be an instance of the 2-aslasat

problem. A literal l∗ is a neutral literal of (F,L, l) if (F,L∪{l∗}, l) is an instance
of the 2-aslasat problem and SepSize(F,¬L,¬l) = SepSize(F,¬(L∪{l∗}),¬l).

Theorem 3. Let (F,L, l) be an instance of the 2-ASALSAT problem and let
l∗ be a neutral literal of (F,L, l). Then there is a CS of (F,L ∪ {l∗}, l) of size
smaller than or equal to the size of an SCS of (F,L, l).

Proof. (Sketch) We begin by introducing a number of sets. Let X be a SCS
of (F,L, l), SP be a set of clauses of F such that F \ SP has no path from
¬(L ∪ {l∗}) to ¬l and |SP | = SepSize(F¬(L ∪ {l∗}),¬l) (due to the neutrality
of l∗, |SP | = SepSize(F,¬L,¬l)). Let R be the subset of all clauses C of F \SP
such that F \ SP has a walk wR(C) from ¬L ending by C. We denote the
rest of the clauses of F \ SP by NR. We denote X ∩ R by XR. Finally, we
denote by Y the set of all clauses C of SP \X such that there is a walk w(C)
having the following properties. The first clause of w(C) is C, the last literal
of w(C) is ¬l, all the literals of w(C) except C belong to NR \ X , and there
is a walk from ¬(L ∪ {l∗}) to ¬l having w(C) as a suffix. We are going to
prove that X∗ = (X \ XR) ∪ Y is a CS of (F,L ∪ {l∗}, l) and that |Y | ≤
|XR|. The present theorem immediately follows from the combination of these
two facts.

By Theorem 1, to prove that X∗ is a CS of (F,L∪{l∗}, l) all we need to show
is that F \X∗ has no walk from ¬(L ∪ {l∗}) to ¬l and from ¬l to ¬l. We show
here only the former. Assume that F \X∗ has a walk w∗ from ¬(L ∪ {l∗}) to
¬l in contradiction with the considered statement. Then w∗ intersects with SP
by definition. Fix the last clause C of w∗ such that C ∈ SP . We claim that
C ∈ Y , which leads to a contradiction with Y ⊆ X∗ confirming the statement.
To show this we assume the opposite and fix an entry C′ ∈ R of w∗ following C.
According to Lemma 1, C′ has the same ‘orientation’ in both w∗ and wR(C′),
hence we may replace the prefix of w∗ ending with C′ by wR(C′). As a result
we get a new walk w′′ from ¬L to ¬l in F \X∗ which meets SP after C′. That
is, w∗ meets SP after C′ and hence after C in contradiction to the definition of
C. This shows that C ∈ Y .

To show that |Y | ≤ |XR|, we take a set P of |SP | clause-disjoint paths of
F from ¬L to ¬l guaranteed to exist according to Theorem 2. We observe that
every path of P contains exactly one clause of SP and every clause of SP is
contained in exactly one path of P. Let p ∈ P be the path containing a clause
C ∈ Y . We claim that C is preceded in C by a clause of XR. Otherwise, applying
Lemma 1, we can replace the suffix of p starting from C by w(C). As a result
we get a walk from ¬L to ¬l that does not intersect with X , i.e. a walk from
¬L to ¬l in F \X which is impossible according to Theorem 1. Since P has |Y |
clause-disjoint paths containing the clauses of Y , |XR| ≥ |Y | as required. ��

We provide the formal description of the algorithm below.

558 I. Razgon and B. O’Sullivan

FindCS(F, L, l, k)
Input: An instance (F, L, l, k) of the parameterized 2-aslasat problem.
Output: A CS of (F, L, l) of size at most k if one exists. Otherwise ‘NO’ is returned.

1. if swrt(F, L ∪ {l}) is true then return ∅
2. if k = 0 then Return ‘NO’
3. if k ≥ |Clauses(F)| then return Clauses(F)
4. if SepSize(F, ¬L, ¬l) > k then return ‘NO’
5. if F has a walk from ¬L to ¬l then

Let C = (l1 ∨ l2) be a clause such that l1 ∈ ¬L and V ar(l2) /∈ V ar(L)
6. else Let C = (l1 ∨ l2) be a clause which belongs to a walk of F from ¬l to ¬l and

swrt(F, {l1, l2}) is true 2

7. if Both l1 and l2 belong to ¬(L ∪ {l}) then
7.1 S ← FindCS(F \ C, L, l, k − 1)
7.2 if S is not ‘NO’ then Return S ∪ {C}
7.3 Return ‘NO’

8. if Both l1 and l2 do not belong to ¬(L ∪ {l}) then
8.1 S1 ← FindCS(F, L ∪ {l1}, l, k)
8.2 if S1 is not ‘NO’ then Return S1

8.3 S2 ← FindCS(F, L ∪ {l2}, l, k)
8.4 if S2 is not ‘NO’ then Return S2

8.5 S3 ← FindCS(F \ C, L, l, k − 1)
8.6 if S3 is not ‘NO’ then Return S3 ∪ {C}
8.7 Return ‘NO’
(In the rest of the algorithm we consider the cases where exactly one literal of C
belongs to ¬(L ∪ {l}). W.l.o.g. we assume that this literal is l1)

9. if l2 is not neutral in (F, L, l) then
9.1 S2 ← FindCS(F, L ∪ {l2}, l, k)
9.2 if S2 is not ‘NO’ then Return S2

9.3 S3 ← FindCS(F \ C, L, l, k − 1)
9.4 if S3 is not ‘NO’ then Return S3 ∪ {C}
9.5 Return ‘NO’

10. Return FindCS(F, L ∪ {l2}, l, k)

The algorithm is presented as a function FindCS(F,L, l, k). The first part of
the algorithm (lines 1-4) is processing the stopping conditions. Lines 1-3 are
trivial. Line 4 is correct because SepSize(F¬L,¬l) is a lower bound on the size
of a SCS of (F,L, l) according to Theorem 1. The second part of the algorithm
is selecting the clause C to be considered during the branching process. The
selection procedure is designed so that it guarantees that if a literal l′ is added
to the set L then V ar(l′) /∈ V ar(L). This ensures that on any path from the root
of the search tree to the leaves there may be at most n nodes that add literals
to L, where n = |V ars(F)|. Taking into account that along a path in a search
tree at most k nodes that remove clauses can occur, we derive that the height
of the search tree is at most n + k.

The remaining part of the algorithm describes the process of applying an
appropriate branching rule depending on the literals of clause C. The correctness
2 Doing the analysis, we will prove that on Steps 5 and 6 F has at least one clause

with the required property.

Almost 2-SAT Is Fixed-Parameter Tractable 559

of the branching rules is based on the observation that if C does not belong to
the CS S of (F,L, l) being constructed, then any satisfying assignment of F \S,
including the one that does not intersects with ¬(L ∪ {l}), has to satisfy C.
It follows that on the branches where C is not removed, at least one literal of
C is added to L. There are two cases where branching is not performed at all.
The first case occurs if the condition of line 7 is satisfied: in this case C itself
is not satisfiable with respect to L ∪ {l}. Consequently, C belongs to any CS of
(F,L, l). The second case occurs in line 10. The correctness of this step follows
from Theorem 3 by taking into account that l2 is a neutral literal with respect
to (F,L, l).

The key part of the runtime analysis is to prove that as a result of adding a
literal l′ of clause C to L on lines 8.1, 8.3, and 9.1, SepSize(F,¬(L∪{l′}),¬l) >
SepSize(F,¬L,¬l). Regarding line 9.1, the algorithm explicitly states that l′ =
l2 is not neutral and hence the required property follows from Definition 3.
Regarding lines 8.1 and 8.3 our proof uses the following intuitive argument. A
clause with both literals outside ¬(L ∪ {l}) can be selected only on line 6 i.e
in the case where SepSize(F,¬L,¬l) = 0. The selected clause (l1 ∨ l2) belongs
to a walk w from ¬l to ¬l in F . We also show that V ar(l1) = V ar(l) and
that V ar(l2) = V ar(l). Then we derive from the combination of these facts
that there are subwalks of w that are walks from ¬l1 to ¬l and from ¬l2 to ¬l.
Consequently, F has a walk from ¬(L ∪ {li}) to ¬l for i = 1, 2. It can be shown
that in this case, the respective paths also exist which implies by Theorem 2
that SepSize(F¬(L∪ {li}),¬l) > 0 = SepSize(F,¬L,¬l).

To prove that the exponential part of the runtime of FindCS depends only
on k we show that the number of leaves of the search tree depends only on k.
In order to do this we introduce a measure on (F,L, l, k) which is bounded from
above by a function of k and which is decreased by each branch whenever a
branching rule with 2 or 3 branches is applied. A measure β = β(F,L, l, k) =
2k − SepSize(F,¬L,¬l) satisfies these requirements.3 Indeed, if we add a non-
neutral literal to L then the second item increases and hence the whole measure
decreases. If we remove a clause from F (thus decreasing k) then the first item
decreases by 2 while the second item decreases by at most 1, thus the whole
measure decreases again. Taking into account that β ≤ 2k, we obtain that on
each path from the root of the search tree to a leaf at most 2k nodes with 2 or
3 outgoing branches. Since each node of the search node has at most 3 outgoing
branches, the number of leaves of the search tree is at most 32k = 9k. This already
implies the fixed-parameter tractability of the 2-aslasat problem. Using a more
careful assessment we reduce the upper bound on the number of leaves to 5k. We
omit the details here due to the lack of space. As we noticed above, the height
of the search tree is at most n+ k, hence the number of nodes of the search tree
is at most (n + k)5k. It is also not hard to show that (n + k) = O(m), where
m = |Clauses(F)|. Therefore, the number of nodes of the search tree is bounded
by O(5km).

3 In fact, we use the measure max(0, 2k − SepSize(F,¬L, ¬l)). We demonstrate our
argument on a simplified measure to make it more intuitive.

560 I. Razgon and B. O’Sullivan

In the remaining part of the analysis we notice that the heaviest operations
performed by FindCS per node of the search tree are checking on line 4 whether
the lower bound is exceeded or not and neutrality checking on line 9. According
to Theorem 2, these operations can be performed by O(k) iterations of the
Ford-Fulkerson algorithm applied to the implication graph of F . The runtime of
each iteration is O(m + |L|), where the additional item |L| takes into account
the literals whose variables do not belong to V ars(F). Combining this with the
bound on the number of nodes obtained in the previous paragraph, we get the
following theorem.

Theorem 4. The 2-aslasat problem is fixed-parameter tractable. It particular
it can be solved in O(5kkm(m + |L|) time.

4 Algorithm for the 2-ASAT Problem

In the final part of our proof of the fixed-parameter tractability of the 2-asat

problem we show that it can be solved by O(3km) calls to a procedure solving the
2-aslasat problem. First we get rid of the repeated clauses by associating with
each clause C = (l′ ∨ l′′) of the given formula a unique literal li and replacing C
by a pair of clauses (l′∨ li) and (¬li∨ l′′). Note that the number of clauses of the
resulting formula remains O(m). Thus we may assume that in the given instance
(F, k) of the 2-asat problem F has no repeated clauses. Next we observe that the
2-asat problem can be solved by O(m) calls to a problem with input (F1, S1, k),
where F1 is a 2-cnf formula with Clauses(F1) ⊆ Clauses(F), and S1 is a CS of
F1 of size k + 1. This transformation is known to the parameterized complexity
community under the name iterative compression [9].

Next we observe that F1 has a CS of size at most k if and only if there a set
I ⊂ S1 such that there is a subset S2 of Clauses(F1 \ I) such that S2 ∩ S1 = ∅,
|S2| ≤ k − |I|, and S2 is a CS of F1 \ I. Thus in order to find the required CS
of F1, we explore 2k+1 subsets of S1 and for each subset I we solve the problem
with input (F2, S2, k2), where F2 = F1 \ I, S2 = S1 \ I, k2 = k− |I|. The output
of the problem is a CS of F2 having size at most k2 and disjoint with S2.

Set F3 = F2\S2 and observe that the set Y is the required CS of F2 if and only
if |Y | ≤ k2 and there is a non-contradictory set of literals satisfying F3 \ Y and
all the clauses of S2. The last condition can be reformulated as follows: there is a
non-contradictory set L3 of literals satisfying the clauses of S2 such that F3 \ Y
is satisfiable with respect to L3. Our next transformation is based on this view.
In particular, we explore all possible non-contradictory sets of literals obtained
by taking one literal from each clause of S2 (there may be at most 2k2+1 such
combinations) and for each considered set L3 we solve a problem with input
(F3, L3, k2) whose output is a set such that Y ⊆ Clauses(F3), |Y | ≤ k2, and
swrt(F3 \Y, L3) is true. Note that F3 is satisfiable because F3 = F2 \S2 = F \S
while S is a CS of F .

In the last stage, based on the satisfiability of F3, we guess a satisfying as-
signment P3 of F3. If P3 does not intersect with ¬L3 we return the empty set.
Otherwise we partition L3 into the subsets L′3 and L′′3 such that P3 does not

Almost 2-SAT Is Fixed-Parameter Tractable 561

intersect with L′3, while ¬L′′3 ⊆ P3. Then we introduce two new literals l∗1 and l∗2
and transform F3 into a 2-cnf F ∗ by replacing the literals of L′3 by l∗1 , the literals
of ¬L′3 by ¬l∗1 , the literals of L′′3 by l∗2 , and the literals of ¬L′′3 by ¬l∗2 . We observe
that the set of literals P ∗ obtained from P3 by the analogous replacement is a
satisfying assignment of F ∗ that does not contain ¬l∗1 , from which we conclude
that swrt(F ∗, l∗1) is true. It follows that (F ∗, {l∗1}, l∗2) is a valid instance of the
2-aslasat problem. Moreover, we show that (F ∗, {l∗1}, l∗2) has a CS Y ∗ of size
at most k2 if and only if there is a set Y , |Y | ≤ k2 such that swrt(F3 \ Y, L)
is true and show a transformation from Y ∗ to Y . Taking into account that the
2-aslasat problem is known to be fpt according to Theorem 4, it follows that
the 2-asat problem is fpt as well.

It follows from the above description that 2-asat problem can be solved by
O(4km) calls to an algorithm solving the 2-aslasat problem. A simple combi-
natorial argument decreases the upper bound to O(3km). Combining this with
Theorem 4 we obtain the following theorem.

Theorem 5. The 2-asat problem is fixed-parameter tractable. In particular, it
can be solved in O(15kkm3) time.

5 Concluding Remarks

We conclude by noting a number of consequences of our main result. It was
noticed in [5] that the parameterized 2-asat problem is fpt-equivalent to the
following problem: given a graph G having a perfect matching, find whether G
has a vertex cover of size at most n/2 + k. This problem is called vertex cover
problem parameterized above the perfect matching (vc-pm). It is shown [14] that
the vc-pm problem is fpt-equivalent to the vertex cover problem parameterized
above the size of a maximum matching and that the latter problem is fpt-
equivalent to a problem of finding whether at most k vertices can be removed
from the given graph so that the size of the minimum vertex cover of the resulting
graph equals the size of its maximum matching. It follows from Theorem 5 that
all these problems are fixed parameter tractable.

Acknowledgements

We thank Venkatesh Raman for pointing out to several relevant references, Som-
nath Sikdar for his help in fixing a bug in an earlier version of the archived
manuscript, and an anonymous reviewer for suggestions of improvement the
presentation of the extended abstract. Finally, we acknowledge the Science Foun-
dation Ireland for supporting our research through grant 05/IN/I886.

References

1. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

562 I. Razgon and B. O’Sullivan

2. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

3. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: STOC 2008 (to appear, 2008)

4. Chen, J., Kanj, I.A.: Improved exact algorithms for max-sat. Discrete Applied
Mathematics 142(1-3), 17–27 (2004)

5. Demaine, E., Gutin, G., Marx, D., Stege, U.: Open problems from dagstuhl
seminar 07281 (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/
07281.SWM.Paper.1254.pdf

6. Grohe, M., Grüber, M.: Parameterized approximability of the disjoint cycle prob-
lem. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 363–374. Springer, Heidelberg (2007)

7. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and
exact algorithms for multicut. In: SOFSEM, pp. 303–312 (2006)

8. Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikoletseas,
S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg (2005)

9. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. The Computer Journal 51(1), 7–25 (2008)

10. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theoretical Computer Science 289(2), 997–1008 (2002)

11. Mahajan, M., Raman, V.: Parametrizing above guaranteed values: Maxsat and
maxcut. Electronic Colloquium on Computational Complexity (ECCC) 4(33)
(1997)

12. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and
maxcut. Journal of Algorithms 31(2), 335–354 (1999)

13. Marx, D.: Parameterized graph separation problems. Theoretical Computer Sci-
ence 351(3), 394–406 (2006)

14. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.: The complexity
of finding subgraphs whose matching number equals the vertex cover number. In:
ISAAC, pp. 268–279 (2007)

15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and Its Applications, vol. 31 (2006)

16. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

17. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–
493. Springer, Heidelberg (2003)

http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281.SWM.Paper.1254.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281.SWM.Paper.1254.pdf

On Problems without Polynomial Kernels

(Extended Abstract)

Hans L. Bodlaender1, Rodney G. Downey2,�,
Michael R. Fellows3,��, and Danny Hermelin4,� � �

1 Department of Information and Computing Sciences,
Utrecht University, 3508 TB Utrecht 80.089 - Netherlands

hansb@cs.uu.nl
2 School of Mathematics, Statistics and Computer Science, Victoria University of

Wellington, Wellington 600 - New Zealand
rod.downey@vuw.ac.nz

3 The University of Newcastle, Callaghan NSW 2308 - Australia
michael.fellows@newcastle.edu.au

4 The University of Haifa, Haifa 31905 - Israel
danny@cri.haifa.ac.il

Abstract. Kernelization is a central technique used in parameterized
algorithms, and in other approaches for coping with NP-hard prob-
lems. In this paper, we introduce a new method which allows us to
show that many problems do not have polynomial size kernels under
reasonable complexity-theoretic assumptions. These problems include k-

Path, k-Cycle, k-Exact Cycle, k-Short Cheap Tour, k-Graph

Minor Order Test, k-Cutwidth, k-Search Number, k-Pathwidth,
k-Treewidth, k-Branchwidth, and several optimization problems pa-
rameterized by treewidth or cliquewidth.

1 Introduction

Parameterized complexity extends classical complexity theory in a way that
allows a refined categorization of tractable and intractable computational prob-
lems. This is done by a two-dimensional analysis of problems instances – one
dimension used as usual for measuring the input-length, and the other used
for measuring other structural-properties of the input, e.g. its witness size. A
problem is considered tractable, if there is an algorithm solving it with any
super-polynomial running-time confined strictly to the parameter. As an exam-
ple, consider the k-Vertex Cover problem: Given a graph G and a parameter
k ∈ N, determine whether G has a vertex cover of size k. When viewed classically,
this problem is NP-complete. However, its parameterized variant can be solved

� Research supported by the Marsden Fund of New Zealand.
�� Research supported by the Australian Research Council Center of Excellence in

Bioinformatics.
� � � Supported by the Adams Fellowship of the Israel Academy of Sciences and Hu-

manities.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 563–574, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

564 H.L. Bodlaender et al.

in O(2kn) time [12] (see [23] for improvements), which is practical for instances
with small parameter values, and in general is far better than the O(nk+1) run-
ning time of the brute-force algorithm. More generally, a problem is said to be
fixed-parameter tractable if it has an algorithm running in time f(k)p(n) (FPT-
time), where f is any computable function solely in the parameter k, and p(n)
is a polynomial in the total input length n [12]. The class of all fixed-parameter
tractable problems is denoted by FPT. The first class of fixed-parameter in-
tractable problems is W[1], and it is known that if FPT = W[1] then n variable
3-SAT can be solved in 2o(n) time [10].

A fundamental and very powerful technique in designing FPT algorithms
is kernelization. In a nutshell, a kernelization algorithm for a parameterized
problem is a polynomial-time transformation that transforms any given instance
to an equivalent instance of the same problem, with size and parameter bounded
by a function of the parameter in the input. Typically this is done using so-called
reduction rules, which allow the safe reduction of the instance to an equivalent
“smaller” instance. In this sense, kernelization can be viewed as polynomial-
time preprocessing which has universal applicability, not only in the design of
efficient FPT algorithms, but also in the design of approximation and heuristic
algorithms [22].

It is clear that any (decidable) language which has a kernelization algorithm is
in FPT. Somewhat more surprising, but still very simple to show, is that all prob-
lems in FPT have kernelization algorithms [9]. This is seen by considering the two
cases f(k) ≥ n and f(k) < n separately, where f(k) is the parameter-dependent
time-bound of the algorithm solving the given problem. Since every FPT prob-
lem has a kernelization algorithm, it is interesting to study problems that are
kernelizable in a stricter sense - for example, problems which allow kernelization
algorithms that reduce instances to a size which is polynomially bounded by the
parameter. Such problems are said to have a polynomial kernelization algorithm,
or a polynomial kernel. For instance, the classical kernelization algorithm of Buss
for k-Vertex Cover is a polynomial kernel (see e.g. [12]), and so k-Vertex

Cover has a polynomial kernel. Other problems known to have polynomial
kernels include k-Leaf Spanning Tree [6], k-Feedback Vertex Set [5,8],
k-Planar Dominating Set [1], k-Cluster Editing [21], k-Hitting Set

for Sets of Bounded Size [28], and many more.
On the other hand, there are also several problems for which no polynomial

kernel has yet been found. These clearly include all problems known to be W[1]-
hard, as the existence of a kernel for such a problem would imply W[1] = FPT.
So we focus on parameterized problems known to be in FPT. Many examples
of such problems can be found among the problems shown to be in FPT using
heavy machinery such as color-coding [2], the graph minor technique [14], or tree-
decomposition dynamic programming [3]. In many cases, the algorithms given by
these frameworks are impractical in practice. For instance, consider the k-Path

problem: Given a graph G and a parameter k ∈ N, determine whether G has a
simple path of length k.

On Problems without Polynomial Kernels 565

This problem can be solved in O(2O(k)n2 lg n) time using the color-coding
technique of Alon, Yuster, and Zwick [2]. This time complexity might seem
similar to the complexity of the algorithm for k-Vertex Cover mentioned
above, however the hidden constant in the O(k) exponent is quite large, ruling-
out any possibility for practical usefulness1. Nevertheless, an efficient polynomial
kernel could be a promising path in making this algorithm practical. Does k-
Path have a polynomial kernel? k-Minor Order Test and k-Treewidth are
other good examples, as both serve as highly time-consuming subroutines in most
algorithms deploying the graph minor technique or tree-decomposition dynamic
programming. Do k-Minor Order Test and k-Treewidth have polynomial
kernels?

In this paper, we introduce a new method which allows us to show that many
problems do not have polynomial kernels under reasonable complexity-theoretic
assumptions. We believe that this material is significant and will have wide
applications. For instance, learning of our material, three other teams of authors,
namely, Fortnow and Santhanam [19], Chen et al. [11], and Buhrman [7] have
applied the concepts in this paper to other arenas.

Questions such as these are the motivating starting point of this paper.
Clearly, if P = NP then all parameterized problems based on NP-complete
problems have constant size kernels. Thus, any method we generate to show
that a problem is unlikely to have a polynomial kernel will entail a complexity-
theoretic hypothesis. For developing such a hypotheses, we introduce the notion
of a distillation algorithm. Intuitively speaking, a distillation algorithm for a
given problem functions like a Boolean OR gate of problem-instances – it re-
ceives as input a sequence of instances, and outputs yes-instance iff at least one
of the instances in the sequence is also a yes-instance. The algorithm is allowed
to run in time polynomial in the total length of the sequence, but must output
an instance whose size is polynomially bounded by the size of the maximum-size
instance in its input sequence. We remark that independently and somewhat
earlier, a similar notion had been formulated by Harnik and Naor [24] in rela-
tion to compression-related cryptographic problems. Our paper, as well as the
subsequent papers mentioned above, show that the notion of distillation is of
central importance in complexity considerations.

We study the possibility of the existence of distillation algorithms for NP-
complete problems, and conjecture that this is highly implausible. It is clear
that if any NP-complete problem has a distillation algorithm, then they all do.
This seems very unlikely. Intuitively, large amounts of information cannot be
coalesced into a single small instance. This notion seems rather similar to the
notion of P-selectivity which collapses the polynomial hierarchy [26]. This same
intuition suggests that the existence of distillation algorithms for NP-complete
problems might lead to a similar collapse. After correspondence about this issue,
Fortnow and Santhanam verified a conjecture of ours proving that the existence
a of distillation algorithm for any NP-complete problem would imply the collapse

1 It was brought to our attention that there are recent improvements to the k-Path

algorithm mentioned above which have rather practical running-times [25,27].

566 H.L. Bodlaender et al.

of the polynomial hierarchy to the third level [19]. This allows us to prove, via
a parameterized form of distillation, the unlikelihood of polynomial kernels for
FPT problems such as k-Path, k-Minor Order Test and others. In particular,
our study gives rise to the following theorem.

Theorem 1. Unless all NP-complete problems have distillation algorithms,
none of the following FPT problems have polynomial kernels: k-Path, k-Cycle,
k-Exact Cycle, k-Short Cheap Tour, k-Graph Minor Order Test,
k-Bounded Treewidth Subgraph Test, k-Planar Graph Subgraph

Test, k-Planar Graph Induced Subgraph Test, w-Independent Set,
w-Clique, and w-Dominating Set.

Here, w-Independent Set, w-Clique, and w-Dominating Set denote the
classical Independent Set, Clique, and Dominating Set problems param-
eterized by the treewidth of their given graphs. These are given as mere exam-
ples. Many other graph-theoretic problems parameterized by the treewidth of
the graph could have been used in the theorem.

We next turn to study distillation of coNP-complete problems. Although we
are unable to relate the existence of distillation algorithms for coNP-complete
problems to any known complexity conjecture, we can still show that polynomial
kernels for some important FPT problems not captured by Theorem 1, imply
distillation algorithms for coNP-complete problems.

Theorem 2. Unless all coNP-complete problems have distillation algorithms,
none of the following FPT problems have polynomial kernels: k-Cutwidth, k-
Modified Cutwidth, k-Search Number, k-Pathwidth, k-Treewidth, k-
Branchwidth, k-Gate Matrix Layout, k-Front Size, w-3-Coloring and
w-3-Domatic Number.

We remark that in unpublished work, Buhrman [7] has shown that there are
oracles relative to which no coNP-complete problem has a distillation algorithm.
We believe that the same information-theoretic intuition applies here, and that
no coNP-complete problem can have a distillation algorithm.

In the full version of this paper, we also study sub-exponential kernels, i.e
kernelization algorithms that reduce instances to a size which is sub-exponentially
bounded by the parameter. In particular, we prove that there are problems
solvable in O(2kn) time which (unconditionally) do not admit a kernel of size
2o(k). This relates our material to the work of Flum, Grohe, and Weyer [18] who
introduced the notion of “bounded fixed-parameter tractability” as an attempt
to provide a theory for feasible FPT algorithms. They argued that for an FPT
algorithm to be useful in practice, it should most likely have a running time of
2O(k)nO(1) or perhaps 2k

O(1)
nO(1). We show that the notion of small kernel and

small running-time are quite different.

2 Preliminaries

Throughout the paper, we let Σ denote a finite alphabet, and N the set of natural
numbers. A (classical) problem L is a subset of Σ∗, where Σ∗ is the set of all

On Problems without Polynomial Kernels 567

finite length strings over Σ. In natural cases, the strings in L will be an encoding
of some combinatorial object, e.g. graphs. We will call strings x ∈ Σ∗ which are
proper encodings, input of L, regardless of whether x ∈ L. We will often not
distinguish between a combinatorial object and its string encoding, using for
example G to denote both a graph and a string in Σ∗.

A parameterized problem is a subset L ⊆ Σ∗×N. In this way, an input (x, k)
to a parameterized language consists of two parts, where the second part k is
the parameter. A parameterized problem L is fixed-parameter tractable if there
exists an algorithm which on a given (x, k) ∈ Σ∗×N, decides whether (x, k) ∈ L
in f(k)p(n) time, where f is an arbitrary computable function solely in k, and
p is a polynomial in the total input length (including the unary encoding of
the parameter) n = |x| + k. Such an algorithm is said to run in FPT-time, and
FPT is the class of all parameterized problems that can be solved by an FPT-
time algorithm (i.e. all problems which are fixed-parameter tractable). For more
background on parameterized complexity, the reader is referred to [5,12,17].

To relate notions from parameterized complexity and notions from classic
complexity theory with each other, we use a natural way of mapping parame-
terized problems to classical problems. The mapping of parameterized problems
is done by mapping (x, k) to the string x#1k, where # /∈ Σ denotes the blank
letter and 1 is an arbitrary letter in Σ. In this way, the unparameterized version
of a parameterized problem L is the langauge L̃ = {x#1k | (x, k) ∈ L}. We next
give a formal definition for the central notion of this paper:

Definition 1 (Kernelization). A kernelization algorithm, or in short, a ker-
nel for a parameterized problem L ⊆ Σ∗ × N is an algorithm that given
(x, k) ∈ Σ∗ × N, outputs in p(|x|+ k) time a pair (x′, k′) ∈ Σ∗ × N such that

– (x, k) ∈ L⇔ (x′, k′) ∈ L,
– |x′|, k′ ≤ f(k),

where f is an arbitrary computable function, and p a polynomial. Any function
f as above is referred to as the size of the kernel.

That is, if we have a kernel for L, then for any (x, k) ∈ Σ ×N, we can obtain in
polynomial time an equivalent instance with respect to L whose size is bounded
by a function of the parameter. If the size of the kernel is polynomial, we say
that the parameterized langauge L has a polynomial kernel.

There is also a more general definition for kernelization than the one given
above which sometimes appears in practice. This definition allows a kernelization
algorithm for a parameterized problem L to map an instance of L to an instance
of another problem L′. We remark that all results in this paper easily follow for
most cases of the more general definition. Nevertheless, we will present these
results with Definition 1 for the sake of clarity and simplicity.

3 A Generic Lower-Bounds Engine

In the following we develop the main engine for proving Theorems 1 and 2. This en-
gine evolves around thenotionofdistillationalgorithms forNP-completeproblems.

568 H.L. Bodlaender et al.

We first introduce this notion, and then define a parameterized analog that we
call a composition algorithm. Following this, we show that if a compositional
parameterized problem has a polynomial kernel, then its unparameterized coun-
terpart has a distillation algorithm.

Definition 2 (Distillation). A distillation algorithm for a classical problem
L ⊆ Σ∗ is an algorithm that receives as input a sequence (x1, . . . , xt), with
xi ∈ Σ∗ for each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi|, and outputs a

string y ∈ Σ∗ with

1. y ∈ L ⇐⇒ xi ∈ L for some 1 ≤ i ≤ t.
2. |y| is polynomial in max1≤i≤t |xi|.

That is, given a sequence of t instances of L, a distillation algorithm gives an
output that is equivalent to the sequence of instances, in the sense that a collec-
tion with at least one yes-instance (i.e. instance belonging to L) is mapped to a
yes-instance, and a collection with only no-instances is mapped to a no-instance.
(In a certain sense, this functions like a Boolean OR operator.) The algorithm
is allowed to use polynomial-time in the total size of all instances. The crux is
that its output must be bounded by a polynomial in the size of the largest of
the instances from the sequence, rather than in the total length of the instances
in the sequence. We next introduce the notion of a composition algorithm for
parameterized problems. In some sense, one can view a composition algorithm
as the parameterized analog of a distillation algorithm.

Definition 3 (Composition). A composition algorithm for a parameterized
problem L ⊆ Σ∗ × N is an algorithm that receives as input a sequence
((x1, k), . . . , (xt, k)), with (xi, k) ∈ Σ∗ × N+ for each 1 ≤ i ≤ t, uses time
polynomial in

∑t
i=1 |xi|+ k, and outputs (y, k′) ∈ Σ∗ × N+ with

1. (y, k′) ∈ L ⇐⇒ (xi, k) ∈ L for some 1 ≤ i ≤ t.
2. k′ is polynomial in k.

Hence, given a sequence of instances for L, a composition-algorithm outputs an
equivalent instance to this sequence in the same sense as a distillation algorithm,
except that now the parameter of the instance is required to be polynomially-
bounded by parameter appearing in all instances of the sequence, rather than
the size of the instance bounded by the maximum size of of all instances.

We call classical problems with distillation algorithms distillable problems, and
parameterized problems with composition algorithms compositional problems.
Despite the similarities between the two definitions, as we shall soon see, the
existence of composition algorithms for some parameterized problems is much
more plausible than the existence of distillations for their unparameterized coun-
terparts. Nevertheless, there is still a deep connection between distillation and
composition, obtained via polynomial kernelization. In particular, in the follow-
ing lemma we prove that combining a composition algorithm for a parameterized
problem L, with a polynomial kernel for it, admits a distillation algorithm for
the unparameterized counterpart of L.

On Problems without Polynomial Kernels 569

Lemma 1. Let L be a compositional parameterized problem whose unparame-
terized version L̃ is NP-complete. If L has a polynomial kernel, then L̃ is also
distillable.

Proof. Let x̃1, . . . , x̃t ∈ Σ∗ be instances of L̃, and let (xi, ki) ∈ Σ∗ ×N+ denote
the instance of L derived from x̃i, for all 1 ≤ i ≤ t. Since L̃ is NP-complete,
there exist two polynomial-time transformations Φ : L̃→ SAT and Ψ : SAT→
L̃, where SAT is the problem of deciding whether a given boolean formula is
satisfiable. We use the composition and polynomial kernelization algorithms of
L, along with Φ and Ψ , to obtain a distillation algorithm for L̃. The distillation
algorithm proceeds in three steps.

Set k = max1≤i≤t ki. In the first step, we take the subsequence in
((x1, k1), . . . , (xt, kt)) of instances whose parameter equals �, for each 1 ≤ � ≤ k.
We apply the composition algorithm on each one of these subsequence separately,
and obtain a new sequence ((y1, k

′
1), . . . , (yr, k

′
r)), where (yi, k′i), 1 ≤ i ≤ r, is

the instance obtained by composing all instances with parameters equaling the
i’th parameter value in {k1, . . . , kt}. In the second step, we apply the polynomial
kernel on each instance of the sequence ((y1, k

′
1), . . . , (yr, k

′
r)), to obtain a new

sequence ((z1, k
′′
1), . . . , (zr, k′′r)), with (zi, k′′i) the instance obtained from (yi, k′i),

for each 1 ≤ i ≤ r. Finally, in the last step, we transform each z̃i, the unpa-
rameterized instance of L̃ derived from (zi, k′′i), to a Boolean formula Φ(z̃i). We
output the instance of L̃ for which Ψ maps the disjunction of these formulas to,
i.e. Ψ(

∨
1≤i≤r Φ(z̃i)).

We argue that this algorithm distills the sequence (x̃1, . . . , x̃t) in polynomial
time, and therefore is a distillation algorithm for L̃. First, by the correctness
of the composition and kernelization algorithms of L, and by the correctness of
Φ and Ψ , it is not difficult to verify that Ψ(

∨
1≤i≤r Φ(z̃i)) ∈ L̃ ⇐⇒ x̃i ∈ L̃

for some i, 1 ≤ i ≤ t. Furthermore, the total running-time of our algorithm is
polynomial in

∑t
i=1 |x̃i|. To complete the proof, we show that the final output

returned by our algorithm is polynomially bounded in n = max1≤i≤t |x̃i|. The
first observation is that since each x̃i is derived from the instance (xi, ki), 1 ≤
i ≤ t, we have r ≤ k = max1≤i≤t ki ≤ max1≤i≤t |x̃i| = n. Therefore, there
are at most n instances in the sequence ((y1, k

′
1), . . . , (yr, k

′
r)) obtained in the

first step of the algorithm. Furthermore, as each (yi, k′i), 1 ≤ i ≤ r, is obtained
via composition, we know that k′i is bounded by some polynomial in � ≤ k ≤ n.
Hence, since for each 1 ≤ i ≤ r, the instance (zi, k′′i) is the output of a polynomial
kernelization on (yi, k′i), we also know that (zi, k′′i) and z̃i have size polynomially-
bounded in n. It follows that

∑r
i=1 |z̃i| is polynomial in n, and since both Φ and

Ψ are polynomial-time, so is Ψ(
∨

1≤i≤r Φ(z̃i)). ��

We conclude this section by stating a lemma proven by by Fortnow and San-
thanam [19], which verifies our initial intuition that NP-complete problems are
unlikely to have distillation algorithms. It is clear from Definition 2, that if any
NP-complete problem were distillable, then they all would be – we can use the
polynomial-time reductions provided for any NP-complete problem L̃ to and
from our presumed distillable NP-complete problem to distill L̃. Fortnow and

570 H.L. Bodlaender et al.

Santhanam proved that a distillation algorithm for any NP-complete problem
would imply coNP ⊆ NP/poly, which on its turn implies that the polynomial
hierarchy collapses to at most three levels [31], a hierarchy generally believed to
be proper.

Lemma 2 ([19]). If any NP-complete problem has a distillation algorithm then
coNP ⊆ NP/poly.

4 Applications

Lemmas 1 and 2 that together form our lower bound engine together imply that
any compositional parameterized problem whose unparameterized counterpart is
NP-complete cannot have a polynomial kernel, unless the polynomial hierarchy
collapses. In the following we show the strength of our lower bound engine by
giving several examples of compositional FPT problems that are based on unpa-
rameterized classical NP-complete problems. We focus only on natural examples,
and in particular, we complete the proof of Theorem 1.

Let us call a parameterized problem L ⊆ Σ∗×N a parameterized graph prob-
lem, if for any (x, k) ∈ L, x is an encoding of a graph.

Lemma 3. Let L be a parameterized graph problem such that for any pair of
graphs G1 and G2, and any integer k ∈ N, we have (G1, k) ∈ L ∨ (G2, k) ∈
L ⇐⇒ (G1 ∪ G2, k) ∈ L, where G1 ∪ G2 is the disjoint union of G1 and G2.
Then L is compositional.

As an immediate corollary of the simple lemma above, we get that our case-study
problem k-Path is compositional, and thus is unlikely to have a polynomial
kernel. Indeed, the disjoint union of two graphs has a k-path iff one of the graphs
has a k-path. Two other similar examples are the k-Cycle and k-Exact Cycle

problems, which respectively ask to determine whether a given graph has a (not
necessarily induced) subgraph which is isomorphic to a cycle with at least k
vertices and a cycle with exactly k vertices. Both these problems are also in
FPT by the color-coding technique of Alon et al. [2], and are compositional by
the lemma above. Another example is k-Short Cheap Tour, which given an
edge-weighted graph, asks whether there is a tour of length at least k in the
graph with total weight not more than some given threshold. This problem is in
FPT due to [29], and is again compositional according to Lemma 3.

In fact, Lemma 3 implies that any parameterized problem which asks to de-
termine whether a specific graph H (e.g. a k-clique) is a “subgraph of some
kind” of an input graph G, for almost any natural notion of subgraph, is compo-
sitional when parameterized by H (or more precisely, by the numeric encoding
of H , the position of H in some canonical ordering of simple graphs). For ex-
ample, consider the k-Minor Order Test problem, famously in FPT due to
Robertson and Seymour’s celebrated Graph Minor Theorem. This problem asks
to decide whether a given graph H is a minor of another given graph G, and the
parameter k is H . Clearly, if we slightly relax the problem and require H to be

On Problems without Polynomial Kernels 571

connected, the disjoint union construction of Lemma 3 above gives a composi-
tion algorithm for this problem. If H is not connected, then we can connect it by
adding a new global vertex adjacent to all other vertices in H , and then add such
a global vertex to each Gi, 1 ≤ i ≤ t. By similar arguments we can also show
that k-Bounded Treewidth Subgraph Test – the problem of determining
whether a given bounded treewidth graph occurs as a subgraph in another given
graph (in FPT again via color-coding [2]) – is also compositional. Two other
good examples are k-Planar Graph Subgraph Test and k-Planar Graph

Induced Subgraph Test, both in FPT due to [13].
We now turn to proving the last item of Theorem 1. In particular, we show that

many natural NP-complete problems parameterized by treewidth are unlikely to
have a polynomial kernel. We illustrate the technique with one example, and
then state the general result that can be obtained using the same way. Consider
the w-Independent Set problem: Given a graph G, a tree-decomposition T
of G of width w ∈ N+, and an integer k ∈ N+, determine whether G has an
independent set of size k. Note that the parameter here is w and not k. We call
the unparameterized variant of w-Independent Set the Independent Set

with Treewidth problem. Clearly, Independent Set with Treewidth is
NP-complete by the straightforward reduction from Independent Set which
appends a trivial tree-decomposition to the given instance of Independent Set.

To show that w-Independent Set is compositional, we will work with a
‘guarantee’ version, the w-Independent Set Refinement problem: given a
graph G, a tree-decomposition T of G, and an independent set I in G, determine
whether G has an independent set of size |I| + 1. The parameter is the width
w of T . The unparameterized variant of w-Independent Set Refinement

is Independent Set Refinement with Treewidth. It is easy to see that
this problem is NP-complete by the following reduction from Independent

Set with Treewidth – Given an instance (G, T , k), construct the instance
(G′, T ′, I), where G′ is the graph obtained by adding k − 1 new pairwise non-
adjacent vertices I to G which are connected to all the old vertices, and T ′ is
the tree-decomposition obtained by adding I to each node in T .

Lemma 4. w-Independent Set Refinement is compositional, and fur-
thermore, if w-Independent Set has a polynomial kernel then so does w-

Independent Set Refinement.

The proof of the lemma above (which we omit due to space constraints) implies
that to fit a natural NP-complete graph problem parameterized by treewidth into
the context of our lower-bound framework, one has to basically show two things:
First, that the refinement variant of the problem is compositional, and second,
that the unparameterized version of the refinement variant is NP-complete. In
fact, this technique is not necessarily limited to treewidth, but can be used
with almost any other structural parameter such as cliquewidth, maximum de-
gree, minimum vertex cover, and so forth. To complete the proof of Theorem 1,
what is left to prove is that Dominating Set Refinement with Treewidth

is NP-complete; Clique Refinement with Treewidth can be seen to be

572 H.L. Bodlaender et al.

NP-complete by a similar construction used in the proof of Lemma 4 above. We
omit the details.

5 Extensions

We next extend the framework presented in the previous section so that it cap-
tures other important FPT problems not captured by Theorem 1. In particular,
we discuss the proof for Theorem 2. The main observation is that an AND-variant
of a composition algorithm for a parameterized problem L, yields a composition
algorithm for L, the complement of L. This observation is useful since a lot of
problems have natural AND-compositions rather than regular compositions (i.e.
OR-compositions). As any FPT problem has a polynomial kernel iff its comple-
ment also has one, showing that a coFPT problem is compositional is just as
good for our purposes as showing that its complement in FPT is compositional.

Lemma 5. Let L be a parameterized graph problem such that for any pair of
graphs G1 and G2, and any integer k ∈ N, we have (G1, k) ∈ L ∧ (G2, k) ∈
L ⇐⇒ (G1 ∪ G2, k) ∈ L, where G1 ∪ G2 is the disjoint union of G1 and G2.
Then L, the complement of L, is compositional.

There are many FPT problem with a natural composition as above. These
include the classical “width problems” k-Pathwidth, k-Treewidth, and k-
Branchwidth (see [4] for formal definitions and FPT algorithms for these
problems). Three closely related relatives of these problems are k-Search Num-

ber [15], k-Front Size [4], and k-Gate Matrix Layout [16], which all have
AND-composition by the lemma above. Lemma 5 also implies that two other
famous FPT “width problems” are AND-compositional, namely, k-Cutwidth

and k-Modified Cutwidth [15].
We prove the last item of Theorem 2 by using refinement variants as done

for the treewidth parameterized problems in Theorem 1. In this context, it is
worth mentioning that partitioning problems seem more adaptable to AND-
compositions, as opposed to subset problems which are better suited for regular
composition. Recall that w-3-Chromatic Number is the problem of determin-
ing, given a graph G and a tree-decomposition T of G, whether there exists a
partitioning (or coloring) Π of V (G) into three classes, where each class induces
an independent set in G. The parameter is the width of T . The w-3-Domatic

Number problem is defined similarly, except that here the goal is to partition
(or domatic-color) V (G), again into three classes, with each class inducing a
dominating set of G. Indeed, we selected w-3-Chromatic Number and w-

3-Domatic Number for Theorem 2 as they are two of the more well-known
graph partitioning problems. Many other natural partitioning problems could
have been selected as well.

The refinement variants of these two problems, w-3-Chromatic Number

Refinement and w-3-Domatic Number Refinement, are defined by adding
to the input an appropriate vertex-partitioning Π (with respect to the problem
definition), of cardinality four for w-3-Chromatic Number Refinement and

On Problems without Polynomial Kernels 573

two for w-3-Domatic Number Refinement. It is easy to see that the unpa-
rameterized versions of these two problems are NP-complete by recalling that
one can color planar graphs with four colors in polynomial-time (see e.g. [30]),
while it is NP-complete to decide whether a planar graph is 3-colorable, and
by recalling that every graph without an isolated vertex can be domatic-colored
with two colors in polynomial-time (see e.g. [20]). Furthermore, it is easy to
see that the standard disjoint union algorithm is an AND-composition for these
two problems. Thus, by similar arguments used in Section 4, we can conclude
that a polynomial-kernel for either w-3-Chromatic Number or w-3-Domatic

Number implies that all coNP-complete problems are distillable.

Acknowledgements

We would like to thank Lance Fortnow, Raul Santhanam, and Harry Buhrman
for many fruitful discussions. In particular, Lance and Raul provided the proof
for Lemma 2 of this paper. The fourth author would also like to thank Moritz
Müller for reviewing several preliminary versions, and especially for the countless
(and sometimes endless) debates on related topics.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Efficient data reduction for DOMINAT-
ING SET: A linear problem kernel for the planar case. In: Penttonen, M., Schmidt,
E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 150–159. Springer, Heidelberg (2002)

2. Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856
(1995)

3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with
bounded decomposability. A survey. BIT Numerical Mathematics 25(1), 2–23
(1985)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

5. Bodlaender, H.L.: A cubic kernel for feedback vertex set. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

6. Bonsma, P.S., Brüggemann, T., Woeginger, G.J.: A faster FPT algorithm for find-
ing spanning trees with many leaves. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 259–268. Springer, Heidelberg (2003)

7. Buhrman, H.: Private communication (2007)

8. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosa-
mond, F.A.: The undirected feedback vertex set problem has a Poly(k) kernel.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
192–202. Springer, Heidelberg (2006)

9. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of paramterized
tractability. Annals of Pure and Applied Logic 84(1), 119–138 (1997)

10. Cai, L., Juedes, D.W.: Subexponential parameterized algorithms collapse the W-
hierarchy. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 273–284. Springer, Heidelberg (2001)

574 H.L. Bodlaender et al.

11. Chen, Y., Flum, J., Müller, M.: Lower Bounds for Kernelizations – (manuscript,
2007)

12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

13. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In:
Proceedings of the 6th annual ACM/SIAM Symposium on Discrete Algorithms
(SODA), pp. 632–640 (1995)

14. Fellows, M.R., Langston, M.A.: Nonconstructive proofs of polynomial-time com-
plexity. Information Processing Letters 26, 157–162 (1988)

15. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application
to combinatorial problems of VLSI design. SIAM Journal of Discrete Math. 5(1),
117–126 (1992)

16. Fernau, H.: Parameterized algorithms: A graph-theoretic approach. PhD thesis,
University of Tübingen (2005)

17. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

18. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2n
nondeterministic bits. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.)
ICALP 2004. LNCS, vol. 3142, pp. 555–567. Springer, Heidelberg (2004)

19. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: Proceedings of the 40th Symposium on the Theory of Computing
(STOC) (to appear, 2008)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

21. Gramm, J., Guo, J., Huffner, F., Niedermeier, R.: Graph-modeled data clustering:
Exact algorithms for clique generation. Mathematical Systems Theory 38, 373–392
(2005)

22. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.
SIGACT News 38(1), 31–45 (2007)

23. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of generalized
vertex cover problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 36–48. Springer, Heidelberg (2005)

24. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. In: Proceedings of 47th annual IEEE symposium on Foundations Of
Computer Science (FOCS), pp. 719–728 (2006)

25. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: Fomin, F.V.
(ed.) WG 2006. LNCS, vol. 4271, pp. 58–67. Springer, Heidelberg (2006)

26. Ko, K.: On self-reducibility and weak P-selectivity. Journal of Computer and Sys-
tem Sciences 26(2), 209–221 (1983)

27. Liu, Y., Lu, S., Chen, J., Sze, S.: Greedy localization and color-coding: Improved
matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

28. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-
Hitting Set. Journal of Discrete Algorithms 1, 89–102 (2003)

29. Plehn, J., Voigt, B.: Finding minimally weighted subgraphs. In: Möhring, R.H.
(ed.) WG 1990. LNCS, vol. 484, pp. 18–29. Springer, Heidelberg (1991)

30. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: Efficiently four-coloring
planar graphs. In: Proceedings of the 28th annual ACM Symposium on the Theory
Of Computing (STOC), pp. 571–575 (1996)

31. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science 3,
1–22 (1977)

Faster Algebraic Algorithms

for Path and Packing Problems�

Ioannis Koutis

Carnegie Mellon University
Computer Science Department

Pittsburgh, PA 15213
ioannis.koutis@cs.cmu.edu

Abstract. We study the problem of deciding whether an n-variate poly-
nomial, presented as an arithmetic circuit G, contains a degree k square-
free term with an odd coefficient. We show that if G can be evaluated
over the integers modulo 2k+1 in time t and space s, the problem can be
decided with constant probability in O((kn + t)2k) time and O(kn + s)
space. Based on this, we present new and faster algorithms for two well
studied problems: (i) an O∗(2mk) algorithm for the m-set k-packing prob-
lem and (ii) an O∗(23k/2) algorithm for the simple k-path problem, or an
O∗(2k) algorithm if the graph has an induced k-subgraph with an odd
number of Hamiltonian paths. Our algorithms use poly(n) random bits,
comparing to the 2O(k) random bits required in prior algorithms, while
having similar low space requirements.

1 Introduction

This paper presents new and faster randomized algorithms for the well studied
parameterized simple path and set packing problems.

The k-path problem asks for a simple path of length k in a graph of n vertices
V and m edges E. In the general case where k is not considered a parameter, the
longest path and the Hamiltonian path problems are well known to be NP-hard.
Papadimitriou and Yannakakis conjectured that the O(log n)-path problem can
be solved in polynomial time [9]. Alon et. al., introducing color-coding, confirmed
the conjecture by describing an O∗(5.44k) 1 randomized algorithm and an O∗(ck)
deterministic algorithm for some constant c > 8000 [1]. The space complexity
of both algorithms is O∗(2k). A big step towards closing the gap between the
randomized and the deterministic complexity was taken by Kneis et. al. who
presented an O∗(16k) deterministic algorithm [6]. The deterministic complexity
was further reduced by Chen et. al. [2], who presented more efficient color-
coding schemes and gave an O∗(12.8k) time deterministic algorithm. A new

� This work was partially supported by the National Science Foundation under grant
number CCF-0635257.

1 Following the parameterized complexity notation, we use O∗(f(k)) to hide a poly(n)
factor, but we will also use O∗(f(k)poly(n)) to hide factors of lower order.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 575–586, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

576 I. Koutis

randomized divide-and-conquer algorithm -the first to deviate from the color-
coding approach- was given in [6] and independently in [2]. Its time complexity
is O∗(4k) and its space complexity O(nk log k + m).

The m-set k-packing problem gives a universe of n elements and a collec-
tion C of N sets each consisting of m elements; it asks for a sub-collection
of k pairwise disjoint sets from C. In the general case where k is not consid-
ered a parameter, the set packing problems for all m ≥ 3 are well known to
be NP-hard. For the special case m = 3, the problem was first considered in
[3] where a deterministic O∗(2O(k)(3k)!) algorithm was given. The bound was
subsequently improved to O∗(5.7k)k in [5]. Later, it was realized that the m-set
packing problem is amenable to a dynamic programming/color-coding approach;
this led to an O∗(5.443k) randomized algorithm in [7], and to an O∗(12.7D)3k

for D ≥ 10.4 deterministic algorithm in [4]. In both cases the space complexity is
O∗(23k). The deterministic time complexity was improved to O∗(4.683k) in [8].
The randomized divide-and-conquer algorithm of [2] improved the randomized
time complexity to O∗(2.523k) and the space complexity to O(nk log k).

While the recent algorithmic progress in the path and packing problems has
been impressive, both the color-coding and the randomized divide-and-conquer
approaches seem to have an inherent time complexity limit, namely the O∗(2k)
bound for the k-path and the O∗(23k) bound for the 3-set k-packing. On the
other hand, the Hamiltonian path and the general m-set (n/m)-packing problem
have fairly easy O∗(2n) algorithms. In view of this, a question presents itself: is
there a O∗(2k) algorithm for the k-path and an O∗(2mk) algorithm for the m-set
k-packing?

1.1 Our Approach and Contributions

We answer the question in the affirmative for the m-set k-packing. We describe
an algorithm that decides the problem in O∗(2km(km)2N) expected time, and
based on that, an algorithm that finds a packing in O∗(2km(km)2N2) expected
time. Both algorithms use O(kn) space. The answer is “almost” positive for
the k-path problem as well. In the case the graph contains an odd number
of k-paths (or generally when any subgraph induced by k vertices has an odd
number of Hamiltonian paths), we describe an algorithm that finds a k-path in
O∗(2kk2m(n+ min(k2,m))) expected time and O(kn+m) space. In the general
case, we describe an algorithm that decides the problem in O∗(23k/2k2m) ex-
pected time and finds a k-path in O∗(23k/2k2m(n+ min(k2,m))) expected time
and O(k2m) space. We should note that we have been working on a slight ex-
tension of the techniques presented in this paper and we believe that the general
time complexity can be reduced to O∗(2k); the details will be included in the
full version of the paper. Our algorithms use poly(n) random bits, improving
the 2O(k)poly(n) random bits required in prior algorithms. As we will discuss in
more detail later, the possibility that our algorithm can be derandomized with
only a polynomial slowdown, doesn’t look very remote.

Our approach is based on reductions (mentioned or presented in [11] and
[7]) to the problem of detecting a square-free term of degree k in polynomials

Faster Algebraic Algorithms for Path and Packing Problems 577

represented as arithmetic circuits. We describe a fast and space efficient algo-
rithm for detecting square-free terms with odd coefficients. In Section 2 we show
that if the polynomial P can be evaluated over the integers modulo 2k+1 in time
t and space s, the existence of the “odd” square-free term in P can be decided
with constant probability in O((kn+ t)2k) time and O(kn+ s) space. In Section
3 we describe a randomized reduction of the m-set k-packing to the odd k-term
problem. In Section 4 we describe a deterministic reduction of the k-path prob-
lem to the odd 3k/2-term problem. Finally in Section 5 we discuss some related
open questions.

2 Detecting Square-Free Terms with Odd Coefficients

Let X = x1, . . . , xn and let K[X] be the commutative ring of polynomials with
coefficients from the field K. Any non-zero polynomial Z2[X] is by definition a
sum (or equivalently a set) of monomials. A monomial is called square-free or
multilinear if it is linear in all its variables. The total degree of a monomial is the
sum of the degrees of its variables. In general, any polynomial P ∈ Z2[X] can
be represented as an arithmetic circuit which is a directed acyclic graph with
addition and multiplication gates, and terminals corresponding to the variables.

Definition 1. The ODD MULTILINEAR k-TERM problem: Given an arith-
metic circuit G decide whether the polynomial P (X) ∈ Z2[X] represented by G
contains a multilinear term of total degree k or less.

The main idea of our algorithm for this problem is the evaluation of the given
polynomial over a suitably selected commutative algebra. In a commutative alge-
bra the addition and multiplication operators behave in the same way as in the
common algebra of integers or reals. This enables looking at the polynomial in
two equivalent ways; its circuit representation allows its fast evaluation, whereas
its expanded form as a sum of monomials allows us reasoning about its value in
terms of the individual evaluations of its monomials. The slightly counterintu-
itive fact is that a commutative algebra may contain elements whose square is
0. We will exploit this to annihilate non-multilinear terms in the evaluation of
P . It turns out that this can be done using commutative group algebras of Zk2 .
We refer the reader to the Appendix for definitions and facts. We now give an
algorithm for the ODD MULTILINEAR k-TERM problem, that works with the
assumption that P contains only multilinear terms of degree exactly k. We will
then see how this restriction can be easily removed.

decide-multilinear: Given an instance of the ODD MULTILINEAR k-TERM
problem: (i) For each xi ∈ X , independently pick a random vector vi ∈ Zk2
and assign to it the value (v0 + vi) ∈ Z2[Zk2], where v0 is the k-dimensional
zero vector; Let X̄ denote the assignment xi ← v0 + vi. (ii) -[option 1]: If the
coefficient of v0 in P (X̄) is equal to 1, then return “yes” otherwise return “no”.
(ii) -[option 2]: Let bt denote the k dimensional vector containing the binary
form of t, Λ̄t denote the assignment xi ← 1 + (−1)v

T
i bt and Z =

∑2k−1
t=0 P (Λ̄t).

If Z is equal to 2k mod 2k+1 then return “yes”, otherwise return “no”.

578 I. Koutis

It may appear that given the two options for step (ii), decide-multilinear
gives two algorithms. However, in Theorem 2 we will prove that option 2 is
equivalent to option 1 and thus it just provides an alternative implementation;
from this we will derive our complexity claims. We will prove the soundness of the
algorithm in Theorem 1, using option 1. In order to proceed with the proofs we
need to introduce some notation. For simplicity let A denote Z2[Zk2]. If S ⊂ Zk2
is a set of vectors, we denote by π(S) their product in A. By convention, for
all sets V ⊆ Zk2 we will consider the empty set as a subset of S and we will let
π(∅) = v0. Note that π(A)π(B) = v0 if and only if π(A) = π(B). We let J denote
the element of A which is the sum of all vectors in Zk2 , that is J =

∑
v∈Zk

2
v. We

also say that an element w of A is split if it is the sum of exactly 2k−1 distinct
vectors.

By construction, each monomial evaluates to an element of the form Π(V) =∏
v∈V (v0 +v), where V ⊂ Zk2 . Using the fact that for all v ∈ Zk2 we have v0v = v,

we can expand Π(V) into a sum, to get

Π(V) =
∏

v∈V
(v0 + v) =

∑

S⊆V
π(S). (1)

Lemma 1. If the vectors in V ⊆ Zk2 are linearly dependent over Z2, Π(V)
evaluates to 0. If the vectors in V are linearly independent, Π(V) is a sum of
2|V | distinct vectors (including v0).

Proof. By definition, when the vectors in V are linearly dependent, there is
V ′ ⊆ V such that π(V ′) = v0. Then for all S ⊆ V ′ we have π(S)π(V ′− S) = v0,
which implies that π(S) = π(V ′ − S). Hence, every term in the sum expansion
(equality 1) of Π(V ′) is generated an even number of times, which gives us
Π(V ′) = 0. This in turn implies Π(V) = 0, because Π(V) = Π(V)Π(V − V ′).
This shows the first part of the Lemma. For the second part of the Lemma we
observe that for all Sa = Sb ⊆ V we have π(Sa) = π(Sb). To see why, note that if
π(Sa) = π(Sb), then π(Sa)π(Sb) = π(SaSb) = v0, which implies that the vectors
in (Sa ∪ Sb − Sa ∩ Sb) are linearly dependent, a contradiction. Therefore, since
there are 2|V | possible subsets of V (including ∅), Π(V) is a sum of 2|V | distinct
vectors (including v0). �

Lemma 2. Let Pk−1 ∈ Z2[X] be a sum of multilinear monomials of degree
exactly k − 1. [a] For all assignments X̄ of the form xi ← (v0 + vi), Pk−1(X̄)
is either split, or equal to 0, or equal to J . [b] In the case Pk−1(X̄) is split, we
have Probv∈Zk

2
((v0 + v)Pk−1(X̄) = J) = Probv∈Zk

2
((v0 + v)Pk−1(X̄) = 0) = 1/2.

Proof. Let Pk−1 =
∑
jMj where each Mj is a monomial of degree k − 1. We

will derive the Lemma by looking at I = (v0 + v)Pk−1(X̄) for a proper vector v.
Note that Zk2 contains 2k vectors. Lemma 1 then implies that for all v ∈ Zk2 and
all Mj , we have (v0 + v)Mj(X̄) = 0 or (v0 + v)Mj(X̄) = J . Therefore, we have
I = 0 or I = J , so the coefficient of any vector in I completely determines the
value of I.

Faster Algebraic Algorithms for Path and Packing Problems 579

Clearly, this allows the possibilities Pk−1(X̄) = 0 and Pk−1(X̄) = J . Now
assume that Pk−1(X̄) is a sum of t distinct vectors, where 1 < t < 2k. We have

I = (v0 + v)Pk−1(X̄) = Pk−1(X̄) + vPk−1(X̄).

Since vv1 = vv2 implies v1 = v2, it must be that vPk−1(X̄) is a sum of t distinct
vectors in Zk2 . Hence, every vector in the expansion of I is generated 0, 1 or 2
times. If some vector w is generated two times, its coefficient in I will be 0, and
hence I = 0.

Now pick a vector v such that vPk−1(X̄) contains a vector w which is not in
Pk−1(X̄); this is clearly always possible. In that case the coefficient of w in I
is 1, thus I = J . In addition I is a sum of at most 2t vectors, and since J is
the sum of 2k vectors, we must have t ≥ 2k−1. If t > 2k−1, a simple pigeonhole
argument shows that there must be a vector w′ which is generated two times in
I, implying that I = 0. This is a contradiction, so we must have t = 2k−1. The
[b] claim follows from the fact that t = 2k−1 and the observation that I contains
the vector v0 with probability 1/2, with respect to the choice of v. �

We are ready to prove the soundness of the algorithm.

Theorem 1. If P does not contain a multilinear term, the algorithm decide-
multilinear returns “no”. Otherwise it returns “yes” with probability greater
than 1/4.

Proof. For the first claim, note that every monomial q which is not multilinear
can be written as x2

i q
′ for some variable xi and monomial q′. Now observe that

x̄2
i = (v0 + vi)2 = 0. Hence x̄2

i q
′ = 0. So, if P does not contain multilinear terms,

all its terms evaluate to 0. Thus, P (X̄) = 0, and the algorithms returns “no”.
We will show the other direction using induction on the number of multilinear
terms in P . Recall our assumption that all these terms have degree exactly k.

Base case: Let V = {v1, . . . , vk} be k random vectors drawn independently
from Zk2 . The probability that a multilinear monomial of degree k evaluates
to J is by construction equal to Pr(

∏k
i=1(v0 + vi) = J). By Lemma 1, this

is equal to the probability that the vectors in V are linearly independent. By
standard linear algebra facts, given that {v1, . . . , vj−1} are linearly independent,
the vectors {v1, . . . , vj} are independent if and only if vj is not in the vector space
S generated by {v1, . . . , vj−1}. In Lemma 1 we showed that there are exactly
2j−1 distinct linear combinations of the j − 1 vectors, so there are 2k − 2j−1

vectors that are not in S. Hence,

Prob(
j∏

i=1

(v0 + vi) = 0) = (1 − 2j−1

2k
)Prob(

j−1∏

i=1

(v0 + vi) = 0) ≥
k∏

i=1

(1− 1
2i

).

The last product is lower bounded by (1/2)
∏k
i=2(1−1/i2) = (k+1)/(4k) > 1/4.

Inductive argument: If P is not a single monomial, then there is a variable x
such that P = xPk−1 + P ′ where x does not appear in P ′ = 0, and Pk−1 is a

580 I. Koutis

sum of multilinear terms of degree k− 1. Using Lemma 2[a] we can consider all
possible cases under which P evaluates to J , to get

Prob(xPk−1 + P ′ = J) =
Prob(P ′ = J)Prob(Pk−1 = 0 or Pk−1 = J/P ′ = J)+
Prob(P ′ = J)Prob(Pk−1 is split/P ′ = J)Prob(xPk−1 = 0/Pk−1 is split)+
Prob(P ′ = 0)Prob(Pk−1 is split/P ′ = 0)Prob(xPk−1 = J/Pk−1 is split) ≥
(1/2)Prob(Pk−1 is split) = Prob(xPk−1 = J).

The inequality came from dropping the first term and -after applying Lemma
2[b]- combining the remaining two. The probabilities are taken with respect to
the random assignment X̄. The polynomial xPk−1 contains less monomials than
xPk−1 + P ′, hence the inductive hypothesis applies. �
Let A be a commutative algebra and Ȳ be an assignment xi ← ȳi ∈ A, for
i = 1, . . . , n. We denote by PA(Ȳ) the evaluation of P at Ȳ over A.

Theorem 2. Options 1 and 2 for step (ii) of decide-multilinear are equiv-
alent. Furthermore, if the input circuit G can be evaluated over the integers
modulo 2k+1 in time t and space s, option 2 can be performed in O((nk + t)2k)
time and O(nk + s) space.

Proof. Let G be an arithmetic circuit with n variables X and P ∈ Z[X] be the
polynomial represented by G. Also, let X̄ be the assignment xi ← (v0 + vi), as
defined in decide-multilinear. Let ρ(u) denote the matrix representation of
u ∈ Z[Zk2] and trace(M) denote the sum of the diagonal elements of the matrix
M . Observe that

PZ[Zk
2](X̄) =

∑

g∈Zk
2

agg ⇒ PZ2[Zk
2](X̄) =

∑

g∈Zk
2

(ag mod 2)g. (2)

Thus, it is enough to consider the parity of the coefficient of v0 in PZ[Zk
2](X̄).

Moving to Z[Zk2] allows us working with the matrix representation of PZ[Zk
2](X̄),

which is given by
ρ(PZ[Zk

2](X̄)) =
∑

g∈Zk
2

agρ(g).

For each g ∈ Zk2 , ρ(g) is a permutation matrix of dimension 2k with zeros in
the diagonal, with the exception of the identity v0 of Zk2 , for which ρ(v0) is the
identity matrix. Hence all the diagonal entries of ρ(PZ[Zk

2](X̄)) are equal. This,
in combination with equality 2 implies that

PZ2[Zk
2](X̄) = 0 ⇒ trace(ρ(PZ[Zk

2](X̄))) = 0 mod 2k+1

PZ2[Zk
2](X̄) = J ⇒ trace(ρ(PZ[Zk

2](X̄))) = 2k mod 2k+1.

Now instead of evaluating P at xi ← (v0 + vi) over Z[Zk2], we can equivalently
evaluate it at xi ← ρ(v0 +vi) over the isomorphic matrix algebraM = ρ(Z[Zk2]),
and then compute (modulo 2k+1)

Faster Algebraic Algorithms for Path and Packing Problems 581

trace(PM(ρ(X̄))) = trace(ρ(PZ[Zk
2](X̄))).

By the representation theory of Zk2 , there is a matrix U of dimension 2k

such that for all v ∈ Zk2 , ρ(V) = UΛvU
−1, where Λv is a diagonal matrix

with the eigenvalues of ρ(v). Let Λi denote the diagonal matrix containing the
eigenvalues of ρ(v0 + vi) and Λ̄ denote the assignment xi ← Λi. Let Λi,j denote
the jth diagonal entry of Λi, and Λ̄j denote the assignment xi ← Λi,j . Using the
well known relationship of the trace with the eigenvalues, we have (taking all
quantities modulo 2k+1)

trace(PM(ρ(X̄))) = trace(UPM(Λ̄)U−1) = trace(PM(Λ̄)) =
2k
∑

j=1

PZ2k+1 (Λ̄j).

If bj is the k-bit binary form of j, we can fix a U so that Λi,j = 1 + (−1)v
T
i bj−1

[10]. This completes the proof for the equivalence of options 1 and 2.
We have reduced the original problem to 2k evaluations of P and the summa-

tion of the outputs over Z2k+1 . The 2k evaluations can be performed sequentially,
re-using the space, while the output sum is updated. The algorithm needs to
maintain in the memory the assignment X̄ which takes space O(kn). For each
j, the algorithm computes the input Λ̄j in O(nk) time. The evaluation of P (Λ̄j)
can be done in time O(t), and space O(nk + s), by assumption. Hence the total
time is O((nk + t)2k) and the space requirement is O(nk + s). �

Remark. If the smallest multilinear term in P has degree k− j, we can consider
Pj = (y1 . . . yj)P . By Lemma 1, any term of degree greater than k always evalu-
ates to 0, so running decide-multilinear on P ′ has the same effect as running
it with the assumed restriction. We omit the details to the full paper.

3 Reducing m-Set k-Packing to Multilinear mk-Term

Let us start with a formal definition of the set packing problem.

Definition 2. The m-SET k-PACKING problem (decision and search): Given
a collection C of N sets, each containing m elements from a universe U of n
elements, decide whether there is a collection C′ ⊆ C of k mutually-disjoint sets.
If yes, find such a collection C′.

The main result of this Section is the construction of a family PA(X) of 2|A|

packing-encoding polynomials, parameterized by a set A of variables taking bi-
nary values.

path-encoding polynomials: Given an instance I of the m-SET k- PACKING
problem: (i) assign variables X = {xi}, i = 1, . . . , n to the elements of U , (ii)
assign to the set Si ∈ C the degree m set-monomial Yi, defined as the product
of the variables corresponding to the elements of Si. (iii) Let A = {ai,j : i ∈
[1, k], j ∈ [1, N]} and define PA(X) =

∏k
i=1

(∑N
j=1 ai,jYj

)
.

582 I. Koutis

Theorem 3. Let P ∈ Z2[X] be a polynomial picked uniformly at random from
PA(X) by letting Prob(ai,j = 0) = Prob(ai,j = 1) = 1/2, independently for
all i, j. If I is a “yes” instance of the m-set k-packing problem, the polynomial
P ∈ Z2[X] has a multilinear term of degree mk with probability at least 1/4.
Otherwise, P has no multilinear terms.

Proof. It is clear that P can be expanded to a sum of what we will call set-
products, each of which is a product of k set-variables Yi. Each set-product is
itself a monomial and has total degree mk. If a set-product is a multiple of YiYj
for two intersecting sets Si and Sj, then by construction it is not multilinear. It
follows that if I does not contain a k-set packing, P has no multilinear terms.

Claim A: The coefficient cf(Y1 . . . Yk) (and thus of any product of k distinct set
variables) in P is odd with probability at least 1/4, with respect to the random
assignment to the coefficients ai,j .

To prove Claim A consider the k×k matrix Mi,j = ai,j . Let Sk denote the set of
all permutations of 1, . . . , k, and perm(M), det(M) denote the permanent and
the determinant of M . We have

cf(Y1 . . . Yk) =
∑

π∈Sk

k∏

i=1

ai,π(i) = perm(M) = det(M) (mod 2).

By standard linear algebra facts det(M) mod 2 = 0 if and only if the columns
of M are linearly dependent over Z2. However, the columns of M are random
vectors picked independently and uniformly from Zk2 . In the proof of Theorem 1
(base case of induction), we showed that the probability that they are linearly
independent is at least 1/4. This finishes the proof of Claim A •
Assume now that I has at least one k-set packing, and fix one. Clearly its set-
product is a multilinear term T of degree mk. The same multilinear term T
can be generated by a collection CT of distinct set-products, corresponding to
different k-set packings that cover the same subset of U . It is then enough to show
that the probability (with respect to the random assignment to the coefficients
ai,j) that CT generates an odd number of copies of T is at least 1/4. Let us
denote this probability by Prob(CT � 1).

Claim B: For all C′ ⊆ CT , there is a C′′ ⊂ C′ such that

Prob(C′′ � 1) ≤ Prob(C′ � 1).

Let Y = {Y1, . . . , YN} be the set of set-variables. Let CZ be a collection of set-
products that generate the same multilinear term T and share the common factor
Z ∈ Y. LetAS denote the set of assignments to the coefficients ai,j corresponding
to the variables of S ⊆ Y in the factors of P . Now fix an assignment A ∈
AY−Z and let ai,Z denote the coefficients that multiply Z in the factors of P .
Considering P as a function of ai,j , its partial evaluation at A is always of the
form

P (A) = R + T

(
k∑

i=1

ai,Zbi

)

Faster Algebraic Algorithms for Path and Packing Problems 583

where R is a sum of terms different than T , and bi = 0 or bi = 1 depending
only on A. It can be seen that there are two cases: (a) for all i, we have bi = 0
in which case for all assignments in AZ the polynomial P (A) does not contain
T , (b) there is at least one j for which bj = 1. In this case we say that CZ is
Z-dependent under the assignment A. Then, it is not hard to see that

ProbAZ (CZ � 1/CZ is Z-dependent) = 1/2. (3)

where as indicated by the notation the probability is taken with respect to the
assignments in AZ . Using the same notation, it follows that

ProbA(CZ � 1) = ProbA(CZ � 0) = (1/2)ProbAY −Z (CZ is Z-dependent) (4)

We are now ready to move to the main part of the proof of Claim B. In the
following, the probability subscripts are implied by the context, and we will drop
them for simplicity. Let C′ be an arbitrary subset of CT . Clearly, unless |C′| = 1,
there is Z ∈ Y such that C′ = CZ ∪CZ̄ where CZ contains all set-products in C′

that are multiple of a common factor of Z and CZ̄ = C′ − CZ = ∅. Considering
all possibilities, and appropriately using equalities 3 and 4, we have

Prob(C′ � 1) = Prob(CZ̄ � 1)Prob(CZ is not Z-dependent/CZ̄ � 1) +
Prob(CZ̄ � 1)Prob(CZ is Z-dependent/CZ̄ � 1)(1/2) +
Prob(CZ̄ � 0)Prob(CZ is Z-dependent/CZ̄ � 0)(1/2)

≥ (1/2)Prob(CZ is Z-dependent) = Prob(CZ � 1).

The inequality came from dropping the first term and combining the remaining
two. The set CZ is the set C′′ stated in Claim B. This completes the proof for
Claim B •
Finally we observe that Claim B can be used repeatedly to show that there
is a chain CT ⊃ C1 . . . ⊃ Cν , where |Cν| = 1, such that Prob(CT � 1) ≥
Prob(C1 � 1) ≥ . . . ≥ Prob(Cν � 1). Claim A gives that Prob(Cν � 1) ≥ 1/4
and the proof is completed. �

Theorem 4. There is an O∗(2km(km)2N) time algorithm such that, on a in-
stance I of the m-set k-packing problem, its output is “yes” with probability at
least 1/16 only if I contains a k-packing. In a “yes” instance, a k-packing can
be found with constant probability by O(N logN) calls to the decision algorithm.
Both the decision and the search algorithms use O(kn) space.

Proof. A random polynomial P from the family of packing-encoding polynomi-
als PA(X) can be constructed in O(kN) time. The polynomial P can be evalu-
ated over Zkm+1

2 with O(kmN) addition and multiplication operations involving
(km+ 1)-bits numbers, each of which takes O∗(km) time. It is clear that O(kn)
space is required to store an assignment over Zk2 to the variables, and it is not
hard to see that P can be evaluated in O(kn) space over Zk2 because apart from
the assignment to the variables, only three values must be kept around at any
given time. The proof follows by applying Theorem 2. The details of the search

584 I. Koutis

algorithm can be found in [7]. The key observation is that if C′ ⊆ C contains a
k-packing, then O(logN) calls of the decision algorithm on C′ − Z decide with
probability 1−1/N whether Z ∈ C′ is contained in all k-packings of C′ or C′−Z
contains a k-packing. Starting from C, the algorithm applies this procedure at
most N times to find the k-packing with probability (1− 1/N)N > 1/4. �

4 Reducing k-Simple Path to Multilinear 3k/2-Term

We start with a definition of the problem. We will work with directed graphs; if
the graph is undirected we can see it as a directed graph in the obvious way.

Definition 3. The k-PATH problem (decision and search): Given a graph G
with n vertices V and m directed edges E, decide whether the graph contains a
path of length k − 1 which connects k distinct vertices. If yes, find such a path.

Let Pt,v denote the set of directed paths of length t ending in v ∈ V . Let
X = {xv1, . . . , xvn} be a set of n variables corresponding to the vertices of G,
and Y = ∪kt=1 ∪(vi,vj)∈E yvi,vj ,t be a set of nk variables where each (directed)
edge corresponds to k variables; the k different copies are intended to encode
the position of the edge along a path of length k. If p = (v1, v2, . . . , vt) is a path
of length t− 1 we define its encoding to be

enc(p) =

(
t∏

i=1

xvi

) ⎛

⎝
�t/2�∏

j=1

yv2j−1,v2j ,2j−1

⎞

⎠

and the t-path encoding polynomial for v ∈ V as P (t, v) =
∑
p∈Pt,v

enc(p).

Lemma 3. For a path p, the encoding enc(p) is multilinear if and only if p is
simple. If p1, p2 are two distinct simple paths then enc(p1) = enc(p2). Hence,
the path encoding polynomial Pk =

∑
v∈V P (k, v) contains a multilinear term of

degree k + �k/2� if and only if G contains a simple path k.

Proof. If p is not a simple path then clearly the first factor in enc(p) contains
a squared variable. If p is simple, then all the vertices and edges it uses are
distinct so enc(p) is multilinear. Now notice that a directed path p is completely
determined by: (i) its sink vertex, (ii) the list of the directed edges whose source
is at even distance from the first vertex on the path, along with their positions
in p. This list is completely determined by the second factor in p(e), while if the
sink vertex is missing in the list (when p has an even number of edges) it can be
recovered from the first factor in p(e). Hence every simple k-path ending in v is
mapped to a distinct (thus with a unit coefficient) multilinear monomial in Pk,
and the monomial has degree k + �k/2�. �
We now describe a circuit for the computation of Pk. By convention we define
P (0, v) = xv. Assume we have constructed a circuit for P (t− 1, v) for all v ∈ V .
It is not hard to see that the circuit for P (t, v) can be constructed as follows:

P (t, v) =
∑

(u,v)∈E
xv(yu,v,t)(t mod 2)P (t− 1, u).

Faster Algebraic Algorithms for Path and Packing Problems 585

Theorem 5. There is an O∗(23k/2k2m) time algorithm such that, on a graph G,
it returns “yes” with probability at least 1/4 only if the graph contains a simple k-
path. In a “yes” instance, a simple k-path can be found with O∗(n+min(k2,m))
applications of the decision algorithm. Both the decision and the search algorithm
use O(k2m) space.

Proof. The algorithm runs decide-multilinear on Pk =
∑
v∈V P (k, v). Given

the values for P (t−1, v), the values P (t, v) can be computed with O(m) additions
and multiplications in Zk+1

2 . Hence the polynomial P (k, v) can be evaluated over
Zk+1

2 with O(km) operations taking O∗(k) time each. For all t the circuit needs
to remember ((k/2)m+n) variable values and the n values of P (t−1, v), taking
space O(k2m). The claim follows by applying Theorem 2. The algorithm and
proof for the search version of the problem is similar to those for the search ver-
sion of the m-set k-packing. Roughly, the algorithm will keep removing vertices
until it is left with an induced k-subgraph which still contains a k-path, and
then it will remove up to O(k2) edges until it is left with a k-path. �

Remark 1. Assume that there is a subset V ′ ⊆ V with |V ′| = k such that the
number nV ′ of (directed) Hamiltonian paths in the graph induced by V ′ is odd.
If we set the edge variables to Y = 1 in the definitions of the path encodings,
it is not hard to see that the coefficient of

∏
v∈V ′ xv in Pk(Y = 1) is equal to

nV ′ .This observation can be used to reduce the time complexity to O∗(2kk2m)
and the space to O(kn + m).

5 Open Questions

It is a possibility that the algorithms in this paper can be derandomized. A
basic step seems to be the construction of a family of assignments F : X → Zk2 ,
such that for each k-subset X ′ of X , there is an assignment in F under which
the vectors in X ′ are linearly independent over Z2. Since a random assignment
satisfies this with probability at least 1/4, it is a plausible conjecture that there
is a polynomial size F with the required property.

References

1. Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856
(1995)

2. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, match-
ing, and packing problems. In: SODA 2007: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, Philadelphia, PA, USA. Society
for Industrial and Applied Mathematics, pp. 298–307 (2007)

3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

4. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F.A., Stege, U.,
Thilikos, D.M., Whitesides, S.: Faster fixed-parameter tractable algorithms for
matching and packing problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS,
vol. 3221, pp. 311–322. Springer, Heidelberg (2004)

586 I. Koutis

5. Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set pack-
ing. J. Algorithms 50(1), 106–117 (2004)

6. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: Divide-and-color. In: WG: Graph-
Theoretic Concepts in Computer Science, 32nd International Workshop, pp. 58–67
(2006)

7. Koutis, I.: A faster parameterized algorithm for set packing. Information Processing
Letters 94(1), 4–7 (2005)

8. Liu, Y., Lu, S., Chen, J., Sze, S.-H.: Greedy localization and color-coding: Improved
matching and packing algorithms. In: Bodlaender, H.L., Langston, M.A. (eds.)
IWPEC 2006. LNCS, vol. 4169, pp. 84–95. Springer, Heidelberg (2006)

9. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of the V-C dimension. J. Comput. Syst. Sci. 53(2), 161–170 (1996)

10. Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge Uni-
versity, Cambridge (1999)

11. Valiant, L.G.: Why is boolean complexity difficult? In: Boolean Function Complex-
ity. Lond. Math. Soc. Lecure Note Ser, vol. 169

Appendix: Group Algebras of Zk
2 and Their Representation

Let Zk2 be the group consisting of k-dimensional 0-1 vectors with the group
multiplication being entry-wise addition modulo 2. The group algebra K[Zk2],
where K is a field, is the set of all linear combinations of the form

∑
v∈Zk

2
avv

where av ∈ K. The addition operator of K[Zk2] is defined by
∑
v∈Zk

2
avv +

∑
v∈Zk

2
bvv =

∑
v∈Zk

2
(av + bv)v. Multiplication by a scalar α ∈ K is defined

by α
∑
v∈Zk

2
avv =

∑
v∈Zk

2
(αav)v. The multiplication operator of K[Zk2] is de-

fined by
(∑

v∈Zk
2
avv

) (∑
u∈Zk

2
buu

)
=

∑
v,u∈Zk

2
(avbu)(uv). It can be verified

that K[Zk2] is commutative. In the particular case of Z2[Zk2], an element can also
be seen as a subset of Zk2 .

Matrices of dimension d with integer entries form a group Md×d with matrix
multiplication and an algebra Md×d with matrix addition, multiplication by a
scalar, and matrix multiplication. It is well known ([10], p. 172), that there is
a one-to-one map ρ : Zk2 → M2k×2k

such that ρ(uv) = ρ(u)ρ(v). The map ρ
is an isomorphism. The map ρ can be extended to a one-to-one map of Z[Zk2]
to M2k×2k

, as follows: ρ(
∑
v∈Zk

2
avv) =

∑
v∈Zk

2
avρ(v). It can be verified that if

w1, w2 are elements of Z[Zk2] and α ∈ Z, we have ρ(w1 + w2) = ρ(w1) + ρ(w2),
ρ(w1w2) = ρ(w1)ρ(w2) and ρ(αw1) = αρ(w1). Hence, the map ρ defines an
isomorphic matrix algebra which we will denote by ρ(Z[Zk2]).

The matrices ρ(Zk2) are simultaneously diagonalizable, i.e. there is a matrix U
such that for all v ∈ Zk2 , we have ρ(v) = U−1ΛvU , where Λv are the eigenvalues
of ρ(v), also known as the characters of v. If b(i) is the vector containing the
k-bit binary form of i, the ith eigenvalue of ρ(v) is given by (−1)v

T b(i) [10].

Understanding the Complexity of Induced

Subgraph Isomorphisms

Yijia Chen1, Marc Thurley2, and Mark Weyer2

1 BASICS, Department of Computer Science, Shanghai Jiaotong University, 200030
Shanghai, China

2 Institut für Informatik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany

Abstract. We study left-hand side restrictions of the induced subgraph
isomorphism problem: Fixing a class C, for given graphs G ∈ C and
arbitrary H we ask for induced subgraphs of H isomorphic to G.

For the homomorphism problem this kind of restriction has been stud-
ied by Grohe and Dalmau, Kolaitis and Vardi for the decision problem
and by Dalmau and Jonsson for its counting variant.

We give a dichotomy result for both variants of the induced subgraph
isomorphism problem. Under some assumption from parameterized com-
plexity theory, these problems are solvable in polynomial time if and only
if C contains no arbitrarily large graphs.

All classifications are given by means of parameterized complexity.
The results are presented for arbitrary structures of bounded arity which
implies, for example, analogous results for directed graphs.

Furthermore, we show that no such dichotomy is possible in the sense
of classical complexity. That is, if P �= NP there are classes C such that
the induced subgraph isomorphism problem on C is neither in P nor NP-
complete. This argument may be of independent interest, because it is
applicable to various parameterized problems.

1 Introduction

Given graphs G and H , the induced subgraph isomorphism problem asks for the
existence of induced subgraphs of H isomorphic to G. A wide variety of graph
theoretic problems can be formulated in this way, as is the case for the induced
path or induced cycle problem. By the fact that the independent set problem
is also an induced subgraph isomorphism problem, the latter is obviously NP-
complete.

This inherent intractability is highly unsatisfactory, as it does not give any in-
sight into the complexity of more restricted subproblems such as e.g. the induced
path problem, necessitating separate investigation [3]. To uniformly study the
complexity of such subproblems of the induced subgraph isomorphism problem,
we therefore consider restrictions of this problem in the following way. Fixing a
class C of graphs, we consider only inputs G ∈ C whereas H is still an arbitrary
graph.

For the related homomorphism problem, the complexity of this kind of re-
strictions has been described in [5,10] in terms of a dichotomy: If C has bounded

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 587–596, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

588 Y. Chen, M. Thurley, and M. Weyer

treewidth up to homomorphic equivalence, the homomorphism problem is in
polynomial time, otherwise it is intractable in the sense of parameterized com-
plexity. A similar dichotomy from [4] states that for the counting version poly-
nomial time is equivalent to bounded treewidth.

In this paper we settle the complexity of the restricted induced subgraph
isomorphism problem by giving a further dichotomy. For both the decision and
the counting variant, we show that the problem is computable in polynomial time
if and only if there is an absolute bound on the size of the graphs in the class C.
Otherwise, the problem is intractable in terms of parameterized complexity.

We give two different proofs for the two versions of this problem. We prove
the dichotomy for the decision problem based on the result from [10]. For the
counting version, we give a more direct proof using an inclusion-exclusion style
argument. This cannot be applied to the decision case.

Furthermore, all proofs will be given for arbitrary structures of bounded ar-
ity. Therefore, our results are not only applicable to graphs. They also extend
to analogous results for the induced subgraph isomorphism problems on e.g. di-
rected graphs, on coloured graphs, and on hypergraphs with bounded edge-size.

The fact that our hardness results rely on parameterized complexity theory
raises the question of whether a similar dichotomy in terms of classical complex-
ity could possibly be established. Using a Ladner-style argument (compare [11])
we show that this is not the case, unless P = NP (or FP = #P for the count-
ing problem, resp.). More precisely, there are classes C such that the restricted
induced subgraph isomorphism problem is neither in P nor NP-complete. This
result is presented in a universal way which enables us to derive analogs for e.g.
the homomorphism problem and the corresponding counting problems. Note
that, for the homomorphism problem itself, a similar result has also been shown
independently by [2].

Due to space limitations we have to defer some proofs to the full version of
the paper.

2 Preliminaries

Structures. We only consider relational vocabularies. Hence, a vocabulary is a
set of relational symbols, each having an arity in N. The arity of the symbol R is
denoted ar(R). The arity of a vocabulary is the maximal arity of its symbols. Let
τ be a vocabulary. A structure A of vocabulary τ , or τ-structure for short, is a
tuple (A, (RA)R∈τ), where the universe A of A is some set and RA ⊆ Aar(R) for
all R ∈ τ . As we have done here, whenever we denote a structure by a German
type letter, its universe is implicitly denoted by the corresponding Roman type
letter. For algorithmic purposes, all vocabularies and universes are finite. The
arity of a structure is the arity of its vocabulary.

Let A and B be structures of the same vocabulary τ . A is a substructure of
B, if A ⊆ B and RA ⊆ RB for all R ∈ τ . A is an induced substructure of B,
if furthermore RA = RB ∩ Aar(R) for all R ∈ τ . A homomorphism from A to
B is a function f : A → B such that for all R ∈ τ , we have f(RA) ⊆ RB.

Understanding the Complexity of Induced Subgraph Isomorphisms 589

An embedding is a homomorphism that is injective. A strong embedding is an
embedding f such that f(RA) = RB∩f(A)ar(R) for all R ∈ τ . Note that (strong)
embeddings coincide with isomorphisms to (induced) substructures.

For a structure A, say of vocabulary τ , the Gaifman graph G(A) of A is the
graph with vertex set A such that there is an edge between a and a′ for a = a′

if and only if there is some R ∈ τ , say of arity r, some (a1, . . . , ar) ∈ RA, and
some 1 ≤ i, j ≤ r such that a = ai and a′ = aj .

Parameterized Complexity. Let Σ be a finite alphabet. A parameterization of Σ
is a polynomial time computable mapping κ : Σ∗ → N. A parameterized decision
problem is a pair (P, κ) with P ⊆ Σ∗ and κ a parameterization. Similarly, a
parameterized counting problem is a pair (F, κ) with F : Σ∗ → N and κ a
parameterization. For problem instances x ∈ Σ∗, the value κ(x) is called the
parameter of x.

An algorithm is a fixed-parameter algorithm, if there is a computable function
f : N → N and a constant c ∈ N such that for all x ∈ Σ∗ the algorithm stops
after at most f(κ(x))·|x|c steps. A parameterized decision problem (P, κ) is fixed-
parameter tractable, if there is a fixed-parameter algorithm which, for all x ∈ Σ∗,
decides if x ∈ P . The class of all such problems is denoted by FPT. Fixed-
parameter tractable parameterized counting problems are defined analogously,
with fixed-parameter algorithms computing F (x) and FFPT being the class of
all of these problems.

In all well-behaved cases, our hardness results hold for the usual strongly uni-
form reductions. In general, however, we need nonuniform reductions for tech-
nical reasons. Therefore we define both versions, starting with the nonuniform
variants. Note that FPT and FFPT are not closed under these, nor do we need
them to be.

An FPT many-one reduction from a parameterized problem (P, κ) to a pa-
rameterized problem (P ′, κ′) with P ⊆ Σ∗ and P ′ ⊆ (Σ′)∗ is a family (fi : Σ∗ →
(Σ′)∗)i∈N with the following properties: There is a c ∈ N and some h : N → N
such that on inputs of length n, every fi is computable in time h(i) · nc. Fur-
thermore there is some g : N → N such that for all x ∈ Σ∗ and y := fκ(x)(x), we
have x ∈ P if and only if y ∈ P ′ and κ′(y) ≤ g(κ(x)).

The corresponding reductions for counting problems are defined similarly. Let
(F, κ) and (F ′, κ′) be parameterized counting problems with F : Σ∗ → N and
F ′ : (Σ′)∗ → N. An FPT parsimonious reduction from (F, κ) to (F ′, κ′) is a
family (fi : Σ∗ → (Σ′)∗)i∈N such that for a fixed c ∈ N and h : N → N, on
inputs of length n, every fi is computable in time h(i) ·nc. Furthermore there is
some g : N → N such that for all x ∈ Σ∗ and y := fκ(x)(x) we have F (x) = F ′(y)
and κ′(y) ≤ g(κ(x)).

To develop our results, we need a second notion of reductions between count-
ing problems. With (F, κ) and (F ′, κ′) as above, an FPT Turing reduction from
(F, κ) to (F ′, κ′) is a family of functions (fi : Σ∗ → N)i∈N with the follow-
ing properties. For all x ∈ Σ∗ we have F (x) = fκ(x)(x). Furthermore, there
are g, h : N → N and c ∈ N such that on inputs on length n, every fi can be

590 Y. Chen, M. Thurley, and M. Weyer

computed in time h(i) · nc by an algorithm with oracle access to F ′ such that
every oracle query F ′(y) satisfies κ′(y) ≤ g(i).

The above reductions become strongly uniform if we further stipulate that
the given families and the mappings g, h : N → N be computable.

Downey and Fellows [6] defined a hierarchy of complexity classes of decision
problems FPT ⊆ W[1] ⊆W[2] ⊆ . . ., conjecturing that all of the given inclusions
are strict. Analogs of this hierarchy in terms of counting problems have been
proposed in [12] and, in slightly different form, in [8]. The differences between
these definitions do not affect the aim of our paper. For our purposes, we rely
on [8] which define a hierarchy FFPT ⊆ #W[1] ⊆ #W[2] ⊆ . . . with the same
conjecture as before, that all inclusions are strict. We will be concerned only
with the first level W[1] (#W[1], respectively) of these hierarchies.

Usually, these classes are defined such that they are closed under strongly
uniform reductions. Nonuniform versions are immediate, however. For ease of
presentation, we will denote both versions by W[1] respectively #W[1]. We will
rely on two results, namely Theorem 7 explained below and the following.

Theorem 1 (Flum and Grohe [8]). p-#Clique is #W[1]-complete under
strongly uniform FPT parsimonious reductions, where p-#Clique is the classical
Clique problem parameterized by the size of the clique we are looking for.

As each strongly uniform reduction is nonuniform, this gives hardness for both
variants of #W[1].

For a class C of structures, the problem Hom(C) asks, when given a structure
A ∈ C and an arbitrary structure B, whether there is a homomorphism from A
to B. Similarly, we define restrictions of the problems Emb and StrEmb asking,
whether a structure A is isomorphic to a substructure, respectively an induced
substructure, of a structure B. In some contexts these problems are called the
embedding and strong embedding problem – hence the abbreviations Emb and
StrEmb.

Further, #Hom, #Emb, #StrEmb are their counting analogs, which ask
for the number of such homomorphisms or isomorphisms, and p-Hom, p-Emb,
p-StrEmb, p-#Hom, p-#Emb, and p-#StrEmb are the parameterized versions,
where the parameter is |A|. Note that the membership of all of these problems
in W[1] (#W[1], respectively) is well-known. This follows, for example, from [7]
and [8].

3 The Dichotomies

Throughout this paper we assume that C is a class of structures of bounded
arity, i.e., there is a bound r0 such that no structure in C has arity beyond r0.

Furthermore, we say that C is meagre, if there is some n0 ∈ N such that for
all A ∈ C of arity at least 2 we have |A| ≤ n0.

Theorem 2 (p-StrEmb(·) Dichotomy). Let C be a class of structures of
bounded arity.

Understanding the Complexity of Induced Subgraph Isomorphisms 591

If C is meagre, then StrEmb(C) ∈ P. Otherwise, p-StrEmb(C) is complete for
W[1] using nonuniform FPT many-one reductions.

If C is recursively enumerable, then W[1]-completeness holds even for strongly
uniform FPT many-one reductions.

Theorem 3 (p-#StrEmb(·) Dichotomy). Let C be a class of structures of
bounded arity.

If C is meagre, then #StrEmb(C) ∈ FP. Otherwise, p-#StrEmb(C) is com-
plete for #W[1] using nonuniform FPT Turing reductions.

If C is recursively enumerable, then #W[1]-completeness holds even for
strongly uniform FPT Turing reductions.

For membership in P or FP, we view our problems as promise problems, unless
C happens to be decidable in polynomial time. When we consider classes of
graphs instead of classes of arbitrary structures, then arity 2 is guaranteed.
Hence meagreness just means bounded size and the theorems read as follows:

Corollary 4. Let C be a class of graphs.
If the graphs in C have bounded size, then StrEmb(C) ∈ P. Otherwise,

p-StrEmb(C) is complete for W[1] under FPT many-one reductions.
The analogue holds for the counting problem.

The first parts of Theorem 2 and Theorem 3 are easy:

Lemma 5. If C is meagre, then #StrEmb(C) ∈ FP and StrEmb(C) ∈ P.

Hence, in the following we may assume that C contains arbitrarily large struc-
tures of arity at least 2.

Roughly speaking, we want to find structures in C which exhibit large cliques.
We can do this only up to taking complements. So, for a τ -structure A, define the
complement Acomp of A as the following τ -structure: The universe is again A, and
for each relational symbol R ∈ τ , say of arity r, we have RAcomp

= Ar \RA. For
a class C of structures, let Ccomp := {Acomp | A ∈ C} be the class of complements
of structures in C. Note that this is not the complement of C.

The following lemma is immediate.

Lemma 6. p-StrEmb(C) ≡FPT p-StrEmb(Ccomp) by parsimonious reductions.

For a structure A and a symbol R in its vocabulary, say of arity r ≥ 2, let

D(A, R) := (A, {(a, b) ∈ A2 | a = b, (a, . . . , a, b) ∈ RA})

be the digraph associated with A and R. For any given k ∈ N and sufficiently
large A, Ramsey’s Theorem guarantees that D(A, R) contains a clique or a tour-
nament or an independent set of size k. Then, at least one of D(A, R) and
D(Acomp, R) contains a clique or a tournament of size k. Hence, for at least
one of C and Ccomp we can find arbitrarily large cliques or tournaments in the
digraphs associated with its structures. Using Lemma 6, we can assume without
loss of generality that this is the case for C. Then, in particular, the Gaifman
graphs of structures in C contain arbitrarily large cliques.

From this point on, the proofs for Theorem 2 and Theorem 3 diverge.

592 Y. Chen, M. Thurley, and M. Weyer

3.1 Hardness of Deciding

First to the proof of Theorem 2. We use ≤FPT to denote nonuniform FPT many-
one reducibility in the general case. If C is recursively enumerable, we instead
intend it to denote strongly uniform FPT many-one reducibility.

We base the hardness part of Theorem 2 on the following result:

Theorem 7 (Grohe [10]). If C is a class of structures with cores of unbounded
treewidth, then p-Hom(C) is hard for W[1].

Some explanations are in order. Hardness uses, just as we need it, nonuniform
FPT many-one reductions, which are strongly uniform in case C is recursively
enumerable. As to the notions of cores and treewidth, let us omit the definitions
and just state the two facts we actually need:

1. The core of a structure A is some particular homomorphic image of A in A.
2. If G(A) contains a clique of size k, then the treewidth of A is at least k− 1.

A relation R ⊆ Ar is antireflexive, if for all a ∈ A we have (a, . . . , a) ∈ R.
A structure is antireflexive, if all its relations are. For a given structure A, the
antireflexive part Aantiref of A is obtained from A by deleting all tuples of the
form (a, . . . , a) from all relations of A. Further, let Cantiref := {Aantiref | A ∈ C}.
If C is recursively enumerable, then so is Cantiref .

Lemma 8. p-Hom(Cantiref) ≤FPT p-StrEmb(C).

Proof: Assume given an input (A′,B) to the reduction. Let A be such, that
A′ = Aantiref . In case C is recursively enumerable, such an A can be found
effectively, otherwise there is no need for effectiveness because we use nonuniform
reductions.

Define the structure C as the following variant of A ⊗ B: The universe is
C = A×B and for each symbol R, say of arity r, let

RC := {((a1, b1), . . . , (ar, br) | (a1, . . . , ar) ∈ RA, (b1, . . . , br) ∈ RB}
∪ {((a, b), . . . , (a, b)) | (a, . . . , a) ∈ RA, b ∈ B}.

Now if f : A→ B is a homomorphism from A′ to B, then g : A→ C defined
by g(a) = (a, f(a)) is a strong embedding of A in C. Conversely, if g : A→ C is
a strong embedding of A in C, then the projection of g to B is a homomorphism
from A′ to B.

Hence, the reduction outputs (A,C). �

Proof of Theorem 2: Lemma 5 already covered the lower part of the dichotomy.
For the upper part, membership in W[1] is widely known (see e.g. [9].

For hardness, let C contain arbitrarily large structures of arity at least 2.
We have already seen that without loss of generality, the digraphs associated
with structures from C contain arbitrarily large cliques or tournaments. For ease
of presentation, let us assume only the latter. Say, A ∈ C and R satisfy that

Understanding the Complexity of Induced Subgraph Isomorphisms 593

D(A, R) contains a tournament of size k. Then D(Aantiref , R) still contains the
tournament. Every homomorphic image of this tournament into an antireflexive
structure is necessarily injective. As Aantiref itself is antireflexive, it follows for
the core A′ of Aantiref , that D(A′, R) contains a tournament as a subdigraph.
Then, G(A′) contains a clique of size k, so A′ has treewidth at least k− 1. As k
is arbitrary, the cores of structures from Cantiref have unbounded treewidth.

Using Theorem 7, we conclude that p-Hom(Cantiref) is W[1]-hard. Lemma 8
then implies the W[1]-hardness of p-StrEmb(C). �

3.2 Hardness of Counting

We now turn to the proof for the counting problems. Generally, we use ≤FPT−T

to denote nonuniform FPT Turing reducibility. If C is recursively enumerable,
we instead intend it to denote strongly uniform FPT Turing reducibility.

Proof of Theorem 3: Membership of p-#StrEmb(C) in #W[1] is well-known
[8] and if C is meagre, then Lemma 5 implies membership in FP.

So we may assume that C contains arbitrarily large structures of arity at least
2. By the above considerations, we can accordingly assume that the Gaifman
graphs of structures in C contain arbitrarily large cliques. We show hardness,
by giving an FPT Turing reduction from p-#Clique to p-#StrEmb(C). Let G =
(V,E) be a graph and k ∈ N. First we find a structure A ∈ C such that G(A)
contains a k-clique. We assume A = [k′] with k′ ≥ k and G(A)
 [k] is a k-clique.
Let τ be the vocabulary of A. We define a τ -structure B = B(A, G, k) with
universe

B :=
(
V × [k]

)
∪̇ [k + 1, k′].

To define the relations of B, we need two projections π1 : B → V ∪̇ {⊥} and
π2 : B → A defined by

π1(b) :=

⎧
⎪⎪⎨

⎪⎪⎩

u, if b = (u, i) for some
u ∈ V and i ∈ [k]

⊥, if b ∈ [k + 1, k′],

π2(b) :=

⎧
⎪⎪⎨

⎪⎪⎩

i, if b = (u, i) for some
u ∈ V and i ∈ [k]

b, if b ∈ [k + 1, k′].

Now for every R ∈ τ with arity r we let

RB :=
{
(b1, . . . , br) ∈ Br | (π2(b1), . . . , π2(br)) ∈ RA and (1)

{π1(b1), . . . , π1(br)} \ {⊥} is a clique in G
}
.

By our bounded arity assumption, we always have r ≤ r0 here, hence |B| is
polynomial in |A| and k.

Let h be a strong embedding from A to B. We call h good if

π2(h(A)) = [k′] (2)

594 Y. Chen, M. Thurley, and M. Weyer

Note that this implies that π2 is bijective on h(A). Then we can establish:

Claim 1. For every good h, if we let
{
(vi, i)

}
:= h(A) ∩

(
V × {i}

)

for every i ∈ [k], then the set {v1, . . . , vk} is a k-clique in G. /
The proof of the next claim is straightforward.

Claim 2. Let ū := (u1, . . . , uk) ∈ V k such that {u1, . . . , uk} is a k-clique in G.
Then the mapping hū : A→ B with

hū(i) :=

⎧
⎨

⎩

(ui, i), if i ∈ [k],

i, if i ∈ [k + 1, k′]

is a good strong embedding from A to B. /
Let η be the number of good strong embeddings from A to B, α :=

∣
∣Aut(A)

∣
∣

the number of automorphisms of A, and κ the number of k-cliques in G. Then:

Claim 3
κ =

η

α · k!
/

Theorem 3 now follows, if we can show how to compute the number η of good
strong embeddings from A to B. This is done using the principle of inclusion
and exclusion:

For a τ -structure B and a set X ⊆ B let B[X] denote the induced substructure
of B defined by X , i.e. B[X] = (X, (RB ∩ Xar(R))R∈τ). Define for every set
I ⊆ [k′] the structure BI := B[π−1

2 (I)]. Let StrEmb(A,BI) denote the set
of strong embeddings from A to BI and let bI be the value returned by the
p-#StrEmb(C) oracle on input (A,BI), i. e. bI = |StrEmb(A,BI)|. Furthermore,
define CI as the set of strong embeddings f : A → B satisfying π2(f(A)) = I.
Let cI := |CI |. The definition of CI immediately implies that C[k′] is the set of
all good strong embeddings of A into B.

Obviously, StrEmb(A,BI) =
⋃̇
I′⊆I CI′ for all I ⊆ [k′]. Hence

cI = bI −
∑

I′�I

cI′ .

Then, by recursion on |I|, we can compute the 2k
′
values cI from our knowledge

of the values bI . As k′ is bounded in terms of the parameter k, we can compute
all of the 2k

′
values by 2k

′
oracle calls within the time bounds of an FPT Turing

reduction. �

4 The Nondichotomies

For a parameterized (decision, counting, or otherwise) problem (Q, κ) and A ⊆
N, the restriction of (Q, κ) to A, denoted (Q, κ)
 A, is the classical problem

Understanding the Complexity of Induced Subgraph Isomorphisms 595

Q, restricted to inputs x such that κ(x) ∈ A. We consider the case that A is
decidable in polynomial time (A ∈ P), when numbers are encoded in unary.

Let ≤ denote the reducibility for Q, e.g. polynomial time many-one reducibil-
ity for decision problems and polynomial time Turing reducibility for counting
problems. If A1, A2 ⊆ N are in P and A1 ⊆ A2, and if Q is nontrivial, then,
clearly, (Q, κ)
 A1 ≤ (Q, κ)
 A2. Hence the lattice of polynomial time decid-
able subsets of N induces a partial order of degrees witnessed by restrictions of
(Q, κ). We now establish a dense linear suborder.

Theorem 9. Let (Q, κ) be a parameterized problem. Assume that Q is not solv-
able in polynomial time, but that (Q, κ) is solvable in XP time, i. e. on input x
in time |x|g(κ(x)) for some function g : N → N.

Then there is a dense linear order O of polynomial time decidable subsets of
N such that for all A1, A2 ∈ O with A1 � A2 we have (Q, κ)
 A2 ≤ (Q, κ)
 A1.

The proof follows the lines of Ladner’s classical argument.

Corollary 10. If P = NP, respectively P = #P, then the complexities of prob-
lems of the form StrEmb(C), respectively #StrEmb(C), with C being some poly-
nomial time decidable class of graphs, contain a dense linear order between P
and NP, respectively between P and #P.

The same holds for the homomorphism and embedding problems, and for
structures instead of graphs.

The order’s denseness implies that there is no finite classification of the unpa-
rameterized complexities of problems of the form StrEmb(C). Contrast this to
our dichotomies.

As noted in the introduction, [2] contains an independently obtained proof of
the fact that there is a polynomial time decidable class C of structures such that
Hom(C) is neither in P nor complete for NP.

5 Conclusion and Open Problems

We give dichotomy results for the complexity of the restricted induced subgraph
isomorphism problem. The upper parts of both our dichotomies are parameter-
ized hardness, while the lower parts are classical tractability. Strong evidence
is given that classifications of these problems cannot be given by classical com-
plexity theory alone.

We were not able to classify the restricted subgraph isomorphism problem
p-Emb(C). The decision problem is known to be fixed-parameter tractable if C is
of bounded tree-width [1]. If C is of unbounded treewidth modulo homomorphic
equivalence, then the problem is easily seen to be W[1]-hard. A natural example
of the remaining cases is C = {Kk,k | k ∈ N} for which p-Emb(C) coincides with
the complete bipartite subgraph problem ([9], p. 355).

A classification of the counting problem p-#Emb(C) is wide open as well.
Clearly, this problem is hard if C is of unbounded treewidth. However, treewidth

596 Y. Chen, M. Thurley, and M. Weyer

is not the measure of choice here, as p-#Emb(C) is hard even if C is the class
of all paths [8]. A natural example of the unknown cases is the parameterized
problem of counting matchings [8].

Acknowledgement

Lemma 8 and its proof were suggested by an anonymous referee. The authors’
original proof of Theorem 2 was much more complicated. Further thanks are due
to Jörg Flum, Martin Grohe and Berit Grußien for comments on earlier versions
of this paper. The first author also acknowledges the support of the National
Nature Science Foundation of China (60673049).

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Bodirski, M., Grohe, M.: Non-dichotomies in Constraint Satisfaction Complexity.

In: Proceedings of the 35th International Colloquium on Automata, Languages and
Programming (ICALP 2008, Track B) (to appear, 2008)

3. Chen, Y., Flum, J.: On parameterized path and chordless path problems. In: Pro-
ceedings of the Twenty-Second Annual IEEE Conference on Computational Com-
plexity, pp. 250–263. IEEE Computer Society, Los Alamitos (2007)

4. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from
the other side. Theor. Comput. Sci. 329(1-3), 315–323 (2004)

5. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded
treewidth, and finite-variable logics. In: Proceedings of the 8th International Con-
ference on Principles and Practice of Constraint Programming, CP 2002, pp. 310–
326 (2002)

6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
Basic results. SIAM J. Comput. 24(4), 873–921 (1995)

7. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model-
checking. SIAM J. Comput. 31(1), 113–145 (2001)

8. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
J. Comput. 33(4), 892–922 (2004)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

10. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1) (2007)

11. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1),
155–171 (1975)

12. McCartin, C.: Parameterized counting problems. Ann. Pure Appl. Logic 138(1-3),
147–182 (2006)

Spanners in Sparse Graphs

Feodor F. Dragan1, Fedor V. Fomin2, and Petr A. Golovach2

1 Department of Computer Science, Kent State University, Kent, Ohio 44242, USA
dragan@cs.kent.edu�

2 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway
fedor.fomin,petr.golovach@ii.uib.no��

Abstract. A t-spanner of a graph G is a spanning subgraph S in which
the distance between every pair of vertices is at most t times their dis-
tance in G. If S is required to be a tree then S is called a tree t-spanner
of G. In 1998, Fekete and Kremer showed that on unweighted planar
graphs the tree t-spanner problem (the problem to decide whether G
admits a tree t-spanner) is polynomial time solvable for t ≤ 3 and is
NP-complete as long as t is part of the input. They also left as an open
problem whether the tree t-spanner problem is polynomial time solvable
for every fixed t ≥ 4. In this work we resolve this open problem and
extend the solution in several directions. We show that for every fixed t,
it is possible in polynomial time not only to decide if a planar graph G
has a tree t-spanner, but also to decide if G has a t-spanner of bounded
treewidth. Moreover, for every fixed values of t and k, the problem, for a
given planar graph G to decide if G has a t-spanner of treewidth at most
k, is not only polynomial time solvable, but is fixed parameter tractable
(with k and t being the parameters). In particular, the running time of
our algorithm is linear with respect to the size of G. We extend this
result from planar to a much more general class of sparse graphs con-
taining graphs of bounded genus. An apex graph is a graph obtained
from a planar graph G by adding a vertex and making it adjacent to
some vertices of G. We show that the problem of finding a t-spanner of
treewidth k is fixed parameter tractable on graphs that do not contain
some fixed apex graph as a minor, i.e. on apex-minor-free graphs. Graphs
of bounded treewidth are sparse graphs and our technique can be used
to settle the complexity of the parameterized version of the sparse t-
spanner problem, where for given t and m one asks if a given n-vertex
graph has a t-spanner with at most n − 1 + m edges. Our results imply
that the sparse t-spanner problem is fixed parameter tractable on apex-
minor-free graphs with t and m being the parameters. Finally we show
that the tractability border of the t-spanner problem cannot be extended
beyond the class of apex-minor-free graphs. In particular, we prove that
for every t ≥ 4, the problem of finding a tree t-spanner is NP-complete
on K6-minor-free graphs. Thus our results are tight, in a sense that the
restriction of input graph being apex-minor-free cannot be replaced by
H-minor-free for some non-apex fixed graph H .

� This work was partially done while the first author was visiting the Department of
Informatics of University of Bergen.

�� Supported by Norwegian Research Council.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 597–608, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

598 F.F. Dragan, F.V. Fomin, and P.A. Golovach

1 Introduction

One of the basic questions in the design of routing schemes for communication
networks is to construct a spanning network which has two (often conflicting)
properties: it should have simple structure and nicely approximate distances
of the network. This problem fits in a larger framework of combinatorial and
algorithmic problems that are concerned with distances in a finite metric space
induced by a graph. An arbitrary metric space (in particular a finite metric
defined by a graph) might not have enough structure to exploit algorithmically.
A powerful technique that has been successfully used recently in this context
is to embed the given metric space in a simpler metric space such that the
distances are approximately preserved in the embedding. New and improved
algorithms have resulted from this idea for several important problems (see,
e.g., [2,7,25]). Tree metrics are a very natural class of simple metric spaces since
many algorithmic problems become tractable on them.

Peleg and Ullman [30] suggested the following parameter to measure the qual-
ity of a spanner. The spanner S of a graph G has the stretch factor t if the
distance in S between any two vertices is at most t times the distance between
these vertices in G. A tree t-spanner of a graph G is a spanning tree with a
stretch factor t. If we approximate the graph by a tree t-spanner, we can solve
the problem on the tree and the solution interpret on the original graph. Un-
fortunately, not many graph families admit good tree spanners. This motivates
the study of sparse spanners, i.e. spanners with a small amount of edges. There
are many applications of spanners in various areas; especially, in distributed sys-
tems and communication networks. In [30], close relationships were established
between the quality of spanners (in terms of stretch factor and the number of
spanner edges), and the time and communication complexities of any synchro-
nizer for the network based on this spanner. Another example is the usage of
tree t-spanners in the analysis of arrow distributed queuing protocols [14,24].
Sparse spanners are very useful in message routing in communication networks;
in order to maintain succinct routing tables, efficient routing schemes can use
only the edges of a sparse spanner [31]. We refer to the survey paper of Peleg
[27] for an overview on spanners.

In this work we study t-spanners of bounded treewidth (we postpone the
definition of treewidth till the next section). Specifically,

PROBLEM: k-Treewidth t-spanner

INSTANCE: A connected graph G and integers k and t.
QUESTION: Is there a t-spanner S of G of treewidth at most k?

Many algorithmic problems are tractable on graphs of bounded treewidth, and
a spanner of small treewidth can be used to obtain an approximate solution to a
problem on G. Since every connected graph with n vertices and at most n−1+m
edges is of treewidth at most m+ 1, we can see this problem as a generalization
of tree t-spanner and sparse t-spanner problems.

Related work. Substantial work has been done on the tree t-spanner problem,
also known as the minimum stretch spanning tree problem. Cai and Corneil

Spanners in Sparse Graphs 599

[6] have shown that, for a given graph G, the problem to decide whether G
has a tree t-spanner is NP-complete for any fixed t ≥ 4 and is linear time
solvable for t = 1, 2 (the status of the case t = 3 is open for general graphs).
An O(log n)-approximation algorithm for the minimum value of t for the tree
t-spanner problem is due to Emek and Peleg [21]. See the survey of Peleg [27]
on more details on this problem and its variants.

The tree t-spanner problem on planar graphs was studied intensively. Fekete
and Kremer [22] proved that the tree t-spanner problem on planar graphs is NP-
complete (when t is part of the input). They also show that it can be decided in
polynomial time whether a given planar graph has a tree 3-spanner. They gave
also a polynomial time algorithm for any fixed t that decides for planar graphs
with bounded face length whether there is a tree t-spanner. For fixed t ≥ 4, the
complexity of the tree t-spanner problem on planar graphs was left as an open
problem [22].

There are several works investigating the complexity of the problem on sub-
classes of planar graphs. Peleg and Tendler [29] showed that the problem can be
solved in polynomial time on outerplanar graphs, and also in the special case of
1-face depth graphs in which no interior vertex has degree 2. Boksberger et al.
[4] investigated the problem on grids and subgrids. They presented polynomial
time algorithm on grids and O(OPT 4)-approximation for subgrids.

Sparse t-spanners were introduced in [28] and [30] and since that time studied
extensively. We refer the reader to [18,19,20] for some inapproximability and
approximability results for the sparse spanner problem on general graphs. On
planar (unweighted) graphs, the problem of determining, for a given n-vertex
graph G and integers m and t, if G has a t-spanner with at most n+m−1 edges
is NP -complete for every fixed t ≥ 5. (The case 2 ≤ t ≤ 4 is open.) [5]. A PTAS
for the minimum number of edges for a special case of 2-spanners of 4-connected
planar triangulations was obtained in [17].

Recently, a lot of work has been done on parameterized algorithms on planar
graphs and more general classes of graphs (we refer e.g. to book [15] for more
information on parameterized complexity and algorithms). Alber et al. [1] initi-
ated the study of subexponential parameterized algorithms for the dominating
set problem and its different variations. Demaine et al. [12,13] gave a general
framework called bidimensionality to design parameterized algorithms for many
problems on planar graphs and showed how by making use of this framework to
extend results from planar graphs to much more general graph classes including
H-minor-free graphs. However, this framework cannot be used directly to solve
the k-Treewidth t-spanner problem because the theory of Demaine et al. is
strongly based on the assumption that the parameterized problem should be mi-
nor or edge contraction closed, which is not the case for spanners. In particular,
it is easy to construct an example when by contracting of an edge in a graph
G with a t-spanner of treewidth k, one can obtain a graph which does not have
such a spanner.

Our results. In this paper we resolve the problem left open in [22] and ex-
tend the solution in several directions. Our general technique is combinatorial

600 F.F. Dragan, F.V. Fomin, and P.A. Golovach

in nature and is based on the following observation. Let G be a class of graphs
such that for every fixed t and every G ∈ G, the treewidth of every t-spanner
of G is Ω(treewidth(G)). Then as an almost direct corollary of Bodlaender’s
Algorithm and Courcelle’s Theorem (see Section 5 for details), we have that the
k-Treewidth t-spanner problem is fixed parameter tractable on G. Our main
combinatorial result is the proof that the class of apex-minor-free graphs, which
contains planar and bounded genus graphs, is in G.

