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Abstract. The paper explores the role that formal modeling may play in aiding 
the visualization and implementation of usability requirements of a control panel. 
We propose that this form of analysis should become a systematic and routine as-
pect of the development of such interfaces. We use a notation for describing the 
interface that is convenient to use by software engineers, and describe a set of 
tools designed to make the process systematic and exhaustive. 

1   Introduction 

Applying formal techniques to analyze interactive systems makes possible a more 
systematic approach to the evaluation of the usability of a new design. Formal tech-
niques can provide an incisive analysis that is effective in uncovering potential un-
foreseen interaction problems which can then be explored from a usability perspec-
tive. The paper demonstrates how a collection of tool supported property patterns 
(akin to those described in [12]) can be used to make this process more systematic. 
The interface under analysis is specified using Modal Action Logic (MAL) which fo-
cuses on the meaning and effect of action. The approach is illustrated by analyzing the 
air conditioning system for a family car. In addition to potential usability problems, 
the patterns help discover discrepancies between assumed meanings based on the user 
manual and meanings derived by experimenting with the system. 

The proposed techniques are similar in aim to those of [5] and [14]. MAUI [9] is a 
comparable tool supported technique for analyzing control panel systems. The work 
presented here differs by (1) supporting a textual design specification notation and (2) 
supporting the systematic analysis of a set of standard interface properties. There is no 
space in this paper to do full justice to a comparison between these techniques and to 
compare the range of other techniques that have been developed recently, see for ex-
ample [11] for a review. The focus here is to demonstrate how formal techniques can 
be made more routine and systematic through a real example. The example illustrates 
techniques that fit naturally with the programmer’s view of the system while at the 
same time triggering a usability perspective. The paper describes: 

1. a notation that clearly and simply captures characteristics of interactive devices 
2. a set of properties that can be systematically checked of the interactive system 
3. a tool that pulls together the means of specification and the means of checking, 

that is accessible to appropriate developers. 
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Finally, discovery tools are required to explore the consequences of the problems un-
covered by these techniques. The systematic approach is supported by the IVY tool 
developed to check MAL specifications. The paper explains the characteristics of the 
tool and comments on how the formal approach can be complemented by a more user 
focussed analysis.  

2   The Example 

The example is the automatic air conditioning panel of the Toyota Corolla (2001 
European version). The actions of the air conditioning system concern setting tem-
perature and altering the rate and direction of the flow of air. While the actions asso-
ciated with temperature and rate of flow are relatively straightforward, complications 
involve the number of modes that deal with the direction of flow. The complete set of 
actions and displays is identified below. 

 

Fig. 1. The air-conditioning control panel 

Figure 1 shows what the control panel looks like. The panel has ten buttons (these are 
enumerated in the figure) and there are seven display features that can change through 
use of the air conditioning system ((a)-(h)). These elements are first identified before 
describing them in more detail through the specification. The buttons correspond to 
actions in the model, the names of the actions are as follows: (1) increase fan speed 
(fanspeedup); (2) decrease fan speed (fanspeeddown); (3) increase target temperature 
(tempup); (4) decrease target temperature (tempdown); (5) select air conditioning 
mode (ackey); (6) select windscreen (front) flow mode (frontkey); (7) select flow 
mode (modekey); (8) select air intake mode (airintakekey); (9) off (off); (10) select au-
tomatic mode (autokey). 

The displayed indicators are perceivable attributes of the state. These are identified 
in the model by the names in brackets in the following list: (a) flow mode (airflow); 
(b) fan speed (fanspeed); (c) target temperature (settemp); (d) air-conditioning on/off 
(ac); (e) wind screen (front) flow mode on/off (front); (f) recirculation air intake mode 
(airintakefresh); (g) automatic mode on/off (auto). 
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3   The Modeling Notation 

A MAL specification is produced focusing on relevant actions and attributes of the 
state. The semantics of MAL is discussed in more detail in [6,1]. This set of actions 
and attributes may be modified as additional assumptions about the specification are 
identified through experimenting with the system or exploring properties of the speci-
fication. The specification is structured using hierarchical interface components 
(called interactors). In the example one interactor describes all the actions and visible 
attributes of the state of the system. No assumptions are made in this analysis about 
other properties that may be important from a usability point of view. For example, a 
user may feel or hear the effect of changes in the temperature, fan speed and where 
the air is flowing. These additional modalities are ignored. Context effects, for exam-
ple whether the car windows are open or not, are also ignored. In practice these as-
pects of the system could be considered additionally if appropriate. 

