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Abstract. In this paper we establish c-bit semi-external graph algorithms, – i.e.,
algorithms which need only a constant number c of bits per vertex in the internal
memory. In this setting, we obtain new trade-offs between time and space for I/O
efficient LTL model checking. First, we design a c-bit semi-external algorithm
for depth-first search. To achieve a low internal memory consumption, we con-
struct a RAM-efficient perfect hash function from the vertex set stored on disk.
We give a similar algorithm for double depth-first search, which checks for pres-
ence of accepting cycles and thus solves the LTL model checking problem. The
I/O complexity of the search itself is proportional to the time for scanning the
search space. For on-the-fly model checking we apply iterative-deepening strat-
egy known from bounded model checking.

1 Introduction

Graph search algorithms such as breadth-first search (BFS), depth-first search (DFS),
A*, and their variants, play an important role in model checking, as well as in other
branches of computer science. All use duplicate detection in order to recognize when
the same vertex is reached via alternative paths in a graph. This traditionally involves
storing already explored vertices in random access memory (RAM) and checking newly
generated vertices against the stored vertices. However, the available amount of RAM
severely limits the range of problems that can be solved with this approach. Although
many clever memory saving techniques, such as state space reduction, abstraction, and
compression, have been developed, all are eventually limited in terms of scalability,
and many practical graph search problems are too large to be solved using any of these
techniques. Relying on the virtual memory slows down the exploration due to an ex-
cessive number of page faults. Over the past few years, several researchers have shown
that the scalability of graph search algorithms can be dramatically improved by using
external memory, such as disk, to store generated vertices for use in duplicate detection.
However, this requires different search strategies to eliminate the impact of the several
orders of magnitude difference in random access speed between RAM and disk.

External memory algorithms [20] carefully organize the access to disk. The effi-
ciency of algorithms is then measured in number of block I/O operations performed.
The frequently used I/O pattern is external file scanning, processing a stream of records
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stored consecutively on disk. If the block size is B, the number of block accesses
(I/Os) for scanning N nodes is O(scan(N)) = O(N/B). Another important opera-
tion is external sorting. Given that the RAM can contain M nodes it has a complexity
of O(sort(N)) = O(N

B logM/B
N
B ) I/Os.

Enumerative model checking is a search in an implicitly given state space graph (im-
plicit graph) G = (V, E) induced by an initial vertex s and a successor generation func-
tion succ. Vertices correspond to states and transitions to edges. The maximal size of the
vertex, vmax, depends on the encoding and denotes the length of a state vector. Reacha-
bility is one of the simplest model checking problems. If G is undirected, the complexity
of the external memory variant of BFS for solving the reachability problem is bounded
by O(sort(|E|) + scan(|V |)) I/Os [21]. For directed graphs, the complexity raises to
O(sort(|E|)+ l ·scan(|V |)) [26], where l := max{δ(s, u)−δ(s, v)+1 | (u, v) ∈ E} is
the length of the longest back-edge in the BFS graph or its locality [27]. The locality is
bounded by the length of the shortest counter-example δ∗ := min{δ(s, f) | f ∈ F} (in
case of an error) and by the eccentricity of s (max. BFS level) εs := max{δ(s, v) | v ∈
V } (in case of no error), where F ⊆ V is a set of accepting vertices.

Semi-external graph algorithms [1] are algorithms, which allocate O(|V |) machine
words in the internal memory. Thus, they can store O(vmax) ≥ O(log |V |) bits of data
per vertex. Since the internal memory is the limiting factor for such algorithms, it makes
sense to further reduce the memory requirement to a small constant number of bits per
vertex. Therefore, we define c-bit semi-external search algorithms, which take at most
c bits per vertex in the internal memory. Considering small c, with Gigabytes of RAM,
and given that state vectors in model checking are large, such algorithms allow us to
handle spaces that are orders of magnitudes larger than the main memory.

