
An Attack Graph-Based Probabilistic Security Metric

Lingyu Wang1, Tania Islam1, Tao Long1, Anoop Singhal2, and Sushil Jajodia3

1 Concordia Institute for Information Systems Engineering
Concordia University, Montreal, QC H3G 1M8, Canada
{wang,t is,ta lon}@ciise.concordia.ca

2 Computer Security Division
National Institute of Standards and Technology

Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

3 Center for Secure Information Systems
George Mason University

Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

Abstract. To protect critical resources in today’s networked environments, it is
desirable to quantify the likelihood of potential multi-step attacks that combine
multiple vulnerabilities. This now becomes feasible due to a model of causal re-
lationships between vulnerabilities, namely, attack graph. This paper proposes an
attack graph-based probabilistic metric for network security and studies its effi-
cient computation. We first define the basic metric and provide an intuitive and
meaningful interpretation to the metric. We then study the definition in more com-
plex attack graphs with cycles and extend the definition accordingly. We show
that computing the metric directly from its definition is not efficient in many
cases and propose heuristics to improve the efficiency of such computation.

1 Introduction

The traditional binary view of network security (that is, either secure or insecure) is be-
coming less and less suitable for today’s increasingly complex networked environments.
In practice, many vulnerabilities may still remain in a network after they are discovered,
due to environmental factors (such as latency in releasing software patches or hardware
upgrades), cost factors (such as money and administrative efforts required for deploying
patches and upgrades), or mission factors (such as organizational preferences for avail-
ability and usability over security). To remove such residue vulnerabilities in the most
cost-efficient way, we need to evaluate and measure the likelihood that attackers may
compromise critical resources through cleverly combining multiple vulnerabilities.

The study of security metrics has recently drawn significant attention (a detailed
review of related work is given in Section 5). However, existing network metric stan-
dards typically focus on the measurement of individual vulnerabilities. For example, the
Common Vulnerability Scoring System (CVSS) measures the potential impact and en-
vironmental metrics in terms of each individual vulnerability [13]. This is a major limi-
tation, because the impact, damage, and relevance should be measured against potential
compromises of critical resources, which typically require combining more than one
vulnerability.

V. Atluri (Ed.): DAS 2008, LNCS 5094, pp. 283–296, 2008.
c© IFIP International Federation for Information Processing 2008

284 L. Wang et al.

On the other hand, the causal relationships between vulnerabilities are well under-
stood and usually encoded in the form of attack graphs [1,24]. Attack graphs help to
understand whether given critical resources can be compromised through multi-step at-
tacks. However, as a qualitative model, attack graph still adopts a binary view towards
security, that is, a network is either secure (critical resources are not reachable) or in-
secure. This is a limitation because it is usually desirable to find a relatively superior
option among secure configurations.

Clearly, there is a gap between existing security metrics, which mostly focus on
individual vulnerabilities, and qualitative models of vulnerabilities, which are usually
limited to binary views of security. To fill this gap, we propose a probabilistic metric
for measuring network security. The metric draws strength from both existing security
metrics and the attack graph model. More specifically, we combine the measurements
of individual vulnerabilities obtained from existing metrics into an overall score of the
network. This combination is based on the causal relationships between vulnerabilities
encoded in an attack graph. The key challenge lies in handling complex attack graphs
with cycles. We first define the basic metric without considering cycles. We provide
an intuitive interpretation of the metric. Based on such an interpretation, we extend the
definition to attack graphs with cycles. Finally, we study the efficient computation of
the metric. We show that computing the metric by using its definition is usually not
efficient, and we provide heuristics for optimizing such computations.

The rest of the paper is organized as follows. Section 2 gives a motivating example.
Section 3 defines the proposed metric and studies how to handle cycles in attack graphs.
Section 4 presents heuristics for efficient computations of the metric. Section 5 reviews
related work. Finally, Section 6 concludes the paper.

2 Attack Graph and Motivating Example

Attack graphs model how multiple vulnerabilities may be combined for advancing an
intrusion. In an attack graph, security-related conditions represent the system state, and
an exploit of vulnerabilities between connected hosts is modeled as a transition between
system states. Figure 1 shows a toy example. The left side is the configuration of a
network. Machine 1 is a file server behind the firewall that offers file transfer (ftp),
secure shell (ssh), and remote shell (rsh) services. Machine 2 is an internal database
server that offers ftp and rsh services. The firewall allows ftp, ssh, and rsh traffic to both
servers and blocks all other incoming traffic.

The right-hand side of Figure 1 shows the attack graph (the numerical values are
not part of the attack graph and will be explained shortly), which is a directed graph
with two kinds of vertices, namely, exploits shown as predicates inside ovals and condi-
tions shown in plaintexts. For example, rsh(0, 1) represents a remote shell login from
machine 0 to machine 1, and trust(0, 1) means a trust relationship is established from
machine 0 to machine 1. A directed edge from a condition to an exploit means executing
the exploit requires the condition to be satisfied, and that from an exploit to a condition
means executing the exploit will satisfy the condition. We formalize the attack graph in
Definition 1.