After preliminary Section 2, we start (Section 3) by proving the combinatorial
properties of t-spanners in planar graphs. Our main result here is the proof that
every t-spanner of a planar graph of treewidth k has treewidth Ω(k/t). The proof
idea is based on the Robertson et al. theorem [33] on planar graphs excluding
a grid as a minor. A technical complication of a direct usage of this theorem is
that non-existence of a k-treewidth t-spanner in a minor or a contraction of a
graph G does not imply non-existence of a k-treewidth t-spanner in G. This is
why we have to work here with walls and topological minors.

It is possible to extend the combinatorial result on t-spanners in planar graphs
to apex-minor-free graphs (Section 4). This extension is quite technical and is
based on a number of new insights on the structure of apex-minor-free graphs.
The main tools here are the structural theorem of Robertson and Seymour char-
acterizing graphs excluding a graph as a minor and the theorem of Demaine and
Hajiaghayi on grid-minors in such graphs. We find the study of the k-treewidth
t-spanner problem on apex-minor-free graphs worth of efforts because of the fol-
lowing reason. Apex-minor-free graphs form a natural barrier for extension of
many parameter/treewidth combinatorial bounds which hold for planar graphs
[11]. However, for almost every such a parameter, the class of apex-minor-free
graphs is not an algorithmic obstacle, in a sense, that very often it is possible
to construct parameterized algorithms for H-minor-free graphs, where H is not
necessary an apex graph, see, e.g. [12]. Surprisingly, this is not the case for the
t-spanner problem. We show that the result on tractability of the problem on
the class of apex-minor-free graphs is tight and cannot be extended further: the
problem becomes intractable on H-minor-free graphs, when H is not an apex
graph. In particular, for every t ≥ 4, the problem of finding a tree t-spanner is
NP-complete even on K6-minor-free graphs.

Due the space restrictions some proofs are omitted here but they are given in
the technical report [16].

2 Preliminaries

Let G = (V,E) be an undirected graph with the vertex set V and edge set E.
(We often will use notations V (G) = V and E(G) = E.) The distance distG(u, v)
between vertices u and v of a connected graph G is the length (the number of
edges) of a shortest (u, v)-path in G.

Let t be a positive integer. A subgraph S of G, such that V (S) = V (G), is
called a (multiplicative) t-spanner, if distS(u, v) ≤ t ·distG(u, v) for every pair of

Spanners in Sparse Graphs 601

vertices u and v. The parameter t is called the stretch factor of S. It is easy to
see that the t-spanners can equivalently be defined as follows.

Proposition 1. Let G be a connected graph, and t be a positive integer. A span-
ning subgraph S of G is a t-spanner of G if and only if for every edge (x, y) of
G, distS(x, y) ≤ t.

Given an edge e = (x, y) of a graph G, the graph G/e is obtained from G by
contracting the edge e; that is, to get G/e we identify the vertices x and y
and remove all loops and replace all multiple edges by simple edges. A graph
H obtained by a sequence of edge-contractions is said to be a contraction of
G. H is a minor of G if H is a subgraph of a contraction of G. We say that
a graph G is H-minor-free when it does not contain H as a minor. We also
say that a graph class G is H-minor-free (or, excludes H as a minor) when all
its members are H-minor-free. For example, the class of planar graphs is a K5-
minor-free graph class. An apex graph is a graph obtained from a planar graph G
by adding a vertex and making it adjacent to some vertices of G. A graph class
G is apex-minor-free if G excludes a fixed apex graph H as a minor. If an edge of
a graph G is replaced by the path between it’s ends then it is said that this edge
is subdivided. A graph H is a topological minor of a graph G, if G contains a
subgraph which is isomorphic to a graph obtained from H by subdividing some
of its edges.

The (r, s)-grid is the Cartesian product of two paths of lengths r−1 and s−1.
The (r, s)-wall is a graph Wrs with the vertex set {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ s}
such that two vertices (i, j) and (i′, j′) are adjacent if and only if either i = i′

and j′ ∈ {j − 1, j + 1}, or j = j′ and i′ = i + (−1)i+j .
Let Wrs be a wall. By P hi we denote the shortest path connecting vertices

(i, 1) and (i, s), and by P vj is denoted the shortest path connecting vertices (1, j)
and (r, j) with assumption that, for j > 1, P vj contains only vertices (x, y) with
x = j − 1, j. We call by the southern part of Wrs the path P hr , and by the
northern part of Wrs the path P h1 . Similar, the eastern and the western parts
are the paths P vs and P v2 , correspondingly.

If W is obtained by subdivision of edges of Wrs, with slightly abusing the
notation, we also will be using these terms for the paths obtained by subdivisions
from the corresponding paths of Wrs.

It is easy to check that if a graph G contains the (r, r)-grid as a minor, then
it contains Wrr as a topological minor. Also if G contains Wrr as a topological
minor, then it contains (r, �r/2�)-grid as a minor.

A tree decomposition of a graph G is a pair (X,U) where U is a tree whose
vertices we will call nodes and X = ({Xi | i ∈ V (U)}) is a collection of subsets
of V (G) such that i)

⋃
i∈V (U) Xi = V (G), ii)for each edge (v, w) ∈ E(G), there

is an i ∈ V (U) such that v, w ∈ Xi, and iii)for each v ∈ V (G) the set of
nodes {i | v ∈ Xi} forms a subtree of U . The width of a tree decomposition
({Xi | i ∈ V (U)}, U) equals maxi∈V (U) {|Xi|− 1}. The treewidth of a graph G is
the minimum width over all tree decompositions of G. We use notation tw(G) to
denote the treewidth of a graph G. A tree decomposition with U being a path,

602 F.F. Dragan, F.V. Fomin, and P.A. Golovach

is called a path decomposition and the pathwidth of G is the minimum width
over all path decompositions of G.

We will need the following result which is due to Robertson, Seymour &
Thomas [33].

Proposition 2 ([33]). Every planar graph with no (r, r)-grid as a minor has
treewidth ≤ 6r − 5.

A surface Σ is a compact 2-manifold without boundary (we always consider
connected surfaces). A line in Σ is a subset homeomorphic to [0, 1] and a (closed)
disc Δ ⊆ Σ is a subset homeomorphic to {(x, y) : x2 + y2 ≤ 1}. An O-arc is
a subset of Σ homeomorphic to a circle. Whenever we refer to a Σ-embedded
graph G we consider a 2-cell embedding of G in Σ. To simplify notations, we do
not distinguish between a vertex of G and the point of Σ used in the drawing
to represent the vertex or between an edge and the line representing it. We also
consider a graph G embedded in Σ as the union of the points corresponding to
its vertices and edges. That way, a subgraph H of G can be seen as a graph H
where H ⊆ G.

3 Planar Graphs

In this section we prove that for every fixed t, a planar graph of large treewidth
cannot have a t-spanner of small treewidth.

Theorem 1. Let G be a planar graph of treewidth k and let S be a t-spanner of
G. Then the treewidth of S is Ω(k/t).

Proof. We need the following technical claim (the proof can be seen in [16]).
Let G be a planar graph embedded in the plane and containing the wall Wrs

as a topological minor. Let W be a subgraph of G isomorphic to a subdivision
of Wrs. Let Δ be the disc in the plane which is bordered by the union of the
southern, western, northern and eastern parts of W (with exclusion of pendant
vertices) and containing W .

Claim 1. For every t ≤ min{s/4, r/2} − 1, every t-spanner S of G contains a
path connecting the southern and the northern parts of W , and a path connecting
the eastern and the western parts of W . Moreover, both these paths are in Δ.

Proof. Let us prove the claim for the eastern and the western parts of W . Sup-
pose that for some t-spanner S of G there is no path completely inside of Δ
connecting the eastern and the western parts of W . Consider the path Phr/2�
in the wall. We find the first edge (x, y) in this path (starting from the western
part) with the following property: there is a path in S∩Δ connecting the eastern
part of W and x but there are no such paths for y. Clearly, such an edge has to
exist. Let P be a shortest path in S connecting x and y. By the choice of x and
y, path P is not entirely in Δ. So it can be divided into three subpaths: the first
path P1 connects x with some vertex u on the border of Δ, the second part P2

Spanners in Sparse Graphs 603

connects u with some vertex v, which also lies on the border of Δ, the third path
P3 connects v and y, and P1 ∪P3 ⊂ Δ. Note that vertex u cannot belong to the
eastern part, and vertex v cannot belong to the western part. The length of P is
at least northern or the southern part, then distS(x, u) ≥ r/2−1 ≥ t. If v is in the
northern or the southern part. then distS(y, v) ≥ r/2− 1 ≥ t. If u is in the west-
ern part and v is in the eastern part, then distS(x, u)+distS(y, v) ≥ s/2−1 ≥ t.
Hence, in all cases, the length of P is at least t + 1, and S is not a t-spanner.
The claim for the northern and southern parts is proved by similar arguments.
We have only to consider path P v�s/2�+1 instead of P hr/2�. Note also that here
we need the requirement t ≤ s/4− 1. ��
Set now r = �k+4

6 � and let S be a t-spanner of G. By Proposition 2, G has
an (r, r)-grid as a minor. Thus G has an (r, r)-wall Wrr as a topological minor.
Wall Wrr contains � r

4t+1� disjoint (4t + 1, r)-walls. Let W be a subgraph of G
isomorphic to a subdivision of Wrr. By applying Claim 1 to each (4t + 1, r)-wall,
we have that there are � r

4t+1� vertex disjoint paths in S connecting eastern and
western parts of W . By similar arguments, S also contains � r

4t+1� vertex disjoint
paths connecting southern and northern parts of W . The union of these paths
contains (� r

4t+1�, �
r

4t+1�)-grid as a minor. So, S contains this grid as a minor,

too, and the treewidth of S is at least � r
4t+1� = � �(k+4)/6�

4t+1 � = Ω(k/t). ��

4 Apex-Minor-Free Graphs

In this section, we extended the results of Theorem 1 to graphs with bounded
genus and to apex-minor-free graphs.

4.1 Bounded Genus

The Euler genus eg(Σ) of a nonorientable surface Σ is equal to the nonori-
entable genus g̃(Σ) (or the crosscap number). The Euler genus eg(Σ) of an
orientable surface Σ is 2g(Σ), where g(Σ) is the orientable genus of Σ. The fol-
lowing extension of Proposition 2 on graphs of bounded genus is due to Demaine
et al. [12].

Proposition 3 ([12]). If G is a graph with treewidth more than 6r(eg(G) + 1)
which is embeddable on a surface with Euler genus eg(G), then G has the (r, r)-
grid as a minor.

We also need a result roughly stating that if a graph G with a big wall as a
topological minor is embedded on a surface Σ of small genus, then there is a
disc in Σ containing a big part of the wall of G. This result is implicit in the work
of Robertson and Seymour and there are simpler alternative proofs by Mohar
and Thomassen [26,35]. We use the variant of this result from Geelen et al. [23].
Combining this result and Proposition 3, and using the same arguments as in
the planar case, we have the following theorem, which proof can be seen in [16].

Theorem 2. Let G be a graph of treewidth k and Euler genus g, and let S be a
t-spanner of G. Then the treewidth of S is Ω(k

t·g3/2).

604 F.F. Dragan, F.V. Fomin, and P.A. Golovach

4.2 Excluding Apex as a Minor

This extension of Theorems 1 and 2 to apex-minor-free graphs is based on a
structural theorem of Robertson and Seymour [32]. Before describing this theo-
rem we need some definitions.

Definition 1 (Clique-Sums). Let G1 = (V1, E1) and G2 = (V2, E2) be two
disjoint graphs, and k ≥ 0 an integer. For i = 1, 2, let Wi ⊂ Vi, form a clique
of size h and let G′i be the graph obtained from Gi by removing a set of edges
(possibly empty) from the clique Gi[Wi]. Let F : W1 →W2 be a bijection between
W1 and W2. We define the h-clique-sum of G1 and G2, denoted by G1 ⊕h,F G2,
or simply G1 ⊕G2 if there is no confusion, as the graph obtained by taking the
union of G′1 and G′2 by identifying w ∈ W1 with F (w) ∈ W2, and by removing
all the multiple edges. The image of the vertices of W1 and W2 in G1 ⊕ G2 is
called the join of the sum.

Note that some edges of G1 and G2 are not edges of G, because it is possible
that they were added by clique-sum operation. Such edges are called virtual.

We remark that ⊕ is not well defined; different choices of G′i and the bijection
F could give different clique-sums. A sequence of h-clique-sums, not necessarily
unique, which result in a graph G, is called a clique-sum decomposition of G.

Definition 2 (h-nearly embeddable graphs). Let Σ be a surface with bound-
ary cycles C1, . . . , Ch, i.e. each cycle Ci is the border of a disc in Σ. A graph G is
h-nearly embeddable in Σ, if G has a subset X of size at most h, called apices,
such that there are (possibly empty) subgraphs G0, . . . , Gh of G \ X such that
i)G \X = G0 ∪ · · · ∪Gh, ii)G0 is embeddable in Σ, we fix an embedding of G0,
graphs G1, . . . , Gh (called vortices) are pairwise disjoint, iii)for 1 ≤ · · · ≤ h, let
Ui := {ui1 , . . . , uimi

} = V (G0)∩ V (Gi), Gi has a path decomposition (Bij), 1 ≤
j ≤ mi, of width at most h such that a)for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we
have uj ∈ Bij, b)for 1 ≤ i ≤ h, we have V (G0) ∩ Ci = {ui1 , . . . , uimi

} and the
points ui1 , . . . , uimi

appear on Ci in this order (either if we walk clockwise or
anti-clockwise).

The following proposition is known as the Excluded Minor Theorem [32] and is
the cornerstone of Robertson and Seymour’s Graph Minors theory.

Proposition 4 ([32]). For every graph H there exists an integer h, depending
only on the size of H, such that every graph excluding H as a minor can be
obtained by h-clique-sums from graphs that can be h-nearly embedded in a surface
Σ in which H cannot be embedded.

We also need the following result of Demaine and Hajiaghayi [13].

Proposition 5 ([13]). If G is an H-minor-free graph with treewidth more than
k, then G has the (Ω(k), Ω(k))-grid as a minor (the hidden constants in the Ω
notation depend only on the size of H).

Spanners in Sparse Graphs 605

Theorem 3. Let H be a fixed apex graph. For every t-spanner S of an H-minor-
free graph G, the treewidth of S is Ω(tw(G)). (The hidden constants in the Ω
notation depend only on the size of H and t).

Proof. Due to space restrictions only the sketch of the proof is given here (see [16]
for the complete proof). Let G be an H-minor-free graph of treewidth k. It is well
known, that for any pair of graphsG1,G2, tw(G1⊕G2) ≤ max{tw(G1), tw(G2)}.
Thus, by decomposing G as a clique sum described in Proposition 4, we conclude
that there is a summand G′ in this clique sum such that a) G′ is h-almost em-
beddable in a surface Σ of genus h; b) the treewidth of G′ is at least k. The fur-
ther proof is performed in two steps. First we prove that Σ contains a closed disc
Δ′ ⊂ Σ such that i) G′ ∩Δ′ contains an (Ω(k), Ω(k))-wall as a topological minor
and ii) no vertex of G′ ∩ Δ′ is adjacent to an apex vertex and to a vertex from
a vortex. The proof is based on Proposition 5. In the second step, by extending
the arguments used for planar graphs on the wall inside Δ′, we prove that every
t-spanner of G has a large grid as a minor, and thus has treewidth Ω(k). ��

5 Algorithmic Consequences

This section discusses algorithmic consequences of the combinatorial results ob-
tained above. The proof of the following generic algorithmic observation is a
combination of known results.

Theorem 4. Let G be a class of graphs such that, for every G ∈ G and every
t-spanner S of G, the treewidth of S is at least tw(G) · fG(t), where fG is the
function only of t. Then for every fixed k and t, the existence of a t-spanner of
treewidth at most k in G ∈ G can be decided in linear time.

Proof. Let G ∈ G be a graph on n vertices and m edges. For given integers k
and t, we use Bodlaender’s Algorithm [3] to decide in time O(n+m) if tw(G) ≤
k/fG(t) (the hidden constants in the big-O depend only on k and fG(t)). If
Bodlaender’s Algorithm reports that tw(G) > k/fG(t), then we conclude that
G does not have a t-spanner of treewidth at most k. Otherwise (when tw(G) ≤
k/fG(t)), Bodlaender’s Algorithm computes a tree decomposition of G of width
at most k/fG(t). Now we want to apply Courcelle’s Theorem [8,9], namely that
every problem expressible in monadic second order logic (MSOL) can be solved
in linear time on graphs of constant treewidth. To apply Courcelle’s Theorem
(and to finish the proof of our Theorem), we have to show that, for every fixed
positive integers k and t, the property that a graph S is a t-spanner of treewidth
at most k is expressible in MSOL. It is known that the property that a subgraph
S has the treewidth at most k is expressible in MSOL for every fixed k (see, for
example, [10]). Since any path is a sequence of adjacent edges, we have that the
condition “for every edge (x, y) of G, distS(x, y) ≤ t” can be written as an MSOL
formula for every fixed t. By Proposition 1, this yields that “S is a t-spanner of
treewidth at most k” is expressible in MSOL. ��

606 F.F. Dragan, F.V. Fomin, and P.A. Golovach

Theorems 3 and 4 imply the following result, which is the main algorithmic result
of this paper. (Let us note that for k = 1, Corollary 1 provides the answer to
the question of Fekete and Kremer [22].)

Corollary 1. Let H be a fixed apex graph. For every fixed k and t, the existence
of a t-spanner of treewidth at most k in an H-minor-free graph G can be decided
in linear time.

It is easy to see that the treewidth of a connected n-vertex graph with n+m−1
edges is at most m+1. Since for a fixed m, the property of that a S is a spanning
subgraph of G with n + m − 1 edges is in MSOL, we have (as in the proof of
Theorem 4) that the combination of Theorem 3 with Bodlaender’s Algorithm
and Courcelle’s Theorem implies the following corollary

Corollary 2. Let H be a fixed apex graph. For every fixed m and t, the existence
of a t-spanner with at most n− 1 + m edges in an n-vertex H-minor-free graph
G can be decided in linear time.

It is easy to show that it is not possible to extend Theorem 3 to the class of
H-minor free graphs, where H is not necessary an apex graph. For i ≥ 1, let Hi
be a graph obtained by adding to the (i, i)-grid a vertex v and making it adjacent
to all vertices of the grid. Each of the graphs Hi, i ≥ 1, does not contain the
complete graph on six vertices K6 as a minor. The treewidth of Hi is i, but it
has a 2-spanner of treewidth one, which is the star with center in v. Thus, Theo-
rem 4 cannot be used on graphs excluding a non-apex graph as a minor. Similar
“apex-minor-free barrier” for using combinatorial bounds for parameterized al-
gorithms was observed for other problems (e.g., parameterized dominating set
[11]). However, for many of those problems, there are parameterized algorithms
for H-minor-free graphs, which are based on dynamic programming over clique-
sums of apex-minor-free graphs by making use of Robertson-Seymour structural
theorem (Proposition 4), see, e.g. [12]. So, for many parameterized problems,
combinatorial “apex-minor-free barrier” can be overcame. Surprisingly, this is
not the case for the t-spanner problem. In particular, the tree 4-spanner prob-
lem is NP-complete on apex graphs, and since each apex graph is K6-minor-free,
it is NP-complete, for example, for K6-minor-free graphs.

Note also that for apex graphs the claim of Theorem 3 is not correct. For
i ≥ 1, let Hi be a graph obtained by adding to the (i, i)-grid a vertex v and
making it adjacent to all vertices of the grid. The graphs Hi, i ≥ 1, do not
contain the complete graph on six vertices K6 as a minor. The treewidth of Hi
is i, but it has a 2-spanner of treewidth one, which is the star with center in v.

Theorem 5. For every fixed t ≥ 4, deciding if an apex graph G has a tree
t-spanner is NP-complete.

Proof. The proof of this result is based on a modification of the reduction of Cai
and Corneil [6] adapted for our purposes, and is given in [16]. ��

Spanners in Sparse Graphs 607

6 Conclusion

We have shown that for fixed k and t, one can decide in linear time if an apex-
minor-free graph G has a t-spanner of treewidth at most k. The results we used in
our proof, Bodlaender’s Algorithm and Courcelle’s Theorem, have huge hidden
constants in the running time, and thus Corollary 1 is of theoretical interest
mainly. Since for K6-minor-free graphs and t = 4 the problem is NP complete,
we doubt that it is possible to design fast practical algorithms solving t-spanner
problem on apex-minor-free graphs. However, it is likely that on planar graphs
and for small values of t, our ideas can be used to design practical algorithms.
First of all, instead of using Bodlaender’s algorithm, one can use Ratcatcher
algorithm of Seymour-Thomas [34] to find exact branchwidth of a planar graph.
The running time of the algorithm is cubic, but there is no hidden constants.
The second bottleneck of our approach for practical applications is the usage of
Courcelle’s Theorem. Instead of that, for small values of t, it is more reasonable to
construct dynamic programming algorithms that use the properties of planarity
and of the problem.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs.
Algorithmica 33, 461–493 (2002)

2. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic appli-
cations. In: FOCS 1996, pp. 184–193 (1996)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

4. Boksberger, P., Kuhn, F., Wattenhofer, R.: On the approximation of the minimum
maximum stretch tree problem, Tech. Report 409, ETH Zürich, Switzerland (2003)

5. Brandes, U., Handke, D.: P-completeness results for minimum planar spanners.
Discrete Mathematics & Theoretical Computer Science 3, 1–10 (1998)

6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. 8, 359–387 (1995)
7. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a Finite

Metric by a Small Number of Tree Metrics. In: FOCS 1998, pp. 379–388 (1998)
8. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of

finite graphs. Information and Computation 85, 12–75 (1990)
9. Courcelle, B.: The monadic second-order logic of graphs III: Treewidth, forbidden

minors and complexity issues. Informatique Théorique 26, 257–286 (1992)
10. Courcelle, B.: The expression of graph properties and graph transformations in

monadic second-order logic. In: Handbook of graph grammars and computing by
graph transformation, vol. 1, pp. 313–400. World Sci. Publ., River Edge (1997)

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional pa-
rameters and local treewidth. SIAM J. Discrete Math. 18, 501–511 (2004)

12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on graphs of bounded genus and H-minor-free graphs. Jour-
nal of the ACM 52, 866–893 (2005)

13. Demaine, E.D., Hajiaghayi, M.: Graphs excluding a fixed minor have grids as large
as treewidth, with combinatorial and algorithmic applications through bidimen-
sionality. In: SODA 2005, pp. 682–689 (2005)

608 F.F. Dragan, F.V. Fomin, and P.A. Golovach

14. Demmer, M.J., Herlihy, M.: The arrow distributed directory protocol. In: Kutten,
S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

15. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York
(1999)

16. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs, Tech. Rep.
366, Dept. of informatics, University of Bergen (2008),
http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-366.pdf

17. Duckworth, W., Wormald, N.C., Zito, M.: A PTAS for the sparsest 2-spanner of
4-connected planar triangulations. J. of Discrete Algorithms 1, 67–76 (2003)

18. Elkin, M., Peleg, D.: Strong Inapproximability of the Basic k-Spanner Problem.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 636–647. Springer, Heidelberg (2000)

19. Elkin, M., Peleg, D.: The Hardness of Approximating Spanner Problems. In: Re-
ichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 370–381. Springer,
Heidelberg (2000)

20. Elkin, M., Peleg, D.: Approximating k-spanner problems for k > 2. Theoretical
Computer Science 337, 249–277 (2005)

21. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on un-
weighted graphs. In: SODA 2004, pp. 261–270 (2004)

22. Fekete, S.P., Kremer, J.: Tree spanners in planar graphs. Discrete Appl. Math. 108,
85–103 (2001)

23. Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. European J.
Combin. 25, 785–792 (2004)

24. Herlihy, M., Tirthapura, S., Wattenhofer, R.: Competitive concurrent distributed
queuing. In: PODC 2001, pp. 127–133 (2001)

25. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some its algo-
rithmic applications. Combinatorica 15, 215–245 (1995)

26. Mohar, B.: Combinatorial local planarity and the width of graph embeddings.
Canad. J. Math. 44, 1272–1288 (1992)

27. Peleg, D.: Low stretch spanning trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002.
LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

28. Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)
29. Peleg, D., Tendler, D.: Low stretch spanning trees for planar graphs, Tech. Report

MCS01-14, Weizmann Science Press of Israel, Israel (2001)
30. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: PODC

1987, pp. 77–85 (1987)
31. Peleg, D., Upfal, E.: A tradeoff between space and efficiency for routing tables. In:

STOC 1988, pp. 43–52 (1988)
32. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.

J. Combin. Theory Ser. B 89, 43–76 (2003)
33. Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a planar graph. J.

Comb. Theory, Ser. B 62, 323–348 (1994)
34. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14,

217–241 (1994)
35. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces.

J. Combin. Theory Ser. B 70, 306–311 (1997)

 http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-366.pdf

Distance Oracles for Unweighted Graphs:

Breaking the Quadratic Barrier with Constant
Additive Error

Surender Baswana1,�, Akshay Gaur2, Sandeep Sen2, and Jayant Upadhyay2

1 Department of Comp. Sc. & Engg. Indian Institute of Technology Kanpur,
Kanpur - 208016, India
sbaswana@iitk.ac.in

2 Department of Comp. Sc. & Engg., Indian Institute of Technology Delhi,
New Delhi-110016, India

{manu,ssen,jayant}@cse.iitd.ernet.in

Abstract. Thorup and Zwick, in the seminal paper [Journal of ACM,
52(1), 2005, pp 1-24], showed that a weighted undirected graph on n
vertices can be preprocessed in subcubic time to design a data struc-
ture which occupies only subquadratic space, and yet, for any pair of
vertices, can answer distance query approximately in constant time. The
data structure is termed as approximate distance oracle. Subsequently,
there has been improvement in their preprocessing time, and presently
the best known algorithms [4,3] achieve expected O(n2) preprocessing
time for these oracles. For a class of graphs, these algorithms indeed run
in Θ(n2) time. In this paper, we are able to break this quadratic barrier
at the expense of introducing a (small) constant additive error for un-
weighted graphs. In achieving this goal, we have been able to preserve
the optimal size-stretch trade offs of the oracles. One of our algorithms
can be extended to weighted graphs, where the additive error becomes
2 · wmax(u, v) - here wmax(u, v) is the heaviest edge in the shortest path
between vertices u, v.

1 Introduction

Let G = (V,E) be a graph on |V | = n vertices and |E| = m edges, and δ(u, v)
denote the distance between any pair of vertices u, v ∈ V in graph G. The all-
pairs shortest paths (APSP) problem requires preprocessing the given graph G
so as to build a data structure using which we can retrieve distance or the short-
est path between any pair of vertices efficiently. APSP is undoubtedly one of
the most fundamental algorithmic graph problems of computer science. Despite
being a classical problem with widespread applications, there exists a huge gap
between the lower bound Ω(n2) and the worst case upper bound O(n3/ log2 n)
(due to Chan [6]) of the time complexity of APSP problem. Furthermore, Θ(n2)

� The work was supported by a fellowship from Research I Foundation, CSE, IIT
Kanpur.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 609–621, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

610 S. Baswana et al.

space requirement is a major bottleneck for graphs in many large scale applica-
tions. These two factors have motivated researchers to design efficient algorithms
(or data structures) for reporting approximate distances. In the last fifteen years,
many novel algorithms [1,8,7,2,11] have been designed which work for undirected
graphs. However, among all these algorithms the approximate distance oracles
designed by Thorup and Zwick [12] deserve special mention. They showed that
any given weighted undirected graph on n vertices can be preprocessed in sub-
cubic time for any integer t ≥ 3 to build a data structure of sub-quadratic
size which for any pair of vertices u, v reports t-approximate distance - at least
δ(u, v) and at most tδ(u, v). There are two very impressive features of their data
structure. First, the trade-off between stretch t and the size of data structure is
essentially optimal assuming a 1963 girth lower bound conjecture of Erdős [9]
and second, in spite of its sub-quadratic size their data structure can answer
any distance query in constant time, hence the name “oracle”. More precisely,
Thorup and Zwick achieved the following result.

Theorem 1. [12] For any integer k ≥ 1, an undirected weighted graph on n
vertices and m edges can be preprocessed in expected O(kmn1/k) time to build
a data structure of size O(kn1+1/k) that can answer any (2k − 1)-approximate
distance query in O(k) time.

Having achieved optimal size-stretch trade offs, and essentially constant query
time, it is only the preprocessing time of these oracles which may be improved.
The preprocessing time has been improved to O(min(n2, kmn1/k)) for unweighted
graphs [4], and recently for weighted graphs as well [3]. Therefore, a natural ques-
tion is whether it is possible to achieve O(m+n2−ε) - a subquadratic upper bound
for constructing approximate distance oracles. Note that any approximate all pairs
shortest path algorithm takes Ω(n2) steps because of the output size. Therefore, a
sub-quadratic time oracle construction provides a clear advantage over such algo-
rithms when we arenot interested in all the pair-wise distances. The main objective
here is to achieve sub-quadratic preprocessing time for approximate distance ora-
cles without violating the size-stretch trade off. It may be noted that the quadratic
upper bound of the existing preprocessing algorithms [12][4] for these oracles is in-
deed tight - there exists a family of graphs on which these algorithmswould execute
in Θ(n2) time.

In this paper, we design approximate distance oracles which, at the expense
of constant additive error, are constructable in sub-quadratic time and preserve
size stretch trade-off optimally. More precisely, we show the following. For any
k > 1, there is a data-structure which occupies O(kn1+1/k) space such that for
any pair of vertices u, v ∈ V , it takes O(k) time to return δ̂(u, v) satisfying

δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1)δ(u, v) + ck where ck = 2 for k ≥ 3 and c2 = 8

As a natural extension of (2k−1)-approximate distance oracle of [12], we denote
the above oracle by (2k−1, ck)-approximate distance oracle, where the first term
(2k−1) is the stretch (multiplicative error) and ck is the surplus (additive error).
The expected preprocessing time for (2k−1, ck) oracle is O(m+kn2−αk), where

Distance Oracles for Unweighted Graphs 611

Table 1. Comparing the new algorithms with the existing algorithms for approximate
distance oracles

Stretch Space Preprocessing Time Reference

(2k − 1, 0) O(kn1+1/k) O(min(n2, kmn1/k)) [12,3,4]

(3, 8) O(n3/2) O(min(m + n
23
12 , m

√
n)) this paper

(2k − 1, 2), k ≥ 3 O(kn1+1/k) O(min(m + kn
3
2+ 1

2k
+ 1

2k−2 , kmn
1
k)) this paper

αk takes value in the interval [1
12 ,

1
2) - takes value 1

12 for k = 2 and approaches
1
2 steadily as k increases (see Table 1).

In short, the small additive error has allowed us to break the quadratic barrier
of preprocessing of approximate distance oracles. It would be very important to
explore the limits to which the preprocessing time can be further improved. The
result of this paper can be viewed as the first significant step in this direction.

1.1 Overview of the New Algorithms

The observation which forms the basis of our algorithms is the simple fact that
the O(kmn1/k) time complexity of the algorithm of Thorup and Zwick [12] is
already sub-quadratic provided the graph is sparse enough. In order to utilize
this observation, we use the idea of partitioning the graph into sparse and dense
subgraphs. Previously this idea was used by the algorithms which compute all-
pairs approximate distance with purely additive error only [1,8]. Using a random
sample S ⊆ V of vertices, we define a sparse subgraph with o(n2−1/k) edges,
and execute Thorup and Zwick algorithm on this sub graph. This algorithm will
execute in o(n2) time and will easily take care of the case when the shortest
paths between a pair of vertices is fully preserved in the sparse graph. Novelty
of our algorithms is to handle the other case. Our algorithms make use of a
combination of old and new ideas which enables achieving sub-quadratic space
without compromising the optimal size-stretch trade-off. In order to make these
ideas work, our algorithms effectively use suitable emulators and spanners which
are sufficiently sparse.

Definition 1. An (α, β)-spanner of a graph G = (V,E) is a subgraph
(V,E′), E′ ⊆ E with the property that distance between any two vertices u, v ∈ V
in the spanner is at least δ(u, v) and at most α(δ(u, v)) + β.

Definition 2. An (α, β)-emulator of a graph G = (V,E) is a weighted graph
(V,E∗) such that the distance δ∗(u, v) between any two vertices u, v ∈ V in the
emulator is at least δ(u, v) and at most αδ(u, v) + β.

In the following section we describe the notations and lemmas which will be used
throughout this paper. In section 3, we describe our (3, 8)-approximate distance
oracle. In section 4, we describe (2k−1, 2)-approximate distance oracle for k > 2.

612 S. Baswana et al.

2 Preliminaries

For a given graph G = (V,E), and any subset S ⊆ V , we shall use the following
notations :

– N (v) : the set consisting of v and every neighbor of v in the graph G.
– N (S) : ∪v∈SN (v).
– pS(v) : the vertex from set S which is nearest to v (break the tie arbitrarily

in case there are multiple nearest vertices).
– δ(v, S) : distance between v and pS(v).
– E(v) : the set of edges in G which are incident on v.
– ES(v) : the set E(v) if v is not adjacent to any vertex of set S, and ∅ otherwise.
– ES : ∪v∈V ES(v).
– GS : the subgraph (V, ES).
– OGt : the t-approximate distance oracle of Thorup and Zwick [12] created on

a subgraph G of G.

Our data structure will store information about pS(v) and δ(v, S) for each vertex
in the given graph G. To compute this information, the graph G can be processed
in just O(m) time as follows : insert a dummy vertex o in to the graph, connect
it to all the vertices of set S, and perform a BFS traversal on the graph starting
from o. We shall use TS to denote the set of edges of this BFS tree excluding
the edges incident on the dummy vertex.

Lemma 1. The edge set TS preserves the shortest path between v and pS(v) for
all v ∈ V . The size of TS is O(n).

Now we redefine an important concept (due to Thorup and Zwick [12]) of ball
around a vertex.

Definition 3. [12] For a vertex u ∈ V and a set S ⊆ V in a graph G = (V,E),
we define ball(u, V, S) as the sub graph induced by all those vertices v ∈ V which
satisfy δ(u, v) < δ(u, S) (i.e., for u, it is v which is nearer than pS(u)).

We now state the following Lemma about the number of vertices and edges in
ball(u, V, S) when S is formed by random sampling.

Lemma 2. [12,4] For a given graph G = (V,E), let S ⊆ V be a set formed
by selecting each vertex from V independently with probability q > 0. Then the
expected number of vertices and expected number of edges in ball(u, V, S) are
O(1/q) and O(1/q2) respectively.

We shall now state a few important Lemmas about the sparse subgraph (V, ES).

Lemma 3. If set S ⊆ V is formed by selecting each vertex independently with
probability q > 0, the expected size of the set ES would be O(n/q).

Lemma 4. If on the shortest path between any two vertices u, v ∈ V in the
graph G = (V,E) there are no two consecutive vertices in set N (S), then the
shortest path between u and v is preserved exactly in the subgraph (V, ES).

Distance Oracles for Unweighted Graphs 613

The above property of the edge set ES will prove to be very useful in our con-
struction. For the other case we observe the following.

Lemma 5. If the shortest path between u and v in the graph G contains at least
2 consecutive vertices from N (S), then δ(u, S) + δ(v, S) ≤ δ(u, v) + 1.

Proof. Suppose on the shortest path between u and v, u′ be the vertex from
the set N (S) nearest to u, and v′ be the vertex from the set N (S) nearest to
v. Since u′ ∈ N (S) either u′ belongs to S or some neighbor of u′ belongs to S.
This implies that δ(u, u′) ≥ δ(u, S) − 1. Similarly δ(v, v′) ≥ δ(v, S) − 1. Also
note that δ(u, u′) + δ(u′, v′) + δ(v′, v) = δ(u, v). Furthermore, δ(u′, v′) ≥ 1 since
there are at least two vertices from N (S) on the shortest path between u and v.
Therefore, δ(u, u′) + δ(v′, v) + 1 ≤ δ(u, v). This along with the lower bounds on
δ(u, u′) and δ(v, v′) derived above imply that δ(u, S) + δ(v, S) ≤ δ(u, v) + 1.

For construction of our (2k−1, 2)-oracle for k > 2, we shall employ the following
result on spanners.

Theorem 2. [10] For a given unweighted graph G = (V,E) and any integer
k > 1, there exists an O(m) time algorithm for computing a (2k− 1)-spanner of
size O(n1+1/k).

3 A (3, c)-Approximate Distance Oracle in Expected

O(n2− 1
12) Time

Let G be the given undirected unweighted graph. Let S be a set formed by
selecting each vertex independently with probability n−

5
12 . Our preprocessing

algorithm for (3, c)-approximate distance oracle, where c = 8, will employ the
sparse subgraph (V, ES) and an emulator of the given graph G. We shall need
a (3, 2)-emulator which also satisfies some additional properties which are very
crucial (see Lemma 7). We describe the construction and properties of this em-
ulator in the following subsection first.

3.1 The Emulator (V, E∗) : Its Construction and Properties

In the construction of the emulator, we shall employ the (3, 2)-spanner designed
by Baswana et al. [5].

Theorem 3. [5] For a given graph G = (V,E), let S′ be a set formed by select-
ing each vertex from V independently with probability p = n−

1
3 . It takes expected

O(m) time to construct a (3, 2)-spanner of size O(n4/3) that satisfies the follow-
ing additional properties for each u ∈ V .

1. If u ∈ V has no neighbor from set S′ in G, then every edge incident onto u
will be in the spanner.

2. If u has one or more neighbors from set S′ in G, then for some unique
neighbor among them, denoted by c(u), the following assertions hold true.

614 S. Baswana et al.

(a) the edge (u, c(u)) is present in the spanner also.
(b) for each edge (u, v) ∈ E not present in the spanner, there is a path

between c(u) and c(v) in the spanner with length at most 3.

Algorithm for building emulator (V,E∗)

1. Add the edges of TS (see Lemma 1)to E∗.
2. Let S′ be the set formed by selecting each vertex with probability n−

1
3 ,

and let span be the (3, 2)-spanner of the graph as stated in Theorem 3.
Add all the edges of span to E∗.

3. From each vertex v ∈ V \S perform BFS traversal up to level δ(v, S)− 1
to compute distance to each x ∈ S′ which is present in ball(v, V, S), and
add an edge (v, x) of weight δ(v, x) to E∗.

Lemma 6. The emulator (V,E∗) output by the above algorithm has size O(n4/3)
and can be constructed in expected O(m + n11/6) time.

Proof. The first two steps take expected O(m) time [5]. The third step is per-
formed by executing BFS traversal from each v ∈ V \S up to level δ(v, S) − 1.
This will involve traversing only the edges of the subgraph ball(v, V, S). So it
follows from Lemma 2 that the expected time spent per vertex v in step 3 is
O(n

5
6). So the expected time spent for constructing E∗ will be O(n

11
6 + m).

Let us analyze the number of edges of E∗. The first two steps will contribute
O(n

4
3) edges to E∗. It follows from elementary probabilistic analysis that the

expected number of vertices of set S′ in ball(v, V, S) will be O(n
1
12). So the

expected number of weighted edges contributed to E∗ by each vertex v ∈ V \S is
O(n

1
12). Hence the expected number of edges in E∗ will be O(n

13
12 +n

4
3) = O(n

4
3).

We repeat the above algorithm if |E∗| exceeds twice its expected value; it follows
from Markov inequality that the expected number of repetitions needed will be
at most 2. So we can conclude that the above algorithm can be made to run in
expected O(m + n

11
6) time to compute emulator (V,E∗) with |E∗| = O(n

4
3).

It follows from the second step in the above algorithm that (V,E∗) is a (3, 2)-
emulator of the given graph. Furthermore, it nearly preserves exact distance
from every vertex u to all the vertices with in ball(u, V, S). The following Lemma
formalizes this fact.

Lemma 7. For each vertex u and any vertex v ∈ ball(u, V, S), the distance
δ∗(u, v) in the emulator (V,E∗) is at least δ(u, v) and at most δ(u, v) + 4

Proof. Consider the shortest path between u and v in the original graph. If
v ∈ S′, it follows that δ∗(u, v) = δ(u, v). Otherwise, let w be the vertex near-
est from v(excluding v) on this path which belongs to N (S′). If no such w exists,

Distance Oracles for Unweighted Graphs 615

then the entire path is preserved in the emulator as follows from Theorem 3(1).
Otherwise it follows from Theorem 3(2) that there is a vertex x ∈ S′ such that
the edge (x,w) is present in the (3, 2)-spanner (and hence in the emulator too).
Note that x must belong to ball(u, V, S) also, therefore, there is a weighted edge
(u, x) in the emulator with weight δ(u, x). Now there are two cases.

1. (w, v) ∈ E : In this case, δ(u, x) ≤ δ(u, v). Now consider the sub-case when
v ∈ N (S′), it follows from Theorem 3(2) that for some vertex c(v) ∈ S′,
the edge (v, c(v)) as well as a path between x and c(v) of length at most
3 is present in the spanner, and hence in the emulator. This implies that
δ∗(u, v) ≤ δ(u, x) + δ∗(x, c(v)) + δ(c(v), v) ≤ δ(u, v) + 4.
If v /∈ N (S′) then the edge (w, v) is preserved in emulator as follows from
Theorem 3(1). Thus the distance δ∗(u, v) ≤ δ(u, x) + 2 ≤ δ(u,w) + 3 ≤
δ(u, v) + 2.

2. (w, v) /∈ E : In this case, δ(u, x) ≤ δ(u,w) + 1. Furthermore, it follows from
definition of w and Theorem 3(1) that the entire path between w and v
is preserved in the spanner, and hence in the emulator. The weighted edge
(u, x), the edge (x,w) and the w ↔ v path constitute a path in the emulator
of length at most δ(u, v) + 2.

Now we shall describe the preprocessing algorithm for the (3, c)-approximate
distance oracle.

3.2 Preprocessing and Query Algorithm for (3, c)-Oracle

The following is the preprocessing algorithm for (3, c)-oracle.

1. Choose a random sample S ⊆ V by picking each vertex independently with
probability n−5/12.

2. Build a 3-approximate distance oracle OGS
3 using Thorup and Zwick [12] for

the subgraph GS = (V, ES).
3. For each s ∈ S, perform Dijkstra’s single source shortest path (SSSP) al-

gorithm on emulator (V,E∗). Let Dist be the matrix which stores shortest
distance between each pair of vertices from set S in the emulator.

4. Compute pS(u) and δ(u, S) for all u ∈ V \S; Let R be an array such that
R[u] = δ(u, S).

The (3, c)-oracle will consist of OGS
3 , matrix Dist[], and array R[]. We now

describe the query algorithm.

Query(u, v) {
d1 ← OGS

3 (u, v).
d2 ←R[u] +R[v] + Dist[pS(u), pS(v)].

return min(d1, d2) }

616 S. Baswana et al.

stretched by
(3,2)−emulator

pS(u) pS(v)

u′
v′u v

Fig. 1. Analyzing the (3, c)-approximate distance oracle when there are at least two
consecutive vertices from N (S) on the shortest path between u and v

3.3 Analysis of the New Oracle

Let us first analyze the stretch of the approximate distance reported by
Query(u, v) for any two vertices u, v ∈ V . If the shortest path between u and v
in G doesn’t contain two consecutive vertices in N (S), then from Lemma 4, it
follows that this shortest path is captured in the sparse subgraph GS = (V, ES)
as well. It follows from Theorem 1 that the data structure OGS

3 will report a
stretch-3 estimate of shortest distance, and we are done. Let us consider the
case where the shortest path between u and v contains two or more consecutive
vertices from N (S). It follows from Lemma 5 that R[u] +R[v] ≤ δ(u, v) + 1. In
this case ball(u, V, S) and ball(v, V, S) will be non-overlapping (see Figure1). We
divide the shortest path between u and v into 3 separate sub-paths : the path
u ↔ u′ lying inside ball(u, V, S), the path v′ ↔ v lying inside ball(v, V, S), and
the path u′ ↔ v′ not covered by either of the two balls. It follows from Lemma
7 that δ∗(u, u′) ≤ δ(u, u′) + 4 = (δ(u, S) − 1) + 4 = R[u] + 3, and similarly
δ∗(v′, v) ≤ R[v] + 3. Moreover, since the emulator has stretch (3, 2), so

δ∗(u′, v′) ≤ 3δ(u′, v′) + 2 ≤ 3(δ(u, v)−R[u]−R[v] + 2) + 2
= 3δ(u, v)− 3R[u]− 3R[v] + 8

Combining the length of the three sub-paths in the emulator, it follows that
that δ∗(u, v) ≤ 3δ(u, v) − 2R[u] − 2R[v] + 14. Thus the distance reported by
Query(u, v) is at most :

R[u] +R[v] + Dist[pS(u), pS(v)] ≤ 2R[u] + 2R[v] + δ∗(u, v) ≤ 3δ(u, v) + 14

Additive error can be reduced to 8 by a more careful analysis. However, for sake
of simplicity, we have omitted the details in this version.

We now analyze the space and preprocessing time of this (3, c)-oracle.

Lemma 8. The size of (3, c)-approximate distance oracle is O(n3/2).

Distance Oracles for Unweighted Graphs 617

Proof. It follows from Theorem 1 that the size of OGS
3 is O(n3/2). The size of S

will be concentrated around its expected value of O(n7/12) (this is because |S| is
sum of n independent Bernoulli random variables, and we can apply Chernoff’s
bound). Therefore, with high probability, the size of matrix Dist is |S| × |S| =
O(n14/12) which is o(n3/2). For each u ∈ V we also store vertex pS(u) and
distance R[u]; this will require additional O(n) space for all the vertices. So the
overall space required is concentrated around O(n3/2) with high probability. We
may rebuild the oracle again from scratch if the space exceeds its expected value
by some large constant; using Markov inequality, it follows that the expected
number of repetitions will be just a constant.

Lemma 9. The expected time taken by preprocessing algorithm is O(n2−α2 +m)
where α2 = 1

12 .

Proof. Steps 1 and 4 of the preprocessing algorithm take O(m) time. In step 2,
it follows from Theorem 1 that the OGS

3 construction takes O(|ES | · n
1
2) time,

and we know from Lemma 3 that the expected value of |ES | is O(n1+ 5
12). Thus

constructing OGS
3 takes expected O(n2− 1

12) time. Emulator construction takes
expected O(m+n

11
6) time which follows from Lemma 6. In Step 3 of the prepro-

cessing algorithm, we execute Dijkstra’s single source shortest path algorithm
∀s ∈ S on E∗ which will take expected O(|S| · (|E∗| + n logn)) time. Also note
that |E∗| = O(n

4
3) (see Lemma 6). Thus the expected time required in step

3 of the preprocessing algorithm is O(n
7
12 + 4

3) = O(n2− 1
12). Thus the expected

running time of the preprocessing algorithm is O(n
23
12).

We can thus conclude the following Theorem.

Theorem 4. A given unweighted graphs on n vertices and m edges can be pre-
processed in expected O(m + n

23
12) time to build a (3, 8)-approximate distance

oracle of size O(n
3
2).

4 A (2k − 1, 2) Approximate Distance Oracle in o(n2)
Time

In this section we describe a (2k − 1, 2)-approximate distance oracle, for any
integer k ≥ 3, which can be constructed in expected sub-quadratic time. The
space occupied by the oracle is O(kn1+1/k).

Let S ⊆ V be formed by selecting each vertex independently with proba-
bility n−

1
2−

1
2k(k−1) . Thus the expected size of S is O(n

1
2−

1
2k(k−1)). Just like our

(3, c)-approximate distance oracle, our preprocessing algorithm for (2k − 1, 2)-
approximate distance oracle will employ an emulator (V,E∗). However, this em-
ulator will be a proper sub graph of the original graph G as can be observed
from its construction described below.

618 S. Baswana et al.

Constructing emulator (V,E∗)

1. Add the edges of TS (see Lemma 1)to E∗.
2. Compute a (2k − 3)-spanner span of size O(n1+ 1

k−1) for the given graph
using O(m) time algorithm of Theorem 2. Add all edges of span to E∗.

Lemma 10. The subgraph (V,E∗) output by the above algorithm is an (2k−3)-
emulator of size O(n1+ 1

k−1). It is computed in O(m) time. Furthermore, this
emulator preserves distance between u and pS(u) for each u ∈ V .

4.1 Preprocessing and Query Algorithm for (2k −1, 2)-Approximate
Distance Oracle

We preprocess the graph to obtain (2k − 1, 2)-oracle as follows.

1. Choose a random sample S ⊆ V by picking each vertex independently with
probability n−

1
2−

1
2k(k−1) .

2. Construct a (2k − 1)-approximate distance oracle of Thorup and Zwick [12]
on GS = (V, ES). Let us denote this data structure by OGS

2k−1.
3. For each s ∈ S, execute SSSP algorithm on emulator (V,E∗) to obtain matrix

Dist, which stores distance δ∗(u, v) between u and v in the emulator for all
u, v ∈ S.

4. Compute pS(u) for each u ∈ V , and construct an array R such that R[u] =
δ(u, S) for each u ∈ V .

The oracle will consist ofOGS

2k−1, matrix Dist[], and arrayR[]. We now describe
the query algorithm.

Query(u, v) {
d1 ← OGS

2k−1(u, v).
d2 ←R[u] +R[v] + Dist[pS(u), pS(v)].

return min(d1, d2) }

4.2 Analysis of Stretch, Space and Preprocessing Time of Oracle

Let us analyze the distance reported by Query(u, v) for any two vertices u, v ∈
V . We consider the two cases to prove the stretch bound as follows:

1. If the shortest path between u and v doesn’t contain two or more consecutive
vertices in N (S), then it follows from Lemma 4 that this shortest path is
captured in the sparse subgraph GS = (V, ES) as well. By Theorem 1, the
data structure OGS

2k−1 will report a stretch-(2k − 1) estimate of the shortest
distance between u and v.

Distance Oracles for Unweighted Graphs 619

(2k−3)−spanner
stretched by

pS(u) pS(v)

u v

Fig. 2. Proving stretch bound in (2k − 1, 2)-approximate distance oracle

2. If the shortest path between u and v contains two or more consecutive
vertices in N (S), then it follows from Lemma 5 that R(u) + R(v) =
δ(u, S)+δ(v, S) ≤ δ(u, v)+1, where δ(u, v) is the length of the shortest path
between u and v in G. In this case, it is easy to observe that ball(u, V, S)
and ball(v, V, S) do not overlap (see Figure 2). It follows from Lemma 10
that δ∗(u, pS(u)) = δ(u, pS(u)), and similarly δ∗(v, pS(v)) = δ(v, pS(v)).
Hence, Dist(pS(u), pS(v)) ≤ δ(u, S) + δ(v, S) + δ∗(u, v). Now δ∗(u, v) ≤
(2k−3)δ(u, v) since (V,E∗) is a (2k−3)-emulator. Combining these inequal-
ities and using Lemma 5, the approximate distance returned by Query(u, v)
can be bounded by :

R[u] +R[v] + Dist[pS(u), pS(v)] ≤ 2δ(u, S) + 2δ(v, S) + δ∗(u, v)
≤ (2k − 1)δ(u, v) + 2

Lemma 11. The size of the (2k − 1, 2)-oracle constructed is O(kn1+1/k).

Proof. It follows from Theorem 1 that OGS

2k−1 uses O(kn1+ 1
k) space. Dist matrix

will use |S|2 = O(n1− 1
k(k−1)) space, and array R will use O(n) space.

Lemma 12. The expected time taken in computing a (2k − 1, 2)-approximate
distance oracle is O(kn2−αk + m) where αk = (1

2 −
1
2k −

1
2k−2).

Proof. It follows from Theorem 1 that the construction of OGS

2k−1 takes
O(k|ES | · n

1
k) time, and we know from Lemma 3 that the expected value

of |ES | is O(n
3
2+ 1

2k(k−1)). So the construction of OGS

2k−1 will take expected
O(kn

3
2 + 1

2k + 1
2k−2 + m) time. In Step 3 of the preprocessing algorithm, the con-

struction of emulator takes O(m) time. We run Dijkstra’s SSSP algorithm for
each s ∈ S on (2k − 3)-emulator (V,E∗) of size O(n1+ 1

(k−1)).1 This will take

1 Although this space exceeds O(n1+1/k), it is only required during the construction
of the oracle and does not contribute to the size of the oracle.

620 S. Baswana et al.

expected O(|S| ·n1+ 1
(k−1)) = O(n

3
2+ 1

2k + 1
(2k−2)) time. Step 4 will take O(m) time.

Thus the expected time complexity of computing (2k − 1, 2)-approximate dis-
tance oracle is O(kn

3
2 + 1

2k + 1
2k−2 + m).

We can thus conclude the following Theorem.

Theorem 5. For any integer k > 2, an unweighted undirected graphs on n

vertices and m edges can be preprocessed in expected O(kn
3
2+ 1

2k + 1
2k−2 +m) time

to compute (2k − 1, 2)-approximate distance oracle of O(kn1+ 1
k) size.

5 Concluding Remarks

For the case of k ≥ 3, we can obtain further improvements in time bounds
by some modifications in the techniques we used. In particular for k = 3, we
can obtain a (5, 4) oracle in O(n11/6 + m) time and for k ≥ 4 we can get a
(2k − 1, 2k − 2) oracle in O(kn2+ 1

k−�
k
2 �·

1
k + m) running time, which is better

for all even values of k. However, the additive stretch here is not a constant but
depends on k.

A more careful analysis of the algorithm for k ≥ 3 yields a (2k−1, 2wmax(u, v))
oracle for weighted graphs where wmax(u, v) is the weight of the heaviest edge
between u, v. In fact when edge weights are identical, we obtain the algorithm in
the previous section as a special case. Details are straight forward and omitted
from this version.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diame-
ter and shortest paths(without matrix multiplication). SIAM Journal on Comput-
ing 28, 1167–1181 (1999)

2. Baswana, S., Goyal, V., Sen, S.: All-pairs nearly 2-approximate shortest paths in
O(n2 polylog n) time. In: Proceedings of 22nd Annual Symposium on Theoretical
Aspect of Computer Science. LNCS, vol. 3404, pp. 666–679. Springer, Heidelberg
(2005)

3. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: Proceedings of the 47th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), pp. 591–602 (2006)

4. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-
pected O(n2) time. ACM Transactions on Algorithms 2, 557–577 (2006)

5. Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New construction of (α, β)-
spanners and purely additive spanners. In: Proceedings of 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 672–681 (2005)

6. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In:
Proceedings of 39th Annual ACM Symposium on Theory of Computing, pp. 590–
598 (2007)

7. Cohen, E., Zwick, U.: All-pairs small stretch paths. Journal of Algorithms 38, 335–
353 (2001)

Distance Oracles for Unweighted Graphs 621

8. Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. Siam Journal on
Computing 29, 1740–1759 (2000)

9. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Ap-
plications (Proc. Sympos. Smolenice,1963), pp. 29–36. House Czechoslovak Acad.
Sci, Prague (1964)URL, 29

10. Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing span-
ners for unweighted graphs (unpublished manuscript) (1996)

11. Roditty, L., Thorup, M., Zwick, U.: Deterministic construction of approximate dis-
tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidel-
berg (2005)

12. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of Association of
Computing Machinery 52, 1–24 (2005)

All-Pairs Shortest Paths with a Sublinear

Additive Error

Liam Roditty and Asaf Shapira

1 Weizmann Institute
2 Microsoft Research

Abstract. We show that for every 0 ≤ p ≤ 1 there is an algorithm with
running time of O(n2.575−p/(7.4−2.3p)) that given a directed graph with
small positive integer weights, estimates the length of the shortest path
between every pair of vertices u, v in the graph to within an additive
error δp(u, v), where δ(u, v) is the exact length of the shortest path be-
tween u and v. This algorithm runs faster than the fastest algorithm for
computing exact shortest paths for any 0 < p ≤ 1.

Previously the only way to “bit” the running time of the exact shortest
path algorithms was by applying an algorithm of Zwick [FOCS ’98] that
approximates the shortest path distances within a multiplicative error of
(1 + ε). Our algorithm thus gives a smooth qualitative and quantitative
transition between the fastest exact shortest paths algorithm, and the
fastest approximation algorithm with a linear additive error. In fact, the
main ingredient we need in order to obtain the above result, which is
also interesting in its own right, is an algorithm for computing (1 + ε)
multiplicative approximations for the shortest paths, whose running time
is faster than the running time of Zwick’s approximation algorithm when
ε � 1 and the graph has small integer weights.

1 Introduction

Computing all-pairs shortest paths (APSP) in graphs is without a doubt one
of the most well-studied problems both in practical and theoretical computer-
science (see [25] for a recent survey). For arbitrarily dense graphs with real
weighted edges, the best algorithm is essentially the classical O(n3) time algo-
rithm of Floyd-Warshall (see [7]). The first improvement over this algorithm was
obtained by Fredman [12] who gave an O(n3/(logn

log log n)1/3) time algorithm. Sev-
eral improvement then followed, culminating in a recent result of Chan [4] who
gave an O(n3/ log2 n

log logn) algorithm. The question of whether the APSP problem
can be solved in truly subcubic time, that is, in time O(n3−c) for some c > 0,
remains a major open problem.

Besides trying to obtain slight poly-logarithmic improvements over the naive
O(n3) algorithm for general graphs, most of the research on the APSP problem
focused on obtaining truely subcubic algorithms for graphs with small inte-
ger edge weights, where throughout the paper, when we say small integer edge
weights we mean edge weights taken from the set {−M, . . . ,M}, with M = no(1).

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 622–633, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

All-Pairs Shortest Paths with a Sublinear Additive Error 623

This problem turns out to be closely related to the problem of fast (that is,
subcubic) matrix multiplication algorithms. The first to realize this connection
were Alon, Galil and Margalit [3] who showed how to solve the APSP prob-
lem in directed graphs with small integer edge weights in time1 O(n

ω+3
2), where

ω < 2.376 is the exponent of the fastest algorithm for multiplying two matri-
ces, due to Coppersmith and Winograd [6]. Zwick [24] obtained an improved
algorithm that can solve the APSP problem in directed graphs with small inte-
ger weights in time O(n2.575). Even in the case of unweighted directed graphs,
the fastest APSP algorithm is Zwick’s O(n2.575) time algorithm. The only lower
bound on the APSP problem in directed graphs is Ω(nω) that comes from the
fact that APSP is at least as hard as boolean matrix multiplication. Therefore,
even in unweighted directed graphs there is a gap between the O(n2.575) upper
bound and the Ω(nω) lower bound. In fact, if ω = 2 then both the algorithms
of [3] and [24] run in O(n2.5), so if ω = 2 then the last progress on the APSP
problem in directed graph with small weights (or even unweighted) was [3] from
1991. We finally note that the only (general) case where the APSP problem can
be solved in time O(nω) is in the case of undirected graphs with small weights,
see [15,16,21,20].

Our focus in this paper is on the APSP problem in directed graphs with
small positive integer weights. As we have discussed in the previous paragraph,
even this spacial case of the problem is not well understood. From the results
above, we know that this problem has an upper bound of O(n2.575) and a lower
bound of Ω(nω). A natural question is therefore what can we do faster than we
can exactly solve the APSP problem, that is, what can we do in time less than
O(n2.575)? By faster we mean by a factor of nc. The reason is (i) In most cases we
don’t even know the exact exponent, (ii) In most cases we disregard no(1) factors
as the fast matrix multiplication algorithms “hide” such factors anyway. To the
best of our knowledge, the only result in this direction is an O(nω/ε) algorithm
of Zwick [24] that approximates the shortest path distances in a directed graph
with positive edge weights2 to within a multiplicative error (1 + ε). That is, if
δ(u, v) denotes the length of the shortest path connecting u and v, then Zwick’s
algorithm returns an estimate δ̂(u, v) satisfying δ(u, v) ≤ δ̂(u, v) ≤ (1+ ε)δ(u, v).

Our motivation for studying better approximations for the APSP problem in
directed graphs stems from the fact that if one considers undirected graphs, then
one can obtain much better approximations. Two notable example are an O(n2.5)
algorithm of Aingworth et. al. [2] that approximates the distances in undirected
unweighted graphs to within an additive error 2, and an O(n2) time algorithm
of Dor, Halperin and Zwick [9] that approximates the distances in undirected
unweighted graphs to within an additive error O(log n). It is interesting to note
that these two algorithms do not use fast matrix multiplication algorithms.

1 Throughout the paper, with a slight abuse of notation, we use O(nr) to denote a
running time of O(nr+o(1)).

2 We note that as opposed to the previous algorithms we have discussed, Zwick’s
approximation algorithm has a good logarithmic dependence on the size of the edge
weights.

624 L. Roditty and A. Shapira

Our main result in this paper is that one can also obtain additive approxima-
tions in directed graphs. However, they are not as good as those that can be ob-
tained in undirected graphs. We give an algorithm for computing additive approx-
imations that are (arbitrarily) polynomially small in the actual distance between
a pair of vertices. In fact our additive approximation gives a “smooth” transi-
tion between the fastest exact O(n2.575) APSP algorithm and the O(nω) (1 + ε)-
multiplicative approximation algorithm. En-route we will also improve the run-
ning time of Zwick’s (1 + ε)-multiplicative approximation algorithm whenever
ε1 1. We also show that our results are tight in the sense that the only way to ob-
tain approximations, similar in quality to those achievable in undirected graphs,
is to actually improve the running time of the fastest exact APSP algorithm.

As we have mentioned above, the study of the APSP problem in graphs with
small weights is closely related to the problem of designing fast algorithms for
matrix multiplication. Before turning to discuss our new results, which also apply
fast matrix multiplication algorithms, let us briefly review the relevant results
on fast matrix multiplication. Let ω(1, r, 1) be the minimal exponent for which
the product of an n × nr matrix and an nr × n matrix can be computed in
O(nω(1,r,1)) time3. The exponent ω = ω(1, 1, 1) is usually called the exponent
of fast matrix multiplication. Coppersmith and Winograd [6] proved that ω <
2.376. Coppersmith [5] showed that ω(1, 0.294, 1) = 2, that is, the product of
an n × n0.294 matrix and an n0.294 × n matrix can be computed in O(n2). Let
α = sup{0 ≤ r ≤ 1 : ω(1, r, 1) = 2}, so Coppersmith’s [5] result mentioned
above can be stated as α > 0.294. Although one can trivially obtain bounds
on ω(1, r, 1) by breaking the two rectangular matrices into small square ones,
Huang and Pan [18] obtained the following improved bound on ω(1, r, 1).

Theorem 1 ([18]). Let ω = ω(1, 1, 1) < 2.376 and α = sup{0 ≤ r ≤ 1 :
ω(1, r, 1) = 2} > 0.294. Then

ω(1, r, 1) =
{

2 0 ≤ r ≤ α
2 + ω−2

1−α (r − α) α ≤ r ≤ 1 (1)

In particular, for any 0.294 ≤ r ≤ 1 we have ω(1, r, 1) ≤ 1.843 + 0.532 · r.

2 The New Results

Let us introduce the main result of this paper. We show that it is possible to
compute arbitrary polynomially small additive approximations for the APSP in
directed graphs with small weights, and still bit the running time of the fastest
exact algorithm that computes APSP.

Theorem 2 (Main Result). For every 0 ≤ p ≤ 1 there is a randomized
O(n2.575− p

7.4−2.3p) time algorithm that given a directed graph G = (V,E), com-
putes with high probability, for every pair u, v ∈ V a value δ̂(u, v) satisfying
3 More generally ω(r, s, t) denotes the exponent of the fastest algorithm for multiplying

an nr × ns matrix with by an ns × nt matrix.

All-Pairs Shortest Paths with a Sublinear Additive Error 625

δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + δp(u, v) .

Observe that when p = 1 the running time of the above algorithm is O(n2.376)
= O(nω). This corresponds to the case considered in [24] of computing estimates
δ̂(u, v) of the shortest paths satisfying δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + O(δ(u, v)).
Also, when p = 0, that is when we want to compute exact shortest paths, the
running time of the above algorithm is O(n2.575), which is the running time of
the exact APSP algorithm of [24]. In particular, we get that for any 0 < p ≤ 1
the running time of the algorithm of Theorem 2 is faster than O(n2.575) by a
polynomial factor. So for any 0 ≤ p ≤ 1 Theorem 2 gives a “smooth” transition
from the fastest exact APSP algorithm and the fastest approximation with a
linear error for directed graphs with small integer weights. We stress again that in
this paper we consider the APSP problem in directed graphs with small positive
integer weights, while the exact O(n2.575) APSP of [24] works also for small
negative weights, and the approximation algorithm of [24] works also for large
positive edge weights.

It is also interesting to consider the performance of our algorithm under the
assumption that ω = 2. As we briefly explain later, in that case the running
time of the algorithm is O(n2+ 1−p

2−p). Note that when p ≈ 1 this running time
becomes O(n2) and when p ≈ 0 this running time becomes O(n2.5). Recall again
that assuming ω = 2 the fastest APSP algorithm runs in O(n2.5), so under the
assumption that ω = 2 the performance of the algorithm is also faster than that
of the fastest exact APSP algorithm for any 0 < p ≤ 1.

We note that the only way one can use previous results in order to obtain
approximations with the quality of those given in Theorem 2 is to use the
(1 + ε)-multiplicative approximation algorithm of [24] with 1/n1−p. However,
the running time of this algorithm is O(nω+1−p) which is slower than the run-
ning time of the algorithm we obtain in Theorem 2 for any 0 ≤ p < 1 . As we
show in the next subsection, when ε = 1/nt we can improve the running time
of the algorithm of [24] but even this improvement does not directly imply the
result in Theorem 2 and more ideas are needed.

2.1 An Improved Multiplicative Approximation Algorithm

The main ingredient that we need in order to obtain our main result stated in
Theorem 2 is an algorithm for computing (1 + ε) multiplicative approximations
of the shortest paths in direct graphs with small integer weights. As we will see
later, we will need to apply this algorithm when ε = 1/nt for some t > 0, that
is when ε 1 1. Zwick’s algorithm [24] for computing such approximations runs
in time O(nω+t). The following theorem shows that for such values of ε one can
obtain a faster algorithm.

Theorem 3. For every ε = 1/nt there is a randomized O(nω(1,1−t,1)+t) time
algorithm that given a directed graph G = (V,E), computes with high probability,
for every pair u, v ∈ V a value δ̂(u, v) satisfying

δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v) .

626 L. Roditty and A. Shapira

Given the current bounds on ω(1, r, 1) that were given in Theorem 1, we
see that when ε = 1/nt the running time of the algorithm of Theorem 3 is
O(nω+0.468·t), which improves Zwick’s algorithm [24] that runs in time O(nω+t).

The algorithm given in Theorem 3 applies two of the main ideas from [24].
The first is the use of random sampling and rectangular matrix multiplication
that was used in [24] in order to obtain an exact APSP algorithm. The second
is the idea of scaling that was used in [24] in order to obtain an approximate
APSP algorithm.

2.2 “Hardness” Results

A natural qualitative question that arises given Theorem 2 is whether one can
design approximation algorithms for APSP whose running time is faster than
that of the fastest O(n2.575) APSP algorithm by some polynomial factor4 and
yet supply better than a polynomially small additive error. For example, given
the results of [9,2] on additive approximations in undirected graphs that we
have mentioned before, one can ask if for some c > 0, it is possible to design
an O(n2.575−c) time algorithm that will compute estimates δ̂(u, v) satisfying
δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + O(log δ(u, v)). As the following proposition shows,
even if we consider a relaxed version of this problem, where the error is relative
to n rather than δ(u, v), such an algorithm would imply an improvement over
the fastest APSP algorithm.

Proposition 1. Suppose that for some r ≥ ω and ε ≤ 1
2 there is an O(nr)

time algorithm5 that given a directed graph G = (V,E) computes for any pair
u, v ∈ V a value δ̂(u, v) satisfying δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v) + nε . Then there
is an O(nr+2rε) time algorithm for the exact APSP problem. In particular, if
ε = o(1) and r = 2.575 − c for some positive c > 0, then there is also an
O(n2.575−c) time algorithm for the exact APSP problem.

So the above proposition implies that if we are interested in an algorithm that
runs faster than the best APSP algorithm by a polynomial factor, then unless
we improve over the fastest APSP algorithms, all we can hope for is to obtain a
polynomially small additive error.

The next proposition gives another such “hardness” result. One can ask if
the O(nω+0.468·t) running time of the algorithm of Theorem 3 can be improved.
For simplicity we consider algorithms with running time O(nω+βt) for some
0 < β < 1, and show the following:

Proposition 2. Suppose that for some β = 0.468 − c and for every ε = 1/nt

there is an O(nω+βt) time algorithm that given a directed graph G = (V,E)
4 Remember that when we measure the running time in the context of fast matrix

multiplication based algorithms, we disregard no(1) factors so we are only interested
in running time that is faster by a factor of nc for some c > 0.

5 We assume (for convenience) that r ≥ ω because this problem is at least as hard
as computing transitive closure of a graph, which is equivalent to boolean matrix
multiplication.

All-Pairs Shortest Paths with a Sublinear Additive Error 627

computes for any pair u, v ∈ V a value δ̂(u, v) satisfying δ(u, v) ≤ δ̂(u, v) ≤
(1 + ε)δ(u, v). Then there is an O(n2.575−c/4) time APSP algorithm.

We note that although the above proposition assumes that the running time of
an alleged improved algorithm is of type O(nω+βt), the argument gives similar
hardness result for (essentially) any type of running time.

2.3 Organization and Overview

The rest of the paper is organized as follows: in Section 3 we describe the al-
gorithm whose running time was stated in Theorem 3. In Section 4 we apply
Theorem 3 in order to obtain the main result of this paper stated in Theorem
2. In Section 4 we also prove Propositions 1 and 2. Section 5 contains some
concluding remarks and open problems.

3 The Improved Multiplicative Approximation Algorithm

In this section we consider directed graphs with positive integer weights from
the set {0, . . . ,M}, where M = no(1). We start with some definitions and a
short overview of the approximation algorithm of [24] for computing (1 + ε)
approximated distances in O(nω/ε). We then proceed to present our improved
(1+ε) approximation algorithm whose running time is polynomially faster when
ε1 1.

3.1 Computing Distance Products

The computation of shortest paths lengths can be reduced to computation of
min-plus products:

Definition 1 (Min-plus products). The min-plus product C = (cij) = A�B,
where A = (aij) is an �×m matrix and B = (bij) is an m× n matrix is defined
as follows: cij = minmk=1{aik + bkj}, for 1 ≤ i ≤ � and 1 ≤ j ≤ n.

The min-plus product is known also as distance product. If D is a matrix that
contains the weights of the edges of a given graph then Dn, the nth power of D
with respect to distance product, is the distance matrix of that graph.

The next Lemma was first stated by [3], following a related idea of [23].

Lemma 3. Let A be an n×nr matrix and let B be an nr ×n matrix, both with
elements taken from {0, . . . ,M} ∪ {+∞}. Then, the distance product A �B can
be computed in O(Mnω(1,r,1)) time.

Based on this Lemma it is possible to use fast matrix multiplication in order
to compute distance product. The algorithm dist-prod is given in Figure 2
(fast-prod is the fast matrix multiplication algorithm). It receives two matrices
A and B, where A is an n×m matrix, B is an m×n and m = nr. The algorithm
returns an n×n matrix C, where C = A�B. The running time of the algorithm
is O(Mnω(1,r,1)).

628 L. Roditty and A. Shapira

algorithm dist-prod(A, B, M)

a′
ij ←

{
(m + 1)M−aij if aij ≤ M ;
0 otherwise.

b′
ij ←

{
(m + 1)M−bij if bij ≤ M ;
0 otherwise.

C′ ← fast-prod(A′, B′)

cij ←
{

2M − �logm+1 c′
ij� if c′

ij ≤ 0;
∞ otherwise.

return C

algorithm apx-dist-prod(A, B, M, R)

Ĉ ← ∞
for i ← �log2 R� to �log2 M do

A′ ← scale(A, 2i, R)
B′ ← scale(B, 2i, R)
C′ ← dist-prod(A′, B′, R)

Ĉ ← min{Ĉ, 2i

R
C′}

return Ĉ

algorithm scale(A,M, R)

a′
ij ←

{
� R

M
aij if aij ≤ M ;

∞ otherwise.
return A′

Fig. 1. The algorithm apx-dist-prod and its subroutines

3.2 The Approximate Distance Product Algorithm

In this section we present the 1 + ε approximation algorithm of Zwick from
[24] whose running time is O(nω/ε). The algorithm is based on a clever scaling
technique.

The main ingredient in the algorithm of [24] is the algorithm apx-dist-prod.
The algorithm is given in Figure 2. It receives two matrices A and B and com-
putes an approximation of their distance product. The algorithm apx-dist-prod
uses the algorithm scale to scale the elements of A and B each time with a dif-
ferent scale factor. The algorithm scale gets a matrix A whose elements are
taken from {0, . . . ,M} and returns a matrix A′ whose elements are the elements
of A scaled and rounded up to elements taken from {0, . . . , R}.

Next, we restate a Lemma from [24] which shows that the matrix returned
by apx-dist-prod is a good approximation of A � B. Note that we adjust the
Lemma to our future needs by stating it with respect to rectangular matrices and
not just to square matrices as it is in [24]. The proof of this Lemma is included
in the full version of this paper.

Lemma 4. Let A be an n× nr matrix let B be an nr × n matrix, and suppose
that elements of A and B that are larger than M are replaced with ∞. Set
C = A � B and let M and R be powers of two. Let Ĉ be the matrix returned by
apx-dist-prod(A,B,M,R). Then, cij ≤ ĉij ≤ (1 + 4

R)cij . The running time of
apx-dist-prod(A,B,M,R) is O(min{R,M} · nω(1,r,1) · logM).

The algorithm of [24] that computes a (1 + ε) approximation using the approxi-
mated computation of the distance product is given in the left side of Figure 2.
Note that is uses apx-dist-prod when A,B are always square matrices. It sets
R to be the first power of two that is greater or equal to 4"log2 n#/ ln(1 + ε). It

All-Pairs Shortest Paths with a Sublinear Additive Error 629

follows from Lemma 4 that after "log2 n# iterations the stretch of the elements
of F is at most:

(

1 +
4
R

)log2 n�
≤

(

1 +
ln(1 + ε)
"log2 n#

)log2 n�
≤ 1 + ε . (2)

The total running time of the algorithm is O(nω/ε) so if ε = 1/nt the running
time is O(nω+t). As it may be clear by now, the main idea of this algorithm
is that once we are ready to settle for approximated distances then we can
reduce the order of the numbers that are involved in the computation of the
distance products. However, the dependency in ε is still large. Notice also that
the matrices A′ and B′ which apx-dist-prod passes to dist-prod are squared
matrices. Thus, the main ingredient that [24] uses in order to obtain the speedup
in his exact algorithm is not used here and the distance product is done between
two square matrices. This is exactly the ingredient that we use in order to reduce
the dependency in ε. In particular, we use the bridging sets technique of [24] to
obtain our improved algorithm. The improved algorithm is given in the right
side of Figure 2.

The algorithm sets R to be the first power of two that is greater or equal
to 4"log3/2 n#/ ln(1 + ε). As opposed to the approximation algorithm of [24]
(and similarly to the exact algorithm of [24]) our algorithm is composed of
"log3/2 n# iterations instead of "log2 n#. In the �th iteration, a random subset B�
of V of size min{n, (9n lnn)/(3/2)�} is chosen. Notice that B� = V in the first
log3/2(9 lnn) = O(log logn) iterations. However, from that point onwards, the
size of B� shrinks at each iteration by a factor of 2/3.

In the �th iteration the algorithm computes the approximate distance prod-
uct between F [V,B] and F [B, V], that is, the rectangular matrices F [V,B] and
F [B, V] obtained by taking only the columns of F that corresponds to B and the
rows of F that corresponds to B, respectively. As opposed to the exact algorithm
of [24] (and similarly to the approximation algorithm of [24]) our algorithm com-
putes the approximation of the distance product. Moreover, as the matrices that
apx-dist-prod receives are rectangular then the distance product is done by
exploiting this fact.

We claim that apx-shortest-path2 computes, with high probability, 1 + ε
approximations of the distances in the graph. This follows from the next Lemma,
whose proof appears in the full version of this paper.

Lemma 5. Let i, j ∈ V . If there is a shortest path from i to j in G that uses
at most (3/2)� edges, then after the �th iteration, with high probability, fij ≤
(1 + 4

R)�δ(i, j).

3.3 Proof of Theorem 3

We start by observing that if ε = 1/nt then the algorithm apx-shortest-path2

uses R of order O(log n/ log(1+1/nt)) = O(nt) (we use the fact that log(1+ε) ≈
ε). Consider iteration � of the algorithm and let r be such that s = (3/2)� =
n1−r, and note that this means that |B�| = O(nr). The running time of the �th

630 L. Roditty and A. Shapira

algorithm apx-shortest-path1 (D, ε)

F ← D

M ← max{dij | dij �= ∞}
R ← 4�log2 n/ ln(1 + ε)

R ← 2
log2 R�

for � ← 1 to �log2 n do

F ′ ← apx-dist-prod(F, F, nM, R)
F ← min{F, F ′}

return F

algorithm apx-shortest-path2 (D, ε)

F ← D

M ← max{dij | dij �= ∞}
R ← 4�log 3

2
n/ ln(1 + ε)

R ← 2
log2 R�

for � ← 1 to �log 3
2

n do

s ← (3
2)�

B ← sample(V, 9n ln n/s)
F1 ← F [∗, B], F2 ← F [B, ∗]
F ′ ← apx-dist-prod(F1, F2, sM, R)
F ← min{F, F ′}

return F

Fig. 2. Zwick’s approximation algorithm [24] on the left, and the improved algorithm
on the right

iteration of the algorithm is clearly dominated by the cost of apx-dist-prod.
By Lemma 4, the cost of computing the distance product of A, whose size is
n × nr, and B, whose size is nr × n, is O(min{M,R} · nω(1,r,1)), where M is
the the largest element that appears in A and B. When our improved algorithm
apx-shortest-path2 calls apx-dist-prod it passes two rectangular matrices A
and B, whose sizes are n× nr and nr × n. From the assumption that the graph
has small integer weights, it follows that at this stage sM = O(n1−r). Hence, the
running time of apx-dist-prod is O(min{n1−r, nt} · nω(1,r,1)). As ω(1, r, 1) + t
is increasing with r and ω(1, r, 1) + 1 − r is decreasing with r, we infer that,
ignoring poly-logarithmic factors, the worse running time of dist-prod is the
iteration where ω(1, r, 1)+t = ω(1, r, 1)+1−r, that is, when r = 1−t. Hence, the
running time of the worst iteration is O(nω(1,1−t,1)+t). The total running time
of apx-shortest-path2 is also O(nω(1,1−t,1)+t) as it is dominated by the calls
to dist-prod and there are only O(log n) such calls. Combining Lemma 5 with
the same argument that is used in (2), we get that after "log3/2 n# iterations
the algorithm apx-shortest-path2 computes a (1 + ε) approximation of the
distances in the graph.

4 Proof of Main Result

In this section we prove Theorems 2 as well as Propositions 1 and 2. For the
proof of Theorem 2 we will need the following well known fact, whose proof is
included in the full version of this paper.

Claim. For every 0 ≤ t ≤ 1, there is a randomized O(n3−t) time algorithm, that
given a directed graph G with small positive integer weights, computes (with

All-Pairs Shortest Paths with a Sublinear Additive Error 631

high probability) the shortest path from u to v for every u, v ∈ V that satisfy
δ(u, v) ≥ nt.

Proof of Theorem 2: Let 0.294 ≤ � ≤ 1 be a value to be chosen later. The
key observation is that in order to compute approximations of δ(u, v) to within
an additive error δp(u, v) it is enough to compute the exact shortest paths of
G of length at least n� (as in Claim 4) as well as compute a (1 + 1/n(1−p)�)-
multiplicative approximation of the shortest paths of G (in the sense of Theorem
3), and then take, for each pair u, v, the best of the two values as the estimate
of the shortest paths in G. Indeed, if δ(i, j) ≥ n� then we can get the exact
value of δ(u, v) via Claim 4. If δ(i, j) ≤ n� then the (1+1/n(1−p)�)-multiplicative
approximation of Theorem 3 returns a value δ(u, v) ≤ δ̂(u, v) ≤ δ(u, v)+δp(u, v).

Thus, it remains to choose the value of � that will minimize the total running
time of the two algorithms. The running time of the algorithm of Claim 4 is
n3−� and the running time of the (1 + 1/n(1−p)�)-multiplicative approximation
algorithm of Theorem 3 is nω(1,1−(1−p)�,1)+(1−p)�. Note that the running time of
the first algorithm decreases with � and the running time of the second algorithm
increases with �, so we need to find the solution of the equation

ω(1, 1− (1− p)�, 1) + (1− p)� = 3− � . (3)

By Theorem 1 we know that for any 0.294 ≤ r ≤ 1 we have ω(1, r, 1) = 1.843 +
0.532r. So plugging this into the above equation we get:

1.843 + 0.532(1− (1 − p)�) + (1− p)� = 3− � ,

and this is equivalent to 2.376 + 0.468(1 − p)� = 3 − � . The solution of this
equation is � = 0.624

1.468−0.468p . Note that indeed for any 0 ≤ p ≤ 1 we have
0.294 ≤ � ≤ 1. We get that the running time of the algorithm is

O(n3− 0.624
1.468−0.468p) = O(n2.575− p

7.4−2.3p) ��

We have commented after the statement of Theorem 2 that under the assumption
ω = 2 the running time of the algorithm of Theorem 2 is O(n2+ 1−p

2−p). To see this,
note that if ω = 2 then equation (3) becomes 2+(1−p)� = 3−�, whose solution is
� = 1

2−p , giving that the running time is indeed O(n2+ 1−p
2−p). We end this section

with the proofs of Propositions 1 and 2.

Proof of Proposition 1: Given an n-vertex graph G = (V,E) let us construct a
graph G′ = (V ′, E′) on m = n1+2ε vertices, where G′ is obtained from G as fol-
lows: we replace every vertex v with two vertices vin and vout that are connected
by a path of length n2ε− 1 on vertices xv1 , . . . , x

v
n2ε−2. All the above vertices are

distinct, that is, the path connecting vin and vout and the one connecting uin
and uout are disjoint. Hence, G′ indeed contains m = n1+2ε vertices. Finally for
every edge (u, v) of G we have an edge connecting uout to vin in G′. It is not
difficult to see that for any u = v we have δG′(uin, vin) = n2ε · δG(u, v).

632 L. Roditty and A. Shapira

Our assumption is that we can compute for all pairs i, j ∈ V ′ an estimation
δ̂(i, j) satisfying

δG′(i, j) ≤ δ̂G′(i, j) ≤ δG′(i, j) + mε ≤ δG′(i, j) + n2ε − 1 (4)

in time O(mr) = O(nr+2rε), where in the rightmost inequality we have used
the assumption that ε ≤ 1

2 . We claim that this means that within the same
time we can compute all the values δG(u, v). Indeed, combining the fact that
δG′(uin, vin) = n2ε · δG(u, v) with (4) we infer that

n2ε · δG(u, v) ≤ δ̂G′(uin, vin) ≤ n2ε · δG(u, v) + n2ε − 1 .

Observe that this means that

δG(u, v) =

⌊
δ̂G′(uin, vin)

n2ε

⌋

,

so all the exact distances can be computed with an additional cost of O(n2)
time. ��

Proof of Proposition 2: Observe that if we compute estimates δ̂(u, v) satisfying
δ(u, v) ≤ δ̂(u, v) ≤ (1 + ε)δ(u, v), where ε = 1/nt, then in particular we have
computed all the shortest paths of length at most nt. Remember also that by
Claim 4 we can compute all the shortest paths of length at least nt in time n3−t.
So if there is an O(nω+(0.468−c)t) algorithm for computing the multiplicative
estimates, then solving 3−t = ω+(0.468−c)t we get that by choosing t = 3−ω

1.468−c
we obtain an algorithm for computing exact APSP in time O(n3− 0.624

1.468−c) =
O(n2.575−c/4). ��

5 Concluding Remarks and Open Problems

A natural open problem is to improve the running time of the algorithm given
in Theorem 1 for any 0 ≤ p ≤ 1, that is, to obtain a faster transition between
the exact and the multiplicative APSP algorithms. Our algorithm runs in time
O(nω+c) for any p < 1. Is there a p < 1 for which one can find additive approx-
imation within an error δp(u, v) and still have running time O(nω)?

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Comput-
ing 28, 1167–1181 (1999)

3. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path
problem. Journal of Computer ans System Sciences 54, 255–262 (1997); Also, Proc.
of FOCS 1991

All-Pairs Shortest Paths with a Sublinear Additive Error 633

4. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In:
Proc. of STOC 2007 (to appear, 2007)

5. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Com-
plexity 13, 42–49 (1997)

6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symbol. Comput. 9, 251–280 (1990)

7. Cormen, T.H., Leisserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. McGraw-Hill, New York (2001)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

9. Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. SIAM Journal on
Computing 29, 1740–1759 (2000)

10. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common
ancestors in directed acyclic graphs (manuscript, 2006)

11. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure.
In: Proc. of the 12th Symposium on Switching and Automata Theory, East Lansing,
Mich., pp. 129–131 (1971)

12. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM
Journal on Computing 5, 49–60 (1976)

13. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM 34, 596–615 (1987)

14. Furman, M.E.: Application of a method of fast multiplication of matrices in the
problem of finding the transitive closure of a graph. Dokl. Akad. Nauk SSSR 11(5),
1252 (1970)

15. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer
length edges. Information and Computation 134, 103–139 (1997)

16. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length
edges. Journal of Computer and System Sciences 54, 243–254 (1997)

17. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems.
Journal of Algorithms 9, 411–417 (1988)

18. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications.
Journal of Complexity 14, 257–299 (1998)

19. Munro, I.: Efficient determination of the strongly connected components and the
transitive closure of a graph. Univ. of Toronto, Toronto, Canada (1971) (unpub-
lished manuscript)

20. Seidel, R.: On the All-Pairs-Shortest-Path Problem in Unweighted Undirected
Graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)

21. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer
weights. In: Proc. of FOCS 1999, pp. 605–614 (1999)

22. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52,
1–24 (2005)

23. Yuval, G.: An algorithm for finding all shortest paths using N2.81 infinite-precision
multiplications. Information Processing Letters 4, 155–156 (1976)

24. Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix
multiplication. Journal of the ACM 49, 289–317 (2002); Also, Proc. of FOCS 1998

25. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf
der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg
(2001)

Simpler Linear-Time Modular Decomposition

Via Recursive Factorizing Permutations

Marc Tedder1, Derek Corneil1,�, Michel Habib2, and Christophe Paul3,��

1 Department of Computer Science, University of Toronto
{mtedder,dgc}@cs.toronto.edu

2 LIAFA and the University of Paris 7 - Denis Diderot
habib@liafa.jussieu.fr

3 CNRS - LIRMM, Univ. Montpellier II France (part of this research was conducted
while on sabbatical in the School of Computer Science at the University of McGill)

christophe.paul@lirmm.fr

Abstract. Modular decomposition is fundamental for many important
problems in algorithmic graph theory including transitive orientation,
the recognition of several classes of graphs, and certain combinatorial
optimization problems. Accordingly, there has been a drive towards a
practical, linear-time algorithm for the problem. This paper posits such
an algorithm; we present a linear-time modular decomposition algorithm
that proceeds in four straightforward steps. This is achieved by intro-
ducing the notion of factorizing permutations to an earlier recursive ap-
proach. The only data structure used is an ordered list of trees, and each
of the four steps amounts to simple traversals of these trees. Previous al-
gorithms were either exceedingly complicated or resorted to impractical
data-structures.

1 Introduction

A natural operation to perform on a graph G is to take one of its vertices,
say v, and replace it with another graph G′, making v’s neighbours universal
to the vertices of G′. Modular decomposition is interested in the inverse oper-
ation: finding a set of vertices sharing the same neighbours outside the set –
that is, finding a module – and contracting this module into a single vertex. A
graph’s modules form a partitive family [2], and as such, define a decomposi-
tion scheme for the graph with an associated decomposition tree composed of
the graph’s strong modules – those that don’t overlap other modules. To com-
pute this modular decomposition tree is to compute the modular decomposition
(and vice versa), and with its succinct representation of a graph’s structure, its
computation is often a first-step in many algorithms. Indeed, since Gallai first
noticed its importance to comparability graphs [12], modular decomposition has
� Marc Tedder and Derek Corneil wish to thank NSERC for partially funding this

research.
�� Michel Habib and Christophe Paul were supported by the French ANR project ANR-

O6-BLAN-0148-01, Graph Decomposition and Algorithms (GRAAL).

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 634–645, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simpler Linear-Time Modular Decomposition 635

been established as a fundamental tool in algorithmic graph theory. All efficient
transitive orientation algorithms make essential use of modular decomposition
(e.g., [17]). It is frequently employed in recognizing different families of graphs,
including interval graphs [18], permutation graphs [23], and cographs [3]. Fur-
thermore, restricted versions of many combinatorial optimization problems can
be efficiently solved using modular decomposition (e.g., [8]). While the papers
[18,19,20] provide older surveys of its numerous applications, new uses continue
to be found, such as in the areas of graph drawing [22] and bioinformatics [11].

Not surprisingly, the problem of computing the modular decomposition has
received considerable attention. Much like planarity testing and interval graph
recognition, the importance of the problem has bent efforts toward a simple
and efficient solution. The first polynomial-time algorithm appeared in the early
1970’s and ran in time O(n4) [5]. Incremental improvements were made over the
years – [14,21], for example – culminating in 1994 with the first linear-time algo-
rithms, developed independently by McConnell and Spinrad [16], and Cournier
and Habib [4]. These are unfortunately so complex as to be viewed primarily as
theoretical contributions. Subsequent algorithms have not been much better.

The attempts made in [17] and [7] are illustrative. Both adopt an approach
pioneered by Ehrenfeucht et. al. [9], later improved upon by Dahlhaus [6]. The
idea is to pick an arbitrary vertex, say x, and recursively compute the modular
decomposition tree for its neighbourhood, N(x), and its non-neighbourhood,
which we denote N(x). Any strong module not containing x must be a module of
either G[N(x)] or G[N(x)], and therefore can be extracted from their recursively
computed modular decomposition trees. Once extracted, these can then be used
to compute the strong modules containing x. The two types of modules are then
assembled to form the tree. While conceptually simple, identifying the strong
modules containing x and then constructing the tree has proven difficult to
perform in linear-time. In [17] they settle for an O(n+m logn) implementation,
while [7] must use conceptually difficult tricks, a careful charging argument, and
the challenging Gabow-Tarjan [10] version of union-find.

Factorizing permutations were introduced by Capelle and Habib [1] as a means
of avoiding the difficulty just described. A factorizing permutation is a permu-
tation of a graph’s vertices in which the strong modules appear consecutively. If
such a permutation can be computed, then the algorithm of [1] can be used to
derive the tree in linear-time. This indirect approach was used in [15] to get an
O(n + m logn) algorithm, and while linear-time was claimed in [13], the paper
contains an error which kills the algorithm’s simplicity.

In this paper we introduce the notion of factorizing permutations to the
recursive framework described above to produce a straightforward linear-time
modular decomposition algorithm. The two approaches turn out to be comple-
mentary. From the recursively computed trees a factorizing permutation is easily
constructed using a refinement technique generalizing traditional partition re-
finement from sets to trees. We then show how this factorizing permutation
makes it easy to identify the strong modules containing x and assemble the tree.
We manage to maintain the conceptual simplicity of both, facilitating the proof

636 M. Tedder et al.

of the algorithm’s correctness and running time. Moreover, our algorithm avoids
sophisticated data structures, using only an ordered list of trees.

1.1 Preliminaries

All graphs in this paper are simple and undirected. Connected components will
simply be referred to as components, while the connected components of the
complement will be referred to as co-components. We will talk often of an ordered
list of trees, which will sometimes be referred to as an ordered forest. The leaves
within this forest will always correspond to the vertices of the graph in question.
When we refer to an ordering of these vertices it is with respect to one implicitly
defined by the ordered forest; in particular, any pre-ordering of the leaves of each
tree, processed from left to right. Thus, the leaves descendent from any one node
will always appear consecutively. Note that sometimes a set of vertices will be
referred to as a “tree”. We do this to streamline the exposition; our intent will
become clear.

A module is a set of vertices all of whom share the same neighbourhood outside
the set. The modular decomposition tree will occasionally be referred to as the
MD tree. The MD tree can be recursively defined as follows: the root of the
tree corresponds to the entire graph; if the graph is disconnected, the root is
called parallel and its children are the MD trees of its components; if the graph’s
complement is disconnected, the root is called series and its children are the
MD trees of the co-components; in all other cases the root is called prime1, and
its children are the MD trees of the graph’s maximal modules. Recall that the
nodes in this tree are the graph’s strong modules, which are those that don’t
overlap others.

2 Overview of the Algorithm

2.1 Recursion

The algorithm begins by selecting an arbitrary vertex, x, called the pivot, and
placing its neighbourhood to its left and its non-neighbourhood to its right, giv-
ing us the ordered list of trees, N(x), x,N(x). Next, the modular decomposition
tree for G[N(x)] is recursively computed. As this occurs, with new pivots being
selected, the neighbours of these pivots in N(x) are “pulled forward” so that
afterwards we have the ordered list of trees, T (N(x)), x,NA(x), NN (x), where
T (N(x)) is the modular decomposition tree for G[N(x)], and NA(x) is the sub-
set of N(x) with at least one neighbour in N(x), and NN (x) is the subset of
N(x) without neighbours in N(x). The algorithm then recursively computes the
modular decomposition tree for NA(x), pulling its neighbours in NN (x) forward
in a similar fashion. And so on. Eventually we arrive at the following ordered
list of trees:

1 This definition of prime differs somewhat from that which normally appears in the
literature.

Simpler Linear-Time Modular Decomposition 637

T (N0)
︸ ︷︷ ︸
N(x)

, x, T (N1), . . . , T (Nk)
︸ ︷︷ ︸

N(x)

, (1)

where the Ni’s correspond to the distance layers in a breadth-first-search be-
gun from x, and the T (Ni)’s are their modular decomposition trees. We will
sometimes refer to the Ni’s as layers.

The rest of this paper assumes that the graph is connected and thus each
vertex in Ni has an edge to Ni−1 (or x in the case of N0). When the graph
is disconnected, the layers up to Nk−1 along with x form one of its connected
components. In this case the algorithm builds the MD tree for this component
as described below, then unifies the result with T (Nk) under a common root
labeled parallel. This adds a constant amount of work to each stage. Each stage
is defined by a pivot, and vertices are only pivots once, so this work is consistent
with linear-time.

2.2 Refinement

We wish to transform the above ordered list of trees into a factorizing permuta-
tion that will simplify the construction of the modular decomposition tree. We
begin doing so by refining the trees using the edges active at this stage:

Definition 1. An edge becomes active when one of its endpoints is pivot or if
its endpoints reside in different layers.

The refinement procedure, which generalizes traditional partition refinement
from sets to trees, is detailed in section 3.1. In it we process each vertex in
turn and use its incident active edges to refine the trees other than its own.
What results is not a factorizing permutation but something very close.

To see why, first consider a strong module not containing x, say M . Notice
that for some Ni, we have M ⊆ Ni, with M also a module in G[Ni]. A theorem
of [19] says that either M is a strong module in G[Ni], and thus an internal node
in T (Ni), or it corresponds to the union of siblings in T (Ni). In the former case,
refinement leaves the node corresponding to M unaffected. In the latter case,
refinement groups the siblings under a new internal node inserted into T (Ni) in
their former location, in a sense “splitting” their former parent in two. Thus:

Lemma 1 (Proved in section 3.1). The strong modules not containing x
appear consecutively after refinement.

We are not so fortunate for strong modules containing x, although refinement
does get them close to appearing consecutively. As described above, refinement
groups siblings under new internal nodes. When these new nodes are at depth-1,
however, refinement deletes their parent, making that new node a root of its
own tree in our ordered list, effectively splitting the siblings’ old tree in two.
The intuition here comes from the fact that the (co)-components of the layers
correspond either to the nodes at depth-0 or depth-1 in the T (Ni)’s, combined
with the special role played by these (co)-components:

638 M. Tedder et al.

Proposition 1. If C is a co-component of G[N0] and M ′ is a strong module
containing x, then either C ⊂ M ′ or C ∩M ′ = ∅. Similarly for C a component
of G[Ni], i > 0.

During refinement the module will be contained within an interval of trees:

Lemma 2 (Proved in section 3.1). Let Tk, . . . , T1, x, T
′
1, . . . , T

′
� be the ordered

forest at some point during refinement, and let M ′ be a strong module containing
x. Then there are trees Ti and T ′j (called the bounding trees for M ′) such that,

(i) M ′ ⊃ Ti−1 ∪ · · · ∪ T1 ∪ {x} ∪ T ′1 ∪ · · · ∪ T ′j−1, and
(ii) M ′ ⊆ Ti ∪ · · · ∪ T1 ∪ {x} ∪ T ′1 ∪ · · · ∪ T ′j.

The interval bounding the module becomes more and more precise as trees are
split. The next stage in the algorithm makes the interval exact.

2.3 Promotion

When siblings are grouped under a new node during refinement it happens be-
cause a vertex in a different tree is adjacent to them but not their other siblings.
The siblings’ former parent cannot therefore correspond to a module; this is also
true of all their ancestors. Refinement accounts for this by marking these nodes
for deletion. We show in section 3.1 that when refinement has finished, the nodes
without marked children will correspond to the strong modules not containing
x. Promotion is the process of deleting all other nodes, – internal nodes are “pro-
moted” upward as their ancestors are deleted – leaving only the strong modules
not containing x.

The real benefit of promotion however is that it gives us the desired factor-
izing permutation. The strong modules not containing x end up consecutive as
explained above. But now the strong modules containing x will also be consecu-
tive: as nodes are deleted, the portion of the bounding trees that is in the module
will be placed next to the other trees in the module (see lemma 2).

Lemma 3 (Proved in section 3.2). The ordered forest that results from pro-
motion provides a factorizing permutation.

2.4 Assembly

In fact, promotion gives us much more than a factorizing permutation: we have
an ordered list of trees whose nodes (excepting x) correspond to the strong mod-
ules not containing x; moreover, each of these strong modules is itself properly
decomposed (their parts were originally in their respective T (Ni)’s, and neither
refinement nor promotion changes this). What remains, then, is to identify the
strong modules containing x, determine the trees in our list constituting them,
then use this information to assemble the modular decomposition tree. This was
the bottleneck encountered by the previous recursive algorithms. Our factorizing
permutation makes it easy.

Simpler Linear-Time Modular Decomposition 639

With a factorizing permutation we know the strong modules containing x are
nested: [· · · [· · · [· · ·x · · ·] · · ·] · · ·]. Since our ordered forest consists of the strong
modules not containing x, no tree in it overlaps these brackets. So to build the
MD tree, it suffices to insert the brackets between the trees in our list: once this
is done, a node is made for each pair of brackets and a “spine” for the MD tree
is built; to this we merely affix the trees in our list according to the placement
of the brackets. We show how to insert the brackets in section 3.3.

3 Details and Correctness

3.1 Refinement

The refinement process described in the overview is given by algorithm 1; note
that it requires algorithm 2 which appears afterwards.

Algorithm 1. Refinement of the ordered list of trees in (1) by the active
edges
foreach vertex v do

Let α(v) be its incident active edges;
Refine the list of trees using α(v) according to algorithm 2, such that:
if v is to x’s left or v is to x’s right and refines a tree to x’s left then

refine using left splits according to algorithm 2, and when a node is
marked, mark it with “left”;

else
refine using right splits according to algorithm 2, and when a node is
marked, mark it with “right”;

end
end

Below we sketch the proof of lemmas 1 and 2. For the former we actually
prove something slightly stronger from which lemma 1 follows immediately:

Lemma 4. The nodes in the ordered list of trees resulting from refinement that do
not have marked children correspond exactly to the strong modules containing x.

Proof. [Sketch] Let M be a strong module not containing x. As stated in the
overview, M must be entirely contained in some Ni, and it must be a module
of G[Ni]. A theorem of [19] guarantees that M is either a node in T (Ni) or the
union of children, say c1, . . . , ck, of a series or parallel node in T (Ni). Appealing
to algorithm 1, we see that in the former case it remains a node throughout
refinement and none of its children are ever marked, since each vertex outside
T (Ni) is either universal to, or isolated from, the node. Algorithm 1 also makes
clear that in the latter case the children will remain siblings throughout refine-
ment, and will not be marked at any time, since, again, each refining vertex
is either universal to them or isolated from them. So for contradiction, assume

640 M. Tedder et al.

Algorithm 2. Refinement (using either “left” or “right” splits) of an ordered
list of trees by the set X

Let T1, . . . , Tk be the maximal subtrees in the forest whose leaves are all in X;
Let P1, . . . , P� be the set of parents of the roots of the Ti’s;
foreach Pi do

Let A be the set of Pi’s children amongst the Tj ’s, and B its remaining
children;
Let Ta either be the single tree in A or the tree formed by unifying the trees
in A under a common root, and define Tb symmetrically;
When unifying under a common root, assign Pi’s label to this root;
if Pi is a root then

Replace Pi in the forest with either Ta, Tb (for a left split) or Tb, Ta (for a
right split)

else
Replace the children of Pi with Ta and Tb;

end
Mark the roots of Ta and Tb and all their ancestors;
Mark the children of the prime nodes marked above;

end

that after refinement the ci’s have a sibling c different from them. Inspecting
algorithm 1, we see that c must have been a sibling of the ci’s in T (Ni), and
that c and the ci’s must have the same set of neighbours outside Ni. Hence, c∪c1
is a module overlapping c1 ∪ · · · ∪ ck, contradicting the latter being strong.

For the converse, consider a node N without any marked children, and suppose
N was formed from the refinement of T (Ni). Clearly, the vertices of N have the
same neighbours outside T (Ni). By algorithm 1, if N is prime, it existed in
T (Ni) and so has the same neighbours within T (Ni). This is also true when N
is not prime, since its children must have been children of the same non-prime
node in T (Ni). Hence, each node with unmarked children is a module. If the
node existed in T (Ni) then it is clearly strong. If it is new, a simple case analysis
shows that no other module can overlap it, since two overlapping modules must
be a module themselves.

Proof of lemma 2. [Sketch] Recall the statement of the lemma, and the bounding
trees Ti and T ′j . We prove this by induction on the number of vertices refining.
Prior to refinement we have the ordered list of trees T (N0), x, T (N1), . . . , T (Nk).
It is easy to show that if M ′ ∩Ni = ∅ for some i > 1, then M ′ = V . Thus, the
lemma holds prior to refinement since T (N0) and either T (N1) or T (Nk) can be
taken as the bounding trees. So suppose there are such bounding trees Ti and
T ′j after some number of vertices have refined; now consider what happens after
the next vertex refines. Clearly we need only focus on Ti and T ′j ; we’ll argue the
case for Ti, with the case for T ′j being similar.

Now, if Ti is not split we are done, so assume Ti is split and replaced by the
trees TA, TB in order. Let v be the vertex doing the refining and observe that v is
universal to the leaves of TA and not universal to the leaves of TB; additionally,

Simpler Linear-Time Modular Decomposition 641

we must have v ∈ N1. If v ∈ M ′ as well, then v is universal to the portion of
Ti outside M ′ and hence we take TA as the new left-bounding tree. If v /∈ M ′,
then it is isolated from the portion of Ti in M ′, and so we take TB as the new
left-bounding tree in this case.

3.2 Promotion

The promotion process is given by algorithm 3. Below we sketch the proof of
lemma 3. The key here is that refinement uses two types of marks, “left” and
“right”, with promotion handling each differently.

Algorithm 3. The promotion algorithm
while there is a root r with a child c both marked by “left” do

Remove from r the subtree rooted at c and place it just before r;
end
while there is a root r with a child c both marked by “right” do

Remove from r the subtree rooted at c and place it just after r;
end
Delete all marked roots in the forest with one child, replacing them with that
child;
Delete all marked roots in the forest with no children;
Remove all marks;

Proof of lemma 3. [Sketch] By lemma 4 and inspection of algorithm 3, we
see that the strong modules not containing x will appear consecutively after
promotion.

Let M be a strong module containing x. Let Ti and T ′j be the bounding trees
provided by lemma 2. It suffices to show that promotion deletes nodes in such
a way as to place the portions of Ti and T ′j that are in M next to the other
vertices in M . We’ll focus on T ′j, with the case for Ti following similarly.

In the proof of lemma 2 we observed that if M ∩ Ni = ∅ for some i > 1,
then M = V . As such, we’ll assume T ′j is composed of vertices in N1. If T ′j
only contains vertices in M , then clearly we are done since promotion does not
rearrange trees in our ordered list. So assume T ′j contains some vertices in M and
some outside M . By proposition 1, this means it contains vertices in at least two
different components of G[N1], say C and C′ with C ⊂M and C′∩M = ∅. Now,
C and C′ were siblings at depth-1 in T (N1), and by assumption, some portion
of each remains in the same tree after refinement. Appealing to algorithm 1, we
see that this is only possible if all vertices in C and C′ remain in the same tree
after refinement; that is, C and C′ must still be siblings after refinement, which
means they remained siblings throughout refinement.

If both C and C′ share the same neighbours outside N1, then C ∪ C′ is a
module overlapping M , contradicting M being strong. It follows that at least
one of C and C′ is marked “left” or “right” (or both). We now consider the
cases:

642 M. Tedder et al.

Case 1 : Assume C′ is marked by “left”. This means a vertex in N0 is adjacent
to some but not all vertices in C′; let v be the first such vertex. Note that v /∈M
if it is adjacent to some of C′; thus, v is universal to C. But we remarked above
that C and C′ had the same parents throughout refinement; so at the time v
refined, it would have split C away from C′, contradicting their being siblings
afterwards. This case is therefore impossible.

Case 2 : Assume C′ is marked by “right”. Observe that no vertex in C can
be adjacent to a vertex in Ni, i > 1, since such vertices are outside M and not
adjacent to x. Thus C cannot be marked by “right”. Thus, promotion places the
vertices of C′ to the right of those in C.

Case 3 : Assume C′ is not marked by a split. Then C must be marked by a
split, as argued above, and as seen in case 2, it must be a left-split that marks
it. Thus, promotion places the vertices of C to the left of those of C′.

In all cases, promotion puts C to the left of C′. Since C and C′ were chosen
arbitrarily, we can conclude that the vertices of M appear consecutively.

3.3 Assembly

Recall from the overview that to assemble the tree it suffices to insert the brackets
delineating the strong modules containing x. We can simplify this by viewing our
ordered list of trees as an ordered list of (co-)components. The (co-)components
of the layers appear at depth-0 and depth-1 in the T (Ni)’s and thus appear
consecutively prior to refinement. Examining algorithms 1,2, and 3 we see that
they will remain consecutive after promotion. Thus, our ordered list of trees can
be seen as an ordered list of (co-)components: C′κ, . . . , C

′
1, x, C1, . . . , Cλ, where

the C′i’s correspond to the co-components of N0 and the Ci’s correspond to the
components of the remaining layers. The process to insert the brackets is derived
from the lemma below:

Lemma 5. Let M be the smallest strong module containing x. Then M satisfies
one of the following three conditions:

(i) M is the maximally contiguous module containing x and no C′i (in which
case M is series);

(ii) M is the maximally contiguous module containing x and no Ci, and only
C′j’s in N1 with no edge to their right (in which case M is parallel);

(iii) M is the minimally contiguous module containing x and at least C1 and
C′1 (in which case M is prime).

We can determine if a Ci has an edge to its right by checking each vertex’s
incident active edges. To help identify the modules required by the lemma we
associate with each (co-)component a μ-value, defined as follows: for C′i, let Cj
be the component with smallest index such that C′i is isolated from Cλ, . . . , Cj ,
then if j = 1, μ(C′i) = Cj−1, otherwise μ(C′i) = x. The μ-values for the Ci’s are
defined symmetrically.

We apply the lemma by operating greedily. Let M be the smallest strong
module containing x. We first check if M is a parallel module by comparing

Simpler Linear-Time Modular Decomposition 643

μ(C1) with x; if they are the same, we then check that C1 has no edge to its
right. If both tests succeed then M is a parallel module and we maximally add
consecutive Ci’s that satisfy both tests. If either test fails then a series module
is attempted in a symmetric manner.

Failing both a series and parallel module, we know M is prime and must in-
clude C1 and C′1. In this case M is formed by iteratively applying the following
rule: when a Ci is included in M , so too must be C′1, . . . , μ(Ci), and symmetri-
cally for a C′i added to M . When no new (co-)components can be added we know
we have found M . In all cases, once a module is found, brackets are inserted, the
module contracted, and the process begins again with the just identified module
in the role of x.

4 Running Time and Implementation

4.1 Recursion

In order to effect the partitioning required of the recursion, we need to traverse
the pivot’s adjacency list in its entirety. However, each vertex is a pivot exactly
once during the algorithm, so this is consistent with linear-time.

We will need to isolate the incident active edges of each vertex so that refine-
ment, promotion, and assembly can be performed efficiently; this can be done
during the recursion. Initially we assume all vertices are marked as unvisited and
that each has associated with it an empty list denoted by α (which will be used
to store the incident active edges). As pivots are chosen during the recursion
they are marked as visited. When a pivot’s adjacency list is traversed, the pivot
is appended to the α-list of all its visited neighbours. Thus, after recursion the
α-lists of each vertex in Ni will correspond to their incident active edges to Ni+1.
The rest of their active edges can then be added by traversing the α-list of each
vertex, and appending vertices to the other α-lists in the obvious way. At the end
of each stage the α-lists must be cleared to satisfy our induction hypothesis. We
can thus assume that the active edges at each stage can be isolated at the cost
of work proportional to their number. Notice that each edge is active precisely
once during the algorithm, so this effort is consistent with linear-time overall.

4.2 Refinement

A simple recursive marking procedure finds the maximal subtrees required by
algorithm 2. All nodes in our trees have at least two children, so the sizes of
these subtrees are linear in the number of their leaves, which is equal to the
number of incident active edges of the vertex refining. Notice that each vertex
has at least one incident active edge. Thus, finding these trees is proportional to
the number of active edges at each stage and so is consistent with linear-time.

The children of a prime node need only be marked once, and the ancestors
of a node need only be marked twice (once each for “left” and “right”). The
time for this marking is therefore proportional to the size of our ordered forest,
which is linear in the number of its leaves, which is linear in the number of active

644 M. Tedder et al.

edges (since each leaf has at least one active edge), and hence consistent with
linear-time overall.

4.3 Promotion

If we implement promotion in a depth-first manner, we see that it requires no
more than a single traversal of our ordered forest, which as just observed, is
consistent with linear-time.

4.4 Assembly

Identifying the (co-)components requires at most two traversals of the forest:
one prior to refinement to mark them and one after promotion to retrieve them.
Determining if a C′i has an edge to its right needs only a traversal of each vertex’s
α-list. Computing the μ-values of the (co-)components can be accomplished by
processing each vertex in order and traversing its α-list. All this work is therefore
consistent with linear-time.

The placement of the brackets amounts to a single traversal of the list of
(co-)components, each of which contains an active edge, and so is consistent
with linear-time.

The final assembly of the tree can be done merely by traversing our ordered
forest, and is therefore consistent with linear-time.

5 Conclusion

Given the fundamental relationship between modular decomposition and tran-
sitive orientation, the natural question to ask is whether the ideas here can be
applied to the latter problem. In fact, the authors are confident they can. Modu-
lar decomposition for directed graphs should also be amenable to this approach.
Code for the algorithm can be found at www.cs.toronto.edu/~mtedder; the
webpage also provides a detailed example of the algorithm’s execution.

References

1. Capelle, C., Habib, M., de Montgolfier, F.: Graph decompositions and factorizing
permutations. Discrete Mathematics and Theoretical Computer Science 5, 55–70
(2002)

2. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Mathemat-
ics 37, 35–50 (1981)

3. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM Journal of Computing 14, 926–934 (1985)

4. Cournier, A., Habib, M.: A new linear algorithm of modular decomposition. In:
Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

5. Cowan, D.D., James, L.O., Stanton, R.G.: Graph decomposition for undirected
graphs. In: 3rd S-E Conference on Combinatorics, Graph Theory and Computing,
Utilitas Math., pp. 281–290 (1972)

Simpler Linear-Time Modular Decomposition 645

6. Dahlhaus, E.: Efficient parallel algorithms for cographs and distance hereditary
graphs. Discrete Applied Mathematics 57, 29–54 (1995)

7. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithm for
sequential modular decomposition algorithm. Journal of Algorithms 41(2), 360–387
(2001)

8. de Figueiredo, C.M.H., Maffray, F.: Optimizing bull-free perfect graphs. SIAM J.
Discret. Math. 18(2), 226–240 (2005)

9. Ehrenfeucht, A., Gabow, H.N., McConnell, R.M., Sullivan, S.L.: An O(n2) divide-
and-conquer algorithm for the prime tree decomposition of two-structures and
modular decomposition of graphs. Journal of Algorithms 16, 283–294 (1994)

10. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. In: STOC 1983: Proceedings of the fifteenth annual ACM symposium
on Theory of computing, pp. 246–251. ACM Press, New York (1983)

11. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of
protein-protein interaction networks. Genome Biology 5(8), R57 (2004)

12. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18,
25–66 (1967)

13. Habib, M., de Montgolfier, F., Paul, C.: A simple linear-time modular decomposi-
tion algorithm for graphs, using order extension. In: Hagerup, T., Katajainen, J.
(eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)

14. Habib, M., Maurer, M.C.: On the x-join decomposition of undirected graphs. Dis-
crete Applied Mathematics 1, 201–207 (1979)

15. Habib, M., Paul, C., Viennot, L.: A synthesis on partition refinement: a useful
routine for strings, graphs, boolean matrices and automata. In: Meinel, C., Morvan,
M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 25–38. Springer, Heidelberg (1998)

16. McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient
transitive orientation of comparability graphs. In: 5th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 536–545 (1994)

17. McConnell, R.M., Spinrad, J.: Ordered vertex partitioning. Discrete Mathematics
and Theoretical Computer Science 4, 45–60 (2000)

18. Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs.
In: Rival, I. (ed.) Graphs and Orders, pp. 41–101. D. Reidel, Boston (1985)

19. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimiza-
tion over relations, set systems and boolean functions. Annals of Operations Re-
search 4, 195–225 (1985)

20. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete struc-
tures and connections with cominatorial optimization. Annals of Discrete Mathe-
matics 19, 257–356 (1984)

21. Muller, J.H., Spinrad, J.: Incremental modular decomposition. Journal of the
ACM 36(1), 1–19 (1989)

22. Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. In:
Healy, P., Nikolov, N.S. (eds.) Graph Drawing, Limerick, Ireland, September 12-14,
2005, pp. 343–354. Springer, Heidelberg (2006)

23. Pnueli, A., Even, S., Lempel, A.: Transitive orientation of graphs and identification
of permutation graphs. Canad. J. Math. 23, 160–175 (1971)

The Complexity of the Counting Constraint Satisfaction
Problem

Andrei A. Bulatov

School of Computing Science, Simon Fraser University, Burnaby, Canada
abulatov@cs.sfu.ca

Abstract. The Counting Constraint Satisfaction Problem (#CSP(H)) over a fi-
nite relational structure H can be expressed as follows: given a relational structure
G over the same vocabulary, determine the number of homomorphisms from G to
H. In this paper we characterize relational structures H for which #CSP(H) can
be solved in polynomial time and prove that for all other structures the problem
is #P-complete.

1 Introduction

In the Counting Constraint Satisfaction Problem, #CSP(H), over a finite relational
structuresH the objective is, given a finite relational structure G, to compute the num-
ber of homomorphisms from G to H. Various particular cases of the #CSP arise and
have been extensively studied in a wide range of areas from logic, graph theory, and
artificial intelligence [11,20,31], to statistical physics [1]. However, in different areas
this problem often appears in different equivalent forms: (1) the problem of finding
the number of models of a conjunctive formula, (2) the problem of computing the size
(number of tuples) of the evaluation Q(D) of a conjunctive query (without projection)
Q on a database D and also (3) the problem of counting the number of assignments to
a set of variables subject to specified constraints.

Since the seminal papers [29,21], the complexity of the decision counterpart of the
#CSP, the CSP, has been an object of intensive study. The ultimate goal of that research
direction is to classify finite relational structures with respect to the complexity of the
corresponding CSP. We shall refer to this research problem as the classification prob-
lem. A number of significant results have been obtained, see e.g. [29,21,2,3], but a full
classification is far from being completed.

Although the classification problem for the general #CSP has been tackled for the
first time very recently, a massive work has been done in the study of the complexity of
various particular counting CSPs. These particular problems include classical combina-
torial problems such as #CLIQUE, GRAPH RELIABILITY, ANTICHAIN, PERMANENT

etc., see, e.g., [31], expressible in the form of the #CSP; the counting SATISFIABIL-
ITY and GENERALIZED SATISFIABILITY problems (in these problems the objective is
to find the number of satisfying assignments to a propositional formula) [11], which
correspond to #CSP(H) for 2-element structuresH, and many others.