There are three types of MAL axioms. Propositional axioms describe invariants 
over the state of the interactor. Modal axioms describe effects of an action in terms of 
the state of the interactor. The modal axioms describe production rules that define a 
state machine. Finally deontic axioms, which are not used in this example, capture 
conditions that determine when actions are permitted or obligatory. 

Three visible state attributes are important to the functioning of the air conditioning 
system: temperature (settemp), flow speed defined by the fan speed indicator 
(fanspeed) and flow mode (airflow) that defines where the air flows, for example 
dashboard level or floor level or to the windscreen. These attributes, see (a)-(c) in 
Figure 1, can be described as follows: 

interactor main 
   attributes 
   [vis] settemp : Temp 
   [vis] airflow : AirFlow 
   [vis] fanspeed : FanSpeed 

The specification consists of one interactor named main. The modality [vis] of each 
attribute is “visible”. These attributes of the states are changed by three sets of but-
tons: settemp by [tempup] (3) and [tempdown] (4); fanspeed by [fanspeedup] (1) and 
[fanspeeddown] (2); the flow mode is controlled by a more complicated set of but-
tons. While the manual provided an initial explanation of how the controls are used, 
this information was updated in the light of analysis and experimentation. 

[tempup] (settemp < MAXHOT →  settemp’ = settemp + 1) 
             ∧ (settemp = MAXHOT → keep(settemp)) 
[tempdown] (settemp > MAXCOLD → settemp’ = settemp − 1) 
       ∧ (settemp = MAXCOLD → keep(settemp)) 

Normal logical operators are used in the specification; actions appear in square brack-
ets. The expression to the right of the action describes how the state attributes are 
changed. In the case of [tempup] if temperature is lower than the maximum possible 
(MAXHOT) it is incremented. The new state of settemp is indicated by priming the at-
tribute, hence (settemp’) becomes the previous plus one. If temperature is already 
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equal to MAXHOT, then its value does not change: (keep(settemp)). If an attribute 
does not appear in the keep list and its behaviour is not defined by the axioms, then it 
assumes a random value. [tempdown], [fanspeedup] and [fanspeeddown] have similar 
definitions. More axioms are required for actions associated with where the air flows. 
Possible air flow modes are defined by the set:  

AirFlow = {panel, double, floor, floorws, wsclear}. 

Whether the air conditioning system (temperature, fan and airflow) is switched on or 
off is not yet captured in these axioms. The fact that this aspect of the design is not 
clearly visible in the system is the reason for this omission. The only possible indica-
tor is the fan speed (see indicator (b) in Figure 1), but this is an indirect and not very 
salient association. This omission raises an issue for the designer as to whether this 
aspect of the design should be made more clear. 

The air conditioning mode selector key (5) is defined when the system is on and 
when it is off. When off, pressing the button has no effect on the state attributes, when 
on the mode key simply changes the ac attribute, toggling its value. 

on → [ackey] ac’ =  ¬ac ∧ keep(auto, airintake, settemp, on, front, airflow, fanspeed) 
¬on → [ackey] keep(auto, airintake,  settemp, on, front, airflow, fanspeed, ac) 

The windscreen (flow) mode selection button [frontkey] has the following axioms: 

on → [frontkey] on’ ∧ front’ = ¬front ∧ keep(settemp) 
¬on → [frontkey] on’ ∧ front’ ∧ keep(settemp) 
[frontkey] front’ → (¬auto’ ∧ ¬airintake’ ∧ ac’) 
front ↔ airflow = wsclear 

Hence when the system is on, pressing the front button will toggle the front attribute, 
and when switched off the button will switch it on (on’asserts the new value of on is 
true). The final axiom specifies an invariant, namely when the front mode is set the 
airflow is always in windscreen clear mode. The modekey and airintakekey are speci-
fied as follows: 

[modekey] ¬auto’ ∧ front’ ∧ keep(airintake, settemp, on, fanspeed) 
¬front → [modekey] (airflow = panel →airflow’ = double) 
              ∧ (airflow = double → airflow’ = floor) 
              ∧ (airflow = floor → airflow' = floorws) 
              ∧ (airflow = floorws → airflow' = panel) ∧ keep(ac) 
[airintakekey] airintake' = ¬airintake  
           ∧ keep(auto, settemp, on, front, airflow, fanspeed, ac) 