An Attack Graph-Based Probabilistic Security Metric 285

Fig. 1. An Example of Network Configuration and Attack Graph

Definition 1. An attack graph G is a directed graph G(E ∪ C, Rr ∪ Ri) where E is a
set of exploits, C a set of conditions, and Rr ⊆ C × E and Ri ⊆ E × C.

The attack graph in Figure 1 depicts three attack paths. On the right, the attack path
starts with an ssh buffer overflow exploit from machine 0 to machine 1, which gives the
attacker the capability of executing arbitrary codes on machine 1 as a normal user. The
attacker then exploits the ftp vulnerability on machine 2 to anonymously upload a list
of trusted hosts. Such a trust relationship enables the attacker to remotely execute shell
commands on machine 2 without providing a password. Consequently, a local buffer
overflow exploit on machine 2 escalates the attacker’s privilege to be the root of that
machine. Details of the other two attack paths are similar and are omitted.

Informally, the numerical value inside each oval is a probability that indicates the
relative likelihood of the corresponding exploit being executed by attackers when all
the required conditions are already satisfied. This value thus only depends on each indi-
vidual vulnerability, which is similar to many existing metrics, such as the CVSS [13].
On the other hand, we can clearly see the limitation of such metrics in assessing the im-
pact, damage, or relevance of vulnerabilities, because such factors are rather determined
by the combination of exploits. While we delay its definition and computation to later
sections, the numerical value beside each oval represents the likelihood of reaching the
corresponding exploit in this particular network. Clearly, a security administrator will
be much happier to see the single score beside the last exploit (local bof(2, 2)) than
looking at all the eight values inside ovals and wondering how those values may be
related to each other.

286 L. Wang et al.

3 Defining the Metric

We introduce the metric in Section 3.1 for acyclic attack graphs. We discuss the need for
conditions in the definition and provide an interpretation of the metric in Section 3.2.
We then illustrate the issue raised by cycles in Section 3.3 and extend the definition to
handle cycles in Section 3.4.

3.1 The Basic Definition

We first assume acyclic attack graphs and delay the discussion of cycles to Section 3.4.
In this paper, we shall assume the events that an attacker can (and will) execute dif-
ferent exploits are independent and regard removing such an assumption as our future
work. We only consider a fixed probability for measuring vulnerabilities, although other
possibilities clearly exist (such as a probability distribution or a value varying in time).

We associate each exploit e and condition c with two probabilities, namely, p(e) and
p(c) for the individual score, and P (e) and P (c) for the cumulative score. The individ-
ual score p(e) stands for the intrinsic likelihood of an exploit e being executed, given
that all the conditions required for executing e in the given attack graph are already
satisfied. On the other hand, the cumulative score P (e) and P (c) measures the overall
likelihood that an attacker can successfully reach and execute the exploit e (or satisfy
the condition c) in the given attack graph (the individual score and cumulative score can
also be interpreted as probabilities within a Bayesian network [8]).

For exploits, we assume the individual score is assigned based on expert knowledge
about the vulnerability being exploited. For conditions, we assume in this paper that the
individual score of every condition is always 1. Intuitively, a condition is either initially
satisfied (for example, user(0) in Figure 1), or immediately satisfied after a successful
exploit (in practice, we can easily remove such assumptions by assigning less-than-1
individual scores to conditions). In Figure 1, we have assigned the individual scores
(probabilities shown inside the ovals) based on simple facts, such as a buffer overflow
attack requires more skills than executing a remote shell command. In practice, indi-
vidual scores can be obtained by converting vulnerability scores provided by existing
standards, such as the CVSS base score and temporal score [13], to probabilities.

Unlike individual scores, the cumulative score takes into accounts the causal rela-
tionships between exploits and conditions. In an attack graph, such causal relation-
ships may appear in two different forms. First, a conjunction exists between multiple
conditions required for executing the same exploit. Second, a disjunction exists be-
tween multiple exploits that satisfy the same condition. The cumulative scores are
defined in the two cases similar to the probability of the intersection and union of
random events. That is, if the execution of e requires two conditions c1 and c2, then
P (e) = P (c1) ·P (c2) ·p(e); if a condition c can be satisfied by either e1 or e2 (or both),
then P (c) = p(c)(P (e1)+P (e2)−P (e1) ·P (e2)). Definition 2 formalizes cumulative
scores.