We present a semi-external solution to the LTL model checking problem, which
amounts to finding an accepting cycle in the state space graph of a Büchi automa-
ton [12]. The algorithm we present has an I/O complexity equal to the complexity of
I/O-efficient reachability. The approach relies on the I/O-efficient external construction
of a minimal perfect hash function (MPHF) [7,8], i.e., a one-to-one correspondence be-
tween V and {0, . . . , |V |− 1}. It allows compressing V to c|V | bits for small constants
c. Thereby, we solve a problem considered in a series of preceding papers [15,4,5] that
have I/O complexities higher than the reachability analysis.

The paper is organized as follows. First, we define c-bit semi-external algorithms as
needed for implicit graph search and explain the generation of space-efficient minimal
perfect hash functions. Subsequently, we illustrate our semi-external solution to the
LTL model checking problem using the constructed perfect hash function, and analyze
its I/O complexity. Afterwards, we address the problem to find the counter-example
on-the-fly. For the purpose of comparison, we give a brief overview of related work
and put our complexity results into context. And finally, we provide an experimental
comparison of existing algorithms for I/O efficient LTL model checking.

2 c-Bit Semi-external Graph Algorithms

Semi-external graph algorithms [1] allow to store O(|V |) vertices in the internal mem-
ory, thus restricting graph algorithms to store internally only information about vertices,
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but not about all edges. Although this definition of semi-external graph algorithms ap-
pears practical for explicit graphs, it is too general for algorithms on implicit graphs.
E.g., almost every internal memory graph algorithm on implicit graphs would be con-
sidered as semi-external, since graph edges are given implicitly and there is no need
to store them. However, due to large state vector sizes it is apparent that O(|V |) items
may easily exceed the amount of available internal memory. For this reason, we study
memory consumption in more detail. To derive exact bounds on internal memory con-
sumption, we give a definition of a subclass of semi-external graph algorithms.

Definition 1. (c-bit Semi-External Algorithm) The graph algorithm A is called c-bit
semi-external for c ∈ R

+, if for each implicit graph G = (V, E) the internal memory
requirements of A are at most O(vmax) + c · |V | bits.

O(vmax) stands for the internal memory consumed by a program code, auxiliary fixed
sized variables, and storage of a constant amount of vertices. The value c · |V | stands
for the internal memory consumed by information about vertices. Including vmax in the
complexity is necessary, since this value differs for different graphs1 – otherwise, for a
bound of O(1) + c · |V | bits, we could always find a graph requiring vmax that exceeds
the constant in O(1), which would prohibit storing even a constant number of vertices.
Including the state vector size in the definition of semi-external algorithm also takes a
lower bound of log log u+(log2 e)|V |+O(log |V |) bits [16] on the space of an MPHF
into account, where u denotes the number of all possible states (including unreachable
ones) and e is Euler’s number.

In the remainder of this section, we refer to results on memory-efficient construction
of MPHFs and give sufficient details on the space and the I/O complexity of used al-
gorithms. We introduce a c-bit semi-external depth-first search with use of MPHF. Its
I/O complexity is O(scan(|V |)) plus the complexity of the hash function construction.
There is no known external algorithm computing the DFS order with such a low I/O
complexity on general graphs. Third, we extend this DFS implementation to find ac-
cepting cycles in order to solve the LTL model checking problem with the same I/O
complexity.

2.1 Memory Efficient Minimal Perfect Hash Function

Perfect hashing is a space efficient way of associating unique identifiers with the ele-
ments of a static set V ⊆ U . A perfect hash function maps V ⊆ U to unique values
in the range {0, . . . , N − 1}, for some appropriate value of N . A minimal perfect hash
function is a perfect hash function with N = |V |. Consequently, a minimal perfect hash
function is a one-to-one correspondence between V and {0, . . . , |V | − 1}.