It was difficult to produce an unambiguous and accurate specification of this system 
based on both the manual and use of the system because: (a) the manual is not clear in 
places – e.g.,  “When the Front key is pressed,  air flows mainly through the wind-
screen vents, and the FRESH air intake  mode is automatically set” is only true when 
the front mode is off; (b) the manual is incomplete -  e.g., the fact that pressing the 
mode key in auto mode turns the mode indicator off is not described in the manual; 
(c) the manual is inconsistent with the device -  e.g., references to the A/C button be-
ing depressed are not consistent with the actual user interface where buttons do not 
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have a depressed state; (d) descriptions within the manual are mutually inconsistent -  
e.g., “press the MODE key to switch off AUTO mode” and “in AUTO mode you do 
not have to use the MODE key, unless you want a  different flux mode”; (e) assump-
tions are omitted - e.g., the manual descriptions only describe changes produced by 
the buttons and assume that what is unmentioned remains unchanged which is as al-
ready stated not what is assumed in MAL. Appendix A provides a set of axioms that 
combine the results derived from reading the manual with observations from use of 
the system.  

4   Systematic Analysis 

Analysis is first concerned with the credibility of the system, exploring those properties 
that should be true in terms of a plausible mental model of the system. For example: 

                 AG(auto → on)     (1) 

The property is described in CTL (Computational Tree Logic, see for example, [4]) 
and asserts that auto mode can only be armed if the system is on. This property is not 
true in the version of the system specification based on the manual. A counterexample 
shows that the air intake key arms the automatic mode without switching the system. 
A new specification in which the previous state of the system could be recovered even 
though the system had been switched off fixes the problem. Exploration of other 
properties indicates that when switching between modes (for example from auto mode 
to front mode and back) the system keeps a memory of the state in each mode. In the 
specification a variable acmem is used to define the state of the ac mode. This and 
further exploration of system actions produces further changes to the specification 
(see Appendix A). 

The axioms that relate to acmem are as follows: 

[ackey] acmem’ = ac’ 
[a :−{ackey}] keep(acmem) 
front → [modekey] ac’ = acmem 
¬on → [a :{fanspeedup, fanspeeddown}] ac’ = acmem 
[frontkey] ¬front’ → ac’ = acmem 

When ackey is pressed, acmem stores the new value of ac (first axiom), all other ac-
tions do not change its value (second axiom – note use of a:−{ackey} which defines 
actions a not including ackey); pressing modekey when the front mode is on, puts the 
air conditioning mode in the state stored in memory (third axiom), and the same hap-
pens when fanspeedup or fanspeeddown are pressed while the system is off (fourth 
axiom), or if pressing frontkey leaves the front mode on (fifth axiom). Property 1 is 
true in this new model. 

Standard patterns were developed for the systematic analysis of interactive sys-
tems. Due to space constraints, only minimal information on the patterns is provided, 
presenting basic (no concurrency) formulations only. The patterns use a number of 
notational assumptions. s is the valuation of the attributes in the current state (S), c ⊆ 
dom(ρ) (with ρ:Attributes → Presentation defining the presentation modalities) a 
subset of perceivable attributes, =* is equality distributed over attributes in the state, a 
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an action, AXa p a shorthand for AX(a → p) (i.e., in all next states arrived at by a, p 
holds), ≠*means at least one attribute must be different, and pred  an optional predicate 
used to constrain the analysis to a sub-set of states. The patterns are formulated in a 
CTL like logic that is transformed into correct CTL by the IVY tool (described in 
Section 5).  

Feedback is a key property of a good user interface that helps the user gain confi-
dence in the effect of actions. It helps create an appropriate mental model of the sys-
tem. Feedback properties can be verified with the following pattern: 

 
Property Pattern: Feedback 
Intent: To verify that a given action provides feedback. 

Formulation: AG(pred(s) ∧ c =* x → AXa (c ≠* x)) 
Under the defined condition (pred), the action (a) will always cause a change in 
some perceivable attribute (in c). 