Definition 2. Given an acyclic attack graph G(E ∪ C, Rr ∪ Ri), and any individual
score assignment function p : E ∪ C → [0, 1], the cumulative score function P :
E ∪ C → [0, 1] is defined as

An Attack Graph-Based Probabilistic Security Metric 287

– P (e) = p(e) · ∏c∈Rr(e) P (c)
– P (c) = p(c), if Ri(c) = φ; otherwise, P (c) = p(c) · ⊕e∈Ri(c)P (e) where the

operator ⊕ is recursively defined as ⊕P (e) = P (e) for any e ∈ E and ⊕(S1 ∪
S2) = ⊕S1 + ⊕S2 − ⊕S1 · ⊕S2 for any disjoint and non-empty sets S1 ⊆ E and
S2 ⊆ E.

In Figure 1, the cumulative scores of two exploits (shown as plaintexts besides corre-
sponding exploits) can be calculated as follows.

1. P (rsh(0, 1)) = P (trust(0, 1) × p(rsh(0, 1)) = 0.8 × 0.9 = 0.72
2. P (user(1)) = P (rsh(0, 1)) + P (sshd bof(0, 1)) − P (rsh(0, 1)) × P (sshd

bof(0, 1)) = 0.72 + 0.1 − 0.72 × 0.1 = 0.748

3.2 The Need for Conditions and an Interpretation of the Metric

From the above example, the score of conditions may seem rather unnecessary (as a
matter of fact, we do not show the score of conditions in Figure 1). However, the attack
graph shown in Figure 1 is a special case where all the causal relationships between
exploits happen to be disjunction only. In general, more complicated relationships may
arise between exploits, and the cumulative score of conditions will be helpful in such
cases. For example, Figure 2 shows the calculation of cumulative scores when a con-
junctive, disjunctive, and hybrid relationship exists between exploits, respectively. It
would be cumbersome to explicitly deal with such different relationships in defining
our metric. However, as long as we include conditions as an intermediate between ex-
ploits, we can safely ignore the difference between those cases.

e1

e3

p(e3)

P(e3)=P(e1)×P(e2)×p(e3)

c1

e3

p(e3)

P(e3)= (P(e1)+P(e2)-P(e1)×P(e2))×p(e3)

c2c1

P(e1)

c2

e4

p(e4)

P(e2) P(e3)

P(e4)=P(e1)×(P(e2)+P(e3)-P(e2)×P(e3))×p(e4)

P(e1)

c1
c1

e2 e1 e2 e1 e2 e3

P(c1)=P(e1) P(c2)=P(e2)

P(e2) P(e1) P(e2)

P(c1)=P(e1)+P(e2)-P(e1)⋅P(e2)

P(c1)=P(e1)
P(c2)=P(e2)+P(e3)-P(e2)×P(e3)

Fig. 2. Examples Showing the Need for Cumulative Scores of Conditions

Using probabilities for a security metric has been criticized as violating a basic de-
sign principle, that is, the value assignment should be specific and unambiguous rather
than abstract and meaningless [22]. However, there is a simple interpretation for our
metric. That is, the individual score p(e) is the probability that any attacker can, and
will execute e during an attack, given that all the preconditions are already satisfied.
Equivalently, among all attackers that attempt to compromise the given network during
any given time period, p(e) is the fraction of attackers that can, and will execute e.

This interpretation of individual scores considers two factors in determining the in-
dividual score p(e), namely, whether an attacker has the skills and resources to execute

288 L. Wang et al.

e and whether he/she will choose to do so. For example, a vulnerability that cannot
be exploited remotely, or the one that requires a valid user account will likely have a
lower score due to the first factor (that is, fewer attackers can exploit the vulnerability),
whereas a vulnerability that can be easily detected, or the one less exposed to the pub-
lic will likely have a lower score due to the second factor (that is, fewer attackers will
exploit the vulnerability).

The interpretation of individual scores also provides a natural semantics to the cumu-
lative scores. That is, P (e) or P (c) stands for the likelihood, or the fraction of, attackers
who will successfully exploit e or satisfy c in the given network. The cumulative score
of a given goal condition thus indicates the likelihood that a corresponding resource
will be compromised during an attack, or equivalently, among all attackers attacking
the given network over a given time period, the average fraction of attackers who will
successfully compromise the resource. Such a likelihood or fraction is clearly relevant
in analyzing the security of a network or in hardening the network for better security.

3.3 Difficulties with Cycles

One complication in defining cumulative scores lies in the effect of cycles in attack
graphs. Different types of cycles naturally exist in attack graphs, and they create differ-
ent difficulties. Namely, some cycles can be completely removed; some cycles can be
safely broken, some cycles, however, can neither be removed or broken. Figure 3 shows
an example for each type of such cycles.

First, the left-hand side of Figure 3 shows a cycle that can be completely removed
because none of the exploits or conditions inside the cycle can ever be reached by
attackers. More specifically, executing the exploit e1 requires both c1 and c3 to be satis-
fied. However, c3 can only be satisfied by the execution of e2, which again requires e1

to be executed first. Therefore, neither e1 nor e2 can ever be successfully executed, and
thus conditions c2 and c3 can never be satisfied. Such a removable cycle can be com-
pletely ignored during calculating the cumulative scores. In another word, all exploits
and conditions inside the cycle have a cumulative score of zero (notice that c4 thus au-
tomatically receives a cumulative score of zero by the definition given in Section 3.1).