Surprisingly, after 23 years of research, an asymptotically space optimal, practical
algorithm for generating MPHFs was recently discovered [7]. The external memory
variant, referred to as EPH algorithm, was given in [8]. Although the I/O complexity of
this EPH algorithm is not analyzed in [8], it is clear that it is dominated by the need to

1 The binary vertex representation vmax takes obviously at least log |V | bits. In the model check-
ing case, it is usually much more.
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Procedure Perform-DFS(s, succ)
V := Enumerate-BFS(s, succ)
h := Construct-MPHF(V )
Depth-First-Search(s, succ, h)

Procedure Depth-First-Search(s, succ, h)
Vars: visited : Internal Bit Array[1..n] = (0,.., 0)

dfsStack : External Stack of Vertices
visited[h(s)] := 1
dfsStack.push(s)
while (not dfsStack.empty())

u := dfsStack.top()
if ∃v ∈ succ(u). visited[h(v)] = 0 then

dfsStack.push(v)
visited[h(v)] := 1

else
dfsStack.pop()

Fig. 1. c-bit Semi-External Depth-First Search

sort all items by their hash signature in a partitioning step. MPHFs constructed by EPH
can be stored in less than 4 bits per item.2

The Heuristic EPH algorithm, published also in [8], differs from EPH in the choice
of the hash function. It results in a substantial speed-up in both construction and search
times, but incurs additional memory overhead per bucket. In our implementation, it
needs 1 additional bit per vertex, i.e., our implementation of the Heuristic EPH requires
5 bits per vertex.

2.2 Depth-First Search

The main observation for graph search is that given a perfect hash function h, algorithms
like plain DFS, BFS, and A* need only one bit per vertex storing whether it has already
been visited. The general approach applying a bit-array for tracking reached vertices in
DFS is illustrated in Fig 1 as procedure Depth-First-Search.

Our algorithm first enumerates all reachable vertices using external BFS, which per-
forms O(l·scan(|V |)+sort(|E|)) operations (Enumerate-BFS) [18,26]. Then the EPH
algorithm constructs the MPHF with I/O complexity O(sort(|V |)) (Construct-MPHF)
– this complexity follows from [8], although it is not explicitly stated there.

The stack in procedure Depth-First-Search can be stored on disk. The procedure
performs exactly |V | push operations and |V | pop operations. It is easy to implement
the stack in the way that the I/O-complexity of the procedure is O(scan(|V |)). Thus
the overall I/O complexity of the algorithm (procedure Perform-DFS), including graph
generation and hash function construction, is O(l ·scan(|V |)+sort(|E|)+sort(|V |)+
scan(|V |)) = O(l · scan(|V |) + sort(|E|) + sort(|V |)). In implicit graphs, we have

2 Although [8, Table 2] shows a value higher than 4 bits per item for n = 108, it is caused by
a poor choice of the bucket size; i.e., b = 20 causes buckets to contain less than 96 items per
bucket on average. In our implementation of EPH, we always choose a better bucket count,
which guarantees that each bucket contains at least 128 items on average. This amount assures
that the fixed cost per bucket is divided into sufficiently many items to keep the overall costs
below 4 bits per item.
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Procedure Perform-DDFS(s, succ)
Vars: V : Vertex Set;

h: Perfect Hash Function;
V := Enumerate-BFS(s, succ)
h := Construct-MPHF(V )
Double-Depth-First-Search(s, succ, h)

Procedure Double-Depth-First-Search(s, succ, h)
Vars: visited : Internal Bit Array[1..n] := (0,.., 0);

F : List of Accepting Vertices;
F := Depth-First-Search-1(s, succ, h)
visited := (0, ..., 0)
for each i in F do

if visited[h(i)] = 0 then
if (Depth-First-Search-2(i, succ, h))

return ’cycle found’
return ’no cycle’

Fig. 2. c-bit Semi-External Double Depth-First Search

|V | < |E|, because all vertices contained in V induced by s and succ are reachable.
Therefore the I/O complexity simplifies to O(l · scan(|V |) + sort(|E|)).

With EPH minimum perfect hashing the algorithm is 5-bit semi-external, since less
than 4 bits per vertex are needed for storing h, and 1 bit per vertex is needed for visited.