If the mode key is instantiated in the pattern, i.e., a ≡ modekey and feedback is provided 
by the airflow indicator (indicator (a) in figure 1), the property can be expressed as: 

                               AG(airflow = x → AXmodekey(airflow ≠ x ))   (2) 

The IVY tool instantiates the pattern, generating five properties, one for each flow 
mode action. These all hold, suggesting that the airflow indicator provides adequate 
feedback and therefore mode change is clear. Instantiation of the property with fans-
peedup and associated indicator fanspeed (see indicator (b) in figure 1) produces 

                          AG(fanspeed = x → AXfanspeedup(fanspeed ≠ x ))   (3) 

The property fails when the fan speed is at maximum (10) and the button does not 
change speed (or indicator). In practice failure of a property may not be significant. 
While no other indicator is clear at this limit, this may not be a problem for the user. 

Consistency of action is another characteristic of a system that facilitates predict-
ability and learning. Consistency can be internal (between different parts of the sys-
tem) or external (with other systems). Four buttons which act as on/off switches (A/C, 
Auto, Mode and Front) look the same and should be internally consistent. 

 
Property Pattern: Behavioural consistency 
Intent: To verify that a given action causes consistent effect. 
Formulation: AG(pred(s) ∧ s =* x → AXac(effect(x,s))) 
with effect : 2(S×S) characterising the effect the action should have in the state. 

This generalization of the Feedback pattern states that the action must always cause 
the same effect in the user interface. The candidates for test are buttons ackey, front-
key, airintakekey and autokey, the relevant state is the status of each button (ac, front, 
airintake and auto, respectively), and the desired effect is the toggling of that status. 
In the case of ackey, the pattern gives: 

                                        AG(ac = x → AXackey(ac = ¬x))     (4) 
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All the instantiated properties hold when the system is switched on except [auto-
key]. In the case of [autokey] the button only turns the mode on, it does not turn it off. 
One of the interesting features of this design is that when the system is off there are a 
number of unexpected side effects of pressing some of these buttons that cause 
changes to subsequent behavior. 

Although one form of undo has been analyzed already (for the on/off switches), 
another relevant pattern is whether there are actions that can undo the effect of other 
actions. 

 
Property Pattern: Undo 
Intent: To check whether the effect of an action can be undone. 
Formulation (any action): AG(s =* x → AXa1EX(s =* x)) 
with a1�the action whose effect we want to undo, any action required to undo. 
Formulation (specific action): AG(s =* x → AXa1(EX(a2) ∧ AXa2(s =* x)) 
a2 the action that should undo a1; the action availability test (EX(a2)) is optional. 

 
Property Pattern: Reversibility 
Intent: To check whether the effect of an action can be eventually re-
versed/undone. 
Formulation: AG(s =* x → AXa1EF(s =* x)) 

For the mode button this pattern checks whether there is another action that can be 
identified as performing its undo. Focussing on the airflow indicator: 

                            AG(airflow = x → AXmodekeyAXxaction(airflow = x))   (5) 

Attempting the verification for xaction = autokey fails for all properties, except when 
airflow = floorws. It fails because modekey does not have a symmetric action that un-
does its effect (on the airflow mode). Exploring why it holds in the one case leads to 
the unexpected conclusion that the modekey action is unavailable when the air flow 
mode is floorws. The mode key action should always be available to allow the flow 
mode to be changed. The model has been specified so that the user can always press 
the buttons but this does not imply that pressing a button always has an effect. The 
problem is that the cyclic behaviour ‘implemented’ by the mode button includes 
wsclear but this mode should only be accessible by using the Front key. Whether the 
modekey can always be undone by some means leads to a positive answer. 

                             AG(airflow = x → AXmodekeyEF(airflow = x))   (6) 

5   Checking Patterns Using IVY 

The IVY tool supports the patterns described in the previous section. Its architecture is 
given in Figure 2. The tool has four components: a model editor designed to support 
MAL interactor development; a property editor designed to support the formulation of 
relevant usability related properties; a translator (i2smv) that transforms interactor 
models into the model checker’s input language; a trace visualizer/analyzer that helps 
analyze any traces produced by the model checker. 
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Fig. 2. IVY Architecture 

5.1   The Model Editor 

The editor supports the structure and syntax of MAL [1] interactors in two editing 
modes indicated in the two windows of figure 3. In graphical mode the overall struc-
ture of the model can be viewed and manipulated while at the same time providing an 
individual edit capability. The textual mode involves the usual editing facilities: cut 
and paste, undo and redo etc. This mode supports direct editing and fine tuning. The 
interactor in graphical mode is based on UML class diagrams [13].  