Second, the middle case of Figure 3 shows that some cycles cannot be removed be-
cause the exploits and conditions inside the cycle can indeed by reached. The condition
c2 can be satisfied by either e1 or e2. If c2 is first satisfied by e1, then both e2 and e3 can

e1

e4
e3 e2

c1

c3

c4

c2
e1

e2
e3

c1

c2

c3

e1
e2

c1

c2

c3
c4 c4 c5

Fig. 3. Cycles in Attack Graphs

An Attack Graph-Based Probabilistic Security Metric 289

be successfully executed. Ignoring such a cycle will thus cause incorrect definition of
the metric. Fortunately, this cycle can be easily broken by removing the directed edge
from e2 to c2. Intuitively, c2 is only satisfiable by e1 even though later on it may be
satisfied again by e2 (we shall provide a clearer interpretation shortly). After we break
the cycle in this way, the cumulative scores can then be easily calculated.

Third, the right-hand side of Figure 3 shows a cycle that can be neither removed
nor broken in the aforementioned manner. Both e1 and e2 can lead to exploits in the
cycle to be executed. There are thus two different ways for breaking the cycle among
which we can only choose one. That is, we can either remove the edge from e4 to c3

by assuming c3 is satisfied by e1, or remove the edge from e3 to c4 by considering c4

to be satisfied by e2. However, there is no clear reason to prefer any of the two choices
over the other. Moreover, removing both edges is clearly not a valid solution (the graph
will be separated into two disjoint components). This example shows that removing or
breaking a cycle is not a valid solution for all cases.

3.4 Extending the Definition to Handle Cycles

To find a general and meaningful solution, we need to revisit the aforementioned in-
terpretation of the proposed metric. That is, an individual score represents the fraction
of attackers who can (and will) execute an exploit or satisfy a condition (in the rest of
the paper, we shall refer to both as reaching), given that all preconditions are already
satisfied; a cumulative score indicates the fraction of attackers who will reach an exploit
or a condition. However, when cycles are present in an attack graph, an attacker may
reach an exploit or a condition more than once. Clearly, extra caution must be taken in
calculating cumulative scores to avoid counting any attacker twice.

Without the loss of generality, we consider the calculation of P (e4) on the right-hand
side of Figure 3. We illustrate those events using Venn diagrams in Figure 4 (the shaded
areas can be ignored for now). Notice that the figure depicts cumulative scores for e1

and e2 as they are not part of the cycle. Referring to the right-hand side of Figure 3, we
shall first calculate P (e4) by following the cycle clockwise from c4, through e4, c3, e3,
and finally to c4 again, as follows (each step simply follows the basic definition given
in Section 3.1).

1. By abusing notations, denote P (e2) the set of attackers reaching e2, represented as
an oval in Figure 4.

2. Among the attackers in P (e2), those who can execute e4 form the intersection
P (e2) ∩ p(e4).

3. The union of two sets of attackers, P (e2) ∩ p(e4) ∪ P (e1), will reach c3.
4. The intersection of the above set with p(e3), that is, (P (e2)∩p(e4)∪P (e1))∩p(e3)

will reach e3.
5. Among those who reach e3, the attackers originally coming from the set P (e2)

should not be counted again towards satisfying c4. In another word, only those in
(P (e2) ∩ p(e4) ∪ P (e1)) ∩ p(e3) \ P (e2) = P (e1) ∩ p(e3) \ P (e2) should be
counted.

6. Finally, the set of attackers that can reach e4 is (P (e1) ∩ p(e3) \P (e2) ∪P (e2))∩
p(e4) = (P (e1) ∩ p(e3) ∪ P (e2)) ∩ p(e4)

290 L. Wang et al.

P(e2)

p(e4)
p(e3)

P(e1)

P(e2)

p(e4)
p(e3)

P(e1)

P(e4)

P(e3)

Fig. 4. Calculating Cumulative Scores in the Presence of Cycles

The shaded area in the left-hand side of Figure 4 indicates the final result of P (e4).
The right-hand side of Figure 4 corresponds to P (e3), which can be calculated similarly.
In the above calculation, we essentially break the cycle in the second to the last step,
by disregarding those attackers who reach c4 for the second time. This is reasonable
because in measuring the fraction of attackers (or the likelihood of an attacker) reaching
c4, we should only count the fraction of distinct attackers. In another word, although an
attacker can repeat an exploit for many times, this should not affect the metric.