However, the real focus of research in this area has been the #H -COLORING prob-
lem and its variants. In the #H -COLORING problem the aim is to find the number of

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 646–661, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Complexity of the Counting Constraint Satisfaction Problem 647

homomorphisms from a given graph G to a fixed graph H . Thus, it is equivalent to
#CSP(H) where H is a graph. Dyer and Greenhill [20] proved that, for every undi-
rected graph H , its associated #H -COLORING problem is either in FP or #P-complete
and they also provided a complete characterization of the problems in FP. This result
has been extended to the counting LIST #H -COLORING problem [15], which allows
additional restrictions on possible images of a node. Recently, Dyer, Goldberg, and Pa-
terson [18] obtained a similar classification for directed acyclic graphs. Furthermore,
some other variants of the #H -COLORING problem for undirected graphs have been
intensively studied during the last few years [13,14]. Another direction in this area is
the study of problems with restricted input, that is subproblems of the #H -COLORING

problem in which the input graph G must be planar [30], a partial k-tree [16], sparse or
of low degree [24,25], etc. Finally, we should mention the approach to counting prob-
lems using approximation and randomized algorithms, see e.g. [19,17].

Paper [8] started a systematic study of the classification problem for the general
#CSP. The main approach chosen was the algebraic approach which has proved to be
quite useful in the study of the decision CSP [27,2,3]. This approach uses invariance
properties of predicates definable in relational structures. Invariance properties are usu-
ally expressed as polymorphisms of the predicates, that is (multi-ary) operations on the
universe of the relational structure compatible with the predicates.

In [8], we proved that if #CSP(H) is in FP, then H has a Mal’tsev polymorphism,
that is a ternary operation m(x, y, z) satisfying the identities m(x, y, y) = m(y, y, x) =
x. Another observation was that the congruences, i.e. the definable equivalence rela-
tions, ofH play a very important role. In [9], another necessary condition for #CSP(H)
to belong to FP has been identified. It imposes certain restrictions onto possible defin-
able equivalence relations ofH in terms of the sizes of their equivalence classes.

In this paper, we identify two more necessary conditions for the membership in FP,
again expressed in terms of properties of definable equivalence relations; and then prove
that, for every relational structureH satisfying all the conditions obtained, the problem
#CSP(H) can be solved in polynomial time. Thus, we completely solve the classifica-
tion problem for the general counting CSP.

We intensively use methods and results from a number of areas of modern algebra:
lattice theory, tame congruence theory, commutator theory and ring theory. To make the
paper available for a wider audience we try to avoid the use of algebraic terminology as
much as possible. However, some of the proofs are more demanding: they require from
the reader some familiarity with basic algebraic objects and ideas. Most of them are
omitted and can be found in the full version of the paper [6]. The keen reader is referred
to textbooks [10,22,23,26]. The reader should be aware that to avoid yet another layer
of objects we use algebraic terminology for relational structures, while in the algebraic
literature the same concepts are used for “dual” objects, universal algebras.

2 Preliminaries

Logic. A vocabulary is a finite set of relational symbols σ = {R1, . . . , Rn} each
of which has a fixed arity. A relational structure over the vocabulary σ is a tuple
H = (H ;RH1 , . . . , RHn) such that H is a non-empty set, called the universe of H,

648 A.A. Bulatov

and each RHi is a relation on H having the same arity as the symbol Ri. We denote
tuples of elements in boldface, e.g., a, and their components by a[1], a[2], Let G,H
be relational structures over the same vocabulary σ. A homomorphism from G toH is a
mapping ϕ : G→ H from the universe of G (the instance) to the universe H of H (the
template) such that, for every relation RG of G and every tuple (a[1], . . . ,a[m]) ∈ RG ,
we have (ϕ(a[1]), . . . , ϕ(a[m])) ∈ RH.

A relation R is said to be primitive positive (pp-) definable inH, if it can be expressed
using the predicates RHi ofH together with the binary equality predicate on H (denoted
ΔH), conjunction, and existential quantification. We use def(H) to denote the set of all
pp-definable relations.

By [n] we denote the set {1, . . . , n}. If a is an n-ary tuple and I = {i1, . . . , ik} ⊆ [n]
then prIa denotes the tuple (a[i1], . . . ,a[ik]). For an n-ary relation R on a set H ,
prIR = {prIa | a ∈ R}. If priR = H for all i ∈ [n], the relation R is said to
be a subdirect power of H . By 〈a,b〉 we denote a pair of tuples, and by (a,b) the
‘concatenation’ of a,b

#CSP. Let H be a relational structure. In the counting constraint satisfaction problem
associated with H (#CSP(H)), the objective is, given a structure G over the same
vocabulary, to compute the number of homomorphisms from G to H.

Example 1. (1) #H -COLORING ([20]). A graph H is a structure with a vocabulary
consisting of one binary symbol R. Then #CSP(H) is widely known as the #H -
COLORING problem, in which the objective is to compute the number of homomor-
phisms from a given graph intoH.
(2) #3-SAT ([11,12,31]). An instance of the #3-SAT problem is specified by giving a
propositional logic formula in CNF, each clause of which contains 3 literals, and ask-
ing how many assignments satisfy it. Therefore, #3-SAT is equivalent to #CSP(S3),
where S3 is the 2-element relational structure with the universe {0, 1} and the vocab-
ulary R1, . . . , R8, the predicates RS3

1 , . . . , RS3
8 are the 8 predicates expressible by 3-

clauses.
(3) Let F be a finite field and let #LINEAR EQUATIONS be the problem of finding
the number of solutions to a system of linear equations over F . As is easily seen, any
such system can be transformed by adding new variables to a system of equations with
at most 3 variables in such a way that the number of solutions remains unchanged.
Therefore, #LINEAR EQUATIONS is equivalent to #CSP(E3), where the universe of
the structure E3 is F , and the relations are those ternary relations that can be repre-
sented as the solution space of a linear equation on F .

Every counting CSP belongs to the class #P. However, the exact complexity of
#CSP(H) strongly depends on the structure H. We say that a relational structure
H is #-tractable if #CSP(H) is solvable in polynomial time; H is #P-complete if
#CSP(H) is #P-complete. Note that reductions used in the paper are always Turing
reductions. The research problem we deal with is

Problem 1 (classification problem). Characterize #-tractable and #P-complete relational
structures.

The Complexity of the Counting Constraint Satisfaction Problem 649

11

01

10

00

H1

H2

b

dc

a

(a)

e
d

c

b

a

3H

(b)

−classesη

−classesθ

(c)

Fig. 1.

Example 2. (1) Dyer and Greenhill [20] proved that if H is an undirected graph then
#H-COLORING can be solved in polynomial time if and only if every connected com-
ponent of H is either a complete bipartite graph, or a complete graph with all loops
present, or a single vertex. Otherwise the problem is #P-complete.
(2) A 2-element relational structure H is #-tractable if and only if every predicate of
H can be represented by a system of linear equations over the 2-element field [11,12].
Otherwise,H is #P-complete.
(3) #CSP(E3) is solvable in polynomial time.

Polymorphisms. An (m-ary) operation f preserves a relation R (or R is invariant under
f , or f is a polymorphism of R) if for any a1, . . . ,am ∈ R the tuple f(a1, . . . ,am),
where f acts component-wise, belongs to R. For a given set of operations, C, the set of
all relations invariant under every operation from C is denoted by Inv(C). Conversely,
for a relational structureH we use Pol(H) to denote the set of all operations preserving
every relation ofH.

Example 3. Let R be the solution space of a system of linear equations over a field F .
Then the operation m(x, y, z) = x−y+z is a polymorphism of R. Indeed, let A·x = b
be the system defining R, and x,y, z ∈ R. Then A ·m(x,y, z) = A · (x − y + z) =
A · x−A · y + A · z = b.

The operation m in Example 3 is an example of a Mal’tsev operation, that is, a ternary
operation satisfying the equalities m(x, y, y) = m(y, y, x) = x. Every (n-ary) relation
R invariant under a Mal’tsev operation is rectangular: for any I ⊆ [n], for any a,b ∈
prIR and c,d ∈ prn−IR such that (a, c), (a,d), (b, c) ∈ R, we have (b,d) ∈ R.

Example 4. The Mal’tsev operation m(x, y, z) is a polymorphism of the graph H1

shown in Fig. 1(a), where m is defined as m(i1j1, i2j2, i3j3) = ij, i = i1 [j =
j1] unless i1 = i2 [j1 = j2], in this case i = i3 [j = j3]. The graph H2 has
no Mal’tsev polymorphisms. Indeed, if some f(x, y, z) is a Mal’tsev operation, then

f

((
a
c

)

,

(
a
d

)

,

(
b
d

))

=
(

b
d

)

∈ E(H2).

The following proposition links polymorphisms and pp-definability of relations.

Proposition 1 ([28]). Let H be a finite structure, and let R ⊆ Hr be a non-empty
relation. Then R is preserved by all polymorphisms ofH if and only if R is pp-definable
in A.

650 A.A. Bulatov

A universal algebra is a pair A = (A;F) where A is a set called the universe of A, and
F is a set of operations on A called basic operations. Any structure H is related to an
algebra Alg(H) with universe H and the set of basic operations Pol(H). Conversely,
every algebra A = (A;F) corresponds to a class of structures Str(A) with universe A
and relations from Inv(F).

Subalgebras and congruences. A subalgebra of a relational structure H is a unary
pp-definable relation (that is a subset), and a congruence is a pp-definable equivalence
relation. For an equivalence relation θ and element a ∈ H , the class of θ containing a
is denoted by a/θ and the set of all classes of θ by H/θ.

Example 5. Let H be an undirected graph. Then the set T of vertices belonging to
a triangle is a subalgebra of H, as the following pp-formula witnesses: T (x) = ∃y,
z (R(x, y) ∧R(y, z) ∧R(z, x)) (R is the edge relation of the graph).

Example 6. Let H be a digraph without sources and sinks. Let binary relations θ, η on
the vertex set H be defined as follows: 〈a, b〉 ∈ θ if and only if a, b have a common out-
neighbour, and 〈a, b〉 ∈ η if and only if a, b have a common in-neighbour. In general,
θ, η are reflexive and symmetric relation. However, ifH has a Mal’tsev polymorphism,
they are also transitive. Thus, θ, η are congruences of H. For the graph H3 shown in
Fig. 1(b), the θ-classes are {a, b, c}, {d, e} and the η-classes are {a, b, e}, {c, d}.

Necessary conditions for #-tractability.

Proposition 2 ([8]). IfH is a relational structure which is invariant under no Mal’tsev
operation thenH is #P-complete.

Notice that if H has a Mal’tsev polymorphism then the decision CSP corresponding to
H can be solved in polynomial time [7], see also Section 4.

Let θ, η be congruences of a structure H, where θ, η are incomparable. Let
A1, . . . , Ak and B1, . . . , B� be θ- and η-classes respectively (see Fig.1(c)). Then
M(θ, η) denotes the k × �-matrix (mij), where mij = |Ai ∩Bj |.

Proposition 3 ([9]). LetH be a relational structure, and let θ, η be congruences ofH.
If rank(M(θ, η)) > k, where k is the number of classes in the smallest congruence
containing both θ and η, then #CSP(H) is #P-complete.

Example 7. LetH be the graph H3 shown in Fig. 1(b), θ and η defined as in Example 6.
We have A1 = {a, b, c}, A2 = {e, d}, B1 = {a, b, e}, B2 = {c, d} and M(θ, η) =(

2 1
1 1

)

. By Proposition 3, the problem #CSP(H3) is #P-complete. Note also that H3

has a Mal’tsev polymorphism.

An algebra is said to be idempotent if every one of its basic operation f satisfies the
condition f(x, . . . , x) = x for any x from the universe. The algebra Alg(H) is idempo-
tent if and only if all the constant relations, {(a)}, are pp-definable in H. Any algebra
A = Alg(H) can be converted into an idempotent one, Id(A) = Alg(Hid), where Hid

is the expansion of H by the constant relations. A variety is a class of algebras which,
if it contains algebras A, Ai, i ∈ I , for some set I , also contains every subalgebra of

The Complexity of the Counting Constraint Satisfaction Problem 651

A, every homomorphic image of A, and the direct product of Ai, i ∈ I . The smallest
variety containing an algebra A is called the variety generated by A and denoted by
var(A). For further background on universal algebra, see [10].

In [8] we showed that if Hid is #P-complete then H is #P-complete; and if some
structure from Str(B) where B ∈ var(Alg(H)) is #P-complete then H is #P-complete.
This allows us to strengthen the necessary conditions above.

An algebra B is said to be congruence singular if for every pair of congruences of any
H′ ∈ Str(B) the condition of Proposition 3 is true. If H is such that for A = Alg(Hid)
every B ∈ var(A) is congruence singular thenH is said to be congruence singular. It is
not very hard to see that every congruence singular structure has a Mal’tsev polymor-
phism. The results mentioned above and Proposition 3 imply that ifH is not congruence
singular then it is #P-complete. The main result of this paper is that this necessary con-
dition is also sufficient.

Theorem 1. For a structure H, the problem #CSP(H) is solvable in polynomial time
if and only ifH is congruence singular.

Although all our results are stated in terms of varieties, we do not need the full power of
this construction. The members of var(Alg(H)) we need can be represented as follows.
Let R ∈ def(H) be an n-ary relation. It can be viewed as a subalgebra of nth direct
power ofH (or Alg(H)). A congruence on R is a 2n-ary relation Q ∈ def(H) such that
pr{1,...,n}Q = pr{n+1,...,2n}Q = R, and, if Q is treated as a binary relation on R, it
is an equivalence relation. In most cases relations and congruences appear as follows.
Let G be a structure over the same vocabulary as H, and let Φ(G,H) denote the set
of homomorphisms from G to H. This set is an |G|-ary relation pp-definable in H. Let
also θ be a congruence of H. Then Φ(G,H)/θ|G| denotes a relation on H/θ defined as
follows: Φ(G,H)/θ|G| = {(a[1]/θ, . . . ,a[|G|]/θ) | a ∈ Φ(G,H)}.

3 Congruence Lattices and the Structure of Relations

Congruence lattices. In this section we look closer at the family of congruences of a
relational structureH. We shall assume thatH has a Mal’tsev polymorphismm(x, y, z).
All definitions and results given here are well known in universal algebra [10]. We just
reformulate them in terms of relational structures.

The set of all congruences of H is denoted by Con(H). Let θ, η ∈ Con(H). The
intersection of θ and η is again a congruence of H is denoted θ ∧ η. The smallest
equivalence relation containing both θ and η is the transitive closure of θ∪ η, and again
a congruence ofH, denoted θ∨η. The set Con(H) together with the operations∧ (meet)
and ∨ (join) is called the congruence lattice of H. The set Con(H) is naturally ordered
with respect to inclusion. The least element of Con(H) is the equality relation, denoted
by Δ, and the greatest element is the full relation, denoted by2.

We will deal with congruence lattices of several particular types. A congruence lat-
tice Con(H) is said to be (a) modular if, for any θ, η, γ ∈ Con(H) such that η ≤ θ,
the equality θ ∧ (η ∨ γ) = η ∨ (θ ∧ γ) holds; (b) meet semi-distributive if, for any
θ, η, γ ∈ Con(H) such that θ ∧ η = θ ∧ γ, the equality θ ∧ η = θ ∧ (η ∨ γ) holds; (c)
distributive if for any θ, η, γ ∈ Con(H), the equality θ ∧ (η ∨ γ) = (θ ∧ η) ∨ (θ ∧ γ)

652 A.A. Bulatov

θ η θ vη

θη

−classes −classes

−classes−classes

^
(a)

{1,2,4}

{1,2}

{1}

{1,3}

{1,2,3}

{1,2,3,4}

(b)

κ 3

λ 3

1

2

3

4

κ 2

λ 2

(c)

Fig. 2.

holds. Modular and distributive lattices are very well studied, see, e.g. [23, Ch. II, IV].
Some of their properties are implicitely used in the results below. We will also need the
following observation that follows from [23, Theorem 2, Ch. II].

Observation 1. Every modular semi-distributive lattice is distributive.

Since H has a Mal’tsev polymorphism, every two members θ, η of Con(H) must be
permutable, that is θ ◦ η = η ◦ θ (◦ denotes the product of binary relations). This means
that, for any θ-class A and any η-class B belonging to the same θ ∨ η-class, A ∩ B is
non-empty (see Fig.2(a)). If Con(H) satisfies this condition then it is modular. Thus, all
congruence lattices that occur in the rest of the paper are modular.

If every polymorphism of a relational structure H is idempotent, then, for any con-
gruence θ ofH, every θ-class is a subalgebra.

Types of prime quotients. We shall also use some notions and results of tame congru-
ence theory [26]. A pair of congruences θ, η is said to be a prime quotient (denoted
θ ≺ η) if θ ≤ η and, for any γ such that θ ≤ γ ≤ η, either γ = θ or γ = η. Tame
congruence theory is a tool to study the local structure of universal algebras and rela-
tional structures through certain properties of prime quotients of the congruence lattice.
In general, this theory identifies five possible types of such quotients. Fortunately, in
our case of relational structures with a Mal’tsev polymorphism, only two of those types
can occur, and the definition of these possible types can be significantly simplified.

A prime quotient θ ≺ η is said to be of the affine type, if, for any η-class
B, there is a module MB with the base set B/θ over a ring RB such that for
any f(x1, . . . , xn, y1, . . . , ym) ∈ Pol(H) and a1, . . . , am ∈ H , if the operation
g(x1, . . . , xn) = f(x1, . . . , xn, a1, . . . , am) preserves B, then it can be represented
as an operation of the module MB: (g

B
(x1, . . . , xn))/α = c1x1 + . . . + cnxn + a. In

all other cases, θ ≺ η has the Boolean type. Prime quotients θ1 ≺ η1 and θ2 ≺ η2 are
said to be perspective if η1 ∨ θ2 = η2, η1 ∧ θ2 = θ1 or θ1 ∨ η2 = η1, θ1 ∧ η2 = θ1.
Thus perspectivity is a binary relation on the set of prime quotients of Con(H). Two
quotients that belong to the transitive closure of this relation are said to be projective to
each other. We shall use Lemma 6.2 from [26] that claims that If θ1 ≺ η1 and θ2 ≺ η2

are projective quotients in Con(H), then they have the same type. We will sometimes
distinguish two cases: when the relational structure omits the affine type, and when the
affine type occurs in the structure.

The Complexity of the Counting Constraint Satisfaction Problem 653

Congruence lattices of structures omitting affine type. If H omits the affine type then,
by Theorem 9.15 of [26], Con(H) is meet semi-distributive, and by Observation 1
it is distributive. This implies that there is a finite set, K , and an injective mapping
π : Con(H) → 2K (the set of all subsets) such that π(θ ∨ η) = π(θ) ∪ π(η) and
π(θ ∧ η) = π(θ) ∩ π(η). We use the following representation of a set K . Take a maxi-
mal chain C in Con(H), that is, a chain of congruences Δ = θ0 ≺ θ1 ≺ . . . ≺ θ� = ∇.
The set K is defined to be the set of the prime quotients of the chain. A congruence
θ ∈ Con(H) corresponds to the set of quotients from K that are projective to the quo-
tients of the form γ ≺ η ≤ θ. The bottom end of a prime quotient α ∈ {1, . . . , �} will
be denoted by α−, and the top one by α+.

Example 8. The lattice shown in Fig. 2(b,c) is distributive, a maximal chain in this
lattice, and its representation as a lattice of subsets are also shown.

The following proposition comprises properties of Con(H) that follow easily from the
representation of this lattice as a lattice of subsets.

Proposition 4. (1) Every prime quotient in Con(H) is projective to one and only one
of the quotients of C.
(2) For any α ∈ K , there is the greatest prime quotient κα ≺ λα projective to α; that
is, for any η ≺ θ projective to α we have η ≤ κα and θ ≤ λα.
(3) For any α ∈ K , κα is meet-irreducible, i.e., if κα = η ∧ θ then κα = η or κα = θ
(see Fig.2(c)).

Congruence lattices of structures admitting the affine type. A congruence η is said to
be solvable over θ if there are θ = θ1 ≺ . . . ≺ θk = η such that all the prime quotients
θi ≺ θi+1 have the affine type. Then

s∼ denotes a binary relation on Con(H) defined
as follows: θ

s∼ η if and only if θ ∨ η is solvable over θ ∧ η. If θ ≤ η then the set
of all γ such that θ ≤ γ ≤ η is said to be an interval in Con(H), denoted [θ, η]. The
next proposition lists some properties of

s∼ that follows from basic facts about modular
lattices, Mal’tsev operations, Observation 1, and Lemma 7.4, Theorem 7.7 from [26].

Proposition 5. (1)
s∼ is an equivalence relation and, moreover, a congruence of

Con(H); that is, for any θ1, θ2, η1, η2 ∈ Con(H) such that θ1
s∼ θ2, η1

s∼ η2, we
have (θ1 ∨ η1)

s∼ (θ2 ∨ η2), (θ1 ∧ η1)
s∼ (θ2 ∧ η2).

(2) Every class S of
s∼ has the greatest ηS and the least θS elements (with respect to

≤), and equals the interval [θS , ηS]. Every prime quotient inside S has the affine type.
(3) The quotient lattice L = Con(H)/ s∼ is distributive (see Fig.3(a)).

Proposition 5(3) implies that L can be represented as a lattice of subsets of a finite set
K . Similar to the previous section, K can be chosen to be the set of prime intervals of a
maximal chain C in L. Note that the endpoints of α ∈ K are sets S1, S2 of congruences
from Con(H) (S1 correspods to the bottom end of α). By α− we denote the greatest
element of S1, and by α+ the least element of S2 such that α− ≤ α+. Let η ≺ θ be the
greatest interval in L projective to α. Again, η and θ are sets T1, T2 of congruences from
Con(H) (T1 corresponds to β). By κα we denote the greatest element of T1, and λα the
least element in T2 such that κα ≤ λα (see Fig.3(b)). The following result follows
easily from basic properties of modular lattices and Lemma 6.2 of [26].

654 A.A. Bulatov

Con()H Con()/H ~s

(a) Congruence lattice and its quotient lattice mod-
ulo

s∼. Prime quotients of affine type are shown by
thick lines; the least elements in the classes of

s∼ are
encircled

α

κ

λ

α

α

(b) Congruence lattice and congruences
κα, λα. Solid lines represent prime in-
tervals of Boolean type, ovals represent
s∼-classes

Fig. 3.

Proposition 6. (1) The interval [α−, α+] is perspective to [κα, λα]
(2) The intervals [α−, α+] and [κα, λα] are prime and have the Boolean type.
(3) The congruence κα is meet-irreducible.

More necessary conditions of #-tractability. The next two necessary conditions of #-
tractability follow from Proposition 3.

Proposition 7. If H is congruence singular, then for any congruences δ ≤ θ ≺ η ∈
Con(H) such that θ ≺ η has the affine type, any n-ary relation R ∈ def(H), and any
sequences A1, . . . , An and B1, . . . , Bn of θ-classes such that Ai, Bi belong to the same
η-class (i ∈ [n]), if R1 = R∩ (A1× . . .×An) = ∅, R2 = R∩ (B1× . . .×Bn) = ∅,
then |R1/δn| = |R2/δn|.
A congruence θ is said to be uniform over η ≤ θ if, for any class B of θ all the η-classes
in B have the same size. By Proposition 7 if H is congruence singular and η ≤ θ are
such that η

s∼ θ then θ is uniform over η.
Let T be a k-dimensional array, that is a collection of numbers T [i1, . . . , ik] indexed

by tuples (i1, . . . , ik), where 1 ≤ ik ≤ mk. The array T has rank 1, denoted rank(T) =
1, if for each � ∈ [k], and any i1, . . . , i�−1, i�+1, . . . , ik, j1, . . . , j�−1, j�+1, . . . , jk with
iu, ju ∈ [mu], we have

T [i1, . . . , i�−1, 1, i�+1, . . . , ik]
T [j1, . . . , j�−1, 1, j�+1, . . . , jk]

= . . . =
T [i1, . . . , i�−1,m�, i�+1, . . . , ik]
T [j1, . . . , j�−1,m�, j�+1, . . . , jk]

.

It is not hard to see that if k = 2 then T is a matrix and this condition simply says that
T has rank 1 in the usual sense. It also can equivalently be expressed as follows: for
each � ∈ [k] there are numbers t�1, . . . , t

�
m�

such that T [i1, . . . , ik] = t1i1 · . . . · t�ik .
Now let H be a structure with a Mal’tsev polymorphism and γ1, . . . , γk its congru-

ences such that for each i ∈ [k]

γi ∨ (γ1 ∧ . . . ∧ γi−1 ∧ γi+1 ∧ . . . ∧ γk) = γ1 ∨ . . . ∨ γk, (1)

and let D be a class of γ = γ1∨ . . .∨γk . Let also Ai1, . . . , A
i
mi

be the classes of γi from
D. The condition (1) means that for any i1, . . . , ik the set A1

i1 ∩ . . .∩Akik is a nonempty

The Complexity of the Counting Constraint Satisfaction Problem 655

class of β = γ1 ∧ . . .∧γk, and any two classes of this form are different. We consider a
k-dimensional array M(D; γ1, . . . , γk), where M(D; γ1, . . . , γk)[i1, . . . , ik] = |A1

i1
∩

. . . ∩Akik |.

Proposition 8. Let γ1, . . . , γk be congruences of a structure H that has a Mal’tsev
polymorphism, let them satisfy the condition (1), and let C be a class of γ1 ∨ . . . ∨ γk.
Then, rank(M(C; γ1, . . . , γk)) = 1 or #CSP(H) is #P-complete.

In the next section we show that a collection of congruences satisfying condition (1)
naturally appears when solving counting CSPs.

Structure of relations invariant under a Maltsev operation. Let B1, B2 be subalgebras
of H and let θ1, θ2 be equivalence relations on B1, B2, respectively, pp-definable in H
(we call such relations congruences of subalgebras). Let also ϕ be a bijective mapping
from B1/θ1

to B2/θ2
. The thick mapping corresponding to ϕ is the binary relation

R = {(a, b) ∈ B1 × B2 | ϕ(a/θ1
) = b/θ2

}. Any congruence θ is the thick mapping

corresponding to the identity mapping on H/θ.

Lemma 1. Every binary relation with a Mal’tsev polymorphism is a thick mapping.

Let G be a #CSP(H) instance and |G| = m. Clearly, the set Φ(G,H) can be thought of
as an m-ary relation definable inH. We assume that R = Φ(G,H) is a subdirect power
of H. (Later we show that this is a plausible assumption.) The quotient structure H/θ
for θ ∈ Con(H) is defined to beH/θ = (H/θ;R

H
1 /θ, . . . , R

H
k /θ) where R1, . . . , Rk is

the vocabulary ofH. Let π ∈ R/θm. By Φ(G,H, π) we denote the set of all homomor-
phisms � ∈ R such that �/θ = π. Recall that for a congruence θ ∈ Con(H) by θm we
denote the congruence of R such that 〈�1, �2〉 ∈ θm if and only if 〈�1(g), �2(g)〉 ∈ θ
for all g ∈ G.

Corollary 1. Assuming that H is congruence singular, let η ≤ θ ∈ Con(H) be such
that η

s∼ θ. Let also π ∈ Φ(G,H)/θm and �1, �2 ∈ Φ(G,H)/ηm be such that �1/θ =
�2/θ = π. Then |Φ(G,H, �1)| = |Φ(G,H, �2)|.

For i, j ∈ [m], by ψi,j we denote the thick mapping equal to pri,jR. If it is a thick
mapping corresponding to ϕ : H/θ → H/θ for some θ ∈ Con(H), we say that ψi,j is
a thick mapping of level θ, and if θ = θk (from the chain defining K) then ψi,j is said
to be a thick mapping of level k. Let η ∈ Con(H). By η∗ we denote an equivalence
relation on the set [m] defined as follows: 〈i, j〉 ∈ η∗ if and only if prijR is a thick
mapping of level θ for some θ ≤ η.

4 Algorithms

Decision CSPs over structures with a Mal’tsev polymorphism. If a relational structure
H has a Mal’tsev polymorphism, then the decision CSP with the template H can be
solved in polynomial time [7]. The algorithm presented in [7] builds a sort of a succinct
(polynomial size) representation for the set of all solutions.

656 A.A. Bulatov

Let n be a positive integer, let H be a finite set, let a, b be n-ary tuples and
let (i, a, b) be any element in [n] × H2. We say that (a,b) witnesses (i, a, b) if
pr[i−1]a = pr[i−1]b, a[i] = a, and b[i] = b. Let R be any n-ary relation on H .
The signature of R, Sig R ⊆ [n] × H2, is defined to be the set containing all those
(i, a, b) ∈ [n] × H2 witnessed by tuples in R, that is Sig R = {(i, a, b) ∈ [n] ×H2 |
∃a,b ∈ R such that (a,b) witnesses (i, a, b)}. Note that if R has a Mal’tsev polymor-
phism, then the rectangularity of R implies that for any (i, a, b) ∈ Sig R and any
a ∈ pr[i]R with a[i] = a the tuple b such that pr[i−1]b = pr[i−1]a and b[i] = b also
belongs to pr[i]R. Another implication of rectangularity is that for any i the binary re-
lation {(a, b) | (i, a, b) ∈ Sig R} is a congruence on priR. A subset R′ of R is called a
representation of R if Sig R′ = Sig R. If furthermore, |R′| ≤ 2|Sig R| then R is called
a compact representation of R.

Let H be a relational structure and R′ ⊆ Hn for some n. By 〈R′〉H we denote the
relation generated by R′, that is, the smallest relation R pp-definable in H and such
that R′ ⊆ R. Since H is usually clear from the context we shall omit this subscript.
The key lemma proved in [7] states that if R is a relation pp-definable in a structure
with a Mal’tsev polymorphism, and R′ is a representation of R, then 〈R′〉 = R. Given
an instance G of the constraint satisfaction problem CSP(H), m = |G|, the algorithm
presented in [7] finds a compact representation of Φ(G,H) treated as an m-ary pp-
definable relation in H.

We will need to know unary and binary projections of the relation Φ(G,H), that is,
sets of the form ψg = {ϕ(g) | ϕ ∈ Φ(G,H)} for g ∈ G and ψg,h = {(ϕ(g), ϕ(h)) |
ϕ ∈ Φ(G,H)}. It is not hard to see (see also [7]) that if R′ is a compact representation
of Φ(G,H), then ψg, ψg,h are equal to 〈prgR′〉 and 〈prg,hR′〉. As H is fixed, we may
assume that the relation generated by any set elements or pairs of elements is known.

Reduction to subdirect powers. In general, for an instance G of #CSP(H), the sets
ψg , g ∈ G, are subalgebras of H that are not necessarily equal to H. We show how to
transform the problem so that ψg equals H for all g ∈ G. To do this we borrow some
methods from the multi-sorted CSP, see, e.g., [4].

Let D1, . . . , Dn be the subalgebras ofH. We shall assume that along with every (k-
ary) relational symbol R and any Di1 , . . . , Dik the vocabulary of H contains a symbol
R′ such that R′H = R∩ (Di1 × . . .×Dik). Then we define a relational structure χ(H)
as follows. The universe of χ(H) is D = D1 × . . . × Dn; the ith component of an
element a ∈ D is denoted by a[i]. For any (n-ary) relation R definable in H we set
(a1, . . . , an) ∈ χ(R) if and only if (a1[i1], . . . , an[in]) ∈ R, where Dij = prjR. In
particular, each unary relation of χ(H) contains all elements of D and, therefore, can be
thrown out. For any coordinate position i of any non-unary relation R, the set priχ(R)
equals D. Finally, to define χ(H) formally for each relational symbol R we interpret it
as Rχ(H) = χ(R).

To transform an instance G of #CSP(H) into an instance G′ of #CSP(χ(H)) with
the same universe, for each relational symbol R and each tuple (g1, . . . , gn) ∈ RG we

include (g1, . . . , gn) into R′
G′

where R′ is such that R′H = RH ∩ (ψg1 × . . .× ψgn).
The next easy lemma completes the reduction.

The Complexity of the Counting Constraint Satisfaction Problem 657

Lemma 2. Let G be an instance of #CSP(H) and G′ an instance of #CSP(χ(H))
consructed as above. Let also ψg = prgΦ(G,H) for g ∈ G. Then Φ(G′, χ(H)) is a

subdirect power of χ(H) and |Φ(G′, χ(H))| = |Φ(G,H)| ·
∏
g∈G

|D|
|ψg| .

The algorithm. Suppose that H is congruence singular. We recursively compute num-
bers of the form |Φ(G,H, π)| for an instance G. We assume that the universe G of G is
[m]. If π is a mapping of level � then |Φ(G,H, π)| = |Φ(G,H)|, and if π is a mapping
of level 0 then |Φ(G,H, π)| = 1. Let α ∈ K and let π be a mapping from G to H/α+.
We show how to reduce computing the number |Φ(G,H, π)| to computing numbers
|Φ(G,H, �)| for certain �, mappings from G toH/(α− 1)+.

First we construct a collection of congruences satisfying the condition (1). Let
α ∈ K , A1, . . . , Ak be the κ∗α-classes and g1, . . . , gk their representatives. Let also
π ∈ Φ(G,H)/(α+)m and Bu1 , . . . , B

u
su

be the κα-classes from π(gu)/λα, the λα-class

containing elements from π(gu).

Lemma 3. There is J ⊆ [k] such that, for any π ∈ Φ(G,H)/(α+)m, there are iu,

u ∈ [k]− J , with iu ∈ [su], satisfying the following conditions. Every homomorphism
� ∈ Φ(G,H)/(α−)m with �/(α+)m = π can be represented as follows: there are iu

for u ∈ J with iu ∈ [su] such that �(gu) ∈ Buiu for u ∈ [k] and, for any g ∈ Au,
u ∈ [k], we have

�(g) = π(g) ∩ ψgu,g/κ2
α
(Buiu).

Conversely, for any choice of Buiu , u ∈ J , the mapping � defined in this way is an
element of Φ(G,H)/(α−)m, and �/α+ = π.

The set J can be found by inspecting the unary projections of Φ(G,H, π), which in
turn can be found by using a compact representation constructed by the algorithm
from [7]. Without loss of generality we assume J = [q]. Let s be a q-tuple such that
s[u] ∈ [su]. The mapping defined as in Lemma 3 for the classes B1

s[1], . . . , B
q
s[q] will

be denoted by �s. Congruence γJj is defined as follows: 〈�1, �2〉 ∈ γj if and only if
〈�1(i), �2(i)〉 ∈ α− for i ∈ Aj ∪

⋃
v∈[k]−J Av and 〈�1(i), �2(i)〉 ∈ α+ otherwise. It

is not hard to see that sets Φ(G,H, �s) are the classes of the congruence (α−)m on the
relation Φ(G,H, π). Clearly, (α−)m = γ1 ∧ . . . ∧ γq and (α+)m = γ1 ∨ . . . ∨ γq .

Lemma 4. The congruences γJj , j ∈ J , satisfy the condition (1).

Let T (π) denote the k-dimensional m1 × . . .×mk array such that its entry indexed by
s is equal to |Φ(G,H, �s)|. By Proposition 8, T (π) has rank 1, that is, there are numbers
ti1, . . . , t

i
mi

such that |Φ(G,H, �s)| = t1s[1] · . . . · tks[k]. These numbers tij can be found

as follows. Fix a tuple s. By siv we denote the tuple, all entries of which are equal to the
corresponding entries of s, except for the ith entry that is equal to v. Then set

t1j = |Φ(G,H, �s1j
)| and tij =

|Φ(G,H, �si
j
)|

|Φ(G,H, �s1j
)| for i ∈ {2, . . . , k}.

658 A.A. Bulatov

Algorithm Uniform
INPUT: an compact representation R′′ of Φ(G,H, π),

π ∈ Φ(G,H)/βm, β
s∼ Δ

OUTPUT: the cardinality of Φ(G,H, π)

Step 1 set N := 1, S := R′′, and G := G
Step 2 for g = m to 1 do
Step 2.1 let θ be a congruence of H such that 〈a, b〉 ∈ θ

if and only if (g, a, b) ∈ Sig S ; since Δ ≤ θ ≤ β,
θ is uniform over Δ; let w be the size of
its classes

Step 2.2 set N := N · w
Step 2.3 set S := pr[g−1]S and G := Gg

endfor
Step 3 output N

Algorithm θ-Signature
INPUT: an instance G of #CSP(H), and a congruence

θ ∈ Con(H)
OUTPUT: the θ-signature of Φ(G,H, π)
Step 1 find a compact representation of Φ(G,H, π)
Step 2 set S := ∅ (the θ-signature of Φ(G,H, π))
Step 3 for each (i, a, b) ∈ {1, . . . , m} × H2 do
Step 3.1 if there is a ∈ R′ such that a[i] = a then do
Step 3.1.1 find a compact representation R′′ of

Φ(G′,H, π) where
G′ = G ∪ {〈g1, (a[1])/θ〉, . . . , 〈gi−1, (a[i − 1])/θ〉})
Step 3.1.2 if b ∈ 〈priR

′′〉 then S := S ∪ {(i, a, b)}
endif

endfor
Step 5 return S

Now, as the numbers of the form tji are known, we have

Φ(G,H, π) =
∑

s

Φ(G,H, �s) =
∑

s

t1s[1] · . . . · tks[k]

= t11

⎛

⎝
∑

s[2],...,s[k]

t2s[2] · . . . · tks[k]

⎞

⎠ + . . . + t1m1

⎛

⎝
∑

s[2],...,s[k]

t2s[2] · . . . · tks[k]

⎞

⎠

= . . . =
k∏

j=1

mj∑

i=1

tji ,

that can be easily computed.
Finally, by Corollary 1, for any mapping � ∈ Φ(G,H)/(α−)m and any mapping

�′ ∈ Φ(G,H)/((α − 1)+)m with �′/α− = �, we have |Φ(G,H, �)| = |Φ(G,H, �′)| ·
|Φ(G,H, �)/((α − 1)+)m|. The number |Φ(G,H, �)/(α− 1)+| can be found using al-

gorithm Uniform from the next subsection.

Uniform counting CSPs. Let α ∈ K , π be a mapping of level α−, and � be a mapping
of level (α− 1)+. We need a method to find the number |Φ(G,H,π)|

|Φ(G,H,�)| .

We consider first the case when (α − 1)+ is the equality relation. In this case the
required number can be found by algorithm Uniform using a compact representa-
tion R′′ of Φ(G,H, π). Note also that such a representation can be found by the algo-
rithm from [7] applied to the instance G′ with the same universe as G and additional
unary constraints π(g) imposed on each g ∈ G. We shall assume that for each (n-
ary) relational symbol R from the vocabulary of H, and any set {i1, . . . , ik} ∈ [n],
the vocabulary of H also contains a k-ary relational symbol pr{i1,...,ik}R interpreted
as pr{i1,...,ik}R

H. For an instance G of #CSP(H) and g ∈ G we denote by Gg the
relational structure with universe G − {g} and such that, for any relational symbol
R and any tuple (g1, . . . , gn) ∈ RG with gi1 = . . . = gi� = g and the rest of its
entries are different from g, we exclude this tuple from RGg , and include the tuple
pr[n]−{i1,...,i�}(g1, . . . , gn) into pr[n]−{i1,...,i�}R

Gg . Recall that we assume G = [m].
The correctness of algorithm Uniform follows from the rectangularity of the re-

lation 〈S〉 constructed in the algorithm, and the observation that the congruence θ

The Complexity of the Counting Constraint Satisfaction Problem 659

constructed on Step 2.1 can be defined as follows: 〈a, b〉 ∈ θ if and only if there is
a ∈ pr[g−1]〈S〉 such that (a, a) ∈ 〈S〉 and (a, b) ∈ 〈S〉, that is w is the number of
possible extensions of a tuple from pr[g−1]〈S〉.

Observe that if we know the signature of the relation Φ(G,H, π)/θm we still can
use algorithm Uniform, for we can consider Φ(G,H, π)/θm as a relation on H/θ.
Therefore the problem we are facing now is to find the signature of this relation. Unfor-
tunately, it is not clear at all how to obtain this signature using the signature or a compact
representation of Φ(G,H, π), nor we can use the algorithm from [7] to compute the sig-
nature of Φ(G,H/θ, π), since in general Φ(G,H/θ, π) = Φ(G,H, π)/θm. Instead, to
compute each member of the required signature we find a compact representation of a
certain modified problem using the algorithm from [7].

More specifically, we first find the θ-signature of the relation Φ(G,H, π). Let n be
a positive integer, let H be a finite set, let θ be an equivalence relation on H , let a,
b be n-ary tuples and let (i, a, b) be any element in [n] × H2. We say that (a,b) θ-
witnesses (i, a, b) if 〈a[j],b[j]〉 ∈ θ for each j < i, a[i] = a, and a′[i] = b. Let R
be any n-ary relation on H . The θ-signature of R, θSig R ⊆ [n] × H2, is defined to
be the set containing all those (i, a, b) ∈ [n] ×H2 θ-witnessed by tuples in R, that is
θSig R = {(i, a, b) ∈ [n]×H2 : ∃a,b ∈ R such that (a,b) θ-witnesses (i, a, b)}.

We shall assume that for each subalgebra B of H the vocabulary of H con-
tains a unary relational symbol RB such that RHB = B. Let G be an instance
of #CSP(H), let g1, . . . , gk ∈ G, and let B1, . . . , Bk be subalgebras of H. By
G ∪ {〈g1, B1〉, . . . , 〈gk, Bk〉} we denote the relational structure with the same universe
as G, and such that the interpretation of every relational symbol R ∈ {RB1 , . . . , RBk

}
equals to RG while the interpretation of RBj equals RGBj

∪ {gj}. Thus, the elements
g1, . . . , gk are forced to be mapped to B1, . . . , Bk respectively. It is easy to see that
the algorithm θ-Signature finds the θ-signature of Φ(G,H, π). The signature of
Φ(G,H, π)/θm can then be found by replacing each (i, a, b) ∈ S by (i, a/θ, b/θ).

Complexity. Observe that the problem of finding the number |Φ(G,H, π)| reduces to
finding m1 + . . .+mk numbers of the form |Φ(G,H, �)|, where � : G → H/(α− 1)+,

and solving the same number of uniform problems. Clearly, k ≤ |G| = m, mi ≤ |H| =
a, and |K| ≤ a2. If the uniform problem can be solved in time p(m) then the overall
time complexity of the algorithm is (am · p(m))a

2
.

5 Concluding Remarks

The result obtained in this paper is rather general. It includes as particular case the re-
sults of [11,20,15,18]. Although we should note that the #P-completeness results from
[20] are stronger than those which follow from our result: #P-complete #H -COLORING

problems remain #P-complete even when restricted to inputs of bounded degree. The
Lovász-goodness condition, proved in [18] to be a criterion of polynomial time solvabil-
ity of #H -COLORING for directed acyclic graphs, follows from congruence singularity.
However, we do not know how to prove that in the case of DAGs Lovász-goodness
implies congruence singularity. Our algorithm works, of course, for #-tractable DAGs.
Remarkably, the situation that a result on general CSPs cannot be readily translated into

660 A.A. Bulatov

the language of graph theory is not unique. For instance, finding a specialization of the
dichotomy theorem for conservative (list) CSPs [3] for digraphs in graph theoretical
terms has become a serious research direction.

A major question left unanswered is how to check if a given relational structure is
congruence singular. This problem may turn out to be even undecidable.

References

1. Brightwell, G.R., Winkler, P.: Graph homomorphisms and phase transitions. J. of Comb. Th.,
Ser. B 77, 221–262 (1999)

2. Bulatov, A.A.: A dichotomy theorem for constraints on a three-element set. In: FOCS 2002,
pp. 649–658 (2002)

3. Bulatov, A.A.: Tractable conservative constraint satisfaction problems. In: LICS 2003, Ot-
tawa, pp. 321–330 (2003)

4. Bulatov, A.A., Jeavons, P.G.: An algebraic approach to multi-sorted constraits. In: Rossi, F.
(ed.) CP 2003. LNCS, vol. 2833, pp. 197–202. Springer, Heidelberg (2003)

5. Bulatov, A.A.: Three-element Mal’tsev algebras. Acta Sci. Math. (Szeged) 72, 519–550
(2006)

6. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. ECCC TR07-
093 (2007)

7. Bulatov, A.A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM J. Com-
put. 36(1), 16–27 (2006)

8. Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satis-
faction problem. Information and Computation 205(5), 651–678 (2007)

9. Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2-
3), 148–186 (2005)

10. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in Mathemat-
ics, vol. 78. Springer, New York (1981)

11. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. In-
formation and Computation 125(1), 1–12 (1996)

12. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Sat-
isfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7.
SIAM, Philadelphia (2001)

13. Diaz, J., Serna, M., Thilikos, D.M.: Recent results on parameterized H-coloring.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, DI-
MACS/DIMATIA Workshop on Graphs, Morphism and Statistical Physics. American Math-
ematical Society (to appear)

14. Diaz, J., Serna, M., Thilikos, D.M.: Complexity issues on bounded restrictive H-coloring.
Discrete Mathematics 307(16), 2082–2093 (2007)

15. Diaz, J., Serna, M., Thilikos, D.M.: Counting list H-colorings and variants. Technical Report
LSI-01-27-R, Departament LSI, Universitat Politècnica de Catalunya (2001)

16. Diaz, J., Serna, M., Thilikos, D.M.: Counting h-colorings of partial k-trees. Theor. Comput.
Sci. 281, 291–309 (2002)

17. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse graphs. SIAM J.
Comput. 31, 1527–1541 (2002)

18. Dyer, M., Goldberg, L., Paterson, M.: On counting homomorphisms to directed acyclic
graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 38–49. Springer, Heidelberg (2006)

The Complexity of the Counting Constraint Satisfaction Problem 661

19. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the relative complexity of approxi-
mate counting problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 108–119. Springer, Heidelberg (2000)

20. Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms. Random Struc-
tures and Algorithms 17, 260–289 (2000)

21. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 57–104 (1998)

22. Freese, R., McKenzie, R.: Commutator theory for congruence modular varieties. London
Math. Soc. Lecture Notes, vol. 125. London (1987)

23. Gratzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel (1998)
24. Greenhill, C.: The complexity of counting colourings and independent sets in sparse graphs

and hypergraphs. Computational Complexity 9, 52–73 (2000)
25. Hell, P., Nešetřil, J.: Counting list homomorphisms for graphs with bounded degrees. Discr.

Math. (to appear)
26. Hobby, D., McKenzie, R.N.: The Structure of Finite Algebras. Contemporary Mathematics,

vol. 76. American Mathematical Society, Providence (1988)
27. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theor. Comput.

Sci. 200, 185–204 (1998)
28. Jeavons, P.G., Cohen, D.A., Gyssens, M.: How to determine the expressive power of con-

straints. Constraints 4, 113–131 (1999)
29. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–226 (1978)
30. Vadhan, S.P.: The complexity of counting in sparse, regular and planar graphs. SIAM J.

Comput. 31(2), 398–427 (2001)
31. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201

(1979)

On the Hardness of Losing Weight�

Andrei Krokhin1 and Dániel Marx2

1 Department of Computer Science, Durham University, Durham, DH1 3LE, UK
andrei.krokhin@durham.ac.uk

2 Department of Computer Science and Information Theory, Budapest University of
Technology and Economics, H-1521 Budapest, Hungary

dmarx@cs.bme.hu

Abstract. We study the complexity of local search for the Boolean con-
straint satisfaction problem (CSP), in the following form: given a CSP
instance, that is, a collection of constraints, and a solution to it, the
question is whether there is a better (lighter, i.e., having strictly less
Hamming weight) solution within a given distance from the initial so-
lution. We classify the complexity, both classical and parameterized, of
such problems by a Schaefer-style dichotomy result, that is, with a re-
stricted set of allowed types of constraints. Our results show that there
is a considerable amount of such problems that are NP-hard, but fixed-
parameter tractable when parameterized by the distance.

1 Introduction

Local search is one of the most widely used approaches to solving hard optimiza-
tion problems. The basic idea of local search is that one tries to iteratively im-
prove a current solution by searching for better solutions in its (k-)neighborhood
(i.e., within distance k from it). Any optimization algorithm can be followed by a
local search phase, thus the problem of finding a better solution locally is of prac-
tical interest. As a brute force search of a k-neighborhood is not feasible for large
k, thus it is natural to study the complexity of searching the k-neighborhood.

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered
in artificial intelligence and computer science. A CSP instance is represented by
a set of variables, a domain of values for each variable, and a set of constraints
on the variables. The basic aim is then to find an assignment of values to the
variables that satisfies the constraints. Boolean CSP (when all variables have
domain {0, 1}) is a natural generalization of Sat where constraints are given by
arbitrary relations, not necessarily by clauses. Local search methods for Sat and
CSP are very extensively studied (see, e.g., [5,9,10,11]).

Complexity classifications for various versions of (Boolean) CSP have recently
attracted massive attention from researchers, and one of the most popular direc-
tions here is to characterise restrictions on the type of constraints that lead to
� The first author is supported by UK EPSRC grants EP/C543831/1 and

EP/C54384X/1; the second author is supported by the Magyary Zoltán Felsőoktatási
Közalaṕıtvány and the Hungarian National Research Fund (OTKA grant 67651).

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 662–673, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Hardness of Losing Weight 663

problems with lower complexity in comparison with the general case (see [2,3]).
Such classifications are sometimes called Schaefer-style because the first clas-
sification of this type was obtained by T.J. Schaefer in his seminal work [15].
A local-search related Schaefer-style classification for Boolean Max CSP was
obtained in [1], in the context of local search complexity classes such as PLS.

The hardness of searching the k-neighborhood (for any optimisation problem)
can be studied very naturally in the framework of parameterized complexity [6,8],
as suggested in [7]; such a study for the traveling salesman problem (TSP) was re-
cently performed in [14]. Parameterized complexity studies hardness in finer de-
tail than classical complexity. Consider, for example, two standard NP-complete
problems Minimum Vertex Cover and Maximum Clique. Both have the
natural parameter k: the size of the required vertex cover/clique. Both problems
can be solved in nO(k) time by complete enumeration. Notice that the degree of
the polynomial grows with k, so the algorithm becomes useless for large graphs,
even if k is as small as 10. However, Minimum Vertex Cover can be solved
in time O(2k · n2) [6,8]. In other words, for every fixed cover size there is a
polynomial-time (in this case, quadratic) algorithm solving the problem where
the degree of the polynomial is independent of the parameter. Problems with this
property are called fixed-parameter tractable. The notion of W[1]-hardness in
parameterized complexity is analogous to NP-completeness in classical complex-
ity. Problems that are shown to be W[1]-hard, such as Maximum Clique [6,8],
are very unlikely to be fixed-parameter tractable. A Schaefer-style classification
of the basic Boolean CSP with respect to parameterized complexity (where the
parameter is the required Hamming weight of the solution) was obtained in [13].

In this paper, we give a Schaefer-style complexity classification for the follow-
ing problem: given a collection of Boolean constraints, and a solution to it, the
question is whether there is a better (i.e., with smaller Hamming weight) solution
within a given (Hamming) distance k from the initial solution. We obtain classi-
fication results both for classical (Theorem 9) and for parameterized complexity
(Theorem 3). However, we would like to point out that it makes much more sense
to study this problem in the parameterized setting. Intuitively, if we are able to
decide in polynomial time whether there is a better solution within distance k,
then this seems to be almost as powerful as finding the best solution (although
there are technicalities such as whether there is a feasible solution at all). Our
classification confirms this intuition: searching the k-neighborhood is polynomial-
time solvable only in cases where finding the optimum is also polynomial-time
solvable. On the other hand, there are cases (for example, 1-in-3 Sat or affine
constraints of fixed arity) where the problem of finding the optimum is NP-hard,
but searching the k-neighborhood is fixed-parameter tractable. This suggests
evidence that parameterized complexity is the right setting for studying local
search.

The paper is organized as follows. Section 2 reviews basic notions of parame-
terized complexity and Boolean CSP. Section 3 presents the classificiation with
respect to fixed-parameter tractability, while Section 4 deals with polynomial-
time solvability. The proofs omitted from Section 4 will appear in the full version.

664 A. Krokhin and D. Marx

2 Preliminaries

Boolean CSP. A formula φ is a pair (V,C) consisting of a set V of variables
and a set C of constraints. Each constraint ci ∈ C is a pair 〈si, Ri〉, where si =
(xi,1, . . . , xi,ri) is an ri-tuple of variables (the constraint scope) and Ri ⊆ {0, 1}ri

is an ri-ary Boolean relation (the constraint relation). A function f : V → {0, 1}
is a satisfying assignment of φ if (f(xi,1), . . . , f(xi,ri)) is in Ri for every ci ∈ C.
Let Γ be a set of Boolean relations. A formula is a Γ -formula if every constraint
relation Ri is in Γ . In this paper, Γ is always a finite set. The (Hamming) weight
w(f) of assignment f is the number of variables x with f(x) = 1. The distance
dist(f1, f2) of assignments f1, f2 is the number of variables x with f1(x) = f2(x).

We recall various standard definitions concerning Boolean constraints (cf. [3]):

– R is 0-valid if (0, . . . , 0) ∈ R.
– R is 1-valid if (1, . . . , 1) ∈ R.
– R is Horn or weakly negative if it can be expressed as a conjunction of clauses

such that each clause contains at most one positive literal. It is known that R
is Horn if and only if it is min-closed: if (a1, . . . , ar) ∈ R and (b1, . . . , br) ∈ R,
then (min(a1, b1), . . . ,min(ar, br)) ∈ R.

– R is affine if it can be expressed as a conjunction of constraints of the form
x1+x2+ · · ·+xt = b, where b ∈ {0, 1} and addition is modulo 2. The number
of tuples in an affine relation is always an integer power of 2.

– R is width-2 affine if it can be expressed as a conjunction of constraints of
the form x = y and x = y.

– R is IHS-B− (or implicative hitting set bounded) if it can be represented by
a conjunction of clauses of the form (x), (x→ y) and (¬x1 ∨ . . .¬xn), n ≥ 1.

– The relation Rp-in-q (for 1 ≤ p ≤ q) has arity q and Rp-in-q(x1, . . . , xq) is true
if and only if exactly p of the variables x1, . . . , xq have value 1.

The following definition is new in this paper. It plays a crucial role in charac-
terizing the fixed-parameter tractable cases for local search.

Definition 1. Let R be a Boolean relation and (a1, . . . , ar) ∈ R. A set S ⊆
{1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if (b1, . . . , br) ∈ R
where bi = 1−ai for i ∈ S and bi = ai for i ∈ S. We say that R is flip separable
if whenever some (a1, . . . , ar) ∈ R has two flip sets S1, S2 with S1 ⊂ S2, then
S2 \ S1 is also a flip set for (a1, . . . , ar).

It is easy to see that R1-in-3 is flip separable: every flip set has size exactly 2,
hence S1 ⊂ S2 is not possible. Moreover, Rp-in-q is also flip separable for every
p ≤ q. Affine constraints are also flip separable: to see this, it is sufficient to
verify the definition only for the constraint x1 + · · ·+ xr = 0.

The basic problem in CSP is to decide if a formula has a satisfying assignment:

CSP(Γ)

Input: A Γ -formula φ.
Question: Does φ have a satisfying assignment?

On the Hardness of Losing Weight 665

Schaefer completely characterized the complexity of CSP(Γ) for every finite
set Γ of Boolean relations [15]. In particular, every such problem is either in
PTIME or NP-complete, and there is a very clear description of the boundary
between the two cases.

Optimization versions of Boolean CSP were investigated in [3,4]. A straight-
forward way to obtain an optimization problem is to relax the requirement that
every constraint is satisfied, and ask for an assignment maximizing the number
of satisfied constraints. Another possibility is to ask for a solution with mini-
mum/maximum weight. In this paper, we investigate the problem of minimizing
the weight. As we do not consider the approximability of the problem, we define
here only the decision version:

Min-Ones(Γ)

Input: A Γ -formula φ and an integer W .
Question: Does φ have a satisfying assignment f with w(f) ≤W?

The characterization of the approximability of finding a minimum weight sat-
isfying assignment for a Γ -formula can be found in [3]. Here we state only the
classification of polynomial-time solvable and NP-hard cases:

Theorem 2 ([3]). Let Γ be a finite set of Boolean relations. Min-Ones(Γ) is
solvable in polynomial time if one the following holds, and NP-complete other-
wise:

– Every R ∈ Γ is 0-valid.
– Every R ∈ Γ is Horn.
– Every R ∈ Γ is width-2 affine.

A Schaefer-style characterization of the approximability of finding two satisfy-
ing assignments to a formula with a largest distance between them was obtained
in [4], motivated by the blocks world problem from KR, while a Schaefer-style
classification of the problem of deciding whether a given satisfying assignment
to a given CSP instance is component-wise minimal was presented in [12], mo-
tivated by the circumscription formalism from AI.

The main focus of the paper is the local search version of minimizing weight:

LS-CSP(Γ)

Input: A Γ -formula φ, a satisfying assignment f , and an integer k.
Question: Does φ have a satisfying assignment f ′ with w(f ′) < w(f)

and dist(f, f ′) ≤ k?

LS in the above problem stands for both “local search” and “lighter solution.”
Observe that the satisfying assignments of an (x ∨ y)-formula correspond to

the vertex covers of the graph where the variables are the vertices and the edges
are the constraints. Thus LS-CSP({x ∨ y}) is the problem of reducing the size
of a (given) vertex cover by including and excluding a total of at most k vertices.

666 A. Krokhin and D. Marx

As we shall see (Lemma 7), this problem is W[1]-hard, even for bipartite graphs.
Since the complement of an independent set is a vertex cover and vice versa, a
similar W[1]-hardness result follows for increasing an independent set.

Parameterized complexity. In a parmeterized problem, each instance contains
an integer k called the parameter. A parameterized problem is fixed-parameter
tractable (FPT) if it can be solved by an algorithm with running time f(k) · nc,
where n is the length of the input, f is an arbitrary (computable) function
depending only on k, and c is a constant independent of k.

A large fraction of NP-complete problems is known to be FPT. On the other
hand, analogously to NP-completeness in classical complexity, the theory of
W[1]-hardness can be used to give strong evidence that certain problems are
unlikely to be fixed-parameter tractable. We omit the somewhat technical defi-
nition of the complexity class W[1], see [6,8] for details. Here it will be sufficient
to know that there are many problems, including Maximum Clique, that were
proved to be W[1]-hard. To prove that a parameterized problem is W[1]-hard,
we have to present a parameterized reduction from a known W[1]-hard problem.
A parameterized reduction from problem L1 to problem L2 is a function that
transforms a problem instance x of L1 with parameter k into a problem instance
x′ of L2 with parameter k′ in such a way that

– x′ is a yes-instance of L2 if and only if x is a yes-instance of L1,
– k′ can be bounded by a function of k, and
– the transformation can be computed in time f(k) · |x|c for some constant c

and function f(k).

It is easy to see that if there is a parameterized reduction from L1 to L2, and
L2 is FPT, then it follows that L1 is FPT as well.

3 Characterizing Fixed-Parameter Tractability

In this section, we completely characterize those finite sets Γ of Boolean relations
for which LS-CSP(Γ) is fixed-parameter tractable.

Theorem 3. Let Γ be a finite set of Boolean relations. The problem LS-CSP(Γ)
is in FPT if every relation in Γ is Horn or every relation in Γ is flip separable. In
all other cases, LS-CSP(Γ) is W[1]-hard.

First we handle the fixed-parameter tractable cases (Lemmas 4 and 6)

Lemma 4. If Γ is finite and every R ∈ Γ is Horn, then LS-CSP(Γ) is FPT.

Proof. If there is a solution f ′ for the LS-CSP(Γ) instance (φ, f, k), then we can
assume f ′(x) ≤ f(x) for every variable x: by defining f ′′(x) := min{f(x), f ′(x)},
we get that f ′′ is also satisfying (as every R ∈ Γ is min-closed) and dist(f ′′, f) ≤
dist(f ′, f). Thus we can restrict our search to solutions that can be obtained from
f by changing some 1’s to 0’s, but every 0 remains unchanged.

On the Hardness of Losing Weight 667

Since w(f ′) < w(f), there is a variable x with f(x) = 1 and f ′(x) = 0. For
every variable x with f(x) = 1, we try to find a solution f ′ with f ′(x) = 0 using
a simple bounded-height search tree algorithm. For a particular x, we proceed as
follows. We start with initial assignment f . Change the value of x to 0. If there
is a constraint 〈(x1, . . . , xr), R〉 that is not satisfied by the new assignment, then
we select one of the variables x1, . . . , xr that has value 1, and change it to 0.
Thus at this point we branch into at most r − 1 directions. If the assignment
is still not satisfying, the we branch again on the variables of some unsatisfied
constraint. The branching factor of the resulting search tree is at most rmax− 1,
where rmax is the maximum arity of the relations in Γ . By the observation above,
if there is a solution, then we find a solution on the first k levels of the search
tree. Therefore, we can stop the search on the k-th level, implying that we visit
at most (rmax − 1)k+1 nodes of the search tree. The work to be done at each
node is polynomial in the size n of the input, hence the total running time is
(rmax − 1)k+1 · nO(1). ��

If every R ∈ Γ is not only Horn, but IHS-B− (which is a subset of Horn), then
the algorithm of Lemma 4 actually runs in polynomial time:

Corollary 5. If every R ∈ Γ is IHS-B−, then LS-CSP(Γ) is in PTIME.

Proof. We can assume that every constraint is either (x), (x→ y), or (x̄1 ∨ · · ·∨
x̄r). If a constraint (x̄1 ∨ · · · ∨ x̄r) is satisfied in the initial assignment f , then it
remains satisfied after changing some 1’s to 0. Observe that if a constraint (x) or
(x→ y) is not satisfied, then at most one variable has the value 1. Thus there is
no branching involved in the algorithm of Lemma 4, making it a polynomial-time
algorithm. ��

For flip separable relations, we give a very similar branching algorithm. However,
in this case the correctness of the algorithm requires a nontrivial argument.

Lemma 6. If Γ is finite and every R ∈ Γ is flip separable, then LS-CSP(Γ) is
FPT.

Proof. Let (φ, f, k) be an instance of LS-CSP(Γ). If w(f ′) < w(f) for some
assignment f ′, there is a variable x with f(x) = 1 and f ′(x) = 0. For every
variable x with f(x) = 1, we try to find a solution f ′ with f ′(x) = 0 using
a simple bounded-height search tree algorithm. For each such x, we proceed
as follows. We start with the initial assignment f and set the value of x to 0.
Iteratively do the following: (a) if there is a constraint in φ that is not satisfied
by the current assignment and such that the value of some variable in it has not
been flipped yet (on this branch), then we select one of such variables, and flip
its value; (b) if there is no such constraint, but the current assignment is not
satisfying then we move to the next branch; (c) if every constraint is satisfied,
then either we found a required solution or else we move to the next branch. If
a required solution is not found on the first k levels of the search tree then the
algorithm reports that there is no required solution.

Assume that (φ, f, k) is a yes-instance. We claim that if f ′ is a required solu-
tion with minimal distance from f , then some branch of the algorithm finds it.

668 A. Krokhin and D. Marx

Let X be the set of variables on which f and f ′ differ, so |X | ≤ k. We now show
that on the first k levels of the search tree, the algorithm finds some satisfying
assignment f0 (possibly heavier than f) that differs from f only on a subset
X0 ⊆ X of variables. To see this, assume that at some node of the search tree,
the current assignment differs from the initial assignment only on a subset of X ;
we show that this remains true for at least one child of the node. If we branch
on the variables (x1, . . . , xr) of an unsatisfied constraint, then at least one of its
variables, say xi, has a value different from f ′ (as f ′ is a satisfying assignment).
It follows that xi ∈ X : otherwise the current value of xi is f(xi) (since so far
we changed variables only in X) and f(xi) = f ′(xi) (by the definition of X),
contradicting the fact that current value of xi is different from f(xi). Thus if we
change variable xi, it remains true that only variables from X are changed. Since
|X | ≤ k, this branch of the algorithm has to find some satisfying assignment f0.

If w(f0) < w(f), then, by the choice of f ′, we must have f0 = f ′. Otherwise, let
X0 ⊆ X be the set of variables where f and f0 differ and let f ′′ be the assignment
that differs from f exactly on the variables X \ X0. From the fact that every
constraint is flip separable, it follows that f ′′ is a satisfying assignment. We claim
that w(f ′′) < w(f). Indeed, if changing the values of the variables in X decreases
the weight and changing the values in X0 does not decrease the weight, then the
set X \X0 has to decrease the weight. This contradicts the assumption that f ′

is a solution whose distance from f is minimal: f ′′ is a solution with distance
|X \X0| < |X |. Thus it is sufficient to investigate only the first k levels of the
search tree. As in the proof of Lemma 4, the branching factor of the tree is at
most rmax − 1, and the algorithm runs in time (rmax − 1)k+1 · nO(1). ��

All the hardness proofs in this section are based on the following lemma:

Lemma 7. LS-CSP({x ∨ y}) is W[1]-hard.

Proof. The proof is by reduction from a variant of Maximum Clique: given a
graph G(V,E) with a distinguished vertex x and an integer t, we have to decide
whether G has a clique of size t that contains x. It is easy to see that this problem
is W[1]-hard. Furthermore, it can be assumed that t is odd. Let n be the number
of vertices of G and let m be the number of edges. We construct a formula φ on
m + n(t − 1)/2 − 1 variables and a satisfying assignment f such that G has a
clique of size t containing x if and only if φ has a satisfying assignment f ′ with
w(f ′) < w(f) and distance at most k := t(t− 1)− 1 from f .

Let d := (t − 1)/2 (note that t is odd). The formula φ has d variables v1,
. . . , vd for each vertex v = x of G and a variable ue for each edge e of G. The
distinguished vertex x has only d− 1 variables x1, . . . , xd−1. If a vertex v is the
endpoint of an edge e, then for every 1 ≤ i ≤ d (or 1 ≤ i ≤ d− 1, if v = x), we
add the constraint ue ∨ vi. Thus each variable ue is in 2d− 1 or 2d constraints
(depending on whether x is the endpoint of e or not). Set f(ue) = 1 for every
e ∈ E and f(vi) = 0 for every v ∈ V , 1 ≤ i ≤ d. Clearly, f is a satisfying
assignment.

Assume that G has a clique K of size t that includes x. Set f ′(vi) = 1 for every
v ∈ K (1 ≤ i ≤ d) and set f ′(ue) = 0 for every edge e in K; let f ′ be the same

On the Hardness of Losing Weight 669

as f on every other variable. Observe that f ′ is also a satisfying assignment: if
a variable ue was changed to 0 and there is a constraint ue ∨ vi, then v ∈ K
and hence f ′(vi) = 1. We have w(f ′) < w(f): dt − 1 variables were changed to
1 (note that x ∈ K) and t(t− 1)/2 = dk variables were changed to 0. Moreover,
the distance of f and f ′ is exactly dt− 1 + t(t− 1)/2 = t(t− 1)− 1 = k.

Assume now that f ′ satisfies the requirements. Let K be the set of those
vertices v in G for which f ′(vi) = 1 for every i. We claim that K is a clique of
size t in G. Observe that there are at least d|K|−1 variables vi with f ′(vi) > f(vi)
and f ′(ue) < f(ue) is possible only if both endpoints of e are in K, i.e., e is in
the set E(K) of edges in K. Thus w(f ′) < w(f) implies d|K| − 1 < |E(K)| ≤
|K|(|K| − 1)/2, which is only possible if |K| ≥ 2d + 1 = t. If |K| > t, then
f ′(vi) > f(vi) for at least (t + 1)d − 1 variables, hence there must be at least
that many variables ue with f ′(ue) < f(ue). Thus the distance of f and f ′ is at
least 2(t+1)d−2 > t(t−1)−1. Therefore, we can assume |K| = t. Now dt−1 <
|E(K)| ≤ |K|(|K| − 1)/2 = t(t − 1)/2 is only possible if |E(K)| = t(t − 1)/2
(i.e., K is a clique) and it follows that there are exactly dt− 1 variables vi with
f ′(vi) > f(vi) (i.e., x ∈ K). ��

Now we are ready to present the main hardness proof of the section:

Lemma 8. If Γ contains a relation R1 that is not Horn and a relation R2 that
is not flip separable, then LS-CSP(Γ) is W[1]-hard.

Proof. The proof is by reduction from LS-CSP({x ∨ y}). Let (φ1, f1, k) be an
instance of LS-CSP({x ∨ y}), i.e., every constraint relation in formula φ1 =
(V,C) is (x ∨ y). Since R1 is not min-closed, we can assume (by permuting the
variables) that for some r1, r2 ≥ 1, r3, r4 ≥ 0, if we define

R′1(x, y, w0, w1) = R1(
r1

︷ ︸︸ ︷
x, . . . , x,

r2
︷ ︸︸ ︷
y, . . . , y,

r3
︷ ︸︸ ︷
w0, . . . , w0,

r4
︷ ︸︸ ︷
w1, . . . , w1),

then (0, 1, 0, 1), (1, 0, 0, 1) ∈ R′1, but (0, 0, 0, 1) ∈ R′1. Since R′1 is obtained from
R1 by identifying variables, we can use the relation R′1 when specifying instances
of LS-CSP(Γ). We consider two cases:

Case 1: (1, 1, 0, 1) ∈ R′1. In this case R′1(x, y, 0, 1) = x ∨ y, hence it is easy to
simulate LS-CSP({x∨y}). The only difficulty is how to simulate the constants 0
and 1. We do this as follows. Let us construct a formula φ2 that has every variable
of V and new variables qj0, q

j
1 for every 1 ≤ j ≤ k+1 (these new variables will play

the role of the constants). We define assignment f2 of φ2 by setting f2(x) = f1(x)
for x ∈ V and f2(q

j
0) = 0 and f2(q

j
1) = 1 for 1 ≤ j ≤ k+1. For 1 ≤ a, b, c ≤ k+1,

we add constraint c1a,b,c = R′1(q
a
1 , q

b
0, q

b
0, q

c
1); it is clearly satisfied by assignment

f2. To simulate a constraint x ∨ y, we add c2x,y,j = R′1(x, y, q
j
0, q

1
1) for every

1 ≤ j ≤ k + 1.
It is easy to see that if there is a solution f ′1 for the original instance (φ1, f1, k),

then by setting f ′2(x) = f ′1(x) for every x ∈ V and f ′2(q
j
0) = 0, f ′2(q

j
1) = 1 for

every 1 ≤ j ≤ k+1 gives a solution f ′2 for the constructed instance (φ2, f2, k). We
claim the converse is also true: if f ′2 is a solution for the instance (φ2, f2, k), then

670 A. Krokhin and D. Marx

the restriction f ′1 of f ′2 to V gives a solution for (φ1, f1, k). Since the distance
of f2 and f ′2 is at most k, there are 1 ≤ b, c ≤ k + 1 with f ′2(q

b
0) = 0 and

f ′2(qc1) = 1. Because of the constraint c1a,b,c, we have that f ′2(qa1) = 1 for every
1 ≤ a ≤ k + 1. It follows that f ′2 restricted to V is a satisfying assignment of
φ1: for every constraint x ∨ y ∈ C, the constraint c2x,y,b prevents the possibility
f ′2(x) = f ′2(y) = 0. We have seen that f ′2(q

j
0) ≥ f2(q

j
0) and f ′2(q

j
1) ≥ f2(q

j
1) for

every 1 ≤ j ≤ k + 1. Now w(f ′2) < w(f2) implies that the weight of f ′2 on V has
to be less than the weight of f2 on V . Thus w(f ′1) < w(f1).

Case 2: (1, 1, 0, 1) ∈ R′1, which means that R′1(x, y, 0, 1) is x = y. In this case we
have to rely on the fact that R2 is not flip separable to simulate the constraint
x∨ y. We construct formula φ2 and its satisfying assignment f2 as follows. Each
variable x is replaced by 3 variables x1, x2, x3. We set f2(x1) = f2(x2) = f1(x)
and f2(x3) = 1 − f1(x). Furthermore, for 1 ≤ j ≤ 3k + 1, we add the variables
qj0 and qj1 and set f2(q

j
0) = 0 and f2(q

j
1) = 1.

For every 1 ≤ a, b, c ≤ 3k + 1, we add the constraint c1a,b,c = R′1(q
a
1 , q

b
0, q

b
0, q

c
1),

as in the previous case. For every x ∈ V , 1 ≤ j ≤ 3k + 1, and � = 1, 2, we
add c2x,�,j = R′1(x�, x3, q

j
0, q

1
1), as we shall see, the role of these constraints is to

ensure f ′2(x1) = f ′2(x2) = f ′2(x3).
Since R2 is not flip separable, there is a tuple (s1, . . . , sr) ∈ R2 that has flip

sets S1 ⊂ S2, but S2 \ S1 is not a flip set. For every constraint x ∨ y of φ1, we
add 3k + 1 constraints to φ2 as follows. First, for 1 ≤ i ≤ r and 1 ≤ j ≤ 3k + 1,
we define variable vji as

vji =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 if i ∈ S1 and si = 0,
x3 if i ∈ S1 and si = 1,
y1 if i ∈ S2 \ S1 and si = 1,
y3 if i ∈ S2 \ S1 and si = 0,
q1
1 if i ∈ S2 and si = 1,

qj0 if i ∈ S2 and si = 0.

For every 1 ≤ j ≤ 3k + 1, we add the constraint c3x,y,j = R2(v
j
1, . . . , v

j
r). For

example, assume that (0, 1, 0, 1) ∈ R2 and this tuple has flip sets S1 = {1, 2}
and S2 = {1, 2, 3, 4}, but S2 \ S1 = {3, 4} is not a flip set. This means that
(0, 1, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1) ∈ R2 and (0, 1, 1, 0) ∈ R2. In this case, constraint
c3x,y,j is R2(x1, x3, y3, y1). Assuming f(x1) = f(x3) and f(y1) = f(y3), any
combination of values on x1 and y1 satisfies the constraint, except if f(x1) =
f(y1) = 0. Thus the constraint effectively acts as a constraint x1 ∨ y1.

Finally, we set the maximum allowed distance to k′ := 3k. This completes the
description of the constructed instance (φ2, f2, k

′).
Assume first that f ′1 is a solution for the instance (φ1, f1, k). Define f ′2(x1) =

f ′2(x2) = f ′1(x) and f ′2(x3) = 1 − f ′1(x) for every x ∈ V , and define f ′2(q
j
0) = 0,

f ′2(q
j
1) = 1 for every 1 ≤ j ≤ 3k + 1. The fact w(f ′1) < w(f1) implies w(f ′2) <

w(f2). Furthermore, the distance of f2 and f ′2 is exactly three times the distance
of f1 and f ′1, i.e., at most 3k. We claim that f ′2 satisfies the constraints of φ2.
This is easy to see for c1a,b,c and c2x,�,j. For c3x,y,j, this can be seen as follows:

On the Hardness of Losing Weight 671

– If f ′2(x) = 0, f ′2(y) = 1, then this holds because (s1, . . . , sr) ∈ R2.
– If f ′2(x) = 1, f ′2(y) = 0, then this holds because S2 is a flip set.
– If f ′2(x) = 1, f ′2(y) = 1, then this holds because S1 is a flip set.

For the other direction, assume that f ′2 is a solution for the instance (φ2, f2, k
′).

Define f ′1(x) = f ′2(x1) for every x ∈ V ; we claim that f ′1 is a solution for the
instance (φ1, f1, k). Since the distance of f2 and f ′2 is at most 3k, there are
1 ≤ b, c ≤ 3k + 1 with f ′2(q

b
0) = 0 and f ′2(q

c
1) = 1. Because of the constraint

c1a,b,c, we have that f ′2(qa1) = 1 for every 1 ≤ a ≤ 3k + 1. The constraints
c2x,1,b and c2x,2,b ensure that f ′2(x1) = f ′2(x2) = 1− f ′2(x3) (since (0, 0, 0, 1) ∈ R′1
and (1, 1, 0, 1) ∈ R′1). It follows that the distance of f1 and f ′1 is at most k:
f1(x) = f ′1(x) implies f2(x�) = f ′2(x�) for � = 1, 2, 3, hence this can hold for at
most k different x ∈ V . Moreover, w(f ′1) < w(f1): this follows from the facts
w(f ′2) < w(f2) and f ′2(q

j
0) ≥ f2(qk0), f ′2(q

j
1) ≥ f2(qk1) (1 ≤ j ≤ 3k + 1).

We claim that every constraint x ∨ y of φ1 is satisfied. Assume that f ′1(x) =
f ′1(y) = f ′2(x1) = f ′2(y1) = 0. Now c3x,y,b is not satisfied: this follows from the
fact that S2 \ S1 is not a flip set for (s1, . . . , sr) (with respect to R2). ��

4 Characterizing Polynomial-Time Solvability

In this section, we completely characterize those finite sets Γ of Boolean relations
for which LS-CSP(Γ) is polynomial-time solvable.

Theorem 9. Let Γ be a finite set of Boolean relations. The problem LS-CSP(Γ)
is in PTIME if every relation in Γ is IHS-B− or every relation in Γ is width-2
affine. In all other cases, LS-CSP(Γ) is NP-hard.

Proof. If every relation in Γ is IHS-B−, then Corollary 5 gives a polynomial-
time algorithm. If every relation in Γ is width-2 affine then the following simple
algorithm solves LS-CSP(Γ): for a given instance (φ, f, k), compute the graph
whose vertices are the variables in φ and two vertices are connected if there is a
constraint = or = in φ imposed on them. If there is a connected component of
this graph which has at most k vertices and such that f assigns more 1’s in this
component than it does 0’s, then flipping the values in this component gives a
required lighter solution. If such a component does not exists, then there is no
lighter solution within distance k from f .

By Lemma 8, if Γ contains a relation that is not Horn and a relation that
is not flip separable then LS-CSP(Γ) is NP-hard. (Note that Lemma 8 gives
a polynomial-time reduction from an NP-hard problem.) Thus we can assume
that every relation in Γ is Horn or every relation in Γ is flip separable. We prove
only the former case; the proof for the latter case will appear in the full version.

Assume now that Γ is Horn, and there is a relation R ∈ Γ that is not IHS-B−.
We prove that LS-CSP({R}) is NP-hard. It is shown in the proof of Lemma 5.27
of [3] that then R is at least ternary and one can permute the coordinates in
R and then substitute 0 and 1 in R in such a way that the ternary relation
R′(x, y, z) = R(x, y, z, 0, . . . , 0, 1, . . . , 1) has the following properties:

672 A. Krokhin and D. Marx

1. R′ contains tuples (1, 1, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0), and
2. R′ does not contain the tuple (1, 1, 0).

Note that if (0, 0, 1) ∈ R′ then R′(x, x, y) is x→ y. If (0, 0, 1) ∈ R′ then, since
R (and hence R′) is Horn (i.e., min-closed), at least one of of the tuples (1, 0, 1)
and (0, 1, 1) is not in R′. Then it is easy to check that at least one of the relations
R′(x, y, x) and R′(y, x, x) is x → y. Hence, we can use constraints of the form
x→ y when specifying instances of LS-CSP({R′}).

We reduce Minimum Dominating Set to LS-CSP({R′}). Let G(V,E) be a
graph with n vertices and m edges where a dominating set of size at most t has
to be found. Let v1, . . . , vn be the vertices of G. Let S = 3m. We construct a
formula with nS + 2m + 1 variables as follows:

– There is a special variable x.
– For every 1 ≤ i ≤ n, there are S variables xi,1, . . . , xi,S . There is a constraint

xi,j → xi,j′ for every 1 ≤ j, j′ ≤ n.
– For every 1 ≤ i ≤ n, if vs1 , . . . , vsd

are the neighbors of vi, then there
are d variables yi,1, . . . , yi,d and the following constraints: xs1,1 → yi,1,
R′(xs2,1, yi,1, yi,2),R′(xs3,1, yi,2, yi,3),. . . , R′(xsd,1, yi,d−1, yi,d),R′(xi,1, yi,d, x).

– For every variable z, there is a constraint x→ z.

Observe that the number of variables of type yi,j is exactly 2m. Setting every
variable to 1 is a satisfying assignment. Set k := St + S − 1.

Assume that there is a satisfying assignment where the number of 0’s is at
most k (but positive). Variable x has to be 0, otherwise every other variable is
1. If xi,1 is 0, then xi,j is 0 for every 1 ≤ j ≤ S. Thus k < S(t + 1) implies that
there are at most t values of i such that xi,1 is 0. Let D consist of all vertices
vi such that xi,1 is 0. We claim that D is a dominating set. Suppose that some
vertex vi is not dominated. This means that if vs1 , . . . , vsd

are the neighbors of
vi, then the variables xs1,1, . . . , xsd,1, xi,1 all have the value 1. However, this
means that these variables force variables yi,1, . . . , yi,d and variable x to value
1, a contradiction. Thus D is a dominating set of size at most t.

The reverse direction is also easy to see. Assume that G has a dominating set
D of size at most t. For every 1 ≤ i ≤ n and 1 ≤ j ≤ S, set variable xi,j to 1 if
and only vi is not contained in D. Set x to 0. It is easy to see that this assignment
can be extended to the variables yi,j to obtain a satisfying assignment: indeed,
if vs1 , . . . , vsd

are the neighbors of vi and none of them is in D then vi ∈ D,
and we set yi,1 = . . . = yi,d = 1. Otherwise, if j is minimal such that vsj ∈ D,
we set yi,1 = . . . = yi,j−1 = 1 and yi,q = 0 for q ≥ j. This satisfying assignment
contains at most St + 2m + 1 ≤ k variables with value 0, as required.

Finally, we reduce LS-CSP({R′}) to LS-CSP({R}) (and so to LS-CSP(Γ)).
Take an instance (φ, f, k) of LS-CSP({R′}), let V be the variables of φ and
c1, . . . , cp the constraints of φ. We build an instance φ′ of LS-CSP({R}) as
follows.

1. For each 1 ≤ i ≤ max(p, k + 1), introduce new variables xi0, x
i
1.

2. For each constraint ci = R′(x, y, z) in formula φ, replace it by the constraint
R(x, y, z, xi0, . . . , x

i
0, x

i
1, . . . , x

i
1).

On the Hardness of Losing Weight 673

3. For each ordered pair (i, j) where 1 ≤ i, j ≤ max(p, k+1), add the constraints
R(xi0, x

i
0, x

j
0, x

j
0, . . . , x

j
0, x

j
1, . . . , x

j
1) and R(xj1, x

j
1, x

i
1, x

j
0, . . . , x

j
0, x

j
1, . . . , x

j
1).

Finally, extend f so that, for all i, we have xi0 = 0 and xi1 = 1. It is clear that the
obtained mapping f ′ is a solution to the new instance. Note that, by the choice of
R′, the tuple (1, 1, 0, 0, . . . , 0, 1, . . . , 1) does not belong toR. Hence, the constraints
added in step (3) above ensure that if a variable of the form xi0 or xi1 in f ′ is flipped
then, in order to get a solution to φ′ different from f ′, one must flip at least one of
xi0 and xi1 for each 1 ≤ i ≤ max(p, k+1). Consequently, all solutions to φ′ that lie
within distance k from f ′ must agree with f ′ on all such variables. In other words,
searching for such a solution, it makes sense to flip only variables from V . Thus,
clearly, the instances (φ, f, k) and (φ′, f ′, k) are equivalent. ��

References

1. Chapdelaine, P., Creignou, N.: The complexity of Boolean constraint satisfaction
local search problems. Annals of Mathematics and Artificial Intelligence 43, 51–63
(2005)

2. Cohen, D., Jeavons, P.: The complexity of constraint languages. In: Rossi, F., van
Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 8. Elsevier,
Amsterdam (2006)

3. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and
Applications, vol. 7 (2001)

4. Crescenzi, P., Rossi, G.: On the Hamming distance of constraint satisfaction prob-
lems. Theoretical Computer Science 288(1), 85–100 (2002)

5. Dantsin, E., Goerdt, A., Hirsch, E., Kannan, R., Kleinberg, J., Papadimitriou, C.,
Raghavan, P., Schöning, U.: A deterministic (2− 2

k+1)n algorithm for k-SAT based
on local search. Theoretical Computer Science 289, 69–83 (2002)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Fellows, M.R.: Parameterized complexity: new developments and research fron-
tiers. In: Aspects of Complexity (Kaikura, 2000). de Gruyter Series in Logic and
Applications, vol. 4, pp. 51–72 (2001)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

9. Gu, J., Purdom, P., Franko, J., Wah, B.W.: Algorithms for the Satisfiability Prob-
lem. Cambridge University Press, Cambridge (2000)

10. Hirsch, E.: SAT local search algorithms: worst-case study. Journal of Automated
Reasoning 24, 127–143 (2000)

11. Hoos, H., Tsang, E.: Local search methods. In: Rossi, F., van Beek, P., Walsh, T.
(eds.) Handbook of Constraint Programming. ch. 5. Elsevier, Amsterdam (2006)

12. Kirousis, L., Kolaitis, P.: The complexity of minimal satisfiability problems. Infor-
mation and Computation 187, 20–39 (2003)

13. Marx, D.: Parameterized complexity of constraint satisfaction problems. Compu-
tational Complexity 14, 153–183 (2005)

14. Marx, D.: Searching the k-change neighborhood for TSP is W[1]-hard. Operations
Research Letters 36, 31–36 (2008)

15. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–
226 (1978)

Product Theorems Via Semidefinite Programming

Troy Lee and Rajat Mittal

Department of Computer Science, Rutgers University

Abstract. The tendency of semidefinite programs to compose perfectly under
product has been exploited many times in complexity theory: for example, by
Lovász to determine the Shannon capacity of the pentagon; to show a direct sum
theorem for non-deterministic communication complexity and direct product the-
orems for discrepancy; and in interactive proof systems to show parallel repetition
theorems for restricted classes of games. Despite all these examples of product
theorems—some going back nearly thirty years—it was only recently that Mittal
and Szegedy began to develop a general theory to explain when and why semidef-
inite programs behave perfectly under product. This theory captured many exam-
ples in the literature, but there were also some notable exceptions which it could
not explain—namely, an early parallel repetition result of Feige and Lovász, and
a direct product theorem for the discrepancy method of communication complex-
ity by Lee, Shraibman, and Špalek. We extend the theory of Mittal and Szegedy
to explain these cases as well. Indeed, to the best of our knowledge, our theory
captures all examples of semidefinite product theorems in the literature.

1 Introduction

A prevalent theme in complexity theory is what we might roughly call product theo-
rems. These results look at how the resources to accomplish several independent tasks
scale with the resources needed to accomplish the tasks individually. Let us look at a
few examples of such questions:

Shannon Capacity. If a graph G has an independent set of size α, how large an inde-
pendent set can the product graph G × G have? How does α compare with amortized
independent set size limk→∞ α(Gk)1/k? This last quantity, known as the Shannon ca-
pacity, gives the effective alphabet size of a graph where vertices are labeled by letters
and edges represent letters which can be confused if adjacent.

Hardness Amplification. Product theorems naturally arise in the context of hardness
amplification. If it is hard to evaluate a function f(x), then an obvious approach to
create a harder function is to evaluate two independent copies f ′(x, y) = (f(x), f(y))
of f . There are different ways that f ′ can be harder than f—a direct sum theorem aims
to show that evaluation of f ′ requires twice as many resources as needed to evaluate f ;
direct product theorems aim to show that the error probability to compute f ′ is larger
than that of f , given the same amount of resources.

Soundness Amplification. Very related to hardness amplification is what we might call
soundness amplification. This arises in the context of interactive proofs where one wants
to reduce the error probability of a protocol, by running several checks in parallel.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 674–685, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Product Theorems Via Semidefinite Programming 675

The celebrated parallel repetition theorem shows that the soundness of multiple prover
interactive proof systems can be boosted in this manner [Raz98].

These examples illustrate that many important problems in complexity theory deal
with product theorems. One successful approach to these types of questions has been
through semidefinite programming. In this approach, if one wants to know how some
quantity σ(G) behaves under product, one first looks at a semidefinite approximation
σ̄(G) of σ(G). One then hopes to show that σ̄(G) provides a good approximation to
σ(G), and that σ̄(G×G) = σ̄(G)σ̄(G). In this way one obtains that the original quantity
must approximately product as well.

Let us see how this approach has been used on some of the above questions.

Shannon Capacity. Perhaps the first application of this technique was to the Shannon
capacity of a graph. Lovász developed a semidefinite quantity, the Lovász theta function
ϑ(G), showed that it was a bound on the independence number of a graph, and that
ϑ(G ×G) = ϑ(G)2. In this way he determined the Shannon capacity of the pentagon,
resolving a long standing open problem [Lov79].

Hardness Amplification. Karchmer, Kushilevitz, and Nisan [KKN95] notice that an-
other program introduced by Lovász [Lov75], the fractional cover number, can be
used to characterize non-deterministic communication complexity, up to small factors.
As this program also perfectly products, they obtain a direct sum theorem for non-
deterministic communication complexity.

As another example, Linial and Shraibman [LS06] show that a semidefinite program-
ming quantity γ∞2 characterizes the discrepancy method of communication complexity,
up to constant factors. Lee, Shraibman and Špalek [LSŠ08] then use this result, to-
gether with the fact that γ∞2 perfectly products, to show a direct product theorem for
discrepancy, resolving an open problem of Shaltiel [Sha03].

Soundness Amplification. Although the parallel repetition theorem was eventually
proven by other means [Raz98, Hol07], one of the first positive results did use semidefi-
nite programming. Feige and Lovász [FL92] show that the acceptance probability ω(G)
of a two-prover interactive proof on input x can be represented as an integer program.
They then study a semidefinite relaxation of this program, and use this to show that if
ω(G) < 1 then supk→∞ ω(Gk)1/k < 1, for a certain class of games G. More recently,
Cleve et al. [CSUU07] look at two-prover games where the provers share entanglement,
and show that the value of a special kind of such a game known as an XOR game can
be exactly represented by a semidefinite program. As this program perfectly products,
they obtain a perfect parallel repetition theorem for this game.

We hope this selection of examples shows the usefulness of the semidefinite pro-
gramming approach to product theorems. Until recently, however, this approach re-
mained an ad hoc collection of examples without a theory to explain when and why
semidefinite programs perfectly product. Mittal and Szegedy [MS07] began to address
this lacuna by giving a general sufficient condition for a semidefinite program to obey
a product rule. This condition captures many examples in the literature, notably the
Lovász theta function [Lov79], and the parallel repetition for XOR games with entan-
gled provers [CSUU07].

Other examples cited above, however, do not fit into the Mittal and Szegedy frame-
work: namely, the product theorem of Feige and Lovász [FL92] and that for

676 T. Lee and R. Mittal

discrepancy [LSŠ08]. We extend the condition of Mittal and Szegedy to capture these
cases as well. Indeed, in our (admittedly imperfect) search of the literature, we have not
found a semidefinite product theorem which does not fit into our framework.

2 Preliminaries

We begin with some notational conventions and basic definitions which will be useful.
In general, lower case letters like v will denote column vectors, and upper case letters
like A will denote matrices. Vectors and matrices will be over the real numbers. The
notation vT or AT will denote the transpose of a vector or matrix. We will say A 5 0 if
A is positive semidefinite, i.e. if A is symmetric and vTAv ≥ 0 for all vectors v.

We will use several kinds of matrix products. We write AB for the normal matrix
product. For two matrices A,B of the same dimensions, A ◦ B denotes the matrix
formed by their entrywise product. That is, (A◦B)[x, y] = A[x, y]B[x, y]. We will use
A • B for the entrywise sum of A ◦ B. Equivalently, A • B = Tr(ABT). We will use
the notation v ≥ w to indicate that the vector v is entrywise greater than or equal to the
vector w.

In applications we often face the situation where we would like to use the framework
of semidefinite programming, which requires symmetric matrices, but the problem at
hand is represented by matrices which are not symmetric, or possibly not even square.
Fortunately, this can often be handled by a simple trick. This trick is so useful that we
will give it its own notation. For an arbitrary real matrix A, we define

Â =
[

0 A
AT 0

]

We will refer to this as the bipartite version of A, as such a matrix corresponds to the
adjacency matrix of a (weighted) bipartite graph. In many respects Â behaves similarly
to A, but has the advantages of being symmetric and square.

More generally, we will refer to a matrix M which can be written as

M =
[

0 A
B 0

]

as block anti-diagonal and a matrix M which can be written

M =
[
D1 0
0 D2

]

as block diagonal.
One subtlety that arises in working with the bipartite version Â instead of A itself is

in defining the product of instances. Mathematically, it is most convenient to work with
the normal tensor product

Â⊗ Â =

⎡

⎢
⎢
⎣

0 0 0 A⊗A
0 0 A⊗AT 0
0 AT ⊗A 0 0

AT ⊗AT 0 0 0

⎤

⎥
⎥
⎦

Product Theorems Via Semidefinite Programming 677

Whereas what naturally arises in the product of problems is instead the “bipartite ten-
sor” product of A:

Â⊗A =
[

0 A⊗A
AT ⊗AT 0

]

Kempe, Regev, and Toner [KRT07] observe, however, that a product theorem for the
tensor product implies a product theorem for the bipartite tensor product. This essen-
tially follows because Â⊗A is a submatrix of Â⊗ Â, and so positive semidefiniteness
of the latter implies positive semidefiniteness of the former. See [KRT07] for full de-
tails.

3 Product Rule with Non-negativity Constraints

In this section we prove our main theorem extending the product theorem of Mittal
and Szegedy [MS07] to handle non-negativity constraints. As our work builds on the
framework developed by Mittal and Szegedy, let us first explain their results.

Mittal and Szegedy consider a general affine semidefinite program π = (J,A, b).
Here A = (A1, . . . , Am) is a vector of matrices, and we extend the notation • such that
A •X = (A1 •X,A2 •X, . . . , Am •X). The value of π is given as

α(π) = max
X

J •X such that

A •X = b

X 5 0.

We take this as the primal formulation of π. Part of what makes semidefinite program-
ming so useful for proving product theorems is that we can also consider the dual for-
mulation of π. Dualizing in the straightforward way gives:

α∗(π) = min
y

yT b

yTA− J 5 0

A necessary pre-condition for the semidefinite programming approach to proving prod-
uct theorems is that so-called strong duality holds. That is, that α(π) = α∗(π), the
optimal primal and dual values agree. We will assume this throughout our discussion.
For more information about strong duality and sufficient conditions for it to hold, see
[BV06].

We define the product of programs as follows: for π1 = (J1,A1, b1) and π2 =
(J2,A2, b2) we define π1 × π2 = (J1 ⊗ J2,A1 ⊗A2, b1 ⊗ b2). If A1 is a tuple of m1

matrices and A2 is a tuple of m2 matrices, then the tensor product A1 ⊗A2 is a tuple
of m1m2 matrices consisting of all the tensor products A1[i]⊗A2[j].

It is straightforward to see that α(π1 × π2) ≥ α(π1)α(π2). Namely, if X1 realizes
α(π1) and X2 realizes α(π2), then X1 ⊗ X2 will be a feasible solution to π1 × π2

with value α(π1)α(π2). This is because X1⊗X2 is positive semidefinite, (A1⊗A2) •
(X1 ⊗ X2) = (A1 • X1) ⊗ (A2 • X2) = b1 ⊗ b2, and (J1 ⊗ J2) • (X1 ⊗ X2) =
(J1 •X1)⊗ (J2 •X2) = α(π1)α(π2).

678 T. Lee and R. Mittal

Mittal and Szegedy show the following theorem giving sufficient conditions for the
reverse inequality α(π1 × π2) ≤ α(π1)α(π2).

Theorem 1 (Mittal and Szegedy [MS07]). Let π1 = (J1,A1, b1), π2 = (J2,A2, b2)
be two affine semidefinite programs for which strong duality holds. Then α(π1 × π2) ≤
α(π1)α(π2) if either of the following two conditions hold:

1. J1, J2 5 0.
2. (Bipartiteness) There is a partition of rows and columns into two sets such that with

respect to this partition, Ji is block anti-diagonal, and all matrices in Ai are block
diagonal, for i ∈ {1, 2}.

We extend item (2) of this theorem to also handle non-negativity constraints. This is a
class of constraints which seems to arise often in practice, and allows us to capture cases
in the literature that the original work of Mittal and Szegedy does not. More precisely,
we consider programs of the following form:

α(π) = max
X

J •X such that

A •X = b

B •X ≥ 0

X 5 0

Here both A and B are vectors of matrices, and 0 denotes the all 0 vector.
We should point out a subtlety here. A program of this form can be equivalently

written as an affine program by suitably extending X and modifying A accordingly
to enforce the B • X ≥ 0 constraints through the X 5 0 condition. The catch is
that two equivalent programs do not necessarily lead to equivalent product instances.
We explicitly separate out the non-negativity constraints here so that we can define the
product as follows: for two programs,π1 = (J1,A1, b1,B1) and π2 = (J2,A2, b2,B2)
we say

π1 × π2 = (J1 ⊗ J2,A1 ⊗A2, b1 ⊗ b2,B1 ⊗B2).

Notice that the equality constraints and non-negativity constraints do not interact in the
product, which is usually the intended meaning of the product of instances.

It is again straightforward to see that α(π1 × π2) ≥ α(π1)α(π2), thus we focus on
the reverse inequality. We extend Condition (2) of Theorem 1 to the case of programs
with non-negativity constraints. As we will see in Section 4, this theorem captures the
product theorems of Feige-Lovász [FL92] and discrepancy [LSŠ08].

Theorem 2. Let π1 = (J1,A1, b1,B1) and π2 = (J2,A2, b2,B2) be two semidefinite
programs for which strong duality holds. Suppose the following two conditions hold:

1. (Bipartiteness) There is a partition of rows and columns into two sets such that,
with respect to this partition, Ji and all the matrices of Bi are block anti-diagonal,
and all the matrices of Ai are block diagonal, for i ∈ {1, 2}.

2. There are non-negative vectors u1, u2 such that J1 = uT1 B1 and J2 = uT2 B2.

Then α(π1 × π2) ≤ α(π1)α(π2).

Product Theorems Via Semidefinite Programming 679

Proof. To prove the theorem it will be useful to consider the dual formulations of π1

and π2. Dualizing in the standard fashion, we find

α(π1) = min
y1

yT1 b1 such that

yT1 A1 − (zT1 B1 + J1) 5 0
z1 ≥ 0

and similarly for π2. Fix y1, z1 to be vectors which realizes this optimum for π1 and
similarly y2, z2 for π2. The key observation of the proof is that if we can also show that

yT1 A1 + (zT1 B1 + J1) 5 0 and yT2 A2 + (zT2 B2 + J2) 5 0 (1)

then we will be done. Let us for the moment assume (1) and see why this is the case.
If (1) holds, then we also have

(
yT1 A1 − (zT1 B1 + J1)

)
⊗

(
yT2 A2 + (zT2 B2 + J2)

)
5 0

(
yT1 A1 + (zT1 B1 + J1)

)
⊗

(
yT2 A2 − (zT2 B2 + J2)

)
5 0

Averaging these equations, we find

(y1 ⊗ y2)T (A1 ⊗A2)−
(
(zT1 B1 + J1)⊗ (zT2 B2 + J2)

)
5 0.

Let us work on the second term. We have

(zT1 B1 + J1)⊗ (zT2 B2 + J2) = (z1 ⊗ z2)T (B1 ⊗B2) + zT1 B1 ⊗ J2 + J1 ⊗ zT2 B2

+ J1 ⊗ J2

= (z1 ⊗ z2)T (B1 ⊗B2) + (z1 ⊗ u2)TB1 ⊗B2

+ (u1 ⊗ z2)TB1 ⊗B2 + J1 ⊗ J2.

Thus if we let v = z1⊗z2+z1⊗u2+u1⊗z2 we see that v ≥ 0 as all of z1, z2, u1, u2

are, and also

(y1 ⊗ y2)T ⊗ (A1 ⊗A2)− (vT (B1 ⊗B2) + J1 ⊗ J2) 5 0.

Hence (y1 ⊗ y2, v) form a feasible solution to the dual formulation of π1 × π2 with
value (y1 ⊗ y2)(b1 ⊗ b2) = α(π1)α(π2).

It now remains to show that (1) follows from the condition of the theorem. Given
yA− (zTB+J) 5 0 and the bipartiteness condition of the theorem, we will show that
yA + (zTB + J) 5 0. This argument can then be applied to both π1 and π2.

We have that yTA is block diagonal and zTB+J is block anti-diagonal with respect
to the same partition. Hence for any vector xT =

[
x1 x2

]
, we have

[
x1 x2

] (
yTA− (zTB + J)

)
[
x1

x2

]

=
[
x1 −x2

] (
yTA + (zTB + J)

)
[

x1

−x2

]

Thus the positive semidefiniteness of yA + (zTB + J) follows from that of yA −
(zTB + J).

680 T. Lee and R. Mittal

One may find the condition that J lies in the positive span of B in the statement of
Theorem 2 somewhat unnatural. If we remove this condition, however, a simple coun-
terexample shows that the theorem no longer holds. Consider the program

α(π) =max
X

[
0 −1
−1 0

]

•X

such that I •X = 1,
[
0 1
0 0

]

•X ≥ 0,
[
0 0
1 0

]

•X ≥ 0, X 5 0.

Here I stands for the 2-by-2 identity matrix. This program satisfies the bipartiteness
condition of Theorem 2, but J does not lie in the positive span of the matrices of B. It
is easy to see that the value of this program is zero. The program π × π, however, has
positive value as J ⊗ J does not have any negative entries but is the matrix with ones
on the main anti-diagonal.

4 Applications

Two notable examples of semidefinite programming based product theorems in the lit-
erature are not captured by Theorem 1. Namely, a recent direct product theorem for the
discrepancy method of communication complexity, and an early semidefinite program-
ming based parallel repetition result of Feige and Lovász. As we now describe in detail,
these product theorems can be explained by Theorem 2.

4.1 Discrepancy

Communication complexity is an ideal model to study direct sum and direct product the-
orems as it is simple enough that one can often hope to attain tight results, yet powerful
enough that such theorems are non-trivial and have applications to reasonably power-
ful models of computation. See [KN97] for more details on communication complexity
and its applications.

Shaltiel [Sha03] began a systematic study of when we can expect direct product the-
orems to hold, and in particular looked at this question in the model of communication
complexity for exactly these reasons. He showed a general counterexample where a di-
rect product theorem does not hold, yet also proved a direct product for communication
complexity lower bounds shown by a particular method—the discrepancy method un-
der the uniform distribution. Shaltiel does not explicitly use semidefinite programming
techniques, but proceeds by relating discrepancy under the uniform distribution to the
spectral norm, which can be cast as a semidefinite program.

This result was recently generalized and strengthened by Lee, Shraibman, and Špalek
[LSŠ08] who show an essentially optimal direct product theorem for discrepancy under
arbitrary distributions. This result follows the general plan for showing product theo-
rems via semidefinite programming: they use a result of Linial and Shraibman [LS06]
that a semidefinite programming quantity γ∞2 (M) characterizes the discrepancy of the
communication matrix M up to a constant factor, and then show that γ∞2 (M) perfectly
products. The semidefinite programming formulation of γ∞2 (M) is not affine but in-
volves non-negativity constraints, and so does not fall into the original framework of
Mittal and Szegedy.

Product Theorems Via Semidefinite Programming 681

Let us now look at the semidefinite program describing γ∞2 :

γ∞2 (M) = max
X

M̂ •X such that

X • I = 1
X • Eij = 0 for all i = j ≤ m, i = j ≥ m

X • (M̂ ◦ Eij) ≥ 0 for all i ≤ m, j ≥ m, and i ≥ m, j ≤ m

X 5 0.

Here Ei,j is the 0/1 matrix with exactly one entry equal to 1 in coordinate (i, j). In this
case, A is formed from the matrices I and Eij for i = j ≤ m and i = j ≥ m. These
matrices are all block diagonal with respect to the natural partition of M̂ . Further, the
objective matrix M̂ and matrices of B are all block anti-diagonal with respect to this
partition. Finally, we can express M̂ = uTB by simply taking u to be the all 1 vector.

4.2 Feige-Lovász

In a seminal paper, Babai, Fortnow, and Lund [BFL91] show that all of non-deterministic
exponential time can be captured by interactive proof systems with two-provers and
polynomially many rounds. The attempt to characterize the power of two-prover sys-
tems with just one round sparked interest in a parallel repetition theorem—the question
of whether the soundness of a two-prover system can be amplified by running several
checks in parallel. Feige and Lovász [FL92] ended up showing that two-prover one-
round systems capture NEXP by other means, and a proof of a parallel repetition the-
orem turned out to be the more difficult question [Raz98]. In the same paper, however,
Feige and Lovász also take up the study of parallel repetition theorems and show an
early positive result in this direction.

In a two-prover one-round game, the Verifier is trying to check if some input x is
in the language L. The Verifier chooses questions s ∈ S, t ∈ T with some probability
P (s, t) and then sends question s to prover Alice, and question t to prover Bob. Alice
sends back an answer u ∈ U and Bob replies w ∈ W , and then the Verifier answers
according to some Boolean predicate V (s, t, u, w). We call this a game G(V, P), and
write the acceptance probability of the Verifier as ω(G). In much the same spirit as the
result of Lovász on the Shannon capacity of a graph, Feige and Lovász show that if the
value of a game ω(G) < 1 then also supk ω(Gk)1/k < 1, for a certain class of games
known as unique games.

The proof of this result proceeds in the usual way: Feige and Lovász first show
that ω(G) can be represented as a quadratic program. They then relax this quadratic
program in the natural way to obtain a semidefinite program with value σ(G) ≥ ω(G).
Here the proof faces an extra complication as σ(G) does not perfectly product either.
Thus another round of relaxation is done, throwing out some constraints to obtain a
program with value σ̄(G) ≥ σ(G) which does perfectly product. Part of our motivation
for proving Theorem 2 was to uncover the “magic” of this second round of relaxation,
and explain why Feige and Lovász remove the constraints they do in order to obtain
something which perfectly products.

682 T. Lee and R. Mittal

Although the parallel repetition theorem was eventually proven by different means
[Raz98, Hol07], the semidefinite programming approach has recently seen renewed
interest for showing tighter parallel repetition theorems for restricted classes of games
and where the provers share entanglement [CSUU07, KRT07].

The Relaxed Program. As mentioned above, Feige and Lovász first write ω(G) as
an integer program, and then relax this to a semidefinite program with value σ(G) ≥
ω(G). We now describe this program. The objective matrix C is a |S| × |U |-by-|T | ×
|W | matrix where the rows are labeled by pairs (s, u) of possible question and answer
pairs with Alice and similarly the columns are labeled by (t, w) possible dialogue with
Bob. The objective matrix for a game G = (V, P) is given by C[(s, u), (t, w)] =
P (s, t)V (s, t, u, w). We also define an auxiliary matrices Bst of dimensions the same
as Ĉ, where Bst[(s′, u), (t′, w)] = 1 if s = s′ and t = t′ and is zero otherwise.

With these notations in place, we can define the program:

σ(G) =max
X

1
2
Ĉ •X such that (2)

X •Bst = 1 for all s, t ∈ S ∪ T (3)

X ≥ 0 (4)

X 5 0 (5)

We see that we cannot apply Theorem 2 here as we have global non-negativity con-
straints (not confined to the off-diagonal blocks) and global equality constraints (not
confined to the diagonal blocks). Indeed, Feige and Lovász remark that this program
does not perfectly product.

Feige and Lovász then consider a further relaxation with value σ̄(G) whose program
does fit into our framework. They throw out all the constraints of Equation (3) which
are off-diagonal, and remove the non-negativity constraints for the on-diagonal blocks
of X . More precisely, they consider the following program:

σ̄(G) =max
X

1
2
Ĉ •X such that (6)

∑

u,w∈U
|X [(s, u), (s′, w)]| ≤ 1 for all s, s′ ∈ S (7)

∑

u,w∈W
|X [(t, u), (t′, w)]| ≤ 1 for all t, t′ ∈ T (8)

X • E(s,u),(t,w) ≥ 0 for all s ∈ S, t ∈ T, u ∈ U,w ∈W (9)

X 5 0 (10)

Let us see that this program fits into the framework of Theorem 2. The vector of
matrices B is composed of the matrices E(s,u),(t,w) for s ∈ S, u ∈ U and t ∈ T,w ∈
W . Each of these matrices is block diagonal with respect to the natural partition of Ĉ.
Moreover, as Ĉ is non-negative and bipartite, we can write Ĉ = uTB for a non-negative
u, namely where u is given by concatenation of the entries of C and CT written as a
long vector.

Product Theorems Via Semidefinite Programming 683

The on-diagonal constraints given by Equations (7), (8) are not immediately seen to
be of the form needed for Theorem 2 for two reasons: first, they are inequalities rather
than equalities, and second, they have of absolute value signs. Fortunately, both of these
problems can be easily dealt with.

It is not hard to check that Theorem 2 also works for inequality constraints A•X ≤ b.
The only change needed is that in the dual formulation we have the additional constraint
y ≥ 0. This condition is preserved in the product solution constructed in the proof of
Theorem 2 as y ⊗ y ≥ 0.

The difficulty in allowing constraints of the form A • X ≤ b is in fact that the
opposite direction α(π1 × π2) ≥ α(π1)α(π2) does not hold in general. Essentially,
what can go wrong here is that a1, a2 ≤ b does not imply a1a2 ≤ b2. In our case,
however, this does not occur as all the terms involved are positive and so one can show
σ̄(G1 ×G2) ≥ σ̄(G1)σ̄(G2).

To handle the absolute value signs we consider an equivalent formulation of σ̄(G).
We replace the condition that the sum of absolute values is at most one by constraints
saying that the sum of every possible ± combination of values is at most one:

σ̄′(G) =max
X

1
2
Ĉ •X such that

∑

u,w∈U
(−1)xuwX [(s, u), (s′, w)] ≤ 1 for all s, s′ ∈ S and x ∈ {0, 1}|U|2

∑

u,w∈W
(−1)xuwX [(t, u), (t′, w)] ≤ 1 for all t, t′ ∈ T and x ∈ {0, 1}|W |2

X • E(s,u),(t,w) ≥ 0 for all s ∈ S, t ∈ T, u ∈ U,w ∈W

X 5 0

This program now satisfies the conditions of Theorem 2. It is clear that σ̄(G) =
σ̄′(G), and also that this equivalence is preserved under product. Thus the product the-
orem for σ̄(G) follows from Theorem 2 as well.

5 Conclusion

We have now developed a theory which covers all examples of semidefinite program-
ming product theorems we are aware of in the literature. Having such a theory which
can be applied in black-box fashion should simplify the pursuit of product theorems
via semidefinite programming methods, and we hope will find future applications. That
being said, we still think there is more work to be done to arrive at a complete under-
standing of semidefinite product theorems. In particular, we do not know the extension
of item (1) of Theorem 1 to the case of non-negative constraints, and it would nice to
understand to what extent item (2) of Theorem 2 can be relaxed.

So far we have only considered tensor products of programs. One could also try for
more general composition theorems: in this setting, if one has a lower bound on the
complexity of f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1}, one would like to obtain
a lower bound on (f ◦ g)(x) = f(g(x1), . . . , g(xn)). What we have studied so far in
looking at tensor products corresponds to the special cases where f is the PARITY or

684 T. Lee and R. Mittal

AND function, depending on if the objective matrix is a sign matrix or a 0/1 valued
matrix. One example of such a general composition theorem is known for the adver-
sary method, a semidefinite programming quantity which lower bounds quantum query
complexity. There it holds that ADV(f ◦ g) ≥ ADV(f)ADV(g) [Amb03, HLŠ07]. It
would be interesting to develop a theory to capture these cases as well.

Acknowledgements

We would like to thank Mario Szegedy for many insightful conversations. We would
also like to thank the anonymous referees for their helpful comments. TL is supported
by a NSF Mathematical Sciences Postdoctoral Fellowship, and RM is supported by
NSF Grant 0523866.

References

[Amb03] Ambainis, A.: Polynomial degree vs. quantum query complexity. In: Proceedings of
the 44th IEEE Symposium on Foundations of Computer Science, pp. 230–239. IEEE,
Los Alamitos (2003)

[BFL91] Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity 1, 3–40 (1991)

[BV06] Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cam-
bridge (2006)

[CSUU07] Cleve, R., Slofstra, W., Unger, F., Upadhyay, S.: Perfect parallel repetition theorem
for quantum XOR proof systems. In: Proceedings of the 22nd IEEE Conference on
Computational Complexity. IEEE, Los Alamitos (2007)

[FL92] Feige, U., Lovász, L.: Two-prover one-round proof systems: their power and their
problems. In: Proceedings of the 24th ACM Symposium on the Theory of Computing,
pp. 733–744. ACM, New York (1992)

[HLŠ07] Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Pro-
ceedings of the 39th ACM Symposium on the Theory of Computing. ACM, New York
(2007)

[Hol07] Holenstein, T.: Parallel repetition theorem: simplifications and the no-signaling case.
In: Proceedings of the 39th ACM Symposium on the Theory of Computing, pp. 411–
419 (2007)

[KKN95] Karchmer, M., Kushilevitz, E., Nisan, N.: Fractional covers and communication com-
plexity. SIAM Journal on Discrete Mathematics 8(1), 76–92 (1995)

[KN97] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press,
Cambridge (1997)

[KRT07] Kempe, J., Regev, O., Toner, B.: The unique game conjecture with entangled provers
is false. Technical Report 0712.4279, arXiv (2007)

[Lov75] Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathemat-
ics 13, 383–390 (1975)

[Lov79] Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information
Theory IT-25, 1–7 (1979)

[LS06] Linial, N., Shraibman, A.: Learning complexity versus communication complexity.
In: Proceedings of the 23rd IEEE Conference on Computational Complexity. IEEE,
Los Alamitos (2008)

Product Theorems Via Semidefinite Programming 685

[LSŠ08] Lee, T., Shraibman, A., Špalek, R.: A direct product theorem for discrepancy. In:
Proceedings of the 23rd IEEE Conference on Computational Complexity. IEEE, Los
Alamitos (2008)

[MS07] Mittal, R., Szegedy, M.: Product rules in semidefinite programming. In: 16th Interna-
tional Symposium on Fundamentals of Computation Theory (2007)

[Raz98] Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3), 763–803
(1998)

[Sha03] Shaltiel, R.: Towards proving strong direct product theorems. Computational Com-
plexity 12(1–2), 1–22 (2003)

Sound 3-Query PCPPs Are Long�

Eli Ben-Sasson1,��, Prahladh Harsha2,� � �, Oded Lachish3, and Arie Matsliah1

1 Computer Science Department, Technion, Israel Institute of Technology, Haifa,
Israel

{eli,ariem}@cs.technion.ac.il
2 Toyota Technological Institute, Chicago, USA

prahladh@tti-c.org
3 Centre for Discrete Mathematics and its Applications (DIMAP), University of

Warwick, Coventry, United Kingdom
oded@dcs.warwick.ac.uk

Abstract. We initiate the study of the tradeoff between the length of a
probabilistically checkable proof of proximity (PCPP) and the maximal
soundness that can be guaranteed by a 3-query verifier with oracle access
to the proof. Our main observation is that a verifier limited to querying
a short proof cannot obtain the same soundness as that obtained by
a verifier querying a long proof. Moreover, we quantify the soundness
deficiency as a function of the proof-length and show that any verifier
obtaining “best possible” soundness must query an exponentially long
proof.

1 Introduction

In this extended abstract (see [BHLM07] for a full version) we discuss the re-
lationship between two basic parameters of probabilistically checkable proofs of
proximity (PCPPs) — their proof length and soundness. PCPPs were simul-
taneously introduced in [BGH+06] and (under the name assignment testers)
in [DR06] and a similar notion also appeared earlier in [Sze99] and [EKR04].
The interest in PCPPs stems first and foremost from the role they play within
the proof of the celebrated PCP Theorem of [AS98, ALM+98]. All recent con-
structions of PCPs, starting with [BGH+06, DR06], use PCPPs to simplify the
proof of the PCP theorem and improve certain aspects of it, most notably, to
decrease the length of proofs as in [BGH+06, BS05, Din07]. All previous proofs
of the PCP theorem implicitly use PCPPs and can be augmented to yield them.
(See, e.g., [BGH+06, Theorem 3.2] for a conversion of the original PCP system
of [AS98, ALM+98] into a PCPP). But PCPPs are also interesting beyond the

� Work of first three authors supported in part by a European Community Inter-
national Reintegration Grant, an Alon Fellowship and a grant from the Israeli
Science Foundation.

�� Landau Fellow – supported by the Taub and Shalom Foundations.
� � � Work done while the author was visiting the Technion, Israel Institute of Tech-

nology.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 686–697, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sound 3-Query PCPPs Are Long 687

scope of the PCP Theorem. They can be used to transform any error correct-
ing code into a locally testable one and to construct “relaxed” locally decodable
codes [BGH+06]. Additionally, as shown in [FF05, GR05], they have applications
to questions in the theory of “tolerant” property testing that was introduced in
[PRR06].

A PCPP verifier, (or, simply, verifier) for a property P ⊂ {0, 1}n is a random-
ized, sublinear-time algorithm that distinguishes with high probability between
inputs that belong to P and inputs that are far in relative Hamming distance
from all members of P . In this respect a verifier is similar to a property-tester
as defined in [GGR98]. However, in contrast to a tester, the verifier may query
an auxiliary proof, called a proof of proximity. A PCPP system has four basic
parameters of interest, described next — length, query complexity, completeness
and a soundness function. The proof length is the length of the auxiliary proof
that is queried by the verifier1. The query complexity is the maximal number
of bits that can be read from both the input and the proof. The completeness
parameter is the minimal probability with which inputs that belong to P are
accepted when they are presented along with a “good” proof of proximity. Fi-
nally, the soundness function s(δ) is the minimal rejection probability of inputs
that are δ-far (in relative Hamming distance) from (all members of) P , where
the minimum is taken over all such δ-far inputs and all possible proofs that may
accompany them.2 (See Section 2 for a formal definition of PCPPs and further
discussion of their parameters).