Interactor aggregation and specialization uses an approach consistent with UML to 
make it easier for designers to understand a model’s representation. A number of in-
spectors are provided in graphical mode to make it possible to edit the different as-
pects of the model (types, attributes, actions and axioms of the selected interactor, and 
so on). Textual mode allows direct editing of the text of the model thus enabling ex-
perienced users to edit the model more quickly. Aspects of the text can be changed di-
rectly instead of using the inspector panels of the graphical mode. Less expert users 
may choose more guidance through the graphical mode. 

 

Fig. 3. IVY Model Editor 
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5.2   Property Editor 

Verification of assumptions about the expected behavior of the device is achieved by 
expressing CTL properties. The Property Editor uses patterns to support the choice of 
specific properties (see figure 4). The editor supports pattern selection, making it easy 
to instantiate the chosen pattern expressed in CTL (or LTL) with actions and attrib-
utes from the model as shown in the figure. Verification is achieved from the trans-
lated MAL interactors by the NuSMV model checker [3]. The trace visualizer can 
then be used to analyze counter-examples or witnesses after the checking process. 

 

Fig. 4. Expressing properties using patterns 

5.3   Trace Visualization 

Traces are expressed in terms of the variables and states generated through the trans-
lation into SMV’s input language. Since the SMV model includes some state artifacts 
that were created through this step an important element in trace visualization is to 
ensure that the states and variables that are displayed for the analyst are only in terms 
of the original interactors. A typical example of this reversion is the elimination of the 
attribute ‘action’, annotations used in SMV to distinguish MAL actions. The visuali-
zation component aims to focus on the problem that is being pointed out by the trace 
to support discovery of possible solutions reducing the cost of the analysis. 

The visualizer implements a number of alternative representations to explore the ac-
ceptability of different approaches. They include: a tabular representation that is similar to 
the existing SMV implementation of Cadence Labs (www.cadence.com); a graphical rep-
resentation based on states; and an Activity Diagram representation based on actions [7]. 

 

The tabular representation (figure 5) presents information in a table similar to that 
generated by Cadence SMV or by [12]. Column headings show state numbers. The be-
ginning of a cycle is shown by an asterisk. Cells with darker backgrounds indicate that 
the attribute’s value in the current state has changed since the previous state otherwise a 
lighter background is used. This idea, adopted from [12], shows quickly when the inter-
actor’s attributes change state. 
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Fig. 5. Tabular representation: no feedback for fanspeedup 

The state based representation (see figure 6, left) represents each interactor in a 
column showing evolution of interactor states (attributes are listed against each state). 
The global state (including all interactor variables) is represented separately to serve 
as an index to the states of the individual interactors. A green arrow indicates the be-
ginning and end of loops in this state. Alternatively a pop-up option toggles attribute 
representation to provide a more compact view (as shown in figure 6). While attrib-
utes are not represented in the diagram they can be consulted by placing the mouse 
over each state, thereby reducing information and making it easier to discover the 
problem highlighted by the trace. Actions are shown as labels in the arrows between 
two consecutive states if a transition exists. A second variant of this diagram repre-
sents the (physical) states of the SMV modules generated from the model. 

The Activity Diagram representation follows the notation of UML 2.0 for activity 
diagrams (right hand side, figure 6). Activities are represented by one rectangle with 
rounded corners. The small rectangles associated with the activities represent the state 
of the interactor before and after an activity occurs. As this representation clearly fo-
cuses on actions, interactor attributes appear as pop-ups. The attribute values can be 
consulted through one pop-up, placing the mouse on the rectangles of the states. 

 

Fig. 6. Counter example representations (state based/activity diagram) 
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5.4   Exploring the Traces 

The visualizer (in all modes) makes it possible to mark states depending on criteria 
defined over the state attributes. Criteria are defined by relations (=, >, <) between at-
tribute pairs or between attributes and values. To each criterion is associated a color. 
All the states that verify a given criterion are annotated with the specified color. In the 
case of figure 6 states marked are states where airflow = panel. 