There is, however, an alternative interpretation of the final result P (e4) = (P (e1) ∩
p(e3) ∪ P (e2)) ∩ P (e4). Intuitively, instead of breaking the cycle when some attack-
ers reach c4 for the second time, we prevent them from ever leaving e4. More precisely,
when calculating a cumulative score of an exploit (or a condition), we remove all outgo-
ing edges from that exploit (or condition). After removing those edges, some other ex-
ploits or conditions may need to be removed if they can no longer be reached. The attack
graph will needs to be updated to remove all unreachable vertices. For example, In the
left-hand side of Figure 3, to calculate P (e1), we will remove the edge (e1, c2), (c2, e2),
(e2, c3), (c3, e1), and finally the exploit e1 itself (this can be interpreted as P (e1) = 0).

Definition 3 formalizes cumulative scores for general attack graphs. In the definition,
the first case corresponds to the exception where e is inside a removable cycle, so its
cumulative score is defined (not computed) as zero. In the second case, the cumulative
score is defined in A(G, e) instead of G so to ensure that e is not inside any cycle and
its cumulative score can thus be calculated based on Definition 2 (however, A(G, e) is
not guaranteed to be an acyclic attack graph so Definition 2 does not directly apply).

Definition 3. Given an attack graph G(E ∪ C, Rr ∪ Ri), and any individual score as-
signment function p : E ∪ C → [0, 1], we denote A(G, e) (or A(G, c)) an attack graph
obtained by removing from G all the outgoing edges at e (or c) and consequently re-
moving all unreachable exploits and conditions from G. The cumulative score function
P : E ∪ C → [0, 1] is defined as

– If e (or c) does not appear in A(G, e) (or A(G, c)), then P (e) = 0 (or P (c) = 0).
– Otherwise, P (e) (or P (c)) is equal to its value calculated in A(G, e) (or A(G, c))

based on Definition 2.

Definition 3 satisfies two desirable properties as stated in Proposition 1. The first prop-
erty guarantees that the cumulative score is defined for all exploits and conditions in the

An Attack Graph-Based Probabilistic Security Metric 291

given attack graph G. The second property ensures that the extended definition is still
consistent with the aforementioned interpretation of the metric.

Proposition 1. By Definition 3, for any exploit e (the result applies to a condition c in
a similar way),

– P (e) can be uniquely determined, and
– P (e) represents the likelihood of an attacker (or fraction of attackers) reaching e

for the first time in the given attack graph G.

Proof: We only discuss the case of an exploit e since a condition c is similar. First, e
may be unreachable in G because it is inside a breakable cycle, such as the left-hand
side of Figure 3. In this case, removing all outgoing edges from e will essentially cause
the cycle to be completely removed. We interpret this as P (e) = 0, which indicates that
no attacker can reach e in G.

Suppose e is reachable. We prove the first claim through induction on the number
k of exploits that can be reached before reaching e (we ignore those exploits that are
not on any attack path that contains e so any exploit can either be reached before e,
or after it). Clearly, for k = 0, P (e) = p(e). Suppose the claim holds for any k − 1.
We consider an exploit e before which k others can be reached. Before any of those k
exploits, at most k − 1 others can be reached (otherwise, there would be more than k
exploits reachable before e), and hence the claim holds for the k exploits that can be
reached before e. For exploits that can only be reached after reaching e at least once
(notice those exploits could be within a cycle containing e), they will not appear in
A(G, e). The claim thus holds for e, because e is no longer in any cycle and the claim
already holds for all the k remaining exploits in A(G, e) (except e itself).

For the second claim, it suffices to show that any attacker can reach e for the first
time in G iff it can do so in A(G, e). The if part is true because any valid attack path in
A(G, e) will also exist in G. The only-if part holds because when we update the attack
graph, only those exploits that can only be reached after reaching e are removed, so
their removal will not affect any attack path from reaching e in A(G, e), if such a path
exists in G. �

4 Computing the Metric

Cumulative scores can certainly be computed directly by Definition 3. That is, for each
exploit e (similarly for each condition), we first compute A(G, e) and then compute
P (e) on A(G, e). However, this naive approach is inefficient because the removal of
outgoing edges (and subsequent updates of attack graphs) is only necessary for vertices
inside cycles. More specifically, if a vertex v is not part of a cycle, then on each attack
path including v, all vertices can be divided into two sets, namely, the predecessors and
successors of v (on the other hand, if v is inside a cycle, then every vertex in the cy-
cle is both a predecessor and a successor of v). Removing outgoing edges from v will
cause all successors of v to be removed as well, whereas all the predecessors of v are

292 L. Wang et al.

not affected. Therefore, in Definition 3, if v is not part of a cycle, then calculating the
cumulative score of v in A(G, e) will give the same result as calculating it in G.