1.1 Informal Description of Main Results

To describe our results, let us discuss the range of parameters we can expect
from a verifier for a linear property over the binary alphabet, i.e., a property
that is closed under addition modulo 2. (This amounts to saying P is a linear
subspace of Fn2 where F2 denotes the two-element field.) We look at nonadaptive
3-query verifiers with perfect completeness, thereby fixing two of the four basic
parameters, and look at the tradeoff between proof length and soundness. We
point out that all known constructions of PCPPs naturally yield nonadaptive
3-query verifiers with perfect completeness , so the results described next apply
to all of them.

Suppose we are interested in minimizing proof length. The results of [Din07,
BS05] give constructions with proofs of length at most m · polylog n where m
is the minimal size of circuit deciding P . (Notice the linearity of P implies m =
O(n2).) Regarding the soundness function, consider a random word that can be
shown to have, with high probability, distance δ ≈ 1

2 from P . The “short PCPP”

1 In PCP literature one often encounters randomness complexity as a means for
bounding proof-length. The two parameters are closely related, i.e., proof-length
≈ 2randomness and we stick to the former parameter.

2 Often, in literature on PCPs, the term “soundness” refers to “soundness-error”
which is defined to be the maximal acceptance probability of a “bad” input. The
connection between soundness (used here) and soundness-error, denoted serror, is
given by s = 1 − serror.

688 E. Ben-Sasson et al.

construction mentioned above gives s(δ) > ε for some small and unspecified
constant ε > 0 that depends only on δ and neither on P , nor on n.

Next, let us try to increase the soundness. We show in Theorem 2.1 that
soundness can be boosted to s(δ) ≥ δ and this soundness is obtained by a linear
verifier. A verifier is called linear if the set of answer-bits that cause it to accept
forms a linear space. (For F2 this amounts to saying the verifier accepts iff the
sum (mod 2) of the queried bits is 0.) For such verifiers, it can be shown that
s(δ) is at most 1

2 and thus the soundness of our construction is optimal. On the
down side, the length of the proof used by this verifier is exponential in n. (We
note in passing that this soundness-optimal construction can be carried out over
any finite field of prime size. See Theorem 2.1 for details.)

To sum up the situation so far, we have constructions that are nearly optimal
in length, but are deficient in soundness and we have constructions that are
optimal in soundness but deficient in length. One could have conjectured (as we
did before embarking on this research project) that a “super-PCPP” with short
proofs and optimal soundness exists. Our first main result, stated in Theorem 2.2
and Corollary 2.1, rules this out. We show a tradeoff between proof length and
soundness that essentially matches our soundness-optimal construction. In plain
words, for some properties (discussed below) any PCPP verifier that queries a
short proof of length � must incur a soundness deficiency, and this deficiency
increases as � decreases (see Definition 2.5 for a formal definition of deficiency).

Our next main result, stated in Theorem 2.3 and Corollary 2.2, proves a
tighter tradeoff similar to the one mentioned above for the case of Fp-linear
verifiers for Fp-linear properties over a finite field of size p. Our results in this
case are stronger even though the query complexity, when measured in bits, is
greater than 3 (however, the bits are read from three “blocks”, where each block
encodes a field element).

1.2 Proof Techniques

In terms of techniques, we focus on the special class of inspective verifiers that
read at most 2 proof-bits per invocation. For such verifiers we prove exponential
length-soundness tradeoffs that are later on used to imply our main results for the
case of general (i.e., not necessarily inspective) verifiers. To prove the exponential
tradeoff for inspective verifiers we show a connection between PCPP proof length
and property-testing query complexity, that may be of independent interest. The
connection is that any linear property that can be verified with proofs of length
� by linear inspective verifiers must be testable with query complexity ≈ log �.

To show this connection between PCPP proof length and property-testing
query complexity, we construct a natural constraint graph that represents the
verifier, and then we apply a the Decomposition Lemma due to [LR99] to break
this graph into components with small radius3, while removing only a small
fraction of its edges. Our analysis is completed by showing that inspective PCPPs
3 The radius of a connected graph is the minimum maximal distance between any

vertex and any other vertex (i.e, rad(G) = minv maxu d(u, v), where d(u, v) denotes
the distance between the vertices u and v.

Sound 3-Query PCPPs Are Long 689

whose induced graph has radius R can be converted with no loss in soundness
into (proofless) testers with query complexity O(R).

The decomposition lemma mentioned above was previously used in a closely
related context in [Tre05] to provide algorithms for approximating unique games.
We use it for similar purposes, namely, for analyzing constraint graphs, but our
setting differs from that of [Tre05] in several important aspects (see [BHLM07]
for further details).

In the next Section we give formal definitions and statements of our main
results. Due to lack of space, all proofs are omitted from this extended abstract.
Instead, in Section 3 we prove a weaker version of one of our main theorems. All
omitted proofs, additional results and further detailed discussion can be found
in [BHLM07].

2 Definitions and Main Results

2.1 Probabilistically Checkable Proofs of Proximity (PCPPs)

Recall the basic task of property testing. Let Σ be a finite alphabet. A set P ⊆ Σn

is called a property of length n over Σ. We are interested in deciding the promise
problem whose set of YES instances is P and whose set of NO instances is
NOδ0 = {w ∈ Σn | δ(w,P) > δ0}, where δ(·) denotes fractional Hamming dis-
tance and δ0 is called the proximity parameter. The decision should be made
after making a small number of queries into the input word w ∈ Σn and the
decision should be correct with high probability. (More information on property
testing can be found in [GGR98] and in the survey [Fis01].)

In the context of proximity testing we try to decide the very same promise
problem but the difference is that we allow oracle access to an additional proof
of proximity π ∈ Σ� of length �, and restrict the total number of queries that
can be made to both w and π. A randomized query-restricted algorithm deciding
the property testing problem is called a tester and when we allow oracle access
to a proof we call it a verifier. The formal definition follows. (See [BGH+06] for
more information on PCPPs.)

To simplify exposition we view w, π as functions from [n] = {1, . . . , n} and
from [n + 1, n + �] = {n + 1, . . . , n + �} respectively to Σ and define the word-
proof pair as the function (w ◦ π) : [n + �] → Σ that is the concatenation of w
and π. We call (w ◦π)[i] a word-symbol whenever i ≤ n and a proof symbol when
i ∈ {n + 1, . . . , n + �}. For a set of indices I ⊆ [n + �] let (w ◦ π)|I : I → Σ
denote the restriction of w ◦ π to I.

Definition 2.1 (Verifier, Tester). A query of size q into a word of length n
and proof of length � is a pair Q = (I, C) where I ⊆ [n + �], |I| ≤ q denotes the
query’s index-set and C : ΣI → {accept, reject} is the query’s constraint. Given
word w and proof π let Q(w ◦π) = C((w ◦π)|I). A (q, n, �)-verifier for a property
of length n is a pair V = 〈Q, D〉 where

– Q is a finite set of queries of size at most q into a word of length n and proof
of length �.

690 E. Ben-Sasson et al.

– D is a distribution over Q. We use Q ∼D Q to denote that Q is sampled
from Q according to distribution D.

A q-tester is a (q, n, 0)-verifier, i.e., a verifier that queries only the input.

Often we will restrict our attention to a subclass of verifiers that use special
kinds of constraints. In particular, we will be interested in unique and linear
verifiers, defined next.

Definition 2.2 (Linear verifiers). A query Q = (I, C) is called F-linear if
Σ = F is a finite field and the set of assignments accepted by the query-constraint
C forms an F-linear space.

A verifier is called F-linear if all its queries are F-linear. Let F-linV denote
the set of F-linear verifiers.

Informally, if a (q, �)-verifier solves the promise problem associated with P “with
high probability” then we say P “has a PCPP” (with query complexity q and
length �). The completeness and soundness parameters quantify the success prob-
ability of the verifier. The formal definition follows.

Definition 2.3 (PCPP, Testability). A property P ⊂ Σn is said to have a
PCPP of length �, query complexity q, completeness parameter c and sound-
ness function s : (0, 1] → [0, 1] if there exists a (q, n, �)-verifier for the property
satisfying the following pair of requirements.

– Completeness: For all w ∈ P , maxπ∈Σ� PrQ∼DQ[Q(w ◦ π) = accept] ≥ c.
If c = 1, we say the verifier has perfect completeness.

– Soundness: For all w ∈ Σn \ P , minπ∈Σ� PrQ∼DQ[Q(w ◦ π) = reject] ≥
s(δ(w,P)), where δ(w,P) denotes the minimal fractional Hamming distance
between w and an element of P .

If P has a PCPP of length 0, query complexity q, completeness parameter c
and soundness function s, we say that P is q-testable with completeness c and
soundness s.

A verifier is said to be adaptive if its query indices depend on answers given
to previous queries. The verifier defined above is nonadaptive. All results in
this paper refer to nonadaptive verifiers with perfect completeness. We point
out that all known PCPP constructions use nonadaptive verifiers and achieve
perfect completeness so our deficiency bounds, stated next, apply to all of them
(see [BHLM07] for further discussion).

2.2 Soundness Deficiency

We study the tradeoff between proof length and soundness. Our aim is to show
that short PCPPs cannot attain the same soundness as long ones. To quantify
this tradeoff we start by defining the best soundness that can be obtained by a
class of verifiers with restricted proof length.

Sound 3-Query PCPPs Are Long 691

Definition 2.4 (Best Soundness). Let P ⊆ Σn be a property. For integers
q, � and δ ∈ [0, 1], define the best soundness SP (q, �, δ) to be the maximum —
taken over all (q, n, �)-verifiers V — of the soundness of V with respect to inputs
that are δ-far from P . Formally,

SP (q, �, δ) = max
(q, n, �)-verifiers

min
w◦π∈Σn+�, δ(w,P)=δ

Pr
Q∼DQ

[Q(w ◦ π) = reject].

The best tester soundness is SP (q, 0, δ).
The best soundness with respect to a class of verifiers V, denoted SPV (q, �, δ),

is defined by taking the maximum above over all (q, n, �)-verifiers in V. Notice
that SPV (q, �, δ) ≤ SP (q, �, δ).

The soundness-deficiency, defined next, is the reduction in best soundness in-
curred by 3-query verifiers limited to using short proofs. As customary in com-
putational complexity, we measure the asymptotic deficiency over a family of
properties of increasing length. In the remark following the definition, we fur-
ther explain the need for complexity assumptions.

Definition 2.5 (Soundness deficiency). For P = {P ⊆ Σn | n ∈ Z+} a fam-
ily of properties, V a class of verifiers and � : Z+ → Z+ a function measuring
proof length, let the soundness-deficiency be the function measuring the decrease
in soundness due to limited proof length. Formally, it is a function from (0, 1] to
[0, 1] defined by

s-Def.V[P , �](δ) = lim inf
n→∞

SPn

V (3,∞, δ)− SPn

V (3, �(n), δ) .

For C a complexity class and L a family of complexity functions, we denote
by s-Def.V[C,L](δ) the soundness deficiency function taken over all P ∈ C and
� ∈ L. Let in addition max-s-Def.V[C,L] = maxδ∈(0,1] s-Def.V[C,L](δ) be the
maximal value that this function obtains over all δ ∈ (0, 1]. As before, whenever
there is no restriction to a specific class of verifiers, the subscript V is omitted.

Remark 2.1 (Complexity restrictions). If no restriction is placed on the com-
plexity of P , then one may end up with trivial and uninteresting results. For
instance, if Pn ⊂ {0, 1}n is random, then with high probability any nondeter-
ministic circuit deciding the promise problem associated with Pn requires size
2Ω(n/ logn). This implies that there are no constant query PCPPs with positive
soundness and proof length 2o(n/ logn). Thus, to get meaningful results, we focus
on properties P ∈ P/poly for which the existence of polynomial-length PCPPs
is guaranteed.

2.3 Summary of Results

In this section, we summarize our main results bounding the maximum sound-
ness deficiency for three different classes of verifiers – general verifiers, linear
verifiers and unique verifiers. Deficiency bounds are obtained by bounding from

692 E. Ben-Sasson et al.

below the soundness of inspective verifiers that have access to long proofs and
then bounding from above the soundness obtained by verifiers limited to short
proofs. The next theorem shows the first bound, namely, that large soundness
is obtainable if no restriction is placed on proof length. Its proof is based on the
Fourier analytic approach introduced in [BCH+96] and appears in [BHLM07].

Theorem 2.1 (Best soundness with unbounded proof length). Let Fp be
a prime field. Every Fp-linear property P ⊆ Fnp has a 3-query Fp-linear verifier
using a proof of length ≤ |F|dim(P) ≤ |F|n that achieves soundness function
s(δ) ≥ δ. Formally, SPlinV

(
3, |Fp|dim(P), δ

)
≥ δ.

Deficiency of Short PCPPs. Our first main theorem says that for some
properties, proofs of sub-exponential length incur constant soundness-deficiency.
This deficiency can be reduced, but only at the expense of using exponentially
long proofs.

Theorem 2.2 (Main). Let α ∈ (0, 1) be a positive constant and let P � {Pn ⊆
{0, 1}n : n ∈ Z+} be a family of binary linear properties (codes) with dual dis-
tance4 at least αn. The properties in P have no sub-exponential PCPP’s achiev-
ing soundness larger than 1/3. Namely, for every ε > 0 there are β > 0 and
n0 ∈ N such that for any property Pn ∈ P, n > n0 the following is satisfied for
all δ ∈ [0, 1]: SPn

(
3, 2βn, δ

)
≤ 1

3 + ε.

We show in Theorem 2.1 that every (in particular) binary linear property P ⊆
{0, 1}n of dimension k ≤ n has a (3, 2k)-verifier with soundness function s(δ) ≥ δ.
This implies constant deficiency for short PCPPs over the binary alphabet as
formalized in the following corollary.

Corollary 2.1 (Soundness deficiency). Let SUBEXP denote the set of sub-
exponential functions, i.e., functions satisfying f(n) = 2o(n). There exists a fam-
ily P of linear properties over {0, 1} such that s-Def.[P ,SUBEXP](δ) ≥ δ − 1

3 .
Consequently, since there are words that are roughly 1

2 -far from the property
P, the maximal deficiency with sub-exponential proof length is at least 1

6 , i.e.,
max-s-Def.[P/poly,SUBEXP] ≥ 1

6 .

Deficiency of Short Linear PCPPs. Our next main theorem presents stronger
deficiency bounds for linear PCPPs and states the following intuitively appealing
implication: Let p be a prime. Every Fp-linear property that is “untestable” — in
the sense that testers with small query complexity for it have low soundness — is
also ”unverifiable”, i.e., 3-query Fp-linear verifiers with short proofs must incur a
large loss in soundness. Limiting our attention to linear verifiers seems natural in
light of the fact that all current PCPP constructions produce linear verifiers for
linear properties, as argued in [BHLM07].

4 The dual distance of a linear property P is defined to be the minimal support-size
of a nonzero vector in the space dual to P .

Sound 3-Query PCPPs Are Long 693

Theorem 2.3 (Main, linear case). Let P ⊆ Fn be a F-linear property. Let
s[�](δ) denote the best soundness of a (3, �)-linear verifier for P , i.e., s[�](δ) =
SPlinV (3, �, δ). Let t[q](δ) denote the best soundness of a q-tester for P , i.e.,
t[q](δ) = SP (q, 0, δ). Then

s[�](δ) ≤ min
ε>0

{

t

[
36 log �

ε

]

(δ) +
1
2
·
(

1− 1
|F| + ε

)}

.

Using Theorem 2.1 again for arbitrary prime p we get the following bound on
the deficiency of linear verifiers.

Corollary 2.2 (Soundness deficiency, linear case). Let SUBEXP denote
the set of subexponential functions, i.e., functions satisfying f(n) = 2o(n). For
every prime field Fp there exists a family of Fp-linear properties P such that

s-Def.Fp−linV[P ,SUBEXP](δ) ≥ δ − 1
2 ·

(
1− 1

p

)
. Consequently, the maximal

deficiency of linear verifiers with sub-exponential proofs is at least 1
2 · (1− 1/p).

In other words, max-s-Def.Fp−linV[Fp − linear,SUBEXP] ≥ 1
2 ·

(
1− 1

p

)
.

We point out that even if we restrict our attention to families of linear properties
with constant dual distance, the soundness deficiency can be very large. This last
point is explained in detail in the proof of Corollary 2.2.

3 Proof of Length-Soundness Tradeoff for Linear PCPPs
over F2

In this final section we sketch the proof of length-soundness tradeoff for linear
PCPPs over the binary field. Although we consider only a special case, this
section captures most of the ideas that are used for proving our main results.

Theorem 3.1 (Special case of Theorems 2.2 and 2.3). Given any ε > 0
and a sub-exponential function � ∈ 2o(n), let C ⊆ Fn2 be an F2-linear property
(code) with dual distance5 at least

(
3 log �
ε

)
. Let s[�](δ) denote the best soundness

of a (3, n, �)-linear verifier for C, i.e., s[�](δ) = SClinV (3, �, δ). Then for every
δ ≤ 1/2,

s[�](δ) ≤ 1
3

+ ε.

Consequently, the soundness deficiency of linear verifiers with sub-exponential
proofs is 1/6− o(1).

The following lemma is the main ingredient in the proof of Theorem 3.1.

Lemma 3.1 (Inspective Verifiability implies Testability). Let C be any
[n, k, d]2-linear code. For every q, � ∈ Z+, ε ∈ (0, 1] and s : (0, 1] → [0, 1],
the following holds. If C has a linear q-query inspective PCPP of length � and
soundness function s, then C has a (q log �

ε)-tester with soundness function s− ε.

5 See a detailed discussion about such codes in [BHLM07].

694 E. Ben-Sasson et al.

Before proving the lemma, we outline the proof of Theorem 3.1. Fix a (3, n, �)-
linear verifier V = 〈Q, D〉 for C, and denote by s the soundness function of
V . Let μ denote the probability that V makes an inspective query, namely, the
probability (with respect to distribution D) that V probes at least one word bit.

Now, for two possible ranges of μ and for any δ ≤ 1/2 we design a “fooling”
word-proof pair (w ◦ π), such that: (i) δ(w, C) ≥ δ; and (ii) V accepts (w ◦ π)
with probability 2/3− ε, concluding the proof.

Case μ ≤ 2/3: Fix any δ ≤ 1/2 and consider the distribution over word-proof
pairs (w ◦ π), where π is a legitimate proof of some fixed codeword w′ ∈ C and
w = (wδ + r) is a sum of a fixed δ-far (from C) word wδ and a randomly chosen
codeword r ∈ C. It is not hard to show (see [BHLM07]) that

1. w is δ-far from C
2. for any subset I ∈ [n] of at most 3 coordinates of w, the 2|I| possible values

of w ∩ I are distributed uniformly (over the choices of r).

Clearly, all non-inspective queries are accepted with probability 1 since π is
a legitimate proof. In addition, item 2 implies that the inspective queries are
accepted with probability 1/2, since the constraints are all linear. Therefore,
s(δ) ≤ μ/2 ≤ 1/3.

Case μ > 2/3: Let Vi be a (3, n, �)-linear inspective verifier derived from V as
follows: Vi picks a query Q ∈ Q according to distribution D. If Q is inspec-
tive then Vi proceeds exactly as V . Otherwise, Vi immediately accepts (without
making the query Q). Let si denote the soundness functions of Vi. Since Vi is
inspective, by Lemma 3.1 we get that for any (3 log �

ε)-query tester T for C having
soundness function sT , si ≤ sT + ε. We also know (by definition of C) that any
such tester has soundness sT ≡ 0. Therefore, s(δ) ≤ μ · (0 + ε) + 1− μ ≤ 1/3 + ε
for any δ ≤ 1/2.

3.1 Proof of Lemma 3.1

As mentioned in the introduction, we are going to view an inspective q-query
linear verifier as a graph. An inspective graph (defined below) is a representa-
tion of an inspective verifier in the sense that a single invocation of the verifier
corresponds to picking a random edge in the graph and making the set of queries
given by the names of the end-vertices and the edge-label.

Definition 3.1 (Inspective Graphs). A (q, n, �)-inspective graph is a triplet
G = (V,E, LE) where (V = {0, 1, . . . , l}, E) is an undirected multigraph graph
and LE : E → (F2)n≤q is a mapping of the edges to F2-vectors of dimension n

and weight at most q6.
A word w ∈ Fn2 induces a labeling L

(w)
E : V → F2 as follows: L

(w)
E (e) =

〈LE(e), w〉 =
∑n
i=1 LE(e)[i] · w[i].

6 The weight of a vector v ∈ Fn
2 is the number of non-zero entries in the vector.

Sound 3-Query PCPPs Are Long 695

A labeling π : V → F2 is said to satisfy edge e = (u, v) with respect to w if
π(u) + π(v) + L

(w)
E = π(u) + π(v) + 〈LE(e), w〉 = 0. A labeling π : V → F2 is

said to α-satisfy G with respect to w if it satisfies an α-fraction of the edges with
respect to w.
G is said to be a (q, n, �)-inspective proof graph for property P with soundness

function s : (0, 1]→ [0, 1] if the following two conditions are satisfied.

Perfect completeness: For all w ∈ P there exists a a labeling π : V → F2 such
that π 1-satisfies G with respect to w.
Soundness: For all w ∈ Σn, no labeling π : V → F2 (1 − s(δ(w,P))-satisfies
G with respect to w where δ(w,P) denotes the minimal fractional Hamming
distance between w and an element of P .

The correspondence between linear inspective PCPPs and inspective graphs is
as follows. First, assume without loss of generality that the verifier V = 〈Q, D〉
has uniform distribution D over Q. This can be assumed by replacing Q with
a multiset of queries where the number of “copies” of a query Q reflects the
probability with which the Q is performed. The vertices V \ {0} corresponds to
the � locations of the proof. The vertex 0 is a special vertex which corresponds
to the bit 0. Any labeling of the vertices V (that satisfies π(0) = 0) corresponds
to a proof. However, we may assume π(0) = 0 without loss of generality for the
following reason. If a labeling π α-satisfies G, so does the labeling π + b defined
as follows: (π + b)(v) = π(v) + b. Hence, we might assume that the labeling π
satisfies π(0) = 0.

The edges of the graph correspond to the (inspective) tests of the verifier.
Non self-loop Edges in E ∩ (V \ {0}× V \ {0}) correspond to inspective queries
of i-size7 2, non self-loop edges in E ∩ (V \ {0} × {0}) to inspective queries of
i-size 1 while the self-loop edges correspond to inspective queries of i-size 0. On
input w, the verifier chooses an edge of the graph uniformly at random and
checks if the labeling π satisfies the edge with respect to w. The multiplicity of
an edge is proportional to the probability with which the PCPP verifier chooses
the corresponding test.

Claim. Let G = (V,E, LE) be a (q, n, �)-inspective proof graph for some linear
code C. Suppose the vertices v1, v2, . . . , vk, vk+1 = v1 form a cycle in the graph
(V,E), then the vector

∑k
i=1 LE(vi, vi+1) is a member of the dual code C⊥. ��

Before proceeding we need some notation. For any graph G, let V (G) and E(G)
denote the set of vertices and set of edges respectively of the graph G. For any
subset V ′ ⊆ V of vertices, let G(V ′) denote the induced subgraph of G on the
vertex set V ′. Also, let E(V ′) = E(G(V ′)). Similarly, let E(V ′, V \ V ′) denote
the set of edges between V ′ and V \V ′ (i.e., E(V ′, V \V ′) = E∩(V ′× (V \V ′)).
For any connected graph G, define the radius of G (rad(G)) as follows:

rad(G) = min
v∈V

max
u∈V

d(u, v),

7 The i-size of a query is the number of proof bits read by that query.

696 E. Ben-Sasson et al.

where d(u, v) denotes the length of the shortest path between vertices u and v.
Notice that for any connected graph, the distance between any two vertices is
at most twice the radius of the graph.

Lemma 3.1 is proved by first showing that the inspective proof graph can
be decomposed into components with small radii, and then transforming any
inspective proof graph with components of small radii into a tester (Lemma 3.3)

Lemma 3.2 (Decomposition Lemma [LR99]). For every ε ∈ (0, 1) and
every multigraph G = (V,E), there exists a subset of edges E′ ⊆ E of size at
most ε|E|, such that every component of the graph GDecomp. = (V,E \ E′) has
radius strictly less than log |V |/ε. ��
We now show how to convert an inspective graph into a tester. The query com-
plexity of the tester will be bounded by the length of the cycles in the graph.
Thus, a graph with small radius will result in a tester of low query complexity.

Lemma 3.3 (low radius implies testability). Let C be a [n, k, d]2-code and
G = (V,E, L) be a (q, n, �)-inspective proof graph for the code C with soundness
function s. If each of the components of the graph (V,E) have radius at most r,
then C is 2qr-testable with soundness function s.

Proof. Let G = (V,E, L) be a (q, n, �)-inspective proof graph for C with sound-
ness s such that each component of the graph G = (V,E) has radius at most r.
Having radius at most r implies that there exists a spanning forest F = (V,E′)
of G such that the height of each tree in F is at most r.

Consider the mapping τ : E → Fn of the edges to F2-vectors of length n
defined as follows: If e ∈ E(F), then τ(e) = 0. Otherwise, E(F)∪{e} contains a
unique cycle C. Then, define τ(e) =

∑
e∈C L(e). Since each tree of F is of height

at most r, any such cycle C is of length at most 2r. Also, from the definition of
inspective proof graphs we have that L(e) is a vector of weight at most q. Hence,
τ(e) is a vector of weight at most 2qr and τ is a mapping from E to (Fn)≤2qr .

We define a tester TG based on the graph G as follows: On input w ∈ Fn, it
selects an edge e uniformly at random from E(G) and checks if 〈τ(e), w〉 = 0.
If yes it accepts, else it rejects. We now prove that TG is a 2qr-tester for C with
soundness function s.

Query Complexity. Since each τ(e) is of weight at most 2qr, the tester queries
at most 2qr locations of the word w.

Completeness. Suppose w ∈ C. We have by Claim 3.1, that for each cycle
C in G, we have

∑
e∈C L(e) is a member of the dualcode C⊥. Therefore,

〈τ(e), w〉 = 0 for all edges e in G. In other words, the tester TG accepts with
probability 1.

Soundness. Let w be any word. Consider the labeling π : V → F defined as
follows: For each tree T in the forest F , chose an arbitrary vertex v in T and
set π(v) = 0. For any other vertex u in the tree, let v = v0, v1, . . . , vk = u be
the unique path in the tree T from v to u. Define π(u) = 〈

∑
L(vi, vi+1), w〉.

It is easy to check that if the labeling π α-satisfies G with respect to π, then
the tester TG accepts w with probability exactly α. The soundness of the
tester now follows from the soundness of the inspective proof graph G

Sound 3-Query PCPPs Are Long 697

Lemma 3.1 now easily follows from the Decomposition Lemma and Lemma 3.3.

References

[ALM+98] Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verifi-
cation and the hardness of approximation problems. Journal ACM 45(3),
501–555 (1998)

[AS98] Arora, S., Safra, S.: Probabilistic checking of proofs: A new characteriza-
tion of NP. Journal ACM 45(1), 70–122 (1998)

[BCH+96] Bellare, M., Coppersmith, D., H̊astad, J., Kiwi, M.A., Sudan, M.: Lin-
earity testing in characteristic two. IEEE Transactions on Information
Theory 42(6), 1781–1795 (1996)

[BGH+06] Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.: Ro-
bust PCPs of proximity, shorter PCPs and applications to coding.
SICOMP 36(4), 889–974 (2006)

[BHLM07] Ben-Sasson, E., Harsha, P., Lachish, O., Matsliah, A.: Sound 3-query
PCPPs are long. Technical Report TR07-127, ECCC (2007)

[BS05] Ben-Sasson, E., Sudan, M.: Simple PCPs with poly-log rate and query
complexity. In: Proc. 37th ACM STOC, Baltimore, Maryland, pp. 266–
275.

[Din07] Dinur, I.: The PCP theorem by gap amplification. Journal ACM 54(3), 12
(2007)

[DR06] Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof
of the PCP Theorem. SICOMP 36, 975–1024 (2006)

[EKR04] Ergün, F., Kumar, R., Rubinfeld, R.: Fast approximate probabilistically
checkable proofs. Information and Computation 189(2), 135–159 (2004)

[FF05] Fischer, E., Fortnow, L.: Tolerant versus intolerant testing for boolean
properties. In: Proc. 20th IEEE CCC, San Jose, California, pp. 135–140.

[Fis01] Fischer, E.: The art of uninformed decisions: A primer to property testing.
Bulletin of the European Association for Theoretical Computer Science 75,
97–126 (2001); The Computational Complexity Column

[GGR98] Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection
to learning and approximation. Journal ACM 45(4), 653–750 (1998)

[GR05] Guruswami, V., Rudra, A.: Tolerant locally testable codes. In: Chekuri, C.,
Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RAN-
DOM 2005. LNCS, vol. 3624, pp. 306–317. Springer, Heidelberg (2005)

[LR99] Leighton, F.T., Rao, S.: Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal ACM 46(6), 787–
832 (1999)

[PRR06] Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance
approximation. Journal of Computer and System Sciences 72(6), 1012–
1042 (2006)

[Sze99] Szegedy, M.: Many-valued logics and holographic proofs. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 676–686. Springer, Heidelberg (1999)

[Tre05] Trevisan, L.: Approximation algorithms for unique games. In: Proc. 46th
IEEE FOCS, Pittsburgh, Pennsylvania, pp. 197–205

Approximative Methods for Monotone Systems of
Min-Max-Polynomial Equations�

Javier Esparza, Thomas Gawlitza, Stefan Kiefer, and Helmut Seidl

Institut für Informatik
Technische Universität München, Germany

{esparza,gawlitza,kiefer,seidl}@in.tum.de

Abstract. A monotone system of min-max-polynomial equations (min-max-
MSPE) over the variables X1, . . . , Xn has for every i exactly one equation of the
form Xi = fi(X1, . . . , Xn) where each fi(X1, . . . , Xn) is an expression built
up from polynomials with non-negative coefficients, minimum- and maximum-
operators. The question of computing least solutions of min-max-MSPEs arises
naturally in the analysis of recursive stochastic games [5,6,14]. Min-max-MSPEs
generalize MSPEs for which convergence speed results of Newton’s method are
established in [11,3]. We present the first methods for approximatively comput-
ing least solutions of min-max-MSPEs which converge at least linearly. Whereas
the first one converges faster, a single step of the second method is cheaper. Fur-
thermore, we compute ε-optimal positional strategies for the player who wants to
maximize the outcome in a recursive stochastic game.

1 Introduction

In this paper we study monotone systems of min-max polynomial equations (min-max-
MSPEs). A min-max-MSPE over the variables X1, . . . , Xn contains for every 1 ≤ i ≤
n exactly one equation of the form Xi = fi(X1, . . . , Xn) where every fi(X1, . . . , Xn)
is an expression built up from polynomials with non-negative coefficients, minimum-
and maximum-operators. An example of such an equation is X1 = 3X1X2+5X2

1∧4X2

(where ∧ is the minimum-operator). The variables range over non-negative reals. Min-
max-MSPEs are called monotone because fi is a monotone function in all arguments.

Min-max-MSPEs naturally appear in the study of two-player stochastic games and
competitive Markov decision processes, in which, broadly speaking, the next move is
decided by one of the two players or by tossing a coin, depending on the game’s posi-
tion (see e.g. [12,7]). The min and max operators model the competition between the
players. The product operator, which leads to non-linear equations, allows to deal with
recursive stochastic games [5,6], a class of games with an infinite number of positions,
and having as special case extinction games, games in which players influence with
their actions the development of a population whose members reproduce and die, and
the player’s goals are to extinguish the population or keep it alive (see Section 3).

Min-max-MSPEs generalize several other classes of equation systems. If product is
disallowed, we obtain systems of min-max linear equations, which appear in classical

� This work was in part supported by the DFG project Algorithms for Software Model Checking.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 698–710, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations 699

two-person stochastic games with a finite number of game positions. The problem of
solving these systems has been thoroughly studied [1,8,9]. If both min and max are
disallowed, we obtain monotone systems of polynomial equations, which are central
to the study of recursive Markov chains and probabilistic pushdown systems, and have
been recently studied in [4,11,3]. If only one of min or max is disallowed, we obtain
a class of systems corresponding to recursive Markov decision processes [5]. All these
models have applications in the analysis of probabilistic programs with procedures [14].

In vector form we denote a min-max-MSPE by X = f(X) where X denotes the
vector (X1, . . . , Xn) and f denotes the vector (f1, . . . , fn). By Kleene’s theorem, if
a min-max-MSPE has a solution then it also has a least one, denoted by μf , which
is also the relevant solution for the applications mentioned above. Kleene’s theorem
also ensures that the iterative process κ(0) = 0, κ(k+1) = f(κ(k)), k ∈ N, the
so-called Kleene sequence, converges to μf . However, this procedure can converge
very slowly: in the worst case, the number of accurate bits of the approximation grows
with the logarithm of the number of iterations (cf. [4]). Thus, the goal is to replace the
function f by an operator G : Rn → Rn such that the respective iterative process also
converges to μf but faster. In [4,11,3] this problem was studied for min-max-MSPEs
without the min and max operator. There, G was chosen as one step of the well-known
Newton’s method (cf. for instance [13]). This means that, for a given approximate x(k),
the next approximate x(k+1) = G(x(k)) is determined by the unique solution of a
linear equation system which is obtained from the first order Taylor approximation of f
at x(k). It was shown that this choice guarantees linear convergence, i.e., the number of
accurate bits grows linearly in the number of iterations. Notice that when characterizing
the convergence behavior the term linear does not refer to the size of f .

However, this technique no longer works for arbitrary min-max-MSPEs. If we ap-
proximate f at x(k) through its first order Taylor approximation at x(k) there is no
guarantee that the next approximate still lies below the least solution, and the sequence
of approximants may even diverge. For this reason, the PReMo tool [14] uses round-
robin iteration for min-max-MSPEs, an optimization of Kleene iteration. Unfortunately,
this technique also exhibits “logarithmic” convergence behavior in the worst case.

In this paper we overcome the problem of Newton’s method. Instead of approximat-
ing f (at the current approximate x(k)) by a linear function, both of our methods ap-
proximate f by a piecewise linear function. In contrast to the applications of Newton’s
method in [4,11,3], this approximation may not have a unique fixpoint, but it has a least
fixpoint which we use as the next approximate x(k+1) = G(x(k)). Our first method
uses an approximation of f at x(k) whose least fixpoint can be determined using the
algorithm for systems of rational equations from [9]. The approximation of f at x(k)

used by our second method allows to use linear programming to compute x(k+1). Our
methods are the first algorithms for approximatively computing μf which converge at
least linearly, provided that f is quadratic, an easily achievable normal form.

The rest of the paper is organized as follows. In Section 2 we introduce basic con-
cepts and state some important facts about min-max-MSPEs. A class of games which
can be analyzed using our techniques is presented in Section 3. Our main contribu-
tion, the two approximation methods, is presented and analyzed in Sections 4 and 5. In
Section 6 we study the relation between our two approaches and compare them to

700 J. Esparza et al.

previous work. We conclude in Section 7. Missing proofs can be found in a technical
report [2].

2 Notations, Basic Concepts and a Fundamental Theorem

As usual, R and N denote the set of real and natural numbers. We assume 0 ∈ N. We
write R≥0 for the set of non-negative real numbers. We use bold letters for vectors, e.g.
x ∈ Rn. In particular 0 denotes the vector (0, . . . , 0). The transpose of a matrix or a
vector is indicated by the superscript �. We assume that the vector x ∈ Rn has the
components x1, . . . , xn. Similarly, the i-th component of a function f : Rn → Rm

is denoted by fi. As in [3], we say that x ∈ Rn has i ∈ N valid bits of y ∈ Rn iff
|xj − yj | ≤ 2−i|yj| for j = 1, . . . , n. We identify a linear function from Rn to Rm

with its representation as a matrix from Rm×n. The identity matrix is denoted by I .
The Jacobian of a function f : Rn → Rm at x ∈ Rn is the matrix of all first-order
partial derivatives of f at x, i.e., the m×n-matrix with the entry ∂fi

∂Xj
(x) in the i-th row

and the j-th column. We denote it by f ′(x).
The partial order ≤ on Rn is defined by setting x ≤ y iff xi ≤ yi for all i =

1, . . . , n. We write x < y iff x ≤ y and x = y. The operators ∧ and ∨ are defined by
x ∧ y := min{x, y} and x ∨ y := max{x, y} for x, y ∈ R. These operators are also
extended component-wise to Rn and point-wise to Rn-valued functions. A function
f : D ⊆ Rn → Rm it called monotone on M ⊆ D iff f(x) ≤ f (y) for every
x,y ∈ M with x ≤ y. Let X ⊆ Rn and f : X → X . A vector x ∈ X is called
fixpoint of f iff x = f(x). It is the least fixpoint of f iff y ≥ x for every fixpoint
y ∈ X of f . If it exists we denote the least fixpoint of f by μf . We call f feasible iff
f has some fixpoint x ∈ X .

Let us fix a set X = {X1, . . . , Xn} of variables. We call a vector f = (f1, . . . , fm)
of polynomials f1, . . . , fm in the variables X1, . . . , Xn a system of polynomials. f is
called linear (resp. quadratic) iff the degree of each fi is at most 1 (resp. 2), i.e., every
monomial contains at most one variable (resp. two variables). As usual, we identify f
with its interpretation as a function from Rn to Rm. As in [11,3] we call f a monotone
system of polynomials (MSP for short) iff all coefficients are non-negative.

Min-max-MSPs. Given polynomials f1, . . . , fk we call f1 ∧ · · · ∧ fk a min-polynomial
and f1 ∨ · · · ∨ fk a max-polynomial. A function that is either a min- or a max-
polynomial is also called min-max-polynomial. We call f = (f1, . . . , fn) a system
of min-polynomials iff every component fi is a min-polynomial. The definition of sys-
tems of max-polynomials and systems of min-max-polynomials is analogous. A system
of min-max-polynomials is called linear (resp. quadratic) iff all occurring polynomials
are linear (resp. quadratic). By introducing auxiliary variables every system of min-
max-polymials can be transformed into a quadratic one in time linear in the size of the
system (cf. [11]). A system of min-max-polynomials where all coefficients are from
Rn≥0 is called a monotone system of min-max-polynomials (min-max-MSP) for short.
The terms min-MSP and max-MSP are defined analogously.

Example 1. f(x1, x2) = (1
2x

2
2 + 1

2 ∧ 3, x1 ∨ 2)� is a quadratic min-max-MSP.

Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations 701

A min-max-MSP f = (f1, . . . , fn)� can be considered as a mapping from Rn≥0 to

Rn≥0. The Kleene sequence (κ(k)
f)k∈N is defined by κ

(k)
f := fk(0), k ∈ N. We have:

Lemma 1. Let f : Rn≥0 → Rn≥0 be a min-max-MSP. Then: (1) f is monotone and
continuous on Rn≥0; and (2) If f is feasible (i.e., f has some fixpoint), then f has a

least fixpoint μf and μf = limk→∞ κ
(k)
f .

Strategies. Assume that f denotes a system of min-max-polynomials. A ∨-strategy σ
for f is a function that maps every max-polynomial fi = fi,1 ∨ · · · ∨ fi,ki occurring
in f to one of the fi,j’s and every min-polynomial fi to fi. We also write fσi for σ(fi).
Accordingly, a ∧-strategy π for f is a function that maps every min-polynomial fi =
fi,1 ∧ · · · ∧ fi,k occurring in f to one of the fi,j’s and every max-polynomial fi to
fi. We denote the set of ∨-strategies for f by Σf and the set of ∧-strategies for f by
Πf . For s ∈ Σf ∪Πf , we write fs for (fs1, . . . ,f

s
n)�. We define Π∗

f := {π ∈ Πf |
fπ is feasible}. We drop the subscript whenever it is clear from the context.

Example 2. Consider f from Example 1. Then π : 1
2x

2
2 + 1

2 ∧ 3 -→ 3, x1 ∨ 2 -→ x1 ∨ 2
is a ∧-strategy. The max-MSP fπ is given by fπ(x1, x2)� = (3, x1 ∨ 2)�. ��

We collect some elementary facts concerning strategies.

Lemma 2. Let f be a feasible min-max-MSP. Then (1) μfσ ≤ μf for every σ ∈ Σ;
(2) μfπ ≥ μf for every π ∈ Π∗; (3) μfπ = μf for some π ∈ Π∗.

In [5] the authors consider a subclass of recursive stochastic games for which they
prove that a positional optimal strategy exists for the player who wants to maximize
the outcome (Theorem 2). The outcome of such a game is the least fixpoint of some
min-max-MSP f . In our setting, Theorem 2 of [5] implies that there exists a ∨-strategy
σ such that μfσ = μf — provided that f is derived from such a recursive stochastic
game. Example 3 shows that this property does not hold for arbitrary min-max-MSPs.

Example 3. Consider f from Example 1. Let σ1, σ2 ∈ Σ be defined by σ1(x1∨2) = x1

and σ2(x1 ∨ 2) = 2. Then μfσ1 = (1, 1)�, μfσ2 = (5
2 , 2)� and μf = (3, 3)�. ��

The proof of the following fundamental result is inspired by the proof of Theorem 2 in
[5]. Although the result looks very natural it is non-trivial to prove.

Theorem 1. Let f be a feasible max-MSP. Then μfσ = μf for some σ ∈ Σ.

3 A Class of Applications: Extinction Games

In order to illustrate the interest of min-max-MSPs we consider extinction games, which
are special stochastic games. Consider a world of n different species s1, . . . , sn. Each
species si is controlled by one of two adversarial players. For each si there is a non-
empty set Ai of actions. An action a ∈ Ai replaces a single individual of species si
by other individuals specified by the action a. The actions can be probabilistic. E.g.,
an action could transform an adult rabbit to zero individuals with probability 0.2, to an
adult rabbit with probability 0.3 and to an adult and a baby rabbit with probability 0.5.

702 J. Esparza et al.

Another action could transform an adult rabbit to a fat rabbit. The max-player (min-
player) wants to maximize (minimize) the probability that some initial population is
extinguished. During the game each player continuously chooses an individual of a
species si controlled by her/him and applies an action from Ai to it. Note that actions on
different species are never in conflict and the execution order is irrelevant. What is the
probability that the population is extinguished if the players follow optimal strategies?

To answer those questions we set up a min-max-MSP f with one min-max-
polynomial for each species, thereby following [10,5]. The variables Xi represent the
probability that a population with only a single individual of species si is extinguished.
In the rabbit example we have Xadult = 0.2 + 0.3Xadult + 0.5XadultXbaby ∨Xfat, assum-
ing that the adult rabbits are controlled by the max-player. The probability that an initial
population with pi individuals of species si is extinguished is given by

∏n
i=1((μf)i)pi .

The stochastic termination games of [5,6,14] can be considered as extinction games. In
the following we present another instance.

The primaries game. Hillary Clinton has to decide her strategy in the primaries. Her
team estimates that undecided voters have not yet decided to vote for her for three
possible reasons: they consider her (a) cold and calculating, (b) too much part of Wash-
ington’s establishment, or (c) they listen to Obama’s campaign. So the team decides
to model those problems as species in an extinction game. The larger the population
of a species, the more influenced is an undecided voter by the problem. The goal of
Clinton’s team is to maximize the extinction probabilities.

Clinton’s possible actions for problem (a) are showing emotions or concentrating on
her program. If she shows emotions, her team estimates that the individual of problem
(a) is removed with probability 0.3, but with probability 0.7 the action backfires and
produces yet another individual of (a). This and the effect of concentrating on her pro-
gram can be read off from Equation (1) below. For problem (b), Clinton can choose
between concentrating on her voting record or her statement “I’ll be ready from day 1”.
Her team estimates the effect as given in Equation (2). Problem (c) is controlled by
Obama, who has the choice between his “change” message, or attacking Clinton for her
position on Iraq, see Equation (3).

Xa = 0.3 + 0.7X2
a ∨ 0.1 + 0.9Xc (1)

Xb = 0.1 + 0.9Xc ∨ 0.4Xb + 0.3Xc + 0.3 (2)

Xc = 0.5Xb + 0.3X2
b + 0.2 ∧ 0.5Xa + 0.4XaXb + 0.1Xb (3)

What should Clinton and Obama do? What are the extinction probabilities, assuming
perfect strategies? In the next sections we show how to efficiently solve these problems.

4 The τ -Method

Assume that f denotes a feasible min-max-MSP. In this section we present our first
method for computing μf approximatively. We call it τ -method. This method com-
putes, for each approximate x(i), the next approximate x(i+1) as the least fixpoint of a
piecewise linear approximation L(f ,x(i))∨x(i) (see below) of f at x(i). This approx-
imation is a system of linear min-max-polynomials where all coefficients of monomials

Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations 703

of degree 1 are non-negative. Here, we call such a system a monotone linear min-max-
system (min-max-MLS for short). Note that a min-max-MLS f is not necessarily a min-
max-MSP, since negative coefficients of monomials of degree 0 are allowed, e.g. the
min-max-MLS f(x1) = x1 − 1 is not a min-max-MSP.

In [9] a min-max-MLS f is considered as a system of equations (called system of
rational equations in [9]) which we denote by X = f(X) in vector form. We identify
a min-max-MLS f with its interpretation as a function from R

n
to R

n
(R denotes the

complete lattice R ∪ {−∞,∞}). Since f is monotone on R
n

, it has a least fixpoint
μf ∈ R

n
which can be computed using the strategy improvement algorithm from [9].

We now define the min-max-MLS L(f ,y), a piecewise linear approximation of f at
y. As a first step, let us consider a monotone polynomial f : Rn≥0 → R≥0. Given some
approximate y ∈ Rn≥0, a linear approximation L(f,y) : Rn → R of f at y is given by
the first order Taylor approximation at y, i.e.,

L(f,y)(x) := f(y) + f ′(y)(x− y), x ∈ Rn.

This is precisely the linear approximation which is used for Newton’s method. Now
consider a max-polynomial f = f1 ∨ · · · ∨ fk : Rn → R. We define the approximation
L(f,y) : Rn → R of f at y by L(f,y) := L(f1,y) ∨ · · · ∨ L(fk,y). We emphasize
that in this case, L(f,y) is in general not a linear function but a linear max-polynomial.
Accordingly, for a min-MSP f = f1 ∧ · · · ∧ fk : Rn → R, we define L(f,y) :=
L(f1,y) ∧ · · · ∧ L(fk,y). In this case L(f,y) is a linear min-polynomial. Finally, for
a min-max-MSP f : Rn → Rn, we define the approximation L(f ,y) : Rn → Rn of
f at y by L(f ,y) := (L(f1,y), . . . ,L(fn,y))� which is a min-max-MLS.

Example 4. Consider the min-max-MSP f from Example 1. The approximation
L(f , (1

2 ,
1
2)) is given by L(f , (1

2 ,
1
2))(x1, x2) =

(
1
2x2 + 3

8 ∧ 3, x1 ∨ 2
)
. ��

Using the approximation L(f ,x(i)) we define the operator Nf : Rn≥0 → Rn≥0 which

gives us, for an approximate x(i), the next approximate x(i+1) by

Nf (x) := μ(L(f ,x) ∨ x), x ∈ Rn≥0.

Observe that L(f ,x) ∨ x is still a min-max-MLS (at least after introducing auxiliary
variables in order to eliminate components which contain ∨- and ∧-operators).

Example 5. In Example 4 we have:Nf (1
2 ,

1
2)=μ(L(f , (1

2 ,
1
2)) ∨ (1

2 ,
1
2)�)=(11

8 , 2)�.

We collect basic properties ofNf in the following lemma:

Lemma 3. Let f be a feasible min-max-MSP and x,y ∈ Rn≥0. Then:
1. x,f(x) ≤ Nf (x);
2. x = Nf (x) whenever x = f (x);
3. (Monotonicity of Nf) Nf (x) ≤ Nf (y) whenever x ≤ y;
4. Nf (x) ≤ f(Nf (x)) whenever x ≤ f (x);
5. Nf (x) ≥ Nfσ (x) for every ∨-strategy σ ∈ Σ;
6. Nf (x) ≤ Nfπ (x) for every ∧-strategy π ∈ Π;
7. Nf (x) = Nfπ (x) for some ∧-strategy π ∈ Π .

704 J. Esparza et al.

In particular Lemma 3 implies that the least fixpoint ofNf is equal to the least fixpoint
of f . Moreover, iteration based onNf is at least as fast as Kleene iteration. We therefore
use this operator for computing approximates to the least fixpoint. Formally, we define:

Definition 1. We call the sequence (τ (k)
f) of approximates defined by τ

(k)
f := N kf (0)

for k ∈ N the τ -sequence for f . We drop the subscript if it is clear from the context.

Proposition 1. Let f be a feasible min-max-MSP. The τ -sequence (τ (k)) for f (see
definition 1) is monotonically increasing, bounded from above by μf , and converges to
μf . Moreover, κ(k) ≤ τ (k) for all k ∈ N.

We now show that the new approximation method converges at least linearly to the
least fixpoint. Theorem 6.2 of [3] implies the following lemma about the convergence
of Newton’s method for MSPs, i.e., systems without maxima and minima.

Lemma 4. Let f be a feasible quadratic MSP. The sequence (τ (k))k∈N converges lin-
early to μf . More precisely, there is a kf ∈ N such that τ (kf+i·(n+1)·2n) has at least i
valid bits of μf for every i ∈ N.

We emphasize that linear convergence is the worst case. In many practical examples,
in particular if the matrix I − f ′(μf) is invertible, Newton’s method converges expo-
nentially. We mean by this that the number of accurate bits of the approximation grows
exponentially in the number of iterations.

As a first step towards our main result for this section, we use Lemma 4 to show that
our approximation method converges linearly whenever f is a max-MSPs. In this case
we obtain the same convergence speed as for MSPs.

Lemma 5. Let f be a feasible max-MSP. Let M := {σ ∈ Σ | μfσ = μf}. The set M

is non-empty and τ
(i)
f ≥ τ

(i)
fσ for all σ ∈M and i ∈ N.

Proof. Theorem 1 implies that there exists a ∨-strategy σ ∈ Σ such that μfσ = μf .
Thus M is non-empty. Let σ ∈ M . By induction on k Lemma 3 implies τ

(k)
f =

N kf (0) ≥ N kfσ(0) = τ
(k)
fσ for every k ∈ N. ��

Combining Lemma 4 and Lemma 5 we get linear convergence for max-MSPs:

Theorem 2. Let f be a feasible quadratic max-MSP. The τ -sequence (τ (k)) for f (see
definition 1) converges linearly to μf . More precisely, there is a kf ∈ N such that
τ (kf +i·(n+1)·2n) has at least i valid bits of μf for every i ∈ N.

A direct consequence of Lemma 5 is that the τ -sequence (τ (i)
f) converges exponentially

if (τ (i)
fσ) converges exponentially for some σ ∈ Σ with μfσ = μf . This is in particular

the case if the matrix I − (fσ)′(μf) is invertible. In order to extend this result to min-

max-MSPs we state the following lemma which enables us to relate the sequence (τ (i)
f)

to the sequences (τ (i)
fπ) where μfπ = μf .

Lemma 6. Let f be a feasible min-max-MSP and m denote the number of strategies
π ∈ Π with μf = μfπ. There is a constant k ∈ N such that for all i ∈ N there exists
some strategy π ∈ Π with μf = μfπ and τ

(i)
fπ ≤ τ

(k+m·i)
f .

Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations 705

We now present the main result of this section which states that our approximation
method converges at least linearly also in the general case, i.e., for min-max-MSPs.

Theorem 3. Let f be a feasible quadratic min-max-MSP and m denote the number of
strategies π ∈ Π with μf = μfπ. The τ -sequence (τ (k)) for f (see definition 1) con-
verges linearly to μf . More precisely, there is a kf ∈ N such that τ (kf+i·m·(n+1)·2n)

has at least i valid bits of μf for every i ∈ N.

The upper bound on the convergence rate provided by Theorem 2 is by the factor m
worse than the upper bound obtained for MSPs. Since m is the number of strategies
π ∈ Π with μfπ = μf , m is trivially bounded by |Π | but is usually much smaller. The

τ -sequence (τ (i)
f) converges exponentially whenever (τ (i)

fπ) converges exponentially
for every π with μfπ = μf (see [2]). The latter condition is typically satisfied (see the
discussion after Theorem 2).

In order to determine the approximate τ (i+1) = Nf (τ (i)) from τ (i) we must com-
pute the least fixpoint of the min-max-MLS L(f , τ (i))∨τ (i). This can be done by using
the strategy improvement algorithm from [9]. The algorithm iterates over ∨-strategies.
For each strategy it solves a linear program or alternatively iterates over ∧-strategies.
The number of ∨-strategies used by this algorithm is trivially bounded by the number of
∨-strategies for L(f , τ (i))∨τ (i) which is exponentially in the number of∨-expressions
occurring in L(f , τ (i)) ∨ τ (i). However, we do not know an example for which the al-
gorithm considers more than linearly many strategies.

5 The ν-Method

The τ -method, presented in the previous section, uses strategy iteration over ∨-
strategies to compute Nf (y). This could be expensive, as there may be exponen-
tially many∨-strategies. Therefore, we derive an alternative generalization of Newton’s
method that in each step picks the currently most promising∨-strategy directly, without
strategy iteration.

Consider again a fixed feasible min-max-MSP f whose least fixpoint we want to
approximate. Assume that y is some approximation of μf . Instead of applying Nf to
y, as the τ -method, we now choose a strategy σ ∈ Σ such that f(y) = fσ(y), and
computeNfσ (y), whereNfσ was defined in Section 4 asNfσ (y) := μ(L(fσ,y)∨y).
In the following we writeNσ instead ofNfσ if f is understood.

Assume for a moment that f is a max-MSP and that there is a unique σ ∈ Σ such
that f(y) = fσ(y). The approximantNσ(y) is the result of applying one iteration of
Newton’s method, because L(fσ,y) is not only a linearization of fσ , but the first order
Taylor approximation of f at y. More precisely, L(fσ,y)(x) = f(y)+f ′(y)·(x−y),
and Nσ(y) is obtained by solving x = L(fσ,y)(x). In this sense, the ν-method is a
more direct generalization of Newton’s method than the τ -method. Formally, we define
the ν-method by a sequence of approximates, the ν-sequence.

Definition 2 (ν-sequence). A sequence (ν(k)
f)k∈N is called ν-sequence of a min-max-

MSP f if ν
(0)
f = 0 and for each k there is a strategy σ

(k)
f ∈ Σ with f(ν(k)

f) =

fσ
(k)
f (ν(k)

f) and ν
(k+1)
f = N

σ
(k)
f

(ν(k)
f). We may drop the subscript if f is understood.

706 J. Esparza et al.

Notice the nondeterminism here if there is more than one ∨-strategy that attains
f(ν(k)). The following proposition is analogous to Proposition 1 and states some basic
properties of ν-sequences.

Proposition 2. Let f be a feasible min-max-MSP. The sequence (ν(k)) is monotoni-
cally increasing, bounded from above by μf , and converges to μf . More precisely, we
have κ(k) ≤ ν(k) ≤ f (ν(k)) ≤ ν(k+1) ≤ μf for all k ∈ N.

The goal of this section is again to strengthen Proposition 2 towards quantitative con-
vergence results for ν-sequences. To achieve this goal we again relate the convergence
of ν-sequences to the convergence of Newton’s method for MSPs. If f is an MSP,
Lemma 4 allows to argue about the Newton operator Nf when applied to approxi-
mates x ≤ μf . To transfer this result to min-max-MSPs f we need an invariant like

ν(k) ≤ μfσ
(k)

for ν-sequences. As a first step to such an invariant we further restrict the
selection of the σ(k). Roughly speaking, the strategy in a component i is only changed
when it is immediate that component i has not yet reached its fixpoint.

Definition 3 (lazy strategy update). Let x ≤ fσ(x) for a σ ∈ Σ. We say that σ′ ∈ Σ

is obtained from x and σ by a lazy strategy update if f(x) = fσ
′
(x) and σ′(fi) =

σ(fi) holds for all components i with fi(x) = xi. We call a ν-sequence (ν(k))k∈N lazy
if for all k, the strategy σ(k) is obtained from ν(k) and σ(k−1) by a lazy strategy update.

The key property of lazy ν-sequences is the following non-trivial invariant.

Lemma 7. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ μfσ
(k)π holds for all

k ∈ N and all π ∈ Π∗.

The following example shows that lazy strategy updates are essential to Lemma 7 even
for max-MSPs.

Example 6. Consider the MSP f(x, y) = (1
2 ∨ x, xy + 1

2). Let σ(0)(1
2 ∨ x) = 1

2

and σ(1)(1
2 ∨ x) = x. Then there is a ν-sequence (ν(k)) with ν(0) = 0, ν(1) =

Nσ(0)(0) = (1
2 , 0), ν(2) = Nσ(1)(ν(1)). However, the conclusion of Lemma 7 does not

hold, because (1
2 , 0) = ν(1) ≤ μfσ

(1)
= (0, 1

2). Notice that σ(1) is not obtained by a

lazy strategy update, as f1(ν(1)) = ν
(1)
1 . ��

Lemma 7 falls short of our subgoal to establish ν(k) ≤ μfσ
(k)

, because Π \Π∗ might

be non-empty. In fact, we provide an example in [2] showing that ν(k) ≤ μfσ
(k)π does

not always hold for all π ∈ Π , even when fσ
(k)π is feasible. Luckily, Lemma 7 will

suffice for our convergence speed result.
The left procedure of Algorithm 1 summarizes the lazy ν-method which works by

computing lazy ν-sequences. The following lemma relates the ν-method for min-max-
MSPs to Newton’s method for MSPs.

Lemma 8. Let f be a feasible min-max-MSP and (ν(k)) a lazy ν-sequence. Let m be
the number of strategy pairs (σ, π) ∈ Σ ×Π with μf = μfσπ . Then m ≥ 1 and there
is a constant kas ∈ N such that, for all k ∈ N, there exist strategies σ ∈ Σ, π ∈ Π with
μf = μfσπ and ν

(kas+m·k)
f ≥ τ

(k)
fσπ .

Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations 707

Algorithm 1. lazy ν-method

procedure lazy-ν(f , k)
assumes: f is a min-max-MSP
returns: ν(k), σ(k) obtained by k iterations

of the lazy ν-method
ν ← 0
σ ← any σ ∈ Σ such that f (0) = fσ(0)
for i from 1 to k do

ν ← Nfσ (ν)
σ ← lazy strategy update from ν and σ

od
return ν, σ

procedure Nf (y)
assumes: f is a min-MSP, y ∈ Rn

≥0
returns: μ(L(f , y) ∨ y)

g ← linear min-MSP with
g(d) = L(f , y)(y + d) − y

u ← κ
(n)
g

g̃ ← (g̃1, . . . , g̃n)� where

g̃i =

{
0 if ui = 0
gi if ui > 0

d∗ ← maximize x1 + · · · + xn subject
to 0 ≤ x ≤ g̃(x) by 1 LP

return y + d∗

In typical cases, i.e., if I − (fσπ)′(μf) is invertible for all σ ∈ Σ and π ∈ Π with
μfσπ = μf , Newton’s method converges exponentially. The following theorem cap-
tures the worst-case, in which the lazy ν-method still converges linearly.

Theorem 4. Let f be a quadratic feasible min-max-MSP. The lazy ν-sequence
(ν(k))k∈N converges linearly to μf . More precisely, let m be the number of strat-
egy pairs (σ, π) ∈ Σ × Π with μf = μfσπ. Then there is a kf ∈ N such that
ν(kf +i·m·(n+1)·2n) has at least i valid bits of μf for every i ∈ N.

Next we show that Nfσ(y) can be computed exactly by solving a single LP. The
right procedure of Algorithm 1 accomplishes this by taking advantage of the follow-
ing proposition which states that Nfσ(y) can be determined by computing the least
fixpoint of some linear min-MSP g.

Proposition 3. Let y ≤ fσ(y) ≤ μf . ThenNfσ (y) = y+μg for the linear min-MSP
g with g(d) = L(fσ,y)(y + d)− y.

After having computed the linear min-MSP g, Algorithm 1 determines the 0-
components of μg. This can be done by performing n Kleene steps, since (μg)i = 0
whenever (κ(n)

g)i = 0. Let g̃ be the linear min-MSP obtained from g by substituting
the constant 0 for all components gi with (μg)i = 0. The least fixpoint of g̃ can be
computed by solving a single LP, as implied by the following lemma. The correctness
of Algorithm 1 follows.

Lemma 9. Let g be a linear min-MSP such that gi = 0 whenever (μg)i = 0 for all
components i. Then μg is the greatest vector x with x ≤ g(x).

The following theorem is a direct consequence of Lemma 7 for the case where Π =
Π∗. It shows the second major advantage of the lazy ν-method, namely, that that the
strategies σ(k) are meaningful in terms of games.

Theorem 5. Let Π = Π∗. Let (ν(k))k∈N be a lazy ν-sequence. Then ν(k) ≤ μfσ
(k)

holds for all k ∈ N.

708 J. Esparza et al.

As (ν(k)) converges to μf , the max-strategy σ(k) can be considered ε-optimal. In terms
of games, Theorem 5 states that the strategy σ(k) guarantees the max-player an outcome
of at least ν(k). It is open whether an analogous theorem holds for the τ -method.

Application to the primaries example. We solved the equation system of Section 3 ap-
proximatively by performing 5 iterations of the lazy ν-method. Using Theorem 5 we
found that Clinton can extinguish a problem (a) individual with a probability of at least
Xa = 0.492 by concentrating on her program and her “ready from day 1” message.
(More than 70 Kleene iterations would be needed to infer that Xa is at least 0.49.) As
ν(5) seems to solve above equation system quite well in the sense that

∥
∥f(ν(5))− ν(5)

∥
∥

is small, we are pretty sure about Obama’s optimal strategy: he should talk about Iraq.
As ν

(2)
X1

> 0.38 and σ(2) maps f1 to 0.3 + 0.7X2
1 , Clinton’s team can use Theorem 5 to

infer that Xa ≥ 0.38 by showing emotions and using her “ready from day 1” message.

6 Discussion

In order to compare our two methods in terms of convergence speed, assume that
f denotes a feasible min-max-MSP. Since Nf (x) ≥ Nfσ (Lemma 3.5), it follows

that τ
(i)
f ≥ ν

(i)
f holds for all i ∈ N. This means that the τ -method is as least

as fast as the ν-method if one counts the number of approximation steps. Next, we
construct an example which shows that the number of approximation steps needed
by the lazy ν-method can be much larger than the respective number needed by the
τ -method. It is parameterized with an arbitrary k ∈ N and given by f(x1, x2) =
(
x2 ∧ 2, x2

1 + 0.25 ∨ x1 + 2−2(k+1)
)�

. Since the constant 2−2(k+1) is represented
using O(k) bits, it is of size linear in k. It can be shown (see [2]) that the lazy ν-
method needs at least k steps. More precisely, νf − τ (k) ≥ (1.5, 1.95). The τ -method
needs exactly 2 steps.

We now compare our approaches with the tool PReMo [14]. PReMo employs 4 dif-
ferent techniques to approximate μf for min-max-MSPs f : It uses Newton’s method
only for MSPs without min or max. In this case both of our methods coincide with
Newton’s method. For min-max-MSPs, PReMo uses Kleene iteration, round-robin iter-
ation (called Gauss-Seidel in [14]), and an “optimistic” variant of Kleene which is not
guaranteed to converge. In the following we compare our algorithms only with Kleene
iteration, as our algorithms are guaranteed to converge and a round-robin step is not
faster than n Kleene steps.

Our methods improve on Kleene iteration in the sense that κ(i) ≤ τ (i),ν(i) holds
for all i ∈ N, and our methods converge linearly, whereas Kleene iteration does not
converge linearly in general. For example, consider the MSP g(x) = 1

2x
2+ 1

2 with μg =
1. Kleene iteration needs exponentially many iterations for j bits [4], whereas Newton’s
method gives exactly 1 bit per iteration. For the slightly modified MSP g̃(x) = g(x)∧1
which has the same fixpoint, PReMo no longer uses Newton’s method, as g̃ contains a
minimum. Our algorithms still produce exactly 1 bit per iteration.

In the case of linear min-max systems our methods compute the precise solution and
not only an approximation. This applies, for example, to the max-linear system of [14]
describing the expected time of termination of a nondeterministic variant of Quicksort.

Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations 709

Notice that Kleene iteration does not compute the precise solution (except for trivial
instances), even for linear MSPs without min or max.

We implemented our algorithms prototypically in Maple and ran them on the
quadratic nonlinear min-max-MSP describing the termination probabilities of a re-
cursive simple stochastic game. This game stems from the example suite of PReMo
(rssg2.c) and we used PReMo to produce the equations. Both of our algorithms
reached the least fixpoint after 2 iterations. So we could compute the precise μf and op-
timal strategies for both players, whereas PReMo computes only approximations of μf .

7 Conclusion

We have presented the first methods for approximatively computing the least fixpoint
of min-max-MSPs, which are guaranteed to converge at least linearly. Both of them
are generalizations of Newton’s method. Whereas the τ -method converges faster in
terms of number of approximation steps, one approximation step of the ν-method is
cheaper. Furthermore, we have shown that the ν-method computes ε-optimal strategies
for games. Whether such a result can also be established for the τ -method is still open.
A direction for future research is to evaluate our methods in practice. In particular, the
influence of imprecise computation through floating point arithmetic should be studied.
It would also be desirable to find a bound on the “threshold” kf .

Acknowledgement. We thank the anonymous referees for valuable comments.

References

1. Condon, A.: The complexity of stochastic games. Inf. and Comp. 96(2), 203–224 (1992)
2. Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative methods for monotone sys-

tems of min-max-polynomial equations. Technical report, Technische Universität München,
Institut für Informatik (February 2008)

3. Esparza, J., Kiefer, S., Luttenberger, M.: Convergence thresholds of Newton’s method for
monotone polynomial equations. In: Proceedings of STACS, pp. 289–300 (2008)

4. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

5. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive stochastic
games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580. Springer, Heidelberg (2005)

6. Etessami, K., Yannakakis, M.: Efficient qualitative analysis of classes of recursive Markov
decision processes and simple stochastic games. In: Durand, B., Thomas, W. (eds.) STACS
2006. LNCS, vol. 3884, pp. 634–645. Springer, Heidelberg (2006)

7. Filar, J., Vrieze, K.: Competitive Markov Decision processes. Springer, Heidelberg (1997)
8. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: De Nicola,

R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)
9. Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In: Duparc, J.,

Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg (2007)
10. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)

710 J. Esparza et al.

11. Kiefer, S., Luttenberger, M., Esparza, J.: On the convergence of Newton’s method for mono-
tone systems of polynomial equations. In: STOC, pp. 217–226. ACM, New York (2007)

12. Neyman, A., Sorin, S.: Stochastic Games and Applications. Kluwer Academic Press, Dor-
drecht (2003)

13. Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. Aca-
demic Press, London (1970)

14. Wojtczak, D., Etessami, K.: PReMo: An analyzer for probabilistic recursive models. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 66–71. Springer, Heidel-
berg (2007)

Recursive Stochastic Games with

Positive Rewards

K. Etessami1, D. Wojtczak1, and M. Yannakakis2

1 LFCS, School of Informatics, University of Edinburgh
2 Dept. of Computer Science, Columbia University

Abstract. We study the complexity of a class of Markov decision
processes and, more generally, stochastic games, called 1-exit Recursive
Markov Decision Processes (1-RMDPs) and Simple Stochastic Games (1-
RSSGs) with strictly positive rewards. These are a class of finitely pre-
sented countable-state zero-sum stochastic games, with total expected
reward objective. They subsume standard finite-state MDPs and Con-
don’s simple stochastic games and correspond to optimization and game
versions of several classic stochastic models, with rewards. Such stochas-
tic models arise naturally as models of probabilistic procedural programs
with recursion, and the problems we address are motivated by the goal of
analyzing the optimal/pessimal expected running time in such a setting.

We give polynomial time algorithms for 1-exit Recursive Markov de-
cision processes (1-RMDPs) with positive rewards. Specifically, we show
that the exact optimal value of both maximizing and minimizing 1-
RMDPs with positive rewards can be computed in polynomial time (this
value may be ∞). For two-player 1-RSSGs with positive rewards, we
prove a “stackless and memoryless” determinacy result, and show that
deciding whether the game value is at least a given value r is in NP ∩
coNP. We also prove that a simultaneous strategy improvement algo-
rithm converges to the value and optimal strategies for these stochastic
games. We observe that 1-RSSG positive reward games are “harder”
than finite-state SSGs in several senses.

1 Introduction

Markov decision processes and stochastic games are fundamental models in
stochastic optimization and game theory (see, e.g., [25,23,13]). In this paper,
motivated by the goal of analyzing the optimal/pessimal expected running time
of probabilistic procedural programs, we study the complexity of a reward-based
stochastic game, called 1-exit recursive simple stochastic games (1-RSSGs), and
its 1-player version, 1-exit recursive Markov decision processes (1-RMDPs).
These form a class of (finitely presented) countable-state turn-based zero-sum
stochastic games (and MDPs) with strictly positive rewards, and with an undis-
counted expected total reward objective.

Intuitively, a 1-RSSG (1-RMDP) consists of a collection of finite-state com-
ponent SSGs (MDPs), each of which can be viewed as an abstract finite-state

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 711–723, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

712 K. Etessami, D. Wojtczak, and M. Yannakakis

procedure (subroutine) of a probabilistic program with potential recursion. Each
component procedure has some nodes that are probabilistic and others that are
controlled by one or the other of the two players. The component SSGs can call
each other in a recursive manner, generating a potentially unbounded call stack,
and thereby an infinite state space. The “1-exit” restriction essentially restricts
these finite-state subroutines so they do not return a value, unlike multi-exit
RSSGs and RMDPs in which they can return distinct values. (We shall show
that the multi-exit version of these reward games are undecidable.) 1-RMDPs
and 1-RSSGs were studied in [8,9] in a setting without rewards, where the goal
of the players was to maximize/minimize the probability of termination. Such
termination probabilities can be irrational, and quantitative decision problems
for them subsume long standing open problems in exact numerical computation.
Here we extend 1-RSSGs and 1-RMDPs to a setting with positive rewards. Note
that much of the literature on MDPs and games is based on a reward structure.
This paper is a first step toward extending these models to the recursive setting.
Interestingly, we show that the associated problems actually become more be-
nign in some respects in this strictly positive reward setting. In particular, the
values of our games are either rational, with polynomial bit complexity, or ∞.

The 1-RMDP and 1-RSSG models can also be described as optimization and
game versions of several classic stochastic models, including stochastic context-
free grammars (SCFGs) and (multi-type) branching processes. These have ap-
plications in many areas, including natural language processing [21], biological
sequence analysis ([4]), and population biology [17,16]. Another model that cor-
responds to a strict subclass of SCFGs is “random walks with back-buttons”
studied in [12] as a model of web surfing. See [7] for details on the relationships
between these various models. A 1-RSSG with positive rewards, can be equiv-
alently reformulated as the following game played on a stochastic context-free
grammar (see full version [11] for details). We are given a context-free grammar
where non-terminals are partitioned into three disjoint sets: random, player-1,
and player-2. Starting from a designated start non-terminal, Sinit, we proceed
to generate a derivation by choosing a remaining left-most non-terminal, S, and
expanding it. The precise derivation law (left-most, right-most, etc.) doesn’t ef-
fect the game value in our strictly positive reward setting, but does if we allow
0 rewards. If S belongs to random, it is expanded randomly by choosing a rule
S → α, according to a given probability distribution over the rules whose left
hand side is S. If S belongs to player-i, then player i chooses which grammar
rule to use to expand this S. Each grammar rule also has an associated (strictly
positive) reward for player 1, and each time a rule is used during the derivation,
player 1 accumulates this associated reward. Player 1 wants to maximize total
expected reward (which may be ∞), and player 2 wants to minimize it. When
we have only one player it is a minimizing or maximizing 1-RMDP.

We assume strictly positive rewards on all transitions (rules) in this paper.
This assumption is very natural for modeling optimal/pessimal expected running
time in probabilistic procedural programs: each discrete step of the program is
assumed to cost some non-zero amount of time. Strictly positive rewards also

Recursive Stochastic Games with Positive Rewards 713

endow our games with a number of important robustness properties. In partic-
ular, in the above grammar presentation, with strictly positive rewards these
games have the same value regardless of what derivation law is imposed. This is
not the case if we also allow 0 rewards on grammar rules. In that case, even in
the single-player setting, the game value can be wildly different (e.g., 0 or ∞)
depending on the derivation law (e.g., left-most or right-most). Moreover, for
1-RMDPs, if we allow 0 rewards, then there may not even exist any ε-optimal
strategies. Furthermore, even in a purely probabilistic setting without players
(1-RMCs), with 0 rewards the expected reward can be irrational. Even the de-
cidability of determining whether the supremum expected reward for 1-RMDPs
is greater than a given rational value is open, and subsumes other open de-
cidability questions, e.g., for optimal reachability probabilities in non-reward
1-RMDPs ([8,1]). (See the full version [11] for elaboration on these issues.) As
we shall show, none of these pathologies arise in our setting with strictly positive
rewards.

We show that 1-RMDPs and 1-RSSGs with strictly positive rewards have a
value which is either rational (with polynomial bit complexity) or ∞, and which
arises as the least fixed point solution (over the extended reals) of an associated
system of linear-min-max equations. Both players do have optimal strategies in
these games, and in fact we show the much stronger fact that both players have
stackless and memoryless (SM) optimal strategies: deterministic strategies that
depend only on the current state of the running component, and not on the
history or even the stack of pending recursive calls.

We provide polynomial-time algorithms for computing the exact value for
both the maximizing and minimizing 1-RMDPs. The two cases are not equiv-
alent and require separate treatment. We show that for the 2-player games (1-
RSSGs) deciding whether the game has value at least a given r ∈ Q ∪ {∞} is
in NP ∩ coNP. We also describe a practical simultaneous strategy improvement
algorithm, analogous to similar algorithms for finite-state stochastic games, and
show that it converges to the game value (even if it is ∞) in a finite number of
steps. A corollary is that computing the game value and optimal strategies for
these games is contained in the class PLS of polynomial local search problems
([19]). Whether this strategy improvement algorithm runs in worst-case P-time
is open, just like its version for finite-state SSGs.

We observe that these games are essentially “harder” than Condon’s finite-
state SSG games in the following senses. We reduce Condon’s quantitative deci-
sion problem for finite-state SSGs to a special case of 1-RSSG games with strictly
positive rewards: namely to deciding whether the game value is∞. By contrast, if
finite-state SSGs are themselves equipped with strictly positive rewards, we can
decide in P-time whether their value is ∞. Moreover, it has recently been shown
that computing the value of Condon’s SSG games is in the complexity class
PPAD (see [10] and [20]). The same proof however does not work for 1-RSSG
positive reward games, and we do not know whether these games are contained
in PPAD. Technically, the problem is that in the expected reward setting the
domain of the fixed point equations is not compact, and indeed the expected

714 K. Etessami, D. Wojtczak, and M. Yannakakis

reward is potentially ∞. In these senses, the 1-RSSG reward games studied in
this paper appear to be “harder” than Condon’s SSGs, and yet as we show
their quantitative decision problems remain in NP ∩ coNP. Finally, we show
that the more general multi-exit RSSG model is undecidable. Namely, even for
single-player multi-exit RMDPs with strictly positive rewards, it is undecidable
whether the optimal reward value is ∞.

The tool PReMo [28] implements a number of analyses for RMCs, 1-RMDPs,
and 1-RSSGs. Most recently, the strategy improvement algorithm of this paper
was implemented and incorporated in the tool. See the PReMo web page ([28])
for very encouraging experimental results based on the algorithms of this paper.
Due to space constraints proofs and discussions are omitted. See full paper [11].

Related work. Two (equivalent) purely probabilistic recursive models, Recur-
sive Markov chains and probabilistic Pushdown Systems (pPDSs) were intro-
duced in [7] and [5], and have been studied in several papers recently. These
models were extended to the optimization and game setting of (1)-RMDPs and
(1)-RSSGs in [8,9], and studied further in [1]. As mentioned earlier, the games
considered in these earlier papers had the goal of maximizing/minimizing termi-
nation or reachability probability, which can be irrational, and for which quan-
titative decision problems encounter long standing open problems in numerical
computation, even to place their complexity in NP. On the other hand, the quali-
tative termination decision problem (“is the termination game value exactly 1?”)
for 1-RMDPs was shown to be in P, and for 1-RSSGs in NP ∩ coNP in [9]. These
results are related to the results in the present paper as follows. If termination
occurs with probability strictly less than 1 in a strictly positive reward game,
then the expected total reward is ∞. But the converse does not hold: the ex-
pected reward may be ∞ even when the game terminates with probability 1,
because there can be null recurrence in these infinite-state games. Thus, not
only do we have to address this discrepancy, but also our goal in this paper is
quantitative computation (compute the optimal reward), whereas in [9] it was
purely qualitative (almost sure termination).

Condon [2] originally studied finite-state SSGs with termination objectives
(no rewards), and showed that the quantitative termination decision problem
is in NP ∩ coNP; it is a well-known open problem whether it is in P. In [3]
strategy improvement algorithms for SSGs were studied, based on variants of
the classic Hoffman-Karp algorithm [18]. It remains open whether the simul-
taneous version of strategy improvement runs in P-time. This is also the case
for our simultaneous strategy improvement algorithm for 1-RSSGs with positive
rewards. (Single-vertex updates per step in strategy improvement is known to
require exponentially many steps in the worst case.)

There has been some recent work on augmenting purely probabilistic multi-
exit RMCs and pPDSs with rewards in [6]. These results however are for RMCs
without players. We in fact show in Theorem 8 that the basic questions about
multi-exit RMDPs and RSSGs are undecidable.

A full tech report of this paper appeared in [11]. A recent and independent
paper by Gawlitza and Seidl [14] considers monotone linear-min-max equations

Recursive Stochastic Games with Positive Rewards 715

with potentially negative constant terms (with entirely different motivation from
abstract interpretation), and studies a different kind of strategy improvement
algorithm for computing their least fixed point solution over the full extended
reals. Their work is related to ours, but in rather subtle ways. In particular their
notion of LFP over the extended reals may yield negative values or even −∞,
and they assume that “strategies” (choices for the max and min operators) are
memoryless, rather than proving a (memoryless) determinacy result. Moreover,
their strategy improvement algorithm requires a particular initial strategy (oth-
erwise it can fail) and thus is not directly formulable as a local search. Unlike
our results, their results apparently do not yield [15] containment in NP∩coNP,
nor in PLS, for the relevant decision and search problems. Nevertheless, there
are connections between their work and ours that need to be explored further.
In particular, Gawlitza [15] informs us that a modified version of their strategy
improvement algorithm can also be used to obtain our P-time upper bound for
the LFP, over the non-negative extended reals, for the linear-min and linear-max
equations that arise for 1-RMDPs.

Models related to 1-RMDPs have been studied in OR, under the name Branch-
ing Markov Decision Chains (a controlled version of multi-type Branching
processes). These are close to the single-player SCFG model, with non-negative
rewards, but simultaneous derivation law. They were studied by Pliska [24], in a
related form by Veinott [27], and extensively by Rothblum and co-authors (e.g.,
[26]). Besides the restriction to simultaneous derivation, these models were re-
stricted to the single-player MDP case, and to simplify their analysis they were
typically assumed to be “transient” (i.e., the expected number of visits to a node
was assumed to be finite under all strategies). None of these works yield a P-time
algorithm for optimal expected rewards for 1-RMDPs with positive rewards.

2 Definitions and Background

Let R>0 = (0,∞) denote the positive real numbers, R≥0
.= [0,∞), R

.= [−∞,∞],
R∞>0

.= (0,∞], and R∞≥0
.= [0,∞]. The extended reals R have the natural total

order. We assume the following usual arithmetic conventions on the non-negative
extended reals R∞≥0: a · ∞ = ∞, for any a ∈ R∞>0; 0 · ∞ = 0; a +∞ = ∞, for
any a ∈ R∞≥0. This extends naturally to matrix arithmetic over R∞≥0. We first
define general multi-exit RSSGs (for which basic reward problems turn out to
be undecidable). Later, we will confine these to the 1-exit case, 1-RSSGs.

A Recursive Simple Stochastic Game (RSSG) with positive rewards is a tuple
A = (A1, . . . , Ak), where each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi, ξi)
consists of:
– A set Ni of nodes , with a distinguished subset Eni of entry nodes and a

(disjoint) subset Exi of exit nodes.
– A set Bi of boxes , and a mapping Yi : Bi -→ {1, . . . , k} that assigns to every

box (the index of) a component. To each box b ∈ Bi, we associate a set
of call ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports,
Retb = {(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈BiCallb, Reti = ∪b∈BiRetb,

716 K. Etessami, D. Wojtczak, and M. Yannakakis

and let Qi = Ni ∪ Calli ∪ Reti be the set of all nodes, call ports and return
ports; we refer to these as the vertices of component Ai.

– A mapping pli : Qi -→ {0, 1, 2} that assigns to every vertex a player (Player
0 represents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.

– A transition relation δi ⊆ (Qi × (R>0 ∪ {⊥}) × Qi × R>0), where for each
tuple (u, x, v, cu,v) ∈ δi, the source u ∈ (Ni \ Exi) ∪ Reti, the destination
v ∈ (Ni \ Eni) ∪ Calli, and x is either (i) pu,v ∈ (0, 1] (the transition prob-
ability) if pli(u) = 0, or (ii) x = ⊥ if pli(u) = 1 or 2; and cu,v ∈ R>0 is
the positive reward associated with this transition. We assume for vertices
u and v there is at most one transition in δ from u to v. For computational
purposes we assume the given probabilities pu,v and rewards cu,v are ra-
tional. Probabilities must also satisfy consistency: for every u ∈ pl−1

i (0),∑
{v′|(u,pu,v′ ,v′,cu,v)∈δi} pu,v′ = 1, unless u is a call port or exit node, neither

of which have outgoing transitions, in which case by default
∑
v′ pu,v′ = 0.

– Finally, the mapping ξi : Calli -→ R>0 maps each call port u in the compo-
nent to a positive rational value cu = ξ(u). (This mapping reflects the “cost”
of a function call, but is not strictly necessary. This cost can be 0 and all
our results would still hold.)

We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the union
over all components. Thus, e.g., N = ∪ki=1Ni is the set of all nodes of A,
δ = ∪ki=1δi the set of all transitions, etc. Let n(u) = {v | (u,⊥, v, cu,v) ∈ δ}
denote the neighbors of u if u is a player 1 or player 2 node and n(u) =
{v | (u, pu,v, v, cu,v) ∈ δ} otherwise. An RSSG A defines a global denumerable
simple stochastic game, with rewards, MA = (V = V0 ∪ V1 ∪ V2, Δ, pl) as fol-
lows. The global states V ⊆ B∗ × Q of MA are pairs of the form 〈β, u〉, where
β ∈ B∗ is a (possibly empty) sequence of boxes and u ∈ Q is a vertex of A. The
states V ⊆ B∗ ×Q and transitions Δ are defined inductively as follows:
1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V & (u, x, v, c) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉, c) ∈ Δ.
3. if 〈β,(b, en)〉 ∈ V & (b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉,

ξ((b, en))) ∈ Δ.
4. if 〈βb, ex〉∈V & (b, ex)∈Retb, then 〈β, (b, ex)〉∈V & (〈βb, ex〉, 1, 〈β, (b, ex)〉, 0)∈Δ.

The mapping pl : V -→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is
in Q \ (Call ∪ Ex), and pl(〈β, u〉) = 0 if u ∈ Call ∪ Ex. The set of states V
is partitioned into V0, V1, and V2, where Vi = pl−1(i). We consider MA with
various initial states of the form 〈ε, u〉, denoting this by Mu

A. Some states of MA

are terminating states and have no outgoing transitions. These are states 〈ε, ex〉,
where ex is an exit node. An RSSG where V2 = ∅ (V1 = ∅) is called a maxi-
mizing (minimizing, respectively) Recursive Markov Decision Process (RMDP);
an RSSG where V1 ∪ V2 = ∅ is called a Recursive Markov Chain (RMC) ([7]);
A 1-RSSGs is a RSSG where every component has one exit, and we likewise
define 1-RMDPs and 1-RMCs. This entire paper is focused on 1-RSSGs and
1-RMDPs, except for Theorem 8, where we show that multi-exit RMDP reward
games are undecidable. In a (1-)RSSG with positive rewards the goal of player

Recursive Stochastic Games with Positive Rewards 717

1 (maximizer) is to maximize the total expected reward gained during a play of
the game, and the goal of player 2 (minimizer) is to minimize this. A strategy
σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vi -→ V , where, given the history
ws ∈ V ∗Vi of play so far, with s ∈ Vi (i.e., it is player i’s turn to play a move),
σ(ws) = s′ determines the next move of player i, where (s,⊥, s′, c) ∈ Δ. (We
could also allow randomized strategies, but this won’t be necessary, as we shall
see.) Let Ψi denote the set of all strategies for player i. A pair of strategies σ ∈ Ψ1

and τ ∈ Ψ2 induce in a straightforward way a Markov chain Mσ,τ
A = (V ∗, Δ′),

whose set of states is the set V ∗ of histories. Let rk,σ,τu denote the expected
reward in k steps in Mσ,τ

A , starting at initial state 〈ε, u〉. Formally, we can define
the total expected reward gained during the i’th transition, starting at 〈ε, u〉 to
be given by a random variable Yi. The total k-step expected reward is simply
rk,σ,τu = E[

∑k
i=1 Yi]. When k = 0, we of course have r0,σ,τ

u = 0. Given an initial
vertex u, let r∗,σ,τu = limk→∞ rk,σ,τ = E[

∑∞
i=1 Yi] ∈ [0,∞] denote the total ex-

pected reward obtained in a run of Mσ,τ
A , starting at initial state 〈ε, u〉. Clearly,

this sum may diverge, thus r∗,σ,τ ∈ [0,∞]. Note that, because of the positive
constraint on the rewards out of all transitions, the sum will be finite if and only
if the expected number of steps until the run terminates is finite.

We now want to associate a “value” to 1-RSSG games. Unlike 1-RSSGs
with termination probability objectives, it unfortunately does not follow di-
rectly from general determinacy results such as Martin’s Blackwell determinacy
([22]) that these games are determined, because those determinacy results re-
quire a Borel payoff function to be bounded, whereas the payoff function for
us is unbounded. Nevertheless, we will establish that determinacy does hold for
1-RSSG positive reward games, as part of our proof of Stackless & Memory-
less determinacy. For all vertices u, let r∗u

.= supσ∈Ψ1
infτ∈Ψ2 r

∗,σ,τ
u . We show

r∗u = infτ∈Ψ2 supσ∈Ψ1
r∗,σ,τu , and thus r∗u is the value of the game starting at

vertex u. We are interested in the following problem: Given A, a 1-RSSG (or
1-RMDP), and given a vertex u in A, compute r∗u if it is finite, or else declare
that r∗u = ∞. Also, compute optimal strategies for both players. For a strategy
σ ∈ Ψ1, let r∗,σu = infτ∈Ψ2 r

∗,σ,τ
u , and for τ ∈ Ψ2, let r∗,·,τu = supσ∈Ψ1

r∗,σ,τu . Call
a deterministic strategy Stackless & Memoryless (SM) if it depends neither on
the history of the game nor on the current call stack, i.e., only depends on the
current vertex. Such strategies, for player i, can be given by a map σ : Vi -→ V .
We call a game SM-determined if both players have optimal SM strategies.

In ([8]) we defined a monotone system of nonlinear min-max equations for
the value of the termination probability game on 1-RSSGs, and showed that its
Least Fixed Point solution yields the desired probabilities. Here we show we can
adapt this to obtain analogous linear min-max systems in the setting of positive
reward 1-RSSGs. We use a variable xu for each unknown r∗u. Let x be the vector
of all xu, u ∈ Q. The system has one equation of the form xu = Pu(x) for each
vertex u. Suppose that u is in component Ai with (unique) exit ex. There are 5
cases based on the “Type” of u.

1. Type0: u = ex. In this case: xu = 0.
2. Typerand: pl(u) = 0 & u ∈ (Ni \ {ex})∪Reti: xu =

∑
v∈n(u) pu,v(xv + cu,v).

718 K. Etessami, D. Wojtczak, and M. Yannakakis

3. Typecall: u = (b, en) is a call port: x(b,en) = xen + x(b,ex′) + cu,
where ex′ ∈ ExY (b) is the unique exit of AY (b).

4. Typemax: pl(u) = 1 and u ∈ (Ni \ {ex}) ∪ Reti: xu = maxv∈n(u)(xv + cu,v)
5. Typemin: pl(u) = 2 and u ∈ (Ni \ {ex}) ∪ Reti: xu = minv∈n(u)(xv + cu,v)

We denote the system in vector form by x = P (x). Given a 1-RSSG, we can
easily construct its associated system in linear time. For vectors x,y ∈ Rn, x ≤ y
means xj ≤ yj for every j. Let r∗ ∈ Rn denote the n-vector of r∗u’s. Let 0 denote
an all 0 vector, and define x0 = 0, xk+1 = P k+1(0) = P (xk), for k ≥ 0.

Theorem 1. (1) The map P : R
n → R

n
is monotone on R∞≥0 and 0 ≤ xk ≤

xk+1 for k ≥ 0. (2) r∗ = P (r∗). (3) For all k ≥ 0, xk ≤ r∗. (4) For all r′ ∈ R∞≥0,
if r′ = P (r′), then r∗ ≤ r′. (5) For all vertices u, r∗u

.= supσ∈Ψ1
infτ∈Ψ2 r

∗,σ,τ
u =

infτ∈Ψ2 supσ∈Ψ1
r∗,σ,τu (i.e., these games are determined). (6) r∗ = limk→∞ xk.

The following is a simple corollary of the proof.

Corollary 1. In 1-RSSG positive reward games, the minimizer has an optimal
deterministic Stackless and Memoryless (SM) strategy.

3 SM-Determinacy and Strategy Improvement

We now prove SM-determinacy, and also show that strategy improvement can be
used to compute the values and optimal strategies for 1-RSSG positive reward
games. Consider the following (simultaneous) strategy improvement algorithm.

Initialization: Pick some (any) SM strategy, σ, for player 1 (maximizer).
Iteration step: First compute the optimal value, r∗,σu , starting from every vertex,
u, in the resulting minimizing 1-RMDP. (We show in Theorem 3 that this can
be done in P-time.) Then, update σ to a new SM strategy, σ′, as follows. For
each vertex u ∈ Typemax, if σ(u) = v and u has a neighbor w = v, such
that r∗,σw + cu,w > r∗,σv + cu,v, let σ′(u) := w (e.g., choose a w that maximizes
r∗,σw + cu,w). Otherwise, let σ′(u) := σ(u).

Repeat the iteration step, using the new σ′ in place of σ, until no further local
improvement is possible, i.e., stop when σ′ = σ.

Theorem 2 shows that this algorithm always halts, and produces an optimal
final SM strategy for player 1. (The proof shows it works even if we switch
any non-empty subset of improvable vertices in each iteration.) Combined with
Corollary 1, both players have optimal SM strategies, i.e., the games are SM-
determined.

Theorem 2. (1) SM-determinacy. In 1-RSSG positive reward games, both play-
ers have optimal SM strategies. (2) Strategy Improvement. Moreover, we can
compute the value and optimal SM strategies using the above simultaneous strat-
egy improvement algorithm. (3) Computing the value and optimal strategies in
these games is contained in the class PLS.

Recursive Stochastic Games with Positive Rewards 719

The proof is intricate, and is given in the full version ([11]). Here we briefly sketch
the approach. Fix a SM strategy σ for player 1. It can be shown that if x = P (x)
is the linear-min-max equation system for this 1-RSSG, then r∗,σu ≤ Pu(r∗,σ),
for all vertices u, and equality fails only on vertices ui belonging to player 1
such that σ(ui) = vi is not “locally optimal”, i.e., such that there exists some
neighbor wi such that r∗,σwi

+ cui,wi > r∗,σvi
+ cui,vi . Let u1, . . . , un be all such

vertices belonging to player 1. Associate a parameter ti ∈ R∞≥0 with each such
vertex ui, creating a parametrized game A(t), in which whenever the vertex ui
is encountered player 1 gains additional reward ti and the game then terminates.
Let gu,τ (t) denote the expected reward of this parametrized game starting at
vertex u, when player 1 uses SM strategy σ and player 2 uses SM strategy τ .
Let fu(t) = minτ gu,τ (t). The vector tσ, where tσi = r∗,σui

, is a fixed point of
fu(t), for every vertex u, and so is tσ

′
where σ′ is any SM strategy consistent

with σ on all vertices other than the ui’s. The functions gu,τ (t) is continuous and
nondecreasing over [0,∞]n, and expressible as an infinite sum of linear terms with
non-negative coefficients. Using these properties of gu,τ , and their implications
for fu, we show that if σ′ is the SM strategy obtained by locally improving the
strategy σ at the ui’s, by letting σ′(ui) := wi, then tσi = r∗,σui

< r∗,σ
′

ui
= tσ

′

i , and
thus also r∗,σz = fz(tσ) ≤ fz(tσ

′
) = r∗,σ

′

z , for any vertex z. Thus, switching to σ′

does not decrease the value at any vertex, and increases it on all the switched
vertices ui. There are only finitely many SM strategies, thus after finitely many
iterations we reach a SM strategy, σ, where no improvement is possible. This σ
must be optimal. Since each local improvement step can be done in P-time and
increases sum total reward, the problem is in PLS. ��

4 The Complexity of Reward 1-RMDPs and 1-RSSGs

Theorem 3. There is a P-time algorithm for computing the exact optimal value
(including the possible value ∞) of a 1-RMDP with positive rewards, in both the
case where the single player aims to maximize, or to minimize, the total reward.

We consider maximizing and minimizing 1-RMDPs separately.

Maximizing reward 1-RMDPs
We are given a maximizing reward 1-RMDP (i.e., no Typemin nodes in the 1-
RSSG). Let us call the following LP “max-LP ”:

Minimize
∑
u∈Q xu

Subject to:
xu = 0 for all u ∈ Type0

xu ≥
∑

v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≥ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y (b).
xu ≥ (xv + cu,v) for all u ∈ Typemax and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q

We show that, when the value vector r∗ is finite, it is precisely the optimal
solution to the above max-LP, and furthermore that we can use this LP to find

720 K. Etessami, D. Wojtczak, and M. Yannakakis

and eliminate vertices u for which r∗u =∞. Note that if r∗ is finite then it fulfills
all the constraints of the max-LP, and thus it is a feasible solution. We will show
that it must then also be an optimal feasible solution. We first have to detect
vertices u such that r∗u = ∞. For the max-linear equation system P , we define
the underlying directed dependency graph G, where the nodes are the set of
vertices, Q, and there is an edge in G from u to v if and only if the variable xv
occurs on the right hand side in the equation defining variable xu in P . We can
decompose this graph in linear time into strongly connected components(SCCs)
and get an SCC DAG SCC(G), where the set of nodes are SCCs of G, and an
edge goes from one SCC A to another B, iff there is an edge in G from some
node in A to some node in B. We will call a subset U ⊆ Q of vertices proper
if all vertices reachable in G from the vertices in U are already in U . We also
use U to refer to the corresponding set of variables. Clearly, such a proper set U
must be a union of SCCs, and the equations restricted to variables in U do not
use any variables outside of U , so they constitute a proper equation system on
their own. For any proper subset U of G, we will denote by max-LP|U a subset
of equations of max-LP, restricted to the constraints corresponding to variables
in U and with new objective

∑
u∈U xu. Analogously we define P |U , and let x|U

be the vector x with entries indexed by any v ∈ U removed.

Proposition 1. Let U be any proper subset of vertices. (I) The vector r∗|U is
the LFP of P |U . (II) If r∗u = ∞ for some vertex u in an SCC S of G, then
r∗v = ∞ for all v ∈ S. (III) If r′ is an optimal bounded solution to max-LP|U ,
then r′ is a fixed point of P |U . (IV) If max-LP|U has a bounded optimal feasible
solution r′, then r′ = r∗|U .

Theorem 4. We can compute r∗ for the max-linear equation system P , includ-
ing the values that are infinite, in time polynomial in the size of the 1-RMDP.

Proof. Build dependency graphG ofP and decompose it into SCC DAG SCC(G).
We will find the LFP solution to P , bottom-up starting at a bottom SCC, S1. We
solvemax-LP|S1 using a P-time LP algorithm. If the LP is feasible then the optimal
(minimum) value is bounded, and we plug in the values of the (unique) optimal
solution as constants in all other constraints of max-LP. We know this optimal
solution is equal to r∗|S1 , since S1 is proper. We do the same, in bottom-up order,
for remaining SCCs S2, . . . , Sl. If at any point after adding the new constraints
corresponding to the variables in an SCC Si, the LP is infeasible, we know from
Proposition 1 (IV), that at least one of the values of r∗|Si is∞. So by Proposition 1
(II), all are. We can then mark all variables in Si as∞, and also mark all variables
in the SCCs that can reach Si in SCC(G) as∞. Also, at each step we add to a set
U the SCCs that have finite optimal values. At the end we have a maximal proper
such set U , i.e., every variable outside of U has value ∞. We label the variables
not in U with∞, obtaining the vector r∗. ��

Minimizing reward 1-RMDPs
Given a minimizing reward 1-RMDP (i.e., no Typemax nodes) we want to com-
pute r∗. Call the following LP “min-LP: ”

Recursive Stochastic Games with Positive Rewards 721

Maximize
∑
u∈Q xu

Subject to:

xu = 0 for all u ∈ Type0

xu ≤
∑

v∈n(u) pu,v(xv + cu,v) for all u ∈ Typerand

xu ≤ xen + x(b,ex′) + cu for all u = (b, en) ∈ Typecall; ex′ is the exit of Y (b).
xu ≤ (xv + cu,v) for all u ∈ Typemin and all v ∈ n(u)
xu ≥ 0 for all vertices u ∈ Q

Lemma 1. For any proper set U , if an optimal solution x to min-LP|U is
bounded, it is a fixed point of the min-linear operator P |U . Thus, if min-LP|U has
a bounded optimal feasible solution then r∗|U is bounded (i.e., is a real vector).

From min-LP we can remove variables xu ∈ Type0, by substituting their occur-
rences with 0. Assume, for now, that we can also find and remove all variables
xu such that r∗u = ∞. By removing these 0 and ∞ variables from P we obtain a
new system P ′, and a new LP, min-LP′.
Lemma 2. If ∞ and 0 nodes have been removed, i.e., if r∗ ∈ (0,∞)n, then r∗

is the unique optimal feasible solution of min-LP′.

Proof. By Corollary 1, player 2 has an optimal SM strategy, call it τ , which
yields the finite optimal reward vector r∗. Once strategy τ is fixed, we can define
a new equation system P ′τ (x) = Aτx+bτ , where Aτ is a nonnegative matrix and
bτ is a vector of average rewards per single step from each node, obtained under
strategy τ . We then have r∗ = limk→∞(P ′τ)

k(0), i.e., r∗ is the LFP of x = P ′(x).
Proposition 2. (I) r∗ = (

∑∞
k=0 Akτ)bτ . (II) If r∗ is finite, then limk→∞ Akτ = 0,

and thus (I −Aτ)−1 =
∑∞
i=0(Aτ)

i exists (i.e., is a finite real matrix).
Now pick an optimal SM strategy τ for player 2 that yields the finite r∗. We
know that r∗ = (I −Aτ)−1bτ . Note that r∗ is a feasible solution of the min-LP′.
We show that for any feasible solution r to min-LP′, r ≤ r∗. From the LP we
can see that r ≤ Aτr+bτ (because this is just a subset of the constraints) and in
other words (I−Aτ)r ≤ bτ . We know that (I−Aτ)−1 exists and is non-negative
(and finite), so multiply both sides by (I −Aτ)−1 to get r ≤ (I −Aτ)−1bτ = r∗.
Thus r∗ is the optimal feasible solution of min-LP′. ��
For u ∈ Q, consider the LP: Maximize xu, subject to: the same constraints
as min-LP, except, again, remove all variables xv ∈ Type0. Call this u-min-LP′.

Theorem 5. In a minimizing 1-RMDP, for all vertices u, value r∗u is finite
iff u-min-LP′ is feasible and bounded. Thus, combined with Lemma 2, we can
compute the exact value (even if ∞) of minimizing reward 1-RMDPs in P-time.

Complexity of (1-)RSSGs with positive rewards

Theorem 6. Deciding whether the value r∗u of a 1-RSSG positive reward game
is ≥ a for a given a ∈ [0,∞], is in NP ∩ coNP.

This is immediate from P-time upper bounds for 1-RMDPs, and SM-determinacy:
guess a player’s SM strategy, and compute the value for the remaining 1-RMDP.

722 K. Etessami, D. Wojtczak, and M. Yannakakis

Theorem 7. Condon’s quantitative termination problem for finite SSGs reduces
in P-time to the problem of deciding whether r∗u =∞.

By contrast, for finite-state SSGs with strictly positive rewards, we can decide
in P-time whether the value is ∞, because this is the case iff the value of the
corresponding termination game is not 1. Deciding whether an SSG termination
game has value 1 is in P-time (see, e.g., [9]).

Finally, we show undecidability for multi-exit RMDPs and RSSGs.

Theorem 8. For multi-exit positive reward RMDPs it is undecidable to distin-
guish whether the optimal expected reward for a node is finite or ∞.

Acknowledgement. Research partly supported by NSF grant CCF-0728736.

References

1. Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Reachability in recursive markov
decision processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS,
vol. 4137. Springer, Heidelberg (2006)

2. Condon, A.: The complexity of stochastic games. Inf.&Comp. 96, 203–224 (1992)
3. Condon, A., Melekopoglou, M.: On the complexity of the policy iteration algorithm

for stochastic games. ORSA Journal on Computing 6(2) (1994)
4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:

Probabilistic models of Proteins and Nucleic Acids. Cambridge U. Press, Cam-
bridge (1999)

5. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-
tomata. In: LICS, pp. 12–21 (2004)

6. Esparza, J., Kučera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown
automata: expectations and variances. In: Proc. of 20th IEEE LICS 2005 (2005)

7. Etessami, K., Yannakakis, M.: Recursive markov chains, stochastic grammars,
and monotone systems of non-linear equations. In: Proc. of 22nd STACS (2005),
http://homepages.inf.ed.ac.uk/kousha/bib index.html

8. Etessami, K., Yannakakis, M.: Recursive markov decision processes and recursive
stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580. Springer, Heidelberg (2005)

9. Etessami, K., Yannakakis, M.: Efficient qualitative analysis of classes of recursive
markov decision processes and simple stochastic games. In: Durand, B., Thomas,
W. (eds.) STACS 2006. LNCS, vol. 3884. Springer, Heidelberg (2006)

10. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed
points. In: Proc. of 48th IEEE FOCS (2007)

11. Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with pos-
itive rewards. Tech report EDI-INF-RR-1224 (July 2007)

12. Fagin, R., Karlin, A., Kleinberg, J., Raghavan, P., Rajagopalan, S., Rubinfeld, R.,
Sudan, M., Tomkins, A.: Random walks with “back buttons”. In: STOC (2000)

13. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(1997)

14. Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646. Springer, Heidelberg
(2007)

http://homepages.inf.ed.ac.uk/kousha/bib_index.html

Recursive Stochastic Games with Positive Rewards 723

15. Gawlitza, T.: Personal communication (April 2008)
16. Haccou, P., Jagers, P., Vatutin, V.A.: Branching Processes: Variation, Growth, and

Extinction of Populations. Cambridge U. Press, Cambridge (2005)
17. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)
18. Hoffman, A., Karp, R.: On nonterminating stochastic games. Manag. Sci. 12, 359–

370 (1966)
19. Johnson, D.S., Papadimitriou, C., Yannakakis, M.: How easy is local search? J.

Comput. Syst. Sci. 37(1), 79–100 (1988)
20. Juba, B.: On the hardness of simple stochastic games. Master’s thesis, CMU (2006)
21. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.

MIT Press, Cambridge (1999)
22. Martin, D.A.: Determinacy of Blackwell games. J. Sym. Log. 63, 1565–1581 (1998)
23. Neyman, A., Sorin, S. (eds.): Stochastic Games and Applications. Kluwer, Dor-

drecht (2003)
24. Pliska, S.: Optimization of multitype branching processes. Management Sci. 23,

117–124 (1976)
25. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)
26. Rothblum, U., Whittle, P.: Growth optimality for branching Markov decision

chains. Math. Oper. Res. 7(4), 582–601 (1982)
27. Veinott, A.F.: Discrete dynamic programming with sensitive discount optimality

criteria. Ann. Math. Statist. 40, 1635–1660 (1969)
28. Wojtczak, D., Etessami, K.: Premo: an analyzer for probabilistic recursive models.

In: Proc. of TACAS (2007), http://groups.inf.ed.ac.uk/premo/

http://groups.inf.ed.ac.uk/premo/

Complementation, Disambiguation, and
Determinization of Büchi Automata Unified

Detlef Kähler and Thomas Wilke

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

Abstract. We present a uniform framework for (1) complementing Büchi au-
tomata, (2) turning Büchi automata into equivalent unambiguous Büchi au-
tomata, and (3) turning Büchi automata into equivalent deterministic automata.
We present the first solution to (2) which does not make use of McNaughton’s the-
orem (determinization) and an intuitive and conceptually simple solution to (3).

Our results are based on Muller and Schupp’s procedure for turning alternating
tree automata into non-deterministic ones.

1 Introduction

As Büchi automata play a crucial role when it comes to designing decision procedures
for mathematical theories (such as S1S and S2S) and solving verification problems, see,
for instance, [3,16,21], much work has been devoted to fundamental constructions for
Büchi automata, in particular, numerous complementation and determinization1 proce-
dures have been suggested and lower bounds have been proved, see [3,18,8,19,9,7,22,5]
and [13,11,4,12,17,14,15], respectively. The known constructions for complementation
have nothing in common with the known constructions for determinization, unless one
considers the following detour: To complement a given Büchi automaton, one first
determinizes it, then complements the deterministic automaton (which is, in general,
straightforward), and finally reconverts the complemented deterministic automaton into
a Büchi automaton. This, however, yields much more complex constructions than the
ones that aim directly at complementation, not only on an informal level, but also on
a formal one: When the number of states of the resulting automata are used for com-
paring them, then direct complementation constructions are by far superior. For turning
a Büchi automaton into an equivalent unambiguous Büchi automaton, the situation is
worse. The only disambiguation procedure that has been published [2] goes via deter-
minization and therefore is complex.

In this paper, we establish a uniform framework for complementation, disambigua-
tion, and determinization, where complementation and disambiguation avoid deter-
minization. This framework heavily builds on the work by Muller and Schupp described
in [14], where they present a procedure that turns alternating tree automata into non-
deterministic ones and point out that, as a byproduct, one obtains a determinization
procedure for Büchi (word) automata. From their work we identify a characteristic

1 Recall that there are Büchi automata for which no equivalent deterministic Büchi automata
exist. Determinization in the context of Büchi automata therefore means to turn a Büchi au-
tomaton into an equivalent deterministic automaton with an appropriate acceptance condition.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 724–735, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Complementation, Disambiguation, and Determinization of Büchi Automata Unified 725

structure which is associated with a given Büchi automaton and a given word over
the same alphabet—the so-called skeleton. We first show that this tree can be produced
level by level by an unambiguous Büchi automaton—the so-called slice automaton. We
then show that by forming a product of the slice automaton with small Büchi automata
(i) an equivalent unambiguous Büchi automaton and (ii) an unambiguous Büchi au-
tomaton for the complement can be obtained. The number of states of the complement
automaton obtained is at most 4(3n)n, which is comparable to other constructions. The
upper bound for the size of the unambiguous automaton is the same, which is much
smaller than anything one obtains by first determinizing the given automaton, in partic-
ular, it is much smaller than the automaton described in [2]. It should be noted that after
simple optimizations, the tighter analysis from [5] applies in both cases, (i) and (ii).

We also show how the branching structure of the skeleton can be approximated
by a conceptually simple deterministic automaton, which, by forming a product with
a generic parity automaton (latest appearance record with hit), can be turned into an
equivalent deterministic parity automaton.

Related work. The first comprehensive description of Muller and Schupp’s determiniza-
tion construction for Büchi word automata and a comparison with Safra’s determiniza-
tion construction was given by the first author in his diploma thesis [10]; further data
on the relation between these two determinization constructions was presented in [1]. A
preliminary version of the complementation construction presented here was described
in [20]. The exposition in the present paper is more modular, in particular, [20] did not
have the intermediate slice automaton, which is the basis for both complementation and
disambiguation.

2 Basic Notation and Definitions

We use standard notation for alphabets and words. A Büchi automaton is a tuple A =
(A,Q, qI , Δ, F) where A is a finite alphabet, Q is a finite state set, qI ∈ Q is an initial
state, Δ ⊆ Q×A×Q is a transition relation, and F ⊆ Q is a final state set. A run of A
on a word u ∈ Aω is a word ρ ∈ Qω satisfying ρ(0) = qI and (ρ(i), u(i), ρ(i+1)) ∈ Δ
for all i < ω. Such a run is accepting if there exist infinitely many i such that ρ(i) ∈ F .
The set of all words accepted by A is denoted L(A). A Büchi automaton A as above
is unambiguous if for every u ∈ Aω there is at most one accepting run of A on u.

Henceforth, we assume, without loss of generality, that every Büchi automaton is
complete, that is, for every q ∈ Q, a ∈ A, there exists q′ ∈ Q such that (q, a, q′) ∈ Δ.

All trees in this paper are binary trees with ordered successors. One way to represent
such a tree is by a prefix-closed non-empty subset of {0, 1}∗. If t denotes such a tree
and v0 ∈ t, then v0 is the left successor or 0-successor of v. Symmetrically, if v1 ∈ t,
then v1 is the right successor or 1-successor of v. A vertex v′ ∈ t is a descendant of a
vertex v ∈ t if v ≤prf v′, where ≤prf denotes the prefix order. The set of inner vertices
and leafs of a tree t are denoted by inner(t) and leafs(t), respectively.

As usual, a tree t is called full binary tree if for every v ∈ t either {v0, v1} ∩ t = ∅
or {v0, v1} ⊆ t, that is, if every vertex is a leaf or has two successors.

A path through a tree t is a word π ∈ t+∪ tω such that π(i+1) ∈ {π(i)0, π(i)1} for
all i with i + 1 < |π|. A branch is a maximum path starting in the root, that is, starting

726 D. Kähler and Th. Wilke

with ε, which denotes the empty word. By abuse of notation, when π is a path we will
write v ∈ π to denote that there exists i < |π| such that v = π(i).

Another way to represent a binary tree is as a tuple T = (V, s0, s1) where V is an
arbitrary set of vertices and s0 : V → V and s1 : V → V are partial functions de-
scribing the 0- and 1-successors of the vertices, respectively. The root of such a tree is
denoted vT . As the two representations of trees are interchangeable, in concrete circum-
stances we will use the representation which is most convenient. The first is referred to
as implicit notation while the second is referred to as explicit notation.

A vertex v of a tree T as above is on level 0 if v = vT , that is, if v is the root of T .
It is on level i + 1 if it is a successor of a vertex on level i. The width of a tree is the
supremum of the number of vertices on any level.

For a set L, an L-labeled tree in implicit notation is a function t : V → L where V
is a tree in implicit notation as defined above. For every vertex v ∈ V , the value t(v) is
the label of v. By abuse of notation, we will write v ∈ t instead of v ∈ V . An L-labeled
tree in explicit notation is a tuple T = (V, s0, s1, l) where (V, s0, s1) is a tree in explicit
notation as defined above and l : V → L is the labeling function which assigns to each
v ∈ V its label l(v). By abuse of notation, we will write T (v) for l(v). The i-th slice of
an L-labeled tree is the word which is obtained by reading the labels of the vertices on
level i from left to right, that is, it is a word over L.

3 Split Trees and Skeletons

In the rest of this paper, A denotes a fixed Büchi automaton as above with n states and
u an infinite word over the same alphabet.

The split tree for u with respect to A is a tree which can be thought of as refining the
power set construction. The root is labeled with the singleton set consisting of the initial
state only. For any vertex on level i, we consider the set of states which can be reached
from the states the vertex is labeled with by reading the letter at position i, split this set
into final and non-final states, and label the left successor of the vertex with the final
states and the right successor with the non-final states. If there are no final or non-final
states the respective successor does not exist.

To describe this formally, we introduce more notation. For a set of states Q′ ⊆ Q
and a letter a ∈ A, we define Δ(Q′, a) = {q ∈ Q : ∃q′(q′ ∈ Q′ ∧ (q′, a, q) ∈ Δ)}, and,
similarly, ΔF (Q′, a) = Δ(Q′, a) ∩ F and ΔF (Q′, a) = Δ(Q′, a) \ F .

The split tree for u with respect to A , denoted tspu , is a binary tree in implicit form
with labels in 2Q, inductively defined as follows. For the basis, ε ∈ tspu and tspu (ε) =
{qI}. For the inductive step, assume v ∈ tspu and let Q′ = tspu (v), i = |v|, and a = u(i).
Then:

– If ΔF (Q′, a) = ∅, then v0 ∈ tspu and tspu (v0) = ΔF (Q′, a).
– If ΔF (Q′, a) = ∅, then v1 ∈ tspu and tspu (v1) = ΔF (Q′, a).

If ρ is a run of A on u, then β inductively defined by β(0) = ε and β(i+1) = β(i)0
if ρ(i+ 1) ∈ F and else β(i+ 1) = β(i)1 is a branch of tspu . Conversely, using König’s
lemma, one can easily prove that for every infinite branch β of tspu there exists a run ρ
of A on u such that ρ(i) ∈ tspu (β(i)) for every i < ω. We say that ρ is a witness for β.

Complementation, Disambiguation, and Determinization of Büchi Automata Unified 727

Using the next definition, it is straightforward to express in terms of tspu whether
u ∈ L(A). We say a branch β of a tree is left-recurring if it is infinite and β(i) is a left
successor for infinitely many i. This implies:

Remark 1. u ∈ L(A) iff in tspu there exists a left-recurring branch.

Assume tspu has a left-recurring branch. Consider the following inductive process for
constructing the “left-most left-recurring branch”, denotedλu. For the basis, letλu(0) =
ε. For the inductive step, assume λu(i) is defined and let v = λu(i).

– If v0 is on a left-recurring branch of t, then λu(i + 1) = v0.
– If v0 is not on a left-recurring branch, then λu(i + 1) = v1.

That this process yields indeed a left-recurring branch is stated in the following lemma,
but it also states another interesting property of λu. The lemma uses the following
notation: v ≤lft v′ if |v| = |v|′ and v ≤lex v′, where ≤lex denotes the lexicographical
ordering.

Lemma 1. Let A be a Büchi automaton and u an infinite word over the same alphabet.
Assume tspu has a left-recurring branch. Then:

1. λu is left-recurring.
2. λu ≤lex β for every left-recurring branch β of tspu .
3. Let ρ be a witness for λu. Then ρ(i) /∈ tspu (v) for all i < ω and v ∈ tspu with

v <lft λu(i).

One property of the split tree is that, in general, it has unbounded width, which makes
it difficult to handle. Since we know from the previous lemma that there is a left-most
left-recurring path, it suggests itself to remove a state from a labeling of a vertex if it
occurs in a vertex on the same level which is to the left of it. This leads to the following
inductive definition of the reduced split tree for a word u with respect to A , denoted
trsu , where the induction is on the lexicographic ordering of the vertices. For the basis,
ε ∈ trsu and trsu (ε) = {qI}. For the inductive step, assume v ∈ trsu and let Q′ = trsu (v),
i = |v|, and a = u(i). Further, let Q′′ =

⋃
{Δ(trsu (v′), a) : v′ ∈ trsu ∧ v′ <lft v}.

Observe that Q′′ is the set of states which have been assigned to vertices to the left of
v0. Then:

– If ΔF (Q′, a) \Q′′ = ∅, then v0 ∈ trsu and trsu (v0) = ΔF (Q′, a) \Q′′.
– If ΔF (Q′, a) \Q′′ = ∅, then v1 ∈ trsu and trsu (v1) = ΔF (Q′, a) \Q′′.
From Remark 1 and Lemma 1, we can conclude:

Lemma 2. Let A be a Büchi automaton and u an infinite word over the same alphabet.
Then u ∈ L(A) iff in trsu there exists a left-recurring branch.

The other important property of trsu is:

Remark 2. The tree trsu has width at most n.

As we are only interested in the infinite branches of trsu , we prune away the finite
branches. The skeleton for u with respect to A , denoted tsku , is the subtree of trsu which
contains a vertex v if there exists an infinite branch β of trsu with v ∈ β. By König’s
lemma, this is equivalent to having an infinite number of descendants.

Remark 3. The skeleton tsku has an infinite left-recurring branch iff u ∈ L(A).

728 D. Kähler and Th. Wilke

4 Disambiguation and Complementation

The complementation and disambiguation construction to be presented make use of the
fact that one can construct an unambiguous automaton that produces the slices of the
skeleton. We first describe what exactly we mean by this and how this automaton can
be used for disambiguation and complementation. We then turn to the construction of
this automaton.