In the case of comparison of attributes, two half-circles of the chosen color are 
drawn near each one of the relevant attributes. In the case of comparison between at-
tributes and values, filled circles are drawn, with the chosen color. If the pop-ups op-
tion is enabled the condition represented by each marker can be revealed by placing 
the mouse over it. 

6   Extending the Analysis 

Mode complexity is a fundamental issue in interactive system design and is particu-
larly susceptible to model checking analysis. In [8] two types of modes are identified: 
action modes and indicator modes. Problems might arise when two modes are similar 
but not the same (leading users to believe the system is in a mode that it is not). Other 
problems arise through the evolution of modes (for example, actions might cause un-
desirable/incorrect mode changes) rendering the effect of action unpredictable.  

A step beyond the toggling behavior of buttons would be to analyze whether the 
buttons, when pressed twice, leave the overall mode of the system in the same state. 
Consider, for example, the front key. If the system is off it always turns the system 
on. Further investigation could explore a broader concept of “working mode” (a set of 
state attributes that are related by mode). For example testing whether it is the case 
that when the system is on, the effect of turning the air flow on and off is to leave the 
system in the same working mode as it was in initially. For this case the Undo pattern 
can be used with the specific action formulation, making a1�and a2�equal to the front-
key. In this case the attributes that are relevant to the working mode include the attrib-
utes auto, on, ac, airintake and airflow. Attributes settemp, fanspeed and front are not 
relevant to the analysis. Since the action frontkey has already been exhaustively ana-
lyzed it shall be ignored. Applying the pattern, the following property is produced: 

AG((auto, on, ac, airintake) =* x →   
    AXfrontkey(EX(frontkey) ∧ AXfrontkey((auto, on, ac, airintake) =* x)))) 

Action modes may be explored using the consistency pattern. When the effect is 
different from the one expected, action modes can be identified. Alternatively a guard 
can be used to identify a relevant mode making it possible to check whether the action 
has the correct behavior for the mode (or, negating the guard and checking whether it 
has that same behavior outside the relevant mode). 

The above analysis limits consideration by ignoring the function of the panel. In 
the style of [2] an alternative strategy would be to explore how the device enables the 
environment to reach a desired temperature. This property relates to the context of use 
of the device, the temperature of the environment, which is not present in the model. 
There is no space in the paper to present a relevant analysis. 
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7   Conclusion 

For formal techniques to become a widely used approach to the analysis of interactive 
systems two developments are necessary. The first is to make the analysis common-
place and systematic for developers. The second is to allow reuse of similar specifica-
tions to reduce the work necessary to perform the analysis. The work described in this 
paper addresses both these developments. The use of IVY and patterns provides real 
promise that systematic techniques are now available for a class of control panel sys-
tems. Consideration has been limited to control panel interfaces because the specifica-
tion of dynamically changing nested actions becomes relatively cumbersome in MAL. 
The variety and number of such systems that are currently under analysis is growing 
substantially. The same small set of examples is no longer the focus of attention. 
Combining tools like IVY with repositories of specifications such as that envisaged 
by Thimbleby using XML standards (see, for example [9]) will provide an invaluable 
resource for interactive system developers. The issue of reuse is also being addressed. 
Patterns provide significant support for developers when they face new designs. Fur-
ther work is required to explore generic interactors, similar to that discussed in the 
broader context of smart environments [10]. 
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Appendix A   System Definition 

defines 
  MAXCOLD = 15 
  MAXHOT = 30 
  MAXFANSPEED = 10 
types 
  Temp = MAXCOLD .. MAXHOT 
  AirFlow = {panel, double, floor, floorws, wsclear}  
  FanSpeed = 0..MAXFANSPEED 
 