For vertices not inside a cycle, we use a modified breadth-first search (BFS) to calcu-
late cumulative scores. A normal BFS follows the outgoing edges of a vertex only when
it is reached for the first time (cycles are always broken at a vertex with the maximum
shortest-path distance from some initially satisfied conditions). However, such a normal
BFS is not suitable for calculating our metric. In Definition 3, the cumulative score of
any vertex can be calculated only when the cumulative scores of all its predecessors
have already been calculated. We thus modify the BFS such that a vertex receives a
cumulative score from its predecessor, whenever the former is reached from the latter.
The outgoing edges of a vertex are followed only when the vertex is reached for the last
time (this can be implemented using a counter based on the in-degree of each vertex).
At this time, the vertex will have received cumulative scores from all its predecessors,
and its own cumulative score can thus be calculated.

The above procedure, however, will terminate upon reaching one or more cycles.
Referring to the right-hand side of Figure 3, the search will reach c3 from e1 (or, reach
c4 from e2) and then stop there, because the predecessor e3 of c4 (or, the predecessor e4

of c3) has not yet been, and will never be, reached. Notice that this is true no matter a
cycle is removable (such as in the left-hand side of Figure 3) or not. This termination of
the procedure is actually desirable, because it signals that one or more cycles have been
reached. It also indicates entry points of the cycle, that is, those vertices that have at least
one of their predecessors reached, such as c4 and c3 in the right-hand side of Figure 3.
Upon the termination of the main procedure, a sub-procedure will mark vertices inside
the encountered cycle(s), and then calculate their cumulative scores by Definition 3.

One subtlety is that the cumulative score of all entry points of a cycle must be calcu-
lated strictly by applying Definition 3. This may not seem to be necessary, since once
the calculation is finished for one vertex in the cycle, it is possible to continue without
considering the cycle. For example, in the right-hand side of Figure 3, once we calculate
P (c3) by applying Definition 3, P (e3) can be calculated as P (e3) = P (c3) · p(e3), and
P (c4) = P (e3) + P (e2) − P (e3) · P (e2). However, while P (e3) can indeed be calcu-
lated this way, the calculation of P (c4) is incorrect. Figure 5 shows A(G, c3), A(G, e3),
and A(G, c4) obtained by Definition 3. Clearly, P (e3) can be calculated from P (c3) as
P (e3) = P (c3) · p(e3), but the calculation of P (c4) cannot be based on P (e3). Actu-
ally, it can be observed that P (c3) and P (e3) both depend on the individual score p(e4),
whereas P (c4) has nothing to do with p(e4).

e1

e2

c1

c3

c4

c2
e1

e3 e2

c1

c3

c4

c2

c5

e1

e3

c1

c3

c4

e4 e4 e4

e2

c2

Fig. 5. Computing the Metric for Vertices in Cycles

An Attack Graph-Based Probabilistic Security Metric 293

It is certainly a viable solution to always calculate cumulative scores for all vertices
in a cycle by applying Definition 3. However, for those vertices that are not entry points
of a cycle, it will be more efficient to calculate their cumulative scores without con-
sidering the cycle. In the above example, P (e3) can be safely calculated from P (c3).
More generally, for any vertex in a cycle that has only one incoming edge, the cumu-
lative score can be safely calculated (after calculation of entry points is finished) as if
the vertex is not in the cycle. The reason is as follows. The only incoming edge of such
a vertex v must be part of the cycle. Let w be the predecessor of v. When we calculate
P (w), we will remove v together with all its successors to obtain A(G, w). When we
calculate P (v), we also remove all predecessors to obtain A(G, v). The only difference
between the two cases is thus v itself. That is, P (v) = P (w) · p(v) is true. However,
if v has more than one incoming edge (and hence multiple predecessors), then to cal-
culate P (w), v may not need to be removed. For example, we do not remove c4 while
calculating P (e3) in the middle case of Figure 5.

Figure 6 shows an algorithm for calculating the metric in a given attack graph with
all individual scores assigned. Lines 1-2 assign the cumulative score of initially satisfied
conditions as 1. The main loop between line 3 and line 9 calculates the cumulative score
for all other vertices. Each loop is separated into three phases. First, lines 4-5 employs
the aforementioned modified BFS to calculate cumulative scores until one or more cy-
cle is encountered and the search terminates. Second, lines 6-7 applies Definition 3 to
calculate cumulative scores for vertices in cycles that have more than one incoming
edges. Finally, lines 8-9 calculate cumulative scores for other vertices in the cycle in a
simpler way (as if they are not in any cycle). After all vertices in the encountered cycles
are processed, the main loop will repeat lines 3-9, until all vertices are processed.