2.3 Double Depth-First Search

The LTL model checking problem amounts to detecting accepting cycles in the global
state space graph. It is possible to find an accepting cycle with the double depth-first
search algorithm [13, Algorithm A]. The algorithm performs the first DFS to find a list
F of all accepting vertices sorted in DFS postorder. The second DFS explores the graph
gradually from all vertices in F . The pseudo code of this algorithm is shown in Fig. 2.

Depth-First-Search-1 is a modified version of Depth-First-Search, which appends
an accepting vertex to F , while it is removed from dfsStack. Depth-First-Search-2 is
a modified version of Depth-First-Search, which finishes with return value true, if it
wants to add its initial vertex to dfsStack in the main loop (and so it finds a path from
the initial vertex to itself). For simplicity and memory efficiency, we assume that array
visited is shared by both procedures. The correctness of the algorithm is proven in [13].

These two modifications of Depth-First-Search have clearly the same I/O complex-
ity as the original procedure. Therefore, the overall I/O complexity of Perform-DDFS
remains at O(l · scan(|V |) + sort(|E|)). Moreover, they share the same hash function
and memory space for the visited field. As in the DFS case, with EPH the algorithm is
5-bit semi-external, since less than 4 bits per vertex are needed for storing h, and 1 bit
per vertex is needed for visited.

2.4 General Graph Search

We have shown a way to solve the LTL model checking problem using double depth-first
search with a visited vertex set represented in form of a minimum perfect hash func-
tion. We have chosen double depth-first search, because it is the most time and memory
efficient algorithm for searching accepting cycles in the internal memory and it sustains
the efficiency in semi-external setting. For example, nested depth-first search [13] has
higher memory demands and its on-the-fly nature is not a big advantage, since for MPHF
construction, the algorithm would have to enumerate the entire vertex set anyway.
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Procedure General-Search
Vars: V : Vertex Set;

h: Perfect Hash Function;
V := External-BFS(s, succ)
h := Construct-MPHF(V )
Search(s, succ, h)

Fig. 3. General c-bit Semi-External Graph Search

Besides combination of MPHF and LTL model checking, we can also consider other
applications in model checking. E.g., for global CTL model checking [12], graph de-
composition to strongly connected components (SCCs) is needed, which is easy using
Kosaraju-Sharir’s algorithm (SCC decomposition using forward and backward DFS
[25]). If the implicit definition also contains backward successor generation, the al-
gorithm for SCC decomposition is straightforward. This way, employing MPHF gives
us a handle to many space efficient semi-external model checking algorithms for the
prize of single state space generation needed for MPHF construction. In fact, all such
general search algorithms on implicit graphs can follow the semi-external exploration
procedure as outlined in Fig.3.

3 On-the-Fly LTL Model Checking

The idea of an increasing depth bound to obtain short lasso shaped counter-examples as
witnesses for a falsified LTL property refers to pioneering work of [6], which searches
for a counter-example in the state space graph unrolled to a fixed depth k.

A similar iterative-deepening strategy can be easily applied to our case. Since we use
external breadth-first search to generate the state space, we can search for a counter-
example every time a new level is generated. This approach has two main advantages

– The counter-example can be found before the entire graph is generated – it is found
on-the-fly. Since graph generation is the main source of I/Os, performance can be
significantly improved on inputs with existing counter-examples.

– It can produce a shorter counter-example, since the depth for its search is limited.
However, the counter-example is not necessarily the shortest.

The algorithm is derived from the one in Section 2.3 by unwinding procedure
Enumerate-BFS and moving MPHF construction and DDFS inside BFS levels gen-
eration as shown in Fig. 4.