interactor main 
  attributes 
    [vis] auto, on, front, ac: boolean 
    [vis] airintake: boolean  # true: fresh / false: recirc 
    automem, acmem, airintakemem: boolean 
    [vis] settemp: Temp 
    [vis] airflow: AirFlow 
    airflowmem: AirFlow 
    [vis] fanspeed: FanSpeed 
  actions 
    autokey off modekey fanspeedup fanspeeddown tempup tempdown frontkey ackey airintakekey 
  axioms 
    [autokey] auto’ ∧ on’ ∧ ¬front’ ∧ keep(airintake, settemp) 
    [off] ¬auto’ ∧ ¬on’ ∧ fanspeed’=0 ∧ ¬ac’ ∧ keep(airintake,settemp,front,airflow) 
    [modekey] ¬auto’ ∧ ¬front’ ∧ keep(airintake,settemp,on,fanspeed) 
    ¬front → [modekey] (airflow=panel → airflow’=double) ∧ (airflow=double → airflow’=floor) 
                  ∧ (airflow=floor → airflow’=floorws) ∧ (airflow=floorws → airflow’=panel) ∧ keep(ac) 
    [fanspeedup] ¬auto’ ∧ on’ ∧ keep(airintake, settemp, front, airflow) 
    on → [fanspeedup] (fanspeed<MAXFANSPEED → fanspeed’=fanspeed+1) 
               ∧ (fanspeed=MAXFANSPEED → fanspeed’=fanspeed) ∧ keep(ac) 
    ¬on → [fanspeedup] fanspeed’=1 
    [fanspeeddown] ¬auto’ ∧ on’ ∧ keep(airintake, settemp, front, airflow, ac) 
    (on ∧ auto) → [fanspeeddown] keep(fanspeed, ac) 
    (on ∧ ¬auto) →  [fanspeeddown] (fanspeed >0 → fanspeed’=fanspeed -1) 
            ∧ (fanspeed =0 → fanspeed’=fanspeed) ∧ keep(ac) 
    ¬on → [fanspeeddown] fanspeed’=1 
    on → [tempup] (settemp<MAXHOT → settemp’=settemp +1) 
          ∧ (settemp=MAXHOT → settemp’=settemp) ∧ keep(auto,airintake,on,front,ac) 
    ¬on → [tempup] keep(auto,airintake,settemp,on,front,airflow,fanspeed,ac) 
    on → [tempdown] (settemp>MAXCOLD → settemp’=settemp -1) 
          ∧ (settemp=MAXCOLD → settemp’=settemp) ∧ keep(auto,airintake,on,front,ac) 
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    ¬on → [tempdown] keep(auto,airintake,settemp,on,front,airflow,fanspeed,ac) 
    on → [frontkey] on’ ∧ front’=¬front ∧ keep(settemp) 
    ¬on → [frontkey] on’ ∧ front’ ∧ keep(settemp) 
    [frontkey] front’ → (¬auto’ ∧ ¬airintake’ ∧ ac’) 
    front ↔ airflow=wsclear 
    on → [ackey] ac’=¬ac ∧ keep(auto,airintake,settemp,on,front,airflow,fanspeed) 
    ¬on → [ackey] keep(auto,airintake,settemp,on,front,airflow,fanspeed,ac) 
    [airintakekey] airintake’=¬airintake ∧ keep(auto,settemp,on,front,airflow,fanspeed,ac) 
    [] ¬auto∧ ¬on ∧ fanspeed=0 ∧ ¬ac 
  # airflow 
    ¬front → [frontkey] airflowmem’=airflow 
    front → [ac:-{frontkey, modekey}] keep(airflowmem) 
    front → [modekey] airflow’=airflowmem 
    (on ∧ front) → [frontkey] airflow’=airflowmem 
    (¬on ∧ front) → [frontkey] keep(airflowmem) 
  # airintake 
    ¬front → [frontkey] airintakemem’=airintake 
    front → [ac:-{ffrontkey, airintakekeyg}] keep(airintakemem) 
    front → [airintakekey] airintakemem’=airintake’ 
    (on ∧ front) → [frontkey] airintake’=airintakemem 
    (¬on ∧ front) → [frontkey] keep(airintakemem) 
  # ac 
    [ackey] acmem’=ac’ 
    [ac:-{ackey}] keep(acmem) 
    (front ∧ on) → [modekey] ac’=acmem 
    (front ∧ ¬on) → [modekey] keep(ac) 
    ¬on → [ac:{fanspeedup,fanspeeddown}] ac’=acmem 
    [frontkey] ¬front’ → ac’=acmem 
    [autokey] ac’=acmem 
  # auto 
    [ac:{autokey,modekey}] automem’=auto’ 
    [ac:-{autokey,modekey,frontkey}] keep(automem) 
    ¬on → [frontkey] keep(automem) 
    on → [frontkey] automem’=auto 
    [frontkey] ¬front’ → auto’=automem 
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