Input: An attack graph G with individual scores assigned to all vertices
Output: A set of cumulative scores for all vertices of G
Method:
1. For each initially satisfied condition c
2. Let P (c) = 1 and mark c as processed
3. While there exist unprocessed vertices
4. While there exists an unprocessed vertex v whose predecessors are all processed
5. Calculate P (v) and mark v as processed
6. For each vertex v′ in a cycle that has more than one incoming edge
7. Calculate P (v′) and mark v′ as processed
8. For each unprocessed vertex v′′ in the cycles
9. Calculate P (v′′) and mark v′′ as processed
10. Return the set of all calculated cumulative scores

Fig. 6. Algorithm for Calculating the Metric

5 Related Work

General reviews of security metrics are given in [11,2]. The NIST’s efforts on standard-
izing security metrics are in the Technology Assessment: Methods for Measuring the

294 L. Wang et al.

Level of Computer Security [14] and more recently in the Security Metrics Guide for
Information Technology Systems [25]. The latter describe the current state of practice
of security metrics, such as that required by the Federal Information Security Manage-
ment Act (FISMA). Another overview of many aspects of network security metrics is
given in [9].

Dacier et al. give intuitive properties that should be satisfied by any security met-
ric [5,6,16]. The difficulty of attacks are measured in terms of time and efforts spent
by attackers. Based on an exponential distribution for an attacker’s success rate over
time, they use a Markov model and the MTTF (Mean Time to Failure) to measure the
security of a network. They discuss simple cases of combining individual measures
but do not study the general case. Standardization efforts for vulnerability assessment
include the Common Vulnerability Scoring System (CVSS) [13], although these gen-
erally treat vulnerabilities in isolation, without considering attack interdependencies on
target networks. More recently, we propose an attack resistance metric based on attack
graph in [31,30]. In this paper, we adopt a probabilistic approach and tackle challenging
issues, such as cycles in attack graphs, that are not addressed elsewhere.

The work by Balzarotti et al. [3] focuses on computing the minimum efforts required
for executing each exploit. Based the exploitability concept, a qualitative measure of
risk is given in [4]. Another approach measures the relative risk of different config-
urations using the weakest attacker model, that is the least conditions under which an
attack is possible [20]. Yet another series of work measures how likely a software is vul-
nerable to attacks using a metrics called attack surface [10,12,17,18,19]. These work
allow a partial order to be established on different network configurations based on their
relative security. However, the treatment of many aspects of security is still qualitative
in nature.

Our work on minimum-cost network hardening is one of the first efforts toward the
quantitative study of network security [15,29]. This work quantifies the cost of remov-
ing vulnerabilities in hardening a network, but it does not consider other hardening
options, such as modifying the connectivity. It also has the limitation of adopting a
qualitative view of damages (all the given critical resources are equally important) and
of attack resistance (attacks on critical resources are either impossible or trivial).

To generate attack graphs, topological vulnerability analysis enumerates potential
multi-step intrusions based on prior knowledge about vulnerabilities and their relation-
ships [5,7,16,21,26,33]. Based on whether a search starts from the initial state or the
final state, such analyses can be forward [21,26] or backward [23,24]. To avoid the
exponential explosion in the number of explicit attack sequences, a compact represen-
tation of attack graphs was proposed based on the monotonicity assumption saying an
attacker never needs to relinquish any obtained capability [1]. On the attack response
front, attack graphs have been used for the correlation of attacks, the hypotheses of
alerts missed by IDSs, and the prediction of possible future attacks [27,28,32].

6 Conclusion

While removing all vulnerabilities is usually impractical, leaving vulnerabilities unat-
tended may cause significant damages to critical resources in a networked environment.

An Attack Graph-Based Probabilistic Security Metric 295

It is thus critical to understand and measure the likelihood of sophisticated attacks com-
bining multiple vulnerabilities for reaching the attack goal. We have proposed an attack
graph-based probabilistic metric for this purpose. We have tackled challenging issues,
such as cycles in attack graphs. We showed that the definition of the metric has an in-
tuitive and meaningful interpretation, which will be helpful in real world decision mak-
ing. Future work will implement a practical tool to measure security risk of enterprise
networks.

Acknowledgements. This material is based upon work supported by National Institute
of Standards and Technology Computer Security Division; by Homeland Security Ad-
vanced Research Projects Agency under the contract FA8750-05-C-0212 administered
by the Air Force Research Laboratory/Rome; by Army Research Office under grant
W911NF-05-1-0374, by Federal Aviation Administration under the contract DTFAWA-
04-P-00278/0001, by the National Science Foundation under grants CT-0627493, IIS-
0242237 and IIS-0430402, by Natural Sciences and Engineering Research Council of
Canada under Discovery Grant N01035, and by Fonds de recherche sur la nature et les
technologies. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the
sponsoring organizations. The authors thank the anonymous reviewers for their valuable
comments.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analy-
sis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security
(CCS 2002) (2002)

2. A.C.S. Associates. Workshop on Information Security System Scoring and Ranking (2001)
3. Balzarotti, D., Monga, M., Sicari, S.: Assessing the risk of using vulnerable components. In:

Proceedings of the 1st Workshop on Quality of Protection (2005)
4. Balzarotti, P., Monga, M., Sicari, S.: Assessing the risk of using vulnerable components. In:

Proceedings of the 2nd ACM workshop on Quality of protection (2005)
5. Dacier, M.: Towards quantitative evaluation of computer security. Ph.D. Thesis, Institut Na-

tional Polytechnique de Toulouse (1994)
6. Dacier, M., Deswarte, Y., Kaaniche, M.: Quantitative assessment of operational security:

Models and tools. Technical Report 96493 (1996)
7. Farmer, D., Spafford, E.: The COPS security checker system. In: USENIX Summer, pp.