Every search for a counter-example in an incomplete graph applies O(sort(|V |))
I/Os, determined by the I/O complexities of Construct-MPHF and Double-Depth-First-
Search. The search for a counter-example is performed after the generation of each BFS
level (one BFS iteration). With εs := max{δ(s, v) | v ∈ V } at most εs BFS iterations
are invoked. Moreover, the generation of every BFS level requires O(scan(|V |)) I/Os.
Therefore, the overall I/O complexity of the algorithm is

O(εs · sort(|V |) + l · scan(|V |) + sort(|E|)) = O(εs · sort(|V |) + sort(|E|)).
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Procedure Perform-IDDFS(s, succ)
Vars: V : Vertex Set;

h: Perfect Hash Function;
nextLevel: Set of Vertices;

nextLevel := {s}
while nextLevel �= ∅ do

V := V ∪ nextLevel
h := Construct-MPHF(V )
Double-Depth-First-Search(s, succ, h)
nextLevel := succ(nextLevel) \ V

Fig. 4. On-the-fly Semi-External Double Depth-First Search

Although the I/O complexity of double DFS is only scan(|V |), in practice, due to
the efforts for generating the successors of a vertex, the run time of DFS search often
substantially exceeds the run time of hash function construction (even though its I/O
complexity is sort(|V |)). Therefore, the internal memory search for a counter-example
is too expensive to be invoked after the generation of each BFS level. For this reason,
we implemented the algorithm in such a way that it measures run times of checks for
a counter-example (including hash function generation) and tries to predict the run time
on the next level. This refined threshold determination algorithm invokes a check for
counter-examples, only if the predicted time sufficiently amortizes the time for graph
generation.

4 Related Work

Since model checking amounts to graph search, our algorithm is strongly related to
external memory graph algorithms [20,11]. Most results consider the graph to be ex-
plicitly given in the external memory. Graph algorithms on explicit graphs, however,
suffer from the storage of edges in the external memory, which causes one I/O opera-
tion each time they need to access successors of a given vertex. It brings at least |V |
additional I/Os. The situation has been slightly improved for undirected graphs, where
the I/O complexity improves to O(

√
|V | · scan(|V | + |E|) + sort(|V | + |E|)) [19],

but in general, state spaces in model checking are directed.
Fortunately, practical model checking is performed on state spaces given by a system

model – i.e., implicit graph definition. Thus, it avoids the expensive fetching of edges.
However, in contrast to the explicit case, the implicit representation of edges does not
allow to store the information about explored edges, which is essential to avoid re-
exploration. For this reason, it is not trivial to make algorithms on explicit graphs work
also on implicit graphs efficiently. For example, there is no known efficient implemen-
tation of depth-first search for implicit graphs.

Therefore, algorithms refer to a breadth-first traversal through the graph and em-
ploy the delayed duplicate detection technique [18,21,26]. The search procedure has to
maintain a set of visited vertices to prevent their re-exploration. Since the graphs are
large, the visited set cannot be kept completely in main memory. Most of it is stored on
an external memory device. When a new vertex is generated, it is checked against the
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visited set to avoid its re-exploration. The idea of the delayed duplicate detection tech-
nique is to postpone the individual checks and perform them together in a group, for the
price of a single scan operation. The group of vertices waiting for checking against the
visited set is called candidate set. There are two basic kinds of duplicate detection: The
one making an internal memory a buffer for candidate set and the one storing candidate
set in the external memory. The first has an advantage that no sorting is needed during
duplicates removal. The latter is better, when candidate sets are too large to fit in the
internal memory and thus, using the first approach they would have to be divided into
several pieces and checked separately. Complexities of both approaches are different,
and incomparable in general.

4.1 External LTL Model Checking

The first I/O-efficient solution for the LTL model checking problem by Edelkamp and
Jabbar [15] builds on the reduction of liveness to the safety approach by Schuppan and
Biere [24] designed for symbolic exploration with BDDs. It operates on-the-fly and
applies guidance for checking liveness properties [15] with a set of heuristic functions.

Barnat et al. proposed another I/O efficient algorithm [4] for accepting cycle de-
tection. It applies the OWCTY (One Way Catch Them Young) algorithm [23,10] – an
accepting cycle detection algorithm based on topological sort. The algorithm itself is
an off-line algorithm. It generates the whole state space and then iteratively prunes the
parts of the state space that do not lead to any accepting cycle. The underlying explo-
ration strategy is breadth-first based. Later, they also proposed an on-the-fly algorithm
[5] based on the MAP (Maximal Accepting Predecessors) algorithm [9].