4.1 Slice Automaton and Its Applications

The i-th skeleton slice of u with respect to A , denoted skelslicei(u), is the i-th slice
(see Sect. 2) of the skeleton for u. So skelslicei(u) ∈ (2Q)+. We say that a skeleton
slice Q0 . . .Qs−1 is accepting if there exists i < s such that Qi ⊆ F .

Using the above definition and Remark 3 we can state:

Remark 4. 1. u ∈ L(A) iff there are infinitely many i such that skelslicei(u) is ac-
cepting.

2. u /∈ L(A) iff there is some i such that skelslicej(u) is not accepting for all j ≥ i.

We say a Büchi automaton S = (A,S, sI , Δ
′, F ′) is a slice automaton for A with

respect to some function h : S → (2Q)+ if for every u ∈ Aω there exists exactly one
accepting run ρu of S on u and this run has the property that h(ρ(i)) = skelslicei(u)
for every i < ω.

Proposition 1. For every Büchi automaton A there exists a slice automaton with at
most (3n)n states.

Before we sketch the construction, we explain how this automaton can be used for
disambiguation and complementation.

The first part of Remark 4 tells us how to disambiguate: We simply check—using
a Büchi condition and in a deterministic fashion—that infinitely accepting slices are
produced by the slice automaton. The second part tells us how to complement: We
simply guess a point from which onwards all skeleton slices produced by the slice
automaton are not accepting.

To turn this into a construction, we use the following product definition. Let A be
as above, h : Q→ B a function, and B = (B,S, sI , Δ

′, F ′) a Büchi automaton. Then
the Büchi automaton A ×h B = (A,Q× S × {0, 1}, (qI, sI , 0), Δ′′, F × S × {0}) is
defined by: ((q, s, b), a, (q′, s′, b′)) ∈ Δ′′ for (q, a, q′) ∈ Δ and (s, h(q), s′) ∈ Δ′, and
where

b′ =

{
0 if b = 0 and q /∈ F , or b = 1 and s ∈ F ,

1 if b = 1 and s /∈ F ′, or b = 0 and q ∈ F .

Remark 5. 1. For every u ∈ Aω , u ∈ L(A ×h B) iff there exists an accepting run ρ
of A on u and an accepting run of B on h(ρ(0))h(ρ(1))

2. If A and B are unambiguous, then so is A ×h B.

Complementation, Disambiguation, and Determinization of Büchi Automata Unified 729

Let A be a Büchi automaton, and S a slice automaton for A with respect to h. Let C dis and
C cpl be defined by

S, Sa SS Sa

S

C dis C cpl

Sa
Sa

where Sa and S stand for accepting and non-accepting slices, respectively. The automata A dis

and A cpl are defined by

A dis = S ×h C dis A cpl = S ×h C cpl ,

respectively.

Fig. 1. Disambiguation and Complementation Construction

From this remark and the above observations, see Remark 4, it is now easy to derive
disambiguation and complementation constructions. These are described in Figure 1,
where, for complementation, w. l. o. g., we assume that every skeleton has at least one
accepting slice.

Theorem 1. Let A be a Büchi automaton.

1. The automaton A dis is an equivalent unambiguous Büchi automaton with at most
4(3n)n states.

2. The automaton A cpl is a Büchi automaton with at most 4(3n)n states satisfying
L(A cpl) = Aω \ L(A) where A is the alphabet of A .

4.2 Construction of a Slice Automaton

The slice automaton we present produces, in a deterministic fashion, the slices of the
reduced split tree. In addition, it guesses which vertices of each level are vertices of the
skeleton and which are not.

The problem is that the automaton needs to verify that its guesses are correct. To
achieve this, the automaton proceeds in phases as follows. At the beginning of a phase
there are certain vertices which have been guessed to be skeleton vertices, and the others
have been guessed to be non-skeleton vertices. The automaton follows the descendants
of the vertices which have been guessed to be skeleton vertices and for each descendant
it decides whether it is a skeleton vertex or not. The latter are put on hold for the next
phase. Recall that by definition the non-skeleton vertices are the ones which have only
finitely many descendants. So the automaton follows these descendants and ends the
current phase as soon as there are no more such descendants. At this point, it reaches
a final state and the states on hold take over the role of the states guessed to be non-
skeleton vertices. If infinitely many phases are gone through, the guesses were correct.

We first study how the slices of the reduced split tree evolve. So assume S =
Q0 . . .Qs−1 is slice i of the reduced split tree for u and a = u(i). For every j < s,
consider Q′2j and Q′2j+1 defined by

730 D. Kähler and Th. Wilke

Q′2j = ΔF (Qj , a) , Q′2j+1 = ΔF (Qj , a) .

Further, for every j < s, let Q̃j =
⋃
k<2j Q

′
k and set

Q′′2j = Q′2j \ Q̃j , Q′′2j+1 = Q′2j+1 \ Q̃j .

Slice i + 1 of the reduced split tree is obtained by removing from Q′′0 . . .Q′′2s−1 all
occurrences of ∅. We write Δ(S, a) for this word and fS,a for the partial function
{0, . . . , 2s−1} → {0, . . . , 2s−1}which tells us where the Q′′j ’s are moved to because
of removing ∅: If Q′′j is non-empty, then fS,a(j) is the number of non-empty sets in the
sequence Q′′0 , . . . , Q

′′
j−1, and undefined otherwise.

We now describe the state set of our slice automaton. A decorated slice is a word
(Q0, b0) . . . (Qs−1, bs−1) where the Qj’s are pairwise disjoint, non-empty subsets of
Q and where bj ∈ {0, ∗, 1} for j < s. The b′js are meant to indicate whether the
corresponding vertex of the respective level is guessed to belong to the skeleton (1),
is being checked to be a non-skeleton vertex (0), or is put on hold (∗). We say such a
decorated slice is a reset slice if bj = 0 for all j < s.

Let D = (Q0, b0) . . . (Qs−1, bs−1) be a decorated slice, a ∈ A, S = Q0 . . . Qs−1,
f = fS,a, and P0 . . . Pt−1 = Δ(S, a). An a-successor of D is a decorated slice of the
form (P0, c0) . . . (Pt−1, ct−1) where the cj’s satisfy the four conditions below. In what
follows, assume j < s and let b = ∗ if D is a reset slice and else b = 0.
[D1] If bj = 1, then f(2j) is defined and cf(2j) = 1, or f(2j + 1) is defined and

cf(2j+1) = 1.
[D2] If bj = 1, then cf(2j) ∈ {∗, 1} and cf(2j+1) ∈ {∗, 1}, provided f(2j) and f(2j+

1), respectively, are defined.
[D3] If b = ∗ and bj = ∗, then cf(2j) = 0 and cf(2j+1) = 0, provided f(2j) and

f(2j + 1), respectively, are defined.
[D4] If b = 0 and bj ∈ {0, ∗}, then cf(2j) = bj and cf(2j+1) = bj , provided f(2j) and

f(2j + 1), respectively, are defined.
Observe that these conditions exactly reflect the informal description above. For in-
stance, [D3] says that when a phase is over—we have a reset slice—then the successors
of all states on hold are marked as non-skeleton vertices and will be checked to have
only a finite number of descendants.

The entire automaton is described in Figure 2. The function h postulated by Propo-
sition 1 is defined by h((Q0, b0) . . . (Qs−1, bs−1)) = Qi0 . . . Qit−1 where i0 < · · · <
it−1 and {i0, . . . , it−1} = {j < s : bj = 1}.

5 Determinization

To motivate our determinization construction, we start with a few definitions, assuming,
w. l. o. g., that each skeleton has at least two branches.

We write branches(u) for the set of branches of the skeleton tsku . A fork of a binary
tree is a vertex which has exactly two successors. The set of all forks of a tree t is
denoted by forks(t).

Our determinization construction is based on the fact that u is accepted by A iff
there exists a left-recurring β ∈ branches(u). Observe that for each β ∈ branches(u)

Complementation, Disambiguation, and Determinization of Büchi Automata Unified 731

Let A be a Büchi automaton. The slice automaton for A is the Büchi automaton denoted A slc

and defined by

A slc = (A,Q′, q′
I , Δ′, F ′)

where
– Q′ is the set of all decorated slices over Q,
– q′

I is the decorated slice ({qI}, 1),
– Δ′ contains all transitions (D, a,D′) such that D′ is an a-successor of D, and
– F ′ contains all reset slices.

Fig. 2. Definition of Slice Automaton

there exists a unique v ∈ forks(tsku) and d ∈ {0, 1} such that vd ∈ β and vd /∈ β′ for
every β′ ∈ branches(u) \ {β}. That is, v is the last fork in tsku lying on β. We write yβ
and dβ for v and d, respectively. Our deterministic automaton tries to identify yβ and
dβ for each β and to check that a left-recurring path of tsku starts in some yβdβ . To this
end, the automaton approximates the skeleton tsku as explained in what follows.

Approximation i of u is the tree consisting of all vertices of trsu which potentially
belong to tsku given only the prefix of length i of u. Formally, approximation i (of the
skeleton) of u with respect to A is the tree aiu ⊆ {0, 1}∗ defined by v ∈ aiu iff there
exists v′ ∈ trsu ∩ {0, 1}i such that v ≤prf v′.

We prove that the forks of the skeleton can be deduced from the sequence of the
approximations of tsku :

Lemma 3. Let A be a Büchi automaton, u an infinite word over the same alphabet,
and v ∈ {0, 1}∗. Then v ∈ forks(tsku) iff v ∈ forks(aiu) for all but finitely many i.

To be able to handle approximations by a finite automaton, we use forks(aiu)∪leafs(aiu)
as the vertex set of a tree—called contraction—which represents the branching structure
of aiu. When t is a tree, v and v′ are vertices of t, v0 . . . vs is the path from v to v′,
vi /∈ forks(t) for i < s, and vs ∈ forks(t) ∪ leafs(t), we write v � v′. In other words,
v � v′ if v′ is the next descendant of v which is a fork or a leaf.

The contraction of a tree t, denoted C(t), is the tree (forks(t)∪leafs(t), s0, s1) where
for v, v′ ∈ forks(t) ∪ leafs(t) and d ∈ {0, 1}, sd(v) = v′ if vd � v′. The contraction
of approximation i of u is denoted Ciu and called contraction i of u. Similarly, C(tsku),
the contraction of tsku , is denoted Cu.

Corollary 1. Let A be a Büchi automaton, u an infinite word over the same alphabet,
and v ∈ {0, 1}∗. Then v ∈ Cu iff v ∈ Ciu for all but finitely many i.

Further, there exists a number iu such that Cu ⊆ Cju for all j ≥ iu.

Next we derive a criterion that tells us whether a given β ∈ branches(u) is left-
recurring. Observe that the vertex yβdβ is, in general, not an element of the Cju’s. But,
clearly, for j > iu the vertex yβ is an element of Cju and it has a d-successor in Cju,
which we denote by wβj . This vertex is on β. The next lemma tells us that the wβj ’s
move along β as j increases, and how one can check whether β is left-recurring or not.
It uses the terminology introduced in the following definition.

732 D. Kähler and Th. Wilke

A sequence v0, v1, . . . of vertices of a branch β covers this branch if v0 ≤prf v1 ≤prf

v2 ≤prf . . . and if, for every i < ω, there exists some j such that |vj | ≥ i. For
v, w ∈ {0, 1}∗, we say that w is a left descendant of v and write v →l w if there exists
v′ ∈ {0, 1}∗0{0, 1}∗ such that w = vv′, that is, if on the way from v to w there is a
“left turn”.

Using Corollary 1, we prove:

Lemma 4. Let A be a Büchi automaton, u an infinite word over the same alphabet,
and β ∈ branches(u).
1. The sequence wβiu+1, w

β
iu+2, w

β
iu+3, . . . covers β.

2. The branch β is left-recurring iff there are infinitely many j such that wβj →l wβj+1.

This motivates our determinization construction. The automaton produces isomorphic
copies of the contractions, uses them to identify the forks of the skeleton, and checks
whether there is one fork whose left or right successors in the approximations cover
an infinite branch which is left-recurring. The latter is checked according to the second
part of Lemma 4 by using an appropriate acceptance condition.

Note that a finite automaton cannot produce contractions directly, because they have
vertices which are vertices of the skeleton tsku and as such they are strings of unbounded
length. Once an automaton works with isomorphic copies of contractions though, it is
not obvious anymore how to identify vertices that cover a left-recurring branch. We
solve this by (i) using the same vertex in two consecutive isomorphic copies if and
only if it represents the same vertex of the original contractions and (ii) storing in each
inner vertex of the isomorphic copies whether or not its right successor represents a left
descendant of the vertex it represents. Observe that a left successor always represents a
vertex which is a left descendant.

The details of our construction are as follows. Since each contraction has at most
2n−1 vertices and in each step at most n leafs are added, the vertices for the isomorphic
copies of the contractions are taken from the set {0, . . . , 3n− 2}, which we denote by
U . A contraction tree is a full binary tree T with at most 2n − 1 vertices from U and
labels from 2Q ∪ {0, 1} such that T (v) ∈ {0, 1} for each inner vertex and T (v) ⊆ Q
for each leaf. Each inner vertex carries information about its right successor (see (ii)
above), and each leaf has the same label as the vertex it represents.

We will use the following notation. Assume T is a tree where each inner vertex is
labeled by 0 or 1, v′ is a descendant of v, and v0 . . . vs the path from v to v′. We write
v →0 v′ if T (vi) = 1 for some i < s or if vi+1 is the left successor of vi for some
i < s− 1. This is the analogue of→l for contraction trees.

The crucial part is to describe the transition function. To this end, let T be a contrac-
tion tree, assume v0, . . . , vs−1 is a listing of leafs(T) in infix order (from left to right),
let S = T (v0) . . . T (vs−1), a ∈ A, Q′0 . . . Q′t−1 = Δ(S, a), and f = fS,a. We want to
define the a-successor of T , which we denote by Ta. This tree is obtained from T by
a series of transformations modeling (i) extending the corresponding approximation by
one level, (ii) removing superfluous vertices, (iii) contracting the tree, and (iv) adjusting
the labeling.

We assume that w0, w1, . . . is the sequence of the elements of W defined by W =
U \ T , say in increasing order. Note that W is the set of vertices which are not “used”
in T .

Complementation, Disambiguation, and Determinization of Büchi Automata Unified 733

Let A be a Büchi automaton. The contraction automaton for A is the deterministic automaton
(without acceptance condition) denoted A ctr and defined by

A ctr = (A, Q′, TI , δ)

where
– Q′ is the set of all contraction trees,
– TI is the one-vertex tree with vT = 0 and T (vT) = {qI}, and
– δ(T, a) is the a-successor of T for every T ∈ Q′ and a ∈ A.

Fig. 3. Definition of Contraction Automaton

1. Extend T by one level. For every j < s, first set T (vj) = 0. Then,
– if f(2j) is defined, make wf(2j) the 0-successor of vj and set T (wf(2j)) =

Q′f(2j), and
– if f(2j+1) is defined, make wf(2j+1) the 1-successor of vj and T (wf(2j+1)) =

Q′f(2j+1).
2. Remove superfluous vertices and relabel. The tree T ′ is obtained from T by remov-

ing all vertices which do not have a descendant in W and changing the labeling as
follows. If v ∈ forks(T), d ∈ {0, 1}, v′ is the d-successor of v, and v′ � v′′, then
T ′(v) = 1 iff v →0 v′′.

3. Contract T ′. Finally, Ta is obtained by contracting T ′ to Ta. (Observe that the
definition of contraction given above for trees in implicit notation can easily be
adapted to trees in explicit notation.)

The full construction of the deterministic automaton which produces the isomorphic
copies of the contractions, the so-called contraction automaton, is depicted in Figure 3.

Proposition 2. Let A be a Büchi automaton. The contraction automaton A ctr has
� (4.3n)4n states and for every u over the same alphabet the run ρu of A ctr on u has
the following properties:
1. For every i, the tree ρu(i) is isomorphic with Ciu, say via πi : ρu(i)→ Ciu.
2. For every v ∈ ρu(i), the vertex v belongs to ρu(i + 1) iff the vertex πi(v) belongs

to Ci+1
u , and if this is the case, then πi(v) = πi+1(v).

3. For every v ∈ inner(ρu(i)), if v′ is the right successor of v in ρu(i), then πi(v) →l

πi(v′) iff ρu(i)(v) = 1.

From the previous proposition we can conclude:

Corollary 2. Let A , u, and ρu as in Proposition 2. Then u ∈ L(A) iff there is some
v ∈ U such that
(a) v ∈ ρu(i) for all but finitely many i and
(b) for infinitely many i, the vertex v has a d-successor v′′ in ρu(i + 1) such that v′′ is

a leaf or v′ →0 v′′ in ρu(i) for the d-successor v′ of v.

To conclude, we explain how (a) and (b) from the corollary can be checked using ap-
propriate acceptance conditions. We first use a custom acceptance condition. Let M be
a finite set. A pair (α, β) of functions Q×A→ 2M is called an αβ-condition over M

734 D. Kähler and Th. Wilke

if α(q, a) ⊇ β(q, a) for all q ∈ Q and a ∈ A. A run ρ on a word u is accepting with
respect to such a condition if there exists some m ∈M such that m ∈ α(ρ(i), u(i)) for
all but finitely many i and m ∈ β(ρ(i), u(i)) for infinitely many i. The order of such a
condition is the maximum of the values |α(q, a)|.

For the contraction automaton, we choose M = U , let α(T, a) be the set of vertices
of δ(T, a) (cf. (a)), and let β(T, a) be the set of vertices v of δ(T, a) satisfying: for
some d ∈ {0, 1}, the vertex v has a d-successor v′′ in δ(T, a) such that v′′ is a leaf or
v′ →0 v′′ in T for the d-successor v′ of v (cf. (b)).

Any αβ-condition can be converted into ordinary acceptance conditions:

Lemma 5. Let A be a deterministic automaton with n states and an αβ-acceptance
condition over a set with s elements and of order m. Then there exists
1. an equivalent Muller automaton with n3s states,
2. an equivalent Rabin automaton with n3s states and s Rabin pairs, and
3. an equivalent parity automaton with at most n(s+1)! states and 2m+1 priorities.

The proof of the last part of the lemma follows Piterman’s construction [15], which
itself uses the latest appearance record with hit. The first and second part simply add a
function M → {0, 1, 2} to each state.

We can finally state:

Theorem 2. Let A be a Büchi automaton. The deterministic automaton A ctr aug-
mented by the above acceptance condition can be converted into a deterministic Muller,
Rabin, or parity automaton equivalent to A with 2O(n logn) states (and n Rabin pairs
or 2n + 1 priorities).

We conclude with two open problems:
1. Give a lower bound for disambiguating Büchi automata.
2. Generalize our determinization construction to Streett automata.

References

1. Schulte-Althoff, C., Thomas, W., Wallmeier, N.: Observations on determinization of Büchi
automata. Theor. Comput. Sci. 363(2), 224–233 (2006)

2. Arnold, A.: Rational omega-languages are non-ambiguous. Theor. Comput. Sci. 26, 221–223
(1983)

3. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Nagel, E., Sup-
pes, P., Tarski, A. (eds.) Logic, Methodology, and Philosophy of Science: Proc. of the 1960
International Congress, pp. 1–11. Stanford University Press, Stanford (1962)

4. Emerson, E.A., Sistla, A.P.: Deciding full branching time logic. Information and Con-
trol 61(3), 175–201 (1984)

5. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. Int. J. Found.
Comput. Sci. 17(4), 851–868 (2006)

6. Gurevich, Y., Harrington, L.: Trees, automata, and games. In: 14th ACM Symposium on the
Theory of Computing, San Francisco, Calif, pp. 60–65. ACM, New York (1982)

7. Gurumurthy, S., Kupferman, O., Somenzi, F., Vardi, M.Y.: On complementing nondetermin-
istic Büchi automata. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp.
96–110. Springer, Heidelberg (2003)

Complementation, Disambiguation, and Determinization of Büchi Automata Unified 735

8. Klarlund, N.: Progress measures for complementation of ω-automata with applications to
temporal logic. In: 32nd Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, pp. 358–367. IEEE, Los Alamitos (1991)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Com-
put. Logic 2(3), 408–429 (2001)

10. Kähler, D.: Determinisierung von ω-Automaten. Diploma thesis, Institut für Informatik und
Praktische Mathematik, Christian-Albrechts-Universität zu Kiel (2001)

11. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Informa-
tion and Control 9, 521–530 (1966)

12. Michel, M.: Complementation is more difficult with automata on infinite words (unpublished
notes) (1988)

13. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the 4th Annual IEEE
Symposium on Switching Circuit Theory and Logical Design, pp. 3–16 (1963)

14. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic au-
tomata: New results and new proofs of the theorems of Rabin, McNaughton and Safra. Theor.
Comput. Sci. 141(1&2), 69–107 (1995)

15. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic Parity au-
tomata. In: 21th IEEE Symposium on Logic in Computer Science, Seattle, WA, USA, Pro-
ceedings, pp. 255–264. IEEE, Los Alamitos (2006)

16. Ozer Rabin, M.: Decidability of second-order theories and finite automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

17. Safra, S.: On the complexity of ω-automata. In: 29th Annual Symposium on Foundations of
Computer Science, White Plains, New York, pp. 319–327. IEEE, Los Alamitos (1988)

18. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with
appplications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)

19. Thomas, W.: Complementation of Büchi automata revised. In: Karhumäki, J., Maurer, H.A.,
Paun, G., Rozenberg, G. (eds.) Jewels are Forever, Contributions on Theoretical Computer
Science in Honor of Arto Salomaa, pp. 109–120. Springer, Heidelberg (1999)

20. Vardi, M.Y., Wilke, Th.: Automata: from logics to algorithms. In: Flum, J., Grädel, E., Wilke,
Th. (eds.) Logic and Automata: History and Perspectives. Texts in Logic and Games, vol. 2,
pp. 629–736. Amsterdam University Press, Amsterdam (2007)

21. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37

22. Yan, Q.: Lower bounds for complementation of ω-automata via the full automata technique.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052,
pp. 589–600. Springer, Heidelberg (2006)

Tree Projections: Hypergraph Games and Minimality�

Gianluigi Greco1 and Francesco Scarcello2

Dept. of Mathematics1 and DEIS2, UNICAL, Via P. Bucci 30B, 87036, Rende, Italy
{ggreco}@mat.unical.it, {scarcello}@deis.unical.it

Abstract. A hypergraph-game characterization is provided for hypergraph tree
projections (TPs) and, hence, for the special cases of generalized and fractional
hypertree decompositions, where such a characterization was missing and asked
for. In this game, as for the Robber and Cops game characterizing tree decomposi-
tions, the existence of winning strategies implies the existence of monotone ones,
which are yet somehow preferable, because they correspond to minimal tree pro-
jections. In fact, it is shown that minimal TPs enjoy a number of nice properties,
such as the same kind of connection property as (minimal) tree decompositions of
graphs. Finally, it is shown that this property is somehow tight, by giving a neg-
ative answer to an open question about a slightly stronger notion of connection
property, defined to speed-up the computation of hypertree decompositions.

1 Introduction

Many NP-hard problems in different application areas, ranging, e.g., from AI [13] and
Database Theory [4] to Game theory [12], are known to be efficiently solvable when
restricted to instances whose underlying structures can be modeled via acyclic graphs
or hypergraphs. Indeed, on these kinds of instances, solutions can usually be computed
via dynamic programming, by incrementally processing the acyclic (hyper)graph, ac-
cording to some of its topological orderings. Actually, structures arising from real ap-
plications are hardly precisely acyclic. Yet, they are often not very intricate and, in fact,
tend to exhibit some limited degree of cyclicity, which suffices to retain most of the
nice properties of acyclic ones. Therefore, several efforts have been spent to investigate
invariants that are best suited to identify nearly-acyclic graph/hypergraphs, leading to
the definition of a number of so-called structural decomposition methods. These meth-
ods aim at transforming a given cyclic (hyper)graph into an acyclic one, by organizing
its edges or its nodes into a polynomial number of clusters, and by suitably arranging
these clusters as a tree, called decomposition tree. The original problem instance can
then be evaluated over the decomposition tree, with a cost that is usually exponential in
the cardinality of the largest cluster, also called width of the decomposition.

As far as problems with binary structures are considered, it is known that the notion
of treewidth [14] is the most general tractable graph decomposition method (see, e.g.,
[10]). In particular, deciding whether a given graph has treewidth bounded by a fixed
natural number k is known to be feasible in linear time—in fact, in time O(2ck

2 × n)
for graphs on n vertices [5].

� This work was partially supported by M.I.U.R. under project TOCAI.IT, and by the Institute
for High Performance Computing and Networks (ICAR-CNR) under project ICT.P09.001.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 736–747, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tree Projections: Hypergraph Games and Minimality 737

Moreover, a nice game-theoretic characterization exists for tree decompositions in
terms of the Robber and Cops game [15]: a graph has treewidth bounded by k if and
only if k + 1 cops can capture a Robber that can run at great speed along the edges of
graphs, while being not permitted to run trough a vertex that is controlled by a cop. An
important property of this game is that there is no restriction on the strategy employed
by cops to capture the Robber, while in other (hyper)graph games they are constrained
to play monotonic strategies, that is, to shrink the Robber’s escape space in a mono-
tonically decreasing way. More precisely, it was shown that playing non-monotonic
strategies gives no more power to the cops. In many results about treewidth (e.g., [2]),
this property turns out to be very useful, because good strategies for the Robber may be
easily characterized as those strategies that allow the Robber to run forever.

A further desirable feature of structural decompositions is that adjacent vertices in a
decomposition tree enjoy some connection property, in order to restrict the search space
of the possible decompositions and thus to speed-up their computation. For tree decom-
positions, it was shown that we may focus on connected decompositions, as formalized
in [6], that is, that the treewidth of a graph does not change if one looks only at such
connected decompositions.

From what we have seen, a clear picture of structural decompositions emerges for bi-
nary (graph) instances. The situation pertaining decompositions methods for arbitrary
(hypergraphs) instances is much more muddled instead. In fact, a number of power-
ful decomposition methods have been proposed for hypergraphs, such as the hypertree
decomposition [7], the generalized hypertree decomposition [8], and the fractional hy-
pertree decomposition [11]. However, whether or not they enjoy some of the above
mentioned desirable features is still unknown. In particular:

(1) Game theoretic characterizations for hypergraph decompositions are missing or not
completely satisfactory. For instance, the Robber and Marshals game [8], which
characterizes the hypertree width, requires monotonic strategies for Marshals, be-
cause non-monotonic strategies give some extra-power that does not correspond
to valid decompositions [1]. Moreover, a game that characterizes the generalized
hypertree width (which is the notion that most resembles treewidth) is still miss-
ing and asked for. In [1] it is raised the question whether there is a (natural) game
theoretic characterization for generalized hypertree width, where non-monotonicity
does not represent a source of additional power. Such a characterization is missing
for fractional hypertree decompositions, too.

(2) No systematic study on connection properties of generalized hypertree decomposi-
tions (or related notions) similar to those defined for tree decompositions appeared
in the literature. Actually, some algorithms have been implemented limiting the
search space to a kind of connected decompositions [16], but it is open whether the
resulting method is a heuristic one or it does give an exact solution.

In this paper, we give a solution to the above issues and go beyond, by proving our re-
sults within the more general and unifying framework of hypergraphs tree projections.
Roughly, given a pair of hypergraphs (H1,H2), a tree projection of H1 w.r.t. H2 is an
acyclic hypergraphHa such that each hyperedge ofH1 is contained in some hyperedge
of Ha, that is in its turn contained in a hyperedge of H2, which is called the resource
hypergraph—see, Figure 1 for an illustration.

738 G. Greco and F. Scarcello

Fig. 1. A Tree Projection Ha of H1 with respect H2; e.g., {C, D} ⊆ {A, B, C, D} ⊆
{A, B, C, D, H}. On the center: A Join Tree JTa for Ha. On the right: A Minimal Tree Pro-
jection and a Join Tree for it.

Note that all the (known) structural decomposition methods can be recast as special
cases of tree projections, where specific kinds of resource hypergraphs are used. For
instance, let k be a fixed natural number, and consider any (hyper)graph H1 over a
set V of nodes. Then, the width-k tree decompositions of H1 correspond to the tree
projections of H1 with respect to a hypergraphH2, whose hyperedges are all possible
clusters B ⊆ V of nodes such that |B| ≤ k + 1 (or, equivalently, |B| = k + 1, if
|V| ≥ k + 1). In fact, within this framework:

 In Section 3, we define the Robber and Captain game, to be played on pairs of
hypergraphs, and in the subsequent Section 4 we show that in this game the Captain
has a winning strategy if and only if she has a monotone winning strategy.

 In Section 5, we define and investigate a rather natural notion of minimal tree pro-
jections, where the minimal possible subsets of any resource edge are employed.
Intuitively, such projections typically correspond to more efficient decompositions.
And, we show that some properties required for normal form decompositions in
various notions of structural decomposition methods (see, e.g., [7]) are in fact a
consequence of minimality.

 In Section 5.2, we show that tree projections, as well as notable subcases such as the
generalized hypertree decompositions, enjoy the same kind of connection property
as tree decompositions. Indeed, we show that all minimal tree projections have this
nice property, which may help in devising faster algorithms for their computation.

 As bad news, we give a negative answer the question raised in [16]. We observe
that the notion of connected decomposition proposed therein differs from the one
defined for tree decompositions and mentioned above. In particular, we focus on
the case of (generalized) hypertree decompositions as in [16], and we show a hy-
pergraph where enforcing this restriction leads to worse tree projections, i.e., to
(generalized) hypertree decompositions with a higher width. It follows that the al-
gorithm proposed in [16] for connected hypertree decompositions is not exact, as
far as unrestricted hypertree decompositions are considered.

 Eventually, in Section 6, by exploiting the above notion of minimality, we show
that tree projections (as well as generalized hypertree decompositions, fractional
hypertree decompositions, and so on) may be characterized in terms of the Robber
and Captain game. Thus, all these notions have now a quite natural game charac-
terization where monotone and non-monotone strategies have the same power.

Tree Projections: Hypergraph Games and Minimality 739

2 Preliminaries

Hypergraphs and Acyclicity. A hypergraphH is a pair (V,H), where V is a finite set
of nodes and H is a set of hyperedges such that, for each h ∈ H , h ⊆ V . For the sake
of simplicity, we always denote V and H byN (H) and E(H), respectively. For any set
of nodes X ⊆ V , the sub-hypergraph of H induced by X is the hypergraph (X,H ′)
where H ′ = {h ∩X | h ∈ H}.

A hypergraphH is acyclic iff it has a join tree [4]. A join tree JT (H) for a hypergraph
H is a tree whose vertices are the edges ofH such that, whenever the same node X ∈ V
occurs in two edges h1 and h2 of H, then h1 and h2 are connected in JT (H), and X
occurs in each vertex on the unique path linking h1 and h2 in JT (H).

Generalized Hypertree Decomposition. A hypertree for a hypergraph H is a triple
〈T, χ, λ〉, where T = (N,E) is a rooted tree, and χ and λ are labeling functions which
associate each vertex p ∈ N with two sets χ(p) ⊆ N (H) and λ(p) ⊆ E(H). If T ′ =
(N ′, E′) is a subtree of T , we define χ(T ′) =

⋃
v∈N ′ χ(v). In the following, for any

rooted tree T , we denote the set of vertices N of T by vertices(T), and the root of T
by root(T). Moreover, for any p ∈ N , Tp denotes the subtree of T rooted at p.

A generalized hypertree decomposition of a hypergraph H is a hypertree HD =
〈T, χ, λ〉 for H such that: (1) for each edge h ∈ E(H), there exists p ∈ vertices(T)
such that h ⊆ χ(p); (2) for each node Y ∈ N (H), the set {p ∈ vertices(T) |
Y ∈ χ(p)} induces a (connected) subtree of T ; and (3) for each p ∈ vertices(T),
χ(p) ⊆ N (λ(p)). The width of a generalized hypertree decomposition 〈T, χ, λ〉 is
maxp∈vertices(T)|λ(p)|. The generalized hypertree width ghw(H) of H is the mini-
mum width over all its generalized hypertree decompositions.

A hypertree decomposition [7] of H is a generalized hypertree decomposition
HD = 〈T, χ, λ〉 where: (4) for each p ∈ vertices(T), N (λ(p)) ∩ χ(Tp) ⊆ χ(p).
The hypertree width hw(H) of H is the minimum width over all its hypertree decom-
positions. Note that, for any hypergraph H, it is the case that ghw(H) ≤ hw(H) ≤
3× ghw(H) + 1 [3]. Moreover, for any fixed natural number k > 0, deciding whether
hw(H) ≤ k is feasible in polynomial time (and, actually, is highly-parallelizable) [7],
while deciding whether ghw(H) ≤ k is NP-complete [9].

Tree Projections. For two hypergraphsH1 andH2 over the same set of nodes, we write
H1 ≤ H2 iff each hyperedge of H1 is contained in at least one hyperedge of H2. Let
H1 ≤ H2; then, a tree projection (short: TP) of H1 with respect to H2 is an acyclic
hypergraphHa such thatH1 ≤ Ha ≤ H2. Whenever such a hypergraphHa exists, we
say that the pair of hypergraphs (H1,H2) has a TP. The problem of deciding whether
a pair of hypergraphs has a TP is called the tree projection problem, and it has recently
been proven to be NP-complete [9].

Note that the notion of tree projection is more general than every structural decom-
position method. For instance, consider the generalized hypertree decomposition ap-
proach: given a hypergraphH and a natural number k > 0, let Hk denote the hyper-
graph over the same set of nodes as H, and whose set of edges is given by all possible
unions of k edges inH, i.e., E(Hk) = {h1∪h2∪· · ·∪hk | {h1, h2, . . . , hk} ⊆ E(H)}.
Then, it is well-known and easy to see that H has generalized hypertree width at
most k if and only if there is a TP of H with respect to Hk. Similarly, for fractional

740 G. Greco and F. Scarcello

hypertree decomposition (the most general known decomposition approach) [11], we
may define a hypergraphHfk over the same set of nodes as H, and whose set of edges
is given by all possible unions of edges in H having fractional width at most k, i.e.,
E(Hfk) = {

⋃
h∈H h | H ⊆ E(H) and fw(H) ≤ k}. Again, it is easy to see thatH has

fractional hypertree width at most k iff there is a TP ofH with respect toHfk.

3 The Robber and Captain Game

The Robber and Captain game is played on a pair of hypergraphs (H1,H2) over the
same set of vertices N (H1) = N (H2) = V , by a Robber and a Captain controlling
some squads of cops, in charge of the surveillance of a number of strategic targets. The
Robber stands on a vertex and can run at great speed along the edges of H1; however,
she is not permitted to run trough a vertex that is controlled by a cop. Each move of
the Captain involves one squad of cops, which is encoded as an edge h ∈ E(H2).
The Captain may ask any cops in the squad h to run in action, as long as they occupy
vertices that are currently reachable by the Robber, thereby blocking an escape path for
the Robber. Thus, “second-lines” cops cannot be activated by the Captain. Note that the
Robber is fast and may see cops that are entering in action. Therefore, while cops move,
the Robber may run trough those positions that are left by cops or not yet occupied. The
goal of the Captain is to place a cop on the vertex occupied by the Robber, while the
Robber tries to avoid her capture.

For comparison, observe that this game is somehow in the middle between the Rob-
ber and Marshals game of [8], where the marshals occupy a full hyperedge at each
move, and the Robber and Cops game of [15], where each cop stands on a vertex and
thus, if there are enough cops, any subset of any edge can be blocked at each move.
Instead, the Captain cannot employ “second-lines” cops, but only cops in charge of
positions under possible Robber attacks.

Let V and W two sets of nodes, and X,Y ∈ V . Then, X is said [V]-adjacent to Y if
there exists an edge h1 ∈ E(H1) such that {X,Y } ⊆ (h1 − V). A [V]-path from X to
Y is a sequence X = X0, . . . , X� = Y of nodes such that Xi is [V]-adjacent to Xi+1,
for each i ∈ [0...�-1]. We say that X [V]-touches Y if X is [∅]-adjacent to Z ∈ V , and
there is a [V]-path from Z to Y ; similarly, X [V]-touches the set W if X [V]-touches
some node Y ∈W . We say that W is [V]-connected if ∀X,Y ∈ W there is a [V]-path
from X to Y . A [V]-component of H1 is a maximal [V]-connected non-empty set of
nodes W ⊆ (V−V). For any [V]-componentC, let E(C) = {h ∈ E(H1) | h∩C = ∅},
and for a set of edges H ⊆ E(H1), let N (H) denote the set of nodes occurring in H ,
that is N (H) =

⋃
h∈H h.

Definition 1 (R&C Game). The Robber and Captain game on (H1,H2) (short:
R&C(H1,H2) game) is formalized as follows. A position for the Captain is a set M of
vertices where the cops stand such that M ⊆ h2, for some edge (squad) h2 ∈ E(H2).
A configuration is a pair (M, v), where M is a position for the Captain, and v ∈ V is
the vertex where the Robber stands. The initial configuration is (∅, v0), where v0 is a
vertex arbitrarily picked by the Robber.

Let (Mi, vi) be the configuration at step i. This is a capture configuration, where the
Captain wins, if vi ∈ Mi. Otherwise, the Captain activates the cops in a novel position

Tree Projections: Hypergraph Games and Minimality 741

Mi+1 such that: ∀X ∈Mi+1, X [Mi]-touches vi; then, the Robber selects a node vi+1

such that there is a [Mi ∩Mi+1]-path from vi to vi+1. If the game continues forever,
the Robber wins. �
Note that it does not make sense for the Captain to assume that the Robber is on a
particular vertex, given the ability of the Robber of changing her positions before the
cops land. Thus, given a configuration (Mi, vi), we may assume w.l.o.g. that the next
Captain’s move is only determined by the [Mi]-component that contains vi, rather than
by vi itself. And, accordingly, positions can equivalently be written as (Mi, Ci), where
Ci is an [Mi]-component. In this case, capture configurations have the form (M, ∅),
and the initial configuration has the form (∅,V).

Definition 2 (Strategies). A strategy σ (for R&C(H1,H2)) is a function that encodes
the moves of the Captain, i.e., given a configuration (Mi, Ci), with Ci = ∅, σ returns a
position Mi+1 such that: ∀X ∈Mi+1, X [Mi]-touches Ci.

A game-tree for σ is a rooted tree T (σ) defined over configurations as fol-
lows. Its root is the configuration (∅,V). Let (Mi, Ci) be a node in T (σ) and let
Mi+1 = σ(Mi, Ci). Then, (Mi, Ci) contains exactly one child (Mi+1, Ci+1), for each
[Mi+1]-component Ci+1 such that Ci ∪Ci+1 is [Mi ∩Mi+1]-connected; we call such
a Ci+1 an [(Mi, Ci),Mi+1]-option for the Robber. No further edge or node is in T (σ).

Then, σ is said a winning strategy if T (σ) is a finite tree. Moreover, define
a position Mi+1 to be a monotone move of the Captain in (Mi, Ci), if for each
[(Mi, Ci),Mi+1]-option Ci+1, Ci+1 ⊆ Ci. We say that σ is a monotone strategy if,
for each edge from (Mi, Ci) to (Mi+1, Ci+1), it holds that Mi+1 is a monotone move
in (Mi, Ci). �

4 Monotone vs Non-monotone Strategies

In this section, we show that there is no incentive for the Captain to play a strategy σ
that is not monotone, since it is always possible for her to construct and play a monotone
strategy σ′ that is equivalent to σ, i.e., such that σ′ is winning if and only if σ is winning.
This crucial property conceptually relates our game with the Robber and Cops game
characterizing the treewidth [15], and differentiates it from most of the hypergraph-
based games in the literature, in particular, from the Robber and Marshals game, whose
monotone strategies characterize hypertree decompositions [8], while non-monotone
strategies do not correspond with valid decompositions [1].

For any component C, denote by Fr(C) the frontier of C, i.e., the set Fr(C) =
N (E(C)) = C ∪ {Z | ∃X ∈ C, h ∈ E(H1) s.t. {X,Z} ⊆ h}. Let Mi+1 = σ(Mi, Ci)
and let Ci+1 be an [Mi+1]-component (that is, Ci+1 = ∅ and Mi+1 is not a capture
position). And, let the escape-door of the Robber in vi = (Mi, Ci) when attacked with
Mi+1 be defined as: ED(vi,Mi+1) = Mi ∩ Fr(Ci)−Mi+1.

Theorem 1. On the R&C(H1,H2) game, the existence of a winning strategy implies
the existences of a monotone winning strategy.

Proof (Idea). 1 Let σ be a winning strategy that is not monotone, and let p = (Mp, Cp)
be a configuration reached in T (σ) from (∅,V) by a succession of monotone moves.

1 For space reasons, details of all proofs are omitted and will be available in the full version.

742 G. Greco and F. Scarcello

Assume that Mr is the move of the Captain in p and that this is monotone, i.e., for each
[p,Mr]-option C, C ⊆ Cp (note that any move in the initial configuration is mono-
tone). In particular, let r = (Mr, Cr) be a child of p in T (σ), and let s = (Ms, Cs) be
a child of r such that Cs ⊆ Cr. Our aim is to show that σ cannot be a strategy with
the minimum total number of cops over all the vertices, precisely because of the non-
monotonic step from r to s—thus, such a “minimum” winning strategy, which always
exists, is necessarily monotone. Indeed, we can show that it is possible to build a win-
ning strategy σ′ that basically coincides with σ, except for the substitution of (Mr, Cr)
with a configuration (M ′

r, C
′
r) such that M ′

r ⊂ Mr and Cs ⊆ C′r. Of course, this will
give a larger componentC′r available for Robber’s movements. Yet, this component will
be monotonically shrinkable by the Captain’s squads.

The first ingredient of the proof is to observe that the non-monotonicity from r to
s is due to some vertices through which the Robber may escape outside Cr, which
were occupied in Mr and which are no longer controlled by the Captain in Ms. Let
ED(r,Ms) be this escape-door set, which depends on r and on the move Ms, and
let Cr, Cr1 , ..., Crn , C

′
r1 , ..., C

′
rm

be the [Mr]-components where the Robber can run
when the Captain occupies the position Mr in σ (formally, her [p,Mr]-options), with
Cr, Cr1 , ..., Crn being those components from which an access to ED(r,Ms) occurs.

The second ingredient of the proof is, then, to let the Captain play in σ′ the position
M ′
r = Mr−ED(r,Ms) in place of Mr. Intuitively, we are removing from r the source

of non-monotonicity that was suddenly evidenced while moving to s. We shall show that
this modification “merged” Cr , Cr1 , ..., Crn into a single [M ′

r]-component C′r, without
affecting any other part of the strategy outside C′r.

Finally, the last ingredient of the proof consists in observing that even though C′r is
strictly larger than Cr , the strategy Ms of σ is still applicable to r′ = (M ′

r, C
′
r) and

winning. So, the whole subtree of T (σ′) rooted at (M ′
r, C

′
r) precisely coincides with

the subtree of T (σ) rooted at (Mr, Cr), but for the respective roots. �

5 Minimal Tree Projections

In order to establish a link of this hypergraph game with tree projections, we need
a closer look at their properties. In particular, in this section, we shall focus on tree
projections satisfying an additional minimality condition.

LetH andH′ be two hypergraphs. Then,H is contained inH′, denoted byH ⊆ H′,
if for each edge h ∈ E(H) − E(H′), there is an edge h′ ∈ E(H′)− E(H) with h ⊆ h′

(which in fact entails h ⊂ h′). Note thatH ⊆ H′ does not entailH ≤ H′. Moreover,H
is said properly contained inH′, denoted byH ⊂ H′, ifH ⊆ H′ andH = H′.
Definition 3 (Minimal TPs). Let H1 and H2 be two hypergraphs, and let Ha be a
tree projection of H1 with respect to H2, i.e., Ha is an acyclic hypergraph such that
H1 ≤ Ha ≤ H2. Then, Ha is minimal if there is no tree projection H′a ⊂ Ha of H1

with respect toH2. �

5.1 On the Nice Properties of Minimal Tree Projections

Minimal tree projections enjoy several interesting properties, which will be investigated
in the rest of the section and that are crucial to show the mapping with C&R games. In

Tree Projections: Hypergraph Games and Minimality 743

particular, we shall investigate on the (i) existence of minimal tree projections, on the
(ii) structures of their join trees, and on the (iii) preservations of components.

Existence of minimal tree projections. We start by observing that minimal tree projec-
tions always exist (as long as a tree projection exists).

Theorem 2. A pair of hypergraphs (H1,H2) has a TP iff (H1,H2) has a minimal TP.

Join trees for minimal tree projections. An important feature of minimal tree projec-
tions is that they admit join trees with a peculiar and rather useful structure. Indeed,
we next show that some properties required for normal form decompositions in various
notions of structural decomposition methods (see, e.g., [7]) are in fact a consequence of
minimality. Observe that a join tree JT of an acyclic hypergraphH can be rooted at any
of its vertices. In the following, we find convenient to think at join trees as rooted trees;
then, for any edge h ∈ E(H), we shall denote by JT [h] the rooted tree obtained by
rooting JT at the vertex h (recall that there is a one-to-one correspondence between the
vertices of JT and E(H)). In addition, given an edge h′ ∈ E(H), we denote by JT [h]h′

the subtree of JT [h] rooted at h′, and by N (JT [h]h′) the set of nodes occurring in the
vertices of JT [h]h′ .

Lemma 3 (Normal Form). LetH be a minimal TP for (H1,H2) and let h be any of its
edges. Then, there is a join tree JT forH that, rooted at h, has the following properties:
for each pair hr, hs ∈ E(H) with hs child of hr in JT [h],
(1) there is exactly one [hr]-component Cr such thatN (JT [h]hs) = Cr ∪ (hs ∩ hr);
(2) hs ∩ Cr = ∅, where Cr is the [hr]-component inH satisfying Condition 1;
(3) hs ⊆ Fr(Cr), where Cr is the [hr]-component in H satisfying Condition 1.

Therefore, a join tree JT [h] can be built for a minimal TP H, where each subtree
is in charge of decomposing exactly one component. In fact, we shall show that
JT [h] decomposes all the “relevant” components. Assume a join tree JT [h] is given.
Let comp↑(h) = N (H), and let comp↑(hs) be the unique [hr]-component with
N (JT [h]hs) = Cr∪(hs∩hr), where hs is a child of hr in JT [h]; also, let edge↑(h) = ∅,
and let edge↑(hs) be hr.

Lemma 4. Let H be a minimal TP for (H1,H2), and let h ∈ E(H) and JT [h] as in
Lemma 3. Then, for each vertex hr in JT [h] and for each [hr]-component Cr inH such
that Cr ⊆ comp↑(hr), there is exactly one child hs of hr such that: (1)N (JT [h]hs) =
Cr ∪ (hs ∩ hr); (2) hs ∩Cr = ∅; and, (3) hs ⊆ Fr(Cr).

According to the above results, there is a one-to-one correspondence between compo-
nents and subtrees of the join tree. In particular, for a node hr and for each child hs of
hr in JT [h], we shall denote by JT [h]hr,Cr the subtree that is univocally determined by
the [hr]-component Cr with Cr ⊆ comp↑(hr). If hr = h, we simply write JT [h]C .
Components Preservation. The connectivity of an arbitrary tree projection Ha for H1

with respect toH2 can be characterized not only in terms of its components, but also in
terms of the components of the original hypergraphH1.

Lemma 5. Let Ha be a TP for (H1,H2). For each h ∈ E(Ha) and [h]-component C1

inH1, there is an [h]-component Ca in Ha such that C1 ⊆ Ca.

744 G. Greco and F. Scarcello

Lemma 6. Let Ha be a TP for (H1,H2). For each h ∈ E(Ha) and [h]-component Ca
inHa, there are C1

1 , ..., C
n
1 [h]-components in H1 with Ca =

⋃n
i=1 Ci1.

At a first sight, since each edge inH1 is contained in an edge ofHa, one may naturally
be inclined at thinking that such a biggerHa adds connectivity, because some nodes that
are not (directly) connected by any edge in H1 may be included together in some edge
of Ha. Indeed, in general, for any given set of nodes X , evaluating [X]-components
in H1 gives proper subsets of the analogous components evaluated in Ha. We show
that this is not the case if minimal tree projections are considered. Intuitively, extra-
connections due to the use of bigger edges coming fromH2 are indeed entailed by the
connections in the hypergraphH1 to be projected.

Theorem 7. Let Ha be a minimal TP for (H1,H2). Then, for each edge h ∈ E(Ha),
C is an [h]-component inHa ⇔ C is an [h]-component in H1.

Proof (Sketch). LetHa be a minimal TP for (H1,H2). Let h ∈ E(Ha), and assume, by
contradiction, that: C is an [h]-component in Ha ⇔ C is an [h]-component inH1.
Because of Lemma 5 and Lemma 6, this entails that there is an [h]-component Ca in
Ha, and n > 1 [h]-components C1

1 , ..., C
n
1 inH1 such that Ca =

⋃n
i=1 Ci1.

The line of the proof is to show that, based on Ha, it is possible to build a tree
projection H′a with H′a ⊂ Ha, thereby contradicting the fact that Ha is minimal. To
this end, let H be the set of hyperedges ofHa that intersects Ca, i.e., H = {ha | ha ∈
E(Ha)∧ha∩Ca = ∅}. Consider the hypergraphH′a defined over the same set of nodes
ofHa and such that: E(H′a) = E(Ha)−H ∪

⋃n
i=1{ha ∩ (Ci1 ∪ h) | ha ∈ H}.

Eventually, we can show that H′a is of the form required, by exploiting the charac-
terizations of minimal tree projections in Lemma 3 and Lemma 4. In particular, to show
that H′a is acyclic we shall discuss how to build a join tree for it, say JT ′[h], based on
a join tree JT [h] for Ha in the form required in Lemma 3. The idea is, in a nutshell,
to apply a normalization procedure over the subtree JT [h]Ca which is in charge of de-
composing Ca, in order to build the subtrees JT ′[h]C1

1
,...,JT ′[h]Cn

1
, each one being in

charge of decomposing an [h]-component in H1. The proof follows from: Claim E:
H′a ≤ H2. Claim F: H1 ≤ H′a. Claim G: H′a is acyclic. Claim H:H′a ⊂ Ha. �

5.2 Connected Tree Projections

A well-known notion of connected decomposition has been introduced for treewidth
(see, e.g., [6]). Roughly, in connected tree decompositions, for every bag X in the de-
composition tree T of a graph G, every node in X is connected (in the graph G) either
to another node in X or to some nodes in (at least two of its) adjacent vertices in T .

It is known that a graph G has a tree decomposition of width at most k iff it has a
connected tree decomposition of width at most k. In particular, in [6], an O(nk3) al-
gorithm, called make-it-connected, has been described that builds a width-k′ connected
tree decomposition of G from any of its width-k tree decompositions, with k′ ≤ k. This
notion is next naturally extended the more general framework of tree projections.

Definition 4. A TPHa for (H1,H2) is connected if it has a connected join tree, i.e., a
join tree JT with the following property: for each pair of adjacent vertices hr, hs of JT ,
the sub-hypergraph ofH1 induced by the nodes in N (JT [hr]hs) is [∅]-connected. �

Tree Projections: Hypergraph Games and Minimality 745

Note that this notion is in fact a generalization of the one defined in [6]. Indeed, they co-
incide when width-k tree decompositions are considered, that is, whenever we look for
TPs of pairs (H1,H2) where E(H2) = {h ⊆ N (H1) | |h| ≤ k + 1}. As an example,
the TP Ha reported in the center of Figure 1 is not connected, because it has no con-
nected join trees. E.g. consider the join tree JTa and let hr = {E,F,G,H, I, J,K} and
hs = {A,D,E, F, J,K}. The sub-hypergraph of H1 induced by N (JTa[hr]hs) con-
tains only edges {D,F,E}, {K, J}, {A,B,C}, {C,D}, and {A,F}, and thus {K, J}
is clearly disconnected from the others. On the other hand, the join tree reported on the
right is connected; in fact, observe that the tree projection from which it derives is a
minimal one. We next show this is not by chance.

Theorem 8. IfHa is a minimal TP for (H1,H2), thenHa is a connected TP.

Proof (Sketch). Assume thatHa is a minimal TP and let JT be a join tree forHa. From
the connectedness property of join-trees and the fact that H1 ≤ Ha, it immediately
follows that JT represents in fact a tree decomposition ofH1, where the edges ofHa are
the bags of the tree decomposition. By contradiction, if JT is not connected, then apply
the above mentioned Algorithm make-it-connected [6]. Let 〈T, χ〉 be the connected
tree decomposition of H1 obtained by applying this algorithm with JT as its input. An
important property of such a resulting tree decomposition, is that every bag is a subset
of some bag of JT , and some of them, say B1, . . . , Bm are proper subsets of some B
of JT , which instead does not occur in any bag of the new decomposition.

Let H′a be the acyclic hypergraph whose set of hyperedges are the bags of T , that
is, E(H′a) = {χ(v) | v ∈ N (T)}. Observe that H1 ≤ H′a ≤ Ha ≤ H2, and thus H′a
is a TP of H1 w.r.t. H2. Moreover, for any Bi (1 ≤ i ≤ m), Bi ∈ E(H′a) − E(Ha),
B ∈ E(Ha)− E(H′a), and Bi ⊂ B. It follows thatH′a ⊂ Ha. Contradiction. �

Eventually, from Theorem 8 and Theorem 2, we get the following result.

Corollary 9 (H1,H2) has a TP iff (H1,H2) has a connected TP.

Another notion of connected decomposition has recently been introduced in [16]. In
this setting, a (generalized) hypertree decomposition HD = 〈T, χ, λ〉 is connected if
the root r of T is such that |λ(r)| = 1, and for each pair of nodes p and s, with s child of
p in T , and for each h ∈ λ(s), h∩χ(s)∩χ(p) = ∅. The connected (generalized) hyper-
tree width c(g)hw is the minimum width over all the possible connected (generalized)
hypertree decompositions. Whether or not chw(H) = hw(H) for every hypergraphH
was an open question [16]. Next, we give a negative answer to this question.

Theorem 10. There is a graph G such that cghw(G) > hw(G).

Proof (Sketch). Consider the graph Ghex in Figure 2 and the hypertree decomposition
HDhex = 〈T, χ, λ〉 of Ghex having width 3 (hw(Ghex) ≤ 3). For each vertex p of T ,
χ(p) = N (λ(p)) holds, and thus Figure 2 shows only the λ labels. Moreover, only the
left branch is detailed, showing how to deal with the upper cluster of hexagons. The
other subtrees are of the same form, and thus are just depicted as triangles, for the sake
of simplicity. This decomposition is not connected (because of the root), and in fact it
turns out that the only way to attack such hexagons is in a non-connected way. Indeed,

746 G. Greco and F. Scarcello

Fig. 2. A graph Ghex with cghw(Ghex) = 4 > 3 = hw(Ghex)

there is neither a hypertree decomposition nor a generalized hypertree decomposition
of Ghex that is connected and has width 3, as it can be checked by hands or, more
comfortably, by using the algorithm implemented for [16]. �

6 Tree Projections and the R&C Game

In this section, we prove that the Robber and Captain game precisely characterizes the
tree projection problem, in the sense that a winning strategy for R&C(H1,H2) exists if
and only if (H1,H2) has a TP. Hence, any decomposition technique that can be restated
in terms of tree projections is in turn characterized by R&C games.

Theorem 11. If there is a winning strategy in R&C(H1,H2), then (H1,H2) has a TP.

Proof. Let σ be a winning strategy. W.l.o.g., σ can be assumed to be monotone (cf.
Theorem 1). Based on σ we build a hypergraphHa(σ), where for each vertex (M,C) in
T (σ), E(Ha(σ)) contains the hyperedge M ; and, no further hyperedge is in E(Ha(σ)).
Note that, by construction,Ha(σ) ≤ H2, since each position M is such that M ⊆ h2

for some edge h2 ∈ E(H2). Let h1 be an edge in E(H1). Since σ is a winning strategy,
we trivially conclude that the Captain has necessarily covered in a complete form h1 in
some position. Thus, H1 ≤ Ha(σ). Eventually, the fact thatHa(σ) is a tree projection
follows from: Claim I:Ha(σ) is acyclic. �

Theorem 12. If (H1,H2) has a TP, then there is a winning strategy in R&C(H1,H2).

Proof. W.l.o.g., let Ha be a minimal tree projection (cf. Theorem 2). From Theorem 7,
we already known that for each edge h ∈ E(Ha), C is a [h]-component in Ha ⇔
C is a [h]-component inH1. Let JT [h] be a join tree for Ha rooted at an arbitrary
edge h, satisfying conditions in Lemma 4. Then, let us build a strategy σ as follows.
The Captain initially selects the edge h that is the root of JT [h], and at any times she
moves on the hyperedges in Ha. Let h0 = ∅ and C0 = N (H1). Then, given the
current position hi, for each [(hi−1, Ci−1), hi]-option Ci in H1, σ(hi, Ci) coincides
with the root of JT [hi]Ci . We now state: Claim J: Let Cr be a [hr]-component. Then,
Cr ⊆ comp↑(hr) iff Cr ∪ comp↑(hr) is [edge↑(hr) ∩ hr]-connected.

Tree Projections: Hypergraph Games and Minimality 747

Thus, σ is well-defined. Indeed, each [(hi−1, Ci−1), hi]-option Ci is also such that
Ci ⊆ comp↑(hi) and, hence, JT [hi]Ci occurs in JT [h] because of Lemma 4. Moreover,
since at each step Ci ⊆ Ci−1, σ encodes a strategy that is monotone. �

Acknowledgments. The authors thank the anonymous referees for their useful com-
ments and suggestions, which helped improving the quality of the paper.

References

1. Adler, I.: Marshals, monotone marshals, and hypertree-width. Journal of Graph Theory 47(4),
275–296 (2004)

2. Atserias, A., Bulatov, A., Dalmau, V.: On the Power of k -Consistency. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer,
Heidelberg (2007)

3. Adler, I., Gottlob, G., Grohe, M.: Hypertree-Width and Related Hypergraph Invariants. Eu-
ropean Journal of Combinatorics 28, 2167–2181 (2007)

4. Bernstein, P.A., Goodman, N.: The power of natural semijoins. SIAM Journal on Comput-
ing 10(4), 751–771 (1981)

5. Bodlaender, H.L., Fomin, F.V.: A Linear-Time Algorithm for Finding Tree Decompositions
of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

6. Fraigniaud, P., Nisse, N.: Connected Treewidth and Connected Graph Searching. In: Correa,
J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 479–490. Springer,
Heidelberg (2006)

7. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. of
Computer and System Sciences 64(3), 579–627 (2002)

8. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theoretic and
logical characterizations of hypertree width. J. of Computer and System Sciences 66(4), 775–
808 (2003)

9. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: np-hardness
and tractable variants. In: Proc. of PODS 2007, pp. 13–22 (2007)

10. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM 54(1) (2007)

11. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proc. of SODA 2006,
pp. 289–298 (2006)

12. Daskalakis, C., Papadimitriou, C.H.: Computing pure nash equilibria in graphical games via
markov random fields. In: Proc. of ACM EC 2006, pp. 91–99 (2006)

13. Pearson, J., Jeavons, P.G.: A Survey of Tractable Constraint Satisfaction Problems, CSD-TR-
97-15, Royal Holloway, Univ. of London (1997)

14. Robertson, N., Seymour, P.D.: Graph minors III: Planar tree-width. Journal of Combinatorial
Theory, Series B 36, 49–64 (1984)

15. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. Journal
of Combinatorial Theory, Series B 58, 22–33 (1993)

16. Subbarayan, S., Reif Andersen, H.: Backtracking Procedures for Hypertree, HyperSpread
and Connected Hypertree Decomposition of CSPs. In: Proc. of IJCAI 2007, pp. 180–185
(2007)

Explicit Non-adaptive Combinatorial Group

Testing Schemes

Ely Porat and Amir Rothschild

Bar-Ilan University, Dept. of Computer Science, 52900 Ramat-Gan, Israel
{porately,amirrot}@gmail.com

Abstract. Group testing is a long studied problem in combinatorics: A
small set of r ill people should be identified out of the whole (n people) by
using only queries (tests) of the form “Does set X contain an ill human?”.
In this paper we provide an explicit construction of a testing scheme
which is better (smaller) than any known explicit construction. This
scheme has Θ

(
min[r2 ln n, n]

)
tests which is as many as the best non-

explicit schemes have. In our construction we use a fact that may have
a value by its own right: Linear error-correction codes with parameters
[m, k, δm]q meeting the Gilbert-Varshamov bound may be constructed
quite efficiently, in Θ

(
qkm

)
time.

1 Introduction

Group testing is an important and well known tool in combinatorics. Due to its
basic nature, it has been found to be applied in a vast variety of situations. In
2006 DIMACS has dedicated a special workshop solely for the problem of group
testing [1]. A representative instance of group testing considers a set of items,
each of which can be either defective or non-defective, and the task is to identify
the defective items using the minimum number of tests. Each test works on a
group of items simultaneously and returns whether or not that group contains
at least one defective item. A group testing algorithm is said to be nonadaptive
if all the tests to be performed are specified in advance. A formal definition is
given in Section 2.

Group testing has a long history dating back to at least 1943 [2]. In this early
work the problem of detecting syphilitic men for induction into the United States
military using the minimum number of laboratory tests was considered. While
this idea is still relevant today for testing viruses such as HIV, it is only one of
the many applications found for group testing: In the effort of mapping genomes,
for example, we have a huge library of DNA sequences, and test whether each
of them contains a probe from a given set of DNA pieces [3,4,5]. Somewhat
less conventional uses for group testing were introduced lately in pattern match-
ing algorithms [6,7] and in streaming algorithms [8]: For instance, [6] solves the
problem of searching for a pattern in a text with a bounded number of mis-
matches. A recent paper about pattern matching in a streaming model even
utilizes group testing twice in the same algorithm [9]. Additional applications

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 748–759, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Explicit Non-adaptive Combinatorial Group Testing Schemes 749

of group testing include: compressed sensing [10,11,12,13,14], quality control in
product testing [15], searching files in storage systems [16], sequential screen-
ing of experimental variables [17], efficient contention resolution algorithms for
multiple-access communication [16,18], data compression [19], software testing
[20,21], DNA sequencing [22] and other applications in computational molecular
biology [23,24,25,26]. In most of the algorithms and applications presented here,
our group testing algorithm generates improvements to the results.

Consider the situation where there are n items out of which at most r are de-
fective. It has been shown that in this situation any nonadaptive combinatorial
group testing ((n, r)-GT) procedure must use Ω(min[r2 logr n, n]) tests [27]. The
best known schemes use Θ

(
min[r2 lnn, n]

)
tests [16], and the best known explicit

(polynomial time constructable) schemes need as much asΘ
(
min[r2 log2

r lnn n, n]
)

tests [16]. In this paper, we present an explicit GT scheme which contains merely
t = Θ

(
min[r2 lnn, n]

)
tests (the same as the best known non-explicit schemes),

and takes Θ (rn lnn) time to build, which is linear in its representation (O
(
tnr

)
).

Hence, this paper closes the gap between the explicit and non-explicit group test-
ing schemes.

1.1 Error Correction Codes

An error-correcting code (ECC) is a method for encoding data in a redundant
way, such that any errors which are introduced can be detected and corrected
(within certain limitations). Suppose Alice wants to send Bob a string of k
letters from an alphabet of size q using some noisy channel. An (m, k, d)q error-
correction code enables Alice to encode her string to an m > k letters string, such
that Bob will be able to detect whether the received message has up to d errors,
and even decode the message if it has less than d

2 errors. A linear code (LC) is
an important type of error-correction code which allows more efficient encoding
and decoding algorithms than other codes. Error-correction codes are used in
a vast variety of fields including information transmission, data preservation,
data-structures, algorithms, complexity theory, and more.

One of the most important goals of coding theory is finding codes that can
detect many errors, while having little redundancy. The Gilbert-Varshamov (GV)
bound shows this can be done to some extent: We define the rate of a code,
R = k

m and the relative distance of a code, δ = d
m . The GV bound asserts that

there are codes with R ≥ 1 − Hq(δ) − o(1) where Hq(p) is the q-ary entropy
function Hq(p) = p logq

q−1
p +(1−p) logq

1
1−p and o(1) −−−−→

m→∞
0 [28,29]. Though

the GV bound is half a century old, no explicit construction of codes meeting
it has yet been found. The best known construction takes polynomial time in
qm−k [30].

We present a more efficient deterministic construction for linear codes meeting
the GV bound. Our construction takes Θ

(
qkm

)
time. The importance of this

result is apparent when constructing codes with low rates; First, for small rates
the GV bound is the best known lower bound on the rate and relative distance
of a code. Second, the lower the rate, the slower the previously known best
construction, and the faster our construction.

750 E. Porat and A. Rothschild

1.2 Previous Results

Since the problem of group testing was first introduced in 1943, many problems re-
lated to it and generalizations of it were considered including: fully-adaptive group
testing , two staged group testing and selectors [31,32,33,34,35,36], group testing
with inhibitors [37,38,39,33], group testing in a random case where a distribution
is given on the searched set [32,40,41,42,33], group testing in the presence of errors
[43] and more. Regarding the original problem of group testing, Kautz and Single-
ton [16] proved the existence of GT schemes of size Θ

(
r2 lnn

)
, and showed how

to explicitly construct schemes of size Θ
(
min[r2 log2

r lnn n, n]
)
. They also man-

aged to give an explicit construction of schemes of size Θ (lnn) for the special case
r = 2. Since their work, no asymptotic improvements to the size of the GT scheme
were found. One paper succeeded, however, in improving the size of the explicit
schemes (but only for constant values of r): [44] showed how to construct an ex-
plicit construction of schemes of size Θ

(
r2 lnn

)
in time polynomial in nr. From

the probabilistic perspective, there is no known Las-Vegas algorithm (though one
easily stems from our methods) constructing a scheme of size Θ

(
r2 lnn

)
. The only

known probabilistic constructions are Monte-Carlo algorithms.
Regarding error-correction codes the picture is more complex. The GV bound

was first presented by Gilbert in 1952 [28]. He provided a Θ (qm) time greedy
construction for codes meeting his bound. A few years later Varshamov [29]
showed linear codes share this bound and Wozencraft [45] offered a Θ (qm) time
deterministic construction of such codes. In 1977 Goppa [46] initiated the fruit-
ful study of algebraic geometric codes. Codes eventually found by this study
surpass the GV bound for various alphabet sizes and rates [47]. Recently, an
explicit, Θ

(
m3 polylogm

)
time construction was given for algebraic geometric

codes [48,49]. The best deterministic construction for alphabet sizes and rates
where the GV bound is superior to the algebraic geometric bound, was provided
in 1993 by Brualdi and Pless [30]. They presented a poly(qm−k) construction
of binary linear codes meeting the GV bound. Their construction can be easily
generalized to deal with larger alphabets. Even under hardness assumptions, no
explicit construction of codes meeting the GV bound has yet been found, though
an effort presenting some worthy results is given in [50].

1.3 Our Results

We present the first explicit (n, r)-GT scheme which contains
t = Θ

(
min[r2 lnn, n]

)
tests, thus closing the gap between explicit and non-

explicit group testing schemes. Our construction takes Θ (rn lnn) time to build,
meaning linear time in its representation (O

(
tnr

)
).

Theorem 1. Let n and r be positive integers. It is possible to construct a (n, r)-
GT containing Θ

(
min[r2 lnn, n]

)
tests in Θ (rn lnn) time.

We also present the most efficient deterministic construction for linear codes meet-
ing the GV bound. Our construction builds an [m, k, δm]q-LC in Θ

(
qkm

)
time.

Explicit Non-adaptive Combinatorial Group Testing Schemes 751

Theorem 2. Let q be a prime power, m and k positive integers and δ ∈ [0, 1]. If
k ≤ (1−Hq(δ))m. It is possible to construct an [m, k, δm]q-LC in time Θ

(
mqk

)
.

1.4 The Paper Outline

We start this paper with formal definitions in Section 2, and continue by showing a
connection between error-correction codes and group testing schemes in Section 3.
Then we immediately move to the main result of the paper in Section 4, show-
ing how to efficiently construct small group testing schemes. This construction for
group testing schemes uses our construction of a linear code which is given in Sec-
tion 5. Due to space constraints, most of the proofs have been omitted from this
version. All proofs can be found in the full version of the paper [51].

2 Problems Definitions

Definition 1. Consider a universe U . A family of tests (subsets) F ⊂ P(U) is
a group testing scheme of strength r ((n, r)-GT) if for any subset A ⊂ U of size
at most r, and for any element x /∈ A, there exist a test B ∈ F that distinguishes
x from A, meaning x ∈ B while A ∩B = ∅.

In order to ease reading, we present short notations of an error-correction code
and a linear code.

Definition 2. An ECC, C, is said to have parameters (m, k, d)q if it consists of
qk words of length m over alphabet Σ of q elements, and has Hamming distance
d. Such an ECC is denoted as (m, k, d)q-ECC.

Definition 3. An [m, k, d]q-LC is a special case of an (m, k, d)q-ECC which is
over alphabet Σ = Fq when the codewords form a linear subspace over Fmq . Such
a linear code is said to have parameters [m, k, d]q. A linear code has a generator
matrix G ∈ Mm×k which generates it, meaning C = {Gy | y ∈ Fkq}.

3 Background

Our results concerning GT are more natural and straightforward using the com-
binatorial concepts selection by intersection and strongly-selective family (SSF)
[52]. Selection by intersection means distinguishing an element from a set of
elements by intersecting it with another set. More precisely,

Definition 4. Given a subset A ⊂ U of a universe U , element x ∈ A is selected
by subset B ⊂ U if A ∩ B = {x}. An element is selected by a family of subsets
F ⊂ P(U) if one of the subsets in F selects it.

An SSF is a family of subsets that selects any element out of a small enough
subset of the universe. More precisely,

752 E. Porat and A. Rothschild

Definition 5. A family F ⊂ P(U) is said to be (n, r)-strongly-selective if, for
every subset A ⊂ U of size |A| = r, all elements of A are selected by F . We call
such a family an (n, r)-SSF.

SSFs and GT schemes are strongly connected: On the one hand, an (n, r+1)-SSF
is a GT scheme of strength r, and on the other hand, a GT scheme of strength
r in a universe of size n is an (n, r)-SSF. For a detailed proof see [16].

In what follows we will focus on SSF constructions. It is important to note that
explicit constructions for SSFs give explicit constructions for GT schemes with
the same asymptotic behavior. Next we show how to construct an SSF from an
ECC, and how good this construction is. The foundations of the idea we present
was developed in an earlier work by Kautz and Singleton on superimposed codes
[16]. The context and formalisms that were employed are quite distinct from
those we require, the idea is quite simple and though, we are not aware of this
aspect of their work being developed subsequently. Thus, the following subsection
will provide full and complete explanations and proofs of the construction (the
full version [51] contains all the proofs).

3.1 Reducing ECCs to SSFs

As it turns out, one can build small strongly-selective families from good error-
correction codes having large distance. Both the construction and the proof are
given in this Subsection. In a few words, the idea behind the construction is
that taking a small set of codewords from the ECC and another codeword w,
there must be positions in which w differs from all the words in this set. This
is because w differs from any other word in the code in many positions, and so,
in a small set of codewords, there must be some shared positions in which all
codewords differ from w. Therefore we’ll get an SSF if we first translate elements
of [n] to codewords, and second, find tests which isolate a codeword w from a
set of codewords if it differs from this set in a certain position. We construct
such tests by assembling a test for each possible letter in each possible position
in the word. A detailed construction follows.

Suppose C = {w1, ..., wn} is an (m, logq n, δm)q-ECC. The constructed SSF,
F(C), will be assembled from all the sets of indexes of codewords that have
a certain letter in a certain position. More accurately, for any p ∈ [m] and
v ∈ [q], define sp,v = {i ∈ [n] | wi[p] = v}. Define F(C) as the set of all such
sp,v-s: F(C) = {sp,v | p ∈ [m] and v ∈ [q]}.

The size ofF(C) is at most mq. Notice that this construction may be performed
in time Θ (nm) (linear in the size of the representation of F) using Algorithm 1.

foreach i ∈ [n] do
foreach p ∈ [m] do

insert i into sp,wi[p] ;

Algorithm 1. Constructing an SSF from an ECC

Explicit Non-adaptive Combinatorial Group Testing Schemes 753

The following Lemma shows that this construction really does result in a small
SSF, and more specifically, that F(C) is an (n, " 1

1−δ #)-SSF.

Lemma 1. Let C be an (m, logq n, δm)q-ECC. Then F(C) is an (n, " 1
1−δ #)-SSF.

For illustration, we consider the following example: If we test our algorithm on
the Reed-Solomon [3, 2, 2]3-LC we get a (9, 3)-SSF:

C = {000, 111, 222, 012, 120, 201, 021, 102, 210}

F(C) = { {1,4,7}, {2,5,8}, {3,6,9}, {1,6,8}, {2,4,9},
{3,5,7}, {1,5,9}, {2,6,7}, {3,4,8} }

4 Main Theorem

Theorem 1. Let n and r be positive integers. It is possible to construct an
(n, r)-SSF of size Θ

(
min[r2 lnn, n]

)
in Θ (rn lnn) time.

Proof. If r2 lnn ≥ n, simply return the n tests {i}ni=1. We continue the proof
assuming that r2 lnn < n. Set δ = r−1

r (which is equivalent to r = 1
1−δ), q ∈

[2r, 4r) a prime power, k = logq n and m = k
1−Hq(δ) = Θ (kr ln r) = Θ (r lnn).

Use Theorem 3 to construct an [m, k, δm]q-LC in time Θ (nm). This is possible
since k ≤ (1−Hq(δ))m.

According to Lemma 1, we can now construct an (n, r)-SSF of size mq =
Θ

(
r2 lnn

)
. The time this construction will take is Θ (nm) = Θ (rn lnn). ��

5 Meeting the Gilbert-Varshamov Bound More
Efficiently

In this Section we demonstrate a deterministic construction of LCs which meets
the GV bound. We developed this deterministic algorithm by taking a random-
ized algorithm and derandomizing it using the method of conditional probabili-
ties (a full discussion concerning this method is given in [53]). Using this method
requires the randomized algorithm to have several non-trivial attributes. First,
there need to be a goal function goal : LinearCodes → R which returns a large
result whenever the randomized algorithm fails. Second, this function has to
have low expectation - lower than the minimum value returned by it when the
algorithm fails. Third, the random selections of the algorithm have to be divided
into stages with a small number of options to choose from in each. Finally, there
should be an efficient algorithm for calculating in each stage of the algorithm
the option minimizing the expectation of goal given all the selections done until
that point. In Subsection 5.1 we’ll show the randomized algorithm, present the
goal function goal, show that the algorithm fails iff goal(G) ≥ 1 (where G is the
generator matrix returned by the algorithm), and show that E(goal) < 1. In Sub-
section 5.2 we’ll present the derandomized algorithm more accurately, showing

754 E. Porat and A. Rothschild

how to divide it to the small stages. We’ll also prove it should work, and show
how to calculate the option minimizing the expectation of goal in each stage.
We’ll finish this Subsection having an algorithm taking time polynomial in the
complexity we desire, we improve it in Subsection 5.3 to acquire the desired
complexity.

5.1 The Probabilistic Algorithm

Algorithm 2 is a standard probabilistic algorithm for building linear codes with
rate meeting the GV bound.

Input: m, k ∈ N, δ ∈ [0, 1] s.t. k ≤ (1−Hq(δ))m
Pick entries of the m× k generator matrix G uniformly and independently
at random from Fq;
Output: G

Algorithm 2. Probabilistic Construction of a Linear Code

Definition 6. Given a codeword x of length m, and a distance parameter δ ∈
[0, 1], we define Bδ(x) as the bad event that the weight of x is less than δm,
ω(x) < δm. By abuse of notation we refer to Bδ(x) also as the indicator of the
same event.

If we manage to choose a code with no bad event (not considering the 0 codeword,
of course), then the weight of the generated code is larger than δm. As the weight
and distance of a linear code are equal, the algorithm succeeds. Therefore, our
goal function will be goal(G) =

∑
0�=y∈Fk

q
Bδ(Gy). The algorithm succeeds iff

goal(G) = 0. We now need to show that E(goal) is small. Therefore, we are
interested in proving that the probability of a bad event is sufficiently small. In
order to do so, we use the following version of the Chernoff bound:

Theorem 2 (Chernoff bound [54])
Assume random variables X1, ..., Xm are i.i.d. and Xi ∈ [0, 1]. Let μ = E(Xi),
and ε > 0. Then

Pr

(
1
m

∑
Xi ≥ μ + ε

)

≤
((

μ

μ + ε

)μ+ε (1− μ

1− μ− ε

)1−μ−ε
)m

Lemma 2. Let y be a nonzero vector in Fkq . Let G be a random generator matrix
chosen according to algorithm 2. Then logq (Pr (Bδ(Gy))) ≤ −m (1−Hq (δ)).

We will now show that for an appropriate choice of parameters, the expected
number of bad events, E(goal), is smaller than 1.

Lemma 3. Suppose G is a random generator matrix chosen according to algo-
rithm 2. Suppose that k ≤ (1−Hq(δ))m. Then E(goal) < 1.

Explicit Non-adaptive Combinatorial Group Testing Schemes 755

5.2 Derandomizing the Algorithm

Next we will show how to derandomize the algorithm. Algorithm 3 will determine
the entries of the generator matrix one by one, while trying to minimize the
expectation of the number of bad events, goal.

Input: m, k ∈ N, δ ∈ [0, 1] s.t. k ≤ (1−Hq(δ))m
Initialize G to be an m× k matrix;
foreach i ∈ [m] do

foreach j ∈ [k] do
Set G[i, j] so as to minimize the expected value of goal(G) given all
the values of G chosen so far;

Output: G

Algorithm 3. Finding a code having no Bad Events

In what follows, We’ll need the following notations:

Definition 7. We assert that the algorithm is in step-(i, j) when it is about to
choose the entry (i, j) in G. We denote the step following (i, j) by (i, j) + 1.

Definition 8. ST(i,j) will denote the state of the matrix G at step (i, j) – i.e.
which entries have been fixed to which values.

Two questions arise from the above description of the algorithm: First, will this
algorithm find a code with no bad events? Second, how can we find the value of
G[i, j] in each step of the algorithm?

The answer to the first question is, of course, positive. The presented algorithm
works according to the derandomization scheme of conditional probabilities, and
so, the number of bad events in the returned solution will be no more than the
expectation of this number before fixing any of the letters.

Lemma 4. The above algorithm will find a code with no bad events, goal(G) = 0.

The answer to the second question, regarding how to find what the value of
G[i, j] should be, requires additional work. It would be convenient to order the
vectors y ∈ Fkq according to the lexicographic order, setting y� to be the �-th
vector according to the lexicographic order.

We need to know for any codeword the number of positions in which it van-
ishes, at each step of the algorithm. For this purpose maintain an array A of qk

entries throughout the algorithm. Entry A[�] in this array will hold the number
of positions in which the code-word Gy� vanished so far. Maintaining this array
will require overall Θ

(
mqk

)
time. This is due to the fact that in each step (i, j)

we only need to consider changing the values A[y�] for qj−1 ≤ � < qj since
the only letters we fixed during this step belong to these words. We claim that
the number of position where the word Gy� vanishes determines the conditioned
probability of Bδ(y�).

756 E. Porat and A. Rothschild

Lemma 5. Consider a codeword Gy� for which all entries up to i were fixed
(by the entries selected in G), and entries i to m were not fixed yet. In other
words, there exists a word f ∈ Fiq of length i, such that for each possible G, and
∀t ≤ i : (Gy�)[t] = f [t], and the same is not true for i+1. Also suppose that until
now, Gy� doesn’t vanish on exactly c positions (c = |{t ≤ i | f [t] = 0}|). Then
ω(Gy�) − c ∼ B(m − i, 1 − 1

q), and Pr(Bδ(Gy�) | ∀t ≤ i : (Gy�)[t] = f [t]) is the
probability that such a binomial variable will be smaller than δm− c.

Now, in step (i, j), For any codeword Gy� s.t. qj−1 ≤ � < qj , we can cal-
culate the probabilities Pr(Bδ(y�) | ST(i,j) , G[i, j] = v) for all v ∈ [q] in
poly(qk,m) time using Lemma 5. Consequently, we can calculate all the expec-
tations E(

∑
qi−1≤�<qi Bδ(y�) | ST(i,j) , G[i, j] = v) for all v ∈ [q] in poly(qk,m)

time and find the value of v which minimizes this expectation. Hence, we can
complete Algorithm 3 in poly(qk,m) time. In the following Subsection we give
improvements to this algorithm, showing how to achieve the desired complexity.

5.3 Improving the Deterministic Algorithm

In order to find the letter v which minimizes Ei,j,v = E(
∑
qj−1≤�<qj Bδ(y�) |

ST(i,j) , G[i, j] = v), we do not actually have to calculate the q expectations Ei,j,v.
It is enough to calculate the differences of those expectations and a constant value.
We will use the constant value which is the expected number of bad events given
ST(i,j) and that (Gy�)[i] = 0 for all qj−1 ≤ � < qj (Of course, it’s improbable that
no letters would vanish in step (i, j), as the purpose of this assumption is only to
help us with the proof). We denote this constant value Ei,j .

According to Lemma 5, for any vector y the following holds:

Pr(Bδ(Gy) | STi,j , (Gy)[i] = 0)− Pr(Bδ(Gy) | STi,j , (Gy)[i] = 0) =
(
m−i
δm−c

) (
1− 1

q

)δm−c (
1
q

)(m−i)−(δm−c)

Denote the above expression Difi,j(y). Let T be the time it takes to calculate this
expression. Now, we can calculate all q differences Ei,j,v − Ei,j quite efficiently
in the following manner: Initialize a size q array W . Then, run over the vectors
y� for qj−1 ≤ � < qj , and for each subtract the difference Difi,j(y�) from cell
v = −y�[j]−1

∑j−1
t=0 G[i, t]y�[t] in W (since this cell means setting (Gy�)[i] =

∑j−1
t=0 G[i, t]y�[t]+G[i, j]y�[j] = 0). After considering all values of y� , the position

with the maximal value in W is the letter we should set for G[i, j]. Each entry
number v can be calculated in constant time for all qj−1 ≤ � < qj if we traverse
over the �-s in each step according to Gray code. Overall, the program will
calculate mqk entries, and so, it will take mqkT time.

Finally, we can drop the T factor and achieve a Θ
(
mqk

)
running time by

using some standard techniques which appear in the full version of the paper
[51]. We conclude the discussion with the following Theorem:

Theorem 3. Let q be a prime power, m and k positive integers and δ ∈ [0, 1].
If k ≤ (1−Hq(δ))m, then it’s possible to construct an [m, k, δm]q-LC in time
Θ

(
mqk

)
.

Explicit Non-adaptive Combinatorial Group Testing Schemes 757

6 Conclusion and Open Problems

We have presented a simple and intuitive construction of linear codes meeting
the GV bound. Our construction is the most efficient known construction of such
linear codes. We used our codes construction to construct explicitly, in Θ (rn lnn)
time, very good GT schemes of Θ

(
r2 lnn

)
tests. It would be interesting to study

whether our linear codes construction can be made more efficient, or whether it
can be improved to construct better codes. While we managed to close the gap
between the sizes of explicit and non-explicit group testing schemes, the gap in
the important generalization of selectors is still open; closing it is an interesting
and important problem. We believe that other important special cases of group
testing worth studying include the problem of minimizing the sets accumulative
size rather than their number, and also, solely for algorithmic purposes – the case
where the tests answers tell not only if there exists an element in the intersection
or not, but rather, how many elements are there in it.

References

1. The Center for Discrete Mathematics and Theoretical Computer Science (DI-
MACS): DIMACS Workshop on Combinatorial Group Testing, The Center for
Discrete Mathematics and Theoretical Computer Science (DIMACS) (May 2006)

2. Dorfman, R.: The detection of defective members of large populations. The Annals
of Mathematical Statistics 14(4), 436–440 (1943)

3. Barillot, E., Lacroix, B., Cohen, D.: Theoretical analysis of library screening using
an n- dimensional pooling strategy. Nucleic Acids Research, 6241–6247 (1991)

4. Bruno, W., Balding, D., Knill, E., Bruce, D., Whittaker, C., Dogget, N., Stalling,
R., Torney, D.: Design of efficient pooling experiments. Genomics 26, 21–30 (1995)

5. T., B., J.W., M., P., S.: Maximally efficient two-stage screening. Biometrics 56(8),
833–840 (2000)

6. Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: k-mismatch with don’t cares.
In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 151–
162. Springer, Heidelberg (2007)

7. Amir, A., Kapah, O., Porat, E.: Deterministic length reduction: Fast convolution
in sparse data and applications. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS,
vol. 4580, pp. 183–194. Springer, Heidelberg (2007)

8. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

9. Porat, B., Porat, E., Rothschild, A.: Pattern matching in a streaming model

10. Muthukrishnan, S.: Some algorithmic problems and results in compressed sensing.
In: 44th Allerton Conference on Communication, Control and Computing (2006)

11. Indyk, P.: Explicit constructions for compressed sensing of sparse signals. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on The-
oretical and Experimental Analysis of Discrete Algorithms) (2008)

12. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for all: fast
algorithms for compressed sensing. In: STOC 2007: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pp. 237–246. ACM, New York
(2007)

758 E. Porat and A. Rothschild

13. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sens-
ing. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
280–294. Springer, Heidelberg (2006)

14. Iwen, M.A.: A deterministic sub-linear time sparse fourier algorithm via non-
adaptive compressed sensing methods. CoRR abs/0708.1211 (2007)

15. Sobel, M., Groll, P.: Group testing to eliminate efficiently all defectives in a bino-
mial sample. Bell Syst. Tech. J. 38, 1179–1252 (1959)

16. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Transac-
tion of InformationTheory 10, 363–377 (1964)

17. Li, C.: A sequential method for screening experimental variables. J. Amer. Sta.
Assoc. 57, 455–477 (1962)

18. Wolf, J.: Born again group testing: Multiaccess communications. IEEE Transac-
tions on Information Theory 31(2), 185–191 (1985)

19. Hong, E., Ladner, R.: Group testing for image compression. In: Data Compression
Conference, pp. 3–12 (2000)

20. Blass, A., Gurevich, Y.: Pairwise testing. Bulletin of the EATCS 78, 100–132 (2002)
21. Cohen, D., Dalal, S., Fredman, M., Patton, G.: The AETG system: An approach

to testing based on combinatiorial design. Software Engineering 23(7), 437–444
(1997)

22. Pevzner, P.A., Lipshutz, R.J.: Towards dna sequencing chips. In: MFCS 1994:
Proceedings of the 19th International Symposium on Mathematical Foundations
of Computer Science 1994, London, UK. LNCS, pp. 143–158. Springer, Heidelberg
(1994)

23. Du, D., Hwang, F.: Combinatorial Group Testing and its Applications, 2nd edn.
Series on Applied Mathematics, vol. 12. World Scientific, Singapore (2000)

24. Farach, M., Kannan, S., Knill, E., Muthukrishnan, S.: Group testing problems with
sequences in experimental molecular biology. In: The Compression and Complexity
of Sequences 1997, p. 357 (1997)

25. Ngo, H., Du, D.: A survey on combinatorial group testing algorithms with appli-
cations to DNA library screening. In: DIMACS Series Discrete Math. and Theor.
Computer Science vol. 55, pp. 171–182. AMS (2000)

26. Balding, D.J., Bruno, W.J., Knill, E., Torney, D.C.: A comparative survey of non-
adaptive pooling designs. Institute for Mathematics and Its Applications 81, 133
(1996)

27. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity.
In: ACM Symposium on Theory of Computing (STOC), pp. 30–36 (1996)

28. Gilbert, E.: A comparison of signalling alphabets. Bell System Technical Journal 31,
504–522 (1952)

29. Varshamov, R.: Estimateof the number of signals in error correcting codes. Doklady
Akadamii Nauk 117, 739–741 (1957)

30. Brualdi, R.A., Pless, V.: Greedy codes. J. Comb. Theory, Ser. A 64(1), 10–30 (1993)
31. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio

networks. In: IEEE Symposium on Foundations of Computer Science, pp. 575–581
(2000)

32. Knill: Lower bounds for identifying subset members with subset queries. In: SODA:
ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and
Experimental Analysis of Discrete Algorithms) (1995)

33. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Generalized framework for selectors with
applications in optimal group testing. In: ICALP, pp. 81–96 (2003)

34. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective families, superimposed codes,
and broadcasting on unknown radio networks. In: SODA, pp. 709–718 (2001)

Explicit Non-adaptive Combinatorial Group Testing Schemes 759

35. Bonis, A.D., Vaccaro, U.: Constructions of generalized superimposed codes with
applications to group testing and conflict resolution in multiple access channels.
Theor. Comput. Sci. 306(1-3), 223–243 (2003)

36. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group
testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

37. Farach, M., Kannan, S., Knill, E., Muthukrishnan, S.: Group testing problems with
sequences in experimental molecular biology. In: SEQUENCES 1997: Proceedings
of the Compression and Complexity of Sequences 1997, Washington, DC, USA, p.
357. IEEE Computer Society, Los Alamitos (1997)

38. Damaschke, P.: Randomized group testing for mutually obscuring defectives. Inf.
Process. Lett. 67(3), 131–135 (1998)

39. Bonis, A.D., Vaccaro, U.: Improved algorithms for group testing with inhibitors.
Inf. Process. Lett. 67(2), 57–64 (1998)

40. Berger, T., Levenshtein, V.I.: Asymptotic efficiency of two-stage disjunctive testing.
IEEE Transactions on Information Theory 48(7), 1741–1749 (2002)

41. Berger, T., Levenshtein, V.I.: Application of cover-free codes and combinatorial
designs to two-stage testing. Discrete Appl. Math. 128(1), 11–26 (2003)

42. A.J., M.: Probabilistic nonadaptive and two-stage group testing with relatively
small pools and Dna library screening. Journal of Combinatorial Optimization 2,
385–397 (1998)

43. Knill, E., Bruno, W.J., Torney, D.C.: Non-adaptive group testing in the presence
of errors. Discrete Applied Mathematics 88(1-3), 261–290 (1998)

44. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for -
restrictions. ACM Transactions on Algorithms 2(2), 153–177 (2006)

45. Wozencraft, J.: Threshold decoding. Personal communication in [55] section 2.5
(1963)

46. Goppa, V.: Codes associated with divisors. Problems of Information Transmis-
sion 13(1), 22–26 (1977)

47. Tsfasman, M., Vladut, S., Zink, T.: Modular curves, Shimura curves, and codes
better then the Varshamov-Gilbert bound. Math. Nachrichten 109, 21–28 (1982)

48. Shum, K.: A Low-Complexity Construction of Algebric Geometry Codes Better
Then the Gilbert-Varshamov Bound. PhD thesis, University of Southern California
(December 2000)

49. Shum, K., Aleshnikov, I., Kumar, P., Stichtenoth, H., Deolalikar, V.: A low-
complexity algorithm for the construction of algebraic geometric codes better then
the Gilbert-Varshamov bound. IEEE Transaction on Information Theory 47(6),
2225–2241 (2001)

50. Cheraghchi, M., Shokrollahi, A., Wigderson, A.: Computational Hardness and Ex-
plicit Constructions of Error Correcting Codes. In: 44th Allerton Conference on
Communication, Control and Computing (2006)

51. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing
schemes. CoRR abs/0712.3876 (2007)

52. Clementi, A., Monti, A., Silvestri, R.: Distributed broadcast in radio networds of
unknown topology. Theoretical Computer Science 302(1–3), 337–364 (2003)

53. Alon, N., Spencer, J.: The Probabilistic Method, 2nd edn. John Wiley and Sons
Inc., Chichester (2001)

54. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), 13–30 (1963)

55. Massey, J.L.: Threshold decoding. MIT Press, Cambridge (1963)

Tight Lower Bounds for Multi-pass Stream
Computation Via Pass Elimination

Sudipto Guha1,� and Andrew McGregor2

1 Department of Computer and Information Science, University of Pennsylvania
2 Information Theory & Applications Center, University of California, San Diego

Abstract. There is a natural relationship between lower bounds in the multi-
pass stream model and lower bounds in multi-round communication. However,
this connection is less understood than the connection between single-pass stream
computation and one-way communication. In this paper, we consider data-stream
problems for which reductions from natural multi-round communication prob-
lems do not yield tight bounds or do not apply. While lower bounds are known
for some of these data-stream problems, many of these only apply to determinis-
tic or comparison-based algorithms, whereas the lower bounds we present apply
to any (possibly randomized) algorithms. Our results are particularly relevant to
evaluating functions that are dependent on the ordering of the stream, such as the
longest increasing subsequence and a variant of tree pointer jumping in which
pointers are revealed according to a post-order traversal.

Our approach is based on establishing “pass-elimination” type results that are
analogous to the round-elimination results of Miltersen et al. [23] and Sen [29].
We demonstrate our approach by proving tight bounds for a range of data-stream
problems including finding the longest increasing sequences (a problem that has
recently become very popular [22,16,30,15,12] and we resolve an open question
of [30]), constructing convex hulls and fixed-dimensional linear programming
(generalizing results of [8] to randomized algorithms), and the “greater-than”
problem (improving results of [9]). These results will also clarify one of the main
messages of our work: sometimes it is necessary to prove lower bounds directly
for stream computation rather than proving a lower bound for a communication
problem and then constructing a reduction to a data-stream problem.

1 Introduction

A natural connection between communication complexity and small-space computation
in the data-stream model has been widely exploited since the early papers on the data-
stream model [2, 19]. For example, a stream computation can be conceptualized as a
communication problem between players who know different segments of the input
stream. Consequently, a lower-bound on the total amount of communication necessary
yields a lower-bound on the amount of memory required by the streaming algorithm.
This approach has been very successful and many lower bounds have been proved in this
manner (e.g., [2,3,6,18].) However, interesting issues arise when trying to prove lower

� This research was supported by in part by an Alfred P. Sloan Research Fellowship and by NSF
Awards CCF-0430376, and CCF-0644119.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 760–772, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination 761

bounds for multi-pass algorithms1 and these have not been explored as thoroughly as in
the single-pass case. Many of the lower bounds that do exist only apply to deterministic
algorithms, e.g., recent results on approximating the length of the longest increasing
subsequence [15, 12] and solving geometric problems [8], or only apply to restricted
classes of algorithm that may only use memory in a certain way [24, 16, 10]. Given
that randomization is necessary for many classic data-stream problems (e.g., �p norms
and frequency moments [2, 20]) we consider it natural to seek lower-bounds for fully
general randomized algorithms. We are particularly interested in space/pass trade-offs.

The goal of this paper is to construct a framework for proving multi-pass lower
bounds for certain types of data-stream problems. Our approach is based on establish-
ing pass-elimination results which tailor ideas from the round-elimination technique
in communication complexity [29, 23] specifically to data-stream computation. This
allows us to prove results on tree pointer jumping when the data is revealed by a post-
order traversal rather than level-by-level. This will play a crucial role in proving lower
bounds for order-dependent functions in the data-stream model and will exemplify
a distinction we wish to make between multi-party communication and data-stream
computation. With this technology we prove results for a range of problems includ-
ing finding the longest increasing subsequence, determining the larger of two values,
constructing convex hulls, and fixed dimensional linear programming. The longest in-
creasing subsequence (LIS) problem is to find the increasing sub-stream of maximum
length. This problem, and the related problem of estimating the length of the longest
increasing subsequence has become very popular in recent years [22,16,30,15,12]. We
prove a tight multi-pass lower bound for LIS, thereby resolving an open question of Sun
and Woodruff [30]. We note that this problem exhibits an interesting doubly-exponential
space/pass trade-off. The greater-than (GT) problem is to determine which of two inte-
gers is larger given the bits of their binary expansion. It is often used as an example
of the utility of round-elimination in the communication setting. A lower bound for a
data-stream version was given by Chang and Kannan [9] by appealing to the commu-
nication result. We show that this lower bound can be substantially improved using the
pass-elimination framework and this will further highlight the round-elimination/pass-
elimination and data-stream/communication distinctions that are important in this pa-
per. Finally, we generalize bounds for deterministic algorithms for geometric problems
including constructing convex hulls and fixed dimensional linear programming [8] to
apply to randomized algorithms.

Previous Approaches and Limitations: There do exist multi-pass lower bounds for ran-
domized algorithms for some problems in the data-stream model. However, almost all
of these bounds are based on reductions from a relatively small set of communica-
tion problems. Many bounds are based on the multi-round communication of multi-
player set-disjointness (e.g., [28, 3, 13, 22, 16]) and these bounds achieve lower-bounds
on the product of the number of passes and the amount of space. Hence, lower bounds
from set-disjointness only exhibit space bounds that scale with the reciprocal of the
number of passes. An approach that yields more interesting space/pass trade-offs is
to consider pointer jumping problems (e.g., [25, 14, 18]) and related problems such

1 We consider input to be on a read-only tape rather than a read-write tape as in, e.g., [4, 11].

762 S. Guha and A. McGregor

as the greater-than problem (e.g., [23, 29, 9]). There are two issues with reductions
from pointer-jumping and greater-than: the difficulty in achieving tight results in the
data-stream model (rather than a communication model) and applying these techniques
to order-dependent functions in the data-stream model. To elaborate upon these is-
sues, it is necessary to review the round-elimination technique that underlies many
communication lower bounds [7, 1, 5, 27, 26]. In round-elimination we wish to eval-
uate a function f(x, y) where x is known to Alice and y to Bob. A “meta-problem”
Pf (x1, . . . , xt, i, y) = f(xi, y) is defined where x1, . . . , xt is known to Alice and i, y
is known to Bob. It was shown that the existence of a “good” k round protocol for Pf
with Alice starting, implied that there exists a “good” k− 1 round protocol for f where
Bob communicates first. The result holds true even if public coins are allowed and Bob
is given x1, . . . , xi−1. Essentially, the good protocol for Pf , stripped of its “not-so-
useful” first round, gives a good protocol for f . If Pf is a “self-reducible” problem,
i.e., Pf and f can be thought of as the same problem on different size inputs, this gives
a beautiful inductive way of bounding the communication of k-round protocols for f
given a lower bound for 1 round protocols.

For example, the approach implies that if Alice and Bob have n-bit binary strings
x and y respectively and are permitted to communicate a total of r messages, then to
determine if x < y requires Ω̃(n1/r) bits of communication. However, if we consider
the same problem in the stream setting we deduce that any p-pass algorithm requires
Ω̃(n1/(2p−1)) space because p passes over the data corresponds to 2p−1 messages. We
show that this is not tight and that a Ω̃(n1/p) lower-bound exists. Note that if p = 1,
2p− 1 = p and hence tight one-pass lower bounds are sometimes achieved.

The second issue relates to proving lower bounds for evaluating functions, such as
finding the longest increasing subsequence, which are dependent on the ordering of the
stream. Here the round elimination lemma has a fundamental problem: the fact that xi
and y must interact (because f encodes order), implies that xi, xj interacts (through
y). But the round elimination framework requires independence of xi, xj (i = j) and
the framework does not apply as is; while we cannot describe all failed attempts, the
inherent difficulty can be seen by trying to prove even a two pass result.

Our Approach and Results: We prove “Pass Elimination” lemmas that allow us to prove
results related to round elimination directly for data streams rather than the usual two-
step process of proving a communication lower bound and then using this to imply a
data-stream lower bound. One intuitive (but technically inaccurate) way of viewing this
result is to consider round-elimination in which Bob has an index i and no other in-
formation. Hence, after the first pass Bob has nothing else to say if he reveals i. This
will solve the problem of doubling the rounds and avoiding the issue of the interactions.
However, in the communication complexity framework, evaluating f(xi) is trivial once
i is known since one player knows xi! However, in the data-stream setting, evaluating
f(xi) remains a meaningful problem. We prove the pass-elimination results using an in-
formation theoretic approach similar to that used by Sen [29]. However, we emphasize
that the main contribution of our work is understanding and quantifying the exact prob-
lem which allows us to a prove a variety of tight lower bounds. While in most cases the
stronger model of communication complexity makes it simpler to prove lower bounds,
our tighter lower bound are achievable by exploiting the weakness of the data stream

Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination 763

model. We believe that these results provide a natural, direct, and intuitive framework
for proving multi-pass lower bounds, which is likely to encourage its use.

We demonstrate the utility of the pass-elimination lemmas by applying them to vari-
ety of problems. We consider the resulting bounds interesting in their own right as they
are either the first known lower bounds for the specific problem, or they significantly
improve previous known bounds (either by establishing better bounds or by being more
general, e.g., applying to all algorithms rather than just deterministic algorithms.)

1. Post-Order Traversal Tree Pointer Jumping: In Section 2, we consider the data-
stream problem of tree pointer jumping in which the pointer values for each node
are revealed according to a post-order traversal of the tree. We prove that any p-pass
algorithm for the (p+1)-level, t-ary problem requires Ω(t/2p) space. Note that this
really is a data-stream bound in the sense that the only natural way to conceptualize
the problem as a communication problem is if there is a player for each of the O(tp)
nodes in the tree. Consequently, the usual approach of bounding maximum message
length (or space in the data-stream setting) by averaging the total communication
over each message sent fails. A main achievement in [15] was circumventing such
an argument but this was only achieved in the deterministic setting.

2. Longest Increasing Subsequence: In Section 3, we prove that any p-pass (ran-
domized) algorithm that finds the elements of the longest increasing subsequence
requires Ω̃(k1+1/(2p−1)) space where k is the length of the longest increasing
subsequence. This matches the upper bound of [22] and resolves an open ques-
tion of [30]. This doubly-exponential space/pass trade-off is unusual in the data-
stream literature but we expect it may arise for other problem for which the natural
way to attack the problem is by dynamic programming, e.g., for time-series his-
tograms [17].

3. Promise Minimum Missing Element and Greater-Than: The greater-than (GT) prob-
lem is to determine which of two integers, x, y ∈ 2n, is larger given a length 2n
stream whose elements are the bits of the binary expansion of x and y (in some or-
der.) In Section 4, we show that any p-pass (randomized) algorithm for this problem
requires Ω̃(n1/p) space. Our result also applies to the related problem of finding the
minimum missing element (MME) of a stream where all elements smaller than this
element occur with multiplicity 1.2 The best previous bound was Ω̃(n1/(2p−1)) [9].

4. Convex Hulls and Fixed-Dimensional Linear Programming: In Section 5, we show
that any p-pass algorithm for fixed-dimensional linear programming requires
Ω̃(n1/p) space where the stream consists of n constraints and the objective function
is known. In the full version, we also show bounds for p-pass algorithms for con-
structing the convex hull of a stream ofn points in R2. If the points are sorted on their
x-coordinates we show that Ω̃(

√
n) space is required for p = O(1). These bounds

generalize previous bounds for a restricted class of deterministic algorithms [8].

Important Note on the Model: It will be convenient to consider a more powerful variant
of the usual space-bounded data-stream model. Specifically, we allow algorithms to
do an unbounded amount of work, using an unbounded amount of space between the
arrival of each data element. We only insist that the amount of space in use when the

2 Without the promise, MME is related to 2-party set disjointness and stronger bounds exist.

764 S. Guha and A. McGregor

next element arrives satisfies the appropriate bound. Of course, lower bounds for this
more powerful model also apply to the usual model. Also, throughout we will assume
that the number of passes is constant although many of the results generalize.

2 Pass Elimination (When the First Pass Is Passé. . .)

In this section we present two new general lower-bounds for multi-pass algorithms in
the data-stream model. These results are established by taking ideas from the round-
elimination results in communication complexity and applying them directly to data
streams. We start by defining the following “meta problems.”

Definition 1. For a problem f defined on a set of streams X , we define:

1. Pt,f,g: Given a stream 〈x1, . . . , xt, i, g(x1, x2, . . . , xi−1)〉 ∈ X t × [t] × X , solve
f(xi) where g is an arbitrary function g : X i−1 → X .

2. Qt,f : Given a stream 〈x1, . . . , xt〉 ∈ X t, output {〈i, f(xi)〉 : i ∈ [t]} in any order.
We do not require the output to be stored in working memory.3

We will prove the following lemma in Section 2.1.

Lemma 1 (Pass Elimination for Pt,f,g). Assume t ≥ 50000s. If there exists a k-pass,
s-space algorithm for Pt,f,g with prob. at least 1 − δ, then there exists a (k − 1)-pass,
2s log(δ−1)-space algorithm for f with prob. at least 1− δ.

It is reasonable to ask if it is possible to prove a version of the above lemma whether
the space requirement remains the same while the error probability only increases
additively. This was the case in the communication setting [29]. Unfortunately in the
data-stream setting the state must be encoded in the current memory whereas, in the
communication setting, the state is determined by all messages that have been sent
(note that 2-player communication can be trivially assumed to be in the blackboard
model.) The proof of Lemma 2 is similar to that of Lemma 1 and can be found in the
full version.

Lemma 2 (Pass Elimination for Qt,f). Assume t ≥ 2sδ−1. If there exists a k-pass,
s-space algorithm for Qt,f with prob. at least 1 − δ, then there exists a (k − 1)-pass,
2s-space algorithm for Qt/2,f with prob. at least 1− 10δ.

Note that the algorithm for f whose existence is proven in Lemma 2 does not suc-
ceed with the same probability as Qt,f . Unfortunately this can not be fixed by parallel
repetition because the algorithm for Qt,f may write the solution to a write-only tape.

Post-Order-Traversal: We now define a data-stream problem related to pointer-chasing.
The significant difference in our work is the order in which we encode a pointer-chasing
instance in the data-stream. This will be essential in proving lower-bounds for order-
dependent functions such as finding the elements of the longest increasing subsequence.

3 Note that Qt,f can be solved in one pass if there is sufficient memory to solve f(x) in one
pass as the f(xi) can be computed sequentially. However, if f(x) can be solved in much less
space given multiple passes, it is not clear if Qt,f can be solved in less space.

Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination 765

�
�
�
���

�
�

��

�
�

�
�

���
�

�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��
�

�
�

��

111 0000

1

2

32

11

(a) 3-level, 3-ary tree traversal.

α3

���	���	

���	
���	

���	

���	

���	���	

���

���

���

���

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...

2

0

1

2

A1 B1 A2 B2 A3 B3 C

α1

ω1

ω2

α2

ω3

���	

(b) LIS construction.

Fig. 1. Part (a) shows an instance of (p + 1)-level, t-ary tree traversal with t = 3, p = 2,
and g3(vroot) = 0. The POT stream is 〈0, 1, 1, 2, 0, 1, 0, 3, 1, 0, 1, 1, 2〉. The SPOT stream is
〈0, 1, 1, 2, 0, 0, 1, 0, 3, 0, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1〉. Part (b) is referenced in Section 3.

Definition 2. Consider a (p + 1)-level, t-ary tree T rooted at vroot and a function f :
V (T) → [t] where f(v) ∈ {0, 1} if v is a leaf of T . Define g(v) to be the f(v)-th
child of v if v is an internal node and f(v) if v is a leaf. The POT problem to evaluate
POT(f) = gp+1(vroot) given the stream 〈f(vσ(1)), f(vσ(2)), . . . , f(vσ(|T |))〉, where σ
is a post-order-traversal of V (T).

The next theorem follows by induction from Lemma 1.

Theorem 1. Any p-pass algorithm that solves the (p + 1)-level, t-ary POT problem
(w/p. 9/10) requires Ω(t/2p) space.

Strong-Post-Order-Traversal: A strong-post-order-traversal of a tree is a variant of the
post-order-traversal in which a partial pre-order traversal is made between the visit of
each node on the post-order-traversal. While this may seem like a very artificial con-
struction, it will be very important to some of our other lower bounds.

Definition 3. Consider a (p + 1)-level, t-ary tree T rooted at vroot and a function f :
V (T) → [t] where f(v) ∈ {0, 1} if v is a leaf of T . Define g(v) to be the f(v)-th
child of v. The SPOT problem is to evaluate SPOT(f) = gp+1(vroot) given the stream
〈S(vσ(1)), S(vσ(2)), . . . , S(vσ(|T |))〉, where σ is a post-order-traversal of V (T) and
S(v) is defined as follows:

S(v) =
{
〈f(v)〉 if v is a leaf
〈f(v), R(u1), . . . , R(uf(v)−1)〉 if v has children u1, . . . , ut

where R(u) is a pre-order traversal of the nodes in the sub-tree rooted at u.

The next theorem follows by induction from Lemma 1.

766 S. Guha and A. McGregor

Theorem 2. Solving the (p + 1)-level t-ary SPOT problem (w/p. 9/10) in p passes re-
quires Ω(t/2p) space.

The next theorem follows from Lemma 2 by induction.

Theorem 3. If solving f(x) in one pass (w/p. 9/10) requires s space then any p-pass
algorithm for Qt,f (w/p. 1− 1/10p) requires Ω(s)-space if t > s(20)(p−1)p/2.

2.1 Proof of Lemma 1

Consider an arbitrary distribution D over X . By assumption and Yao’s lemma there
exists a deterministic k-pass s-space algorithm A that, with probability at least 1 −
δ, solves Pt,f,g correctly on the stream 〈X1, . . . , Xt, i, g(X1, . . . , Xi−1)〉 where each
Xj ∼ D are independent and i ∈R [t]. We will show that such an algorithm can be used
to construct a deterministic (k− 1)-pass 2s-space algorithm that solves f on 〈Xi〉 with
probability at least 9/10. Since D was arbitrary, by Yao’s lemma, this shows that there
is a randomized algorithm that solves Pt,f with probability at least 4/5 over an arbitrary
input. Running O(log δ−1) copies in parallel and taking the median value results in an
algorithm that is successful with probability at least 1− δ.

First we introduce some further notation. Let the memory states of A be M =
{m1, . . . ,m2s} where m1 is the initial memory state. Let A(S;mu) denote the mem-
ory state of A after being initialized with memory state mu and reading stream S. If
mu = m1 we omit it. Let C be the set of inputs upon which A is successful. By as-
sumption, Pr [〈X1, . . . , Xt, r, g(X1, . . . , Xr−1)〉 ∈ C] ≥ 1− δ.

Lemma 3. There exists r ∈ [t] and 〈x1, x2, . . . , xr−1〉 ∈ X r−1 such that,

I(M r;M t) ≤ 9s
t

and Pr [〈x1, · · ·xr−1, Xr, . . . , Xt, r, g(x1, . . . , xr−1)〉∈C] ≥ 1−9δ

where M r = A(x1, . . . , xr−1, Xr), M t = A(x1, . . . , xr−1, Xr, . . . , Xt), and I(·; ·) is
the mutual information.

See the full version for the proof of the above lemma and the rest of the lemmas
in this section. Next we consider the distribution of the memory states of the algo-
rithm after processing various prefixes of the stream. Define the distributions, pu,v =
Pr [M r = mu,M

t = mv] , pu = Pr [M r = mu] , qv = Pr [M t = mv] , and pvu =
pu,v/qv. Note that pv is the distribution M r conditioned on the event that {M t = v}.
Intuitively, if the mutual information between M r and M t is low then pv is similar to
p. The next lemma, a variant of the Average Encoding Theorem [21], substantiates this.

Lemma 4. If v is chosen with probability qv then the variational distance between the
distribution of M r and M r conditioned on {M t = v} is small if I(M r;M t) is small.

Specifically, Prv∼qv
[∑

u |pu − pvu| ≤ 2
√

3I(M r;M t)
]
≥ 2/3.

The next lemma shows that there exists a state mv such that we may choose a contin-
uation of the stream 〈x1, . . . , xr−1, Xr〉 that a) is only a function of M r, b) yields a
stream upon which the algorithm is likely to succeed, and c) guarantees M t = mv .

Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination 767

Lemma 5. There exists mv ∈ M and Z : M → X t−r such that A(Z(mu);mu) =
mv and Pr [〈x1, . . . , xr−1, Xr, Z(M r), r, g(x1, . . . , xr−1)〉∈ C] ≥ 9/10, if δ<1/1000
and s < 50000t.

Let mw = A(r, g(x1, . . . , xr−1);mv). We construct a (k − 1)-pass algorithm A′
by running A on the stream 〈x1, . . . , xr−1, Xr, Z(M r), r, g(x1, . . . , xr−1)〉 and es-
sentially collapsing the first two passes of A into a single pass. We compute mu =
A(x1, x2, . . . , xr−1, Xr) and mx = A(x1, x2, . . . , xr−1, Xr;mw) in parallel using a
single pass. We store M r for the rest of the algorithm and use it to construct Z(mu)
when necessary. Note that if Z(·) is not defined on mu, we may output an arbitrary
value. We then compute the first pass ofA′ by computing,A(Z(mu), r, g(x1,. . . , xr−1)
;mx). The remaining k−2 passes ofA′ emulate the remaining k−2 passes ofAwhere
we generate Z(mu) from the stored value of mu when necessary.

3 Longest Increasing Subsequence

An instance of the longest increasing subsequence (LIS) problem is, given a stream
S = 〈x1, . . . , xm〉 ∈ [n]m, find the elements of a sub-stream of increasing values
〈xi1 , . . . , xij 〉 of maximum length. In a promise variant, the PLIS problem, we are
promised |LIS(S)| ≤ k. The best algorithmic result for this problem is due to Liben-
Nowell et al. [22]: there exists a deterministic algorithm for PLIS that uses p passes and
Õ(k1+1/(2p−1)) space. Sun and Woodruff [30] established that Liben-Nowell et al.’s
algorithm was essentially optimal for one-pass algorithms. In particular they showed
that any one-pass algorithm for PLIS (with prob. 9/10) requires Ω(k2) space. It was left
as an open question whether the doubly exponential trade-off between space and passes
in Liben-Nowell et al.’s result was the true trade-off. We show that this is the case and
present a matching lower-bound for PLIS by a reduction to the POT problem.

Theorem 4. Solving PLIS (w/p. 9/10) in p passes requires Ω(k1+ 1
2p−1) space.

Proof. Let t = m1/p. We show a reduction from the (p + 1)-level t-ary POT problem
to computing the elements of a PLIS problem over universe [2pmt] where the LIS is
promised to have length k = Θ(t1−1/2p

). Let f be an instance of (p + 1)-level t-ary
POT. Let h1 = 1 and then recursively define

rj :=
⌈√

t/hj−1

⌉

, tj := "t/rj# , and hj := rjhj−1 + tj .

By induction it can be shown that t1−1/2j

/6 ≤ hj+1 < 6t1−1/2j

.
With each node v we associate a sequence of numbers, I(v). If v is leaf then I(v) =

(f(v)). If v is an internal node we will define I(v) inductively such that if v is at level
j, LIS(I(v)) = hj . Let children(v) = {u0, . . . , ut−1}. We group the children(v) into
tj sets Si = {u(i−1)rj+� : � = 0, . . . , rj − 1}. Note that |S1| = . . . = |Stj−1| = rj but
|Stj | = t − (tj − 1)r may be smaller. The I(v) we construct will have the following
form: I(v) = (A1 : B1 : . . . : Atj : Btj : C) where “:” denotes concatenation. Ai
will be constructed from I(v) for v ∈ Si and Bi will be an increasing sequence. C will
be an increasing sequence of length a := "f(v)/rj#. Together Ai and Bi and C will
satisfy:

768 S. Guha and A. McGregor

1. LIS(Ai : Bi) = rjhj−1 + tj − i and max(Ai : Bi) < min(Ai−1 : Bi−1)
2. LIS(Aa : Ba : C) = hj
3. max(Aa : Ba) < min(C) < max(C) < min(Aa−1 : Ba−1)

It follows that the elements of the longest increasing subsequence of I(v) include the
elements of the longest increasing subsequence of Aa. See Figure 1(b).

Constructing Ai, Bi and C: We construct Ai and Bi as follows. First, let Rj−1 ≥
max(I(u0), . . . , I(ut−1)). Let I1(uirj+�) be the sequence formed by adding �Rj−1 to
each element of I(uirj+�). Therefore for all i, max(I1(uirj+�)) ≤ |Si+1|Rj−1 and

LIS(I1(uirj) : . . . : I1(uirj+|Si+1|−1)) = |Si+1|hj−1 .

Let I2(uirj+�) be the sequence formed by adding (tj−i)(rjRj−1 +tj) to each element
of I1(uirj+�). We now define Ai = (I2(uirj) : . . . : I2(uirj+|Si|−1)). For i ∈ [tj − 1],

min(Ai) ≥ (tj − i)(rjRj−1 + tj) =: αi
max(Ai+1) ≤ rjRj−1 + (tj − 1− i)(rjRj−1 + tj) =: ωi+1 .

and therefore αi − ωi+1 ≥ tj . Hence, letting

Bi = (ωi + 1, ωi + 2, . . . , ωi + (rjhj−1 + tj − i− |Si+1|hj−1))

ensures LIS(Ai : Bi) = rjhj−1 + tj − i and max(Ai : Bi) < min(Ai−1 : Bi−1). Let-
ting C be the sequence C = (αa−1 − a, . . . , αa−1 − 1) ensures all the necessary prop-
erties. One issue remains: an element of the longest increasing subsequence encodes
the answer to the POT problem but it is not clear which one because the subsequence
only encodes "f(v)/rj# rather than f(v). However, this can be fixed by encoding f(v)
in the lower order bits of C with a factor t increase in universe size.

4 Promise Min. Missing Element and Greater-Than

In this section, we consider the related problems of MME and GT. An instance of MME

consists of n non-negative integers A and the goal to identify MME(A) = min{i ∈
N0 : i ∈ A}. There exists an Ω(n/p) space lower-bound for any p-pass algorithm that
solves this problem that can be proved using a reduction from SET-DISJOINTNESS. We
are interested in a promise version of the problem in which we assume that all elements
less than MME(A) occur only once in A. This changes the complexity of the problem
considerably.