165–170 (1990)
8. Frigault, M., Wang, L.: Measuring network security using bayesian network-based attack

graphs. In: Proceedings of The 3rd IEEE International Workshop on Security, Trust, and
Privacy for Software Applications (STPSA 2008) (2008)

9. Hoo, K.: Metrics of network security. White Paper (2004)
10. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Workshop on Ad-

vanced Developments in Software and Systems Security (2003)
11. Jaquith, A.: Security Merics: Replacing Fear Uncertainity and Doubt. Addison Wesley, Read-

ing (2007)
12. Manadhata, K., Wing, J., Flynn, M., McQueen, M.: Measuring the attack surfaces of two ftp

daemons. In: Quality of Protection Workshop (2006)

296 L. Wang et al.

13. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Security
& Privacy Magazine 4(6), 85–89 (2006)

14. National Institute of Standards and Technology. Technology assessment: Methods for mea-
suring the level of computer security. NIST Special Publication 500-133 (1985)

15. Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network hardening via
exploit dependency graphs. In: Proceedings of the 19th Annual Computer Security Applica-
tions Conference (ACSAC 2003) (2003)

16. Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with quantitative evaluation tools for
monitoring operational security. IEEE Trans. Software Eng. 25(5), 633–650 (1999)

17. Manadhata, J.W.P.: Measuring a system’s attack surface. Technical Report CMU-CS-04-102
(2004)

18. Manadhata, J.W.P.: An attack surface metric. Technical Report CMU-CS-05-155 (2005)
19. Manadhata, J.W.P.: An attack surface metric. In: First Workshop on Security Metrics (Met-

riCon) (2006)
20. Pamula, J., Jajodia, S., Ammann, P., Swarup, V.: A weakest-adversary security metric for net-

work configuration security analysis. In: Proceedings of the 2nd ACM workshop on Quality
of protection, pp. 31–38. ACM Press, New York (2006)

21. Phillips, C., Swiler, L.: A graph-based system for network-vulnerability analysis. In: Pro-
ceedings of the New Security Paradigms Workshop (NSPW 1998) (1998)

22. Reiter, M., Stubblebine, S.: Authentication metric analysis and design. ACM Transactions
on Information and System Security 2(2), 138–158 (1999)

23. Ritchey, R., Ammann, P.: Using model checking to analyze network vulnerabilities. In: Pro-
ceedings of the 2000 IEEE Symposium on Research on Security and Privacy (S&P 2000),
pp. 156–165 (2000)

24. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation and analysis
of attack graphs. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy
(S&P 2002) (2002)

25. Swanson, M., Bartol, N., Sabato, J., Hash, J., Graffo, L.: Security metrics guide for informa-
tion technology systems. NIST Special Publication 800-55 (2003)

26. Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer attack graph generation tool. In:
Proceedings of the DARPA Information Survivability Conference & Exposition II (DISCEX
2001) (2001)

27. Wang, L., Liu, A., Jajodia, S.: An efficient and unified approach to correlating, hypothesizing,
and predicting intrusion alerts. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.)
ESORICS 2005. LNCS, vol. 3679, pp. 247–266. Springer, Heidelberg (2005)

28. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing, and pre-
dicting intrusion alerts. Computer Communications 29(15), 2917–2933 (2006)

29. Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs. Com-
puter Communications 29(18), 3812–3824 (2006)

30. Wang, L., Singhal, A., Jajodia, S.: Measuring network security using attack graphs. In: Pro-
ceedings of the 3rd ACM workshop on Quality of protection (QoP 2007). ACM Press, New
York (2007)

31. Wang, L., Singhal, A., Jajodia, S.: Measuring the overall security of network configurations
using attack graphs. In: Proceedings of 21th IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSec 2007) (2007)

32. Wang, L., Yao, C., Singhal, A., Jajodia, S.: Interactive analysis of attack graphs using re-
lational queries. In: Proceedings of 20th IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSec 2006), pp. 119–132 (2006)

33. Zerkle, D., Levitt, K.: Netkuang - a multi-host configuration vulnerability checker. In: Pro-
ceedings of the 6th USENIX Unix Security Symposium (USENIX 1996) (1996)

	An Attack Graph-Based Probabilistic Security Metric
	Introduction
	Attack Graph and Motivating Example
	Defining the Metric
	The Basic Definition
	The Need for Conditions and an Interpretation of the Metric
	Difficulties with Cycles
	Extending the Definition to Handle Cycles

	Computing the Metric
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