All three approaches were theoretically compared, experimentally evaluated and
each of them has shown its practical applicability to a certain class of problems.

4.2 Complexity Comparison

In this section, we compare the new semi-external approach to the existing external
LTL model checking algorithms, in terms of internal memory consumption and I/O
complexity (see Table 1).

Regarding the I/O complexity, the new algorithms contributed in this paper com-
pete much better than previous work. The off-line version (DDFS) has the same I/O
complexity as the external breadth-first search, which defeats existing algorithms sub-
stantially. The on-the-fly variant (IDDFS) is worse than off-line, but it is still reasonable
compared to the rest of the algorithms. Table 1 shows I/O complexities of all algorithms
and also gives I/O complexities of their versions with candidate set stored in RAM.
Note that in this case we consider a variant of the EPH algorithm with I/O complexity
O(n/M · scan(n)) (different bound for external sort) rather than O(sort(n)), because
it simplifies resulting complexities. The existing external memory algorithms are named
after their internal memory variants: L2S [15], OWCTY [4] and MAP [5].

The disadvantage of our semi-external algorithm is that it needs Ω(|V |) bits in the
internal memory – thus we can always find a graph, on which it exceeds an available
internal memory. For example, for 5-bit semi-external search on a computer with 2 GB
RAM, the algorithm cannot handle graphs with more than 2 ·230 ·8/5 ≈ 3 ·109 vertices
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Table 1. I/O complexities for LTL model checking

Candidate Set on Disk Candidate Set in RAM
L2S O(l · scan(f · n) + sort(f · m)) O((l + f · m/M) · scan(f · n))
OWCTY O(τ · ((εs +ψ) · scan(n)+ sort(m))) O(τ · (εs + ψ + m/M) · scan(n))

MAP O(f ·((d+f)·scan(n)+sort(f ·m))) O(f ·((d+m/M+f)·scan(n)+sort(n)))

DDFS O(l · scan(n) + sort(m)) O((l + m/M) · scan(n))
IDDFS O(εs · sort(n) + sort(m)) O((εs + m/M) · n/M · scan(n))
m = |E| . . . number of edges, n = |V | . . . number of vertices,
f = |F | . . . number of accepting vertices, τ . . . length of the longest path in the SCC graph,
εs . . . eccentricity of the initial vertex, d . . . diameter of the graph,
l . . . locality, i.e., length of the longest back edge in breadth-first search graph
ψ . . . length of the longest path in the graph going through trivial strongly connected

components (without self-loops).

(since it stores 5 bits per vertex internally). In contrast, purely external algorithms are
limited only by the capacity of the external memory. Nevertheless, considering that
one vertex is vmax bytes long, we get that, with 2 Gigabytes of RAM our algorithm
can handle state spaces which need approximately 3 · vmax Gigabytes to be stored
externally. For practical values of vmax (20-1000 from our experience on models from
the Benchmark for Explicit Model Checkers [22]) the state space would be hundreds
or thousands of Gigabytes large. When manipulating such a large piece of data, our
algorithm takes advantage of lower I/O complexity and as a result, it can be much faster
than previous algorithms, which makes a price of 5 bits of the internal memory per
vertex quite reasonable.

5 Experimental Results

In order to obtain experimental evidence about the behavior of our algorithm in practice,
we implemented three existing external memory LTL model checking algorithms (as
introduced in Section 4) and compared their run times and allocated disk space to both
versions (DDFS and IDDFS) of the new semi-external algorithm.