An instance of the GT consists of two n-bit strings x = x1 . . . xn and y = y1 . . . yn
and the goal is to determine if x < y, i.e., if there exists i ∈ [n] such that xi < yi and
xj = yj for all j < i. In the data-stream setting we assume that the stream consists
of the elements {(xi, i), (yi, i) : i ∈ [n]} in some arbitrary order. Note that MME and
GT are related. For example, if A = {2(i− 1) + xi, 2(i− 1) + 1 − yi : i ∈ [n]} then
the parity of MME(A) is odd iff x < y. Note that a stream of such elements can be
transduced from a stream of elements from {(xi, i), (yi, i) : i ∈ [n]} in constant space.
Hence any lower-bound for MME also yields a lower-bound for GT.

Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination 769

Both problems were considered by Chang and Kannan [9] for the purposes of prov-
ing lower bounds on the “generalized histogram learning problem” (see [9] for details).
Using the round-elimination lemma and results from [23,29] they proved a space lower
bound of Ω(n1/(2p−1)) for any constant p-pass algorithm that solved either GT or MME.
We improve this by a polynomial factor improvement when p > 1.

Theorem 5. Solving GT or MME (w/p. 9/10) in p passes requires Ω(n1/p) space.

Proof. We reduce SPOT to MME. Let the function f be an instance of SPOT and let
{u1, . . . , utp} be the leaves of a (p+1)-level, t-ary tree. With each leaf ui we associate
c(ui) = 2(i− 1) + f(ui) and d(ui) = 2(i− 1) + 1− f(ui).

The idea behind the reduction is that if gp(vroot) = uj then the smallest 2j − 1
elements of the stream will be {c(ui), d(ui) : i < j} ∪ {c(uj)} and the stream will not
contain d(uj). Consequently d(uj) will be the minimum missing element and hence,
1− (d(uj) mod 2) = gp+1(vroot).

For a leaf u, the reduction replaces f(u) by c(u) the first time the leaf is visited in
the strong post-order traversal. If u is visited a second time then we replace f(u) by
d(u) on this second visit. On all subsequent visits to u, f(u) is ignored. For example,
the SPOT instance in Figure 1(a) would become 〈0, 3, 5, 1, 6, 9, 10, 7, 8, 13, 14, 17, 2, 4〉.
Note that the minimum missing element is 11 and f(gp(vroot)) = 1− (11 mod 2) = 0.

We need to show that this reduction can be performed in a streaming fashion. In
particular, we need to establish that it is possible to determine if a node in the strong
post-order traversal has already been visited once or at least twice. We can recognize
the first time we visit a leaf because the first visit to ui is before the first visit to uj if
i < j. Hence, it suffices to remember the smallest leaf that has not been visited.

Leaf u is only revisited during a pre-order traversal of a sub-tree containing u. Con-
sider a pre-order traversal of the j-level, t-ary sub-tree that contains u. Let vj be the
root of this sub-tree and let vj , vj−1, . . . , v1 be the path from root to leaf v1 = u. Let
vi−1 be the ai-th child of vi. Then u is being revisited for the first time if ai < f(vi)
for all i = 2, . . . , j. Note that the set of relevant values of f can be maintained in O(p)
space because the sub-tree is visited in pre-order.

5 Fixed-Dimensional Linear Programming

In this section, we consider the problem of linear programming in Rd where d is as-
sumed constant. An instance of this problem consists of an objective function known
to the algorithm and a set of n constraints each of which are specified by an element
of the stream. In a recent paper, Chan and Chen [8] showed that any p-pass determin-
istic algorithm “of a certain type” for finding the lowest point in the intersection of n
upper half planes in 2D requires Ω(n1/p) space. The algorithms considered were for
the decision tree model where “the only allowable operations on the input half-planes
are testing the sign of a function evaluated at the coefficients of a subset of half-planes
currently in memory.” While these test functions could be any continuous function, the
algorithm is restricted to storing points of the input only.

We show that the Ω(n1/p) bound holds in 3D for any algorithm, e.g., for algorithms
that may be randomized or may store information other than the points themselves. For
2D, the same bound holds if we allow one non-linear constraint.

770 S. Guha and A. McGregor

Theorem 6. Solving 3DLP (w/p. 9/10) in p = O(1) passes requires Ω(n1/p) space.

Proof. Let t = n1/p. We first reduce (p + 1)-level t-ary POT to (the feasibility of) 2D
linear programming with the added non-linear constraint that x2 + y2 = 1. We then
show how to remove this constraint using one extra dimension. The f be an instance of
(p+ 1)-level t-ary POT. We consider constraints specified by chords on the bottom half
of the unit circle. It will be convenient to use polar representation of points and represent
every half-space by a chord through a pair of points. The reduction is as follows:

1. For each node v ∈ V (T) define two “end-points” sv and tv. If v is the root of T
let sv = (−1, 0) and tv = (1, 0). For any other node v, let v be the i-th child of
node w. Consider partitioning the arc from sw to tw into t equi-length arcs and
define sv and tv to be the end points of the i-th such arc. For each leaf, also define
a “mid-point” mv that is halfway along the arc from sv to tv.

2. For each internal node v ∈ V (T): Add chords through sv and suf(v) and through
tuf(v) and tv where {ui : i ∈ [t]} are the children of v.

3. For each leaf v ∈ V (T): If f(v) = 0, add the chord through sv and tv .
4. Lastly, add “dead-zone” constraints. Let {u1, . . . , utp} be the leaves of the tree. For

i ∈ [tp], add the chord between mui and mui+1 where mump+1 = mu1

The constraint at an internal node v ensures that any feasible points lies on the arc
(sv, tv). The constraints at a leaf node v determine if there exists a feasible point on the
arc (sv, tv) given that the dead-zone constraints ensure that any feasible point is a mid-
point. Consequently, there exists a feasible point on the unit circle iff POT(f) = 1. It is
immediate that the number of constraints is O(n) and the smallest angle (at the origin)
we construct in this process is Θ(1/n). Thus in a polar format the input is polynomially
bounded. To remove the constraint x2 + y2 = 1, consider lifting the problem to the
cone z = x2 + y2, and add the constraint z = 1. While the constraint z = x2 + y2 is
not linear we observe that we are only interested in O(n) predetermined points on the
cone. Thus we can approximate the cone by O(n) planes.

Acknowledgments. Thanks to Kook Jin Ahn and Matei David for helpful comments.

References

1. Adler, M., Demaine, E.D., Harvey, N.J.A., Patrascu, M.: Lower bounds for asymmetric com-
munication channels and distributed source coding. In: ACM-SIAM Symposium on Discrete
Algorithms, pp. 251–260 (2006)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)

3. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to
data stream and communication complexity. In: IEEE Symposium on Foundations of Com-
puter Science, pp. 209–218 (2002)

4. Beame, P., Jayram, T.S., Rudra, A.: Lower bounds for randomized read/write stream algo-
rithms. In: ACM Symposium on Theory of Computing, pp. 689–698 (2007)

5. Chakrabarti, A.: Lower bounds for multi-player pointer jumping. In: IEEE Conference on
Computational Complexity, pp. 33–45 (2007)

Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination 771

6. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multi-party commu-
nication complexity of set disjointness. In: IEEE Conference on Computational Complexity,
pp. 107–117 (2003)

7. Chakrabarti, A., Regev, O.: An optimal randomised cell probe lower bound for approximate
nearest neighbour searching. In: IEEE Symposium on Foundations of Computer Science, pp.
473–482 (2004)

8. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discrete & Computational Geom-
etry 37(1), 79–102 (2007)

9. Chang, K.L., Kannan, R.: The space complexity of pass-efficient algorithms for clustering.
In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1157–1166 (2006)

10. Chu, M., Kannan, S., McGregor, A.: Checking and spot-checking of heaps. In: International
Colloquium on Automata, Languages and Programming, pp. 728–739 (2007)

11. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph streaming
problems. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 714–723 (2006)

12. Ergun, F., Jowhari, H.: On the distance to monotonicity and longest increasing subsequence
of a data stream. In: ACM-SIAM Symposium on Discrete Algorithms (2008)

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the stream-
ing model: the value of space. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 745–
754 (2005)

14. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-
streaming model. Theoretical Computer Science 348(2-3), 207–216 (2005)

15. Gal, A., Gopalan, P.: Lower bounds on streaming algorithms for approximating the length
of the longest increasing subsequence. In: IEEE Symposium on Foundations of Computer
Science (2007)

16. Gopalan, P., Jayram, T., Krauthgamer, R., Kumar, R.: Estimating the sortedness of a data
stream. In: ACM-SIAM Symposium on Discrete Algorithms (2007)

17. Guha, S., Koudas, N., Shim, K.: Approximation and streaming algorithms for histogram
construction problems. ACM Trans. Database Syst. 31(1), 396–438 (2006)

18. Guha, S., McGregor, A.: Lower bounds for quantile estimation in random-order and multi-
pass streaming. In: International Colloquium on Automata, Languages and Programming,
pp. 704–715 (2007)

19. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams. In: External
memory algorithms, pp. 107–118 (1999)

20. Indyk, P.: Stable distributions, pseudorandom generators, embeddings, and data stream com-
putation. J. ACM 53(3), 307–323 (2006)

21. Klauck, H., Nayak, A., Ta-Shma, A., Zuckerman, D.: Interaction in quantum communication
and the complexity of set disjointness. In: ACM Symposium on Theory of Computing, pp.
124–133 (2001)

22. Liben-Nowell, D., Vee, E., Zhu, A.: Finding longest increasing and common subsequences
in streaming data. J. Comb. Optim. 11(2), 155–175 (2006)

23. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric com-
munication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)

24. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Comput. Sci. 12,
315–323 (1980)

25. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM J. Com-
put. 22(1), 211–219 (1993)

26. Patrascu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: ACM Sympo-
sium on Theory of Computing, pp. 232–240 (2006)

27. Patrascu, M., Thorup, M.: Randomization does not help searching predecessors. In: ACM-
SIAM Symposium on Discrete Algorithms, pp. 555–564 (2007)

772 S. Guha and A. McGregor

28. Razborov, A.A.: On the distributional complexity of disjointness. Theor. Comput.
Sci. 106(2), 385–390 (1992)

29. Sen, P.: Lower bounds for predecessor searching in the cell probe model. In: IEEE Confer-
ence on Computational Complexity, pp. 73–83 (2003)

30. Sun, X., Woodruff, D.: The communication and streaming complexity of computing the
longest common and increasing subsequences. In: ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 336–345 (2007)

Impossibility of a Quantum Speed-Up with a

Faulty Oracle

Oded Regev� and Liron Schiff��

School of Computer Science
Tel-Aviv University

Abstract. We consider Grover’s unstructured search problem in the
setting where each oracle call has some small probability of failing. We
show that no quantum speed-up is possible in this case.

1 Introduction

Unstructured search problem: The unstructured search problem, also known as
the unordered search problem or as Grover’s search problem, is the most basic
problem in the query model. The goal is to find a marked entry out of N possible
entries. In this model the entries are accessible only through a black box (the
oracle), and the complexity of the algorithm is measured in terms of the number
of oracle queries. In the classical world, it is easy to see that solving this search
problem requires Θ(N) queries, even if we allow randomization. In the quantum
world, however, one can find a marked item with only O(

√
N) queries, as was

shown in Grover’s seminal paper [1]. Moreover, it is known that this is optimal
(see, e.g., [2,3,4]). This remarkable quadratic improvement is considered one of
the biggest successes of quantum computing, and has sparked a huge interest in
the quantum query model (see [5] for a recent survey).

Searching with a faulty oracle: In this paper we consider the unstructured search
problem in the faulty oracle model, a question originally presented to us by
Harrow [6]. In this model, each oracle call succeeds with some probability 1 −
p, and with the remaining probability p the state given to the oracle remains
unchanged. More formally, each oracle call maps an input state ρ into (1 − p) ·
OρO†+p ·ρ where O is the original (unitary) oracle operation. We note that this
model can be seen to be equivalent to other, seemingly more realistic, models
of faults, such as the model considered in Shenvi et al. [7] in which the oracle’s
operation is subject to small random phase fluctuations.

Our motivation for considering the faulty oracle model is twofold. First, we
believe that since the unstructured search problem is such a basic question,
� School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Supported

by the Binational Science Foundation, by the Israel Science Foundation, and by
the European Commission under the Integrated Project QAP funded by the IST
directorate as Contract Number 015848.

�� School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 773–781, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

774 O. Regev and L. Schiff

it is theoretically interesting to consider it in different settings, as this might
shed more light on the strengths and weaknesses of quantum query algorithms.
A second motivation is related to implementation aspects of quantum query
algorithms, as one can expect any future implementation of a Grover oracle to
be imperfect (see [7] for a further discussion of the physical significance of the
model).

To motivate our main result and to get some intuition for the model, let
us consider the behavior of Grover’s original algorithm in this setting. Recall
that Grover’s algorithm can be seen as a sequence of two alternating reflections,
OUOUOU · · ·OU where U is the reflection given by Grover’s algorithm and O is
the reflection representing the oracle call. In the analysis of Grover’s algorithm,
one observes that the state of the system is restricted to a two-dimensional
subspace, inside which lie the initial state and the target state. The angle between
these two states is essentially π/2. Furthermore, the combined operation OU of
two consecutive reflections can be seen a rotation by an angle of essentially
1/
√
N inside this two dimensional subspace. Hence the total number of oracle

calls required to get to the target state is O(
√
N).

In the faulty oracle model, each oracle call O has some constant probabil-
ity of not doing anything. Hence, the sequence of reflections might look like
OUOUOUUOUOUOUO. The effect of this is that after a sequence of rota-
tions OU by 1/

√
N , we instead obtain a sequence of rotations UO = (OU)† by

−1/
√
N which cancel the previous ones. The cancellation can also be seen by

noting that U2 = O2 = I. The end result is that instead of rotating towards
the target, our rotation behaves like a random walk, alternating between steps
of 1/

√
N and steps of −1/

√
N . Using known properties of random walks on a

line, the number of steps required for this walk to reach the target is Θ(N),
which shows that Grover’s algorithm is no better than the naive classical search
algorithm.

But can there be another, more sophisticated algorithm that copes better
with the faults? Our main result shows that the answer is essentially ‘no’.

Our result: Our main result shows that there is essentially no quantum advantage
when searching with a faulty oracle.

Theorem 1. Any algorithm that solves the p-faulty Grover problem must use
T > p

10(1−p)N queries.

In particular, for any constant p > 0, this gives a lower bound of Ω(N).
Notice that the above statement holds for any quantum algorithm, and not

just for Grover’s algorithm. In particular, it shows that some natural approaches,
like fault-tolerant quantum computation [8], cannot help in this setting. Note,
however, that this impossibility result applies only in case that the oracle is truly
a black-box oracle; if, instead, the oracle is given as a faulty circuit, then fault-
tolerant schemes can be used to achieve a quantum speed-up by applying them
to the circuit obtained by taking Grover’s algorithm and replacing the oracle
calls with their circuit implementation.

Impossibility of a Quantum Speed-Up with a Faulty Oracle 775

Related work: There has been a considerable amount of work dedicated to an-
alyzing Grover’s algorithm in all kinds of faulty settings (see, e.g., [9,7,10]). All
these works concentrate on Grover’s algorithm (or variants thereof) and none of
them give a general statement that applies to all algorithms. In particular, Shenvi
et al. [7] analyze the behavior of Grover’s algorithm in a physically motivated
model that is equivalent to ours. Our result answers the main open question
presented in their paper.

There has also been a significant amount of work on searching with an imper-
fect, but still unitary, oracle (see, e.g., [11,12,13,14,15]). Such oracles are some-
times known as noisy oracles. The motivation for this model is algorithmic, and
is related to what is known as amplitude amplification. Typically in this case,
the quantum speed-up of O(

√
N) is still achievable. Very roughly speaking, this

is because a unitary operation (even an imperfect one) is reversible and does not
lead to decoherence. There has also been some recent work on analyzing the case
of an imperfect unitary implementation of Grover’s algorithm (as opposed to an
imperfect oracle) [16], again showing that a speed-up of O(

√
N) is achievable.

Open problems: One interesting open question is to extend our result to other
physically interesting fault models. We believe that our proof technique should
be applicable in a more general setting. One natural fault model suggested to
us by Nicolas Cerf is the one in which each oracle query has probability p of
turning the state into the completely mixed state. Also, is there any reasonable
fault model for which a quantum speed-up is achievable? We suspect that the
answer is no.

Another open question is to extend our result to other search problems (see
[5] for a recent survey). Is there any search problem for which a quantum speed-
up is achievable with a faulty oracle? Can one extend our lower bound to a
more general lower bound in the spirit of the adversary method (see [4,17])?
It is also worth investigating whether the polynomial method [18] can be used
to derive lower bounds in the faulty oracle case; our attempts to do so were
unsuccessful. We should emphasize, however, that our faulty oracle model is not
necessarily so natural for other search problems, and before approaching the
above open questions, some thought should be given to the choice of the faulty
oracle model.

2 Preliminaries

We assume familiarity with basic notions of quantum computation (see [19]).

Definition 1 (Grover oracle). For each k ∈ {1, . . . , N} where N is an integer,
the perfect oracle Ôk is the unitary transformation acting on an N -dimensional
register that maps |k〉 to −|k〉 and |i〉 to |i〉 for each i = k, i.e.,

Ôk = −|k〉〈k|+
∑

i�=k
|i〉〈i|.

776 O. Regev and L. Schiff

We also extend the definition to k = 0 by defining Ô0 to be the ‘null’ oracle,
given by the identity matrix I.

Definition 2. The p-faulty oracle Okp is defined as the operation that with prob-
ability 1 − p, acts as the perfect oracle Ôk and otherwise does nothing, i.e., for
any density matrix ρ,

Okp (ρ) = (1− p) · ÔkρÔk† + p · ρ.

We note that instead of our phase-flipping oracle, one could also consider a bit-
flipping oracle. Since it is not difficult to construct the latter from the former
(see, e.g., [20, Chapter 8]), our lower bound also applies to the bit-flipping case.

Definition 3. Let 0 < p < 1 be some constant. In the p-faulty Grover problem,
we are given oracle access to the p-faulty oracle Okp for some unknown k ∈
{0, . . . , N} and our goal is to decide whether k = 0 or not with success probability
at least 9

10 .

Note that the choice of success probability is inconsequential, as one can easily
increase it by repeating the algorithm a few times. Also note that we consider
here the decision problem, as opposed to the search problem of recovering k from
Okp . Since we are interested in lower bounds, this makes our result stronger.

3 Proof

We start by giving a brief outline of the proof. For simplicity, we consider the case
p = 1/2. The proof starts with a simple, yet crucial, observation (Claim 1) which
gives an alternative description of the faulty oracle. In the case p = 1/2, it says
that the oracle Okp is essentially performing the two-outcome measurement given
by {|k〉, |k〉⊥}. Then, in Lemma 1, we ‘approximate’ the mixed states that arise
during the algorithm with (unnormalized) pure states. This is done by assuming
that the measurements done by the oracle all end up in the |k〉⊥ subspace. The
rest of the proof is similar in structure to previous lower bounds. Using the pure
state description, we define a progress measure Hk

t , which is initially zero. We
show that at the end of the algorithm it must be high (Lemma 2), and that it
cannot increase by too much at each step (Lemma 3). This yields the desired
lower bound on the number of queries T . We now proceed with the proof.

Let A be an algorithm for the p-faulty Grover problem on N elements that
uses T queries. Assume the algorithm is described by the unitary operations
U0, U1, U2, . . . , UT acting on an NM -dimensional system, composed of an N -
dimensional query register used as oracle input, and an M -dimensional ancillary
register. Let ρ̃0 denote the initial state of the system, which we assume without
loss of generality to be a pure state ρ̃0 = |φ̃0〉〈φ̃0|. For k ∈ {0, . . . , N}, we let
ρ̃k0 = ρ̃0, ρk0 = U0ρ̃

k
0U

†
0 , ρ̃k1 = Okp(ρk0), ρk1 = U1ρ̃

k
1U

†
1 , . . . , ρ

k
T = UT ρ̃

k
TU

†
T be the

intermediate states of the algorithm when run with oracle Okp (see Figure 1). In
other words, ρkt is the state of the system right after applying Ut, and ρ̃kt+1 is
the state of the system right after applying Okp on ρkt .

Impossibility of a Quantum Speed-Up with a Faulty Oracle 777

U0

ρ̃k
0 ρk

0 ρ̃k
1 ρk

1 ρk
t−1 ρ̃k

t ρk
t ρk

T−1 ρ̃k
T ρk

T

U1 Ut UT

Ok
p Ok

p Ok
p

Fig. 1. State evolution

First we show a different way to decompose the outcome of Okp .

Claim 1. Let |φ〉 ∈ CN ·M be an arbitrary vector and let |βi〉 ∈ CM be such that
|φ〉 =

∑N
i=1 |i, βi〉. Then

Okp (|φ〉〈φ|) = |φ̃〉〈φ̃|+ 4p(1− p)|k, βk〉〈k, βk|

where

|φ̃〉 :=
N∑

i=1

|i, βi〉 − 2(1− p)|k, βk〉.

Proof. By Definition 2 we have

Okp(|φ〉〈φ|) = p|φ〉〈φ| + (1− p)|ψ〉〈ψ|

where |ψ〉 =
∑
i�=k |i, βi〉 − |k, βk〉. Therefore

Okp(|φ〉〈φ|) =
∑

i�=k

∑

j �=k
|i, βi〉〈j, βj | − (1− 2p)

∑

j �=k
|k, βk〉〈j, βj |

− (1 − 2p)
∑

i�=k
|i, βi〉〈k, βk|+ |k, βk〉〈k, βk|

=

⎛

⎝
∑

i�=k
|i, βi〉 − (1− 2p)|k, βk〉

⎞

⎠

⎛

⎝
∑

j �=k
〈j, βj | − (1− 2p)〈k, βk|

⎞

⎠

+ (1 − (1− 2p)2)|k, βk〉〈k, βk|.

��

We will use the following vectors to track the progress of the algorithm.

778 O. Regev and L. Schiff

Definition 4. For k ∈ {0, . . . , N} and t ∈ {0, . . . , T} we define the vectors
|φkt 〉, |φ̃kt 〉 ∈ CN ·M and |αkt,i〉 ∈ CM as follows. First,

|φ̃k0〉 := |φ̃0〉,
|φkt 〉 := Ut|φ̃kt 〉

and |αkt,i〉 are given by

|φkt 〉 =
N∑

i=1

|i, αkt,i〉.

Finally, for k ∈ {1, . . . , N} and t ∈ {0, . . . , T − 1} we define

|φ̃kt+1〉 := |φkt 〉 − 2(1− p)|k, αkt,k〉 =
N∑

i=1

|i, αkt,i〉 − 2(1− p)|k, αkt,k〉

and for k = 0 we define |φ̃0
t+1〉 := |φ0

t 〉.

Lemma 1. For all t ∈ {0, . . . , T} and k ∈ {1, . . . , N}, we can write

ρkt = |φkt 〉〈φkt |+ σkt

for some positive semidefinite matrix σkt .

Proof. Fix some k ∈ {1, . . . , N}. The lemma clearly holds for t = 0 (with σk0 =
0). Suppose the lemma holds for t and let us prove it for t+ 1. By the induction
hypothesis,

ρ̃kt+1 = Okp(ρ
k
t) = Okp (|φkt 〉〈φkt |) + Okp (σ

k
t). (1)

By Claim 1 and the definition of |φ̃kt 〉〈φ̃kt |

Okp(|φkt 〉〈φkt |) = |φ̃kt+1〉〈φ̃kt+1|+ 4p(1− p)|k, αkt,k〉〈k, αkt,k|.

By combining this with Eq. (1) we get

ρ̃kt+1 = |φ̃kt+1〉〈φ̃kt+1|+ 4p(1− p)|k, αkt,k〉〈k, αkt,k|+ Okp (σ
k
t).

We apply Ut+1 and obtain

ρkt+1 = Ut+1ρ̃
k
t+1U

†
t+1

= Ut+1|φ̃kt+1〉〈φ̃kt+1|U
†
t+1 + Ut+1

(
4p(1− p)|k, αkt,k〉〈k, αkt,k|+ Okp(σ

k
t)

)
U †t+1

= |φkt+1〉〈φkt+1|+ Ut+1

(
4p(1− p)|k, αkt,k〉〈k, αkt,k|+ Okp(σ

k
t)

)
U †t+1.

The second term is clearly positive semidefinite, as required. ��

We now define our progress measure Hk
t .

Impossibility of a Quantum Speed-Up with a Faulty Oracle 779

Definition 5. For t ∈ {0, . . . , T} and k ∈ {1, . . . , N} we define

Hk
t :=

∥
∥|φ0

t 〉 − |φkt 〉
∥
∥2

.

Notice that Hk
0 = 0. The following lemma shows that at the end of the algorithm,

the progress measure must be not too small. Intuitively, this holds since if Hk
T is

small, then |φkT 〉 is close to |φ0
T 〉 and since the latter is a unit vector, the former

must be of norm close to 1. This, in turn, implies that ρkT is close to |φkT 〉〈φkT |,
which is close to |φ0

T 〉〈φ0
T | = ρ0

T and thus the algorithm cannot distinguish
between ρkT and ρ0

T in contrast to our assumption about the algorithm. We
proceed with the formal proof.

Lemma 2. For all k ∈ {1, . . . , N}, Hk
T > 1

10 .

Proof. By our assumption on the correctness of the algorithm,

9
10
≤

∥
∥ρkT − ρ0

T

∥
∥

tr
=

∥
∥ρkT − |φ0

T 〉〈φ0
T |

∥
∥

tr

≤
√

1− 〈φ0
T |ρkT |φ0

T 〉

=
√

1− 〈φ0
T |(|φkT 〉〈φkT |+ σkT)|φ0

T 〉

≤
√

1− |〈φ0
T |φkT 〉|2

where our definition of trace norm is normalized to be in [0, 1] and in the second
inequality we used that for a (normalized) pure state |ϕ〉 and a mixed state ρ,
we have ‖ρ− |ϕ〉〈ϕ|‖tr ≤

√
1− 〈ϕ|ρ|ϕ〉 (see, e.g., [19, Chapter 9]). Therefore,

Hk
T =

∥
∥|φ0

T 〉 − |φkT 〉
∥
∥2

= 〈φ0
T |φ0

T 〉+ 〈φkT |φkT 〉 − 2Re(〈φ0
T |φkT 〉)

≥ 1− 2|〈φ0
T |φkT 〉| >

1
10

,

where the next to last inequality uses the fact that 〈φ0
T |φ0

T 〉 = 1 and 〈φkT |φkT 〉 ≥ 0.
��

The following lemma bounds the amount by which the progress measure Hk
t can

increase in each step.

Lemma 3. For all k ∈ {1, . . . , N} and any 0 ≤ t < T ,

Hk
t+1 −Hk

t ≤
1− p

p
· ‖α0

t,k‖2.

780 O. Regev and L. Schiff

Proof. By the definition of the progress measure,

Hk
t+1 =

∥
∥|φkt+1〉 − |φ0

t+1〉
∥
∥2

=
∥
∥Ut+1|φ̃kt+1〉 − Ut+1|φ0

t 〉
∥
∥2

=
∥
∥|φ̃kt+1〉 − |φ0

t 〉
∥
∥2

=
(
〈φkt | − 2(1− p)〈k, αkt,k| − 〈φ0

t |
) (
|φkt 〉 − 2(1− p)|k, αkt,k〉 − |φ0

t 〉
)

= Hk
t − 4(1− p)‖αkt,k‖2 + 2(1− p)〈αkt,k|α0

t,k〉
+ 2(1− p)〈α0

t,k|αkt,k〉+ 4(1− p)2‖αkt,k‖2

≤ Hk
t − 4p(1− p)‖αkt,k‖2 + 4(1− p)‖αkt,k‖‖α0

t,k‖

≤ Hk
t +

1− p

p
‖α0
t,k‖2

where the last inequality follows by maximizing the quadratic expression over
‖αkt,k‖. ��

Theorem 1. Any algorithm that solves the p-faulty Grover problem must use
T > p

10(1−p)N queries.

Proof. By Lemma 3, for all k ∈ {1, . . . , N},

Hk
T ≤

1− p

p

T−1∑

t=0

‖α0
t,k‖2.

Since for any t, |φ0
t 〉 is a unit vector,

N∑

k=1

Hk
T ≤

1− p

p

N∑

k=1

T−1∑

t=0

‖α0
t,k‖2 =

1− p

p
T.

To complete the proof, note that by Lemma 2,
∑N
k=1 Hk

T > 1
10N . ��

Acknowledgments. We thank Aram Harrow for presenting us with the faulty
Grover problem and for useful discussions. We also thank Nicolas Cerf, Frédéric
Magniez, and the anonymous referees for useful comments.

References

1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the ACM Symposium on the Theory of Computing, pp. 212–219 (1996)

2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

3. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
Fortschritte der Physik 46, 493–505 (1998)

Impossibility of a Quantum Speed-Up with a Faulty Oracle 781

4. Ambainis, A.: Quantum lower bounds by quantum arguments. In: Proceedings of
the ACM Symposium on Theory of Computing, New York, pp. 636–643 (2000)

5. Ambainis, A.: Quantum search algorithms. SIGACT News 35(2), 22–35 (2004)
6. Harrow, A.: Personal communication (2006)
7. Shenvi, N., Brown, K.R., Whaley, K.B.: Effects of a random noisy oracle on search

algorithm complexity. Phys. Rev. A 68(5), 052313 (2003)
8. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation. Sci-

ence 279(5349), 342–345 (1998)
9. Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: Dominant gate imperfection in

Grover’s quantum search algorithm. Physical Review A 61, 042305 (2000)
10. Shapira, D., Mozes, S., Biham, O.: Effect of unitary noise on Grover’s quantum

search algorithm. Phys. Rev. A 67(4), 42301 (2003)
11. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplifica-

tion and estimation. In: Quantum computation and information. Contemp. Math,
vol. 305, pp. 53–74. Amer. Math. Soc., Providence (2002)

12. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In:
Proceedings of ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Berlin (2003)

13. Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust polynomials and quan-
tum algorithms. Theory Comput. Syst. 40(4), 379–395 (2007); Preliminary version
in STACS 2005

14. Iwama, K., Raymond, R., Yamashita, S.: General bounds for quantum biased or-
acles. IPSJ Journal 46(10), 1234–1243 (2005)

15. Suzuki, T., Yamashita, S., Nakanishi, M., Watanabe, K.: Robust quantum algo-
rithms with ε-biased oracles. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006.
LNCS, vol. 4112, pp. 116–125. Springer, Heidelberg (2006)

16. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In:
Proceedings of the ACM Symposium on the Theory of Computing, New York, pp.
575–584 (2007)

17. Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In:
Proceedings of the ACM Symposium on the Theory of Computing, pp. 526–535
(2007) quant-ph/0611054

18. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. J. ACM 48(4), 778–797 (2001)

19. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

20. Kaye, P., Laflamme, R., Mosca, M.: An introduction to quantum computing. Ox-
ford University Press, Oxford (2007)

Superpolynomial Speedups Based on Almost Any
Quantum Circuit

Sean Hallgren1 and Aram W. Harrow2

1 Department of Computer Science and Engineering, The Pennsylvania State University
University Park, PA

2 Department of Mathematics, University of Bristol, Bristol, U.K.
a.harrow@bris.ac.uk

Abstract. The first separation between quantum polynomial time and classical
bounded-error polynomial time was due to Bernstein and Vazirani in 1993. They
first showed a O(1) vs. Ω(n) quantum-classical oracle separation based on the
quantum Hadamard transform, and then showed how to amplify this into a nO(1)

time quantum algorithm and a nΩ(log n) classical query lower bound.
We generalize both aspects of this speedup. We show that a wide class of uni-

tary circuits (which we call dispersing circuits) can be used in place of Hadamards
to obtain a O(1) vs. Ω(n) separation. The class of dispersing circuits includes
all quantum Fourier transforms (including over nonabelian groups) as well as
nearly all sufficiently long random circuits. Second, we give a general method for
amplifying quantum-classical separations that allows us to achieve a nO(1) vs.
nΩ(log n) separation from any dispersing circuit.

1 Background

Understanding the power of quantum computation relative to classical computation
is a fundamental question. When we look at which problems can be solved in quan-
tum but not classical polynomial time, we get a wide range: quantum simulation, fac-
toring, approximating the Jones polynomial, Pell’s equation, estimating Gauss sums,
period-finding, group order-finding and even detecting some mildly non-abelian sym-
metries [Sho97, Hal07, Wat01, FIM+03, vDHI03]. However, when we look at what
algorithmic tools exist on a quantum computer, the situation is not nearly as diverse.
Apart from the BQP-complete problems [AJL06], the main tool for solving most of
these problems is a quantum Fourier transform (QFT) over some group. Moreover, the
successes have been for cases where the group is abelian or close to abelian in some
way. For sufficiently nonabelian groups, there has been no indication that the trans-
forms are useful even though they can be computed exponentially faster than classi-
cally. For example, while an efficient QFT for the symmetric group has been intensively
studied for over a decade because of its connection to graph isomorphism, it is still
unknown whether it can be used to achieve any kind of speedup over classical compu-
tation [Bea97].

The first separation between quantum computation and randomized computation
was the Recursive Fourier Sampling problem (RFS) [BV97]. This algorithm had two
components, namely using a Fourier transform, and using recursion. Shortly after this,

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 782–795, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Superpolynomial Speedups Based on Almost Any Quantum Circuit 783

Simon’s algorithm and then Shor’s algorithm for factoring were discovered, and the
techniques from these algorithms have been the focus of most quantum algorithmic
research since [Sim97, Sho97]. These developed into the hidden subgroup framework.
The hidden subgroup problem is an oracle problem, but solving certain cases of it would
result in solutions for factoring, graph isomorphism, and certain shortest lattice vec-
tor problems. Indeed, it was hoped that an algorithm for graph isomorphism could be
found, but recent evidence suggests that this approach may not lead to one [HMR+06].
As a way to understand new techniques, this oracle problem has been very impor-
tant, and it is also one of the very few where super-polynomial speedups have been
found [IMS01, BCvD05].

In comparison to factoring, the RFS problem has received much less attention. The
problem is defined as a property of a tree with labeled nodes and it was proven to be
solvable with a quantum algorithm super-polynomially faster than the best randomized
algorithm. This tree was defined in terms of the Fourier coefficients over Zn2 . The defini-
tion was rather technical, and it seemed that the simplicity of the Fourier coefficients for
this group was necessary for the construction to work. Even the variants introduced by
Aaronson [Aar03] were still based on the same QFT over Zn2 , which seemed to indicate
that this particular abelian QFT was a key part of the quantum advantage for RFS.

The main result of this paper is to show that the RFS structure can be generalized
far more broadly. In particular, we show that an RFS-style super-polynomial speedup
is achievable using almost any quantum circuit, and more specifically, it is also true
for any Fourier transform (even nonabelian), not just over Zn2 . This illustrates a more
general power that quantum computation has over classical computation when using
recursion. The condition for a quantum circuit to be useful for an RFS-style speedup
is that the circuit be dispersing, a concept we introduce to mean that it takes many
different inputs to fairly even superpositions over most of the computational basis.

Our algorithm should be contrasted with the original RFS algorithm. One of the main
differences between classical and quantum computing is so-called garbage that results
from computing. It is important in certain cases, and crucial in recursion-based quan-
tum algorithms because of quantum superpositions, that intermediate computations are
uncomputed and that errors do not compound. The original RFS paper [BV97] avoided
the error issue by using an oracle problem where every quantum state create from it
had the exact property necessary with no errors. Their algorithm could have tolerated
polynomially small errors, but in this paper we relax this significantly. We show that
even if we can only create states with constant accuracy at each level of recursion, we
can still carry through a recursive algorithm which introduces new constant-sized errors
a polynomial number of times.

The main technical part of our paper shows that most quantum circuits can be used to
construct separations relative to appropriate oracles. To understand the difficulty here,
consider two problems that occur when one tries to define an oracle whose output is
related to the amplitudes that result from running a circuit. First, it is not clear how
to implement such an oracle since different amplitudes have different magnitudes, and
only phases can be changed easily. Second, we need an oracle where we can prove
that a classical algorithm requires many queries to solve the problem. If the oracle
outputs many bits, this can be difficult or impossible to achieve. For example, the matrix

784 S. Hallgren and A.W. Harrow

entries of nonabelian groups can quickly reveal which representation is being used. To
overcome these two problems we show that there are binary-valued functions that can
approximate the complex-valued output of quantum circuits in a certain way.

One by-product of our algorithm is related to the Fourier transform of the symmet-
ric group. Despite some initial promise for solving graph isomorphism, the symmetric
group QFT has still not found any application in quantum algorithms. One instance of
our result is the first example of a problem (albeit a rather artificial one) where the QFT
over the symmetric group is used to achieve a super-polynomial speedup.

2 Statement of Results

Our main contributions are to generalize the RFS algorithm of [BV97] in two stages.
First, [BV97] described the problem of Fourier sampling over Zn2 , which has an O(1)
vs. Ω(n) separation between quantum and randomized complexities. We show that here
the QFT over Zn2 can be replaced with a QFT over any group, or for that matter with al-
most any quantum circuit. Next, [BV97] turned Fourier sampling into recursive Fourier
sampling with a recursive technique. We will generalize this construction to cope with
error and to amplify a larger class of quantum speedups. As a result, we can turn any of
the linear speedups we have found into superpolynomial speedups.

Let us now explain each of these steps in more detail. We replace the O(1) vs Ω(n)
separation based on Fourier sampling with a similar separation based on a more general
problem called oracle identification. In the oracle identification problem, we are given
access to an oracle Oa : X → {0, 1} where a ∈ A, for some sets A and X with
log |A|, log |X | = Θ(n). Our goal is to determine the identity of a. Further, assume
that we have access to a testing oracle Ta : A→ {0, 1} defined by Ta(a′) = δa,a′ , that
will let us confirm that we have the right answer.1

A quantum algorithm for identifying a can be described as follows: first prepare a
state |ϕa〉 using q queries toOa, then perform a POVM {Πa′}a′∈A (with

∑
a′ Πa′ ≤ I

to allow for the possibility of a “failure” outcome), using no further queries to Oa. The
success probability is 〈ϕa|Πa|ϕa〉. For our purposes, it will suffice to place a Ω(1)
lower bound on this probability: say that for each a, 〈ϕa|Πa|ϕa〉 ≥ δ for some constant
δ > 0. On the other hand, any classical algorithm trivially requires≥ log(|A|δ) = Ω(n)
oracle calls to identify a with success probability ≥ δ. This is because each query
returns only one bit of information. In Theorem 9 we will describe how a large class of
quantum circuits can achieve this O(1) vs. Ω(n) separation, and in Theorems 11 and
12 we will show specifically that QFTs and most random circuits fall within this class.

Now we describe the amplification step. This is a variant of the [BV97] procedure
in which making an oracle call in the original problem requires solving a sub-problem
from the same family as the original problem. Iterating this � times turns query com-
plexity q into qΘ(�), so choosing � = Θ(log n) will yield the desired polynomial vs.

1 This will later allow us to turn two-sided into one-sided error; unfortunately it also means that
a non-deterministic Turing machine can find a with a single query to Ta. Thus, while the oracle
defined in BV is a candidate for placing BQP outside PH, ours will not be able to place BQP
outside of NP. This limitation appears not to be fundamental, but we will leave the problem of
circumventing it to future work.

Superpolynomial Speedups Based on Almost Any Quantum Circuit 785

super-polynomial separation. We will generalize this construction by defining an am-
plified version of oracle identification called recursive oracle identification. This is de-
scribed in the next section, where we will see how it gives rise to superpolynomial
speedups from a broad class of circuits.

We conclude that quantum speedups—even superpolynomial speedups—are much
more common than the conventional wisdom would suggest. Moreover, as useful as
the QFT has been to quantum algorithms, it is far from the only source of quantum
algorithmic advantage.

3 Recursive Amplification

In this section we show that once we are given a constant versus linear separation (for
quantum versus classical oracle identification), we are able to amplify this to a super-
polynomial speedup. We require a much looser definition than in [BV97] because the
constant case can have a large error.

Definition 1. For sets A,X , let f : A×X → {0, 1} be a function. To set the scale of
the problem, let |X | = 2n and |A| = 2Ω(n). Define the set of oracles {Oa : a ∈ A} by
Oa(x) = f(a, x), and the states |ϕa〉 = 1√

|X|

∑
x∈X(−1)f(a,x)|x〉. The single-level

oracle identification problem is defined to be the task of determining a given access to
Oa. Let U be a family of quantum circuits, implicitly depending on n. We say that U
solves the single-level oracle identification problem if

|〈a|U |ϕa〉|2 ≥ Ω(1)

for all sufficiently large n and all a ∈ A. In this case, we define the POVM {Πa}a∈A
by Πa = U † |a〉〈a|U .

When this occurs, it means that a can be identified from Oa with Ω(1) success prob-
ability and using a single query. In the next section, we will show how a broad class
of unitaries U (the so-called dispersing unitaries) allow us to construct f for which
U solves the single-level oracle identification problem. There are natural generaliza-
tions to oracle identification problems requiring many queries, but we will not explore
them here.

Theorem 2. Suppose we are given a single-level oracle problem with function f and
unitary U running in time poly(n). Then we can construct a modified oracle problem
from f which can be solved by a quantum computer in polynomial time (and queries),
but requires nΩ(logn) queries for any classical algorithm that succeeds with probability
1
2 + n−o(logn).

We start by defining the modified version of the problem (Definition 3 below), and
describing a quantum algorithm to solve it. Then in Theorem 4 we will show that the
quantum algorithm solves the problem correctly in polynomial time, and in Theorem 6,
we will show that randomized classical algorithms require superpolynomial time to
have a nonnegligible probability of success.

786 S. Hallgren and A.W. Harrow

s∅, b∅

sx, bx

sx unlocks bx: O(x, sx) = bx

sx is a function of the by on the level belowy = (x, x′)

sy, by

x = (x1, ..., xk−1)

x′

Fig. 1. A depth k node at location x = (x1, . . . , xk) is labeled by its secret sx and a bit bx. The
secret sx can be computed from the bits by of its children, and once it is known, the bit bx is
computed from the oracle O(x, sx) = bx. If x is a leaf then it has no secret and we simply have
bx = O(x). The goal is to compute the secret bit b∅ at the root.

The recursive version of the problem simply requires that another instance of the
problem be solved in order to access a value at a child. Figure 1 illustrates the structure
of the problem.

Using the notation from Figure 1, the relation between a secret sx, and the bits by
of its children is given by by = f(sx, x′), where f is the function from the single-
level oracle identification problem. Thus by computing enough of the bits by1 , by2 , . . .
corresponding to children y1, y2, . . ., we can solve the single-level oracle identification
problem to find sx. Of course computing the by will require finding the secret strings
sy , which requires finding the bits of their children and so on, until we reach the bottom
layer where queries return answer bits without the need to first produce secret strings.

Definition 3. A level-� recursive oracle identification problem is specified by X,A and
f from a single-level oracle identification problem (Definition 1), any function s : ∅ ∪
X ∪ X × X ∪ . . . ∪ X�−1 → A, and any final answer b∅ ∈ {0, 1}. Given these
ingredients, an oracleO is defined which takes inputs in

�−1⋃

k=0

[
Xk ×A

]
∪X�

and to return outputs in {0, 1, FAIL}. On inputs x1, . . . , xk ∈ X, a ∈ A with 1 ≤ k <
�, O returns

O(x1, . . . , xk, a) = f(s(x1, . . . , xk−1), xk) when a = s(x1, . . . , xk) (1)

O(x1, . . . , xk, a) = FAIL when a = s(x1, . . . , xk). (2)

If k = 0, then O(s(∅)) = b∅ andO(a) = FAIL if a = s(∅). When k = �,

O(x1, . . . , x�) = f(s(x1, . . . , x�−1), x�).

The recursive oracle identification problem is to determine b∅ given access to O.

Superpolynomial Speedups Based on Almost Any Quantum Circuit 787

Note that the function s gives the values sx in Figure 1. These values are actually de-
fined in the oracle and can be chosen arbitrarily at each node. Note also that the or-
acle defined here effectively includes a testing oracle, which can determine whether
a = s(x1, . . . , xk) for any a ∈ A, x1, . . . , xk ∈ X with one query. (When x =
(x1, . . . , xk), we use s(x1, . . . , xk) and sx interchangeably.) A significant difference
between our construction and that of [BV97] is that the values of s at different nodes
can be set completely independently in our construction, whereas [BV97] had a com-
plicated consistency requirement.

The algorithm. Now we turn to a quantum algorithm for the recursive oracle identi-
fication problem. If a quantum computer can identify a with one-sided2 error 1 − δ
using time T and q queries in the non-recursive problem, then we will show that the
recursive version can be solved in time O((q log 1/δ

δ)�T). For concreteness, suppose that
|ϕa〉 = 1√

|X|

∑
x∈X(−1)f(a,x)|x〉, so that q = 1; the case when q > 1 is an easy, but

tedious, generalization. Suppose that our identifying quantum circuit is U , so a can be
identified by applying the POVM {Πa′}a′∈A with Πa′ = U † |a′〉〈a′|U to the state |ϕa〉.

The intuitive idea behind our algorithm is as follows: At each level, we find s(x1, . . . ,
xk) by recursively computing s(x1, . . . , xk+1) for each xk+1 (in superposition) and
using this information to create many copies of |ϕs(x1,...,xk)〉, from which we can ex-
tract our answer. However, we need to account for the errors carefully so that they do
not blow up as we iterate the recursion. In what follows, we will adopt the conven-
tion that Latin letters in kets (e.g. |a〉, |x〉, . . .) denote computational basis states, while
Greek letters (e.g. |ζ〉, |ϕ〉, . . .) are general states that are possibly superpositions over
many computational basis states. Also, we let the subscript (k) indicate a dependence
on (x1, . . . , xk). The recursive oracle identification algorithm is as follows:

Algorithm: FIND
Input: |x1, . . . , xk〉|0〉 for k < �
Output: a(k) = s(x1, . . . , xk) up to error ε = (δ/8)2, where δ is the constant from the oracle. This means

|x1, . . . , xk〉
[√

1− ε(k)|0〉|a(k)〉|ζ(k)〉+√ε(k)|1〉|ζ ′
(k)〉

]
, where ε(k) ≤ ε and |ζ(k)〉 and |ζ ′

(k)〉 are arbitrary.

(We can assume this form without loss of generality by absorbing phases into |ζ(k)〉 and |ζ ′
(k)〉.)

1. Create the superposition 1√
|X|

∑
xk+1∈X |xk+1〉.

2. If k + 1 < � then let a(k+1) = FIND(x1, . . . , xk+1) (with error ≤ ε), otherwise a(k+1) = ∅.
3. Call the oracle O(x1, . . . , xk+1, a(k+1)) to apply the phase (−1)f(s(x1,...,xk),xk+1) using the key a(k+1).
4. If k + 1 < � then call FIND† to (approximately) uncompute a(k+1).
5. We are now left with |ϕ̃(k)〉, which is close to |ϕs(x1,...,xk)〉.

Repeat steps 1–4 m = 4
δ ln 8

δ times to obtain |ϕ̃(k)〉⊗m

6. Coherently measure {Πa} on each copy and test the results (i.e. apply U , test the result, and apply U †).
7. If any tests pass, copy the correct a(k) to an output register, along with |0〉 to indicate success.

Otherwise put a |1〉 in the output to indicate failure.
8. Let everything else comprise the junk register |ζ(k)〉.

Theorem 4. Calling FIND on |0〉 solves the recursive oracle problem in quantum poly-
nomial time.

2 One-sided error is a reasonable demand given our access to a testing oracle. Most of these
results go through with two-sided error as well, but for notational simplicity, we will not explore
them here.

788 S. Hallgren and A.W. Harrow

Proof. The proof is by backward induction on k; we assume that the algorithm returns
with error ≤ ε for k + 1 and prove it for k. The initial step when k = � is trivial since
there is no need to compute a�+1, and thus no source of error. If k < �, then assume
that correctness of the algorithm has already been proved for k + 1. Therefore Step 2
leaves the state

1
√
|X |

∑

xk+1∈X
|xk+1〉

[√
1− ε(k+1)|0〉|a(k+1)〉|ζ(k+1)〉+√ε(k+1)|1〉|ζ′(k+1)〉

]
.

In Step 3, we assume for simplicity that the oracle was called conditional on the success
of Step 2. This yields

|ψ′
(k)〉 :=

1
√
|X|

∑

xk+1∈X

|xk+1〉
[
(−1)f(a(k),xk+1)

√
1− ε(k+1)|0〉|a(k+1)〉|ζ(k+1)〉+

√
ε(k+1)|1〉|ζ ′

(k+1)〉
]
.

Now define the state |ψ(k)〉 by

|ψ(k)〉 :=
1

√
|X|

∑

xk+1∈X

(−1)f(a(k),xk+1)|xk+1〉
[√

1− ε(k+1)|0〉|a(k+1)〉|ζ(k+1)〉+
√

ε(k+1)|1〉|ζ ′
(k+1)〉

]
.

Note that

〈ψ′(k)|ψ(k)〉 =
1
|X |

∑

xk+1∈X

(
1− ε(k+1) + (−1)f(a(k),xk+1)ε(k+1)

)
.

This quantity is real and always≥ 1−2ε(k+1) ≥
√

1− 4ε by the induction hypothesis.
Let

|φ(k)〉 :=
1
|X |

∑

xk+1∈X
(−1)f(a(k),xk+1)|xk+1〉|0〉.

Note that FIND†|x1, . . . , xk, ψ(k)〉 = |x1, . . . , xk, φ(k)〉. Thus there exists ε(k) such
that applying FIND† to |x1, . . . , xk〉|ψ′(k)〉 yields

|x1, . . . , xk〉 ⊗
[√

1− 4ε(k)|φ(k)〉+
√

4ε(k)|φ′(k)〉
]
,

where 〈φ(k)|φ′(k)〉 = 0 and ε(k) ≤ ε.
We now want to analyze the effects of measuring {Πa} when we are given the state

|ϕ(k)〉 :=
√

1− 4ε(k)|φ(k)〉+
√

4ε(k)|φ′(k)〉

instead of |φ(k)〉. If we define ‖M‖1=tr
√
M †M for a matrix M , then ‖

∣
∣ϕ(k)

〉〈
ϕ(k)

∣
∣−∣

∣φ(k)

〉〈
φ(k)

∣
∣ ‖1 = 4√ε(k) [FvdG99]. Thus

〈ϕ(k)|Πa(k) |ϕ(k)〉 ≥ 〈φ(k)|Πa(k) |φ(k)〉 − 4√ε(k) ≥ δ − 4√ε(k) ≥ δ/2.

In the last step we have chosen ε = (δ/8)2.

Superpolynomial Speedups Based on Almost Any Quantum Circuit 789

Finally, we need to guarantee that with probability≥ 1− ε at least one of the tests in
Step 6 passes. After applying U and the test oracle to |ϕ(k)〉, we have ≥

√
δ/2 overlap

with a successful test and ≤
√

1− δ/2 overlap with an unsuccessful test. When we
repeat this m times, the amplitude in the subspace corresponding to all tests failing is
≤ (1− δ/2)m/2 ≤ e−mδ/4. If we choose m = (2/δ) ln(1/ε) = (4/δ) ln(8/δ) then the
failure amplitude will be ≤ √ε, as desired.

To analyze the time complexity, first note that the run-time is O(T) times the number
of queries made by the algorithm, and we have assumed that T is polynomial in n.
Suppose the algorithm at level k requires Q(k) queries. Then steps 2 and 4 require
mQ(k + 1) queries each, steps 3 and 6 require m queries each and together Q(k) =
2mQ(k+1)+2m. The base case is k = �, for which Q(�) = 0, since there are no secret
strings to calculate for the leaves. The total number of queries required for the algorithm
is then Q(0) ≈ (2m)2�. If we choose � = logn the quantum query complexity will thus
be n2 log 2m = nO(1) and the quantum complexity will be polynomial in n compared
with the nΩ(logn) lower bound.

This concludes the demonstration of the polynomial-time quantum algorithm. Now we
turn to the classical nΩ(logn) lower bound. Our key technical result is the following
lemma:

Lemma 5. Define the recursive oracle identification problem as above, with a function
f : A×X → {0, 1} and a secret s : ∅∪X ∪X ×X ∪ . . .∪X�−1 -→ A encoded in an
oracleO. Fix a deterministic classical algorithm that makes ≤ Q queries to O. Then if
s and ANS are chosen uniformly at random, the probability that ANS is output by the
algorithm is

≤ 1
2

+ max

(
Q

|A|1/3 −Q
,Q

(
log |A|

3

)−�
)

.

Using Yao’s minimax principle and plugging in |A| = 2αn, � = logn and Q = no(logn)

readily yields.

Theorem 6. If log |A| = nΩ(1) and � = Ω(log n), then any randomized classical algo-
rithm using Q = no(logn) queries will have 1

2 + n−Ω(logn) probability of successfully
outputting ANS.

Proof (of Lemma 5). Let T = ∅ ∪X ∪ . . . ∪X� denote the tree on which the oracle is
defined. We say that a node x ∈ T has been hit by the algorithm if position x has been
queried by the oracle together with the correct secret, i.e. O(s(x), x) has been queried.
The only way to find to obtain information about ANS is for the algorithm to query ∅
with the appropriate secret; in other words, to hit ∅.

For x, y ∈ T we say that x is an ancestor of y, and that y is a descendant of x, if
y = x × z for some z ∈ T . If z ∈ X then we say that y is a child of x and that x is a
parent of y. Now define S ⊂ T to be the set of all x ∈ T such that x has been hit but
none of x’s ancestors have been. Also define a function d(x) to be the depth of a node
x; i.e. for all x ∈ Xk, d(x) = k. We combine these definitions to declare an invariant

Z =
∑

x∈S

(
log |A|

3

)−d(x)

790 S. Hallgren and A.W. Harrow

The key properties of Z we need are that:

1. Initially Z = 0.
2. If the algorithm is successful then it terminates with Z = 1.
3. Only oracle queries change the value of Z .
4. Querying a leaf can add at most (log |A|/3)−� to Z .
5. Querying an internal node (i.e. not a leaf) can add at most 2/(|A|1/3 −Q) to EZ ,

where E indicates the expectation over random choices of s.

Combining these facts yields the desired bound.
Properties 1–4 follow directly from the definition (with the inequality in property

4 because it is possible to query a node that has already been hit). To establish prop-
erty 5, suppose that the algorithm queries node x ∈ T and that it has previously hit
k of x’s children. This gives us some partial information about s(x). We can model
this information as a partition of A into 2k disjoint sets A1, . . . , A2k (of which some
could be empty). From the k bits returned by the oracle on the k children of x we have
successfully queried, we know not only that s(x) ∈ A, but that s(x) ∈ Ai for some
i ∈ {1, . . . , 2k}.

We will now divide the analysis into two cases. Either k ≤ 1
3 log |A| or k > 1

3 log |A|.
We will argue that in the former case, |Ai| is likely to be large, and so we are unlikely so
successfully guess s(x), while in the latter case even a successful guess will not increase
Z . The latter case (k > 1

3 log |A|) is easier, so we consider it first. In this case, Z only
changes if x is hit in this step and neither x nor any of its ancestors have been previously
hit. Then even though hitting x will contribute (log |A|/3)−d(x) to Z , it will also remove
the k children from S (as well as any other descendants of x), which will decrease Z
by at least k(log |A|/3)−d(x)−1 > (log |A|/3)−d(x), resulting in a net decrease of Z .

Now suppose that k ≤ 1
3 log |A|. Recall that our information about s(x) can be

expressed by the fact that s(x) ∈ Ai for some i ∈ {1, . . . , 2k}. Since the values of s
were chosen uniformly at random, we have Pr(Ai) = |Ai|/|A|. Say that a set Ai is bad
if |Ai| ≤ |A|2/3/2k. Then for a particular bad set Ai, Pr(Ai) ≤ |A|−1/32−k. From the
union bound, we see that the probability that any bad set is chosen is ≤ |A|−1/3.

Assume then that we have chosen a good set Ai, meaning that conditioned on the
values of the children there are |Ai| ≥ |A|2/3/2k ≥ |A|1/3 possible values of s(x).
However, previous failed queries at x may also have ruled out specific possible values of
x. There have been at most Q queries at x, so there are≥ |A|1/3−Q possible values of
s(x) remaining. (Queries to any other nodes in the graph yield no information on s(x).)
Thus the probability of hitting x is ≤ 1/(|A|1/3 − Q) if we have chosen a good set.
We also have a ≤ |A|−1/3 probability of choosing a bad set, so the total probability of
hitting x (in the k ≤ 1

3 log |A| case) is≤ |A|−1/3 +1/(|A|1/3−Q) ≤ 2/(|A|1/3−Q).
Finally, hitting x will increase Z by at most one, so the largest possible increase of
EZ when querying a non-leaf node is ≤ 2/(|A|1/3 −Q). This completes the proof of
property 5 and thus the Lemma.

4 Dispersing Circuits

In this section we define dispersing circuits and show how to construct an oracle prob-
lem with a constant versus linear separation from any such circuit. In the next sections

Superpolynomial Speedups Based on Almost Any Quantum Circuit 791

we will show how to find dispersing circuits. Our strategy for finding speedups will be
to start with a unitary circuit U which acts on n qubits and has size polynomial in n. We
will then try to find an oracle for which U efficiently solves the corresponding oracle
identification problem. Next we need to define a state |ϕa〉 that can be prepared with
O(1) oracle calls and has Ω(1) overlap with U †|a〉. This is accomplished by letting
|ϕa〉 be a state of the form 2−n/2

∑
x±|x〉. We can prepare |ϕa〉 with only two oracle

calls (or one, depending on the model), but to guarantee that |〈a|U |ϕa〉| can be made
large, we will need an additional condition on U . For any a ∈ A, U †|a〉 should have
amplitude that is mostly spread out over the entire computational basis. When this is
the case, we say that U is dispersing. The precise definition is as follows:

Definition 7. Let U be a quantum circuit on n qubits. For 0 < α, β ≤ 1, we say that U
is (α, β)-dispersing if there exists a set A ⊆ {0, 1}n with |A| ≥ 2αn and

∑

x∈{0,1}n

|〈a|U |x〉| ≥ β2
n
2 . (3)

for all a ∈ A.

Note that the LHS of (3) can also be interpreted as the L1 norm of U †|a〉.
The speedup in [BV97] uses U = H⊗n, which is (1,1)-dispersing since∑
x |〈a|H⊗n|x〉| = 2n/2 for all a. Similarly the QFT over the cyclic group is (1,1)-

dispersing.3 Nonabelian QFTs do not necessarily have the same strong dispersing prop-
erties, but they satisfy a weaker definition that is still sufficient for a quantum speedup.
Suppose that the measurement operator is instead defined as Πa = U(|a〉〈a| ⊗ I)U †,
where a is a string on m bits and I denotes the identity operator on n−m bits. Then U
still permits oracle identification, but our requirements that U be dispersing are now re-
laxed. Here, we give a definition that is loose enough for our purposes, although further
weakening would still be possible.

Definition 8. Let U be a quantum circuit on n qubits. For 0 < α, β ≤ 1 and 0 < m ≤
n, we say that U is (α, β)-pseudo-dispersing if there exists a set A ⊆ {0, 1}m with
|A| ≥ 2αn such that for all a ∈ A there exists a unit vector |ψ〉 ∈ C2n−m

such that
∑

x∈{0,1}n

|〈a|〈ψ|U |x〉| ≥ β2
n
2 . (4)

This is a weaker property than being dispersing, meaning that any (α, β)-dispersing
circuit is also (α, β)-pseudo-dispersing.

We can now state our basic constant vs. linear query separation.

Theorem 9. If U is (α, β)-pseudo-dispersing, then there exists an oracle problem
which can be solved with one query, one use of U and success probability (2β/π)2.
However, any classical randomized algorithm that succeeds with probability ≥ δ must
use ≥ αn + log δ queries.

3 Another possible way to generalize [BV97] is to consider other unitaries of the form U =
A⊗n, for A ∈ U2. However, it is not hard to show that the only way for such a U to be
(Ω(1), Ω(1))-dispersing is for A to be of the form eiφ1σzHeiφ2σz .

792 S. Hallgren and A.W. Harrow

Before we prove this Theorem, we state a Lemma about how well states of the form
2−n/2

∑
x e
iφx |x〉 can be approximated by states of the form 2−n/2

∑
x±|x〉.

Lemma 10. For any vector (x1, . . . , xd) ∈ Cd there exists (θ1, . . . , θd) ∈ {±1}d such
that ∣

∣
∣
∣
∣

d∑

k=1

xkθk

∣
∣
∣
∣
∣
≥ 2

π

d∑

k=1

|xk| .

The proof is in the full version of the paper[HH08].

Proof of Theorem 9: Since U is (α, β)-pseudo-dispersing, there exists a set A ⊂
{0, 1}m with |A| ≥ 2αn and satisfying (4) for each a ∈ A. The problem will be to
determine a by querying an oracle Oa(x). No matter how we define the oracle, as long
as it returns only one bit per call any classical randomized algorithm making q queries
can have success probability no greater than 2q−αn (or else guessing could succeed
with probability > 2−αn without making any queries). This implies the classical lower
bound.

Given a ∈ A, to define the oracle Oa, first use the definition to choose a state |ψ〉
satisfying (4). Then by Lemma 10 (below), choose a vector θ that (when normalized
to |θ〉) will approximate the state U †|a〉|ψ〉. Define Oa(x) so that (−1)Oa(x) = θx =
2n/2〈x|θ〉. By construction,

2−n/2|〈a|〈ψ|U |θ〉| ≥ 2
π
β (5)

which implies that creating |θ〉, applying U , and measuring the first register has proba-
bility ≥ (2β/π)2 of yielding the correct answer a. ��

5 Any Quantum Fourier Transform Is Pseudo-dispersing

In this section we start with some special cases of dispersing circuits by showing that
any Fourier transform is dispersing. In the next section we show that most circuits are
dispersing.

The original RFS paper [BV97] used the fact that H⊗n is (1,1)-dispersing to obtain
their starting O(1) vs Ω(n) separation. The QFT on the cyclic group (or any abelian
group, in fact) is also (1,1)-dispersing. In fact, if we will accept a pseudo-dispersing
circuit, then any QFT will work:

Theorem 11. Let G be a group with irreps Ĝ and dλ denoting the dimension of ir-
rep λ. Then the Fourier transform over G is (α, 1/

√
2)-pseudo-dispersing, where α =

(log
∑
λ dλ)/ log |G| ≥ 1/2.

Via Theorem 9 and Theorem 2, this implies that any QFT can be used to obtain a
superpolynomial quantum speedup. For most nonabelian QFTs, this is the first example
of a problem which they can solve more quickly than a classical computer.

Proof (Proof of Theorem 11). Let A = {(λ, i) : λ ∈ Ĝ, i ∈ {1, . . . , dλ}}.

Superpolynomial Speedups Based on Almost Any Quantum Circuit 793

Let Vλ denote the representation space corresponding to an irrep λ ∈ Ĝ. The Fourier
transform on G maps vectors in C[G] to superpositions of vectors of the form
|λ〉|v1〉|v2〉 for |v1〉, |v2〉 ∈ Vλ.

Fix a particular choice of λ and |i〉 ∈ Vλ. If U denotes the QFT on G then let

ρ = U †
(

|λ〉〈λ| ⊗ |i〉〈i| ⊗ IVλ

dλ

)

U.

Define V := supp ρ, and let E|ψ〉∈V denote an expectation over |ψ〉 chosen uniformly
at random from unit vectors in V 4 Finally, let Π be the projector onto V . Note that
ρ = Π/dλ = E |ψ〉〈ψ|.

Because of the invariance of ρ under right-multiplication by group elements (i.e.
〈g1|ρ|g2〉 = 〈g1h|ρ|g2h〉 for all g1, g2, h ∈ G), we have for any g that

〈g|ρ|g〉 =
1
|G|

∑

h

〈gh|ρ|gh〉 =
1
|G| tr(ρ) =

1
|G| . (6)

Since E |ψ〉〈ψ| = ρ, (6) implies that

E
|ψ〉∈V

|〈g|ψ〉|2 = 〈g|ρ|g〉 =
1
|G| .

Next, we would like to analyze E |〈g|ψ〉|4.

E
|ψ〉
|〈g|ψ〉|4 = E

|ψ〉
tr (|g〉〈g| ⊗ |g〉〈g|) · (|ψ〉〈ψ| ⊗ |ψ〉〈ψ|) (7)

= tr (|g〉〈g| ⊗ |g〉〈g|) I + SWAP

dλ(dλ + 1)
(Π ⊗Π) (8)

≤ tr (|g〉〈g| ⊗ |g〉〈g|) · (I + SWAP)(ρ⊗ ρ) (9)

= 2(〈g|ρ|g〉)2 =
2
|G|2 (10)

To prove the equality on the second line, we use a standard representation-theoretic
trick (cf. section V.B of [PSW06]). First note that |ψ〉⊗2 belongs to the symmetric sub-
space of V ⊗ V , which is a dλ(dλ+1)

2 -dimensional irrep of Udλ
. Since E|ψ〉 |ψ〉〈ψ|⊗2 is

invariant under conjugation by u⊗ u for any u ∈ Udλ
, it follows that E|ψ〉 |ψ〉〈ψ|⊗2 is

proportional to a projector onto the symmetric subspace of V ⊗2. Finally, SWAPΠ⊗2 has
eigenvalue 1 on the symmetric subspace of V ⊗2 and eigenvalue −1 on its orthogonal
complement, the antisymmetric subspace of V ⊗2. Thus, I+SWAP

2 Π⊗2 projects onto the
symmetric subspace and we conclude that

E
|ψ〉
|ψ〉〈ψ|⊗2 =

(I + SWAP)(Π ⊗Π)
dλ(dλ + 1)

.

4 We can think of |ψ〉 either as the result of applying a Haar uniform unitary to a fixed unit
vector, or by choosing |ψ′〉 from any rotationally invariant ensemble (e.g. choosing the real
and imaginary part of each component to be an i.i.d. Gaussian with mean zero) and setting
|ψ〉 = |ψ′〉/

√
〈ψ′|ψ′〉.

794 S. Hallgren and A.W. Harrow

Now we note the inequality

E |Y | ≥ (EY 2)
3
2 /(EY 4)

1
2 , (11)

which holds for any random variable Y and can be proved using Hölder’s inequal-
ity [Ber97]. Setting Y = |〈g|ψ〉|, we can bound E|ψ〉 |〈g|ψ〉| ≥ 1/

√
2|G|. Summing

over G, we find

E
|ψ〉

∑

g∈G
|〈g|ψ〉| ≥ 1√

2

√
|G|.

Finally, because this last inequality holds in expectation, it must also hold for at least
some choice of |ψ〉. Thus there exists |ψ〉 ∈ V such that

∑

g∈G
|〈g|ψ〉| ≥ 1√

2

√
|G|.

Then U satisfies the pseudo-dispersing condition in (4) for the state |ψ〉with β = 1/
√

2.
This construction works for each λ ∈ Ĝ and for |v1〉 running over any choice of

basis of Vλ. Together, this comprises
∑
λ∈Ĝ dλ vectors in the set A.

6 Most Circuits Are Dispersing

Our final, and most general, method of constructing dispersing circuits is simply to
choose a polynomial-size random circuit. We define a length-t random circuit to consist
of performing the following steps t times.

1. Choose two distinct qubits i, j at random from [n].
2. Choose a Haar-distributed random U ∈ U4.
3. Apply U to qubits i and j.

A similar model of random circuits was considered in [DOP07]. Our main result about
these random circuits is the following Theorem.

Theorem 12. For any α, β > 0, there exists a constant C such that if U is a random
circuit on n qubits of length t = Cn3 then U is (α, β)-dispersing with probability

≥ 1− 2β2

1− 2−n(1−α)
.

Theorem 12 is proved in the extended version of this paper[HH08]. The idea of the
proof is to reduce the evolution of the fourth moments of the random circuit (i.e. quan-
tities of the form EU trUM1U

†M2UM3U
†M4) to a classical Markov chain, using the

approach of [DOP07]. Then we show that this Markov chain has a gap of Ω(1/n2), so
that circuits of length O(n3) have fourth moments nearly identical to those of Haar-
uniform unitaries from U2n . Finally, we use (11), just as we did for quantum Fourier
transforms, to show that a large fraction of inputs are likely to be mapped to states with
large L1-norm. This will prove Theorem 12 and show that superpolynomial quantum
speedups can be built by plugging almost any circuit into the recursive framework we
describe in Section 3.

Superpolynomial Speedups Based on Almost Any Quantum Circuit 795

References

[Aar03] Aaronson, S.: Quantum lower bound for recursive Fourier sampling. Quantum In-
formation and Computation 3(2), 165–174 (2003)

[AJL06] Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approx-
imating the jones polynomial. In: STOC 2006: Proceedings of the thirty-eighth an-
nual ACM symposium on Theory of computing, pp. 427–436. ACM Press, New
York (2006)

[BCvD05] Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to efficient
quantum algorithms for the hidden subgroup problem over semidirect product
groups. In: FOCS 2005: 46th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 469–478 (2005)

[Bea97] Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In:
STOC 1997: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, El Paso, Texas, May 4–6, 1997, pp. 48–53. ACM Press, New York
(1997)

[Ber97] Berger, B.: The fourth moment method. Siam J. Comp. 26(4), 1188–1207 (1997)
[BV97] Bernstein, E., Vazirani, U.: Quantum complexity theory. Siam J. Comp. 26(5),

1411–1473 (1997)
[DOP07] Dahlsten, O.C.O., Oliveira, R., Plenio, M.B.: Emergence of typical entanglement in

two-party random processes. J. Phys. A 40, 8081–8108 (2007)
[FIM+03] Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and

orbit coset in quantum computing. In: STOC 2003: Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of Computing, San Diego, CA, pp. 1–9. ACM
Press, New York (2003)

[FvdG99] Fuchs, C.A., van de Graaf, J.: Cryptographic distinguishability measures for quan-
tum mechanical states. IEEE Trans. Inf. Th. 45(4), 1216–1227 (1999)

[Hal07] Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the prin-
cipal ideal problem. Journal of the ACM 54(1), 1–19 (2007)

[HH08] Hallgren, S., Harrow, A.W.: Superpolynomial speedups based on almost any quan-
tum circuit (2008)

[HMR+06] Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations of quantum
coset states for graph isomorphism. In: STOC 2006: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, pp. 604–617. ACM Press, New York
(2006)

[IMS01] Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some in-
stances of the non-abelian hidden subgroup problem. In: Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, Herak-
lion, Crete Island, Greece, pp. 263–270 (2001)

[PSW06] Popescu, S., Short, A.J., Winter, A.: The foundations of statistical mechanics from
entanglement: Individual states vs. averages. Nature 2, 754–758 (2006)

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. Siam J. Comp. 26(5), 1484–1509 (1997)

[Sim97] Simon, D.R.: On the power of quantum computation. Siam J. Comp. 26(5), 1474–
1483 (1997)

[vDHI03] van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift prob-
lems. In: SODA 2003: Proceedings of the Fourteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Baltimore, MD (2003)

[Wat01] Watrous, J.: Quantum algorithms for solvable groups. In: STOC 2001: Proceed-
ings of the Thirty-Third Annual ACM Symposium on Theory of Computing, Crete,
Greece, pp. 60–67. ACM Press, New York (2001)

The Speed of Convergence in Congestion Games

under Best-Response Dynamics�

Angelo Fanelli, Michele Flammini, and Luca Moscardelli

Department of Computer Science
University of L’Aquila

Via Vetoio, Coppito 67100 L’Aquila
{angelo.fanelli,flammini,moscardelli}@di.univaq.it

Abstract. We investigate the speed of convergence of congestion games
with linear latency functions under best response dynamics. Namely,
we estimate the social performance achieved after a limited number of
rounds, during each of which every player performs one best response
move. In particular, we show that the price of anarchy achieved after
k rounds, defined as the highest possible ratio among the total latency
cost, that is the sum of all players latencies, and the minimum possible
cost, is O(2k−1√

n), where n is the number of players. For constant values
of k such a bound asymptotically matches the Ω(2k−1√

n/k) lower bound
that we determine as a refinement of the one in [7]. As a consequence,
we prove that order of log log n rounds are not only necessary, but also
sufficient to achieve a constant price of anarchy, i.e. comparable to the
one at Nash equilibrium. This result is particularly relevant, as reaching
an equilibrium may require a number of rounds exponential in n. We
then provide a new lower bound of Ω(2k−1

√
n) for load balancing games,

that is congestion games in which every strategy consists of a single
resource, thus showing that a number of rounds proportional to log log n
is necessary and sufficient also under such a restriction.

Our results thus solve the important left open question of the polyno-
mial speed of convergence of linear congestion games to constant factor
solutions.

1 Introduction

Congestion games constitute a well-known class of non-cooperative games in
which a set of facilities E is available to the players and the strategy set of each
player i can be any Si ⊆ 2E. The cost of each facility e ∈ E (usually called
the latency of e) is given by a function fe of the number of players using e and
the latency experienced by each player i is the sum of the latencies of all the
facilities used by i. The social or global cost function of the games is given by
the sum of the latencies perceived by all the players.

� This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 796–807, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Speed of Convergence in Congestion Games 797

Congestion games have been introduced by Rosenthal [18] in 1973. By defining
an elegant potential function he showed that they always possess (and always
converge to) pure Nash equilibria [17]. Since then, different variations of the orig-
inal model have been proposed (see for instance [15]) and, in the last decade,
they have come across the analysis of the Computer Science community with the
purpose of characterizing the complexity of computing their pure Nash equilibria
[10] and evaluating their suboptimality in terms of price of anarchy [14], corre-
sponding to the worst case cost ratio between the social cost at Nash equilibrium
and the one of an optimal solution.

One of the most interesting and studied special cases is the class of the linear
congestion games and its special case of load balancing games, in which the
latency of each resource e is defined as a linear function of the number of players
using e. Recent contributions [2,4,6] have fixed their price of anarchy to 5/2.

Often Nash equilibria may not exist or it may be hard to compute them or
the time for convergence to Nash equilibria may be extremely long, even if the
players always choose best response moves, i.e. moves providing them the smallest
possible cost. Thus, recent research effort [16] concentrated in the evaluation of
the speed of convergence (or non-convergence) to an equilibrium in terms of
rounds, in which every player performs one best-response move. A k-round walk
with k ≥ 1 is defined as the concatenation of k rounds. An important issue
raised by the authors is then that of evaluating the loss of social performance in
selfish evolutions with a (polinomially) bounded number of rounds, not necessary
terminating in a Nash equilibrium. On this line of research, several results have
been obtained for different non-cooperative games [7,11,12,13,16].

Such an investigation is particular relevant for congestion games, as in [10]
it has been proven that determining one of their Nash equilibrium is a PLS-
complete problem [9], even for linear latency functions and in the symmetric
case in which all the players have the same strategy set. As a consequence, a
number of rounds (and more in general of moves) exponential in the number of
players may be required to reach an equilibrium.

Starting from such a negative result, in [1] the authors outlined suitable struc-
tural properties of congestion games sufficient to guarantee a convergence in
polynomial number of best responses, leading to the so-called class of the ma-
troid congestion games.

Moreover, in [5] ε-Nash equilibria have been concerned, that is solutions in
which every player cannot improve her cost by a multiplicative factor greater
than ε. In particular, it has been shown that if players perform ε-bounded moves,
that is moves reducing their latency cost at least ε times, the convergence of sym-
metric congestion games requires a number of steps polynomial in the number
of players and ε−1. While in the asymmetric case the convergence can still be
exponential [19], recently in [3] the authors have shown that ε-Nash equilibria
can still be reached in a polynomial number of steps under the weak conditions
that the latency functions satisfy the so-called “γ-bounded jump” condition, i.e.
fe(i + 1) ≤ γ · fe(i) for every i ≥ 1, and every player moves at least once every
fixed number of steps.

798 A. Fanelli, M. Flammini, and L. Moscardelli

Finally, concerning linear congestion games, in [7] the authors showed a Θ(n)
price of anarchy after one round, and a lower bound of 2O(k)√

n/k after k rounds,
where n is the number of players. However, while the convergence to a constant
price of anarchy in a polynomial number of random rounds can be inferred
directly from the sink equilibria results of [13], to the best of our knowledge
the same result for deterministic rounds is still open. To this aim, while the
2O(k)√

n/k lower bound of [7] implies that a number of rounds at least proportional
to log logn is necessary, a corresponding upper bound is missing and hopefully
would also imply a sufficient low number of rounds.

In this paper we show that the price of anarchy achieved after k rounds
is O

(
2k−1√

n
)

and we refine the lower bound of [7] to Ω
(

2k−1√
n/k

)
, which is

asymptotically matching for constant values of k. As a consequence, we prove
that log log n rounds are not only necessary, but even sufficient to achieve a con-
stant price of anarchy, i.e., comparable to the one at Nash equilibrium. We then
provide a new lower bound of Ω

(
2k−1
√
n
)

for load balancing games, that is con-
gestion games in which every strategy consists of a single resource, thus showing
that a number of rounds proportional to log logn is necessary and sufficient also
under such a restriction.

Our results close the important left open question of the speed of convergence
to constant factor solutions in congestion games by deterministic rounds, which
indeed we prove to be very fast.

2 Definitions and Preliminaries

A strategic game is defined by a tuple G = (N, (Σi)i∈N , (ci)i∈N), where N =
{1, 2, . . . , n} denotes the set of the players, Σi a set of (pure) strategies for player
i and ci : ×i∈NΣi -→ R+ ∪ {0} is the cost function for player i.

Let Σ = ×i∈NΣi be the strategy profile set or state set of the game and
S = (s1, s2, . . . , sn) ∈ Σ be a generic state in which each player i chooses strategy
si ∈ Σi. Given the strategy profile S = (s1, s2, . . . , sn) and a strategy s′i ∈ Si,
let (S⊕ s′i) = (s1, s2, . . . , si−1, s

′
i, si+1, . . . , sn), i.e., the strategy profile obtained

from S if player i changes her strategy from si to s′i.
In a non-cooperative strategic game we assume that each player acts selfishly

and aims at choosing the strategy lowering its cost, given the strategy choices of
other players. For a strategy profile S = (s1, s2, . . . , sn), an improvement move of
player i is a strategy s′i such that ci(S⊕ s′i) < ci(S). Furthermore, a best response
move of player i in S is a strategy sbi ∈ Si yielding the minimum possible cost,
given the strategy choices of the other players, i.e., ci(S ⊕ sbi) ≤ ci(S ⊕ s′i) for
any other strategy s′i ∈ Si. Notice that a best response move corresponding to the
strategy currently played in S by the involved player is not an improvement move.

A (pure) Nash equilibrium is a strategy profile in which every player plays
her best response. Formally, S = (s1, s2, . . . , sn) is a Nash Equilibrium if for all
i ∈ N and for any strategy s′i ∈ Si, ci(S) ≤ ci(S ⊕ s′i).

We are interested in evaluating the social cost or social value at equilibrium.
More precisely, the social cost C(S) of a given state S is defined as the sum

The Speed of Convergence in Congestion Games 799

of all the players’ costs, i.e., C(S) =
∑
i∈N ci(S). The optimal strategy profile

S∗ = (s∗1, s
∗
2, . . . , s

∗
n) is one with minimum social value, that we denote by Opt.

The price of anarchy PoA(G) of a game G is the worst case ratio between the
social cost of a Nash equilibrium and Opt.

The selfish behavior of players can be modelled by the (Best-Response) Nash
Dynamics Graph. Formally the Nash Dynamics Graph associated to a non-
cooperative strategic game G is a directed graph B = (V,A) where each vertex
in V corresponds to a strategy profile and there is an edge (S, S′) ∈ A with label
i, where S′ = S ⊕ s′i and s′i ∈ Σi, if and only if both the following conditions
are met: (i) s′i is a best response move of i in S; (ii) if S = S′, s′i is also an
improvement move of i in S. Observe that B may contain loops. A best response
walk is a directed walk in B. A player i plays its best response in a best response
walk W if at least one edge in W has label i.

Given a best response walk in B starting from an arbitrary state, we are
interested in the social value of its final state. In particular we aim at bounding
the social value of a state obtained starting from an arbitrary strategy profile
after a fair best response walk. To capture the notion of fairness, the following
notions of best response walks have been considered in the literature [7,16]:

1-round walk : it’s a best response walk R =
((

S0
R, S

1
R

)
,
(
S1
R, S

2
R

)
,

. . . ,
(
SiR, S

i+1
R

)
, . . . ,

(
Sn−1
R , SnR

))
in B of length n, where the edge (SiR, S

i+1
R)

has label πR(i) for every 0 ≤ i ≤ n − 1 and πR : N -→ {1, 2, . . . , n} is an
arbitrary ordering (permutation) of the players. S0

R is said the initial state
of R and SnR its final state. For simplicity we denote R by a sequence of
states, i.e., R =

(
S0
R, S

1
R, . . . , S

n
R

)
.

k-round walk : it’s a best response walk W = 〈R1, R2, . . . , Rk〉 in B corre-
sponding to a sequence of k 1-round walks, i.e. such that each Ri is a 1-round
walk in B.

For the sake of simplicity, in the sequel we will often denote a round Rj
of a walk W as

(
S0
j , S

1
j , . . . , S

n
j

)
, where Sij is the intermediate state SiRj

of
Rj . When clear from the context, we will drop the index R from the notation,
writing

(
S0, S1, . . . , Sn

)
and Si instead of

(
S0
R, S

1
R, . . . , S

n
R

)
and SiR, respectively;

moreover, we will assume Si =
(
si1, . . . , s

i
n

)
.

Extending the classical definition, we let the price of anarchy yielded by k-
round walks (denoted by PoAk(G)) be the worst case ratio among the social
value of the last state of a k-round walk and Opt.

Congestion Games. A congestion game G = (N,E, (Σi)i∈N , (fe)e∈E , (ci)i∈N)
is a non-cooperative strategic game characterized by the existence of a set E of
resources to be shared by the players in N . Any (pure) strategy si ∈ Σi of player i
is a subset of resources, i.e., Σi ⊆ 2E. Given a strategy profile S = (s1, s2, . . . , sn)
and a resource e, the number of players using e in S, called the congestion on e, is
denoted by ne(S) = |{i ∈ N | e ∈ si}|. A latency function fe : N -→ R+ associates
to resource e a cost (latency) depending on the number of players currently using
e, so that the cost of player i for the pure strategy si, depending on the congestion

800 A. Fanelli, M. Flammini, and L. Moscardelli

of each resource in si, is given by ci(S) =
∑
e∈Si

fe(ne(S)). Correspondingly, the
social value of S is C(S) =

∑
i∈N ci(S) =

∑
i∈N

∑
e∈Si

fe(ne(S)).
We denote by E∗ ⊆ E the set of resources used at a given optimal strategy

profile S∗, i.e. E∗ =
⋃
i∈N s∗i , and by oe the number of players using resource e

in S∗, i.e. oe = |{i ∈ N | e ∈ s∗i }|. Moreover, we refer to singleton congestion or
load balancing games as the games in which all of the players’ strategies consist
of only a single resource, i.e., Σi ⊆ E.

In this paper we will focus on linear congestion games, that is having linear
latency functions with nonnegative coefficients. More precisely, for every resource
e ∈ E, fe(x) = aex + be with ae, be ≥ 0.

3 Upper Bound

In this section we bound the social cost after a k-round walk in a linear congestion
game starting from an arbitrary state. All the results hold for linear congestion
games having latency functions fe(x) = aex+ be with ae, be ≥ 0 for every e ∈ E.
Without loss of generality, we assume that ae = 1 and be = 0 for every e ∈ E. In
fact, given a congestion game G having latency functions fe(x) = aex + be with
integer coefficient ae, be ≥ 0, it is possible to obtain an equivalent congestion
game G′, having the same set of players and identical latency functions f(x) = x
in the following way. For each resource e in G, we include in G′ a set Ae of ae
resources and n sets B1

e , . . . , B
n
e , each containing be resources; moreover, given

any strategy set si ∈ Σi in G, i = 1, . . . , n, we build a corresponding strategy set
s′i ∈ Σ′i (in G′) by including in s′i, for each e ∈ si, all the resources in the sets
Ae and Bie. If ae and be are not integers we can perform a similar reduction by
exploiting a simple scaling argument.

The following technical lemma will be useful in the sequel.

Lemma 1. Given γ ∈ R+ and
−→
d = (d1, d2, . . . , dm) ∈ Nm+ , the maximum value

of
∑m
i=1 dixi such that

∑m
i=1

x2
i

2 ≤ γ is
√

2γ
∑m
i=1 d2

i .

Let R =
(
S0, S1, S2, . . . , Sn

)
be a 1-round walk and πR be the moving or-

dering of the players in R. In the following we will often consider the im-
mediate costs of players during R, that is the cost cπR(i)(Si) they experi-
ence right after having performed their best move. Clearly, given the optimal
strategy profile S∗, since the i-th moving player πR(i) before moving can al-
ways select the strategy she would use in S∗, her immediate cost can be suit-
ably upper bounded as

∑
e∈s∗

πR(i)

(
ne(Si−1) + 1

)
, so that

∑n
i=1 cπR(i)(Si) ≤

∑n
i=1

∑
e∈s∗

πR(i)

(
ne(Si−1) + 1

)
. Such an upper bound on the sum of the im-

mediate costs in the sequel will be succinctly represented by the proportional
quantity ρ(R) = 1

Opt

∑n
i=1

∑
e∈s∗

πR(i)

(
ne(Si−1) + 1

)
, that is obtained dividing

by Opt.

The Speed of Convergence in Congestion Games 801

The following lemma shows that the social value at the end of round R is
proportional to ρ(R).

Lemma 2. Given a 1-round walk R, C(Sn) ≤ 2ρ(R) ·Opt.

According to the above lemma, in order to prove our result, it is crucial to show
that ρ(R) fast decreases between two successive rounds.

Lemma 3. Given a 2-round walk 〈R,R〉, ρ(R) ≤ α
α−1

√
2ρ(R)+ α(α+1)

α−1 for any
α > 1.

Proof. For the sake of simplicity let us denote all the states Sj
R

and SjR simply

as S
j

and Sj, respectively. Moreover, without loss of generality, let us assume
that πR(i) = i for any i ∈ 1, 2, . . . , n and let Si = (sn1 , s

n
2 , . . . , s

n
i , s

0
i+1, . . . , s

0
n)

be a generic intermediate state of R. The initial state S0 of round R coincides
with the final state S

n
of round R.

Given a state S, define H(S) =
∑
e∈E∗ ne(S)oe. Consider the last state of

round R, i.e. S0. In order to prove the claim, it is sufficient to determine suitable
upper and lower bounds for H(S0) with respect to ρ(R) and ρ(R), respectively.

Let us first upper bound H(S0) with respect to ρ(R). Given a resource e ∈ E
with congestion ne(S0) at the end of round R, by the definition of ρ(R) and since
for every integer i such that 1 ≤ i ≤ ne(S0) there must exist a player whose
immediate cost on e paid during R is at least i, ρ(R)Opt ≥

∑n
i=1 cπR(i)(S

i
) ≥

∑
e∈E∗

∑ne(S0)
i=1 i ≥

∑
e∈E∗

(ne(S0))2

2 . Therefore, by applying Lemma 1 with m =
|E∗|, γ = ρ(R)Opt, and (d1, . . . , d|E∗|) and (x1, . . . , x|E∗|) the vectors containing
the oe and ne(S0) values for every e ∈ E∗, respectively, since

∑
e∈E∗ o2

e = Opt,
we obtain

H(S0) ≤
√

2ρ(R)Opt

∑

e∈E∗

o2
e =

√

2ρ(R)Opt. (1)

In order to lower bound H(S0) with respect to ρ(R), we define the following
suitable potential function hi(R) =

∑
e∈E∗ n′e(S

i)oie for i ∈ {0, 1, . . . , n − 1},
where for a generic state S, n′e(S) = max{0, ne(S) − αoe} and oke = |{j ∈
N | j > k ∧ e ∈ s∗j}|. Informally speaking, such a potential function takes
into account the congestion due to the not yet moving players during round R
above a “virtual” congestion frontier given by all the values αoe. While if players
during round R would not choose any resource in E∗ H(S0) would be lower
bounded by ρ(R)Opt, the above potential function in bounding from below
h0(R) ≤ H(S0) accounts also for the players selecting resources in E∗. Let
Δi(R) = hi−1(R) − hi(R) for i ∈ {1, 2, . . . , n}. Notice that by the definition of
the potential function hi(R), since hn(R) = 0,

∑n
i=1 Δi(R) = h0(R) ≤ H(S0),

that is a lower bound for
∑n
i=1 Δi(R) is also a lower bound for H(S0); therefore,

in the following we focus on bounding
∑n
i=1 Δi(R). Consider a generic step

i in round R, in which player i performs a best response move by selecting

802 A. Fanelli, M. Flammini, and L. Moscardelli

resources in sni . If i increases n′e(S
i−1) for a given resource e ∈ E∗, that is

n′e(S
i) = n′e(S

i−1) + 1, then ne(Si) > αoe, so that n′e(S
i) − n′e(S

i−1) = 1 ≤
ne(Si)
αoe

. If player i does not increase n′e(S
i−1), that is n′e(S

i) − n′e(S
i−1) = 0,

then trivially again n′e(S
i) − n′e(S

i−1) = 0 ≤ ne(Si)
αoe

. Therefore, since player
i to obtain hi(R) removes at least

∑
e∈s∗

i
n′e(S

i−1) from hi−1(R) (due to the

decrease of the coefficients oi−1
e to oie) and adds at most ne(Si)

αoe
to every resource

e ∈ sni ∩E∗, recalling that
∑
e∈sn

i ∩E∗ ne(Si) = ci(Si) ≤
∑
e∈s∗

i

(
ne(Si−1) + 1

)
,

Δi(R) ≥
∑

e∈s∗
i

n′e(S
i−1)−

∑

e∈sn
i ∩E∗

ne(Si)
αoe

oie

≥
∑

e∈s∗
i

n′e(S
i−1)− 1

α

∑

e∈sn
i ∩E∗

ne(Si)

≥
∑

e∈s∗
i

n′e(S
i−1)− 1

α

∑

e∈s∗
i

(
ne(Si−1) + 1

)
.

Since n′e(S
i−1) ≥ ne(Si−1)− αoe and oe ≥ 1 for every e ∈ E∗, it follows that

Δi(R) ≥
∑

e∈s∗
i

(
ne(Si−1)− αoe

)
− 1

α

∑

e∈s∗
i

(
ne(Si−1) + 1

)

≥
(

1− 1
α

) ∑

e∈s∗
i

ne(Si−1)−
(

α +
1
α

) ∑

e∈s∗
i

oe.

By summing up the values Δi(R), we obtain
n∑

i=1

Δi(R) ≥
(

1− 1
α

) ∑

i∈N

∑

e∈s∗
i

ne(Si−1)−
(

α +
1
α

) ∑

i∈N

∑

e∈s∗
i

oe

≥
(

1− 1
α

)

ρ(R)Opt− (1 + α)Opt,

and thus, since H(S0) ≥
∑n
i=1 Δi(R),

H(S0) ≥
(

1− 1
α

)

ρ(R)Opt− (1 + α)Opt. (2)

Therefore, by combining inequalities (1) and (2),

ρ(R) ≤ 1
Opt

(√

2ρ(R)Opt + (α + 1)Opt

) (
α

α− 1

)

≤ α

α− 1

√

2ρ(R) +
α(α + 1)
α− 1

,

hence the claim. ��

We are now able to prove the following theorem.

The Speed of Convergence in Congestion Games 803

Theorem 1. For any linear congestion game G , PoAk(G) = O
(

2k−1√
n
)
.

Proof. Given a k-round walk W = 〈R1, R2, . . . , Rk〉, where each Rj is a 1-round
walk, it follows from Lemma 3 that ρ(Rj) ≤ α

α−1

√
2ρ(Rj−1) + α(α+1)

α−1 for any
α > 1. Applying such an argument to all the rounds of the walk, we obtain that
ρ(Rk) = O

(
2k−1√

ρ(R1)
)
. By Lemma 2, recalling that Snj denotes the final state

of round Rj , we have C(Snk) = O
(

2k−1√
ρ(R1)

)
Opt.

By the definition of ρ(R), since
∑
e∈E∗ oe ≤

∑
e∈E∗ o2

e = Opt, for any possible
round R it holds that

ρ(R) =
1

Opt

n∑

i=1

∑

e∈s∗
πR(i)

(
ne(Si−1) + 1

)
≤ 1

Opt

n∑

i=1

∑

e∈s∗
πR(i)

(n + 1)

=
n + 1
Opt

n∑

i=1

|s∗πR(i)| =
n + 1
Opt

∑

e∈E∗

oe ≤ n + 1.

Therefore, ρ(R1) ≤ n + 1 and we obtain C(Snk) = O
(

2k−1√
n
)
Opt. ��

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. For any linear congestion game G, PoAlog logn(G) = O(1).

By numerical and optimization arguments, by choosing α ≈ 3.69, it turns that
the price of anarchy after "log logn#+ 3 rounds is lower than 28.

4 Lower Bound

In [7,8] the authors provide a lower bound to PoAk equal to Ω
(

22k+4√
n/k

)
.

By exploiting similar arguments, it is possible to prove the following theorem
providing a more precise and tight bound. The proof will appear in the full
version of the paper.

Theorem 2. There exists a linear congestion game G such that PoAk(G) =
Ω

(
2k−1√

n/k
)
.

Moreover, we are able to provide an almost matching lower bound for the spe-
cial case of linear singleton congestion games. To this aim, let us introduce the
following definition.

Definition 1. An (h, q)-tree Th,q (see Figure 1) is a rooted tree of height h− 1
such that, denoting by p(v) the parent of node v and by δ(v) the number of
children of v:

(δ(r) = q, where r is the root of Th,q, i.e. the only node at level 1;
(every node v at level i, 1 < i ≤ h, being the m-th leftmost child of p(v) is

such that δ(v) = m · q2i−2
.

804 A. Fanelli, M. Flammini, and L. Moscardelli

r
q

q 2q q2

q2 2q2 q3 q2 2q2 2q3 q2 2q2 q4

Fig. 1. An (h, q)-tree with the nodes labeled with the number of children

Given any tree T , let L(T, j) be the set of nodes at level j and Q(T, j) be the
set of descendants of the rightmost child of the root of T at level j. Moreover
let PLj (T) =

∑
u∈L(T,j) δ(u) and PQj (T) =

∑
u∈Q(T,j) δ(u).

Lemma 4. Given an (h, q)-tree Th,q and an arbitrary sub-tree T of Th,q rooted
in r, PLj (T) ≤ δ(r)+1

2 PQj (T).

Lemma 5. In every (h, q)-tree Th,q rooted at node r the number of nodes at

level j is |L(Th,q, j)| ≤ q2j−1−1
(

1
2 + 1

q

)j−2

.

Theorem 3. There exists a linear singleton congestion game G such that
PoAk(G) = Ω

(
2k−1
√
n
)
.

Proof. In order to provide the lower bound instance, we associate to a tree T a
singleton congestion game in which the resources correspond to the nodes of T
and the players to the edges of T ; each player (an edge of T) has two strategies
corresponding to the resources being the nodes of T she connects. We refer to
the resource corresponding to the node of lower level as the red strategy and to
the one of higher level as the green strategy.

Let us consider a (k + 1, q)-tree T rooted at r1 with an additional node r0 (of
level 0) connected to r1; in this way we obtain a new tree T rooted at r0 and
having height k + 1 (see Figure 2).

r0

r=r1

Th,q

Fig. 2. The lower bound construction of Theorem 3

The Speed of Convergence in Congestion Games 805

Letting ξ0 < ξ1 < · · · < ξk+1 be arbitrary small values, the latency function
of the resources are defined as follows:

(fr0(x) = (q + ξ0)x;
(fr1(x) = (1 + ξ1)x;
(for every level j = 2, . . . , k and every node v ∈ L(T , j), fv(x) =(

1

q2
j−1−1 + ξj

)
x;

(for every node v ∈ L(T , k + 1), fv(x) = ξk+1 · x.

In the following, we refer to the players corresponding to edges between levels
j and j + 1 as players of level j.

Let 〈R1, . . . , Rk〉 be a k-round walk starting from the initial state S0 in which
the players of level k, except the ones being first children of their parent nodes,
use their red strategy, while all the other ones use their green strategy. Moreover,
let Sj be the final state of round j. We want to show the following property: for
every j = 1, . . . , k, Sj is such that all the players of level k − j, except the ones
being the first children of their parent nodes, use their red strategy, while all the
other ones use their green strategy.

We consider that the players move in increasing order of level and for each level
from left to right. We prove the claimed property by induction on j = 0, 1, . . . , k.
The base of the induction (j = 0) is trivially verified by the choice of the initial
state. Let us assume the property true for a fixed j ≥ 0; we want to show that it
holds for j + 1.

(Level i such that i = 0, . . . , k − j − 2. Since for every player of level i the
latency of the resource belonging to the red strategy is greater than the
latency of the resource belonging to the green strategy, and by the induction
hypothesis the resource belonging to the green strategy of player i is not
used by any player of level i + 1, all the players of level i select their green
strategy as best response move.

(Level i = k − j − 1. By the induction hypothesis, all the players of level
k− j, moving after those of level i, are using their red strategy. We consider
a generic player of level i having as the resource of her green strategy a
node v being the m-th child of its parent u (with m ≥ 2). The number
of players using v just before the player’s move is δ(v) − 1 (by recalling
the definition of (k + 1, q)-tree, δ(v) = m · q2k−j−2

). Thus, she would suffer
a latency equal to fv(δ(v)) = m · q2k−j−2

(
1

q2
k−j−1−1 + ξk−j

)
on her green

strategy. Moreover, by assuming in an inductive way that all her siblings
moving before her (except the first one) already selected their red strategy,
she would experiment a latency equal to fu(m) = m

(
1

q2
k−j−2−1 + ξk−j−1

)

on her red strategy. Since ξk−j−1 < ξk−j , fu(m) < fv (δ(v)); therefore, such
a player chooses her red strategy.

(Level i = k − j. Since by the induction hypothesis the resource of the green
strategies of players of level i are not used by any player, it is easy to check
that every player of such a level makes an improving move by choosing her
green strategy.

806 A. Fanelli, M. Flammini, and L. Moscardelli

(Level i such that i = k − j + 1, . . . , k. Clearly, such players do not perform
any change in their strategy and remain on their green strategy.

By exploiting Lemma 5, since q ≥ 1, for an arbitrarily small ε, the total
number of players is

n =
k+1∑

j=1

|L(Th,q, j)| ≤ 1 +
k+1∑

j=2

(

q2j−1−1

(
1
2

+
1
q

)j−2
)

≤ 1 +
1
q

k∑

j=1

q2j

≤ (1 + ε)q2k−1.

Thus, q ≥ 2k−1

√
n

1+ε .
Moreover, the optimum social cost is upper bounded by the social cost of the

state in which every player selects her green strategy:

Opt ≤
k+1∑

j=1

|L(Th,q, j)|fe∈L(Th,q,j)(1)

≤ 1 +
k∑

j=2

(

|L(Th,q, j)|
(

1
q2j−1−1

+ ξj

))

+ |L(Th,q, k + 1)|ξk+1

≤ 1 +
k∑

j=2

(

q2j−1−1

(
1
2

+ ε

)j−2 (
1

q2j−1−1
+ ξk+1

))

+ 1

≤ 5

for ξk+1 small enough and q suitably large.
Since the social cost of the last state of k-th round is lower bounded by the

latency suffered by the unique player of level 0 (using resource r0), PoAk =
Ω(q) = Ω

(
2k−1
√
n
)
. ��

5 Open Problems

Besides closing the gaps between the lower and upper bounds on the price of
anarchy after k rounds, that however do not affect the tightness between the
necessary and sufficient number of rounds for achieving a constant factor per-
formance, many questions are left open.

First of all, it would be nice to extend our results to the case in which players
are weighted, that is they increase the congestion of the selected resources of
factors different from one.

Moreover, besides the total latency cost, it would be interesting to consider
the case in which the social value is given by the maximum players’ cost is
another relevant issue.

Finally, another worth pursuing research direction concerns the adoption of
other realistic non-linear latency functions.

The Speed of Convergence in Congestion Games 807

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial struc-
ture on congestion games. In: FOCS, pp. 613–622. IEEE Computer Society, Los
Alamitos (2006)

2. Awerbuch, B., Azar, Y., Epstein, A.: Large the price of routing unsplittable flow.
In: STOC, pp. 57–66. ACM, New York (2005)

3. Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., Shopalik, A.: Fast convergence
to nearly optimal solutions in potential games. In: EC 2008 (to appear, 2008)

4. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli,
L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322.
Springer, Heidelberg (2006)

5. Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion
games. In: SODA, pp. 169–178. SIAM, Philadelphia (2007)

6. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: STOC, pp. 67–73. ACM, New York (2005)

7. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approxima-
tion in potential games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 349–360. Springer, Heidelberg (2006)

8. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approxima-
tion in potential games. Personal Communication (2007)

9. Yannakakis, M., Johnson, D.S., Papadimitriou, C.H.: How easy is local search?
Journal of Computer and System Sciences 37, 79–100 (1988)

10. Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure equilibria.
In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC),
pp. 604–612. ACM, New York (2004)

11. Fanelli, A., Flammini, M., Melideo, G., Moscardelli, L.: Multicast transmissions in
non-cooperative networks with a limited number of selfish moves. In: Královič, R.,
Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 363–374. Springer, Heidel-
berg (2006)

12. Fanelli, A., Flammini, M., Moscardelli, L.: On the convergence of multicast games
in directed networks. In: SPAA, pp. 330–338. ACM, New York (2007)

13. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In:
FOCS, pp. 142–154. IEEE Computer Society, Los Alamitos (2005)

14. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

15. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and
Economic Behavior 13, 111–124 (1996)

16. Mirrokni, V.S., Vetta, A.: Convergence issues in competitive games. In: Jansen, K.,
Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004.
LNCS, vol. 3122, pp. 183–194. Springer, Heidelberg (2004)

17. Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences 36, 48–49 (1950)

18. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory 2, 65–67 (1973)

19. Skopalik, A., Vöcking, B.: Inapproximability of convergence in congestion games
(manuscript, 2007)

Uniform Budgets and the Envy-Free Pricing

Problem

Patrick Briest�

Dept. of Computer Science, University of Liverpool, UK
patrick.briest@liverpool.ac.uk

Abstract. We consider the unit-demand min-buying pricing problem,
in which we want to compute revenue maximizing prices for a set of
products P assuming that each consumer from a set of consumer samples
C will purchase her cheapest affordable product once prices are fixed. We
focus on the special uniform-budget case, in which every consumer has
only a single non-zero budget for some set of products. This constitutes
a special case also of the unit-demand envy-free pricing problem.

We show that, assuming specific hardness of the balanced bipartite in-
dependent set problem in constant degree graphs or hardness of refuting
random 3CNF formulas, the unit-demand min-buying pricing problem
with uniform budgets cannot be approximated in polynomial time within
O(logε |C|) for some ε > 0. This is the first result giving evidence that
unit-demand envy-free pricing, as well, might be hard to approximate
essentially better than within the known logarithmic ratio.

We then introduce a slightly more general problem definition in which
consumers are given as an explicit probability distribution and show that
in this case the envy-free pricing problem can be shown to be inapprox-

imable within O(|P|ε) assuming NP �
⋂

δ>0 BPTIME(2O(nδ)). Finally,
we briefly argue that all the results apply to the important setting of
pricing with single-minded consumers as well.

1 Introduction

Inspired by the possibility of gathering large amounts of data about the prefer-
ences and budgets of a company’s potential customers by web sites designed for
this purpose, Rusmevichientong [17] and Glynn et al. [12] introduced a class of
so called multi-product pricing problems that aim at computing optimal pricing
schemes for a company’s product range. In the original version of the problem
each consumer is represented by a budget and a set of products she is interested
in. Given fixed prices for the products, she decides to buy one of the products she
is interested in with a price not exceeding her budget. The decision is made cor-
responding to either the min-buying, max-buying, or rank-buying model, where
the consumer buys the product with lowest price not exceeding the budget, high-
est price not exceeding the budget, or highest rank according to some consumer

� Supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 808–819, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Uniform Budgets and the Envy-Free Pricing Problem 809

specific ranking, respectively. All these problems are usually referred to as unit-
demand pricing, as consumers will decide to buy exactly one product if they can
afford to do so.

Aggarwal et al. [1] extend the problem definition and allow consumers with
different budgets for the different products they are interested in. Assuming that
a price ladder constraint, i.e., a predefined order on the prices of all products,
is given, they derive a polynomial time approximation scheme (PTAS) for the
max-buying and rank-buying (under another reasonable assumption) models.
They also show how to obtain logarithmic approximation ratios for all three
models if no price ladder is given. Briest and Krysta [6] show that both of these
algorithms are essentially best possible.

Guruswami et al. [13] consider a different selection rule, which has already
been proposed in [1]. In the max-gain model, a consumer buys the product
maximizing her personal utility, i.e., the difference between the product’s price
and her respective budget. In the case of limited product supply, the definition
in [13] additionally requires that each consumer must obtain the product she
desires most whenever she can afford any product at all. Thus, the resulting
pricing scheme must be envy-free and we obtain the unit-demand envy-free pric-
ing problem, which has received a lot of attention. Guruswami et al. present
an algorithm with logarithmic approximation guarantee for this problem and
prove APX-hardness. Chawla et al. [7] consider the situation in which instead of
having consumer samples, consumers are drawn from an explicit probability dis-
tribution. They show that for the case of product distributions (i.e., consumers’
budgets are drawn independently for different products), results from optimal
auction theory [16] yield constant approximation guarantees.

Another problem introduced in [13] is so called single-minded pricing, which
is inspired by single-minded combinatorial auction design. In this scenario each
consumer has a single budget value and buys the whole set of products she
is interested in if the sum of prices does not exceed her budget. Among other
results, Guruswami et al. show that techniques similar to those of [1] yield a
logarithmic approximation for this problem, which is proven to be close to best
possible by Demaine et al. [9]. Balcan and Blum [3] and Briest and Krysta [5]
present improved approximation results for several different restricted versions
of the problem.

Finally, Balcan et al. [4] show how algorithmic pricing feeds back into in-
centive-compatible auction design and present competitive auctions based on
pricing algorithms combined with an appropriate random sampling procedure.

1.1 Preliminaries

Most of this paper will be focused on the unit-demand min-buying (or envy-free)
pricing problem (Udp-Min) with uniform budgets, which is defined formally
below. Throughout the paper we will assume that all products are available in
unlimited supply and have zero marginal cost.

810 P. Briest

Definition 1. In uniform-budget Udp-Min we are given products P and con-
sumer samples C consisting of budgets bc ∈ R+

0 and product sets Sc ⊆ P for all
c ∈ C. We want to find prices p : P → R+

0 that maximize

revmin(p) =
∑

c∈A(p)

min
{
p(e) | e ∈ Sc ∧ p(e) ≤ bc

}
,

where A(p) = {c ∈ C | ∃e ∈ Sc : p(e) ≤ bc} denotes the set of consumers that
can afford to buy any product given prices p.

Unit-demand pricing models the situation that products are strict substitutes
and each consumer is interested in purchasing exactly one product out of a
set of alternatives. The other extreme is reached if products constitute strict
complements and every consumer seeks to purchase some specific set of products
rather than a single alternative. In the single-minded pricing problem (Smp) we
assume that each consumer is interested in exactly one such product set, which
she purchases if the sum of prices does not exceed her budget.

Definition 2. Given products P and consumer samples C consisting of budgets
bc ∈ R+

0 and product sets Sc ⊆ P, Smp asks for prices p : P → R+
0 maximizing

revsmp(p) =
∑

c∈A(p)

∑

e∈Sc

p(e),

where A(p) = {c ∈ C |
∑
e∈Sc

p(e) ≤ bc}.

A natural extension of both problems is obtained if we assume that our knowl-
edge of consumer preferences does not stem from some sampling procedure, but
that we know the explicit probability distribution over the space C∗ of all pos-
sible consumers, which is a widely spread assumption in economics (see, e.g.,
[7] or [16]). Thus, in the economist’s version of these problems we are given a
probability distribution D over consumer space C∗. In this situation our aim is to
find prices p maximizing the expected revenue from a sale to a single consumer
drawn according to distribution D. In order to avoid additional complications
(which are of no interest to this paper) we restrict ourselves to finite support
distributions, i.e., consumer sets C with a discrete distribution D defined on C.

1.2 New Results

We first focus on the sampling-based version of uniform-budget Udp-Min and
prove that assuming specific hardness of refuting random 3SAT-instances or ap-
proximating the balanced bipartite independent set problem (Bbis) in constant
degree graphs, this problem does not allow approximation guarantees essen-
tially beyond the known logarithmic ratios. The connection between Bbis and
Udp-Min is made via so-called maximum expanding sequences (Mes), which
are a combinatorial formulation of the interaction between different price lev-
els in Udp-Min and potentially also of independent interest. In order to show

Uniform Budgets and the Envy-Free Pricing Problem 811

hardness of sampling-based Udp-Min we need hardness of very sparse Mes in-
stances, which we obtain from constant degree Bbis by the careful application
of derandomized graph products [2] to scale hardness to the desired level. Unfor-
tunately, no explicit hardness of approximation results are known for constant
degree Bbis, although the problem has been receiving considerable attention.
We show that hardness of constant degree Bbis can be derived from a hypothe-
sis about the average case complexity of refuting random 3SAT-instances, which
is almost identical to the one originally put forward by Feige [10] in a similar
context. Since Udp-Min with uniform budgets is a special case of the envy-free
pricing problem from [13], for which previously only APX-hardness was known,
our results yield the first (strong) evidence that this problem might be hard
to approximate within O(logε |C|) for some ε > 0. Turning to the economist’s
version of envy-free pricing we obtain strong hardness of approximation under
standard assumptions, in which case the reduction from Bbis to Mes yields in-
approximability within O(|P|ε) for some ε > 0. Similar bounds in terms of the
number of products can be shown for the sampling-based version of the problem,
if we strengthen the underlying hypothesis a little further.

Finally, we point out that with a few minor modifications the same reductions
yield similar hardness results for Smp as well. Even though Smp is known to be
hard to approximate within semi-logarithmic ratios [9] in the number of con-
sumer samples, this has some new and interesting implications. First, we obtain
the first near-tight hardness results for approximation guarantees expressed in
the number of products rather than the number of consumer samples. Second,
we obtain lower bounds for the economist’s problem version, which can provably
not be derived from previous reductions. This also yields evidence that maxi-
mum expanding sequences are a combinatorial problem that is implicitly present
in quite different combinatorial pricing problems.

Independently of this paper, Chuzhoy et al. [8] have quite recently considered
uniform-budget Udp-Min in a network setting with unit-sized flows, obtaining
semi-logarithmic lower bounds on the approximability in terms of the network
size. While their result holds under standard complexity theoretic assumptions
even for unit-sized flows, our results imply stronger bounds for the non-unit flow
case, which corresponds to the economist’s version of Udp-Min.

The rest of this paper is organized as follows. We proceed by giving an ex-
position of our results on Udp-Min in Section 2. Section 3 briefly describes the
application of our results to Smp. Section 4 concludes.

2 Unit-Demand Pricing

As the main result of this section we describe a reduction from the Balanced
Bipartite Independent Set Problem (Bbis) in constant degree bipartite graphs
to uniform-budget Udp-Min. This will prove that, assuming there are no ran-
domized polynomial time algorithms approximating constant degree Bbis within
arbitrarily small constant factors, there are no polynomial time algorithms ap-
proximating Udp-Min within O(logε |C|) for some ε > 0. At the very end of the

812 P. Briest

section we state similar (yet stronger) results for the economist’s version of the
problem, which hold under standard complexity theoretic assumptions.

Up to now, no explicit hardness results have been proven for Bbis in con-
stant degree graphs, although the problem has been receiving a lot of attention.
The first result for general Bbis using a quite moderate complexity theoretic
assumption was obtained by Khot [14]. Previous results by Feige [10] and Feige
and Kogan [11] are deriving hardness of Bbis under more specific assumptions.
In [10] Feige shows an interesting connection between the average case complex-
ity of refuting 3CNF-formulas and the worst case approximation complexity of
several notorious optimization problems including Bbis. We are going to formu-
late a slightly stronger version of the hypothesis in [10] and show that this is
enough for our purposes.

Remember that a 3CNF-formula is a conjunction of clauses, each of which is
the disjunction of 3 literals over variables x1, . . . , xn, where a literal is a variable
or its negation. Before stating the hypothesis we need to describe the random
sampling procedure used to obtain 3CNF formulas in [10]. Given n variables we
create formulas consisting of m = Δn clauses for some large constant Δ ∈ N by
independently picking each literal of every clause uniformly at random. When
Δ is large enough, every truth assignment satisfies roughly (7/8)m clauses of
such a random 3CNF formula. Thus, a typical random 3CNF formula does not
have significantly more than (7/8)m simultaneously satisfiable clauses. On the
other hand, for a sufficiently small ε > 0, formulas with (1− ε)m simultaneously
satisfiable clauses can be considered exceptional. Hypothesis 1 states that it is
hard to detect exceptional formulas on average.

Hypothesis 1. For every fixed ε > 0 and sufficiently large constant Δ ∈ N,
there is no (randomized) algorithm that runs in time O(t(n)) and, given a ran-
dom 3CNF formula with n variables and m = Δn clauses, outputs typical with
probability at least 1/2 (randomization over input), but outputs exceptional on
every formula with (1−ε)m simultaneously satisfiable clauses with probability at
least 1− 1/2poly(n) (randomization over algorithm’s coin flips).

Choosing t(n) = poly(n) the only difference between Hypothesis 1 and the hy-
pothesis in [10] is that we also exclude randomized algorithms that have expo-
nentially small error probability when it comes to detecting exceptional formulas.
We need this stronger version as a result of our reduction from Bbis to uniform-
budget Udp-Min, which is partially based on a random construction that in-
troduces an exponentially small one-sided error probability for detecting large
independent sets. We are mostly interested here in the case of t(n) = poly(n).
However, going to other subexponential time bounds will allow us to obtain lower
bounds for differently parametrized approximation goals. In analogy to [10] we
define a notion of hardness based on Hypothesis 1. We use slightly different
notation compared to [10] to reflect the difference in the underlying hypotheses.

Definition 3. A problem is said to be R3SAT�(t(n))-hard, if the existence of a
(randomized) polynomial time algorithm (with exponentially small failure prob-
ability) for it refutes Hypothesis 1.

Uniform Budgets and the Envy-Free Pricing Problem 813

Most importantly, R3SAT�(t(n))-hard problems do not allow polynomial time
algorithms if we believe that Hypothesis 1 is true for the given choice of t(n).
As a byproduct of the fact that Hypothesis 1 also excludes certain randomized
algorithms, R3SAT�(t(n))-hardness rules out the existence of this type of algo-
rithm, too. We continue by giving a formal definition of Bbis, the base problem
of our reduction.

Definition 4. In the Balanced Bipartite Independent Set Problem (Bbis) we
are given a bipartite graph G = (V,W,E). We want to find maximum cardinality
subsets of vertices V ′ ⊂ V , W ′ ⊂W with |V ′| = |W ′|, such that {v, w} /∈ E for
all v ∈ V ′, w ∈ W ′.

A slightly refined version of the analysis presented in [10] can be used to obtain
R3SAT�(poly(n))-hardness of Bbis in constant degree graphs. We point out that
this part of the reduction can be replaced by the following weaker hypothesis,
which states that the gap variant of Bbis in constant degree graphs does not have
randomized polynomial time algorithms with one-sided error (i.e., the decision
variant does not belong to class RP). More formally, let G−(a, d), G+(b, d) be
two families of bipartite graphs on 2n vertices with constant degree d ∈ N and
maximum balanced independent set of size at most an or at least bn, respectively.
Given 0 < a < b < 1 and d ∈ N the problem Bbis(a, b, d) requires deciding
whether G ∈ G−(a, d) or G ∈ G+(b, d) for a given graph G ∈ G−(a, d)∪G+(b, d).
For our purposes Hypothesis 2 is fully sufficient.

Hypothesis 2. There exist constants 0 < a < b < 1 and d ∈ N, such that
Bbis(a, b, d) /∈ RP.

Without expressing too much of an opinion about the validity of Hypothesis
2, it should be noted that it is in accordance with our current knowledge and
backed by the fact that strong super-constant approximability thresholds have
been proven for general Bbis [14]. Having hardness of constant degree Bbis we
apply the method of derandomized graph products [2] to obtain hardness of ap-
proximation within O(f(n)ε) for Bbis in graphs with maximum degree O(f(n)),
where the appropriate choice for f(n) will become apparent later on. The main
part of our result consists of the reduction to Udp-Min. As an intermediate step
in the reduction we modify the Bbis instance by adding a number of random
edges and interpret vertices on one side of the bipartition as sets. The connection
to Udp-Min is made by considering sequences of these sets that have a certain
expansion property. This is formalized in the following definition.