All algorithms have been implemented on top of the DIVINE library [3], providing
the state space generator, and the STXXL library [14], providing the I/O primitives.
Experiments were run on a Linux workstation with 2 GHz Intel Xeon processor, the
main memory was limited to 2 GB, the disk space to 60 GB and wall clock time limit
was set to 120 hours. For compilation of sources we used GNU C++ compiler with
optimization level 2. Algorithm L2S was implemented as a procedure that performs the
graph transformation as suggested in [15] and then employs I/O efficient breadth-first
search to check for a counter-example. Note, that our implementation of L2S does not
include the A* search heuristics and, hence, can be less efficient when searching for
an existing counter-example. Algorithms DDFS and IDDFS were implemented using
Heuristic EPH [8] (for the sake of speed), thus one additional bit per vertex is allocated
in comparison to EPH.
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Table 2. Experimental results for different I/O-efficient algorithms

L2S OWCTY MAP DDFS IDDFS
Experiment Time Disk Time Disk Time Disk Time Disk Time Disk
Valid Properties
Elev.2(16),P4 (OOS) 09:54 9.2 GB 07:45 16 GB 08:01 10 GB 08:03 10 GB

Lamport(5),P4 (OOS) 02:37 5.5 GB 03:16 5.7 GB 02:15 3.3 GB 02:16 3.3 GB

MCS(5),P4 (OOS) 03:27 9.8 GB 04:59 10 GB 03:42 6.2 GB 03:59 6.2 GB

Peterson(5),P4 (OOS) 18:20 26 GB 25:09 26 GB 14:19 16 GB 18:37 16 GB

Phils(16,1),P3 (OOS) 01:49 6.2 GB 02:31 7.8 GB 02:26 6.7 GB 02:54 6.7 GB

Ret.(16,8,4),P2 53:06 12 GB 07:22 3.2 GB 12:31 6.3 GB 06:26 3.4 GB 07:52 3.4 GB

Szyman.(5),P4 (OOS) 45:52 38 GB 59:35 38 GB 30:36 24 GB 34:21 24 GB

Invalid Properties
Bakery(5,5),P3 00:25 5.4 GB 68:23 38 GB <1m 16 MB 36:48 29 GB 00:01 71 MB

Szyman.(4),P2 00:00 203 MB 00:20 253 MB <1m 2 MB 00:10 237 MB <1m 8 MB

Elev.2(7),P5 00:01 130 MB <1m 6 MB <1m 2 MB <1m 4 MB <1m 6 MB

Lifts(7),P4 00:01 59 MB 00:28 475 MB <1m 4.6 MB 00:32 561 MB 00:07 239 MB

Times are given in hh:mm format, “OOS” = “out of space”, “<1m” = “below 1 minute”.

Table 3. Size of used models and internal memory used for storage of MPHF

Number MPHF Size
Model of Vertices vmax εs (bits/vertex)
Elev.2(16),P4 173,916,122 30 bytes 94 4.941
Lamport(5),P4 74,413,141 24 bytes 99 4.941
MCS(5),P4 119,663,657 28 bytes 91 4.941
Peterson(5),P4 284,942,015 32 bytes 177 4.941
Phils(16,1),P3 61,230,206 50 bytes 47 4.941
Ret.(16,8,4),P2 31,087,573 91 bytes 553 4.941
Szyman.(5),P4 419,183,762 32 bytes 223 4.941

The experimental results are listed in Tab. 2. Names of algorithms correspond to
names in Section 4. We note that just before the unsuccessful termination of L2S due to
exhausting the disk space, the BFS level size still tended to grow. This suggests that the
computation would last substantially longer if sufficient disk space would have been
available. For the same input graphs, algorithms OWCTY, MAP, DDFS and IDDFS
managed to perform the verification using a few Gigabytes of disk space only. All the
models and their LTL properties are taken from the BEEM project [22].

Measurements on models with valid properties demonstrate that DDFS is able to
successfully prove their correctness, while L2S fails. Additionally, DDFS is faster than
OWCTY on most of inputs and outperforms MAP on all inputs except for model
Elev.2(16), P4. We observe that DDFS is especially better than OWCTY on inputs
where the eccentricity of the initial vertex (Tab. 3) is high, since the first enumera-
tion phase costs almost the same time as the initial iteration of OWCTY, but the dou-
ble depth-first search is not influenced by the eccentricity, while the other iterations of
OWCTY are.

A notable weakness of DDFS is its bad performance on models with invalid proper-
ties. It does not work on-the-fly, and hence is outperformed by L2S and MAP on some
inputs. For this reason, the iterative-deepening variant (IDDFS) has been proposed in
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Fig. 5. Comparison of BFS with virtual memory swapping and I/O-efficient BFS

Section 3. It is a little bit slower than DDFS on inputs with valid properties (since all
intermediate checks are useless in that case), but our measurements confirm that it is
able to find a counter-example much sooner. Actually, its run times are close to run
times of MAP, which appears to be the best choice for models with invalid properties.
In our implementation, IDDFS is designed to keep costs for intermediate checks below
20% of the run time.

We also measured the internal memory taken for MPHFs representing state spaces
(Tab. 3). Measured amounts of bits per vertex confirm theoretically achieved estima-
tions for Heuristic EPH.

Finally, to support a need for I/O-efficient algorithms, we demonstrate in Fig. 5 that
after exceeding the main memory, BFS with use of virtual memory swapping almost
stops the exploration due to excessive amount of page faults. In contrast, I/O-efficient
BFS is able to finish in reasonable time. A similar observation has been made in [2].

6 Conclusion and Discussion

With this paper we contribute c-bit semi-external DFS search for validating safety and
c-bit semi-external double DFS for validating liveness properties. For bug-hunting, we
implemented an iterative deepening variant of double DFS using the same amount of
RAM. With minimum perfect hashing with EPH, we obtained a c-value of about 5, with
Heuristic EPH used in the experiments we validated that c is less than 6.

With double DFS (DDFS) we are in many cases faster than all previous algorithms
for LTL model checking L2S [15], OWCTY [4], MAP [5] (in theory and practice).
Moreover, we saw that solving the LTL model checking problem off-line is not more
involved than state space enumeration.

As a drawback, semi-external DDFS is neither optimal, nor on-the-fly. We discussed
improvements for transforming DDFS into an on-the-fly algorithm using iterative
deepening, but currently we lack an algorithm that is linear wrt. generating the search
space. The algorithm by Edelkamp and Jabbar [15] operates on-the-fly, can be directed
towards the error, and produces optimal counter-examples, but traverses the cross-
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product graph, which can be too large in many cases. MAP has a considerable I/O
complexity, and is on-the-fly only for a restricted number of properties. Another open
question is the design of optimal counter-examples providing LTL model checking al-
gorithm that is linear in the size of the search space.

A notion of c-bit semi-external algorithms makes a space consumption estimates
much closer to the theoretical lower bound [16]. An interesting question is how small
we can get the c for c-bit semi-external DFS. Both in theory and practice, we can do
somewhat better by using perfect hash functions (PHFs) with range {0, . . . , m − 1} for
m = Θ(n) rather than minimal PHFs (with m = n). We need to allocate m bits for
storing visited-bits, but we need less space for representing the hash function. Botelho et
al. [7] cites a theoretical bound of (1+(m/n−1) ln(1−n/m))n log e bits for storing the
PHF.3 Adding m and optimizing, we obtain an optimal value of m ≈ 1.302n yielding
a total space consumption of about 2.108n bits. Botelho et al. give a practical scheme
based on 3-uniform hypergraphs with m ≈ 1.23n that uses about 1.95n bits for the PHF
so that we need about 3.18n bits in total which is only about n bits off the theoretical
bound. Even for the faster and simpler construction using 2-uniform hypergraphs, we
get a slight improvement over the 5 bit solution than we obtain with MPHFs: using
m ≈ 2n, we need about 2n bits for storing the PHF yielding total space about 4n. Note
that this solution is even more computationally efficient than MPHF based schemes,
since it saves a compression step needed to construct an MPHF from a PHF.

Because of external duplicate detection, vertex enumeration is time consuming.
There are different possible approaches to tackle the problem. Given a sufficient num-
ber of file pointers, external sorting can be reduced to at most two scans over the search
space. Moreover, pipelining [14] helps a lot in reducing the number of I/Os in BFS.
Furthermore, by faster random access time, flash media might additionally reduce the
run time [17].

Due to all of these techniques, we believe that external memory model checking is
practical and can be made even more time and memory efficient.
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9. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors are Better than Back
Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)
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