Definition 5. In the Maximum Expanding Sequence Problem (Mes) we are
given an ordered collection S1, . . . , Sm of sets. An expanding sequence φ =
(φ(1) < · · · < φ(�)) of length |φ| = � is a selection of sets Sφ(1), . . . , Sφ(�),
such that

Sφ(j) �
j−1⋃

i=1

Sφ(i)

for 2 ≤ j ≤ �. Mes asks for finding such a sequence of maximum length.

814 P. Briest

We are not aware that Mes has been considered explicitly before. We briefly
point out that a reduction similar to the one given in the proof of Lemma 1
below yields hardness of approximation under a standard assumption, which
is formally stated in Theorem 4. In order to reduce Mes to Udp-Min with
consumer samples we have to focus our attention on severely restricted problem
instances. Bbis instances with bounded maximum degree yield Mes instances
that exhibit a nicely sparse structure. Definition 6 formalizes our notion of sparse.

Definition 6. We say that an Mes instance S1, . . . , Sm is κ-separable if it can
be partitioned into κ subsequences C1, . . . , Cκ, Cj = {Sk(j), Sk(j)+1, . . . , S�(j)},
where k(1) = 1, �(κ) = m, k(j + 1) = �(j) + 1 for 1 ≤ j ≤ κ − 1 and each Cj
contains only non-intersecting sets.

Our starting point to prove hardness of approximation for sufficiently sparse
Mes instances is Theorem 1, which can be derived by applying the method of
derandomized graph products [2] to constant degree Bbis, and states super-
constant approximability thresholds for Bbis parametrized in the graph’s super-
constant maximum degree f(n).

Theorem 1. Let f : N −→ R+ be non-decreasing with f(n) ≤ n and f(nc) ≤
f(n)c for all c ≥ 1, n ∈ N. Let G−(a(n), f(n)) and G+(b(n), f(n)) be the families
of balanced bipartite graphs on 2n vertices, with maximum degree bounded by f(n)
and maximum Bbis of size at most a(n)n or at least b(n)n, respectively. There
exist 0 < a(n) < b(n) < 1 with b(n)/a(n) = Ω(f(n)ε) for some ε > 0, such that
given G ∈ G−(a(n), f(n))∪G+(b(n), f(n)) it is R3SAT�(poly(n))-hard to decide
whether G ∈ G−(a(n), f(n)) or G ∈ G+(b(n), f(n)).

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

���������
���������
���������

���������
���������
���������

b(n)n

b(n)n

(a)

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������

�������
�������
�������

a(n)n+1

a(n)nn−a(n)n

(b)

Fig. 1. Reducing Bbis to Mes. (a) Adding random edges with probability 1/(b(n)n)
each implants an expanding sequence of expected size Ω(b(n)n) into an independent
set of size b(n)n. (b) An independent set of size a(n)n allows for expanding sequences
of at most twice that size.

Lemma 1. There exists ε > 0, such that Mes with f(m)-separable instances (f
as in Theorem 1) is R3SAT�(poly(n))-hard to approximate within O(f(m)ε).

Proof. Let some G ∈ G−(a(n), f(n)) ∪ G+(b(n), f(n)), G = (V,W,E), |V | =
|W | = n, with a(n), b(n) and f(n) as in Theorem 1 be given. We will reduce
the problem of deciding whether G ∈ G−(a(n), f(n)) or G ∈ G+(b(n), f(n)) to

Uniform Budgets and the Envy-Free Pricing Problem 815

solving a separable instance of Mes, essentially by implanting large expanding
sequences into large balanced independent sets. As neither the independent set
nor its size are known at reduction time, we do this by adding a number of ran-
dom edges to the graph, which create a long expanding sequence in expectation
if a large balanced independent set exists (see Fig. 1).

More precisely, every possible edge is independently added to G with proba-
bility (b(n)n)−1 if it is not already present in the original graph. We then remove
vertices whose degree has become too high. In expectation the random procedure
above tries to add b(n)−1 edges to every vertex v ∈ V ∪W . We remove a vertex
v and all its incident edges if more than c · b(n)−1 edges are added to it, where c
is some sufficiently large constant to be determined later. Let Av be the random
variable counting the number of edges added to v. Applying the Chernoff bound
[15] we obtain Pr(v is removed) = Pr(Av ≥ c·b(n)−1) ≤ e−c/b(n) for any constant
c ≥ 3e−1. We denote the modified graph by G′ = (V ′,W ′, E′). For every vertex
vi ∈ V ′ we define a corresponding set Si by Si = {wj ∈W ′ | {vi, wj} ∈ E′}, i.e.,
vertices V ′ will correspond to sets over the universe W ′ in our Mes instance.

In order to obtain a feasible Mes instance we need to define an order on
sets Si, which we do next. Observe that vertices in G′ have degree at most
f ′(n) ≤ f(n) + c · b(n)−1 = O(f(n)), where we use the fact that bipartite
graphs with bounded degree f(n) have a balanced independent set of size at
least n/(f(n)+1) and, thus, it must be the case that b(n)−1 = O(f(n)) in order
for the problem to be non-trivial. Furthermore, if the maximum degree of G′

is f ′(n), then the sets Si can be partitioned into f ′(n)2 classes, such that sets
in each class do not intersect, since every set contains at most f ′(n) elements,
each of which is contained in at most f ′(n)− 1 further sets. Reordering the sets
appropriately we obtain an O(f(n)2)-separable Mes instance.

Soundness: Let G ∈ G+(b(n), f(n)). Assume for the moment that no vertices
are removed from G and let S∗ = {Sφ(1), . . . , Sφ(�)}, � = "b(n)n#, be the sets in
the Mes instance corresponding to vertices from V that belong to a maximum
balanced bipartite independent set. Analogously, let W ∗ ⊂W denote the vertices
from W belonging to the balanced bipartite independent set. For 1 ≤ j ≤ �/2
consider set Sφ(j). We say that Sφ(j) is successful if we can use it to construct
a large expanding sequence or, more formally, if the following conditions are
satisfied:

Aj : |Sφ(j) ∩W ∗| = 1 , i.e., Sφ(j) contains exactly one element from W ∗.
Bj : Sφ(j) ∩ Sφ(i) ∩W ∗ = ∅ for all 1 ≤ i ≤ �/2, i = j, i.e., the intersection of

Sφ(j) with any other set from S∗ lies outside W ∗.
Cj : The vertex corresponding to set Sφ(j) is not removed due to the degree

constraint.
Dj: None of the vertices in Sφ(j)∩W ∗ are removed due to the degree constraint.

It is not difficult to check that successful sets belong to the Mes-instance and
form an expanding sequence, since their corresponding vertices are not removed
from the graph and each set covers a unique element in W ∗, which yields the
necessary expansion property. Let us now determine the probability that set
Sφ(j) is successful. We can write that

816 P. Briest

Pr(Sφ(j) is successful) = 1− Pr(Aj ∨Bj ∨ Cj ∨Dj)

= 1− Pr(Aj)− Pr(Bj |Aj) · Pr(Aj)
−Pr(Cj |Aj ∧Bj) · Pr(Aj ∧Bj)
−Pr(Dj |Aj ∧Bj ∧ Cj) · Pr(Aj ∧Bj ∧ Cj).

We first consider event Aj and obtain

Pr(Aj) =
∑

w∈W∗

Pr
(
Sφ(j) ∩W ∗ = {w}

)
=

∑

w∈W∗

1
b(n)n

(

1− 1
b(n)n

)b(n)n�−1

≈ b(n)n
1

eb(n)n
≈ 1

e
,

where the above holds with arbitrary precision for large values of n. Let us
then consider Pr(Bj |Aj). Sets Sφ(i) and Sφ(j) contain every element from W ∗

with equal probability 1/(b(n)n). Furthermore, Sφ(i) ∩W ∗ and Sφ(j) ∩W ∗ are
independent by construction. Applying the union bound yields

Pr(Bj |Aj) ≤
�/2∑

i=1

∑

w∈W∗

Pr(w ∈ Sφ(i)) Pr(w ∈ Sφ(j)) ≤
"b(n)n#2

2
1

(b(n)n)2
≈ 1

2
,

again with arbitrary precision for large n. We have already seen that the probabil-
ity of any specific vertex being removed due to the degree constraint is bounded
above by e−c/b(n). We conclude that

Pr(Cj |Aj ∧Bj) · Pr(Aj ∧Bj) ≤ Pr(Cj) ≤ e−c/b(n),

and the same estimate holds for Pr(Dj |Aj ∧Bj ∧Cj) · Pr(Aj ∧Bj ∧Cj). Thus,

Pr(Sφ(j) is successful) ≥ 1−
(

1− 1
e

)

− 1
2
· 1
e
− 2e−c/b(n) ≈ 1

2e

for a sufficiently large constant c. Let Y denote the number of successful sets. By
linearity of expectation and the above bounds it holds that E[Y] ≥ (1/4e)b(n)n.
Using that the value of Y is bounded above by b(n)n and applying a Markov type
inequality then yields that Pr(Y ≤ 1/(8e)b(n)n) ≤ 1− 1/(8e). This implies that
with probability Ω(1) there exists an expanding sequence of length Ω(b(n)n).

Completeness: Let G ∈ G−(a(n), f(n)) and consider any expanding sequence
φ in S1, . . . , Sm. Since the maximum balanced bipartite independent set in G
is of size a(n)n, every selection of a(n)n + 1 vertices from V must be adjacent
to all but a(n)n vertices from W . Thus, the first a(n)n + 1 sets from φ leave
at most a(n)n elements uncovered. Since the expansion property requires that
every further set in the sequence must contain a previously uncovered element,
it follows that |φ| ≤ 2a(n)n + 1.

We have shown a randomized reduction with constant one-sided error proba-
bility. By repeating the algorithm a polynomial number of times, we obtain error
probabilities that are exponentially close to 0. This proves Lemma 1. �

Uniform Budgets and the Envy-Free Pricing Problem 817

To encode Mes in terms of Udp-Min we translate sets into collections of con-
sumers with exponentially decreasing budgets. Reducing logm-separable Mes

ensures the resulting instances are of polynomial size.

Theorem 2. There exists a constant ε > 0, such that it is R3SAT�(poly(n))-
hard to approximate uniform-budget Udp-Min within O(logε |C|). Hardness of
approximation holds even under the weaker assumption of Hypothesis 2.

Proof. Let Mes instance S1, . . . , Sm be separable into C1, . . . , Cκ, κ = O(f(m)).
For each element e in the universe of the Mes instance we have a corresponding
product e. For every set Si in class Ck we define a collection of 2k−1 identical
consumers Ci = {c1i , c2i , . . . , c2

k−1

i }. Each of these consumers has budget bi =
21−k and is interested in products e ∈ Si. Note that the total number of consumer
samples in this construction is bounded above by m2O(f(m)).

Soundness: Let φ = (φ(1) < · · · < φ(�)) be an expanding sequence of length �.
For every 1 ≤ i ≤ � let Nφ(i) denote the elements that are newly covered by Sφ(i).
Now, for i = 1, . . . , � determine Nφ(i) and set the prices of all products e ∈ Nφ(i)
to bi. For consumers Cφ(i) it then holds that p(e) = bi for all e ∈ Nφ(i), p(e) > bi
for all e ∈ Sφ(i)\Nφ(i). As a result, all 2k−1 consumers belonging to a set Sφ(i)
in the expanding sequence will buy at their budget value bi = 21−k and jointly
contribute revenue 1. Thus, the overall revenue from consumers corresponding
to the expanding sequence is at least �.

Completeness: Assume that we are given a price assignment resulting in overall
revenue r. First observe that w.l.o.g. all prices are from the set of distinct budget
values, i.e., all prices are powers of 2. Then note that w.l.o.g. revenue at least
r/2 is due to consumers buying at their budget values, since otherwise we could
increase overall revenue by doubling all prices. Finally, it is not difficult to see
that consumers buying at their budget values form an expanding sequence, as
each such consumer must be purchasing a product that none of the consumers
with higher budgets is interested in. It follows that we obtain an expanding
sequence φ of length at least r/2. Choosing f(m) = logm yields the theorem. �

Our reduction is flexible enough to yield inapproximability results also in the
maximum number � of non-zero budgets per consumer and, allowing Udp-Min

instances of arbitrary subexponential size, we can stretch the construction to the
limit and obtain lower bounds on the approximability in terms of the number of
products |P| as well.

Theorem 3. There exist constants �0 ∈ N and ε > 0, such that for every � ≥ �0
it is R3SAT�(poly(n))-hard to approximate uniform-budget Udp-Min with at
most � non-zero budgets per consumer within �ε. Furthermore, for every δ > 0
there exists ε > 0, such that it is R3SAT�(2O(nδ))-hard to approximate uniform-
budget Udp-Min within O(|P|ε).

Next, let us consider the economist’s versions of uniform-budget Udp-Min and
the unit-demand envy-free pricing problem. As mentioned before, a reduction

818 P. Briest

similar to the one given in the proof of Lemma 1 in combination with the known
hardness results for general Bbis from [14] yields a strong hardness result for
general Mes. Applying the reduction from the proof of Theorem 2 we obtain
inapproximability results for uniform-budget Udp-Min (economist’s version) un-
der standard complexity theoretic assumptions. These immediately extend to the
more general unit-demand envy-free pricing problem.

Theorem 4. Mes is inapproximable within O(mε) for some ε > 0, assuming
that NP �

⋂
δ>0 BPTIME(2O(nδ)).

Theorem 5. Udp-Min (economist’s version) with uniform budgets is hard to
approximate within O(|P|ε) for some ε > 0, if NP �

⋂
δ>0 BPTIME(2O(nδ)).

Finally, let us mention that it is not difficult to achieve approximation guarantee
O(|P|) for the economist’s envy-free pricing problem, e.g., by using the known
single-price algorithm [1].

3 Single-Minded Pricing

We can adapt the reduction in Theorem 2 to work for single-minded consumers
as well. In fact, all we need to do is to choose price levels as powers of 2|P|
rather than 2 and define consumers in the opposite direction, i.e., start on the
lowest price level and work our way up. Again only consumers corresponding to
an expanding sequence allow extraction of full revenue. Demaine et al. [9] prove
an approximation threshold of Ω(logε |C|) for Smp under standard complexity
theoretic assumptions. Our reduction yields these and asymptotically stronger
bounds in the number of products based on the notion of R3SAT�-hardness.

Theorem 6. For every δ > 0 there exists ε > 0, such that it is R3SAT�(2O(nδ))-
hard to approximate Smp within O(|P|ε).
Once more, turning to the economist’s version of the problem, we obtain strong
inapproximability results under standard assumptions. We point out that it is
not possible to achieve these bounds by previous reductions.

Theorem 7. Smp (economist’s version) is hard to approximate within O(|P|ε)
for some ε > 0, if NP �

⋂
δ>0 BPTIME(2O(nδ)).

4 Conclusions

In this paper we have made progress towards understanding the difficulty of
different combinatorial pricing problems. First, we have shown that assuming
specific hardness of constant degree Bbis or hardness on average of refuting ran-
dom 3CNF-formulas, the unit-demand min-buying pricing problem with uniform
budgets, which constitutes a special case also of unit-demand envy-free pricing,
does not allow sub-logarithmic approximation guarantees. Secondly, we have
shown that our techniques apply to the case of single-minded pricing as well,
which indicates that expanding sequences are a common source of hardness for
quite different combinatorial pricing problems.

Uniform Budgets and the Envy-Free Pricing Problem 819

Acknowledgments

The author thanks Piotr Krysta for insightful discussions and several anonymous
referees for their valuable comments.

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for Multi-Product Pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142. Springer, Heidelberg (2004)

2. Alon, N., Feige, U., Wigderson, A., Zuckerman, D.: Derandomized Graph Products.
Computational Complexity 5, 60–75 (1995)

3. Balcan, N., Blum, A.: Approximation Algorithms and Online Mechanisms for Item
Pricing. In: Proc. of 7th ACM Conference on Electronic Commerce (EC) (2006)

4. Balcan, N., Blum, A., Hartline, J., Mansour, Y.: Mechanism Design via Machine
Learning. In: Proc. of 46th IEEE Symposium on Foundations of Computer Science
(FOCS) (2005)

5. Briest, P., Krysta, P.: Single-Minded Unlimited-Supply Pricing on Sparse In-
stances. In: Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms (SODA)
(2006)

6. Briest, P., Krysta, P.: Buying Cheap is Expensive: Hardness of Non-Parametric
Multi-Product Pricing. In: Proc. of 18th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA) (2007)

7. Chawla, S., Hartline, J., Kleinberg, R.: Algorithmic Pricing via Virtual Valuations.
In: Proc. of 8th ACM Conference on Electronic Commerce (EC) (2007)

8. Chuzhoy, J., Kannan, S., Khanna, S.: Network Pricing for Multicommodity Flows
(unpublished manuscript, 2007)

9. Demaine, E., Feige, U., Hajiaghayi, M., Salavatipour, M.: Combination Can Be
Hard: Approximability of the Unique Coverage Problem. In: Proc. of 17th ACM-
SIAM Symposium on Discrete Algorithms (SODA) (2006)

10. Feige, U.: Relations between Average Case Complexity and Approximation Com-
plexity. In: Proc. of 34th ACM Symposium on Theory of Computing (STOC)
(2002)

11. Feige, U., Kogan, S.: Hardness of Approximation of the Balanced Complete Bipar-
tite Subgraph Problem. Technical Report MCS04-04, Dept. of Computer Science
and Applied Math., The Weizmann Institute of Science (2004)

12. Glynn, P., Rusmevichientong, P., van Roy, B.: A Non-Parametric Approach to
Multi-Product Pricing. Operations Research 54, 82–98 (2006)

13. Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On
Profit-Maximizing Envy-Free Pricing. In: Proc. of 16th ACM-SIAM Symposium
on Discrete Algorithms (SODA) (2005)

14. Khot, S.: Ruling out PTAS for Graph Min-Bisection, Densest Subgraph and Bi-
partite Clique. In: Proc. of 45th IEEE Symposium on Foundations of Computer
Science (FOCS) (2004)

15. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

16. Myerson, R.: Optimal Auction Design. Mathematics of Operations Research 6,
58–73 (1981)

17. Rusmevichientong, P.: A Non-Parametric Approach to Multi-Product Pricing: The-
ory and Application. PhD thesis, Stanford University (2003)

Bayesian Combinatorial Auctions

George Christodoulou1, Annamária Kovács2, and Michael Schapira3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
gchristo@mpi-inf.mpg.de

2 Institute for Computer Science, J. W. Goethe University, 60325 Frankfurt/Main,
Germany

panni@cs.uni-frankfurt.de
3 The School of Computer Science and Engineering, The Hebrew University of

Jerusalem, Israel
mikesch@cs.huji.ac.il�

Abstract. We study the following Bayesian setting: m items are sold
to n selfish bidders in m independent second-price auctions. Each bidder
has a private valuation function that expresses complex preferences over
all subsets of items. Bidders only have beliefs about the valuation func-
tions of the other bidders, in the form of probability distributions. The
objective is to allocate the items to the bidders in a way that provides a
good approximation to the optimal social welfare value. We show that if
bidders have submodular valuation functions, then every Bayesian Nash
equilibrium of the resulting game provides a 2-approximation to the op-
timal social welfare. Moreover, we show that in the full-information game
a pure Nash always exists and can be found in time that is polynomial
in both m and n.

1 Introduction

Combinatorial Auctions. In a combinatorial auction m items M = {1, . . . ,m}
are offered for sale to n bidders N = {1, . . . , n}. Each bidder i has a valuation
function (or valuation, in short) vi that assigns a non-negative real number to
every subset of the items. vi expresses i’s preferences over bundles of items. The
value vi(S) can be thought of as specifying i’s maximum willingness to pay for
S. Two standard assumptions are made on each vi: vi(∅) = 0 (normalization),
and vi(S) ≤ vi(T) for every two bundles S ⊆ T (monotonicity). The objective is
to find a partition of the items among the bidders S1, . . . , Sn (where Si ∩Sj = ∅
for all i = j) such that the social welfare Σivi(Si) is maximized.

The interplay between selfishness and computational optimization in combi-
natorial auctions is well-studied. Each of these aspects alone can be handled in a
satisfactory way: The celebrated VCG mechanisms [19,3,10] motivate agents to
truthfully report their private information, and optimize the social-welfare. The
caveat is that this may take exponential time [15,16] (in the natural parameters
of the problem m and n). On the other hand, if we disregard strategic issues, it

� Supported by a grant from the Israel Science Foundation.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 820–832, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bayesian Combinatorial Auctions 821

is possible to obtain good approximations to the optimal social-welfare in poly-
nomial time, for restricted, yet very expressive special cases of combinatorial
auctions (e.g., combinatorial auctions in which bidders have submodular valua-
tions, known as combinatorial auctions with submodular bidders [13,4,5,6,7,20]).
It is the combination of the two challenges that proves to be problematic.

Bayesian Combinatorial Auctions. In this paper we approach the problem
of handling selfishness and computational hardness from an old-new perspective:
Harsanyi [11] introduced Bayesian games as an elegant way of modeling selfish-
ness in partial-information settings. In a Bayesian game, players do not know
the private information of the other players, but only have beliefs, expressed by
probability distributions over the different possible realizations of this private in-
formation. In combinatorial auctions this translates to probability distributions
over the possible valuation functions of the other bidders. We are interested in
maximizing the social-welfare in a way that is aligned with the interests of the
different bidders. We ask the following question: Can we design an auction for
which any Bayesian Nash equilibrium provides a good approximation to the op-
timal social-welfare? This question is, of course, an extension of the well known
“price of anarchy” question [12,17] to Bayesian settings.

Inspired by eBay, we study the simple auction in which the m items are
sold in m independent second-price auctions. This auction induces a game in
which a bidder’s strategy is the m-dimensional vector of bids he submits in the
different single-item auctions, and his payoff is his value for the set of items
he is allocated minus his payments. Unfortunately, in this general setting, some
unnatural problems may arise: Consider the following simple example: m = 1,
n = 2, and the bidders have complete information about each other. Let v1(1) =
1 and v2(1) = 0. Observe that the optimal social welfare is 1 (assign item 1 to
bidder 1). Also observe that if bidder 1 bids 0 and bidder 2 bids 1 then this is
a pure Nash equilibrium with a social-welfare value of 0. Therefore, the price of
anarchy of this full-information game is infinity.

In the above scenario, the second bidder bid for (and eventually got) an object
he was not interested in possessing. However, such a situation is unlikely to occur
in real-life situations, especially if bidders are only partially informed and are
therefore more inclined to avoid risks. To handle this, we adopt the well-known
assumption in decision theory, that the players (bidders) are ex-post individually-
rational. Informally, ex-post individual-rationality means that bidders play it
safe, in the sense that a bidder will never make decisions that might (in some
scenario) result in getting a negative payoff.

Our Results. Our main result is the following: We exhibit an auction (we refer
to as a Bayesian auction) in which essentially all items are sold in a second-price
auction. We prove that any mixed Nash equilibrium for this auction provides a
good approximation to the optimal social welfare.

Theorem: If bidders are ex-post individually-rational, and have submodular
valuation functions, then every (mixed) Bayesian Nash equilibrium of a Bayesian
auction provides a 2-approximation to the optimal social welfare.

822 G. Christodoulou, A. Kovács, and M. Schapira

A bidder i is said to have a submodular valuation function if for all S, T ⊆M
vi(S ∪T)+ vi(S ∩T) ≤ vi(S)+ vi(T). This definition of submodularity is known
(see, e.g., [13]) to be equivalent to the following definition: A valuation function
is submodular if for every two bundles S ⊆ T that do not contain an item j it
holds that

vi(S ∪ {j})− vi(S) ≥ vi(T ∪ {j})− vi(T).

This last inequality has a natural interpretation as it implies that the bidders
have decreasing marginal utilities (the marginal value of the item decreases as the
number of items a bidder has increases). In fact, our theorem holds even if bid-
ders have fractionally-subadditive valuation functions [6] (defined, and termed
XOS, in [14]), a class of valuation functions that strictly contains all submodular
ones [14,13].

We stress that this “Bayesian price of anarchy” result is independent of the
bidders’ beliefs. That is, the 2-approximation ratio is guaranteed for any com-
mon probability distribution (“common prior”) over the valuation functions (we
do require the common prior to be the product of independent probability dis-
tributions). This suggests a middle-ground between the classical economic and
the standard computer science approaches: Works in economics normally assume
that the “input” is drawn from some specific probability distribution, and prove
results that apply to that specific one. In contrast, computer scientists prefer a
worst-case analysis that holds for every possible input. We require the assump-
tion that the input is drawn from some (known) probability distribution but
expect to obtain a good approximation ratio regardless of what it is. We note
that an approach similar to ours was applied to selfish routing problems in [9,8]

Open Question: Can a (mixed) Bayesian Nash equilibrium be computed in
polynomial time?

Simple examples show that a pure Bayesian Nash is not guaranteed to exist in
our Bayesian setting1. An interesting special case of the Bayesian game is the
full-information game in which every bidder’s valuation function is known to all
other bidders. We show, that in such full-information games a pure Nash equilib-
rium always exists. This is true even if the bidders are not ex-post individually
rational. In fact, it is easy to show that even the optimal allocation of items can
be achieved in a pure Nash equilibrium. So, while the price of anarchy in this
game is infinity (without ex-post individual-rationality), the price of stability
(the social welfare value of the best Nash equilibrium [1]) is 1. However, opti-
mizing the social-welfare in combinatorial auctions with submodular bidders in
known to be NP-hard [13]. Therefore, we are left with the following natural ques-
tion: Can we find a pure Nash equilibrium that provides a good approximation
to the optimal social welfare in polynomial time?

1 In fact, even a mixed Nash equilibrium is not guaranteed to exist unless one dis-
cretizes the strategy space (e.g., only allows bids that are multiples of some small
ε > 0).

Bayesian Combinatorial Auctions 823

We give the following answer for submodular bidders:

Theorem: If bidders have submodular valuation functions then a pure Nash
equilibrium of the complete-information game that provides a 2-approximation
to the optimal social welfare exists and can be computed in polynomial time.

We prove the theorem by showing that the approximation algorithm for max-
imizing social welfare in combinatorial auctions with submodular bidders, pro-
posed by Lehmann et al. [13], can be used to compute the bids in a pure Nash
equilibrium. We note that similar questions have been studied by Vetta in [18]2.

For the wider class of fractionally-subadditive valuation functions, we provide
a constructive way of finding a pure Nash that provides a 2-approximation via a
simple and natural myopic procedure. This procedure is inspired by the greedy
approximation-algorithm in [4]. Unfortunately, while this myopic procedure does
compute a pure Nash equilibrium in polynomial time for some interesting (non-
submodular) subcases, this is not true in general. We prove that the myopic
procedure may take exponential time by exhibiting a non-trivial construction of
an instance on which this can occur.

Open Question: Can a pure Nash equilibrium that obtains a 2-approximation
to the optimal social-welfare be computed in polynomial time if bidders have
fractionally-subadditive valuation functions?

The proofs omitted due to space limitations can be found in the full version of
the paper.

2 Bayesian Price of Anarchy

In Subsection 2.1 we present the Bayesian setting we explore in this paper,
which we term “Bayesian combinatorial auctions”. In Subsection 2.2 we exhibit
our main result, which is that the Bayesian price of anarchy of Bayesian combi-
natorial auctions is 2.

2.1 The Setting - Bayesian Combinatorial Auctions

The Auction. m items are sold to n bidders in m independent second-price
auctions (with some tie-breaking rule). A bidder’s strategy is a bid-vector bi ∈
Rm≥0 (bi(j) represents i’s bid for item j). 3 A (pure) strategy profile of all players
is an n-tuple b = (b1, . . . , bn). We will use the notation b = (bi, b−i), to denote

2 Vetta considers a general setting in which decisions are made by non-cooperative
agents, and the utility functions are submodular. He proves that in this setting the
price of anarchy is at most 2. The framework discussed there is such that the players’
pure strategies are subsets of a ground set (e.g., the items). This framework is not
applicable to our auction, where the bids play a crucial role.

3 So as to have a finite (discrete) model, we assume that all acceptable bids are multi-
ples of an arbitrary ε. Furthermore, they cannot exceed some maximum value Bmax.

824 G. Christodoulou, A. Kovács, and M. Schapira

a strategy profile in which bidder i bids bi and other bidders bid as in b−i =
(b1, . . . , bi−1, bi+1, . . . , bn).

Given a strategy profile b, the items are allocated according to the second
price rule, i.e., every object is sold to the highest bidder at a price equal to the
second highest bid. For technical reasons, to be explained later, in each such
second-price auction with negligible probability the item is randomly allocated
to one of the bidders (who submitted a bid higher than zero). In this case, that
bidder is charged his bid for the item.

For some fixed b we denote by Xi(b) the set of items obtained by player i in
the auction4. For a set S ⊆M, let the sum of the (highest) bids be denoted by

Bids(S, b) =
∑

j∈S
max
k

bk(j),

Bids−i(S, b−i) =
∑

j∈S
max
k �=i

bk(j),

and
Bidsi(S, bi) =

∑

j∈S
bi(j).

The utility (payoff) of player i is then given by

ui(b) = vi(Xi(b))−Bids−i(Xi(b), b−i).

We make two assumptions about the bidders: ex-post individual-rationality,
and that the vis are fractionally-subadditive. A valuation is fractionally-subaddi-
tive if it is the pointwise maximum of a set of additive valuations: A valuation ai
is additive if for every S ⊆M ai(S) = Σj∈Sai({j}). A valuation vi is fractionally-
subadditive if there are additive valuations A = {a1, . . . , al} such that for every
S ⊆ M vi(S) = maxa∈A a(S). (We will call ak ∈ A a maximizing additive
valuation for the set S if vi(S) = ak(S).)

The class of fractionally-subadditive valuations is known to be strictly con-
tained in the class of subadditive valuations and to strictly contain the class of
submodular valuations [14,13].

Bayesian Nash Equilibria. For all i, let Vi denote the finite set of possible
valuations of player i. The set of possible valuation profiles of the players is
then V = V1 × . . . × Vn. There is a known probability distribution D over the
valuations V (a common prior). D can be regarded as some market statistics
that is known to all bidders (and to the auctioneer), and specifies their beliefs.
We assume that D = D1 × . . . × Dn is the cartesian product of independent
probability distributions Di: any valuation profile v = (v1, . . . , vn) occurs with
probability D(v) = Πn

i=1Di(vi), where Di(vi) is the probability that bidder i

4 Observe that Xi(b) is actually a random variable, but since the event that not all
items are sold in second-price auctions only occurs with very low probability we shall
often refer to Xi(b) as indicating a specific bundle of items.

Bayesian Combinatorial Auctions 825

has the valuation function vi. Let V−i = ×k �=iVk, D−i = ×k �=iDk, and v−i =
(v1, . . . , vi−1, vi+1, . . . , vn).

A bidding-function Bi for player i is a function that assigns a bid-vector
bi = Bi(vi) to every valuation function vi ∈ Vi. The reader may find it helpful
to think of Bi as a suggestion made to player i by the auctioneer as to which
bid to submit. An n-tuple of bidding-functions B = (B1, . . . , Bn) is a Bayesian
Nash equilibrium if for every i ∈ [n], and for every valuation function vi, the bid
Bi(vi) maximizes i’s expected utility given that his valuation function is vi, and
that the bid of every other bidder j is Bj(vj), where vj is drawn from Dj. That
is, a Bayesian Nash maximizes i’s expected payoff for any valuation function he
may have, given his beliefs about the other bidders.

Bayesian Price of Anarchy. For a fixed valuation profile of the bidders
v = (v1, . . . , vn), the optimal social-welfare is OPT (v) = maxS1,...,SnΣivi(Si),
where the maximum is taken over all partitions of M into disjoint bundles
S1, . . . , Sn. For given D, the (expected) optimal social-welfare SW (OPT) is the
expectation E[OPT (v)], where v is drawn from D. That is,

SW (OPT) =
∑

v∈V
D(v)OPT (v)

Given a profile v, every pure strategy profile b induces a social-welfare value
SW (b) =

∑
i∈[n] vi(Xi(b)). For an n-tuple of bidding-functions B=(B1, . . . , Bn),

we denote by SW (B) the expected social welfare E[SW (B1(v1), . . . , Bn(vn))],
where the v = (v1, . . . , vn) is drawn from D :

SW (B) =
∑

v∈V
D(v)SW (B(v)).

We are interested in Bayesian Nash equilibria B for which the ratio SW (OPT)
SW (B)

is small. The Bayesian price of anarchy of a game is

PoA = max
D, B BayesianNash

SW (OPT)
SW (B)

,

that is the maximum of the expression SW (OPT)
SW (B) , taken over all probability

distributions D, and all Bayesian Nash equilibria B (for these probability dis-
tributions). Intuitively, a Bayesian price of anarchy of α means that no matter
what the bidders’ beliefs are, every Bayesian Nash equilibrium provides an α-
approximation to the optimal social-welfare.

Supporting Bids. Due to ex-post individual-rationality, a bidder will never
submit a bid that might result in a negative payoff. Recall that the rules of the
auction dictate that it is possible that a bidder get any subset of the items for
which he submitted his non-zero bids and be charged the sum of these bids.
Hence, a bidder’s bid must uphold the following property:

Definition 1. A bid vector bi is said to be a supporting bid given a valuation
vi, if for all S ⊆M vi(S) ≥ Σj∈Sbi(j).

826 G. Christodoulou, A. Kovács, and M. Schapira

Recall that the event that not all items are sold in second-price auctions only
occurs with negligible probability. Hence, for simplicity, we shall disregard this
event and prove our theorem for the case that all items are sold in second-price
auctions.

2.2 Bayesian Price of Anarchy of 2

This subsection exhibits our main result. For ease of exposition we prove the the-
orem regarding the Bayesian price of anarchy for pure Bayesian Nash equilibria.
The (more complicated) proof for mixed Nash is omitted due to space limitations
and appears in the full version of the paper. The proof of the theorem exploits
the fractional subadditivity of the valuations via the following lemma:

Lemma 1. Let S be a set of items, and ai be a maximizing additive valuation
of player i for this set, restricted so that ai = 0 on M\S. If i bids according to
ai, while all the others bid according to any pure profile b−i, then

ui(ai, b−i) ≥ vi(S)−Bids−i(S, b−i).

Proof. Let Xi := Xi(ai, b−i) be the set of items that player i is going to get.
Note that if i wins any item j ∈ S then the maximum bid on this j was 0. Thus
we can assume w.l.o.g. that Xi ⊆ S. Moreover, ai(j) − Bids−i({j}, b−i) ≤ 0
holds for every non-obtained item j ∈ S −Xi. Therefore, we have

ui(a, b−i) = vi(Xi)−Bids−i(Xi, b−i)

≥
∑

j∈Xi

ai(j)−Bids−i(Xi, b−i)

≥
∑

j∈S
ai(j)−Bids−i(S, b−i)

= vi(S)−Bids−i(S, b−i).

Theorem 1. Let D be a distribution over fractionally-subadditive valuations of
the bidders. If B = (B1, . . . , Bn) is a Bayesian Nash, such that each Bi maps
every valuation function vi to a supporting bid (given vi) then SW (OPT)

SW (B) ≤ 2.

Proof. Let v = (v1, . . . , vn) be a fixed valuation profile. We denote by Ov =
(Ov1 , . . . , O

v
n) the optimum allocation with respect to profile v.

Now for every player i, let ai denote the maximizing additive valuation for
the set Ovi , (in particular, ai(j) = 0 if j ∈ Ovi). For all i, we consider ai as an
alternative strategy to Bi(vi).

Let us fix a bidder i. Let w−i be an arbitrary valuation profile of all bidders
except for i. We introduce the short notation

X
w−i

i
def= Xi(Bi(vi), B−i(w−i)).

Bayesian Combinatorial Auctions 827

Furthermore, for any S ⊆M we will use

Bids
w−i

−i (S) def= Bids−i(S,B−i(w−i)),

resp.
Bidsw(S) def= Bids(S,B(w)),

where w = (wi, w−i) is a valuation profile.
Since B is a Bayesian Nash, the strategy Bi(vi) provides higher expected

utility to player i than the strategy ai :
∑

w−i∈V−i

D(w−i)ui(Bi(vi), B−i(w−i)) ≥
∑

w−i∈V−i

D(w−i)ui(ai, B−i(w−i)).

The utility values on the left-hand-side are

ui(Bi(vi), B−i(w−i)) = vi(X
w−i

i)−Bids
w−i

−i (Xw−i

i) ≤ vi(X
w−i

i).

On the right-hand-side, applying Lemma 1 yields

ui(ai, B−i(w−i)) ≥ vi(Ovi)−Bids
w−i

−i (Ovi).

By merging the inequalities above, we get
∑

w−i∈V−i

D(w−i)vi(X
w−i

i) ≥
∑

w−i∈V−i

D(w−i)[vi(Ovi)−Bids
w−i

−i (Ovi)]

= vi(Ovi)
∑

w−i∈V−i

D(w−i)−
∑

w−i∈V−i

D(w−i)Bids
w−i

−i (Ovi)

= vi(Ovi) · 1−
∑

w∈V
D(w)Bids

w−i

−i (Ovi)

≥ vi(Ovi)−
∑

w∈V
D(w)Bidsw(Ovi).

Here the expected highest bids
∑
w−i∈V−i

D(w−i)Bids
w−i

−i (Ovi), and
∑
w∈V D(w)Bids

w−i

−i (Ovi) are equal, because D is independent for all bidders.
Finally, Bids

w−i

−i (Ovi) ≤ Bidsw(Ovi) obviously holds, since in the latter case we
consider maximum bids over a larger set of players. We obtained

vi(Ovi) ≤
∑

w−i∈V−i

D(w−i)vi(X
w−i

i) +
∑

w∈V
D(w)Bidsw(Ovi).

We sum over all i, and then take the expectation over all valuations v =
(v1, . . . , vn) on both sides:

∑

v∈V
D(v)

∑

i∈[n]

vi(Ovi) ≤
∑

v∈V
D(v)

∑

i∈[n]

∑

w−i∈V−i

D(w−i)vi(X
w−i

i)

+
∑

v∈V
D(v)

∑

i∈[n]

∑

w∈V
D(w)Bidsw(Ovi).

828 G. Christodoulou, A. Kovács, and M. Schapira

Note that
∑
v∈V D(v)

∑
i∈[n] vi(O

v
i) = SW (OPT). Furthermore, we claim

that both summands on the right-hand-side are at most SW (B), so that
SW (OPT) ≤ 2SW (B), which will conclude the proof. The first summand is

∑

i∈[n]

∑

vi∈Vi

D(vi)
∑

v−i∈V−i

D(v−i)
∑

w−i∈V−i

D(w−i)vi(X
w−i

i)

=
∑

i∈[n]

∑

vi∈Vi

D(vi)
∑

w−i∈V−i

D(w−i)vi(X
w−i

i)
∑

v−i∈V−i

D(v−i)

=
∑

i∈[n]

∑

vi∈Vi

∑

w−i∈V−i

D(vi)D(w−i)vi(X
w−i

i) · 1

=
∑

i∈[n]

∑

v∈V
D(v)vi(X

v−i

i)

=
∑

v∈V
D(v)

∑

i∈[n]

vi(Xi(B(v))) = SW (B).

Finally, the second summand is

∑

v∈V
D(v)

∑

w∈V
D(w)

∑

i∈[n]

Bidsw(Ovi) =
∑

v∈V
D(v)

∑

w∈V
D(w)Bidsw(M)

=
∑

w∈V
D(w)Bidsw(M)

∑

v∈V
D(v)

=
∑

w∈V
D(w)Bidsw(M) · 1

=
∑

w∈V
D(w)

∑

i∈[n]

Bidsi(Xi(B(w)), Bi(wi))

≤
∑

w∈V
D(w)

∑

i∈[n]

wi(Xi(B(w))) = SW (B).

The last inequality holds since for all i, the Bi(wi) contains supporting bids for
any set of items including the obtained set Xi(B(w)).

A simple example shows that even in the full-information setting, this Bayesian
price of anarchy result is tight.

3 Computing Pure Nash Equilibria

In this section we consider the following full-information game: The m items are
sold to n bidders with fractionally-subadditive valuation functions in m indepen-
dent second-price auctions. The players’ valuation functions are assumed to be
common knowledge.

Bayesian Combinatorial Auctions 829

In Subsection 3.1, we show that a pure Nash that provides a good approxima-
tion to the social welfare always exists in such games and provide a constructive
way of finding one. In fact, we also prove that the price of stability [1] is 1, i.e.
the optimum can always be achieved in a Nash equilibrium.

In Subsection 3.2 we show that if bidders have submodular valuation functions
then such a pure Nash can be reached in polynomial time.

3.1 Fractionally-Subadditive Valuation Functions

Despite the fact that (as shown in the Introduction) some Nash equilibria may
fail to provide good approximation to the social-welfare, we present a construc-
tive way for finding a pure Nash that yields a 2-approximation. We introduce
a natural procedure we call the Potential Procedure which always reaches
such an equilibrium. The Potential Procedure is a simple myopic procedure
for fractionally-subadditive bidders5.

For every i let Ai = {ai1, ..., aili} be a set of additive valuations such that
for every S ⊆ M vi(S) = maxa∈Ai a(S). Recall that since vi is fractionally
subadditive such Ai must exist. Informally, the Potential Procedure simply
starts with some arbitrary supporting bids (corresponding to some maximizing
additive valuations) and let players best-reply, one by one, to the bids of other
players by switching to new supporting bids.

The Procedure

1. Initialize b∗i (j) ← 0, Si ← ∅, rj ← 0, for i = 1, . . . , n and j = 1, . . . ,m.
2. While there is a bidder i such that Si = arg maxS⊆M (vi(S)−Σj∈(S\Si)rj):

(a) Let T = argmaxS⊆M (vi(S) − Σj∈(S\Si)rj). Let a ∈ Ai be such that
vi(T) = a(T).

(b) Set b∗i (j)← 0 and rj ← 0 for all j ∈ Si.
(c) Set b∗i (j)← a(j) for all j ∈ T . Set rj ← a(j) for all j ∈ T .
(d) Set Si ← T .
(e) For all k = i set Sk ← Sk\Si, and set b∗k(j)← 0 for all j ∈ Si.

3. Output b∗ = (b∗1, . . . , b
∗
n).

Observe that in the definition we do not require a(j) ≥ rj in lines (a)–(c)
(i.e., that rj increase). However, this follows from the fact that T maximizes
vi(S) − Σj∈(S\Si)rj . We use a potential-function argument and the fractional-
subadditivity of the bidders to show that the Potential Procedure eventu-
ally converges to a “good” pure Nash.

Theorem 2. If the valuation functions are fractionally subadditive, then the
Potential Procedure converges to a pure Nash equilibrium that provides a
2-approximation to the optimal social-welfare.
5 This procedure requires bidder i to be able to determine which bundle he would

prefer most, given a vector of per-item payments r = (r1, ..., rm). That is, to declare a
bundle S for which vi(S)−Σj∈Srj is maximized. This type of query is called a demand
query and is very common in combinatorial auctions literature (see, e.g., [2,4,6,7]).

830 G. Christodoulou, A. Kovács, and M. Schapira

We note that the proof shows that even the optimal social-welfare can be ob-
tained in a pure Nash equilibrium and so the price of stability is 1. So, we have
a natural procedure, that is essentially a best response sequence of the players,
that leads to a pure Nash equilibrium. But, how long will it take the Potential

Procedure to converge? A non-trivial construction shows that unfortunately
the worst case running time is exponential in n and m.

Theorem 3. There is an instance with 2 bidders, each with a fractionally-
subadditive valuation function, on which the Potential Procedure converges
after Ω(2m) steps.

Theorem 3 leaves us with two interesting open questions: First, will the Po-

tential Procedure converge in polynomial time if the valuation functions
are submodular? Second, does the Potential Procedure always run in time
that is polynomial in the size of the sets of additive valuations that underlie
every fractionally-subadditive valuation? An affirmative answer to this question
would imply that the Potential Procedure runs in polynomial time if the
bidders have fractionally-subadditive valuations encoded in a bidding language
(see [14,13,4,5]). We note that in the instance in the proof of Theorem 3 the size
of the sets of additive valuations was exponential n and m.

3.2 Submodular Valuation Functions

In this subsection, we focus on submodular valuation functions. We show that
one can find, in polynomial time, a pure Nash equilibrium that also satisfies
the premises of Theorem 1. The procedure we present exploits the algorithm
due to Lehmann et al. [13]. This procedure, which we will call the Marginal-

Value Procedure, therefore provides a 2-approximation to the optimal social
welfare.

The Procedure

1. Fix an arbitrary order on the items. W.l.o.g. let this order be 1, . . . ,m.
2. Initialize Si ← ∅, and rj ← 0, for i = 1, . . . , n, and j = 1, . . . ,m.
3. For each item j = 1, . . . ,m:

(a) Let i = arg maxt∈N vt(St ∪ {j})− vt(St). Set Si ← Si ∪ {j}.
(b) Set rj ← maxt∈N vt(St ∪ {j})− vt(St).

4. For every bidder i set b∗i (j)← rj for all j ∈ Si and b∗i (j)← 0 for all j /∈ Si.
5. Output b∗ = (b∗1, ..., b

∗
n).

Observe, that the resulting n-tuple of bid-vectors b∗ is such that for each
item, only one bidder offers a non-zero bid for that item. This is due to the fact
that we are dealing with a complete-information setting (intuitively, if a bid-
der does not win an item he might as well not bid on it). Also notice that
the Marginal-Value Procedure only requires m rounds and so ends in
polynomial time.

Bayesian Combinatorial Auctions 831

Theorem 4. If the valuation functions are submodular then a pure Nash equi-
librium that provides a 2-approximation to the optimal social-welfare can be com-
puted in polynomial time.

Acknowledgements

We thank Noam Nisan for enriching conversations that lead to the writing of
this paper.

References

1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. In: FOCS
2004, pp. 295–304 (2004)

2. Blumrosen, L., Nisan, N.: On the computational power of iterative auctions I:
demand queries. Discussion paper no. 381, The Center for the Study of Rationality,
The Hebrew University. An extended abstract in EC 2005 contained preliminary
results (2005)

3. Clarke, E.H.: Multipart pricing of public goods. Public Choice, 17–33 (1971)
4. Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combinatorial

auctionss with complement-free bidders. In: The 37th ACM symposium on theory
of computing (STOC) (2005)

5. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combina-
torial auctions with submodular bidders. In: SODA 2006 (2006)

6. Feige, U.: On maximizing welfare where the utility functions are subadditive. In:
STOC 2006 (2006)

7. Feige, U., Vondrak, J.: The allocation problem with submodular utility functions
(manuscript, 2006)

8. Gairing, M., Monien, B., Tiemann, K.: Selfish routing with incomplete informa-
tion. In: Proceedings of the 17th Annual ACM Symposium on Parallel Algorithms
(SPAA), pp. 203–212 (2005)

9. Garg, D., Narahari, Y.: Price of anarchy of network routing games with incomplete
information. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1066–
1075. Springer, Heidelberg (2005)

10. Groves, T.: Incentives in teams. Econometrica, 617–631 (1973)
11. Harsanyi, J.C.: Games with incomplete information played by ’bayesian’ players,

parts i ii and iii. Management science 14 (1967-1968)
12. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Proceedings of the

16th Annual Symposium on Theoretical Aspects of Computer Science, pp. 404–413
(1999)

13. Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. In: ACM conference on electronic commerce (2001)

14. Nisan, N.: Bidding and allocation in combinatorial auctions. In: ACM Conference
on Electronic Commerce (2000)

15. Nisan, N., Ronen, A.: Algorithmic mechanism design. In: STOC (1999)
16. Nisan, N., Ronen, A.: Computationally feasible vcg-based mechanisms. In: ACM

Conference on Electronic Commerce (2000)
17. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2),

236–259 (2002)

832 G. Christodoulou, A. Kovács, and M. Schapira

18. Vetta, A.: Nash equilibria in competitive societies, with applications to facility
location, traffic routing and auctions. In: FOCS. IEEE Computer Society, Los
Alamitos (2002)

19. Vickrey, W.: Counterspeculation, auctions and competitive sealed tenders. Journal
of Finance, 8–37 (1961)

20. Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: STOC 2008 (2008)

Truthful Unification Framework for

Packing Integer Programs with Choices�

Yossi Azar1 and Iftah Gamzu2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA and
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

azar@post.tau.ac.il
2 School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel

iftgam@post.tau.ac.il

Abstract. One of the most interesting research directions within the
field of algorithmic mechanism design revolves the study of hard combi-
natorial optimization problems. In this setting, many common algorith-
mic techniques cannot be utilized as they violate certain monotonicity
properties that are imperative for truthfulness. Consequently, it seems of
the essence to develop alternative methods, which can underlie truthful
mechanisms. In particular, since many problems can be formulated as
instances of integer linear programs, it seems that devising techniques
that apply to integer linear programs is significantly important.

In this paper, we focus our attention on packing integer programs
with choices. Our main findings can be briefly summarized as follows:

1. We develop a framework, which can be used as a building block
to approximately solve packing integer programs with choices. The
framework is built upon a novel unification technique that approxi-
mately solves an instance of a packing integer program with choices,
given algorithms that approximately solve sub-instances of it. The
framework is deterministic and monotone, and hence can underlie
truthful deterministic mechanisms.

2. We demonstrate the applicability of the framework by applying it to
several NP-hard problems. In particular, we focus on the bandwidth
allocation problem in tree networks, and the multiple knapsack prob-
lem on bipartite graphs. Notably, using the mentioned framework,
we attain the first non-trivial approximation guarantees for these
problems in a game theoretic setting.

1 Introduction

The field of algorithmic mechanism design, which was introduced by Nisan
and Ronen [25], studies the design of protocols or mechanisms for algorithmic
� Proofs and details omitted from this extended abstract appear in the full version

of this paper. The first author was supported in part by the Israel Science Founda-
tion and by the German-Israeli Foundation.The second author was supported by the
Binational Science Foundation, by the Israel Science Foundation, and by the Euro-
pean Commission under the Integrated Project QAP funded by the IST directorate
as Contract Number 015848.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 833–844, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

834 Y. Azar and I. Gamzu

problems in scenarios where the input is presented by strategic agents. A strate-
gic agent might be dishonest about its part of the input in order to manipulate
the protocol in a way that will maximize its own gain. A primary interest of
algorithmic mechanism design is in the development of efficiently computable
truthful protocols, which are robust against manipulation by agents, i.e., every
agent is rationally motivated to truthfully report its input.

One of the most intriguing research directions within the field of algorith-
mic mechanism design revolves the study of hard combinatorial optimization
problems. These problems are hard in a sense that any computationally-efficient
algorithm designed to solve them can only attain sub-optimal guarantees, that
is, they only admit approximation algorithms. The motivation for this research
realm originates in two inherent difficulties that arise in the alluded setting. The
first is that the most fundamental technique of mechanism design, namely the
Vickrey-Clarke-Groves (VCG) mechanism [32,14,19], cannot be utilized since it
must built upon an algorithm that obtains an exact optimal solution [21,24]. The
other is that many common algorithmic methods cannot be employed as they
violate certain monotonicity properties that are imperative for truthfulness.

In light of this state of affairs, it seems of the essence to develop modifications
and alternatives to generic algorithmic techniques, so they could underlie truthful
mechanisms. In particular, since many optimization problems can be formulated
as instances of integer linear programs, it seems that devising methods that apply
to integer linear programs is significantly important. This perception reinforces
by the observation that one of the most efficient ways to approximately solve
such programs, i.e., linear programming-based randomized rounding [29,28,30],
generally fails to be monotone (see, e.g., the discussion in [2]).

1.1 Our Results

The main contribution of this paper is in presenting a framework that can be
used as a building block to approximately solve packing integer programs, and
packing integer programs with choices. The framework is built upon a unification
technique, which approximately solves an instance of a packing integer program
with choices, given algorithms that approximately solve sub-instances of it. The
framework is deterministic and monotone, and thus can underlie truthful deter-
ministic mechanisms. In order to demonstrate the applicability and strength of
this framework, we apply it to the bandwidth allocation problem in tree net-
works, and the multiple knapsack problem on bipartite graphs.

Truthful deterministic unification framework. We focus on truthfully ap-
proximating maximization problems, which can be posed as packing integer pro-
grams, and packing integer programs with choices of the forms exhibited in Fig-
ure 1. Essentially, we concentrate on the class of packing integer programs with
choices since it incorporates the class of packing integer programs as a special case.
In a packing integer program with choices, there are n variables that are parti-
tioned into � pairwise-disjoint sets C1, C2, . . . , C�. The objective is to maximize a
linear value function over these variables, subject to a set of packing constraints,
and a set of choices constraints, which prohibit the selection of more than one

Truthful Unification Framework for Packing Integer Programs with Choices 835

max v · x

s.t. A · x ≤ b

x ∈ {0, 1}n

max v · (C · x)

s.t. A · x ≤ b

C · x ≤ 1�

x ∈ {0, 1}n

Fig. 1. Packing integer program (left) and packing integer program with choices (right).
Note that A ∈ Rm×n

+ , b ∈ Rm
+ , and v ∈ Rn

+ (v ∈ R�
+) in the packing (packing with

choices) case. Also remark that C ∈ {0, 1}�×n is a choices matrix in which the i-th row
corresponds to the variables set Ci, that is, the i-th row has ones in the entries that
coincide with the variables in Ci and zeros elsewhere. Notice that the class of packing
integer programs is obtained as a special case of packing integer programs with choices
when C is the n × n identity matrix.

variable from each set. From a mechanism design point of view, there are � strate-
gic single parameter agents, each of which coincides with a valuation and may
be untruthful about it. The goal is to maximize the social welfare. A natural ap-
proach for approximating a packing integer program with choices is to partition
it to sub-instances, solve each of them, and output the sub-solution that has a
maximum value. Unfortunately, this approach fails to be monotone, unless the
underlying sub-algorithms are bitonic [23]. In order to avoid this shortcoming, we
devise a deterministic unification technique, easing the requirements from the sub-
algorithms, and still attaining monotonicity and provable approximation guaran-
tee. This result appears in Section 3.

Bandwidth allocation in tree networks. An instance of the bandwidth allo-
cation problem in tree networks consists of an undirected tree T with m edges,
and a set R of � connection requests such that every request r ∈ R is charac-
terized by a quadruple (sr, tr, dr, vr), where sr and tr are the respective source
and target vertices of the request, dr ∈ (0, 1] is the demand associated with the
request, and vr is the positive value gained by allocating the request. The goal
is to select a maximum value subset of requests S ⊆ R so that the aggregate de-
mands of the requests in S, which cross any edge, does not exceed the bandwidth
capacity, which is unit. Letting Pr denote the unique simple path between sr and
tr in T , this problem can be posed by the following packing integer program:

maximize
∑

r∈R
vrxr

subject to
∑

r∈R|e∈Pr

drxr ≤ 1 ∀ e ∈ E

xr ∈ {0, 1} ∀ r ∈ R

In the game theoretic version of this problem there are � strategic agents, each
of which controls a request and may be dishonest about its value. We study this
variant using the aforesaid framework, and devise a monotone deterministic algo-
rithm, which achieves an approximation ratio of O(ln lnm). This result implies

836 Y. Azar and I. Gamzu

a corresponding truthful mechanism, and is the first non-trivial deterministic
result for this problem. The specifics of this finding are presented in Section 4.

Multiple knapsack on bipartite graphs. In the multiple knapsack problem
on bipartite graphs, we are given a set M of m unit-capacity knapsacks, and a
set I of � items such that every item i ∈ I is characterized by a pair (si, vi),
where si ∈ (0, 1] is the size of the item, and vi is the positive value gained by
placing the item in one of the knapsacks. An additional ingredient of the input is
an items-knapsacks bipartite graph, which represents the assignment restrictions
of the items to the knapsacks. Particularly, the bipartite graph exhibits a set of
admissible knapsacks Mi ⊆M , for every i ∈ I. The goal is to select a maximum
value subset of items S ⊆ I, along with an admissible knapsack for each selected
item, so that all the items in S can be simultaneously placed in their designated
knapsacks, while preserving the capacities of the knapsacks. This problem can
be modelled by the following packing integer program with choices:

maximize
∑

i∈I
vi ·

(∑

j∈Mi

xij

)

subject to
∑

i∈I|j∈Mi

sixij ≤ 1 ∀ j ∈ [m]

∑

j∈Mi

xij ≤ 1 ∀ i ∈ I

xij ∈ {0, 1} ∀ i ∈ I, j ∈Mi

In the game theoretic version of this problem there are � strategic agents, each
of which owns an item, and may be untruthful about its value. We consider this
variant using the mentioned framework, and develop a monotone deterministic
11-approximation algorithm, which implies a corresponding truthful mechanism.
This result is the first deterministic result for this problem, which does not
assume constant number of knapsacks. Further details are provided in Section 5.

1.2 Related Work

It seems fundamentally important to develop modifications and alternatives to
common techniques, which cannot be utilized in the context of algorithmic mech-
anism design. However, there are only a handful of results addressing this goal.
Mu’alem and Nisan [23] seem to have been the first to pay attention to the
development of such general tools. Primarily, they exhibited necessary condi-
tions for the truthful utilization of two basic building blocks, which are the max
and if-then-else operators. Briest, Krysta and Vöcking [9] continued this line
of research. They devised a general approach to transform a pseudopolynomial
algorithm into a monotone FPTAS, and demonstrated that primal-dual greedy
algorithms may be the key to truthfully solve some integer linear programs. Later
on, Lavi and Swamy [20] developed a general technique to convert an approxima-
tion algorithm in packing domains to a randomized approximation mechanism
that is truthful in expectation. Finally, Babaioff, Lavi and Pavlov [5] presented
a method that turns any given algorithm to a dominant-strategy mechanism

Truthful Unification Framework for Packing Integer Programs with Choices 837

in single parameter domains. However, their method degrades the performance
guarantee of the resulting mechanism by a factor of O(log ρ), where ρ denotes
the ratio between the largest and smallest valuations.

Focusing on the two problems under consideration, the first observation one
can make is that they are NP-hard as they generalize the knapsack problem. Ac-
cordingly, most of past research focused on developing approximation algorithms
for them. The best known result for the bandwidth allocation problem in tree net-
works is by Lewin-Eytan, Naor and Orda [22], who presented a 5-approximation
algorithm, based on the local ratio technique [7]. Recent years have also seen
ever-growing line of work addressing variants of this problem using various al-
gorithmic tools such as primal-dual approach [18], linear programming-based
methods [27,13,6], and mixtures of several techniques [10,11,8]. Unfortunately,
it is easy to demonstrate that most of these positive results are not monotone.
Consequently, attaining a non-trivial deterministic approximation for the band-
width allocation problem in an algorithmic mechanism design setting is still an
open question, even when the underlying network is a line. On a different note,
it is relevant to point out that Briest, Krysta and Vöcking [9] studied the mech-
anism design variant of the unsplittable flow problem, which is a generalization
of the bandwidth allocation problem. Hence, their upper bound result follows to
our case. Yet, when the demands of the requests are arbitrary, their algorithm
achieves a performance guarantee that can be as high as a polynomial in m.
Turning to the multiple knapsack problem on bipartite graphs, it is known to be
approximable within a factor that is slightly better than e/(e− 1) by the work
of Feige and Vondrák [16]. Similarly to the bandwidth allocation problem, past
years have also seen respectable amount of research addressing variants of the
multiple knapsack problem [15,12,26,17]. From an algorithmic mechanism design
point of view, the only provable result is a monotone PTAS for a generalization
of the problem, referred to as the generalized assignment problem. However, this
result holds only when the number of knapsacks is fixed.

2 Preliminaries

In this section, we introduce the notation and terminology to be used throughout
the paper, and describe a characterization that interlinks monotone algorithms
with truthful mechanisms. We begin with the notation:

– Let Π denote a problem that can be posed as a packing integer program with
choices. Essentially, Π can be considered to be a collection of (infinite) input
instances, each of which represented by a quadruple (v,A,C, b), consisting
of a concrete valuations vector v, constraints matrix A, choices matrix C,
and constraints vector b.

– Let Π|a be a collection of input instances achieved by the restriction of the
instances in Π according to an attribute a of the columns of the constraints
matrix A. Namely, every instance (v,A,C, b) ∈ Π gives rise to a sub-instance
(v|a, A|a, C|a, b) ∈ Π|a such that A|a consists of the subset of the columns of

838 Y. Azar and I. Gamzu

A that satisfy the attribute a, C|a consists of the matching subset of columns
of C, the set of variables x|a comprises of the suitable subset of variables of x,
and v|a is the implied subset of entries of v, that is, the set of entries that have
at least one allied variable in x|a. For instance, in the bandwidth allocation
problem in tree networks, every column of A represents a request. Thus, a
non-trivial attribute may state “having a distance of 1”. This attribute gives
rise to sub-instances that only consists of requests that have a distance of 1
between their terminals.

– Given an input instance I = (v,A,C, b), let PIP(I) denote the corresponding
integer program instance, and let LP(I) be the relaxation of PIP(I) obtained
by replacing the integrality constraint x ∈ {0, 1}n with x ∈ [0, 1]n. Moreover,
let OPTint

I and OPTfrac
I be the values of the optimal solutions of PIP(I) and

LP(I), respectively. Finally, let dΠ denote the integrality gap of problem Π ,
formally defined as dΠ = supI∈Π OPTfrac

I /OPTint
I . Note that for notational

simplicity we will mark the integrality gap of Π|a by da.

We now present the notion of monotonicity, and then turn to describe a char-
acterization that reduces the goal of designing truthful mechanisms to that of
designing monotone algorithms. Remark that the illustrated terms are refined
to the specific setting considered. Thus, the keen reader is encouraged to refer
to [9], and the references therein for a brief introduction to the field of algo-
rithmic mechanism design, and more comprehensive overview of the underlying
concepts.

Definition 1. An algorithm M is said to be monotone w.r.t. Π if it satisfies
the following property, for every (v,A,C, b) ∈ Π : if the solution x generated by
M w.r.t. PIP(v,A,C, b) satisfies that agent i is chosen (i.e., xj = 1 for some
j ∈ Ci) then the solution x̃ generated by M w.r.t. PIP(ṽ, A, C, b), where ṽ is a
valuations vector in which ṽi ≥ vi and the other values are fixed, also satisfies
that agent i is chosen (i.e., x̃j′ = 1 for some j′ ∈ Ci, which might satisfy j′ = j).

Theorem 2. ([23]) If algorithm M is monotone w.r.t. Π then there is a match-
ing truthful mechanism for Π, which can be efficiently computed using M.

3 A Truthful Unification Framework

In this section, we present a deterministic unification framework that can be
used to truthfully approximate maximization problems, which can be represented
by the packing integer program with choices described in Figure 1. As priorly
indicated, one widely accepted approach for approximating a packing integer
program with choices is to solve sub-instances of it, and then to pick the best
sub-solution. Unfortunately, this algorithmic method fails to be monotone, unless
the underlying algorithms are monotone and bitonic1. The main problem in
1 Informally, an algorithm is bitonic if its outcome value as a function of the value of

any single agent i has the pattern that it does not increase as long as agent i is not
chosen, and does not decrease as long as agent i is chosen. A formal definition can
be found in [23], and in [9].

Truthful Unification Framework for Packing Integer Programs with Choices 839

picking the best sub-solution resides in the “selection-outcome linkage”, that
is, the selection of which sub-solution to output coincides with the outcomes of
the underlying algorithms. Consequently, if one of the underlying algorithms is
not bitonic, e.g., if its outcome value decreases when the value of a chosen agent
increases, there may be settings in which an increase in the value of this agent will
result in the selection of a different sub-solution in which this agent is not chosen.
In the following, we design a method that breaks this link. Prior to describing
the finer details of our approach, we introduce a definition that formalizes what
is a monotone algorithm that generates sub-solutions for sub-instances.

Definition 3. M is monotone a-restrictive c-approximation algorithm w.r.t. Π
if it is monotone w.r.t. Π , and its solution x to PIP(I) satisfies the following
properties, for any I = (v,A,C, b) ∈ Π :

– x is restricted w.r.t. the attribute a, i.e., xj = 1 only if j ∈ Ci and vi ∈ v|a.
– the value of the solution is at least OPTint

Ia /c, where Ia = (v|a, A|a, C|a, b).

We are now ready to establish the main result of this section. Let a1, a2, . . . , ak
be a collection of pairwise-disjoint choices-consistent attributes w.r.t. Π . Specifi-
cally, these attributes partition every instance (v,A,C, b) ∈ Π to k sub-instances
(v|a1 , A|a1 , C|a1 , b), . . . , (v|ak

, A|ak
, C|ak

, b) in a way that maintains the following
two properties. The first property is pairwise-disjointness, which means that ev-
ery column of A satisfies exactly one attribute. This property guarantees that
every column of A, every column of C, and every variable of x appears in exactly
one restricted sub-instance. The second property is choices-consistent, which
means that all the variables allied to some entry of v are picked by the same
attribute. This property assures that every entry of v appears in exactly one
restricted sub-instance. Notice that the last attribute is trivially maintained for
(pure) packing integer programs by any pairwise-disjoint collection of attributes.

Algorithm 1. MAX-Select(I)
Input: An instance I = (v, A, C, b) ∈ Π
Output: A solution x

1: for i = 1 to k do
2: Calculate OPTfrac

Ii
exactly by solving LP(Ii), where Ii = (v|ai

, A|ai
, C|ai

, b)
3: end for
4: Let j be the minimal index for which OPTfrac

Ij
/caj daj ≥ OPTfrac

Ii
/caidai , ∀ i ∈ [k]

5: Simulate algorithm Mj(I) to obtain x
6: return x

Theorem 4. Given a family {Mi}ki=1 of deterministic algorithms, where each
Mi is monotone ai-restrictive cai-approximation algorithm w.r.t. Π, MAX-Select

is monotone deterministic
∑k
i=1 caidai-approximation algorithm w.r.t. Π.

Corollary 5. Given a family of algorithms as specified in the above-mentioned
theorem, MAX-Select supports a truthful deterministic mechanism that approxi-
mates Π to within a ratio of

∑k
i=1 caidai .

840 Y. Azar and I. Gamzu

Before we turn to demonstrate the applicability of the framework, let us briefly
outline the key goals one needs to address in order to utilize it. The first issue
that needs to be dealt is the attributes. Namely, one should define a collection
of pairwise-disjoint choices-consistent attributes, which partition every instance
of the problem under consideration. The second issue that ought to be resolved
is the algorithms. In particular, one needs to develop a family of monotone
deterministic algorithms, which are restrictive w.r.t. the different attributes. The
last matter to be handled is the integrality gaps. That is, one should analyze the
integrality gaps of the sub-problems defined w.r.t. each attribute.

4 The Bandwidth Allocation Problem in Tree Networks

In this section, we study the bandwidth allocation problem in tree networks, and
develop a monotone deterministic O(ln lnm)-approximation algorithm, which
utilizes the framework exhibited in Section 3. Our approach is framework-guided.
Namely, we begin by studying restricted versions of the problem under consid-
eration in which some characteristics of the requests are guaranteed to have a
certain pattern. Essentially, these characteristics are the attributes that parti-
tion every unrestrictive input instance to sub-instances. For each restricted case,
we design a monotone deterministic algorithm that approximately solves it, and
analyze the integrality gap of the corresponding packing integer program. Later
on, we show how to consolidate these results within the framework, and yield
the aforementioned outcome.

Restricted demands. We consider a restricted version of the problem in which
the demand of every request is guaranteed to have a certain pattern. Particularly,
we investigate instances in which dr ∈ (2−(i+1), 2−i], for every r ∈ R, where
i ∈ N. The integrality gap of this restricted version is known to be bounded by a
constant, for any i ∈ N, by the work of Chekuri, Mydlarz and Shepherd [13]. We
now introduce a family of monotone deterministic algorithms {BAPi}i∈N, which
approximately solve the restricted versions of the problem. Namely, algorithm
BAPi handles restricted instances in which dr ∈ (2−(i+1), 2−i], for every r ∈ R.
Prior to describing the algorithm, let us consider an inherently simpler scenario,
in which the demand of each request is unit. This special case is equivalent to
the edge disjoint paths problem in a tree, and is known to admit a deterministic
polynomial-time optimal algorithm [31], which will henceforth be referred to
as algorithm wEDP. Now, we are ready to describe algorithm BAPi. Algorithm
BAPi has two steps. First, it rounds-up all the demands of the requests to 2−i.
Then, it executes algorithm wEDP for 2i times, where the input to the j-th
execution of wEDP is the set of requests that have not been selected in the first
j − 1 executions of wEDP. Informally, one may picture the second step as an
iterative packing of edge disjoint paths in different layers, each of bandwidth
2−i. It is worth noting that the algorithm, and its analysis are partially inspired
by the technique suggested by Awerbuch et al. [3] for reducing a call admission
problem in multi-wavelength scenario to that of a single-wavelength case.

Truthful Unification Framework for Packing Integer Programs with Choices 841

Algorithm 2. BAPi(R)
Input: A requests instance R in which dr ∈ (2−(i+1), 2−i], for every r ∈ R
Output: A subset S ⊆ R of selected connection requests

1: Let k = 2i

2: Let R′ be the set of requests {(sr, tr, 1/k, vr) : r ∈ R}
3: for j = 1 to k do
4: Simulate algorithm wEDP on R′ to obtain Sj

5: Let R′ = R′ \ Sj

6: end for
7: return

⋃k
j=1 Sj

Theorem 6. Let R be an instance in which dr ∈ (2−(i+1), 2−i], for every r ∈ R.
Algorithm BAPi(R) is monotone, deterministic, and outputs a feasible solution
whose value is at least 1/12 of an optimal solution’s value.

Narrow demands. We turn to examine the restricted version of the prob-
lem in which the demand of every request is guaranteed to be narrow, that
is dr ∈ (0, O(1/ lnm)], for every r ∈ R. The integrality gap of this restricted
version is known to be 1 + ε by the outcome of algorithms that employ the ran-
domized rounding technique [29,28,30]. Furthermore, this restricted setting is a
special case of the Ω(lnm)-bounded unsplittable flow problem, which is known to
admit a polynomial-time monotone deterministic algorithm, attaining constant
approximation [9,4]. Consequently, referring to the algorithm of [9] as BAP, we
obtain the following theorem.

Theorem 7. ([9]) Let R be an instance in which dr ∈ (0, 1/(100 lnm)], for
every r ∈ R. Algorithm BAP(R) is monotone, deterministic, and outputs a
feasible solution whose value is at least 1/3 of an optimal solution’s value.

Integration of the results within the framework. We now demonstrate how
to consolidate the results for the restricted versions of the problem under the um-
brella of the framework. Fundamentally, we have already attained the key ingre-
dients needed to employ the main theorem of the framework. Let k = c ln lnm+1,
where c is a sufficiently large constant for which 2−(c ln lnm) ≤ 1/(100 lnm). Let
a1, a2, . . . , ak be attributes that restrict input instances of the problem according
to the demands of the requests. Explicitly, attribute a1 picks out all the requests
that have a demand in the range of (2−1, 1], attribute a2 picks out the requests
with a demand in the range of (2−2, 2−1], and so on until attribute ak−1. The
last attribute, ak, picks out all the remaining requests. Namely, requests that
have a demand in the range of (0, 1/(100 lnm)]. It is clear that this collection
of attributes partition every input instance of the problem in a pairwise-disjoint
(and trivially choices-consistent) way. In addition, let {BAPi}k−1

i=1 ∪ {BAP} be
the corresponding family of deterministic algorithms. Specifically, BAPi is a
monotone ai-restrictive 12-approximation algorithm, and BAP is a monotone
ak-restrictive 3-approximation algorithm. Finally, recall that the integrality gap

842 Y. Azar and I. Gamzu

of each ai-restrictive variant of the problem is constant, and the integrality gap
of the ak-restrictive variant is 1 + ε. Accordingly, and in correspondence with
Theorem 4, we achieve the following theorem.

Theorem 8. There is a monotone deterministic O(ln lnm)-approximation al-
gorithm for the bandwidth allocation problem in tree networks.

5 The Multiple Knapsack Problem on Bipartite Graphs

In this section, we study the multiple knapsack problem on bipartite graphs, and
design a relatively simple monotone deterministic algorithm that approximately
solves the problem within a constant factor of 11.

Narrow sizes. We consider a restricted version of the problem in which the
size of every item is narrow, that is, si ∈ (0, 1/2], for every i ∈ I. We begin by
presenting a monotone deterministic algorithm, formally described below, that
achieves an approximation ratio of 3. Basically, this algorithm is a greedy w.r.t.
a non-increasing profit density ratio, that is, a value to size ratio. Note that we
use the phrase knapsack j is feasible w.r.t. item i to designate a knapsack j ∈Mi

with a residual capacity of at least si.

Algorithm 3. MKPN(I)
Input: An items instance I in which si ∈ (0, 1/2], for every i ∈ I
Output: An (item, knapsack) set S of selected items, and their assigned knapsacks

1: while I �= ∅ do
2: Remove the item i that has a maximum profit density from I
3: Let j be a feasible knapsack w.r.t. i having a minimal index

(∞ if no such knapsack exists)
4: if j �= ∞ then
5: Add (i, j) to S
6: end if
7: end while
8: return S

Theorem 9. Let I be an input instance in which si ∈ (0, 1/2], for every i ∈ I.
Algorithm MKPN(I) is monotone, deterministic, and outputs feasible solution
whose value is at least 1/3 of an optimal solution’s value.

We now argue that the integrality gap of this variant is at most 3. Essentially,
this follows from the insight that the integral solution returned by algorithm
MKPN is a 3-approximation for the optimal fractional solution, and not only for
the optimal integral one.

Wide sizes. We turn to inspect the restricted version of the problem in which
the size of every item is guaranteed to be wide, i.e., si ∈ (1/2, 1], for every
i ∈ I. We begin by arguing that there is a monotone deterministic algorithm
that attains optimal outcome for this variant. The key observation one needs to

Truthful Unification Framework for Packing Integer Programs with Choices 843

make is that no pair of items can be put in the same knapsack simultaneously.
This implies that one may disregard the sizes of the items, and presume that
all of them are exactly unit. In consequence, this variant is equivalent to the
maximum weighted matching problem on bipartite graph, which is known to ad-
mit a polynomial-time optimal deterministic algorithm (see, e.g., [1]). Referring
to this algorithm as MKPW, we obtain the following theorem. Note that the
monotonicity directly results from the optimality of the solution.

Theorem 10. Let I be an input instance in which si ∈ (1/2, 1], for every i ∈ I.
Algorithm MKPW(I) is monotone, deterministic, and outputs feasible solution
whose value is optimal.

Theorem 11. The integrality gap of the restricted version of the problem in
which the size of every item is guaranteed to be wide is at most 2.

Integration of the results within the framework. We now illustrate how
to integrate the results within the confines of the framework. Let a1 and a2 be
attributes that select all the narrow-sized items and the wide-sized items, respec-
tively. This collection of attributes partition every input instance of the problem
in a pairwise-disjoint choices-consistent way. Furthermore, let {MKPN,MKPW}
be the corresponding family of deterministic algorithms. Specifically, MKPN is a
monotone a1-restrictive 3-approximation algorithm, and MKPW is a monotone
a2-restrictive 1-approximation algorithm. Lastly, recollect that the integrality
gap of the a1-restrictive variant of the problem is 3, and the integrality gap of
the a2-restrictive variant is 2. Consequently, and in accordance with Theorem 4,
we obtain the following theorem.

Theorem 12. There is a monotone deterministic 11-approximation algorithm
for the multiple knapsack problem on bipartite graphs.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms,
and Applications. In: The weighted bipartite mataching problem, ch. 12, Prentice
Hall, Englewood Cliffs (1993)

2. Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truth-
ful mechanism for combinatorial auctions with single parameter agents. In: 14th
SODA, pp. 205–214 (2003)

3. Awerbuch, B., Azar, Y., Fiat, A., Leonardi, S., Rosén, A.: On-line competitive al-
gorithms for call admission in optical networks. Algorithmica 31(1), 29–43 (2001)

4. Azar, Y., Gamzu, I., Gutner, S.: Truthful unsplittable flow for large capacity
networks. In: 19th SPAA, pp. 320–329 (2007)

5. Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auctions and imple-
mentation in undominated strategies. In: 17th SODA, pp. 1054–1063 (2006)

6. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-ptas for unsplit-
table flow on line graphs. In: 38th STOC, pp. 721–729 (2006)

7. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified ap-
proach to approximating resource allocation and scheduling. J. ACM 48(5), 1069–
1090 (2001)

844 Y. Azar and I. Gamzu

8. Bar-Yehuda, R., Beder, M., Cohen, Y., Rawitz, D.: Resource allocation in bounded
degree trees. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
64–75. Springer, Heidelberg (2006)

9. Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-
anism design. In: 37th STOC, pp. 39–48 (2005)

10. Calinescu, G., Chakrabarti, A., Karloff, H.J., Rabani, Y.: Improved approximation
algorithms for resource allocation. In: 9th IPCO, pp. 439–456 (2001)

11. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. In: 5th APPROX, pp. 51–66 (2002)

12. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the mul-
tiple knapsack problem. SICOMP 35(3), 713–728 (2005)

13. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a
tree. In: 30th ICALP, pp. 410–425 (2003)

14. Clarke, E.H.: Multipart pricing of public goods. Public Choice 8, 17–33 (1971)
15. Dawande, M., Kalagnanam, J., Keskinocak, P., Salman, F.S., Ravi, R.: Approx-

imation algorithms for the multiple knapsack problem with assignment restric-
tions. Journal of Combinatorial Optimization 4(2), 171–186 (2000)

16. Feige, U., Vondrák, J.: Approximation algorithms for allocation problems: Im-
proving the factor of 1 - 1/e. In: 47th FOCS, pp. 667–676 (2006)

17. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approxima-
tion algorithms for maximum general assignment problems. In: 17th SODA, pp.
611–620 (2006)

18. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

19. Groves, T.: Incentives in teams. Econemetrica 41(4), 617–631 (1973)
20. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear pro-

gramming. In: 46th FOCS, pp. 595–604 (2005)
21. Lehmann, D.J., O’Callaghan, L., Shoham, Y.: Truth revelation in approximately

efficient combinatorial auctions. J. ACM 49(5), 577–602 (2002)
22. Lewin-Eytan, L., Naor, J., Orda, A.: Admission control in networks with advance

reservations. Algorithmica 40(4), 293–304 (2004)
23. Mu’alem, A., Nisan, N.: Truthful approximation mechanisms for restricted com-

binatorial auctions. In: 18th AAAI, pp. 379–384 (2002)
24. Nisan, N., Ronen, A.: Computationally feasible vcg mechanisms. In: 2nd EC, pp.

242–252 (2000)
25. Nisan, N., Ronen, A.: Algorithmic mechanism design. GEB 35, 166–196 (2001)
26. Nutov, Z., Beniaminy, I., Yuster, R.: A (1-1/e)-approximation algorithm for the

generalized assignment problem. ORL 34(3), 283–288 (2006)
27. Phillips, C.A., Uma, R.N., Wein, J.: Off-line admission control for general schedul-

ing problems. In: 11th SODA, pp. 879–888 (2000)
28. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximat-

ing packing integer programs. JCSS 37(2), 130–143 (1988)
29. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably

good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)
30. Srinivasan, A.: Improved approximation guarantees for packing and covering in-

teger programs. SICOMP 29(2), 648–670 (1999)
31. Tarjan, R.E.: Decomposition by clique separators. DM 55(2), 221–232 (1985)
32. Vickery, W.: Counterspeculation, auctions and competitive sealed tender. Journal

of Finance 16, 8–37 (1961)

Upper Bounds on the Noise Threshold for

Fault-Tolerant Quantum Computing

Julia Kempe1, Oded Regev1, Falk Unger2, and Ronald de Wolf2

1 Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
2 CWI, Amsterdam, The Netherlands

Abstract. We prove new upper bounds on the tolerable level of noise
in a quantum circuit. Our circuits consist of unitary k-qubit gates each
of whose input wires is subject to depolarizing noise of strength p, and
arbitrary one-qubit gates that are essentially noise-free. We assume the
output of the circuit is the result of measuring some designated qubit in
the final state. Our main result is that for p > 1 − Θ(1/

√
k), the output

of any such circuit of large enough depth is essentially independent of its
input, thereby making the circuit useless. For the important special case
of k = 2, our bound is p > 35.7%. Moreover, if the only gate on more
than one qubit is the CNOT, then our bound becomes 29.3%. These
bounds on p are notably better than previous bounds, yet incomparable
because of the somewhat different circuit model that we are using. Our
main technique is a Pauli basis decomposition, which we believe should
lead to further progress in deriving such bounds.

1 Introduction

The field of quantum computing faces two main tasks: to build a large-scale
quantum computer, and to figure out what it can do once it exists. In general
the first task is best left to (experimental) physicists and engineers, but there is
one crucial aspect where theorists play an important role, and that is in analyzing
the level of noise that a quantum computer can tolerate before breaking down.

The physical systems in which qubits may be implemented are typically tiny
and fragile (electrons, photons and the like). This raises the following paradox:
On the one hand we want to isolate these systems from their environment as
much as possible, in order to avoid the noise caused by unwanted interaction
with the environment—so-called “decoherence”. But on the other hand we need
to manipulate these qubits very precisely in order to carry out computational
operations. A certain level of noise and errors from the environment is therefore
unavoidable in any implementation, and in order to be able to compute one
would have to use techniques of error correction and fault tolerance.

Unfortunately, the techniques that are used in classical error correction and
fault tolerance do not work directly in the quantum case. Moreover, extending
these techniques to the quantum world seems at first sight to be nearly impossible
due to the continuum of possible quantum states and error patterns. Indeed,
when the first important quantum algorithms were discovered [1,2,3,4], many
dismissed the whole model of quantum computing as a pipe dream, because it

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 845–856, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

846 J. Kempe et al.

was expected that decoherence would quickly destroy the necessary quantum
properties of superposition and entanglement.

It thus came as a great surprise when, in the mid-1990s, quantum error correct-
ing codes were developed by Shor and Steane [5,6,7], and these ideas later led to
the development of schemes for fault-tolerant quantum computing [8,9,10,11,12].
Such schemes take any quantum algorithm designed for an ideal noiseless quan-
tum computer, and turn it into an implementation that is robust against noise,
as long as the amount of noise is below a certain threshold, known as the fault-
tolerance threshold. The overhead introduced by the fault-tolerant schemes is
typically modest (a polylogarithmic factor in the running time of the algorithm).

The existence of fault-tolerant schemes turns the problem of building a quan-
tum computer into a hard engineering problem: if we just manage to store our
qubits and operate upon them with a level of noise below the fault-tolerance
threshold, then we can perform arbitrarily long quantum computations. The ac-
tual value of the fault-tolerance threshold is far from determined, but will have a
crucial influence on the future of the area—the more noise a quantum computer
can tolerate in theory, the more likely it is to be realized in practice.1

The first fault-tolerant schemes were only able to tolerate noise on the order of
10−6, which is way below the level of accuracy that experimentalists can hope to
achieve in the foreseeable future. These initial schemes have been substantially
improved in the past decade. In particular, Knill has recently developed various
schemes which, according to numerical calculations, seem to be able to tolerate
more than 1% noise [13,14]. If we insist on provable constructions, the best
known threshold is on the order of 0.1% [15,16,17,18].

Constructions of fault-tolerant schemes provide a lower bound on the fault-
tolerance threshold. A very interesting question, which is the topic of the current
paper, is whether one can prove upper bounds on the fault-tolerance threshold.
Such bounds give an indication on how far away we are from finding optimal
fault-tolerant schemes. They can also give hints as to how one should go about
constructing improved fault-tolerant schemes. Such upper bounds are statements
of the form “any quantum computation performed with noise level higher than p
is essentially useless”, where “essentially useless” is some strong indication that
interesting quantum computations are impossible in such a model. For instance,
Buhrman et al. [19] quantify this by giving a classical simulation of such noisy
quantum computation, and Razborov [20] shows that if the computation is too
long, the output of the circuit is essentially independent of its input.

The best known upper bounds on the threshold are 50% by Razborov [20]
and 45.3% by Buhrman et al. [19]. (These bounds are incomparable because
they work in different models; see the end of this section for more details.) As
one can see, there are still about two orders of magnitude between our best upper
and lower bounds on the fault-tolerance threshold. This leaves experimentalists
in the dark as to the level of accuracy they should try to achieve. In this paper,
we somewhat reduce this gap. So far, much more work has been spent on lower

1 The “fault-tolerance threshold” is actually not a universal constant, but rather de-
pends on the details of the circuit model (allowed set of gates, type of noise, etc.).

Upper Bounds on the Noise Threshold 847

bounds than on upper bounds. Our approach will be the less-trodden road from
above, hoping to bring new techniques to bear on this problem.
Our model. In order to state our results, we need to describe our circuit model.
We consider parallel circuits, composed of n wires and T levels of gates (see
Figure 1). We sometimes use the term time to refer to one of the T +1 “vertical
cuts” between the levels. For convenience, we assume that the number of qubits
n does not change during the computation. Each level is described by a partition
of the qubits, as well as a gate assigned to each set in the partition. Notice that
at each level, all qubits must go through some gate (possibly the identity). For
each gate the number of input qubits equals the number of output qubits.

0 1 2 3 T-2 T-1 T

Fig. 1. Parallel circuit with k = 3 and T levels. Dark
circles are εk-depolarizing noise, light circles are ε1-
depolarizing noise. We marked two consistent 4-qubit
sets (defined in Section 3). The first has distance 1,
the second T −2. The upper right qubit is the output.

We assume the circuit is
composed of k-qubit gates
that are probabilistic mix-
tures of unitary operations,
as well as arbitrary (i.e.,
all completely-positive trace-
preserving) one-qubit gates.
In particular, it is possible
to do intermediate one-qubit
measurements. We assume
the output of the circuit is
the outcome of a measure-
ment of a designated out-
put qubit in the computa-
tional basis. Finally, we as-
sume that the circuit is sub-
ject to noise as follows. Re-
call that p-depolarizing noise
on a certain qubit replaces
that qubit by the completely mixed state with probability p, and does not alter
the qubit otherwise. Formally, this is described by the superoperator E acting
on a qubit ρ as E(ρ) = (1 − p)ρ + pI/2. We assume that each one-qubit gate is
followed by at least ε1-depolarizing noise on its output qubit, where ε1 > 0 is
an arbitrarily small constant. Thus one-qubit gates can be essentially noise-free.
We also assume that each k-qubit gate is preceded by at least εk-depolarizing
noise on each of its input qubits, where εk > 1−

√
21/k − 1 = 1−Θ(1/

√
k).

Our results. In Section 3 we prove our main result:

Theorem 1. Fix any T -level quantum circuit as above. Then for any two states
ρ and τ , the probabilities of obtaining measurement outcome 1 at the output qubit
starting from ρ and starting from τ , respectively, differ by at most 2−Ω(T).

In other words, for any η > 0, the probability of measuring 1 at the output
qubit of a circuit running for T = O(log(1/η)) levels is independent of the input
(up to ±η). This makes the output essentially independent of the starting state,
and renders long computations “essentially useless”.

848 J. Kempe et al.

Of special interest from an experimental point of view is the case k = 2, for
which our bound becomes about 35.7%. Furthermore, for the case in which the
only allowed two-qubit gate is the controlled-NOT (CNOT) gate, we can improve
our bound further to about 29.3%, as we show in the full version of this paper [21].
This case is interesting both theoretically and experimentally. Note also that the
CNOT gate together with all one-qubit gates forms a universal set [22]. The same
noise-bound applies if we also allow controlled-Y and controlled-Z gates.

Significance of results. First, it is known that fault-tolerant quantum computa-
tion is impossible (for any positive noise level) without a source of fresh qubits.
Our model takes care of this by allowing arbitrary one-qubit gates—in particu-
lar, this includes gates that take any input, and output a fixed one-qubit state,
for instance |0〉. This justifies our assumption that the number of qubits in the
circuit remains the same throughout the computation: all qubits can be present
from the start, since we can reset them to whatever we want whenever needed.

Second, our assumption that all k-qubit gates are mixtures of unitaries does
slightly restrict generality. Not every completely-positive trace-preserving map
can be written as a mixture of unitaries.2 However, we believe that it is still a
reasonable assumption. For instance, to the best of our knowledge, all known
fault-tolerant constructions can be implemented using such gates (in addition
to arbitrary one-qubit gates). Moreover, all known quantum algorithms obtain
their speed-up over classical algorithms by using only unitary gates.

Third, we only analyze depolarizing noise acting independently on each qubit.
Depolarizing noise is the “most symmetric” type of one-qubit noise and therefore
a natural choice for our analysis. Also, it is a relatively weak type of noise: it
is not adversarial and does not have correlations between the errors occurring
on different qubits. However, since we are proving an upper bound on the fault-
tolerance threshold, this weakness is actually a good thing, making our result
stronger. In principle one can extend our results to various other one-qubit noise
models, using an analysis similar to the one developed in Lemma 2. However,
not all noise models can actually yield a result like ours. For instance, if we
have Toffoli gates with only phaseflip errors, then we can do perfect classical
computation. Statements like Theorem 1 are just false in that case.

A more severe restriction is the assumption that the output consists of one
qubit. However, we believe that in many instances this is still a reasonable as-
sumption, for instance when the circuit is solving a decision problem. Moreover,
our results can easily be extended to the case where the output is obtained by a
measurement on a small number of qubits, instead of only one.

By allowing essentially noise-free one-qubit gates, our model addresses the fact
that gates on more than one qubit are generally much harder to implement than
one-qubit gates. It should also be noted that the exact value of the constant ε1 is
inessential and can be chosen arbitrarily small, as this just affects the constant
in the Ω(·) of Theorem 1. In fact, ε1 > 0 is only necessary because otherwise

2 One can implement an arbitrary gate by a unitary gate on the original qubits and
additional ancilla qubits in a fixed pure state. However, this increases the arity of
the gate, and the ancilla qubits will be affected by the noise before the unitary.

Upper Bounds on the Noise Threshold 849

it would be possible to let ρ := |0〉〈0| ⊗ ρ′ and τ := |1〉〈1| ⊗ τ ′, do nothing for
T levels (i.e., apply noise-free identity gates on all wires) and then measure the
first qubit. The resulting difference between output probabilities is 1. Instead of
assuming ε1 > 0 noise, we could alternatively deal with this issue by requiring
that every path from the input to the output qubit goes through enough k-qubit
gates. Our proof can easily be adapted to this case.

Since our theorem applies to arbitrary starting states, it applies to the case
that the initial state is encoded in a good quantum error-correcting code, or is
some sort of “magic state” [23,24]. Also in these case, the computation becomes
essentially independent of the input after sufficiently many levels.

Finally, it is interesting to note that our bound on the threshold behaves
like 1−Θ(1/

√
k). This matches what is known for classical circuits [25,26], and

therefore probably represents the correct asymptotic behavior. Previous bounds
only achieved an asymptotic behavior of 1−Θ(1/k) [20].
Techniques. We believe that a main part of our contribution is introducing a new
technique for obtaining upper bounds on the fault-tolerance threshold. Namely,
we use a Pauli basis decomposition in order to track the state of the computation.
A finer analysis of the Pauli coefficients might improve the bounds we achieve
here, and possibly obtain bounds for other computational models.

Related work. The work most closely related to ours is that of Razborov [20].
There, he proves an upper bound of εk = 1−1/k on the fault-tolerance threshold.
On one hand, his result is stronger than ours as it allows arbitrary k-qubit
gates and not just mixtures of unitaries. Razborov also has a second result,
namely the trace distance between the two states obtained by applying the
circuit to starting states ρ and τ , respectively, is upper bounded by n2−Ω(T).
Hence even the results of arbitrary n-qubit measurement on the full final state
become essentially independent of the initial state after T = O(log n) levels.
On the other hand, the value of our bound is better for all values of k, and
we also allow essentially noise-free one-qubit gates. Hence the two results are
incomparable. Razborov’s proof is based on tracking how the trace distance
evolves during the computation. Our proof is similar in flavor, but instead of
working with the trace distance, we work with the Frobenius distance (since it
can easily be expressed in terms of the Pauli decomposition).

Buhrman et al. [19] show that classical circuits can efficiently simulate any
quantum circuit that consists of perfect, noise-free stabilizer operations (meaning
Clifford gates (Hadamard, phase gate, CNOT), preparations of states in the com-
putational basis, and measurements in the computational basis) and arbitrary
one-qubit unitary gates that are followed by 45.3% depolarizing noise. Hence
such circuits are not significantly more powerful than classical circuits.3 This

3 The 45.3%-bound of [19] is in fact tight if one additionally allows perfect classical
control (i.e., the ability to condition future gates on earlier classical measurement
outcomes): circuits with perfect stabilizer operations and arbitrary one-qubits gates
suffering from less than 45.3% noise, can simulate perfect quantum circuits. See [27]
and [19, Section 5]. These assumptions are not very realistic: in particular, assuming
perfect, noise-free CNOTs is a far cry from experimental practice.

850 J. Kempe et al.

result is incomparable to ours: the noise models and the set of allowed gates are
different (and we feel ours is more realistic). In particular, in our case noise hits
the qubits going into the k-qubit gates but barely affects the one-qubit gates,
while in their case the noise only hits the non-Clifford one-qubit unitaries.

Another related result is by Virmani et al. [28]. Instead of depolarizing noise,
they consider “dephasing noise”. This models phase-errors: rather than replacing
a qubit by the completely mixed state with some probability p, dephasing noise
applies the Z-gate with probability p/2. Virmani et al. [28] show, among other
results, that we can efficiently classically simulate any quantum circuit consisting
of perfect stabilizer operations, and one-qubit unitary gates that are diagonal in
the computational basis and are followed by more than 29.3% dephasing noise.
Their result is incomparable to ours for essentially the same reasons as why the
Buhrman et al. result is incomparable: a different noise model and a different
statement about the resulting power of their noisy quantum circuits.

Finally, it is known that it is impossible to transmit quantum information
through a p-depolarizing channel for p > 1/3 [29]. As Razborov [20] noticed,
this seems to suggest that quantum computation is impossible with depolarizing
noise of strength greater than 1/3, but there is no proof that this is the case.

2 Preliminaries

Let P = {I,X, Y, Z} be the set of one-qubit Pauli matrices,

I =
(

1 0
0 1

)

, X =
(

0 1
1 0

)

, Y =
(

0 −i
i 0

)

, Z =
(

1 0
0 −1

)

.

and let P∗ = {X,Y, Z}. We use Pn to denote the set of all tensor products of
n one-qubit Pauli matrices. For a Pauli matrix S ∈ Pn we define its support,
denoted supp(S), to be the qubits on which S is not identity. We sometimes
use superscripts to indicate the qubits on which certain operators act. Thus IA

denotes the identity operator applied to the qubits in set A.
The set of all 2n × 2n Hermitian matrices forms a 4n-dimensional real vector

space. On this space we consider the Hilbert-Schmidt inner product, given by
〈A,B〉 := Tr(A†B) = Tr(AB). Note that for any S, S′ ∈ Pn, Tr(SS′) = 2n if
S = S′ and 0 otherwise, and hence Pn is an orthogonal basis of this space. It
follows that we can uniquely express any Hermitian matrix δ in this basis as

δ =
1
2n

∑

S∈Pn

δ̂(S)S

where δ̂(S) := Tr(δS) are the (real) coefficients.
We now state some observations. By the orthogonality of Pn, for any δ,

Tr(δ2) =
1
2n

∑

S∈Pn

δ̂(S)2.

Upper Bounds on the Noise Threshold 851

Observation 2 (Unitary preserves sum of squares). For any unitary ma-
trix U and any Hermitian matrix δ, if we denote δ′ = UδU †, then

∑

S∈Pn

δ̂′(S)2 = 2nTr(δ′2) = 2nTr(UδU †UδU †) = 2nTr(δ2) =
∑

S∈Pn

δ̂(S)2.

This also shows that conjugating by a unitary matrix, when viewed as a linear
operation on the vector of Pauli coefficients, is an orthogonal transformation.

Observation 3 (Tracing out qubits). Let δ be some Hermitian matrix on a
set of qubits W . For V ⊆W , let δV = TrW\V (δ). Then,

δ̂(SIW\V) = Tr(δ · SIW\V) = Tr(δV · S) = δ̂V (S).

Observation 4 (Noise in the Pauli basis). Applying a p-depolarizing noise
E to the j-th qubit of Hermitian matrix δ changes the coefficients as follows:

Ê(δ)(S) =

{
δ̂(S) if Sj = I

(1 − p)δ̂(S) if Sj = I

In other words, E “shrinks” by a factor 1 − p all coefficients that have support
on the j-th coordinate.

Observation 5. Let ρ and τ be two one-qubit states and let δ = ρ−τ . Consider
the two probability distributions obtained by performing a measurement in the
computational basis on ρ and τ , respectively. Then the variation distance between
these two distributions is 1

2 |δ̂(Z)|.

Proof: Since there are only two possible outcomes for the measurements, the
variation distance between the two distributions is exactly the difference in the
probabilities of obtaining the outcome 0, which (using Tr(δ) = 0) is given by

|Tr((ρ− τ) · |0〉〈0|)| =
∣
∣
∣
∣Tr

(

δ · I + Z

2

)∣
∣
∣
∣ =

1
2
|Tr(δ · Z)| = 1

2
|δ̂(Z)|.

Our final observation follows immediately from the convexity of the function x2.

Observation 6 (Convexity). Let pi be any probability distribution, and δi a set
of Hermitian matrices. Let δ =

∑
i piδi. Then

∑

S∈Pn

δ̂(S)2 ≤
∑

i

pi
∑

S∈Pn

δ̂i(S)2.

3 Proof of Theorem 1

In this section we prove Theorem 1. The idea is the following. Fix two arbitrary
initial states ρ and τ . Our goal is to show that after applying the noisy cir-
cuit, the state of the output qubit is nearly the same with both starting states.
Equivalently, we can define δ = ρ − τ and show that after applying the noisy

852 J. Kempe et al.

circuit to δ, the “state” of the output qubit is essentially 0 (the noisy circuit is a
linear operation, and hence there is no problem in applying it to δ, which is the
difference of two density matrices). In order to show this, we will examine how
the coefficients of δ in the Pauli basis develop through the circuit. Initially we
might have many large coefficients. Our goal is to show that the coefficients of
the output qubit are essentially 0. This is established by analyzing the balance
between two opposing forces: noise, which shrinks coefficients by a constant fac-
tor (as in Observation 4), and gates, which can increase coefficients. As we saw
in Observation 2, unitary gates preserve the sum of squares of coefficients. They
can, however, “concentrate” several small coefficients into one large coefficient.
One-qubit operations need not preserve the sum of squares (a good example is
the gate that resets a qubit to the |0〉 state), but we can still deal with them
by using a known characterization of one-qubit gates. This allows us to bound
the amount by which one-qubit gates can increase the Pauli coefficients, and
(roughly) shows that the gate that resets a qubit to |0〉 is “as bad as it gets”.

We introduce some terminology. From now on we use the term qubit to mean
a wire at a specific time, so there are (T +1)n qubits (although during the proof
we will also consider qubits that are located between a gate and its associated
noise). We say that a set of qubits V is consistent if we can meaningfully talk
about a “state of the qubits of V ” (see Figure 1). More formally, we define a
consistent set as follows. The set of all qubits at time 0 and all its subsets are
consistent. If V is some consistent set of qubits, which contains all input qubits
IN of some gate (possibly a one-qubit identity gate), then also (V \ IN)∪OUT
and all its subsets are consistent, where OUT denotes the gate’s output qubits.
Note that here we think of the noise as being part of the gate. For a consistent
set V and a state (or more generally, a Hermitian matrix) ρ, we denote the state
of V when the circuit is applied with the initial state ρ, by ρV . In other words,
ρV is the state one obtains by applying some initial part of the circuit to ρ, and
then tracing out from the resulting state all qubits that are not in V .

If v is a qubit, we use dist(v) to denote its distance from the input, i.e., the level
of the gate just preceding it. The qubits of the starting state have dist(v) = 0.
For a nonempty set V of qubits we define dist(V) = min{dist(v) | v ∈ V }, and
extend it to the empty set by dist(∅) = ∞. Note that dist(V) does not increase
if we add qubits to V . In the rest of this section we prove the following lemma,
showing that a certain invariant holds for all consistent sets V .

Lemma 1. For all ε1 > 0 and εk > 1 −
√

21/k − 1 there is a θ < 1 such that
the following holds. For any T -level circuit in our model, initial states ρ and τ ,
δ = ρ− τ , and any consistent V , we have Tr(δ2

V) ≤ 2 · θdist(V). Equivalently:

∑

S∈PV

δ̂V (S)2 ≤ 2 · 2|V | · θdist(V). (1)

If we consider the consistent set V containing the output qubit at time T , then
we get that δ̂V (Z)2 ≤ 4θT . By Observation 5, this implies Theorem 1.

Upper Bounds on the Noise Threshold 853

3.1 Proof of Lemma 1

The proof of the invariant is by induction on the sets V . At the base are all sets
V contained entirely within time 0. All other sets are handled in the induction
step. To justify the inductive proof, we need an ordering on the consistent sets
V such that for each V , the proof for V uses the inductive hypothesis only on
sets V ′ that appear before V . As will become apparent from the proof, if we
denote by latest(V) the maximum time at which V contains a qubit, then each
V ′ for which we use the induction hypothesis has strictly less qubits than V at
time latest(V). Therefore, we can order the sets V first in increasing order of
latest(V) and then in increasing order of the number of qubits at time latest(V).
Base case. Here V is fully contained within time 0. If V = ∅ then both sides
of the invariant are zero, so from now on assume V is nonempty. In this case
dist(V) = 0. The matrix δV is the difference of two density matrices ρV and τV .
Hence Tr(δ2

V) = Tr(ρ2
V)+Tr(τ2

V)−2Tr(ρV τV) ≤ 2, and the invariant is satisfied.
Induction step. Let V ′′ be any consistent set containing at least one qubit at
time greater than zero. Our goal in this section is to prove the invariant for
V ′′. Consider any of the qubits of V ′′ located at time latest(V ′′) and let G
be the gate that has this qubit as one of its output qubits. We now consider
two cases, depending on whether G is a k-qubit gate or a one-qubit gate.

G
A1

A2

A1

A2

'

'

'

'

'

'

A1

A2

Fig. 2. An example showing the sets V , V ′,
and V ′′ for a two-qubit gate G

Case 1: G is a k-qubit gate. Here
G is a probabilistic mixture of k-
qubit unitaries. First, by Observa-
tion 6 it suffices to prove the in-
variant for k-qubit unitaries. So as-
sume G is a k-qubit unitary acting
on the qubits A = {A1, . . . , Ak}.
Let A′ = {A′1, . . . , A′k} be the
qubits after the εk-noise but before
the gate G andA′′ = {A′′1 , . . . , A′′k}
the qubits after G (see Figure 2).
By our choice of G, A′′ ∩ V ′′ = ∅.
Define V ′ = (V ′′ \ A′′) ∪ A′ and
V = (V ′′ \ A′′) ∪ A. Note that V
and its subsets are consistent sets with strictly fewer qubits than V ′′ at time
latest(V ′′), hence we can apply the induction hypothesis to them. Our goal is to
prove the invariant Eq. (1) for V ′′. First, by Observation 3,

∑

S∈PV ′′

δ̂V ′′(S)2 ≤
∑

S∈PV ′′∪A′′

̂δV ′′∪A′′(S)2. (2)

Because G (which maps δV ′ to δV ′′∪A′′) is unitary, it preserves the sum of squares
of δ̂-coefficients (see Observation 2), so the right hand side of (2) is equal to

∑

S∈PV ′

δ̂V ′(S)2 =
∑

S∈PV ′\A′

∑

R∈PA′

δ̂V ′(RS)2.

854 J. Kempe et al.

Since the only difference between δV and δV ′ is noise on the qubits A1, . . . , Ak,
using Observation 4 and denoting μ = 1− εk, we get that the above is at most

∑

S∈PV \A

∑

R∈PA

μ2|supp(R)|δ̂V (RS)2

=
∑

S∈PV \A

∑

a⊆A
μ2|a|(1− μ2)k−|a|

∑

R∈Pa⊗IA\a

δ̂V (RS)2,

where the equality is because for any fixed S and any R ∈ PA, the term δ̂V (RS)2,
which appears with coefficient μ2|supp(R)| on the left, appears with the same co-
efficient

∑
a⊇supp(R) μ

2|a|(1− μ2)k−|a| = μ2|supp(R)| on the right. By rearranging
and using Observation 3 we get that the above is equal to

∑

a⊆A
μ2|a|(1− μ2)k−|a|

∑

S∈P(V \A)∪a

̂δ(V \A)∪a(S)2

≤
∑

a⊆A
μ2|a|(1− μ2)k−|a|2 · 2|(V \A)∪a| · θdist((V \A)∪a)

where we used the inductive hypothesis. Note that dist((V \ A) ∪ a) ≥ dist(V),
so the above is

≤ 2 · 2|V \A| · θdist(V)
∑

a⊆A
2|a|μ2|a|(1− μ2)k−|a|

= 2 · 2|V \A| · θdist(V)((1 − μ2) + 2μ2)k = 2 · 2|V \A| · θdist(V)(1 + μ2)k. (3)

Note that |V \ A| ≤ |V ′′| − 1 and dist(V ′′)− 1 ≤ dist(V), so the right hand side
is bounded by

≤ 2 · 2|V ′′|−1 · θdist(V ′′)−1(1 + μ2)k.

Since εk > 1−
√

21/k − 1, we have that (1 + μ2)k ≤ 2θ if θ is close enough to 1,
so we can finally bound the last expression to prove the invariant for V ′′

≤ 2 · 2|V ′′| · θdist(V ′′).

Case 2: G is a one-qubit gate. Before proving the invariant, we need to prove
the following property of completely-positive trace-preserving (CPTP) maps on
one qubit. The proof appears in the full version of this paper [21].

Lemma 2. For any CPTP map G on one qubit there exists a β ∈ [0, 1] such
that the following holds. For any Hermitian matrix δ, if we let δ′ denote the
result of applying G to δ, then we have

δ̂′(X)2 + δ̂′(Y)2 + δ̂′(Z)2 ≤ (1− β) · δ̂(I)2 + β · (δ̂(X)2 + δ̂(Y)2 + δ̂(Z)2).

Let A be the qubit G is acting on, and recall that our goal is to prove the
invariant for the set V ′′. Denote by A′ the qubit of G after the gate but before
the ε1 noise, and by A′′ the qubit after the noise. As before, by our choice of G, we

Upper Bounds on the Noise Threshold 855

have A′′ ∈ V ′′. Let A = {A}, A′ = {A′}, A′′ = {A′′}. Define V ′ = (V ′′\A′′)∪A′
and V = (V ′′ \ A′′) ∪ A and notice that |V | = |V ′| = |V ′′|. By using Lemma 2,
we obtain a β ∈ [0, 1] such that

∑

S∈PV ′′

δ̂V ′′(S)2 ≤
∑

S∈PV ′\A′

(

δ̂V ′(IS)2 + (1− ε1)2
∑

R∈PA′
∗

δ̂V ′(RS)2
)

≤
∑

S∈PV \A

(

(1+(1−ε1)2(1−2β))δ̂V (IS)2+(1−ε1)2β
∑

R∈PA

δ̂V (RS)2
)

.

By applying the induction hypothesis to both V \A and V , we can upper bound
the above by

(1 + (1− ε1)2(1− 2β)) · 2 · 2|V |−1 · θdist(V \A) + (1− ε1)2β · 2 · 2|V | · θdist(V)

≤ 1 + (1− ε1)2

2θ
· 2 · 2|V ′′| · θdist(V ′′)

where we used that |V | = |V ′′|, and dist(V ′′)−1 ≤ dist(V) ≤ dist(V \A). Hence
the invariant remains valid if we choose θ < 1 such that 1 + (1− ε1)2 ≤ 2θ.

Acknowledgment. We thank Mary Beth Ruskai for a pointer to [30] and for
sharing her insights on one-qubit operations; Peter Shor for a discussion on
entanglement-breaking channels which is related to the discussion of [29] at the
end of Section 1; and an anonymous ICALP referee for helpful comments.

All authors acknowledge support by the European Commission under the
Integrated Project Qubit Applications (QAP) funded by the IST directorate as
Contract Number 015848. JK is supported by an Alon Fellowship and by the
Israeli Science Foundation, OR by the Binational Science Foundation and by the
Israel Science Foundation, and RdW is partially supported by a Veni grant from
the Netherlands Organization for Scientific Research (NWO).

References

1. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Com-
puting 26(5), 1411–1473 (1997); Earlier version in STOC 1993

2. Simon, D.: On the power of quantum computation. SIAM Journal on Comput-
ing 26(5), 1474–1483 (1997); Earlier version in FOCS 1994

3. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509
(1997); Earlier version in FOCS 1994

4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of 28th ACM STOC, pp. 212–219 (1996)

5. Shor, P.W.: Scheme for reducing decoherence in quantum memory. Physical Review
A 52, 2493 (1995)

6. Shor, P.W.: Fault-tolerant quantum computation. In: 37th FOCS, pp. 56–65 (1996)
7. Steane, A.: Multiple particle interference and quantum error correction. Proceed-

ings of the Royal Society of London 452, 2551–2577 (1996)

856 J. Kempe et al.

8. Knill, M., Laflamme, R., Zurek, W.: Accuracy threshold for quantum computation
(October 15, 1996) quant-ph/9610011

9. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation. Sci-
ence 279(5349), 342–345 (1998)

10. Aharonov, D., Ben-Or, M.: Fault tolerant quantum computation with constant
error. In: Proceedings of 29th ACM STOC, pp. 176–188 (1997)

11. Kitaev, A.Y.: Quantum computations: Algorithms and error correction. Russian
Mathematical Surveys 52(6), 1191–1249 (1997)

12. Gottesman, D.: Stabilizer Codes and Quantum Error Correction. PhD thesis, Cal-
tech (1997) quant-ph/9702052

13. Knill, M.: Quantum computing with realistically noisy devices. Nature 434, 39–44
(2005)

14. Knill, M.: Fault-tolerant postselected quantum computation: Threshold analysis
(April 19, 2004) quant-ph/0404104

15. Aliferis, P., Gottesman, D., Preskill, J.: Accuracy threshold for postselected quan-
tum computation. Quantum Information and Computation 8(3), 181–244 (2008)

16. Aliferis, P.: Threshold lower bounds for Knill’s Fibonacci scheme (September 22,
2007) quant-ph/0709.3603

17. Aliferis, P.: Level Reduction and the Quantum Threshold Theorem. PhD thesis,
Caltech (2007) quant-ph/0703264

18. Reichardt, B.: Error-Detection-Based Quantum Fault Tolerance Against Discrete
Pauli Noise. PhD thesis, UC Berkeley (2006) quant-ph/0612004

19. Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.: New
limits on fault-tolerant quantum computation. In: 47th FOCS, pp. 411–419 (2006)

20. Razborov, A.: An upper bound on the threshold quantum decoherence rate. Quan-
tum Information and Computation 4(3), 222–228 (2004)

21. Kempe, J., Regev, O., Unger, F., de Wolf, R.: Upper bounds on the noise threshold
for fault-tolerant quantum computing (2008) quant-ph/0802.1464

22. Barenco, A., Bennett, C., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P.,
Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation.
Physical Review A 52, 3457–3467 (1995)

23. Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates
and noisy ancillas. Physical Review A 71 (022316) (2005)

24. Reichardt, B.: Quantum universality from Magic States Distillation applied to CSS
codes. Quantum Information Processing 4, 251–264 (2005)

25. Evans, W.S., Schulman, L.J.: Signal propagation and noisy circuits. IEEE Trans.
Inform. Theory 45(7), 2367–2373 (1999)

26. Evans, W.S., Schulman, L.J.: On the maximum tolerable noise of k-input gates for
reliable computation by formulas. IEEE Trans. Inform. Theory 49(11), 3094–3098
(2003)

27. Reichardt, B.: Quantum universality by distilling certain one- and two-qubit states
with stabilizer operations (2006) quant-ph/0608085

28. Virmani, S., Huelga, S., Plenio, M.: Classical simulability, entanglement breaking,
and quantum computation thresholds. Physical Review A 71 (042328) (2005)

29. Bruss, D., DiVincenzo, D., Ekert, A., Fuchs, C., Macchiavello, C., Smolin, J.: Opti-
mal universal and state-dependent quantum cloning. Physical Review A 43, 2368–
2378 (1998)

30. Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely-positive trace-
preserving maps on M2. Linear Algebra and its Applications 347, 159–187 (2002)

Finding Optimal Flows Efficiently

Mehdi Mhalla1 and Simon Perdrix2

1 LIG, University of Grenoble, France
mehdi.mhalla@imag.fr

2 Oxford University Computing Laboratory, UK
simon.perdrix@comlab.ox.ac.uk

Abstract. Among the models of quantum computation, the One-way
Quantum Computer [11,12] is one of the most promising proposals of
physical realisation [13], and opens new perspectives for parallelisation
by taking advantage of quantum entanglement [2]. Since a One-way QC
is based on quantum measurement, which is a fundamentally nondeter-
ministic evolution, a sufficient condition of global determinism has been
introduced in [4] as the existence of a causal flow in a graph that un-
derlies the computation. A O(n3)-algorithm has been introduced [6] for
finding such a causal flow when the numbers of output and input ver-
tices in the graph are equal, otherwise no polynomial time algorithm was
known for deciding whether a graph has a causal flow or not. Our main
contribution is to introduce a O(m)-algorithm for finding a causal flow
(where m is the number of edges of the graph), if any, whatever the num-
bers of input and output vertices are. This answers the open question
stated by Danos and Kashefi [4] and by de Beaudrap [6]. Moreover, we
prove that our algorithm produces a flow of minimal depth.

Whereas the existence of a causal flow is a sufficient condition for de-
terminism, it is not a necessary condition. A weaker version of the causal
flow, called gflow (generalised flow) has been introduced in [3] and has
been proved to be a necessary and sufficient condition for a family of
deterministic computations. Moreover the depth of the quantum compu-
tation is upper bounded by the depth of the gflow. However the existence
of a polynomial time algorithm that finds a gflow has been stated as an
open question in [3]. In this paper we answer this positively with a poly-
nomial time algorithm that outputs an optimal gflow of a given graph
and thus finds an optimal correction strategy to the nondeterministic
evolution due to measurements.

1 Introduction

A one-way quantum computation [11] consists in performing a sequence of one-
qubit measurements on an initial entangled quantum state. This initial state,
described by a graph, is a graph state [8], where some vertices correspond to
the input qubits of the computation, others to the output qubits and the rest
of the vertices correspond to auxiliary qubits measured during the computation.
Since quantum measurements are nondeterministic, a one-way quantum compu-
tation requires corrections, making the basis of some measurements dependent

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 857–868, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

858 M. Mhalla and S. Perdrix

on the classical outcome of some other measurements. This corrections induce a
dependency between the measurements, affecting the depth of the computation.

Moreover, in order to be implemented, such corrections impose the structure
of the graph states that can be used for deterministic computation. Indeed, for
some graph states, not all the sequences of one-qubit measurements represent
a unitary embedding. The measurement calculus [5] is a formal framework for
one-way quantum computations, where the dependencies between measurements
and corrections are precisely identified. Using this formalism, Danos and Kashefi
in [4] have proved that any one-way quantum computation translated from a
quantum circuit is such that its underlying graph satisfies a causal flow condition
(see section 2.) As a consequence, the existence of a causal flow is a sufficient
condition for determinism.

In [7] a polynomial time algorithm in the size of the graph has been proposed
for finding a causal flow when the numbers of outputs and inputs are equal,
whereas the existence of a polynomial time algorithm in the general case, has
been stated as an open question. We propose in this paper a faster and more
general algorithm for finding a causal flow, whatever the numbers of inputs and
outputs are.

It turns out that the existence of a causal flow is not a necessary condition
for determinism. Indeed, a weaker flow condition, the gflow condition has been
introduced as a necessary and sufficient condition for a class of uniformly de-
terministic computations (see [3] for a formal definition.) Here, we introduce
a polynomial time algorithm for finding a gflow and thus checking whether a
graph allows a uniformly deterministic computation, which gives substantially
more relevance to the notion of gflow introduced in [3].

We also prove that the algorithms introduced in this paper produce minimal
depth flows. This implies that the gflow algorithm gives a lower bound on the
complexity of a correction strategy in a measurement-based setting for quantum
computation.

2 Definitions

A graph with input and output vertices is called an open graph, and is defined
as follows:

Definition 1 (Open Graph). An open graph is a triplet (G, I,O), where G =
(V,E) is a undirected graph, and I,O ⊆ V are respectively called input and
output vertices.

During a one-way quantum computation all non output qubits (represented as
non output vertices in the corresponding open graph) are measured. Since quan-
tum measurements are nondeterministic, for each qubit measurement, a cor-
rection consists in acting on some unmeasured non input qubits, depending on
the classical outcome of the measurement, in order to make the computation
deterministic. Thus, a correction strategy induces a sequential dependency bet-
ween measurements. As a consequence, the depth of the quantum computation
depends on the correction strategy.

Finding Optimal Flows Efficiently 859

c

a

b

b
c

1

2

b
1

2

0
1

2

0ca0

a

Fig. 1. Example of open graph – squared vertices represent inputs, white vertices
represent outputs – which has a causal flow (g,≺), where g(ai) = bi, g(bi) = ci and
a0 ≺ a1 ≺ a2 ≺ {b0, b1, b2} ≺ {c0, c1, c2}

Correction strategies are characterised by flows in open graphs. A flow (g,≺)
consists in a partial order ≺ over the vertices (i ≺ j if i is measured before j)
and a function g that associates with each vertex the vertices used for correcting
its measurement (all non output qubits are measured.) Input qubits cannot be
used for correction (see [5].)

Given an open graph, two kinds of flows are considered: the causal flow and the
gflow (generalised flow.) The former has been introduced by Danos and Kashefi
[4] and corresponds to the computation strategy that consists in correcting each
qubit measurement by acting on a single neighbour of the measured qubit. For a
given open graph, a causal flow is characterised by a function g which associates
with each non output vertex a non input vertex used for the correction of its
measurement. More formally:

Definition 2 (causal flow). (g,≺) is a causal flow of (G, I,O), where g :
V (G) \O → V (G) \ I and ≺ is a strict partial order over V (G), if and only if

1. i ≺ g(i)
2. if j ∈ N(g(i)) then j = i or i ≺ j, where N(v) is the neighbourhood of v
3. i ∈ N(g(i)).

An example of causal flow is given in Figure 1. Notice that if the numbers of
input and output vertices are the same, a causal flow can be reduced to a path
cover and then to a standard network flow [6]. This reduction was used to define
an O(n3)-algorithm for finding a causal flow in the case where the cardinalities
of input and output qubits are the same [6].

The second type of flow considered, the generalised flow, gflow, has been
introduced in [3] and corresponds to a more general correction strategy that as-
sociates with each non output vertex a set of vertices used for the corresponding
correction (instead of a single vertex.) This generalisation not only leads to a
reduction of the computational depth, but also provides a correction strategy to
some open graphs which have no causal flow. Moreover, notice that the existence
of a gflow is a necessary and sufficient condition for uniform, strong and stepwise
deterministic computations [3].

For a given open graph, a gflow (g,≺) is characterised by a function g which
associates with each non output vertex, a set of non input vertices used for its
correction, and a strict partial order ≺:

Definition 3 (gflow). (g,≺) is a gflow of (G, I,O), where g : V (G) \ O →
℘(V (G) \ I) and ≺ is a strict partial order over V (G), if and only if

860 M. Mhalla and S. Perdrix

u

< u > u

o d d

e v e n

e v e n

g (u)

Fig. 2. Graphical interpretation of a gflow (g,≺): for a given vertex u all the vertices
larger than u represent qubits that will be measured after the qubit u. The set g(u)
has to be composed of qubits measured after u, and such that the following parity
conditions are satisfied: there is an odd number of edges between g(u) and u and there
is an even number of edges between g(u) and any vertex which is not larger u.

1. if j ∈ g(i) then i ≺ j
2. if j ∈ Odd(g(i)) then j = i or i ≺ j
3. i ∈ Odd(g(i))

Where Odd(K) = {u , |N(u) ∩K| = 1 mod 2} is the odd neighbourhood of K,
i.e. the set of vertices which have an odd number of neighbours in K.

A graphical interpretation of the generalised flow is given in Figure 2.
A flow (g,≺) of (G, I,O) induces a partition of the vertices of the open graph:

Definition 4. For a given open graph (G, I,O) and a given flow (g,≺) of
(G, I,O), let

V ≺k =

{
max≺(V (G)) if k = 0
max≺(V (G) \ (∪i<kV ≺i)) if k > 0

where max≺(X) = {u ∈ X s.t. ∀v ∈ X,¬(u ≺ v)} is the set of the maximal
elements of X. The depth d≺ of the flow is the smallest d such that V ≺d+1 = ∅.
(V ≺k)k=0...d≺ is a partition of V (G) into d≺ + 1 layers.

A causal flow or a gflow (g,≺) of (G, I,O) leads to a correction strategy for
the corresponding one-way quantum computation, which consists in measuring
the non output qubits of each layer in parallel, from the layer V ≺d≺ to the layer
V ≺1 . After the measurement of a layer V ≺k , with k > 0, corrections are realised
according to the function g by acting on qubits in ∪i<kV ≺i (see [3] for details.)
The depth of such a one-way quantum computation is d≺.

Definition 5. For a given open graph (G, I,O) and two given causal flows (resp.
gflows) (g,≺) and (g′,≺′) of (G, I,O), (g,≺) is more delayed than (g′,≺′) if ∀k,
| ∪i=0...k V ≺k | ≥ | ∪i=0...k V ≺

′

k | and there exists a k s.t. the inequality is strict.
A causal flow (resp. gflow) (g,≺) is maximally delayed if there exists no causal
flow (resp. gflow) of the same open graph that is more delayed.

For instance, the flow (g,≺) described in Figure 1 is a maximally delayed causal
flow. However, (g,≺) is not a maximally delayed gflow since (g′,≺′) is a more

Finding Optimal Flows Efficiently 861

delayed gflow, where g′(a0) = {b0, b1, b2}, g′(a1) = {b1, b2}, g′(a2) = {b2},
g′(b0) = {c0}, g′(b1) = {c1}, g′(b2) = {b2}, and {a0, a1, a2} ≺′ {b0, b1, b2} ≺′
{c0, c1, c2}. One can prove that (g′,≺′) is a maximally delayed gflow.

The following two lemmas are proved for both kinds of flows.

Lemma 1. If (g,≺) is a maximally delayed causal flow (resp. gflow) of (G, I,O)
then V ≺0 = O.

Proof. Let (g,≺) be a maximally delayed causal flow (resp. gflow) of (G, I,O).
Elements of V ≺0 have no image under g because of condition 1 in both definitions
thus V ≺0 ⊆ O. Moreover, by contradiction, if O \V ≺0 = ∅, let ≺′=≺ \(O \V ≺0)×
V (G). (g,≺′) is a causal flow (resp. gflow) of (G, I,O): condition 1 of both
definition is satisfied by ≺′, because the domain of g does not intersect O, so for
any i in the domain of g, i ≺′ j iff i ≺ j; conditions 2 and 3 of both definitions are
satisfied in a same way. Thus, (g,≺′) is a causal flow (resp. gflow) of (G, I,O).
Moreover, for any k, ∪i=0...kV

≺
k ⊆ ∪i=0...kV

≺′

k , and |V ≺0 | < |V ≺
′

0 | thus (g,≺′) is
more delayed than (g,≺) which leads to a contradiction. �

Lemma 2. If (g,≺) is a maximally delayed causal flow (resp. gflow) of (G, I,O)
then (g̃, ≺̃) is a maximally delayed causal flow (resp. gflow) of (G, I,O ∪ V ≺1)
where g̃ is the restriction of g to V (G) \ (V ≺0 ∪ V ≺1) and ≺̃ =≺ \V ≺1 × V ≺0 .

Proof. First, one can prove that (g̃, ≺̃) is a causal flow (resp. gflow) of (G, I,O∪
V ≺1). Moreover, by contradiction, if there exists a causal flow (resp. gflow) (g′,≺′)
that is more delayed than (g̃, ≺̃) then it could be extended to (g′′,≺′′) where
g′′(u) = g′(u) if u ∈ V \ (V ≺0 ∪ V ≺1), g′′(u) = g(u) if u ∈ V ≺1 and ≺′′=≺′
∪{(u, v), u ∈ V ≺1 ∧ u ≺ v}. (g′′,≺′′) is then a more delayed causal flow (resp.
gflow) of (G, I,O) than (g,≺), which leads to a contradiction. �

Lemma 3. If (g,≺) is a maximally delayed gflow, then V ≺1 = {u ∈ V \ O,
∃K ⊆ O, Odd(K) ∩ (V \O) = {u}}.

Proof. First, notice that if (g,≺) is a maximally delayed gflow, then for any u ∈
V ≺1 , g(u) ⊆ O since u ≺ v if v ∈ g(u) (condition 1 of definition 3.) Furthermore,
by definition of V ≺1 , if u ≺ v then v ∈ O thus conditions 2 and 3 of definition 3
imply that Odd(g(u)) ∩ (V \O) = {u}.

To prove that any u ∈ V \O such that ∃K ⊆ O, Odd(K)∩V \O = {u}, u ∈ V ≺1 ,
we proceed by contradiction. We prove that delaying the measurement of a vertex
not in V ≺1 satisfying the condition permits to create a more delayed gflow. Indeed,
let (g,≺) be a maximally delayed flow of (G, I,O) and let u1 ∈ V \ V ≺0 be such
that ∃K ⊆ O, Odd(K)∩V \O = {u1}. Let g′(u) = K if u = u1 and g′(u) = g(u)
otherwise. Let ≺′ be the strict partial order defined by u ≺′ v if u = u1 and
u ≺ v or if u = u1 and v ∈ K. It leads to a contradiction since (g′,≺′) is a more
delayed gflow of (G, I,O) than (g,≺). �

In a similar way, one can prove that:

Lemma 4. If (g,≺) is a maximally delayed causal flow, then V ≺1 = {u ∈ V \O,
∃v ∈ O, N(v) ∩ V \O = {u}}.

862 M. Mhalla and S. Perdrix

Lemmas 3 and 4 show that in a maximally delayed flow, all the elements that
can be corrected at the last step are in the maximal layer of V \O (i.e. in V ≺1 .)
Combined with the recursive structure of maximally delayed flow (lemma 2),
this shows that the layers V ≺k of a maximally delayed flow can be iteratively
constructed by finding elements that can be corrected starting from the output
qubits. This gives rise to the polynomial time algorithms of the next sections.

3 Causal Flow Algorithm

The relation between causal flow and determinism is presented in [4]. The best
known algorithm for finding a causal flow has been proposed in [6], and works
only if the numbers of inputs and outputs are the same. The complexity of the
algorithm is in O(nm) where n is the number of vertices and m the number of
edges (more precisely O(km) where k is the number of inputs (outputs) [7].) We
present here a more general and faster algorithm.

Theorem 1. For a given open graph (G, I,O), finding a causal flow can be done
in O(m) operations where m = |E(G)| is the number of edges of the graph G.

In order to prove Theorem 1, we introduce the algorithm 1 which decides whether
a given open graph has a causal flow, and outputs a maximally delayed causal
flow if one exists. This recursive algorithm is based on the recursive structure,
pointed out in the previous section, of the maximally delayed causal flows. The
algorithm recursively finds the layers (V ≺k)k=0...d≺ : at the kth call to Flowaux,
the algorithm finds the set V ≺k = Out′ (see algorithm 1 and figure 3.) To improve
the complexity of the algorithm, a set C of potential correctors is maintained,
we also maintain the number of non output neighbours of every output vertex
that is not an input. The partial order ≺ of the flow produced by the algorithm
is defined via a labeling l which associates with each vertex, the index of its
layer. As a consequence, for any two vertices u and v, u ≺ v iff l(u) > l(v).

Proof of Theorem 1: The precondition for the call of Flowaux is: {v ∈ Out \
In, |N(v)∩(V \Out)| = 1} ⊆ C and ∀v ∈ Out\In, Past(v) = |N(v)∩(V \Out)|.

By induction on the number of non output vertices, we prove that if the given
open graph has a causal flow then the algorithm outputs a maximally delayed
one. Assume that the given open graph has a causal flow. First, if there is no
non output vertex, then no correction is needed: the empty flow (g, ∅) (where g
is a function with an empty domain) is a maximally delayed gflow. Now suppose
that there exist some non output vertices, according to Lemma 4 the elements
of V ≺1 have a neighbour in C and thus they are considered in the loop line 13.
The test line 14 ensures that they are considered only once: if a vertex can be
corrected by two vertices in C then only the first is considered. After the loop
(line 27), Out := Out∪ V ≺1 . At each modification of the output set (line 15) the
preconditions are maintained. Indeed, the number of non output neighbours of
this vertex is computed (line 17), and the number of non output neighbours of
the potential correctors (vertices in In \ Out) is updated (line 23). Notice that

Finding Optimal Flows Efficiently 863

input : An open graph
output: A causal flow

Flow ((V,N),In,Out) =1

begin2

C:=∅ ; Past:= 0n ; l := 0n ;3

for all v ∈ Out \ In do4

Past(v):=|N(v) ∩ (V \ Out)| ;5

if Past(v) = 1 then C := C ∪ {v} ;6

end7

return Flowaux ((V,N),In,Out,C,Past,1);8

end9

Flowaux ((V,N),In,Out,C,Past,k) = begin10

C′:=∅;11

for all v ∈ C do12

if |N(v) ∩ (V \ Out)| = 1 then13

{u} := N(v) ∩ (V \ Out) ; g(u) := v ; l(u) := k ; Out := Out ∪ {u} ;14

if u /∈ In then15

Past(u) := |N(u) ∩ (V \ Out)| ;16

if Past(u) = 1 then C′:=C′ ∪ {u} ;17

end18

for all w ∈ N(u) do19

if Past(w) > 0 then20

Past(w) := Past(w) − 1 ;21

if Past(w) = 1 then C′ := C′ ∪ {w} ;22

end23

end24

end25

end26

if C′ = ∅ then27

return (Out = V, (g, l)) ;28

else29

return Flowaux ((V,N),In,Out,C′,Past,k + 1) ;30

end31

end32

Algorithm 1. Causal flow

after the insertion of u in Out, the vertices that may become a potential corrector
for the next recursive call are u and some of the neighbours of u (loop line 20).
Thus, C′ satisfies the precondition {v ∈ Out \ In, |N(v) ∩ (V \Out)| = 1} ⊆ C′

for the recursive call (line 31).
Since the existence of a causal flow is assumed, V ≺1 cannot be empty (eve-

ry output vertex has to be corrected), thus the algorithm is called recursively.
Lemma 2 ensures the existence of a causal flow in (G, I,O ∪ V ≺1).The induction
hypothesis ensures that the recursive calls output a maximally delayed causal

864 M. Mhalla and S. Perdrix

Fig. 3. Causal flow algorithm: At the kth recursive call, the algorithm finds out the set
V ≺

k composed of the qubits that will be measured at the d≺ −k+1 step of the one-way
quantum computation, where d≺ is the depth of the computation. At that step, all
the qubits in Out :=

⋃
i=0..k−1 V ≺

k are not measured, whereas the qubits in
⋃

i>k V ≺
k

are already measured. The correctors of the elements of V ≺
k are in a set C ⊆ Out \ In

of candidates composed of vertices u not already assigned to the correction of some
future measurements (C = {v, Past(v) ≥ 1}). Since at each step, a maximum number
of vertices are added to V ≺

k , the causal flow, if it exists, produced by this algorithm is
maximally delayed.

flow in (G, I,O ∪ V ≺1) and thus the produced causal flow (g,≺) is a maximally
delayed causal flow of (G, I,O).

The termination of the algorithm is ensured by the fact that the set of output
vertices strictly increases at each recursive call.

For a given open graph, if the algorithm outputs (true, (g,≺)), then (g,≺) is
a valid causal flow since every output vertex has an image under g, moreover for
any vertex i, i ≺ g(i), and finally if j ∈ N(g(i)) then j = i or i ≺ j. Thus, if the
given open graph has no flow, the algorithm returns false.

For the analysis of the complexity of the algorithm, we consider that testing
whether a vertex is an input (resp. ouput) can be done in constant time. This
can be achieved with an additional cost of n+ |In| (resp. 2n+ |Out|) by building
a boolean array of size n. The additional n for the outputs comes from the fact
that the output set has to be maintained as it changes during the algorithm.
Each vertex v is inserted at most once in a set C. The cost associated with the
vertex v consists in

– Finding the predecessor by g: {u} = N(v)∩(V \Out) which costs the degree
δ(v) of v assuming that the graph is given as an adjacency list ;

– Computing Past(v) = |N(v)∩(V \Out)| when inserting one of its neighbours
in C which also costs δ(v) ;

– Adding it to Out and C which has a constant cost ;
– Decreasing Past(v) and testing if Past(v) = 1 which occurs at most δ(v)

times.

Thus, the total cost of the algorithm is upper bounded by O(
∑

δ(v)) = O(m).�
This result improves the algorithm in [6] that decides, under the precondition
|I| = |O|, whether an open graph (G, I,O) has a causal flow in O(km) operations,

Finding Optimal Flows Efficiently 865

where k = |O|. In [10], Pei and de Beaudrap have proved that an open graph
which has a causal flow has at most (n − 1)k −

(
k
2

)
edges. According to this

result, the algorithm in [6] can be transformed (see [10]) into a O(k2n)-algorithm,
whereas our algorithm becomes a O(min(m, kn))-algorithm.

4 A Polynomial Algorithm for Gflow

In this section, we prove that the ideas of the algorithm 1 can be extended to
derive a polynomial time algorithm in the more general case of the gflow, where
each measurement is corrected by a set of qubits, instead of a single qubit. Since
the existence of such a corrective strategy is sufficient and necessary for a large
family of derterministic computations, the following algorithm decides whether a
given one-way quantum computation is a member of such family of deterministic
computation.

Theorem 2. There exists a polynomial time algorithm that decides whether a
given open graph has a gflow, and which outputs a gflow if it exists.

Proof. In order to prove Theorem 2, we introduce a polynomial time algorithm
which decides whether a given open graph has a gflow. Moreover, if a gflow
exists, the algorithm outputs a maximally delayed gflow.

Let (G, I,O) be an open graph. The algorithm gFlow(Γ, I,O) (Algorithm 2),
where Γ is the adjacency matrix of G, finds a maximally delayed gflow (g,≺)
and returns (true, (g,≺)) if one exists and returns false otherwise. Given a set Y
and a subset X ⊆ Y , IX stands for a |Y |-dimensional vector defined by IX(i) = 1
if i ∈ X and IX(i) = 0 otherwise.

At the kth recursive call, the set C found by the algorithm at the end of
the loop at line 16 corresponds to the layer V ≺k of the partition induced by
the returned strict partial order. At line 12, the columns of the sub-matrix
ΓV \Out,Out\In correspond to the vertices that can be used for correction (ver-
tices in ∪i<kV ≺k \ In) and the rows to the candidates for the set V ≺k . A solution
X0 in F2 to ΓV \Out,Out\InIX = I{u} is a subset of ∪i<kV ≺k \ In that has only
u as odd neighbourhood in ∪i≥kV ≺i , thus g(u) := X0 satisfies conditions 2 and
3 required by the definition of gflow (see Definition 3). Furthemore, line 11 of
the algorithm ensures condition 1, thus if the algorithm returns a flow then it
satisfies the definition of gflows.

Now suppose that the graph admits a gflow (g,≺), then it also admits a
maximally delayed gflow (g′,≺′). The algorithm finds the set V ≺

′

1 (in the loop
at line 11), and by induction (similarly to the induction in the proof of Theorem
1) it also finds a maximally delayed gflow in (G, I,O ∪ V ≺1) with the recursive
call. Thus the algorithm finds a maximally delayed gflow. �

In order to analyse the complexity, notice that lines 11 to 16 consists in solving
a system Ax = bi for n − � different bis where n = |V |, � = |Out| and A is
a (n − �) × � matrix. In order to solve these n − � systems, the (n − �) × n-
matrix M = [A|b1 . . . bn−�] is transformed into an upper triangular form within

866 M. Mhalla and S. Perdrix

input : An open graph
output: A generalised flow

gFlow (V, Γ, In, Out) =1

begin2

for all v ∈ Out do3

l(v) := 0 ;4

end5

return gFlowaux (V, Γ, In, Out, 1) ;6

end7

gFlowaux (V, Γ, In, Out, k) =8

begin9

C := ∅ ;10

for all u ∈ V \ Out do11

Solve in F2 : ΓV \Out,Out\InIX = I{u} ;12

if there is a solution X0 then13

C := C ∪ {u} ; g(u) := X0 ; l(u) := k ;14

end15

end16

if C = ∅ then17

return (Out = V, (g, l)) ;18

else19

return gFlowaux (V, Γ, In, Out ∪ C, k + 1) ;20

end21

end22

Algorithm 2. Generalised flow

O(n3) operations using gaussian eliminations for instance, then for each bi a
back substitution within O(n2) operations is used to find xi, if it exists, such
that Axi = bi (see [1]). The back substitutions cost O(n3) operations at each call
of the function. Since there are at most n recursive calls, the overall complexity
is O(n4).

5 Depth Optimality

We consider in this section the depth of the flows produced by the algorithms.
The depth of a given flow is nothing but the depth of any one-way quantum
computation based on the correction strategy described by this flow, even if the
preparation of the initial graph state is taken into account since any graph state
can be prepared in a constant depth [9].

Theorem 3. A maximally delayed causal flow (resp. gflow) has minimum depth.

Proof. Let (g,≺) be a minimum depth causal flow (resp. gflow) of a given open
graph. If (g,≺) is a maximally delayed causal flow (resp. gflow), then let (g′,≺′
) = (g,≺). Otherwise, let (g′,≺′) be a maximally delayed causal flow (resp. gflow)

Finding Optimal Flows Efficiently 867

which is more delayed than (g,≺). (g′,≺′) and (g,≺) have the same depth. Indeed
|∪i=0...d≺ V ≺

′

k | ≥ |∪i=0...d≺ V ≺k | = |V |, thus ∀k > d≺, V ≺k = ∅, so d≺ ≥ d≺
′
. Since

(g,≺) has minimum depth d≺ ≤ d≺
′
, so d≺ = d≺

′
. As a consequence (g′,≺′) is a

minimum-depth maximally delayed causal flow (resp. gflow). Moreover, even if a
maximally delayed causal flow (resp. gflow) of a given open graph is not unique,
one can prove, using Lemmas 2, 3, and 4, that all the maximally delayed causal
flows (resp. gflows) of a given open graph induce the same partition of the vertices,
and as a consequence, have the same depth. Thus, a maximally delayed causal flow
(resp. gflow) has the same depth as (g′,≺′) which is a minimum depth flow. �

Notice that the algorithms 1 and 2 produce maximally delayed flows, thus:

Corollary 1. The previous algorithms find an optimal depth flow.

The depth optimality of the flows found by the previous algorithms have several
decisive implications in one-way quantum computation. First, the depth (opti-
mal or not) of a flow is an upper bound on the depth of the corresponding de-
terministic one-way quantum computation. Moreover, if the one-way quantum
computation is uniformly, stepwise and strongly deterministic (which mainly
means that if the measurements are applied with an error in the angle which
characterises the measurement, then the computation is still deterministic), then
the correction strategy must be described by a gflow [3]. As a consequence the
algorithm 2 produces the optimal correction strategy, and the depth of the gflow
produced by the algorithm is a lower bound on the depth of a uniformly, stepwise
and strongly deterministic one-way quantum computation.

6 Conclusion

Starting from quantum computational problems (determinism in one-way
quanum computation), interesting graph problems have arisen as the property
that the depth of correcting strategies for measurement-based quantum compu-
tation depends on flows in graphs. We have defined in this paper two algorithms
for finding optimal causal flow and gflow. The key points are: the simplification of
the structure of the gflows considering only the maximally delayed flows which
have a nice recursive structure; a backward analysis (start from the outputs)
which allows to take advantage of this structure and avoids backtracking.

From a complexity point of view, an important open question is: given a
graph state and a fixed set of measurements (we relax the uniformity condi-
tion) what would be the depth of an optimal correction strategy. One direction
to answer that question would be to define a weaker flow that is still polyno-
mially computable. One can also consider the characterisation and the depth of
computation in more generalised measurement-based models where other planes
of measurements are allowed. Finally, these results open up new perspectives
of depth optimisation in the more traditional model of quantum circuits: any
circuit can be represented, in the one-way model, as an open graph that has a
causal flow; moreover, the application on this open graph of the gflow algorithm

868 M. Mhalla and S. Perdrix

introduced in this paper produces a gflow of minimal depth. Investigating how
such a one-way quantum computation of minimal depth can be translated back
to a quantum circuit which has a smaller depth than the original circuit (but
probably more ancillary qubits), should lead to a novel approach to reducing the
depth complexity of quantum circuits.

Acknowledgements

The authors would like to thank Elham Kashefi, Philippe Jorrand and Thierry
Boy de la Tour for fruitful discussions.

References

1. Bard, G.V.: Achieving a log(n) Speed Up for Boolean Matrix Operations and
Calculating the Complexity of the Dense Linear Algebra step of Algebraic Stream
Cipher Attacks and of Integer Factorization Methods. Cryptology ePrint Archive,
Report 2006/163 (2006)

2. Broadbent, A., Kashefi, E.: Parallelizing Quantum Circuits. arXiv, quant-ph
0704.1806 (2007)

3. Browne, D., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism
in measurement-based quantum computation. NJP 9, 250 (2007)

4. Danos, V., Kashefi, E.: Determinism in the one-way model PRA, 74 (2006)
5. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. J. ACM 54(2)

(2007)
6. de Beaudrap, N.: Finding flows in the one-way measurement model. Phys. Rev.

A 77, 022328 (2008)
7. de Beaudrap, N.: Complete algorithm to find flows in the one-way measurement

model (2006) arXiv, quant-ph 0603072
8. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.J.:

Entanglement in graph states and its applications. In: Proc. of the Int. School of
Physics Enrico Fermi on Quantum Computers, Algorithms and Chaos (July 2005)
quant-ph/0602096

9. Høyer, P., Mhalla, M., Perdrix, S.: Resources required for preparing graph states.
In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288. Springer, Heidelberg (2006)

10. Pei, M., de Beaudrap, N.: An extremal result for geometries in the one-way mea-
surement model. Quantum Information and Computation 8(5) (2008)

11. Raussendorf, R., Briegel, H.: A one-way quantum computer. PRL 86 (2001)
12. Raussendorf, R., Briegel, H.: Computational model underlying the one-way quan-

tum computer. Quantum Information and Computation 2(6) (2002)
13. Walther, P., Resch, K., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., As-

pelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434
(2005) (quant-ph/0503126)

Optimal Quantum Adversary

Lower Bounds for Ordered Search

Andrew M. Childs1 and Troy Lee2

1 Department of Combinatorics & Optimization and
Institute for Quantum Computing, University of Waterloo

2 Department of Computer Science, Rutgers University

Abstract. The goal of the ordered search problem is to find a particular
item in an ordered list of n items. Using the adversary method, Høyer,
Neerbek, and Shi proved a quantum lower bound for this problem of
1
π

ln n + Θ(1). Here, we find the exact value of the best possible quan-
tum adversary lower bound for a symmetrized version of ordered search
(whose query complexity differs from that of the original problem by at
most 1). Thus we show that the best lower bound for ordered search that
can be proved by the adversary method is 1

π
ln n + O(1). Furthermore,

we show that this remains true for the generalized adversary method
allowing negative weights.

1 Introduction

Search is a fundamental computational task. In a general search problem, one
is looking for a distinguished item in a set, which may or may not have some
structure. At one extreme, in the unstructured search problem, we assume the
set has no additional structure whatsoever. In this setting, a classical search
requires Ω(n) queries to find the distinguished item. Grover’s well-known search
algorithm shows that a quantum computer can find the distinguished item with
high probability in only O(

√
n) queries [15]. A lower bound based on a precursor

to the adversary method shows this is optimal up to a constant factor [6].
At the other extreme of search problems, in the ordered search problem, we

assume our set comes equipped with a total order, and we are able to make
comparison queries, i.e., queries of the form ‘w ≤ z?’. Classically, we can apply
binary search to find the desired item in "log2 n# queries, and an information
theoretic argument shows this is tight.

Quantum computers can speed up ordered search by a constant multiplicative
factor. Farhi, Goldstone, Gutmann, and Sipser developed a class of translation-
invariant ordered search algorithms and showed that one such algorithm, applied
recursively, gives an exact ordered search algorithm using 3 log52 n ≈ 0.526 log2 n
quantum queries [13]. Brookes, Jacokes, and Landahl used a gradient descent
search to find an improved translation-invariant algorithm, giving an upper
bound of 4 log550 n ≈ 0.439 log2 N queries [8]. Childs, Landahl, and Parrilo used
numerical semidefinite optimization to push this approach still further, improv-
ing the upper bound to 4 log605 n ≈ 0.433 log2 n [10]. Ben-Or and Hassidim gave

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 869–880, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

870 A.M. Childs and T. Lee

an algorithm based on adaptive learning that performs ordered search with error
probability o(1) using only about 0.32 log2 n queries [7].

In fact, the quantum speedup for ordered search is not more than a constant
multiplicative factor. Using the quantum adversary method [2], Høyer, Neerbek,
and Shi showed a lower bound of 1

π (lnn−1) ≈ 0.221 log2 n queries [17], improving
on several previous results [1,9,12]. However, the exact value of the best possible
speedup factor, a fundamental piece of information about the power of quantum
computers, remains undetermined.

In this paper, we give some evidence that the asymptotic quantum query
complexity of ordered search is 1

π lnn + O(1). Specifically, we show that the
best lower bound given by the adversary method, one of the most powerful
techniques available for showing lower bounds on quantum query complexity, is
1
π lnn+O(1). We show this both for the standard adversary method [2] and the
recent strengthening of this method to allow negative weights [16]. In particular:

Theorem 1. Let ADV(f) be the optimal bound given by the adversary method
for the function f , let ADV±(f) be the optimal value of the adversary bound
with negative weights, and let OSPn the ordered search problem on n items (sym-
metrized as discussed in Section 4). Then

ADV(OSP2m) = 2
m−1∑

i=0

((
2i
i

)

4i

)2

ADV(OSP2m+1) = 2
m−1∑

i=0

((
2i
i

)

4i

)2

+
((

2m
m

)

4m

)2

.

Furthermore, ADV±(OSPn) ≤ ADV(OSPn) + O(1).

These bounds are asymptotically 2
π lnn + O(1), but are always strictly larger

than the Høyer-Neerbek-Shi bound. Understanding the best possible adversary
bound for small n could be useful, since the best exact algorithms for ordered
search have been found by discovering a good algorithm for small values of n
and using this algorithm recursively. Furthermore, since the adversary quantity
can be viewed as a simplification of the quantum query complexity, we hope that
our analytic understanding of optimal adversary bounds will provide tools that
are helpful for determining the quantum query complexity of ordered search.

2 Adversary Bound

The adversary method, along with the polynomial method [5], is one of the two
main techniques for proving lower bounds on quantum query complexity. The
adversary method was originally developed by Ambainis [2], with roots in the
hybrid method of [6]. It has proven to be a versatile technique, with formula-
tions given by various authors in terms of spectral norms of matrices [4], weight
schemes [3, 21], and Kolmogorov complexity [18]. Špalek and Szegedy showed

Optimal Quantum Adversary Lower Bounds for Ordered Search 871

that all these versions of the adversary method are in fact equivalent [20]. Re-
cently, Høyer, Lee, and Špalek developed a new version of the adversary method
using negative weights which is always at least as powerful as the standard ad-
versary method, and can sometimes give better lower bounds [16].

We will use the spectral formulation of the adversary bound, as this version
best expresses the similarity between the standard and negative adversary meth-
ods. In this formulation, the value of the adversary method for a function f is
given by

ADV(f) := max
Γ≥0
Γ �=0

‖Γ‖
maxi ‖Γ ◦Di‖

,

where Γ is a square matrix with rows and columns indexed by the possible
inputs x ∈ S ⊆ {0, 1}n, constrained to satisfy Γ [x, y] = 0 if f(x) = f(y); Di is a
zero/one matrix with Di[x, y] = 1 if xi = yi and 0 otherwise; A ◦B denotes the
Hadamard (i.e., entrywise) product of matrices A and B; and Γ ≥ 0 means that
the matrix Γ is entrywise non-negative. Note that the set S of possible inputs
need not be the entire set {0, 1}n of all n-bit strings—in other words, f might
be a partial function, as is the case for ordered search.

The negative adversary method is of the same form, but removes the restric-
tion to non-negative matrices in the maximization. Thus the value of the negative
adversary method for a function f is given by

ADV±(f) := max
Γ �=0

‖Γ‖
maxi ‖Γ ◦Di‖

.

The relation of these adversary values to quantum query complexity is given
by the following theorem. Let Qε(f) denote the minimum number of quantum
queries to f needed to compute that function with error at most ε. Then

Theorem 2 ([2, 16]). Let S ⊆ {0, 1}n, and let Σ be a finite set. Then for any
function f : S → Σ,

Qε(f) ≥ 1− 2
√

ε(1− ε)
2

ADV(f) and Qε(f) ≥ 1− 2
√

ε(1− ε)− 2ε
2

ADV±(f).

In particular, Q0(f) ≥ 1
2 ADV±(f) ≥ 1

2 ADV(f).

3 Ordered Search Problem

In the ordered search problem, we are looking for a marked element w in a set
Z = {z1, z2, . . . , zn} equipped with a total order, such that z1 < z2 < · · · < zn.
We are able to make queries of the form ‘w ≤ z?’ for any z ∈ Z. If w = zi, then
the answer to this query will be ‘no’ for z = zj with j < i, and will be ‘yes’
otherwise. We can model this problem as finding the first occurrence of a ‘1’ in
a string x ∈ {0, 1}n where xj = 0 for j < i and xj = 1 otherwise. Thus we have
transformed the input into a binary string, such that the queries are to the bits

872 A.M. Childs and T. Lee

of the input. The goal is to determine which input we have—in other words, the
function takes a different value on each input.

In general, when trying to determine the query complexity of a function f , it is
helpful to consider its symmetries, as expressed by its automorphism group. We
say that π ∈ Sn, a permutation of the n bits of the input, is an automorphism of
the function f provided it maps inputs to inputs, and f(x) = f(y)⇔ f(π(x)) =
f(π(y)). The set of automorphisms of any function on n-bit inputs is a subgroup
of Sn, called the automorphism group of that function.

The ordered search problem as formulated above has a trivial automorphism
group, because any nontrivial permutation maps some input to a non-input.
However, we can obtain a more symmetric function, with only a small change to
the query complexity, by putting the input on a circle [13]. Now let the inputs
have 2n bits, and consist of those strings obtained by cyclically permuting the
string of n 1’s followed by n 0’s. Again, we try to identify the input, so the func-
tion OSPn takes a different value on each of the 2n inputs. The automorphism
group of OSPn is isomorphic to Z2n, a fact that we will exploit in our analysis.

The query complexity of this extended function is closely related to that of
the original function. Given an n-bit input x, we can simulate a 2n-bit input by
simply querying x for the first n bits, and the complement of x for the second n
bits. In the other direction, to simulate an n-bit input using a 2n-bit input, first
query the nth bit of the 2n-bit input. If it is 1, then we use the first half of the
2n-bit input; otherwise we use the second half (or, equivalently, the complement
of the first half). Thus the query complexity of the extended function is at least
that of the original function, and at most one more than that of the original
function, a difference that is asymptotically negligible.

4 Adversary Bounds for Ordered Search

Finding the value of the adversary method is an optimization problem. We can
simplify this problem using the symmetry of OSPn. The same simplification
applies to both the standard and negative adversary bounds, so we treat the two
cases simultaneously. Specifically, we use the following result:

Theorem 3 (Automorphism principle [16]). Let G be the automorphism
group of f . Then there is an optimal adversary matrix Γ satisfying Γ [x, y] =
Γ [π(x), π(y)] for all π ∈ G and all pairs of inputs x, y. Furthermore, if G acts
transitively on the inputs (i.e., if for every x, y there is an automorphism taking
x to y), then the uniform vector (i.e., the vector with each component equal to
1) is a principal eigenvector of Γ .

The automorphism group for OSPn is generated by the element (1 2 3 . . .2n)
that cyclically permutes the list. This group acts transitively on the inputs, so
by the automorphism principle, the uniform vector is a principal eigenvector of
the adversary matrix. In addition, any input pairs (x, y) and (x′, y′) that have the
same Hamming distance are related by an automorphism. Thus we may assume
that the adversary matrix has at most n distinct entries, and that the (x, y)

Optimal Quantum Adversary Lower Bounds for Ordered Search 873

entry depends only on the Hamming distance between x and y. As all strings
have the same Hamming weight, the Hamming distance between any pair is
even. We let Γ [x, y] = γi when x, y have Hamming distance 2i. Since all rows
have the same sum, the uniform vector is indeed an eigenvector, corresponding
to the eigenvalue γn + 2

∑n−1
i=1 γi.

Transitivity of the automorphism group also implies that all matrices Γ ◦Di
have the same norm, so it is sufficient to consider Γ ◦D2n. This matrix consists of
two disjoint blocks, where each block is an n×n symmetric Toeplitz matrix with
first row equal to (γn, γn−1, . . . , γ1), denoted Toeplitz(γn, γn−1, . . . , γ1). Thus we
have reduced the adversary bound to the semidefinite program (SDP)

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, γn−1, . . . , γ1)‖ ≤ 1, γi ≥ 0 (P)

in the case of non-negative weights, and

max γn + 2
n−1∑

i=1

γi subject to ‖Toeplitz(γn, γn−1, . . . , γ1)‖ ≤ 1 (P±)

in the case of the negative adversary method. We emphasize that the automor-
phism principle ensures there is no loss of generality in considering adversary
matrices of this form—this program has the same optimal value as the best
possible adversary bound.

We will also use the duals of these SDPs to give upper bounds on the adversary
methods. Straightforward dualization shows that the dual of (P) is

min Tr(P) subject to P 5 0, Tri(P) ≥ 1 for i = 0, . . . , n− 1 (D)

(where Tri(P) :=
∑n−i
j=1 P [j, i + j]), and that the dual of (P±) is

min Tr(P+Q) subject to P,Q 5 0, Tri(P−Q) = 1 for i = 0, . . . , n−1 (D±)

where P 5 0 means that the matrix P is positive semidefinite.
In general, by a solution of an SDP, we mean a choice of the variables that

satisfies the constraints, but that does not necessarily extremize the objective
function. If a solution achieves the optimal value of the objective function, we
refer to it as an optimal solution.

5 Non-negative Adversary

5.1 Høyer, Neerbek, Shi Construction

Within the framework described above, the lower bound of [17] can be given
very simply. Set γi = 0 if i > �n/2� and γi = 1/(πi) otherwise. This gives an
objective function of

2
π

�n/2�∑

i=1

1
i
∼ 2

π
lnn.

874 A.M. Childs and T. Lee

Under this choice of weights, the matrix Γ ◦D2n consists of four disjoint nonzero
blocks (and two additional 2×2 zero blocks in the case of n odd), so its spectral
norm is equal to the largest spectral norm of these blocks. Each nonzero block is
equivalent up to permutation to 1/π times Z�n/2�, where Zm is the half Hilbert
matrix of size m ×m, the Hankel matrix with entries Zm[i, j] = 1/(i + j − 1)
for i + j − 1 ≤ m, and Zm[i, j] = 0 otherwise. This may be compared with the
usual Hilbert matrix, whose (i, j) entry is 1/(i+j−1). The spectral norm of any
finite Hilbert matrix is at most π, so as the half Hilbert matrix is non-negative
and entrywise less than the Hilbert matrix, its spectral norm is also at most π.
(See the delightful article of Choi for this and other interesting facts about the
Hilbert matrix [11].) This shows that the spectral norm of each matrix Γ ◦Di
is at most 1, giving a bound on the zero-error quantum query complexity of
ordered search of approximately 1

π lnn.

5.2 Optimal Non-negative Construction

It turns out that one can do slightly better than the Hilbert weight scheme
described above. Here we construct the optimal solution to the adversary bound
for OSPn with non-negative weights.

A key role in our construction will be played by the sequence {ξi}, where

ξi :=

(
2i
i

)

4i
. (1)

This sequence has many interesting properties. First, it is monotonically decreas-
ing. Consider the ratio

ξi+1

ξi
=

(
2(i+1)
i+1

)
4i

(
2i
i

)
4i+1

=
2(i + 1)(2i + 1)

4(i + 1)2
=

i + 1/2
i + 1

< 1.

Indeed, this shows that {ξi} is a hypergeometric sequence with the generating
function

g(z) :=
∞∑

i=0

ξiz
i = 1F0(1

2 ; z) =
1√

1− z
.

These observations lead us to the next interesting property of our sequence.

Proposition 4. For any j,
∑j
i=0 ξiξj−i = 1.

Proof. The product g(z)2 is the generating function for the convolution appear-
ing on the left hand side. But g(z)2 = (1− z)−1, which has all coefficients equal
to 1, as claimed. (For an alternative proof, using the fact that ξi = (−1)i

(−1/2
i

)
,

see [14, p. 187].) ��

This proposition shows that the sequence {ξi} behaves nicely under convolution.
We will also consider the behavior of {ξi} under correlation. Define

Am(j) :=
m−j−1∑

i=0

ξiξi+j .

Optimal Quantum Adversary Lower Bounds for Ordered Search 875

As {ξi} is a monotonically decreasing sequence, it follows that Am(j) is a mono-
tonically decreasing function of j. With these definitions in hand, we are now
ready to construct our adversary matrix.

Proof (Theorem 1, lower bound on non-negative adversary). We first consider
the case where n = 2m is even. In (P), let

γi = Am(i− 1)−Am(i).

As Am(j) is a monotonically decreasing function of j, we have γi ≥ 0. Also note
that Am(i) = 0 for i ≥ m, so Toeplitz(γn, . . . , γ1) is bipartite.

The objective function is a telescoping series, so the value of the SDP is

2Am(0) = 2
m−1∑

i=0

ξ2
i ,

as claimed. Thus it suffices to show that ‖Toeplitz(γn, . . . , γ1)‖ ≤ 1.
We will show that, in fact, ‖Toeplitz(γn, . . . , γ1)‖ = 1. We do this by ex-

hibiting an eigenvector u with eigenvalue 1, and with strictly positive entries.
This will finish the proof by the following argument: As Toeplitz(γn, . . . , γ1) is a
non-negative, symmetric matrix, its spectral norm is equal to its largest eigen-
value. By the Perron-Frobenius theorem, it has a principal eigenvector with
non-negative entries. As the eigenvectors of a symmetric matrix corresponding
to distinct eigenvalues are orthogonal, and no non-negative vector can be orthog-
onal to u, we conclude that the largest eigenvalue must agree with the eigenvalue
of u, and so is 1.

The relevant eigenvector of Toeplitz(γn, . . . , γ1) is

u := (ξ0, ξ1, . . . , ξm−1, ξm−1, . . . , ξ1, ξ0). (2)

Computing Toeplitz(gn, . . . , g1)u, we see that u is an eigenvector with eigenvalue
1 provided

m−j−1∑

i=0

(
Am(i + j)−Am(i + j + 1)

)
ξi = ξj (3)

for each j = 0, 1, . . . ,m− 1.
We prove (3) using generating functions. Define a complementary function to

g(z), namely the polynomial h(z) := ξm−1 + ξm−2z + . . .+ ξ0z
m−1, and consider

the product g(z)h(z). For i = 0, . . . ,m− 1, the coefficient of zi in this series is
Am(m − i − 1), so the coefficient of zi in (1 − z)g(z)h(z) is Am(m − i − 1) −
Am(m− i). Thus the coefficient of zm−j−1 in (1 − z)g(z)h(z)g(z) = h(z) is the
left hand side of (3). But the coefficient of zm−j−1 in h(z) is the coefficient of
zj in g(z), which is simply ξj , the right hand side of (3).

For n = 2m + 1 odd, let

γi =
1
2
(
Am+1(i− 1)−Am+1(i) + Am(i− 1)−Am(i)

)
.

876 A.M. Childs and T. Lee

i

γ
i

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 1. Comparison of the weights γi with n = 16 for various adversary bounds:
the bound of Høyer, Neerbek, and Shi (circles), the optimal non-negative adversary
(squares), and the optimal negative adversary (triangles)

Then the objective function is

Am+1(0) + Am(0) = 2
m−1∑

i=0

ξ2
i + ξ2

m

as claimed. Now it suffices to show that

u := (ξ0, ξ1, . . . , ξm−1, ξm, ξm−1, . . . , ξ1, ξ0) (4)

is an eigenvector of Toeplitz(γn, . . . , γ1) with eigenvalue 1. (Note that for n odd,
Toeplitz(γn, . . . , γ1) is irreducible, so u is actually the unique principal eigen-
vector.) For all but the middle component of the vector Toeplitz(γn, . . . , γ1)u,
the required condition is simply the average of (3) and the same equation with
m replaced by m + 1. For the middle component, we require Am+1(m)ξ0 = ξm,
which holds because Am+1(m) = ξ0ξm and ξ0 = 1. ��

In the bound of Høyer, Neerbeck, and Shi, the weight given to a pair (x, y) is
inversely proportional to the Hamming distance between x and y. This follows
the intuition that pairs which are easier for an adversary to distinguish should
be given less weight. It is interesting to note that the optimal weight scheme
does not have this property—indeed, at large Hamming distances the weights
actually increase with increasing Hamming distance, as shown in Figure 1.

5.3 Dual

We now show that this bound is optimal by giving a matching solution to the
dual SDP (D).

Optimal Quantum Adversary Lower Bounds for Ordered Search 877

Proof (Theorem 1, upper bound on non-negative adversary). Fix n, and let u be
the vector of length n defined by (2) if n is even, or by (4) if n is odd. Notice
that in either case, ui = un−i+1. Let P = uuT , a rank one matrix. This matrix
is positive semidefinite, and its trace is ‖u‖2, which matches the value of our
solution to the primal problem in the previous section. Thus it suffices to verify
that Tri(P) ≥ 1. We have

Tri(P) =
n−i∑

j=1

P [j, i + j] =
n−i∑

j=1

ujui+j =
n−i∑

j=1

ujun−i−j+1.

Since {ξi} is monotonically decreasing in i, we have uj ≥ ξj−1, with equality
holding when j ≤ "n/2#. Thus

Tri(P) ≥
n−i∑

j=1

ξj−1ξn−i−j = 1

by Proposition 4. When i > �n/2�, this inequality holds with equality. ��

Having established the optimal adversary bound for OSPn, let us examine its
asymptotic behavior. Observing that the generating function for {ADV(OSP2m)}
is 4
πK(z)/(1− z), where K(z) = π

2 2F1(1
2 ,

1
2 ; 1, z) is the complete elliptic integral

of the first kind, and applying Darboux’s method to estimate the asymptotic be-
havior of its coefficients, one can show

Corollary 5. ADV(OSPn) = 2
π (lnn + γ + ln 8) + O(1/n), where γ ≈ 0.577 is

the Euler-Mascheroni constant.

For comparison, the bound of Høyer, Neerbek, and Shi for OSPn is 2
πH�n/2� =

2
π (lnn + γ − ln 2) + O(1/n), where Hn :=

∑n
i=1

1
i is the nth harmonic number.

(Note that for the original, unsymmetrized ordered search problem treated in
[17], the bound is 2

π (Hn − 1).) Indeed, the optimal value of the non-negative
adversary is considerably better for small values of n, as shown in Figure 2.

6 Negative Adversary

We now turn to the negative adversary method, and give an upper bound on
ADV±(OSPn) by exhibiting a solution to (D±).

Notice that if we find a symmetric matrix R such that Tri(R) = 1 for i =
0, . . . , n− 1, we can translate this into a solution to (D±) by decomposing R =
P−Q as the difference of two positive semidefinite matrices with disjoint support,
letting P be the projection of R onto its positive eigenspace and letting Q be the
projection of R onto its negative eigenspace. In this case, Tr(P + Q) is simply
‖R‖Tr, the sum of the absolute values of the eigenvalues of R.

In looking for a matrix R satisfying Tri(R) = 1 for all i, a natural starting point
is our solution to the non-negative dual (D). Recall that in this construction, for

878 A.M. Childs and T. Lee

n
5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 2. Comparison of adversary lower bounds for ordered search: the bound of Høyer,
Neerbek, and Shi (circles), the optimal non-negative adversary (squares), and the op-
timal negative adversary (triangles). The lower curve shows the asymptotic approxi-
mation 2

π
(ln n + γ − ln 2) of the Høyer-Neerbek-Shi bound, and the upper curve shows

the asymptotic approximation 2
π
(ln n + γ + ln 8) of the non-negative adversary.

i > "n/2#, the condition Tri(P) = 1 held with equality. We imitate that construc-
tion by letting

R[i, j] =

{
ξiξn−j+1 i ≤ j

ξn−i+1ξj i > j.

Above the diagonal, R looks like a rank one matrix, but it is symmetrized below
the diagonal. By the convolution property of the ξi’s we see that Tri(R) = 1 for
i = 0, . . . , n− 1.

To upper bound the trace norm of R, the following lemma will be helpful:

Lemma 6. Let M be an n× n matrix with entries

M [i, j] =

{
viwj i ≤ j

vjwi i > j
(5)

where the vectors v, w ∈ Rn have positive components, and satisfy vi

vi+1
> wi

wi+1

for i = 1, . . . , n − 1. Then M has one positive eigenvalue and n − 1 negative
eigenvalues, and its trace norm satisfies

2‖v‖‖w‖ − v · w ≤ ‖M‖Tr ≤ 2‖v‖‖w‖+ v · w.

We omit the proof, which is an application of Sylvester’s law of inertia.
Now we are ready to finish the proof of Theorem 1.

Optimal Quantum Adversary Lower Bounds for Ordered Search 879

Proof (Theorem 1, upper bound on negative adversary). The matrix R defined
above is of the form (5) with v = (ξ0, ξ1, . . . , ξn−1) and w = (ξn−1, ξn−2, . . . , ξ0),
the reversal of v. By Proposition 4, Tri(R) = 1 for i = 0, . . . , n − 1, so R is
a solution of (D±). Since v is monotonically increasing and w is monotonically
decreasing, the conditions of Lemma 6 are satisfied, and thus ‖R‖Tr ≤ 2‖v‖2 +
1 = ADV(OSP2n) + 1.

Finally, from Corollary 5 we have ADV(OSP2n) − ADV(OSPn) ≤ 2
π ln 2 +

O(1/n), so ADV±(OSPn) ≤ ADV(OSPn) + 1 + 2
π ln 2 + O(1/n). ��

Note that the solution of (D±) given above is not the optimal one. For fixed n,
we can find the optimal solution using a numerical SDP solver. Figure 1 shows
the optimal weights for n = 16, and Figure 2 shows the value of the optimal
negative adversary bound for n = 2 through 32.

7 Conclusion

We have given upper bounds on the lower bounds provable by the quantum ad-
versary method for the ordered search problem, showing that both the standard
and negative adversary values are 2

π lnn + Θ(1). In particular, we have shown
that establishing the quantum query complexity of ordered search will either
require a lower bound proved by a different technique, or an improved upper
bound. On the lower bound side, one could investigate the recently developed
multiplicative adversary technique of Špalek [19]. However, we feel that it is more
likely that the 1

π lnn lower bound is in fact tight, and that further improvement
will come from algorithms. As the current best upper bounds are ad hoc, based
on numerical searches, they can almost certainly be improved.

The disagreeable reader may argue that upper bounds on lower bounds are
only meta-interesting. We counter this objection as follows. Barnum, Saks, and
Szegedy have exactly characterized quantum query complexity in terms of an
SDP [4]. The adversary method can be viewed as a relaxation of this program,
removing some constraints and focusing only on the output condition. Thus, our
results can be viewed as solving a simplification of the quantum query complexity
SDP, which might provide insight into the solution of the full program. Indeed,
we hope that the results presented here will be a useful step toward determining
the quantum query complexity of ordered search.

Acknowledgments

We thank Peter Høyer for stimulating discussions, and for suggesting an alter-
native proof of (3). This work was done in part while AMC was at the Caltech
IQI, where he received support from NSF Grant PHY-0456720 and ARO Grant
W911NF-05-1-0294; and while TL was at the LRI, Université Paris-Sud, where
he was was supported by a Rubicon grant from the NWO and by the European
Commission under the QAP Project, funded by the IST directorate as contract
no. 015848.

880 A.M. Childs and T. Lee

References

[1] Ambainis, A.: A better lower bound for quantum algorithms searching an ordered
list. In: Proc. 40th FOCS, pp. 352–357 (1999)

[2] Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of Computer
and System Sciences 64(4), 750–767 (2002); Preliminary version in STOC 2000

[3] Ambainis, A.: Polynomial degree vs. quantum query complexity. Journal of Com-
puter andSystemSciences 72(2), 220–238 (2006); Preliminary version in FOCS2003

[4] Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semidefinite
programming. In: Proc. 18th CCC, pp. 179–193 (2003)

[5] Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. Journal of the ACM 48(4), 778–797 (2001); Preliminary version
in FOCS 1998

[6] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM Journal on Computing 26, 1510–1523 (1997)

[7] Ben-Or, M., Hassidim, A.: Quantum search in an ordered list via adaptive learn-
ing, quant-ph/0703231

[8] Brookes, E.M., Jacokes, M.B., Landahl, A.J.: An improved quantum algorithm
for searching an ordered list (2004)

[9] Buhrman, H., de Wolf, R.: A lower bound for quantum search of an ordered list.
Information Processing Letters 70(5), 205–209 (1999)

[10] Childs, A.M., Landahl, A.J., Parrilo, P.A.: Improved quantum algorithms for the
ordered search problem via semidefinite programming. Physical Review A 75(3),
032335 (2007)

[11] Choi, M.-D.: Tricks or treats with the Hilbert matrix. American Mathematical
Monthly 90(5), 301–312 (1983)

[12] Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: A limit on the speed of quantum
computation for insertion into an ordered list, quant-ph/9812057

[13] Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Invariant quantum algorithms
for insertion into an ordered list, quant-ph/9901059

[14] Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-
Wesley, Reading (1989)

[15] Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack.
Physical Review Letters 79, 325–328 (1997); Preliminary version in STOC 1996

[16] Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In:
Proc. 39th STOC, pp. 526–535 (2007)

[17] Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sort-
ing, and element distinctness. Algorithmica 34(4), 429–448 (2002); Preliminary
version in ICALP 2001

[18] Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query
complexity using Kolmogorov arguments. In: Proc. 19th CCC, pp. 294–304 (2004)

[19] Špalek, R.: The multiplicative quantum adversary. In: Proc. 23rd CCC (to appear,
2008), available at quant-ph/0703237

[20] Špalek, R., Szegedy, M.: All quantum adversary methods are equivalent. Theory
of Computing 2(1), 1-18 (2006); Preliminary version In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1–18. Springer, Heidelberg (2005)

[21] Zhang, S.: On the power of Ambainis’s lower bounds. Theoretical Computer
Science 339(2-3), 241–256 (2005); Preliminary version In: Dı́az, J., Karhumäki,
J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 241–256.
Springer, Heidelberg (2004)

Quantum SAT for a Qutrit-Cinquit Pair Is

QMA1-Complete

Lior Eldar and Oded Regev�

School of Computer Science
Tel-Aviv University

Abstract. We show that the quantum SAT problem is QMA1-complete
when restricted to interactions between a three-dimensional particle and
a five-dimensional particle. The best previously known result is for par-
ticles of dimensions 4 and 9. The main novel ingredient of our proof is a
certain Hamiltonian construction named the Triangle Hamiltonian. It al-
lows to verify the application of a 2-qubit CNOT gate without generating
explicitly interactions between pairs of workspace qubits. We believe this
construction may contribute to progress in other Hamiltonian-related
problems as well as in adiabatic computation.

1 Introduction

In the k-SAT problem we are given a formula on n binary variables x1, . . . , xn
of the form

Φ1 ∧ Φ2 ∧ · · · ∧ Φl

where each clause Φi : {0, 1}k → {T, F} for 1 ≤ i ≤ l is a function on k of
the variables.1 We are then asked whether there exists an assignment to these
variables that satisfies simultaneously all clauses. This problem is known to be
NP-complete for k ≥ 3 and solvable in polynomial time for k ≤ 2. For instance,
the following is a satisfiable 2-SAT instance on binary variables x1, x2, x3,

(x1 ∨ ¬x2) ∧ (x1 = x3). (1)

One may investigate the behavior of such formulas when the variables are not
necessarily binary. For instance, the 2-SAT problem with ternary variables is NP-
complete as it includes the NP-complete 3-coloring problem as a special case (see,
e.g., [1]). We denote this problem by (3, 3)-SAT. Moreover, the 2-SAT problem,
with each clause containing one binary variable and one ternary variable, which
we denote by (2, 3)-SAT, is still NP-complete. This can be shown, for instance,
by a simple reduction from 3-coloring.
� Supported by the Binational Science Foundation, by the Israel Science Foundation,

and by the European Commission under the Integrated Project QAP funded by the
IST directorate as Contract Number 015848.

1 Strictly speaking, this problem is known as the k-Constraint Satisfaction Problem
(k-CSP) whereas k-SAT is the restriction of k-CSP to formulas in conjunctive normal
form. We choose to keep this notation for consistency with previous results.

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 881–892, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

882 L. Eldar and O. Regev

These results provide a complete understanding of the 2-SAT problem: for
any a, b ≥ 2 the (a, b)-SAT problem is in P if a = b = 2 and NP-complete
otherwise. Regarding the 3-SAT problem, it is known to be NP-complete even if
all variables are binary, thereby giving, again, a complete understanding of the
problem, i.e., for all a, b, c ≥ 2, (a, b, c)-SAT is NP-complete.2

A closely related problem is MAX-k-SAT in which we are asked for the max-
imum number of simultaneously satisfiable clauses in a given formula. Clearly,
MAX-k-SAT is at least as hard as k-SAT and, in fact, is known to be NP-
complete for all k ≥ 2 (see, e.g., [1]).

An extensive study has been carried out in recent years to understand the
behavior of the quantum analogs of MAX-k-SAT and k-SAT, known as the k-
local Hamiltonian problem and the quantum k-SAT problem, respectively.

The k-local Hamiltonian problem. In the k-local Hamiltonian problem, we are
given a Hermitian operator H , often referred to as a Hamiltonian, that acts
on n qubits and can be written as a sum of Hermitian operators, each acting
nontrivially on at most k qubits. We are asked whether H has an eigenvalue less
than a, or that all of H ’s eigenvalues are greater than b, where a and b are two
constants.

Notice that MAX-k-SAT is essentially a special case of the k-local Hamiltonian
problem: any MAX-k-SAT formula can be written as a Hamiltonian whose lowest
eigenvalue is exactly the smallest possible number of unsatisfied clauses in any
assignment, and its corresponding eigenvector is the binary assignment that
achieves this number. For instance, the formula in (1) can be written as the
following sum of projectors,

H = |01〉〈01|x1,x2
+ (|00〉〈00|+ |11〉〈11|)x1,x3 .

Kitaev has shown [2, Chapter 14] that the 5-local Hamiltonian problem is
complete for a complexity class called QMA. This class consists of all promise
problems whose membership can be verified efficiently by a quantum circuit
when given a quantum witness state. QMA is often regarded as the quantum
analog of NP, although it is more precisely described as the quantum analog of
the classical class MA.

Kitaev’s result has later been improved by Kempe and Regev [3] to the 3-local
Hamiltonian problem, and finally by Kitaev, Kempe, and Regev who showed
[4] that even the 2-local Hamiltonian problem is QMA-complete. Thus, the k-
local Hamiltonian problem is QMA-complete for all k ≥ 2, in analogy to the
behavior of the MAX-k-SAT problem in the classical world. These results provide
a complete understanding of the complexity of the k-local Hamiltonian problem.

The quantum k-SAT problem. In contrast to our knowledge regarding the k-local
Hamiltonian problem, our understanding of the quantum analog of the k-SAT
2 We remark that important open questions remain regarding the complexity of other

constraint satisfaction problems, most notably the dichotomy conjecture formulated
by Feder and Vardi in 1993.

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 883

problem is far from satisfactory. In the quantum k-SAT problem, defined by Bravyi
[5], we are given a set of projectors on a system of n qubits, each acting nontriv-
ially on at most k qubits, and asked whether they have a common groundstate or
whether the lowest eigenvalue of their sum is at least 1/poly(n). This problem is
essentially equivalent to the k-local Hamiltonian problem, except that in ‘yes’ in-
stances there must exist a common groundstate of all Hamiltonians (the restriction
to projectors is for convenience and is essentially without loss of generality).

Bravyi proved two fundamental results regarding the quantum k-SAT prob-
lem. First he showed that the problem can be solved in polynomial time for
k = 2. His second result is a completeness result for all k ≥ 4. More precisely,
he showed that for all k ≥ 4, quantum k-SAT is complete for a class known as
QMA1, which is defined similarly to QMA except for the extra restriction that
the verifier can be made to accept positive instances with probability 1 (the
classical analog of this class, MA1, is known to be equal to MA). Whether or
not the quantum 3-SAT problem, known to be NP-hard, is also QMA1-complete
remains an important and challenging open question.

As in the classical world, it is interesting to analyze the complexity of these
problems in the non-binary setting. For instance, one might ask what are the
lowest values of a and b such that the quantum (a, b)-SAT problem is still QMA1-
complete, and a similar question regarding 3-particle interactions, i.e., what are
the minimal values of a, b, c such that the quantum (a, b, c)-SAT problem is
QMA1-complete. Some progress in this direction has recently been made by
Nagaj and Mozes [6] who have shown that quantum (a, b, c)-SAT is QMA1-
complete for all a ≥ 3, b ≥ 2 and c ≥ 2. Additionally, they have claimed that
quantum (a, b)-SAT is still QMA1-complete for a = 4, b = 9.

Our Result. In this paper we show that the quantum (a, b)-SAT problem is
QMA1-complete even when a = 3 and b = 5. We state this as the main theorem
of this paper:

Theorem 1. Quantum (3, 5)-SAT is QMA1-complete.

We summarize the known results in Table 1.

Table 1. Best known results for quantum (a, b)-SAT (NP-H stands for NP-hard, and
Q1-C stands for QMA1-complete). Prior to our result, the highlighted entries were only
known to be NP-hard.

2 3 4 5 6 7 8 9 10
2 P NP-H NP-H NP-H NP-H NP-H NP-H NP-H NP-H

3 NP-H NP-H Q1-C Q1-C Q1-C Q1-C Q1-C Q1-C
4 NP-H Q1-C Q1-C Q1-C Q1-C Q1-C Q1-C

5 Q1-C Q1-C Q1-C Q1-C Q1-C Q1-C

6 Q1-C Q1-C Q1-C Q1-C Q1-C

7 Q1-C Q1-C Q1-C Q1-C

8 Q1-C Q1-C Q1-C

9 Q1-C Q1-C

884 L. Eldar and O. Regev

|ψ〉 ⊗ |t− 1〉 |ψ〉 ⊗ |t〉

X|ψ〉 ⊗ |t + 1〉

Ucnot|ψ〉 ⊗ |t + 2〉

Ucnot|ψ〉 ⊗ |t + 3〉
H∇,1

prop

H∇,2
prop

H∇,3
prop

Fig. 1. The Triangle Hamiltonian Construction

The Triangle Construction. The main novel ingredient of our proof is a certain
Hamiltonian construction named the Triangle Hamiltonian. It allows to verify
the application of a 2-qubit CNOT (controlled-NOT) gate without generating
explicit interactions between workspace qubits. The only other construction we
are aware of that is capable of achieving this is due to Kempe et al. [4]. Unlike
their construction, however, our construction is direct and is not based on per-
turbation techniques, which seem inadequate for proving QMA1-completeness
results.

The Triangle Hamiltonian verifies the application of a CNOT gate by exam-
ining separately correct application of the gate on the subspace in which the
control qubit is |0〉 and on the subspace in which the control qubit is |1〉. Thus,
this construction can be easily extended to any arbitrary 2-qubit controlled gate.
In Figure 1 we illustrate the main idea of this construction.

For those familiar with previous Hamiltonian constructions, we shall briefly
present its essential components. Assuming orthogonal clock states |t〉, |t + 1〉,
|t + 2〉 the sum of the following Hamiltonians verifies that if |t〉 is in tensor with
an arbitrary workspace state |ψ〉 then the workspace state in tensor with |t + 2〉
is Ucnot|ψ〉:

H∇,1
prop = |t〉〈t|+ |t + 1〉〈t + 1| −Xtgt ⊗ |t + 1〉〈t| −Xtgt ⊗ |t〉〈t + 1|

H∇,2
prop = |1〉〈1|ctl ⊗ (|t + 1〉 − |t + 2〉)(〈t + 1| − 〈t + 2|)

H∇,3
prop = |0〉〈0|ctl ⊗ (|t〉 − |t + 2〉)(〈t| − 〈t + 2|)

where ctl is the control qubit and tgt is the target qubit. The first Hamiltonian
H∇,1
prop verifies the application of an X gate on the target qubit in the transi-

tion from time |t〉 to time |t + 1〉. Thus, if |t〉 is in tensor with a workspace
state |ψ〉, then |t + 1〉 is in tensor with Xtgt|ψ〉. The two other Hamiltonians
verify that in the subspace in which the control qubit is |1〉, the state at time
|t + 2〉 agrees with that at time |t + 1〉 (i.e. Xtgt|ψ〉) whereas in the subspace in
which the control qubit is |0〉, the state at time |t + 2〉 agrees with that at time
|t〉 (i.e. |ψ〉).

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 885

Applications of the Triangle Construction. We believe that the triangle construc-
tion presented in this paper may contribute to progress in similar Hamiltonian-
oriented problems, as it decouples in a simple fashion the dependency between
computationally-coupled qubits. Indeed, we were recently notified that this con-
struction is being used by Nagaj and Love [7] to prove the completeness of local
Hamiltonian problems involving Hamiltonians of a very simple form, namely
those composed of only X and Z. Furthermore, we conjecture that the triangle
construction may lead to improvements in adiabatic computation (see, e.g., [8]),
especially in terms of running time.

Open Questions. Several important open questions remain. It would be inter-
esting to classify the complexity of quantum (a, b)-SAT for all cases marked as
NP-hard in Table 1. These problems are known to be NP-hard, but it is unknown
whether they are also QMA1-complete, or whether they lie in some intermediate
complexity class. Note in this respect, that the quantum (4, 2)-SAT problem is
essentially a special case of the quantum 3-SAT problem (i.e., quantum (2, 2, 2)-
SAT), which is also an open problem.

It would seem natural that the Triangle construction could help resolve the
open question regarding the quantum 3-SAT ((2, 2, 2)-SAT) problem. Indeed,
we have tried to apply it to prove that quantum 3-SAT is QMA1-complete. Un-
fortunately, it seems very difficult to obtain a sufficiently strong clock encoding.
Nagaj and Mozes [6], who had faced similar difficulties, have even suggested that
the quantum 3-SAT problem might not be QMA1-complete after all.

2 Preliminaries

The classes QMA and QMA1. The class QMA is a class of promise problems.
A promise problem is a pair of disjoint sets of strings (Lyes, Lno) corresponding
to the positive and negative instances of the problem. For a given string x ∈
Lyes ∪ Lno we are asked whether x ∈ Lyes or x ∈ Lno.

Definition 1. A promise problem L is in QMA if there exists a polynomial
p, and a classical poly-time algorithm A, that for every x ∈ {0, 1}∗ returns a
quantum circuit Vx = A(x) that accepts p(|x|) qubits as input and is allowed to
use p(|x|) ancilla qubits, such that

if x ∈ Lyes, then ∃|η〉 ∈ (C2)⊗p(|x|) s.t. Prob(Vx|η〉) ≥ 2/3, and

if x ∈ Lno, then ∀|η〉 ∈ (C2)⊗p(|x|) we have Prob(Vx|η〉) ≤ 1/3

where Prob(Vx|η〉) is the probability that measuring the output qubit after the
computation will result in state |1〉.

It is known that one can replace the constants 2/3, 1/3 by 1 − ε, ε where ε =
ε(|x|) = 2−poly(|x|) without affecting the resulting class.

Definition 2. A promise problem L is in QMA1 if there exists a polynomial
p, and a classical poly-time algorithm A, that for every x ∈ {0, 1}∗ returns a

886 L. Eldar and O. Regev

quantum circuit Vx = A(x) that accepts p(|x|) qubits as input and is allowed to
use p(|x|) ancilla qubits, such that

if x ∈ Lyes, then ∃|η〉 ∈ (C2)⊗p(|x|) s.t. Prob(Vx|η〉) = 1, and

if x ∈ Lno, then ∀|η〉 ∈ (C2)⊗p(|x|) we have Prob(Vx|η〉) ≤ 1/3

where Prob(Vx|η〉) is the probability that measuring the output qubit after the
computation will result in state |1〉.

It is known that one can replace the constant 1/3 by any 2−poly(|x|) without
affecting the resulting result. Note that NP ⊆ QMA1 ⊆ QMA.

The Local Hamiltonian and the Quantum SAT problems. We define the k-local
Hamiltonian problem, the quantum analog of MAX-k-SAT as follows:

Definition 3. In the k-local Hamiltonian problem we are given as input m =
poly(n) Hamiltonians H1, . . . , Hm on a system of n qubits, each acting nontriv-
ially on at most k qubits and satisfying 0 ≤ Hj ≤ I, as well as two numbers a, b
such that b− a = 1/poly(n). We are then asked whether the lowest eigenvalue of
H =

∑m
j=1 Hj is at most a (‘yes’ instance) or at least b (‘no’ instance).

The k-local Hamiltonian problem is known to be in QMA for any constant k [2].
We proceed to define the quantum k-SAT problem, the quantum analog of k-
SAT.

Definition 4. In the quantum k-SAT problem we are given m = poly(n) pro-
jectors Π1, . . . , Πm on a system of n qubits, each acting nontrivially on at most
k qubits. We are asked whether there exists a common groundstate of all projec-
tors, i.e., a state |ψ〉 ∈ (C2)⊗n such that for all j,Πj |ψ〉 = 0 (‘yes’ instance), or
whether for all |ψ〉,

∑
j 〈ψ|Πj |ψ〉 ≥ 1/poly(n) (‘no’ instance).

The quantum k-SAT problem is known to be in QMA1 for any constant k [5].

The particle system. The Hamiltonians in this paper, as in previous papers,
operate on a system of particles comprised of a workspace subsystem and a clock
subsystem,

Htotal = Hwork ⊗Hclock.

Throughout this paper we use the tensor symbol ⊗ to separate the work sub-
system (left) from the clock subsystem (right).

3 QMA-Hardness of the Local Hamiltonian Problem

In this section we briefly recall the main components in Kitaev’s proof that the
local Hamiltonian problem is QMA-complete [2]. Our goal is to take any language
in QMA and reduce it to the local Hamiltonian problem. In order to prove this,
we will show how to convert any verifying circuit into a local Hamiltonian in a

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 887

way that the maximum acceptance probability of the verifying circuit (over all
possible witnesses) corresponds to the lowest eigenvalue of the Hamiltonian.

In more detail, let V = Vx = VT · · ·V1 be a T -step quantum verifying circuit
that receives as input an nw-qubit witness, and uses na ancilla qubits, where
na + nw = n = poly(|x|) and T = poly(n). Kitaev defines three Hamiltonians
that operate on a clock register with states |1〉, . . . , |T + 1〉, and a workspace
register of n qubits, as follows.

1. A Hamiltonian that checks correct initialization,

HK
in =

∑

k∈ancilla
|1〉〈1|k ⊗ |1〉〈1|. (2)

2. A Hamiltonian that verifies acceptance of the witness by the circuit,

HK
out = |0〉〈0|out ⊗ |T + 1〉〈T + 1|. (3)

3. A Hamiltonian that verifies correct propagation according to the circuit,

HK
prop =

T∑

j=1

H(K,j)
prop

where

H(K,j)
prop =

1
2
(I ⊗ |j〉 − Vj ⊗ |j + 1〉)(I ⊗ 〈j| − V †j ⊗ 〈j + 1|)

=
1
2
(I ⊗ |j〉〈j| − Vj ⊗ |j + 1〉〈j| − V †j |j〉〈j + 1|+ I ⊗ |j + 1〉〈j + 1|).

(4)

Kitaev then proved the following for the sum of the three Hamiltonians,
HK
total = HK

in + HK
out + HK

prop.

Lemma 1. There are a, b with b − a ≥ 1/poly(n), such that, if V accepts with
probability greater than 1 − ε for ε = 2−poly(n) on some input |η, 0〉, then the
Hamiltonian HK

total has an eigenvalue smaller than a. Conversely, if the circuit
accepts with probability less than ε on all inputs |η, 0〉, then all eigenvalues of
HK
total are greater than b.

If we represent the clock register with "log(T + 1)# qubits and assume without
loss of generality that V is composed of two-qubit gates, then we obtain that
HK
total is ("log(T + 1)# + 2)-local. By using a unary representation of the clock

register and slightly modifying the Hamiltonians above, Kitaev was able to turn
HK
total into a 5-local Hamiltonian, thereby proving that the k-local Hamiltonian

problem is QMA-complete for all k ≥ 5.

4 Proof of Theorem 1

4.1 General

Proof structure. It is easy to see that the quantum (3, 5)-SAT problem is in
QMA1. For example, one can reduce quantum (3, 5)-SAT to quantum 5-SAT,

888 L. Eldar and O. Regev

t t + 1 t + 2 t + 3 t + 5t + 4 t + 6 t + 7 t + 8 t + 9 t + 10 t + 11 t + 12

V
t+

1

X

U
cn

ot
·X

V
t+

9

Fig. 2. Three consecutive clusters j, j + 1, j + 2, and their corresponding time points
t = 4(j −1)+1, . . . , 4(j −1)+4, 4j +1, . . . , 4j +4, 4(j +1)+1, . . . , t+12 = 4(j +2)+1

essentially by replacing each 5-dimensional particle by 3 qubits and each 3-
dimensional particle by 2 qubits. Thus, we focus on proving that (3, 5)-SAT
is QMA1-hard. We prove this along the lines of Kitaev [2], by showing how
to reduce any verifying circuit to a Hamiltonian sum, in which each term is a
projector acting on two particles of dimensions at most 3 and 5. We begin by
describing the behavior of the clock register, and then build upon it to verify
correct computation according to the circuit. We conclude by proving that for
a ‘yes’ instance the projectors have a common groundstate, while for a ‘no’
instance, the lowest eigenvalue of the sum of the projectors is Ω(1/poly(n)).

The verifying circuit. Let V = Vx denote the verifier circuit for some x ∈
{0, 1}∗ that acts on an nw-qubit witness state, and uses na ancilla qubits, where
na + nw = n = poly(|x|). We assume without loss of generality that V =
V4T · · ·V1 consists of 4T gates, arranged in T ‘clusters’ of size 4 each, where
T = poly(n). For each j ∈ {1, . . . , T}, we assume that the jth cluster (i.e.,
V4(j−1)+4 · · ·V4(j−1)+1) is either of the form I · (Ucnot · X) · X · I, where the
X gates act on the target qubit of the Ucnot gate, or of the form I · I · U · I,
where U is some one-qubit gate (see Figure 2). Let T0 ⊆ {1, . . . , T} denote the
set of clusters of the former type, i.e., clusters whose action is a CNOT gate.
By definition, for any ‘yes’ instance there exists a witness that makes V accept
with probability 1. Moreover, as mentioned earlier, we can assume that for any
‘no’ instance and any witness, V accepts with exponentially small probability
ε = 2−poly(|x|).

4.2 Clock Encoding

The clock register is comprised of 5-state particles called cinquits and 3-state
particles called qutrits. For a circuit of T gates, the clock register includes T +1
qutrits and T cinquits that appear in an interleaved fashion q1, c1, q2, c2, . . . , qT ,
cT , qT+1. The possible states for the qutrits are u (the ‘unborn’ state), a (the
‘active’ state), and d (the ‘dead’ state); the possible states for the cinquits are
u (the ‘unborn’ state), a1, a2, a3, (the ‘active’ states), and d (the ‘dead’ state).

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 889

We define the subspace of legal clock encodings, Slegal, of dimension 4T + 1,
by defining an orthonormal basis Blegal that spans Slegal. We use the following
notation:

|1〉 = |a u u u . . . u u u u u u u u . . . u u u〉
...

|4(j − 1) + 1〉 = |d d d d . . . d d a u u u u u . . . u u u〉
|4(j − 1) + 2〉 = |d d d d . . . d d d a1 u u u u . . . u u u〉
|4(j − 1) + 3〉 = |d d d d . . . d d d a2 u u u u . . . u u u〉
|4(j − 1) + 4〉 = |d d d d . . . d d︸ ︷︷ ︸

2(j−1)

d a3 u u u u . . . u u u︸ ︷︷ ︸
2(T−j)+1

〉

...

|4T + 1〉 = |d d d d . . . d d d d d d d d . . . d d a〉

We define Blegal as |1〉, . . . , |4T + 1〉. In other words, Blegal contains all clock
registers of the form d . . . d a u . . . u, i.e., a sequence of zero or more dead states,
followed by an active state, which is then followed by zero or more unborn states.
We set Slegal = span(Blegal).

For cluster indices j ∈ T0, the computation takes place during the tran-
sition between the clock states |4(j − 1) + 2〉, |4(j − 1) + 3〉, |4(j − 1) + 4〉. For
cluster indices j /∈ T0, the computation takes place during the transition from
|4(j − 1) + 2〉 to |4(j − 1) + 3〉. For both cluster types, the state |4(j − 1) + 1〉
is just an intermediate step that transfers the active site between neighboring
cinquits, using the intermediate qutrit particle.

We now define a Hamiltonian Hclock that verifies a correct clock encoding.
First, for each 1 ≤ k ≤ T we define a Hamiltonian acting on the qutrit-cinquit
pair (qk, ck),

H
(k)
clock,1 =

(
(I − |d〉〈d|)⊗ (I − |u〉〈u|) + |d〉〈d| ⊗ |u〉〈u|

)
qk,ck

,

and a Hamiltonian acting on the cinquit-qutrit pair (ck, qk+1),

H
(k)
clock,2 =

(
(I − |d〉〈d|)⊗ (I − |u〉〈u|) + |d〉〈d| ⊗ |u〉〈u|

)
ck,qk+1

.

Moreover, we define Hclock,1 =
∑T
k=1 H

(k)
clock,1 and Hclock,2 =

∑T
k=1 H

(k)
clock,2. One

can verify that the term Hclock,1+Hclock,2 restricts any computational-basis clock
state according to the following rules:

1. An unborn or active particle may only be followed by an unborn particle;
2. A dead particle may not be followed by an unborn particle.

We also define the Hamiltonian

Hclock,3 = (|u〉〈u|)q1 + (|d〉〈d|)qT+1
,

890 L. Eldar and O. Regev

which checks that the first qutrit is not unborn, and that the last qutrit is not
dead. This serves to rule out the all-unborn state uu . . . u and the all-dead state
dd . . . d. Finally, we define Hclock = Hclock,1 + Hclock,2 + Hclock,3. The proof of
the following easy claim is omitted.

Claim. Hclock is a positive semidefinite operator whose zero groundspace is
Slegal.

4.3 Verifying Input, Output and Propagation

Using the definitions above we write Hamiltonians that verify correct propaga-
tion of the computation steps of V .

1. For j ∈ T0,
(a) H

(4(j−1)+2)
prop = 1

2 (I⊗|a1〉cj −Xtgt(j)⊗|a2〉cj)(I⊗〈a1|cj −Xtgt(j)⊗〈a2|cj)
(b) H

(4(j−1)+3)
prop = 1

2 (|1〉〈1|ctl(j) ⊗ (|a2〉 − |a3〉)(〈a2| − 〈a3|)cj + |0〉〈0|ctl(j) ⊗
(|a1〉 − |a3〉)(〈a1| − 〈a3|)cj)

where ctl(j) and tgt(j) are the control and target qubits of the CNOT gate
of the j-th cluster. These two Hamiltonians correspond to H∇,1

prop and H∇,2
prop+

H∇,3
prop in the notation of Figure 1.

2. For j /∈ T0

(a) H
(4(j−1)+2)
prop = 1

2 (I ⊗ |a1〉cj − V4(j−1)+2 ⊗ |a2〉cj)(I ⊗ 〈a1|cj − V †4(j−1)+2 ⊗
〈a2|cj)

(b) H
(4(j−1)+3)
prop = 1

2 (|a2〉 − |a3〉)(〈a2| − 〈a3|)cj
where V4(j−1)+2 is the one-qubit gate of cluster j.

3. For 1 ≤ j ≤ T

(a) H
(4(j−1)+1)
prop = 1

2 ((|a, u〉 − |d, a1〉)(〈a, u| − 〈d, a1|)qj ,cj)
(b) H

(4(j−1)+4)
prop = 1

2 ((|a3, u〉 − |d, a〉)(〈a3, u| − 〈d, a|)cj ,qj+1)

We thus define the complete propagation Hamiltonian as the sum

Hprop =
4T∑

t=1

H(t)
prop.

In addition to the Hamiltonians Hclock and Hprop defined above we define two
Hamiltonians that check correct ancilla initialization and final acceptance by C:

1. Hin =
∑
k∈ancilla |1〉〈1|k ⊗ |a〉〈a|q1

2. Hout = |0〉〈0|out ⊗ |a〉〈a|qT+1
.

Finally we define

Htotal = Hclock + c ·Hprop + Hin + Hout

Quantum SAT for a Qutrit-Cinquit Pair Is QMA1-Complete 891

as the input to the quantum 2-SAT problem, where c is some large enough
positive integer constant.3 Note that Htotal can be written as a sum of projectors,
each acting on at most two particles, whose dimensions are at most three and
five. Also, it can be verified that none of the Hamiltonians in the sum above
induces transitions from legal to illegal clock states, and therefore the subspace
Slegal is invariant under c ·Hprop, Hin, Hout.

4.4 Proof of Completeness

Our goal is to show that if there is a witness state |ψ〉 that is accepted by the
circuit V with probability 1, then Htotal has an eigenvector with eigenvalue zero.
We prove this by considering the computational history of V ,

|η〉 =
1√

4T + 1

4T+1∑

t=1

|ηt〉 ⊗ |t〉,

where |ηt〉 = Vt−1 · · ·V1|ψ〉 ⊗ |0〉⊗na . It is straightforward to verify that |η〉 is a
zero eigenvector of Hclock, Hprop and Hin. According to the definition of QMA1,
the circuit V accepts the witness |ψ〉 with probability 1, and therefore the state
|η4T+1〉, which is equal to V4T · · ·V1|ψ〉 ⊗ |0〉⊗na has |1〉 at its output qubit.
Therefore the state |η4T+1〉 ⊗ |4T + 1〉 is a zero eigenvector of Hout, and we
conclude that |η〉 is a zero eigenvector of Htotal as required.

4.5 Proof of Soundness

In this section we show that if no witness is accepted by the circuit V with
probability greater than ε, for ε = 2−poly(|x|), then the smallest eigenvalue of
Htotal is at least 1/poly(n).

Since Slegal is invariant under Htotal, and any state in the illegal clock subspace
S

⊥

legal has energy at least 1 due to Hclock, we can disregard S
⊥

legal altogether and
restrict the analysis to Slegal. Thus, our goal is to prove that inside Slegal the
lowest eigenvalue of c ·Hprop +Hin +Hout is at least 1/poly(n). The restriction
of these Hamiltonians to Slegal is given by the following. For all t = 4(j − 1) + 3
where j ∈ T0,

H(t)
prop|Slegal

=
1
2
(|1〉〈1|ctl(j) ⊗ (|t〉 − |t + 1〉)(〈t| − 〈t + 1|)+

|0〉〈0|ctl(j) ⊗ (|t− 1〉 − |t + 1〉)(〈t− 1| − 〈t + 1|)). (5)

For all other values of t ∈ {1, . . . , 4T + 1},

H(t)
prop|Slegal

=
1
2
(I ⊗ |t〉 − Vt ⊗ |t + 1〉)(I ⊗ 〈t| − V †t ⊗ 〈t + 1|) (6)

3 Actually, the construction also works with c = 1, but our choice slightly simplifies
the argument.

892 L. Eldar and O. Regev

and finally,

Hin|Slegal
=

∑

k∈ancilla
|1〉〈1|k ⊗ |1〉〈1| (7)

Hout|Slegal
= |0〉〈0|out ⊗ |4T + 1〉〈4T + 1|. (8)

By slight abuse of notation, we shall identify from now on each Hamiltonian
with its restriction to Slegal.

Let HK
in , H

K
out, H

K
prop be Kitaev’s Hamiltonians that correspond to the verifier

V = V4T · · ·V1 (see Section 3). By comparing equations (2)-(3) to (7)-(8), it
can be verified that both Hin and Hout are identical to Kitaev’s HK

in and HK
out,

respectively.
Additionally, since a ‘no’ instance is accepted with probability atmost 2−poly(n),

we obtain by Lemma 1 that the lowest eigenvalue ofHK
prop+HK

in+HK
out is 1/poly(n).

Thus, a sufficient condition for proving the lower bound on the smallest eigenvalue
of c ·Hprop + Hin + Hout is that c ·Hprop ≥ HK

prop for some large enough positive
constant c. We show that this condition indeed holds in the following lemma, which
concludes the proof of soundness. The proof is omitted due to lack of space.

Lemma 2. There exists a positive constant c such that c ·Hprop ≥ HK
prop.

Acknowledgments. We thank Daniel Nagaj for useful discussions. We also
thank the anonymous referees for useful comments. Part of this work was done
while the second author was attending the Lorentz Center workshop on “Com-
putational Complexity of Quantum Hamiltonian Systems” and he would like to
thank the organizers for inviting him.

References

1. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Longman, Ams-
terdam (1995)

2. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and quantum computation. Grad-
uate Studies in Mathematics, vol. 47. AMS, Providence (2002)

3. Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Information
& Computation 3(3), 258–264 (2003)

4. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local Hamiltonian problem.
SIAM Journal of Computing 35(5), 1070–1097 (2006)

5. Bravyi, S.: Efficient algorithm for a quantum analogue of 2-SAT. ArXiv Quantum
Physics e-prints (2006)

6. Nagaj, D., Mozes, S.: New construction for a QMA complete three-local Hamilto-
nian. Journal of Mathematical Physics 48, 2104 (2007)

7. Nagaj, D., Love, P.: (in preparation, 2007)
8. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adia-

batic quantum computation is equivalent to standard quantum computation. SIAM
Journal on Computing 37(1), 166–194 (2007)

Author Index

Albers, Susanne I-96
Alon, Noga I-258
Altmann, Kristina II-437
Andoni, Alexandr I-357
Avin, Chen I-121
Axelsen, Holger Bock II-258
Axelsson, Roland II-410
Azar, Yossi I-186, I-833

Bansal, Nikhil I-409
Baswana, Surender I-609
Ben-Sasson, Eli I-686
Bengtson, Jesper II-87
Berger, Martin II-99
Birkedal, Lars II-348
Birnbaum, Benjamin I-186
Björklund, Andreas I-198
Björklund, Henrik II-27
Bläser, Markus I-345
Blelloch, Guy E. I-108
Bloem, Roderick II-361
Bodirsky, Manuel II-184
Bodlaender, Hans L. I-563
Boigelot, Bernard II-112
Bojańczyk, Miko�laj II-233
Boros, Endre I-48
Borradaile, Glencora I-485
Bouyer, Patricia II-124
Brázdil, Tomáš II-148
Briest, Patrick I-808
Brusten, Julien II-112
Bruyère, Véronique II-112
Buchfuhrer, David I-24
Bulatov, Andrei A. I-646

Canetti, Ran II-1, II-449, II-511
Chaintreau, Augustin I-133
Chan, Ho-Leung I-409
Chebolu, Prasad I-161
Chekuri, Chandra I-472
Chen, Hubie II-197
Chen, Owen Chia-Hsin II-691
Chen, Yijia I-587
Cheng, Chen-Mou II-691
Cheng, Qi I-283

Chierichetti, Flavio I-320
Childs, Andrew M. I-869
Christodoulou, George I-820
Cicalese, Ferdinando I-173
Coecke, Bob II-298
Colcombet, Thomas II-398
Corneil, Derek I-634
Courcelle, Bruno I-1

Dachman-Soled, Dana I-36
Dakdouk, Ronny Ramzi II-449
Dawar, Anuj II-160
de Wolf, Ronald I-845
Diakonikolas, Ilias I-502
Dietzfelbinger, Martin I-385
Dimitrov, Nedialko B. I-397
Ding, Jintai II-691
Downey, Rodney G. I-563
Dragan, Feodor F. I-597
Dubois, Vivien II-691
Dullerud, Geir II-136
Duncan, Ross II-298

Egri, László II-172
Eiger, Dror II-511
Eisenbrand, Friedrich I-246
Elbassioni, Khaled I-48
Eldar, Lior I-881
Esparza, Javier I-698, II-14
Etessami, Kousha I-711

Fanelli, Angelo I-796
Fellows, Michael R. I-563
Fiala, Jǐŕı I-294
Fischlin, Marc II-655
Flammini, Michele I-796
Fomin, Fedor V. I-210, I-597
Forejt, Vojtěch II-148
Fraigniaud, Pierre I-133
Frandsen, Gudmund Skovbjerg I-434
Frieze, Alan I-161
Furukawa, Jun II-524

Gamzu, Iftah I-833
Gaur, Akshay I-609

894 Author Index

Gawlitza, Thomas I-698
Gehrke, Mai II-246
Gilbert, Henri II-679
Glück, Robert II-258
Goldwasser, Shafi II-511
Golovach, Petr A. I-294, I-597
Gómez, Antonio Cano II-209
Goyal, Vipul II-579
Greco, Gianluigi I-736
Greimel, Karin II-361
Grigorieff, Serge II-246
Grohe, Martin II-184
Gruber, Hermann II-39
Guaiana, Giovanna II-209
Guha, Sudipto I-760

Habib, Michel I-634
Haeupler, Bernhard I-421
Hallgren, Sean I-782, II-592
Hardt, Moritz I-345
Harrow, Aram W. I-782
Harsha, Prahladh I-686
Heljanko, Keijo II-410
Hermelin, Danny I-563
Hirt, Martin II-473
Hoch, Jonathan J. II-616
Hod, Rani I-258
Holzer, Markus II-39
Honda, Kohei II-99
Husfeldt, Thore I-198

Ito, Hiro I-539
Iwama, Kazuo I-271

Jager, Tibor II-437
Jain, Abhishek II-579
Jansen, Klaus I-234
Jarecki, Stanis�law II-715
Jeż, Artur II-63
Jobstmann, Barbara II-361
Johansson, Magnus II-87
Jurdziński, Tomasz II-51

Kähler, Detlef I-724
Kalai, Yael Tauman II-536
Kale, Satyen I-527
Kao, Ming-Yang I-370
Karlin, Anna R. I-186
Kaski, Petteri I-198
Katsumata, Shin-ya II-271

Katz, Jonathan II-499
Kavitha, Telikepalli I-421
Kawarabayashi, Ken-ichi I-333
Kempe, Julia I-845
Kesner, Delia II-311
Khanna, Sanjeev I-472
Kiefer, Stefan I-698, II-14
Klein, Philip I-485
Koivisto, Mikko I-198
Kolesnikov, Vladimir II-486, II-702
Kolla, Alexandra II-592
Koo, Chiu-Yuen II-499
Koucký, Michal I-121
Koutis, Ioannis I-575
Kovács, Annamária I-820
Kratochv́ıl, Jan I-294
Krauthgamer, Robert I-357
Kreutzer, Stephan II-160
Krokhin, Andrei I-662
Kučera, Antońın II-148
Kumaresan, Ranjit II-499
Kurosawa, Kaoru II-524

Laber, Eduardo Sany I-173, I-459
Lachish, Oded I-686
Lam, Tak-Wah I-409
Lange, Martin II-410
Larose, Benôıt II-172
Lauer, Sonja I-96
Lebhar, Emmanuelle I-133
Lebresne, Sylvain II-323
Lee, Homin K. I-36, I-502
Lee, Lap-Kei I-409
Lee, Troy I-674, I-869
Lehmann, Anja II-655
Lim, Dah-Yoh II-511
Liu, Xiaomin II-715
Löding, Christof II-398
Lotker, Zvi I-121
Luttenberger, Michael II-14

Makino, Kazuhisa I-48
Malkin, Tal I-36
Markey, Nicolas II-124
Martens, Wim II-27
Martin, Keye II-283
Marx, Dániel I-662
Mathew, Rogers I-421
Mathieu, Claire I-186
Mathissen, Christian II-221

Author Index 895

Matsliah, Arie I-686
Matulef, Kevin I-502
McGregor, Andrew I-760
Melsted, Páll I-161
Mhalla, Mehdi I-857
Mittal, Rajat I-674
Molinaro, Marco I-459
Moscardelli, Luca I-796
Muthukrishnan, S. I-14

Naor, Moni II-631
Neubauer, Matthias II-75
Nguyen, C. Thach I-186
Nielsen, Jesper Buus II-473
Nishimura, Harumichi I-271

O’Sullivan, Barry I-551
Okhotin, Alexander II-63
Onak, Krzysztof I-515
Ostrovsky, Rafail II-548
Ouaknine, Joël II-124

Pagh, Rasmus I-385
Pandey, Omkant II-579
Parrow, Joachim II-87
Paterson, Mike I-271
Paul, Christophe I-634
Pemmaraju, Sriram I-306
Perdrix, Simon I-857
Persiano, Giuseppe II-548
Pfenning, Frank II-336
Phillips, Jeff M. I-447
Pietrzak, Krzysztof II-423, II-655
Pin, Jean-Éric II-209, II-246
Plaxton, C. Greg I-222, I-397
Porat, Ely I-748
Prabhakar, Pavithra II-136
Prabhakaran, Manoj II-667
Pritchard, David I-145
Przydatek, Bartosz II-461, II-473

Rackoff, Charles II-702
Raskin, Jean-François II-386
Raymond, Rudy I-271
Raz, Ran II-536
Razgon, Igor I-551
Regev, Oded I-773, I-845, I-881
Reus, Bernhard II-348
Robshaw, Matthew J.B. II-679
Roditty, Liam I-622

Rosulek, Mike II-667
Rothschild, Amir I-748
Rothvoß, Thomas I-246
Ružić, Milan I-84
Rupp, Andy II-437

Sahai, Amit II-579
Sankowski, Piotr I-434
Saxena, Nitin I-60
Scarcello, Francesco I-736
Schapira, Michael I-820
Schewe, Sven II-373
Schiff, Liron I-773
Schneider, Thomas II-486
Schweller, Robert I-370
Schwinghammer, Jan II-348
Segev, Gil II-631
Segoufin, Luc II-233
Seidl, Helmut I-698
Sen, Pranab II-592
Sen, Sandeep I-609
Sen, Siddhartha I-421
Servais, Frédéric II-386
Servedio, Rocco A. I-36, I-502
Seshadhri, C. I-527
Seurin, Yannick II-679
Shamir, Adi II-616
Shapira, Asaf I-622
Shi, Elaine II-560
Shrimpton, Thomas II-643
Simmons, Robert J. II-336
Sjödin, Johan II-423
Srinivasan, Aravind I-306
Stam, Martijn II-643
Steurer, David I-345

Tarjan, Robert E. I-421
Tedder, Marc I-634
Tesson, Pascal II-172
Thiemann, Peter II-75
Thöle, Ralf I-234
Thurley, Marc I-587

Umans, Christopher I-24
Unger, Falk I-845
Upadhyay, Jayant I-609

Vardi, Moshe II-361
Vassilevska, Virginia I-108
Vattani, Andrea I-320
Victor, Björn II-87

896 Author Index

Villanger, Yngve I-210
Visconti, Ivan II-548
Viswanathan, Mahesh II-136
Vladimerou, Vladimeros II-136

Wan, Andrew I-36, I-502
Wan, Daqing I-283
Waters, Brent II-560
Wee, Hoeteck I-36
Wehner, Stephanie II-604
Weyer, Mark I-587
Wieder, Udi II-631
Wilke, Thomas I-724
Williams, Ryan I-108

Wojtczak, Dominik I-711
Worrell, James II-124
Wullschleger, Jürg II-461, II-604

Yamashita, Shigeru I-271
Yang, Bo-Yin II-691
Yang, Hongseok II-348
Yannakakis, Mihalis I-711
Yin, Yitong I-72
Yokoyama, Tetsuo II-258
Yoshida, Nobuko II-99
Yoshida, Yuichi I-539

Zhang, Shengyu II-592

	Title Page
	Preface
	Organization
	Table of Contents
	Graph Structure and Monadic Second-Order Logic: Language Theoretical Aspects
	Graph Structure and Logic
	Expressive Power of Monadic Second-Order Logic
	Construction of Algorithms
	Language Theoretical Concepts Extended to Sets of Finite Graphs
	References

	Internet Ad Auctions: Insights and Directions
	Introduction
	Basics
	Types of Ads
	Life of an Ad
	Ordered Ad Auctions

	Some Directions
	Game Theory of GSP in Practice
	Multiparty Modeling
	Optimal Mechanism
	Target Size Estimation
	Mechanisms for Heterogeneous Ads
	Mechanisms for Heterogeneous Utilities
	Ad Effectiveness Estimation
	Inferring Profiles: Graph Learning
	Reservation Auction
	Budget Optimization and Bidding

	Concluding Remarks
	References

	The Complexity of Boolean Formula Minimization
	Introduction
	Description of the Reduction

	Preliminaries
	The Problems

	MainResults
	Main Reduction
	The Unbounded Depth Case

	Conclusions and Open Problems
	References

	Optimal Cryptographic Hardness of Learning Monotone Functions
	Introduction
	Background and Motivation
	Our Results and Techniques: Cryptography Trumps Monotonicity
	Preliminaries

	Lower Bounds Via Hardness Amplification of Monotone Functions
	Preliminaries
	Hardness Amplification for Learning
	A Simple Monotone Combining Function with Low Noise Stability
	Nearly Optimal Hardness of Learning Polynomial-Size Monotone Circuits

	References

	On Berge Multiplication for Monotone Boolean Dualization
	Introduction
	Preliminaries
	Reverse Lexicographic Orderings
	Degenerate CNF’s
	CNF’s with Bounded (k, r)-Intersections

	Multiplication-Tree Orderings
	Quasi-polynomial Cases
	General Monotone CNF’s

	References

	Diagonal Circuit Identity Testing and Lower Bounds
	Introduction
	Known Results
	Definitions and Statement of Results
	Our Techniques
	Organization

	Diagonal Depth-3 Circuits
	Dual of a Multiplication Gate
	Identity Test and Lower Bounds

	Extension to Restricted Depth-4 Circuits
	Dual of a Multiplication Gate
	Identity Test and Lower Bounds

	Extension to the Nonzero Characteristic Case
	A Faster Identity Test for Diagonal Circuits
	Conclusion
	References

	Cell-Probe Proofs and Nondeterministic Cell-Probe Complexity
	Introduction
	Our Contribution
	Related Work

	Cell-Probe Proofs
	Characterization of CPPs
	NearestNeighborSearch
	Polynomial Evaluation
	References

	Constructing Efficient Dictionaries in Close to Sorting Time
	Introduction
	The Word RAM Model and Related Work
	External Memory Models
	Background of Our Techniques
	Our Results

	Universes of Polynomial Size
	LargerUniverses
	Background on Signature Functions
	Speed-Up of the Suffix Reduction
	Speed-Up of the Parallel Reduction

	References

	On List Update with Locality of Reference
	Introduction
	A New Model for Locality of Reference
	Analyzing Online and Offline Algorithms
	Experimental Study
	References

	A New Combinatorial Approach for Sparse Graph Problems
	Introduction
	On the Optimality of Our Algorithms
	Related Work

	Preliminaries and Notation
	Combinatorial Matrix Products with Sparse Vectors
	Transitive Closure
	APSP on Unweighted Undirected Graphs
	All Pairs Least Common Ancestors in a DAG
	Conclusion
	References

	How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs)
	Introduction
	Overview of Our Results

	Models and Preliminaries
	Random Walks on Graphs
	Evolving Graphs Model
	Constructive Evolving Graphs Model

	Exponential Hitting Time of Evolving Graphs
	Simulating Directed Graphs

	Slowly Evolving Graphs
	Polynomial Cover Time of Dynamic Graphs
	d-Regular Dynamic Graphs

	Random Walk Strategy
	Conclusions
	References

	Networks Become Navigable as Nodes Move and Forget
	Introduction
	Navigability as an Emerging Property
	Rewiring Processes
	Sketch of Our Network Evolution Process
	Our Results
	Related Works

	The Move-and-Forget (m&f) Rewiring Process
	Process Description
	Setting of the Forgetting Function

	Analysis of the Dynamic Process m&f
	Applications
	References

	Fast Distributed Computation of Cuts Via Random Circulations
	Introduction
	Existing Results
	Our Contributions
	Other Related Work
	Organization of the Paper

	Preliminaries
	Random Circulations
	Sequential Algorithms
	Finding All Cut Edges
	Finding All Cut Pairs and Cut Classes
	Finding All Cut Vertices

	Distributed Implementation
	Random Circulations, Cut Edges, and Cut Vertices
	Fundamental Cycle-Cast (fc-cast)
	Distributed Cut Pair Algorithm

	References

	Finding a Maximum Matching in a Sparse Random Graph in O(n) Expected Time
	Introduction
	The Karp-Sipser Algorithm
	Outline Decription of Match

	Augmenting Path Algorithm
	Tree Expansion

	Karp-Sipser Conditioning
	Witness Edges
	Probability Space

	FinalProof
	Good Matching Edges
	The Batch Graph
	Putting It All Together

	Conclusion
	References

	Function Evaluation Via Linear Programming in the Priced Information Model
	Introduction
	Preliminaries
	The Linear Programming Approach
	Final Remarks: Beyond Monotone Boolean Functions
	References

	Improved Approximation Algorithms for Budgeted Allocations
	Introduction
	Our Results
	Related Work

	The3/2-Approximation Algorithm
	High-Level Idea
	The Algorithm
	The Rounding Subroutines

	A√2-Approximation Algorithm for the Uniform Problem
	APX-Hardness
	References

	The Travelling Salesman Problem in Bounded Degree Graphs
	Introduction
	Conventions

	Combinatorial Preliminaries
	Connected Sets
	Transient Sets
	Triangle-Free Graphs
	Polynomial Space
	References

	Treewidth Computation and Extremal Combinatorics
	Introduction
	Preliminaries
	Combinatorial Lemma
	Combinatorial Bounds
	Minimal Separators
	Potential Maximal Cliques

	Exponential Space Exact Algorithm for Treewidth
	Computing Treewidth at Most k
	Polynomial Space Exact Algorithm for Treewidth
	References

	Fast Scheduling of Weighted Unit Jobs with Release Times and Deadlines
	Introduction
	Preliminaries
	A Dynamic Data Structure for Nice CBGs
	A Hierarchically Greedy Algorithm
	An Augmented Binary Search Tree
	Key Invariant
	Methods

	Analysis
	Concluding Remarks
	References

	Approximation Algorithms for Scheduling Parallel Jobs: Breaking the Approximation Ratio of 2
	Introduction
	Contiguous Parallel Job Scheduling
	Near-Optimal Packing with Simple Structure
	Pre-positioning
	Packing the Rectangles

	Non-contiguous Parallel Job Scheduling
	References

	A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation
	Introduction
	Preliminaries and Simplifying Assumptions
	Real-Time Scheduling Is Harder Than Bin Packing
	Local Feasibility and an Algorithm to Schedule Large Tasks
	A Dynamic Program to Schedule Large Tasks

	SmallTasks
	References

	Optimal Monotone Encodings
	Introduction
	A First Attempt: Superimposed Families
	Our Contribution
	Related Work

	The Construction
	FUT Families
	Monotone Encodings

	Lower Bounds
	FUT Families
	Monotone Encodings

	Tighter Bounds for$ k$ = 2
	Construction Time Again

	Concluding Remarks and Open Problems
	Encoding and Decoding Algorithms
	Open Problems

	References

	Polynomial-Time Construction of Linear Network Coding
	Introduction
	Our Contribution
	Related Work

	Network Coding
	Main Lemma
	Polynomial-Time Algorithms
	Concluding Remarks
	References

	Complexity of Decoding Positive-Rate Reed-Solomon Codes
	Introduction
	Our Results
	Techniques

	Previous Work for Rate c = 0
	The Result for Rate c = 1
	TheResultforRate0< c < 1
	Conclusion and Future Research
	References

	Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract)
	Introduction
	Preliminaries and Notation
	Auxiliary Constructions for the Case p > q
	Symmetric Systems of q-Distant Representatives
	Proof of Theorem 1 for p > q
	H(p, q)-Labelings for Transitive Target Graphs
	References

	The Randomized Coloring Procedure with Symmetry-Breaking
	Introduction and Summary of Results
	Frugal Coloring for Arbitrary Graphs
	Weighted Almost-Equitable Colorings
	References

	The Local Nature of List Colorings for Graphs of High Girth
	Introduction
	Main Results
	Algorithmic Consequences

	Related work
	List Edge Coloring
	Class-2 Graphs of High Girth

	Algorithms
	References

	Approximating List-Coloring on a Fixed Surface
	Introduction
	Coloring and List-Coloring
	List-Coloring Planar Graphs
	List-Coloring Bounded Genus Graphs and Our Main Result
	Overview of the Algorithm

	Definitions and Preliminaries
	Definitions
	List-Coloring Planar Graphs

	Main Lemma
	Algorithm
	References

	Asymptotically Optimal Hitting Sets Against Polynomials
	Introduction
	Our Result
	Previous Work

	Direct Products, Shared Advice, and Balanced Factors
	Polynomials of a Given Degree
	Polynomials with a Given Number of Nonzero Terms
	References

	The Smoothed Complexity of Edit Distance
	Introduction
	Our Contribution
	Related Work
	Preliminaries

	Typical Properties of Smoothed Instances
	Edit Distance of a Smoothed Instance
	Edit Distance between Different Blocks

	Near-Linear Time Distance Estimation
	Sublinear Time Distance Estimation
	Reducing Smoothed Instances to Ulam’s Metric

	Conclusions
	References

	Randomized Self-assembly for Approximate Shapes
	Introduction
	Our Technique
	Our Results
	Related Work
	Paper Layout

	Basics
	Definitions
	The Assembly Process

	Low Precision Technique (Line Approximation)
	The Basic Idea (Sampling Approximation)
	n ×$ n$ Squares
	Approximation Frame
	Approximate Squares

	Future Work
	References

	Succinct Data Structures for Retrieval and Approximate Membership (Extended Abstract)
	Introduction
	Problem Definition and Motivation
	Previous Results
	New Contributions
	Overview of Paper

	Retrieval in Constant Time and Almost Optimal Space
	Calkin’s Results
	The Basic Retrieval Data Structure

	Retrieval in Almost Optimal Space, with Linear Construction Time
	Retrieval and Dictionaries by Balanced Allocation
	References

	Competitive Weighted Matching in Transversal Matroids
	Introduction
	Algorithm Motivations

	Definitions
	Algorithm A
	CountingArguments
	Analysis under a Probability Distribution
	Intermediate Algorithm
	Online Algorithm
	Concluding Remarks
	References

	Scheduling for Speed Bounded Processors
	Introduction
	Our Results

	Preliminaries
	Energy Efficient Throughput Maximization
	Algorithm Description
	Analysis

	Minimizing Weighted Flow Time Plus Energy
	References

	Faster Algorithms for Incremental Topological Ordering
	Introduction
	Topological Ordering Via Two-Way Search
	Compatible Search Via a Soft Threshold
	The Dense Case: Topological Search
	Bounding the Running Time
	Lower Bounds and Other Issues
	References

	Dynamic Normal Forms and DynamicCharacteristic Polynomial
	Dynamic Characteristic Polynomial - Upper Bounds
	Amortized Bound
	Worst-Case Bound
	Dynamic Matrix Eigenproblem
	Dynamic Singular Value Decomposition

	Dynamic Characteristic Polynomial - Lower Bounds
	Conclusion and Open Problems
	References

	Algorithms for \varepsilon -Approximations of Terrains
	Introduction
	Lebesgue and Combinatorial Discrepancy
	Deterministic Construction of $ \varepsilon$-Approximations for Discrete Point Sets
	Sampling from Polygonal Domains
	Sampling from Smooth Terrains
	Applications
	References

	An Approximation Algorithm for Binary Searching in Trees
	Introduction
	Preliminaries
	An Algorithm for Binary Searching in Trees
	Upper Bound
	Entropy Lower Bound
	Alternative Lower Bounds
	Approximation Guarantee
	Efficient Implementation

	References

	Algorithms for 2-Route Cut Problems
	Introduction
	Preliminaries
	Single-Source 2-Route Cuts
	2-Route Multiway Cut
	2-Route Multicut
	Feasibility
	Cost Analysis

	References

	The Two-Edge Connectivity Survivable Network Problem in Planar Graphs
	Introduction
	Related Work
	Notation
	Outline

	Basic Structural Properties of Boundary Connectivity
	Linear-Time Exact Algorithm for a Boundary Two-Edge-Connectivity Problem
	Decomposition Result for Boundary Connectivity
	A PTAS Framework for Connected Problems in Planar Graphs
	Approximation Scheme
	Portal-Connected Graph

	Applying the PTAS Framework
	Dynamic Program
	References

	Efficiently Testing Sparse GF(2) Polynomials
	Introduction
	Preliminaries and Background
	Background on Schapire and Sellie’s Algorithm

	On Restrictions Which Simplify Sparse Polynomials
	The Testing Algorithm Test-Sparse-Poly
	Time and Query Complexity of Test-Sparse-Poly
	Sketch of Completeness
	Sketch of Soundness

	Conclusion and Future Directions
	References

	Testing Properties of Sets of Points in Metric Spaces
	Introduction
	Property Testing
	Considered Models and Previous Results
	Considered Properties
	Our Results
	A Streaming Perspective
	Our Techniques

	Two Simple Probability Facts
	Testing Via a Small Subset Characterization
	Improved Testers
	Testing Tree Metrics
	Testing Embeddability into the Line

	Lower Bounds
	A Lower Bound for Testing Dimension Reduction in$ \ell_ 1$

	Streaming Testers
	A Linear Lower Bound for the Exact Property Verification
	A Lower Bound for Streaming Testers
	Algorithms

	References

	An Expansion Tester for Bounded Degree Graphs
	Introduction
	Our Results

	Description of the Property Tester
	Proof of Theorem 1
	Preliminaries
	Algebraic Lemmas
	Getting an Expander

	References

	Property Testing on k-Vertex-Connectivity of Graphs
	Introduction
	Preliminaries
	Testing k-Vertex-Connectivity of(k − 1)-Vertex-Connected Graphs
	The Number of Disjoint Minimal Tight Sets in Graphs ThatAre\Epsilon -Far from k-Connectivity
	An Algorithm for Testing k-Vertex-Connectivity of (k − 1)-Vertex-Connected Graphs

	Testing k-Vertex-Connectivity of General Graphs
	Conclusions
	References

	Almost 2-SAT Is Fixed-Parameter Tractable (Extended Abstract)
	Introduction
	Terminology
	Parameterized Algorithm for the 2-ASLASAT Problem
	Algorithm for the 2-ASAT Problem
	Concluding Remarks
	References

	On Problems without Polynomial Kernels (Extended Abstract)
	Introduction
	Preliminaries
	A Generic Lower-Bounds Engine
	Applications
	Extensions
	References

	Faster Algebraic Algorithms for Path and Packing Problems
	Introduction
	Our Approach and Contributions

	Detecting Square-Free Terms with Odd Coefficients
	Reducing m-Set k-Packing to Multilinear mk-Term
	Reducing k-Simple Path to Multilinear 3k/2-Term
	Open Questions
	References

	Understanding the Complexity of Induced Subgraph Isomorphisms
	Introduction
	Preliminaries
	The Dichotomies
	Hardness of Deciding
	Hardness of Counting

	The Nondichotomies
	Conclusion and Open Problems
	References

	Spanners in Sparse Graphs
	Introduction
	Preliminaries
	Planar Graphs
	Apex-Minor-Free Graphs
	Bounded Genus
	Excluding Apex as a Minor

	Algorithmic Consequences
	Conclusion
	References

	Distance Oracles for Unweighted Graphs: Breaking the Quadratic Barrier with Constant Additive Error
	Introduction
	Overview of the New Algorithms

	Preliminaries
	A(3, c)-Approximate Distance Oracle in Expected O(n^2− 1 \over 12) Time
	The Emulator $(V,E∗)$: Its Construction and Properties
	Preprocessing and Query Algorithm for (3, c)-Oracle
	Analysis of the New Oracle

	A(2k − 1,2) Approximate Distance Oracle in o(n^2)Time
	Preprocessing and Query Algorithm for (2k−1, 2)-ApproximateDistance Oracle
	Analysis of Stretch, Space and Preprocessing Time of Oracle

	Concluding Remarks
	References

	All-Pairs Shortest Paths with a Sublinear Additive Error
	Introduction
	The New Results
	An Improved Multiplicative Approximation Algorithm
	“Hardness” Results
	Organization and Overview

	The Improved Multiplicative Approximation Algorithm
	Computing Distance Products
	The Approximate Distance Product Algorithm
	Proof of Theorem 3

	Proof of Main Result
	Concluding Remarks and Open Problems
	References

	Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations
	Introduction
	Preliminaries

	Overview of the Algorithm
	Recursion
	Refinement
	Promotion
	Assembly

	Details and Correctness
	Refinement
	Promotion
	Assembly

	Running Time and Implementation
	Recursion
	Refinement
	Promotion
	Assembly

	Conclusion
	References

	The Complexity of the Counting Constraint Satisfaction Problem
	Introduction
	Preliminaries
	Congruence Lattices and the Structure of Relations
	Algorithms
	Concluding Remarks
	References

	On the Hardness of Losing Weight
	Introduction
	Preliminaries
	Characterizing Fixed-Parameter Tractability
	Characterizing Polynomial-Time Solvability
	References

	Product Theorems Via Semidefinite Programming
	Introduction
	Preliminaries
	Product Rule with Non-negativity Constraints
	Applications
	Discrepancy
	Feige-Lov$ \acute a$sz

	Conclusion
	References

	Sound 3-Query PCPPs Are Long
	Introduction
	Informal Description of Main Results
	Proof Techniques

	Definitions and Main Results
	Probabilistically Checkable Proofs of Proximity (PCPPs)
	Soundness Deficiency
	Summary of Results

	Proof of Length-Soundness Tradeoff for Linear PCPPs over \mathbb{F}_2
	Proof of Lemma 3.1

	References

	Approximative Methods for Monotone Systems of Min-Max-Polynomial Equations
	Introduction
	Notations, Basic Concepts and a Fundamental Theorem
	A Class of Applications: Extinction Games
	The$ \tau $-Method
	The$ \nu $-Method
	Discussion
	Conclusion
	References

	Recursive Stochastic Games with Positive Rewards
	Introduction
	Definitions and Background
	SM-Determinacy and Strategy Improvement
	The Complexity of Reward 1-RMDPs and 1-RSSGs
	References

	Complementation, Disambiguation, and Determinization of B$\"{u}$chi Automata Unified
	Introduction
	Basic Notation and Definitions
	Split Trees and Skeletons
	Disambiguation and Complementation
	Slice Automaton and Its Applications
	Construction of a Slice Automaton

	Determinization
	References

	Tree Projections: Hypergraph Games and Minimality
	Introduction
	Preliminaries
	The Robber and Captain Game
	Monotone vs Non-monotone Strategies
	Minimal Tree Projections
	On the Nice Properties of Minimal Tree Projections
	Connected Tree Projections

	Tree Projections and the R&C Game
	References

	Explicit Non-adaptive Combinatorial Group Testing Schemes
	Introduction
	Error Correction Codes
	Previous Results
	Our Results
	The Paper Outline

	Problems Definitions
	Background
	Reducing ECCs to SSFs

	MainTheorem
	Meeting the Gilbert-Varshamov Bound More Efficiently
	The Probabilistic Algorithm
	Derandomizing the Algorithm
	Improving the Deterministic Algorithm

	Conclusion and Open Problems
	References

	Tight Lower Bounds for Multi-pass Stream Computation Via Pass Elimination
	Introduction
	Pass Elimination (When the First Pass Is Pass´e. . .)
	Proof of Lemma 1

	Longest Increasing Subsequence
	Promise Min. Missing Element and Greater-Than
	Fixed-Dimensional Linear Programming
	References

	Impossibility of a Quantum Speed-Up with a Faulty Oracle
	Introduction
	Preliminaries
	References

	Superpolynomial Speedups Based on Almost Any Quantum Circuit
	Background
	Statement of Results
	Recursive Amplification
	Dispersing Circuits
	Any Quantum Fourier Transform Is Pseudo-dispersing
	Most Circuits Are Dispersing
	References

	The Speed of Convergence in Congestion Gamesunder Best-Response Dynamics
	Introduction
	Definitions and Preliminaries
	Upper Bound
	Lower Bound
	OpenProblems
	References

	Uniform Budgets and the Envy-Free Pricing Problem
	Introduction
	Preliminaries
	New Results

	Unit-Demand Pricing
	Single-Minded Pricing
	Conclusions
	References

	Bayesian Combinatorial Auctions
	Introduction
	BayesianPriceofAnarchy
	The Setting - Bayesian Combinatorial Auctions
	Bayesian Price of Anarchy of 2

	Computing Pure Nash Equilibria
	Fractionally-Subadditive Valuation Functions
	Submodular Valuation Functions

	References

	Truthful Unification Framework for Packing Integer Programs with Choices
	Introduction
	Our Results
	Related Work

	Preliminaries
	A Truthful Unification Framework
	The Bandwidth Allocation Problem in Tree Networks
	The Multiple Knapsack Problem on Bipartite Graphs
	References

	Upper Bounds on the Noise Threshold for Fault-Tolerant Quantum Computing
	Introduction
	Preliminaries
	Proof of Theorem 1
	References

	Finding Optimal Flows Efficiently
	Introduction
	Definitions
	Causal Flow Algorithm
	A Polynomial Algorithm for Gflow
	Depth Optimality
	References

	Optimal Quantum Adversary Lower Bounds for Ordered Search
	Introduction
	Adversary Bound
	Ordered Search Problem
	Adversary Bounds for Ordered Search
	Non-negative Adversary
	Høyer, Neerbek, Shi Construction
	Optimal Non-negative Construction
	Dual

	Negative Adversary
	Conclusion
	References

	Quantum SAT for a Qutrit-Cinquit Pair Is ${\sf QMA}_1$-Complete
	Introduction
	Preliminaries
	QMA-Hardness of the Local Hamiltonian Problem
	Proof of Theorem 1
	General
	Clock Encoding
	Verifying Input, Output and Propagation
	Proof of Completeness
	Proof of Soundness

	References

	Author Index

